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Kurzfassung

Die Herstellung von fotorealistischen Bildern, die kaum von realen Bildern unterscheidbar
sind, ist eines der wichtigsten Probleme in der Computergraphik. Übermäßige Abtastung
während der Monte Carlo Integration bei Physically Based Rendering und besonders
bei der Monte Carlo Path Tracing ermöglichen Bilder dieser Qualität. Das Problem
der Monte Carlo Integration ist die Varianz bei einer niedrigen Abtastrate, welche als
Rauschen im Endbild erscheint. Um dieses Problem zu umgehen, wird mehrdimensionale
Filterung verwendet.

In dieser Arbeit wird die Anwendbarkeit der Genetischen Programmierung für die
Suche nach neuen mehrdimensionalen Filterausdrücken untersucht. Außerdem werden
drei neue Ausdrücke vorgestellt, die bei unserer Methode generiert wurden. Unsere
Methode besteht aus iterativen zufälligen Änderungen der ursprünglichen Ausdrücke
bis zur Erfüllung des Abbruchkriteriums und aus dem Vergleich der mit neu erzeugten
Ausdrücken erhaltenen gefilterten Pixelwerte mit den Ground Truths der Trainingssze-
narios. Die so erhaltenen Ausdrücke erzielen bessere Ergebnisse als ein Crossbilateraler
Filter mit konstanten Parametern. Desweiteren erlaubt unsere GPU Implementierung der
identifizierten Ausdrücke eine schnelle Filterung des Monte Carlo Rauschens mit einer
Rechenzeit von weniger als einer Sekunde.
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Abstract

Producing photo-realistic images, hardly distinguishable from the real photos, is one
of the most important problems in computer graphics. Physically based rendering and
particularly Monte Carlo path tracing is able to produce images of such quality by
performing excessive sampling during Monte Carlo integration. The problem of Monte
Carlo Integration is a high variance at low sampling rate. This variance appears as a
noise in final image. In order to address such problem high-dimensional filtering is used.

In this thesis we inspect the applicability of the Genetic Programming for the search of
new high-dimensional filtering expressions and present three novel expressions generated
by our method. Our method consists of iterative random changes of initial expressions
until the finishing criterion is met and the comparison of the filtered pixel values, obtained
with newly generated expressions, with the ground truth of the training scenes. The
resulting expressions perform better than cross-bilateral filter with constant parameters.
Additionally, our GPU implementation of identified expressions allows fast filtering of
Monte Carlo noise with computational time of less than a second.
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CHAPTER 1
Introduction

1.1 Motivation
The main objective of computer graphics is generation of high-quality images from the 3D
models. This process is actively used in such fields as video game industry, movie industry
and medical visualization. The video game industry achieved incredible heights nowadays.
The amount of turnover in this industry is the source of big investments in software and
hardware, especially in graphic cards. Another field that is being excessively evolving is
virtual reality. With the help of the headset the full immersion in the 3D world is possible.
All of these fields require high degree of interactivity, what leads to the demand for fast
reaction time to the user’s input. Rasterization is a rendering technique that is able to
provide required degree of interactivity. Nowadays new games want to allure customers
by the incredible graphics and level of details. The same demand holds for the VR,
the headsets are getting higher resolution and starting to require photo-realistic images.
Unfortunately, rasterization techniques are only able to render scenes with simplified
illumination.

In contrast to that, physically based rendering is able to produce images that can be
hardly distinguishable from the real photos. It uses the approximation of the Maxwell’s
equations called rendering equation (see Section 2.1.1). Rendering equation accounts
for the light coming from all possible directions and therefore supports global illumi-
nation. The problem is that rendering equation is the Fredholm integral equation of
the second kind and therefore infinite dimensional integral. Such integral can not be
solved analytically except for very simple cases. In order to address such problem the
numerical solutions are used, good example of which is Monte Carlo (MC) integration.
MC integration uses samples (values of the functions at some randomly chosen directions
or points) to approximate the integral. To obtain a visually pleasant photo-realistic image
a lot of samples are needed. For the scene of medium complexity around 30 thousands
samples per pixel are required to produce noise-free images. Figure 1.1 shows the impact
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1. Introduction

of different sampling rates. The rendering of an image with high amount of samples takes
minutes or even hours. With the aforementioned rendering time pure MC rendering can
not be used in the real-time applications. There are several methods for mitigation of
such problem: importance sampling, adaptive sampling and filtering (Section 2.3) of
the noise. This thesis is concentrated on the filtering of Monte Carlo noise in the Path
Tracing.

1.2 Problem Statement

With the low number of samples Monte Carlo method introduces noise in the image (see
Figure 1.1a). The source of this noise is the variance from the Monte Carlo estimator,
because with small amount of samples estimator underestimates or overestimates the
integral in the Rendering Equation. Such noise is unpleasant for the eye, therefore, Monte
Carlo method at low sampling rate is not utilizable.

The main goal of this thesis is to find new approaches for Monte Carlo noise reduction
with the help of image-space high-dimensional filtering. We search for new filtering
expressions by utilizing Genetic Programming (GP). This thesis searches for the answers
to the following research questions:

1. Is Genetic Programming capable of inferring new filtering expressions, which can
outperform current state of the art?

2. Are there any good parameters or sets of data that can give better final results?

3. What is the best set of auxiliary information (for example normal, world position,
etc.) for the filters?

1.3 Contributions

This thesis addresses the problem of filtering Monte Carlo noise in the physically based
rendering by the novel approach: by generating new expressions with the assistance of
GP algorithm. The main contributions of this thesis are:

• novel filtering expressions. A set of generated expressions that filter noise from the
image rendered at low sampling rate.

• investigation of the GP algorithm’s applicability for the Monte Carlo filtering with
the framework for searching of new expressions.

• empirical investigation of the importance of scene features.

• a proof of concept implementation for the search of new expressions and for the
GPU filtering with such expressions.

2



1.3. Contributions

(a) Scene rendered with 4 samples per pixel. The rendering time of the scene is 4 seconds.

(b) Scene rendered with 96 000 samples per pixel. The rendering time of the scene is 6 hours.

Figure 1.1: Figure illustrates the differences between undersampled scene (a) and a scene
rendered at the sampling rate required for the noise free image (b). The images were
rendered with the PBRT [PH10].
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1. Introduction

1.4 Thesis Outline
The thesis continues as follows. Theoretical background and recent research on this
topic are discussed in Chapter 2. The core concept of the algorithm and implementation
specifications are described in Chapter 3. The evaluation and results are shown in Chapter
4. The limitations of the algorithm and possible future improvements are presented in
Chapter 5. Chapter 6 concludes the thesis.
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CHAPTER 2
Theoretical Background and

Related Work

2.1 Theory of Light Transport

Light is essential for human vision. Only trough the light we can perceive the world
around us. Light falls at the pupil of our eye, brain processes neural signals originated
from the eye and gives us the picture of the world. Therefore, to be able to produce
photorealistic image, the simulation of the light is required and a process of tracing the
light rays is a corner stone for rendering in computer graphics. Light should be traced
throughout all the way from start, the light source, then as it is reflected, refracted
from the objects’ surfaces and until it ends up on the camera’s lens. With the rendering
equation it is possible to perform such tracing of the light rays. Rendering equation is
described in Section 2.1.1. Several algorithms (Section 2.2) are based on the evaluation
of rendering equation. This section describes mathematical model of light transport used
in rendering.

