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Kurzfassung

Eine vernetzte Roboterflotte besteht aus Robotern, die eine gemeinsame Mission durch-
führen können. Da die einzelnen Roboter sich in ihrer Umgebung koordinieren können,
um ihre besonderen, oft heterogenen Kapazitäten bestens in der gemeinsamen Mission
einzusetzen, ist der Einsatz einer Roboterflotte effizienter als der Einsatz eines einzigen
multifunktionalen Roboters. Allerdings ist der Einsatz einer Roboterflotte heutzutage
meistens auf strukturierte und kontrollierte Umgebungen begrenzt, wo die Mission der
Flotte durch ein zentralisiertes System gesteuert wird.

In dieser Doktorarbeit wurden verteilte Steuerungsansätze erforscht und Methoden
und Algorithmen für die Anwendung von Roboterflotten in heterogenen und unstruk-
turierten Umgebungen entwickelt, in denen die Mission in einem Wechselspiel zwischen
Robotern und Menschen ausgeführt wird. In der Arbeit wird ein bereits etabliertes
zentralisiertes Koordinationsverfahren mit mehreren neuartigen verteilten Algorithmen
verglichen. Die Arbeit adressiert neue Anforderungen an die Interkommunikation, die
Aufgabenverteilung, die Koordination und die Zusammenarbeit von Roboterflotten, die
sich aus den Besonderheiten von Flotteneinsätzen ergeben. Insbesondere ist die zuverläs-
sige Kommunikation zwischen den Robotern der Flotte für eine effiziente Koordination
erforderlich.

Dem in der Arbeit entwickelten neuartigen Koordinationsmodell liegt eine effiziente
Aufgabenverteilung zugrunde, die eine komplexe Mission in einzelne Aufgaben unterteilt,
und diese einzelnen Robotern entsprechend ihrer Kapazitäten optimal zuweist. In diesem
verteilten Verfahren unterstützen die Menschen, die an der Mission teilnehmen, die
Flotte bei der Aufgabenverteilung, wenn das formalisierte Wissen über die Aufgaben und
Roboterkapazitäten für den Entscheidungsprozess nicht ausreicht.

So wird der Mensch, der in traditionellen Systemen die Rolle eines Teleoperators
hatte, in diesem System, das Kooperation und Koordination in den Vordergrund stellt,
zu einem Flottenmitglied, das die Steuerungsaufgabe nach Bedarf dem System überlässt
oder sie selbst übernimmt. Dieses Konzept wird als adaptive (Entscheidungs-) Autonomie
bezeichnet.

In dieser Arbeit wurde ein allgemeines Koordinationsframework und verteiltes Ent-
scheidungssystem entwickelt, das auf jedem Roboter der Flotte vorhanden ist und
so zum Einsatz kommt. Das Koordinationsframework wird basierend auf dem Space-
Based Computing (SBC) Middleware Mozartspaces entwickelt, und mittels semantischen
Modellierungs- und Schlussfolgerungseinsetzens erweitert. Das Wissen, das zwischen
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Mensch und Flotte geteilt wird, und für die Entscheidungen bezüglich der Aufgabenvertei-
lung genutzt wird, ist semantisch beschrieben. So vereint dieses Koordinationsframework
die Vorteile der "loose coupling Architektur des SBC Middlewares, die Entscheidungsauto-
nomie der Roboter, sowie Flexibilität in der Datenmodellierung. Für die Evaluierung des
Frameworks wurde eine umfassende Evaluierungsstudie durchgeführt. Die Performance
verschiedener Kooperationsmodelle wurde mittels konkreten Leistungsindikatoren quanti-
fiziert. Infolge wird ermittelt, in welchen Szenarien des Flotteneinsatzes sich verschiedene
Koordinationsmodelle am besten eignen. Die Ergebnisse zeigen, dass adaptive Autonomie
und geteiltes Wissen die Performance der Aufgabenverteilung verbessern.



Abstract

Networked robotic fleet consists of multiple robots with heterogeneous capabilities that
jointly perform a mission. Due to the ability to distribute heterogeneous robots in a
working environment and exploit their cooperation and collaboration capacities, it has
been shown that utilizing a robotic fleet for accomplishing a given mission is faster and
more efficient than using a single robot. However, nowadays, robotic fleets are mostly
limited to execute missions in structured and controlled environments where a centralized
system manages and supervises mission execution.

With the goal to shift a focus from centralized to distributed control systems, this
thesis explores the potential to use robotic fleets in heterogeneous and unstructured envi-
ronments in scenarios requiring collaboration in mixed human-robot teams. It addresses
new challenges related to communication, task allocation, coordination, collaboration,
cooperation, and adaptive autonomy, and compares the well-established centralized
coordination approach with several new distributed approaches. Reliable communication
between distributed heterogeneous team members is a necessary condition for efficient
coordination. An efficient coordination model is a critical enabler for task allocation
which is a fundamental problem in multi-robot systems where the core requirement
is to find an optimal set of heterogeneous robots that have to cooperate to execute
a complex mission. To work together on complex tasks, humans and robots have to
conform to efficient collaboration and cooperation models. The transition to cooperation
and collaboration mode implies the change of role a human has as a remote operator in
traditional systems to the peer who jointly performs tasks with the fleet members.

The thesis focuses on a development of a general coordination framework with a
distributed decision making system deployed on each robot in a fleet. The coordination
framework is based on the Space-Based Computing (SBC) paradigm extended with the
Semantic Web Technologies resulting in semantic shared data space which allows anno-
tating shared data with machine-understandable metadata. While the SBC paradigm
provides for strongly decoupled architecture and preserves autonomy of the interacting
team members, processing the metadata introduces flexibility in modelling collaboration
processes in the fleet. For the evaluation of the developed coordination framework, estab-
lished is a comprehensive benchmark setting utilized to quantify concrete performance
indicators of different coordination approaches. Moreover, it is analyzed which scenarios
are best suited for the developed coordination approaches. The results indicate that
adaptive autonomy and shared knowledge improve performance in task allocation in
complex missions.
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CHAPTER 1
Introduction

A networked robotic fleet consists of multiple robots with heterogeneous capabilities that
jointly perform a mission [78]. Utilizing a heterogeneous robotic fleet for accomplishing a
given mission has been shown faster and more effective than using a single robot because
of the ability to distribute robots in a working environment and utilize their cooperation
and collaboration capabilities [126], [123], [89]. However, nowadays, robotic fleets are
mostly limited to operate in controlled and structured environments where they are
managed from one central place where a human operator supervises mission execution
[19].

This thesis explores the potential to use robotic fleets in heterogeneous and unstruc-
tured environments in scenarios requiring collaboration in mixed human-robot teams.
It addresses new challenges related to communication, task allocation, coordination,
collaboration, cooperation, and adaptive autonomy, and compares the well-established
centralized coordination approach with several new distributed approaches. Reliable
communication between distributed heterogeneous team members is a necessary condition
for efficient coordination [128]. An efficient coordination model is a critical enabler for
task allocation which is a fundamental problem in multi-robot systems where the core
requirement is to find an optimal set of heterogeneous robots that have to cooperate to
execute a complex mission [109]. To work together on complex tasks, humans and robots
have to conform to efficient collaboration and cooperation models [41].

This thesis deals in particular with coordination, collaboration, and adaptive autonomy
within heterogeneous robotic fleets. The transition to cooperation and collaboration mode
implies the change of role a human has as a remote operator in traditional systems to the
peer who jointly performs tasks with the fleet members [47], [55]. The level of human
involvement in decision-making processes depends on the level of autonomy, i.e., adaptive
autonomy, a robot has in a certain moment [124]. Human capabilities are captured in
the concept of adaptive autonomy which defines up to what extent a human can interfere
with the robots and thus increase the robustness of the system and minimize the impacts
of unstructured environments.
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Space-based computing (SBC)1 paradigm has been established as a technology to
provide agile coordination capabilities that can meet requirements in distributed multi-
actor systems. The introduced paradigm provides communication and coordination
mechanisms upon the blackboard model, i.e., communication and coordination between
distributed entities is implemented by reading and writing data to a shared space. To
support data exchange between heterogeneous actors, the SBC paradigm is extended with
the Semantic Web Technologies [161] resulting in semantic shared data spaces [10] which
allow annotating the shared data with machine-understandable metadata. While the
blackboard model provides for a strongly decoupled architecture and preserves autonomy
of the interacting team members, processing the metadata promotes the extraction of
additional information from the existing data in the space. Consequently, semantic spaces
combine the concepts of knowledge description languages and inference mechanisms with
the space-based interaction mechanisms to address many of the aforementioned problems.

Having recognized the potential of integrating semantics with the SBC paradigm,
several semantic space systems have been developed [42], [134], [107], [67], [10], [103].
While these implementations served as a proof-of-concept for the semantic spaces approach,
they also revealed that there still exist unaddressed conceptual problems to solve. In
particular, the following has not yet been investigated: (1) how the semantically enriched
coordination framework benefits from the semantic support to overcome heterogeneous
system resources, (2) to what extent does the semantic extension of the SBC paradigm
facilitate transition from a centralized to a distributed coordination approach, and (3)
what is the impact of shared knowledge on adaptive autonomy.

Providing solutions to these problems defines the scope of this thesis. Firstly, the
proposed design abstracts the underlying heterogeneity issues using an ontology-based
Model-Driven Architecture approach which formalizes the addressed heterogeneous re-
sources by means of ontologies. Secondly, it utilizes an implementation of semantic spaces
[69] to implement three different coordination approaches that reflect the transition from
centralized to distributed coordination while addressing the aforementioned challenges.
And finally, implemented is a framework which demonstrates the use of shared knowledge
as a basis for adaptive autonomy in mixed teams.

The remainder of this section is structured as follows. Section 1.1 introduces precision
farming as a reference use case. Section 1.2 describes in detail each of the problems
that arise with the transition from centralized to distributed coordination approach in
order to support different levels of robots’ autonomy, i.e., adaptive autonomy. These are
presented in a form of research questions addressed in this thesis. The approach and
contributions are outlined in Section 1.3 and the method for evaluating the proposed
approach is described in Section 1.4. Finally, an overview of the thesis structure is given
in Section 1.5.

1www.spacebasedcomputing.org
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1.1 Precision Farming as a Use Case

An inspiring use case which requires collaboration of humans and robots in unstructured
environments is a precise management of agricultural land. The aim of the precise
management is to diminish the use of chemical inputs and improve crop quality and
humans’ safety, as well as to reduce production costs, by using a fleet of heterogeneous
robots equipped with advanced sensors and actuators. In particular, the precision farming
scenario introduced in the RHEA 2 project provides motivation and requirements for this
thesis.

The RHEA scenario starts with a field inspection performed by two aerial mobile units
equipped with high-resolution cameras taking the field photos to elicit the growth stage
of crop and the diffusion of weed. After the inspection, the centralized fleet management
system (base station) assists a human acting as a system operator in choosing a suitable
robot configuration for field treatment. The selection of a configuration takes into account
multiple parameters such as the type of tasks to be performed, e.g., spraying, flaming,
or tilling tasks, the number of available robots (tractors) and skills they provide, i.e.,
implements they have, as well as field information. Additionally to the task type, each
task requires some amount of resources to be executed, e.g., spraying resources, flaming,
or tilling resources. Therefore, selected configuration denotes a set of robots where each
robot provides some skills and resources to execute more of these tasks.

In the precision farming the complexity of agricultural lands stems from applying
more treatment strategies in order to increase crop quality, e.g., instead of utilizing
chemical inputs on a crop filed, the crop field can be tilled and flamed. In contrast to
traditional farming where each task requires only one skill for complete execution, i.e., a
simple task, in the precision farming tasks require more than one skill for a complete
execution, e.g., a task that requires a combination of tilling and flaming skills. In a
specific scenario a task can require even more than two skills for a complete execution.
However, agricultural robots are still rather simple and usually provide only one skill.
Thus, in most cases two or more robots would have to collaborate to execute such a task
where each robot provides at least one matching skill, i.e., each robot provides either
a tilling or a flaming skill. If there would exist a robot which provides multiple skills,
it could completely execute such a task. In the thesis these tasks are named complex
tasks. Independently of task complexity, all tasks are assembled in a mission which is
successfully finished only when all tasks are executed.

In addition to the heterogeneous robots, there are two main roles assigned to human
operators in the referenced agriculture scenario, i.e., a fleet owner who leases out his/her
heterogeneous robotic fleet (a configuration) consisting of multiple tractors with different
implements able to perform different tasks, and a farmer who owns a field which has to
be cultivated. The fleet owner can also be a fleet operator responsible for selecting a
suitable strategy for a field treatment. When during a mission execution a robot tries to
execute a task that requires a human intervention, it has to consult the operator who
decides whether the robot has necessary skills and resources to execute the task. The

2http://www.rhea-project.eu
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robot can also consult the fleet operator for assistance if there are ambiguities during the
execution of the task. In that case the operator decides whether the robot has compliant
skills and needed amount of resources to execute the task. Upon receiving confirmation
from the human, the robot is allowed to proceed with regular task execution.

However, the intention of this thesis is to develop a general coordination framework
which will improve the existing RHEA scenario. The components to be improved are
addressed with the research questions listed in the next section.

1.2 Problem Description and Research Questions

The scope of this thesis is defined by the research questions derived from the subsequently
described problem domains.

1.2.1 Heterogeneity and Complexity in Unstructured Environments

Advances in the perception and locomotion technology enable a robotic fleet to extend its
operating field to heterogeneous and unstructured environments and scenarios requiring
collaboration in mixed human-robot teams. Unstructured operating environments,
like agricultural fields, are characterised by dynamically emerging tasks that require
collaboration of multiple heterogeneous robots, and potentially a human involvement,
to solve a task. Due to the lack of semantically modeled resources, many coordination
frameworks are limited to a specified set of skills applied in a specific domain [110], [1],
[65], [127], [99], [53]. In particular, they are constrained to utilize only a predefined set
of available skills, e.g., spraying robots, and thus require extensive adaptation in code
to support new skills and dynamically emerging tasks. Consequently, their operation is
highly limited to structured domains.

Due to the operations in unstructured environments, a fleet owner who rents robots
would benefit from a robotic framework which is not coupled to a specific operating
environment, rather which is able to operate in various agricultural fields without
adapting the underlying implementation. To address different challenges related to each
operating environment, e.g., different number of tasks, different tasks’ complexity, different
coordination policies, the robotic framework should support operation of different robotic
fleets, i.e., configurations. Moreover, the fleet owner should be able to operate different
robotic fleets within the robotic framework without changing the underlying framework
implementation. Consequently, it is necessary that the fleet owner has various robots
which can be combined in a fleet and thus enable operation in different environments. This
approach contrasts to the traditional frameworks, referenced in the previous paragraph,
where a single robotic fleet is designated to operate only in one environment.

The problem extends to having a single coordination framework that is neither coupled
to a specific configuration of robotic fleet nor the working environment. Due to the agility
of the space-based middleware XVSM3 (eXtensible Virtual Shared Memory) [21], [22], in

3www.xvsm.org
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particular its Java-based implementation MozartSpaces4, supported by means of different
components such as a shared space that enables a communication between distributed
and heterogeneous entities, different coordination capabilities, as well as notification
mechanisms, and its efficiency in robots coordination demonstrated in [74], it is decided
that the general coordination framework will extend those components and combine them
with the Semantic Web Technologies [161] to account for heterogeneous resources. On
the one hand, XVSM introduces the concept of containers which enable communication
between distributed entities by reading and writing data to a container. XVSM con-
tainers implement various coordination patterns and notification mechanisms to support
coordination capabilities between distributed entities. On the other hand, semantic
extension of XVSM facilitates annotation of shared data with machine-understandable
metadata and thus enables distributed robots to overcome heterogeneity issues and have
a common understanding of exchanged data. Moreover, the general framework should
be independent of operating environment and also support mixed human-robot teams
as well as different coordination policies. Therefore, the following research questions
summarize the problem statement.

RQ.1 Extending Semantic XVSM to prevail heterogeneity issues How to
semantically enrich the XVSM coordination framework to support heterogeneous resources
and changing coordination policies in robotic fleets? How to promote the semantics for
dynamic resource discovery and to utilize it for sharing knowledge within a robotic fleet?

1.2.2 Distributed Task Allocation

The centralized architecture approach addressed in RHEA scenario where the system
operator is responsible for selecting a suitable strategy for a field treatment, is practised
in traditional agricultural missions where a base station is a central place which manages,
coordinates, makes decision, collects data, instructs, and monitors all robots in a fleet.
Consequently, this limits robots’ autonomy to a very few basic functionalities, e.g., small
adjustments related to path correction in a field. Thus, to perform any operation that is
not in the original mission plan, e.g., if a robot wants to autonomously select a task to
execute, it has to contact the base station where a human operator, e.g., a fleet owner,
defines new mission parameters, e.g., reschedules a task. Another limitation pertains to
the inability of multiple robots to collaborate on the execution of complex agricultural
tasks. Additionally, since all data are stored at one central place, the robots are unable
to retrieve data from neighbours at the time data are generated. This may be a big
disadvantage because the mission is running in real-time and having data at the right
moment may improve the overall efficiency of a performed mission.

Thus, the challenge is to design a distributed decision making system that ensures
reliable data distribution among robots and provides efficient distributed coordination
and collaboration of robots to secure successful mission execution. A critical enabler for
successful mission execution is an efficient task allocation that influences coordination

4www.mozartspaces.org
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between heterogeneous team members. In particular, the problem is lack of mechanisms
that enrich distributed robots with additional information that increases their autonomy
and enables them to carry out autonomous decisions crucial for building collaboration
patterns for the execution of complex tasks. This, however, implies mechanisms that
support robot-robot coordination activities. Moreover, the distributed decision making
system has to address the problem of spatial interference when multiple robots collaborate
on the same task. Furthermore, it is often unclear, with respect to which key performance
indicators, does a distributed coordination approach outperform the centralized one.
Accordingly, the following research questions summarize the problem statement.

RQ.2 How to utilize Semantic XVSM for distributed task allocation How
the Semantic XVSM supports transition from a centralized to a distributed coordination
approach by increasing robots’ autonomy in a fleet and how it models mechanisms to
distribute critical data that drive robots’ autonomous decisions?

1.2.3 Shared Knowledge for Adaptive Autonomy

The undergoing transition is perceived as a decentralization process where the robot
control, previously limited only to a centralized fleet management system, is spread to
all participants with adaptive levels of autonomy. This implies the change of the role a
human operator, i.e., a fleet owner, had before as a remote operator at the base station.
Consequently, the fleet owner will jointly perform tasks with robots in a fleet where its
involvement depends on the level of autonomy a robot exhibits in a certain moment.

This entails that a fleet owner acts as a peer in a robotic fleet who shares knowledge
with peers to increase mission efficiency. A critical enabler for successful mission execution
is an efficient task allocation that influences coordination between a human and robots.
To work together, a human and robots have to collaborate and coordinate effectively.
Therefore, the problem is to model the shared knowledge and human-robot interaction
mechanisms to be able to evaluate different coordination aspects as well as adaptive
autonomy. The adaptive autonomy should take into account the requirements of human-
robot interactions which are important in many types of missions. When a complex task
emerges during the robot’s autonomous operation in an agricultural field, the human
operator can either assign the task to robot or, if the task is automatically assigned to
the robot, the robot may need to acquire additional help from the human who interacts
directly with the robot during a mission. In that way robots extend their decision-making
mechanisms to a human operator, i.e., the fleet owner.

Therefore, the research strives to develop new coordination protocols between robots
and humans by utilizing advantages, such as scalability, high-performance, distributed
object exchange, and coordination mechanisms, of a space-based architecture comple-
mented with ontology and reasoning capabilities provided by semantic technologies.

RQ.3 Modeling of shared knowledge for adaptive autonomy How to model
the shared knowledge and how to distribute it between heterogeneous robots and a
human operator in order to support adaptive autonomy? How to utilize distributed
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shared knowledge to implement human-robot interaction mechanisms and to evaluate
different aspects of adaptive autonomy?

1.3 Approach and Contribution

This thesis designs a novel coordination approach applicable to different configurations
of a robotic fleet that utilizes human interaction and operates in unstructured and
heterogeneous environments. First two chapters (Chapter 2 and Chapter 3) introduce
background technologies and review existing coordination and task allocation approaches
used as a basis for the design of our coordination approach. Our approach is structured
and presented in three main parts:

The first part (Chapter 4) attempts to give a comprehensive answer to the first
research question, the question that addresses heterogeneity problems in multi-robot
systems. Multi-robot systems heavily rely on dynamic and intensive collaboration to
provide interoperability between heterogeneous autonomous robots. In this thesis, the
notion of interoperability is narrowed down to the model of task allocation. Achieving
an efficient task allocation, and thus interoperability, is a challenging task which requires
to address the following issues: (1) heterogeneity of resources, i.e., robots and tasks
to execute, (2) coordination which manages the possible interactions between involved
parties, (3) dynamic resource discovery and utilization, (4) sharing knowledge within a
robotic fleet, and (5) domain independent and flexible collaboration approach.

To overcome the semantic discrepancies stemming from the integration of hetero-
geneous components, ontologies are utilized, i.e., formal descriptions to specify and
conceptualize knowledge. They are machine-readable, shareable, and enable reasoning
to infer new information. Utilizing ontologies formalizes modeling of domain knowledge
and simplifies the design of coordination patterns between robots which otherwise is
a complex and cumbersome task [73]. Here, the contribution of the thesis is a Model-
Driven Architecture (MDA) approach that separates among the specification of system
functionality and their implementations.

The second part (Chapter 5 and Chapter 6) introduces design and implementation
details of a general coordination framework named Shared Knowledge Interaction Model-
ing framework (SKIM) which is the main contribution of this thesis. These two chapters
present three specific coordination approaches referred to as centralized SKIM (cSKIM),
distributed SKIM (dSKIM), and hybrid SKIM (hSKIM). In particular, it is described
how each of these coordination approaches addresses the following: (1) task allocation
problem, (2) task transfer model from a central task repository to a robot and between
robots, (3) knowledge-based resource matching algorithms, (4) robustness support, and
(5) decision-making mechanisms. Moreover, hSKIM models human interactions in the
system as well.

The objectives of SKIM are: (1) to model shared knowledge as a basis for adaptive
autonomy in mixed teams and to investigate its impact on task allocation, and (2) to

7



evaluate the performance of finding a set of robots to execute a certain task. To address
these challenges, SKIM utilizes the semantic approach and describes the collaboration
activities by means of ontologies: SKIM Resource Ontology (SKIM-RO) and SKIM
Coordination Ontology (SKIM-CO). With respect to the three coordination approaches,
hSKIM is the most advanced because robots have their local decision-making systems
which reason on SKIM Coordination Ontology to determine the level of autonomy. Finally,
these three coordination approaches are evaluated with respect to the defined parameters,
i.e., a task allocation rate, communication overhead, a utilization rate, a load balancing,
and mission duration. Moreover, a setup is characterized, in which the hSKIM framework
outperforms the other two.

The third part (Chapter 7) describes various test cases that evaluate the impact
of shared knowledge between a human and the robots in terms of the several different
performance measures. To work together, humans and robots have to collaborate and
coordinate effectively and thus one of the main challenges in evaluating coordination
performance in mixed teams is how to model which knowledge is shared among team
members. Shared knowledge enables various autonomy levels, i.e., adaptive autonomy.
The adaptive autonomy allows autonomous robots to acquire additional help from a human
who directly interacts with them during a mission. The most demanding application of
an autonomous robotic fleet with a human-robot interaction is in catastrophic scenarios
such as fire, earthquake, floods, and humans search and rescue missions.

hSKIM supports the model of shared knowledge between robots and a human using
the inference-based task allocation algorithm which performs reasoning on SKIM-CO.
The result of reasoning is a set of tasks mapped to a set of matching robots. The
inference-based task allocation algorithm in hSKIM influences two coordination models:
(1) robot-robot, and (2) robot-human. Robot-robot coordination model is based on
reasoning on the SKIM-CO ontology which enables a robot to determine own level of
autonomy in decision-making, e.g., whether to involve a human in the task allocation
process. Robot-human coordination model enables the human to interact with a fleet in
two different ways. Firstly, observing the task allocation process, the human can apply
shared knowledge to allocate a task which was not allocated in the inference-based task
allocation process. Alternatively, a robot can ask a human for assistance while executing
a complex task.

1.4 Framework Evolution Methodology

The two following sections introduce methods and the evaluation of the proposed coor-
dination framework. The former describes how the prototype framework was evolving
by sequentially implementing three coordination approaches, i.e., cSKIM, hSKIM, and
dSKIM. The latter introduces evaluation setup used for comparing implemented coordi-
nation approach.
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1.4.1 Methods

Reliable data distribution among robots and efficient coordination of robots directly
influence the level of autonomy a robot has. This thesis addresses adaptive autonomy
concept by utilizing the space-based paradigm and semantic technologies. In order to
semantically describe resources and processes, an extended MozartSpaces is used what
provides semantic support [69].

Firstly, the SKIM-RO was developed to model heterogeneous resources in a system.
Developed ontology was imported in Semantic XVSM where it served as a basis for
modeling robots’ capabilities and task requirements. On the other hand, a simple
coordination mechanism based on Semantic XVSM was designed as a proof-of-concept.
This proof-of-concept had a centralized task repository and distributed robots which
were able to interact only with the repository. This implementation resembled cSKIM
coordination approach. Moreover, it integrated the area decomposition algorithm and
the space-based paradigm with underlying semantics and thus provided a robust and
scalable middleware for a task allocation in multi-robot systems. Two important features
in cSKIM were: (1) the area decomposition which ensured that each robot operated in
own cell and therefore decreased spatial interference between robots which left the robots
more time to focus on a domain work, and (2) Semantic extension for MozartSpaces
that provided a data model which automatically translated heterogeneous resources
into the common objects understandable by all team members. Although the cSKIM
framework integrated two different technologies, MozartSpaces and semantics, it retained
complete set of functionalities from both, i.e., coordination mechanisms and transactions
support from MozartSpaces and query and reasoning capabilities endowed by semantic
technologies.

Since a critical enabler for task allocation is an efficient coordination between hetero-
geneous team members, human and robots have to collaborate and coordinate effectively.
Consequently, SKIM framework utilized the semantic approach to describe the collabora-
tion activities by means of ontologies: SKIM Resource Ontology (SKIM-RO) and SKIM
Coordination Ontology (SKIM-CO). SKIM-RO described resources, including robot
capabilities and task requirements, and SKIM-CO described coordination constraints
for robot-robot and robot-human interactions. Hence, these ontologies were used as the
model of shared knowledge and the decisions were results of automated reasoning on
them. The SKIM framework, as a simulation environment for performance evaluation
of task allocation algorithms, was built on space-based middleware which was already
demonstrated as an efficient platform for developing robotic functionalities [74]. Moreover,
in SKIM approach, the ontology-based shared knowledge description was used not only
to describe robot resources and task requirements, but also to represent capabilities of
the human in the decision-making process. Thus, by reasoning on this ontology, each
robot was able to decide if further interaction with the human is necessary, i.e., whether
to involve him/her in task allocation.

The extension of the existing cSKIM coordination approach, which modeled a shared
knowledge and thus enabled human interaction, is called hybrid SKIM (hSKIM). However,
since hSKIM partially utilized the central component, it was not completely distributed
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system. Therefore, developed is distributed SKIM (dSKIM) which utilized the central
component only at the beginning to distribute task to robots. To conclude, there were
three different coordination approaches referred to as cSKIM [26], dSKIM, and hSKIM.

1.4.2 Evaluation

The first part of the evaluation was performed to acquire initial performance and scalability
metrics of Semantic XVSM. Conducted experiments were focused on finding an optimal
fleet size with respect to the coordination complexity which implicity influences mission
duration. To emphasize SKIM generality with respect to the application domains, all
three coordination approaches were evaluated in three different scenario classes using
five different configurations of a robotic fleet. The same coordination approaches were
evaluated with respect to the various performance metrics, i.e., a task allocation rate,
communication overhead, a utilization rate, a load balancing, and mission duration.
These metrics have been designed specifically for the benchmarking of various SKIM
based coordination approaches and can therefore also be applied to measure performance
of other coordination frameworks which have a set of robots required to execute a set of
tasks.

After that, the focus is shifted to the evaluation of hSKIM coordination approach
with respect to the different levels of adaptive autonomy. Then, it is evaluated how
the ontology-based Model-Driven Architecture approach facilitates the addressing of
changing requirements in a robotic fleet, i.e., in a configuration, as well as in an operating
environment, i.e., in a scenario. The evaluation concludes with an overview and recom-
mendations on selecting an appropriate coordination approach based on an available
scenario and a configuration considering evaluated parameters.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2. Background Technologies provides an overview of the technologies uti-
lized in the scope of this theses and discusses their advantages and disadvantages.

Chapter 3. Related Work reviews existing frameworks for task allocation and co-
ordination in robotic fleets as well as adaptive autonomy in mixed human-robot
teams.

Chapter 4. Ontology-based Approach for Task Allocation introduces ontologies
as a semantic concept to overcome the semantic discrepancies inherited by integrat-
ing heterogeneous components. Introduced ontologies specify and conceptualize
knowledge using a formal description that is machine-readable, shareable, and
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enables reasoning to infer new information.

Chapter 5. SKIM - Shared Knowledge Interaction Modeling Framework
proposes the design of main building blocks of the Shared Knowledge Interaction
Modelling (SKIM) framework. SKIM framework is designed to investigate model
of shared knowledge as a basis for adaptive autonomy in mixed teams and to
evaluate its impact on task allocation.

Chapter 6. Implementation of SKIM Framework describes implementation de-
tails of the components addressed in the previous section. Described components
are enablers to build a generic architecture that the developed SKIM framework
complies with. Moreover, implemented are three different coordination approaches
based on the semantic extension of the Space-Based Computing architectural style.

Chapter 7. Evaluation and Discussion presents the results of the evaluation of the
general SKIM coordination framework which is based on the semantic extension
of the Space-Based Computing architectural style, i.e., Semantic XVSM, and
discusses these results with regard to the specified research issues. To emphasize
SKIM generality in the sense of application domains, introduced are three scenario
classes and different configurations for the framework evaluation.

Chapter 8. Conclusion summarizes the developed approaches and results of this
thesis, presents findings and conclusions, and describes future research.
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CHAPTER 2
Background Technologies

This chapter summarizes the technologies utilized in the scope of the thesis. The first
section introduces the Semantic Web Technologies1 that enable the development of
platform-independent domain models and knowledge. The benefit of using semantics
for task allocation is twofold: (1) an ontology that models domain knowledge provides
uniform description of heterogeneous and distributed resources, i.e., tasks and robots,
and (2) semantically annotated resources enable accurate resource matching. The second
section presents the Space-Based Computing (SBC)2 architectural style. Due to the agility
and adaptability with respect to the different coordination patterns in multi-robot systems
operating in distributed and heterogeneous environment, XVSM3 (eXtensible Virtual
Shared Memory) [21], [22] is selected as the reference architecture for the realization
of the SBC paradigm. After that introduced is the notion of Semantic Spaces that
combines Semantic Web Technologies with the SBC paradigm. The focus is on the
existing implementations of Semantic Spaces as well as on the Semantic XVSM [69] which
is used in SKIM framework. Finally, the section is concluded with the comparison of
Semantic Spaces implementation.

2.1 Semantic Web Technologies

As envisaged by Tim Berners-Lee [161], the main idea of the Semantic Web is to enable
data publishing in such a way that allows autonomous computer systems to retrieve
and process the data without requiring human interaction; in particular, to produce and
publish machine-understandable information. An example of such a task is planning
a journey which requires searching, collecting, and processing data from different and
heterogeneous online resources. Apart from the automation of daily tasks, it is expected

1www.w3.org/standards/semanticweb/
2www.spacebasedcomputing.org
3www.xvsm.org
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that the processing of such vast amount of information on the Web will result in the
emerge of completely new information which was not recognized so far.

However, to realize the idea of Semantic Web, several issues have to be tackled: (1)
define mechanisms for a knowledge representation, (2) define and develop algorithms for
a knowledge evaluation, and (3) define mechanisms for automated annotation of already
existing information on the Web. Moreover, standards and tools for these concepts have
to be defined and established.

The following sections describe the most important and most used Semantic Web
technologies and standards.

Figure 2.1: The Semantic Web Stack [161]

2.1.1 The Semantic Web Stack

The Semantic Web Stack [161] describes the layered architecture of the Semantic Web.
Figure 2.1 reflects the representation of this architecture where some layers are still under
research and thus subject to changes. According to [161], the single layers of the Semantic
Web Stack are often grouped into the following three categories: (1) Hypertext Web
technologies, (2) standardized Semantic Web technologies, and (3) unrealized Semantic
Web technologies.

Hypertext Web Technologies

This presents the bottom layer of the Semantic Web Stack which encompasses already
established Web technologies. IRIs 4 are used for the unique identification of resources
and Unicode 5 is utilized for referencing and describing resources. The use of IRIs in the
classic Web is limited to referencing documents and hypermedia. In contrast, the use of
IRIs in the Semantic Web is used to describe any kind of artefact.

4IRI (Internationalized Resource Identifier): a generalization of URI (Uniform Resource Identifier)
5http://www.unicode.org
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The most widely used data formats for describing structured data are based on XML.
However, the Semantic Web Stack does not prescribe any particular data format, rather
it provides a basis for other formats supporting the overlying RDF layer.

Standardized Semantic Web Technologies

The middle layer of the Semantic Web Stack encompasses technologies which have, during
the time, reached a certain level of maturity, have been standardized, and are widely
adopted.

The most established technology in this part of the Semantic Web Stack is Resource
Description Framework (RDF) [169] which utilizes graphs for information description.
RDF is designed with the purpose to describe data in the Web and thus uses IRIs to
define nodes and edges in an RDF graph (see Section 2.1.2).

The concept of RDF graphs serves as a basis for the overlying layer. The next layer,
i.e., ontology, processes the provided RDF graph to infer additional data from it by means
of ontologies. Ontologies conceptualize a particular knowledge domain by extracting
objects and their relations to infer new information. A language for defining ontologies
is RDF Schema [168] which is suitable for defining rather simple ontologies with basic
hierarchical structures, e.g., subClassOf. If more complex relationships are required,
more powerful ontology language, like Web Ontology Language (OWL) [166], is needed.
Reasoning engine is a tool necessary to process the information modeled in an ontology
and, consequently, represent inferred information in an RDF graph.

Once when the provided and inferred data are present in the system, i.e., RDF graph,
there should be a mechanism which will allow to query the data to extract particular
information. Thus, the next layer on the Semantic Web Stack introduces a special query
language named SPARQL [170]. SPARQL query is built of query statements which
define graph patterns and are executed against very large RDF graphs. If the underlying
RDF graph has reasoning capabilities, the result may not only contain explicitly defined
information, but also the information inferred by using the ontology.

Unrealized Semantic Web Technologies

The upper layers of the Semantic Web Stack are still subject to research and have not
yet been applied in a wider industrial setting. Technologies like Rule Interchange Format
(RIF) [167] and Semantic Web Rule Engine (SWRL) [164] pertain to the extension of
the Semantic Web Stack with support for rule based approaches with the sole purpose to
infer new knowledge. These technologies support defining relations between resources
which cannot be modeled with OWL.

In the Unifying Logic layer, the above introduced rules are evaluated to conclude
whether certain statements are true or not. This layer utilizes information collected in
the Proof layer to evaluate the statements and the evaluation process itself. The top
layer in the Semantic Web Stack, i.e., Trust layer, checks whether the statements utilized
in the evaluation process can be trusted or not. The Trust layer employs diverse security
and trust mechanisms with the purpose to guarantee the authenticity of information.
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Next section describes RDF as the most established technology in the middle layer of
the Semantic Web Stack.

2.1.2 RDF

The Resource Description Framework (RDF) [169] defines a series of W3C 6 standards
for the representation of both, data and meta-data. RDF describes all kinds of data using
directed labeled graphs, i.e., vertices and labels. Described data are defined with a triple
<subject, predicate, object> where the subjects and objects are vertices, and the predicates
are directed edges of the directed graph. Usually, a triple is called RDF statement and
the predicate of a triple is RDF property. Each field in a triple is represented by an IRI
which points to a real Web resource that usually describes the resource. The object field
can be represented by a literal value.

Figure 2.2: RDF graph example

Figure 2.2 depicts an example of RDF graph consisting of 8 triples describing a robot
(: robot_1) which is a main actor in the use case presented within the thesis. Gray
entities in Figure 2.2 are resources and yellow ones are literal values assigned to these
resources. The robot is described with three RDF properties (:hasSkill, :hasPosition,
and :needsResourceAmount) creating four triples. The RDF property :hasSkill is utilized
twice meaning that the robot (: robot1) has two skills, each with a different name. To
increase readability, IRIs describing fields in a triple are extended by the defined prefix
value. This is similar to XML Namespaces [163] in a XML document. Resources with
a default prefix, i.e., defined by a standalone colon, point to an ontology that defines
general concepts in the use case domain and their relations. Those IRIs with the prefix
:foaf refer to the FOAF Vocabulary Specification for describing people and their relations

6http://www.w3.org/
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to other. Although the FOAF specification does not perfectly fit in the agricultural use
case, it is the best practice to reuse existing RDF properties instead of creating new ones
when building an ontology.

There are several common serialization formats defined for the exchange of RDF data:
XML/RDF [159], Turtle [160], N3 [162], and N-Triples [165].

2.1.3 RDF Schema

RDF Schema [168] is a W3C Recommendation that defines how to specify RDF Vocabulary
for describing a specific knowledge domain. Similar to FOAF Specification used in Figure
2.2, RDF Schema describes types and relationships between resources, e.g., classes
and properties. The main advantage of RDF Schema is the ability to infer additional
information from a provided set of RDF triples. For example, if a class Tractor is defined
as a subclass of a class Robot, i.e., (:Tractor rdfs:subClassOf :Robot), and the (: robot_1)
is of type Tractor, i.e., (:robot_1 rdf:type :Tractor), then it can be inferred that this
resource is also of type Robot, i.e., (:robot_1 rdf:type :Robot). Hence, RDF Schema is not
only used to describe resources and their relations, but also to derive new information
based on the defined concepts. Therefore, RDF Schema is a simplified and limited form
of an ontology language.

The following are most important and widely used concepts defined in RDF Schema:

• Classes: every resource can be defined as a class where the class is either a predefined
RDF Schema class, e.g., rdfs:Resource, rdfs:Literal, or it is self-defined with RDF
Schema concepts [100].

• Properties: RDF Schema supports definition of hierarchical properties, e.g.,
rdfs:subPropertyOf, as well as the domain and range of a property, i.e., ensuring
that the property is only applicable to specific resource types.

However, if more complex relationships are required in a working knowledge domain,
a more powerful ontology language, like OWL, is desirable.

2.1.4 OWL

Web Ontology Language (OWL) [166] is a knowledge representation language for the
definition of ontologies. Same as RDF Schema, ontologies are represented with RDF
graphs and thus are suitable to infer additional information from the explicitly provided
information. The inference in OWL is based on Description Logic [2] and applies the
Open World Assumption, i.e., if a statement cannot be proven to be true, it does not
mean that the statement is false.

Besides support for the features of RDF Schema, OWL additionally provides the
following concepts which can be utilized to facilitate ontology design:

• Property characteristics: properties can describe functional, transitive, symmetric,
or inverse relations between resources, e.g., owl:FunctionalProperty,
owl:SymmetricProperty, owl:TransitiveProperty, owl:InverseOf.
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• Property restrictions: limit a property to have a particular value, e.g., owl:hasValue,
owl:someValuesFrom, owl:allValuesFrom, or to define cardinality of a property, e.g.,
owl:cardinality.

• Ontology alignment: supports mapping between resources originating from different
ontologies, e.g., owl:equivalentClass, owl:equivalentProperty, and defining that two
individuals, i.e., instances of a class, are either same, e.g., owl:sameAs, or distinct,
e.g., owl:differentFrom, owl:AllDifferent.

• Class expressions: complex classes in an ontology can be defined using the set
operators, e.g., owl:intersectionOf, owl:unionOf, owl:complementOf.

Above listed OWL language constructs provide a very expressive mechanism for
modeling domain knowledge. Due to the large expressivity, the modeling of domain
knowledge can become extremely complex. Therefore, OWL defines three sub-languages
where each language supports reasoning on different OWL language constructs.

• OWL Lite: supports a subset of the OWL language constructs to define classification
hierarchies and simple constraints.

• OWL DL: supports all OWL language constructs, but introduces several limitations
on the usage of these to ensure that OWL DL ontologies are always complete and
decidable, i.e., all inferences are guaranteed to be computed and all computations
will finish in finite time [100].

• OWL Full: similar to OWL DL, it supports all OWL language constructs, but does
not introduce any limitations.

OWL could be used to define an ontology describing individuals and their relations
on the RDF graph represented in Figure 2.2. The ontology can define a class which can
be described in a following way: Something that has a position, one or more skills, and a
resource amount, is a Tractor. A reasoning engine could then infer that the individual
(: robot_1) is of type Tractor.

2.1.5 SPARQL

SPARQL [170] is a query language for data represented as RDF graphs. A SPARQL
query is designated as a graph pattern consisting of a set of triple patterns where each
triple pattern describes an RDF triple. In each RDF triple one or multiple fields can
be substituted with variables. All possible combinations of those variables, with a valid
binding, represent the result of a SPARQL query.

Listing 2.1: SPARQL query

PREFIX: <http :// mozartspaces . org / semantic /mult iagent#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
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SELECT ? r ? s ?n
WHERE {

? r rd f : type : Tractor .
? r : h a s S k i l l ? s .
? s f o a f : name ?n .

}

The Listing 2.1 illustrates an example query with a graph pattern consisting of three
triple patterns. The query selects all skills that resources of a type Tractor have. Upon
executing the query on the RDF graph from Figure 2.2, the result set will contain variable
bindings shown in Table 2.1.

Table 2.1: SPARQL query results

?r ?s ?n
: robot_1 : skill_a "Flaming"
: robot_1 : skill_b "Spraying"

SELECT query form was used in the query above and therefore the results mirrored
in a table structure. However, SPARQL also supports other types of result presentation
which are defined by the CONSTRUCT and ASK query forms [100]. The CONSTRUCT
query form returns a graph data structure reflecting variable bindings, while the ASK
form can be used to find out whether any results are available in a graph for a specific
query. Moreover, the most important part of a query is WHERE clause where triple
patterns are specified. Triple patterns encompass variables which are later, during the
query evaluation, bounded to the calculated values. Although not used in the above
query, the FILTER statement is commonly used in queries to filter out statements based
on the bounded values. More detailed description of various SPARQL constructs can be
found in [170].

Due to the graph-based data model, SPARQL provides at the same time a powerful,
yet, easy to learn and use query language.

2.1.6 Triplestore

What a relational database is in the traditional software systems, that is a triplestore in
Semantic Web. The sole purpose of a triplestore is to manage and persist data structured
in RDF graphs. Persisted data can then be fetched utilizing the capabilities of SPARQL
query language. Moreover, some triplestores integrate a reasoner enabling an executed
SPARQL query to return inferred data as well.

Most popular Java implementations of a triplestore with an open source licences are
Apache Jena [155] and Sesame [156]. Both implementations support SPARQL and can
manage in-memory persistence. Moreover, Jena includes an open source reasoner for
OWL 1, but for more complex ontologies it is advised to use an external reasoner, e.g.,
Pellet [158].

19



2.2 Space-based Computing

Since the XVSM is already demonstrated as an efficient platform for developing robotic
functionalities [74], it is chosen as the reference implementation of the SBC paradigm.
XVSM supports communication and coordination between heterogeneous and distributed
entities by means of reading and writing data to a shared space which facilitates coordi-
nation in a mixed human-robot teams. The shared space enables communication between
entities decoupled both in time and space.

Moreover, there exist frameworks that seek to combine Semantic Web Technologies
with the SBC paradigm to provide a middleware for coordinating heterogeneous entities
in unstructured environments. In particular, the focus is on the framework that integrates
Semantic Web Technologies with XVSM in the framework named Semantic XVSM [69].

2.2.1 eXtensible Virtual Shared Memory (XVSM)

Similar to the Linda [52] coordination model which introduces the logically shared
memory with a set of handful operations as a communication mechanism for parallel
and distributed processes, SBC is a data-driven coordination model where heterogeneous
application components running on different physical platforms communicate by means
of reading, writing, and taking structured entries from/to a shared space. The space
provides communication and coordination mechanisms based on the blackboard model.
Figure 2.3 illustrates a space shared between multiple clients, i.e., tractors (robots), which
communicate by means of writing and reading entries from the shared space.

Figure 2.3: Space-Based Computing Paradigm

As a representative of SBC, XVSM [21] is used in this thesis which has been developed
at the Institute of Computer Languages of the Vienna University of Technology. The main
objective of the XVSM middleware is to provide a modular platform which facilitates
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dynamically joining and leaving of distributed and heterogeneous processes. In terms of a
coordination platform, a shared medium is required where the processes can write and read
information, and be informed about events as well. To achieve a high degree of decoupling
between distributed processes, it is advisable to utilize space-based architectural style
because of its shared data space which acts as a mediator where the processes write and
read data, and are informed about changes.

[22] relates a space to a database since databases support data storage and data
access. Moreover, both, a database and a space, have in common that they manage
structured data and support transactions. However, the purpose of a database is to
administer large amount of static data and to support complex queries on them, whereas
a space serves to coordinate distributed and heterogeneous processes.

Although XVSM supports multiple concepts, e.g., transactions, replications, logging,
authentication, etc., the following sections introduces only those that are utilized in the
implementation of SKIM framework.

Entries, Containers and Coordinators

An XVSM space is composed of multiple XVSM Cores. A Core is a fundamental
component that hosts containers which store data, i.e., entries. All Cores are connected
by a peer-to-peer based communication infrastructure [75] which enables communication
and cooperation between distributed Cores. The objectives of the Core [4] are manifold,
from the data coordination, over transactional isolation to asynchronous and blocking
operations. One of the main responsibilities is to abstract the access to a Core in a way
that for the client (tractor) it does not make any difference whether the user is accessing
a local or remote Core.

