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Abstract

Radio Frequency IDentification (RFID) is a ubiquitous technology to wirelessly iden-

tify transponders (tags) with a reader device. The contemporary Internet of Things

(IoT) paradigm has spawned a tremendous amount of new applications in the realm

of RFID. This thesis improves RFID for the IoT and other applications where a mul-

titude of tags is identified by a single reader device.

Compressed Sensing (CS) is a signal processing technique to acquire and recover

sparse signal vectors from under-sampling by solving under-determined linear sys-

tems of equations. Conventional RFID tag acquisition schemes like Frame Slotted

ALOHA (FSA) are hampered by colliding tag responses, while the proposed CS-RFID

approach exploits collisions during tag acquisition. Triggered by the reader, all tags

respond simultaneously with their signature sequence. The superposition of the signa-

ture sequences at the reader is cast as a CS measurement, i.e., an under-determined

linear system of equations, and the tag acquisition is formulated as a CS recovery prob-

lem. Versatile Approximate Message Passing (AMP) recovery algorithms are vetted

and employed to solve the problem efficiently.

The information from the tag acquisition is utilized by identification protocols to

reliably identify the tags. Two identification protocols are proposed: A very quick

one for fixed inventories (set of objects that feature a tag for identification), and a

more general one for arbitrary inventories.

The AMP recovery algorithms leverage a variable amount of prior knowledge. A

novel algorithm that exploits joint sparsity and the signal distribution is introduced.

The origins of joint sparsity in CS-RFID are highlighted — in particular, a reader

with multiple receive antennas profits from this case.

A flexible measurement setup is proposed. It allows to control clock and data of

several UHF RFID tags. The practical feasibility of CS-RFID is demonstrated, and the

impact of detrimental effects is investigated.

Various analytical and numerical evaluations show that CS-RFID renders the

identification of multiple tags quicker, more noise robust and more energy efficient

than the state of the art.





Kurzfassung

Radio Frequency IDentification (RFID) ist eine Technologie, bei der Transponder

(Tags) drahtlos von einem Lesegerät (Reader) identifiziert werden. Das aufstrebende

Konzept des Internet of Things (IoT), zu Deutsch Internet der Dinge, bringt eine

Vielzahl von neuen RFID Anwendungen mit sich. Diese Dissertation verbessert RFID

für das IoT und andere Anwendungen, in welchen eine Vielzahl von Tags von einem

einzigen Reader identifiziert werden sollen.

Compressed Sensing (CS) ist eine Signalverarbeitungstechnik, mit welcher spär-

lich besetzte Signalvektoren mittels Unterabtastung rekonstruiert werden können,

indem unterbestimmte lineare Gleichungssysteme gelöst werden. Konventionelle

Tag-Erfassungsmethoden wie Frame Slotted ALOHA (FSA) sind durch Kollisionen

beeinträchtigt, während die vorgeschlagene CS-RFID Methode Kollisionen ausnutzt.

Der Reader initiiert die Erfassung, und alle Tags antworten gleichzeitig mit einer

Signatursequenz. Die Überlagerung dieser Sequenzen am Reader wird als CS Mes-

sung formuliert, und die Erfassung der Tags ist ein CS Rekonstruktionsproblem. Um

dieses Problem zu Lösen werden vielseitige Approximate Message Passing (AMP)

Rekonstruktionsalgorithmen verglichen und eingesetzt.

Die Information aus der Tag-Erfassungsphase wird anschließend von Identifika-

tionsprotokollen benutzt, um alle Tags zuverlässig zu identifizieren. Zu diesem

Zweck werden zwei Protokolle vorgestellt: Ein sehr schnelles für fixe Inventare (Ob-

jekte mit Tag), und ein allgemeineres für beliebige Inventare.

Die AMP Rekonstruktionsalgorithmen können eine variable Menge an Vorwissen

ausnutzten. Ein neuer Algorithmus wird präsentiert, der in der Lage ist, "Joint Spar-

sity" und die statistische Signalverteilung auszunutzen. Dies ist insbesondere bei

einem Reader mit mehreren Empfangsantennen relevant und nützlich.

Ein flexibler Messaufbau, der es ermöglicht, Daten und Takt von mehreren UHF

RFID Tags zu kontrollieren, wird eingeführt. Die praktische Realisierbarkeit von CS-

RFID wird demonstriert, und der Einfluss von störenden Effekten wird untersucht.

Verschiedene analytische und numerische Auswertungen belegen, dass CS-RFID

bei der Identifikation von mehreren Tags schneller, robuster gegen Rauschen und en-

ergieeffizienter als der aktuelle Stand der Technik ist.
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Notation and Definitions

Scalars, vectors and matrices:

Deterministic and random scalar: a and a

Deterministic and random vector: a and a

Deterministic and random matrix: A and A

Columns of an M ×N matrix: A = [a1, ..., aN ]
Rows of an M ×N matrix: A = [A1,:; ...;AM,:]
Entry of matrix, m-th row and n-th column: (A)m,n ≡ am,n

Complex conjugate: (·)∗
Transposition of vector or matrix: (·)T
Hermitian adjoint of vector or matrix: (·)H
Inverse of matrix: (·)−1

Determinant of a matrix: | · |
N ×N identity matrix: IN
M ×N all-zero matrix: 0M×N

M ×N all-one matrix: 1M×N

Vector a to diagonal matrix A operation: A = diag (a)

Sum of diagonal entries of M ×M matrix: trace(A) =
∑M

m=1 am,m

Sets:

Set (denoted in calligraphic font): S
Cardinality (number of elements): |S|
Vector with entries described by set (set contains indices): aS

Distributions:

x is Gaussian distributed with mean µ and variance σ2: x ∼ N (µ, σ2)
x is Laplace distributed with mean µ and scale parameter κ: x ∼ L(µ, κ)
x is Gamma distr. with shape param. k and inv. scale param. θ: x ∼ Γ(k, θ)

Gaussian distribution with mean µ and variance σ2 evaluated at x:

N (x;µ, σ2) ≡ 1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
.



xviii Notation and Definitions

Laplace distribution with mean µ and variance 2κ2 evaluated at x:

L(x;µ, κ) ≡ 1

2κ
exp

(
−|x− µ|

κ

)
.

Gamma distribution with shape parameter k and inverse scale parameter θ evaluated

at x (Γf(·) denotes the gamma function):

Γ(x; k, θ) ≡ xk−1e−x/θ

θkΓf(k)
.

Binomial distribution with n trials and success probability p evaluated at k:

pB (k;n, p) ≡
(
n

k

)
pk(1− p)n−k.

The abbreviation "i.i.d." stands for independent and identically distributed.

Norms:

The lp-norm of a vector x ∈ C
N is defined as

‖x‖p :=
(

N∑

n=1

|xn|p
) 1

p

.

The Frobenius norm of a matrix A ∈ C
M×N is defined as

‖A‖F :=
√
trace (AHA) =

√√√√
M∑

m=1

N∑

n=1

|am,n|2.

Miscellaneous:

The Mean Squared Error (MSE) between a vector a ∈ C
N and a vector b ∈ C

N is

defined as

MSE(a,b) :=
1

N
‖a− b‖22 =

1

N

N∑

n=1

|an − bn|2.

The MSE between two matrices A ∈ C
M×N and B ∈ C

M×N is defined as

MSE(A,B) :=
1

MN
‖A−B‖2F.



xix

The Normalized Mean Squared Error (NMSE) between two vectors is defined as

NMSE(a,b) :=
‖a− b‖22
‖a‖22

,

the NMSE between two matrices as

NMSE(A,B) :=
‖A−B‖2F
‖A‖2F

.





Chapter 1

Introduction

We are living at the dawn of the Second Machine Age [1], where inventions are

infused by the rapid evolution of digital base technologies. The proliferation of

the internet through advances in wireless communications has propelled us into the

age of big data [2], where mobile devices occupy more network resources than the

long-established desktops, while the amount of transferred data is increasing steeper

than ever. We are witnessing a society with an ever-growing hunger for data, and

inventing the means to satiate this hunger excites the scientific community with new

paradigms.

The Internet of Things (IoT) [3–5] is such a contemporary paradigm that com-

bines several base technologies to achieve the bigger picture: Enabling new tech-

nologies based on massive Machine-to-Machine (M2M) communication and inter-

connectivity. A rapidly growing number of physical objects are being connected to

the internet, helping new applications to flourish, and spawning a tremendous flood

of data that has to be processed and stored efficiently. Following two base technolo-

gies are seen as crucial IoT enablers [4–6], and relevant to this thesis:

• Radio Frequency IDentification (RFID) is a ubiquitous technology where a

reader device wirelessly identifies tags [7, 8]. The tags can be built incredibly

small, battery-less and low-cost, thereby facilitating high-volume productions.

The information stored on a tag ranges from simple product codes used to, e.g.,

identify items in a store, to sensor data used to, e.g., monitor wireless sensor

networks. The applications of RFID are manifold [9], and its deployment is

expected to grow tremendously under the IoT paradigm [10–12].

• Compressed Sensing (CS) is a signal processing technique to acquire sparse

signal vectors in a compressive manner and to fully recover sparse signal vec-
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tors from under-determined linear systems of equations, i.e., from fewer sam-

ples than previously believed [13–15]. It is a key enabler to gather the huge

amounts of data from sensors, social networks and many other applications in

the age of big data. The IoT is governed by massive M2M communication that

contributes to the big data phenomenon, calling for techniques such as CS that

help to reduce the amount of stored and processed data.

The IoT applications involving RFID span all major sectors surrounding our daily

lives [5]: Healthcare, transportation, industry, market, school, vehicles, smart homes,

and agriculture. The IoT allows physical objects to communicate and share informa-

tion, and to be located and identified. Each of the sectors named above contains

objects that interact "intra-sector", i.e., on relatively short distances. Consider RFID

tags equipped with sensors used to monitor a person’s health, continuously read out

by a central device. In another application, all items in a warehouse are equipped

with RFID tags, continuously read out by a central device to monitor the stock. In-

formation is also spread "inter-sector", i.e., over relatively long distances via the

internet. The personal health information could be uploaded to a server for log-

ging purposes, while the warehouse monitor information may be forwarded to the

company headquarters.

While the intra-sector interaction hinges on technologies like RFID, the inter-

sector communication relies on the internet and technologies to tap into it, like the

upcoming 5th generation of mobile networks [16, 17]. The focus of this thesis lies

on the intra-sector wireless communication with RFID tags. A myriad of RFID appli-

cations are envisioned under the IoT paradigm, many involving the communication

with a multitude of RFID tags at once. By equipping everyday objects with RFID

tags, the internet is extended to the IoT.

In this thesis, I propose prescriptions of how to apply big data signal processing

techniques to RFID in order to strongly improve the communication with a multitude

of RFID tags, rendering their identification quick, robust and energy efficient. I

answer the following question: “How to improve RFID for the IoT?”
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1.1 The Relevance of RFID

The roots of RFID can presumably be traced back to the application of radar in

World War II [18] — it was discovered that a plane that performs a roll changes

the reflected radio signal that was originally emitted by the radar station. This fa-

cilitated the identification of friendly planes, without necessitating the planes to ac-

tively transmit information. Since then, RFID technology has come a long way. The

radar station has become the RFID reader that transmits a Continuous Wave (CW)

carrier signal, and the planes have been replaced by incredibly small and cheap tags

that change the reflection coefficient of their antenna in order to evoke amplitude

changes in the reflected signal and convey information to the reader — this principle

is called backscatter communication.

Figure 1.1 Projected size of the global market for RFID tags.

Nowadays, RFID is a ubiquitous technology deployed in retail, supply chain man-

agement, aviation, healthcare, public transport, and many other areas [8, 10, 19].

Figure 1.1 [20] illustrates the size of the global market for RFID tags over recent

years, and its prospective size by 2020. The utilization of RFID tags has doubled

from 2010 to 2015, and is projected to continue this trend in the years to come.

The expected growth in RFID is attributed to the strongly increasing deployment in

transport, logistics, healthcare and other new applications emerging under the IoT

paradigm. The recently founded RAIN RFID industry alliance [12] will further pro-

mote the adoption of Ultra High Frequency (UHF) RFID to identify, locate, authenti-

cate and engage everyday items. Furthermore, the widespread concept of Industry

4.0 foresees a heightened RFID usage [21].
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Figure 1.2 Generic RFID setup.

A major trend is to bring technology closer to our bodies. A key invention of

the last decade was the smartphone that extends our fingertips to reach into the

internet. In recent years, smartphones have been equipped with Near Field Commu-

nication (NFC) [22], a technology to read out High Frequency (HF) RFID tags at

close proximity that can be used for, e.g., mobile payment applications. It is to be

expected that future smartphones will be equipped with UHF RFID readers that are

able to read out tags within the range of several meters — several companies already

offer proper smartphone adapters. This would promote new applications such as in-

door positioning [23]. Another strongly growing field that brings RFID closer to our

bodies are wearables that incorporate RFID in everyday apparel, and sensors that

are placed on our skin [24–27]. Further down the road, RFID technology will grow

into our bodies in the form of implants [28–32]. Implants based on RFID technology

bear the huge advantage of being almost maintenance free due to their battery-less

operation. Sensor information can be read out in a noninvasive manner.

I will now describe the technological foundations of RFID, followed by a survey

of identification protocols.

1.1.1 A Brief Introduction to RFID Technology

The basic RFID setup, illustrated by Figure 1.2, comprises a reader device and one

or several tags that are to be identified by the reader. Identification refers to the

exchange of data between tag and reader, which is achieved by means of a wire-

less radio link. The reader is the "sophisticated", active part of the communication

that coordinates the identification process. The tags primarily consist of a basic in-
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Low Frequency (LF) High Frequency (HF) Ultra High Frequency (UHF) Microwave

Frequency < 135 kHz 13.56MHz 860 − 950MHz 2.45GHz
Read range 1m 0.2m 7m 1m
Antenna type Coil (> 100 turns) Coil (< 10 turns) Dipole antenna Dipole antenna
Standards ISO 18000-2, ISO 11784/85 ISO 18000-3, ISO 14443, NFC ISO 18000-63, EPCglobal Gen2 ISO 18000-4
Coupling Inductively-coupled systems Backscatter systems
Tag type Passive Passive, semi-passive, active
Power consum. Lowest←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Highest
Bandwidth Lowest←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Highest
Complexity Lowest←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Highest
Material influ. Lowest←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Highest

Table 1.1 Classification of RFID.

tegrated circuit –the "chip"– that stores information and performs simple processing

tasks, and an antenna or coil for the wireless data transfer.

The established frequency bands for RFID are depicted in Table 1.1 [33, 34],

along with their implications on the read-out distance and the type of communica-

tion. The depicted read ranges are typical values for passive tags that are powered

by the reader; semi-passive or active tags achieve read ranges of up to 100m (a

definition of the tag types follows below). The range-limiting factor is the allowed

transmit power that is dictated by the individual standards. With increasing operat-

ing (carrier-) frequency, the bandwidth and data rate increase. However, wireless

communication at higher frequencies is stronger affected by materials, in particular

conductive liquids and metal. While Low Frequency (LF) and HF tags can be sub-

merged in liquids or implanted into animals, UHF and microwave tags require free

space propagation and a certain clearance from liquids and metal. Tags that operate

in the LF and HF bands employ coil antennas and use inductive coupling for energy-

and data-transfer. Tags that operate in the UHF or microwave bands employ dipole

antennas and use electromagnetic wave propagation for energy- and data-transfer.

Considering the latter, the prevalent technique to convey data from tag to reader

is called backscatter modulation [8, 35]. In such, the reader emits a CW carrier signal

that is reflected at the tag. The tag changes the load impedance of its antenna ac-

cording to its binary transmit data. This evokes changes in the reflection coefficient

that ultimately result in amplitude changes in the reflected signal. Consequently,

the backscattered CW exhibits amplitude changes that are recorded at the reader’s

receive antenna — this is hinted in Figure 1.2. Having this technique in mind, the

following kinds of tags are distinguished:

• Passive tags are fully powered by the field emitted by the reader. Aside

from powering the tags, the reader’s CW is also used for data transmission

via backscatter modulation.
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• Semi-passive tags contain a power source to supply the chip. This helps to

increase the read range. Moreover, these tags employ backscatter modulation

and, therefore, require the reader’s CW to transmit data.

• Active tags contain a power source and actively transmit data on their own.

These tags do not rely on the reader’s CW.

Passive UHF tags with backscatter modulation are the embodiment of RFID, because

they can be produced cheaply and in high volumes. Furthermore, their packaging

can be small, robust and durable, and they can be read out from several meters of

distance under non-line-of-sight conditions.

In order to read out passive or semi-passive tags, the reader has to constantly pro-

vide a CW, see Figure 1.2. It is transmitting the CW while simultaneously receiving

a weak tag response. The strong, unmodulated CW emitted at the transmitter is also

received directly by the receiver, where it is termed leakage [8, 36]. The leakage

between transmitter and receiver can significantly limit the reader’s receive sensitiv-

ity, since the received CW may be significantly stronger than the tag response, i.e.,

the small amplitude changes a tag imposes on the CW. By a sufficient separation of

transmit and receive antenna, the leakage can be reduced. Setups with separated

transmit and receive antennas are termed bistatic, as shown in Figure 1.2. The

alternative is a monostatic setup, where a single antenna is used for transmission

and reception [37]. Methods and setups to combat leakage have been proposed in

literature [38].

The link frequency refers to the physical transmission rate of information. In

UHF RFID according to EPCglobal [39], the link frequency ranges from 40 kHz to

640 kHz. Note that the data is encoded by FM0 or Miller encoding before transmis-

sion [39, 40]. A good overview of the various RFID standards along with their fields

of application is provided in [34].

1.1.2 A Survey of Identification Protocols

The predominant application of RFID is the identification of objects that are equipped

with tags. Most of the standards listed in Table 1.1 employ protocols that can identify

multiple tags in read range, NFC being an exception. This thesis focuses on the

swift identification of a multitude of tags, a scenario prevalent in UHF or microwave

RFID. Therefore, I assume in the sequel that the tags use backscatter modulation as

communication method.
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Due to the rudimentary nature of passive tags, the wireless communication be-

tween reader and tags is rather simplistic. The tags cannot communicate with each

other, and they respond (backscatter) on the carrier frequency provided by the

reader. Only single tag responses can be handled by a standard reader, multiple

tags responding at once produce a collision — the tag responses superimpose and

"collide" at the reader, and the data is lost. If several tags are in read range and ought

to be identified, their responses have to be coordinated by identification protocols.

An overview of the most common protocols is provided in [33, 41]. For better

comprehension, I separate the identification process into two subsequent phases:

1. Acquisition refers to obtaining the means to communicate with a tag. It estab-

lishes a handshake mechanism between reader and tag. The reader acquires a

(temporary) identifier that is used to communicate with the tag.

2. Data read-out refers to reading out the tag payload via the acquired identifier.

The payload typically contains the product code [39] or sensory information

[28, 29].

The crucial aspect of the identification protocol is the acquisition phase. Before

acquisition, the reader has very limited or no knowledge about the tags in read range.

In order to avoid collisions during acquisition, the tag responses can be separated in

several domains [33, 41], presented here with decreasing popularity.

Time Division Multiple Access (TDMA) is the prevalent technique that sepa-

rates the tag responses in time domain. The most common protocol is Frame Slotted

ALOHA (FSA) that is used in EPCglobal [39]. The tags are randomly scheduled to

respond in slots of a frame; besides pseudo-randomly choosing a slot, the tags also

randomly generate their response, a 16-bit random number called RN16. The RN16

constitutes the temporary identifier that is later used by the reader to communicate

with the tag. The reader acquires the RN16 number of collision-free (singleton) slots,

and reschedules tags that have picked a collision slot. This process is illustrated by

Figure 1.3. The slot occupancy probability is stated by a binomial distribution [42].

Assume K contending tags and a frame size of F slots; the probability that n tags

occupy one slot is

P (“n tags occupy one slot”) = pB

(
n;K,

1

F

)
=

(
K

n

)(
1

F

)n(
1− 1

F

)K−n

. (1.1)
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Figure 1.3 FSA: Tags randomly choose slots in a frame.

If the number of slots is set equal to the number of contending tags, the acquisition

throughput is maximized, i.e., the probability of a singleton slot is maximized while

keeping the collision and empty-slot probabilities low. For large frame sizes F = K,

the following probabilities are obtained:

P (“Empty slot”) = pB

(
0;K,

1

K

)
= e−1 ≈ 0.368, (1.2)

P (“Singleton slot”) = pB

(
1;K,

1

K

)
= e−1 ≈ 0.368, (1.3)

P (“Collision slot”) = 1− pB

(
0;K,

1

K

)
− pB

(
1;K,

1

F

)
≈ 0.264. (1.4)

This means that in expectation, 36.8% of the tags can be acquired in one round,

provided that the number of tags K is known.

Another class of TDMA techniques are tree-based protocols. While FSA is clas-

sified as a random and tag-driven protocol, tree-based protocols are deterministic

and reader-driven. A subset of tags in read range is queried by the reader to re-

spond in a time slot. If a collision occurs, the first subset is further split into two

subsets, until a collision-free slot is obtained. The reader then continues with the

next subset, until all subsets are resolved, and all tags are identified. Tree-based ap-

proaches have a higher reader-to-tag communication overhead than FSA. However,

their deterministic nature bears advantages if a very large number of tags has to be
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identified, because identification of all tags is guaranteed. FSA, on the other hand,

entails a probabilistic result that holds in expectation; while unlikely, it may happen

that several tags collide for a long time.

Code Division Multiple Access (CDMA) techniques separate the tag responses

in code domain. In the basic approach, the tags multiply their identifier with a

pseudo-random spreading sequence. This is often a spread spectrum technique,

i.e., the link frequency (bandwidth) is multiplied by the spreading sequence length.

The spreading sequences are chosen to have large auto-correlation and small cross-

correlation, facilitating the distinction between tag responses with different spread-

ing codes [43]. Orthogonal Walsh codes are considered as well [44]. CDMA is a

power-hungry technique that usually requires semi-passive or active tags [45, 46].

In case of spread spectrum CDMA that entails wide-band transmissions, the receiver

structure at the reader becomes more intricate in order to handle multi-path propa-

gation and inter-symbol interference effects. This increases the reader cost.

Space Division Multiple Access (SDMA) refers to the separation of the reading

area into sectors. This is accomplished by having several readers with separate

antennas, or by beam-forming techniques. In the latter, the reader illuminates only

specific sectors of its read range, in which a fraction of the tag population resides.

However, sharp beams are only achieved at high frequencies with multiple antennas,

rendering the technique expensive.

Frequency Division Multiple Access (FDMA) is a technique where a reader

provides several uplink channels on different frequencies for the tags to respond on.

The reader requires a dedicated receiver unit for each channel. This entails high

hardware requirements and costs. FDMA is very rarely used in RFID.

Combinations of TDMA with one of the other multiplexing approaches are also

proposed in literature. The authors in [43] suggest to employ CDMA in order to

resolve collisions in FSA. Spatial filtering, i.e., SDMA was proposed in [47] to effec-

tively reduce the number of contending tags in FSA.

After obtaining the tag identifiers with one of the above acquisition methods,

the reader identifies the tags1 via data read-out. This is usually done by sequentially

enquiring the list of identifiers, where the tags respond with their payload. Note that

acquisition and data read-out are separated because the identifiers are considerably

1Note that some CDMA approaches directly identify the tags without separate acquisition.
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shorter than the payload. This significantly reduces the total identification time,

which can be illustrated by a simple toy example.

Assume an identifier length of 16 bits ("RN16"), and a data payload of D = 128

bits. Considering FSA with optimal frame size, the identification of K = 10 tags

roughly requires

16 · e ·K︸ ︷︷ ︸
Acquisition

+ D ·K︸ ︷︷ ︸
Data read-out

≈ 1 715 bits, (1.5)

while the direct identification without acquisition of an identifier (replace RN16 in

acquisition by data payload D) takes about twice as long:

D · e ·K ≈ 3 479 bits. (1.6)

Putting both equations in relation, a speedup is observed as soon as D > 25 bits.

Similar experiments can be conducted for CDMA techniques. Assume that the 16-

bit identifiers are spread by a Gold code of length 127 [43, 45], where each of the

K = 10 tags uses a different code instance such that the reader can distinguish the

simultaneous responses, and the data payload is D = 128 bits. Note that in spread

spectrum CDMA, the physical transmission happens at the chip rate that is equal to

the spreading factor times the bit rate. Assuming that the unspread data payload is

transmitted at chip rate, the identification roughly requires

16 · 127︸ ︷︷ ︸
Acquisition

+ D ·K︸ ︷︷ ︸
Data read-out

= 3312 chips, (1.7)

while the direct spreading of the data payload would take about five times as long:

D · 127 = 16 256 chips. (1.8)

A rather novel CDMA-related approach utilizes CS techniques to obtain the tag

identifiers. The tags respond simultaneously with pseudo-randomly generated se-

quences, without spreading the spectrum or the identifier. The superposition of the

responses at the reader is interpreted as a CS measurement that entails an under-

determined linear system of equations, the unknown vector indicates the temporary

identifiers. Using CS recovery techniques, the unknown vector is reconstructed and

the identifiers are acquired. This concept was first proposed in [48], and it is the

core topic of this thesis. The utilization of CS techniques bears significant improve-

ments over the classic CDMA approach, which will become apparent in Section 1.3.

Let me first discuss the fundamentals of CS.



1.2 The Emergence of Compressed Sensing 11

1.2 The Emergence of Compressed Sensing

CS was introduced in [13–15] to recover sparse vectors from under-determined sys-

tems of linear equations. This is depicted by Figure 1.4. It was shown that a sparse

Figure 1.4 CS in a nutshell.

signal vector x ∈ R
N can be recovered from M < N linear measurements y ∈ R

M

if sensing matrix A ∈ R
M×N satisfies certain properties that will be discussed in Sec-

tion 1.2.3. This finding, along with the means to recover x, had a huge impact on

the scientific community for various reasons:

• A plethora of applications features data that is sparse or compressible2 in a

certain domain. Think of vectorized images that are dense in image domain

but highly compressible after energy compressing transforms such as the fast

Fourier transform or the discrete cosine transform. After identifying the spar-

sity in a problem, CS can be applied.

• Rather than acquiring the whole data first and performing compression after-

wards, CS –as the name suggests– allows to perform compression during the

sampling process. This is advantageous if one has to deal with a huge amount

of data. A prime example is Magnet Resonance Imaging (MRI) [49].

• CS allows to recover signals from incomplete or corrupted data. A typical

application is image inpainting [50].

In recent years, CS dominated many areas of research and became a valuable tool.

Aside from finding theoretical bounds on how many measurements M are required

2Compressible data is approximately sparse, i.e., the data is approximately described by a few
large entries, while many small entries account for detail that may be omitted.
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to recover x [51, 52], the quest to find optimal recovery algorithms that attain these

bounds is still ongoing. In particular, prior information in form of additional signal

structure and statistical distributions is incorporated, and computationally efficient

algorithms are aspired.

I will now define the CS model in a more rigorous manner as required for this

thesis, and then provide an overview of various recovery algorithms.

1.2.1 Sparse Signal Model

In the context of CS, a signal is a sparse vector. A signal vector x ∈ R
N is said to

be K-sparse if it features at most K nonzero entries, and K is significantly smaller

than the vector dimension N . A customary measure to count the number of nonzero

entries is the ℓ0-"norm"3 [53]

‖x‖0 = lim
p→0
‖x‖pp = lim

p→0

N∑

n=1

|xn|p = |{n : xn 6= 0}| . (1.9)

Definition 1.2.1 (Support). The support of a vector x ∈ R
N is a set that contains the

indices that correspond to the nonzero entries in x:

Sx := {n : xn 6= 0}. (1.10)

In the deterministic setting, a signal vector x stems from the set of K-sparse

signals defined below. This signal model is later used to constrain the problem

formulation to search for sparse solutions.

Definition 1.2.2 (Set of K-sparse signals). The set of K-sparse signals is defined as

XK :=
{
x ∈ R

N : ‖x‖0 ≤ K
}
. (1.11)

In the random setting, a signal vector x is a realization of the random vector

x. Each entry of x has a certain probability distribution fxn(xn). In the realm of

Bayesian estimation, fxn(xn) is called the prior distribution of a signal entry. It is part

of the prior knowledge that is required to formulate the estimation problem and,

hence, assumed to be (approximately) known. Considering sparse signal vectors

that feature entries with value zero, I define the following probability:

3Note that ‖ · ‖0 is not a valid norm as it does not satisfy the homogeneity property.
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Definition 1.2.3 (Zero probability). The probability that the n-th signal entry is zero

is denoted by

γn := P (xn = 0). (1.12)

If the number of nonzero entries K is known a priori and all signal entries are

equally likely to be zero, the zero probabilities compute as

γn = 1− K

N
, ∀n ∈ {1, ..., N}. (1.13)

The nonzero (i.e., "active") entries of x have a distribution fan(xn), and the overall

distribution of a signal entry reads

fxn(xn) = γnδ(xn) + (1− γn)fan(xn). (1.14)

Whether the deterministic or the random signal model is utilized depends on the

available prior information.

1.2.2 Measurement Model and Problem Formulation

At the heart of CS lies the linear measurement model

y = Ax (1.15)

with measurement vector y ∈ R
M , sensing matrix A ∈ R

M×N and signal vector x ∈ R
N .

The goal is to recover x from y in the under-determined case where M < N , i.e.,

from (significantly) fewer samples than the dimension of the unknown vector — this

is where the name CS, also known as compressed sampling, originates from.

Considering a full-rank matrix A in the under-determined case, there exist in-

finitely many solutions to problem (1.15). A standard approach is the utilization of

least squares, yielding the solution with minimal ℓ2-norm:

x̂LS(y) = AT(AAT)−1y = argmin
x̃
‖x̃‖2 s. t. y = Ax̃. (1.16)

Assuming a K-sparse vector x ∈ XK , (1.16) may not yield a satisfying solution

since the ℓ2-norm minimizer generally does not promote sparse solutions. A sparsity

enforcing formulation reads

x̂(y) = argmin
x̃
‖x̃‖0 s. t. y = Ax̃. (1.17)
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This combinatorial problem, however, entails a very high computational complexity

and is infeasible to solve for a large dimension N . It is therefore relaxed by a milder

constraint that yields the same result for large dimensions with high probability

[13]:

x̂(y) = argmin
x̃
‖x̃‖1 s. t. y = Ax̃. (1.18)

By replacing the ℓ0-"norm" by the ℓ1-norm, a convex problem of reduced complexity

is obtained. Problem (1.18) is widely known as basis pursuit and has been investi-

gated rigorously in literature [54].