2.1.1 Rendering Equation

Since the light is an electromagnetic wave it complies to the Maxwell’s equations. There-
fore, it is possible to model light transport by solving the Maxwell’s equations. But to
solve Maxwell’s equations computations in terms of atoms should be performed, that
are still infeasible for modern hardware. Instead of that, a macro-level optical model is
preferable. Such model can be derived from the energy balance. Taking into account
the energy conservation law in isolated systems it can be stated that the difference of
incoming and outgoing energy should be equal to the difference between absorbed and
emitted energy. Thus, we are interested in the amount of energy that comes at specified
angle and the amount of energy that exits the surface. The most often used radiometric
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2. Theoretical Background and Related Work

Figure 2.1: The solid angle Ω subtended by a 3D object, is equal to the surface area of
its projection onto the unit sphere.

quantity to calculate these energies is radiance. Radiance is the total radiant flux received
by the surface per unit solid angle per unit projected area. The solid angle (Figure 2.1)
Ω subtended by a surface S is defined as the surface area Ω of a unit sphere covered by
the surface’s projection onto the sphere. It can be interpreted as a measure of how large
the object looks to an observer. The radiant flux is the radiant energy received per unit
time. The radiance coming from point p in direction ~w is denoted by L(p, ~w). In order
to ensure the energy balance, the radiance coming from the surface should be equal to
the sum of emitted and reflected radiance

Lo(p, ~w) = Le(p, ~w) + Lr(p, ~w)

All light energy, that comes to the specific point on the surface, contributes to the
radiance reflected from that point to the outgoing direction. To take this light energy
into account we need to integrate over hemisphere for all possible incoming directions,
what can be written as:

Lo(p, ~w) = Le(p, ~w) +
∫
H2

fr(p, ~w, ~w′)Li(p, ~w′)
∣∣~w′ · ~n∣∣ d~w′ (2.1)

where:

6



2.1. Theory of Light Transport

Figure 2.2: The values of light attenuation at different angles to the light source.

• Lo(p, ~w) is the outgoing radiance at position p in direction ~w,

• Le(p, ~w) is the emitted radiance,

• H2 is the unit hemisphere subtended at position p in the direction of the surface
normal ~n,

• fr(p, ~w, ~w′) is bidirectional reflectance distribution function (BRDF) described in
Section 2.1.2,

• Li(p, ~w′) is the incident radiance from incoming direction − ~w′,

• |~w′ · ~n| is the dot product between a light vector ~w′ and surface normal. This product
is denoted as a light attenuation. Attenuation can be intuitively understood as the
loss of intensity with the increase of the angle between vector and surface normal.
This visualization can be seen in Figure 2.2.

The rendering equation (Equation 2.1) was introduced by Kajiya [Kaj86]. With utilization
of rendering equation it is possible to simulate global illumination and other distributed
effects such as: motion blur, area light sources, soft shadows and depth of field. Since it
is an optical model, that approximates Maxwell’s equations, some simplifications have
been made. The main simplification of this model is that it does not account for the fact
that light is a wave. Therefore, Rendering Equation does not account for interference,
diffraction and polarization. Another simplification is an assumption that the media
between the objects are considered to be homogeneous and such effects as participating
media with the fog as an example can not be easily simulated.

Rendering equation is a Fredholm integral equation of the second kind. Since the
result is dependent on the scattered light, the integral has infinite dimensionality. The
complexity also depends on the scene’s geometry, different BRDF representations and
different effects. It is impossible to solve Rendering equation analytically in general.
Therefore, a numerical solution should be used instead.
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Figure 2.3: Left: Perfect diffuse reflection. Middle: Glossy reflection. Right: Perfect
spectular reflection.

2.1.2 Bidirectional Reflectance Distribution Function

BRDF is defined as the ratio of the quantity of reflected light in direction ~w at the point
p on the surface, to the amount of light that reaches the surface from direction ~w′. It
can be formulated mathematically in following way:

fr(p, ~w, ~w′) = dLr(p, ~w)
dE(x, ~w′)) = dLr(p, ~w)

Li(p, ~w′) |~w′ · ~n| d~w′

Reflection from surfaces can be split into three broad categories:

• Perfect diffuse (Figure 2.3 left) - reflects light uniformly to all directions on the
hemisphere.

• Perfect specular (Figure 2.3 right) - reflects light according to the law of reflection.

• Glossy (Figure 2.3 middle) - is something in between, it reflects the light mainly
in one direction, but slightly spread around that direction. Perfectly diffuse and
specular do not occur in real life, so most objects are glossy.

In order to be physically plausible the BRDF is required to conform to the following
laws:

1. Positivity. BRDF is a probability density function (PDF) and therefore it should
be positive i.e.

fr(p, ~w, ~w′) ≥ 0 (2.2)

2. Helmholtz reciprocity. Incoming and outgoing directions are considered to have
the same reflection and swapping the directions in the BRDF function should not
change the value. It can be formulated as :

fr(p, ~w, ~w′) = fr(p, ~w′, ~w) (2.3)

8



2.2. Physically Based Algorithms for Global Illumination

3. Energy conservation. The energy of reflected light at the non-emitting surface
point can not be higher then the energy of the incoming light. Thus, the following
integral has to be less than 1 :∫

H2

fr(p, ~w′, ~w)
∣∣~w′ · ~n∣∣ d~w′ ≤ 1 (2.4)

There are several ways to derive BRDF: analytically, empirically or to measure in the
laboratory. Measured BRDFs are represented as arrays of the reflectance and refraction
at the different angles and positions. Some of the derived BRDFs for the computational
simplicity do not comply to the physical constraints.

2.2 Physically Based Algorithms for Global Illumination

The amount of realism in the image rendered with algorithms based on the physics of
light transport obtained big popularity in computer graphics.

2.2.1 Ray Tracing

Recursive ray tracing was introduced by Whitted [Whi79]. Ray tracing is a method of
tracing of the rays, that originates at the camera and finishing at the light source. The
algorithm can be described in the following way: First, primary rays are cast from the
camera to the scene. Then the closest intersection point of each ray with the scene is
calculated. If the ray does not intersect any object the background color is returned. If
the intersection with the scene’s object occurred, an intersection point for the nearest
object is calculated. Afterwards, the shadow ray is cast to define if the object is occluded
and is not directly lit by the light source. This part of computation accounts for the
direct illumination. To account for indirect illumination besides the shadow ray two
additional rays are cast: reflection ray and refraction ray. Their intensity is computed by
recursively tracing the bouncing rays until the number of maximum depth is achieved
or a light source is hit. Obtained results from these computations are scaled by Fresnel
reflection and refraction probabilities and are summed up with the direct illumination
and emitted light. The final result of light intensity in a specific direction is the sum of
emitted, direct illumination and indirect illumination. It can be described as:

Io(p, ~w) = Ie(p, ~w) + kd

ls∑
j=1

∣∣ ~wj ′ · ~n∣∣+ ksS + ktT (2.5)

Where Io(p, ~w) is incoming intensity to the camera from intersection point, Ie(p, ~w) is
intensity of the emitted light, kd is diffuse coefficient, ~n is normal of the surface at
nearest intersection point, ~wj ′ is ray towards jth light source, S is intensity from recursive
specular part, T is intensity from recursive transparent part, ks and kt are Fresnel’s
coefficients of reflectance and refraction respectively.

9



2. Theoretical Background and Related Work

Originally the algorithm was targeting specular and transparent objects, because only
one reflection and refraction angle was accounted complying to the Snell’s law. Simulations
with the use of such method could only produce sharp shadows, sharp reflections and
sharp refractions. Later Cook [CPC84] introduced Distributed Ray Tracing. He proposed
to distribute existing rays at the hit point in each dimension according to the parameters
of the scenes. For example, to simulate the soft shadows it would require to distribute
rays at the hit point in the direction of area lights. Distributed ray tracing can model
such effects as glossy reflections, translucency, penumbras, depth of field and motion blur.

2.2.2 Monte Carlo Rendering

Monte Carlo rendering is the class of rendering algorithms that uses Monte Carlo
integration method to approximate the integral in the rendering equation.