Figure 2.4: XVSM Space with Core instances and containers

Entries
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The user defined objects stored in the space are called entries, Figure 2.3. The
formal XVSM model handles only entries in a special format [22], however, the XVSM
implementation named MozartSpaces [122] allows any form of Java-Serializable objects.
Entries are not directly stored in the space, rather, in containers that structure a space
and can be seen as subspaces. Moreover, the entries in a container are managed by one
or more coordinators [25] where each coordinator can be of a different type, e.g., FIFO
coordinator that ensures FIFO order of entries in a container, or a Linda coordinator that
supports Linda template matching. Figure 2.4 shows an example of 2 coordinators and
4 entries bounded to a container hosted in the Core C. All entries are managed by the
coordinator ANY, an explicit coordinator. In the example also the coordinators FIFO
and KEY are used. As opposed to Figure 2.3, now the tractors are distributed in a global
space where each tractor owns an embedded Core instance that hosts two containers.
Moreover, distributed tractors communicate by writing data to distributed containers.

Containers
As in Linda, in XVSM application components coordinate themselves by means of

writing and reading entries, i.e., user defined data, into/from a shared space. In XVSM
data is stored in so called container that can be interpreted as a collection containing
entries [94]. In the XVSM space multiple containers may reside at the same time. The
Core residing in a space provides four operations to manage containers: (1) create, (2)
destroy, (3) lookup, and (4) lock.

XVSM containers are Internet addressable using an URI of the form
xvsm://mycomputer.mydomain.cin:1234/ContainerName. Depending on the application
domain, or the underlying network infrastructure, the xvsm protocol may be translated
to, e.g., TCP + Java, specifying that communication takes place via a tcp-connection
using Java objects [95]. The default communication is based on an XML based protocol
which is platform independent. Moreover, XVSM has a lookup mechanism which resolves
published container names to URLs.

In its basic form, a container is similar to a tuple space, i.e., it is a collection of entries.
The main difference to a tuple space is that a container [94]: (1) structures the space, (2)
extends the original Linda API with the destroy method, (3) introduces coordinators
which extend the coordination law, and (3) may be bounded to a maximum number of
entries.

Coordinators
Coordinators that manage entries in a container are extendable components responsi-

ble for managing container’s view on the stored entries. The aim of a coordinator is to
represent a coordination model and to structure and organize the entries in the container
for efficient access [95]. Having domain knowledge, i.e., a type and a structure of business
data, a programmer can implement a domain-specific coordinator which operates more
efficient for domain-specific tasks.

Coordinators are independent of each other and each coordinator can be one of the
following types: (1) implicit coordinator, or (2) explicit coordinator. Representatives
of the implicit coordinator usually maintain an order of the entries in the container,
e.g., FIFO, LIFO, RANDOM. Explicit coordinators require additional meta information,
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provided by the user, for managing the view on the container. A representative of this
type of coordinators is a Map Coordinator which denotes key:value data structure, e.g.,
the meta information to be provided as the key.

For each coordinator in the space, there is a selector acting as a counterpart to the
coordinator. Selectors contain parameters, like a counter for the minimum number of
entries to be retrieved from a container, for queries in a case of read, take, and destroy
access [95].

In case a container deploys several coordinators, operations may use multiple selectors
as well. The number of specified selectors depends on the business requirements, i.e., a
coordination model, and thus is not bounded to the number of deployed coordinators in
the container. However, if more than one selector is utilized in querying the container,
the outcome of the execution of the first selector is piped to the second selector, and so
on. It means that selectors are chained. For example, if a FIFO Selector with count 5 is
followed by a Key Selector with value k, the container will first ask the FIFO coordinator
to select first five entries and afterwards it will ask the Key selector to look whether any
of those five entries has a key with the value k.

Aspects and Notifications

Aspects and, in particular, notifications are extensively used in the implementation of
SKIM coordination framework.

Aspects
Due to the focus on extensibility as a major part of the middleware, Aspect Oriented

Programming (AOP)[38] was introduced in XVSM [75] in a sense of so called Space
Aspects placed at different points of a container. The join points of AOP are called
interception points (IPoints in XVSM). Aspects can be triggered by executing operations
on the container, e.g., a space aspect could be triggered to execute an operation before
a container is created (pre create container). IPoints can be located before or after
the execution of an operation indicating two categories: pre and post. Pre-Aspects are
triggered before the operation is executed, e.g., on a container to check credentials, and
post-Aspects are triggered after the operation, e.g., to write to a log file.

Along every operation issued from the client application, the client is able to pa-
rameterize the deployed aspects to influence the operation of deployed aspects. This is
performed by passing a so called Aspect Context with its parameters along the invoked
operation. In case multiple aspects are installed on the same container, they are executed
in the same order they were added. Adding and removing aspects can be performed
dynamically during the runtime.

Figure 2.5 shows a container with three local pre- and post- Aspects along with their
various return values. The XVSM Runtime layer accepts incoming requests and passes
them immediately to the first pre-Aspect of the targeted container. The request passed
to the aspect, i.e., operation, contains the parameters of the operation, like transaction,
selectors, timeout, and the Aspect Context. The called aspect may contain any business
logic, e.g., call third-party services.
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Figure 2.5: Execution sequence and return values of Aspects in a container with three
deployed pre- and post-Aspects [75]

In the container’s focus is the implementation of the container’s business logic which
handles the storage of the entries and manages coordinators. The operation is processed
on the container only after the all deployed pre-Aspects are successfully passed. Only
if all aspects return OK, the container interprets the selectors of the operation and
executes the operation [74]. The received operation is successfully completed if it passed
all pre-Aspects, the container engine, and all post-Aspects without any errors.

The return value of an aspect can manipulate the execution of the operation which
triggered the aspect. This is achieved with the following return values an aspect can
throw:

• OK: the execution of the operation may proceed regularly.

• NotOK: the execution of the operation is stopped and the subtransaction is rolled
back, e.g., when a user passed inadequate credentials to access a system.

• SKIP: the operation is not performed (neither on the container, nor on the space),
nor any of the following pre-Aspects. The post-Aspects are executed immediately
afterwards. This return value is only supported in pre-Aspects.

• Reschedule: the execution of the operation is stopped and will be rescheduled for a
later processing. Subtransaction is rolled back as well.

Notifications
Notifications are implemented by means of aspects and serve for notifying subscribed

applications on occurred changes in a container. For example, a notification could fire
when a certain amount of entries have been written in the container. If the defined
condition is fulfilled and the example notification is triggered, the aspect writes the
required information into the notification container from where an application can take
the information for further processing. The notification container is a regular container
described in Section 2.2.1 where the generated notifications are written and where from
the subscribed application receives them via a callback method for processing.
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XVSM supports multiple notification. Figure 2.6 illustrates the components and
the workflow for processing one example notification in XVSM. There is a container C,
a container D, and an application component, i.e., notified component, that wants to
be notified whenever there is a change in a container C, e.g., a new entry is written
to the container. To register the write notification on the container C, the application
component invokes the method on XVSM Runtime which registers an aspect on the
container C and creates a notification container. The registered post-Aspect intercepts
the write operations on the container C and writes data into the notification container.
Information forwarded to the notification container is customizable and thus can be
tailored for a specific use case. The notification container is an ordinary container and
thus is capable of deploying additional pre- and post-Aspects.

Figure 2.6: Example for XVSM Notifications

In addition to the notification aspect and the notification container, XVSM Runtime
performs take operations on the notification container and specifies a virtual answer
container where the result for that take operation has to be placed [94]. The application
component bounded a callback method to the virtual answer container and thus the
application component is notified whenever there is a change in the container C. Moreover,
the notification container is not limited to receive notifications from one aspect only. In
addition, if the application component is interested in notification from the container D, it
can register pre-Aspect which can trigger a notification before the publishing component
writes an entry in container D. Thus, XVSM supports several notification aspects writing
into a single notification container.

Figure 2.6 does not specify where the containers are hosted. It is possible to host
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containers either on the same node or on different ones. The latter approach supports
the creation of durable [39] subscriptions by placing the notification container on a
node which is always reachable [75]. The notification container does not depend on the
subscribed clients, rather, it aggregates notification events while the interested clients
are unreachable. If the subscribed clients are again online, aggregated notifications are
pushed via the specified callback method to the subscribed clients.

Customizable notifications allow software developer to create domain and application
specific notification mechanisms which can increase the efficiency of a business process.

2.2.2 Semantic Spaces

This section focuses on frameworks striving to combine Semantic Web Technologies with
a tuple space framework to provide a middleware for coordinating heterogeneous entities
in unstructured environments. Common to the presented semantic spaces is that all of
them adhere to Linda’s space-based interaction paradigm where clients do not interact
directly with each other. Rather a shared space takes a role of a communication medium.
Benefits this paradigm introduces are information dissemination and decoupling, both in
time and space, between clients.

sTuples

sTuples [67] was one of the first initiatives extending the tuple space with inference
mechanisms to solve interoperability issues between heterogeneous and dynamic agents
in pervasive environments. Semantic Web Technology addresses the interoperability
problem in heterogeneous environments, while tuple space provides data persistence, as
well as temporal and spatial decoupling. The sTuples builds upon the JavaSpaces [50]
standard and adapts the Linda coordination model.

Semantic tuples in sTuples consist of RDF graphs stored in a reasoner’s knowledge
base where for each tuple an own named graph is created [107]. A semantic tuple can be
declared either as a data tuple or a service tuple. The declared type depends on whether
a semantic tuple contains semantic information provided by a service or an agent, or it
advertises an available service, e.g., a service controlling a light. Due to the advertising
capabilities, service tuples allow agents to find a particular service. Data tuples are
utilized to communicate with the found service.

Communication between agents is performed by writing and reading/taking semantic
tuples from a space. After each write and take operation, the consistency of a knowledge
base is checked. The operation is aborted if the new state of the knowledge base violates
constraints defined in the associated ontology. On the other hand, the reasoning process
is carried out for finding matching tuples for read and take operations.

There are two performance drawbacks in sTuples: (1) consistency check and (2)
blocking read and take operations. The former relates to the consistency check triggered
upon each change in the knowledge base which results in certain delays. The latter refers
to the blocking operations where sTuples searches for results of read and take operations
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every time new information is added to the sTuples space [100]. The repeated processing
of blocked operations may impose critical load on the sTuples system.

TSC

The TSC 7 (Triple Space Computing) [44] project developed a platform for the manage-
ment of distributed RDF data where the central data unit is represented by a named
graph. Named graphs store multiple RDF statements and thus enable to read, update,
or add multiple statements to the Triple Space in one atomic step. A Triple Space can
manage an arbitrary number of named graphs. A prototype of the framework has been
developed within the TSC project.

When a new tuple is written to the space, a new ID is generated and assigned to
the tuple. Therefore, different tuples with the same data are allowed. To read a tuple
from the space, the user has to pass either the URI of the tuple, or a template which
describes the target named graph [44]. The template is transformed in the SPARQL
query. In addition to utilizing templates for reading data, TSC supports queries as well.
A query facilitates the templates to match RDF statements stored in named graphs and
as a result, a new graph with the matching triples is returned.

In addition to the basic read, write, and take operations, TSC supports a simple form
of publish/subscribe mechanism. It allows interested parties, i.e., content publishers and
content consumers, to use template path expressions to either advertise or subscribe for
particular information. Independently of the utilized operation, either read, update, or
publish/subscribe, interaction between clients is always implicit and thus ensures high
flexibility and strong decoupling.

The prototype implementation of TSC is based on the YARS [59] storage framework
for persisting and querying RDF graphs. YARS is a highly scalable RDF store that
supports queries suitable to manage semantic templates. Coordination and communication
middleware utilized in TSC is CORSO [72]. CORSO provides a virtual shared memory
space of objects and it supports transaction management and data replication mechanisms
[76]. Named graphs are mapped to CORSO objects with distinct OID (Object Identifier)
which facilitates their sharing among participating nodes.

The application areas addressed within TSC project are primarily related to the
domain of semantic web services [100]. TSC was employed to integrate services in WSMX
(Web Service Execution Environment) [43] for the integration of business applications

TripCom

The TripCom 8 (Triple Space Communication) [42] project was focused on developing a
distributed knowledge base and scalable coordination platform facilitating capabilities of
the tuple space technology. To achieve the goal, the project focused on the integration of
three building blocks [100]: (1) tuple space technology, (2) Semantic Web Technology,
and (3) Web Service technology. Tuple space technology was aimed at realizing efficient

7http://tsc.deri.at
8http://www.tripcom.sti2.at
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client-to-client communication models as well as flexible coordination mechanisms for
distributed clients. Moreover, Semantic Web Technology strived to provide knowledge
representation and knowledge inference mechanisms, while Web Services were intended
to enable agents to autonomously execute various tasks.

A space is modeled using named graphs which contain tuples. Tuples stored in a
named graph are modeled utilizing triple data structure. Due to the fact that a named
graph cannot contain two triples with the same data, two tuples with the same content
are not allowed to reside in the same space. Moreover, reading tuples from a space is
performed by means of defining a SPARQL SELECT form query which, as a result,
returns tuples. The same template used for read operations can be applied to register
a subscription as well [42]. As soon as the predefined template, i.e., SPARQL query,
matches the data in repository, a user is notified.

The architecture of the TripCom is designed following the client-server paradigm.
Similar to the modern client-server systems, TripCom supports operation of multiple
distributed server nodes that use Distributed Hash Table (DHT)[130] for distributing
tuples. Each server node hosts the space infrastructure and the data. On the other hand,
clients communicate with any server node using the TripCom API and do not have to
care about the data distribution [42] while the contacted server delegates write and read
operations to the responsible server node.

With respect to the reasoning capabilities, the reasoning process is triggered upon each
write or delete operation resulting in slow entry updates and fast queries. Consequently,
a read operation returns both, user inserted triples, as well as inferred triples. However,
a user cannot distinguish between these two.

The developed Triple Space has twofold purpose: (1) to publish and find semantically
described Web Services, and (2) to realize the communication between clients and services.
Similar to the Triple Space nodes of TSC, a TripCom Triple Space also handles a set of
RDF statements. On the other hand, TripCom neither synchronizes nor replicates data
stored on the nodes [100].

Semantic Web Spaces (SWS)

Semantic Web Spaces [134], [136] has been conceived as a middleware for the Semantic
Web based on the extension of the existing Linda coordination model called XMLSpaces
[135]. The main notion of Semantic Web Spaces is to enable clients using Semantic Web
data to access and process knowledge to coordinate their interdependent activities [107].
Consequently, a client can utilize knowledge inserted into the space by inferring new
information to facilitate its future decisions. At the same, another client that was waiting
on the availability of these new, inferred, information is able to utilize it to draw some
conclusions. Therefore, the space as a shared medium enables both, sequential knowledge
processing, as well as the parallel coordination between concurrently active clients.

Similar to other semantic-enabled coordination frameworks, Semantic Web Spaces
models semantic tuples by means of RDF triples. A modeled tuple consists of four fields
which take URIs as values. The first three fields correspond to the subject, predicate, and
object of an RDF statement, while the fourth field is a tuple identifier generated with the
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help of a tuple space ontology [107]. Furthermore, querying a tuple space is envisaged
as a triple pattern which is transformed to a SPARQL query which is further applied
to the appropriate tuple space. Moreover, a basic tuple matching is extended with an
RDF-specific reasoner which, in combination with a provided ontology, can be utilized to
check ontological conformance. As a result, querying does not only have to be performed
against existing RDF statements, rather, it can also include inferred statements.

Semantic Web Spaces define an ontology for describing the space itself which explicitly
reflects the hierarchical structure of the space. The tuple space ontology is Jena RDF
model with the meta-model of the space [107]. To mitigate performance degradation, the
ontology update is not triggered on every operation on the space, rather, the models log
changes and the update process is triggered only after a certain number of operations.

The prototype implementation revealed the feasibility of an approach based on Linda
and a tuple space which supports coordination and communication between agents
operating on the Semantic Web. However, a scalability challenge still remains an open
issue.

Semantic Tuple Centres (STC)

Semantic Tuple Centres [102] extends the TuCSon [108] tuple space implementation with
Semantic Web Technologies. Semantic Tuple Centres defines a semantic tuple as an
instance of a user-defined OWL class called concept. For each tuple, a user has to declare
an individual name which is translated to the URI for storing a tuple as an RDF resource
into a triple store [69]. A tuple can contain properties which either describe a value, i.e.,
a literal value, or model a relationship with another tuple, i.e., an individual name. Due
to a lack of support for blank nodes, complex properties are not allowed. An RDF blank
node is an RDF node that itself does not contain any data, but serves as a parent node
to a grouping of data.

In Semantic Tuple Centres, querying and reasoning capabilities, are realized combining
Jena [155] and Pellet [158] reasoner. Therefore, upon inserting a tuple in a space, first,
an OWL reasoner checks consistency of the inserted tuple against the space ontology, and
then, the Pellet reasoner is utilized to generate inferred data. Generally, a tuple selection
is performed by means of a semantic template which is converted to a SPARQL query.

To demonstrate coordination capabilities of Semantic Tuple Centres, a coordination
infrastructure for electronic health care records (EHR) in the e-health domain [104] is
showed. The demonstration was focused on presenting distribution, interoperability, as
well as security features of Semantic Tuple Centres.

2.2.3 Semantic XVSM

This section introduces and describes the main concepts of the Semantic XVSM framework
and its reference Java-based implementation, Semantic Mozartspaces, developed in [69].
The coordination model of XVSM is complemented and enriched with the Semantic Web
Technology to produce a new coordination framework with a reasoning mechanism and
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which can, due to ontology support, uniformly describe and communicate with distributed
heterogeneous resources.

The section starts with the description of the semantic data model explained through
the example. After that, basic query capabilities and improvements are introduced, as
well as the ontologies and the reasoning support. Finally, the section is concluded with
the description of notifications.

Semantic Data Model

The core part of the architecture is the data model that exposes a mapping process
between MozartSpaces entries and semantic entries. The basic concept of XVSM is a
container which hosts different entries where the value of an entry is an object with
several properties, which themselves can be either literals or objects.

The data structure of an object used as MozartSpaces entry value is a recursive X-tree
[21], which is either a sequence or a multiset of labeled X-trees, or a literal. In order
to create a semantic MozartSpaces entry representation, an X-tree is modeled as RDF
nested unlabeled blank node. Similar to the X-tree that exclusively owns all its nodes, a
nested blank node has a single reference to its sub-nodes, and a complete nested blank
node can be read out of a triple store including all its sub-nodes, which are blank nodes.
Accordingly, an X-tree multiset is mapped to an RDF collection. Since nested blank
nodes are distinguishable from each other inside a named graph, the counterpart of a
MozartSpaces container is the named graph.

One of the most important components in Semantic XVSM is the resource mapper.
This component maps Java objects to nested blank nodes. To accomplish this, Java
classes have to be respectively annotated (@RDFType, @RDFField).

Figure 2.7: Semantic data model [32]

Figure 2.7 shows an example of an annotated Java class on the left hand side and a
nested blank node on the right hand side. The example uses Turtle syntax to provide a
suitable representation for a nested blank node. Figure 2.7 illustrates the structure of
the Java class Task which is described later in the thesis as a part of a use case. The Set
property needsSkill refers to the type of the skill required on the robot, e.g., a spraying
skill.
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Querying

One of the crucial factors for using Semantic XVSM is the capability to select entries with
SPARQL queries. This feature is realized by implementing a new, customized, semantic
coordinator with accompanying selector, which can still be combined with existing XVSM
coordinators/selectors. The result of a SPARQL query is a list of entry IDs which is
converted to a list of entries loaded on demand from a triplestore [26]. Same as with
default selectors, SPARQL query supports the user parameter denoting the number of
triples to be retieved, e.g., count_ALL.

The basic structure of a SPARQL query for selecting entries from a space is illustrated
in the listing below.

Listing 2.2: Example for a SPARQL query in Semantic XVSM for entry selection [69]

SELECT ? entryId
FROM <conta ine r :1>
WHERE {

[ sxvsm : id ? entryId ;
rd f : type sxvsm : Entry ;
sxvsm : hasValue [

: hasName " spray ing " ;
: r e q u i r e s S k i l l : Sp r ay i ngSk i l l

]
]

}

The template for selecting entries is a nested blank node, same as the entry itself. The
FROM query form specifies the named graph of the container container:1 as a dataset
on which the query is executed. For the sake of brevity, prefixes are omitted from the
listing.

A semantic selector in Semantic XVSM can be extended to enable the use of external
context entries in the query. The context can be added at the client side, or this can
be achieved via a pre-aspect of the container (server-side). Context entries can be
used as a parameter for SPARQL queries, so that more general and flexible queries are
supported, e.g., in the use case presented in this thesis a context entry can describe the
state of a robot. Additionally to the basic SPARQL capabilities, a semantic selector in
Semantic XVSM supports also optional SPARQL constructs like FILTER, ORDER BY,
and GROUP BY. For detailed description of the supported constructs, please refer to
[69].

Ontologies and Reasoning

After the querying capabilities, reasoning is the most prominent feature of Semantic
XVSM. Reasoning enriches entries with inferred data which can be queried and thus
utilized by a user. However, entries classified as inconsistent, are blocked from getting
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inserted into a container. Therefore, the container state, from the ontological point of
view, is always consistent.

Supporting ontologies in the Semantic XVSM has manifold advantages: (1) describing
a domain model to infer implicit knowledge, (2) classifying entries for a coordination
purpose, and (3) preventing insertion of inconsistent data. In Semantic XVSM, an
ontology is associated with a container using an ontology entry as a special type of entry.
The ontology stored in ontology entries is then used for reasoning on newly inserted
entries. Due to the simplicity, there is always only one ontology at the time available for
reasoning. Since the reasoning is done for each entry on insert operation, ontology changes
in a runtime do not affect the existing entries. This solution has several advantages [69]:
(1) on entry insertion, a consistency check has to be performed anyway, (2) reasoning over
a small dataset scales better for big containers, (3) reasoning can be limited to special
type of entries instead of doing it for each entry. However, there are disadvantages as
well: (1) an ontology update does not impact existing entries, and (2) not all inferred
data are allowed in the container’s graph. The former drawback can be overcome by
triggering a reasoning process on existing entries after each ontology update. However,
such a process is computational expensive and thus has to be used carefully. The latter
disadvantage allows only enhancing the existing nodes of an entry with inferred data
such as new properties and values.

Since the inferred data are generated during the write phase, i.e., when an entry is
about to be written in a container, they have to be stored in order to be able to query
them later. Although the new data are generated, it could still sometimes be beneficial
to have the original data as well. Therefore, the original data must not be overwritten,
rather stored with a possibility to distinguish between original and the inferred data.
Semantic XVSM tackles this challenge by storing inferred data in an extra named graph
which enables them to be used in a query for selecting entries by attaching the named
graph in an additional FROM clause in SPARQL query. Same as for the ontology update
when the reasoning has to be redone, the same process is required in case of deleting the
ontology entry. In case inconsistency occurs during the management of ontology entry,
transaction is aborted.

Type-based Notifications

Semantic XVSM utilizes the advantage of having aspects, especially post-aspects, to
generate a notification as a result of an executed operation on an entry. In particular,
Semantic XVSM enables semantically-supported notifications to be triggered when the
special type of entry data, i.e., a class defined in the ontology, becomes present in a
system.

Notifications are realized by means of subscriptions which observe a container of
interest. In Semantic XVSM, subscriptions are written as special entries, i.e., subscription
entries in the observed container to enable an easy management, i.e., a user is revealed
from creating new aspects or extending an API. Every time the post-aspect of an entry
operation is executed, a semantic read operation looks for subscription entries which
conform with the processed entry [69]. Therefore, a subscription entry has following
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information: (1) the entry type, i.e., an OWL class defined in an ontology, (2) action
type, e.g., read, take, or write, and (3) a subscription id.

A notification is generated after the execution of an entry operation. This results in
writing entries in a notification container. In the case of an aborted transaction, there
will be no notification. Upon a successful commit of the entry operation, the notification
entry becomes visible and ready to be processed by a subscriber. The notification entry
encompasses the following data: (1) the action type, (2) the processed entry, and (3) the
subscription id. To immediately receive the generated notification, the subscriber should
issue a blocking take on the notification container. Due to the frequent notification
check (for every action the system checks whether a notification should be generated) a
notification service decreases the performance of space.

2.2.4 Comparison of Semantic Spaces

Table 2.2 compares the reviewed semantic tuple space coordination frameworks with
respect to the following criteria: (1) Data Model describes how the data are organized
in the space, (2) Comm/Coord model, i.e., communication/coordination, reflects
the way agents (robots) interact with a tuple space, (3) Querying capabilities for
retrieving the data from a tuple space, (4) Subscription mechanism for supporting
agents’ dynamic reactions, (5) Reasoning enables generation of new information by
performing inference on existing data, (6) Consistency check supports for validity
and consistency check upon inserting or deleting a semantic data from a space, and (7)
Transaction mechanisms to support multiple operations as one atomic operation.

Table 2.2: Comparison of semantic tuple spaces

Features sTuples TSC TripCom SWS STC Semantic
XVSM

Data
Model

DAML
+ OIL

RDF
graph

RDF
triple

RDF
triple

RDF
graph

RDF
graph

Comm
Coord

publish/
subscribe

Linda
publish/
subscribe

Linda Linda Linda XVSM

Querying own
template

N3QL
template SPARQL own

template
own

template SPARQL

Subscription entry
level

entry
level

space
level

entry
level

entry
level

entry
level

Reasoning X - X X X X
Consistency

Check
X - X X X X

Transaction X X X X - X

With respect to the underlying data model, common to all analyzed semantic tuple
space frameworks is the support to manage data using Semantic Web languages. Except
the sTuples which utilizes DAML + OIL to represent semantically described data, the
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remaining approaches enable a certain level of support for RDF data. In all approaches,
tuples can be referenced using publicly accessible IDs. The communication/coordination
model underlying the presented approaches is based on Linda or the publish/subscribe
paradigm. Although XVSM is based on Linda as well, it is explicitly stated that Semantic
XVSM, described in Section 2.2.3, is based on XVSM since it provide a broader set of
coordination features than a basic Linda model, e.g., various coordinators. Moreover,
all reviewed frameworks take into account the advantage of Semantic Web Technologies
when querying the data from a space. However, most of them are limited to use own
templates, like sTuples, SWS, and STC, which are then internally translated in SPARQL
queries. TSC utilizes N3QL syntax [151] for querying a space which is a predecessor of
SPARQL. Although, both TripCom and Semantic XVSM support SPARQL, the main
difference is that Semantic XVSM supports the latest SPARQL version, i.e, SPARQL
1.1. Consequently, Semantic XVSM can be utilized to model heterogeneous resources as
well as distributed task allocation process and thus can address RQ. 1 and RQ. 2.

Furthermore, all analyzed semantic tuple space frameworks support notifications
on an entry level, except TripCom which uses notifications on a space level. Thus,
they all support coordination of multiple agents. Reasoning capabilities can be utilized
to facilitate a query performed on a space, as well as to trigger a notification when
new data is inferred. Due to the lack of a reasoning mechanism, TSC has shrunken
capabilities compared to other frameworks. The STC framework does not reveal inferred
data to the outside world, i.e., a user. A reasoning capability infers consistency checks
as well. Consistency checks ensure that a newly inserted, or deleted triple, does not
violate ontology consistence. Due to the lack of a reasoning mechanism, TSC does
not support consistency check. With respect to the consistency check, there are two
modes: (1) consistency check is triggered automatically upon each change in a space, i.e.,
write/update/delete operations, or (2) consistency check is triggered periodically. The
consistency check mechanism in sTuples, TripCom, STC, and Semantic XVSM adheres
to the former mode, and in SWS to the latter. Except TSC and Semantic XVSM, there
is no framework which supports long-lived concurrent transactions with timeouts. Since
long-lived transactions with timeouts are important in distributed systems where robots
operate in unstructured environments, TSC is perceived as a competitor to Semantic
XVSM.

To conclude, the comparative advantage of Semantic XVSM, based on the MozartSpaces
[74] which is s Java implementation of XVSM [22], over the other semantic tuple space
frameworks is that it structures the space into containers that store entries using different
coordination laws, e.g., FIFO, LIFO, KEY [26]. An entry includes both, coordination
and entry data. Semantic XVSM borrows some concepts from the STC in which it treats
a semantic tuple as an object of an application domain. In contrast to TSC which uses
its own data format for semantic tuples, Semantic XVSM uses Turtle. Moreover, the
objects in STC must belong to exactly one OWL class, while in Semantic XVSM a tuple
can be a type of any numbers of OWL classes. This property facilitates robot-robot
and robot-human coordination activities addressed in RQ. 2 and RQ. 3. Furthermore,
Semantic XVSM offers a powerful capability to select entries by introducing minor re-
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strictions on SPARQL query language [26]. Due to the described advantages of Semantic
XVSM over TSC, Semantic XVSM is selected as a framework for modeling behaviour of
distributed robots and a user in the scope of this thesis.

2.3 Summary
Since there are two different logical sections in the background technologies: (1) Semantic
Web Technologies and (2) Space-based Computing paradigm, this summary is structured
accordingly.

XVSM, as the representative of SBC paradigm, can take the advantage of extending
the existing coordinators and combine them with the programmable aspects to enrich
the existing coordination capabilities of XVSM with Semantic Web Technologies; in
particular with ontologies support and SPARQL query language. Having integrated these
two technologies ensures a solid basis for the development of general SKIM coordination
framework. On the one hand, the benefit of using existing XVSM concepts can be
reflected in seamless coordination between distributed and heterogeneous robots in a
fleet that are decoupled in time and space. On the other hand, the benefit of using
semantics is twofold: (1) support for having an ontology provides uniform description of
heterogeneous and distributed resources, and (2) it models shared knowledge as a basis
for adaptive autonomy in mixed teams.

Since this chapter covered the technologies utilized for the development of SKIM
coordination framework, next chapter reviews existing frameworks for task allocation
and coordination in robotic fleets as well as the notion of adaptive autonomy in mixed
human-robot teams.
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CHAPTER 3
Related Work

In contrast to Chapter 2, which reviews the technologies utilized in the scope of this
thesis and discusses their advantages and disadvantages, this chapter gives a detailed
overview of the existing task allocation models.

In the past couple of decades, research in multi-agent field has focused on designing
systems containing multiple, autonomous agents (robots) that work together to accomplish
a common objective. Having a system which encompasses multiple cooperating robots is
inspired by natural systems where the groups of animals can solve problems that could
not be solved by solitary individuals [14]. Due to the advances in the perception and
locomotion technology there is a great potential to use robotic fleets in heterogeneous
and unstructured environments and scenarios requiring collaboration in mixed human-
robot teams [56], [111], [28]. This, however, imposes new demanding requirements on
communication, data availability, and coordination of actions in such teams, and the well-
established centralized coordination approach will be replaced with a new, distributed,
approach.

The chapter begins with a general overview of the coordination middlewares where an
autonomous robotic fleet executes a mission similar to the precision agriculture scenario
introduced in Section 1.1. The outcome of the overview is a set of challenges that should
be addressed when designing the multi-robot systems. According to [54] [88] [149] [109]
[14], due to the increased complexity of the multi-robot systems, task allocation has risen
to a prominent research challenge in this field. Therefore, the chapter proceeds with an
overview of the existing task allocation models with a focus on the environment-based
task allocation approach. Since [47], [55], [56], [111] envision the adaptive autonomy
as the next evolution phase in multi-robot systems, the chapter is concluded with an
analysis of the adaptive autonomy in mixed human-robot teams.
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3.1 Coordination Middlewares for Robotic Fleets

The past decade has witnessed a huge increase in a number of proposed middleware
solutions for robotic fleets operating in unstructured environments. As a result, it
has become difficult to decide which middleware is the most appropriate one for a
specific application or application domain. This section is limited to review coordination
middlewares where an autonomous robotic fleet executes a mission similar to the precision
agriculture scenario introduced in Section 1.1. Firstly, extracted is a set of common and
specific challenges that middlewares address, and then these are grouped according to
the source domain they originate from. The challenges are derived from the precision
agriculture scenario introduced in Section 1.1. After that, the section provides an analysis
of different middlewares. The aim of this analysis is to assist the process of finding an
adequate middleware for a specific application domain.

3.1.1 Middelware Challenges in Robotic Fleets

When a new application is being developed, understanding the challenges of a specific
application domain is the first important step towards making the decision which middle-
ware to use. Analysis of challenges on a general level has been already undertaken in [111]
and [78], where the focus is on the challenges imposed by unpredictable environments.
This work has been extended in [93] and [61] where authors discuss some more specific
issues and compare several middleware implementations against them. Our work [30]
further extends this effort with a focus on extracting additional, less covered issues
imposed on the middleware for robotic fleets. Proposed is a classification of middleware
challenges according to their specific domains of concern: (1) general issues as related to
a fleet realization, (2) issues imposed by operating in unstructured environments, and (3)
challenges resulting from the task complexity. This analysis can be used to identify a
suitable middleware for a specific robotic fleet application.

General Fleet Realization Challenges

Following are five identified problem statements common for the middlewares reviewed in
Section 3.1.2 as well as for the introduced agricultural use case. (1) How to distribute
control? Control can be either centralized or distributed. The control organization is a
concern critical in the early stages of the system design ([111] and [61]). It influences
other system decisions that are to be made in later phases, e.g., the autonomy level and
collaboration patterns. (2) How to distribute functionalities within a robotic
fleet? There are two types of fleets: homogeneous and heterogeneous. The robotic fleet
application directly drives a decision on the type of robots in a fleet ([111] and [78]).
The systems exploiting parallel, and in time and space distributed tasks, often use large
scale fleets of interchangeable homogeneous robots. On the other hand, more demanding
applications may require teams of individuals with specific sensors or actuators. (3)
How do communication, collaboration, and coordination influence the level
of autonomy? Information exchange is vital for collaboration and coordination, which
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are complementary processes running over a communication backbone of multi-robot
systems. The information that supports robots in achieving their goals can be obtained
in different ways, e.g., by sensing the environment in which robots are operating, by
observing actions of the peers (other robots), or by an explicit message exchange with the
peers. Based on the acquired information, robots can decide on their collaboration and
coordination patterns. Furthermore, autonomy is a significant feature of robotic systems
[93]. Autonomous robots utilize communication infrastructure and sensors for automated
local or group decisions and actions, with no human intervention. Current research in
autonomy is focused on developing different levels of autonomy and thus providing the
robots with adaptive autonomy functions. Adaptive autonomy enables human-robot
fleets to incorporate advanced coordination and collaboration mechanisms with different
levels of robots and humans involvement. (4) How to specify a mission? A robot
task can be decomposed into independent subtasks, hierarchical task trees or roles [111].
The mission tasks can be designed either by an autonomous planning function, or by the
human designer. In general, a common way of defining a mission is by defining a set of
tasks that have to be completed within a specified time. Each task can be processed by
a variety of different robots, and each robot can work on different tasks. The mapping
between available robots and generated tasks is the solution to the task allocation problem.
(5) How to semantically represent resources? Semantics can be used to model
resources provided by heterogeneous devices distributed in the environment. Describing
functions of cameras, sensors, actuators, etc., with a common ontology eases the process of
finding appropriate resources in the environment. Semantic technology is underutilized in
robotic fleets but has a large potential due to the flexibility it offers. [30] identified these
core challenges as both imposed by the introduced agricultural use case and imminent
to the design of every middleware. They have to be continuously addressed in different
phases of the middleware design, and build a basis for extensions according to special
needs of robotic application.

Environmentally Imposed Challenges

This class comprises of three problem statements characteristic for robots which have to
cope with unstructured and volatile environment that introduces additional complexity in
system implementation. (1) How to deal with uncertainty in communication? A
robotic fleet can switch between disconnected and connected operation mode. This may
be a crucial requirement for a robotic middleware applied in unstructured environments.
In most scenarios with intermittent communication robots have a connection with others,
but only for a limited, unknown time. (2) How to deal with dynamics due to
faults? Robustness and fault tolerance are relevant features of every multi-robot system
that executes time critical tasks [111] and [61]. In general, robustness and fault tolerance
guarantee operation in the presence of malfunctioning components, which requires that
the system has autonomy capabilities to continue the work with reduced resources.
Adaptability is a design feature that enables robots to change behavior according to the
dynamically changing requirements posed by the environment, e.g., as triggered by mission
customization, changing resources of teammates, or the need to prevent performance
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degradation [78], [61], [110]. (3) Can a new behavior emerge? Behavior-based
system design enables robots to perform tasks without having explicit set of instructions
for their execution in advance [111]. In general, robots may use knowledge of the current
state of the robot mission, robot team member capabilities, and robot actions, to decide,
in a distributed fashion, which robot should perform which task. Dynamic team formation
may occur either when one or more robots move away and lose connectivity to others,
or when a robotic fleet is split in groups according to assigned tasks. The former is the
physical, and the latter is the logical separation. Due to the volatile environment where
the agricultural use case takes place, the assumption is that support for operation in
disconnected mode is a comparative advantage in a robotic middleware. Ability to operate
in this mode, complemented with an adaptive behavior and dynamic team formation,
has the potential to increase system robustness.

Task Dependent Challenges

Task specific challenges are related to mission or task requirements that may be different
in each application domain. Here are identified four common problem statements:
(1) How big the fleet may be? The scalability support is an essential feature
of a robotic fleet operating in unstructured environments [61]. In general, scalable,
open systems, e.g., systems comprising different types and numbers of components,
such as agents, computers, humans, have to support dynamic joining and leaving of
components. Scalability relates to the ability of the system to accept new components
without significant change in architecture and design. (2) How much knowledge
shall be shared? Shared knowledge is a driver for successful coordination between
robots [61]. To attain knowledge about other robots in a fleet, a single robot does
not have to contact a centralized knowledge repository. Instead, the local (distributed)
knowledge can be maintained and used in tasks where robots have to combine their
services in order to successfully accomplish a given task. In this context, discovery
mechanisms are essential components of dynamic computing environments [78]. During
environment exploration, mobile robots discover external resources, like cameras, sensor
networks, and configure themselves to interact with them. (3) What is the human
role? Robotic fleets are designed for limited autonomous operation in the field and
thus require interaction with humans. The requirements on the human-robot interaction
capabilities depend on the challenges of specific applications. A control concept exploiting
different levels of autonomy is an important trend in human-robot interaction research [27].
(4) Shall fleet resources be dynamically allocated based on context and costs
awareness? The context and costs awareness are important task-specific challenges
[150] and [53]. To support cost-based decision making each task has to be assigned with
an objective function to minimize the cost of resources and maximize the benefit gained
by performing that task. In this way a fleet operates as a system where actions are driven
by business objectives. It is hard to identify one specific task dependent challenge as
the most relevant because the requirements depend on the application domain. Thus
a middleware designer needs to decide which should receive more attention, based on
requirements of the specific use-case.
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3.1.2 Comparative Study of Selected Middlewares

This section reviews the number of prominent existing middleware solutions and compares
them against challenges introduced in the section above. The selection criteria was
that a reviewed coordination middlewares supports an autonomous robotic fleet which
executes a mission similar to the precision agriculture scenario introduced in Section
1.1. Moreover, considered are only solutions that deal with higher layer functionalities
(software-based functionalities) instead of middlewares focused on the development
of hardware controllers, like the middlewares ALLIANCE [110] and MARTHA [1],
Collaborative tasking middleware [85], Physically Embedded Intelligent Systems (PEIS)
[11], [117], [58], a market based approach [150] which is referred to as MarketE, and
Human-Agent-Robot Teamwork (HART) [65]. Solutions controlling hardware components
on robots are out of the scope of this review. Each reviewed middleware addresses the
larger number of challenges identified as important in previous sections. This is not the
case for the majority of other existing implementations which address more restricted
number of challenges. Excluded are solutions which are limited to a specific application
domain, e.g., Distributed Robot Architecture DIRA [127], Linda in Mobile Environment
(LIME) [99], middleware referred to as SOLD [53] and Autonomous Robot Architecture
(AuRA) [3].

ALLIANCE [110] defines a framework that allows robot teams, where each robot is
equipped with a variety of high-level functionalities, to individually select appropriate
actions based on the mission requirements, an environment, activities of other robots, and
an internal state. The middleware framework is distributed and implements behavior-
based architecture which enables robots to act based upon their current state. MARTHA
[1] focuses on the control and management of autonomous fleets for transhipment tasks
in harbors, airports and marshaling yards. The focus is on the increase of robots’
autonomy as a key solution for decentralization, which allows robots to efficiently cope
with unexpected environmental issues, e.g., obstacles and other robots. The central
station does not intervene in the robot coordination tasks, nor does it calculate precise
trajectories robots have to take. Thus, the required communication bandwidth between
robots and the central station is very low. Collaborative Tasking [85] middleware supports
market-based task allocation through the implementation of the standard Contract Net
Protocol called Collaborative Tasking Protocol (CTP) for a group of heterogeneous
unmanned vehicles. When a task is injected, each vehicle estimates its cost to perform
the task, taking into account remaining consumables, required effort, its other pending
tasks, and user preferences. The concept of Ecology of Physically Embedded Intelligent
Systems or PEIS-Ecology, aims at building intelligent robots in the service of people [11].
In general, PEIS is defined as a set of connected PEIS components that reside in the
same physical place. PEIS-kernel enables each PEIS component to communicate and
participate in a PEIS-Ecology by implementing distributed tuplespace. PEIS components
use cooperation model based on the linking of functionalities: each PEIS component
is able to use services provided by other PEIS components complementing its own
functionalities. [150] exploits market architecture to maximize information gain while
minimizing incurred costs. It uses the concept of market economies, which are distributed
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systems where individuals exchange goods and services by establishing contracts. Here,
multiple robots interact in a distributed fashion to attain global goals in the efficient
way by maximizing their profits. Finally, KAoS HART [65] supports coordination in a
mixed-team with adaptive autonomy where human-robot interaction takes place. Due to
its hierarchical organizational structure, control is centralized and performed by the team
leaders. A team leader defines a common goal and monitors its execution. Other team
members follow the leader. Team members register at centralized directory service where
they publish a description of capabilities they provide. This enables them to perform a
lookup for desired services and match them against their own requirements. Coordination
among team members is based on a set of policies that manage the organizational
structure among the agents.

Conducted is a comparative study to detect gaps which existing middlewares do not
address, to indicate caveats in a design of a distributed middleware, and to help developers
to avoid them. Three tables presented in this section summarize mapping between
challenges (columns) from the Section 3.1.1 and selected middleware implementations
(rows). Fleet realization challenges discussed in the Section 3.1.1 are reviewed in Table
3.1. Environment specific are included in Table 3.2 and task entailed are shown in Table
3.3.

Table 3.1 compares the above coordination frameworks with respect to the following
general fleet realization challenges: (1) Control structure referring to centralized (C)
or distributed control (D), (2) Robot diversity referring to heterogeneous (Het) or
homogeneous robots, (3) 3C - Communication, Collaboration and Coordination, (4)
Robots’ autonomy, (5) MD and TA - Mission Definition and Task Allocation, and (6)
Semantics.

ALLIANCE is a distributed software architecture that facilitates fault tolerant coop-
erative control (Table 3.2, Robustness) of heterogeneous mobile robots. The control is
distributed and supported via control mechanisms deployed on all robots. Robots have
different abilities, e.g., different sensors and actuators. Information sharing occurs when
each robot broadcasts a state of its current actions on which other robots are listening.
Collaboration is attained through the common work on same tasks. If one robot cannot
finish a task it is in charge of, within the required time, or is not able to finish it at
all, other robots will be notified. Due to the implemented features, especially support
for distributed and heterogeneous robots, ALLIANCE partially satisfies the presented
challenges. However it lacks support for fine-granular mapping of the mission into a set
of tasks and for task allocation.

Due to the centralized control in MARTHA, the framework is able to control both
heterogeneous and homogeneous robot. Whenever a robot produces a plan, which uses
some shared resources, cells or trajectories, it advertises it, and collects from other robots
their resource usage plans. Then it produces a coordinated plan and informs the other
robots of events like cells exit or particular point traversal on trajectory. Furthermore,
different strategies for plan coordination are proposed, with the local scope of planning
actions, instead of a global. This means that robots plan their actions locally instead of
receiving them from a centralized place. The communication between robots has higher
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Table 3.1: Middlewares compared against fleet realization challenges
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ALLIANCE D Het Broadcast X - -

MARTHA C/D Gen Plan merging X
Local task
planning -

Collaborative tasking C Het Broadcast,
bidding - Market-based -

PEIS D Het Tuplespaces X Tuple collection X

MarketE D Gen Price-map
exchange X Tasks trading -

KAoS HART C Het Policies X Utterances X

priority than the communication with a Central Station, which itself requires a high
bandwidth and reliable communication link.

Collaborative Tasking automatically designs and re-designs tasks for a group of
heterogeneous unmanned vehicles. It uses a central agent which runs the bidding
processes. The agent runs the Collaborative Tasking Module which decomposes a high-
level mission tasks into executable tasks and broadcasts these to the robots in charge
for performing them. Robots are heterogeneous with complementary services that are
combined together towards successfully achieving mission goals. Each robot knows a set
of tasks it is capable to perform, as well as the cost of performing a specific task under
current circumstances. The middleware supports market-based task allocation through
the implementation of the extended version of the standard Contract Net Protocol called
Collaborative Tasking Protocol (CTP).

PEIS addresses all challenges summarized in Table 3.1. Decentralized control is
identified as a main requirement in the peer-to-peer PEIS-Ecology. The solution to
decentralization is based on advertisements by each PEIS-component in the same space
where this component runs. Distributed tuplespaces enable each component to make
a decision locally, within its own decision space rather than having a central decision
making system. Furthermore, to establish information sharing between heterogeneous
components, each PEIS component displays its services and functionalities by sending
XML based messages. Components use a cooperation model based on the linking
of functionalities: each PEIS component is able to use services provided by other
PEIS component complementing its own functionalities. The semantics is introduced
to overcome the issue of heterogeneous distributed components. Semantic resource
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description is a comparative advantage over the other frameworks which makes the entire
system extendable.