In practice, the CS measurement (1.15) is often distorted by noise. The noisy

linear measurement model reads

y = Ax+w, (1.19)

with noise vector w ∈ R
M . Discussing the under-determined case (M < N) relevant

to CS, the least squares approach minimizes the error with respect to the ℓ2-norm:

x̂LS(y) = AT(AAT)−1y = argmin
x̃
‖y −Ax̃‖22 . (1.20)

The sparsity enforcing formulation reads

x̂(y) = argmin
x̃
‖x̃‖0 s. t. ‖y −Ax̃‖22 ≤ ǫ, (1.21)

where ǫ ≥ ‖w‖22. For feasibility, this combinatorial problem (ℓ0-"norm") is relaxed

into a convex problem (ℓ1-norm)

x̂(y) = argmin
x̃
‖x̃‖1 s. t. ‖y −Ax̃‖22 ≤ ǫ, (1.22)

which is widely known as basis pursuit denoising [54]. An equivalent problem is

stated by the Least Absolute Shrinkage and Selection Operator (LASSO) [55]

x̂(y;λ) = argmin
x̃

(
1

2
‖y −Ax̃‖22 + λ ‖x̃‖1

)
, (1.23)

where the solution-sparsity constraint is enforced by a Lagrangian penalty λ.
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1.2.3 Sensing Matrix and Recovery Requirements

In many applications, the sensing matrix A is known and can even be designed.

The columns of A can be interpreted as sampling basis functions, and A mixes all

entries of x into the measurement vector y. It is crucial to choose A such that there

exists a unique recovery solution for x in the noiseless case (1.15), and such that

a stable recovery from noisy measurements (1.19) is possible. The following three

definitions are used to express recovery guarantees [53, 56].

Definition 1.2.4 (Spark). The spark of a matrix A, written spark(A), is defined as the

smallest number of columns from A that are linearly dependent.

Definition 1.2.5 (Mutual coherence). The mutual coherence of a matrix A ∈ R
M×N

is defined as

µ(A) := max
1≤i<j≤N

|aT
i aj|

‖ai‖2‖aj‖2
. (1.24)

Definition 1.2.6 (Restricted isometry property). The Restricted Isometry Property

(RIP) of a matrix A is stated by

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 , ∀x ∈ XK , (1.25)

where the restricted isometry constant δK ∈ (0, 1) is defined as the smallest number that

satisfies above equation. A matrix A is said to have the RIP of order K with constant

δK if it fulfills (1.25).

The mutual coherence is a measure for how strongly the columns of a matrix are

(cor)related, while the RIP states that A approximately behaves like an orthonormal

basis for sparse vectors x ∈ XK .

In order to guarantee a unique solution for x ∈ XK in the noiseless case (1.15),

A has to satisfy spark(A) > 2K [53]. Note, however, that computing the spark is

NP-hard, since
(

N
spark(A)

)
column sets have to be considered. The mutual coherence

(1.24) is easier to compute, a unique solution to (1.15) is guaranteed if A satisfies

µ(A) < 1
2K−1

[53]. If A fulfills the RIP (1.25) with δK + δ2K + δ3K < 1, then x ∈ XK

can be perfectly recovered from (1.18) [14]. Since the RIP is difficult to compute in

practice, it is often bounded by the mutual coherence as δK < Kµ(A) [53].

Advancing to the noisy case (1.19), a stable solution for x ∈ XK in (1.22)

and (1.23) is obtained if A satisfies the RIP of order 2K with a small isometry con-

stant δ2K . This means that A preserves the Euclidean distance between every pair
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of K-sparse vectors up to a small constant δ2K [56]. Consider [14, 56] for details on

the constants.

An appropriate sensing matrix A can be constructed deterministically or ran-

domly. In this work, I pick randomly generated matrices, because it is beneficial

for my application. Note that A is only generated randomly, it is fixed for the mea-

surement process, i.e., the CS measurements (1.15) and (1.19) are non-adaptive.

It was stated in, e.g., [14] that randomly generated matrices with i.i.d. Gaussian

entries with zero mean and variance 1
M

fulfill the required RIP with overwhelming

probability. This is also true for i.i.d. sub-Gaussian distributed entries. An important

class of such matrices has entries {− 1√
M
, 1√

M
} with equal probability — this case will

be relevant in my RFID application. Measurement matrices A with (sub)-Gaussian

distributed entries satisfy the RIP of order 2K with overwhelming probability, and

[14, 56]

M = cK log

(
N

K

)
(1.26)

measurements (samples) are required to successfully recover x from (1.22) or (1.23),

with c ∈ R being a small constant that I call the measurement multiplier.

1.2.4 A Survey of Recovery Methods

Many algorithms for CS recovery have been introduced in literature, a good overview

is presented in [53, 56, 57]. In order to choose an appropriate recovery algorithm

to recover x from (1.19), one has to consider the following points:

• Computational complexity: “What can I afford, and how long should it take?”

• Recovery accuracy: “How much solution fidelity do I need?”

• Prior knowledge: “What information do I have?”

The ideal algorithm has low computational complexity, high recovery accuracy and is

able to exploit additional prior knowledge. Most algorithms solve the ℓ1-regularized

problem (1.22), since the combinatorial ℓ0 problem (1.21) is often infeasible to solve

in practice. Let me compare the most prominent approaches to CS recovery.

Convex optimization algorithms such as interior-point methods [15] or pro-

jected gradient methods [58] can be applied to the convex problem (1.22) or, equiv-

alently, (1.23). These methods entail reasonable recovery accuracy but high compu-

tational complexity. Additional prior knowledge may be included as side constraint.

For large signal dimension N , convex optimization is infeasible.
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Greedy methods aim at the iterative reconstruction of the signal support set Sx
and the corresponding signal vector entries. Starting with an empty signal support

set Sx̂ = {∅}, each iteration adds an index corresponding the column of A that min-

imizes the ℓ2 error ‖y −Ax̂‖2, the corresponding signal estimate x̂ is computed by

applying least squares on the support-restricted problem. In case of known K, this

procedure is repeated until |Sx̂| = K. Alternatively, the stopping criterion may be

based on the noise variance. The most prominent algorithms are Orthogonal Match-

ing Pursuit (OMP) [59, 60] and Compressive Sampling Matching Pursuit (CoSaMP)

[61]. Greedy methods are easy to implement and entail good recovery accuracy.

However, a pseudo-inverse (matrix inversion) has to be computed in each iteration,

thereby boosting the computational complexity, in particular for large N . Additional

structure can be exploited by group-OMP [62]. Greedy methods are efficiently ap-

plicable to small or medium signal dimension N .

Iterative thresholding algorithms [63, 64] are very efficient recovery methods

that rely on thresholding functions that set signal entries below a certain threshold

to zero. Iterative Hard Threshloding (IHT) is based on the ℓ0-regularized problem

x̂(y;λ) = argmin
x̃

(
1

2
‖y −Ax̃‖22 + λ ‖x̃‖0

)
, (1.27)

while Iterative Soft Threshloding (IST) is based on the ℓ1-regularized problem (1.23).

The thresholds are selected based on the noise variance or the number of nonzero

entries K. Both algorithms are easy to implement, have low computational complex-

ity and reasonable recovery accuracy. Additional prior knowledge is not exploited.

Iterative thresholding algorithms are applicable to large signal dimension N .

Message passing algorithms [65–68] are based on graphical model concepts

[69] and approximately perform belief propagation on a loopy graph [70]. Approxi-

mate Message Passing (AMP) iteratively solves the LASSO (1.23), while Bayesian Ap-

proximate Message Passing (BAMP) iteratively performs Bayesian estimation based

on the prior distribution (1.14). This class of algorithms features the low computa-

tional complexity of iterative thresholding algorithms, a simple implementation and

good recovery accuracy. Furthermore, prior knowledge can be incorporated natu-

rally, ranging from the signal prior distribution to group- or joint sparsity structure.

Message passing algorithms are suitable for large signal dimension N .
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For the following reasons, the message passing algorithms AMP and BAMP con-

stitute the optimal choice for my RFID application:

• Low computational complexity facilitates an efficient implementation on the

reader hardware [71].

• AMP attains the ℓ1 phase transition [65] and hence requires the lowest number

of measurements for recovery via basis pursuit denoising (1.22).

• BAMP exploits Bayesian prior knowledge about the signal and is able to im-

prove the recovery accuracy, or decrease the number of measurements.

• The algorithms are suitable for large signal dimension N .

Therefore, this thesis is focused on AMP recovery algorithms.

1.3 Motivation: RFID with Compressed Sensing

In many applications envisioned under the IoT paradigm, a massive amount of tags

is located in the read range of an RFID reader, waiting to be identified. Several areas

of application are subject to a heightened noise level, think about assembly lines or

industrial areas that are surrounded by electromagnetic distortions. The readers are

often handhelds that are powered by a battery. The optimal identification scheme

has the following attributes: quick, noise robust, reliable, energy efficient4.

The key concept of RFID with CS –denoted CS-RFID from now on– is based on

the following observation: The number of activated tags that are to be identified by the

reader is small compared to the total number of existing tags. Think of a store where

all products are labeled with RFID tags instead of barcodes. A customer brings the

shopping cart to the checkout, where the products in the cart are identified by an

RFID reader. The products in the cart resemble a very small subset of the total

inventory of the store. Similarly in the IoT, a reader at a given time has to cope with

a very small subset of tags compared to the total number of existing tags.

This observation puts forward the CS-RFID approach, in which the tag acquisition

is formulated as a CS measurement. Upon a query from the reader, the activated tags

respond simultaneously, each with a unique signature sequence. Assume that there

are N possible sequences that are known to the reader, and that at a given time,

4Energy efficiency implies a short CW transmission time during which the reader transmits the
carrier with constant power.
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Figure 1.5 Acquisition time for several schemes (R = 5kbit/s, N = 1000).

K ≪ N tags respond with their unique sequence. The superposition of sequences

received at the reader can be cast as CS measurement similar to (1.19). The N pos-

sible signature sequences compose the columns of sensing matrix A, and the indices

of the K nonzero entries in x denote the picked signatures. Using CS recovery algo-

rithms, x is recovered from y knowing A. Consequently, the acquisition in CS-RFID

takes about M symbols according to (1.26).

In Figure 1.5, the acquisition time of CS-RFID is compared to FSA and two CDMA

approaches, plotted versus a variable number of activated tags K. To enable a fair

comparison, all approaches occupy the same bandwidth and transmit bits or chips

at R = 5kbit/s.

• FSA chooses the optimal frame size and requires 16 · e ·K bits for acquisition

on average, where 16 bits is the length of the RN16 identifier.

• Pseudo-noise CDMA [43] spreads the 16-bit identifiers with a 127-bit Gold

code and requires 16 · 127 chips for acquisition. It is assumed that all tags

choose a different pseudo-noise sequence (Gold code).

• Orthogonal CDMA [44] spreads the 16-bit identifiers with orthogonal Walsh

sequences and minimally requires 16 · 2⌈log2(K)⌉ chips for acquisition. The num-

ber 2⌈log2(K)⌉ indicates the minimal sequence length to obtain K orthogonal

Walsh sequences. It is assumed that all tags choose a different sequence from

the set of orthogonal sequences.
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• CS requires M = c ·K log(N/K) bits for acquisition according to (1.26), with

c = 2 and N = 1000. A discussion of the parameter selection follows in

chapters 2 and 3. The role of the 16-bit identifier is replaced by the signature

sequence index, i.e., the column index of A.

Overall, CS-RFID is by far the quickest scheme. Moreover, the CDMA approaches

assume that all tags pick different sequences from a small pool of sequences, which

is highly unlikely in practice. Let me list the advantages of CS-RFID by already

anticipating some results of this thesis:

• Quicker than the widely-used FSA or CDMA schemes.

• Due to the simultaneous tag acquisition, the reader operates energy efficient

and does not waste power on empty slots like FSA.

• The pseudo-randomly generated sequences do not require orthogonality or

auto-correlation properties like the spreading sequences in CDMA. The spec-

trum is not spread.

• The approach is not based on random scheduling like FSA, identification is

reliable and guaranteed to succeed in finite time.

• The noise robustness is high.

• Prior knowledge such as channel statistics can be utilized.

• The performance can be improved by using several reader receive antennas.
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Related Work and Novelty

The CS formulation of the tag acquisition phase was firstly proposed in [48], let

me briefly describe the premise: During the acquisition phase, the tags respond si-

multaneously with pseudo-random signature sequences that are seeded by the tag’s

temporary identifier, which is a 16 bit random number (i.e., the RN16 number a

tag would have picked for FSA). This is formulated as a CS measurement (1.19).

Because the total number of possible identifiers is N = 216 and corresponds to the

number of columns of the sensing matrix, an efficient recovery of x is infeasible. The

scale of the problem is reduced by hashing the identifiers into buckets [48] and elim-

inating the buckets that contain no energy, thereby strongly reducing the number of

possible signatures and, consequently, N . However, this requires knowledge of the

number of activated tags K that has to be estimated in a prior step. An improved

scale reduction that utilizes a gradient algorithm was introduced in [72]. Another

improvement that does not require arbitrary restrictions of the huge initial identifier

space was proposed in [73].

In this thesis, I present a different take on the tag acquisition with CS. Where

[48] employed a computationally demanding CS recovery algorithm based on con-

vex optimization, I describe how the computationally efficient AMP algorithm can

be applied. Different AMP-based algorithms are compared, and a novel algorithm

that exploits joint sparsity is introduced — it strongly improves the recovery per-

formance in multiple measurement vector problems, to which CS-RFID appertains.

Instead of basing the number of identifiers (columns of the sensing matrix) on the

RN16, I introduce two different concepts: fixed signature assignment and random sig-

nature assignment. The former applies to setups with a fixed inventory5 and is very

quick, while the latter is more general and applies to arbitrary inventories. Both con-

cepts are accompanied by identification protocols to ensure reliable identification.

Throughout this work, I keep the practical implementation of CS-RFID in mind, cul-

minating in a practical demonstration of the scheme.

5Inventory refers to the set of items or objects that feature an RFID tag for identification.
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1.4 Outline

This thesis proposes methods to improve RFID for the IoT and other applications

where multiple tags have to be identified quickly and reliably. By utilizing CS and

versatile AMP recovery algorithms that are able to exploit prior knowledge and sig-

nal structure, CS-RFID becomes a very quick, noise robust and energy efficient iden-

tification scheme.

Chapter 2: Signal Recovery by Approximate Message Passing describes AMP re-

covery algorithms for various application cases and a variable amount of prior knowl-

edge. A novel algorithm to exploit joint sparsity is introduced. All algorithms are

evaluated numerically with empirical phase transition curves, and analytically with

the State Evolution (SE) framework that allows to predict the algorithmic behavior.

Chapter 3: RFID with Compressed Sensing presents CS-RFID in conjunction with

AMP and proposes two protocols for reliable identification: The first one is very

quick for fixed inventories, the second one is more flexible for arbitrary inventories.

The identification performance is compared to FSA.

Chapter 4: Exploiting Joint Sparsity in Tag Acquisition extends CS-RFID to ex-

ploit joint sparsity structure. This is particularly relevant to readers with several re-

ceive antennas. A support detection scheme for reliable tag acquisition is proposed,

and the performance is compared to FSA with collision-recovery capabilities.

Chapter 5: Practical Implementation is devoted to the practical implementation

of CS-RFID and demonstrates the feasibility of the approach with proof-of-concept

measurements. The impact of detrimental effects –delay and jitter– is measured and

evaluated.

Chapter 6: Conclusions summarizes the work, discusses open issues and concludes

the thesis.



Chapter 2

Signal Recovery by Approximate

Message Passing

In this chapter, the AMP framework that was proposed in [65–68] and the corre-

sponding algorithms that efficiently recover x from (1.19) are reviewed. The pre-

sented algorithms allow for seamless incorporation of prior knowledge that improves

the recovery performance. In particular, the focus resides on Bayesian estimation

that leverages the signal distribution. Moreover, I present a novel algorithm that is

able to exploit joint sparsity structure. The presented algorithms are later utilized in

chapters 3 to 5 to perform the tag acquisition in CS-RFID.

Based on my work in [74–76], the contributions of this chapter are as follows:

The AMP and BAMP algorithms are presented.

Optimal tuning of the AMP algorithm is discussed.

The Minimum Mean Squared Error (MMSE) estimator function of BAMP is

specified for the Bernoulli-Gaussian and Bernoulli-Laplace signal priors.

To leverage joint sparsity, an extension to the BAMP algorithm, termed BAyesian

Structured Signal Approximate Message Passing (BASSAMP), is proposed.

Empirical phase transition curves are presented, and the recovery performance

of the algorithms is compared.

The SE formalism [65, 77, 78] to predict the behavior of the presented algo-

rithms is reviewed and applied.
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2.1 Probabilistic Estimation Setup

I will now derive a Bayesian estimator for x in (1.19) that utilizes the random signal

model from Section 1.2.1. The sensing matrix A is deterministic (fixed), its entries

are assumed to have variance 1
M

, i.e., A has normalized columns. Let me specify

the distributions of measurement vector y = [y1, ..., ym, ..., yM ]T, signal vector x =

[x1, ..., xn, ..., xN ]
T and noise vector w = [w1, ...,wm, ...,wM ]T. The noise is assumed to

be i.i.d. Gaussian with zero mean and covariance σ2
wIM , i.e., w ∼ N (0, σ2

wIM). The

noise Probability Density Function (PDF) calculates as

fw(w) =
M∏

m=1

fw(wm) =
M∏

m=1

N (wm; 0, σ
2
w). (2.1)

The joint PDF of signal and measurement can be factored according to Bayes’ rule:

fx,y(x,y) = fx|y(x|y)︸ ︷︷ ︸
Posterior

fy(y) = fy|x(y|x)︸ ︷︷ ︸
Likelihood

fx(x)︸ ︷︷ ︸
Prior

. (2.2)

The signal entries are assumed to be independently distributed with PDF fxn(xn), the

prior, thus, factors as

fx(x) =
N∏

n=1

fxn(xn). (2.3)

The likelihood is characterized by the noise PDF:

fy|x(y|x) = fw(y −Ax) =
M∏

m=1

fw (ym −Am,:x) . (2.4)

Bayesian estimators of x rely on the posterior

fx|y(x|y) =
1

fy(y)
fy|x(y|x)fx(x). (2.5)

This is the probabilistic setup that is exploited to infer x from y. For statistical

inference with message passing techniques, the multivariate distribution (2.5) is

often factorized into M factors:

fx|y(x|y) =
1

fy(y)

M∏

m=1

fym|x(ym|x)fx(x). (2.6)
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Figure 2.1 Factor graph of measurement (1.19) associated with posterior (2.6).

This factorization is described and visualized by a factor graph [79, 80]. The factor

graph associated with (2.6) is depicted in Figure 2.1. It consists of the variable

nodes V = {x1, ..., xN} that encompass the signal of interest x, the factor nodes F =

{f1, ..., fM} associated with (2.6), and the edges E = {(fm, xn) : fm ∈ F , xn ∈ V}
that correspond to the relations between x and y which are dictated by the entries

of A, i.e., a nonzero entry am,n 6= 0 yields an edge between fm and xn. The observed

(given or measured) variables are hinted in gray.

The MMSE estimator for x is formulated as [53]

x̂MMSE(y) = Ex [x|y = y] =

∫

RN

x̃ fx|y(x̃|y) dx̃, (2.7)

it involves the computation of a high-dimensional integral that is infeasible to solve

in practice. It can be approximately1 solved by employing message passing (belief

propagation) and the sum-product algorithm [79–81] on the factor graph. However,

a computationally efficient method is only obtained after a series of assumptions and

approximations –described in [68]– that yield the AMP algorithm.

1The considered graph contains cycles which lead to loopy belief propagation that yields an ap-
proximate result.
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2.2 The AMP Algorithm

AMP was introduced in [65–68] to efficiently solve basis pursuit denoising (1.22),

or equivalently, the LASSO problem (1.23). AMP features the low complexity of

iterative thresholding algorithms [64] and attains the recovery performance of basis

pursuit, see [65].

In literature [66, 68, 69], the AMP derivation begins with the assumption of a

posterior distribution that is associated with the factors in Figure 2.1. Considering

the basis pursuit denoising case (1.22) that is based on the noisy CS measurement

(1.19), the posterior (2.6) is assumed to take the following form:

fx|y(x|y) =
1

fy(y)

M∏

m=1

fym|x(ym|x)
N∏

n=1

fxn(xn)

=
1

fy(y)

M∏

m=1

1√
2πσ2

w

exp

(
−(ym − (Ax)m)

2

2σ2
w

)
N∏

n=1

1

2κ
exp

(
−|xn|

κ

)
,

(2.8)

i.e., it features i.i.d. zero-mean Laplace signal entries. This constitutes a Bayesian

approach to the LASSO, which is obtained from (2.8) by computing the Maximum

Aposteriori Probability (MAP) estimator [53]

x̂MAP(y) = argmax
x̃

fx|y(x̃|y)

= argmax
x̃

{
1

fy(y)

M∏

m=1

1√
2πσ2

w

exp

(
−(ym−(Ax̃)m)

2

2σ2
w

)
N∏

n=1

1

2κ
exp

(
−|x̃n|

κ

)}

= argmax
x̃

{
1

Z(y)
exp

(
− 1

2σ2
w

M∑

m=1

(ym−(Ax̃)m)
2 − 1

κ

N∑

n=1

|x̃n|
)}

= argmax
x̃

{
1

Z(y)
exp

[
−
(

1

2σ2
w

‖y −Ax̃‖22 +
1

κ
‖x̃‖1

)]}

= argmin
x̃

{
1

2σ2
w

‖y −Ax̃‖22 +
1

κ
‖x̃‖1

}

= argmin
x̃

{
1

2
‖y −Ax̃‖22 + λ‖x̃‖1

}
.

(2.9)

In [69], it is explained how the MAP estimator is justified as an alternative to the

MMSE estimator, and under which circumstances their solutions coincide. The zero-

mean Laplace distribution constitutes a sparsity enforcing prior, i.e., its probability
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mass is concentrated around zero for small κ. This is an intuitive explanation for its

usage and relation to the LASSO problem.

The Lagrangian parameter λ in the LASSO allows for a trade-off between accu-

racy with respect to the ℓ2 observation error ‖y −Ax̃‖2 and the sparsity ‖x̃‖1 of the

solution. An increase in λ promotes a sparser solution. In AMP, λ is a design param-

eter. For the proper choice of λ, it was shown in [82, 83] that the fixed point of the

AMP solution coincides with the LASSO solution.

For a detailed derivation of AMP that includes several additional steps, the in-

terested reader is referred to [65–68]. In this thesis, I focus on the algorithmic

implementation.

2.2.1 Algorithmic Implementation

My implementation of AMP is stated by Algorithm 1, it is based on the implemen-

tation in [71]. The algorithm is iterative with iteration index t. Its usage as a

superscript indicates the state of the involved variables, i.e., xt refers to the signal

estimate in the t-th iteration. Note that the algorithm requires A to have normal-

ized columns, i.e., ‖an‖2 = 1, ∀n ∈ {1, ..., N}. Let me discuss the key aspects of the

algorithm, starting with soft thresholding.

Revisiting the LASSO problem in the scalar case, i.e.,

x̂LASSO(u;λ) = argmin
x̃

{
1

2
(u− x̃)2 + λ|x̃|

}
, (2.10)

it is known that the soft thresholding function

η(u; τ) =





u+ τ if u < −τ
0 if − τ ≤ u ≤ τ

u− τ if u > τ

(2.11)

admits a (possibly optimal) solution to (2.10), see [55]. The soft thresholding func-

tion acts as a denoiser, i.e., it sets values below a certain threshold τ to zero. This

function is also found in line 6 of AMP Algorithm 1, where it is applied entry-wise

on the decoupled measurements u, i.e., on un = xn + aT
nr. The approximate LASSO

solution emerges over several iterations of the algorithm. Note that the LASSO –

and hence AMP– does not attain MMSE estimation performance, because it does

not take into account the true signal prior distribution, but rather a uniformly good

distribution to enforce sparsity [69]. In many cases, the signal prior is not available,
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Algorithm 1 AMP

1: Initialize xt = 0N×1 and rt = y at t = 0
2: do

3: t← t+ 1 ⊲ Advance iterations
4: ut−1 = xt−1 +ATrt−1 ⊲ Compute decoupled measurements
5: τ t−1 = λ√

M
‖rt−1‖2 ⊲ Compute threshold

6: xt = η(ut−1; τ t−1) ⊲ Soft thresholding
7: rt = y −Axt + rt−1 1

M
‖xt‖0 ⊲ Compute residual

8: while ‖xt − xt−1‖2 > ǫtol ‖xt−1‖2 and t < tmax ⊲ Check stopping criteria
9: return x̂ = xt ⊲ Recovered vector

and the AMP algorithm constitutes a computationally efficient tool that achieves the

performance of basis pursuit, if tuned optimally as described in Section 2.2.3.

Another crucial feature is the addition of the "Onsager term" [69] rt−1 1
M
‖xt‖0

in the residual computation in line 7. This is the key difference between iterative

thresholding algorithms [64] and AMP, and it renders the decoupled measurements

Gaussian distributed with mean xn [69]. The soft thresholder that acts as a denoiser

reduces the estimation noise variance over iterations.

The iterations are stopped once the change in the estimated signal is below a

certain threshold –controlled by ǫtol– or the maximal number of iterations tmax is

reached. Throughout this work, I choose ǫtol = 10−5 in all simulations.

2.2.2 The Complex-valued Case

So far, real-valued signals and measurements were considered. AMP Algorithm 1

can easily be extended to the complex-valued case by replacing the soft thresholding

function (2.11) with the complex soft thresholding function [84]

η(u; τ) =

(
u− τ

u

|u|

)
· I{|u|2>τ2}, (2.12)

with indicator function

I{|u|2>τ2} =

{
1 |u|2 > τ 2

0 else
. (2.13)

This case is important for the deployment of AMP in CS-RFID, where complex-valued

signals are encountered. Equipped with (2.12), AMP solves the complex LASSO,

see [84].
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2.2.3 Optimal Tuning

The AMP Algorithm 1 has a tuning parameter λ that relates to the LASSO (1.23) —

this parameter steers the solution sparsity. However, while an increasing λ entails

sparser solutions, the accuracy with respect to the ℓ2 reconstruction error decreases.

An optimal tuning prescription that enables AMP to achieve basis pursuit performance

was presented in [65], it requires knowledge of K. Applying those findings to Algo-

rithm 1, the ℓ1-optimal parameter reads

λℓ1 = argmax
z≥0

1− ζ/δ
[
(1 + z2) ·

∫∞
z
N (z′; 0, 1) dz′ − z · N (z; 0, 1)

]

1 + z2 − ζ
[
(1 + z2) ·

∫∞
z
N (z′; 0, 1) dz′ − z · N (z; 0, 1)

]
︸ ︷︷ ︸

ρ(z,δ,ζ)

, (2.14)

where δ = M
N

, and ζ = 1 for xn ≥ 0, ζ = 2 for |xn| ≥ 0. The K-dependency is

obtained as follows: λℓ1 and the corresponding ρ(λℓ1 , δ, ζ) from (2.14) are computed

for a wide range of M at fixed N . It holds that ρ = K
M

such that K = ρ(λℓ1 , δ, ζ) ·M .

The optimal tuning prescription for N = 1000 is plotted in Figure 2.2. The left

plot shows λℓ1 for the full K-range. For sparse signals with K ≪ N , the LASSO

emphasizes the solution sparsity by choosing a large λ. For dense signals, the least

squares solution (1.20) is approached. The right plot depicts the CS-relevant sparse

case in more detail.

Figure 2.2 ℓ1-optimal AMP tuning parameter λ depending on K.

The next task is to determine how many measurements M are required to suc-

cessfully recover a signal vector from (1.19). To that end, the dependency of the
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Figure 2.3 MSE(x, x̂) versus measurement multiplier c.

recovery MSE (MSE(x, x̂)) on the measurement multiplier c in (1.26) is investigated

by simulation. The simulation campaign encompasses 1 000 independent random

realizations of A, x and w. Sensing matrix A features equally likely entries drawn

from {− 1√
M
, 1√

M
} as suggested in Section 1.2.3. The K nonzero entries of signal vec-

tor x are i.i.d. Gaussian with zero mean and unit variance. The noise w is Gaussian

distributed with zero mean and covariance σ2
wIN . The noise variance σ2

w is selected

according to the Signal-to-Noise Ratio (SNR) definition

SNR :=
‖Ax‖22

Ew {‖w‖22}
=
‖Ax‖22
Mσ2

w

. (2.15)

Figure 2.3 (a) depicts the average MSE versus c, for two instances of SNR. The

MSE decreases for an increasing number of measurements. Increasing the number

of nonzero entries K in x increases the MSE, or put differently, more measurements

are required to attain the same MSE performance. In the noiseless case depicted in

Figure 2.3 (b), a clear transition to a (numerically) perfect recovery is observed at

c = 2, regardless of K. Takeaway point: In the considered scenario, c = 2 in (1.26)

results in perfect recovery. In the noisy case, a larger c may be beneficial. These

empirical findings are corroborated by [52].
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2.3 The BAMP Algorithm

As discussed in [69, 78], AMP algorithms decouple the estimation problem associated

with CS measurement (1.19) into N uncoupled scalar problems in the asymptotic

regime:

Definition 2.3.1 (Asymptotic regime). The asymptotic regime is defined as

M →∞ and N →∞ while δ =
M

N
= constant. (2.16)

Definition 2.3.2 (Decoupling principle). In the asymptotic regime, the CS measure-

ment (1.19) can be interpreted as N uncoupled (independent) scalar measurements

y = Ax+w⇔





u1 = x1 + w̃1

...

uN = xN + w̃N

, (2.17)

where the effective noise asymptotically obeys w̃n ∼ N (0, β).