2.2.2.1 Monte Carlo Integration

Monte Carlo integration is general method for numerical integration. It utilizes integrand
values taken at random points to evaluate integral with convergence rate that is inde-
pendent of the dimensionality of the integrand. To evaluate a one-dimensional integral
sampled by uniform random variables Xi ∈ [a, b] we have:∫ b

a
f(x)dx ≈ b− a

N

N∑
i=1

f(Xi)

The right part is called estimator and we will denote it as FN . It is possible to show
that the expected value of such estimator is equal to original integral. Random variable
Xi is sampled uniformly therefore its PDF p(x) is equal to 1/(b− a), according to the
constraint, that p(x) should be positive and integrate to one over [a, b] domain. Using
the definition and additive property of the expected value:

E[FN ] = E

[
b− a
N

N∑
i=1

f(Xi)
]

= b− a
N

N∑
i=1

E[f(Xi)]

= b− a
N

N∑
i=1

∫ b

a
f(x)p(x)dx

= 1
N

N∑
i=1

∫ b

a
f(x)dx

=
∫ b

a
f(x)dx

(2.6)

It is possible to generalize the estimator for arbitrary PDF. This would give us the means
to reduce the variance of the estimator. If random variable Xi has arbitrary PDF p(x) ,

10



2.2. Physically Based Algorithms for Global Illumination

then the estimator

F ′N = 1
N

N∑
i=1

f(Xi)
p(Xi)

(2.7)

can be used to estimate the original integral. To avoid division by zero we need to put a
constraint on p(x) to be non-zero for all x where |f(x) > 0|. Consequently the expected
value of the estimator is :

E[F ′N ] = E

[
1
N

N∑
i=1

f(Xi)
p(Xi)

]

= 1
N

N∑
i=1

∫ b

a

f(x)
p(x) p(x)dx

= 1
N

N∑
i=1

∫ b

a
f(x)dx

=
∫ b

a
f(x)dx

(2.8)

The uniform law of large numbers ensures us that the estimator at the infinity converges
to the expected value. Thus, MC estimator equals to the original integral at infinity.

The Monte Carlo method does not pose restriction on the the integrand and the
integral area. Only limited number of samples is needed for the evaluation of integral
with certain precision. Besides that, the convergence rate of the method is invariant to
the dimensionality, thus it is a good method for approximation of the rendering equation,
which consists of high dimensional integral. The drawback of this method is its slow
convergence rate O(

√
N). With the small number of samples Monte Carlo estimator

introduces approximation error in the amount of variance. The variance of MC estimator
is proportional to the O( 1√

N
).

2.2.2.2 Path Tracing

Path tracing was introduced by Kajia [Kaj86] as an approximation technique for rendering
equation. Path tracing can be seen as the type of ray tracing algorithm with the main
distinction in the way of casting secondary rays. In the path tracing secondary rays are
cast multiple times in random directions according to the PDF of the MC estimator.
When the light hits the surface the light integral is estimated with the MC estimator:∫

H2

fr(p, ~w, ~w′)Li(p, ~w′)
∣∣~w′ · ~n∣∣ d~w′ ≈ 1

N

N∑
j=1

f(p, ~w, ~wj ′)Li(p, ~wj ′)
∣∣ ~wj ′ · ~n∣∣

p(wj)
(2.9)

With the number of samples approaching to infinity MC estimator converges to the
integral. Path tracing is a general rendering algorithm that can render broad variety of
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2. Theoretical Background and Related Work

the effects, such as area lighting, penumbras, depth of the field and others. To be able to
render visually pleasant photorealistic image thousands of samples per pixel are required.
With small number of samples the variance of the MC estimator is seen on the rendered
picture as noise. Since the variance of the estimator is proportional to the 1√

N
to reduce

the amount of noise by two it is needed to take four times as much samples as were
already taken. Variance of the estimator can be reduced with the Importance Sampling
technique [Has70, Sie76]. Importance sampling is a variance reduction technique that
exploits the fact that the Monte Carlo estimator (Equation 2.7) converges more quickly
if the samples are taken from a distribution p(x) that is similar to the function f(x) in
the integrand.

2.2.2.3 Bidirectional Path Tracing

Consider a scene where the light source is isolated at most of the possible directions,
i.e. the scene is illuminated dominantly by the indirect illumination. Applying the path
tracer to such scene will result in mainly dark scene. The reason for that is that only
small amount of paths will end up at the light source. Bidirectional path tracing [LW93]
was introduced to address this problem. The distinct novelty of bidirectional path tracing
from simple path tracing is the use of forward propagation technique together with back
propagation. To generate the path, two separate subpaths are generated, one originated
at the camera and the other originated at light source. Afterwards, both subpaths are
continued by sampling the directions from the BRDF function. Finally, both of these
subpaths form a single path by connecting the points of the subpaths if they are visible.
Besides the better visual results for certain scenes, the method has better convergence
rate even with the computational overhead for maintaining two paths. The depiction of
the algorithm can be seen in Figure 2.4

2.2.2.4 Russian Roulette

Russian roulette is a stochastic technique that helps to terminate recursive spawning of
rays for indirect illumination. The biggest benefit of its utilization is achieved when the
integrand has a small value, that means either attenuation is big or BRDF value is small.
Algorithm consists of selecting ray termination probability q and termination of the path
with this probability. The termination probability value can be chosen randomly or to
have some intuition behind it, like estimate of the value of integrand that its contribution
will be very low. With the probability (1 − q) ray tracing continues but its result is
weighted by 1

1−q that effectively account for all of the samples that were skipped:

F ′ =
{

F
1−q ξ < q

0 otherwise

The expected value of the resulting estimator is the same as the expected value of the
original estimator

E
[
F ′
]

= (1− q)
(
E [F ]
1− q

)
= E [F ]
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Figure 2.4: Bidirectional path tracing [LW93]. Two separate subpaths are traced origi-
nating in camera and the light source and later connected via the shadow ray.

and therefore it does not introduce bias. Russian roulette can only increase variance.
But ingenious choice of the termination probability can significantly reduce computation
time with having controllable increase in variance.

2.3 Filtering

MC rendering has slow convergence rate of O(
√
N). It requires a lot of time to render

visually pleasant photorealistic images. Without a high number of samples MC estimator
introduces noise in the image caused by variance. One of the techniques that addresses
the problem of the noise is image reconstruction from continuous light function (also
known as filtering). Filtering technique uses information from the neighbour pixels and
tries to filter out noise herewith preserving the features of the scene. Filtering equation
can be described as :

fi =
∑N
j=1wijcj∑N
j=1wij

(2.10)

where N is number of pixels in the neighbourhood of the ith pixel, cj is color value of
jth pixel and wij are the weights, that signify the ratio of contribution of jth neighbour
pixel to the filtered pixel. The main function of filtering represents substitution of the
pixel value by the weighted sum of its neighbours. Pixel color could be either gray scale
or in RGB form, in the later case cj and fj will be vectors with values (crj , c

g
j , c

b
j) and
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(f rj , f
g
j , f

b
j ) respectively. The weights are obtained with the help of additional formula

called filter’s kernel.

One of the important properties of the filter is its consistency. The filter is called
consistent if it converges to the ground truth with the number of samples tending to
infinity.

2.3.1 General Image Denoising Algorithms

There are different filters’ kernels, such as box filter, Mitchell, Sinc or Gaussian. Some
of them have analytical basis, some of them were derived empirically. The most used
filter in the signal transmission is Gaussian filter. In Gaussian filter the weights decrease
exponentially with increasing distance between pixels. Its kernel can be formulated as :

wij = 1
σ
√

2π
exp−‖pi − pj‖

2

2σ2

where pi and pj are the positions of the ith and jth pixels respectively, σ2 is a standard
deviation of the Gaussian function and commonly used as the width of the square
neighbourhood. After applying Gaussian filter to the noisy image together with the noise
some of the image’s features are blurred. The reason for that is the filtering based only
on the spatial distance.