MarketE distributes control mechanisms over the robots assigned to explore a certain
area. Each robot, which implements negotiation algorithms can participate on a market
and compete for announced resources. Thus, the framework supports both heterogeneous
and homogeneous robots. The robots make decisions by communicating price information
and continuously negotiating with others to improve their task execution plains. In
addition, robots explicitly share their maps of visited, explored, areas in exchange for
revenue. The framework exposes results that show how the collaboration between robots
increases task and mission efficiency.

KAoS HART is a middleware with centralized control that supports coordination in
a mixed-team where human-robot interaction takes place. Mixed human-robot teams
introduce heterogeneity in the framework. The framework uses policies implemented in
OWL as rules for dynamically regulating behaviors imposed by different components.
Policies are used for a mapping between natural language and commands which are basis
for a successful coordination between team leaders and team members. The commander
uses the same policies to decompose a mission into tasks, and by utilizing utterances it
delegates those tasks to specified team members.

Table 3.2 compares the above coordination frameworks with respect to the following
environment specific challenges: (1) Disconnected mode, (2) Robustness, (3) Adaptability,
(4) Emerging behavior, and (5) Dynamic team formation. A tick denotes that a framework
supports a certain feature, while "-" denotes that it doesn’t.

Table 3.2: Middlewares compared against environment specific challenges
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ALLIANCE - X X X -
MARTHA - X X - -
Collaborative tasking - X - - -
PEIS - - - - -
MarketE X X - - -
KAoS HART - X X - X

ALLIANCE has control mechanisms that rely on different sets of behaviors where the
activation of a certain behavior depends on: (1) the efficiency of performing a local task,
and (2) how efficiently the teammates are performing their tasks. The framework tackles
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adaptability and emerging behavior as well. Since robots in MARTHA plan the mission
locally, instead of communicating it with the Central Station, they expose certain level of
robustness and fault tolerance. Furthermore, the local mission planning system increases
adaptability and autonomy levels. Collaborative Tasking Module integrates mechanisms
for handling unsuccessful task allocation processes by means of robustness. The PEIS
framework does not directly address any of the challenges related to the open environment
because it is designed to operate in the structured and controlled environments. However,
it supports semantic resource modeling that makes it easy adaptable to various use-cases.

Due to the communication uncertainties in MarketE, the robots are equipped with
mechanisms to retain system’s functionalities with zero communication. Robot’s actions
are triggered by arrival of messages that contain goals a robot is going to execute.
If for some reason the robot did not receive a message it expected, either due to a
communication problem or due to its peer failure, it has to be able to proceed with a task
rather than indefinitely wait on a message. Hence, unreliable wireless communication
does not disable a team to perform tasks, but reduces its efficiency. Retaining operation
capabilities in case of reduced or even broken communication is a desired feature of robotic
fleet systems. KAoS HART supports dynamically changing policies and therefore can
accommodate changes imposed by volatile environment. Furthermore, using utterances
that are mapped to commands utilizing policies, the system can easily adapt to changing
environments and dynamically form teams.

Table 3.3 compares the above coordination frameworks with respect to the following
task specific challenges: (1) Scalability, (2) Aggregated knowledge, (3) Resource discovery,
(4) HRI - Human-Robot Interaction, and (5) Cost awareness.

Table 3.3: Middlewares compared against task specific challenges
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MARTHA - - X X -
Collaborative tasking - - - X X
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KAoS HART X - - X -

Robots in ALLIANCE share information about the status of a task they are per-
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forming with teammates establishing mutual support and enhancing mission efficiency.
Information sharing encourages robots to learn about actions and knowledge of peers.
At the same time, exchanged information is also presented to the users building a basis
for human-robot interaction (HRI). Due to having knowledge about teammates, robots
enhance the efficiency of their coordination mechanisms as it will be presented later
in this thesis. Consequently, coordination can be transferred from a central place to
distributed robots.

MARTHA proposes incremental resource discovery and acquisition process as a more
flexible way of adaptation to the dynamically changing environment. Human-robot
interaction in MARTHA is bidirectional: on the one hand, robots receive a high-level
mission from an external user and on the other hand, they continuously send their status
to the Central Station (HRI). In Collaborative Tasking when a task is injected, each
vehicle estimates its cost to perform the task taking into account remaining consumables,
required effort, its other pending tasks, and user specified preferences. A high-level
mission definition is a product of a remote operator who uses a specific device with a
customized user interface (HRI).

PEIS implements dynamic join and leave of components, i.e., scalability. Each PEIS-
component describes in a formal way services it offers, together with required input
and output ports, dependencies, type of data, etc. By having uniform semantic-based
services description, all heterogeneous components are able to communicate and cooperate.
MarketE scales and the new robots only have to implement desired negotiation algorithms
in order to participate in a mission. An additional feature of the policies in KAoS HART
is provision of a scalability support. When a new robot joins, it automatically acquires
the intelligence possessed by the others. User interface provides a user with information
from robots, such as position, state, video, thereby, enabling monitoring of the system
behavior (HRI).

3.2 Task Allocation in Robotic Fleets

The main challenge for a robotic fleet is to perform a mission consisting of multiple
independent tasks. To have a group of robots effectively performing tasks, a designer
of a robotic fleet has to address the question which robot should do which task and
when. The process of assigning individual robots to tasks forming a mission is called
task allocation [81]. Task allocation is a fundamental problem in multi-robot systems
where the core requirement is to find an optimal set of heterogeneous robots that have to
cooperate in order to execute a complex mission [10].

The notion of a task in multi-robot systems designates an atomic unit (task) that is
necessary for achieving the overall goal of the system, i.e., a mission, and that can be
achieved independently of other atomic tasks. However, robots still need to communicate
which robot will execute which task. A task can be discrete, e.g., spray a certain part
of a field, or continuous, e.g., monitor a mission execution. In addition, tasks can also
be of different complexity, duration, and specificity [54]. On the other hand, there are
robots which are either homogeneous or heterogeneous and which differ in the amount
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of resources. As robots have different capabilities and tasks require different skills, the
main aim of the system is to schedule tasks to robots in such a way that all tasks are
successfully completed.

Moreover, the task allocation is well known to be an NP-hard problem in multi-agent
systems leading to a variety of different heuristic-based approaches[40]. In [54] proposed
is a well-established taxonomy of Multi-Robot Task Assignment (MRTA) problems to
show how various MRTA problems can be positioned in the resulting problem space.
MRTA problems are described based on the following three axes: (1) single-task robots
(ST) vs. multi-task robots (MT), (2) single-robot tasks (SR) vs. multi-robot tasks (MR),
and (3) instantaneous assignment (IA) vs. time-extended assignment (TA). ST denotes
robots capable of executing at most one task at time, while MT marks robots which
can execute multiple tasks simultaneously. SR denotes that each task requires exactly
one robot to achieve it, while MR means that some tasks can require multiple robots.
Finally, IA permits only an instantaneous (static) allocation of tasks to robots without
planning for future allocations. On the other hand, TA supports dynamic task allocation
over time. These axes serve as a guideline for classifying the task allocation problem,
and, additionally, they offer a reduction from the task allocation problem to one of the
well-known problems in combinatorial optimization, e.g., Optimal Assignment Problem,
Set Partitioning Problem, Set Covering Problem.

Furthermore, robots cooperation complements the efficient task allocation approach
and thus increases overall mission efficiency. This kind of allocation, which includes robots
cooperation, finds its applicability in many domains in real world, e.g., e-commerce [48],
grid computing [105], social networks [64]. Figure 3.1 illustrates 6 domain-independent
task allocation approaches which are described in detail in the following sections.

Figure 3.1: Task allocation models
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3.2.1 Task Allocation in Social Networks

Common understanding of an agent social network is defined in [23] as an undirected
graph where vertices are agents and each edge indicates presence of a social connection
between two agents. The notion of agent can be thought off as a robot in our use case.
[23] employs Greed Distributed Allocation Protocol (GDAP) to handle task allocation
process in agent social networks. The task allocation process utilizing GDAP encompasses
a manager agent seeking for neighbouring contractors to help him/her with the tasks.
Similar to the auction-based task allocation approach, there are agents evaluating tasks
offered by the manager agent and bidding for the most efficient tasks. If sufficient
resources have been offered for a task, the manager contracts a bidding agent. Otherwise,
if offers from all neighbours are received, but none of them offers required resources for a
task execution, the task is removed from the manager’s list. Due to relying only on the
immediate neighbors, GDAP may cause several unallocated tasks. To overcome the main
shortcoming of GDAP, i.e., unallocated tasks, [146] improves the existing GDPA, naming
it Efficient Task Allocation Protocol (ETAP), by extending the manager’s functionalities.
The manager is able to push an unallocated task deeper in the social network, to its
neighbours who are then trying to allocate the task within their neighbours. Experiments
conducted in [146] showed that the ETAP can allocate more tasks than the GDAP due
to the novel reallocation mechanism. On the other hand, GDAP needs less time since it
relies only on immediate neighbours.

[64] explores a negotiation reputation protocol for task allocation in social networks
where an agent’s past behaviours in the resource allocation influence its current ability
to get assigned a new task. However, not all agents in Multi-agent System in Social
Networks (MAS-SN) are truthful and provide real information on available resources
during a negotiation process. There exist deceptive agents that falsify their resource status
information in task allocation and do not really contribute resources during task execution.
To alleviate the problem of deceptive agents, the authors proposed a reputation-based
allocation mechanism and a reward/punishment mechanism designed to favor the truthful
agents by increasing their probabilities to receive a task. [142] also proposes a community-
aware task allocation model for MAS-SN. Presented task allocation model uses heuristics
to assign tasks and limits the agent’s cooperation domain to the community it belongs to
which means that it can only negotiate with its intracommunity agents. The disadvantage
of the proposed models is the lack of shared knowledge between agents in the same
community. This results in the excessive intracommunity communication during the task
assignment because an allocating agent communicates also with the agents that do not
have capabilities to execute a certain task.

3.2.2 Auction and Market-Based Task Allocation

An auction-based task allocation approach usually works in a way that there exists a
market where tasks are sold by brokers to robots. On the one side there is a broker who
generates a task for a sale and places a price on the generated task. On the other side,
each robot bids on a task based on its perceived fitness to perform the task. There is an
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auctioning mechanism which decides based on the price, i.e., clearing price [137], which
robot gets the task, i.e., a winning robot [88]. TRACE framework introduced in [40]
utilizes a price-directed approach for resource allocation and Contract Net Protocol [129]
for the task allocation. During the task allocation process, an agent receives a request
for a task and then determines whether or not it has the capability to carry it out. If the
agent cannot carry out the task, it generates a proposal for other agents to carry out the
task and sends an announcement message to all agents of its organization. The other
agents calculate whether the task fits in their schedule, and if so, send a bid message to
the announcement agent, i.e., the organizer [40]. The organizer takes a decision which
agent will get the announced task. [83] present a market-based multi-robot task allocation
algorithm that produces optimal assignment by using a pricing policy that responds to
cliques of customers. The pricing policy activates when the two agents are interested in
a same task, i.e., a colliding task. In that case the task price is periodically incremented
until only one interested agent is left. The algorithm operates under the assumption that
all tasks are known in advance and that all robots have the knowledge about all tasks.
Moreover, each agent receives only one task which cannot be reassigned.

[149] proposes a distributed allocation algorithm based on the market approach
utilized by robots to simultaneously and continuously allocate and decompose complex
tasks. When an auction is announced, i.e., a task is offered on the market, participants
compute their bids based on the profit they expect to gain by executing the offered
task. After collecting bids, a robot that can perform the task with the best price is
rewarded with a contract. Each robot maintains an internal schedule of tasks it has
committed to and utilizes them when computing the marginal costs when bidding for a
new task. Moreover, each robot can act as a trader as well and announce a task from
its schedule to the others, thus facilitating peer-to-peer trade amongst the team and
enabling task reallocation. Additionally, [149] treats all tasks as complex and represents
them using task trees. Consequentially, the task market is extended to support bidding
on any combination of nodes in the tree. [7] introduces the framework for multi-robot
coordination based on a negotiation for task allocation and cooperative reaction to
contingencies. For negotiation used is an adapted version of the Contract Net Protocol.
Although the system proceeds with a regular mission execution after a failure occurs
during task execution, the negotiation process to reallocate a task requires excessive
communication among robots to proceed with task execution. The task allocation
mechanism only supports allocation of simple tasks, i.e., tasks requiring only one skill
for complete execution. [13] proposes a framework that uses a behaviour-based and
a market-based approach to model reconfigurable robot teams. Both approaches are
simultaneously used to show that they successfully avail themselves of task allocation in
complex missions. It is showed that the market-based approach can be easily extended to
support heterogeneous resources and different environments. Since the robots collaborate
through the merge behaviours, a limiting factor could be the constraints which requires
time and space coupling of robots when they want to merge, i.e., they have to be at the
same time in the same place to merge.

[140] presents a distributed market-based algorithm called S+T which solves the
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MRTA problem in domains where the cooperation between robots is necessary. The main
idea is that a robot, if it cannot execute a task by itself, seeks for a help among it peers.
The help is perceived as a service offered by other robots. The basic S+T algorithm is
advanced to support resolution of deadlock situations, i.e., when the execution of tasks
depends on others, and also has adaptable parameters influencing either the execution
time or the energy consumption. Due to the influence on the number of exchanged
message and the distance travelled, i.e., energy consumption, the robot’s communication
range is perceived as the most important parameter in the algorithm.

Following are the most prominent representative of the auction-based approach:
MURDOCH [53], First-price auctions [150], Dynamic role assignment [15].

3.2.3 Semantic-Based Task Allocation

Another way to think of the task allocation is to investigate a matching problem that
appears in e-commerce domain. With this regard, authors in [48] describe an economical
approach for solving the matching problem by means of a multi-agent system representing
an electronic marketplace. [114] elaborates that discovery is one of the essential activities
in e-commerce enabling the matching between demands and supplies. Moreover, [114]
substitutes traditional discovery solutions based on the exact matching with those building
around semantics. The proposed approach utilizes OWL to describe trading objects, i.e.,
content, as well as requests generated by users and offers from the content providers.
Outcome is an ontology which is a base for the two level filtration mechanism of advertised
content. In the first level, the broker agent applies a semantic-based mechanism which
compares a content requested by users to that advertised by providers. On the second
level, the best content provider in terms of both, price and quality, is selected. Mapped
to our use case, a user request is a task and an offer from a content provider is a robot
with provided skills. On the one hand side, the proposed model rewards low cost and
high quality content providers, and on the other hand side, punishes high cost and low
quality content providers. According to [48], the autonomous semantic-based content
discovery framework is a better solution compared to the traditional keyword-based
discovery because it yields higher matching degree and increases flexibility by means of
describing resources.

[10] addresses the problem of finding a set of agents that can participate in the task
allocation processes. The framework utilizes semantics as a communication paradigm
which assists to overcome heterogeneity issues posed by a large number of autonomous
agents. The main benefit, attributed to the semantic infrastructure, is a semantic
operability which enables that heterogeneous agents establish a common understanding
of shared information. In that way heterogeneous agents have the same semantical
interpretation of tasks exchanged among them. To ensure semantic operability, framework
[10] utilizes a task ontology language (OWL-T) [138] which is a template language based
on OWL for formally and semantically defining task templates to capture system demands.

Moreover, [105] addresses the resource matching issue in grid computing where a
fundamental task is to decide which job will run on which resource. Traditionally, each
organization uses its own language and notation for publishing its resource properties

50



and application requirements and thus makes the interoperation very expensive [35].
To tackle the problem, authors in [105] developed a component known as a resource
broker. The resource broker architecture consists of three modules: (1) request handling
module, (2) resource discovery, and (3) matchmaking module. The resource handling
module is an entry point for a user who submits his/her request in RDF. Upon receiving
a user request, the resource handling module adds semantic annotations to the request
and forwards it to the matchmaking module. After that, the matchmaking module
performs matching between the request and advertised resources based on the requested
and provided capabilities. However, to get a list of resources, the matchmaking module
consults the resource discovery module which returns a list of available resources in a
grid. Moreover, the matchmaking algorithm classifies the matches into four different
group: (1) Exact, where all requested parameters are matched by a resource, (2) Plug-In
where the resource parameters are subset of requested parameters, (3) Subsume where
the resource parameters are superset of requested parameters, and (4) Fail. Domain,
resource description, and resource request ontologies enable the successful operation
of the matchmaking algorithm. [86] addresses the problem of resource matching in
grid environments. In contrast to most of the existing discovery components in grids
that utilize keyword based matching, [86] proposes semantic based resource discovery
mechanisms that use resource information and local resource policy information. Similar
to [105], in [86] a general job execution process starts with user request processed by
a request handler service which extracts application requirements. After that, the
extracted requirements are semantically described using the Grid Resource Ontology
template. Just after that, resource and policy information about the grid resources are
fetched and stored in the knowledge base using the same ontology template as for the
requirements. Finally, a semantic discovery component constructs a query based on
the user requirements and the resource usage policies and executes the query on the
previously populated knowledge base. The query execution relies on the inference engine
to retrieve the inferred knowledge. Same as in [105], the matchmaking algorithm classifies
resources in four different group: (1) Exact, (2) Plug-In, (3) Subsume, and (4) Fail.
[132] proposes a flexible and extensible approach for solving resource matching issues
in grids using Semantic Web Technologies. The main shortcoming of the traditional
matchmaking algorithms relying on keyword based matching is a limited flexibility and
inability to extend to new concepts. The main component of the framework [132] is
the ontology-based matchmaker which utilizes ontologies and rules based on Horn logic
[87] and F-Logic [68] for resources matching. The following three ontologies, built by
using RDF-Schema, are main input parameters for the matching algorithm: (1) Resource
ontology describing resources, e.g., ComputerSystem, (2) Resource Request ontology
captures request properties, e.g., NumberOfCPUs, and (3) Policy ontology capturing the
resource authorization and usage policies. After all input parameters are semantically
described using the above ontologies, the matchmaking procedure composed of various
inference rules is triggered to reason on the request properties, available resources, and
usage policies, to find a resource that fulfils the request requirements. The reasoning
process is enabled by the TRIPLE/XSB deductive database system [157]. The notion of
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ontologies encourages the loose coupling between request and resource descriptions and
thus removes inflexible coordination strings between resource providers and consumers.

The resource allocation approach, named Semantically Enhanced Resource Allocation
(SERA) [34], uses Semantic Web Technologies, agents, and virtualization. The use of
semantics incorporates flexibility and reasoning in the framework. Agents are suitable for
monitoring and reacting to possible undesirable events, e.g., SLA violations. There are
two main type of agents in the system [154]: (1) Job Agents (JA) in charge of managing
users’ tasks, and (2) Resource Agents (RA) responsible for managing providers’ resources.
Agents’ behaviours are implemented complying to the Belief-Desire-Intention (BDI) [116]
model where beliefs represents task requirements and resource capabilities, goals are the
successful execution of users’ tasks, and plans are actions to be performed in different
situations. On the other hand, virtualization provides a specific execution environment
to each single task without risks to the underlying system or other tasks.

The central component of the SERA framework [34] is a Semantic Scheduler that
allocates resources to each task according to its requirements, its priority, and the system
status. Allocation decisions are performed applying Horn rules on the ontology utilized
for describing tasks and physical resources. However, prior to the execution of allocation
algorithm, input parameters, i.e., task requirements and resource descriptions, have to
be semantically annotated. The Description Mapper [154] is a component in charge
of mapping the information provided by users and providers to an ontology, using the
RDF model, which provides a common knowledge. Semantically annotated users’ and
providers’ data are stored in a repository and together with the common ontology creates
a knowledge base queried by different JAs and RAs. The purpose of queries is to select
all the hosts from the repository that fulfil the resource requirements of the task [35].
The common ontology utilized in the SERA framework is based on the Grid Resource
Ontology (GRO) [152]. Finally, when all input data is semantically annotated, the
resource allocation for a particular task is decided between the JA and a set of RAs using
the Contract Net Protocol [154]. The same architecture is utilized in the framework
[36] which combines prediction techniques with semantic technologies to improve the
allocation of resources to the different tasks. Although the framework supports multiple
agents, it does not provide collaboration capabilities between agents.

Although the Semantic Event Notification Service (SENS) [101] does not explicitly
address the task allocation problem in multi-agent system, it can be utilized to coordinate
task allocation because it provides knowledge-based coordination capabilities. SENS is a
publish/subscribe system which uses ontologies to capture domain knowledge. Client can
subscribe for changes or extensions of domain knowledge by registering a description of
this knowledge at SENS using SPARQL. When a new event arrives at SENSE, the SENS
tries to infer additional knowledge by reasoning on the available data and the provided
ontology. If the new knowledge is relevant for any of the subscribed clients, they receive a
notification about the new knowledge. Utilization of ontologies and subscriptions enables
modelling of complex coordination processes.

According to [35] and [37], the major disadvantage of utilizing semantics and inference
to facilitate resource allocation is reflected in the degraded system performance. However,
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both authors state that the performance degradation is reasonable because the SERA
framework deals with long-running tasks which are not frequently assigned or reassigned.
In a task planning domain [51], authors explore how semantic description of environments,
objects, and tasks, can be used to improve task planning in complex scenarios where a
robot executes tasks on objects in an unstructured environment with a great number
of objects. [51] outperforms the other solutions in the task planning domain because
semantics, in particular inference, account for reducing a search space and thus faster
yields potential solutions.

3.2.4 Space-Based Task Allocation

A framework described in [84] is a pioneer in utilizing the space-based paradigm for task
allocation. It describes tasks which build a mission stored (advertised) in a centralized
shared space accessible to all agents. On the other hand, agents fetch task information
from the shared space, i.e., a blackboard, and based on their capabilities calculate their
ability to solve the mission. A blackboard approach is complemented with Contract Net
protocol [129]. Thus, this is one of the earliest work on distributed task allocation in
multi-agent system. In [10] authors introduced the task allocation framework that utilizes
Linda-based tuple space as a communication infrastructure and semantic technology for
overcoming heterogeneity issues. Authors decided to use space-based communication
paradigm because it decouples agents and thus scales well when the number of agents
increases. Moreover, the framework introduces the administrator agents responsible for
managing a centralized space and for semantic matching. Managing a space includes
publishing a new task using OWL-T template language, deleting a tuple, and organising
the space. Semantic matching is performed by comparing a semantic template that a
requesting agent sent to task repository, i.e., space. If the match is positive, the requesting
agent is able to execute a task. Otherwise, the agent can try with another space or create
its own place and publish its request there. Moreover, there is also a provider ontology
agent which provides and maintains an ontology used to derive OWL-T task templates.
This approach enables distributed agents to collaborate without needing to know each
other.

[77] proposes the generic (SILBA) framework based on the SBC paradigm for accom-
modating different load balancing algorithms. In load balancing the notion of agent’s
mobility is utilized to migrate (reassign) tasks from one server to another. The arbiter
pattern in SILBA is responsible for load balancing, i.e., it redirects the load between the
load spaces of different local nodes. In particular, the arbiter agents query the load of a
local load space and decide about re-distribution of work. The real distribution, i.e., a
task transfer, is performed by IN and OUT agents that read routing information from
allocation space and pull, respectively push, work from/to another node in a network.

3.2.5 Coalition-Based Task Allocation

Coalitions are dynamically formed teams, i.e., groups of robots, which stay close to each
other until all tasks are executed. Initially, teams are formed based on spatial proximity
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utilizing hierarchical clustering to reduce the time robots need to move to reach other
teams [109]. Although the robots are required to maintain a close proximity to other
teammates, they do not necessarily cooperate on the same tasks. The framework allows
a robot with a low utility to migrate to another team where the similar robots have
higher utility rates. To successfully realize a transfer from one to another team, shared
knowledge between teams is necessary. Therefore, in [109] each team periodically shares a
summary of the utilities of its robots with other teams. The resource allocation protocol
of the TRACE [40] framework periodically reallocates marketable agents to different
organizations in accordance with their demands. Each organization consists of a set of
permanent agents which are lastingly assigned to the organization, a set of marketable
agents which can be hired by other organizations, and the resource management agent
responsible for renting labour. At the beginning of each reorganization cycle, buyers,
i.e., organizations that wish to acquire additional labour, and sellers, i.e., organizations
that wish to sell their agents, place their bids on the market. As a result, the number
of agents in an organization changes, the distribution of domain knowledge, as well as
the communication structure. [16] proposes two different methods for building a robot
coalition. First is the sequential method which aims for producing an online solution
for task assignment and the second is holistic method that does task assignment at the
beginning and thus requires the information of all tasks in the system. However, the
proposed solution lacks the mechanism for reassigning tasks between coalitions.

[80] describe a solution that leverages the lack of social skills among simple autonomous
robots, e.g., cleaning robots. The idea is to have software that ensures cooperation among
robots without changing their hardware to provide new functionalities. Thus, the authors
proposed to utilize intelligent agents, as representatives of robot units, capable to perform
social interaction and team formation. As a result, each robot has a corresponding agent
in the system. There is as well a user acting as a central manager who decomposes
tasks, assigns, and reassigns them in case of failures, and monitors the task execution.
The layered control approach retains the same level of autonomy a robot had before,
because it does not interfere with the robot’s internal algorithms utilized during the task
execution.

The main challenge in coalitions is the group size of robots that work together. [71]
conducted experiments to determine the relationship between group size and efficiency.
The experiments showed that the efficiency is highest when the number of robots in
a group remains below 9. When there are more than 9 robots in a group, efficiency
decreases due to the interferences between robots. Moreover, [123] utilizes a network
flow optimization model in task allocation where a group of small air vehicles are in
charge of wide area search munitions. The disadvantage of the presented model is in
that each vehicle can only have one task assigned at a time resulting in frequent task
assignment processes. [126] utilizes the Set Covering Problem to allocate tasks to groups
of agents. In order to decrease extensive communication between agents in a group,
the algorithm introduces restriction which limits the number of agents in a group. It
prefers small-sized coalitions over larger coalitions. The algorithm proposed in [128]
divided the task allocation problem in 4 phase: (1) task selection, (2) resource negotiation,
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(3) coalition formation, and (4) task execution. After a task is assigned to an agent
with insufficient capabilities to execute it, the agent negotiates resource allocation with
neighbours and forms a coalition accordingly. Similar to [142], the problem is in excessive
communication due to the lack of shared knowledge. This results in task negotiation
between agents that do not have complementing capabilities and thus cannot form a
coalition.

3.2.6 Alternative Task Allocation in Multi-Robot Systems

This section introduces frameworks for multi-robot systems which practice some other
approaches for task allocation than those described above. [81] describes a dynamic
task allocation mechanism where robots utilize local observations of the environment to
decide their task assignments. This approach is named task allocation through utilizing
emergent coordination and it is perceived at the system encompassing individual robots
which coordinate their actions based on local sensing information and local interactions.
On the one hand, these systems are more scalable, robust, and introduce high parallelism.
On the other hand, they are difficult to design, solutions are sub-optimal, and predictive
analysis of expected performance is challenging. Due to the limited sensing capabilities,
robots in [81] cannot acquire global information about the system and a surrounding
environment, and thus they have an internal task state where they store their observations
from the environment. The robots consult these observations periodically and update
their task state according to some transition function. The goal of the framework is to
efficiently assign emerging tasks under the limited communication possibilities and the
lack of global knowledge.

[18] deals with the task allocation in distributed data processing. Distributed entities
are processors with computational power while tasks are software modules that have
to be executed. Similar to our approach, the introduced concept tries to decrease
communication between distributed entities by allowing complex entities, i.e., entities
with more computational power, to prefer complex tasks. To achieve this, the approach
uses a graph theoretic approach. [125] utilizes Genetic Algorithm to address task
scheduling in grid computing. The task allocation algorithm optimizes two objectives,
it minimizes the completition time and the economic cost. [33] developed energy-aware
strategies for adaptive task allocation in energy harvesting wireless sensor networks. The
task allocation algorithm utilizes Genetic Algorithm to address the energy prediction for
each node. The main objective is to maximize the fairness in energy-driven task mapping,
i.e., energy balancing. When a wireless node receives a task, it adapts the task execution
time according to the available energy. Consequently, if the node is in low-energy state,
it will not collaborate with the other nodes neither will reassign the task.

[144] investigates how the task allocation process can be utilized for a path planning
algorithm to accommodate dynamically changing task schedules. Each task is represented
as a waypoint for the robot to navigate to and the tasks arrive dynamically in the
environment. A new waypoint can emerge when a robot discovers an obstacle while
traveling to its current goal and thus is required to make a detour around the obstacle.
The robot’s path planning algorithm, D* [45], then generates the optimal plan to get to
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the next waypoint. [66] develops heuristic method for the task allocation and collision-free
path planning for three robots working in a shared environment. A Genetic Algorithm
had been used for task allocation, and A* for path planning. The system operates under
the assumption that all tasks are known in advance and only one robot is required to
execute one task. Due to the centralized mission planning, distributed robots are not
able to collaborate and exchange tasks. The system [98] performs task assignment and
scheduling given the number of aerial robots. Both, task assignment and scheduling
utilize heuristics to calculate a strategy for tasks execution. Since the calculated strategy
cannot be altered during the mission, the collaboration between robots is not supported.

[119] addresses the task allocation problem in extreme teams which have the following
properties: (1) the dynamic environment causes tasks to appear and disappear, (2) an
agent may perform multiple tasks, (3) agents have overlapping functionalities, and (4)
inter-task requirements such as simultaneous execution requirements. The proposed
task allocation algorithm is built on Distributed Constraint Optimization (DCOP) [92]
algorithm and is called LA-DCOP (Low-communication Approximate DCOP). The main
improvement introduced by LA-DCOP over DCOP is the use of tokens to represent tasks
which further enables the minimization of the communication overhead. By accepting a
potential token, an agent confirms that it will perform the task once the interdependencies
have been satisfied [119]. Meanwhile, the agent can perform other tasks. [63] introduces
a robotic fleet responsible for delivering materials inside a hospital. The task allocation
mechanism assigns a material to a corresponding robot based on the exhaustive searching
for the shortest path of all robots in the fleet. The algorithm presumes that the robots
only have one skill, i.e., ability to transfer a material between two points, and that they
do not collaborate for task execution.

[147] addresses the group role assignment problem and proposes an efficient algorithm
based on the Kuhn-Munkers (K-M) algorithm. The role assignment problem has three
steps: agent evaluation, group role assignment, and role transfer. Agent evaluation
validates the agent’s capabilities and resources, and based on that, rates its qualification
for a role. Group role assignment instantiates a group by assigning roles to its members.
Role transfer reassigns roles to agents. [147] contributes by proposing a practical solution
based on the K-M algorithm for the group role assignment.

3.2.7 Environment-based Task Allocation

This section addresses a problem of robots spatial interference which is perceived as a key
stumbling block on the way to efficient task allocation in robotic fleets. [118] introduces
a distributed algorithm for task allocation in multi agent systems where tasks and agents
are dispersed in a two-dimensional space. The algorithm is based on computational
geometry technique, i.e., Delaunay triangulation [24], which tries to isolate each agent and
thus enables it to base its decision solely on a small set of adjacent task and agent nodes.
In contrast to the traditional task allocation approaches focused mainly on negotiation
or market strategies such as contracts or auctions that require substantial amount of
communication, algorithm [118], due to the local decisions, reduces the communication
costs significantly. Work described in [121] studies a territorial approach to the task
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allocation where robots are assigned exclusive working areas that can be dynamically
resized if one of the robots fails completing a task. Reflecting on the experiments
conducted in [121], the authors concluded that the larger the number of robots working
in the same global workspace area, the greater the interference and the uncertainty
related to the time required for task execution. Moreover, the task coverage algorithms
presented in [17] and [70] utilize the Boustrophedon cellular decomposition approach,
Figure 3.2 a), for partitioning the robots workspace, i.e., an environment is divided in
multiple cells whose union form the whole environment. A cell is a minimal partitioning
unit able to host one robot at time. In [70] the robots are initially distributed in a space
where each robot is allocated to a cell that it shall cover. During the operation, robots
incrementally build an adjacency graph representing the operating environment and share
their knowledge, i.e., the constructed graph, with others. The approach presented in [17]
exploits a geometric structure which is a union of nonintersecting rectangular regions
that together compose the working environment. Each region is termed a cell and in
each cell a coverage path is a simple back-and-forth motion. The approach is validated
on mobile robots performing various experiments described in [17].

Figure 3.2: a) Boustrophedon cellular decomposition [70], b) Voronoi diagram

[62] develop a dynamic partitioning algorithm which assigns subareas to robots during
the mission. A working area is divided in polygons allocated to robots that perform a
cleaning task in a selected polygon. Since multiple robots may want to allocate the same
polygon, robots have to cooperate to avoid collisions and double polygon allocations.
Before a robot starts to allocate a polygon, it calculates an importance value for the
polygon considering how far is the new polygon from the ones already allocated to the
robot. After the importance value is calculated, it is communicated with other robots
using Contract Net Protocol. However, a disadvantage is that the robots are not always
in a communication range of other and thus cannot always perform a negotiation process
with all interested parties. Thus, it could happen that some polygons are processed more
than once. The authors argue that this dynamic approach is more flexible than the static
one because in a case of a robot’s failure, other robots dynamically take over its work.
In addition to the Boustrophedon cellular decomposition, [145] and [79] utilize Voronoi
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diagrams, Figure 3.2 b), as another technique for space partitioning which decouples
robots sharing the working environment. Voronoi diagrams will be explained in detail in
Section 6.3.

3.2.8 Comparison of Task Allocation Approaches

Table 3.4 compares 43 task allocation frameworks reviewed in the above sections with
respect to the following criteria: (1) Dynamic tasks denotes whether a framework
supports dynamically arriving tasks or only static tasks known in advance, (2) Reassign-
ment describes capability to reallocate a task from one to another robot during a mission
runtime, (3) Allocate N tasks indicates that a task allocation framework can in 1 run
allocate more than 1 task to a robot, (4) Collaboration announces that two or more
robots can work on a same task, e.g., each robot executes one part of a complex task,
and (5) Shared knowledge means that each robot in a fleet is aware of the capabilities
the other robots in the fleet have. The following task allocation frameworks ([51], [101],
[71], [125], [147], [121], [17]) are not listed in Table 3.4 because they deal with specific
use cases, e.g., path planning, area coverage, which neither encompass software agents
nor mobile robots and thus cannot be compared against selected criteria. Task allocation
frameworks are clustered based on the criteria, i.e., features, they provide.

Table 3.4 shows that majority of reviewed task allocation frameworks support dynamic
arrival of tasks during a mission execution, i.e, 33 out of 43 frameworks. 8 task allocation
frameworks support only dynamic arrival of tasks, while 6 more support one additional
feature, i.e., collaboration. This feature is particularly important when a robotic fleet
operates in unstructured environment where not all tasks are known in advance, i.e.,
before a mission begins. Since in this thesis we address the precision agriculture scenario
which subsumes operation in unstructured environments, it would be beneficial to
consider this feature in our SKIM coordination framework. 17 frameworks provide the
capability to reassign already allocated tasks. Similarly, also 17 frameworks provide
the collaboration capabilities between robots in a fleet. Majority of frameworks that
support task reallocation or robots’ collaboration, also support dynamic arrival of tasks.
The system robustness, i.e., ability to proceed with the mission execution when a robot
fails to execute a task, can be realized by means of dynamic task reallocation. The
capability to cooperate on complex tasks, is inevitable factor to address in multi-robot
systems. Thus, these two factors should be cornerstone in the SKIM. To strengthen the
system robustness, a robot in a fleet should be able to proceed with a mission execution
even if it looses a connection with either a central management system or with other
robots in the fleet. To support this, a robot should have a plan that consists of allocated
tasks, i.e., a task allocation framework should support allocation of multiple tasks to one
robot. This feature is practised by 20 reviewed frameworks. On the other hand, only
3 frameworks provide shared knowledge between robots in a fleet. Shared knowledge
facilitates collaboration between robots in a way that it enables a robot A to find an
appropriate collaboration partner (robot B), i.e., robot B which offers particular skills
that robot A needs to complete a task. Due to that, each task allocation approach that
supports shared knowledge, support the collaboration as well.
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Table 3.4: Comparison of task allocation frameworks
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[23],[88],[48],[114],[86],[132],[16],[123] X - - - -
[150],[35],[37],[34],[154],[80],[81] X X X - -
[105],[10],[84],[126],[18],[118] X - - X -
[40],[33],[144],[63] X - X - -
[149],[13] - X X X -
[77],[128] X X - - -
[66],[98] - - X - -
[146] - X X - -
[64] X X X X -
[142] - - - X -
[7] - X - - -
[140] - X - X -
[53] X X - X X
[109] X - - X X
[70] X - X X X
[15] X X - X -
[119] X - X X -
[62] - - X X -
[83] - - - - -
Total 33 17 20 17 3

Only 15 frameworks provide three or more features, and only 3 of them provide
four features. Although [83] does not provide any of the selected features, it is selected
because of the interesting implicit coordination strategy applied for dealing with colliding
tasks. To the best of my knowledge, there is no existing task allocation framework that
supports all five features. Therefore, the SKIM coordination framework will provide a
task allocation model that implements all five features.

3.3 Adaptive Autonomy in Mixed Human-Robot Teams

This section reviews the frameworks that model the human-robot interaction (HRI) by
means of adaptive autonomy in missions that comprise mixed teams of humans and robots.
The purpose of HRI technology is in the short-term to facilitate efficient automation
of processes and in the long-term to enable operation of teams in which humans and
robots jointly perform complex tasks and missions. Adaptive autonomy is the term used
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to refer to autonomy of robotic units designed for flexible change, i.e., the autonomy
may increase or decrease depending on the state of the system, the environment, and
the requirements of the human operator [56]. In this way development of autonomous
capabilities of robotic systems can be better matched to the needs of human operators
and coordination among the robots in a fleet and human team members in complex
unstructured environments. Humans can interact with robots in different roles, including
a mission planner, a remote operator, an in-field operator for maintenance and diagnosis
tasks, or a close collaborator in joint missions. The spatial and temporal dimension of
human-robot interaction depends on tasks and application fields: (1) remote operation
has challenges related to potentially long delays in communication, (2) interaction in
the same environment is challenging because of the safety issues, and (3) multi-operator
interaction is challenging because of the requirements of coordination and split control
[27].

Communication between entities is fundamental for achieving a mission goal. Explicit
communication is limited in terms of fault tolerance and reliability, because it is typically
conducted in volatile and unstructured environments which tend to partition all members
of the robot team [111]. Consequently, robots have to deal with a dynamic network
topology where it is very difficult to predict future moves. In most of the existing research,
the availability of a communication link between two robots is always assumed [113].
However, this assumption does not hold in unstructured and dynamic environments as
the agricultural land is. To remedy communication uncertainties and constraints imposed
by a volatile environment, the work in [31] proposes a data collection function within
the robotic fleet which is targeted to enrich an operator in-field understanding of the
mission with specific additional information beyond what he/she can directly perceive
by supervising the mission. This framework combines data from three different sources:
(1) data retrieved directly from robots utilizing HRI system, (2) visual perception of the
in-field situation, and (3) network data obtained through the network monitoring system.
Utilizing fused data, the user increases the overall mission efficiency by reducing the
robots outages, i.e., a robot being disconnected from a fleet due to communication loss,
and increasing their utilization based on the network information which helps the user to
predict and prevent remote robots of losing a connection and thus being out of service.

The safety of human interactions with robots becomes a key issue as robots are used
in interactive and uncertain environments. Interaction between humans and robotic
fleets in different application fields ranges from operation to teaming in joint tasks. In
the precision agriculture applications the interactions among humans and autonomous
robotic fleet predominantly focus on interactions for a fleet operation, including in-field
interactions [27] where the safety issue is the main parameter to address. To detect safety
critical situations robots are equipped with person or animal detection system. However,
to cover all possible situations of human-robot interaction, the high-level decision making
system in [27] is distributed among the central platform at the base station and the
user in a field. As a consequence of problem detection, the mitigating reactions include
the robot autonomous behaviour and the human-assisted decision making process in
the field. These redundant decision-making systems prevent the hazardous situations
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and increase mission efficiency. To allow multiple humans to participate in the team
at any level of control, [65] proposes a regulatory mechanism based on the regulations.
A regulation is based on authorizations and obligations: authorization policies specify
which actions an actor or a set of actors is allowed or not allowed to perform in a given
context and obligation policies specify actions that an actor or a set of actors is required
or not required to perform.

The existing work further identifies challenges in designing multi-human multi-robot
interaction mechanisms in relation to scalability [133] and coordination [41]. Coordination
is an issue often underestimated in the design of autonomous robotic functions [143].
Therefore, in the design of the human-robot interactions, particularly in very demanding
multi-robot systems, robotic and cognitive requirements (scalability, avoiding information
overload) have to be jointly accounted for [12]. To address uncertainties emerging due to
the unpredictable situations, in [20] authors use multi-human/multi-robot interactions
where the agents ask humans for help when they meet unpredictable situations. To
model the behaviour in those unpredictable situations, [20] introduces a model called
HHP-MDP (Human Help Provider - Markov Decision Processes) which describes how a
controller can handle different types of requests that agents send to the set of humans.
Moveover, the human can react on a request either by teleoperating a requesting agent,
or by giving recommendations, i.e., giving the agent a set of subgoals to be reached
before the main goal. This approach is known as the goal-biased technique. [47] model
the multi-human/multi-robot interactions with the mixed-initiative planning approach
which is to continuously coordinate, integrate, and monitor the operator interventions
and decisions with respect to the concurrent functional activities. Due to the number of
hardcoded procedures, it is not trivial to extend or modify the presented HRI model. Work
presented in [139] inspects the effect of the number of controlled robots on performance
of an urban search and rescue (USAR) task. The outcome of this study revealed that
the human workload increased monotonically with the number of operating robots, while
at the same time performance per robot decreased because a robot is neglected for a
longer period of time. Although all the robots are autonomous, they perform better
when teleoperated. The study suggests a limit of 8− 12 robots for direct human control.
This implies that not all robots can be teleoperated at the same time thus some robots
will be neglected. However, it is worth to notice that the observed robots did not have
collaboration and cooperation activities among themselves. [141] presented a framework
which increases human capacity for control by removing the independence among robots
and thus allowing them to cooperate. Robots cooperation is complemented with a human
control resulting in the model of adaptive autonomy. The experiments were performed in
USAR environment to measure the trust a human operator has in the autonomy model.
The results showed that autonomy helped the operators to explore more area and find
more victims.

[124] investigates challenges in heterogeneous teams where humans operate multiple
robots. [124], as well as [31], point out a human awareness of the operating fleet as a major
issue that needs an attention when designing adaptive autonomy models. [124] introduces
two models of adaptive autonomy: (1) System-Initiative Sliding Autonomy (SISA), and
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(2) Mixed-Initiative Sliding Autonomy (MISA). SISA allows the operator to interfere
with the system only when explicitly asked to do so by an autonomous robot. Whereas
MISA allows a human operator to intervene with the system at any time. To compare
these two representatives of adaptive autonomy, the authors conducted an experiment
where they compared SISA and MISA with teleoperation (human is in a complete control
over the robotic fleet) and pure autonomy (no human interaction and complete autonomy
of the fleet). The results revealed that the autonomous system is consistently faster, but
less reliable than the teleoperated approach. In SISA and MISA the execution time of
a mission is close to that of the autonomous system. Regarding the human workload,
it is the highest in the teleoperated approach, while in SISA and MISA it is task- and
user-dependent, i.e., depends among the other factors on the user’s experience. [124]
concluded that adaptive autonomy approaches may improve the multi-agent team’s
reliability without compromising efficiency. [148] presented a model of human-robot
cooperative control that helps to improve the resilience of the human-machine system
by introducing multiple levels of autonomy. Presented model includes four levels of
autonomy deployed on a robot. In a dynamic context, the human-robot system must be
able to select the most appropriate autonomy level. Conducted experiments showed that
the automatic selection of an autonomy level did not yield expected improvement with
respect to the mission efficiency (mission execution time). The authors argue that this
could be due to a lack of experience of the operators with the system.

Multiagent Adjustable Autonomy Framework (MAAF) [49] addresses the challenges
posed by exploiting the unique capabilities of heterogeneous teams composed of a mixture
of robots, agents and humans. The challenges pertain to improving the safety, efficiency,
reliability, etc. MAAF uses a technique which introduces the notion of global goals that
all team members have to be aware of, i.e., team-oriented programming. The basic idea
is to provide high-level team plans and their decomposition into sub-team plans and
roles. After that, those plans and roles are allocated to agents and then the framework
facilitates the reasoning about whether to act autonomously or pass control to other
team members. Furthermore, the notion of adjustable autonomy uses transfer-of-control
strategies to allow the best teammate to have autonomy over a decision at a given time,
e.g., if the agent A cannot make decision, it passes the control over to the agent B, if the
agent B cannot make decision, it passes the control over to a human. Similar to MAAF,
[120] introduces the notion of transfer-of-control strategy from an agent to a human or to
another agent. However, [120] emphasizes that interrupting a human user has very high
costs and thus such transfer of control has to be minimized. To minimize the transfer,
[120] built an algorithm which uses MDP to select an optimal strategy with regard to
given costs of individuals and teams.

[55] presents a model for adaptive autonomy that takes into account the cognitive
task load (CTL) of a human team member and the coordination costs of switching to a
new task while deciding the level of autonomy of a robot. The introduced model enables
dynamic task allocation between humans and robots. A human operator can interact
with the system in two ways: either by executing a task in parallel with a robot, or to
react on a robot request for help. This is achieved by representing each task with all
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possible levels of automation, i.e., different levels of autonomy can be modeled as several
mutually exclusive subtasks. Thus, different subtasks can be dynamically allocated to
different actors in the system.