The effective noise accounts for two noise phenomena:

• The measurement noise wm, m ∈ {1, ...,M}, is added to the measurements

ym according to (1.19). It is assumed to be Gaussian with zero mean and

variance σ2
w.

• The estimation of signal entry xn depends on the estimation of the other entries

xl, l 6= n, which is rooted in the message passing nature of AMP [68]. Many

small estimation errors in xl, l 6= n, contribute to the estimation error in xn.

This is referred to as interference [77]. The interference noise becomes zero-

mean Gaussian in the asymptotic regime.

Consequently, the effective noise w̃n is approximately Gaussian, and its variance β

accounts for the measurement noise and the estimation interference. The interpreta-

tion of (1.19) as N uncoupled scalar measurements is a key observation that enables

a significantly simplified estimation of x from u = [u1, ..., uN ]
T by utilizing the de-

coupled posteriors

fxn|un(xn|un) =
1

fun(un)

fun|xn(un|xn)fxn(xn), (2.18)
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Figure 2.4 Factor graph of decoupled measurements (2.17) associated with (2.18).

where

fun|xn(un|xn) = fw̃(un − xn) = N (un; xn, β), (2.19)

fun(un) =

∫ ∞

−∞
fun|xn(un|x̃n)fxn(x̃n)dx̃n. (2.20)

The N uncoupled estimation problems are visualized by the factor graph in Fig-

ure 2.4. The graph illustrates the estimation process that occurs in a single BAMP

iteration, based on the decoupled measurements in u that are computed in each

BAMP iteration.

BAMP [65–68] leverages prior knowledge in form of the signal prior distribution

to perform MMSE estimation based on the decoupled measurements (2.17). Instead

of soft thresholding (2.11), BAMP utilizes the following function as denoiser:

F (un; β) = Exn{xn|un = un; β}

=

∫ ∞

−∞
fxn|un(x̃n|un) dx̃n

=

∫∞
−∞ x̃n · fun|xn(un|x̃n) · fxn(x̃n) dx̃n∫∞

−∞ fun|xn(un|x̃n) · fxn(x̃n) dx̃n

=

∫∞
−∞ x̃n · N (un; x̃n, β) · fxn(x̃n) dx̃n∫∞

−∞N (un; x̃n, β) · fxn(x̃n) dx̃n

.

(2.21)

This conditional expectation yields the MMSE estimate of xn given the decoupled

measurement un. Its derivative will also be encountered in the algorithm:

F ′(un; β) =
d

dun

F (un; β). (2.22)
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These two functions have to be calculated for a given signal prior. However, not

all priors admit closed form expressions. I will later specify (2.21) and (2.22) for a

Bernoulli-Gaussian prior and a Bernoulli-Laplace prior. These priors are relevant to

my application case. Moreover, they admit closed form expressions that facilitate a

proper algorithmic implementation of BAMP.

2.3.1 Algorithmic Implementation

My implementation of BAMP is stated by Algorithm 2. The algorithm is iterative

with iteration index t. Note that A is assumed to have normalized columns, i.e.,

‖an‖2 = 1, ∀n ∈ {1, ..., N}. After initialization, the decoupled measurements (2.17)

are computed in line 4:

ut−1 = xt−1 +ATrt−1. (2.23)

Considering the individual entries of ut−1,

ut−1
n = xt−1

n + aT
nr

t−1

︸ ︷︷ ︸
w̃t−1

n

, (2.24)

the effective noise w̃t−1
n that corrupts the decoupled measurements is identified as

the inner product of the n-th column of A with the residual vector rt−1. The effective

noise variance βt−1 is estimated in line 5. In line 6, the decoupled measurements

are denoised by the MMSE estimator (2.21), it is applied entry-wise on ut−1. In line

7, the residual is computed; an important feature of BAMP is the "Onsager term"

rt−1 1

M

N∑

n=1

F ′(ut−1
n ; βt−1), (2.25)

it is derived in, e.g., [69], and its inclusion in the residual computation distinguishes

AMP-based schemes from iterative thresholding algorithms [64]. As in AMP Algo-

rithm 1, it renders un Gaussian distributed with mean xn and variance β.

The algorithm runs until the change between two subsequent signal estimates

becomes smaller than a certain value that is controlled by threshold ǫtol, or until the

maximum number of iterations tmax is reached.

The crucial difference to AMP Algorithm 1 is the exploitation of prior knowledge

in form of the signal prior distribution, if available. This awards BAMP with (ap-

proximate) MMSE estimation performance that significantly outperforms the basis

pursuit performance of optimally tuned AMP [69]. Note that the algorithm uses the
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Algorithm 2 BAMP

1: Initialize xt = 0N×1 and rt = y at t = 0
2: do

3: t← t+ 1 ⊲ Advance iterations
4: ut−1 = xt−1 +ATrt−1 ⊲ Compute decoupled measurements
5: βt−1 = 1

M
‖rt−1‖22 ⊲ Estimate effective noise variance

6: xt = F (ut−1; βt−1) ⊲ Estimate signal
7: rt = y −Axt + rt−1 1

M

∑N
n=1 F

′(ut−1
n ; βt−1) ⊲ Compute residual

8: while ‖xt − xt−1‖2 > ǫtol ‖xt−1‖2 and t < tmax ⊲ Check stopping criteria
9: return x̂ = xt ⊲ Recovered vector

factor graph model from Figure 2.4 in each iteration t to perform iterative MMSE

estimation; the "observed" ut−1 that is computed in line 4 is leveraged to compute

the signal estimate xt. The variables are updated in each iteration.

2.3.2 Specification for Relevant Priors

In this section, I specify the MMSE estimator function (2.21) and its derivative (2.22)

for two prior distributions that are relevant to CS-RFID.

The Bernoulli-Gaussian prior features a PDF

fxn(xn) = γnδ(xn) + (1− γn)N (xn; 0, σ
2
xn
), (2.26)

i.e., the nonzero entry distribution of the prior (1.14) is Gaussian: fan(xn) = N (xn; 0, σ
2
xn
).

The MMSE estimator function calculates as

F (un; β, γn) = un ·
σ2
xn

β + σ2
xn︸ ︷︷ ︸

Gaussian linear
MMSE estimator

· (1− γn)N (un; 0, β + σ2
xn
)

γnN (un; 0, β) + (1− γn)N (un; 0, β + σ2
xn
)︸ ︷︷ ︸

Nonlinear term due to zero component

= un ·
σ2
xn

β + σ2
xn

· 1

1 +
γn

1− γn

√
β + σ2

xn

β
exp

(
−u2

n

2

σ2
xn

β(β + σ2
xn
)

)

︸ ︷︷ ︸
m(un;β,γn)

,
(2.27)

its derivative as

F ′(un; β, γn) =
σ2
xn

βn + σ2
xn

· 1

1 +m(un; β, γn)
+

1

β
·m(un; β, γn) · F (un; β, γn)

2. (2.28)
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The detailed calculation is provided in Appendix A.1 and Appendix A.2.

The PDF of the Bernoulli-Laplace prior reads

fxn(xn) = γnδ(xn) + (1− γn)L(xn; 0, κn), (2.29)

it employs a Laplace distribution with zero mean and variance 2κ2
n as the nonzero

entry distribution in (1.14): fan(xn) = L(xn; 0, κn). The MMSE estimator function

calculates as

F (un; β, γn) =
β [h1(un)k1(un) + h2(un)k2(un)]

γn
1−γn

4κn√
2πβ

+ k1(un) + k2(un)
=

p(un)

q(un)
, (2.30)

with auxiliary functions

g1(u) =

√
2β

2κ
− u√

2β
, (2.31)

g2(u) =

√
2β

2κ
+

u√
2β

, (2.32)

h1(u) =
u

β
− 1

κ
, (2.33)

h2(u) =
u

β
+

1

κ
, (2.34)

k1(u) = erfc (g1(u)) exp
(
g1(u)

2
)
, (2.35)

k2(u) = erfc (g2(u)) exp
(
g2(u)

2
)
, (2.36)

the derivative of (2.30) with respect to un calculates as

F ′(un; β, γn) =
p′(un)q(un)− p(un)q

′(un)

q(un)2
, (2.37)

where

p′(u) = k1(u) + k2(u)

+
√
2β

[
h2(un)

(
g2(u)k2(u)−

1√
π

)
− h1(un)

(
g1(u)k1(u)−

1√
π

)]
,

(2.38)

q′(u) =

√
2

β
[g2(u)k2(u)− g1(u)k1(u)] . (2.39)

The detailed calculation of (2.30) is provided in Appendix B.1, (2.37) follows from

the quotient rule.
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2.4 The BASSAMP Algorithm

I will now introduce the BASSAMP algorithm that extends BAMP in order to leverage

joint sparsity.

Definition 2.4.1 (Joint sparsity). B sparse signal vectors xb ∈ XK with support Sxb
,

b ∈ B = {1, ..., B}, exhibit joint sparsity if they have the same support

Sx ≡ Sxb
, ∀b ∈ B. (2.40)

Having B signal vectors, the CS measurement (1.19) is generally extended to

yb = A(b)xb +wb, (2.41)

where yb ∈ R
M , A(b) ∈ R

M×N and wb ∈ R
M . The vectors are collected in matrices:

Y = [y1, ...,yb, ...,yB], X = [x1, ...,xb, ...,xB] and W = [w1, ...,wb, ...,wB]. If all B

sensing matrices are identical, i.e., A ≡ A(b), ∀b ∈ B, (2.41) can be rewritten to

comprise all vectors:

Y = AX+W. (2.42)

A prominent instance of joint sparsity is the multiple measurement vector prob-

lem [85, 86]. Typical applications of joint sparsity are MRI [86–88] and direction-

of-arrival estimation [89]. In Chapter 4, I demonstrate that joint sparsity is also

present in CS-RFID, and that its exploitation strongly improves the tag acquisition

process. Methods and guarantees to recover jointly sparse vectors are discussed in

[90–94]. My approach combines BAMP with iterative turbo decoding [95–97] in

order to leverage the joint sparsity structure. This idea was firstly proposed in [98],

where extrinsic information is passed among signal entries that are jointly active

(nonzero) or inactive (zero). Based on those insights, I first derive the computation-

ally efficient and approximately MMSE attaining BASSAMP algorithm that exploits

Bayesian prior knowledge and the joint sparsity structure. Later, I propose to replace

the scalar denoiser function (2.21) of BAMP by a vector denoiser function; this vec-

tor denoiser acts on all jointly sparse entries, and I demonstrate that this renders the

extrinsic information exchange obsolete, resulting in faster algorithmic convergence.
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This section deals with B jointly sparse signal vectors that are collected in a sig-

nal matrix X. Similarly, I collect the decoupled measurements in U = [u1, ...,uB],

the zero probabilities in Γ = [γ1, ...,γB], and the L-values2 in L = [L1, ...,LB]. The

n-th entry of the b-th column is respectively denoted by (X)n,b = xn,b, (U)n,b = un,b,

(Γ)n,b = γn,b, and (L)n,b = Ln,b. Moreover, the effective noise variance is generally dif-

ferent for each signal vector, the variances are collected in a vector β = [β1, ..., βB]
T.

2.4.1 Algorithmic Implementation for Joint Sparsity

The BASSAMP algorithm for signals with joint sparsity is depicted in Algorithm 3.

The key novelties over BAMP are the introduction of the joint extrinsic update step

and the subsequent prior update step. These update functions exploit the joint spar-

sity structure, i.e., that there are only two cases for the entries of a row in X: Either

all entries are zero, or all entries are nonzero. Let me first discuss the key ideas

behind the algorithm, and then derive the update functions.

In each iteration t of Algorithm 3, a BAMP iteration is executed independently

for all B jointly sparse signals, yielding ut−1
n,b and βt−1

b , ∀b ∈ B. This information

is then leveraged to adapt the zero probabilities γt−1
n,b for the subsequent BAMP it-

eration. Note that γt−1
n,b is used as prior information in BAMP, it is an input of the

MMSE estimator F (ut−1
n,b ; β

t−1
b , γt−1

n,b ) and its derivative F ′(ut−1
n,b ; β

t−1
b , γt−1

n,b ). The zero

probabilities are updated by two update functions:

1. The joint extrinsic update enforces the joint sparsity structure by accumulating

extrinsic information about the b-th vector from the other vectors l ∈ B\b. The

information is based on a Bayesian estimation procedure that takes into ac-

count the decoupled measurements ut−1
n,l and the effective noise variances βt−1

l

that are updated in each iteration. The accumulated information is expressed

by log-likelihood ratios L
t

n,b.

2. The prior update converts the log-likelihood ratios into probabilities γt
n,b. These

probabilities are used as a priori information in the subsequent BAMP iteration.

The estimation and adaptation of γt
n,b in each iteration results in quicker algorithmic

convergence over BAMP and significantly improved estimation of X, i.e., lower re-

covery MSE. Furthermore, the information exchange among the vectors leads to a

consensus, and the γt
n,b approach one or zero, thereby clearly indicating whether a

signal entry was zero or nonzero.
2L-values are log-likelihood ratios in the context of coding. They are typically used in soft-input

channel decoding or in iterative decoding.
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Algorithm 3 BASSAMP for signals with joint sparsity

1: Initialize Xt = 0N×B, Γt=1N×B−K
N

and rtb = yb ∀b ∈ B = {1, ..., B} at t = 0
2: do

3: t← t+ 1
4: for b = 1 to B do ⊲ BAMP iteration for all signal vectors
5: ut−1

b = xt−1
b +A(b)Trt−1

b ⊲ Compute decoupled measurements
6: βt−1

b = 1
M
‖rt−1

b ‖22 ⊲ Estimate effective noise variance
7: xt

b = F (ut−1
b ; βt−1

b ,γt−1
b ) ⊲ Estimate signal

8: rtb = yb −A(b)xt
b + rt−1

b
1
M

∑
nF

′(ut−1
n,b ; β

t−1
b ,γt−1

n,b ) ⊲ Compute residual

9: L
t
= UJ(U

t−1,βt−1,Γ0) ⊲ Joint extrinsic update
10: Γt = UP (L

t
) ⊲ Prior update

11: while ‖Xt−Xt−1‖F>ǫtol ‖Xt−1‖F and t < tmax ⊲ Check stopping criteria
12: return X̂ = Xt ⊲ Recovered vectors

Let me begin the algorithmic derivation with the decoupled measurements from

(2.17), now extended to matrix indexing. The PDF of un,b is obtained by convolving

the signal PDF (1.14) with the PDF of the effective noise w̃n,b, a Gaussian distribution

with zero mean and variance βb:

fun,b
(un,b) = fxn,b

(un,b) ∗ fw̃n,b
(un,b)

=
[
γn,bδ(un,b) + (1− γn,b)fan,b

(un,b)
]
∗ N (un,b; 0, βb)

= γn,bδ(un,b) ∗ N (un,b; 0, βb) + (1− γn,b)fan,b
(un,b) ∗ N (un,b; 0, βb)

= γn,bN (un,b; 0, βb)︸ ︷︷ ︸
f0(un,b)

+(1− γn,b) fan,b
(un,b) ∗ N (un,b; 0, βb)︸ ︷︷ ︸

f1(un,b)

= γn,bf0(un,b) + (1− γn,b)f1(un,b).

(2.43)

Component f0(un,b) is the noise PDF, component f1(un,b) is the signal plus noise PDF.

Inspired by the E-step of the Expectation Maximization (EM) algorithm [99–101], I

introduce a latent binary random variable zn,b with the following properties:

Definition 2.4.2 (Latent activity variable). The latent activity variable is a binary

random variable zn,b ∈ {0, 1} with Probability Mass Function (PMF)

pzn,b
(zn,b) = γn,bδ(zn,b) + (1− γn,b)δ(1− zn,b). (2.44)
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With the aid of the latent activity variable, (2.43) is reformulated as

fun,b
(un,b) =

∑

zn,b∈{0,1}
pzn,b

(zn,b)fun,b|zn,b
(un,b|zn,b), (2.45)

where

fun,b|zn,b
(un,b = un,b|zn,b = 0) = f0(un,b), (2.46)

fun,b|zn,b
(un,b = un,b|zn,b = 1) = f1(un,b). (2.47)

The goal is to estimate the zero probability γn,b based on the decoupled measurement

un,b in each iteration t. This can be viewed as a classification problem in which I

want to determine the probability that un,b stems from the noise PDF f0(un,b) rather

than the signal plus noise PDF f1(un,b), i.e., the probability that zn,b = 0 rather than

zn,b = 1. The following statements are equivalent:

xn,b is zero⇔ un,b stems from f0(un,b)⇔ zn,b = 0,

xn,b is nonzero⇔ un,b stems from f1(un,b)⇔ zn,b = 1.

In iteration t, the probability that xn,b is zero based on ut−1
n,b and γt−1

n,b computes as

P (zn,b = 0|un,b = ut−1
n,b ) =

pzn,b
(0)fun,b|zn,b

(ut−1
n,b |0)

fun,b
(ut−1

n,b )

=
γt−1
n,b f0(u

t−1
n,b )

γt−1
n,b f0(u

t−1
n,b ) + (1− γt−1

n,b )f1(u
t−1
n,b )

.

(2.48)

Similarly, the probability that xn,b is nonzero computes as

P (zn,b = 1|un,b = ut−1
n,b ) =

pzn,b
(1)fun,b|zn,b

(ut−1
n,b |1)

fun,b
(ut−1

n,b )

=
(1− γt−1

n,b )f1(u
t−1
n,b )

γt−1
n,b f0(u

t−1
n,b ) + (1− γt−1

n,b )f1(u
t−1
n,b )

.

(2.49)

Now, I introduce soft information in terms of L-values [95, 96] based on the

binary latent activity variable:

L(zn,b) = log
P (zn,b = 0)

P (zn,b = 1)
= log

γn,b
1− γn,b

. (2.50)
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A large positive value indicates a high probability of xn,b being zero, a large negative

value a high probability of xn,b being nonzero. Considering the decoupled measure-

ments of iteration t, the conditional L-values read, using (2.48) and (2.49),

L(zn,b|un,b = ut−1
n,b ) = log

P (zn,b = 0|un,b = ut−1
n,b )

P (zn,b = 1|un,b = ut−1
n,b )

= log
f0(u

t−1
n,b )

f1(u
t−1
n,b )

+ log
γt−1
n,b

1− γt−1
n,b

.

(2.51)

The key feature of BASSAMP is to use the L-values (2.51) of iteration t as extrinsic a

priori information [96] in the subsequent iteration t+ 1. To that end, I calculate the

L-values that accommodate the innovation of the current iteration by subtracting

the prior information from the previous iteration:

Lt
n,b = L(zn,b|un,b = ut−1

n,b )− log
γt−1
n,b

1− γt−1
n,b︸ ︷︷ ︸

L
t−1
n,b

= log
f0(u

t−1
n,b )

f1(u
t−1
n,b )

.
(2.52)

These L-values relate the probability mass of f0(u
t−1
n,b ) to the mass of f1(u

t−1
n,b ); a

positive L-value indicates that signal entry xn,b was likely to be zero, while a negative

L-value indicates that xn,b was likely to be nonzero. Note that the dependency on

γt−1
n,b has vanished. To enforce and exploit the joint sparsity structure, I define the

following procedure:

Definition 2.4.3 (Joint extrinsic update). The joint extrinsic update is applied on B

jointly sparse vectors and performs the following operation that yields L
t
:

L
t

n,b = UJ(U
t−1,βt−1,Γ0) := L

0

n,b +
∑

l∈B\b
Lt
n,l,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B},
(2.53)

with the static prior information

L
0

n,b = log
γ0
n,b

1− γ0
n,b

. (2.54)

This can be interpreted as follows: L
0

n,b is the static prior knowledge about the

n-th entry of the b-th signal vector, and
∑

l∈B\b L
t
n,l is the extrinsic information from
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the other vectors, containing the innovation of the current iteration. If the extrinsic

information accumulates to a positive value, entry xn,b becomes more likely to be

zero. In case of a negative value, entry xn,b becomes more likely to be nonzero. If

the extrinsic information is zero, only the static prior is used, and the algorithm

collapses to the BAMP algorithm, individually executed on the B vectors. The zero

probabilities γ0
n,b of the static prior are initialized according to (1.13).

After the joint extrinsic update, the signal prior is updated accordingly for the

subsequent iteration. I define the following procedure based on (2.50):

Definition 2.4.4 (Prior update). The prior update performs the following operation

that yields Γt = [γt
1, ...,γ

t
N ]:

γt
n,b = UP

(
L
t

n,b

)
:=

1

1 + exp
(
−Lt

n,b

) ,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.
(2.55)

Evidently, the joint extrinsic update (2.53) and the prior update (2.55) can be

combined such that both steps are performed in a single update equation:

Definition 2.4.5 (Joint extrinsic prior update). The joint extrinsic prior update calcu-

lates the updated zero probabilities Γt based on the BAMP variables Ut−1 and βt−1 and

the static prior zero probabilities Γ0:

γt
n,b = UJP (U

t−1,βt−1,Γ0) =
1

1 + exp
(
−L0

n,b −
∑

l∈B\b L
t
n,l

)

=
1

1 +
1−γ0

n,b

γ0
n,b

∏
l∈B\b exp

(
−Lt

n,l

)

=
1

1 +
1−γ0

n,b

γ0
n,b

∏
l∈B\b

f1(u
t−1
n,l

)

f0(u
t−1
n,l

)

,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.

(2.56)

The implicit dependency on βt−1 becomes explicit once the innovation L-values

Lt
n,b are specified for a specific prior.
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Derivation with Message Passing on Factor Graph

The BASSAMP algorithm can alternatively be derived from the factor graph in Fig-

ure 2.5 that illustrates how the n-th signal entries of B jointly sparse vectors are esti-

mated. The BAMP stage comprises B decoupled measurements, each corresponding

to the n-th entry of a signal vector. For convenience in the following, the vectors

denote row vectors such that, e.g., xn = Xn,: = [xn,1, ..., xn,b]. The overall distribution

associated with this factor graph reads, using Bayes’ rule,

fxn,zn|un(xn, zn|un) =
1

fun(un)
· fun|xn,zn(un|xn, zn) · fxn,zn(xn, zn)

=
1

fun(un)
· pzn(zn)︸ ︷︷ ︸

fE
n (zn)

·
B∏

b=1

fun,b|xn,b
(un,b|xn,b)︸ ︷︷ ︸

fB
n,b

(xn,b;un,b)

· fxn,b|zn,b
(xn,b|zn,b)︸ ︷︷ ︸

fL
n,b

(xn,b,zn,b)

∝ fE
n (zn) ·

B∏

b=1

fB
n,b(xn,b; un,b) · fL

n,b(xn,b, zn,b),

(2.57)

where ∝ stands for equality after scaling to unit area3. The key element is the

extrinsic exchange via factor node fE
n (zn) that enforces the joint sparsity structure

by assuming the following multidimensional Bernoulli prior for zn:

fE
n (zn) = pzn(zn) = pzn,1,...,zn,B

(zn,1, ..., zn,B) = γn

B∏

b=1

δ(zn,b) + (1− γn)
B∏

b=1

δ(1− zn,b).

(2.58)

Either all n-th entries are zero with probability γn, or all n-th entries are nonzero

with probability 1−γn. Note that this γn is not adapted over iterations, it is the static

prior according to (1.13). The remaining distributions in (2.57) calculate as

fxn,b|zn,b
(xn,b|zn,b) = (1− zn,b)δ(xn,b) + zn,bfa(xn,b), (2.59)

fun,b|xn,b
(un,b|xn,b) = N (un,b; xn,b, βb). (2.60)

In each iteration of BASSAMP, the decoupled measurements ut−1
n are used to

estimate xt
n and ztn. As suggested in [98], the estimation of xt

n via BAMP and the

estimation of ztn are performed separately. First, a BAMP iteration is executed in-

dividually on all B jointly sparse signal vectors, which yields ut−1
n and xt

n. Then,

message passing and the sum-product algorithm [79–81] are employed to estimate

3It is convenient to omit the normalization with the joint PDF fun(un). The messages obtained in
the process can easily be normalized, if required.
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Figure 2.5 Factor graph of BASSAMP enforcing joint sparsity among B signals.

the zero probability γt
n,b = P (ztn,b = 0). The message from factor fL

n,b to variable zn,b

is equal to the message from zn,b to fE
n and computes as

νzn,b→fE
n
(zn,b) ∝

∫

R

fL
n,b(x, zn,b) · νxn,b→fL

n,b
(x) dx

=

∫

R

fxn,b|zn,b
(x|zn,b) · fun,b|xn,b

(un,b|x) dx

=

∫

R

[(1− zn,b)δ(x) + zn,bfa(x)] · N (un,b; x, βb) dx

= (1− zn,b)f0(un,b) + zn,bf1(un,b).

(2.61)

Note that in iteration t, ut−1
n,b from the BAMP iteration is plugged in for un,b. This

message depends on the latent variable zn,b that is binary, and its L-value

Lt
n,b = log

νzn,b→fE
n
(zn,b = 0)

νzn,b→fE
n
(zn,b = 1)

= log
f0(u

t−1
n,b )

f1(u
t−1
n,b )

(2.62)

contains the full information about zn,b. Observe that this is exactly the innovation

L-value from (2.52). The message from factor fE
n to variable zn,b computes as

νfE
n→zn,b

(zn,b) =
∑

zl,l∈B\b
fE
n (zn) ·

∏

l∈B\b
νzn,l→fE

n
(zn,l)

∝ γnδ(zn,b)
∏

l∈B\b
f0(un,l) + (1− γn)δ(1− zn,b)

∏

l∈B\b
f1(un,l).

(2.63)
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Naturally, this message contains all the extrinsic information about the n-th entry

of the b-th signal vector. By computing its L-value in iteration t, the joint extrinsic

update (2.53) is obtained:

L
t

n,b = log
νfE

n→zn,b
(zn,b = 0)

νfE
n→zn,b

(zn,b = 1)
= log

γn
1− γn︸ ︷︷ ︸
L
0
n,b

+
∑

l∈B\b
log

f0(u
t−1
n,l )

f1(u
t−1
n,l )︸ ︷︷ ︸

Lt
n,l

. (2.64)

The considered messages are binary distributions that have to sum to probability

mass one. Therefore, the normalization constant C of message (2.63) computes as

1

C

[
νfE

n→zn,b
(0) + νfE

n→zn,b
(1)
]
= 1

⇒ C = γn
∏

l∈B\b
f0(un,l) + (1− γn)

∏

l∈B\b
f1(un,l),

(2.65)

and the combined joint extrinsic prior update (2.56) in iteration t is obtained by

evaluating this message at zn,b = 0:

νfE
n→zn,b

(0) =
γn
∏

l∈B\b f0(u
t−1
n,l )

γn
∏

l∈B\b f0(u
t−1
n,l ) + (1− γn)

∏
l∈B\b f1(u

t−1
n,l )

=
1

1 + 1−γn
γn

∏
l∈B\b

f1(u
t−1
n,l

)

f0(u
t−1
n,l

)

= γt
n,b.

(2.66)

This message contains the extrinsic belief about the zero probability of the b-th entry.

This concludes the BASSAMP algorithm derivation. For B = 1, the BASSAMP

algorithm collapses to the BAMP algorithm. Note that BASSAMP can easily be ex-

tended to group sparsity [75]. In the following, I will discuss special cases of the

signal prior, and derive closed-form expressions for the update functions.

2.4.2 Specification for Relevant Priors

I will now specify the BASSAMP update functions (2.53) and (2.56) for the two prior

distributions that are relevant to CS-RFID.
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Bernoulli-Gaussian Prior

In the Bernoulli-Gaussian case with prior (2.26), the signal plus noise PDF in (2.43)

develops into

f1(un,b) = N (un,b; 0, βb + σ2
xn,b

). (2.67)

Consequently, (2.43) becomes a Gaussian mixture [100, 101] with two components:

fun,b
(un,b) = γn,bN (un,b; 0, βb) + (1− γn,b)N (un,b; 0, βb + σ2

xn,b
). (2.68)

The first component is associated with the zero entries in the original signal X. The

corresponding estimates un,b solely contain the effective noise w̃n,b ∼ N (0, βb), i.e.,

xn,b = 0. The second component is associated with the nonzero entries, where un,b

contains the noisy signal entries, and xn,b 6= 0.

The estimate of the zero probability in iteration t becomes, based on (2.48),

P (zn,b = 0|un,b = ut−1
n,b ) =

γt−1
n,b N (ut−1

n,b ; 0, β
t−1
b )

γt−1
n,b N (ut−1

n,b ; 0, β
t−1
b ) + (1− γt−1

n,b )N (ut−1
n,b ; 0, β

t−1
b + σ2

xn,b
)
.

(2.69)

In literature [99–101], (2.69) describes the responsibilities that are computed in the

E-step of the EM algorithm, i.e., “the responsibility that component zn,b takes for

explaining the decoupled measurement ut−1
n,b .”

The innovation L-values (2.52) boil down to

Lt
n,b = log

N (ut−1
n,b ; 0, β

t−1
b )

N (ut−1
n,b ; 0, β

t−1
b + σ2

xn,b
)

= log

√
βt−1
b + σ2

xn,b

βt−1
b

− 1

2

(ut−1
n,b )

2σ2
xn,b

βt−1
b (βt−1

b + σ2
xn,b

)
.

(2.70)

A detailed derivation of (2.70) is found in Appendix A.3. Based on (2.53) and (2.70),

the Bernoulli-Gaussian joint extrinsic update reads

L
t

n,b = UJ(U
t−1,βt−1,Γ0) = log

γ0
n,b

1− γ0
n,b

+
∑

l∈B\b
log

√
βt−1
l + σ2

xn,l

βt−1
l

− 1

2

(ut−1
n,l )

2σ2
xn,l

βt−1
l (βt−1

l + σ2
xn,l

)
,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.
(2.71)
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The prior update is the same as defined in (2.55). The Bernoulli-Gaussian joint

extrinsic prior update becomes

γt
n,b = UJP (U

t−1,βt−1,Γ0)

=
1

1 +
1−γ0

n,b

γ0
n,b

∏
l∈B\b

√
βt−1
l

βt−1
l

+σ2
xn,l

exp

(
1
2
· (ut−1

n,l
)2σ2

xn,l

βt−1
l

(βt−1
l

+σ2
xn,l

)

) ,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.