More specific filter, the bilateral filter [AW95, SB97, TM98] was proposed in the late
90s. Its main advantage is the ability to preserve edges. Tomasi and Smith [TM98]
introduced extension of the Gaussian filter that takes into account scene’s colors. Big
difference in pixels colors signifies the discontinuity and therefore determines the edges
and consequently decreases the weights for two pixels significantly, so that the pixels
from the left side and the right side of the edge will be blurred and edge itself would be
preserved. The simplicity and subtlety of this filter obtained popularity in the computer
graphic community. One of the drawbacks of bilateral filter is slow filtering speed for
the utilization in interactive systems. Several acceleration techniques were proposed to
address this problem [DD02, PD09]. Chen et al. [CPD07] proposed an approach of edge
aware filtering with bilateral grid. They divide the algorithm in three parts: splatting,
blurring and slicing. During the splatting, bilateral grid is formed from the original
image. Blurring is a process of filtering performed on the pixels inside bilateral grid.
Conclusively, slicing means return to the image space by the use of trilinear interpolation.
Adams et al. [ABD10] suggested permutohedral lattice as alternative for the bilateral grid
and use of barycentric interpolation for splatting and slicing. Dammertz et al. [DSHL10]
introduced the utilization of À-Trous wavelet transformation with edge stopping criteria
to approximate cross bilateral filter using additional information including normals and
world positions. He et al. proposed a method called guided filtering [HST10], that
represents the filtered value as solution for minimization problem of a local linear model.

[BCM05] proposed extension and generalisation of the bilateral filter called Non-local
means (NLM) filter. The novelty in their method is the utilization of the similarities of
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pixel’s patches trhoughout the whole image. The image has repeating patches of pixels
that can give better information for filtering, since they contain multiple pixels. It is
possible to derive bilateral filter from NLM by reducing the length of the patch to one
pixel. The patches are compared trhoughout the whole image, hence a patch from one
corner of the image can contribute to the patch of the pixels from the other corner. Thus
the filter is non-local. NLM shows better quality of the filtered image comparing to the
bilateral filter. The drawback of the NLM is that it is much slower and computationally
expensive than bilateral filter. [MKSS14] proposed the acceleration method for NLM.

All these filters are Euclidean filters because of the use of Euclidean distance for
distance computation between pixel’s positions and colors. As alternative geodesic filters
can be applied that use another metric for computation distance. The accelerated
algorithms filter the images in the fraction of second, what permits their use in the
real-time applications

[PSA+04] used combined information from the photos done with and without flash for
filtering. They noticed that information from the image that was made with flash could
be used to give additional information to filter the image that was made without flash.
Such filter is called joint bilateral filter. Additionally, information obtained during the
rendering such as normals, textures and world positions could be used to help to filter
only the noise from the image and preserve actual details of the scene. The reason for that
would be that this auxiliary information is less noisy than the color values. Filtering with
the use of such features is called high-dimensional filtering. The fast high-dimensional
filtering algorithm was presented by Gastal and Olivera [GO12]. Their algorithm uses
manifolds as reduced dimension for splatting, recursive filter [GO11] for blurring and
normalized convolution for slicing. A comprehensive overview on the state of the art can
be seen in [SZR+15]

2.3.2 Filtering of Monte Carlo Noise with Adaptive Sampling

Hachisuka et al. [HJW+08] proposed a general multidimensional adaptive sampling
algorithm. During adaptive sampling, more samples are put in the regions with high
frequency in the multidimensional domain. Isotropic nearest neighbor interpolation
was performed as reconstruction step. Algorithm becomes inefficient with increased
dimensionality. In contrast to that, the work of Overbeck et al. [ODR09] is not prone
to "curse of dimensionality". Overbeck proposed adaptive wavelet rendering algorithm
for filtering and adaptive sampling. The algorithm distributes more samples to coarse
scale coefficients in the smooth regions with high variance and to fine scale coefficients
at the edges. Coarse scale coefficients and fine scale coefficients are the inner products
between image and scale vawelet basis functions of most dilated level and the finest
level respectively. The modification of a standard soft-thresholding denoising is used
for reconstruction. However, at the low sampling rate (below 32 samples per pixel)
the wavelet artifacts could appear. Several papers investigated frequency analyses for
depth of field [SSD+09], motion blur [ETH+09] and soft shadows [EHDR11]. Rousselle
et al. [RKZ11] proposed an approach for choosing the most appropriate filter for every

15



2. Theoretical Background and Related Work

pixel with greedy algorithm that minimizes Mean Square Error (MSE). The drawback of
the algorithm is restriction to isotropic filters. More recently, Rousselle et al. [RKZ12]
introduced dual sample buffer for alleviation of the variance and error estimation. The
utilization of Stein’s Unbiased Risk Estimator (SURE) as an unbiased error estimator
can be seen in [LWC12, RMZ13]. To cope with the noisy features [LWC12] divided
the distance between features by sample variance and [RMZ13] suggested to pre-filter
noisy features with NLM (Non-Local Means) filter. Kalantari et al. [KS13] presented a
method for variance calculation with wavelet transformation and use of spatially-invariant
denoising algorithms as BM3D or BLS-GSM for filtering. Moon et al.[MCY14] proposed
the utilization of truncated single value decomposition (SVD) method for switching to
reduced-dimensional coordinates, what also works as prefiltering for the noisy features.
Additionally, local regression method was used for determination of the filters bandwidth.

2.3.3 Filtering of Monte Carlo Noise without Adaptive Sampling

Lehtinen et al. [LAC+11] use depth and motion information for reconstruction of the
image from the samples to handle motion blur, depth of the field and soft shadows effects
and global illumination [LALD12]. Sen et al. [SD12] presented Random Paramater
Filtering (RPF) algorithm to compute functional dependency between features and
random parameters and use obtained results to drive modified cross-bilateral filter to blur
the noise and preserve scene details. They achieve high visual quality but the algorithm
is computationally expensive and the memory consumption is excessive. In the recent
work of Kalantari et al. [KBS15] neural network is used to find the dependency of the
filter parameters on the secondary features, such as features statistics, gradients and
mean deviation.

2.4 Genetic Programming
Genetic Programming (GP) is an optimization technique that mimics the principle of
evolution - the survival of the fittest. This technique is general and domain-independent
and can be applied to the vast types of problems. GP in a broad sense appears as a type
of genetic algorithm but differs from it by operating on the executable structures, like
programs represented in the Abstract Syntax Tree (AST). These structures are often
represented in programming language, mathematical expression or boolean expression.
There are variations of the way that structures could be represented such as linear or
graph representation. In graph representation the structures are stored in the form of tree
and evaluation is composed of recursive calls. In contrast to that in linear representation
the form of instructions sequence is used. Good analogy for such form would be assembler
code, that consists of stack of instructions.

The algorithm starts with forming the population of the programs that symbolize
the potential solution of the defined problem. In each iteration every program in the
population is assigned a fitness value, obtained by evaluation of the fitness function.
Based on these fitness values some individuals of the population are selected to be
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parents for new generation. New generation is formed by expansion of the parents, i.e.
modification of the existing programs. The algorithm is running until specified finishing
criteria is met. The details of the algorithm are described below.

2.4.1 Program Representation

The programs are represented by the combination of the terminal and functional sets.
The terminal set consists of user defined input (variables, vectors etc.) and functions
with arity of zero, for example random function without parameters and constants. The
functional set is a set of user defined functions that determines possible actions of the
program. This set of functions is domain specific and should be devised properly. For
example a simple arithmetic problem would consists of functions (+, −, ∗, /) and for the
problem of labyrinth’s escape the functions as turn right, turn left, move forward
would be logical. Combination of these two sets form a trivial set of the programs. There
are additional subjects that are needed to be considered during the definition of the
trivial set: closure [Koz92] and sufficiency. Closure is set of constraints on the program
represenation, that should hold after all possible modifications of program. Riccardo Poli
and William B. Langdon[PLM08] partitioned closure into type consistency and expression
safety. Type consistency is the constraint on the input parameters of functions. For
example, some mathematical function should not have the input as a string. Expression
safety persuades that no illegal operation occurs, like division by zero. Sufficiency is
property of the trivial set that assures the ability of searched solution to be expressed by
trivial set. For example we can not express solution of the searching approximation of
logarithm function only with integers as terminals and the basic arithmetic functions.