Table 3.5 compares the adaptive autonomy frameworks reviewed in this section
with respect to the following criteria: (1) N operators denotes whether the reviewed
framework supports more than 1 human operator, (2) N controlled robots indicates
whether one human operator can control more than 1 robot, (3) N interaction levels
describes the capability of a human operator to perform supplementary tasks, e.g., a task
allocation, in addition to the default interaction mechanisms, (4) Active | Reactive
shows whether a human operator can only react on a robot’s request or can also initiate
one, and (5) Flexible behaviour denotes the capability to easily change a human’s
behaviour in case the human behaviour is modeled with an algorithm. When a human
operator is represented by a real human, the behaviour is anyhow flexible. To be able to
easily change a human’s behaviour subsumes that the implemented algorithm does not
have to be altered. Adaptive autonomy frameworks are clustered based on the criteria,
i.e., features, they support.

Table 3.5: Comparison of adaptive autonomy frameworks
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[139],[141] - X - Reactive X
[120],[148] - - - Reactive X
[20] X X - Reactive -
[47] X X - Both -
[124] - X - Both -
[49] X X - Reactive X
[55] - - X Both X

Table 3.5 shows that majority of reviewed adaptive autonomy frameworks do not
support multiple human operators. This is due to the coordination complexities between
multiple human operators, e.g., human operators have to coordination who will process
next robot’s request. On the other hand, in most frameworks a human operator is
responsible for controlling and interacting with multiple robots in a fleet. Consequently,
the human operator can easily become overloaded which can influence a mission efficiency.
Only one reviewed framework [55] supports more than one level of a human interaction
with a fleet. A human operator can interact with the system either by executing a task
in parallel with a robot, or to react on a robot request for help. All other reviewed
frameworks support only interaction for providing help during a task execution, e.g.,
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teleoperation. Majority of reviewed frameworks provision only a simple, i.e., reactive,
mechanism to react on robot’s requests. Only 3 frameworks enable a human operator to
initiate an interaction with a robot. Finally, a flexible behaviour is present only in the
systems where a human operator is represented by a real human. In other 3 framework a
human behaviour is modeled and thus cannot be altered without altering the algorithm.
To the best of my knowledge, there is no existing adaptive autonomy framework that
supports all at least four features. Therefore, the SKIM coordination framework will
provide an adaptive autonomy model that implements all features except the multiple
human operators.

3.4 Summary

This section summarizes the related work analysis. Due to the three different categories
of the related work: (1) coordination middlewares for robotic fleets, (2) task allocation
models, and (3) adaptive autonomy in human-robot teams, this summary is structured
accordingly.

Designing middleware for application in complex robotic systems requires that many
challenges related to the fleet operation are addressed. This thesis classified challenges in
the three domains of concern: (1) general fleet realization, (2) environmentally entailed
challenges, and (3) task specific challenges. The latter two are specific for the fleet
application. The benefits of some of the design options are already well understood: a
solution that enables decentralized control of autonomous and heterogeneous robots has
advantages over the one which lacks those features. Specific tasks and environments
introduce a set of additional design constraints that are critical for operation in missions
with high uncertainty. The review of existing middlewares revealed that the semantic-
based task and service description is an approach that only a small number of middlewares
support. This motivates the work presented in this thesis which, in particular, focuses
on extension of a semantic solution that combines space-based middleware with semantic
modeling, processing and reasoning.

The use of semantics for resource and task modeling is recognized as a prominent
approach. The benefit of using semantics for a task allocation is twofold: (1) the developed
ontology provides uniform description of heterogeneous and distributed resources, and
(2) semantically annotating tasks and services yields a more accurate matching and thus
results in more efficient utilization of resources. The former enables all heterogeneous
robots to execute tasks produced by a third party because all entities conform to the
introduced ontology. Moreover, heterogeneous robots can even generate ad-hoc tasks
which are executable by other robots. The latter is expected to be a basis for the matching
algorithm that satisfies exact, subsume, and plugin matching degrees which are well
established guidelines in reviewed literature.

Operating a robotic fleet is a cognitively demanding task that requires an efficient
user-fleet interface for decision-support in control and monitoring, diagnosis, problem
detection and resolution, complementing the autonomous decision making that the
robotic fleet units are capable of. Particularly for applications of robotic fleets in open
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uncontrolled environments, the role of the human-operator needs to be carefully defined
and supported, taking into account uncertainties in all phases of the system operation,
including also human potential in resolving and equally creating critical situations. Some
of the stated challenges are addressed in this thesis by utilizing an ontology to model
human-robot interactions.
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CHAPTER 4
Ontology-based Approach for

Task Allocation

Multi-agent systems heavily rely on dynamic and intensive collaboration to provide
interoperability between heterogeneous autonomous robots, i.e., agents. In this thesis,
the notion of interoperability is limited to the model of a task allocation. Achieving an
efficient task allocation, and thus interoperability, is a challenging task which requires
to address the following issues: (1) heterogeneity of resources, i.e., robots and tasks
to execute, (2) coordination which manages the possible interactions between involved
parties, (3) dynamic resource discovery and utilization, (4) sharing knowledge within a
robotic fleet, and (5) domain independent and flexible collaboration approach.

To address these challenges, this section utilizes ontologies to overcome the semantic
discrepancies inherited by integrating heterogeneous components, i.e., to specify and
conceptualize knowledge using a formal description that is machine-readable, shareable,
and enables reasoning to infer new information. Due to the interoperability support
between heterogeneous agents as well as reusability, ontologies enjoy significant support
in multi-agent community [112]. Utilizing ontologies formalizes modeling of domain
knowledge and simplifies the design of coordination patterns between robots which
otherwise is a complex and cumbersome task. This thesis applies the Model-Driven
Architecture (MDA) approach that separates the specification of system functionality
and implementation. MDA encourages explicit modelling of heterogeneous resources and
a clear separation between models and implementation [96].

This chapter begins by introducing the MDA approach and describing the relevant
concepts. After that it introduces a high-level and domain independent ontology for
modelling resources, i.e., tasks and robots, and operating environment and describes
how this maps to the MDA approach. This is followed by the ontological model of a
configuration, i.e., a robotic fleet, which executes the modeled tasks. Moreover, described
is a customizable ontology defining coordination policies between heterogeneous team
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members. Finally, the chapter is concluded with an overview of benefits that the
integration of ontologies and MDA brings.

4.1 The Concept of Model-Driven Architecture

Model-Driven Architecture (MDA), defined by the Object Management Group (OMG),
is an approach to application design and implementation which encourages efficient
use of system models in the development process as well as the reuse of those models
when creating families of systems. Models allow engineers to focus on important details
essential to reason about the system. Models can be used to predict system qualities,
to reason about specific properties when aspects of the system are changed, and as a
precursor to implementing the physical system [91].

Figure 4.1: MDA approach

As already mentioned, the main goal of MDA is the separation of system functionality
specification and implementation [6]. Figure 4.1 shows the structure of the MDA approach
and the relation of different models: (1) Computation Independent Model (CIM), (2)
Platform Independent Model (PIM), (3) Platform Specific Model (PSM), and (4) software
code. CIM pertains to the construction of the models in a formal way mainly using Unified
Modeling Language (UML) [90]. The system requirements are extracted and described
in CIM, which is then refined into the PIM. This refinement is called transformation and
it is usually done by hand. PIM separates system functionality from the implementation
and thus keeps the specification independent of the platform the system may be deployed
to. PSM is the result of the PIM transformation to the target platform. PSM describes
the separation of system functionality on a specific technology. Later, PSM is transformed
to code which will be executed on that platform.
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The following sections introduce and describe multiple ontologies used as formal
models to capture the domain knowledge and to specify system functionality.

4.2 Ontological Description of Heterogeneous Resources

This section addresses the challenge of heterogeneous resources which are unavoidable
issue in multi-agent system. The challenge is explicitly addressed by utilizing ontologies
to formally model the shared knowledge between heterogeneous components.

The proposed system ontology reuses the concepts from ontologies described in [86]
and [106] which partially describe our system, but are still incomplete. Known existing
ontologies, for this and related use cases, lack the support for automated mapping
between tasks and robots, i.e., they do not model an explicit relation between these two.
Therefore, the following concepts were required to make these ontologies suitable and
intuitive for task allocation. The basic idea of the proposed model is to formally specify
that Tasks can be performed by Robots providing different Skills, and that each Task
can be associated with a Robot via Skill. Moreover, each Task requires a specific amount
of resources, e.g., a spraying liquid, for execution which has to be provided by a robot
which participates in the task allocation process. This approach will be later in this
thesis utilized in the design and implementation of various task allocation approaches.

4.2.1 Describing Task Requirements

Common to all missions that include either single or multiple robots, is to execute a
set of tasks in a given environment under some constraints [111]. Missions consist of
multiple tasks with different requirements, constraints, dependencies, locations in an
environment, etc. Therefore, the ontology illustrated in Figure 4.2 is modeled as a
general ontology which formally describes tasks and due to its generality, it is domain
independent. However, the illustrated ontology is derived from the agricultural use case.
Domain independency is shown later in this thesis by modeling different scenarios using
the same task model, i.e., ontology.

The ontology illustrated in Figure 4.2 models the class Task with three properties.
First property, hasCentralPoint, relates a task to a 2D location in an environment, i.e., a
place where the task resides. Second property, needsSkill, describes skills required by the
task, i.e., which skills a robot must have to execute the task. One task has to have at least
one skill, i.e., an individual of type Skill. Finally, the needsAmount property refers to the
amount of resource a robot must have to execute the task. To keep the example simple,
some properties are omitted from the Figure 4.2, i.e., hasId and hasNumberOfSkills.

Listing 4.1 shows an excerpt of the ontology defined in OWL (see Figure 4.2) which
presents the definition of class Task. Class Task has three necessary and sufficient
conditions defined as Restrictions. These three conditions ensure that an individual
which has exactly one value for hasCentralPoint property and at least one value for
needsSkill and needsAmount properties is classified as a Task.
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Figure 4.2: General ontology for describing tasks

Listing 4.1: Ontology excerpt - class Task

<owl : Class r d f : about="&mult iagent ; Task">
<owl : e q u i v a l e n t C l a s s >

<owl : Class>
<owl : i n t e r s e c t i o n O f r d f : parseType=" C o l l e c t i o n ">

<owl : R e s t r i c t i o n >
<owl : onProperty r d f : r e s o u r c e="&mult iagent ; hasCentra lPoint "/>
<owl : onClass r d f : r e s o u r c e="&mult iagent ; Point "/>
<owl : q u a l i f i e d C a r d i n a l i t y r d f : datatype="&xsd ;

nonNegat iveInteger ">1</owl : q u a l i f i e d C a r d i n a l i t y >
</owl : R e s t r i c t i o n >
<owl : R e s t r i c t i o n >

<owl : onProperty r d f : r e s o u r c e="&mult iagent ; n e e d s S k i l l "/>
<owl : onClass r d f : r e s o u r c e="&mult iagent ; S k i l l "/>
<owl : m i n Q u a l i f i e d C a r d i n a l i t y r d f : datatype="&xsd ;

nonNegat iveInteger ">1</owl : m i n Q u a l i f i e d C a r d i n a l i t y >
</owl : R e s t r i c t i o n >
<owl : R e s t r i c t i o n >

<owl : onProperty r d f : r e s o u r c e="&mult iagent ; needsAmount"/>
<owl : onClass r d f : r e s o u r c e="&mult iagent ; L i t e r a l "/>
<owl : m i n Q u a l i f i e d C a r d i n a l i t y r d f : datatype="&xsd ;

nonNegat iveInteger ">1</owl : m i n Q u a l i f i e d C a r d i n a l i t y >
</owl : R e s t r i c t i o n >

</owl : i n t e r s e c t i o n O f >
</owl : Class>

</owl : e q u i v a l e n t C l a s s >
</owl : Class>

Table 4.1 presents an example for an instance of class Task with an Id = 24, a central
point [x=89, y=47], two needed skills [Skill_1, Skill_2] where each skill needs 3 units
of resource, e.g., one unit of resource could represent 100 liters of spraying liquid. Due
to the generality of the presented ontology, Skill_1 and Skill_2 denote general, domain
independent skills, which can be later substituted with real, domain dependent, skills.
However, this will be demonstrated later in this thesis.

To execute an instance of class Task presented in Table 4.1, either one robot with two
skills and an appropriate amount of resources can do that, or two robots, each with one
corresponding skill and an appropriate amount of resources, have to collaborate. Both
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Table 4.1: A task modeled using general ontology

Id Central Point Needs Skill Needs Resource Number of Skills
24 [x=89, y=47] [Skill_1, Skill_2] 3 2

approaches will be examined later in this thesis.

4.2.2 Describing Robots’ Capabilities

Ontology for modeling robots is illustrated in Figure 4.3. Although the robot ontology is
closely related to the general task ontology from Figure 4.2, the reason why these two are
separated is twofold: (1) to make a clear separation between modeling tasks in a specific
mission (scenario) and modeling a robotic fleet to execute those tasks, and (2) usually
the focus is on modeling tasks and thus it is avoided to clutter the general task ontology
with robot classes and properties. However, it is strongly encouraged, and also the best
practice, to reuse classes and properties for modeling both tasks and robots, respectively.

Same as the ontology in Figure 4.2, the ontology illustrated in Figure 4.3 is modeled
as a general ontology which formally describes robots and due to the generality, it is
domain independent.

Figure 4.3: Ontological description of robots

The ontology illustrated in Figure 4.3 models the class Robot with three properties.
First property, hasPosition, relates to a robot’s 2D location in an environment, i.e.,
the place where the robot is at the current moment. This property corresponds to the
property hasCentralPoint from the general task ontology. Second property, providesSkill,
describes skills provided by the robot, i.e., the skills the robot can apply to execute a
certain task. One robot has to have at least one skill, i.e., an individual of type Skill.
Finally, the hasResource property refers to the object ResourceAmount which denotes
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the amount of resources the robot has, i.e., property hasAmount, and to which skill this
resource amount pertains to, i.e., property pertainsToResource. The property hasAmount
corresponds to the property needsAmount from the general task ontology. Properties
hasName and hasNumberOfSkills denote a robot’s name and the number of different
skills it provides, respectively. The ontology excerpt reflecting class Robot is similar to
the one reflecting class Task in Section 4.2.1 and thus is omitted.

Table 4.2 presents an example instance of class Robot with name agent_2, location
[x=6, y=6], two provided skills where the robot has 10 units of resource for the first
skill, i.e., skill_spraying, and 20 units of resource for the second skill, i.e., skill_flaming.
In contrast to the task presentation in Table 4.1, the robot modeled in Table 4.2 lacks
generality in a sense of modeling Skills. To be more precise, the robot model has specific
skills in contrast to the task model which has general skills that can be later specified.

Table 4.2: A robot modeled using robot ontology

Name Position Provides Skill Has Resource Number of Skills

Robot_2 [x=6, y=6] [skill_sprayingskill_flaming ] [skill_spraying:10skill_flaming:20 ] 2

The example robot modeled in Table 4.2 can execute two types of tasks under the
assumption that it has a sufficient amount of resources: (1) a task which requires both
skills the robot provides, and (2) a task that requires one of the skills the robot provides.
Both approaches will be examined later in the thesis.

4.2.3 Mapping Ontology to Model-Driven Architecture

As previously presented in Section 4.1, the MDA presents several viewpoints, i.e., com-
putational independent, platform independent, and platform specific. Following these
considerations, presented is an MDA oriented approach for task allocation in multi-robot
systems. The core component of the proposed task allocation approach focuses on mod-
eling heterogeneous resources and thus is based on the ontologies described in Sections
4.2.1 and 4.2.2.

Similar to [96], [97], and [6], the proposed task allocation approach utilizes Semantic
Web Technologies, i.e., an ontology, to describe system requirements and resource ca-
pabilities. On the other hand, UML can be used as well to construct the PIM [90]. In
particular, the proposed approach uses ontologies for constructing the PIM. PIM, formally
modeled with the general ontology presented in Figure 4.2, describes the tasks comprising
a mission and at the same time hides the details necessary for a particular platform.
The major aim at this level is to represent main properties of tasks without taking into
account any specific technological details. This means that the task specification formally
described with the ontology is independent from the platform which will execute those
tasks.

After having a valid PIM, it can be transformed to PSM. PSM denotes the object-
oriented model of tasks which are then transformed to the Java code. Validity check
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can be automatically performed on the ontology-based PIM by using ontology-based
reasoning. Transformation from PIM to PSM is done automatically using a software
component in the following way: (1) the component extracts data from the ontology, i.e.,
task instances, (2) it prepares an existing object-oriented model of tasks, (3) it transform
task instances from the ontology into the corresponding object-oriented mode, and finally
(4) makes tasks mapped to the object-oriented model available for robots. The crucial
thing in the transformation process is that the transformation component uses the same
ontology, i.e., classes and properties, as the one used for constructing a PIM. Otherwise,
the transformation component could misunderstand the meaning of an extracted property
and consequently create an invalid task object for further execution. Both validity check
and transformation are implemented in Java using Jena API [155] and Pellet reasoner
[158].

A similar process is followed to create the PIM from the robot ontology presented
in Figure 4.3. The same transformation procedure is utilized to generate PSM from
PIM. The code generated from PSM denotes the robot configuration for executing tasks.
These two are similar processes, but produce different outcomes. The first one generates
tasks from the PIM, while the second one a robot configuration for executing those tasks.
However, both PSMs are designated to run on the Java platform. Construction of CIM
is out of the scope of this work.

Due to the platform-independent and high level approach that utilizes ontologies to
model system resources, i.e., tasks and robots, an arbitrary number of tasks and robots
in the system can be instantiated. Consequently, the introduced approach supports
scalability in multi-robot systems.

4.3 Ontological Description of Operating Environment

This section demonstrates the generality and flexibility of the ontology-based task
allocation approach complemented with MDA. Similar to the approach presented in
Section 4.2, this section presents an ontology-based approach for modeling different
environments where a robotic fleet strives to execute a set of tasks. Different operating
environments can be presented as different scenarios where each scenario encompasses
specific tasks to execute. Ontology-based scenario modeling is followed by ontology-based
configuration modeling where a configuration encompasses different robots with different
skills operating in a specific environment.

The framework developed in this thesis utilizes the scenario modeling approach for
building relations between different scenarios and configurations of robotic fleets. In that
way it is possible to select a nearly optimal configuration for every scenario and thus to
increase the overall system efficiency.

4.3.1 Ontology-based Scenario Description

Having an ontology to describe a specific scenario where a robotic fleet will operate
has several benefits. It allows: (1) to classify abundance of arbitrary tasks in a specific
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scenario, (2) to help the system operator to better perceive and interpret a mission
consisting of numerous tasks, (3) to help the system operator to select the most efficient
configuration of a robotic fleet to execute those tasks, and (4) to utilize gained knowledge
to tune up the parameters describing scenarios and thus increase the overall system
efficiency.

The ontology illustrated in Figure 4.4 models the class Abstract Scenario which has
three subclasses denoting specific scenarios. Each Scenario class has two properties: (1)
needsAmount, and (2) hasNumberOfSkills. The former expects the number denoting the
amount of resources a task has to require in order to belong to a specific scenario. This
property is the same as the property needsAmount presented in the general ontology
described in Figure 4.2. The latter denotes the number referring to the number of skills
a task has to require in order to belong to a specific scenario. This property quantifies
the number of needsSkill relations depicted in the general ontology described in Figure
4.2. This ontology reuses some concepts from the general ontology. For example, the
task presented in Table 4.1 has two relations for the property needsSkill and thus has
the value of property hasNumberOfSkills set to 2.

Figure 4.4: Ontological description of different scenarios

Inspection scenario is a representative of the scenario class which encompasses simple
tasks, i.e., tasks requiring only one skill for complete execution. The class involves
simple scenarios consisting of repetitive tasks, e.g., a surveillance mission. The amount
of resources for a provided skill is an arbitrary number 0 < x < 4. Industry scenario is
the representative of a class including more complex tasks where multiple unique skills
have to be applied and robots have to collaborate to execute tasks. Disaster scenario
is the representative of a class composed of the most complex tasks requiring robots’
collaboration and human interaction during the task’s execution, e.g., Urban Search
and Rescue (USAR). Since the introduced precision agriculture scenario encompasses
robots which provide at most 3 different skills, the ontology in Figure 4.4 also models
the scenarios which have at most 3 different skills. However, the ontological approach
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is not limited only to those scenarios, i.e., to maximum 3 different skills per scenario.
Rather, it can model any scenario with an arbitrary number of skills. Moreover, human
interaction is not modeled in the ontology describing different scenarios, rather in the
coordination ontology which will be presented in Section 4.7.

Listing 4.2 shows an excerpt of an ontology defined in OWL which presents defini-
tion of class Industry scenario. The excerpt reflects ontological description of a class
Industry scenario illustrated in Figure 4.4 using OWL. In detail, it shows class Industry
scenario which is a defined class with two necessary and sufficient conditions defined
as Restrictions. These two conditions ensure that an individual which has exactly
two skills (hasNumberOfSkills property) and each skill requires three units of resources
(needsAmount property), is classified as the type of Industry scenario class.

Listing 4.2: Ontology excerpt - class IndustryScenario

<owl : Class r d f : about="&mult iagent ; I n d u s t r y S c e n a r i o ">
<owl : e q u i v a l e n t C l a s s >

<owl : Class>
<owl : i n t e r s e c t i o n O f r d f : parseType=" C o l l e c t i o n ">

<r d f : D e s c r i p t i o n r d f : about="&mult iagent ; Task"/>
<owl : R e s t r i c t i o n >

<owl : onProperty r d f : r e s o u r c e="&mult iagent ; hasNumberOfSkil ls "/>
<owl : hasValue r d f : datatype="&xsd ; i n t ">2</owl : hasValue>

</owl : R e s t r i c t i o n >
<owl : R e s t r i c t i o n >

<owl : onProperty r d f : r e s o u r c e="&mult iagent ; needsAmount"/>
<owl : hasValue r d f : datatype="&xsd ; i n t ">3</owl : hasValue>

</owl : R e s t r i c t i o n >
</owl : i n t e r s e c t i o n O f >

</owl : Class>
</owl : e q u i v a l e n t C l a s s >
<r d f s : subClassOf r d f : r e s o u r c e="&mult iagent ; A b s t r a c t S c e n a r i o "/>

</owl : Class>

Due to the same properties, at first glance all three scenarios resemble each other.
However, the key property which distinguishes one scenario from the others is has-
NumberOfSkills which describes the task complexity. The notion of task’s complexity,
expressed as the number of required skills, i.e., hasNumberOfSkills, has twofold purpose:
(1) to characterize the scenario class, and (2) to enable task-robot mapping during the
task execution. As illustrated in Figure 4.4, the task complexity is responsible for model-
ing different scenarios. In addition to the task complexity, the property needsAmount
also influences the model of a specific scenario, but not in the same measure as the
task complexity does. Due to the generality of this approach, a new scenario could be
easily modeled where the property needsAmount will be the key property to distinguish
between scenarios. Later purpose of the task complexity, i.e., task-robot mapping, will
be explained in Section 6.4.

4.3.2 Ontology-based Configuration

The advantages of having an ontology to describe a configuration, i.e., a robotic fleet with
provided skills, are manifold: (1) bringing all heterogeneous robots in a fleet to the same
operational level where they share a common understanding, (2) common understanding
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enables shared knowledge and thus collaboration, and (3) ontology-based configuration
clearly separates specification from an implementation.

The ontology utilized for constructing the configuration of the robotic fleet is illustrated
in Figure 4.5. This ontology is an extension of the general ontology depicted in Figure 4.2
and the robot ontology shown in Figure 4.3. The class Skill presented in the configuration
ontology in Figure 4.5 is same as the class Skill from the general and robot ontologies.
Moreover, class Robot from the configuration ontology is same as the class Robot from the
robot ontology. However, there are three subclasses defined in the configuration ontology
which extend the class Skill. Those classes model specific skills provided by the robotic
fleet described in a configuration. The configuration ontology reuses existing concepts
and therefore is a specialization of the two already presented ontologies.

Figure 4.5: Ontological description of a configuration

Instances of the classes Flaming, Spraying, and Tilling, which model specific skills,
are presented in the Table 4.3. Column Name denotes an instance name and the column
Skill represents the class from the configuration ontology to which an individual belongs
to, e.g., instance named skill_spraying belongs to the class Spraying defined in the
configuration ontology. Relation belong to is defined as type of in semantic technology.

Table 4.3: An example configuration model using ontology - Skills

Name Skill
skill_flaming Flaming
skill_spraying Spraying
skill_tilling Tilling

Having a list of skills, as in Table 4.3, is just a prerequisite for constructing a
configuration which consists of heterogeneous robots. Each robot in the configuration
has to provide at least one skill, as it is modeled in robot and configuration ontologies.
Thus, the instances of the type Skill are required.

After the instances of the type Skill are provided, the instances of type Robot can
be constructed. Each robot instance is related to at least one skill instance using the
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property providesSkill introduced in robot and configuration ontologies. Table 4.4 lists
three robot instances with provided skills.

Table 4.4: A configuration model using ontology - Robots

Name Position Provides Skill Has Resource Number of
Skills

Robot_1 [x=1, y=4] [skill_sprayingskill_flaming ] [skill_spraying:10skill_flaming:20 ] 2

Robot_2 [x=16, y=9] [skill_tilling] [skill_tilling:5] 1
Robot_3 [x=5, y=14] [skill_flaming] [skill_flaming:30] 1

Listing 4.3 shows an excerpt of an ontology defined in OWL which defines an individual
named Robot_1 from the configuration listed in Table 4.4. The individual is of types
NamedIndividual and Robot and provides two skills, i.e., it has two values for utilizesSkill
property. One skill is individual named skill_flaming, which is of type Flaming, and the
other, named skill_spraying, is of type Spraying.

Listing 4.3: Ontology excerpt - individual Robot_1

<owl : NamedIndividual r d f : about="&mult iagent ; Robot_1">
<r d f : type r d f : r e s o u r c e="&mult iagent ; Robot"/>
< u t i l i z e s S k i l l r d f : r e s o u r c e="&mult iagent ; s k i l l _ f l a m i n g "/>
< u t i l i z e s S k i l l r d f : r e s o u r c e="&mult iagent ; s k i l l _ s p r a y i n g "/>

</owl : NamedIndividual>

It is worth to notice that the reasoning capabilities are used to classify the instances
from Table 4.4 to be the type of Robot defined in the robot ontology. Since the class
Robot defines that each instance which has at least one property providesSkill is of type
Robot, the reasoner infers that each instance listed in Table 4.4 is of type Robot.

4.3.3 Mapping Ontology to Model-Driven Architecture

In addition to the core component of the proposed task allocation approach, described in
Section 4.2.3, which focuses on modeling heterogeneous resources utilizing the general
ontology described in the Section 4.2.1, this section introduces another component
which facilitates the construction of a robotic fleet, i.e., a configuration. Similar to the
component for modeling heterogeneous resources, the configuration is responsible for the
construction of a robotic fleet and therefore utilizes the ontology described in Sections
4.3.1 and 4.3.2.

Similar to the approach described in Section 4.2.3, the component for the construction
of a robotic fleet configuration utilizes an ontology to describe scenario requirements and
build PIM. PIM, formally modeled with the scenario ontology presented in Figure 4.4,
models different scenarios based on the tasks’ complexity, i.e., the number of skills a
task requires, and the amount of required sources. The task complexity is modeled as
the number rather than the real skill, e.g., a spraying skill. The same pattern is applied
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for modeling the amount of resources. The amount is modeled as a number without
expressing a unit. The major aim at this level is to represent main properties of scenarios
at the PIM level.

Constructed PIM is afterwards validated and transformed to PSM. The PSM rep-
resents a configuration of robotic fleet described in Section 4.3.2. At the moment, the
transformation from PIM to PSM is done manually by observing the properties from a
modeled scenario and thus constructing a robotic fleet configuration accordingly. The
main parameter to take care of during the transformation is the number and the type
of skills requested by tasks classified in that specific scenario. Accordingly, a robotic
fleet configuration is constructed. Unfortunately, there is no single way to construct a
configuration since it is a combination which includes the total number of robots and
the number of provided skills per robot, e.g., a set of 3 different robots and a set of
3 different skills yields in total 21 different configuration. One robot has 7 different
configuration possibilities C for skills S = {a, b, c}, i.e., C = {a, b, c, ab, ac, bc, abc}. Since
robots can provide the same skills, and there are in total 3 robots, the total number
of possible configurations is 21. One parameter which determines the transformation
pertains to the types of skills requested by tasks and provided by robots. The robots in
a configuration have to provide all skills requested by a set of tasks in order to execute
them successfully. This makes sense under the assumption that the robots have sufficient
amount of resources.

As already mentioned, the purpose of formally modeling different scenarios using an
ontology is to investigate a relation between a specific scenario and the configuration of
the robotic fleet. It strives to select the most appropriate configuration for a particular
scenario.

4.4 Coordination Ontology

Ontologies have a wide use in coordinating different components in mixed human-robot
teams. From facilitating the coordination issues between multiple hardware and software
components residing on one robot [82], to modeling robots coordination and collaboration
patterns [57], [131], [8], and also to model human-robot interactions in mixed-human
robot teams [9]. However, this section is focused on utilizing an ontology to model a task
mapping, i.e., a task allocation, between tasks belonging to a specific scenario and robots
from a configuration described in Section 4.3. In addition, in the focus is also a simple
ontology-based model of human-robot interaction.

The framework developed in this thesis utilizes the ontology-based coordination
model as well as the ontology-based human-interaction model to enable robot-robot and
human-robot coordination and collaboration activities. This is a final component which
together with the the core component for modeling heterogeneous resources described in
Section 4.2 and the component for the construction of a robotic fleet described in Section
4.3, forms a complete ontology-based framework for a coordination of robotic fleet. The
framework is named SKIM and is presented Chapter 5.
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4.4.1 Ontology-based Coordination

The simplest approach to coordinate the activities of interacting agents has been to
hard-wire the coordination mechanism into the system structure by means of semaphores,
monitors, or locks [131]. In dynamic systems, like multi-robot systems with mixed
human-robot teams, such an approach is infeasible. The idea in such systems is to allow
the agents to communicate their intentions with respect to the future activities and the
utilization of resources. Moreover, it would be beneficial to enable the processes to reason
about coordination at run time.

The first issue to address in such a system is to have all agents agree on a common
vocabulary for coordination. This issue has already been addressed in Section 4.2 and
thus sets a solid background for an efficient coordination mechanism based on shared
knowledge.

Figure 4.6 illustrates a coordination ontology with multiple Capability classes related
to different Skill classes, i.e., Tilling, Flaming, and Spraying, over the property utilizesSkill.
These three classes representing different skills are the same as those presented in the
configuration ontology in Figure 4.5. Moreover, the property utilizesSkill is the same as
the following properties:

• property needsSkill from the general ontology in Figure 4.2, and

• property providesSkill from the robot ontology in Figure 4.3.

Figure 4.6: Coordination ontology

Speaking in semantic terms, those three properties are aligned which is a precondition
for a successful task allocation. Capability classes model the task allocation process by
relating different skills to different Capability classes. The idea is to classify all tasks and
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all robots from a configuration to those Capability classes. This means that all tasks
which have an individual of type Flaming as a value for the property needsSkill and all
robots which have an individual of type Flaming as a value for the property providesSkill,
e.g., Robot_1 and Robot_3 from Table 4.4, will be members of the class Capability 2,
i.e., will be of type Capability 2. Classification is performed through the utilization of
Pellet reasoner.

Listing 4.4 shows an excerpt of an ontology defined in OWL which presents definition
of class Capability_2 and thus complements Figure 4.6. In particular, it shows class
Capability_2 which is a defined class with one necessary and sufficient condition defined
as Restriction. The condition ensures that an individual which has at least one value
for utilizesSkill property of type Flaming, is classified as the type of Capability_2 class.
Moreover, the listing defines that Capability_2 is a subclass of Capability class.

Not only does the coordination ontology, in particular various definitions of Capability
classes, enable task allocation to the robots defined in a configuration, but also it
establishes a basis for the shared knowledge in a robotic fleet. The notion of shared
knowledge will be described in more detail in Section 6.4.

Listing 4.4: Ontology excerpt - class Capability_2

<owl : Class r d f : about="&mult iagent ; Capabi l ity_2">
<owl : e q u i v a l e n t C l a s s >

<owl : R e s t r i c t i o n >
<owl : onProperty r d f : r e s o u r c e="&mult iagent ; u t i l i z e s S k i l l "/>
<owl : someValuesFrom r d f : r e s o u r c e="&mult iagent ; Flaming"/>

</owl : R e s t r i c t i o n >
</owl : e q u i v a l e n t C l a s s >
<r d f s : subClassOf r d f : r e s o u r c e="&mult iagent ; C a p a b i l i t i e s "/>

</owl : Class>

4.4.2 Ontology-based Human Interaction

Although robotic fleets are designed for limited autonomous operation in the field and
interaction with humans for the operation purposes, some robotic fleets occupy working
or living environments and directly serve humans, or interact with humans in joint tasks.
Specific scenarios require certain capabilities of the HRI. The most challenging future
scenario is the one in which humans and autonomous robots with self-optimizing and
learning capabilities collaborate in joint tasks.

So far the ontology-based modeling approach is utilized to overcome the heterogeneity
issues in a system, i.e., for semantically describing tasks and robots, afterwards, to
model different scenarios and configurations of robotic fleets, after that, to model the
coordination capabilities, and finally it is used to construct a simple model of human-robot
interaction.

A simple ontology illustrated in Figure 4.7 is composed of two classes: (1) class Skill
which is familiar from before, and (2) class User which is new. Class User models a
simple human interaction mechanism with a robotic fleet. Besides that, there is one
property, utilizesSkill, also familiar from before and introduced in the coordination
ontology. However, the difference is that the property utilizesSkill has a parameter min x
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where x denotes the minimum number of skills an individual has to have to be classified
in User class, i.e., to be of type User. On the one hand, when a task requires x or more
skills, the reasoner will classify it to the User class. On the other hand, when a robot
from a configuration provides x or more skills, the reasoner will also classify it to the
User class.

The value x models the human behavior, its interaction with a fleet and its involvement
in decision processes. When a task is, in addition to type Task, also classified as User, a
robot which gets that task will have to consult a human operator to obtain a permission to
execute the task. Thus, robot’s level of autonomy is directly influenced by the definition
of User class. In particular, definition of User class models the adaptive autonomy.
However, this model delimits the system to support only one human operator.

Figure 4.7: Ontology-based Human Interaction

Listing 4.5 shows an excerpt of an ontology defined in OWL which presents the
definition of class User and thus complements Figure 4.7. It shows class User which is
a defined class with one necessary and sufficient condition defined as Restriction. The
condition ensures that an individual which has at least three skills, i.e., at least three
relations with utilizesSkill property, is classified as the type of User class. In this excerpt,
value x from the figure above is set to 3.

Listing 4.5: Ontology excerpt - class User

<owl : Class r d f : about="&mult iagent ; User">
<owl : e q u i v a l e n t C l a s s >

<owl : R e s t r i c t i o n >
<owl : onProperty r d f : r e s o u r c e="&mult iagent ; u t i l i z e s S k i l l "/>
<owl : onClass r d f : r e s o u r c e="&mult iagent ; S k i l l "/>
<owl : m i n Q u a l i f i e d C a r d i n a l i t y r d f : datatype="&xsd ; nonNegat iveInteger ">

3</owl : m i n Q u a l i f i e d C a r d i n a l i t y >
</owl : R e s t r i c t i o n >

</owl : e q u i v a l e n t C l a s s >
</owl : Class>

However, a question is what does it mean for either a task or a robot to be of type
User, what are the consequences? When during a mission execution a robot of type
User tries to execute a task of type User, it has to consult a human operator who will
decide whether the robot has necessary skills and resources to execute the task. The
robot consults a human for assistance if there are ambiguities during the execution of the
task. In that case the human decides whether the robot has compliant skills and needed
amount of resources to execute the task. Upon receiving confirmation from the human,
the robot is allowed to proceed with regular execution of the task. This algorithm is
described in detail in Section 6.4.
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4.5 Flexibility supported by Ontology and Model-Driven
Architecture

Heterogeneous system designers have to cope with the lack of standardisation between
different devices which impedes their seamless integration. To cope with these issues,
system designers are obliged to incorporate hard-wired interactions which deteriorate the
overall system flexibility. The notion of flexibility pertains to the system extendability
with new modules, scalability, dynamic interactions, heterogeneous resources, human
interaction, adaptability to new environments, reusability, etc. Consequently, this
thesis reveals two main sources which degrade the flexibility of multi-agent systems:
(1) the lack of mechanisms to overcome resources heterogeneity resulting in inefficient
communication, coordination, and collaboration, and (2) domain tailored and domain
dependent interaction models which limit the reusability in similar application.

The thesis addressed these two problems in the above sections by harnessing the
coherence of formal ontology-based modeling and Model-Driven Architecture approach.
Ontologies are used to formally model various hot spots in multi-agent systems which
usually obstruct the system’s flexibility:

• ontology-based modeling of heterogeneous resources, i.e., tasks and agents,

• ontology-based modeling of an operating environment,

• ontology-based modeling of a configuration of robotic fleet,

• ontology-based modeling of a coordination activities, and

• ontology-based modeling of a human-robot interaction.

Up to some extent, the introduced ontologies decouple the system implementation
from the system specification resulting in the increased domain independency. However,
the idea was to even more decouple the implementation from specification by utilizing
the Model-Driven Architecture approach for making a clear separation between a system
model and its specific implementation on a target platform. Consequently, complementing
the ontology-based modeling approach with the Model-Driven Architecture brings several
benefits to the system design with respect to flexibility:

• multi-agent system designers shift focus from logical and technical details,
i.e., PSM, to CIM and PIM which helps them to devote more attention to develop
conceptual models of each system component,

• increased portability due to automatic transformation of a PIM to multiple PSM,
i.e, target platforms,

• integration and interoperability enabled by overcoming the resource hetero-
geneity and introducing shared knowledge,
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• reusability of ontology-based models,

• when deployed on another platform, adaptability ensures that the PIM can be
deployed and utilized without any changes, and

• evolution support ensures that new requirements are addressed in CIM and PIM
which are then automatically transformed to PSM, and

• ability to perform validity check before translating PIM to PSM increases the
system robustness.

To conclude, the chapter reflects how the synergy between Semantic Web Technologies
and Model-Driven Architecture at the same time provides a formal model of a system
and facilitates the design of multi-agent systems while increasing the interoperability,
scalability, adaptability, reusability, and robustness.

Next chapter proposes the design of main building blocks of the Shared Knowledge
Interaction Modelling (SKIM) framework. SKIM framework is designed to investigate
model of shared knowledge as a basis for adaptive autonomy in mixed teams and to
evaluate its impact on task allocation.
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CHAPTER 5
SKIM - Shared Knowledge

Interaction Modeling Framework

This chapter introduces the design of the main building block of the Shared Knowledge
Interaction Modelling (SKIM) framework [29]. The SKIM coordination framework is
designed to investigate the following challenges: (1) model shared knowledge as a basis for
adaptive autonomy in mixed teams and to investigate its impact on task allocation, and
(2) implement different coordination approaches to evaluate the performance of finding a
set of robots to execute a certain task. To address these challenges, the SKIM framework
utilizes the semantic approach to describe the collaboration and coordination activities
by means of ontologies: SKIM Resource Ontology (SKIM-RO) and SKIM Coordination
Ontology (SKIM-CO) which are described in more detail in the upcoming sections.

The chapter starts by introducing and describing the task allocation scenario in detail
that provides motivation and requirements for the presented work. After that the core
characteristics of knowledge-based task allocation with Semantic XVSM are explained.
This section is then complemented with the two models describing task transfer from the
central part to the distributed robots. After that, the focus is switched to robots which
support different knowledge-based resource matching mechanisms as well as different
decision-making mechanisms. Then, a design which supports system robustness during a
task execution is introduced. Finally, the chapter is concluded with the design of three
different coordination approaches for task allocation.

5.1 Application Scenario: Task Allocation

This section describes the application scenario exploited for extracting requirements and
providing a motivation for the design of the SKIM framework in detail. The application
scenario is based on a specific precision agriculture use case based on the robotic fleet
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for weed control elaborated within the European Project RHEA-Robot Fleets for Highly
Effective Agriculture and Forestry Management [153].

5.1.1 Initial Precision Farming Scenario

Sustainable precision crop management can be based on the use of a fleet of heterogeneous
robots equipped with advanced sensors and actuators as developed within the project
RHEA. Figure 5.1 illustrates a precision farming concept of the RHEA project where
the core of the RHEA concept is a centralized fleet management system that assists the
system operator in choosing a suitable strategy for field treatment, taking into account
weed infestation map and available robots, their implements, and sensors [46]. The
selection of the treatment strategy, i.e., building a mission, takes into account many
parameters, e.g., the type of tasks to be performed, the number and features of available
robots, and field information. After the mission is defined, it is decomposed in the
number of tasks and mapped to corresponding robots. A centralized control system is
responsible for both task-robot mapping and robots coordination during the mission
execution. During the mission, heterogeneous and distributed robots report their status
to the base station where a human operator supervises the mission and acts as a central
point in the system. The base station is a place that manages, coordinates, makes
decision, collects data, instructs, and monitors all robots in the network.

Figure 5.1: Extended RHEA Scenario

A human operator present in the field can establish remote control over the fleet
complementing the central user when necessary. In this basic RHEA scenario the
robots autonomy is limited to a narrow set of basic functions like small adjustments
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related to, e.g., path correction. Consequently, the SKIM interest is to understand how
autonomy, i.e., the robot self-awareness, can be extended and the implications of this
extension on the robots coordination. In this respect, SKIM is particularly focused
on the aspects pertaining to the modeling of tasks and resources and services that the
robots embody. Figure 5.1 extends the basic RHEA concept with the following modules:
(1) a module which represents the tasks model (task ontology illustrated with a yellow
square), (2) a module for robotic coordination (illustrated with a grey rectangle), (3)
a module supporting self-awareness and shared knowledge models (illustrated with a
green rectangle), and (4) a module providing models of robotic resources and services
(ontology for service description illustrated with a yellow rectangle). This thesis refers to
the concept illustrated in Figure 5.1 as the extended RHEA scenario.

5.1.2 Extended Precision Farming Scenario

Due to the centralized control in RHEA scenario, robots are not involved in any collabo-
ration and act as isolated nodes. This solution has benefits and drawbacks. On the one
hand, centralized control is far less complex than distributed control. On the other hand,
lack of a collaboration and coordination capabilities among robots has a negative impact
on the mission; although robots are coupled both in a time and in space, as they operate
in the same field, they are not directly aware of each other. Therefore, the thesis extends
the initial assumptions of the RHEA scenario with the cooperation and collaboration
capabilities at robots. In this new scenario, robots are aware of their local context and
capabilities of other robots in the fleet. It means that they can autonomously select to
perform a task within a complex mission, which requires e.g., a combination of different
implements (skills), such as spraying and flaming implements.

In both scenarios, basic and extended RHEA, a human operator at the base station
designs a mission. The mission consists of a number of tasks that require some amount
of the resources, e.g., spraying, flaming or tilling. Each robot has a specific implement
and is able to execute one or more different tasks, depending on the implement type.
While the task allocation in the basic RHEA scenario is static and performed before the
mission starts, the distributed task allocation in the new, extended, scenario is based on
dynamic mapping between tasks and available robots.

In the extended scenario, when the human produces a task, the task is written into a
space and then distributed to robots’ local triple stores. Thus, the space is distributed
over robots in a fleet. Each robot queries the local triple store for a task that matches
its capabilities. When such a task is found, it is executed. However, the case that two
robots try to execute the same task has to be prevented in order to avoid deadlock which
could lead to collisions. Section 5.7.3 describes how the SKIM framework addresses this
issue. Moreover, the SKIM framework combines space-based middleware with semantic
modeling, processing and reasoning to enable the robots to have direct awareness of
the fleet and to make autonomous decisions about the tasks they can jointly perform.
Semantics enable a robot to automatically infer the task-robot mapping based on the data
in the dynamically updated triple store, and to dynamically select a task for immediate
execution.
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5.2 Knowledge-based Task Allocation with Semantic
XVSM

The main requirement for a successful task allocation in a robotic fleet is an effective
coordination mechanism which prevents robots from collisions, dead-locks, etc., and
enables them to cooperate and collaborate during a mission execution. The semantics
of the language employed in SKIM to define coordination rules is based on formal
logics. Since the advantages of using logic-based languages are not always obvious to the
developers of coordination laws, this sections strives to explain them.

The section describes the core characteristics of knowledge-based task allocation by
investigating the three main elements of coordination and thus task allocation: (1) how
the space-based middleware, as a coordination medium, supports the concepts from the
Semantic Web, (2) how the coordinated entities interact by utilizing the semantic space,
and (3) how the ontology can enable the modeling of coordination.

5.2.1 Adding Semantics to the Coordination Medium

The SKIM framework, as a simulation environment for performance evaluation of task
allocation algorithms, is built on Semantic XVSM already described in Section 2.2.3. In
order to utilize information stored in the knowledge base, Semantic XVSM provides the
following features:

• Bulk data as single data unit: opposed to space-based systems which access
a single tuple, Semantic XVSM provides an interface for reading and writing an
entire sets of triples describing a particular object in the knowledge base.

• Reasoning support: Semantic XVSM implements a reasoning mechanism for
inferring new knowledge from the stored triples and also makes this new knowledge
accessible in the semantic space.

• Knowledge extraction: for extracting particular fragments of the knowledge
stored in a semantic space, Semantic XVSM offers a powerful capability to retrieve
data by introducing minor restrictions on SPARQL query.

Hence, Semantic XVSM can be used to store, reason about, and extract knowledge.
However, the knowledge is not created at once, rather, it is successively published in the
space. Even before the knowledge publishing, it is required to consider which types of
knowledge will be described and handled in the space. Knowledge is typically structured
into the: (1) Domain Ontology, (2) Coordination Ontology, and (3) Instance Data. SKIM
framework also addresses these 3 knowledge structures illustrated in Figure 5.2.