(2.72)

Bernoulli-Laplace Prior

The Bernoulli-Laplace prior (2.29) entails the following distribution as signal plus

noise PDF in (2.43):

f1(un,b) =
1

4κn,b

exp

(
−
u2
n,b

2βb

)
[k1(un,b) + k2(un,b)] , (2.73)

where k1(un,b) and k2(un,b) were defined in (2.35) and (2.36), respectively. The

derivation of (2.73) is provided in Appendix B.2.

The estimate of the zero probability in iteration t becomes, based on (2.48),

P (zn,b = 0|un,b = ut−1
n,b ) =

γt−1
n,b N (ut−1

n,b ; 0, β
t−1
b )

γt−1
n,b N (ut−1

n,b ; 0, β
t−1
b ) + (1− γt−1

n,b )f1(un,b)
, (2.74)

and the innovation L-values (2.52) develop into

Lt
n,b = log

N (ut−1
n,b ; 0, β

t−1
b )

1
4κn,b

exp

(
− (ut−1

n,b
)2

2βb

)[
k1(u

t−1
n,b ) + k2(u

t−1
n,b )

]

= log
4κn,b√
2πβt−1

b

− log
[
k1(u

t−1
n,b ) + k2(u

t−1
n,b )

]
.

(2.75)

The derivation of (2.75) is found in Appendix B.3. Based on (2.53) and (2.75), the

Bernoulli-Laplace joint extrinsic update reads

L
t

n,b = UJ(U
t−1,βt−1,Γ0) = log

γ0
n,b

1− γ0
n,b

+
∑

l∈B\b
log

4κn,l√
2πβt−1

l

− log
[
k1(u

t−1
n,l )+k2(u

t−1
n,l )

]
,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.
(2.76)
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The prior update is the same as defined in (2.55). The Bernoulli-Laplace joint

extrinsic prior update becomes

γt
n,b = UJP (U

t−1,βt−1,Γ0)

=
1

1 +
1−γ0

n,b

γ0
n,b

∏
l∈B\b

√
2πβt−1

l

4κn,l

[
k1(u

t−1
n,l ) + k2(u

t−1
n,l )

] ,

∀n ∈ {1, ..., N}, ∀b ∈ B = {1, ..., B}.

(2.77)

2.4.3 Extension to Vector Denoiser

The MMSE estimator F (un,b; βb, γn,b) in Algorithm 3 acts as a scalar denoiser function

on the decoupled measurements un,b. In this section, I extend the MMSE estimator

(2.27) of the Bernoulli-Gaussian prior to a vector denoiser that operates on a vector

input [un,1, ..., un,B], i.e., on a row of U. This bears the following advantages:

• The joint sparsity structure is enforced directly — this leads to a faster al-

gorithmic convergence. Moreover, the extrinsic update mechanism becomes

obsolete.

• Correlation among the signal entries can be incorporated naturally.

These advantages can be attributed to the usage of a multivariate prior distribution

for a row of X. For clarity in the exhibition, I omit index n in the remainder of this

section:

[un,1, ..., un,B]→ u = [u1, ..., uB], (2.78)

[xn,1, ..., xn,B]︸ ︷︷ ︸
n-th row of X

→ x = [x1, ..., xB]︸ ︷︷ ︸
Any row of X

, (2.79)

i.e., the vectors in this section refer to rows of the matrices, and the vector denoiser

will act on these rows. The multivariate Bernoulli-Gaussian prior with joint sparsity

assumption reads

fx(x) = γ

B∏

b=1

δ(xb) + (1− γ)N (x;0,Qx), (2.80)
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with covariance matrix Qx = Ex{xTx} (x is a zero-mean row vector) and multivariate

Gaussian distribution

N (x;0,Qx) =
1√

(2π)B|Qx|
exp

(
−1

2
xQ−1

x xT

)
. (2.81)

The correlations among the signal entries are naturally described by the off-diagonal

entries in Qx. In case of independently distributed entries in x, the off-diagonal

entries are zero and Qx = diag([σ2
x1
, ..., σ2

xB
]) such that

fx(x) = γ
B∏

b=1

δ(xb) + (1− γ)
B∏

b=1

N (xb; 0, σ
2
xb
). (2.82)

Instead of executing B BAMP iterations independently as in Algorithm 3, the

BASSAMP algorithm with vector denoiser that is depicted in Algorithm 4 operates

on the whole vector. Furthermore, rather than having B different βb and γb –one for

each BAMP instance–, the vector case has a single β and γ for each row of U. Note

that in the general case with different sensing matrices (2.41),

Aall = [A(1), ...,A(B)] , ATr
all =

[(
A(1)

)T
, ...,

(
A(B)

)T]
, (2.83)

Xall =




x1

. . .

xB


 , Rall =




r1
. . .

rB


 , (2.84)

where xb and rb are columns of X and R, respectively. For equal sensing matrices

(2.42) as encountered in this thesis,

Aall = A , ATr
all = AT , Xall = X = [x1, ...,xB] , Rall = R = [r1, ..., rB] . (2.85)

By extending the scalar MMSE estimator formulation (2.21) to vectors, the vec-

tor denoiser calculates as

Fvec(u; β) = Ex{x|u = u; β}

=

∫
RB x̃ · N (u; x̃,Qw̃) · fx(x̃) dx̃∫
RB N (u; x̃,Qw̃) · fx(x̃) dx̃

,
(2.86)

where the effective noise covariance is assumed to be Qw̃ = βIB due to i.i.d. w̃b,

b ∈ B. For the Bernoulli-Gaussian prior with independent signal entries (2.82), the
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Algorithm 4 BASSAMP for signals with joint sparsity — vector denoiser

1: Initialize Xt = 0N×B, γ=1−K
N

and rtb = yb ∀b ∈ B = {1, ..., B} at t = 0
2: do

3: t← t+ 1
4: Ut−1 = Xt−1 +ATr

allR
t−1
all ⊲ Compute decoupled measurements

5: βt−1 = 1
MB
‖Rt−1‖2F ⊲ Estimate effective noise variance

6: Xt = Fvec(U
t−1; βt−1) ⊲ Estimate signal (vector denoiser)

7: Rt = Y −AallX
t
all +Rt−1 1

MB

∑
n

∑
b (F

′
vec(U

t−1; βt−1))n,b ⊲ Compute residual
8: while ‖Xt−Xt−1‖F>ǫtol ‖Xt−1‖F and t < tmax ⊲ Check stopping criteria
9: return X̂ = Xt ⊲ Recovered vectors

b-th output of the vector denoiser and its derivative (applied on rows of U) boil

down to

(Fvec(u; β))b = ub ·
σ2
xb

β + σ2
xb

· 1

1 +
γ

1− γ

B∏

l=1

√
β + σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β + σ2
xl
)

)

︸ ︷︷ ︸
mvec(u;β,γ)

, (2.87)

(F ′
vec(u; β))b =

σ2
xb

β + σ2
xb

· 1

1 +mvec(u; β, γ)
+

1

β
·mvec(u; β, γ) · (Fvec(u; β))

2
b . (2.88)

Note the similarities to the scalar denoiser (2.27) and its derivative (2.28); the major

difference is the product in mvec(u; β, γ) that involves all vector entries. The deriva-

tion of both functions is provided in appendices A.4 and A.5. In case of dependent

(correlated) signal entries, (2.86) may be solved numerically.

Algorithm 3 and Algorithm 4 have the same recovery performance in terms of

achieved MSE and required number of measurements M — they solve the same

estimation problem and utilize the same amount of prior knowledge. Algorithm 3

is based on scalar, independent BAMP denoiser functions, and the joint sparsity

structure is enforced by accumulating extrinsic belief about the zero probability.

Algorithm 4 employs a vector BAMP denoiser function that directly incorporates

prior knowledge about the signal structure by specifying a multivariate signal prior

(2.80). The difference becomes obvious when comparing the factor graph of scalar

BASSAMP in Figure 2.5 to the factor graph of vector BASSAMP in Figure 2.6; the

passed messages involving x are now vector-valued, and an extrinsic information

exchange among scalar entries is no longer required.
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Figure 2.6 Factor graph of BASSAMP with vector denoiser.

The factorization associated with the factor graph in Figure 2.6 is similar to

(2.57) but retains the vector-valued form:

fx,z|u(x, z|u) =
1

fu(u)
· fu|x,z(u|x, z) · fx,z(x, z)

=
1

fu(u)
· fu|x(u|x)︸ ︷︷ ︸

fB(x;u)

· fx|z(x|z)︸ ︷︷ ︸
fL(x,z)

· pz(z)︸ ︷︷ ︸
fA(z)

∝ fB(x;u) · fL(x, z) · fA(z).

(2.89)

Based on (2.58) and (2.80), the factors are specified as

fB(x;u) = fu|x(u|x) = N (u;x,Qw̃), (2.90)

fL(x, z) = fx|z(x|z) = (1− z) ·
B∏

b=1

δ(xb) + z · N (x;0,Qx), (2.91)

fA(z) = pz(z) = γδ(z) + (1− γ)δ(1− z). (2.92)

Note that by using a vector denoiser, the latent activity variable z become obsolete;

factor fA(z) = pz(z) only contributes the static prior knowledge (1.13) about γ that

is now contained in the multivariate signal prior (2.80). It is sufficient to consider

the factorization
fx|u(x|u) =

1

fu(u)
· fu|x(u|x) · fx(x). (2.93)

The joint sparsity structure that had to be enforced by fE(z) = pz(z) in scalar

BASSAMP is now fully incorporated into the multivariate signal prior fx(x).
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2.4.4 Recovery Stability

In rare cases, Algorithms 3 and 4 run into instabilities. This happens for a low di-

mension N in the order of 100 or 1 000. The AMP-based algorithms are derived for

the asymptotic regime as defined in Definition 2.3.1. In finite dimensions, the stan-

dalone algorithms AMP and BAMP work very well, but the concatenation of several

BAMP instances to exploit joint sparsity structure introduces additional cycles in the

graph that lead to occasional instabilities in the BASSAMP algorithms. An increase

of {K,M,N} while keeping δ = M
N

and ρ = K
M

constant reduces the occurrence of

instabilities.

I investigated the change in the reconstruction error, which is essentially dictated

by the residual Rt = [rt1, ..., r
t
B] whose energy relates to the effective noise variance.

After observing its behavior over many realizations, I suggest the following heuristic:

• For stable recoveries, the residual magnitude ‖Rt‖F decreases monotonically

over iterations t.

• For unstable recoveries, the residual magnitude ‖Rt‖F first decreases and then

increases until it oscillates.

This behavior is visualized in Figure 2.7.

Figure 2.7 Residual magnitude versus iterations.

The recovery is denoised by the MMSE estimator as long as the residual magnitude

decreases; an increasing magnitude indicates a worsening, unstable recovery. To
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combat instabilities, I recommend to stop the algorithm when the residual magni-

tude starts to increase. This is formally stated by the following condition:

if ‖Rt‖F > ‖Rt−1‖F then

Xt ← Xt−1

break

I add this abort condition between line 8 and 9 of Algorithm 3 (after executing the

BAMP iterations), and between line 7 and 8 of Algorithm 4. This condition will be

used in all BASSAMP simulations.

2.5 Empirical Phase Transitions

In order to compare the algorithmic performance over a wide range of parameters

{K,M,N}, this section presents the concept of empirical phase transition curves

[65, 102, 103]. These curves can be used to determine the required number of

measurements for successful recovery, based on K and N ; they define the sharp

boundary of the under-sampling versus sparsity trade-off.

To obtain the empirical phase transition curves, I consider an under-sampling(
δ = M

N

)
versus sparsity

(
ρ = K

M

)
grid where the values range from 0.05 to 0.95 with

step-size 0.05, respectively. At each grid point, 250 realizations of A∈{− 1√
M
, 1√

M
}M×N

and x (X in case of joint sparsity and B > 1) are simulated, the noise is zero. The

signal dimension is fixed to N = 1000. The signal recoveries of Algorithm 1, Algo-

rithm 2 and Algorithm 3 are compared — optimal tuning and perfect prior knowl-

edge is assumed. A success indicator for each realization i is defined as

Si =

{
1 NMSE(x, x̂)i < 10−4

0 else
. (2.94)

The average success at a grid point is obtained as S = 1
250

∑250
i=1 Si. The empirical

phase transition curves are finally obtained by plotting the 0.5 contour of S using

the MATLAB4 function contour.

Figure 2.8 depicts the average success S on the under-sampling versus sparsity

grid for a signal with Bernoulli-Gaussian prior. Key observation: The transition to the

success-phase is very sharp. Going from AMP over BAMP to BASSAMP, the success-

4MATLAB is a multi-paradigm numerical computing environment and programming language de-
veloped by MathWorks. It is a registered trademark of The MathWorks, inc.
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Figure 2.8 Empirical phase transition — average success percentage.

Figure 2.9 Empirical phase transition — average number of iterations

ful area becomes larger. This implies that for fixed K and N , fewer measurements

M are required.

Figure 2.9 illustrates the average number of iterations at each grid point; note

that I set the maximum number to tmax = 200. While AMP iterates to the limit in the

unsuccessful phase, BAMP and BASSAMP exhibit a large number of iterations only

during the phase transition. This plot also demonstrates that within the success-

phase, the algorithms typically require very few iterations in the order of 5 to 50.

Going from AMP over BAMP to BASSAMP, the number of iterations in the success-

phase decreases for a fixed set of parameters {K,M,N}.
Figure 2.10 finally depicts the empirical phase transition curves, for the two rel-

evant priors (2.26) and (2.29) with σ2
xn

= 2κ2
n = 1, and for B = {2, 4} jointly sparse

vectors in case of BASSAMP. AMP follows the ℓ1 phase transition of basis-pursuit

[102], regardless of the signal prior. BAMP exhibits a strongly improved perfor-

mance over AMP by exploiting the proper signal prior distribution. By additionally

considering joint sparsity, BASSAMP further improves over BAMP.
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Figure 2.10 Empirical phase transition curves

If noise is present, the sharp phase transition is softened and occurs at lower

ρ = K
M

, i.e., more measurements are required on average for successful recovery.

This behavior was investigated in [103].

Overall, the phase transition curves demonstrate that the exploitation of prior

knowledge and joint sparsity significantly lowers the number of required measure-

ments for successful recovery. This is an important property that will be leveraged

by CS-RFID in Chapter 4.
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2.6 State Evolution

A major advantage of the AMP framework over other recovery methods is the State

Evolution (SE) formalism [65, 77, 78] that allows to predict the algorithmic be-

havior without computationally expensive Monte Carlo simulations. The prediction

becomes exact in the asymptotic regime (see Definition 2.3.1), but is still sufficiently

accurate for signal dimensions in the order of N = 1000, as I will demonstrate in

this section. I will utilize the SE formalism for the following tasks:

• Prediction of the recovery MSE for each iteration. This enables to determine

the required number of iterations to attain a certain MSE. This is helpful for,

e.g., fixed complexity or fixed run-time implementations.

• Investigation of the required number of measurements for AMP.

• Investigation of prior distribution mismatch in BAMP. This allows to quantify

the MSE performance gap between a BAMP algorithm whose MMSE estimator

was derived for the true prior distribution and another MMSE estimator with

a prior distribution mismatch.

• Investigation and prediction of BASSAMP — scalar and vector case.

The SE is based on the decoupling principle (see Definition 2.3.2) and its decou-

pled measurement model that is inherent to all AMP-based recovery algorithms. In

the following, I assume that all entries of a sparse signal vector x are i.i.d. with

distribution (cf. (1.14))

fx(x) = γδ(x) + (1− γ)fa(x). (2.95)

The indices are omitted, since SE yields a macroscopic result that applies to all entries

of x. Recall the decoupled measurement model (2.17) u = x+ w̃, where w̃ ∼ N (0, β).

In the following, w̃ is replaced by
√
βv, v ∼ N (0, 1), to explicitly visualize the depen-

dency on the effective noise variance β. SE enables the prediction of β over (B)AMP

iterations t [78], using the initialization

β0 = σ2
w +

1

δ
Ex

{
x2
}
, (2.96)

and the update

βt+1 = σ2
w +

1

δ
Ex,v

{[
F t
(
x+

√
βtv
)
− x
]2}

, (2.97)
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where δ = M
N

, and F t(·) is the denoiser function with parameters from iteration t

— AMP uses the soft thresholder (2.11), while BAMP employs the MMSE estimator

(2.21). The expectation in (2.97) computes the variance of the estimator (denoiser)

function. Inserting the signal prior (2.95), its calculation splits up into two parts:

E(βt) := Ex,v

{[
F t
(
x+

√
βtv
)
− x
]2}

=

∫

v

∫

x

[
F t
(
x+

√
βtv
)
− x
]2
· fv(v) · fx(x) dv dx

= γ

∫

v

∫

x

[
F t
(
x+

√
βtv
)
− x
]2
· fv(v) · δ(x) dv dx

+ (1− γ)

∫

v

∫

x

[
F t
(
x+

√
βtv
)
− x
]2
· N (v; 0, 1) · fa(x) dv dx

= γ

∫

v

[
F t
(√

βtv
)]2
· N (v; 0, 1) dv

︸ ︷︷ ︸
E0(βt)

+ (1− γ)

∫

v

∫

x

[
F t
(
x+

√
βtv
)
− x
]2
· N (v; 0, 1) · fa(x) dv dx

︸ ︷︷ ︸
E1(βt)

= γE0(β
t) + (1− γ)E1(β

t),

(2.98)

where E0(β
t) and E1(β

t) are the estimator variances of the zero respectively nonzero

entries in x. They are weighted with their occurrence probability and summed up

to obtain the overall estimator variance E(βt). The integrals are solved numerically,

since closed form expressions are not available in general. The so obtained values

relate to numerical Monte Carlo simulation results as follows, where ut stems from

simulation, and the MSE is averaged over many realizations of x, A and w:

βt = σ2
w +

1

δ
E(βt−1)

︸ ︷︷ ︸
State evolution

≈ MSE(ut,x)︸ ︷︷ ︸
Simulation

. (2.99)

I will now apply this framework to the different AMP-based algorithms encountered

in this work.
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2.6.1 Required Number of Measurements for AMP

In Section 2.2.3, I discussed the selection of the λ parameter for AMP Algorithm 1,

and the proper choice of the measurement multiplier c. Let me investigate the num-

ber of required measurements by utilizing SE, λ is chosen according to (2.14).

For Algorithm 1, the threshold of the soft thresholder is given by τ t =
√
βtλ, and

the SE update equation (2.97) becomes

βt+1 = σ2
w +

1

δ
Ex,v

{[
η
(
x+

√
βtv;

√
βtλ
)
− x
]2}

. (2.100)

In the following experiment, I generate a Bernoulli-Gaussian distributed signal ac-

cording to (2.26) with σ2
x = 100, there is no measurement noise (σ2

w = 0). The

analytical SE (2.100) is compared to a simulation campaign with 1 000 realizations

of x, A and w, the MSE is averaged over the realizations.

Figure 2.11 SE of AMP for two measurement multipliers c = {1, 2}.

Figure 2.11 depicts the SE over t = [1, ..., 30] iterations, for two different measure-

ment multipliers c = {1, 2}, see (1.26). The left figure shows the MSE evolution; SE

and simulation are in good agreement. The right plot essentially depicts βt versus

βt+1. Analytically, the red solid lines compute as

S(β) = σ2
w +

1

δ
Ex,v

{[
η
(
x+

√
βv;
√

βλ
)
− x
]2}

, (2.101)



58 Signal Recovery by Approximate Message Passing

and the dots correspond to the iterations of the simulation, i.e., the tuple

[MSE(ut,x),MSE(ut+1,x)] ≈ [βt, S(βt)]. (2.102)

The black solid line indicates the baseline S(β) = β. Scrutinizing the c = 1 evo-

lution, the algorithm converges to the fixed point β∗ > 0 and, hence, indicates

unsuccessful denoising. This fixed point marks the first intersection (from the right)

between the baseline and the analytic evolution (2.101). For an increased c = 2,

the algorithm converges to the desired solution β = 0 that is always a fixed point

of S(β) (if σ2
w = 0). The smallest c for which β∗ = 0 indicates the phase transition

of the algorithm at which the denoising becomes successful. This method can be

used to analytically determine the minimal number of required measurements, as

opposed to the numerical Monte Carlo experiments conducted in Section 2.2.3 and

Section 2.5. The theoretical background exceeds the scope of this work, I refer the

interested reader to [51, 65, 102, 103].

2.6.2 Prior Mismatch in BAMP

In Section 2.3, several priors for BAMP Algorithm 2 were specified. Let me compare

BAMP’s denoising performance for different priors by utilizing SE. The SE update

equation (2.97) becomes

βt+1 = σ2
w +

1

δ
Ex,v

{[
F
(
x+

√
βtv; βt

)
− x
]2}

. (2.103)

In the following experiment, I generate a Bernoulli-Laplace distributed signal ac-

cording to (2.29) with unit variance, i.e., 2κ2 = 1 ⇒ κ = 1/
√
2. I compare the

performance of two BAMP algorithms:

BL-BAMP is Algorithm 2 with the Bernoulli-Laplace denoiser specified in (2.30).

This represents the case of perfect prior knowledge.

BG-BAMP is Algorithm 2 with the Bernoulli-Gaussian denoiser specified in (2.27).

This represents the case where the exact prior is not known and a Gaussian

relaxation is used. The Gaussian signal variance of the denoiser is set to the

variance of the Laplace distribution, i.e., σ2
x = 2κ2 = 1.

The analytical SE (2.103) is compared to a simulation campaign with 1 000 realiza-

tions of x, A and w, the MSE is averaged over the realizations. Figure 2.12 depicts
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Figure 2.12 SE of two BAMP algorithms with Bernoulli-Laplace signal.

the SE over t = [1, ..., 15] iterations, for two different measurement noise variances

σ2
w = {0, 0.1}. The BG-BAMP with mismatching prior exhibits a slightly worsened

MSE performance. In the noisy case, the remaining MSE after several iterations is

slightly larger. In the noiseless case, both algorithms approach numerically perfect

recovery. SE is in good agreement with the average simulation MSE.
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2.6.3 Prediction of BASSAMP

I will now apply SE to BASSAMP Algorithms 3 and 4. Note that both algorithms

feature a different SE, and the prediction of scalar BASSAMP is more challenging

due to the extrinsic information exchange. I assume that all signal entries xn,b, n ∈
{1, ..., N}, b ∈ B = {1, ..., B}, are i.i.d. Bernoulli-Gaussian according to (2.26).

Scalar BASSAMP

In scalar BASSAMP Algorithm 3, the zero and nonzero entries of X = [x1, ..., xB] have

different state evolutions, because the zero probabilities γn,b are updated in each iter-

ation. If all n-th entries of the B jointly sparse vectors are zero, the entries become

more likely to be zero in each iteration, and γn,b is increased, ∀b ∈ B. Conversely, if

all n-th entries are nonzero, γn,b is decreased over iterations. Considering this in the

SE, the individual estimator variances in (2.98) become

E0(β
t, ~γt

0) =

∫

v

[
F
(√

βtv; βt, ~γt
0

)]2
· N (v; 0, 1) dv, (2.104)

E1(β
t, ~γt

1) =

∫

v

∫

x

[
F
(
x+

√
βtv; βt, ~γt

1

)
− x
]2
· N (v; 0, 1) · N (x; 0, σ2

x) dv dx.

(2.105)

Note the dependency on ~γt
0 and ~γt

1 that depict the zero probability evolution of the

zero entries and the nonzero entries in X, respectively. Considering the signal prior

(2.95) and assuming joint sparsity as in Definition 2.4.1, γ ·N = K entries will follow

the zero entry evolution where xn,b = 0, ∀b ∈ B, while (1 − γ) · N = N −K entries

will follow the nonzero entry evolution where xn,b 6= 0, ∀b ∈ B. The crucial point in

BASSAMP’s SE is to accurately predict how ~γt
0 and ~γt

1 evolve over iterations t.

In (2.72), the update equation for the zero probabilities γt
n,b was stated. For

clarity, let me repeat this equation here with some rearrangements, omitting entry

(row) index n as the SE yields a macroscopic result valid for all entries, and retaining

vector (column) index b to capture the extrinsic information exchange between the

vectors:

γt
b =

1

1 + 1−γ0

γ0

(∏
l∈B\b

√
βt−1
l

βt−1
l

+σ2
x

)
exp

(∑
l∈B\b

1
2
· σ2

x

βt−1
l

(βt−1
l

+σ2
x )
· (ut−1

l )2
) . (2.106)
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Note that I now consider rows of U, and by omitting index n, the following notation

holds in the remainder of this section:

[un,1, ..., un,B]︸ ︷︷ ︸
n-th row of U

→ u = [u1, ..., uB]︸ ︷︷ ︸
Any row of U

. (2.107)

Ultimately, I am interested in the expected value of γt
b with respect to the decoupled

measurements ut−1 that are provided by the BAMP iteration, along with the effective

noise variance βt−1. Let me outline the various steps to compute this value.

A decoupled measurement ul –now interpreted as random variable– is distributed

according to (2.68). I use the latent activity variable zl from (2.44) and formulation

(2.45) to obtain

ful|zl(ul = ut−1
l |zl = 0) = f0(u

t−1
l ) = N (ut−1

l ; 0, βt−1
l ), (2.108)

ful|zl(ul = ut−1
l |zl = 1) = f1(u

t−1
l ) = N (ut−1

l ; 0, βt−1
l + σ2

x). (2.109)

• If all entries in a row of x = [x1, ..., xB] are zero, the latent activity variables

are z = [z1, ..., zB] = 01×B, and the individual decoupled measurements ul are

distributed according to (2.108). This marks the zero entry evolution.

• If all entries in a row x = [x1, ..., xB] are nonzero, the latent activity variables

are z = [z1, ..., zB] = 11×B, and the individual decoupled measurements ul are

distributed according to (2.109). This marks the nonzero entry evolution.

The sum in (2.106) amounts to a new random variable (iteration index t omitted)

v =
∑

l∈B\b

1

2
· σ2

x

βl(βl + σ2
x)
· u2l =

∑

l∈B\b




√
1

2
· σ2

x

βl(βl + σ2
x)
· ul

︸ ︷︷ ︸
vl




2

. (2.110)

• Under the zl = 0 hypothesis (2.108), vl has distribution

fvl|zl(vl|zl = 0) = N
(
vl; 0,

1

2
· σ2

x

βl + σ2
x

)
. (2.111)

• Under the zl = 1 hypothesis (2.109), vl has distribution

fvl|zl(vl|zl = 1) = N
(
vl; 0,

1

2
· σ

2
x

βl

)
. (2.112)
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All B jointly sparse vectors are expected to undergo the same SE due to the assump-

tion of i.i.d. entries in X and W. This also implies that the expected effective noise

variances are equal due to equal initial values (2.96) such that βl = β, ∀l ∈ B. It

holds that

v =
B−1∑

l=1

v2l . (2.113)

In order to obtain the distribution of v, I refer to [104] for the following lemma:

Lemma 2.6.1. Consider NV i.i.d. random variables vl ∼ N (0, σ2
v), l = {1, ..., NV }.

The sum of the squared variables is Gamma distributed:

v =

NV∑

l=1

v2l ∼ Γ

(
NV

2
, 2σ2

v

)
. (2.114)

By utilizing Lemma 2.6.1 and (2.111)–(2.113), following distribution is obtained,

respectively for the zero entry evolution and the nonzero entry evolution:

fvt−1|z(v
t−1|z = 01×B) = Γ

(
vt−1;

B − 1

2
,

σ2
x

βt−1 + σ2
x

)
, (2.115)

fvt−1|z(v
t−1|z = 11×B) = Γ

(
vt−1;

B − 1

2
,
σ2
x

βt−1

)
. (2.116)

Considering above steps in (2.106), the zero probability evolution of the zero

entries computes as

~γt
0 = Evt−1|z=0





(
1 +

1− γ

γ

(
βt−1

βt−1 + σ2
x

)B−1
2

exp
(
vt−1

)
)−1





=

∫

v

Γ

(
v;

B − 1

2
,

σ2
x

βt−1 + σ2
x

)
·
(
1 +

1− γ

γ

(
βt−1

βt−1 + σ2
x

)B−1
2

exp (v)

)−1

dv,

(2.117)

while the zero probability evolution of the nonzero entries computes as

~γt
1 = Evt−1|z=1





(
1 +

1− γ

γ

(
βt−1

βt−1 + σ2
x

)B−1
2

exp
(
vt−1

)
)−1





=

∫

v

Γ

(
v;

B − 1

2
,
σ2
x

βt−1

)
·
(
1 +

1− γ

γ

(
βt−1

βt−1 + σ2
x

)B−1
2

exp (v)

)−1

dv.

(2.118)
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Algorithm 5 SE of scalar BASSAMP for jointly sparse signals

1: Initialize βt = σ2
w + 1

δ
σ2
x and ~γt

0 = ~γt
1 = γ = 1− K

N
at t = 0, with δ = M

N

2: for t = 1 to tmax do

3: Compute E0(β
t−1, ~γt−1

0 ) according to (2.104) ⊲ Zero entry evolution
4: Compute E1(β

t−1, ~γt−1
1 ) according to (2.105) ⊲ Nonzero entry evolution

5: βt = σ2
w + 1

δ

(
γE0(β

t−1, ~γt−1
0 ) + (1− γ)E1(β

t−1, ~γt−1
1 )

)
⊲ Total evolution

6: Compute ~γt
0 according to (2.117) ⊲ Zero prob. evolution of zero entries

7: Compute ~γt
1 according to (2.118) ⊲ Zero prob. evolution of nonzero entries

By combining above insights, I obtain the SE of scalar BASSAMP for jointly sparse

signals, outlined in Algorithm 5. Lines 3-5 reproduce the behavior of the BAMP iter-

ation (denoising by MMSE estimator), while lines 6-7 reproduce the joint extrinsic

prior update of BASSAMP.