2.4.2 Population Initialization

Population is the set of programs that serve as a source for possible solutions. Basically
the solution is obtained from the initial population by sequence of the modifications. But
this initial population should be defined before any modifications could be performed.
There are several random techniques for creating such initial population: full, grow and
ramped half-and-half. All of these techniques assume that maximum depth of the AST is
defined. Maximum depth of AST is a restriction on maximum length of the program
i.e number of nodes that is needed to be traversed from root till leaf (terminal value).
In the full method the whole tree is generated randomly. The tree is balanced (all
branches are of the same length specified by maximum depth value) with the functions
as intermediate nodes and terminal nodes in the leaves. In contrast grow technique offers
more variety on the shape of the tree. In the grow method the tree is formed in the
following way. Initially, the function is randomly chosen for the root node. Following,
we descend recursively by each edge of the parent node and randomly create new node,
with some probability either from functional set or from terminal set and then select
randomly an element of that set. If the maximum depth is reached we select randomly
one element from the terminal set as the leaf node. Generated in such way, AST has
different depths from leaves till the root. Ramped half-and-half is a combination of these
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two methods, such as the half of the population is generated by the full method and
the other half by the grow method. In some of the works [ABI98, hChY97, FM95] the
seeding is used to generate entire or to supplement initial population. Seeding is a process
of initialization of population by the individuals of the same type. Taking into account
the random nature of the algorithm’s optimisation, good starting point can be as crucial
as in the Newton’s method. Sometimes island model [Gro85] is advisable for obtaining
more diverse results. In island model the whole population is divided in small islands,
which seldom interact with each other and only at specific occasions. Thus, the programs
in each island interact only with the programs of the same island and the end result of
the algorithm will be more diverse. The special occasions for interaction between islands
could be a transportation of the best individuals to the other island after certain number
of iterations. This technique is good for the parallel computation.

2.4.3 Termination Criterion

Termination criterion and method of the choosing the best solution among the population
are important parts of Genetic Programming algorithm. Termination criterion is the
criterion by achieving which we terminate our algorithm. There are two criteria for
termination that are often used together: by reaching the maximum number of generations
and by deriving and individual, that has better fitness value then predefined threshold.
Maximum number of generations can be seen as a control parameter (see Section 2.4.4)
because it influences the computational time. With the use of only maximum number of
generations after achieving such number, individual or several individuals with highest
fitness value are chosen as solution. In case of threshold criterion the algorithm stops
when it generates a program that satisfies the threshold value and takes it as a solution.

2.4.4 Selection

Selection denotes the process of choosing the parents for generation of new individuals
by the modification operations. For the selection of parents the distinction between good
and bad programs is required. This can be achieved by assigning the fitness value for
every individual in population. Fitness value is a measure of the programs’ optimality
according to the rigorously chosen fitness function. Fitness can be evaluated explicitly
or implicitly. Implicitly fitness is evaluated when the individual survives the expansion.
This method is more appropriate for the genetic algorithms in the life simulation. More
common method of fitness evaluation in GP is explicit. In the explicit measuring of fitness
every individual is assigned some scalar value that represents its fitness. It can be an
amount of error between approximation and exact value of a function, the amount of time
of the execution, the accuracy of the classification or relative payoff after playing with
certain strategy against others. The evaluation of fitness almost always involves execution
of the program. It consists of the recursive traversal of the AST tree and computing
the results by backpropagating the computed values. After every individual is assigned
the fitness value, certain selection methods can be applied. The most intuitive method
for selection is proportional selection proposed by Holland [Hol75]. In the proportional
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selection the individuals are chosen with the probability proportional to the their fitness
values.

pi = fi∑N
j=1 fj

,

where pi is the probability with which the ith individual from the population will be
selected, fi is its fitness value and N is the size of the population. As alternative to
the proportional selection rank selection and tournament selection can be used. In rank
selection [Bak89] every individual has been assigned a rank (integer value) according
to its fitness value. Thus, the individual with the highest fitness value gets rank 1, the
individual with second highest value rank 2 and so on. Afterwards the probabilities are
distributed in the following way, described more detailed in [BT96] :

pi = 1
N

(
η− + (η+ − η−) i− 1

N − 1

)
; i ∈ {1, . . . , N} (2.11)

where η−

N and η+

N are selection probabilities of the worst individual and the best individual
respectively. η+ is a selection parameter that can be chosen with the respect to the
following constraints: η+ = 2− η− and η− ≥ 0 . By performing such selection it possible
to cope with the problem of domination of individuals with very high fitness relative
to others. In the tournament selection the individuals are randomly selected into the
group of specific size and then the individual with the highest fitness value is chosen.
Normally the size of the tournament group is equal to two but can be varying according
to demands of the problem.

2.4.5 Control Parameters Selection

Control parameters are the tuning parameters that can influence the end result of the
algorithm. The most important control parameter is the size of the population. There
is no best suitable number for every case, this parameter is problem dependant. The
algorithm’s computation time is dependent on the size of the population. The bigger
the size of the population the more fitness evaluations and expansion operations should
be performed. In the majority of the GP algorithms the assignment of the fitness value
is a bottleneck. The most common size of population is 500. As it was mentioned in
Section 2.4.3 maxmium number of generations is also a control parameter. Since every
iteration contains fitness evalutation of every individual in population, the computational
time increases linearly with the increase of maximum number of generations. Another
parameter that have an impact on computational time is the maximum depth of AST
representation of program. The bigger the program is the longer it takes to evaluate
it. Besides that there are two selection parameters of the algorithm. The first one is
a ratio of expansion operation, wich decides how the new generation is formed. Koza
[Koz92] suggests to use 90% of crossovers without mutations. Also other ratio can
be used to form new generation that proved to be efficient, such as selecting half of
population and perfroming crossover on them and forming other half by taking unmodified
individuals with applying mutations on some of them. The second selection parameter
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is the probability density function for selecting the nodes in the AST for crossover and
mutations. Uniform probabilty can be used as an example or as suggested by [Koz92]
choose with 90% probability from the functional nodes and with 10% probability from
the terminal nodes.

2.4.6 Expansion

In order to get the solution for the problem from the initial population, modification
(alternation) of the individuals is needed. Commonly used alternation operations in GP
are crossover and mutation. The crossover (recombination) is an operation of breeding
children from selected individuals. Crossover operation needs two individuals to act as
parents and therefore two selections from the population should be performed. The most
popular crossover variant used in GP is subtree crossover. Subtree crossover can be
described in following way: Initially, crossover points (nodes in the AST trees) are selected
with a certain probability from both parents. Then a new AST is obtained by swapping
the selected nodes between two trees and selecting the first tree. Herewith the whole
subtrees that start at the selected nodes are swapped. Mutation is an operation in which
a new individual is produced by the alternation of the existing individuals. The forms
of mutations that are the most commonly used in GP are subtree mutation and point
mutation. In subtree mutation a mutation point is selected with the same probability
as the crossover point and a subtree rooting in that point is substituted by randomly
generated tree. Opposite to subtree mutation, in point mutation only the selected node is
replaced. The selected node is replaced with equivalent node, which is of the same type
(functional, terminal) and if it is the functional type with the same arity. More forms
of the crossover and mutation can be found in [PLM08]. Besides these two operations,
a worth noting one is reproduction, in which the individual from current generation
is placed in the next generation unchanged. Reproduction is used as supplementary
operation to form lacking number of individuals to fill the whole population of new
generation, after crossover and mutation are performed. The description of another
domain specific alternation operations such as permutation, editing, encapsulation and
decimation can be found [Koz92].