• SKIM-RO as Domain Ontology: SKIM Resource Ontology (SKIM-RO) de-
scribes the domain model, i.e., generally employed concepts and relationships in
the application domain.
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Figure 5.2: Knowledge stored in Semantic XVSM

• SKIM-CO as Coordination Ontology: SKIM Coordination Ontology (SKIM-
CO) describes the concepts and dependencies that drive the coordination processes.

• Instance Data: describes the current state of the knowledge base and it is usually
the biggest part of that base.

SKIM - Resource Ontology (SKIM-RO)

SKIM-RO describes resources, including robot capabilities and task requirements and it
consists of the following ontologies presented in Chapter 4:

• general ontology for describing tasks described in Section 4.2.1,

• the ontology for describing robots presented in Section 4.2.2, and

• the ontology for modeling different scenarios introduced in Section 4.3.1.

These three ontologies combined into the SKIM-RO support tasks modeling by
utilizing the class Task, robots modeling by using the class Robot, as well as modeling
of working environment, i.e., a scenario, facilitated with the extensions of class Abstract
Scenario.

SKIM - Coordination Ontology (SKIM-CO)

SKIM-CO describes coordination constraints for robot-robot and robot-human interac-
tions and it consist of the following ontologies presented in Chapter 4:
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• the ontological description of a configuration described in Section 4.3.2,

• the core coordination ontology presented in Section 4.4.1, and

• the ontology for modeling a human interaction introduced in Section 4.7.

These three ontologies combined into the SKIM-CO support the creation of config-
urations by defining specific skills provided by robots which extend the class Skill, the
modeling of coordination processes by defining different classes which extend the class
Capability, and the modeling of human-robot interaction by modifying the class User.

SKIM framework, based on the Semantic XVSM, utilizes the semantic approach
to describe and facilitate the collaboration activities by means of ontologies: SKIM
Resource Ontology (SKIM-RO) and SKIM Coordination Ontology (SKIM-CO). SKIM-
RO describes resources, including robot capabilities and task requirements, and SKIM-CO
describes coordination constraints for robot-robot and robot-human interactions. Hence,
these ontologies are used as the model of shared knowledge and the decisions are results
of automated reasoning on them.

5.2.2 Connecting the Coordination Entities for Task Allocation

This section introduces coordinated entities and their interaction with respect to the
application scenario described in Section 5.1.1. It is considered in more detail how the
coordinated entities are connected to the Semantic XVSM and how interaction between
coordinated entities and the Semantic XVSM is implemented.

In addition to the API for adding, removing, and querying the knowledge base,
Semantic XVSM provide reactive operations like subscription/notification mechanisms,
introduced in Section 2.2.3, utilized in this thesis for synchronizing and coordinating
multiple connected entities. A single atomic coordination unit in SKIM framework, which
provides reasoning capabilities for coordination purposes, consists of four different phases
that typically occur in Semantic XVSM when coordinating multiple distributed entities.
Figure 5.3 illustrates these four phases:

Figure 5.3: Four phases of a coordination step

• Provision of coordination information: a human operator captures the coor-
dination requirements in SKIM-CO and writes the ontology to the Semantic XVSM.
Captured coordination conditions describe the mapping of tasks to available robots.
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• Addition of new information: a client X, i.e., a robot or a human operator,
publishes a task to the semantic space. A robot could publish a sub-task to the
semantic space, e.g., when it executed a task only partially where the other part of
the task, i.e., a sub-task, is again published, while a human operator can publish a
complete task to the semantic space. The publishing mechanism is introduced in
Section 5.3.3.

• Detection of fulfilled coordination condition: the semantic space evaluates
the new state of the knowledge base and detects the outcome of the coordination
condition. If the knowledge base is consistent, i.e., validity checks returned no
exception which means that the added information conforms to the underlying
ontologies, the outcome of the coordination condition is a task mapped to either
one or multiple robots. The resulting mapping conforms to the one of resource
matching approaches described in Section 5.4.

• Client notification: the client X, i.e., a robot or another human operator, is
notified about the outcome of the coordination condition utilizing mechanisms
described in Section 5.6, i.e., an allocated task. The received notification further
triggers one of the decision-making processes described in Section 5.5.

Figure 5.4 shows the above four phases as they occur in the application scenario for
task allocation in robotic fleet. In contrast to Chapter 4 which introduces components
illustrated in Figure 5.4, this section presents the interplay of these components. It
is assumed that the semantic space contains the SKIM-RO, i.e., domain knowledge,
SKIM-CO, i.e., coordination knowledge, and the instance data described in the previous
section. The instance data consists of a task t_1 which has the property needsSkill
pointing to the skill s_1 which is of type Flaming. To keep the figure simple, it is omitted
that the task t_1 is of type Task and that the class Flaming is subclass of the class Skill.
As a reminder, these classes are defined in the ontologies introduced in Chapter 4.

First phase is depicted in Figure 5.4 (a) where a human operator provides a coordi-
nation condition. The coordination condition is a triple with the class Capability as a
subject, property utilizesSkill as a predicate, and the class Flaming as an object. The
triple defines that each individual, which has a skill of type Flaming as an object, is
a member of class Capability. Second phase, Figure 5.4 (b), denotes the robot, i.e., a
tractor, which publishes new information to the semantic space. The information is again
a triple with an individual r_1 as a subject, property providesSkill as a predicate, and
the individual s_1 as an object. It is important to notice that the individual s_1 is same
as the skill s_1 which already resides in the semantic space. Moreover, due to the limited
space, it is omitted that the individual r_1 is of type Robot. Furthermore, third phase
illustrated in Figure 5.4 (c) describes a reasoning process which does a classification. It is
worth to notice here that the property utilizesSkill is same as the property needsSkill and
the property providesSkill. In semantic terms, those three properties are aligned which is a
precondition for a task allocation. Due to the definition of the class Capability where each
individual which has a skill of type Flaming as an object is the class member, individuals
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t_1 and r_1 are classified as the members of class Capability. The classification occurred
because both individuals have an individual s_1 as an object which is further of type
Flaming. Consequently, fourth phase described in 5.4 (d) notifies the robot that, due to
the classification of both, t_1 and r_1 as members of the class Capability, the individual
r_1 is able to execute the task t_1.

Figure 5.4: Four phases of coordination step in the application scenario

5.2.3 Modeling Coordination Patterns with OWL

In classic data-driven coordination models, the robots define the rules for determining
coordination activities and the spaces are only used for synchronizing the coordinated
entities as well as data exchange. On the other hand, with a semantic space it is
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rather possible to describe a coordination law with the appropriate coordination ontology
which shifts the coordination rules from distributed robots to the semantic space. The
coordination rules are managed centrally at the semantic space. The benefit is perceived
as an increased flexibility and maintainability of the developed applications.

For modeling the coordination law, all the coordination concepts, as well as relevant
dependencies, have to be translated to the OWL concepts which build up the coordination
ontology. In the task allocation example illustrated in Figure 5.4 (b), the coordination
ontology is used to define the necessary and sufficient conditions of the class Capability.
The existential restriction, as a construct defined in OWL, is utilized for defining the
necessary and sufficient conditions of the class Capability. Existential restrictions describe
classes of individuals that participate in at least one relationship along a specified
property to individuals that are members of a specified class [60]. For example, the class
Capability is defined as the class of individuals that have at least one (some) utilizesSkill
relationship to members of Flaming. Existential restrictions are by far the most common
type of restrictions in OWL ontologies. By employing the reasoner, the semantic space
finds an individual that fulfils the described conditions.

Modeling the coordination law in the semantic space by utilizing OWL constructs
provides for a clearer separation of computation and coordination logic. If the business
requirements change and thus the coordination law, the modification can be easily
addressed by adapting the coordination ontology in the space. It is not necessary to
modify robot’s code.

5.3 Task Transfer Models

This section introduces different task transfer models which are the constituent part of
a coordination step as illustrated in Figure 5.3; in particular, its fourth step when a
robot receives a task to execute. The SKIM framework provides two different models for
robots to query tasks from the Semantic XVSM and one model for a robot to generate
and send a task to the Semantic XVSM. A green circle in Figure 5.5 illustrates those
models. First two steps in Figure 5.5, i.e., steps 1 and 2 denote a human producing
tasks and the semantic space persisting those tasks. Steps 3, 5, and 6 denote the task
transfer models, while step 4 is responsible for a task allocation utilizing the coordination
ontology SKIM-CO. Following are the task transfer models:

• Query-based task allocation denoted in step 3,

• Inference-based task allocation denoted in step 5, and

• the task generation denoted in step 6.

The task transfer models are described in more detail in the following sections.
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Figure 5.5: Task transfer models

5.3.1 Query-based Task Allocation

The advantage of Semantic XVSM is that SPARQL queries can be used for task selections.
For this purpose, a new semantic selector is created that can be combined in a chain with
other MozartSpaces selectors on the XVSM Containers. A selector chain is a sequence of
selectors, where the result of one selector is piped to the next selector as an input.

Listing 5.1 describes a general, high-level, SPARQL query for a task allocation. The
query is created on a robot and submitted to the semantic space where it is processed
and the result is returned back to the robot. Listing 5.1 shows a selection query with a
graph pattern consisting of four triples: (1) triple which denotes that it wants to select
something which is of the type Task, (2) triple which selects skills belonging to a task,
(3) triple which selects an amount of resource required by a task, and (4) triple which
returns the type of skill.

Listing 5.1: SPARQL-based task allocation

PREFIX : <http :// mozartspaces . org / semantic /mult iagent#>
SELECT ? task ? s k i l l ?amount
WHERE {

? task rd f : type : Task .
? task : n e e d s Sk i l l ? s .
? task : needsAmount ?amount .
? s rd f : type ? s k i l l .

}

As mentioned above, this SPARQL query is very general and high-level since it does
not include any robot related parameters, like skills a robot provides or amount of resource
a robot has. The SPARQL query can be extended to enable the use of external context
entries in the query. The context can be added at the robot side. Context entries can be
used as a parameter for SPARQL queries, so that more general and flexible queries are
supported, e.g. a context entry can describe the state of a robot. A complete SPARQL
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query for task allocation which utilizes context entry to provide the state of robot is
presented in the implementation chapter (Section 6.6.1).

Upon executing the SPARQL query from listing 5.1 on the set of data instances
presented in Figure 5.7 (a), the result set could for example contain variable bindings as
shown in Table 5.1.

Table 5.1: SPARQL-based task allocation results

?task ?skill ?amount
: t_1 "Flaming" 7
: t_1 "Spraying" 2

Table 5.1 manifests the task t_1 which requires two skills, flaming and spraying, with
an appropriate resource amount, 7 units of flaming liquid and 2 units of spraying liquid,
for a complete execution.

5.3.2 Inference-based Task Allocation

In the inference-based task allocation approach, the task allocation is performed in
Semantic XVSM by reasoning on SKIM-CO. This task transfer model is already introduced
in Figure 5.4 (d). In contrast to the query-based task allocation approach where a robot
initiates the task allocation, in the inference-based model the task allocation process
is triggered automatically in the semantic space. The reasoning engine facilitates task
allocation resulting in the set of tasks mapped to a set of matching robots. Finally,
as illustrated in Figure 5.6, notification mechanisms delivers the allocated tasks to the
assigned robots.

Figure 5.6: Inference-based Task Allocation

The task allocation model is described in more detail in the implementation chapter
(Section 6.4.1) with an accompanying task allocation algorithm.

5.3.3 Task Generation

Task generation is a different task transfer model compared to the query- and inference-
based transfer models. The former models task generation on a robot side, while the
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latter two relate to the task generation in the semantic space, i.e., the sources of task
generation are different. Accordingly, task destinations are different as well. Task
generation is categorized as the transfer model because task are transferred between
different components in the Semantic XVSM.

Figure 5.7 illustrates a process where a robot with only one skill, i.e., one providesSkill
relation, tries to execute a task with two needsSkill relations. Due to the overlapping
skills the robot and the task have, i.e., the skill s_2, the inference-based task allocation
mechanism assigned task t_1 to the robot, Figure 5.7 (a). On the other hand, it is
obvious that the robot will not be able to completely execute task t_1 because task
t_1 requires two skills, while the robot only has one. However, it will neither drop task
t_1 nor fail to execute it. Rather, due to the support of resource matching mechanisms
described in Section 5.4, it will partially execute task t_1, Figure 5.7 (b). The partial
execution of task t_1 results in the generation of a new task which has one needsSkill
relation less than the original task. Figure 5.7 (c) shows how the robot created a new,
sub-task, which is basically the same instance as task t_1, but with one missing needsSkill
relation. The missing relation is the part of original task executed by robot.

Figure 5.7: Generating a new task

The introduced task transfer model enables partial execution of tasks where one
robot can execute one part of a task and the other robot the other part. There could
also be more than two robots executing one task. This approach is a cornerstone for
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collaboration and cooperation of robots within a fleet.

5.4 Knowledge-based Resource Matching
A task allocation mechanism is in charge of mapping task requirements to the services
provided by robots to infer which task can be executed on which robot. Regardless
which task allocation mechanism is utilized, query- or inference-based, they both take
the advantage of resource matchmaking approaches to decide which task goes to which
robot. Matchmaking approaches enable a successful task allocation even when not all
task requirements are fulfilled by one robot.

SKIM reuses semantic relationship notion between the task requirements and ad-
vertised robot services introduced in [86], [8], and [48], to describe the matching degree
between requirements and provided services. Figure 5.8 describes the three most common
matching degrees: (1) exact, (2) plug-in, and (3) subsume. In addition, there is also
forth matching degree named fail which denotes that none of the previous three degrees
is achieved. An icon illustrating a power plug-in in Figure 5.8 presents a robot in the
task allocation scenario and an icon illustrating a power outlet presents a task in the
task allocation scenario.

Figure 5.8: Matchmaking models

Due to the ontology support in Semantic XVSM, the semantical description of
resources, i.e., tasks and robots, utilizing SKIM-RO enables these 3 matching models.
Each matchmaking model is described in more detail in the following sections.

5.4.1 Exact

Exact matchmaking model is illustrated in Figure 5.8 (a) where both, a robot represented
as a power plug-in, as well as a task represented as a power outlet, have the same number
of provided and requested skills. Although both, the robot and task, provide and require
two skills, the concept is also applicable when the number of requested and provided
skills is x.

Translated to the task allocation scenario referenced throughout the chapter, it is
assumed that in the semantic space exists an instance, e.g., t_1, of type Taks, defined in
SKIM-RO, which has two needsSkill relations, i.e., the task t_1 requires two skills to be
completely executed. These two skills are instances s_1 and s_2 of type Flaming and
Spraying, respectively. On the other hand, there exists an instance, e.g., r_1, of type
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Robot which has two providesSkill relations, i.e., the robot r_1 provides two skills for a
task execution. These two skills are the same instances s_1 and s_2 of type Flaming
and Spraying, respectively. It is important to point out that both instance, the task
instance t_1 as well as the robot instance r_1, have the same skills s_1 and s_2.

When either of two task allocation mechanisms is triggered on the above populated
knowledge base, i.e., instance data, the result is perfect, i.e., exact, match and the task
t_1 is allocated to the robot r_1 for an execution. Consequently, the robot r_1 is able
to completely execute the allocated task (under the assumption that it has a sufficient
amount of resources).

5.4.2 Plug-in

Plug-in matchmaking model is illustrated in Figure 5.8 (b) where a robot represented as
a power plug-in provides less skills than a task represented as a power outlet requests,
i.e., there is a mismatch between requested and provided skills.

Translated to the task allocation scenario referenced throughout the chapter, it is
assumed that in the semantic space exists an instance, e.g., t_1, of type Taks which has
two needsSkill relations, i.e., the task t_1 requires two skills to be completely executed.
These two skills are instances s_1 and s_2 of type Flaming and Spraying, respectively.
On the other hand, there exists an instance, e.g., r_1, of type Robot with only one
providesSkill relation, i.e., the robot r_1 provides one skill for a task execution. The
provided skill is the instances s_1 of type Flaming. It is important to point out two
facts: (1) the task instance t_1 and the robot instance r_1 have different number of
skills, and (2) the skill s_1 requested by the task t_1 is same as the skill s_1 provided
by the robot r_1.

Although there is a mismatch in the number of requested and provided skills, the
task allocation mechanism does not fail and still produces a task-robot mapping. When
either of two task allocation mechanisms is triggered on the above populated knowledge
base, i.e., instance data, the result is plug-in match and the task t_1 is allocated to the
robot r_1 for an execution. In contrast to the exact match, the robot r_1 partially
executes the allocated task which triggers the generation of a new sub-task described in
Section 5.3.3. It is assumed that the robot r_1 has a sufficient amount of resources to
partially execute the task t_1.

5.4.3 Subsume

Subsume matchmaking model is illustrated in Figure 5.8 (c) where a robot represented
as a power plug-in provides more skills than a task represented as a power outlet requires,
i.e., there is a mismatch between requested and provided skills. This model is opposite
to the plug-in model.

Translated to the task allocation scenario referenced throughout the chapter, it is
assumed that in the semantic space exists an instance, e.g., t_1, of type Taks which has
one needsSkill relation, i.e., the task t_1 requires one skill to be completely executed.
The provided skill is the instances s_1 of type Flaming. On the other hand, there exists
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an instance, e.g., r_1, of type Robot which has two providesSkill relations, i.e., the robot
r_1 provides two skills for a task execution. These two skills are the instances s_1 and
s_2 of type Flaming and Spraying, respectively. It is important to point out two facts:
(1) the task instance t_1 and the robot instance r_1 have different number of skills,
and (2) the skill s_1 requested by the task t_1 is same as the skill s_1 provided by the
robot r_1.

Although there is a mismatch in the number of requested and provided skills, the
task allocation mechanism does not fail and still produces a task-robot mapping. When
either of two task allocation mechanisms is triggered on the above populated knowledge
base, i.e., instance data, the result is subsume match and the task t_1 is allocated to
the robot r_1 for an execution. Similar to the exact match, the robot r_1 completely
executes the allocated task. It is assumed that the robot r_1 has a sufficient amount
of resources to partially execute the task t_1. Opposite to the plug-in model, subsume
model is utilized when a robot provides more skills than requested by a task.

5.5 Decision-making Mechanisms

The task allocation performed centrally in the Semantic XVSM and the task transfer
from the Semantic XVSM to a robot entails the autonomous triggering of either one
or the combination of multiple decision-making mechanisms deployed on each robot.
Decision-making mechanisms are algorithms where an input is an allocated task and an
output is a notification denoting whether the allocated task is completely or partially
executed. It could happen that the task execution fails as well. Following are three
decision-making mechanisms supported in SKIM framework:

• On-the-robot decision-making mechanism illustrated in Figure 5.9 (a),

• In-the-fleet decision-making mechanism illustrated in Figure 5.9 (b), and

• Human-enabled decision-making mechanism illustrated in Figure 5.9 (c).

The following sections describe each of these decision-making mechanisms in more
detail.

5.5.1 On-the-robot Decision Making

The term on-the-robot decision-making reflects an autonomous local-decision making
procedure used when a robot can reach a decision utilizing only local knowledge. In that
case the robot does neither need to interact with other robots in a fleet nor with a human
operator.

Prerequisites for triggering on-the-robot decision-making algorithm are successful task
allocation and task transfer to a target robot. Figure 5.9 (a) depicts a robot, let us name
it r_1, which has three allocated tasks transferred to its local queue where they wait for
execution, i.e., t_1, t_2, and t_3. After robot r_1 finishes execution of its current task,
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Figure 5.9: Decision-making mechanisms

it is ready to take another task from the local queue and proceed with the execution of
the next task, i.e., t_1. To be able to execute t_1 locally, without interaction with a
human or a fleet, the following conditions have to be satisfied:

• The skills provided by robot r_1 have to either exactly match or subsume the
skills requested by task t_1.

• If robot r_1 has all necessary skills to execute task t_1, it has to ensure that it
has enough resources to execute task t_1.

• Due to the fleet heterogeneity, it could happen that the inference-based task
allocation mechanism allocates one task to multiple robots. This type of allocation
results in colliding tasks requiring the additional coordination and synchronization
between the robots that have been assigned a same task. Therefore, task t_1 has
to be exclusively allocated to robot r_1 to execute it locally.

The above conditions are validated in the same order as they are introduced. This
means that in order to proceed to the next condition, the previous one has to be satisfied.
After the all conditions are positively evaluated, task t_1 is executed. If one of the
conditions fails, task execution fails as well and the task will be executed by another
robot. Handling an execution failure is described in the next chapter.

5.5.2 In-the-fleet Decision Making

In contrast to on-the-robot decision-making mechanism where a robot makes autonomous
decision locally without interacting with a fleet or a human, in in-the-fleet decision-making
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mechanism the robots in a fleet communicate and exchange data that can be used to
perceive a global state and trigger a global decision.

Prerequisites for triggering in-the-fleet decision-making algorithm are successful task
allocation and task transfer to a target robot. Figure 5.9 (b) depicts a robotic fleet
consisting of three heterogeneous robots providing different skills, let us name them r_1,
r_2, and r_3. Robot r_1 is the same as robot r_1 on Figure 5.9 (a). Each robot in the
fleet has some allocated tasks transferred to its local queue where they wait for execution.
However, the focus is on robot r_1 which has three allocated tasks, i.e., t_1, t_2, and
t_3.

After robot r_1 finishes execution of a previous task, it is ready to take another
task from the local queue and proceed with the execution of the next task, i.e., t_1.
During task t_1 execution, there are two different situations that can emerge and trigger
in-the-fleet decision making mechanism:

• If robot r_1 detects that task t_1 is a colliding task it utilizes shared knowledge
to coordinate the execution with other fleet members (described in Section 5.7.3).

• When robot r_1 detects that it does not have sufficient skills, it exhibits plug-in
matching degree for task t_1, it generates a new task which requires other fleet
members to collaborate on the task.

Colliding Task

After successfully passing the resource amount check test for task t_1, robot r_1 inspects
whether task t_1 is a colliding task, i.e., task t_1 is allocated not only to robot r_1 but
also to some other robots (colliding robots), e.g., r_2 and r_3 as depicted in Figure 5.9
(b).

In that case robot r_1 notifies colliding robots that it is going to execute task t_1
and that they should remove it from their local queues. What is important here is
desynchronization of colliding robots to avoid that more than one robot tries to execute
the same colliding task at the same time.

Task Generation

A second use case example which triggers in-the-fleet decision making mechanism is when
robot r_1 detects that it does not have sufficient skills for completely executing task
t_1, it exhibits plug-in matching degree for task t_1. However, robot r_1 can partially
execute task t_1 and, consequently, generate a new sub-task which requires some other
robots to collaborate on it.

This procedure is already described in Section 5.3.3 and it is a cornerstone for
collaboration and cooperation of robots within a fleet.
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5.5.3 Human-enabled Decision Making

Effective human-enabled decision making systems rely on attaining and utilizing an
appropriate knowledge of involved entities, their activities, environment, and a mission.
From the human perspective, this is referred to as human-robot awareness [115]. Con-
versely, from the robots perspective it is typically defined as situation awareness. Both
refer to the state or ability to perceive, or to be conscious of events and objects residing
in a surrounding environment. A lack of awareness, i.e., missing to acquire information,
decreases the overall task performance. Therefore, awareness directly influences the
efficiency of decision making system.

The SKIM framework addresses the notion of human-robot awareness by designing
different components in charge of both, acquiring additional knowledge about a robotic
fleet, and at the same time utilizing the harvested knowledge in various decision-making
processes. The following components are the building blocks for a human-enabled decision
making system.

• Human-robot interaction module ensures that a human has sufficient knowledge of
the locations, identities, activities, status and surroundings of the robots, and that
it can either partially or completely utilize this knowledge during the interaction
with a robot.

• Robot-human interaction module ensures that both, a robot and a human have
specific knowledge to react on an occurred event. The robot has to be aware of the
human knowledge and ability to solve a particular event.

• Human’s ability to gain and utilize the overall mission awareness and understanding
of the overall goals of the joint human-robot activities.

To efficiently combine autonomous control embodied within the robots in their decision
making systems and the human operator intelligence, SKIM exposes relevant data and
control interfaces for human intervention. While human-robot interactions in the field
are primarily considered in the context of resolving critical situations, they may also be
used for optimization of the robotic fleet.

Robot-human interaction enables the human to interact with a fleet in two different
ways. First, observing the task allocation process, the human can apply shared knowledge
to allocate a task which was not allocated in the inference-based task allocation process.
Robot-human interaction refers to when a robot asks a human for assistance while
executing a complex task.

The human operator with a direct insight into the operational processes and status of
all robots can positively influence the effectiveness of the mission and facilitate decision-
making processes in critical situations. In order to support the operator in his/her role
in the overall process, the fleet has to act as an information system for the operator
and provide him/her with the appropriate and timely delivered information. Beneficial
information for the human is one which is not directly perceived by observing the mission,
but rather, it is inferred from the existing information.
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The following chapter describes the implementation of building blocks and accompa-
nying algorithms which enable the human-based decision making system.

5.6 Robustness during Task Execution

Robustness in the task execution process in multi-robot systems raises the following
two requirements: (1) system’s ability to proceed with a mission execution when one or
more robots failed to execute a task, and (2) a robot’s ability to resume with a mission
execution after it failed to execute a task. Former requires system robustness and the later
robot’s robustness. Since these two requirements are intertwined, this section describes
the general approach which addresses both, in-the-system and on-the-robots robustness.

Due to the various control architectures supported in the SKIM coordination frame-
work, i.e., centralized and distributed, the robustness concept differs for those two as
well. Figure 5.10 illustrates those two robustness concepts. The first refers to the cen-
tralized and the second one to the distributed architecture styles. Independently of the
selected architecture style, each concept has the following four steps (already introduced
in previous section):

• task allocation,

• task selection,

• task execution (it is assumed that a robot fails here) and

• task generation.

The robustness concept combines existing mechanisms, like task allocation/selection
and task generation, to model a robot’s and system’s behaviour in a case of failure.

Figure 5.10 (a) illustrates the robustness concept utilized by the centralized archi-
tecture style in the SKIM coordination framework. In this model, each robot selects a
task from a central repository, i.e., the Semantic XVSM. Selected tasks are numerated
and painted in blue in Figure 5.10 (a). The robot on the left side in Figure 5.10 (a) fails
to execute the allocated task t_1. Successfully executed tasks are painted in green, i.e.,
tasks t_2 and t_3, while the failed task, i.e., t_1 is painted in red. To proceed with the
regular mission execution without a loss of information, the robot which failed to execute
task t_1, rewrites the same task t_1 to the central repository where it will again be
available to other robots. If the robot fails, a human operator will eventually notice that
task t_1 is not executed and will write it in the space. Although it failed to execute the
task, the robot does not remain in failed state, rather it tries to fetch another task for
execution. A reason for the failed execution could be an insufficient resource amount for
a specific skill. Consequently, if the robot provides more skills it can still try to execute
another task which requires another skill for which it has a sufficient resource amount.

On the other hand, Figure 5.10 (b) illustrates the robustness concept implemented in
the distributed architecture style in the SKIM coordination framework. In this approach,
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Figure 5.10: Robustness: (a) centralized systems, (b) distributed systems

all tasks are allocated to all robots no matter whether a robot can execute a task or
not. The robot on the left side in Figure 5.10 (b) selects the task t_1 for execution. At
the same time, it notifies the other two robots that it is going to execute task t_1, i.e.,
dotted arrows with task t_1 painted in white. This simple desynchronization component
prevents two robots from executing a same task at the same time and thus ending up
in a deadlock. Upon receiving notification, the other two robots delete task t_1 from
their local repositories. Meanwhile, the robot failed to execute task t_1 which is now
painted in red. Consequently, the robot sends task t_1 to the other two robots in order
to preserve the mission state and avoid information loss. This is depicted in Figure 5.10
(b) with two black arrows and task t_1 painted in green. If the robot fails, a human
operator will eventually notice that task t_1 is not executed and will write it in the
space where it will be automatically allocated to the other two robots, as it initially was.

Moreover, in case when a robot fails to execute a complex task, i.e., a task that
requires more than one skill, it generates a new subtask with remaining, i.e., unexecuted,
atomic skills. If the robot receives a complex task which requires two skills, i.e., it
consists of two atomic tasks, and the robot provides both skills, and then it fails already
on the first atomic task. In that case the robot will create a copy of the received task.
Otherwise, if it fails while executing the second atomic task, assuming that the first is
already successfully executed, it will create a new subtask. In that way the existence of
duplicate tasks is avoided.

The coordination framework operates under the assumption that in both approaches a
robot cannot fail during a task execution. This implies that the robot should calculate in
advance whether it can handle a task or not and then proceed accordingly. This, however,
limits the framework support for runtime failures. Nevertheless, both approaches ensure
that the failed task reappears in the system and thus the others get an opportunity to

104



execute it. Moreover, after a robot fails to execute a task, it can still receive another
task for execution. In that way, both requirements introduced at the beginning of section
hold.

5.7 SKIM-based Implementations for Task Allocation

This section describes the design decisions of three different implementations of the SKIM
coordination framework. Each implementation is based on Semantic XVSM and each
implementation utilizes semantic capabilities to a different extent. Those implementations
are named: (1) centralized SKIM (cSKIM), (2) distributed SKIM (dSKIM), and (3)
hybrid SKIM (hSKIM). Although each implementation solves the same problem, i.e.,
task allocation and heterogeneous robots coordination in distributed environment, they
use different approaches. cSKIM utilizes a central repository as a main coordination and
task allocation component, while dSKIM is a completely distributed approach where
robots collaborate to solve allocated tasks. Moreover, hSKIM is a hybrid approach which
inherits some mechanisms from both, cSKIM and dSKIM. Additionally, hSKIM also
considers a human and enables human-robot interaction.

Figure 5.11 illustrates all relevant components described in the previous sections.
Illustrated components are not only limited to the design of SKIM framework, but can
also be addressed when designing a distributed system for solving task allocation and
coordination problems using semantic technologies in general. During a design phase
of a coordination framework, two types of components have to be addressed: (1) main
and (2) auxiliary components. Former ensure that each framework design begins with
addressing coordinated entities and their interactions since this facilitates recognition
of central components and, consequently, semantically models them. After that it is
worth addressing a suitable transfer model as an underlying component which supports
task allocation. Finally, modeling a corresponding decision-making mechanism leads to
task execution. On the other hand, auxiliary components described in previous sections
provide optional functionalities such as different models of resource matching and task
generation. These could increase the efficiency of a coordination framework, but are not
necessary for basic operations.

The design of cSKIM, dSKIM, and hSKIM framework implementations conforms to
the modeling approach described in Figure 5.11. Design of each implementation addresses
and models main and auxiliary components, respectively.

The following sections describe the design of each implementation, while Chapter 6
describes their implementation. Finally, Chapter 7 evaluates these three implementations.

5.7.1 centralized SKIM (cSKIM)

Centralized SKIM (cSKIM) uses a central task repository residing in the semantic space
as a main notion that drives coordination. The central task repository provides different
tasks which distributed robots fetch by issuing SPARQL queries.
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Figure 5.11: Components for modeling different versions of the SKIM framework

Figure 5.12 depicts the main entities (already addressed in Section 5.2.2 in Figure
5.3) which participate in cSKIM implementation and describes their interaction activities.
First, a human operator generates a mission consisting of diverse tasks requiring different
skills and resources. After that, the generated tasks are transferred to the semantic
space where they are persisted in an underlying triplestore. To make the persisted
tasks accessible, the semantic space supports SPARQL queries for selecting (allocating)
tasks. At this point, a robot builds a SPARQL query which describes the skills the
robot provides as well as the amount of resources it has. Upon receiving the SPARQL
query from the robot, the semantic space executes the received query on the underlying
triplestore to find tasks which match the skills and resources stated in the query. If there
exists at least one result for the executed query, the coordination condition is fulfilled.
The notion of coordination is perceived as an exclusive task allocation where only one
requesting robot receives the resulting task.

Figure 5.12: cSKIM - entity coordination

Architecture

Regarding the design of coordination, computation, and interaction activities, the cSKIM
entities illustrated in Figure 5.12 conform to the modeling approach described in Figure
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5.11. cSKIM addresses each of the main and auxiliary components in the following way:

• Coordination entities: main entities participating in cSKIM implementation
and their coordination and interaction activities are illustrated in Figure 5.12.

• Semantics coordination medium: cSKIM utilizes the benefits of applying
SKIM-RO for modeling diverse tasks and heterogeneous robots and thus enabling
their interaction. Interaction is realized through SPARQL queries which perform
matchmaking between tasks and robots. The matchmaking process supports all
three resource matching models, i.e., exact, plug-in, and subsume.

• Task transfer model: cSKIM is built on top of the query-based task transfer
mode where a robot issues a SPARQL query to the semantic space and, consequently,
receives a result. However, cSKIM supports task generation when an allocated task
is only partially executed.

• Decision-making mechanism: cSKIM supports only the on-the-robot decision-
making approach because it neither interacts directly with other robots in a fleet
nor does it interact with a human. Interaction with other robots is only implicit
through the central task repository hosted in the semantic space.

There exist two coordination components: (1) the coordination model developed
around the central task repository hosted in the semantic space and (2) the on-the-robot
coordination model responsible for robot’s internal activities and the interaction with
the central task repository as well. The section introduced and described main building
blocks utilized in constructing the cSKIM framework implementation. The following
section introduces the design of the dSKIM framework.

5.7.2 distributed SKIM (dSKIM)

In contrast to cSKIM that uses a central task repository, dSKIM is based on a naive
algorithm that distributes all tasks to all robots, which then notify each other about the
tasks they are going to perform. Due to the lack of semantic-based task allocation, each
robot receives a complete set of tasks, even the tasks it cannot perform.

Figure 5.13 introduces main entities participating in dSKIM implementation and
describes their interaction activities. First, a human operator generates a mission
consisting of diverse tasks requiring different skills and resources. After that, the
generated tasks are transferred to the semantic space where they are mapped to robots
in a fleet. In contrast to cSKIM with an exclusive task allocation to a robot, in dSKIM
all tasks are mapped to all robots in the fleet resulting in non-feasible mappings. The
non-feasible mappings subsume a task allocation where the matching level between
provided and requested skills is characterized as fail. This means that a robot and a task
do not have any overlapping skills.

Due to the mapping of all tasks to all robots, many colliding tasks emerge which
require an extensive collaboration and cooperation between robots to execute those tasks.
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Colliding tasks are those tasks which can be executed by more than one robot. Handling
those tasks ensures that two or more robots do not execute a same task at the same time
which could result in a collision between robots.

Figure 5.13: dSKIM - entity coordination

Architecture

Regarding the design of coordination, computation, and interaction activities, the dSKIM
entities illustrated in Figure 5.13 conform to the modeling approach described in Figure
5.11. dSKIM addresses each of the main and auxiliary components in the following way:

• Coordination entities: main entities participating in dSKIM implementation
and their coordination and interaction activities are illustrated in Figure 5.13.
Coordination activities between distributed robots are described in more detail in
next sections.

• Semantics coordination medium: dSKIM utilizes the benefits of applying
SKIM-RO for modeling diverse tasks and heterogeneous robots and thus enabling
their interaction. Robots issue SPARQL queries on local repositories where they only
select tasks they are able to execute, while ignoring all other tasks. Matchmaking
process supports all three resource matching models, i.e., exact, plug-in, and
subsume.

• Task transfer model: dSKIM utilizes a modified version of the inference-based
task allocation transfer mode which does not use inference capabilities to allocate
tasks, rather it just allocates all tasks to all robots. Moreover, dSKIM supports
task generation when an allocated task is only partially executed. However, a
generated task is not written to the central task repository as in cSKIM, rather, it
is transferred to all robots in a fleet.

• Decision-making mechanism: dSKIM supports both, on-the-robot and in-the-
fleet, decision-making approaches because it also interacts directly with other robots
in a fleet. Due to the handling of colliding tasks, the interaction with other robots
is explicit.
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Due to the distributed design of dSKIM, there exist two coordination components: (1)
coordination model developed around the central task repository hosted in the semantic
space and (2) on-the-robot coordination model responsible for robot’s internal activities
and the interaction with other robots as well. The section introduced and described
main building blocks utilized in constructing the dSKIM framework implementation. The
following section introduces the design of the hSKIM framework implementation.

5.7.3 hybrid SKIM (hSKIM)

In contrast to cSKIM and dSKIM which do not utilize coordination ontology and reasoning
capabilities for task allocation, they utilize only resource ontology, in hSKIM, the task
allocation is performed by reasoning on SKIM-CO. The result of reasoning is a set of
tasks mapped to a set of matching robots. Robots receive tasks from the central task
repository as in cSKIM, but locally run their own decision-making system and reason on
SKIM-CO ontology to determine their own level of autonomy, e.g., whether to involve
the centralized task allocation component to find collaborative robots and whether to
involve the human in task assignment.

Figure 5.14 introduces the main entities participating in hSKIM and describes their
interaction activities. First, a human operator generates a mission consisting of di-
verse tasks requiring different skills and resources. After that, the generated tasks are
transferred to the semantic space where they are persisted in an underlying triplestore.
Subsequently, SKIM-CO and a reasoner are used to allocate generated tasks to the robots
and thus model the coordination activities between robots. It could happen that a human
has to be consulted to provide additional information on task allocation. Upon allocating
tasks to robots, these are transferred to robots, utilizing notifications in Semantic XVSM,
which proceed further with the execution procedures.

During the task execution, it could emerge a need for the robot to consult a human on
how to proceed with the execution of allocated task. In that case, the human receives a
notification which requires him/her to help with the task execution. Required instructions
are then propagated from the human back to the requesting robot. Moreover, the robot
can also be allocated a colliding task which requires collaboration and a cooperation with
other robots to execute the task. Colliding tasks are those tasks which can be executed
by more than one robot. Handling those tasks ensures that two or more robots do not
execute a same task at the same time which could result in a collision between robots.
Moreover, similar to cSKIM and dSKIM, hSKIM also enables robots to generate new
sub-tasks when an allocated task cannot be completely executed by one robot.

Architecture

Regarding the design of coordination, computation, and interaction activities, the hSKIM
entities illustrated in Figure 5.14 conform to the modeling approach described in Figure
5.11. hSKIM addresses each of the main and auxiliary components in the following way:
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Figure 5.14: hSKIM - entity coordination

• Coordination entities: main entities participating in hSKIM implementation
and their coordination and interactions activities are illustrated in Figure 5.14.
Coordination activities between a human, central task repository, and distributed
robots, are described in more detail in next sections.

• Semantics coordination medium: hSKIM utilizes the benefits of applying
SKIM-RO for modeling diverse tasks, heterogeneous robots, as well as a human
operator, and thus enabling their interaction. Additionally, hSKIM uses SKIM-
CO for modeling coordination activities between robots as well as between a
human operator and robots. Robots issue SPARQL queries on local repositories.
Matchmaking process supports all three resource matching models, i.e., exact,
plug-in, and subsume.

• Task transfer model: hSKIM utilizes the inference-based task allocation transfer
mode. Moreover, hSKIM supports task generation when an allocated task is only
partially executed.

• Decision-making mechanism: hSKIM supports both, on-the-robot and in-the-
fleet, decision-making approaches. Additionally, a robot also interacts with a human
operator. Due to the handling of colliding tasks, the interaction with other robots
is explicit.

Due to the distributed design of hSKIM, there exist two coordination components: (1)
coordination model developed around the central task repository hosted in the semantic
space and (2) on-the-robot coordination model responsible for robot’s internal activities
and the interaction with other robots as well as with a human operator. Thus, the
following two sections describe the centralized, on-the-robot, and human coordination
patterns in more detail.

Hybrid coordination model

The hSKIM coordination model developed around the central task repository hosted
in the semantic space. The central coordination model is responsible for fetching tasks,
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persisting them, allocating them to robots, and transferring them to remote robots.
Moreover, it could also consult a human operator to provide additional information
during the task allocation process.

The system starts with an initialization procedure which creates an instance of
Semantic XVSM where the fetched tasks are stored. After that, the configuration,
described in Section 4.3.2, containing robots and provided skills, is loaded and used
for building robot instances. To enable inference-based task allocation, the SKIM-CO
is written in a container residing in the semantic space. The loaded configuration is
then used to construct robots which are, together with received tasks, persisted in the
same container where SKIM-CO resides. Having SKIM-CO, tasks, and robots, in a same
container in the semantic space, enables inference-based task allocation. Finally, the
initial procedure finishes by allocating tasks to robots and transferring them. However,
during the task allocation process, a request for a human help can emerge. Due to the
broader fleet knowledge, the human can provide additional information regarding the
task allocation.

Due to the hSKIM support for executing tasks partially which, consequently, generates
new tasks, an important part of coordination model is the component which receives data
from running robots and processes them. Upon receiving data, the component checks
whether the received data is instance of type Task. If the condition is true, it writes a
received task in the local container where SKIM-CO resides. The received task will then
be automatically allocated to a corresponding robot. Otherwise, it ignores received data.
The received task denotes a sub-task created by a robot which was unable to completely
execute an allocated task.

Robot coordination

The on-the-robot coordination model is responsible for robot’s internal activities and
the interaction with other robots in a fleet, as well as with a human operator. Thus, it
complements the above described hybrid coordination model.

Same as in the hybrid coordination model, a robot starts with an initialization proce-
dure which looks up the instance of Semantic XVSM created in the hybrid coordination
model described in previous section. After the initialization, a loop begins in which the
robot processes the allocated tasks received from the hybrid coordination component.
Upon receiving tasks, the robot constructs a SPARQL query and then executes it on the
local container. If the query does not return any task, the loop execution is paused until
the next execution interval. The execution interval is manually configured as the number
of milliseconds.

On the other hand, if the query returns a task to execute, it is first checked whether
a received task is too complex for the robot to execute it. A task is too complex if it
requires a human interaction and the robot is unable to support it. Otherwise, if a task
is not too complex, the robot checks whether it has received a collision notification for
that particular task from some other robot. The collision notification denotes that some
other robot is about to process that task. In that case, the robot drops the tasks and
waits until the next period to get another task from the local container. If there is no
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relevant collision notification, the robot, able to support a human interaction, inspects
whether a task requires a human interaction. If so, the human operator is consulted to
provide a permission to the robot to execute the task. On the other hand, if there is no
need for a human interaction, the robot inspects whether the task is colliding task and if
so, it notifies other robots that it is going to execute that particular task.

A simple collision avoidance mechanism prevents that two colliding robots try to
execute a same task at the same time and thus ending up in a deadlock. More precisely,
the deadlock could result in a collision on a field. Current approach for collision avoidance
in SKIM framework is based on following concepts: (1) utilizing random numbers to
desynchronize distributed robots in time, (2) applying an area decomposition algorithm,
described in next chapter, which prevents spatial interference between robots, and (3)
each robot prioritizes local tasks based on a distance between a task and itself. However,
this approach requires additional improvements which are addressed in future work.

After notifying colliding robots and interacting with a human (if necessary), the robot
validates permission to execute the task and proceeds accordingly. The robot validates
that it has enough resources to execute the assigned task. If it has adequate amount of
resources, it proceeds with checking the overlapping skills, i.e., skills requested by the
received task and the skills it provides. If the task requires a skill which the robot does
not provide, then the skill is marked as a missing skill. In the case of missing skills, the
robot creates a new task, i.e., a sub-task, containing the missing skills and writes the new
task to the container residing in the instance of Semantic XVSM which then dynamically
performs inference-based task allocation. Finally, the robot executes the allocated task.
It executes the task either completely or partially. The task is completely executed if
there are no missing skills, and partially otherwise.

Due to the extension of coordination paradigm from the central part of the system
to the robots in the fleet, each robot has a component which facilitates processing of
data received from other robots. It first checks whether the received data is of type
Mapped Task which denotes tasks allocated from the central part of the system. If this
is the case, the mapped tasks are written to the local container and colliding tasks are
detected. Otherwise, the component checks whether the received data is type of Task
denoting a sub-task received from another robot. In that case the component resolves
a colliding task by removing it from the local repository. The last possibility is that a
received data could be of type ConsultUser containing a permission to execute a task.
If not, then the received data denotes a task allocated directly by a human. To avoid
adding more complexity to the diagram, a case which ignores received data is omitted
from the diagram. It is important to notice that the component for data receiving and
processing runs in parallel with the component for querying and executing tasks.

Human interaction

The human operator in hSKIM has twofold purpose:

• to decide whether a robot can execute a specific task. The human receives data
denoting that the robot has requested a permission to execute certain task, and
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• to manually assign a task to a robot. The human receives data from the hybrid
coordination component to provide additional information on allocating a specific
task.

In first case, the human operator utilizes a simple algorithm to decide on a permission
to execute a certain task. The algorithm is based on a cost function including following
parameters: (1) a skill matching degree between a robot and a task, and (2) resource
availability, i.e., resources for completing a task. In later case, the human operator
utilizes knowledge on the fleet, thus complementing the inference-based task distribution.
Regardless of the occurring case, a response is always propagated directly to the component
it emerged on, i.e., either a robot or the hybrid coordination component.

5.8 Comparison of SKIM Coordination Approaches

The design chapter is concluded with a tabular comparison of the three SKIM-based coor-
dination approaches. Table 5.2 compares them against the most prominent components
represented in each of them.