Vector BASSAMP

The vector BASSAMP Algorithm 4 is significantly simpler to handle, because no zero

probability evolution has to be tracked. Note that the vector denoiser (2.86) returns

a vector output. For the SE, I am interested in a single component of the denoiser

output. The individual estimator variances in (2.98) for the b-th output compute as

E0(β
t) =

∫

v∈RB

[(
Fvec

(
v; βt

))
b

]2 · N (v;0, βtIB) dv, (2.119)

E1(β
t) =

∫

v∈RB

∫

x∈RB

[(
Fvec

(
x+ v; βt

)
− x

)
b

]2 · N (v;0, βtIB) · N (x;0,Qx) dv dx.

(2.120)

To ease the computational burden of the multidimensional integrals, I suggest to

combine several random variables into a super variable according to Lemma 2.6.1.

Considering this in case of i.i.d. Bernoulli-Gaussian signal entries based on (2.82)

with vector denoiser (2.87), the estimator variances compute more efficiently:

E0(β
t) =

∫

v

∫

v


v ·

σ2
x

βt + σ2
x

· 1

1 + γ
1−γ

(
βt+σ2

x

βt

)NB
2
exp

(
−v2

2
σ2
x

β(β+σ2
x )
− v
)




2

· N
(
v; 0, βt

)
· Γ
(
v;

NB − 1

2
,

σ2
x

βt + σ2
x

)
dv dv,

(2.121)
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E1(β
t) =

∫

v

∫

v

∫

x


(x+ v)· σ2

x

βt + σ2
x

· 1

1+ γ
1−γ

(
βt+σ2

x

βt

)NB
2
exp
(
− (x+v)2

2
σ2
x

β(β+σ2
x )
− v
) − x




2

· N
(
v; 0, βt

)
· Γ
(
v;

NB − 1

2
,
σ2
x

βt

)
· N

(
x; 0, σ2

x

)
dv dv dx.

(2.122)

This way, the integral in (2.119) is reduced from B to 2 dimensions, and the integral

in (2.120) is reduced from 2B to 3 dimensions.

Comparison

The SEs of algorithms 3 and 4 are now compared to simulation results in which

MSE (Ut,X) is averaged over 1 000 realizations of X, A and W. The results are de-

picted in Figure 2.13, including a comparison to BAMP Algorithm 2 that operates on

single vectors without exploiting the joint sparsity. BASSAMP significantly outper-

forms BAMP in terms of recovery MSE and denoising performance (steeper slope).

Vector BASSAMP has a steeper denoising slope than scalar BASSAMP because no

extrinsic information exchange is required. Eventually, both BASSAMP algorithms

attain the same MSE performance. For small B, the SE of scalar BASSAMP is too

optimistic in the transition phase, i.e., the convergence slope is steeper than in the

simulation. The SE of vector BASSAMP is accurate for all B, since no zero probability

evolution has to be tracked.

Figure 2.14 illustrates the zero probability evolution of scalar BASSAMP, with

B = {2, 4, 8} jointly sparse signals. The more signals, the higher the confidence

in the extrinsic information, and the steeper the slope. The SE prediction becomes

better with increasing B; the expected value of (2.106) does not seem to capture

the full information exchange for small B.

The proposed SE of scalar BASSAMP should be seen as an approximate result,

while the SE of vector BASSAMP is accurate. Both algorithms approach the same

recovery MSE.
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Figure 2.13 SE of BASSAMP with i.i.d. Bernoulli-Gaussian signal.

Figure 2.14 Zero probability evolution of scalar BASSAMP.
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2.7 Summary

In this chapter, I presented and investigated various AMP-based algorithms that will

later be utilized by CS-RFID. The proper choice of the algorithm depends on the

amount of available prior knowledge — for convenience, Table 2.1 depicts the prior

knowledge that is exploited by the algorithms. The basic AMP algorithm requires

Sparsity Bayesian prior Joint Sparsity
AMP ✓ ✗ ✗

BAMP ✓ ✓ ✗

BASSAMP ✓ ✓ ✓

Table 2.1 Utilization of prior knowledge.

coarse knowledge of the number of nonzero entries K such that the tuning param-

eter λ can be chosen accordingly, and the proper solution sparsity is promoted. If

the Bayesian prior distribution is known, the BAMP algorithm is able to improve the

recovery in terms of accuracy and convergence. Additional structure such as joint

sparsity in case of multiple measurement vectors further improves the recovery per-

formance. The joint sparsity structure is exploited by the BASSAMP algorithm that

I introduced in two flavors: The scalar version performs an extrinsic information ex-

change among jointly sparse entries, while the vector version enforces the structure

by employing a vector denoiser function that is based on a multivariate signal prior.

The vector denoiser is also capable of capturing correlation among the signal entries.

The algorithms were compared by empirical phase transition curves based on

Monte Carlo simulations, and by the SE formalism that allows to predict the algo-

rithmic behavior analytically. AMP has been demonstrated to be a very versatile tool

with excellent CS recovery properties, perfectly suited for practical implementations.

All algorithms are now established and ready to be deployed in CS-RFID.



Chapter 3

RFID with Compressed Sensing

This chapter introduces the fundamental concept of CS-RFID. In the considered

RFID setup, a multitude of tags is to be identified by a reader with a single receive

antenna. The tag acquisition is formulated as a CS measurement, the tag identifiers

are obtained via CS recovery by AMP. In order to guarantee reliable identification

of all tags, two identification protocols are proposed.

The following contributions are based on my work in [74, 76, 105–107]:

The problem of tag acquisition is formulated as CS measurement (1.19). It is

described how the efficient AMP Algorithm 1 can be utilized to acquire the tag

identifiers.

An identification protocol for scenarios with a fixed inventory is proposed. It

enables very quick and robust tag identification.

An identification protocol for scenarios with an arbitrary inventory is proposed.

This protocol constitutes a more flexible approach to robust tag identification.

The performance of both protocols is evaluated analytically and numerically. A

comparison to the pervasive FSA protocol demonstrates that the novel proto-

cols in conjunction with CS and AMP are by far quicker and more robust with

respect to noise.
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3.1 Scenario and Channel Model

I consider a scenario where K tags have to be identified by a single reader. The

CS-RFID schemes introduced in this thesis can handle all kinds of tags, i.e., passive,

semi-passive or active tags. I focus on passive tags that are powered by the CW car-

rier signal emitted by the reader, because this is the most challenging case where

the tag responses are restricted to binary symbols. Furthermore, this is the pervasive

approach used in most applications [8, 10, 12]. Such tags employ backscatter mod-

ulation to convey information in the uplink from tag to reader, thereby generating

Amplitude Shift Keying (ASK) modulated signals as tag responses. The two result-

ing ASK symbol levels are henceforth denoted b0 ∈ R and b1 ∈ R corresponding to

binary 0 and binary 1, respectively.

In this chapter, the reader employs a single receive antenna. The reader antenna

setup can either be monostatic (transmit and receive at same antenna) or bistatic

(transmit and receive at separate antennas). I focus on the bistatic case, because it is

the more general case when it comes to channel modeling. Such a setup is depicted

in Figure 3.1.

The aspired data-rates for RFID range from 40 kbit/s to 640 kbit/s [39]. This

entails narrow-band transmissions whose physical channels can be modeled by a

complex coefficient that characterizes magnitude and phase change. I employ a

widely used dyadic channel model [108–110] that consists of a forward channel

coefficient from reader to tag, denoted h
(f)
k ∈ C, and a backward channel coefficient

from tag to reader, denoted h
(b)
k ∈ C. The total channel from reader to tag k and

back is modeled by

hk = h
(f)
k h

(b)
k . (3.1)

The channels are assumed to be static, i.e., to not change significantly through-

out a transmission phase. Furthermore, the reader’s carrier signal is subject to multi-

path propagation that causes small-scale fading [111–113]. By changing the tag

position within fractions of the wavelength, the propagation components may inter-

fere constructively or destructively. Consequently, the channel coefficient magnitude

is subject to spatial fading, which is widely modeled according to a Rayleigh or Ri-

cian distribution [108–112]. Based on those findings, I assume Rayleigh distributed

channel coefficient magnitudes and uniformly distributed angles (phases). The for-

ward and backward channel coefficients are hence drawn from a circularly symmet-

ric complex-valued Gaussian distribution with zero mean and unit variance. For a

bistatic reader setup, forward channel h(f)
k and backward channel h(b)

k are modeled
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Figure 3.1 A bistatic reader identifies K tags.

by independently drawn coefficients. This implies that the reader antennas are suffi-

ciently spaced in order to obtain uncorrelated channels; note that this is an assump-

tion to obtain a simple model and not a requirement for the proposed identification

scheme. The monostatic channel model is easily obtained by setting h
(b)
k =

(
h
(f)
k

)∗
.

The carrier-leakage from transmit to receive antenna is assumed to be negligible

[38]. Activated tags respond synchronized and with constant symbol duration.

3.2 Tag Acquisition via Compressed Sensing

Tags that are brought close enough to the reader, i.e., within read range, are acti-

vated and powered by the reader’s CW carrier signal. According to Figure 3.1, K

tags are activated and have to be identified by the reader.

Definition 3.2.1 (Set of activated tags). The set of activated tags encompasses all tags

that are activated by the reader for identification. The activated tags are labeled by

consecutive integer numbers that comprise the set of activated tags:

TT := {1, ..., k, ..., K}. (3.2)

The problem of tag acquisition refers to the acquisition of information about a

tag that enables communication with the tag. This information generally does not

identify the tag. In FSA, the reader broadcasts a query, and each activated tag

randomly picks a slot in a frame and transmits a 16-bit random sequence (RN16).
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Figure 3.2 Signature sequence assignment.

The reader acquires the RN16 sequences from collision-free slots and is henceforth

able to communicate with these tags. Subsequently, all tags are listening to the

reader that broadcasts the acquired RN16 sequences in a sequential manner; if a tag

recognizes its RN16 sequence, it responds with the data payload that identifies the

tag.

In my proposed CS-RFID approach, all activated tags respond simultaneously to

a query from the reader. Each tag responds with a signature sequence, or briefly,

signature

Definition 3.2.2 (Set of signature indices). There are N signatures sequences avail-

able in total. The corresponding indices are collected in the set of signature indices

T := {1, ..., n, ..., N}. (3.3)

Definition 3.2.3 (Set of assigned signature indices). Each activated tag k ∈ TT is

associated with a signature index ak ∈ T , the tag responds with the corresponding

signature during tag acquisition. The set of assigned signature indices is

TA := {a1, ..., ak, ..., aK}. (3.4)

Figure 3.2 illustrates above definitions. The two different methods of assignment,

fixed or random, will be discussed in sections 3.3 and 3.4, respectively. Let me

specify the signature sequence properties:

• Activated tag k responds with a signature sak ∈ {b0, b1}M that comprises the

ASK symbols b0, b1 ∈ R, i.e., the two amplitudes of backscatter modulation.
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Figure 3.3 Tags respond simultaneously — physical layer illustration.

• The signatures are generated pseudo-randomly, each with a certain seed [114].

Both ASK symbols occur with equal probability P{b0} = P{b1} = 0.5.

• The N signature sequences form the columns of signature matrix S = [s1, ..., sN ] ∈
{b0, b1}M×N .

• The reader knows all possible signatures (e.g., by knowing the seeds of the

pseudo-random generator). Therefore, it knows S.

For tag acquisition, the reader broadcasts a query and receives a superposition of

signature sequences sak that are weighted with the respective channel coefficient hk,

see Figure 3.3. This is formulated as a CS measurement

z =
K∑

k=1

sakhk +w = Sx+w, (3.5)

where the nonzero entries of x ∈ XK ⊂ C
N store the complex-valued channel coeffi-

cients and dictate which columns of S are selected, and with w ∈ C
M being additive

measurement noise with i.i.d. entries from a circularly symmetric complex-valued

Gaussian distribution with zero mean and variance σ2
w. The interpretation as CS

measurement is visualized by Figure 3.4 (noise omitted).
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Figure 3.4 Tags respond simultaneously — interpreted as CS measurement.

The K assigned signatures constitute a very small subset of the total amount of

signatures N — the reasons for this become clear in sections 3.3 and 3.4. Conse-

quently, the channel activity vector x is sparse with K ≪ N nonzero entries. The

goal is to recover x from z knowing S, because the locations of the nonzero entries

in x indicate which signatures have been chosen by the tags. This is the information

used to establish a communication with the tags, i.e., the identifiers in CS-RFID are

associated with the signature indices.

In this chapter, I use the AMP Algorithm 1 with complex soft thresholding (2.12)

to recover x. This algorithm requires the sensing matrix to have zero mean and

normalized columns. However, S in (3.5) features neither. I will now elaborate

how an AMP compliant formulation is obtained; let me first tackle the zero-mean

problem.

Since all signatures comprise an equal number of b0 and b1 (in expectation or by

design), they all have the same mean

s =
b0 + b1

2
. (3.6)

After subtracting the mean from the signatures, they feature binary antipodal sym-

bols {−b, b}:
b0 − s = −b1 − b0

2
=: −b,

b1 − s =
b1 − b0

2
=: b.

(3.7)
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Consequently, (3.5) can be written as

z = Sx+w =
(
A+ s · 1M×N

)
x+w = Ax+w︸ ︷︷ ︸

y

+ s
N∑

n=1

xn

︸ ︷︷ ︸
z

, (3.8)

where A ∈ {−b, b}M×N has zero-mean columns, and z is the measurement mean

that depends on x. The mean z can be computed from z without knowledge of x:

1

M

M∑

m=1

zm =
1

M

M∑

m=1

N∑

n=1

sm,nxn +
1

M

M∑

m=1

wm

︸ ︷︷ ︸
w

=
1

M

M∑

m=1

N∑

n=1

(am,n + s)xn + w

=
1

M

N∑

n=1

xn

M∑

m=1

am,n

︸ ︷︷ ︸
=0

+ s
N∑

n=1

xn

︸ ︷︷ ︸
=z

M∑

m=1

1

M
︸ ︷︷ ︸

=1

+w

= z + w.

(3.9)

The noise has zero mean and therefore vanishes in expectation: Ew (w) = 0. As-

suming ergodicity and a sufficient number of samples M , w approaches zero. The

aspired zero-mean formulation of the CS measurement is obtained by

y = Ax+w ≈ z− 1

M

M∑

m=1

zm, (3.10)

it becomes exact in the noiseless case, or for large M .

The sensing matrix A in (3.10) features zero-mean columns, which is the first

requirement for Algorithm 1. The second requirement –columns with unit ℓ2-norm–

is achieved by scaling:

A =
1

b
√
M
·A. (3.11)

This yields an A with Bernoulli-distributed entries that take the values {− 1√
M
, 1√

M
}

with equal probability. As mentioned in Section 1.2.3, such matrices satisfy the RIP

with overwhelming probability, and the number of samples –or equivalently, the sig-

nature length– M for successful recovery is dictated by (1.26), it depends on c, K

and N . In the acquisition phase, the reader advertises M to the tags via query. The
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proper choice of the measurement multiplier c in (1.26) was investigated in Sec-

tion 2.2.3. The number of activated tags K has to be estimated [48, 115]. Consider-

ing high and moderate SNR as defined in (2.15) and c ∈ [2, 3], x is recovered well by

AMP and K can be estimated by sorting the entries in x̂ with descending magnitude

and observing the gap between Correct Detections (CDs) and False Alarms (FAs),

see [107]. The ℓ1-optimal tuning parameter λℓ1 is selected according to (2.14). The

number of signatures N is known to the reader.

Executing Algorithm 1 with A and y, an estimate of the channel activity vector,

x̂, is obtained. The detected set of assigned signature indices T̂A = {â1, ..., âK}
is assembled by collecting the indices of the K largest entries in |x̂|. The recovery

x̂ can be multiplied by b
√
M to obtain the original scaling that was lost due to

the normalization in (3.11); however, the absolute scaling is not important for tag

acquisition.

1. K tags are put in read range in order to be identified by the reader.

2. The reader estimates or assumes K and chooses c ∈ [2, 3]. It then
computes M according to (1.26).

3. The reader broadcasts a query and advertises the signature length M
to the activated tags.

4. The tags respond simultaneously, each with its signature sequence.
This is cast as CS measurement (3.5). The measurement yields z

which is used to compute y according to (3.10).

5. CS recovery with AMP is performed by Algorithm 1 with complex soft
thresholding (2.12). The algorithm uses A from (3.11) and y, and
the threshold parameter λ is selected according to (2.14). The
algorithm yields the signal estimate x̂.

6. The detected set of assigned signature indices T̂A is obtained by
collecting the indices of the K largest entries in |x̂|.

Tag Acquisition with AMP

This completes the tag acquisition phase. Subsequently, the reader is ready for

the data read-out phase that identifies the tags. Protocols that enable reliable tag

identification despite noise are discussed in the following sections 3.3 and 3.4.
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3.3 Identification with Fixed Signature Assignment (CSF)

Many RFID applications feature a "closed system" were all tags that could be acti-

vated by the reader are known. I refer to this as the fixed inventory of tags. Exam-

ples are sensor networks, stores, libraries, offices — virtually all applications where

a set of tags is maintained. Maintaining a fixed inventory requires a database that

lists all tags and associates them with sensors, products or goods. In view of the tag

acquisition scheme proposed in Section 3.2, each tag is uniquely associated with a

signature sequence, and the database stores all possible signatures.

Let me lay out an example of a library that uses CS for tag acquisition. Each book

features a tag that is uniquely associated with a signature sequence. There are N

signatures in total, and all N signatures are uniquely linked to the total inventory of

N books (tags). Each column in signature matrix S uniquely represents a book in

the library, as does each entry in channel activity vector x. A customer now brings

a small subset of K ≪ N books to the checkout, where the tags are activated —

this yields TA, the set of signature indices assigned to those activated tags. After

broadcasting the signature query and performing CS measurement (3.5), the reader

recovers the channel activity vector x using AMP. In case of perfect recovery x̂ = x,

the identification is completed since the support of x̂, given by TA, corresponds to

the signature indices of the K books.

• There is a fixed inventory that encompasses N tags.

• Each tag is uniquely associated with a signature sequence. Hence, the
set of signature indices T = {1, ..., N} corresponds to the set of all
tags.

• K ≪ N tags are activated by the reader and respond simultaneously
with K distinct signatures.

• Perfect recovery of channel activity vector x yields complete

identification.

Fixed Signature Assignment
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3.3.1 Identification Cycle

At low SNR or an insufficient number of measurements M , AMP yields an imperfect

recovery x̂ that may contain FAs. This behavior was investigated in [107] for sparse

binary vectors. In order to guarantee a reliable recovery nevertheless, I introduce

identification cycles as depicted in Figure 3.5.

Figure 3.5 Identification cycle for fixed signature assignment.

In the first step, the reader broadcasts a signature query and the CS measurement

process (3.5) is triggered. Channel activity vector x is recovered by AMP and the set

of assigned signatures is detected, yielding T̂A.

In the second step, the reader enquires all signature indices in T̂A. A truly acti-

vated tag whose signature index was detected correctly acknowledges the enquiry

and is, thereby, identified; it is silent in future identification cycles. If a FA is en-

quired, no tag will respond and the reader continues after a timeout.

Each identification cycle starts with a signature query and, therefore, a CS mea-

surement that encompasses the tags that have previously been missed. The identifi-

cation cycles are repeated until no tags respond to a query anymore and all tags are

identified successfully.

3.3.2 Analytical Performance Investigation

I will now compare the performance of CS-RFID with fixed signature assignment –

denoted CSF in the sequel– to the widely used FSA protocol. The first figure of merit

is the bit overhead for identification.
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Definition 3.3.1 (Bit overhead for identification). The bit overhead for identification

is defined as the number of bits required to identify the K activated tags. It is denoted

by β.

Let me begin with the FSA protocol. The K activated tags randomly choose

a time-slot in a frame with F slots to transmit a 16-bit random number (RN16).

Choosing frame size F = K (equal to the number of activated tags) maximizes

the probability of choosing a collision-free slot [42], which turns out to be e−1 ≈
0.368 according to a binomial distribution. The reader acknowledges (AFSA bits) the

successfully received (collision-free) RN16 numbers and reads out the data payload

(D bits) of the corresponding tags. Tags with collided RN16 numbers are scheduled

to transmit again in a subsequent frame. Omitting signaling overhead, the optimal

(lowest possible) bit overhead for identification becomes

βFSA = 16eK︸ ︷︷ ︸
Acquisition

+K(AFSA +D)︸ ︷︷ ︸
Data read-out

. (3.12)

Typical values from the EPCglobal standard [39] are: AFSA = 18 bits consists of 2 bits

ACK command overhead plus RN16 echo to acknowledge the slots, while D = 48 bits

is the data payload assumed to contain the Electronic Product Code (EPC) and the

Cyclic Redundancy Check (CRC). Not knowing the inventory in advance necessitates

a data read-out, which is not required in CSF.

In the acquisition phase of CSF, all K activated tags simultaneously transmit a

signature of length M according to (1.26). In the noiseless case, the recovery is

perfect and the K activated tags are found by enquiry (E bits) and acknowledgment

(ACSF bits). The optimal bit overhead for identification reads

βCSF =

⌈
cK log

N

K

⌉

︸ ︷︷ ︸
Acquisition

+K(E + ACSF)︸ ︷︷ ︸
Data read-out

. (3.13)

Let me provide typical values: Since every tag knows its signature index ak ∈ TA, an

enquiry contains a tag index âk ∈ T̂A in binary representation and therefore requires

E = ⌈log2(N)⌉+2 bits, including two-bit command overhead. The ACK response can

be very simple and contains ACSF = 2 bits. If additional information is to be read

out (e.g., sensor data), a data payload could be added to the ACK response; this is

not the case in the identification-only scenario.

Figure 3.6 depicts the theoretically optimal bit overhead for FSA and CSF that

is achieved in the noiseless case. From (3.13), it is evident that the bit overhead
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Figure 3.6 Optimal bit overhead for identification: FSA versus CSF.

of CSF depends on the inventory size N . The required signature length increases

logarithmically with an increasing inventory, which translates to a longer acquisition

phase. It was found that CSF outperforms FSA as long as the inventory size is

below N ≈ 1015 tags, where both overheads are about equal. For reasonably sized

inventories, CSF has a significantly lower bit overhead for identification and strongly

outperforms FSA. This enables a quicker, more energy-efficient identification of a

multitude of tags.

Note that both bit overhead formulas apply to the noiseless case and constitute

a lower bound (optimum). The lower the SNR, the more identification cycles are

needed in CSF, and the more frames are needed in FSA. A performance evaluation

for variable SNR follows in Section 3.5.

3.4 Identification with Random Signature Assignment

(CSR)

Fixed signature assignment tackled the case of a fixed tag inventory that was con-

tained within a strictly limited, albeit large set T . A more general approach is as-

pired for arbitrary inventories. The widely employed EPCglobal standard for tag

identification [39] foresees tags that randomly choose an RN16 sequence during the

acquisition phase. Consequently, the K activated tags randomly pick a sequence out

of 216 possible sequences, which renders the K responses distinct with overwhelm-
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ing probability. Each tag that obeys the standard can be identified by the reader, no

inventory maintenance is required. Note that the EPCglobal standard uses the FSA

protocol.

Adopting this idea for CS-RFID, the activated tags randomly pick a signature

sequence index from T . The total number of signatures N is now a design parameter,

the total tag population is not limited to N but is arbitrary.

Let me revisit the library example. The number of books in the library can now

be arbitrarily large, a book is identified by the data payload of the tag and not by

its signature sequence. The set of signature indices T contains N signatures and is

now independent of the number of books. The user brings K ≪ N books (tags)

to the checkout, and each activated tag randomly selects a signature index ak from

T — this constitutes the set of assigned signature indices TA. After receiving the

superimposed signatures, the reader recovers x. In case of perfect recovery, the

support of x̂, i.e., T̂A, contains the assigned signature indices. The reader enquires

the signature indices; instead of an acknowledgment, the tags respond with the data

payload (e.g., product code) for identification.

• There is an arbitrary inventory.

• Each tag randomly selects a signature from T = {1, ..., N}.

• K ≪ N tags are activated by the reader and respond simultaneously
with K signatures that are distinct with high probability.

• Perfect recovery of channel activity vector x yields the K assigned
signature indices.

• The K signature indices are used to identify the K associated tags in
an additional data read-out phase.

Random Signature Assignment

3.4.1 Identification Cycle

The identification cycle for random signature assignment is illustrated by Figure 3.7.

Note that random signature assignment faces the problem of repeatedly chosen sig-

natures in the enquiry step — if two or more tags choose the same signature, they

will respond simultaneously during data read-out and produce a collision. A collision
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Figure 3.7 Identification cycle for random signature assignment.

can be detected by the reader via, e.g., CRC code. The usage of a CRC code is also

helpful in case of erroneous read-out due to noise. If the CRC check fails, the tag(s)

associated with the current signature are reactivated after the identification cycle. In

the subsequent cycle, they again choose a signature and retransmit their data, which

is hoped to be error- (and collision-) free now, and again repeated otherwise.

3.4.2 Analytical Performance Investigation

CS-RFID with random signature assignment –denoted CSR in the sequel– allows to

control the sparsity of x. The number of possible signatures N can be made very

large compared to the number of activated tags K, i.e., N ≫ K. This allows to

reduce the probability of a collision in the data read-out. However, the number of
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signatures should not be made arbitrarily large, since an increase in N also increases

the required number of measurements M according to (1.26). I will now introduce

the relevant probabilities and use them to discuss the optimal choice of N that mini-

mizes the bit overhead for identification.

Definition 3.4.1 (Collision probability). Assume that a specific tag (out of K) has

chosen a specific signature (out of N), the probability that m out of the K−1 remaining

tags choose the same signature is stated by the binomial distribution

pB

(
m;K − 1,

1

N

)
=

(
K − 1

m

)(
1

N

)m(
1− 1

N

)K−1−m

. (3.14)

Definition 3.4.2 (Resolvable tag probability). The probability that the signatures

have been assigned uniquely and that the data read-out is collision-free reads

PR(K,N) := pB

(
0;K − 1,

1

N

)
=

(
1− 1

N

)K−1

. (3.15)

Definition 3.4.3 (Unresolvable tag probability). The probability that the signatures

have been assigned repeatedly and that the data read-out features one or more colli-

sion(s) reads

PU(K,N) :=
K−1∑

m=1

pB

(
m;K − 1,

1

N

)
= 1− PR(K,N). (3.16)

The optimal bit overhead for identification with CSF was stated in (3.13). For

CSR, the possibility of unresolvable tags in the data read-out due to collision (same

signature choice) has to be included. The identification cycle depicted in Figure 3.7

enquires the nonzero entries in the recovered channel activity vector x̂. Two kinds of

nonzero entries in x (and equivalently, in x̂ in the noiseless case) are distinguished:

Resolvable entries: These signatures were chosen by one tag only, which happens

with probability PR(K,N). No collision occurs during data read-out. The ex-

pected number of resolvable entries is PR(K,N) ·K.

Unresolvable entries: These signatures were chosen by two or more tags, which

happens with probability PU(K,N). However, the expected number of unre-

solvable entries is lower than PU(K,N) · K, since a repeatedly chosen signa-

ture occupies only one entry in x, consider the example in Figure 3.8. In Fig-

ure 3.8 (a), entry x2 is unresolvable because three tags chose signature 2. In
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Figure 3.8 Two random signature assignment examples (K = 5, N = 8).

Figure 3.8 (b), the signatures were chosen uniquely and all entries are resolv-

able. Channel activity vector x in (a) features 3 < K nonzero entries, while

x in (b) has 5 = K nonzero entries. The probability of an unresolvable entry

(among K) reads

P ′
U(K,N) :=

(
1−

(
1− 1

N

)K
)

N

K
︸ ︷︷ ︸

PT (K,N)

−
(
1− 1

N

)K−1

︸ ︷︷ ︸
PR(K,N)

, (3.17)

consider Appendix C for details. Using (3.17), the expected number of unre-

solvable entries in x computes as P ′
U(K,N) ·K.

The occurrence probability of these entries depends on the ratio between activated

tags and available signatures ς = K
N

. Figure 3.9 depicts the expected number

of nonzero entries in x normalized by K, i.e., the probability that an entry among

K is nonzero. An increase in ς –e.g., by decreasing the number of signatures N–

reduces the total amount of nonzero entries, since signatures become more likely to

be assigned repeatedly.

Let me introduce the expected number of unidentified tags in identification

cycle i = {1, 2, ...} as K(i), where initially there are K(0) = K unidentified tags.

After identification cycle i, K(i) = PU(K
(i−1), N) ·K(i−1) tags remain unidentified (in

expectation). Using (1.26) to express M and substituting the number of activated

tags K with the expected number of unidentified tags K(i), the optimal bit overhead
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Figure 3.9 Probability that one among K entries in x is zero.

for identification in cycle i is

β
(i)
CSR =

⌈
cK(i−1) log

N

K(i−1)

⌉

︸ ︷︷ ︸
Acquisition

+

PR(K
(i−1), N) ·K(i−1) · (E +D)︸ ︷︷ ︸

Enquiry and data (resolvable entries)

+

P ′
U(K

(i−1), N) ·K(i−1) · (E +D +R)︸ ︷︷ ︸
Enquiry, data and reactivation (unresolvable entries)

.

(3.18)

The total optimal bit overhead for identification is obtained by summation over all

identification cycles (until all tags are identified):

βCSR =
∑

i

β
(i)
CSR. (3.19)

For comparison, the optimal bit overhead for identification in case of collision-free

data read-out is given by

β̃CSR =

⌈
cK log

N

K

⌉

︸ ︷︷ ︸
Acquisition

+ K(E +D)︸ ︷︷ ︸
Enquiry and data

≤ βCSR, (3.20)

it is attained in case of high sparsity ς = K
N
→ 0 and, thus, P ′

U → 0 (and PR → 1).
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Figure 3.10 Optimal bit overhead for identification in the noiseless case.