2.5 Genetic Programming in Computer Graphics
Although GP has a lot of applications in different areas it still have not gained popularity
in the computer graphics. Worth notable works on Genetic Programming in the computer
graphics are [SAMWL11] for shader simplification and [BLPW14] for finding novel BRDF
formulas. We have have taken an inspiration in the work of Brady et al. [BLPW14] and
investigated applicability of the GP algorithm to the filtering problem.
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CHAPTER 3
Generation of New Filtering

Expressions with Genetic
Programming

This chapter describes the details of our GP algorithm for finding novel filtering expres-
sions. Section 3.1 shows overview of the search for new filtering expressions, Section
3.2 describes the algorithm and Section 3.3 describes the implementation details, such
as technology stack, generation of input data and decisions made in order to increase
performance.

3.1 Overview of the Search Algorithm
The process of searching for new filtering expressions can be visually represented in
diagram shown in Figure 3.1 and described in following way: First the input for the
algorithm is generated. The input is the representation of the training scenes with
additional parameters for the algorithm. Then this input is parsed by the program. After
processing of the input is finished the decision on the parameters of the algorithm has to
be made. Another operation, that should be performed before the start of the algorithm,
is formation of the initial population. The iterative part of the algorithm consist of:

• selection - the process of individuals selection in the population to act as parents
for the new generation. The individuals are selected according appropriate selection
method (see Section 2.4.4).

• expansion - the process of alternation of existing individuals to explore the solution
space. Expansion operators (see Section 3.2.4) are applied to the selected individuals
with specified probabilities.
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• fitness assignment - the process of evaluation of the expressions. After the new
generation is formed a fitness value should be assigned to each expression. This
fitness value helps to distinguish the individuals during the selection phase in the
next iteration.

Finally, as the termination criterion is met, the iterative part is terminated. The result
of the algorithm is obtained by sorting the individuals of the latest generation by fitness
value and selecting the best ones. The best representatives are then checked manually
for visual pleasantness of the results. Each part is described in detail in the following
sections.

3.2 Genetic Programming for Filtering

3.2.1 Operators

In order to modify a filtering expression we need to represent it in machine-understandable
way. As described in the Section 2.4.1 the trivial set, consisting of functional operators
and terminal values, should be defined. To get the idea of how to define the operators
already existing filtering expressions can be helpful. Extracting operators and values out
of them will create initial set. Having in mind the sufficiency condition we need to think
of other possible operators that could improve the expression’s fitness value. The closure
constraint does not hold in strict sense in our case, because there are feature vectors
that have higher dimensions and can not be used as an input for the operators beside
vector operators. We represent the trivial set in form of grammar, so that only specified
operations are allowed for functional and terminal sets. This grammar can be seen in
Figure 3.2 .

3.2.1.1 Functional Operators

The set of functional operators consists of unary, binary and vector operators.

Unary Operators To aspire the diversity we use trigonometric functions to introduce
non-linear dependency on the parameters. Operators of exponent and negation are taken
from the Gaussian filter. Even tough the square root can be represented with binary
operator power as sqrt = pow(x, 0.5), square root operation is faster. Besides that several
statistics kernels are used that are similar to Gaussian kernel and operators from the
already existing filters, that help to form the codebook (see Section 3.2.2), such as :
mitchell, sinc, epanechnikov, tricube and biweight kernels.

Binary Operators Main binary operators are arithmetic operations between two
numbers, which include sum, subtraction, multiplication and division. In order to comply
to type safety we use safe division function to avoid division by zero. Another binary
operator is power. Power is an exponential function that takes first parameter as a base
and the second parameter as the exponent.
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Figure 3.1: Overview of our search for new filtering expressions.

Vector Operators The set of vector operators consists of dot product and different
distance measuring metrics. The motivation behind the inclusion of dot product is its
naturality of utilization between two normals. We have three distance metrics between
two vectors x(x1, x2 . . . xN ) and y(y1, y2 . . . xN ) where N is dimensionality of the vectors:

• distance2 - is an Euclidean distance

d =

√√√√ N∑
i=1

(xi − yi)2
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〈expression〉 ::= 〈node〉
〈node〉 ::= 〈op〉 |〈scalar〉
〈op〉 ::= 〈unaryOp〉 (〈node〉)
|〈binaryO〉 (〈node〉 , 〈node〉)
|〈vectorOp〉 (〈vector〉 , 〈vector〉)

〈unaryOp〉 ::= − | sin | cos | tan | exp | asin | acos | atan | sqrt
| mitchell | sinc | epanechnikov | biweight | tricube

〈binaryOp〉 ::= ∗ | − | + | / | pow
〈vectorOp〉 ::= dot | distance2 | distance1 | distanceMax

〈vector〉 ::= worldPosition | normal | texture | secondaryTexture
| depth | directIllumination | wpGradient | nGradient | texGradient
| secTexGradient | dovGradient | diGradient

〈scalar〉 ::= 〈variable〉 |〈const〉
〈variable〉 ::= wpV ariance | nV ariance | texV ariance | secTexV ariance

| dovV ariance | diV ariance
〈const〉 ::= 0.1 | 0.2 | 0.3 | 0.3333 | 1.0 | 2.0 | 3.0 | π | 5.0 | 7.0 | 11.0 | 13.0

Figure 3.2: The grammar used for generation of novel expressions.

• distance1 - is a Manhattan distance

d =
N∑
i=1
|xi − yi|

• distanceMax - is a Chebychev distance

d = max
1≤i≤N

|xi − yi|

3.2.1.2 Terminal Variables

Terminal variables serve as an input for the functional operators. Terminals variables
consist of vector variables, scalar variables and constants.

Vector Variables The set of vectors consists of auxiliary features that were extracted
during the rendering of the scene. These features are less noisy and can give valuable
information for determination of the noisy pixels. Values of these features are determined
for every pixel in the scene. To determine these values at the arbitrary coordinates (x, y)
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a ray is shot from the camera eye position in the direction of the coordinates. If the ray
intersects an object we store the following data:

• world position - spatial three dimensional coordinates of ray’s intersection point
with the object in the world coordinate system.

• normal - normal of the surface of that object at the intersection position.

• texture - object’s texture value at the position of intersection.

• depth - the distance between intersection point and the camera position.

Valuable information for the glossy surfaces is secondary texture, because it is possible to
see the reflection of other objects on it. Secondary texture is a value of the texture at
the intersection point of the reflected ray. As proposed by [RKZ12] direct illumination
visibility can be used as additional information. Direct illumination visibility is a fraction
of light sources, visible at the intersection point. Gradients are proved to be good
indicator of the edges [KMA+15, MVZ16], thus we compute gradients for most of the
features by Sobol operator. The example of how features look can be seen in Figure 3.3.

Scalar Variables Scalar variables consist of the sample variance of the features. The
auxiliary feature depth is calculated as distance between world position and camera
position. Therefore depths variance is dependent on world position variance and we
decided not to include it. The color’s sample variance is one of the most valuable
components for error estimation as can be seen in [RKZ11, LWC12]. The desirable
expectation from the variables is to be related to the filter parameters for different
features, like the the σ in the Gaussian filter.

Constants Constants play important role for the modification of the expressions. It is
the simplest way to tune the expression by multiplying or dividing by a constant value.
For the replace mutation (which will be described later in Section 3.2.4) both variables
and constants are chosen uniformly. To avoid the dominance of choosing constants over
variables we have restriction on the number of constants. Which constants were chosen
to be representative can be seen in Figure 3.2.
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3.2.2 Codebook

Codebook is union of the sub-expressions of the predefined analytical expressions. We
populate the codebook with:

• mitchell is a kernel of Mitchell-Netravali filter [MN88] (also known as BC-splines).
This kernel can be formulated as

k(x) = 1
6



(12− 9B − 6C) |x|3+ if |x|≤ 1
(−18 + 12B + 6C) |x|2+ (6− 2B)
(−B − 6C) |x|3+ (6B + 30C) |x|2+ if 1 ≤ |x|≤ 2
(−12B − 48C) |x|+ (8B + 24C)
0 otherwise

(3.1)

This is an empirically derived kernel. It has two tuning parameters B and C. The
subjective result of combinations of different parameters values can be seen in the
Figure 3.4

Figure 3.4: Subjective look of the filtered picture with different tuning parameters. Image
courtesy of Don Mitchell [MN88].