Table 5.2: Comparison of SKIM coordination approaches

Approach Semantic
support Task transfer Decision-making Human

operator
cSKIM SKIM-RO query-based on-the-robot -

dSKIM SKIM-RO custom on-the-robot
in-the-fleet -

hSKIM SKIM-RO
SKIM-CO inference-based on-the-robot

in-the-fleet X

Evaluating the cSKIM and dSKIM architectures, it could be noticed that both,
cSKIM and dSKIM, only provide a limited ontology support through the utilization of
SKIM-RO and a SPARQL support. On the other hand, hSKIM utilizes also SKIM-CO
for coordination purposes and a human interaction as well. Moreover, hSKIM supports
inference-based task transfer as a more sophisticated method than the query-based and
the custom task transfer methods. It is more sophisticated because it relies on the
underlying SKIM-CO.

cSKIM is also limited from the perspective of interaction with other entities. It
does neither support interaction with other robots in a fleet nor with a human. Is
solely relies on on-the-robot decision-making mechanisms without any support to contact
other robots. In contrast to cSKIM, dSKIM supports both on-the-robot and in-the-
fleet decision-making mechanisms. Therefore, it supports an extensive coordination
and collaboration with other robots. Finally, hSKIM also supports both on-the-robot
and in-the-fleet decision-making mechanisms. However, in addition to an an extensive
coordination and collaboration with other peers, it supports human interaction as well.
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hSKIM implementation uses SKIM-CO ontology-based model of shared knowledge to
enable collaboration between a human operator and robots. On contrary, neither does
the cSKIM nor dSKIM support human interaction.

Due to the emerging support for human operators in mixed human-robot teams where
humans and robots can operate as peers, hSKIM implementation represents a framework
which meets the posed requirements for a flexible human interaction. Moreover, due
to the semantic support, hSKIM is flexible and thus can easily be adapted to changing
requirements.

Next chapter introduces implementation details of the components addressed in the
previous section. Described components are enablers to build a generic architecture that
the developed SKIM framework complies with. Moreover, implemented are three different
coordination approaches based on the semantic extension of the Space-Based Computing
architectural style.
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CHAPTER 6
Implementation Details of SKIM

Framework

This chapter complements the previous one while it demonstrates implementation details
of the components addressed there. The chapter starts with the description of components
that build the generic architecture that the developed framework complies with (Section
6.1). To have a better understanding of task allocation and robots coordination models
which utilize shared knowledge, a formal task allocation model is given in Section 6.2.
Notations presented in the formal task allocation model are later used in algorithms for
robot-robot and robot-human interactions.

Due to the spatial interference emerging in unstructured environments where multiple
robots operate, the developed framework utilizes an area decomposition algorithm to
divide a working area into cells which are dynamically assigned to robots and thus de-
creases spatial interference between robots. The developed area decomposition algorithm
is introduced in Section 6.3.

As the shared knowledge model developed in this thesis is based on ontologies, it
provides uniform input for algorithms devised to map tasks to robots and facilitates
robot-robot and robot-human interactions. Devised algorithms are described in Section
6.4. A human role and its behaviour is described in Section 6.5. Finally, implementation
details of the different coordination frameworks are introduced in Section 6.6

6.1 Proposed System Architecture

The proposed framework architecture is based on the Model-Driven Architecture approach
built on ontology-enabled components illustrated in Figure 6.1. Following are the
ontology-based components which constitute the developed framework: (1) automatic
ontology-based Task generation, (2) ontology-based Scenario classification, (3) manual
ontology-based Robot and User generation, i.e., configuration, (4) Semantic XVSM
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coordination framework [26], and (5) ontology-based model of shared knowledge. Most
of these components have already been introduced in Section 4.

Figure 6.1: SKIM architecture

The framework is based on the ontology described in Section 4 which structures the
model into two specific ontologies: SKIM Resource Ontology (SKIM-RO) and SKIM
Coordination Ontology (SKIM-CO). SKIM-RO describes resources, including robot
capabilities and task requirements, and SKIM-CO describes coordination constraints for
robot-robot and robot-human interactions. Accordingly, SKIM-RO defines classes Task
and Scenario, and SKIM-CO classes Robot, User, and Capability. Automatic ontology-
based task generation is a software component which produces instances of class
Task defined in SKIM-RO. The Task description includes three properties: (1) number
and kind of required skills, (2) amount of resource per skill, and (3) spatial position.
Number and kind of required skills is the main parameter utilized for task allocation.
The ontology-based scenario classification uses class Scenario from SKIM-RO and
automatic reasoning to classify generated tasks into three different scenarios with respect
to different task complexities. A semantic description of scenario is a defined subclass
of class Scenario with restrictions on properties from SKIM-RO. Classified tasks and
manually generated instances of classes Robot and User define use cases which
are input for different implementations of coordination framework referred to as
centralized SKIM (cSKIM) [26], distributed SKIM (dSKIM), hybrid SKIM (hSKIM).
Manually generated instances of classes Robot and User defined in SKIM-CO are referred
to as a configuration (see Section 4.3.2).

In contrast to cSKIM that uses a central task repository, dSKIM is based on a naive
algorithm that distributes all tasks to all robots, which notify each other about the tasks
they are going to perform. Due to the lack of semantic-based task allocation, each robot
receives a complete set of tasks, even the tasks it cannot perform. Neither does the cSKIM
nor dSKIM support human interaction. On the other hand, the hSKIM implementation
uses SKIM-CO ontology-based model of shared knowledge among humans and
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robots. In hSKIM the task allocation is performed by reasoning on SKIM-CO. The result
of reasoning is a set of tasks mapped to a set of matching robots. Robots receive tasks
from the central task repository as in cSKIM, but locally run their own decision-making
system and reason on SKIM-CO ontology to determine their own level of autonomy, e.g.,
whether to involve the centralized task allocation component to find collaborative robots
and whether to involve the human in task assignment.

6.2 Task Allocation Model

Let R = {r1, ..., rm} be a set of robots, T = {t1, ..., tn} set of tasks, and S = {s1, ..., so}
set of skills. The set of skills of a robot ri ∈ R is Sr

i ⊆ S and the set of skills required
by a task tj ∈ T is St

j ⊆ S. Then the task allocation is defined as the mapping ∀tj ∈ T,
1 ≤ j ≤ n, to a set of robots Rt

j which satisfies following:

St
j ⊆ ∪∀rx∈RtjS

r
x (6.1)

The skills required by a task tj will be matched if there exists set of robots Rt
j such

that the union Sr
x of skills provided by each robot rx ∈ Rt

j contains the set St
j. If

∣∣Rt
j
∣∣ > 1,

then collaboration and coordination between robots in Rt
j is required. Our assumption in

modeling human knowledge about task allocation is that a human is to be involved in
solving task tj if

∣∣St
j
∣∣ ≥ k. Parameter k denotes a threshold for a human interaction with

a fleet and defines class User with a restriction on property k in SKIM-CO.

6.3 Dynamic Area Decomposition for Task Allocation

To prevent colliding robots, i.e., robots that are assigned a same task, from interfering with
each other in a field, it is beneficial to introduce spatial and time dependencies between
tasks. On the one hand, as mentioned in Chapter 1, SKIM coordination framework
does not address the latter. On the other hand, to reduce spatial interference between
robots, the coordination framework implements area decomposition algorithm based on
a computational geometry technique of Voronoi diagram [5]. This approach is applicable
to domains where geographical positions of robots and tasks are known, which to a great
extent corresponds to the use case addressed throughout this thesis and described in
Chapter 1.

Construction of Voronoi diagram is based on the Euclidian distance between two
points p and q by dist(p, q). Let P = {p1, ..., pn} be a set of n distinct points in the
plane, where points are the sites. Voronoi diagram of P is defined as the subdivision of
the plane into n cells, one for each site in P , with a property that a point q lies in the
cell corresponding to a site pi if and only if dist(q, pi) < dist(q, pj) for each pj ∈ P with
j 6= p. More details on the construction of Voronoi diagram can be found in [5].

The area decomposition algorithm implemented in the coordination framework con-
siders the set of n tasks T = {t1, ..., tn} as points in P . Each task is composed of the
random number of equal square building blocks. Since tasks can have different shapes
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Figure 6.2: Area decomposition

and sizes, for each task ti ∈ T, 1 ≤ i ≤ n calculated is a point rti(x, y) denoting the center
of mass. Those centers of mass are used for calculating the Euclidian distance between
each task and for constructing the Voronoi cell for a task. Figure 6.2 a) illustrates a
Voronoi cell which is a polygon with an arbitrary shape.

Due to the requirements posed by the addressed precision agriculture scenario, i.e.,
an agricultural field as an operating environment where robots are limited to performing
parallel trajectories and turns on the field edges, the following constraints are imposed
on a cell construction:

• the shape of a cell is either a rectangle or a square, and

• width and height of a cell are equal to the length of the building block of a task
multiplied by a integer value.

Described constraints forced the adaptation of existing Voronoi diagram. Thus,
developed is the algorithm 6.1 which addressed the above constraints. Moreover, rectangle
or squared cells enable robots to inspect whole cells and not just a task in it.

A cell construction in lines 11− 16 creates lines, i.e., cell borders, parallel to either x
or y axis thus conforming to the constraint that each cell is either a square or a rectangle.
As a result of introduced constraints, it could happen that some tasks partially lay out
of their cells and thus span to other cell. A brown object in the middle of Figure 6.2 b)
denotes a spanning task which requires robots collaboration for the task execution.

Moreover, a parameter k instructs the decomposition process to either prefer vertical
or horizontal decomposition. Figures 6.2 b) and c) illustrate how the shape of cells
depends on the parameter k. When the horizontal decomposition is preferred, i.e., k = 5,
cells are more squared (Figure 6.2 b)). On the other hand, cells are long and narrow
when vertical decomposition, i.e., k = 9, is active (Figure 6.2 c)). As it could be seen
comparing Figures 6.2 b) and c), choosing the right value for the parameter k could
result with no spanning tasks. In contrast to a spanning task, one robot can execute a
task which does not span multiple cells.

The outcome of algorithm is a list of lines denoting cells’ borders. Because the
algorithm never drops all lines, it always yields a list of lines denoting cells’ borders.
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Algorithm 6.1: Area decomposition algorithm
Data: set of tasks T
Result: a list of lines denoting cells

1 order all tasks ti and ti+1 ∈ T such that rtix <rti+1x ;
2 for each task ti ∈ T do
3 create a line between points rti and rti-1;
4 if line rtirti-1 intersects with existing lines then
5 choose a task tj, j <i, such that a line rtjrti does not intersects with

existing lines;
6 set rti-1 = rtj;
7 else
8 retain line;
9 end

10 calculate the point h such that dist(h, rti) = dist(h, rtj);
11 create a line denoting a border between cells containing ti and ti-1;
12 if |disty(rti, rti-1)| < k or |distx(rti, rti-1)| > k then
13 create a new vertical line parallel to y − axis passing through the point h;
14 else
15 create a new horizontal line parallel to x− axis passing through the point h;
16 end
17 if the new line does not intersect with existing lines then
18 add the line to the list containing cell borders;
19 else
20 drop the new line;
21 end
22 end
23 return the list of lines denoting cells;

However, the number of lines denoting borders depends on the setup, i.e., the number of
tasks, their size, and position as well. In particular, it influences the number and shape
of cells.

6.4 Shared Knowledge in Robotic Fleet
The SKIM framework is designed with the objective to model shared knowledge as a
basis for adaptive autonomy in mixed teams. The semantic approach drives the modeling
of shared knowledge which enables the collaboration activities between involved entities
by means of ontologies: SKIM-RO and SKIM-CO. Hence, these ontologies are used as
the model of shared knowledge and the decisions are results of automated reasoning on
them.

Previous section describes how the SKIM-RO is utilized for semantically annotating
heterogeneous resources and thus providing uniformly described tasks and robots. Uni-
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formly described resources represent inputs for the algorithms described in this section
which utilize SKIM-CO for task allocation and coordination activities between robots as
well as between a human and robots.

This section starts with the implementation of inference-based based task allocation
process which practices reasoning capabilities on SKIM-CO to allocate tasks to robots.
After that, described is the implementation of an algorithm which enables robot-robot
interactions. The section is concluded by describing the implementation of human
interactions with the fleet.

6.4.1 Shared Knowledge Model for Task Allocation

Algorithm 6.2 is the inference-based task allocation process which receives instances of
classes Task and Robot as well as the SKIM-CO, i.e., the configuration, as an input data.
Received task are previously processed in the area decomposition algorithm where they
were utilized to calculate operating cells for robots. The Algorithm 6.2 is performed in
the Semantic XVSM.

Algorithm 6.2: Shared knowledge for task allocation
Data: map a set of tasks T to a set of robots R using SKIM − CO
Result: a map with tasks allocated to robots

1 write SKIM − CO to container C;
2 for each task t in T do
3 write t to C;
4 end
5 for each robot r in R do
6 write r to C;
7 end
8 doReasoning;
9 for each Capability class ch in SKIM − CO do

10 get classified tasks cT h;
11 get classified robots cRh;
12 if cT h is empty then
13 consultUser;
14 else
15 for each robot r in cRh do
16 add tasks in cT h to r;
17 end
18 end
19 end
20 notify robots in R on mapped tasks cT ⊆ T ;

In this algorithm the SKIM-CO ontology is written in container C to enable reasoning
capabilities and thus inference-based task allocation. Container is a basic concept of
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Semantic XVSM. SKIM-CO can have multiple Capability classes C = {c1, ..., cp} where
each class ch ∈ C is defined with the specific type of skills required by received tasks, e.g.,
one Capability class can be defined to encompass only tasks requiring skill sx ∈ S and
another class requiring skill sy ∈ S. After that, both tasks from T and robots from R are
written to container C. Upon writing all received data in C, reasoning is performed on
SKIM-CO, tasks T , and robots R. The result of reasoning is a set of tasks cT mapped
to a set of matching robots cR.

Additionally, task tj ∈ T and robot ri ∈ R are classified in the class User if
∣∣St

j
∣∣ ≥ k

and |Sr
i| ≥ k.

When tasks and robots are classified, each Capability class ch ∈ C from SKIM-CO
is examined to fetch classified tasks cT h and robots cRh. If there exists a task which
is not classified into any Capability class ch, e.g., partially executed task, the human is
consulted to assign the tasks to a robot. Otherwise, each robot r ∈ cRh is assigned a set
of tasks cT h. In the end, Algorithm 6.2 utilizes notification mechanisms from Semantic
XVSM to notify all robots in R on mapped tasks cT ⊆ T and thus provides an input for
Algorithm 6.3 described in next section.

6.4.2 Shared Knowledge Model for Robot-Robot Interactions

Algorithm 6.2 transfers inferred robot-task mappings to distributed robots. Robot-task
mapping is defined as a data structure Map < Robot, Task[ ] > ts where a robot is a
key and a value is an array of tasks allocated in Algorithm 6.2. The map is an input to
Algorithm 6.3.

Robot r ∈ R running Algorithm 6.3 filters its own tasks from the received map ts by
checking which key k in map ts is equal to r. After fetching own tasks ts.tasks, robot r
writes them in a local container Cl. Additionally, there are tasks which could be executed
by multiple robots, i.e., collision tasks. Task tj ∈ T with a set of required skills St

j, is
a collision task if there exists set of robots Rt

j = {r1, ..., rq} with the union of provided
skills Sr

i, where
∣∣Rt

j
∣∣ > 1, such that Eq. (6.1) holds. Since each robot r knows about

other robots and their tasks, it detects collision tasks Tcoll. When robot r takes task
t from container Cl, it checks whether it received a collision notification on the same
task t from a colliding robot. At this moment it is important that colliding robots are
desynchronized to avoid that two or more robots take the same colliding task at the same
time. This challenge is addressed in Section 5.7.3. If there is no collision notification nor
the task is too complex for robot r, the robot can proceed. Task t is too complex for
robot r if t is classified in class User and if |Sr| < k. Latter condition means that a robot
r has to few skills to autonomously execute task t.

A robot r consults a human for assistance also if there are ambiguities during task t
execution. In that case the human runs an algorithm which calculates whether robot r
has compliant skills and needed amount of resources to execute task t. Upon receiving
confirmation from human, robot r is allowed to proceed with regular execution where
it checks whether task t ∈ Tcoll. If this holds, robot r notifies only colliding robots
Rcoll ⊆ R that it is going to execute task t. This is different compared to dSKIM where
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Algorithm 6.3: Shared knowledge for robot-robot interaction
Data: a map with robots as keys and assigned tasks as values

1 get assigned tasks ts.tasks;
2 write ts.tasks to local container Cl;
3 detect colliding tasks Tcoll and robots Rcoll in Cl;
4 while Cl is not empty do
5 take task t from Cl;
6 if (

∣∣St
j
∣∣ ≥ k and |Sr

i| < k) or collNotification then
7 dropTask;
8 else
9 if

∣∣St
j
∣∣ ≥ k and |Sr

i| < k then
10 consultUser;
11 else
12 end
13 if t ∈ Tcoll then
14 send collNotification;
15 else
16 end
17 execute task t;
18 end
19 end

all robots are notified upon task execution. After necessary interaction with the human
and other robots, r executes task t.

A simple collision avoidance mechanism prevents that two colliding robots try to
execute a same task at the same time and thus ending up in a deadlock. The deadlock
could result with two robots running into each other on a field. Thus, the current approach
for collision avoidance in SKIM framework is based on following concepts: (1) utilizing
random numbers to desynchronize distributed robots in time ensuring that only one robot
is always the first to take a colliding task and notify the others, (2) applying an area
decomposition algorithm, described in Section 6.3, which prevents spatial interference
between robots, and (3) each robot prioritizes local tasks based on a distance between a
task and its current location. However, this approach requires additional improvements
which are addressed in future work.

6.5 Human Role in Adaptive Autonomy

Operating a robotic fleet is a cognitively demanding task that requires efficient user-fleet
interface for decision-support in control and monitoring, diagnosis, problem detection
and resolution, complementing the autonomous decision making that the robotic fleet
units are capable of. Particularly for applications of robotic fleets in open uncontrolled
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environments, the role of the human-operator needs to be carefully defined and supported,
taking into account uncertainties in all phases of the system operation, including also
human potential in resolving and equally creating critical situations. The most challenging
future scenario is the one in which humans and autonomous robots with self-optimizing
and learning capabilities collaborate in joint tasks. Currently however the main focus is
on control with different levels of autonomy.

As described in the precision agriculture use case in Chapter 1, there are two main
roles assigned to human operators, i.e., a fleet owner who leases out his heterogeneous
robotic fleet, i.e., a configuration, consisting of multiple tractors with different implements
able to perform different tasks, and a farmer who owns a field which has to be cultivated.
The fleet owner can also act as fleet operator responsible for selecting a suitable strategy
for a field treatment. When during a mission execution a robot tries to execute a task
that requires a human intervention, it has to consult the operator who decides whether
the robot has necessary skills and resources to execute the task. The robot consults the
fleet operator for assistance if there are ambiguities during the execution of the task. In
that case the operator decides whether the robot has compliant skills and needed amount
of resources to execute the task. Upon receiving confirmation from the human, the robot
is allowed to proceed with regular execution of the task.

The section first describes a system developed within the project RHEA which
facilitates a human operator in gaining situational awareness by providing it with relevant
fleet information. Afterwards, described are two implementations of human-involved
decision algorithms which utilize data fused from the shared fleet knowledge with the
knowledge acquired in awareness processes.

6.5.1 Gaining Situational Awareness

Human mobility is a great advantage in the context of acquiring situational awareness in
robotic fleet, as the human has direct access to the environment and, in some situations,
is co-located with the robots too. The human mobility within the operating environment
allows for fast knowledge acquisition by a direct interaction with the elements in the
environment.

In [31] a system is developed which enriches a human in-field experience and under-
standing of mission by adding information beyond what can directly be perceived by
supervising the mission. Designed are two complementary information components that
use different data sources: (1) the human-robot interaction (HRI) system enables the
human operator in a field to obtain the current robot status, e.g., position, speed, heading,
the status of the implements, and (2) the communication network monitoring system
which offers information regarding the quality of communication network collected from
the wireless network routers. In particular the network monitoring interface helps the
human to understand and mitigate communication uncertainties which may arise during
the mission due to the problems in transmission link quality, which are characteristic for
the volatile and unstructured environments and are hard to detect and can jeopardize a
whole mission.
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Figure 6.3 illustrates the system which enriches the human perception of operating
environment. It is deployed on distributed robots which utilize wireless routers to
communicate with the central repository and the human operator as well. The system
consists of distributed client applications running on wireless routers which collect both,
data coming from an underlying decision-making system as well as network data related
to e.g., the network topology, signal strength, bitrate and traffic load, directly from the
routers. Collected data is transferred to the central repository that processes and stores
received data and also make it accessible for the human operator.

Figure 6.3: Gaining situational awareness

As a result, the human operator can continuously monitor network topology and
transmission link quality. Based on the network information the human can predict and
prevent remote robots of losing a connection with a central station and thus being out of
service. Combining information from three different sources: (1) data retrieved directly
from robots utilizing HRI system, (2) visual perception of the in-field situation, and (3)
network data obtained through the network monitoring system, the human can make
decisions about whether to increase or decrease robot’s autonomy. By doing so, the
human can increase the overall mission efficiency by reducing the robots outages and
increasing their utilization based on the network information which helps to predict and
prevent remote robots of losing a connection and thus being out of service.

6.5.2 Shared Knowledge Model for Robot-Human Interactions

Algorithms 6.2 and 6.3 introduced two different models of human interaction for facilitating
decisions emerged due to the ambiguities occurred during the task allocation and robot-
robot interaction.
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On-the-human extended task allocation

Algorithm 6.2 triggers reasoning on SKIM-CO which classifies two types of tasks: (1)
input tasks at the beginning of a mission, and (2) ad-hoc tasks which emerge during the
mission due to the skills mismatch between a robot and a selected task, i.e., partially
executed tasks. The classification has two outcomes independently of the task type: (1)
a task is mapped to a robot, or (2) there is no suitable robot for the given task. The
outcome of mapping depends on SKIM-CO. However, an unmapped task does not imply
that the task could not be executed. In that case, the task is assigned to the human who
is assumed to have knowledge to solve the task allocation problem. In the simulation
the human actor performs the task allocation algorithm which utilizes knowledge on the
fleet, thus complementing the inference-based task distribution.

Figure 6.4: On-the-human extended task allocation
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Figure 6.4 illustrates on-the-human extended task allocation algorithm which is
triggered after a robot consults a human for help. Although the human decision process
is a cognitive task, in the scope of this thesis it is implemented as the algorithm. This
is due to the fact that the SKIM framework is only tested in simulations without an
opportunity to test it on a real robotic fleet operating in a field. In such a case human’s
cognitive capabilities would be beneficial for task allocation.

First, for each requested skill in an unallocated task, the algorithm retrieves all robots
that provide that skill. Retrieved robots are stored in a data structure map where for
each robot, stored as a key, there is a counter, stored as a value, denoting the number
of overlapping skills. Overlapping skills are those skills, required from the unallocated
task, which are same as the skills provided by a robot. After that, the algorithm finds
the maximum number of overlapping skills denotes as maxSkill. Finally, from the set of
robots that provide the overlapping skills, selected is one which has the highest number
of overlapping skills, i.e., who has the number of overlapping skills equal to maxSkill. To
allocate the task to the robot, the human has to use look up mechanism provided in
Semantic XVSM to get a reference to the robot’s container and to write the task there.
The execution of algorithm finishes after allocating the task to a first robot which has
the number of overlapping skills equal to maxSkill. Due to the ambition to decrease
the number of colliding tasks and thus the exchange of coordination messages between
robots, an unallocated task is allocated to only one robot. On-the-human extended
task allocation process utilizes knowledge on the fleet to facilitate task allocation thus
complementing the inference-based task distribution.

On-the-human extended robot coordination

In algorithm 6.3, if a robot r takes a task t from container Cl which requires
∣∣St∣∣ ≥ k

skills, robot r will have to consult the human regarding the allocation of task t. Robot
r is capable to execute task t if |Sr| ≥ k. Otherwise, if a robot with a higher matching
degree exists, it will be chosen. The decision-making algorithm performed by the human
actor is based on a cost function including following parameters: (1) skill matching degree
between a robot and a task, and (2) resource availability, i.e., resources for completing a
task.

Figure 6.5 illustrates on-the-human extended robot coordination algorithm which has
first part similar to the algorithm described in Figure 6.4. For each skill required in a
task received in a consult request sent by a robot, retrieved are all robots that provide
that skill. Retrieved robots are stored in a data structure map where for each robot,
stored as a key, there is a counter, stored as a value, denoting the number of overlapping
skills. Overlapping skills are those skills, required from the task received in the consult
request, which are same as the skills provided by a robot. After that, the algorithm finds
the maximum number of overlapping skills denotes as maxSkill.

The part which differs from the algorithm described in Figure 6.4 is the condition
which is fulfilled when a robot with the highest number of overlapping skills is found and
when the found robot is the same as the robot who sent the consult request. If a robot
that sent a consult request has the highest number of overlapping skills, the procedure is
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Figure 6.5: On-the-human extended robot coordination

the same as in the algorithm in Figure 6.4. The human has to use look up mechanism
provided in Semantic XVSM to get a reference to the robot’s container and to write the
task there. Otherwise, if another robot with a higher matching degree exists, requesting
robot will not get a permission to execute that task and eventually a robot with highest
matching degree will consult a human for a help and it will be allocated a task.
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6.6 Implementation of Coordination Approaches for Task
Allocation

The section presents implementation details of each SKIM-based implementation of coor-
dination framework. Each implementation builds on the semantically annotated entities
reflecting tasks in an operating environment and robots executing them. Semantically
described resources enable a robot to execute the context enriched SPARQL query when
selecting tasks to execute. Depending on the implementation, the SPARQL query is
either executed on a local or on a remote container which hosts the set of tasks. Selected
tasks are further used as an input for different coordination mechanisms which depend
on the implementation.

The section starts with the description of implementation details which pertain to
cSKIM. Described are the SPARQL query for selecting tasks and a sequence diagram
which illustrates involved entities and their interactions. Then, the implementation
details of dSKIM are presented, as well as an associated sequence diagram. The section
is concluded with the implementation of hSKIM which builds on the task allocation
and coordination algorithms described in Section 6.4 and human-interaction mechanisms
introduced in Section 6.5, respectively.

6.6.1 centralized SKIM (cSKIM)

As already mentioned in the design chapter, cSKIM uses a central task repository as a
coordination paradigm between distributed robots. The implementation of this central
task repository is based on Semantic XVSM with SPARQL interface and an underlying
triple store (Jena). The main part of Semantic XVSM is the data model that exposes the
mapping process between MozartSpaces and semantic entries. The basic concept utilized
to realize the central task repository is a container hosted in a single runtime instance of
the space where the container is addressable by URL and therefore can be accessed as any
other resource on the Internet. The container, representing the central task repository,
hosts semantically annotated tasks that build a mission and which can be accessed, i.e.,
selected, using a SPARQL query. As inherited from the core implementation, Semantic
XVSM offer a multitude of coordination patterns for retrieving stored entries, e.g., First-In
First-Out (FIFO), Last-In First-Out (LIFO), Random, Key coordinators, as well as a
proprietary SemanticCoordinator.

The robot entity with accompanying resources is described using the SKIM-RO
ontology complemented with the semantic annotation concept. Each robot offers a set of
services, i.e., based on an implement (physical device) for executing a special type of a
task, and amount of available resources, e.g., amount of a liquid for spraying tasks. To
utilize provided services, a robot selects a task from the remote central task repository
by issuing the SPARQL query described in Listing 6.1. Issued query wraps up a task
selection algorithm that implements an ontology based matchmaking mechanism that
determines semantic relationship between the advertised task descriptions and services
offered by a robot. The algorithm uses two parameters for selecting a matching task: (1)
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type of skills requested by advertised task, (2) a robot’s distance from a task. As a result
of the query, the Semantic XVSM returns an entry with task description which satisfies
requirements stated in the query.

SPARQL for Task Selection

The SPARQL query for selecting tasks residing in the remote central task repository,
described in Listing 6.1, uses the same SKIM-RO ontology as advertised tasks and robots
do. The query defines a variable ?entry which is of type Task and at the same time
retrieves the context entry describing an executor robot. Context entries can be used as
a parameter for SPARQL queries, so that more general and flexible queries are supported.
After fetching context information and defining the variable for storing task data, the
query searches for tasks which require skills that overlap with those offered by the robot.
Finally, the query calculates a distance between a task and the robot, and sorts the list
of tasks in a way that a closest task is on the first place, i.e., the robot will first execute
a task closest to his current position.

Listing 6.1: SPARQL for selecting tasks from a container in Semantic XVSM

? entry sxvsm : hasValue ? entryValue .
? entryValue a ma: Task .

OPTIONAL {
s e l e c t ? entryValue ( count (? ns ) as ? n e e d e d S k i l l s ) {

? entryValue ma: n e e d s S k i l l ? ns .
} group by ? entryValue

}
{
s e l e c t ? entryValue ( count (? t s ) as ? o v e r l a p p i n g S k i l l s ) {

? entryValue ma: n e e d s S k i l l ? t s .
GRAPH ? context {

? contextEntry ma: h a s S k i l l ? t s .
}

} group by ? entryValue
}
FILTER ( ! bound (? n e e d e d S k i l l s ) | | ? o v e r l a p p i n g S k i l l s > 0)

? entryValue ma: c e n t r a l P o i n t [ ma: i s P o i n t ?p ; ma: posX ?x ; ma: posY ?y ] .
GRAPH ? context {

? contextEntry ma: h a s P o s i t i o n [ ma: i s P o i n t ?a ; ma: posX ?b ; ma: posY ? c ] .
}

BIND ( ( abs (? x − ?b ) + abs (? y − ? c ) ) as ? d i s t a n c e )

FILTER (? d i s t a n c e <= 20)

Listing 6.2 shows the complete code implemented on a robot which is used for building
the SPARQL query. Class SemanticAPI provides the static method createQuery for
creating a query represented as an object of type SemanticSelector. The createQuery
takes two parameters: (1) a string representation of a query, i.e., a query from Listing
6.1, and (2) the number of returned semantic entries. Upon creating the query object
of type SemanticSelector, additional parameters are added. First, a variable distance is
added to enable ordering of resulting semantic entries. After that, two prefixes describing
ontology concepts are attached. Finally, a context entry representing the robot which
constructs the query is appended.
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Listing 6.2: SPARQL query

S e m a n t i c S e l e c t o r query = SemanticAPI . createQuery ( D i c t i o n a r y . wherePart , 1 ) ;
query . getQuery ( ) . addGroupByVariables ( " d i s t a n c e " ) ;
query . addOrderByVariables ( "ASC(? d i s t a n c e ) " ) ;
query . addPref ix ( "ma" , URI . c r e a t e ( D i c t i o n a r y . NS ) ) ;
query . addPref ix ( " sxvsm " , URI . c r e a t e ( Ontology .ONTOLOGY_URI) ) ;
query . addContextEntry ( " context " , SemanticAPI . s e r i a l i z e E n t r y V a l u e ( robot ) ) ;

The advantage of Semantic XVSM is that SPARQL queries can be used for entry
selections. For this purpose, a new SemanticSelector, complementing SemanticCoordina-
tor, is created and it can be combined in a chain with other MozartSpaces selectors. A
selector chain is a sequence of selectors where the result of one selector is piped to the
next selector as an input.

Containers and Notifications

Due to the centralized architecture, the coordination between entities in cSKIM is simple
and it is realized with the containers listed in Table 6.1. Listed containers belong to the
instances of two coordination entities, the centralized coordination model, described in
Section 5.7.3, named as cSKIM and multiple instances of type Robot. cSKIM hosts only
one container where all instances of type Task are stored and prepared for querying. The
container utilizes SemanticCoordinator which is a custom MozartSpaces coordinator for
selecting entries by using SPARQL queries. It operates only in a combination with the
sematic back-end. Furthermore, the notification mechanism registered on the container
enables cSKIM to be aware when a new task is written in the container.

On the other hand, instances of type Robot retrieve a reference to the container
residing in cSKIM utilizing lookup mechanism provided in Semantic XVSM (Listing 6.3).
The obtained reference has twofold purpose:

• to execute the SPARQL query on the remote container to select a task (Listing
6.3), and

• to create a new task and store it on the remote container (Listing 6.4).

The result of SPARQL query executed on the remote container is a list which contains
objects of type SerializedSubResourceTree as denoted in Listing 6.3. Returned objects
are deserialized using the static method createQuery in class SemanticAPI and casted
to instances of type TaskReasoning. Similar, Listing 6.4 denotes a procedure when a
robot creates a new task by serializing an instance of type Task using the static method
serializeEntryValue. Result is an object of type SerializedSubResourceTree which is then
written to the remote container.

Listing 6.3: Execute a SPARQL query

Conta inerReference centra lTaskConta iner =
ca p i . lookupContainer ( C e n t r a l i z e d C o o r d i n a t i o n P a t t e r n . semanticTaskContainer ) ;

L i s t <Ser ia l i zedSubResourceTree > r e s u l t = ca p i . take ( centra lTaskContainer , query , 5000 , tx ) ;
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Table 6.1: cSKIM - containers

Entity Container Coordination Notification
cSKIM Container SemanticCoordinator X
Robot ref → Container - -

Listing 6.4: Create a new task

S e r i a l i z e d S u b R e s o u r c e T r e e entryValue = SemanticAPI . s e r i a l i z e E n t r y V a l u e ( tNew ) ;
ca p i . w r i t e ( centra lTaskContainer , new Entry ( entryValue ) ) ;

Figure 6.6 illustrates a sequence diagram which denotes all components required
for establishing interaction activities between cSKIM, as a central coordination model,
and robot instances. ORM entity in Figure 6.6 denotes the module in Semantic XVSM
responsible for mapping a Java object, which represents a task, to a semantic entry.
And it supports the mapping in the opposite direction as well. Capi entity in Figure
6.6 is a core component of MozartSpaces which supports elementary operations such
as reading, writing, container lookup, etc. However, due to the space limitations, the
diagram denotes only one robot instance.

At the beginning, cSKIM retrieves tasks generated by an external component. Re-
trieved tasks are not semantically annotated, i.e., they are just regular Java objects.
After retrieving tasks, cSKIM loads a configuration which contains the instances of type
Robot. During the configuration load, cSKIM creates a container, listed in Table 6.1,
which will store retrieved tasks. Subsequently, cSKIM annotates received tasks using
SKIM-RO, serializes them, and writes them to the container created in previous step.
By writing the semantically annotated tasks to the container, cSKIM finishes its internal
processing and makes the stored tasks accessible over SPARQL interface. At the same
time, cSKIM starts listening to new tasks by registering a notification to the container
and starts remote robots.

When started, a remote robot utilizes the lookup mechanism to fetch a container
reference. Then the robot creates a query using the procedure described in Listing 6.2.
As described in Listing 6.3, once having the container and query instances, the robot uses
it to execute a query on the remote container hosting tasks. Since the second parameter
in the method createQuery is set to 1, the result will contain only one instance of type
SerializedSubResourceTree which is then deserialized to an instance of type Task. After
the robot deserializes received values and has the Task instance, it starts the execution
phase where it checks whether it has the available amount of resources to execute the
task and also whether it provides all skills requested by task. The case illustrated in
Figure 6.6 denotes that the robot does not provide all skills requested by task and thus
it creates a new task, serializes it, and writes it to the remote container (Listing 6.4).
Just before writing the new task to the remote container, the execution phase ends.

The sequence diagrams described in next two sections reuse concepts illustrated in
this sequence diagram.
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Figure 6.6: cSKIM - sequence diagram

6.6.2 distributed SKIM (dSKIM)

In contrast to cSKIM that uses a central task repository, dSKIM is based on a naive
algorithm that distributes all tasks to all robots, which notify each other about the tasks
they are going to perform. Due to the lack of semantic-based task allocation, each robot
receives a complete set of tasks, even the tasks it cannot perform.

Containers and Notifications

Although dSKIM does not have a central task repository, it still has a container, i.e., a
container named Container in Table 6.2, hosted by Semantic XVSM where the tasks
fetched from the external component are stored. In contrast to cSKIM, the container
does not act as a central task repository, rather, dSKIM distributes tasks to robots which
then store them in their local repositories implemented by means of Semantic XVSM
containers. Local task repositories, hosted on each robot, are similar to the central task
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Table 6.2: dSKIM - containers

Entity Container Coordination Notification
dSKIM Container FifoCoordinator -

Robot

local TC SemanticCoordinator
KeyCoordinator -

local PE AnyCoordinator -
local NT AnyCoordinator -

ref → Container FifoCoordinator X
ref → PE_i AnyCoordinator X
ref → NT_i AnyCoordinator X

repository in cSKIM. Therefore, the local containers, i.e., a container named Local TC in
Table 6.2, represent the local task repository, hosts semantically annotated tasks, i.e.,
instances of type Task, and robots, i.e., instances of type Robot, that build a mission
and which can be accessed, i.e., selected, using a SPARQL query. The container utilizes
SemanticCoordinator which is a custom MozartSpaces coordinator for selecting entries by
using SPARQL queries. In addition to SemanticCoordinator, the container also supports
KeyCoordinator for writing and deleting tasks using their names as keys. Having a local
task repository eliminates the need for an interaction with the central component.

In addition to a Local TC, each robot has two extra containers, containers named Local
PE and Local NT in Table 6.2, for storing the current task and a new task, respectively.
Since there is no central coordination component as in cSKIM, robots in dSKIM have to
coordinate and collaborate with each other. This is realized by means of notifications
exchanged between robots. Notifications are used to carry information about a colliding
task that the robot is going to execute, i.e., when a robots selects a colliding task to
execute, a notification is automatically generated and all other colliding robots are
notified. Upon receiving a collision notification, a robot either deletes a colliding task
from its local repository or, if it is just about to execute the colliding task, it stops its
execution and drops the colliding task.

Moreover, Table 6.2 lists few more containers, i.e., container references, belonging
to the coordination instances of type Robot: (1) a reference to the container hosted in
dSKIM, (2) multiple references where each reference PE_i, i ∈ R, adheres to one robot,
and (3) multiple references where each reference NT_i, i ∈ R, adheres to one robot. The
reference to dSKIM container is necessary for registering a notification on that container.
The registered notification is triggered when dSKIM writes tasks and robots to that
container. In that way, by receiving a notification, a robot receives mapped tasks and
robots. Moreover, PE_i container references register notifications to other robots to
listen to the colliding tasks the other robots are going to execute. Upon receiving a
notification, a robot updates its Local TC by deleting a colliding task from it. Finally,
NT_i container references register notifications to other robots to listen when a new
task emerges. Upon receiving a notification, a robot updates its Local TC by writing a
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new task to it. Therefore, both PE_i and NT_i enable coordination and collaboration
between distributed robots. Due to the semantically annotated tasks and robots using
SKIM-RO, seamless collaboration between them is possible.

Task Selection

A task selection process in dSKIM resembles the one in cSKIM with a difference that it
is not executed on a remote container hosting tasks, rather on a Local TC. Each robot
offers a set of services, i.e., based on an implement (physical device) for executing a
special type of a task, and amount of available resources, e.g., amount of a liquid for
spraying tasks. To utilize provided services, a robot selects a task from the Local TC
by issuing the SPARQL query described in Listing 6.1. Issued query wraps up a task
selection algorithm that implements an ontology based matchmaking mechanism that
determines semantic relationship between the advertised task descriptions and services
offered by a robot. Same as in cSKIM, the task selection algorithm uses two parameters
for selecting a matching task: (1) types of services requested by advertised task, (2) a
robot’s distance from a task. As a result of the query, the Semantic XVSM returns an
entry with task description which satisfies requirements stated in the query.

Entities Coordination

Figure 6.7 illustrates a sequence diagram which denotes all components required for
establishing interaction activities in dSKIM, i.e., between distributed heterogeneous
robots. However, due to the space limitations, the diagram denotes only one robot
instance.

First step, i.e., a retrieval of generated tasks, is same as in cSKIM described in Figure
6.6 and thus is omitted from Figure 6.7. However, after retrieving tasks, dSKIM loads
a configuration which contains the instances of type Robot. During the configuration
load, dSKIM creates a container, listed in Table 6.2 as Container, which will serve for
transferring the received tasks to distributed robots.

After extracting the robots from configuration, dSKIM starts the robots. Once when
started, a remote robot utilizes lookup mechanism to fetch a reference to the container
created in dSKIM. The robot registers a notification to the received container reference
to be able to receive the map with all robots and associated tasks. Received tasks will
be later written in the created Local TC. As already mentioned, the robot creates two
additional containers, i.e., Local PE and Local NT, where the other robots from a fleet
will register their notifications and utilize them to coordinate on colliding tasks. The
former container is used to store the current task a robot executes, while the latter is
used for storing a new task created during the execution phase. A new task is created
due to the mismatch in the number of provided and requested skills between a robot and
a task.

When the robots from a fleet are up and running, dSKIM annotates received tasks
using SKIM-RO, serializes them, creates a map with robot instances as keys and all
tasks as values, and writes the map to the container created in the previous step. By
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Figure 6.7: dSKIM - sequence diagram

writing the map with semantically annotated tasks and robots to the container, dSKIM
finishes its internal processing. In contrast to cSKIM, dSKIM does not listen to new
tasks since the coordination paradigm is shifted from the central task repository to
distributed robots. Simultaneously, due to the registered notifications on the container
hosted in dSKIM, each robot receives a notification with the map where robots are keys
and tasks are values. Upon receiving the map, the robot extracts tasks that belong to it,
it compares itself to all keys in the map, and writes them in the Local TC. Due to the
lack of inference-based task allocation, all tasks are allocated to all robots and thus all
tasks are colliding tasks. Thus, a robot does not perform any special procedure to detect
colliding tasks. Consequently, it registers remote notifications to all robots.

After that, the robot creates a query using the procedure described in Listing 6.2.
As described in Listing 6.3, once having the container and query instances, the robot
uses it to execute a query on the Local TC hosting tasks. Since the second parameter
in the method createQuery is set to 1, the result will contain only one instance of type
SerializedSubResourceTree which is then deserialized to an instance of type Task.

Before entering in the execution phase, the robot writes a selected task to the Local
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PE which triggers a notification distributed to all other robots in the fleet. It would be
more precise to say that the notification is distributed to all colliding robots, but since
in dSKIM all tasks are allocated to all robots, it subsumes that all robots are colliding
robots as well. Due to the space limitation and to avoid repetition of same steps, Figure
6.7 omits a step when the task is first written to the Capi which then writes it in Local
PE. Rather, Robot writes it directly in Local PE.

After the robot deserializes received values and has the Task instance which is also
written in Local PE, it starts the execution phase where it checks whether it has the
available amount of resources to execute the task and also whether it provides all skills
requested by task. The case illustrated in Figure 6.7 denotes that the robot does not
provide all skills requested by task and thus it creates a new task, serializes it, and
writes it to the Local NT. Writing the new task to the Local NT triggers a notification
distributed to all robots in the fleet. Upon receiving a notification, each robot adds the
new task to its Local TC. Just before writing the new task to the Local NT, the execution
phase ends.

The dSKIM coordination approach introduces a shift in paradigm from the centralized
coordination approach described in cSKIM with one central task repository to the
completely distributed approach where each robot in a fleet has a local task repository
synchronized with the global fleet state. However, neither does the cSKIM nor dSKIM
support human interaction or utilizes the coordination capabilities of SKIM-CO.

6.6.3 hybrid SKIM (hSKIM)

In contrast to cSKIM and dSKIM, the hSKIM implementation uses the SKIM-CO
ontology-based model of shared knowledge among humans and robots. In the hSKIM
the task allocation is performed by reasoning on SKIM-CO. The result of reasoning is
a set of tasks mapped to a set of matching robots. As in cSKIM, robots receive tasks
from the central task repository, but locally run own decision-making system and reason
on SKIM-CO ontology to determine the level of autonomy, e.g., whether to involve the
centralized task allocation component to find collaborative robots and whether to involve
the human in task assignment.

Containers and Notifications

The hSKIM implementation inherits some concepts from both, cSKIM as well as dSKIM.
It combines the concept of a centralized task repository introduced in cSKIM with a
distributed coordination mechanisms described in dSKIM. Moreover, on top of that is a
human operator able to interact with a central task allocation system and distributed
robots as well.

From cSKIM, hSKIM inherits the notion of a centralized task repository which
consists of two containers hosted by Semantic XVSM and listed in Table 6.3: (1) one
container named Container, and (2) the other named ProCont. The former container,
similar to cSKIM, is used for storing semantically annotated task and robots, as well
as SKIM-CO. On the other hand, similar to dSKIM, the latter is used to store a map
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Table 6.3: hSKIM - containers

Entity Container Coordination Notification

hSKIM
Container SemanticCoordinator X
ProCont FifoCoordinator -

ref → DTC AnyCoordinator -

User DTC AnyCoordinator X
ref → TC_i KeyCoordinator -

Robot

local TC SemanticCoordinator
KeyCoordinator X

local PE AnyCoordinator -
ref → ProCont FifoCoordinator X
ref → Container SemanticCoordinator -

ref → DTC AnyCoordinator -
ref → PE_i AnyCoordinator X

denoting mappings between robots and tasks. In contrast to dSKIM where the map
contains all tasks mapped to all robots, hSKIM utilizes the inference-based task allocation
approach to map only those tasks to a robot which it is able to execute, either partially
or completely.

Moreover, Container deploys a SemanticCoordinator because the inference-based
task allocation approach uses a simple SPARQL query to retrieve tasks and robots
mapped to a Capability class as described in Algorithm 6.2. Container also registers a
notification mechanism in order to be notified when a new task is dynamically created
by a robot during a mission execution. On the other hand, ProCont neither implements
SemanticCoordinator nor a notification mechanisms. Its sole purpose is to distribute
mapped tasks to robots which then store them in their local repositories implemented by
means of Semantic XVSM containers.

To enable a human interaction during a task allocation process, hSKIM obtains a
reference on DTC container. During the task allocation, an unallocated task could exist.
In that case, the task is written to the DTC container and a human operator is notified.
The human operator applies its knowledge on a fleet and allocates the task directly to a
corresponding robot by writing it in its Local TC.