Figure 3.10 compares the optimal bit overhead for identification for various

choices of ς in the noiseless case. For a fixed activated tag population of K = 20, the

number of signatures N is varied to realize various ς. The bit overhead of FSA is in-

dependent of N , it just depends on K, see (3.12). The bit overhead of CSF decreases

for increasing ς due to the signature length dependency (1.26). The bit overhead

of CSR first decays according to (1.26), but increases again for larger ς due to the

increasing number of unresolvable entries in x that cause collisions in the data read-

out. In the considered scenario, a ς around 0.14 yields the minimal bit overhead and

therefore poses the optimal choice to obtain the quickest identification. Note that

the minimum is relatively flat such that a well-selected N is (almost) optimal for a

wide range of K.

3.5 Performance Comparison

In this section, the identification schemes are hampered by noise, and it is inves-

tigated how this affects their performance. The focus of the simulation lies on the

acquisition phase, i.e., the RN16 sequences in FSA are corrupted by noise, and the CS

measurements in CSF and CSR become noisy. The subsequent identification phase

is assumed to be ideal, i.e., RN16 collisions in FSA and data read-out collisions in

CSR are assumed to be detected perfectly.
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The simulation results are averaged over 1 000 independent random realizations.

Each realization encompasses a newly generated signature matrix S, and newly

generated channel coefficients that stay constant over the frames of FSA or iden-

tification cycles of CSF and CSR (static scenario). The channel properties were

described in Section 3.1. Noise is added according to SNR definition (2.15). The

bit overhead of FSA is computed for each SNR value according to βFSA(SNR) =
16

Tps(SNR)
K + K(AFSA + D), where Tps is the throughput in tags per slot of standard

FSA without collision recovery capabilities and a reader that utilizes an MMSE re-

ceiver; I use the simulated values from [110]. The bit overhead of CSF is generated

by accumulating the bits of all necessary identification cycles until all tags are iden-

tified correctly.

All schemes assume to know K in order to facilitate a fair comparison. Conse-

quently, FSA chooses the optimal frame size [42, 110] to maximize the throughput,

while CSF and CSR choose the optimal signature length according to (1.26) with

c = 3, and optimal tuning according to (2.14). All schemes are adaptive, i.e., the

optimal frame size and optimal signature length are chosen in each frame and each

cycle, respectively.

Let me begin by comparing the bit overhead for identification. The optimal bit

overheads of FSA, CSF, and CSR are respectively defined in (3.12), (3.13), and

(3.19). These equations describe the analytical optima that are attained at high SNR.

Figure 3.11 shows the simulated bit overheads for various SNR values, the analytic

optima are also plotted for K = 20. For a fixed number of signatures N = 1000,

the number of activated tags was chosen as K = {20, 50, 100}, which corresponds to

ς = {0.02, 0.05, 0.1}. FSA has the highest bit overhead and ceases to work below 0 dB

SNR, the corruption of the RN16 sequences is too severe. The lowest bit overhead

is attained by CSF, since no data read-out is required for identification. The CSR

approach lies somewhere in between. Both CS-RFID approaches outperform FSA

and prove to be more robust to noise.

Let me introduce another figure of merit that is widely used to compare the

performance of RFID protocols [109, 110].

Definition 3.5.1 (Identification throughput). The identification throughput is defined

as the number of identified tags per invested bit. It relates to the bit overhead for

identification as

T :=
K

β
. (3.21)
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The identification throughput answers the question: “How many tags are identified

on average by a single bit?” Figure 3.12 depicts the simulation results. CSF and

CSR exhibit a dependency on K according to the operational ς = K
N

in Figure 3.10.

The throughput of FSA exhibits no variation among choices of K since it neither

depends on N nor on K (as long as the optimal frame-size is chosen). The CS-RFID

approaches significantly outperform FSA.

Figure 3.11 Simulated bit overhead versus SNR for various choices of K.

Figure 3.12 Simulated identification throughput versus SNR for various K.
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Figure 3.13 Simulated identification time versus SNR.

Let me now compute the identification time by using the previous results. Assum-

ing a fixed data-rate1 R, the identification time computes as

t =
β

R
=

K

R · T . (3.22)

The simulation results are depicted in Figure 3.13 for a fixed R = 5kbit/s and us-

ing the bit overhead values from Figure 3.11, or equivalently, the throughput values

from Figure 3.12. At SNR = 10 dB, CSF is about 7.4 times quicker than FSA, while

CSR is still about 2.2 times quicker than FSA. CS-RFID is, thus, by far quicker, partic-

ularly at low SNR.

So far, the measurement multiplier that controls the optimal signature length ac-

cording to (1.26) was chosen "conservatively" large to be c = 3. Figure 3.14 shows

simulation results that suggest to make c SNR dependent for optimal performance.

At high SNR, a c > 2 decreases throughput since c = 2 already achieves perfect re-

covery –see Section 2.2.3– in very few identification cycles, in particular one cycle at

SNR =∞. At low SNR, an increasing c leads to higher throughput since the recovery

quality improves with additional measurements, and fewer identification cycles are

needed. For optimal performance, the choice of c can be made SNR dependent, as

1Excuse the abuse of notation — R here denotes the data-rate, but previously in this chapter
denoted the number of bits for reactivation in CSR. The usage is clear from context.
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Figure 3.14 Simulated identification throughput for variable c.

hinted in Figure 3.14. However, the performance gain at low SNR is only marginal,

and choosing a measurement multiplier c ∈ [2, 3] yields overall satisfying results.
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3.6 Summary

This chapter presented the concept of CS-RFID, where a multitude of tags is identi-

fied quickly and reliably by utilizing CS with AMP. The acquisition phase of RFID is

formulated as a CS measurement, where the activated tags respond simultaneously

with an assigned signature sequence — the CS approach exploits collisions. It was

explained how the physical measurements have to be processed such that the AMP

Algorithm 1 can be utilized for CS recovery. The support of the recovered signal

vector yields the tag identifiers that are used to communicate with the tags for iden-

tification. Two protocols for reliable identification were introduced:

CSF is a protocol for fixed inventories. The whole inventory is assumed to be known

or maintained by a database. Only a small subset of the inventory is to be

identified at a given time — this constitutes the sparsity that is exploited by

CS. Each tag (item) has a unique signature sequence; upon query, all activated

tags respond simultaneously with this unique identifier. No data read-out is

necessary for identification.

CSR is a protocol for arbitrary inventories. Similar to the EPCglobal standard, the

tags respond with a randomly chosen identifier during the acquisition phase.

Each identifier is a pseudo-randomly generated signature sequence; upon query,

all activated tags simultaneously respond with a randomly selected identifier.

A data read-out is required for identification.

Numerical results suggest that CS-RFID strongly outperforms the pervasive FSA pro-

tocol in terms of identification throughput and noise robustness. Furthermore, the

acquisition phase is significantly shorter than in FSA, and no reader power is wasted

in empty slots; consequently, CS-RFID is highly energy efficient.





Chapter 4

Exploiting Joint Sparsity in Tag

Acquisition

In Chapter 3, the AMP Algorithm 1 was employed for CS signal recovery. This algo-

rithm iteratively solves the LASSO problem formulation (1.23). Except for searching

for a sparse solution, the AMP algorithm does not exploit any prior knowledge. The

BASSAMP algorithm, on the other hand, fully exploits the signal prior distribution

and the joint sparsity structure.

In this chapter, CS-RFID is performed on a reader with multiple receive antennas.

Such reader receives multiple measurement vectors and facilitates a problem formu-

lation with joint sparsity. The nonzero entries of the jointly sparse signal vectors

are distributed according to the channel model. This is an archetype setup for the

BASSAMP algorithm that is now employed to improve the CS recovery performance

and, in turn, accomplish an even quicker and more reliable tag acquisition.

These are the main contributions of this chapter, based on my work in [76, 116]:

The origins of joint sparsity in CS-RFID are identified.

The BASSAMP algorithm is specified for the RFID channel model.

A Gaussian relaxation of the prior distribution that enables a simple algorith-

mic implementation without significant performance degradation is proposed.

A method for support detection based on the BASSAMP algorithm is intro-

duced. In the context of CS-RFID, this relates to an improved detection of the

set of assigned signatures TA, and its cardinality K.

The performance is compared to FSA with collision recovery capabilities that

also exploits several receive antennas at the reader.
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4.1 Joint Sparsity in CS-RFID

In Section 2.4, the BASSAMP algorithm to exploit joint sparsity was introduced, and

it was demonstrated in sections 2.5 and 2.6 that it significantly outperforms the AMP

and BAMP algorithms. Let me list the main benefits for CS-RFID:

• BASSAMP requires fewer measurements M than AMP for successful recovery.

Consequently, shorter signature sequences can be employed for tag acquisition.

• The acquisition time and the jitter1 sensitivity are reduced. Furthermore, pas-

sive tags require less energy during the acquisition phase.

• The robustness to measurement noise is improved, which facilitates the deploy-

ment of CS-RFID in harsh environments.

• The set of assigned signatures, TA, can be detected more reliably by employing

a strongly improved support estimation scheme that exploits soft information

from multiple signal vectors. This leads to fewer identification cycles, i.e.,

fewer repetitions of the acquisition phase, and quicker identification. Further-

more, the number of activated tags K can be estimated implicitly.

Figure 4.1 A bistatic reader with NR receive antennas identifies K tags.

It will become apparent presently that joint sparsity in CS-RFID is related to the

multiple measurement vector problem, see Section 2.4. This implies that the reader

may employ several receive antennas. Figure 4.1 depicts a reader with NR receive

1Jitter refers to link frequency deviations among tags. A detailed discussion follows in Chapter 5.
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antennas. The total channel from the transmit antenna to the k-th tag and back to

the r-th receive antenna is modeled by

hr,k = h
(f)
k h

(b)
r,k . (4.1)

The channel coefficient distribution will be specified in Section 4.2. Let me list the

two mechanisms responsible for joint sparsity in CS-RFID:

Each antenna receives the superposition of signatures (3.5) with different
noise realizations and, generally, with different channel coefficient real-
izations for every tag. The channel coefficient realizations comprise the
nonzero entries in the signal vector xr, r ∈ {1, ..., NR}. The NR receive an-
tennas provide NR jointly sparse signal vectors and, thus, NR measurement
vectors that are generated with the same signature matrix:

[z1, ..., zNR
] = S[x1, ...,xNR

] + [w1, ...,wNR
]. (4.2)

Multiple Receive Antennas

By having complex-valued channel coefficients in xr and a real-valued sig-
nature matrix S, the measurements can be separated into a real part z(R)

r

and an imaginary part z(I)r , which yields two jointly sparse signal vectors,
and two measurement vectors that are generated with the same sensing
matrix:

[z(R)
r , z(I)r ] = S[x(R)

r ,x(I)
r ] + [w(R)

r ,w(I)
r ]. (4.3)

Separation into Real and Imaginary Parts

The two variants are combined as depicted in Figure 4.2 to obtain

B = 2NR (4.4)

jointly sparse vectors. The resulting CS measurement reads

[
z
(R)
1 , z

(I)
1 , ..., z

(R)
NR

, z
(I)
NR

]

︸ ︷︷ ︸
Z

= S
[
x
(R)
1 ,x

(I)
1 , ...,x

(R)
NR

,x
(I)
NR

]

︸ ︷︷ ︸
X

+
[
w

(R)
1 ,w

(I)
1 , ...,w

(R)
NR

,w
(I)
NR

]

︸ ︷︷ ︸
W

.
(4.5)
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Figure 4.2 Origins of joint sparsity in RFID.

It features a measurement matrix Z ∈ R
M×B, and a channel activity matrix X ∈ R

N×B

whose columns have a common support, i.e., the entries of a row in X are either all

zero or all nonzero. Figure 4.3 illustrates the new CS formulation (noise omitted).

I intend to employ BASSAMP for signals with joint sparsity to recover the channel

activity matrix X — its support yields the required information for tag acquisition,

i.e., the set of assigned signatures TA. Similar to AMP in Section 3.2, BASSAMP

assumes that the sensing matrix has zero-mean columns. To accomplish this, (3.10)

is applied to each measurement vector zb, b ∈ B = {1, ..., B}:

yb = Axb +wb ≈ zb −
1

M

M∑

m=1

zm,b. (4.6)

After normalizing A according to (3.11), the BASSAMP compliant measurement

formulation reads

Y = [y1, ...,yB] = AX+W. (4.7)

In order to apply BASSAMP, the functions used in algorithms 3 and 4 have to be

specified for the RFID case. In particular, the dyadic channel model that poses as

prior for the nonzero entries in X has to be considered.

4.2 Specification of BASSAMP for CS-RFID

The BASSAMP algorithms 3 and 4 aim at reconstructing X from Y in (4.7). They

utilize the knowledge of A, the signal prior, and the joint sparsity structure. The

signal prior plays a major role in the computation of the BAMP denoiser functions

F (·; ·, ·) and F ′(·; ·, ·), and the BASSAMP update function UJ(·, ·, ·). Therefore, let me

specify the signal prior for the RFID scenario that is dictated by the channel model.
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Figure 4.3 CS measurement — visualized with joint sparsity.

4.2.1 Channel Distribution and Signal Prior

In Section 3.1, the dyadic channel model for RFID was introduced. It is adopted in

this section to obtain the distribution of the channel coefficients (4.1). Similar to

Section 3.1, I assume that the antennas at the reader are sufficiently spaced such

that the channels are uncorrelated. I now specify the channel model in more detail,

since the full probabilistic description is utilized by the BASSAMP algorithm.

The forward and backward channel coefficients are modeled as independently

distributed complex-valued circular symmetric Gaussian random variables such that

h
(f)
k ∼ CN

(
0, σ(f)2

)
, (4.8)

h
(b)
r,k ∼ CN

(
0, σ(b)2

)
. (4.9)

The coefficients are split into the real and imaginary parts according to

h
(f)
k = h

(f,R)
k + jh

(f,I)
k , (4.10)

h
(b)
r,k = h

(b,R)
r,k + jh

(b,I)
r,k , (4.11)

the real and imaginary parts obey a zero-mean Gaussian distribution with half the

original variance, respectively. Thus, the total channel (4.1) is expressed by

hr,k = h
(R)
r,k + jh

(I)
r,k

=
(
h
(f,R)
k h

(b,R)
r,k − h

(f,I)
k h

(b,I)
r,k

)
+ j

(
h
(f,R)
k h

(b,I)
r,k + h

(f,I)
k h

(b,R)
r,k

)
.

(4.12)
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In order to obtain the distribution of the real and imaginary parts of hr,k, the

following relation is used [117, Proposition 2.2.5]:

Lemma 4.2.1. Consider four independent random variables v1, v2 ∼ N (0, σ2
a) and

v3, v4 ∼ N (0, σ2
b ). The term v = v1v3 − v2v4 is Laplace distributed with PDF

fv(v) =
1

2σaσb

exp

(
− 1

σaσb

|v|
)
. (4.13)

The same holds for v = v1v3 + v2v4.

By using (4.8)–(4.12) and Lemma 4.2.1, I arrive at the following theorem:

Theorem 4.2.1 (Channel distribution). Consider a forward channel coefficient with

complex-valued circular symmetric Gaussian distribution with zero mean and variance

σ(f)2, and a backward channel coefficient with complex-valued circular symmetric Gaus-

sian distribution with zero mean and variance σ(b)2. The total channel coefficient PDF

reads

fh(h) =
1

σ(f)σ(b)
exp

(
− 2

σ(f)σ(b)
|h|
)
, (4.14)

where h is a placeholder for the real part h
(R)
r,k or imaginary part h

(I)
r,k of the total channel.

Comparing this to a standard Laplace distribution, the real and imaginary parts

of the total channel are Laplace distributed with scale parameter κn = 1
2
σ(f)σ(b), i.e.,

with variance 2κ2
n = 1

2
σ(f)2σ(b)2.

The BASSAMP algorithm features a Bayesian MMSE estimator (2.21) that fully

exploits the prior distribution of the signal entries xn,b. In (4.14), the distribution

of the nonzero entries in the random signal matrix X = [x1, ..., xB] is specified. A

realization thereof yields the channel activity matrix X, its nonzero entries are the

channel coefficient realizations. Considering the random signal model as introduced

in (1.14), the prior distribution of a random signal entry xn,b reads

fxn,b
(xn,b) = γn,bδ(xn,b) + (1− γn,b)fh(xn,b), (4.15)

where γn,b is the probability that the n-th signal entry of the b-th vector is zero.

This is the Bernoulli-Laplace prior –with κn = 1
2
σ(f)σ(b)– for which BAMP and scalar

BASSAMP were specified in Section 2.3.2 and Section 2.4.2, respectively.
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4.2.2 Gaussian Relaxation

The BASSAMP algorithm is executed on the reader hardware. A simple, computa-

tionally efficient and numerically stable algorithm is aspired. Scrutinizing the MMSE

estimator function in (2.30), the auxiliary functions (2.35) and (2.36) turn out to

be numerically challenging. Assuming, e.g., σ(f) = σ(f) = 1, β = 0.2 and γ = 0.9,

the auxiliary function k1(u) outputs values in the order of 10100 for an input u = 10.

A single precision computer outputs k1(u) = ∞ for u > 6.33. While the majority of

the u values are smaller and concentrated around zero due to the PDF of u, these

cases still occur. Executing operations on such large numbers introduces numerical

errors. In order to alleviate these numerical challenges, I propose to approximate

the channel coefficient prior distribution (4.14) by a Gaussian distribution, which I

refer to as the Gaussian relaxation.

The Laplace distribution (4.14) has zero mean and variance 1
2
σ(f)2σ(b)2. The ap-

proximating Gaussian distribution is assumed to have the same parameters, i.e., zero

mean and variance σ2
x = 1

2
σ(f)2σ(b)2. Therefore, the relaxed version of the channel

coefficient PDF (4.14) is obtained as

fR
h (h) =

1√
πσ(f)2σ(b)2

exp

(
− h2

σ(f)2σ(b)2

)
. (4.16)

Consequently, the signal prior distribution (4.15) is relaxed from a Bernoulli-Laplace

distribution into a Bernoulli-Gaussian distribution. This relaxation lowers the numer-

ical complexity because simpler functions are used, see sections 2.3.2 and 2.4.2.

In Section 2.6.2, I demonstrated by SE that this particular prior mismatch hardly

affects the recovery performance. To further validate this claim for a wide range of

parameters, I compute the empirical phase transition curves in the noiseless case.

I reside to the same numerical simulation setup as presented in Section 2.5. A

complex-valued signal vector x ∈ C
N is considered, i.e., NR = 1, and B = 2 after

separation into real and imaginary parts. The nonzero entries of x are drawn from

the channel distribution (4.14) with σ(f) = σ(b) = 1, i.e., the signal entries are

Bernoulli-Laplace distributed.

The empirical phase transition curves are depicted in Figure 4.4. Two instances

of BASSAMP are compared; one employs the true Bernoulli-Laplace prior with chan-

nel distribution (4.14), the other employs the Bernoulli-Gaussian relaxation with

channel distribution (4.16), both assume σ(f) = σ(b) = 1. For comparison, the AMP

Algorithm 1 that operates on the complex-valued signal vector is also considered —

its phase transition obeys the complex LASSO [84]. The Gaussian relaxation exhibits
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Figure 4.4 Phase transition of Gaussian relaxation.

a marginal decline in performance that is irrelevant in practice. Furthermore, the

BASSAMP algorithm strongly outperforms the AMP algorithm, i.e., it consistently

requires fewer measurements. In the sequel, I employ the Gaussian relaxation.

4.2.3 Choice of Parameters

The choice of the channel model depends on the location of the reader antennas, the

environment (scatterers and reflectors), and the effective read range. The variances

σ(f)2 and σ(b)2 describe the strength of the spatial fading of the forward and backward

link, respectively. In order to estimate them, one would have to measure the forward

and backward links separately for many prospective tag positions.

In practice, one would rather measure the total channel (4.1), or avoid measur-

ing the channels and determining their distribution entirely. The AMP framework

allows to perform prior estimation during recovery, i.e., the recovery algorithm can

be adapted to estimate the prior over iterations. One such algorithmic extension was

proposed in [118], and it was shown that the performance degradation due to un-

known prior is negligible in practice. Moreover, measurements in Chapter 5 suggest

that the Gaussian relaxation with a coarse assumption of the variances is sufficient.
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4.3 Support Detection

In this section, I present a support detection method that extends the findings in

[116]. The support detection is crucial for quick tag identification as it yields

• the detected set of assigned signatures T̂A,

• the estimated number of activated tags K̂.

In particular, T̂A is of vital importance for quick identification:

• In CSF, this set directly identifies the activated tags. The reader enquires the

signature indices in order to confirm the identification. An erroneous set pro-

longs this enquiry phase and leads to a repetition of the acquisition phase.

• In CSR, the indices of the assigned signatures are used to communicate with

the tags for data read-out. Again, an erroneous set prolongs the enquiry phase

and leads to a repetition of the acquisition phase.

For all schemes, a wrongly detected set of assigned signatures prolongs the identifi-

cation and increases the reader-to-tag communication overhead.

In Chapter 3, I assumed to (approximately) know the number of activated tags

K, i.e., K̂ = K. Utilizing this knowledge, the detected set of assigned signatures

T̂A was dictated by the K largest entries of the AMP signal recovery |x̂|. The newly

employed BASSAMP algorithms enable robust support estimation by combining the

soft information of all recovered vectors x̂b, b ∈ B = {1, ..., B}. Let me derive the

support detection scheme that is based on Bayesian estimation. Note that I base my

derivation on scalar BASSAMP Algorithm 3, and explain at the end how the findings

are applicable to the vector version in Algorithm 4.
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4.3.1 Probabilistic Derivation

The first ingredient is the specification of the distribution of the decoupled measure-

ments (2.17), which was stated in (2.43). For the considered RFID scenario, I obtain

fun,b
(un,b) = γn,bf0(un,b) + (1− γn,b)f1(un,b) (4.17)

with –using (2.35), (2.36), (2.73), and (4.14)–

f0(un,b) =
1√
2πβb

exp

(
−
u2
n,b

2βb

)
,

f1(un,b) =
1

2σ(f)σ(b)
exp

(
−
u2
n,b

2βb

)
[k1(un,b) + k2(un,b)] .

(4.18)

If the Gaussian relaxation with nonzero entry PDF (4.16) is used, f1(un,b) has to be

replaced by

fR
1 (un,b) =

1√
2π(βb + σ2

x)
exp

(
−

u2
n,b

2(βb + σ2
x)

)
. (4.19)

The second ingredient is the utilization of the latent activity variables that were

introduced in Definition 2.4.2. A signal entry xn,b is zero if the latent variable zn,b = 0,

and it is nonzero if zn,b = 1. Now, the responsibilities similar to (2.48) and (2.49)

are obtained and interpreted as follows:

• The posterior probability that signal entry xn,b = 0 given the decoupled mea-

surement un,b reads

P (zn,b = 0|un,b = un,b; γn,b) =
P (zn,b = 0) · fun,b|zn,b

(un,b|zn,b = 0)

fun,b
(un,b)

=
γn,b · f0(un,b)

fun,b
(un,b)

.

(4.20)

• The posterior probability that signal entry xn,b 6= 0 given the decoupled mea-

surement un,b reads

P (zn,b = 1|un,b = un,b; γn,b) =
P (zn,b = 1) · fun,b|zn,b

(un,b|zn,b = 1)

fun,b
(un,b)

=
(1− γn,b) · f1(un,b)

fun,b
(un,b)

.

(4.21)
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The third ingredient is the combination of this soft information. Due to the joint

sparsity structure, there are only two relevant cases: Either xn,b = 0, ∀b ∈ B, or

xn,b 6= 0, ∀b ∈ B. I intend to calculate the overall probability that the n-th entry

of all B jointly sparse vectors xb is zero respectively nonzero. Based on (4.20) and

(4.21), the posterior probability that all n-th signal entries are zero, given un,b and

γn,b, ∀b ∈ B, computes as

ǫ(0)n :=
B∏

b=1

P (zn,b = 0|un,b; γn,b) =
1

d

B∏

b=1

γn,b · f0(un,b), (4.22)

while the posterior probability that all n-th signal entries are nonzero computes as

ǫ(1)n :=
B∏

b=1

P (zn,b = 1|un,b; γn,b) =
1

d

B∏

b=1

(1− γn,b) · f1(un,b), (4.23)

where d is a common partition factor.

Finally, the detected signal support is equivalent to the detected set of assigned

signatures and is obtained by comparing these probabilities:

T̂A =

{
n ∈ T :

ǫ
(1)
n

ǫ
(0)
n

=

∏B
b=1(1− γn,b) · f1(un,b)∏B

b=1 γn,b · f0(un,b)
> 1

}
. (4.24)

The estimated number of activated tags is defined as the cardinality of this set:

K̂ = |T̂A|. (4.25)

Note that the support estimation is performed after executing BASSAMP Algo-

rithm 3; it considers the values un,b, γn,b and βb after the last iteration t. If vector

BASSAMP Algorithm 4 is employed, all entries have the same β, and γn,b is not di-

rectly available. It can be computed according to the joint extrinsic prior update

equation (2.56) that was specified for the Bernoulli-Gaussian prior in (2.72).

Regardless of the algorithm, the prior probabilities are initialized with a coarse

assumption of K, termed K0:

γ0
n,b = 1− K0

N
. (4.26)

The following numerical results demonstrate that this assumption can, indeed, be

very coarse.
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4.3.2 Numerical Performance Evaluation

Let me demonstrate the performance of the support detection scheme by simulation.

The goal is to demonstrate that the initial assumption K0 in (4.26) can be very

coarse, i.e., that exact knowledge of K is not required. Note that this assumption

affects the BASSAMP algorithm, and the output of the algorithm affects the support

estimation. I therefore investigate the conjunction of BASSAMP and the support

estimation.

The simulation campaign encompasses 1 000 realizations of A, X and W in (4.7),

and the dyadic channel model is employed. Furthermore, K = 100 tags are activated,

and N = 1000. The figures of merit are the number of CDs and the number of FAs

[107] that partition the detected set of assigned signatures T̂A (4.24). An index

in T̂A either refers to a CD or a FA. The simulation results are averaged over the

realizations. Since the signals can now be matrices, I extend the SNR definition

(2.15) to

SNR :=
‖AX‖2F

EW {‖W‖2F}
=
‖AX‖2F
MBσ2

w

. (4.27)

Figure 4.5 shows the average number of CDs and FAs versus variable M in the

noiseless case. The BASSAMP algorithm is plotted for NR = 1 (left) and NR = 4

(right), and AMP is plotted for NR = 1 for comparison. Note that AMP recovers a

single complex-valued signal vector x, while BASSAMP exploits joint sparsity. Fur-

thermore, AMP assumes to know K and TA is detected by collecting the indices

corresponding to the K largest entries in |x̂|, while BASSAMP employs the support

estimation scheme (4.24). Three different initializations of K0 are investigated:

• A strong under-assumption K0 = 50,

• the true assumption K0 = 100,

• a strong over-assumption K0 = 150.

The results suggest that the support estimation in conjunction with the BASSAMP

algorithm is very tolerant regarding the initial value of K. A strong over- or under-

assumption of K0 respectively results in a larger or smaller number of CDs and

FAs during the phase transition, but has no effect after the phase transition where

perfect recovery is observed, i.e., where only CDs are observed and T̂A = TA. Since

the algorithm is typically operated at signature lengths M that result in successful

recoveries that are perfect in the noiseless case, the considered assumptions of K

have no impact in the noiseless case. In comparison to the AMP approach used in

Chapter 3, the proposed scheme is superior in several ways:
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Figure 4.5 Support detection for variable M .

• (Accurate) knowledge of K is not required.

• Perfect detection is achieved with a reduced M . This entails shorter signatures

for tag acquisition with CS-RFID.

• For a suboptimal choice of M that leads to a suboptimal recovery, the support

detection features very few FAs. This reduces the reader-to-tag communica-

tion overhead, because fewer tags are wrongly enquired. In comparison, AMP

features many FAs.

An increased number of receive antennas NR leads to an earlier phase transition,

i.e., fewer measurements M are required for perfect detection. This is illustrated by

the right plot in Figure 4.5. To put it in numbers: In the considered scenario, perfect

support detection with BASSAMP in the noiseless case is achieved for M ≥ 210 with

NR = 1, and for M ≥ 140 with NR = 4.

Figure 4.6 shows the average number of CDs and FAs versus variable SNR at fixed

M = 400, i.e., in the regime where AMP and BASSAMP enable perfect recovery in the

noiseless case. Similar to the previous results, an over- or under-assumption of K0

affects the outcome of the support detection only marginally. The noise robustness

of the support detection increases with an increasing number of receive antennas

NR, this is observed by comparing the left with the right plot in Figure 4.6. In the

considered example, NR = 4 receive antennas result in perfect support detection

above SNR = 15 dB, which enables immediate identification after only one cycle.
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Figure 4.6 Support detection for variable SNR.

4.4 Performance Comparison

I now compare the BASSAMP-based approach that exploits joint sparsity to the AMP-

based approach from Chapter 3, and to FSA-based schemes. Note that the contribu-

tions of this chapter improve the tag acquisition phase. I therefore introduce the

following figure of merit:

Definition 4.4.1 (Bit overhead for tag acquisition). The bit overhead for tag acqui-

sition is defined as the number of bits required to acquire the K activated tags. It is

denoted by β(A).

This bit overhead definition excludes the identification phase and allows to com-

pare all CS-RFID schemes whose acquisition is formulated as (3.5). It is straightfor-

ward to compute the relevant pendant to the identification throughput:

Definition 4.4.2 (Acquisition throughput). The acquisition throughput is defined as

the number of acquired tags per invested bit. It relates to the bit overhead for tag

acquisition as

T (A) :=
K

β(A)
. (4.28)
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4.4.1 Improvement of Acquisition Phase — Perfect Conditions

Let me begin with a comparison under perfect conditions, i.e., in the noiseless case.