The default value for both B and C is 1/3

• sinc is a low-pass filter used in the signal processing. Its kernel can be described as

k(x) =


1 if x = 0
sin(πx) sin(τπx)

π2x2 if 0 ≤ |x|≤ 1
0 if |x|> 1

where τ is a tuning parameter that determines the size of the kernel and its default
value is 3.0
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3.2. Genetic Programming for Filtering

(a) World positions (b) Normals (c) Textures

(d) Secondary textures(ST) (e) Depth (f) Direct illuminations(DI)

(g) World positions’ gradients (h) Normals’ gradients (i) Textures’ gradients

(j) ST’ gradients (k) Depths’ gradients (l) DI’ gradients

Figure 3.3: Features representation. All the features are mapped to the interval of [0, 1].
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• epanecnhikov - is a kernel originally introduced by Epanechnikov [Epa69] for
estimation of multivariate probability density. Its kernel is

k(x) =
{ 2
π

(
1− |x|2

)
if |x|< 1

0 otherwise

• biweight is a statistical symmetrical kernel, that can be described as

k(x) =
{15

16
(
1− |x|2

)2
if |x|≤ 1

0 otherwise
(3.2)

• tricube is another statistical kernel

k(x) =
{(

1− |x|3
)3

if |x|< 1
0 otherwise

(3.3)

• variation of Gaussian filter, where distance between pixel position is substituted by
Euclidean distance between features with the σ of 0.1

The codebook generation process can be described by the following example. Lets assume
that we want to populate codebook with Gaussian filter for world positions

e−
||fwp

i
−f

wp
j
||2

2·0.12

then the codebook would consists of all sub-expressions of the filter

codebook ={e−
||fwp

i
−f

wp
j
||2

2·0.12 , −
||fwpi − f

wp
j ||2

2 · 0.12 ,
||fwpi − f

wp
j ||2

2 · 0.12 , ||fwpi − f
wp
j ||

2,

2 · 0.12, 2 · 0.1, ·0.12, fwp, 2, 0.1}

3.2.3 Fitness Function

To be able to steer our algorithm to the fittest solution, we need to distinguish bad
expressions from the good ones. For that reason fitness function is essential for the GP
algorithms. If fitness function can not fully measure how good the expression is, then it
will not guide the algorithm to the best possible solution. In the computer graphics it is
common to use mean squared error (MSE) for the error estimation. MSE uses averaged
squared difference between the ground truth color and noisy color :

MSE = 1
N

N∑
i=1

∑
q∈{r,g,b}

(ĉi,q − gi,q)2 (3.4)
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where N is the number of pixels, ĉi,q and gi,q are ith pixels and qth channel of filtered
color value and ground truth color value. We are going to use relative MSE (relMSE)
proposed by Roussele et al. [RKZ11] and slightly modified by Kalantari [KBS15]:

relMSE = 1
N

N∑
i=1

m

2
∑

q∈{r,g,b}

(ĉi,q − gi,q)2

g2
i,q + ε

(3.5)

where m is the number of samples per pixel and ε is small value (0.01 in our implemen-
tation) so that division by zero will not occur. Division by ground truth value in formula
accounts for the fact that human vision is more sensitive to darker regions. Multiplication
by half of the number of samples per pixel prevents the introduction of the bias by
preferring expressions with high number of samples and small error. The final fitness
value of the expression is calculated as averaged sum of relMSEs computed for every
training scene. It could be the case that with the same number of pixels scenes with
fewer details would have less noise than some more complex scenes. The difference in the
initial relMSE, i.e. relMSE computed for noisy colors, can be significant between such
scenes. The algorithm can be biased in favour of expressions that filter complex scene
better, since it has bigger error minimization. To address that problem we normalize
every relMSE obtained from the scene by dividing it by initial relMSE.

Some of the functional operators have limited domain range, for example square root
in the field of real numbers can be extracted only from positive numbers. To assure the
type safety property if the undefined operation occurs the fitness value is set for such
expressions to a very big number (maximum float in our implementation).

3.2.4 Expansion Operators

Crossover, mutation and replication are typical expansion operators used in Genetic
Algorithms. The crossover is pairing operation that provides two new individuals by
recombining sub-expressions between two individuals from the current generation that
were chosen to act as parents. It is the most important operator in the GP and it
produces the most diversified expressions. Adapted to our problem, crossover can be
described in the following way. Initially we select two individuals to act as the parents.
After the selection is done the crossover points (specific nodes in the AST) should be
defined for every parent. If the chosen nodes are interchangeable their whole sub-trees are
swapped. Interchangeable in this case means that the types of the nodes are compatible,
either both of them are vector operators and vector nodes or scalar operators and scalar
nodes. If the nodes are not interchangeable then the process of selecting crossover points
is repeated until they are interchangeable.

We use two types of mutation operators: point mutations and sub-tree mutations
(see Section 2.4.6). For all mutations we select an individual for a mutation. The only
point mutation technique that we use is replace. In the replace operation a mutation
point is selected according to the selection probability (Section 3.2.6) and only this
node is replaced, leaving children nodes unchanged, by the equivalent node from our
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grammar. The examples of equivalent replacement are: binary operator is replaced by
binary operator, vector operator is replaced by the vector operator. It is possible to
replace constant nodes with variables and other way around. Sub-tree mutations that we
use are:

• swap - Swap operation can be seen as the crossover operation performed only on
one tree. By the swap operation two mutation points are selected and checked for
the interchangeability. If they are interchangeable the whole sub-trees rooted at
the mutation points are swapped. Otherwise selection of nodes is repeated until it
is possible to swap.

• insert - In the insert operation the sub-tree rooted in selected node is substituted
by the compatible sub-expression from the codebook.

• delete - In the delete operation the sub-tree with the root in mutation point is
replaced by the constant node of one. If the selected node is vector node we go up
by the tree to vector operator and replace that operator with the constant node.

The mutation operators were inspired by the article of generating new BRDF functions
[BLPW14]. In the replication operation the individual of current generation is moved to
next generation unchanged.

3.2.5 Initial Population

To look for more diversified results than for just minor alternation of initial population
the island model [Gro85] is used. In the island model the whole population is divided into
isolated sub-populations that do not interact with individuals outside their islands. To
profit from the isolated populations occasionally the migration of the best representative
is performed. We used the migration strategy used by Brady [BLPW14] for performing
such operation. Every 5th generation the best representative of each island is migrated to
the neighbour island. Thus, if we are in the island i we will migrate the best representative
of this island to the island (i + 1) mod n where n is the number of the islands in the
population.

Although it is common to use randomized tree generation techniques as full, grow
and ramped half-and-half, for our case we decided to use only seeding for the whole
population initialization. As a basis for the initial expressions we chose the bilateral filter.
Bilateral filter has relatively short formula and is proven to work well in practice. If the
unmodified bilateral filter is used for initial population the crossover operations would
be reduced to the replace operation for the first iteration. So the initial population is
formed in the following way. We fill 10% of the island with the bilateral filter and form
the rest by performing mutations on the bilateral filter. Such operation is performed to
fill every island.
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3.2.6 Parameters Selection

Important parameters to be set before GP execution are the number of iterations
and the size of the population. Hastily assigning big numbers to these parameters is
computationally expensive. In other hand if the number of generations is small there is
small probability that algorithm will derive good expressions and small size of population
hinder the diversity of choice. Due to the number of population is specially influential on
performance it was derived empirically that number of 400 expressions is enough. These
400 expressions are partitioned to 4 different islands. The number of iterations was set to
200, since the results with fewer iterations were not satisfactory and with bigger number
of iterations the running time of the algorithm is too big for running sufficient number of
experiments.