Furthermore, Table 6.3 lists two containers that an instance of type Robot implements
together with four references to remote containers. Same as in dSKIM, robots in hSKIM
have local task repositories, hosted on each robot. Those local task repositories are similar
to the central task repository in cSKIM. Therefore, the local containers, i.e., a container
named Local TC in Table 6.3, represent the local task repository, host semantically
annotated tasks, i.e., instances of type Task, and robots, i.e., instances of type Robot,
that build a mission and which can be accessed, i.e., selected, using a SPARQL query.
The container utilizes SemanticCoordinator which is a custom MozartSpaces coordinator
for selecting entries by using SPARQL queries. In addition to SemanticCoordinator,
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container also supports KeyCoordinator for writing and deleting tasks using their names
as keys.

It is important to point out that Local TC implements a notification mechanism
which is utilized in the human-robot interaction. When a robot requests a help from a
human operator, the operator writes a resulting entry in robot’s Local TC. This triggers
a notification which, when processed by the robot, makes it aware of the received help.

In addition to a Local TC, each robot has an extra container named Local PE in
Table 6.3, for storing the current executing task. Similar to dSKIM, robots coordinate
each other by means of notifications exchanged between robots. Notifications are used to
carry information about a colliding task that the robots is going to execute, i.e., when a
robot selects a colliding task to execute, a notification is automatically generated and
other colliding robots are notified. Upon receiving a collision notification, a robot either
deletes a colliding task from its local repository or, if it is just about to execute the
colliding task, it stops its execution and drops the colliding task.

Apart from the created containers, each robot obtains four references on remote
containers: (1) a reference on ProCont container hosted in hSKIM, (2) a reference on
Container container hosted in hSKIM, (3) a reference on DTC container hosted in a
human operator space, and (4) a reference on PE_i hosted on each robot i, i ∈ R. The
reference to ProCont container is necessary for registering a notification on that container.
The registered notification is triggered when hSKIM writes the map with tasks and robots
to that container. In that way, by receiving a notification, a robot receives mapped
tasks and robots. The reference on Container container hosted in hSKIM is necessary to
handle a dynamic task created during a mission execution. A new, dynamically created,
task is then written to the Container where the inference-based task allocation algorithm
allocates it to a robot. Moreover, the reference on DTC container facilitates robot-human
interaction, i.e., a robot writes a request for help in that container when it consults
a human during a task execution. Finally, the reference on PE_i container registers
notifications to other robots to listen to the colliding tasks the other robots are going
to execute. Upon receiving a notification, a robot updates its Local TC by deleting a
colliding task from it.

There is also a User entity in Table 6.3 which hosts DTC container and has a
reference to TC_i. The former is used when either hSKIM task allocation process needs
a human help in allocating a specific task or when a robot needs a human help during
the task execution. In any case, both hSKIM and a robot, writes a equest in a remote
DTC container using an obtained reference. Moreover, DTC registers a notification
mechanisms which notifies a human operator upon receiving a request. The reference
to TC_i, is used when a human operator responds to a robot’s request. The operator
writes a response directly in robot’s Local TC.

Task Selection

A task selection process in hSKIM is same as the one in cSKIM and thus is not described
here.
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Entities Coordination

Figure 6.8 illustrates a sequence diagram which denotes all components required for
establishing interaction activities in hSKIM, i.e., between distributed heterogeneous
robots, between a centralised component and robots, as well as between a human
operator and all other entities. However, due to the space limitations, the diagram
denotes only one robot instance.

First step, i.e., a retrieval of generated tasks, is same as in cSKIM described in
Figure 6.6 and thus is omitted from Figure 6.8. After retrieving tasks, hSKIM loads
a configuration which contains the instances of type Robot, an instance of type User,
and SKIM-CO. During the configuration load, hSKIM creates containers Container
and ProCont, which will serve for inference-based task allocation and the transfer of
mapped tasks to distributed robots. When the containers are created, hSKIM writes the
loaded SKIM-CO in an instance of OntologyEntry and writes it to Container. Due to
the complexity of the sequence diagram and repeating multiple writing steps, Figure 6.8
omits a step where hSKIM writes semantically annotated tasks, i.e., instances of Task,
robots, i.e., instances of Robot, and a User to Container.

After extracting relevant entities and SKIM-CO from configuration, hSKIM starts
both, a human operator denoted as a User and the robots. Once when started, a human
operator creates DTC container described in section above. On the other hand, a remote
robot utilizes lookup mechanism to fetch a reference to the ProCont container created
in hSKIM. The robot registers a notification to the received container reference to be
able to receive the map with robots and associated tasks. After that the robot creates
two containers: Local TC and Local PE. The former is used to store allocated tasks,
i.e., tasks received through the notification mechanisms registered on ProCont, while the
latter is used to store the current task a robot executes. Moreover, the robot fetches a
reference to DTC container as well.

When the robots and a human operator are up and running, hSKIM performs
inference-based task allocation algorithm and, consequently, writes a map with robot
instances as keys and tasks as values to the ProCont which triggers a notification sent
to all robots. Although the tasks are allocated to robots, hSKIM still listens for new
tasks dynamically created during a mission execution which are then again allocated to
corresponding robots.

Simultaneously, due to the registered notifications on the ProCont, each robot receives
a notification with the map where robots are keys and tasks are values. Upon receiving
the map, the robot extracts tasks that belong to it, it compares itself to all keys in the
map, and writes them in the Local TC. Due to the inference-based task allocation, not
all tasks are allocated to all robots as in dSKIM and thus not all tasks are colliding tasks.
Thus, a robot has to detect colliding tasks by examining the received map with all robots
and tasks, and consequently, has to register remote notifications to colliding robots.

Then the robot creates a query using the procedure described in Listing 6.2. As
described in Listing 6.3, once having the container and query instances, the robot uses
it to execute a query on the Local TC hosting tasks. Since the second parameter in
the method createQuery is set to 1, the result will contain only one instance of type
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Figure 6.8: hSKIM - sequence diagram

SerializedSubResourceTree which is then deserialized to an instance of type TaskReasoning.
As illustrated in Figure 6.8, the received task requires a human help and the robot writes
it to DTC which notifies the user, i.e., the human operator, that provides the help.
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Provided help is communicated to the robot by means of writing a response in robot’s
Local TC.

Before entering in the execution phase, the robot writes a selected task to the Local
PE which triggers a notification distributed to all colliding robots in the fleet. Due to the
space limitation and to avoid repetition of same steps, Figure 6.7 omits a step when the
task is first written to the Capi which then writes it in Local PE. Rather, Robot writes
it directly in Local PE. After the robot deserializes received values and has the Task
instance which is also written in Local PE, it starts the execution phase where it checks
whether it has the available amount of resources to execute the task and also whether it
provides all skills requested by task.

The case illustrated in Figure 6.8 denotes that the robot does not provide all skills
requested by task and thus it creates a new task, serializes it, and writes it to Container
hosted in hSKIM. Writing the new task to Container triggers a notification in hSKIM
which further triggers the execution of inference-based task allocation algorithm which
maps the new task to applicable robots. However, the case is that the algorithm cannot
allocate the task and hSKIM consults the human operator, i.e., the user, for a help. The
user is consulted by writing the task to DTC container. The human, once when notified
about new task in its container, allocates the task directly to the robot by writing it into
its Local TC which triggers a notification on a robot side.

Although it is quite comprehensive and complex, the sequence diagram illustrated in
Figure 6.8 addresses four basic mechanisms developed in hSKIM:

• it illustrates the activities and entities involved in inference-based task allocation
process,

• it denotes how distributed robots utilize a notification mechanism to coordinate
colliding tasks,

• it shows the procedure when a robot consults a human operator for a help during a
task execution, and

• it demonstrates creation of a new task and involvement of a human operator in its
allocation to a robot.

Finally, it is worth to point out that all containers hosts on robots conform to the
naming convention in order to be remotely addressable. The naming convention is coded
in the implementation of each coordination approach.

Next chapter presents the results of the evaluation of the general SKIM coordination
framework which is based on the semantic extension of the Space-Based Computing
architectural style, i.e., Semantic XVSM, and discusses these results with regard to the
specified research issues.
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CHAPTER 7
Evaluation and Discussion

This chapter presents the results of the evaluation of the general SKIM coordination
framework which is based on the semantic extension of the Space-Based Computing
architectural style, i.e., Semantic XVSM. The SKIM coordination framework, in particular
cSKIM, dSKIM, and hSKIM, is evaluated in different operating environments utilizing
different configurations of robotic fleet regarding the criteria defined in Section 7.1.

The chapter is structured as follows: Section 7.1 describes the strategy followed in the
conducted experiments. The limitations of Semantic XVSM, with respect to a number
of tasks and an optimal fleet size, are perceived through the experiments in Section 7.2.
Section 7.3 describes three scenario classes and different configurations for the evaluation
of different SKIM-based coordination approaches. These coordination approaches are
evaluated in Section 7.4 concerning the criteria defined in Section 7.1. Section 7.5 focuses
on the evaluation of hSKIM approach with respect to the different levels of adaptive
autonomy and Section 7.6 describes how the ontology-based Model-Driven Architecture
approach facilitates the addressing of changing requirements in a robotic fleet, i.e., in a
configuration, as well as in an operating environment, i.e., in a scenario. Finally, Section
7.7 gives an overview, complemented with recommendations, on selecting an appropriate
coordination approach based on an available scenario and a configuration.

7.1 Testing Strategy

The SKIM coordination framework operates with heterogeneous robotic fleets that execute
various tasks in unstructured environments. Two main parameters to configure in the
SKIM are: (1) a fleet size, and (2) a number of tasks. Since the SKIM coordination
framework is built on Semantic XVSM, it is necessary to find out the limitations with
respect to these two parameters. Although [69] did initial tests to acquire the reading
and writing performances of Semantic XVSM, what is still missing are performance tests
for determining an optimal fleet size and a number of tasks that the system can handle.
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Experiments conducted in Section 7.2 derive an optimal fleet size as well as a maximal
number of tasks the system can handle in limited time.

Derived fleet size served as a basis for constructing five different configurations for
a robotic fleet listed in Section 7.3. Defined configurations consist of heterogeneous
robots, i.e., robots provide different skills. Since the SKIM is envisaged to operate in the
environments of different complexity, Section 7.3 describes three scenario classes where
the defined configurations of a robotic fleet can be employed to perform a mission.

For the comparison of SKIM coordination approaches in different scenarios using
different configurations, a precise definition of criteria is indispensable. The SKIM
framework is used to evaluate and compare cSKIM, dSKIM, and hSKIM coordination
approaches with respect to the following identified criteria: (1) the success rate of task
allocation, (2) communication overhead, (3) a robot utilization rate, (4) load balancing,
and (5) mission execution time. Task allocation success rate is defined as follows: if a task
is completely executed after the ith iteration, the success rate of that task is 1/i. Iteration
denotes a robot’s attempt to execute a task. Communication overhead represents the
number of exchanged messages in the system during a mission execution. Utilization
rate denotes the percentage of skill a robot utilized in a mission (see Section 7.4.3). Load
balancing is measured as a number of tasks a robot executed and mission execution
time is the total mission duration in [s]. Identified criteria pertain to the evaluation
and comparison of task allocation approaches and thus can serve as a benchmark in
multi-robot system. The experiments in Section 7.4 evaluate the listed criteria and show
their interdependencies to identify which fleet configuration is the most appropriate in
which scenario considering the selected criteria.

Due to the hSKIM support for adaptive autonomy, Section 7.5 focuses on the eval-
uation of hSKIM coordination approach which models human interaction. Human
interaction subsumes a human’s involvement in the task allocation process as well as
participation in the decision-making process which decides whether a robot is suitable
to execute a specific task. Since the level of robot’s autonomy directly influences the
inference-based task allocation algorithm which does task classification, i.e., classifies
tasks which require human interaction, it is fundamental to detect which autonomy level
yields best performances with respect to the above listed criteria.

7.2 Performance of Semantic XVSM

This section presents results of multiple experiments utilized to acquire initial efficiency
measurements of Semantic XVSM to determine the expected performances and scalability
limitations of the SKIM framework. The framework was tested in various experimental
setups running on a laptop equipped with i5− 3230M CPU at 2.60 GHz x 4, 8 GB of
RAM, Ubuntu 12.04 LTS 64-bit OS, Java 1.7, and Eclipse 4.3 with -Xmx 512m.

An experimental setup is derived from the precision agriculture scenario addressed in
the project RHEA and described in Section 1.1. Although there are three different types
of tasks in the reference agriculture scenario, i.e., spraying, flaming, and tilling tasks, the
experiments in this section are limited to the one type of tasks and robots, i.e., spraying.

144



By imposing this limitation, we strive to setup the concurrent environment where all the
robots compete for the same tasks. In that way scalability and load balancing of Semantic
XVSM can be measured more precise than in scenarios with heterogeneous tasks and
robots. The latter scenarios are addressed in Section 7.4. The general experiment in
our experimental setup consists of an agent that produces tasks and stores them in a
central repository (in-memory), i.e., a container in Semantic XVSM, and multiple robots
that query the central repository to fetch and execute tasks. A task and a robot are
described in Section 4.2.1 and Section 4.2.2, respectively. The experimental setup is
divided in two groups of experiments: first addresses experiments where first all tasks
are produced and then executed (sequential execution), and second where tasks are
simultaneously produced and executed. Division in these groups is necessary because in
the most multi-robot systems, which address the task allocation problem, a complete set
of tasks is either known in advance, before a mission starts, or tasks arrive dynamically
(see Section 3.2.8 which compares various task allocation models). A mixture of two is
also possible where the majority of tasks are known in advance, while some of them can
emerge during the mission execution. The following parameters are measured for each
group: (1) production time for tasks, (2) execution time for a set of task with respect
to the number of robots, (3) the relation between task production, task execution, and
mission duration. Finally, compared are the measured parameters from sequential and
simultaneous executions.

To design the experiments with respect to the number of tasks and robots executing
these tasks, it is necessary to find limitations of Semantic XVSM and use these as a
basis in the experiments. To discover a limitation concerning the number of tasks in a
system, constructed is a baseline scenario where one robot, with the execution time set
to 100 ms, executes 10000 pre-produced (produced before the execution starts) tasks.
After running for one hour, the robot was unable to execute all tasks due to the long
query times influenced by the size of task pool. It is important to notice that the system
did not fail after one hour. Consequently, we limited the execution time to 10 min. In
10 min time slot the robot managed to execute 750 out of 10000 tasks. After a couple
simulations where the size of initial task pool was calibrated, the limitation for an upper
bound for the pool size emerged. The limitation is set to 3000 tasks because the robot
managed to execute all of them in 10 min and 38 s. The other limitation that concerns
the number of robots, i.e., a fleet size, is investigated in the upcoming experiments where
the fleet size varies from 1 to 20 robots. It is worth to notice that 20 is not the limit
for the fleet size. Rather, it is just used in experiments to perceive what would be the
optimal fleet size. The optimal fleet size is given in the results analysis.

To conform to the discovered limitations, the experiments were designed to measure
production and execution times for the following 7 groups of tasks: 10, 20, 50, 100, 500,
1000, 3000. The size of a robotic fleet was scaled accordingly: 1, 3, 5, 10, and 20 robots
in a fleet. There are 42 experiments in the sequence execution mode, 7 experiments
measuring duration of a task production with respect to the different groups of tasks,
and 35 measuring mission execution time. There are 5 different robotic fleets (different
sizes) and for each fleet measured is the mission execution time regarding the number of
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provided tasks. There are 38 experiments in the simultaneous execution mode. Similar to
the sequence execution mode, there are 35 experiments measuring mission execution time.
Additionally, there are 3 experiments where the fleet with 3 robots executed 50, 100, and
500 tasks with a variable task production frequency. These experiments are conducted
to understand how different production frequencies influence the mission duration. In
general, each experiment was repeated 5 times resulting in total with 400 simulations.
The listed values are averages from these simulations. There was no need to do more
repetitions because the standard deviation is small, i.e., less than 0.1 for simulations that
last up to 1 min, regardless whether is it task production or task execution, and less than
1 for all other simulations.

It is important to point out that in all experiments the robots in a fleet were started
one after the other with 250 ms delay between two starts and that each robot simulates
100 ms execution time for one task. Since in the simultaneous execution mode both, the
task production agent and robots, simultaneously write and read/take data from the
container, Semantic XVSM often triggers rescheduling. Due to the rescheduling, there is
an arbitrary delay (usually around 20 ms) between writing two tasks to the container.
Consequently, we did not manually set the production frequency, rather used the one
implied by rescheduling mechanisms. Although the occurrence of rescheduling can be
mitigated by increasing robot’s execution time, it did not influence our results and thus
we decided to keep 100 ms execution time.

7.2.1 Execution Modes

As already mentioned, the experiments are divided in two groups where each group
conducts experiments for one execution modes, i.e., either sequential or simultaneous.

There is a production agent in the sequential execution mode which, before a mission
starts, writes all tasks that build the mission in a container in Semantic XVSM. After the
agent finishes writing the tasks in the container, a robotic fleet starts with the execution
of tasks written in the container. Each robot in the fleet concurrently accesses the
container and utilizes SPARQL query to take a task.

In the simultaneous execution mode the tasks production and execution runs in
parallel. The challenge in this mode is to balance between the distribution of task
production and robots’ load. On the one hand, the task distribution has to ensure that
there is enough tasks in a task pool (container) so that there are no idle robots. On the
other hand, having too many tasks degrades system performance and extends mission
duration due to the long query times. This relation is addressed in results presented in
Section 7.2.5.

Sometimes it can occur that in the simultaneous execution mode a robot gets a
timeout (after 200 ms) when trying to get a task from the task container. In particular,
this could happen when a large robotic fleet, with 10 or more robots, execute relatively
small set of tasks, 50 or less. In that case, the robot will try 5 times to query the task
container to check for a new task. If it does not get a new task, it terminates. This
behaviour implies that at the end of a mission robots will still try to get new tasks. The
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duration of additional retries, when there are no more tasks in the repository, is not
calculated in the total mission duration.

7.2.2 Task Production

This section investigates how much time is needed to produce a certain number of tasks
in sequential and simultaneous execution modes. Table 7.1 lists the production times in
[s] for these two modes regarding the number of tasks and a fleet size (number of robots).
The fleet size does not influence the production time in the sequential mode because all
tasks are pre-produced. Listed production times are illustrated in Figure 7.1 and Figure
7.2, respectively.

Table 7.1: Task production time in [s]

Tasks
Mode Robots 10 20 50 100 500 1000 3000

Sequential 0.37 0.59 1.20 1.98 5.82 9.55 22.14
Simultaneous 1 0.91 1.34 2.29 3.66 9.16 14.72 42.62

3 1.69 2.44 3.25 4.44 13.26 23.77 76.75
5 1.64 2.48 3.83 5.51 14.85 27.54 94.40
10 2.12 2.95 4.71 6.13 15.24 28.51 90.70
20 2.27 3.65 5.23 6.84 16.14 31.56 99.21

Figure 7.1 illustrates the relationship between the number of produced tasks and the
time in the sequential execution mode. The graph shows the strong positive relationship
between these two variables (the coefficient of determination R2 = 0.9912) that can be
modeled with the exponential function. When there are no other entities, e.g. robots
accessing the container with tasks, except the production agent, Semantic XVSM supports
writing 500 tasks in around 5 s.

Figure 7.2 illustrates how does the task production in the simultaneous execution
mode depends on the number of tasks as well as on the number of robots that access
the container with tasks. Similar to the graph in Figure 7.1, this graph shows the
strong positive relationship between the task production time and the number of tasks
and robots. Although the growth of production time can be approximated with the
exponential function, it does not ideally follow it when the number of tasks is around
3000. The R2 = 0.9439 is a bit less compared to the one in the sequential mode (R2

= 0.9912). The fleet size influences the production time as well. It takes longer to
produce the same amount of tasks when a fleet has more robots. The production time
is approximately doubled comparing a fleet with 1 and with 20 robot, especially when
the number of tasks is larger than 500. When there are more than 50 tasks in the pool,
fleets with 5 and more robots introduce similar production times. This implies that the
more robots operate on a same container, the rescheduling is triggered more frequently
leading to the increased production time.
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Figure 7.1: Producing tasks - sequential mode

Figure 7.2: Producing tasks - simultaneous mode

Comparing values listed in Table 7.1 and illustrated in Figure 7.1 and Figure 7.2,
it can be perceived that the production times in the simultaneous mode with a fleet
of size 1 are approximately doubled compared to the sequential modes, e.g., 50 task in
sequential mode are produces in 1.20 s and in simultaneous in 2.29 s and 3000 tasks
are produced in 22.14 s and 42.62 s, respectively. This is due to the multiple robots
that take tasks from the task container while the producer is still writing them and thus
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trigger rescheduling in Semantic XVSM. Both execution modes exhibit the exponential
production time with respect to the number of tasks. This may be due to storing and
maintaining tasks in-memory rather than persisting them.

7.2.3 Task Execution

This section investigates a time required to execute all generated tasks in sequential and
simultaneous execution modes utilizing 5 robotic fleets which differ in size. Table 7.2
lists task execution times in the sequential mode with respect to the number of executing
tasks and a fleet size. The values are then illustrated in Figure 7.3.

Table 7.2: Task execution time in [s] - sequential mode

Tasks
Robots 10 20 50 100 500 1000 3000

1 2.69 4.33 8.50 15.9 71.62 152.75 637.71
3 1.78 2.43 3.84 6.20 30.29 75.01 413.76
5 1.82 2.37 3.57 5.11 21.12 54.37 359.95
10 1.84 2.57 3.38 4.83 19.94 51.20 348.50
20 1.83 2.48 3.42 5.07 19.82 51.16 353.13

Observing task execution times in Table 7.2 and Figure 7.3, it can be perceived that
there exists the strong positive relationship between the number of tasks to execute and
the required time when a robotic fleet has fixed size. X-axis in Figure 7.3 denotes a fleet
size. The coefficient of determination averaged for 5 robotic fleets is 0.98 and it means
that the execution time increases when the number of tasks increases assuming that a
fleet size is fixed. More interesting is the relation between a fleet size and the execution
time. The coefficient of determination calculated for fleets with sizes 1, 3, and 5 and
averaged for all groups of tasks is −0.91. This infers the strong relationship between the
execution time which decreases when the fleet size increases up to including 5 robots
independently on the number of executing tasks. The increase in a fleet size, above 5
robots, is not followed by decrease in the execution time.

Comparing the execution times for fleets with 1, 3, and 5 robots, it can perceived
that the execution times decrease more when switching from 1 robot to a fleet with 3
robots than switching from 3 to 5 robots. When a mission has 10 tasks, a fleet with 3
robots is more efficient (execution time is 1.78 s) than a fleet with 5 robots (execution
time is 1.82). On the other hand, when executing 50 tasks, change from 1 to 3 robots
reduce the execution time by approximately 55% while increase from 3 to 5 robots reduce
the execution time by approximately 7%. The similar pattern applies to the all other
task groups except when there are 3000 tasks.

What cannot be seen neither in Table 7.2 nor Figure 7.3, is the load balancing. In all
experiments, except those where fleets of 10 and 20 robots were performing 10, 20, and
50 tasks, all robots executed an equal number of tasks when the total number of tasks
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was even, and the difference was at most 2 tasks when the total number of tasks was
odd. In those exceptional experiments, unequal task distribution occurred due to the 250
ms delay when starting robots. Robots that started first executed more tasks than those
started later. When delay was decreased to 50 ms, tasks distribution was almost equal.

Figure 7.3: Task execution - sequential mode

Table 7.3 lists task execution times in the simultaneous mode with respect to the
number of executing tasks and a fleet size. The values are then illustrated in Figure 7.4.

Table 7.3: Task execution time in [s] - simultaneous mode

Tasks
Robots 10 20 50 100 500 1000 3000

1 2.93 4.61 9.00 15.98 73.04 156.46 639.38
3 2.21 3.10 5.37 8.88 26.70 62.72 320.01
5 1.77 2.60 4.03 5.70 17.32 33.03 99.45
10 2.25 3.00 4.81 6.32 18.08 32.80 94.86
20 2.50 3.71 5.36 7.08 17.86 37.67 105.06

Similar to the sequential execution mode, observing task execution times in Table
7.3 and Figure 7.4, it can be perceived that there exists the strong positive relationship
between the number of tasks to execute and the required time when a robotic fleet has
fixed size. More interesting is the relation between a fleet size and the execution time.
The coefficient of determination calculated for fleets with sizes 1, 3, and 5 and averaged
for all groups of tasks is −0.97. Similar to the sequential execution mode, the strong
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relationship between the execution time which decreases when the fleet size increases up
to including 5 robots, implies that increase in a fleet size, above 5 robots, is not followed
by decrease in the execution time. For example, when the number of tasks is less than
500, a fleet with 5 robots has lower execution times compared to fleets with 10 and 20
robots, respectively. This could be due to the frequent rescheduling since there are a lot
of robots interacting with the task container.

Comparing the execution times for fleets with 1, 3, and 5 robots, it can perceived
that the execution times decrease more when switching from 1 robot to a fleet with 3
robots than switching from 3 to 5 robots. For example, when executing 20 tasks, change
from 1 to 3 robots reduce the execution time by approximately 30% while increase from
3 to 5 robots reduce the execution time by approximately 15%. The same pattern applies
to the all other task groups except when there are 3000 tasks.

In the experiments where a fleet of 10 robots executes more than 500 tasks, load
balancing is unequal and only 5 robots execute around 95% of tasks. The same occurs
when a fleet has 20 robots. Only around 40% of them participate in the execution. Due
to that, the fleet with 5 robots has similar execution times as fleets with 10 and 20 robots,
respectively. For the same fleet sizes the load balancing remains unequal even when the
number of tasks is decreased. This could be due to rescheduling and also due to the 250
ms delay when starting robots. Robots that started first, executed more tasks than those
started later.

Figure 7.4: Task execution - simultaneous mode

Comparing task execution in sequential and simultaneous modes, it can be perceived
that the simultaneous mode operates faster when a robotic fleet has more than 1 robot
and when there are more than 100 tasks in the task container. This is due to the
approximately constant size of task container in the simultaneous mode compared to the
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sequential mode where at the beginning of execution the size of task container equals
the total number of tasks. Less tasks in the task container imply faster retrieval of tasks
using SPARQL queries. This is described in Section 7.2.5. The query time does not
influence the execution time when there are less than 100 tasks and thus the sequential
mode operates faster because there is no simultaneous writing and reading from the task
container.

7.2.4 Mission Duration

In the sequential mode the mission duration is calculated by summing up production
and execution time, while in the simultaneous mode the mission duration equals the
execution time. Figure 7.5 illustrates mission duration times for five groups of tasks with
respect to the different sizes of robotic fleet. Values for 1000 and 3000 tasks follow the
same pattern as the values for 500 tasks and thus they are omitted. Same applies to 20
tasks which have the same pattern as 10 tasks.

Figure 7.5: Comparison of mission duration in sequential and simultaneous modes

In general, the simultaneous mode performs faster, i.e., has shorter mission duration
time. There are few exceptions as well. For example, when there are 50 task in the task
container, fleets with 3, 10, and 20 perform slower than the same in the sequential mode.
The same occurs when a fleet with 3 robots perform 100 tasks. The largest difference
occurs when fleets with more than 1 robot execute more than 100 tasks. In these cases the
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simultaneous mode is approximately 25% faster when there are 500 tasks, approximately
50% faster for 1000 tasks, and approximately 70% for 3000 tasks. Regardless of the
execution mode, fleets with 5, 10, and 20 robots have similar mission duration times.
Especially when there are more than 100 tasks.

Figure 7.5 also depicts that, in both modes, the duration time decreases more when
switching from 1 to 3 robots than from 3 to 5 robots. It may be concluded that with
respect to the performances it is optimal to utilize a fleet with 3 robots.

7.2.5 Production vs. Execution vs. Mission Duration

This section investigates how does the distribution of tasks production influences task
execution and thus mission duration. In our experiments, the distribution of tasks
production can be one of the following: (1) all tasks are produced in advance, before a
mission starts, (2) all tasks are produced at the beginning of mission although the task
production and execution start at the same time, and (3) tasks are produced in parallel
with their execution till the end of mission. Former relates to the sequential execution
mode, while latter two to the simultaneous execution mode.

Figure 7.6 illustrates how the three different distributions of task production, charac-
terized with a production frequency, influence task execution and thus mission duration.
Pre-prod denotes that all tasks are produced before a mission starts, f = ∞ Hz denotes
that the number of tasks produced in one second depends on the underlying capabilities
of Semantic XVSM, and f = 33.3 Hz strives to distribute task production during the
whole mission. The same pattern applies to 10 and 20 tasks as well as to 1000 and 3000.
Presented results pertain to a fleet with 3 robots because the previous sections illustrated
that this is the optimal fleet size.

Figure 7.6: Influence of the production duration on the total mission duration
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When all tasks are pre-produced, the production phase takes approximately 25% of
the total mission duration when the number of tasks is less than 500. For 500 and more
tasks, the production share in the total mission duration decreases, e.g., it is around 17%
for 500 tasks. When the production frequency was f = ∞ Hz, shares of the production
phases are approximately 50%. For the production frequency f = 33.3 Hz, the production
phases finished just before the mission ends. Although the production phase finished
just before the mission, all robots in the fleet executed a same number of tasks in each
experiment. This implies that there were no idle robots.

To conclude, mission duration decreases when the duration of production phase
increases. The optimum is reached when the production phase ends just before a mission.

Figure 7.7 shows how the size of task pool (task container) and the query time change
during a mission. The experiments was design in a way that 500 tasks were pre-produced
and 1 robot was executing them. The mission duration is similar to the execution time
in the sequential execution mode when 1 robot executed 500 tasks, i.e., 72 s.

Figure 7.7: SPARQL query time

Both, the size of task pool as well as the query time, decrease towards the end of
mission. The size of task pool decreases linearly, while the query time is approximately
constant in the first 45 s and then decreases towards the end of mission. After the pool
size drops below 150 tasks, the query time starts to decrease. This explains why mission
duration decreases when the duration of production phase increases. Longer production
phase subsumes fewer tasks in a pool and thus lower query times.

The conducted experiments revealed that the optimal setup, with respect to the
mission duration and gained benefit regarding a fleet size, is when 3 robots operate in a
mission where tasks are dynamically produced.
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7.3 Scenarios and Configurations

Although the SKIM framework is developed within the project RHEA which focuses on
a specific precision agriculture use case where a robotic fleet is utilized for weed control,
this section aims for emphasizing SKIM generality by introducing different scenarios
where the various configurations of a robotic fleet can be employed to perform a mission.
The size of robotic fleet is set to 3 because the experiments in Section 7.2 revealed that
this is the optimal fleet size with respect to the mission duration and gained benefit.

Table 7.4 describes three scenario classes and for each class is listed the number of
initial tasks, i.e., pre-produced tasks, the total number of tasks, i.e., initial tasks and
dynamic tasks that are created during a mission execution, as well as a number of skills
per task. For the demonstration purposes, the initial number of tasks in each scenario
class is 10. This is due to the fact that a number of tasks neither influence task allocation
rate nor the robot’s utilization rate. This holds under the assumption that initial tasks
have a same number of skills per task. Although a number of tasks influence a number
of exchanged messages as well as a mission duration, such experiments are out of scope
of this thesis.

These scenario classes have been selected because they cover both, missions with
simple tasks as well as missions with complex tasks where the robots in a fleet have to
collaborate and interact with a human. The scenarios are comprised of independent tasks,
e.g., the number of surveillance actions that have to be performed within a specified time
interval in several geographic locations. Although the scenario classes have the same
number of initial tasks, the number of total tasks is different for each class. It varies
and depends on: (1) a scenario class, (2) a configuration, and (3) a level of adaptive
autonomy. Dynamic tasks are created during a mission execution due to the robots’
collaboration on complex tasks. Scenario classes also have different number of required
skills per task, i.e., task’s complexity. The notion of task’s complexity, expressed as the
number of required skills, has a twofold purpose: (1) to characterize the scenario class
and (2) to enable task-robot mapping during the task execution.

Table 7.4: Description of scenarios

Scenarios Initial tasks Total tasks Skills per task
Inspection 10 10 1
Industry 10 [10,20] 2
Disaster 10 [10,30] 3

Inspection scenario is a representative of the scenario class which encompasses simple
tasks, i.e., tasks requiring only one skill for the complete execution. Collaboration
between robots is unnecessary and thus the number of initial and total tasks is the
same. The class involves simple scenarios consisting of repetitive tasks similar to those
found in surveillance mission. Industry scenario is a representative of the scenario class
including complex tasks where two unique skills are required. To apply multiple unique
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skills on a complex task, robots in a fleet have to collaborate to completely execute the
complex task. Consequently, the number of total tasks varies. Disaster scenario is a
representative of the scenario class composed of the most complex tasks requiring robots’
collaboration and human interaction during the task’s execution, e.g., Urban Search and
Rescue (USAR), resulting in a variable number of total tasks.

Due to the varying number of skills required per scenarios in Table 7.4, different
configurations of a robotic fleet are manually generated as shown in Table 7.5. In contrast
to the homogeneous robotic fleets (robots only had a spraying skill) utilized in the
experiments in Section 7.2, configurations listed in Table 7.5 imply heterogeneous robots
with different skills. Each configuration consists of 3 robots and each robot has the
number of skills s ∈ [1, 3]. The number of skills is limited to 3 because there are in total 3
different skills in the precision farming scenario described in Section 1.1, i.e., a spraying,
a flaming, and a tilling skill. Although the SKIM framework supports tasks and robots
which require, respectively provide, more than 3 skills, such a setup is out of scope of this
thesis. Simple robots have only one skill (white), more complex have two skills (blue),
and the most sophisticated have three skills (dark gray).

Table 7.5: Different configurations of a robotic fleet

Configuration Robot 1 Robot 2 Robot 3
1 1 1 1
2 3 3 3
3 1 1 3
4 2 2 3
5 1 2 3

Configurations in Table 7.5 can be grouped in two classes: (1) a peer class, and (2)
a team leader class. The peer class encompasses configurations where all robots have
the same number of skills independently of the type of skills, e.g., configurations 1 and
2. The team leader class encompasses configurations where exists a dominant robot.
The dominant robot is a robot which has more skills than the other robots in the same
configuration. However, a robot in a configuration of type team leader doesn’t lead the
other robots in the configuration.

7.4 Performance Evaluation of Coordination Approaches
for Task Allocation

In this section the SKIM framework is used to evaluate and compare cSKIM, dSKIM, and
hSKIM coordination approaches with respect to the following criteria: (1) the success
rate of task allocation, (2) communication overhead, (3) a robot utilization rate, (4) load
balancing, and (5) mission execution time. The results are acquired in three scenarios,
presented in Table 7.4, utilizing five configurations, listed in Table 7.5, of a robotic fleet
and three mentioned coordination approaches.
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A simple experimental setup, somewhat resembles the extended RHEA scenario where
a user generates tasks for a mission. Generated tasks require some skills for execution,
e.g., a spraying, a flaming or a cutting skill or their combination. Since there are in total
3 different skills in the RHEA scenario, simulations performed in the SKIM framework are
also limited to 3 different skills. Although the SKIM framework supports tasks and robots
which require, respectively provide, more than 3 skills, such a setup is out of scope of this
thesis. Moreover, the amount of resources each task requires is suppressed in the following
experiments and it is assumed that each robot has a sufficient amount of resources to
execute an assigned task. In experiments which consist of multiple heterogeneous tasks,
neither is the priority nor order of task execution relevant. This subsumes that atomic
tasks which build up a complex task can be executed in an arbitrary order, i.e., there is
no hierarchy between tasks. However, in some use cases the order of task execution could
matter, e.g., a flaming must be done before a spraying. In all experiments a single task
execution time is simulated 2500 ms (which in real scenario corresponds to approximately
4 meters trajectory of a robot moving at 6 km/h). In all experiments, the level of robot’s
autonomy, adjusted through the configurable parameter k introduced, is set to 3. This
subsumes that a human operator will only interact with a system during the execution
of the most complex tasks, i.e., tasks that require 3 skills for complete execution. It is
worth to notice that the SKIM coordination framework does not introduce any limitation
on the mission duration. A mission is considered to be finished only after all tasks have
been successfully executed.

The experiments were designed to measure the behaviour of 3 coordination approaches
in 3 different scenarios utilizing 5 configurations with respect to the 5 criteria introduced
in Section 7.1. There are in total 225 experiments. Test runs were designed in a way
that it is possible to extract the values for the 5 criteria in one simulation provided that
a coordination approach, a scenario, and a configuration are fixed, i.e., one simulation
provides results for 5 experiments. This yields in total 45 different simulations. Each
simulation was repeated 5 times and presented results show average values. There
was no need to do more repetitions because the developed coordination approaches,
together with the underlying Semantic XVSM, build up a very stable system where the
all measurements were closely aggregated, i.e., a standard deviation was below 5%.

7.4.1 Task Allocation Success Rate

Task allocation success rate is defined as follows: if a task is completely executed after
the ith iteration, the success rate of that task is 1/i. An iteration denotes a robot’s
attempt to execute a task. If a robot attempts to execute an allocated task that requires
only one skill, the task will be executed in 1st iteration yielding the 100% success rate.
Provided that the robot has sufficient resources. On the other hand, if a task requires
multiple skills and there is no robot which provides all required skills, multiple robots
have to collaborate to execute that task. If two robots have to collaborate to execute
the task, both will attempt to execute the task, but each will only partially succeed in
the execution. It means that the task will be executed in 2nd iteration. Furthermore,
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defined is the total success rate as the average of the success rates of all tasks in a specific
scenario.

Table 7.6 lists the success rates for cSKIM, dSKIM, and hSKIM utilizing 5 configura-
tion evaluated in 3 scenarios. Figure 7.8 illustrates the values from Table 7.6

Table 7.6: Task allocation success rate in [%]

Inspection Industry Catastrophe
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K
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K
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1 100 100 100 50 50 50 34 34 34
2 100 100 100 100 100 100 100 100 100
3 100 100 100 55 65 50 47 34 100
4 100 100 100 85 80 85 70 70 100
5 100 100 100 80 70 80 65 65 100

When a robotic fleet operates in Inspection scenario, task allocation rate is 100% and
it neither depends on the coordination approach nor the selected configuration. This
is due to the simple tasks which only require one skill and thus each allocated task is
executed in 1st iteration. When configuration 2 is utilized, task allocation rates are 100%
in all 3 coordination approaches operating in Industry and Catastrophe scenarios. This is
because each robot in configuration 2 has either subsume or exact matching degree, i.e.,
it provides either equal or more skills than required by a task, and thus each allocated
task is executed in 1st iteration. In Industry and Catastrophe scenarios, configuration 1
yields 50% and 34% allocation rates. Industry scenario encompasses tasks that require
2 skills, while the robots in configuration 1 provide only one skill each. This implies
that 2 robots attempt to execute a task yielding 50% allocation rate. Similar, tasks in
Catastrophe scenario require 3 skills implying that 3 robots have to collaborate on task
execution and thus is the allocation rate is approximately 34%, e.g., each robot executes
1/3 of a task.

In Industry scenario, configuration 3 yields similar success rates for all coordination
approaches. Since there are 2 robots with only 1 skill and all tasks require 2 skills, a
team leader robot participates in each task execution. Consequently, for a task execution
required are up to 2 iterations. Due to the higher share of robots with 2 or more skills,
configurations 4 and 5 yield higher allocation rates compared to configuration 3. In
configuration 4, all robots provide at least 2 skills and thus it yields higher allocation
rates than configuration 5. The same applies in Catastrophe scenario where configuration
3 has lower allocation rates compared to configurations 4 and 5.

hSKIM yields 100% allocation rate in all configurations operating in Catastrophe
scenario, except configuration 1. The allocation rate in configuration 1 diverges because a
human operator was excluded from the control loop (k is set to 3). Maximum allocation
rate in other 4 configurations is due to the interoperability of the reasoning-based task
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allocation algorithm and human interaction triggered during the execution of the most
complex tasks (Algorithm 6.3). Only the robots which provide 3 skills were able to
execute tasks.

Figure 7.8: Task allocation success rate

7.4.2 Communication Overhead

Table 7.7 lists the number of messages exchanged in each coordination approach for the
5 configurations evaluated in 3 scenarios as specified in Section 7.3. A message contains
information about a task and it is exchanged between two distributed robots, or between
the space and one distributed robot. Figure 7.9 illustrates the values from Table 7.7.

Figure 7.9 shows that the fleets that operate in Catastrophe scenario require the
highest number of messages to finish a mission. In particular, configuration 1 requires
the highest number of messages (113). This is due to the simple robots which extensively
collaborate to finish tasks, and thus have to coordinate on colliding tasks, as well the
frequent usage of inference-based task allocation algorithm. The algorithm is triggered
on each partial task and the robots generate two partial tasks for one complex task. For
example, robot 1 with 1 skill tries to execute task 1 which requires 3 skills. First, it
will notify the other two robots that it is going to execute the colliding task 1. Since
it only provides 1 skill, it will only partially execute the task (1/3). A new (partial)
task will be generated and the inference-based task allocation algorithm will allocate
it to corresponding robots. After that, the other two robots will try to execute it.
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Table 7.7: Number of messages

Inspection Industry Catastrophe
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1 20 23 3 50 53 53 80 73 113
2 20 23 23 20 23 23 20 23 43
3 20 23 13 47 44 54 68 66 23
4 20 23 16 29 35 38 38 41 23
5 20 23 13 28 41 39 34 44 23

Finally, last robot will complete the task. In contrast to configuration 1, configuration 2
yields the lowest number of messages due to the complex robots which do not need to
collaborate on a mission. Since configurations 4 and 5 are similar with respect to the
robots with provided skills, they need a similar number of messages in every scenario for
each coordination approach.

In Inspection scenario, dSKIM requires 15% more messages, in all five configurations,
compared to cSKIM. Contrary, hSKIM on average requires fewer messages than the
cSKIM in the same scenario. Due to the inference-based task allocation in hSKIM, the
number of exchanged messages, using configuration 1, in Inspection scenario is decreased
by 85% compared to cSKIM. Except when using configuration 3 in Industry scenario,
cSKIM outperforms the other two coordination approaches. This occurs due to the more
complex coordination mechanisms between distributed robots present in dSKIM and
hSKIM coordination approaches.

In Catastrophe scenario, the number of exchanged messages in dSKIM is within
approximately 30% compared to cSKIM. On the other hand, in the same scenario
the number of messages in hSKIM depends on the configuration class. The number of
messages is increased when a configuration from a peer class is utilized, i.e., configurations
1 and 2, and it is decreased when using a configuration from the team leader class, i.e.,
configurations 3, 4, and 5. In configuration 2 each robot is capable to execute any
task in Catastrophe scenario. This results with numerous colliding tasks that require
more coordination, and thus more exchanged messages, between robots compared to the
configuration from the team leader class. On the other hand, team leader configurations
have only one robot which executes tasks and thus no coordination with other robots is
necessary.

Using configuration 3 and hSKIM in the Catastrophe scenario, decreases the number
of messages by 66% compared to cSKIM. Configurations 4 and 5, in the same setup,
decrease the number of messages by 39% and 32%, respectively. Due to the adaptive
autonomy and the human interaction model, which do not allow robots with less than
k skills to execute tasks with k and more skills, hSKIM prevent excessive collaboration
of simple robots and thus decreases the number of messages. Decreased number of
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exchanged messages is related to the increased task allocation rate.
In general cSKIM requires fewer messages to complete the same mission compared to

dSKIM and hSKIM. However, in cSKIM the central component is bottleneck because
the whole mission stops if this component is unavailable to robots and thus they cannot
fetch tasks for execution. Therefore, hSKIM could be an alternative while it distributes
allocated tasks to robots and even outperforms cSKIM in some cases.

Figure 7.9: Number of messages

7.4.3 Utilization Rate

Utilization rate Ui of robot i is calculated in (Eq. 7.1) where ri,j is ratio between the
number of skills robot i utilizes while performing a task j and the total number of
provided skills. li denotes the number of tasks executed by robot i. Since a robot can
also partially execute a specific task, the ratio ri,j could be < 1. The sum is divided by
li to get an average utilization rate over all executed tasks.

Ui =
∑l

j=1 ri,j

li
(7.1)

Table 7.8 lists the values of fleet utilization rates for 5 configurations evaluated in 3
scenarios using 3 coordination approaches. Figure 7.10 illustrates the values from Table
7.8.

When a configuration is a member of the peer class, i.e., configurations 1 and 2,
utilization rate does not depend on the coordination approach. This is because each
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Table 7.8: Utilization rate in [%]

Inspection Industry Catastrophe
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1 100 100 100 100 100 100 100 100 100
2 34 34 34 67 67 67 100 100 100
3 67 80 87 77 75 80 80 83 100
4 45 44 45 68 63 69 79 80 100
5 60 58 62 77 67 74 90 94 100

robot in configuration 1 provides only one skill and thus applies plug-in or exact matching
degree during the execution of an allocated task. Therefore, the provided skills are always
fully utilized which yields 100% utilization rate. Utilization rate in configuration 2 is
100% only in Catastrophe scenario where robots execute tasks which require 3 skills, i.e.,
same as the robots in configuration 2 provide. In other two scenarios, robots provide
more skills than requested by tasks thus yielding lower utilization rate. In other two
scenarios, Inspection and Industry, configuration 2 yields 33% and 66% utilization rate,
respectively. This is because robots have subsume matching degree and thus not utilize
the all provided skills.

During a fleet operation in Inspection scenario utilizing a configuration from the team
leader class, e.g., configuration 3, 4, or 5, hSKIM slightly outperforms dSKIM, while
dSKIM slightly outperforms cSKIM. Robotic fleets that have a configuration with a
dominant robot and which operate in Industry scenario yield similar utilization rates.
Due to the higher share of robots with 1 skill in configuration 3 than in configurations
4 and 5, configuration 3 yields a bit higher utilization rates in Industry scenario than
configurations 4 and 5. On the other hand, robots in configuration 3 have to collaborate
more during a mission execution and thus yield more messages compared to configurations
4 and 5.