In the following, I only consider the number of bits transmitted by the tags and

omit protocol overhead and commands from the reader. The baseline is the widely

employed FSA protocol, where tags are randomly scheduled to transmit in slots

of a frame in order to avoid collisions. It features following bit overhead for tag

acquisition:

β
(A)
FSA =

16

Tps

K, (4.29)

where Tps is the throughput per slot [110], i.e., the number of tags acquired per

slot, and the number 16 refers to the RN16 sequences utilized during acquisition. If

the number of activated tags is known, the optimal choice of the frame size leads

to a maximum average throughput of Tps = e−1 ≈ 0.368 [42]. In [109, 110, 119],

collision recovery schemes have been proposed that allow shortened frame sizes

and, thus, increased throughput numbers. A reader with NR receive antennas can

resolve up to 2NR collisions [110] in a slot. Assuming perfect channel knowledge

and knowledge of the number of activated tags K, a reader with NR = 1 receive

antenna features a maximal theoretical throughput of Tps = 0.841, while a reader

with NR = 4 receive antennas achieves a maximal theoretical throughput of Tps =

4.479 [110].

On the other hand, there is CS-RFID in which all activated tags respond simulta-

neously with sequences of length M during the acquisition phase. This can be cast

as a CS measurement of the type (1.19) that needs to be solved for x utilizing the

M measurements in y. Therefore, the optimal bit overhead for tag acquisition reads,

cf. (1.26),

β
(A)
CS = M =

⌈
cK log

N

K

⌉
. (4.30)

In Section 2.2.3, a measurement multiplier of c = 2 was demonstrated to yield

perfect recovery results in the noiseless case. It was demonstrated in Figure 4.4

and Section 4.3.2 that the BASSAMP-based scheme requires fewer measurements

to achieve the same MSE performance, thereby allowing for c < 2. Scrutinizing

Figure 4.5, M ≈ 210 (c ≈ 0.9) for NR = 1 and M ≈ 140 (c ≈ 0.6) for NR = 4 lead to

perfect recovery, respectively.

Figure 4.7 depicts the bit overhead versus K for various schemes under perfect

conditions, i.e., in the noiseless case where the channels are known to the FSA-based

collision recovery scheme, and all schemes know the number of activated tags K.
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Figure 4.7 Ideal bit overhead for acquisition.

For CS-RFID, I assume N = 1000. CS-RFID strongly outperforms FSA, despite its

collision recovery capabilities, and BASSAMP reduces the bit overhead over the AMP-

based scheme by a factor of 2.2 (NR = 1) respectively 3.3 (NR = 4).

By utilizing the channel statistics and the joint sparsity among the signal vec-

tors, a strong improvement over previous approaches is observed. Furthermore, the

BASSAMP-based scheme already shows a significant improvement for a reader that

employs only NR = 1 receive antenna.

4.4.2 Improvement of Acquisition Phase — Imperfect Conditions

I will now advance to the noisy case. In particular, the tag responses of FSA are

corrupted by noise, and the collision recovery scheme [110] faces channel estima-

tion errors. CS-RFID has to deal with noisy CS measurements (1.19). Here are the

simulation guidelines.

FSA: For the legacy FSA approach [39], the reader features one receive antenna and

no collision recovery capabilities. The advanced FSA approach features colli-

sion recovery capabilities as introduced in [110]. There, the channels have to

be estimated by using a set of orthogonal sequences that are transmitted prior

to the RN16 sequences — note that I omit the bit overhead for the channel es-

timation sequences, although they will have a significant overhead in practice.

The frame size is adjusted in each cycle in order to maximize the throughput



4.4 Performance Comparison 107

[42, 110], depending on the number of remaining tags. It is assumed that the

schemes know the number of tags K. The average acquisition throughput is

obtained as

T
(A)
FSA =

K

β
(A)
FSA

=
Tps

16
. (4.31)

I used the Tps values from [110].

CS: For the AMP-based approach, the reader features one receive antenna, and AMP

is employed as recovery algorithm that estimates a single complex-valued sig-

nal vector. The improved approach features the BASSAMP algorithm that was

specified for the dyadic channel model. I simulated 1 000 random realizations

of A, x and w and averaged the results. In each realization, CS measurements

of the form (4.7) are performed in cycles, see Section 3.3.1. Each cycle features

a CS tag acquisition, and the cycles are repeated until all tags are identified.

In each cycle, the number of measurements (sequence length) M is set accord-

ing to (1.26) based on the remaining number of unidentified tags. AMP is

assumed to know K, and T̂A is composed of the indices that correspond to the

K largest entries in the recovered signal vector. BASSAMP utilizes the support

estimation (4.24). The average acquisition throughput is obtained as

T
(A)
CS =

K

β
(A)
CS

. (4.32)

The simulated bit overhead β
(A)
CS in (4.32) may include several cycles, whereas

(4.30) refers to the optimal bit overhead of only one cycle.

Figure 4.8 depicts the average acquisition throughput versus SNR for K = 100

and N = 1000. The reader employs NR = 4 receive antennas, and for the BASSAMP-

based scheme the signature length M is varied by c = {0.5, 1, 2, 3}. By exploiting

joint sparsity and knowledge of the channel statistics, BASSAMP allows to shorten

the signatures and thereby drastically increases the acquisition throughput of CS-RFID.

Compared to AMP with NR = 1, the BASSAMP scheme with NR = 4 features an in-

creased noise robustness for the same signature length (c = 3), i.e., the noise robust-

ness increases with increasing NR. An advantage over collision recovery schemes is

the fact that CS-RFID does not require channel knowledge, only coarse knowledge

of the channel statistics. Overall, the BASSAMP approach significantly improves the

acquisition phase of CS-RFID and strongly outperforms other schemes such as FSA

with collision recovery.
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Figure 4.8 Simulated acquisition throughput vs. SNR — parameterized on c.

Let me list the achieved improvements (at high SNR) with NR = 4 receive anten-

nas at the reader. By employing BASSAMP, the tag acquisition in CS-RFID is

• 4.3 times quicker than the AMP-based approach with a single receive antenna,

• 3 times quicker than FSA with collision recovery,

• 26 times quicker than legacy FSA without collision recovery capability, and a

reader with a single receive antenna.

4.4.3 Improvement of Identification

To complete the performance investigation, the simulation results of Section 4.4.2

are evaluated using the identification throughput measure from Chapter 3. To en-

able a realistic comparison of the schemes, the FSA-based collision recovery scheme

is assumed to employ pilot sequences for channel estimation that consist of 8 bits

[110]. Consequently, the bit overhead for identification reads

βFSA =
(16 + 8)

Tps

K

︸ ︷︷ ︸
Acquisition

+K(AFSA +D)︸ ︷︷ ︸
Data read-out

. (4.33)
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Figure 4.9 Simulated identification throughput vs. SNR — parameterized on c.

Figure 4.9 shows the simulated identification throughput over variable SNR, for

CSF (left plot) and CSR (right plot). CSF and CSR exhibits a strong improvement

over FSA, despite collision recovery capabilities. By employing BASSAMP, the signa-

ture length can be shortened significantly, and the noise robustness is increased.
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4.5 Summary

In this chapter, I demonstrated how Bayesian prior knowledge and joint sparsity

structure can be exploited in CS-RFID. Several jointly sparse vectors are obtained

by employing multiple receive antennas at the reader, and by separating the sig-

nals into real and imaginary parts. The BASSAMP algorithm was specified for a

dyadic channel model that is widely used in RFID; the signal entries were shown to

be Bernoulli-Laplace distributed. It was verified that the relaxation to a Bernoulli-

Gaussian prior reduces the performance only marginally. In practice, one would

use the Bernoulli-Gaussian prior with a coarse assumption of the signal (channel)

variance based on some initial measurements.

A support estimation scheme based on the BASSAMP algorithm was presented

and evaluated. The detected set of assigned signatures is obtained more reliably

than with standard AMP, the number of activated tags K is estimated implicitly.

By exploiting the prior knowledge about the signals from multiple receive anten-

nas at the reader, the acquisition phase of CS-RFID is strongly improved. Here are

the main benefits:

• Shorter signature sequences during tag acquisition.

• Quicker and more reliable tag acquisition.

• Higher noise robustness and lower jitter sensitivity.

The proposed CS-RFID scheme with multiple receive antennas significantly outper-

forms FSA with collision recovery capabilities that also utilizes several receive anten-

nas. A big advantage over such collision recovery schemes is the fact that no channel

knowledge is required in CS-RFID. Note that while the channel coefficients are esti-

mated inherently during the acquisition phase of CS-RFID, the acquisition itself just

requires binary information, i.e., whether a signal entry was zero or nonzero.



Chapter 5

Practical Implementation

To complete the thesis, this chapter demonstrates the practical feasibility of CS-RFID.

After discussing the aspects and challenges of a practical implementation, I introduce

a flexible measurement setup that is capable of testing non-standard RFID schemes.

Measurement results verify the practical feasibility of CS-RFID with off-the-shelf

hardware, and the impacts of detrimental effects are evaluated and discussed.

Based on my work in [106, 120], this chapter encompasses the following contri-

butions:

The hardware requirements of CS-RFID are discussed.

The practical challenges –delay and jitter– are identified, and mitigation tech-

niques are proposed.

A flexible measurement setup is introduced. This setup allows to control and

synchronize the responses of several UHF tags.

Proof-of-concept measurements are performed, and the feasibility of CS-RFID

with off-the-shelf hardware is demonstrated.

The impacts of delay and jitter are evaluated by measurement.
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5.1 Implementation Aspects

Let me briefly discuss the hardware requirements for CS-RFID. Passive RFID tags are

typically limited in memory and do not admit the storage of a plethora of signatures;

I propose the following concepts for implementation, based on the two identification

protocols that were introduced in Chapter 3:

CSF: In case of fixed signature assignment, a tag has to produce a unique binary

signature of variable length. Essentially, this signature sequence can be gen-

erated by a pseudo-random generator [114] that is seeded with the unique

tag identifier, while the aspired length is advertised by the reader. Since the

possible seeds are known to the reader, it can construct the sensing matrix

A. Another possibility is to store the signature directly in memory, which is

typically feasible for a single signature.

CSR: In case of random signature assignment, a tag has to be able to produce N dis-

tinct signatures. A possible implementation could foresee two pseudo-random

generators. The first one randomly selects one out of N possible numbers, i.e.,

selects a signature index from T = {1, ..., N}. This number is then used as a

seed for the second pseudo-random generator that generates the signature se-

quence. In this manner, there is no need to store the whole pool of signatures.

Considering today’s tag requirements based on the EPCglobal standard [39], my

proposed concepts result in similar complexity of the chip. The somewhat prob-

lematic issue that will be addressed in this chapter is the tag’s on-board oscillator

that directly affects the backscatter link frequency. CS-RFID assumes synchronized

responses during tag acquisition; oscillator frequencies that vary from tag to tag

hamper the acquisition process. In order to determine the actual hardware require-

ments, Section 5.3 introduces a flexible measurement setup that allows to control

the oscillator frequencies, among other things.

On the reader side, CS-RFID features a relatively light-weight implementation.

The sample-processing steps described in Section 3.2 entail simple operations. The

AMP recovery algorithms proposed in Chapter 2 are of low computational complex-

ity, an investigation of an AMP hardware implementation was performed in [71].

Considering a portable reader, the battery drainage is reduced by CS-RFID compared

to EPCglobal and FSA. This is due to the significantly shorter acquisition phase that

makes CS-RFID more energy efficient.
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5.2 Practical Challenges and Mitigation Techniques

For many applications, RFID tags are produced in high volumes with cheap on-board

oscillators — think of passive tags that replace the bar-code stickers in product iden-

tification. This introduces component tolerances and results in variations of the

oscillator frequencies between the tags, thereby rendering a synchronization of tag

responses a challenge. The two major issues are:

Delay: Tags respond at different times, i.e., the responses feature different delays.

Jitter: Tags respond with different link frequencies (data rate), i.e., the responses

have different symbol length.

In EPCglobal with FSA [39], these issues are usually not relevant, since the slots

have guard intervals, and only single responses are received in a slot. In the tag

acquisition phase of CS-RFID, the activated tags respond simultaneously with signa-

ture sequences. These sequences correspond to the columns of the sensing matrix in

CS. If unknown delay or jitter are present, the true physical sensing matrix is differ-

ent from the assumed one that is used for CS recovery — the difference is visualized

by Figure 5.1. In case of delay, the columns are shifted in time, typically by fractions

of the symbol duration. In case of jitter, the symbol length varies, and the whole

sequence length is affected.

Figure 5.1 Practical challenges: delay and jitter.

In order to achieve synchronicity, the tags could either tune their on-board os-

cillator according to a reference beacon from the reader, or they are equipped with

more accurate oscillators. Both approaches increase the hardware costs, and it is

crucial to determine the actual requirements in order to balance the costs. This can
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precisely be done with the measurement setup that will be introduced in Section 5.3;

it allows to individually control delay and jitter of each tag. A measurement-based

evaluation follows in Section 5.4.

The ramifications of delay and jitter depend on the receiver structure in the

reader, i.e., how the received symbols are obtained from the samples. A widely

used receiver structure is the homodyne receiver that directly converts the received

signal to baseband [8]. The downconversion is performed by the same local oscil-

lator that is used to generate the CW transmit signal. The baseband signal is then

integrated, either in analog fashion by an integrator circuit, or digitally by summing

up samples. Depending on the accumulated energy, a symbol decision is made. The

measurement setup that I will propose in Section 5.3 acts as a homodyne receiver.

The signal analyzer records baseband samples at a sampling frequency of 10MHz.

Assuming a link frequency of fL = 40 kHz, the symbol duration is TL = 25µs, and

every symbol comprises ξ0 = 250 samples.

In order to mitigate the impact of delay, I propose to employ symbol center sam-

pling as illustrated by Figure 5.2. Instead of integrating over the whole symbol, only

the samples around the symbol center are considered. The parameter α determines

the percentage of retained samples, e.g., α = 0.2 with symbol duration ξ0 = 250

samples results in αξ0 = 50 retained samples. This way, the inter-symbol interfer-

ence due to delay is mitigated. The symbol center can be determined in various

ways:

• By utilizing a preamble that is equal for all tags, e.g., [0, 1, 0]. The accumulated

responses will exhibit an area with high energy where the 1 symbol of all

responses overlapped. The center of this area represents the symbol center.

Several such areas will occur if randomly generated sequences are received,

the preamble is therefore not mandatory.

• By choosing the symbol center based on statistical data from observations, i.e.,

by trusting the expected delay value for a certain type of tag.

• By detecting the start of the tag responses, and adding half of the symbol

duration TL/2. This will put the reference on the earliest tag(s).

Delay puts a constant phase shift on all symbols, its effect is independent of the

sequence length. The impact of jitter, on the other hand, is particularly severe for

long signature sequences. Assume that Tag 1 has a link frequency of fL1 = 40 kHz,

and Tag 2 backscatters on fL2 = 40.4 kHz, i.e., has a jitter of 1% with respect to
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Figure 5.2 Delay mitigation by symbol center sampling.

Figure 5.3 Jitter mitigation by resynchronization via query.

Tag 1. After M = 100 symbols, the response of Tag 1 lasts one symbol longer than

the response of Tag 2. If one integrates over the whole symbol duration, this leads to

severe inter-symbol interference. While the symbol center sampling technique from

Figure 5.2 helps up to a certain point, it is no remedy for symbols that are delayed for

more than one symbol duration. Therefore, I propose to employ resynchronization

of the responses via query as illustrated by Figure 5.3. Instead of responding with

the whole signature sequence at once, the sequence is separated into several chunks,

and each chunk is triggered by a separate query. Assuming that the initial response

delays have a minor impact, each query resynchronizes the sequences, and the effect

of inter-symbol interference by jitter is reduced.

Note that these techniques are not optimal but rather quick and simple approaches;

by sampling only the symbol center, information is discarded. A further investigation

of delay- and jitter-mitigation techniques exceeds the scope of this thesis.
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5.3 Flexible Measurement Setup

I will now introduce a flexible measurement setup that allows to determine the hard-

ware requirements of passive UHF tags for CS-RFID. These are its key capabilities:

• Programmable tags that allow to test non-standard protocols are employed.

• The tags are passive and use backscatter modulation like commercial tags.

• Clock and data can be controlled individually for each tag via PC and MATLAB.

• Synchronization of several tags is achievable.

The measurement setup depicted in Figure 5.4 (product images from [121]) satisfies

above criteria. It features the following components:

Figure 5.4 Flexible measurement setup — overview.
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Reader RF frontend: To provide a constant carrier signal that powers the tags, a

Rohde & Schwarz SMU 200A vector signal generator [122] (denoted SMU

in the sequel) is employed. Without additional amplifier, the output power

is adjustable up to 1W (30 dBm). The RF output is connected to a circularly

polarized UHF patch antenna (TX) with a gain of 9 dBi. Signals are received by

a separate antenna (RX) of the same type, the setup is bistatic. The samples are

recorded by a Rohde & Schwarz FSQ signal analyzer [123] (denoted FSQ). The

FSQ provides the clock reference for the SMU — this enables phase coherent

operation of the two devices, a homodyne receiver is realized.

Control & Processing: The RF frontend devices (SMU & FSQ) are connected to a

PC via Ethernet and are controlled by MATLAB with National Instruments VISA

drivers. Via UART, the PC is connected to a ML505 experimental board that

features a Virtex-5 Field-Programmable Gate Array (FPGA). This board is used

to generate and control synchronous clock references for several tags. Further-

more, data that is synchronous with the respective clock reference is generated

here, individually for each tag. Data refers to the tag response sequence. Clock

and data are later fed to the tags.

Tags: The role of passive RFID tags is assigned to the Wireless Identification and

Sensing Platform (WISP) [124–126]. The WISP1 constitutes a programmable

wireless sensing platform that operates in the UHF band. Out of the box,

the matching frequency lies around 860MHz and can be increased to about

960MHz by trimming its dipole antenna. An energy harvesting stage allows

fully passive operation, and data is transferred to the reader by backscatter

modulation as used in general purpose RFID tags. The platform features a fully

programmable MSP430 micro-controller operating at 1.8V, the current con-

sumption ranges from 1µA (low power mode) to about 100µA (active mode).

In firmware, duty cycling between the active and low power modes is utilized

in order to reduce the average power consumption, which extends the possible

read-out range to several meters [124, 127]. Furthermore, the platform fea-

tures sensing capabilities such as a temperature sensor and an accelerometer.

Several iterations of the WISP are available, the two most recent designs are

the WISP 5LRG [126] and the WISP 4.1DL [125]. Measurements conducted

in [127] show that the power harvesting front end of the WISP 5LRG does not

1At this point, I would like to thank the Sensor Systems Laboratory of the University of Washington
in Seattle for providing several WISPs.
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Figure 5.5 Galvanic isolation between FPGA and WISP.

generate a constant supply voltage from the carrier signal but features periodic

voltage drops. This is due to the S-882Z charge pump that enables high voltage

gains at the expense of a limited tag-response duration. I decided to stick to the

older WISP 4.1DL whose rectifier stage provides a constant supply voltage as

long as the rectified voltage lies above 1.8V. This enables long, uninterrupted

tag responses as long as the WISP is close enough to the transmit antenna of

the reader. A comprehensive measurement-based evaluation of the WISP that

utilizes components of the proposed setup is provided by [127]. In order to be

powered continuously by the SMU that transmits the CW at an output power

of 25 dBm, the WISP has to be within a meter of the TX antenna.

Galvanic isolation: The clock and data signals generated on the FPGA are fed to

the WISP over a digital isolator as illustrated by Figure 5.5 (VDD refers to

positive supply voltage, GND to ground). This enables passive tag operation

since the FPGA hardware and the WISP hardware are galvanically separated.

As digital isolator, an ADuM1240 is employed. This device drains an additional

current of about 4µA from the WISP if ECLK (external clock from FPGA) and

EDATA (external data from FPGA) are operated at a (link) frequency of 40 kHz.

Figure 5.6 depicts the practical realization of the connection.

Before a measurement, the PC initializes the measurement devices (SMU & FSQ).

Then, the PC configures the FPGA platform, the following settings can be adjusted

for each WISP individually:

• The link frequency fLk
(period time TLk

) of the k-th WISP can be adjusted as

fLk
=

100MHz

2ok
, (5.1)

where ok is a clock divider that ranges from 1 to 2047. The link frequency is

associated with ECLK in Figure 5.5.
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Figure 5.6 Photo of digital isolator and WISP.

• The data symbols that compose the tag response can be set in the FPGA. The

symbols of the k-th WISP are stored in a binary vector dk whose maximum

length depends on the allocated FPGA memory. The data is associated with

EDATA in Figure 5.5. Considering the k-th WISP, EDATAk is synchronous with

ECLKk.

• The phase delay of the k-th WISP can be adjusted as

φk =
pk

100MHz
= pk × 10 ns, (5.2)

where ECLKk and EDATAk are delayed with respect to a common origin by φk

seconds, and pk ranges from 0 to 2047.

• The FPGA features a continuous mode and a single mode for output. In the

continuous mode, ECLKk and EDATAk are outputted repeatedly until stopped,

for all activated tags k ∈ {1, ..., K}. In the single mode, ECLKk and EDATAk are

outputted once for the length of the respective data vectors dk, for all activated

tags k ∈ {1, ..., K}.

• The FPGA can output a trigger signal in a defined time period before outputting

ECLK and EDATA — this trigger signal is used to initiate the sampling at the

FSQ signal analyzer.
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5.4 Measurements

The measurement setup is now utilized to synchronize the WISP responses, perform

a CS-RFID proof of concept, and to investigate the impact of delay and jitter.

5.4.1 Synchronization of Tag Responses

In this section, I demonstrate how the WISP responses can be synchronized by the

proposed setup. Note that the Virtex-5 ML505 FPGA board has a system clock that

runs at 100MHz — this value determines the accuracy (granularity) of the clock

(ECLK) and data (EDATA) adjustments.

Ideally, ECLK would be used by the WISP as an external clock reference. How-

ever, this is not possible with the WISP 4.1DL. To control synchronicity, each rising

edge of ECLK triggers an interrupt subroutine that wakes the MSP430 controller on

the WISP from a low power mode, makes it read the data at pin 1.4, and outputs

the data at the antenna port (backscatter modulation). Then, the MSP430 returns to

low power mode. Since these operations run on the internal clock that varies among

tags, an initial adjustment of the phase delay φk is necessary, which is depicted in

Figure 5.7. The MSP430 features a Digitally Controlled Oscillator (DCO) that can

only be programmed for frequency ranges rather than exact values. I compared

two WISPs whose DCOs have been programmed according to data-sheet to run in a

range of [1.6, 3]MHz. The measured DCO frequencies were fDCO1 = 2.7624MHz and

fDCO2 = 3.0211MHz, i.e., notably different. This varies the length of the interrupt

subroutines and introduces a delay that can be compensated by the FPGA. Consid-

ering our setup, ECLK2 and EDATA2 have to be delayed by a certain φ2 > 0 while

φ1 = 0 in order to guarantee synchronous responses, as illustrated by Figure 5.7.

The measurement setup2 in accordance with Figure 5.4 is depicted in Figure 5.8.

WISP1 and WISP2 respectively respond with the orthogonal sequences

d1 = [1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1],
d2 = [1,−1,−1, 1,−1, 1,−1, 1,−1, 1, 1,−1, 1,−1, 1,−1].

Such sequences are used for channel estimation in multiple-response scenarios [119,

110]. The FSQ records in-phase samples r(I) and quadrature samples r(Q) in the

baseband, the complex-valued receive samples are obtained as r = r(I) + jr(Q).

2The WISPs are mounted on an industrial grade Rohacell® 31 fixture (commercial name of poly-
methacrylimide foam) that has a permittivity of ǫr = 1.05 and a dissipation factor of tan(δ) = 0.0003
at 2.5GHz and, thus, has electromagnetic properties similar to air.
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Figure 5.7 Timing diagram — synchronization of i-th WISP-data symbol.

Figure 5.8 Measurement setup for synchronization.
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Figure 5.9 depicts the magnitude of unsynchronized WISP responses where two

WISPs respond to a query without external control; note that a ’1’ symbol has been

added to mark the sequence end. The DCO variation among the WISPs results in

strong asynchronicity (significant delay and jitter). The FSQ records samples at a

rate of 10MHz which results in a measurement resolution of 100 ns. Figure 5.10

shows two WISP responses that are synchronized by the setup. The synchronization

is perfect up to the measurement resolution.

Figure 5.9 Measured WISP responses — unsynchronized case.

Figure 5.10 Measured WISP responses — synchronized by FPGA.
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5.4.2 CS-RFID Proof of Concept

Equipped with the flexible setup, I am able to perform measurements were multiple

tags respond simultaneously and synchronously with defined data. This constitutes

the basis for the CS-RFID proof of concept. Note that a different antenna arrange-

ment is used, the setup is depicted in Figure 5.11. I consider a scenario where K = 2

WISPs (tags) respond with signature sequences sk ∈ {b0, b1}M , k ∈ {1, 2}, of length

M = 40. The sequences feature an equal number of b0 and b1. These two sequences

are the first two columns of a big sensing matrix S with N = 1000 columns.

Figure 5.11 Measurement setup — antenna arrangement for proof of concept.

The measurement methodology foresees a response design with three stages,

as depicted in Figure 5.12. In the first stage, both WISPs respond simultaneously

with their signature sequence; this yields the samples r12. In the second and third

stage, only WISP1 respectively WISP2 responds with its sequence, yielding r1 and r2.

Based on the discussion in Section 3.2, the FSQ receive samples r = r(I) + jr(Q) are

processed as follows:

1. Considering a sampling rate of 10MHz and a link frequency of 40 kHz, the

symbol duration amounts to ξ0 = 250 samples per symbol. The receive sym-

bols in z = [z1, ..., zm, ..., zM ]T are obtained by integrating the samples r =

[r1, ..., rl, ..., rMξ0 ]
T over the symbol duration ξ0:

zm =
1

ξ0

mξ0∑

l=(m−1)ξ0+1

rl. (5.3)
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Figure 5.12 Measurement methodology — three stages.

If symbol center sampling as shown in Figure 5.2 is employed, the symbols are

obtained as

zm =
1

αξ0

[m− 1
2
(1−α)]ξ0∑

l=[m− 1
2
(1+α)]ξ0+1

rl. (5.4)

2. The mean is removed according to (3.10):

y = z− 1

M

M∑

m=1

zm. (5.5)

After sample processing, the measurement vectors y12, y1 and y2 are obtained.

The single-response stages allow to estimate the individual channel coefficients via

inner product of the measurement vectors with the known sequences:

ĥk = 〈yk, sk〉 = sHk yk, k ∈ {1, 2}, (5.6)

where sk ∈ {−b, b}M denotes the signatures after mean removal (3.7). I assume b =
1√
M

; this way, the channel estimates have the same scaling as the AMP or BASSAMP

recoveries. Based on (5.6), I construct the aspired channel activity vector

x∗ =




ĥ1

ĥ2

0N−2


 (5.7)
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Figure 5.13 Proof of concept — recovery (left) and channel estimates (right).

that has the true support, and channel coefficients that are estimated well from the

single tag responses without interference from other tags.

The measurement vector y12 from the first stage (simultaneous responses) are

fed to the AMP and BASSAMP algorithms, and the recoveries x̂AMP and x̂BASSAMP

are obtained. Note that AMP works on the complex-valued vector, while BASSAMP

works on two jointly sparse vectors after real and imaginary part separation. AMP

is tuned with λℓ1 = 2.43 according to (2.14). BASSAMP uses γ0 = 1 − K
N

= 0.998,

and a Bernoulli-Gaussian prior with σ2
x = 100. This variance is set according to the

channel estimates — their magnitude is in the order of |ĥ| ≈ 10 and directly relates

to the standard deviation of the nonzero entries that are assumed to be Gaussian

distributed (Gaussian relaxation).

The aspired channel activity vector is compared to the estimates from the first

stage. Since I chose the first two signatures of the sensing matrix, only the first

two entries of the recovered vector x̂ should be nonzero, containing the channel

coefficients. The left plot in Figure 5.13 depicts the magnitude of the CS recoveries

and the aspired channel activity vector. Both CS recovery algorithms produce an

estimate very close to x∗ and –most importantly for tag acquisition– the support is

detected perfectly. The right plot in Figure 5.13 illustrates the channel coefficients

in the complex plane — it is verified that the phase is estimated well. This result

demonstrates that the proposed tag acquisition techniques of chapters 3 and 4 work

on the physical layer in a real setting, which concludes my proof of concept and

shows the feasibility of CS-RFID with off-the-shelf hardware.
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5.4.3 Influence of Delay and Jitter

The flexible measurement setup is capable of systematically adjusting delay and

jitter of several WISPs. I will now investigate the impact of such detrimental effects,

considering two WISPs. Initially, both WISPs have the same link frequency of fL1 =

fL2 = 40 kHz (symbol duration TL1 = TL2 = 250µs), and the phase delay is set to

φ1 = φ2 = 0. WISP1 is kept at these values, while WISP2 is controlled to change the

phase delay (variable delay) or the frequency (variable jitter).

The setup and methodology from Section 5.4.2 are adopted. For each value of

delay or jitter, 100 frames containing r12, r1 and r2 are recorded. For each frame,

the channel estimates (5.6) and the corresponding x∗ as well as x̂AMP and x̂BASSAMP

are computed. Moreover, the support detection and the NMSE between the aspired

channel activity vector x∗ and and the CS recoveries are computed. The support

detection of AMP is defined as

T̂A = {n ∈ T : |x̂AMP,n| > ǫD} , (5.8)

where the threshold is heuristically set to ǫD = 0.1 (one order of magnitude below

the expected channel magnitude). BASSAMP uses the support estimation (4.24). All

results are averaged over the 100 received frames per adjustment.

Variable Delay

The delay is adjusted as a percentage of the symbol duration by increasing φ2 ≥
φ1 = 0, i.e., WISP2 is delayed with respect to WISP1. Figure 5.14 depicts the NMSE

(left), and the channel estimates in the complex plane (right). Considering full

symbol sampling (α = 1) and an increasing delay, the NMSE increases, and the

channel coefficient of WISP2 decreases in magnitude. The symbol center sampling

method from Section 5.2 with α = 0.2 is capable of restraining the delay until 40% of

the symbol duration where the inter-symbol interference with the shifted signature

begins. Figure 5.15 and Figure 5.16 illustrate the support detection, respectively for

α = 1 and α = 0.2. With increasing delay, the AMP recovery is flooded with FAs.

The number of FAs could be reduced by increasing the threshold ǫD in (5.8), but the

probability that a true tag is missed increases as well. BASSAMP, on the other hand,

provides a reliable support detection with very few FAs.