Similar to the task allocation success rate, when configurations with a dominant robot
are deployed in Catastrophe scenario, hSKIM outperforms the other two by 5% using
configuration 5, by approximately 20% with configuration 3, up to 25% with configuration
4. This is due to the inference-based task allocation algorithm which utilizes parameter k
to classify the most complex tasks and robots as those that require a human interaction.
This implies that a human operator grants a permission to execute complex tasks, i.e.,
tasks that requires 3 skills, only to the complex robots, i.e., those that provide 3 skills.

Increased utilization rate is related to the decreased number of exchanged messages.
This implies that a robot which is capable to execute a task autonomously, i.e., has either
exact or subsume matching degree, generates fewer coordination messages.
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Figure 7.10: Utilization rate

7.4.4 Load Balancing

Load balancing denotes the number of tasks each robot executed in a specific scenario.
Due to the variety of skills provided by robots, i.e., different configurations, and due to the
different task complexities, i.e., skills requested by tasks, not every robot will execute the
same amount of tasks. Table 7.9 shows the number of task each robot executed utilizing
5 configurations evaluated in 3 scenarios specified in Section 7.3. There were in total
30 tasks, 10 tasks per scenario. Figure 7.11, Figure 7.12, and Figure 7.13 illustrate the
number of tasks each robot executed in Inspection, Industry, and Catastrophe scenarios,
respectively.

Independent from a selected scenario, when a deployed configuration is a member of
the peer class, i.e., configurations 1 and 2, robots in all 3 coordination approaches execute
almost a same number of tasks. Almost the same means that a robot could execute at
most two tasks more or two tasks less compared to the other robot. Similar occurs with
configurations that have a dominant robot and operate in Inspection scenario. If a robot
executes more tasks than the other two, it could be that it provides a skill which more
tasks request in that particular scenario. It is worth to notice that the number of tasks
in Inspection scenario is always 30, i.e., each coordination approach executes 10 tasks.
This is because all the robots completely execute allocated tasks.

Neither does the configuration nor the selected coordination approach influence the
number of tasks a robot executes in Industry scenario. Executed tasks can have different
distribution in each simulation. Eventually some simulations will yield the same task
distribution. The values listed in Table 7.9 are thus averaged values. Although there is
indeterminism in the number of executed tasks, it could be perceived that robot 3, on
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Table 7.9: Number of executed tasks

Inspection Industry Catastrophe
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1
Robot 1 4 4 4 6 6 6 10 10 10
Robot 2 3 3 3 8 8 7 10 10 10
Robot 3 3 3 3 6 6 7 10 10 10

2
Robot 1 3 3 4 4 3 3 3 3 3
Robot 2 3 3 3 3 4 3 3 3 4
Robot 3 4 4 3 3 3 4 4 4 3

3
Robot 1 2 3 3 6 4 6 8 10 0
Robot 2 3 4 5 6 5 8 8 7 0
Robot 3 5 3 2 7 8 6 10 10 10

4
Robot 1 4 2 3 5 5 4 5 5 0
Robot 2 3 4 4 4 4 5 5 6 0
Robot 3 3 4 3 4 5 4 6 5 10

5
Robot 1 3 3 3 4 4 4 5 6 0
Robot 2 4 3 5 5 5 4 6 6 0
Robot 3 3 4 2 5 7 6 6 5 10

average, executes more tasks in the team leader configurations that the other 2 robots.
The number of total tasks in Industry scenario varies from 30 when applying configu-

ration 2 up to 60 with configuration 1. This is because the robots in configuration 1 can
only collaborate to execute tasks which require 2 skills. This implies that the higher the
share of complex robots in a fleet is, the less the number of new tasks is. For example,
configuration 3 has 2 robots with only 1 skill and 1 robot with 3 skills and it yields in
total 56 tasks for all 3 coordination approaches in Industry scenario. On the other hand,
configuration 4 has 2 robots with 2 skills and 1 with 3 skills and it yields in total 40
tasks.

In Catastrophe scenario robots in dSKIM execute almost the same number of tasks
as those in cSKIM. On the other hand, major discrepancy occurs when hSKIM utilizes a
configuration from the team leader class in Catastrophe scenario. Due to inference-based
task allocation as well as the human involvement, only robot 3, the one with the highest
number of skills, is allowed to execute tasks. The other two robots tried to partially
execute tasks where their skills fit, i.e., plug-in matching degree, but they were unable to
do so because the inference-based task allocation classified all tasks as complex ones thus
enforcing a human operator to grant execution permission to only those robots with exact
matching degree. As in Industry scenario, configuration 1 yields in total 90 tasks,i.e.,
30 for each coordination approach, while configuration 2 yields in total 30 tasks, i.e., 10
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tasks for each coordination approach.
Table 7.9 shows that there are no idle robots no matter which coordination approach,

a configuration, or a scenario, is selected. The only exception is when a human interacts
in hSKIM. Although the implemented SKIM framework exhibits fair task distribution
and efficient resource utilization, i.e., robots, independently of the selected coordination
approach, it is recommended to avoid using a configuration with a dominant robot in
hSKIM while operating in Catastrophe scenario because all the other robots, except the
dominant robot, are idle and thus underutilized.

Figure 7.11: Number of executed tasks in Inspection scenario

7.4.5 Mission Execution Time

Table 7.10 shows an execution time of a mission that consists of 10 tasks. Mission
execution time is measured using 5 configurations deployed in 3 scenarios specified in
Section 7.3. Listed values denote mission execution times in [s] for cSKIM, dSKIM, and
hSKIM. Execution time depends on hardware as well as the time a robot needs to execute
a single task. Values for these parameters are introduced in Section 7.2.

cSKIM outperforms, executes all missions faster, dSKIM and hSKIM independently
of selected configuration and scenario. Due to the complex coordination mechanisms in
dSKIM, it has longer execution times compared to cSKIM. Employing configurations
4 and 5 in Industry and Catastrophe scenarios, dSKIM execution time remains within
approximately 15% compared to cSKIM. On the other hand, dSKIM exhibits the longest
mission execution time, compared to cSKIM, when it operates in Industry scenario
utilizing configuration 3. It took dSKIM 100% longer than cSKIM. This occurs because
of intensive collaboration between robots.
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Figure 7.12: Number of executed tasks in Industry scenario

Figure 7.13: Number of executed tasks in Catastrophe scenario

Moreover, inference-based task allocation algorithm in hSKIM implies longer execution
times compared to cSKIM and dSKIM. In most cases these are approximately doubled.
Due to the ability of only one robot in configuration 3 to execute all tasks as well as an
extensive collaboration between simple robots and a human operator, hSKIM performs
slowest under the configuration 3 in Industry scenario. hSKIM needs approximately
230% longer compared to cSKIM. This is due to the utilization of inference-based and
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Table 7.10: Mission execution time in [s]

Inspection Industry Catastrophe
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1 10 13 14 20 23 41 26 30 49
2 10 12 26 10 13 21 10 12 20
3 13 21 21 18 36 60 26 30 40
4 10 12 23 13 14 25 15 17 29
5 10 13 21 13 14 30 15 17 32

human-based task allocation algorithms that were triggered to allocate partial tasks. On
the other hand, hSKIM has the shortest execution time in Inspection scenario utilizing
configuration 1, i.e., it requires 40% longer than cSKIM. In this case both, tasks and
the robots, are simple (1 requested/provided skill) and thus a human intervention is
unnecessary. In general, hSKIM has the shortest execution times when operating with
fleets with complex robots, i.e., configurations 2, 4, and 5. This is due to the inference-
based task allocation which reduces a number of colliding tasks and thus decreases
complex coordination between distributed robots.

Figure 7.14: Mission execution time
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Table 7.11: Configuration 3

Tilling Spraying Flaming

Robot 1 X
Robot 2 X
Robot 3 X X X

Table 7.12: Configuration 4

Tilling Spraying Flaming

Robot 1 X X
Robot 2 X X
Robot 3 X X X

7.5 Performance Evaluation of Adaptive Autonomy

This section focuses on the evaluation of hSKIM coordination approach which models
human interaction. The level of robot’s autonomy, i.e., adaptive autonomy, is adjusted
through the configurable parameter k introduced in Section 6.4. The purpose of experi-
ments in this section is to analyze the influence of adaptive autonomy on the selected
criteria introduced in the previous section. Consequently, the value for k will be changed
from 1 to 3 inclusive.

Conducted experiments assume that a human operator is perfect, i.e., he/she always
needs the same amount of time for making a decision and he/she always makes a right
decision. In contrast to the underlying coordination framework which has knowledge
about robots in a fleet, it is assumed that a human operator, in addition to the fleet
knowledge, also has the knowledge about the operating environment. In addition to
human’s involvement in the task allocation process, it also performs the decision-making
algorithm which decides whether a robot is suitable to execute a specific task. Since
both human functionalities, task allocation and decision-making, are implemented as
algorithms, the experiments omit a real human operator whose behaviour is simulated
with those algorithms.

During the literature review in Chapter 3, it is perceived that almost all robot teams
are heterogeneous and there is at least one robot acting as a team leader. Usually, the
team leader provides more skills than the other team members do. Therefore, to retain
the heterogeneity of robotic fleet, with respect to the provided skills, configurations 3
and 4 are utilized in the following experiments. These two configurations are listed in
Table 7.11 and Table 7.12, respectively. Both configurations have a team leader robot
and two other robots with fewer skills compared to the team leader robot. Those two
robots provide 1 skill in configuration 3 and 2 skills in configuration 4. Changing the
value of k, directly influences the inference-based task allocation algorithm which does
task classification, i.e., classifies tasks which require human interaction. Therefore, it
is expected that changing the value of k influences not only the frequency of human
interactions in the system, but also has the impact on other observed parameters, e.g.,
communication overhead and utilization rate.

The experiments were designed to measure the behaviour of hSKIM coordination
approaches in 3 different scenarios utilizing 2 configurations with respect to the 5 criteria
listed in Section 7 and 1 new criteria, i.e., in total 6 criteria. Three different values were
utilized for parameter k. There are in total 108 experiments. Test runs were designed in
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a way that it is possible to extract the values for the 6 criteria in one simulation provided
that a coordination approach, a scenario, and a configuration are fixed. This yields in
total 18 different simulations. Each simulation was repeated 5 times and presented results
show average values. There was no need to do more repetitions because the developed
coordination approaches, together with the underlying Semantic XVSM, build up a
very stable system where the all measurements were closely aggregated, i.e., a standard
deviation was below 5%.

7.5.1 Task Allocation Success Rate

To recall, task allocation success rate is defined as follows: if a task is completely executed
after the ith iteration, the success rate of that task is 1/i. Furthermore, defined is the
total success rate as the average of the success rates of all tasks in a specific scenario.

Table 7.13 denotes values in [%] of success rates for configurations 3 and 4 evaluated
in 3 scenarios, i.e., Inspection, Industry, and Catastrophe, in hSKIM. The value for
parameter k is varied from 1 to 3.

Table 7.13: Task allocation success rate in adaptive autonomy in [%]

Inspection Industry Catastrophe
HH

HHHHConf
k 1 2 3 1 2 3 1 2 3

3 100 100 100 100 100 55 100 100 100
4 100 100 100 100 100 85 100 100 100

Interpreting results listed in Table 7.13, it can be seen that the task allocation rate is
100% when the human interaction parameter, i.e., k, is set either to 1 or 2. This is due
to the complete fleet knowledge the human has and which enables him/her to allow a
task execution only for those robots which have either exact or subsume matching degree.
This is independent of the selected configuration and scenario. In Inspection scenario all
tasks require only one skill to be completely executed and, in both configurations, all
robots provide at least one skill. Consequently, all tasks are executed in the 1st iteration
and thus is the task allocation rate 100%.

When the human interaction parameter is set to 1 and hSKIM operates in Industry
scenario, all tasks require a human interaction during the execution, i.e., all tasks are
classified as User tasks in SKIM-RO. Classification takes place because all tasks in
Industry scenario have 2 required skills and the parameter k is set to 1 which means
that all tasks that require at least 1 skill will be classified as User tasks. On the one
hand, when configuration 3 is deployed in this setup, robots 1 and 2 will not be able to
execute any task. They will try to execute a task, but when they consult a human to get
a permission to execute the task, the human will refuse to grant a permission because
there exists a robot with a highest matching degree, i.e., robot 3. The decision algorithm
ensures that a robot which asked for permission has either exact or subsume matching
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degree. Otherwise, permission is denied. On the other hand, when configuration 4 is
deployed in this setup, all three robots participate in task execution because each robot
provides at least 2 skills. It could still happen that a robot which does not have a highest
matching degree selects a task and asks a human for permission. However, it will not get
a permission to execute the task. Thus, in both configurations, only robots which have
either exact or subsume matching degree are allowed to execute tasks. Therefore, robots
collaboration during a task execution is omitted and the task allocation rate is 100%.

Similar to the above, when the human interaction parameter is set to 2 and hSKIM
operates in Industry scenario, all tasks require a human interaction during the execution,
i.e., all tasks are classified as User tasks in SKIM-RO. On the one hand, when configuration
3 is deployed in this setup, robots 1 and 2 will not be able to execute any task because
they only provide 1 skill and thus are not allowed to execute tasks classified as User
tasks, i.e., those tasks are marked as too complex for them. Compared to the previous
case, they do not even try to execute them, i.e., they do not consult a human on them
because they are marked as too complex for those robots. On the other hand, when
configuration 4 is deployed in this setup, all three robots participate in task execution
because each robot provides at least 2 skills. Moreover, it could still happen that a robot
which does not have a highest matching degree selects a task and asks a human for
permission. However, it will not get a permission to execute the task. Thus, same as
in the previous case, only robots which have either exact or subsume matching degree
are allowed to execute tasks. Therefore, robots collaboration during a task execution is
omitted and the task allocation rate is 100%.

In contrast to the previous cases where the task allocation rate is always 100% inde-
pendently of the selected configuration and scenario, this is not the case when parameter
k is set to 3. Due to the parameter k set to 3, none of the tasks in Industry scenario,
which need 2 skills, will require a human interaction. Therefore, even robots which exhibit
the subsume matching degree will be able to execute some tasks. Consequently, multiple
robots collaborate on a task execution. As a product of the collaboration on the same
task, atomic tasks (sub-tasks) are generated which then have to be allocated to available
robots. Since in configuration 3 robots provide less skills than those in configuration 4, it
means that more robots have to collaborate to execute a task. Consequently, majority
of tasks will not be executed in 1st iteration and thus is the task allocation rate lower
utilizing configuration 3. Finally, in Disaster scenario the task allocation rate is 100%
because all tasks require a human interaction and only robots with the highest matching
degree, i.e., robot 3, are allowed to execute those tasks.

7.5.2 Communication Overhead

Table 7.14 shows the number of messages exchanged during the tasks execution in
configurations 3 and 4 evaluated in 3 scenarios utilizing hSKIM. Same as in the previous
section, the value for parameter k is varied from 1 to 3. Figure 7.15 illustrates the values
listed in Table 7.14.

Figure 7.15 shows that the number of exchanged messages increases with the scenario
complexity, i.e., it is lowest in the Inspection scenario and highest in Catastrophe scenario.
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Table 7.14: Number of messages in adaptive autonomy

Inspection Industry Catastrophe
H
HHH

HHConf
k 1 2 3 1 2 3 1 2 3

3 27 13 13 61 37 52 81 42 43
4 36 16 16 45 59 38 81 79 43

This is because the more complex the tasks are, more robots have to participate in their
execution and thus more messages have to be exchanged to coordinate collaborating
robots.

When parameter k is 1 and a fleet operates in Inspection scenario, configuration 3
requires less messages to execute a mission than configuration 4. This is due to the
increased number of colliding tasks which robots in configuration 4 have to coordinate on.
Increased number of colliding tasks is a result of more provided skills in configuration
4 compared to configuration 3. Moreover, robots are consulting a human in both
configurations which additionally increases the number of exchanged messages. 2 messages
are required each time when a robot consults a human, 1 for a request and the other for
a response. Using the same value for k, but operating in Industry scenario, configuration
3 yields more messages than configuration 4. This is related with the same scenario in
the task allocation rate in Section 7.5.1 where robots 1 and 2 try to execute a task, but
when they ask a human to get a permission to execute the task, the human will deny to
give a permission because there exists a robot with a higher matching degree, i.e., robot
3. Both configurations yield the same number of messages in Catastrophe scenario where
only robots which have either exact or subsume matching degree are allowed to execute
tasks.

When parameter k is 2 and a fleet operates in Inspection scenario, configuration 3
requires less messages to execute a mission than configuration 4. This is due to the
increased number of colliding tasks which robots in configuration 4 have to coordinate
on. Compared to the same scenario when parameter k is 1, the number of exchanged
messages is decreased because there is no human interaction during the mission execution.
Using the same value for k, but operating in Industry scenario, configuration 3 yields
less messages than configuration 4. This is due to the fact that robots 1 and 2 will not
be able to execute any task because they only provide 1 skill and thus are not allowed
to execute tasks classified as User tasks, i.e., those tasks are marked as too complex for
them. On the other hand, same robots in configuration 4 are allowed to execute those
same tasks but have to consult a human to get a permission. The same rationale applies
to the Catastrophe scenario.

Finally, when k is 3 and a fleet operates in Inspection scenario, both configurations
yield the same number of messages as in the case when k is 2. Using the same value
for k, but operating in Industry scenario, configuration 3 yields more messages than
configuration 4. This is related with the same scenario in the task allocation rate in
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Section 7.5.1 where none of the tasks in Industry scenario, which need 2 skills, will require
a human interaction. Even robots which exhibit the subsume matching degree will be
able to execute some tasks. Consequently, multiple robots collaborate on a task execution
and more messages are required for coordination. Both configurations yield the same
number of messages in Catastrophe scenario where only robots which have either exact or
subsume matching degree are allowed to execute tasks. However, the number of messages
is decreased compared to the same scenario when k is 1. This is due to the fact that
robots 1 and 2 will not be able to execute any task because they only provide 1 skill and
thus are not allowed to execute tasks classified as User tasks, i.e., those tasks are marked
as too complex for them.

It is recommended to set the autonomy level to 2 when having the configuration 3 on
disposal because it outperforms the other two autonomy levels, i.e., the system requires
less messages for a mission execution. Switching to configuration 4, the autonomy level
set to 3 outperforms the other two in Industry and Catastrophe scenarios. In this use
case, the human operator utilizes its complete fleet knowledge to permit a task execution
only for those robots which have either exact or subsume matching degree.

Figure 7.15: Number of messages in adaptive autonomy

7.5.3 Utilization Rate

Table 7.15 shows the values in [%] of fleet utilization rates during the tasks execution in
configurations 3 and 4 evaluated in 3 scenarios utilizing hSKIM. Same as in the previous
sections, the value for parameter k is varied from 1 to 3. Figure 7.16 illustrates the values
listed in Table 7.15.

As shown in Figure 7.16, neither does the selected configuration nor the parameter k
influence the utilization rate in Catastrophe scenario. It is always 100% because only
robot 3 is allowed to execute tasks due to the highest matching degree. Utilization rates
in Inspection scenario have similar values for all k values. However, configuration 3 yields
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Table 7.15: Utilization rate in adaptive autonomy in [%]

Inspection Industry Catastrophe
HHHH

HHConf
k 1 2 3 1 2 3 1 2 3

3 78 78 87 67 67 80 100 100 100
4 45 45 45 96 89 69 100 100 100

higher utilization rates than configuration 4. This is due to the lower number of skills
that robots 1 and 2 provide in configuration 3 compared to configuration 4.

In Industry scenario, when k is either 1 or 2, configuration 3 yields lower utilization
rate compared to configuration 4. This happens because in configuration 3, due to the
highest matching degree, only robot 3 is allowed to execute tasks. On the other hand,
in configuration 4 each robot can have a highest matching degree and thus execute a
task. On contrary, due to the allowed collaboration when k is 3 in Industry scenario,
configuration 3 yields higher utilization rate. Although robots in both configurations
collaborate, configuration 3 yields higher rate because robots provide less skills than
those in configuration 4. This results with the increased number of exchanged messages
(see Table 7.14) and lower task allocation rate (see Table 7.13).

In general, observing the above results it can be concluded that the closer the matching
degree between robots and tasks is, i.e., the number and types of skills provided by robots
and requested by tasks, the higher utilization rate is. This can be seen in Inspection
scenario where configuration 3 yields higher utilization rate compared to configuration 4
and also in Industry where the situation is opposite, i.e., configuration 4 yields higher
utilization rate, except when k is 3. In this use case the human operator utilizes fleet
knowledge during task execution by means of preferring those robots during task execution
which yield higher utilization rates.

Figure 7.16: Utilization rate in adaptive autonomy
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7.5.4 Load Balancing

Table 7.16 shows the number of tasks each robot in a fleet executes during a mission
utilizing hSKIM. Listed values are for configurations 3 and 4 and are related to 3 scenarios.
Same as in the previous sections, the value for parameter k is varied from 1 to 3. Figure
7.17 (left) illustrates the values for configuration 3 and Figure 7.17 (right) illustrates the
values for configuration 4.

Table 7.16: Load balancing in adaptive autonomy

Inspection Industry Catastrophe
1 2 3 1 2 3 1 2 3

3
Robot 1 4 3 3 0 0 6 0 0 0
Robot 2 3 3 5 0 0 8 0 0 0
Robot 3 3 4 2 10 10 6 10 10 10

4
Robot 1 2 3 3 3 3 4 0 0 0
Robot 2 5 4 4 3 1 5 0 0 0
Robot 3 3 3 3 4 6 4 10 10 10

In Inspection scenario the number of executed tasks is almost equally balanced across
all robots. There are few outliers when a robot executes either 2 or 5 tasks. The results
become more interesting in Industry scenario, especially when parameter k is either 1 or 2.
For both k values, in configuration 3, robot 3 executes all tasks. As explained in previous
sections, this is because it has the highest matching degree compared to the other two
robots. This comes at price that configuration 3 yields lower utilization rate and requires
more messages than the configuration 4 in the same setup. When k is 3 in Industry
scenario, the total number of tasks, including sub-tasks as well, that appear in the system
is much higher when configuration 3 is utilized compared to configuration 4, i.e., 20 in
configuration 3 and 13 in configuration 4. This is because the robots which provide 1
skill are still able to, at least partially, execute tasks in Industry scenario when k is 3.
Due to the partial execution, there are many new tasks in the system. Consequently, the
same setup yields higher utilization rate, but it requires more messages and has lower
task allocation rate.

Due to the highest matching degree, robot 3 executes all tasks in Catastrophe scenario
independently of the selected configuration and the value for parameter k.

7.5.5 Human Activity

Table 7.17 shows how many times a human operator is consulted during a mission
execution utilizing hSKIM. Results are listed with respect to configurations 3 and 4 and
3 scenarios. Same as in previous sections, the value for parameter k is varied from 1 to 3.
Figure 7.18 illustrates the values listed in Table 7.17.
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Figure 7.17: Number of executed tasks utilizing configuration 3 (left) and configuration 4
(right)

Table 7.17: A number of times a human has been consulted

Inspection Industry Catastrophe
H
HHH

HHConf
k 1 2 3 1 2 3 1 2 3

3 10 0 0 26 10 0 29 10 10
4 10 0 0 12 18 0 29 28 10

As expected, human activity decreases with the increase of parameter k. The higher
parameter k is, the lower is human activity. When parameter k is 1 in Industry scenario,
robots in configuration 3 consult the human more frequent than those in configuration 4.
This is related with the same scenario in the task allocation rate in Section 7.5.1 where
robots 1 and 2 try to execute a task, but when they consult a human to get a permission
to execute the task, the human will refuse to grant a permission because there exists a
robot with a higher matching degree, i.e., robot 3. This phenomenon reflects also in the
increased number of exchanged messages in the same setup.

When parameter k is 2 in Industry and Catastrophe scenarios, robots in configuration
3 consult the human less frequent than those in configuration 4. This is due to the fact
that only one robot in configuration 3, i.e., robot 3, is allowed to execute tasks in Industry
and Catastrophe scenarios. When k is 3, in both configurations only robot 3 is allowed to
execute tasks. Thus, both configurations yield the same number of human interactions
in Catastrophe scenario.

175



Figure 7.18: A number of times a human has been consulted

7.5.6 Mission Execution Time

Table 7.18 shows the mission duration in [s] for configurations 3 and 4 in 3 scenarios
utilizing hSKIM. Same as previous sections, the value for parameter k is varied from 1 to
3. Figure 7.19 illustrates the values listed in Table 7.18.

Table 7.18: Mission execution time in [s]

Inspection Industry Catastrophe
H
HHH

HHConf
k 1 2 3 1 2 3 1 2 3

3 29 30 28 46 49 50 55 55 55
4 29 30 30 35 40 38 58 56 56

In general, the mission duration increases with the scenario complexity, i.e., it is
lowest in the Inspection scenario and highest in Catastrophe scenario. This is because
the more complex the tasks are, more robots participate in their execution and thus
the coordination requires more resources, e.g., more coordination messages have to be
exchanged to coordinate collaborating robots. Additional factor responsible for this
phenomenon is the more frequent execution of inference-based task allocation algorithm,
as well as human interaction, during the complex missions.

Missions durations do not vary much with respect to the value of parameter k. Mission
duration varies up to approximately 15% in Industry scenario when a robotic fleet utilizes
configuration 4 and k changes from 1 to 2. On the one hand, in Inspection and Catastrophe
scenarios, both configurations have similar execution times, i.e., difference is not more
than 3 s. On the other hand, in Industry scenario, configuration 3 performs up to 12 s
slower than configuration 4. This is due to the fact that only robot 3 in configuration 3
is allowed to execute tasks. The other robots also try to execute tasks, they ask a human
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operator for permission, but does not get it. Consequently, the number of messages in
this setup is increased as well, especially when k is 1 and 3.

Figure 7.19: Mission execution time in adaptive autonomy

7.6 Flexibility and Robustness with Model-Driven
Architecture

This section qualitatively evaluates the influence of Model-Driven Architecture approach
introduced in Section 4. In particular, the evaluation refers to the use cases and
simulations addressed in Section 7.4 and Section 7.5. Examined use cases serve as a
basis for evaluating following criteria addressed in MDA in Chapter 4: (1) how SKIM
abstracts heterogeneous resources in a system, (2) cross-domain operation, and (3) how
SKIM abstracts coordination and adaptive autonomy in a fleet.

7.6.1 Abstraction of Heterogeneous Resources

Heterogeneous resources in an operating system can belong to either tasks or robots.
Due to the ontologically modeled resources, it is more precise to say that heterogeneous
resources belong either to class Task defined in SKIM-RO or class Robot defined in SKIM-
CO. Nevertheless, the aim of this section is to show that both, SKIM-RO and SKIM-CO,
ontologies for describing resources support changing requirements. In particular, that
they support modeling of different tasks and different (heterogeneous) robots. According
to MDA, it is important that the underlying coordination framework, i.e., SKIM, remains
unchanged.

Section 7.3 introduces various input instances which are, in Section 7.4 and Section 7.5,
used as input parameters for numerous simulations performed on various implementations
of SKIM coordination framework. Defined input instances include various types of tasks
and robots as well. Former are differentiated based on a number of skills required to
execute a task, and latter are differentiated based on a number of skills a robot provides
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for a task execution, i.e., a configuration. General model of a task is captured in SKIM-RO
where class Task defines properties that an instances has to have in order to be classified
as a Task. The general task description, i.e., class Task, does not limit any instances
with respect to the number of required skills. Consequently, this infers that any instance
which has at least one required skill is type of Task. The same notion applies for robots
as well.

Since the underlying SKIM implementation operates only on class definitions, e.g.,
classes Task and Robot, it does not depend neither on the number of skills a task requests
nor on the number of skills a robot provides. Thus, as it is shown in experiments
conducted in Section 7.4 and Section 7.5, that each SKIM implementation, i.e., cSKIM,
dSKIM, and hSKIM, successfully and completely executes any mission independently
of operating scenario, i.e., different tasks, and utilized configuration, i.e., heterogeneous
robots.

Although the current ontologies, i.e., SKIM-RO and SKIM-CO, are limited to model
only skills and the amount of resources, they can easily be extended with additional
parameters. New parameters have to be handled in task allocation algorithms as well.
Current ontologies can be utilized to model any mission which encompasses tasks that
require some skills for execution, e.g., demining a field. Due to the resources definition
abstracted in ontologies, i.e., SKIM-RO and SKIM-CO, SKIM coordination framework
successfully handles heterogeneous resources in a system.

7.6.2 Domain-independent Fleet Operation

Operating domain of a robotic fleet consists of various tasks. Usually, one type of an
operating domain encompasses same or similar tasks. In the scope of this thesis those
are tasks with the same or similar requested skills. The MDA approach introduced in
Chapter 4 utilizes an ontology, i.e., SKIM-RO, to facilitate modeling of different types of
operating domains named scenarios in the scope of this thesis. Similar to the Section
7.6.1, the aim of this section is to show that ontologically modeled scenarios do not
influence a mission execution performed in the SKIM coordination framework.

Section 7.3 introduces three different representatives of class Scenario defined in
SKIM-RO used to classify generated tasks into three different scenarios with respect to
the different task complexities. The scenario classes have the same number of tasks, but
different number of required skills per task, i.e., task’s complexity. To emphasize SKIM
generality in the sense of application domains, the framework is evaluated in Section 7.4
and Section 7.5 using all three representatives of class Scenario. Although the introduced
scenarios differ in terms of a number of skills and the amount of resources, the evaluation
was only focused on a number of skills.

Since the underlying SKIM implementation operates only on class definitions, e.g.,
representatives of class Scenario, it does not depend on a scenario to which a task belongs
to and thus on a number of skills the task requires. As it is presented in experiments
conducted in Section 7.4 and Section 7.5, each SKIM implementation, i.e., cSKIM,
dSKIM, and hSKIM, successfully and completely executes any mission independently of
operating scenario, i.e., tasks’ complexity.
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Although the existing SKIM-RO utilizes only the number of skills and the amount
of resources to model an operating domain, it can be easily extended with additional
parameters, e.g., the size of a task. Due to the domain description abstracted in SKIM-RO
ontology, SKIM coordination framework retains generality with respect to the application
domains.

7.6.3 Abstraction of Coordination and Adaptive Autonomy in a Fleet

Coordination and adaptive autonomy are abstracted in an ontology-based model of
shared knowledge captured in SKIM-CO. In contrast to cSKIM and dSKIM which
lack a support for ontology-based coordination and human interaction, hSKIM utilizes
coordination model defined in SKIM-CO in terms of Capability and User classes that
enable task allocation and human interaction, e.g., whether to involve the centralized
task allocation component to find collaborative robots and whether to involve a human
in task assignment. Similar to the previous sections, the aim of this section is to show
that the customization of ontologically defined coordination capacities is loose-coupled
with the underlying coordination framework, i.e., it does not require hSKIM to change
any code to address changes in SKIM-CO.

Coordination capacities defined in SKIM-CO encompass classes Capability and User.
Representatives of the former act as input parameters for the inference-based task
allocation algorithm and thus are responsible for mapping tasks to robots in a fleet.
Latter models the level of human interaction with the system. Human interaction is
bounded to: (1) provide a permission for a robot to execute a specific task, (2) to allocate
tasks which the inference-based task allocation algorithm cannot allocate, and (3) to
limit simple robots to execute complex tasks, i.e., those robots which provide less skills
than a task requires. Latter is important in order to prefer robots with higher matching
degree, i.e., exact or subsume, during a task execution.

Tests conducted in Section 7.5 demonstrate the influence of the level of adaptive
autonomy in hSKIM coordination framework. Due to the operation on class definitions,
e.g., representatives of classes Capability and User, instead of on real instances, hSKIM
implementation successfully and completely executes any mission independently on the
level of autonomy. Moreover, hSKIM can also execute a mission if representatives of class
Capability are missing. In that case, the inference-based task allocation algorithm will be
disabled and a human will have to allocate all tasks instead.

Semantics enable abstraction of coordination rules and adaptive autonomy in SKIM-
CO and thus prevents hSKIM from changing code to host different coordination patterns
and different levels of autonomy. The benefit of using semantics for modeling coordination
in a robotic fleet can be perceived by means of an automatized tasks classification which
further drives the task allocation in the robotic fleet.
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7.7 Recommendation for Coordination Approach and
Human Interaction

Finally, the last section gives an overview, together with recommendations, on selecting
an appropriate coordination approach based on an available scenario and a configura-
tion considering evaluated parameters. First, the section compares three coordination
approaches and visualizes results in Figure 7.20. After that, the focus is shifted on a
comparison of three different levels of adaptive autonomy implemented in hSKIM. Latter
comparison is visualized in Figure 7.21. Due to the numerous evaluated parameters and
different input values, this section cannot visualize and compare all possible outcomes.
For complete set of results, Sections 7.4 and 7.5 have to be consulted.

Figure 7.20 visualizes results from the simulations performed in Section 7.4. X-axis
on the graph illustrated in Figure 7.20 has four values denoting parameters evaluated in
Section 7.4, i.e., TA - task allocation rate, UT-utilization rate, COMM - communication
overhead, and DUR - mission duration. Y-axis denotes three scenarios, while Z-axis
present two configuration classes, a peer class and a team leader class. Markers on the
graph represent different decisions which recommend the most appropriate coordination
approach for given (x,y,z) values. In particular, a marker denotes which coordination
approach to use under a given configuration and a scenario with respect to the specific
parameter.

Being interested in maximizing task allocation and utilization rates while having
a configuration with a dominant robot on disposal, it is recommended to use hSKIM
coordination approach independently of an operating scenario (blue triangles associated
to TA and UT values). In particular, hSKIM outperforms the other two coordination
approaches when it operates in complex Catastrophe scenarios. On the other hand, it
does not matter which coordination approach is utilized when a configuration is a member
of peer class (black circles associated to TA and UT values). In that case, all three
coordination approaches yield same performances.

Observing the communication overhead, i.e., the number of exchanged messages,
while operating in Inspection scenarios, hSKIM decreases the number of exchanged
messages compared to the other two coordination approaches independently of provided
configuration (blue triangles associated to COMM). In contrast, when operating in
Industry scenarios, cSKIM needs less messages to complete a mission compared to dSKIM
and hSKIM. cSKIM outperforms the other two independently of selected configuration
(green squares). In Catastrophe scenarios, decision on a recommended coordination
approach depends on provided configuration. On the one hand, when operating on a
configuration that is a member of peer class, cSKIM outperforms the other two. On the
other hand, when a configuration is a member of team leader class, hSKIM performs best,
i.e., it needs less messages than the other two approaches. Finally, when the mission
execution time is a parameter to minimize, cSKIM is the approach to use. Due to
the inference-based task allocation algorithm and human interaction, hSKIM performs
slowest, i.e., it has longest mission execution times.

In general, hSKIM coordination approach should be preferred whenever a config-
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Figure 7.20: Recommendation for a coordination approach

uration belongs to team leader class with an exception when the mission execution
time matters. Blue triangles, associated with Leader value on z-axis in Figure 7.20,
illustrate hSKIM prevalence. Furthermore, having a configuration from peer class while
focusing on communication overhead and execution time, cSKIM should be preferred
coordination approach (green squares). For other two parameters, all approaches have
same performances (black circles).

When hSKIM coordination framework is selected as an output observing Figure
7.20, there is still a decision to be made with respect to the level of autonomy. Figure
7.21 illustrates which autonomy level performs best in a specific scenario utilizing a
configuration from team leader class. Therefore, hSKIM as an output from Figure 7.20
serves as an input for Figure 7.21. X-axis on the graph illustrated in Figure 7.21 has
four values denoting parameters evaluated in Section 7.5, i.e., TA - task allocation rate,
UT-utilization rate, COMM - communication overhead, and HA - human activity. Y-axis
denotes three scenarios, while Z-axis present two configurations, i.e., configurations 3 and
4. Moreover, markers on the graph represent different decisions which recommend the
autonomy level for given (x,y,z) values. In particular, a marker denotes which autonomy
level in hSKIM is preferred under a given configuration and a scenario with respect to the
specific parameter. As discusses in Section 7.5, parameter which denotes the autonomy
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level has a value which is a non-negative integer between 1 and 3 inclusive.

Figure 7.21: Recommendation for human interaction

Having the maximization of task allocation and utilization rates in focus, in most
cases all autonomy levels perform equally (black circles in Figure 7.20). Exception occurs
when a robotic fleet operates in Industry scenarios and when a focus is on task allocation
parameter. In that case, independently of selected configuration, the autonomy level set to
2 outperforms the other two autonomy levels. When a focus shifts to the communication
overhead, the autonomy level set to 2 outperforms the other two autonomy levels when
configuration 3 is utilized (green squares). Switching to configuration 4, the autonomy
level set to 2 outperforms the other two in Industry and Catastrophe scenarios (pink
diamonds). Observing the human activity, it is the lowest for the autonomy level set to
2 in Inspection (green squares). In other two scenarios, the lowest human activity is a
consequence of setting the autonomy level to 3 (pink diamonds). In neither case, the
activity does not change with the selected configuration.

In general, the autonomy level set to 2 should be preferred approach when a focus
is on minimizing the communication overhead. Moreover, the autonomy level set to
3 should be preferred approach when a focus is on minimizing a human activity. On
the other hand, the autonomy level does not influence to a great extent task allocation
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and utilization rates. Detailed test results, as well as the relations between observed
parameters, are discussed in Section 7.5.
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CHAPTER 8
Conclusion

Today’s multi-robot systems can be seen as complex systems in the sense that they have
to deal with heterogeneous resources, have to communicate, coordinate and collaborate,
as well as to interact with human operators. All these processes are performed in
distributed, heterogeneous, unstructured, dynamic, and decentralized environments.
Therefore, developers of robotic middlewares have to deal with issues like heterogeneity
and varying size of resources, variety of communication paradigms, dynamically emerging
resources, adaptability to a human presence. To address the listed issues, it was shown
in this thesis how the extension of existing space-based paradigm, Semantic XVSM,
by introducing the Semantic Web Technologies facilitated modeling of heterogeneous
resources. In particular, a concept of an ontology was utilized to abstract heterogeneous
resources, implement coordination rules, and model adaptive autonomy. The following
sections summarize the obtained results and describe future directions.

8.1 Results and Contributions
The following subsections wrap up the results and contributions with respect to the
research questions which were formulated in Chapter 1.

8.1.1 Heterogeneity and Complexity in Unstructured Environments

The first research question asked for the abstraction of heterogeneous resources in Se-
mantic XVSM and whether the abstraction methodology can increase system flexibility.

Contribution 1 Semantic XVSM abstracts heterogeneity issues

Developers that are challenged to integrate heterogeneous components in one system
are often faced with the lack of standardisation that exists between different devices
and thus impedes seamless integration. To cope with these issues, system designers
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are obliged to incorporate hard-wired interactions which deteriorate the overall system
flexibility. The notion of flexibility pertains to the system’s extendibility with new
features, scalability, dynamic interactions, heterogeneous resources, human interaction,
adaptability to changing requirements, reusability, etc.

With respect to the above listed challenges, this thesis detected two main sources
which degrade the flexibility of multi-robot systems: (1) the lack of mechanisms to
overcome resources heterogeneity resulting in inefficient communication, coordination,
and collaboration, and (2) domain tailored and domain dependent interaction models
which limit the reusability in similar application domains. These two issues are addressed
in Chapter 4 where the presented approach harnesses the coherence of formal ontology-
based modeling and Model-Driven Architecture approach. This resulted in two ontologies
used to formally model various hot spots in multi-robot systems which usually obstruct
the system flexibility and extendibility.

Introduced Model-Driven Architecture approach, implemented by means of ontologies,
decoupled the system implementation from the specification resulting in increased domain
independency and improved resources selection. It made the implementation general
and independent of the selected configuration and operating environment. Furthermore,
it is reflected how the synergy between Semantic Web Technologies and Model-Driven
Architecture, provides a formal model of a system and facilitates the design of multi-robot
systems. At the same time it increases the interoperability, scalability, adaptability,
reusability, and robustness.

8.1.2 Distributed Task Allocation

The second research question dealt with the transition from the centralized to the dis-
tributed coordination approach together with the characteristics of a setup which benefits
most from the distributed approach complemented with human interactions.

Contribution 2 Semantic XVSM facilitates distributed task allocation

This thesis utilized Semantic XVSM to show the complete transition from the central-
ized architecture to the distributed, human-aware, architecture style. The transition is
reflected with the implementation of three different coordination approaches introduced
in Chapter 5, i.e., centralized SKIM (cSKIM), distributed SKIM (dSKIM), and hybrid
SKIM (hSKIM). First, the simplest one, i.e., cSKIM, was implemented where the co-
ordination between distributed robots was realized by means of selecting tasks from a
central repository and thus limiting robots to be aware of each other. After that, dSKIM
was implemented where the coordination mechanisms were completely transferred to
distributed robots. However, neither of these two supported human interaction. Con-
sequently, hSKIM was implemented and it used coordination ontology (SKIM-CO) for
modeling shared knowledge among humans and robots.

Due to the shared knowledge utilized for task allocation and for modeling human
interactions, hSKIM is much more mature than the other two. The central feature,
i.e., inference-based task allocation algorithm, is hereby implemented by the system’s
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reasoning engine, which employs logic-based inference mechanisms to infer new knowledge
from explicitly available knowledge. In particular, this pertains to inferring task-robot
mappings and modeling human interactions. Furthermore, logic-based inference also
provides a very expressive mechanism for defining coordination rules. In many cases,
ontologically supported coordination modeling allows for simpler and more intuitive
definitions of coordination rules than the development of procedural algorithms.

For the evaluation of three coordination approaches, a benchmark framework that
measured different metrics such as task allocation rate, communication overhead, load
balance, was established in Chapter 7. The benchmark results showed that in terms of
task allocation performance, the hSKIM coordination approach with adjustable autonomy
outperforms traditional coordination approaches, i.e., cSKIM and dSKIM, in complex
scenarios where tasks require multiple skills and a fleet is composed of the robots with
different number of skills. Therefore, it can be concluded that, although the centralized
task allocation approach performs well in simple scenarios, distributed inference-based
task allocation approach is more suitable for complex scenarios where a collaboration
and coordination between heterogeneous fleet members plays an important role.

8.1.3 Shared Knowledge for Adaptive Autonomy

The third research question addressed the notion of human interactions in a system and
evaluated the impact of shared knowledge on adaptive autonomy.

Contribution 3 Shared knowledge as an effective means to evaluate the
benefits of adaptive autonomy

The SKIM framework is designed with the objective to model shared knowledge as a
basis for adaptive autonomy in mixed teams. The semantic approach drives the modeling
of shared knowledge which enables the collaboration activities between involved entities
by means of ontologies: SKIM-RO and SKIM-CO. Hence, the decisions are results of
automated reasoning on them.

hSKIM implements two algorithms, described in Chapter 6, that introduced two
different models of human interaction for facilitating decisions emerged due to the
ambiguities occurred during the task allocation and robot-robot interactions. The first
algorithm triggers reasoning on SKIM-CO which classifies two types of tasks: (1) input
tasks at the beginning of a mission, and (2) ad-hoc tasks which emerge during the mission
due to the skills mismatch between a robot and a selected task. The classification has two
outcomes independently of the task type: (1) a task is mapped to a robot, or (2) there is
no suitable robot for the given task. The outcome of mapping depends on SKIM-CO.
However, an unmapped task does not imply that the task could not be executed. In
that case, the task is assigned to a human who is assumed to have knowledge to solve
task allocation problem. In the simulation the human actor performs the task allocation
algorithm which utilizes knowledge on the fleet, thus complementing the inference-based
task distribution. The second algorithm pertains to a robot which consults the human
operator during a task execution. The human operator is consulted to take a decision
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in a case when conflicting robots try to execute the same task. The decision-making
algorithm performed by the human actor is based on a cost function including following
parameters: (1) skill matching degree between a robot and a task, and (2) resource
availability, i.e., resources for completing a task.

For the evaluation of different autonomy levels, a benchmark framework that measured
similar metrics as the framework for evaluating three coordination approaches was
established in Chapter 7. The benchmark results showed that the medium autonomy
level should be a preferred approach when a focus is on minimizing the communication
overhead. On the other hand, as expected, the highest autonomy level requires less
human activities. Moreover, the task allocation and utilization rates are not influenced to
a great extent when the autonomy level changes. However, detailed results are discussed
in the benchmark in Chapter 7.

8.2 Future Work

Future work refers to research topics which strive for the improvement of hSKIM coordi-
nation approach:

1. Enhance the semantic modelling of the human decision-making mechanism with
the focus on developing a support for different human decision-making models.
The focus should be on introducing additional parameters in the existing model
of adaptive autonomy, e.g., a parameter which describes the number of requests a
human can handle per unit of time, as well as a support for having multiple humans
providing different models in the same mission. This aspect is critical in missions
where multiple humans, with different capabilities and skills, collaborate with a
robotic fleet.

2. Extend the existing task model by introducing dependencies between tasks that
build up a complex task. Introduce a hierarchy between tasks with respect to
the priority and the order of task execution. This implies a new property in the
ontology which will be used to build dependencies between task instances and which
will have to be checked before a robot starts with a task execution.

3. Improve the existing desynchronization approach which currently utilizes random
waiting times before a robot tries to execute a task and thus increases overall
task execution time. The existing approach could be enhanced by introducing a
distributed shared token which guaranties that a robot which owns a token has an
exclusive right to select a task at time t and after that has to pass the token to
another robot. Although the waiting time in this approach depends on the number
of robots in a fleet, it could be potentially lower than in the current approach.
However, it is necessary to address following criteria in this approach: (1) to decide
which robot will initially get a token, (2) in which order robots pass token, and (3)
what do the robots do while waiting on a token.
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4. Upgrade the existing fail-over concepts to be able to handle situations when a robot
fails, e.g., it becomes isolated from a robotic fleet due to the hardware issues or
power loss. In that case the robot will be unable to write an allocated task back to
the space. Thus, there should be a component which monitors executed tasks and
generates a notification if some tasks are not executed due to the robots’ failure.

However, the priority should be on the extension of human interaction model which
should support more complex interactions and should scale with respect to the number
of human operators.
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