Both signatures are correctly detected until the delay of WISP2 becomes too

severe, which happens at a shift by more than 50% of the symbol duration. The

signature of WISP1 is fully received at all time, while the signature of WISP2 is
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slowly shifted — with increasing delay, the inter-symbol interference becomes more

severe. Note that WISP1 is always detected correctly, while the shifted signature of

WISP2 causes the CS recovery algorithms to pick other signatures (FAs) that best

explain the measurements. In other words, the recovery algorithms distribute the

energy of the shifted signature among other signatures to obtain a recovery that

satisfies the optimization task. Symbol center sampling can restrain this effect for

reasonable delays below 50% of the symbol duration.

Variable Jitter

For this measurement, the sequences in r12 start at the same time, but WISP2 has a

higher link frequency than WISP1:

fL2 = (1 + ∆fL)fL1 . (5.9)

I chose fL1 = 40 kHz, and fL2 is varied as ∆fL ∈ [0, 6)%. The ramifications of jitter on

the link frequency and the symbol duration are depicted in Table 5.1. The channel

estimates from the single-response stages are computed according to the true link

frequency to get the best estimates possible, i.e., the symbol duration for integration

of the WISP2 response is adapted according to Table 5.1.

∆fL[%] 0 0.40 0.81 1.21 1.63 2.04 2.46 2.88 3.31 3.73 4.17 4.60 5.04 5.49 5.93
fL2 [kHz] 40.00 40.16 40.32 40.49 40.65 40.82 40.98 41.15 41.32 41.49 41.67 41.84 42.02 42.19 42.37
TL2 [µs] 25.00 24.90 24.80 24.70 24.60 24.50 24.40 24.30 24.20 24.10 24.00 23.90 23.80 23.70 23.60
ξ0,L2 [samp.] 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236

Table 5.1 Variable jitter — fL2 is varied, fL1 = 40 kHz.

Figure 5.17 depicts the NMSE (left), and the channel estimates in the complex

plane (right). A similar behavior to the delay case is observed. Symbol center sam-

pling is able to alleviate the impact of relatively small jitter. The decline in the

channel coefficient magnitude of WISP2 can be explained with the same argument

as before, i.e., the inter-symbol interference becomes more severe for larger jitter.

Figure 5.18 and Figure 5.19 respectively depict the support detection with full

symbol sampling (α = 1) and 20% symbol center sampling (α = 0.2). Remember

that the sequences are M = 40 symbols long. At ∆fL = 2.5%, the response of WISP2

is by one symbol shorter than the response of WISP1. Both sequences are detected

correctly until that point; for larger jitter, WISP2 is not detected correctly anymore

in all cases. Again, BASSAMP exhibits a better support detection than AMP, keeping

the number of FAs very low.
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Figure 5.14 Variable delay — NMSE and channel estimates.

Figure 5.15 Variable delay — support for full symbol sampling (α = 1).

Figure 5.16 Variable delay — support for 20% symbol sampling (α = 0.2).
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Figure 5.17 Variable jitter — NMSE and channel estimates.

Figure 5.18 Variable jitter — support for full symbol sampling (α = 1).

Figure 5.19 Variable jitter — support for 20% symbol sampling (α = 0.2).
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Further Observations and Remarks

Based on the measurements, I collect my findings to deduce the following points:

• The impact of delay becomes problematic if the affected tag is delayed by more

than 50% of the expected symbol duration.

• The impact of jitter becomes problematic if the sequence of the affected tag

differs by one symbol or more from the expected sequence length.

• In case of AMP, the number of FAs can be steered with the support detection

threshold ǫD, or by the LASSO parameter λ. The ℓ1-optimal λ may not be the

support-optimal choice; a heuristic could be found.

• In case of BASSAMP, the controllable parameter is the assumed signal variance

σ2
x . The standard deviation σx is set according to the expected size of the

channel magnitudes. I tried several values in the range of σx ∈ [5, 100] — the

recoveries were only affected marginally, but larger values tend to reduce the

NMSE and the number of FAs in the support detection.

• Despite loosing CDs in case of severe delay, all tags will be identified eventually.

Since the responses that have the assumed delay are identified in all cases,

the delayed instances are identified in a subsequent identification cycle, in

which the delayed version of the response is the new normal. This can be seen

as successive inter-symbol interference cancellation, since the detected tags

are silent in a subsequent round, and their contributions are no longer in the

superposition of responses. A similar argument holds for jitter, as long as it is

not too severe.

• While symbol center sampling with α < 1 improves the performance for rea-

sonable delays below 50% of the symbol duration, it degrades the performance

for larger delays where the number of detected FAs is often increased. If inter-

symbol interference is unavoidable, it is better to sample the whole symbol.

This is also true for large jitter.
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5.5 Summary

The tag-hardware requirements of CS-RFID are comparable to the ones imposed

by the EPCglobal standard, while the readers that use CS-RFID will operate more

energy efficient due to the shortened tag acquisition phase.

CS-RFID assumes synchronized responses during the tag acquisition, and real-

world tags exhibit variations in the on-board oscillator frequency that lead to delay

and jitter — these are the main practical challenges. In order to mitigate the impact

of delay, I suggested symbol center sampling that reduces the inter-symbol inter-

ference of delayed tag responses. To mitigate the impact of jitter, I proposed to

transmit the signature sequences in chunks, and to resynchronize the beginning of

each chunk via query. Note that these issues concern passive tags; active tags could

use a phase-locked loop to tune their oscillator frequency according to a reference

beacon from the reader.

I presented a flexible measurement setup to systematically control delay, jitter

and data of several UHF RFID tags. This setup allows to test non-standard protocols

such as CS-RFID. A proof-of-concept measurement demonstrated the practical feasi-

bility of the scheme, followed by an investigation of the detrimental effects. Delay

becomes problematic if it exceeds 50% of the symbol duration, while jitter strongly

affects the recovery as soon as the total signature length among tag responses differs

by one symbol or more.

In a practical setting, the AMP recoveries exhibit many FAs if detrimental effects

are present. The BASSAMP recoveries, on the other hand, entail good support esti-

mation with very few FAs that only occur in case of severe delay or jitter. Remember

that each FA results in an additional enquiry during the identification cycle, thereby

prolonging the identification. I suggest to use BASSAMP in practice — measurement

results advocate the usage of the Gaussian relaxation in a real-world setting. The

standard deviation of the channel distribution is selected to have the same order

of magnitude than the magnitude of the channel coefficients. In a given setup, the

channel coefficient magnitudes are determined by measuring the channel for a few

tag positions, the exact or "true" variance is not required.





Chapter 6

Conclusions

The rising tide of the IoT carries a tremendous amount of new applications in RFID,

and our society is slowly realizing the potential that accompanies this technology.

The proliferation of RFID will strongly increase in the upcoming years, and new

schemes that improve upon the current standard will unlock new, previously incon-

ceivable applications.

In this thesis, I proposed novel approaches to the rapid identification of multiple

RFID tags by a single reader device. These approaches rely on CS recovery algo-

rithms, and I picked the class of computationally efficient and versatile AMP algo-

rithms to do the heavy lifting. The combination of RFID and CS with AMP recovery

reveals a strong new scheme termed CS-RFID that exhibits many benefits over the

current state of the art. Let me list them by summarizing the contributions of this

work. I will then address some open issues, and finally conclude the thesis.
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6.1 Summary of Contributions

Chapter 1 first discussed the principles of RFID, and then introduced the current

state-of-the-art identification schemes, in particular FSA that is used in the prevalent

EPCglobal standard. The fundamentals of CS were presented, and the classes of

recovery algorithms were listed. AMP was selected because it is efficient and appli-

cable to large signal dimensions; furthermore, a variable amount of prior knowledge

that improves the recovery can be incorporated.

Chapter 2 examined various AMP recovery algorithms. The standard AMP algo-

rithm solves the LASSO (basis pursuit) problem, the BAMP algorithm approaches

MMSE estimation performance by utilizing the signal prior distribution. I specified

the BAMP denoiser functions for the Bernoulli-Gaussian and the Bernoulli-Laplace

signal priors. BAMP was extended to BASSAMP, a novel algorithm that incorporates

joint sparsity, i.e., it exploits that several signal vectors have the same support. This

algorithm came in two flavors. BASSAMP with scalar denoiser performs an extrin-

sic information exchange between jointly sparse signal vectors in order to reach a

consensus about the support and to improve the MMSE estimation. BASSAMP with

vector denoiser directly enforces the joint sparsity structure by using a multivariate

signal prior, this prior can also include signal correlations. Both algorithms have

the same asymptotic performance, but the vector denoiser converges in fewer itera-

tions. All algorithms were vetted numerically by empirical phase transition curves

and analytically with the SE framework. The more prior knowledge is available, the

fewer measurements are required for successful recovery, and the higher is the noise

robustness.

Chapter 3 introduced the concept of CS-RFID, in which the tag acquisition phase is

cast as a CS measurement, and the acquisition itself is a CS recovery problem. It was

outlined how AMP can be applied to solve the recovery. During acquisition, all tags

respond simultaneously, each with an assigned signature sequence. The signatures

are the columns of a signature matrix, and its multiplication with the channel activ-

ity vector yields the measurement vector. The number of responding tags is small

compared to the total number of signatures (possible tags), the problem of identi-

fying the activated tags is hence equivalent to detecting the support of the channel

activity vector. Due to its sparsity, the signature sequences can be made shorter than

the total number of possible signatures (possible tags). To ensure reliable identifi-

cation, I introduced two identification protocols. The very quick CSF involves fixed
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signature assignment and is applicable to fixed inventories, while the more general

CSR entails random signature assignment and applies to arbitrary inventories. The

performance was investigated and compared to the widely used FSA protocol, and

CS-RFID was found to strongly outperform it in terms of identification throughput

and noise robustness.

Chapter 4 augmented CS-RFID to the multiple measurement vector problem, in

which the BASSAMP algorithm is employed to exploit joint sparsity. The origins of

joint sparsity are the separation into real and imaginary parts, and the employment

of several receive antennas at the reader. A Bayesian support detection scheme based

on BASSAMP was introduced — it combines the soft information from several signal

vectors. Tremendous gains over the standard AMP scheme were identified. Fur-

thermore, CS-RFID was demonstrated to strongly outperform FSA collision recovery

schemes that also exploit several receive antennas at the reader.

Chapter 5 investigated the practical implementation of CS-RFID. Delay and jitter

among the tag responses were identified as detrimental effects that hamper the tag

acquisition phase. I proposed symbol center sampling and resynchronization via

query as simple remedies for delay and jitter, respectively. A flexible measurement

setup that is capable of testing non-standard RFID protocols was introduced. It

allows to control clock and data of several WISP UHF RFID tags, and it was shown

how several WISPs can be synchronized, without delay and jitter. A proof-of-concept

measurement demonstrated that CS-RFID works on the physical layer and is, hence,

feasible in practice. The detrimental impacts of delay and jitter were scrutinized,

and conclusions regarding the required tag-oscillator accuracy were drawn.

6.2 Open Issues

In this thesis, I mainly considered a static scenario in which the hardware or its

surroundings do not move significantly during identification. This is reflected by

channel coefficients that are constant throughout the acquisition phase. In some sce-

narios, the reader or the tags are moved significantly. This implies that the channels

change during the acquisition due to small-scale fading — the CS recovery algo-

rithms have to be adapted accordingly to grasp this behavior. An AMP scheme that

successfully copes with time-varying signals was proposed in [85]; it is also capable

of learning the signal (channel) parameters.



136 Conclusions

Aside from channel changes, it may also occur that tags "appear" or "disappear"

during acquisition. This happens to tags that are moved into or out of the read range,

or to tags that do not receive enough power from the reader and sporadically power

off. I investigated the case of sporadically powered tags in [106]. It turned out that

the negative impact of sporadically powered tags is relatively small compared to the

impact of delay and jitter.

When it comes to the hardware implementation, the flexible setup from Chap-

ter 5 demonstrates that CS-RFID works on the physical layer. To draw a compre-

hensive conclusion, the next step is to implement the protocols in hardware, thereby

demonstrating a real-time proof of concept. Furthermore, measurements with sev-

eral receive antennas at the reader are of interest. The impact of channel correlation

could be determined by measurement, it depends on the antenna spacing. The vec-

tor BASSAMP Algorithm 4 is theoretically capable of incorporating such correlation

among the jointly sparse signal entries, further investigation is required.

Considering the practical setup in Figure 5.4, the WISP currently limits the read

range; it has to be within a meter of the transmit antenna of the reader in order

to harvest enough energy for continuous backscatter transmission. If short, non-

continuous responses are sufficient, larger read ranges are possible, since the micro-

controller on the WISP can go into low power mode between transmissions. How-

ever, the response probability is lowered with increasing distance [127]. Future

work foresees the following alterations of the WISP:

• Improved energy harvesting stage for larger read ranges in passive operation.

• Optional battery that enables semi-passive operation and extensive read ranges.

• The WISP 4.1 runs with the internal frequency provided by its on-board DCO.

A newer version of the MSP430 micro-controller enables external clock sources.

The whole chip could, therefore, run with the external clock provided by the

FPGA, and the synchronization scheme from Section 5.4.1 that is based on in-

terrupts becomes obsolete. This enables higher accuracy and higher backscat-

ter link frequencies that are currently limited by the duration of the interrupt

subroutine.
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6.3 Conclusion

This thesis demonstrates a compelling case for CS-RFID — whenever the current

EPCglobal standard reaches its limits, CS-RFID is capable of improving the identifi-

cation throughput, the noise robustness and the energy efficiency. These improve-

ments come at the price of a heightened sensitivity to delay and jitter in the tag

responses. However, the benefits outweigh the burden, and the continuous techno-

logical advancement will alleviate these issues in the years to come.

The utilization of the AMP framework for CS recovery is an integral point of this

thesis. It renders the recovery computationally efficient and feasible for a hardware

implementation on the reader. Moreover, the seamless incorporation of prior knowl-

edge allows to tailor the algorithms to specific application cases. I demonstrated that

the exploitation of joint sparsity and prior knowledge greatly improves the recovery

performance, which translates to quicker, more robust tag acquisition in CS-RFID.

In conclusion, I strongly believe that new, demanding applications that arise un-

der the IoT paradigm can benefit significantly from CS-RFID.





Appendix A

Specification for Bernoulli-Gaussian

Prior

Nontrivial integrals are solved with the aid of WolframAlpha®. The following identi-

ties are used, where a, b ∈ R:

∫ ∞
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A.1 MMSE Estimator

Calculation of F (un; β): To calculate (2.27), the prior (2.26) is plugged into (2.21):

F (un; β) =

∫∞
−∞ x̃n · N (un; x̃n, β) · fxn(x̃n)dx̃n∫∞

−∞N (un; x̃n, β) · fxn(x̃n)dx̃n

=
FN(un; β)

FD(un; β)
.

Let me begin with the numerator integral (index n omitted):
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Now the denominator integral:

FD(u; β) =

∫ ∞
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Now I combine the results:
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A.2 MMSE Estimator Derivative

Calculation of F ′(un; β): In the sequel, I use following substitutions for clarity:

q =
σ2
x

β
,

α =
γ

1− γ

√
1 + q.

Let me demonstrate how (2.28) is calculated. Firstly, the product rule is applied

(index n omitted for clarity):
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Secondly, the quotient rule is applied:
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A.3 Innovation L-Values

Calculation of Lt
n: The innovation L-values (2.70) are computed as follows, where

it is used that P (zn,b = 0|un,b = ut−1
n,b ) = 1− P (zn,b = 1|un,b = ut−1

n,b ):
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A.4 Vector MMSE Estimator (Vector Denoiser)

Calculation of Fvec(u; β): The vector denoiser function (2.87) is computed according

to (2.86):

Fvec(u; β) =

∫
RB x̃ · N (u; x̃,Qw̃) · fx(x̃) dx̃∫
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.

Assuming i.i.d. effective noise, the vector-likelihood is given by
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The numerator integral of the vector denoiser calculates as
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The b-th entry of its vector output calculates as
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The denominator integral calculates as
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Combining the results, the b-th output of the vector denoiser boils down to

(Fvec(u; β))b =

(
FN
vec(u; β)

)
b

FD
vec(u; β)

=
(1− γ) · bb

2ab
·∏B

l=1
1√
2πσ2

xl

·
√

π
al
exp

(
b2
l

4al

)

γ + (1− γ) ·∏B
l=1

1√
2πσ2

xl

·
√

π
al
exp

(
b2
l

4al

)

=
bb
2ab
· 1

1 + γ
1−γ

∏B
l=1 ·

√
2alσ2

xl
exp

(
− b2

l

4al

)

= ub ·
σ2
xb

β + σ2
xb

· 1

1 + γ
1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)
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A.5 Vector MMSE Estimator Derivative

Calculation of F ′
vec(u; β): The vector denoiser derivative (2.88) computes as

(F ′
vec(u; β))b :=

∂ (Fvec(u; β))b
∂ub

.

Firstly, the product rule is applied:

(F ′
vec(u; β))b =

∂

∂ub

[
ub

σ2
xb

β + σ2
xb

]
· 1

1 + γ
1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)

+ ub

σ2
xb

β + σ2
xb

· ∂

∂ub




1

1 + γ
1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)




︸ ︷︷ ︸
Mb(u)

.

Mb(u) is computed via quotient rule:

Mb(u) =
0−

(
− ubσ

2
xb

β(β+σ2
xb
)

)
γ

1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)

[
1 + γ

1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)]2

=

1
β
· ub

σ2
xb

β+σ2
xb

· γ
1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)

[
1 + γ

1−γ

∏B
l=1

√
β+σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β+σ2
xl
)

)]2 .

With Mb(u) and the substitution

mvec(u; β, γ) ≡
γ

1− γ

B∏

l=1

√
β + σ2

xl

β
exp

(
−u2

l

2

σ2
xl

β(β + σ2
xl
)

)
,

the derivative of the b-th vector denoiser output becomes

(F ′
vec(u; β))b =

σ2
xb

β + σ2
xb

· 1

1 +mvec(u; β, γ)

+
1

β
·mvec(u; β, γ) ·

[
ub

σ2
xb

β + σ2
xb

· 1

1 +mvec(u; β, γ)

]2

=
σ2
xb

β + σ2
xb

· 1

1 +mvec(u; β, γ)
+

1

β
·mvec(u; β, γ) · (Fvec(u; β))

2
b
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Specification for Bernoulli-Laplace

Prior

B.1 MMSE Estimator

Calculation of F (un; β): To calculate (2.30), the prior (2.29) is plugged into (2.21):

F (un; β) =

∫∞
−∞ x̃n · N (un; x̃n, β) · fxn(x̃n)dx̃n∫∞

−∞N (un; x̃n, β) · fxn(x̃n)dx̃n

=
FN(un; β)

FD(un; β)
.

Let me begin with the numerator integral (index n omitted):

FN(u; β) =

∫ ∞

−∞
x̃ · 1√

2πβ
exp

(
−(u− x̃)2

2β

)
· (γδ(x̃) + (1− γn)L(x̃; 0, κ)) dx̃

=
γ√
2πβ

∫ ∞

−∞
x̃ · δ(x̃) · exp

(
−(u− x̃)2

2β

)
dx̃

︸ ︷︷ ︸
=0

+
1− γ√
2πβ

1

2κ

∫ ∞

−∞
x̃ · exp

(
−(u− x̃)2

2β

)
· exp

(
−|x̃|

κ

)
dx̃

=
1− γ√
2πβ

1

2κ

∫ ∞

−∞
x̃ · exp

(
−(u− x̃)2

2β
− |x̃|

κ

)
dx̃
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=
1− γ√
2πβ

1

2κ




∫ 0

−∞
x̃ · exp

(
−(u− x̃)2

2β
+

x̃

κ

)
dx̃

︸ ︷︷ ︸
A(u)

+

∫ ∞

0

x̃ · exp
(
−(u− x̃)2

2β
− x̃

κ

)
dx̃

︸ ︷︷ ︸
B(u)


 .

The integral A(u) calculates as

A(u) =

∫ 0

−∞
x̃ · exp

(
−(u− x̃)2

2β
+

x̃

κ

)
dx̃

=

∫ 0

−∞
x̃ · exp


−x̃

2

(
1

2β

)

︸ ︷︷ ︸
a

+x̃

(
u

β
+

1

κ

)

︸ ︷︷ ︸
b1

−
(
u2

2β

)

︸ ︷︷ ︸
c


dx̃

=
exp (−c)

4a
3
2

[√
πb1 exp

(
b21
4a

)
erf

(
2ax̃− b1
2
√
a

)
−2√a exp (x̃(b1 − ax̃))

]0

x̃=−∞

=
exp (−c)

4a
3
2

(√
πb1 exp

(
b21
4a

)
erf

(−b1
2
√
a

)
− 2
√
a+
√
πb1 exp

(
b21
4a

))

=
exp (−c)

4a
3
2

(√
πb1 exp

(
b21
4a

)(
erf

(−b1
2
√
a

)
+ 1

)
− 2
√
a

)

=
exp (−c)

4a
3
2

(√
πb1 exp

(
b21
4a

)(
1 + erfc

(
b1

2
√
a

))
− 2
√
a

)
.
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Similarly, integral B(u) calculates as

B(u) =

∫ ∞

0

x̃ · exp
(
−(u− x̃)2

2β
− x̃

κ

)
dx̃

=

∫ ∞

0

x̃ · exp


−x̃

2

(
1

2β

)

︸ ︷︷ ︸
a

+x̃

(
u

β
− 1

κ

)

︸ ︷︷ ︸
b2

−
(
u2

2β

)

︸ ︷︷ ︸
c


dx̃

=
exp (−c)

4a
3
2

[√
πb2 exp

(
b22
4a

)
erf

(
2ax̃− b2
2
√
a

)
−2√a exp (x̃(b2 − ax̃))

]∞

x̃=0

=
exp (−c)

4a
3
2

(√
πb2 exp

(
b22
4a

)
−
(√

πb2 exp

(
b22
4a

)
erf

(−b2
2
√
a

)
− 2
√
a

))

=
exp (−c)

4a
3
2

(√
πb2 exp

(
b22
4a

)(
1− erf

(−b2
2
√
a

))
+ 2
√
a

)

= −exp (−c)
4a

3
2

(√
πb2 exp

(
b22
4a

)(
1 + erfc

(
b2

2
√
a

))
− 2
√
a

)
.

Now I plug A(u) and B(u) back into the numerator formulation

FN(u; β) =
1− γ√
2πβ

1

2κ
(A(u) +B(u))

=
1− γ√
2πβ

1

2κ

√
π
exp (−c)

4a
3
2

·
[
b1 exp

(
b21
4a

)(
1 + erfc

(
b1

2
√
a

))
− b2 exp

(
b22
4a

)(
1 + erfc

(
b2

2
√
a

))]
.

After re-substituting a, b1, b2 and c, and performing some rearrangements, the nu-

merator expression becomes

FN(u; β) = (1− γ)
β

4κ
exp

(
− u2

2β

)

·




(
u

β
− 1

κ

)

︸ ︷︷ ︸
h1(u)

· erfc




√
2β

2κ
− u√

2β︸ ︷︷ ︸
g1(u)


 · exp




(
u√
2β
−
√
2β

2κ

)2

︸ ︷︷ ︸
g1(u)2




+

(
u

β
+

1

κ

)

︸ ︷︷ ︸
h2(u)

· erfc




√
2β

2κ
+

u√
2β︸ ︷︷ ︸

g2(u)


 · exp




(
u√
2β

+

√
2β

2κ

)2

︸ ︷︷ ︸
g2(u)2





 .
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Let me now tackle the denominator:

FD(u; β) =

∫ ∞

−∞

1√
2πβ

exp

(
−(u− x̃)2

2β

)
· (γδ(x̃) + (1− γn)L(x̃; 0, κ)) dx̃

=
γ√
2πβ

∫ ∞

−∞
δ(x̃) · exp

(
−(u− x̃)2

2β

)
dx̃

+
1− γ√
2πβ

1

2κ

∫ ∞

−∞
exp

(
−(u− x̃)2

2β

)
· exp

(
−|x̃|

κ

)
dx̃

= γ
1√
2πβ

exp

(
− u2

2β

)
+ (1− γ)

1

4κ
exp

(
2β

4κ2

)

·
[
erfc (g1(u)) exp

(
−u

κ

)
+ erfc (g2(u)) exp

(u
κ

)]
.

Combining the numerator and denominator and performing some rearrangements,

I finally obtain the MMSE estimator function

F (u; β) =
FN(u; β)

FD(u; β)

=

β


h1(u) · erfc (g1(u)) · exp

(
g1(u)

2
)

︸ ︷︷ ︸
k1(u)

+h2(u) · erfc (g2(u)) · exp
(
g2(u)

2
)

︸ ︷︷ ︸
k2(u)




γ
1−γ
· 4κ√

2πβ
+


erfc (g1(u)) · exp

(
g1(u)

2
)

︸ ︷︷ ︸
k1(u)

+erfc (g2(u)) · exp
(
g2(u)

2
)

︸ ︷︷ ︸
k2(u)




=
β [h1(u)k1(u) + h2(u)k2(u)]

γ
1−γ

4κ√
2πβ

+ k1(un) + k2(u)
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B.2 Signal Plus Noise Distribution

Calculation of f1(un): Let me lay out the calculation of (2.73), starting from the def-

inition of f1(un) in (2.43):

f1(un) = fan(xn) ∗ N (un; 0, β)

= L(un; 0, κ) ∗ N (un; 0, β)

=
1

2κ
exp

(
−|un|

κ

)
∗ 1√

2πβ
exp

(
−u2

n

2β

)

=
1

2κ

1√
2πβ

∫ ∞

−∞
exp

(
−|τ |

κ

)
· exp

(
−(un − τ)2

2β

)
dτ

=
1

4κn

exp

(
−u2

n

2β

)

erfc (g1(u)) · exp

(
g1(u)

2
)

︸ ︷︷ ︸
k1(u)

+erfc (g2(u)) · exp
(
g2(u)

2
)

︸ ︷︷ ︸
k2(u)




=
1

4κn

exp

(
−u2

n

2β

)
[k1(un) + k2(un)]

B.3 Innovation L-Values

Calculation of Lt
n: The innovation L-values (2.75) are computed as follows:

Lt
n = L(zn,1|un = ut−1

n )− log
γt−1
n

1− γt−1
n

= log
P (zn,b = 0|un,b = ut−1

n,b )

P (zn,b = 1|un,b = ut−1
n,b )

1− γt−1
n

γt−1
n

= log

γt−1
n f0(u

t−1
n )

γt−1
n f0(u

t−1
n )+(1−γt−1

n )f1(u
t−1
n )

1− γt−1
n f0(u

t−1
n )

γt−1
n f0(u

t−1
n )+(1−γt−1

n )f1(u
t−1
n )

1− γt−1
n

γt−1
n

= log
γt−1
n f0(u

t−1
n )

γt−1
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n ) + (1− γt−1
n )f1(ut−1

n )− γt−1
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= log
f0(u
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n
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1
4κn

exp
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n
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)
[k1(ut−1

n ) + k2(ut−1
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= log
4κn√
2πβt−1

− log
[
k1(u

t−1
n ) + k2(u

t−1
n )

]
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Expected Number of Nonzero Entries

Let me derive (3.17). Consider the following occupancy problem: K balls are ran-

domly distributed among N holes. The probability that a certain hole (out of N)

is not occupied by any of the K balls is given by
(
1− 1

N

)K
. The probability that a

certain hole (out of N) is occupied is given by 1−
(
1− 1

N

)K
. Considering all N holes,

the expected number of occupied holes reads

O(K,N) =

(
1−

(
1− 1

N

)K
)
N.

In the context of RFID with CS, the N holes correspond to the total number of sig-

natures, and the K balls are the activated tags that choose among the N signatures.

The expected number of uniquely chosen holes (among the O(K,N) occupied

holes) computes as PR(K,N) · K, see (3.15). The expected number of repeatedly

chosen holes is then given by O(K,N) − PR(K,N) · K. Inserting the probabilistic

expressions and normalizing the expected number of repeatedly chosen holes by K,

I obtain the probability of an unresolvable entry (among K) in the RFID context as

(3.17).





List of Abbreviations

AMP Approximate Message Passing

ASK Amplitude Shift Keying

BAMP Bayesian Approximate Message Passing

BASSAMP BAyesian Structured Signal Approximate Message Passing

CD Correct Detection

CDMA Code Division Multiple Access

CoSaMP Compressive Sampling Matching Pursuit

CRC Cyclic Redundancy Check

CS Compressed Sensing

CSF CS-RFID with fixed signature assignment

CSR CS-RFID with random signature assignment

CW Continuous Wave

DCO Digitally Controlled Oscillator

ECLK External Clock (FPGA to WISP)

EDATA External Data (FPGA to WISP)

EM Expectation Maximization

EPC Electronic Product Code

FA False Alarm



158 List of Abbreviations

FDMA Frequency Division Multiple Access

FPGA Field-Programmable Gate Array

FSA Frame Slotted ALOHA

FSQ Signal Analyzer by Rohde & Schwarz

HF High Frequency

IHT Iterative Hard Threshloding

IoT Internet of Things

IST Iterative Soft Threshloding

LASSO Least Absolute Shrinkage and Selection Operator

LF Low Frequency

M2M Machine-to-Machine

MAP Maximum Aposteriori Probability

MMSE Minimum Mean Squared Error

MRI Magnet Resonance Imaging

MSE Mean Squared Error

NFC Near Field Communication

NMSE Normalized Mean Squared Error

OMP Orthogonal Matching Pursuit

PC Personal Computer

PDF Probability Density Function

PMF Probability Mass Function

RF Radio Frequency

RFID Radio Frequency IDentification

RIP Restricted Isometry Property
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RN16 16-bit random number (tag identifier)

SDMA Space Division Multiple Access

SE State Evolution

SMU Vector Signal Generator by Rohde & Schwarz

SNR Signal-to-Noise Ratio

TDMA Time Division Multiple Access

UART Universal Asynchronous Receiver/Transmitter (interface)

UHF Ultra High Frequency

WISP Wireless Identification and Sensing Platform
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