Regarding the selection probabilities following decisions were made. At each generation
a new sub-population is derived from previous by using 10% of replications, i.e. unchanged
individuals are propagated to new generation, 45% of nodes are generated from crossovers
and 45% of nodes are generated from mutations. Additionally mutation is performed
with 0.85 probability on the crossover children. This decision was made in order to
strive for diversity and minimising possibility to stuck in the local minimum. Each
individual is selected by the tournament selection method with the group size of 8.
During this tournament selection 8 individuals are selected uniformly from the population
and the winner, the individual with the lowest fitness value, is used as a parent for
generation of new expression. For the selection of crossover and mutation points the
uniform distribution was used. Opposing to the suggestion of selecting 90% of nodes
with functional terms and 10% with terminal term the uniform distribution was chosen.
The reason for that is that the terminal terms, represented by variables and constants,
can be seen as tuning parameters for the features, what is essential for the good work of
the filter. For the vector terminal term it is comparably important because the presence
or absence of certain feature in the expression can have crucial impact on the result. For
the selection of the mutation types following distribution is used: 30% for insert, 30% for
replace, 30% for swap and 10% for delete. Uniform distribution is also used for the the
sub-expression selection from the codebook and equivalent node selection for the replace
operation. The reason for that is unknown importance of different selections. Therefore,
the same weights are preferable.

We used the maximum number of iterations as stopping criterion. The utilization
of threshold criterion for the algorithm termination is problematic since the fitness is
average of scenes’ relMSE and every scene is different in the complexity and amount of
noise. Top expressions from every island are chosen as results after sorting the individuals
according to their fitness values. Finally selected expressions are manually checked on
testing scenes. Because of performance issues described in the Section 3.3, the restriction
on the length of the expression was set in our implementation to 75.
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3.2.7 Input

The input data of our algorithm consists of:

• resolution of the scene

• number of samples per pixel

• number of scenes

• filter width

• noisy values - noisy color values for every pixel in rgb

• ground truth values - color values for every pixel in rgb rendered with either 32768
or 98304 samples per pixel

• 3D features - 3 dimensional feature values for world positions, normals, textures,
secondary textures and their gradients for every pixel

• 1D features - 1 dimensional feature values for depth, direct illumination and their
gradients

• sample variance - sample variance for features except depth

3.3 Implementation
In this section we describe the technology stack of used framework and implementation
details. The main emphasis is made on GPU computation as it takes the most execution
time of the algorithm.

3.3.1 Hardware

The GP algorithm was executed on the PC with Intel(R) Core(TM) i7-4790K CPU
4.00G Hz with 32.0 GB RAM and Graphic Card Geforce GTX 980Ti. The minimum
requirement on the hardware is support of NVIDIA CUDA1 on the GPU. If there is a
demand for the generation of input for our algorithm the requirement of a machine to be
64-bit rises.

3.3.2 Input Generation

For the rendering of the scenes we used Optix [PBD+10] version 3.8.0 and PBRT [PH10]
version 2. Optix is a general purpose ray tracing engine from NVIDIA. As the basis
a simple path tracer program from Optix SDK is used. PBRT is a physically based
renderer that can render a wide range of effects, such as depth of field, motion blur,

1www.nvidia.com
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3.3. Implementation

(a) Plants godrays scene (b) San Miguel scene (c) San Miguel scene

Figure 3.5: Training scenes obtained via PBRT renderer. Plants godrays scene is the
courtesy of Oliver Deussen, San Miguel scene is the courtesy of Guillermo M. Leal
Llaguno.

participating media, area light sources, etc. There are two ways of generating the input :
by rendering scenes using PBRT or Optix.

Extracting features from PBRT. For rendering the ground truth data PBRT
version 2 was used. The scenes were downloaded from the www.pbrt.org\scenes. To
generate noisy data and extract features the implementation of Kalantari et al.[KBS15]
was used. In order to sync with the implementation of Kalantari during the rendering
of ground truth, all of the scenes were rendered with discrepancy sampling and photon
mapping with metropolis sampling was discarded. There was not a straightforward way to
extract depth informations from PBRT rendering so it was calculated by taking Euclidean
distance between world position and camera position. The gradients of the features were
calculated with Sobol operator. The training scenes of our method, obtained with PBRT,
can be seen in Figure 3.5.

Extracting Features from Optix Our implementation supports rendering of the
scenes represented in collada [AB06] and obj files. The scenes were obtained from the
public repositories. Blender2 and 3D Max 3 was used for editing the scenes. For importing
scene’s description from collada and obj file formats part of the implementation of [Ká14]
was used. In that implementation, assimp4 library was included for parsing the files. The
features are extracted from several programs of the rendering pipeline. The rendering
pipeline consists of ray generation program, intersection program, closest hit program,
any hit program and miss program. The features are extracted from intersection program,
closest hit program and any hit program. Intersection program computes the nearest
intersection point of the emitted ray with scene. Closest hit program implements the
shading and extracting the colors from the intersected object’s material. Any hit program

2www.blender.org
3www.autodesk.com//products//3ds-max//overview
4http://www.assimp.org/
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(a) Dabrovic scene (b) Crytek scene (c) Interior scene

Figure 3.6: Training scenes obtained via Optix renderer. Dabrovic scene is the courtesy
of Marko Dabrovic, Crytek scene is the courtesy of Frank Meinl and Interior scene is the
courtesy of Giiman from the www.turbosquid.com.

checks the visibility of the ray by the light source and returns true if the light is visible
and false otherwise.

World positions are extracted in intersection program by using the intersection point.
Depth was calculated by taking distance between intersection point and camera position.
Normals are also calculated in the intersection program. Texture values are extracted at
intersection point in the closest hit program by requesting the materials texture value
at that point. Secondary texture is extracted the same way as primary texture at the
intersection of second bounce. Direct illumination is calculated as an average of the
visibility values obtained from shadow rays.

All of the feature values including the gradients are normalized. One dimensional
feature values were mapped to the interval between [0, 1] by dividing all values by the
maximum value in the scene. Three dimensional feature values were normalized by
dividing component-wise each value of the feature by the length of the biggest vector.
This is done to ensure the interchangeability between features during expansion processes.
The training scenes obtained with Optix can be seen in Figure 3.6.

3.3.3 Representation of Abstract Syntax Tree

Expressions are represented in the AST tree. This tree is represented as linked list with
the references to the parent node and children if they exist. Different types of nodes are
implemented in the following way. There is a base class that every specific type of node
inherits from. There are 6 derivative classes: binary operator node, unary operator node,
vector operator node, vector node, variable node and constant node. The value of the
expression is evaluated in the recursive way with input parameters of scenes number and
coordinates of center pixel and neighbour pixels. For the sake of performance optimization
evaluation of fitness function was implemented on GPU using CUDA version 7.0. For
the GPU implementation some work-around was needed. GPU and CPU have different
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memory address spaces. Therefore, there is a requirement to transfer data from the RAM
to the graphics card. The most important data to transfer is the set of newly obtained
expressions for evaluation. AST tree is represented as linked list and every node has
pointers to the child and parent. This pointers are represented as memory addresses in
the CPU and it is not possible to transfer the whole tree, because the memory addresses
are different and pointers will point to the wrong memory in the GPU. Another problem
with the AST tree is that evaluation of expression requires a recursive run from the root
of the tree to the leaves. Even though CUDA supports recursion from version 4.0 it is
very slow. The solution to such problem is utilization of the stack. Before the GPU
fitness evaluation every expression is transitioned to the stack and loaded to the graphic
card. Besides the expressions, features and variables should be also loaded to the GPU.
This is done using textures. Before we can use Equation 3.2.3 to compute the weights
unwinding of the stack should be performed. The computation of the weights is the
bottleneck of the implementation. Nevertheless, as can be seen in the Section 4.1.1 the
boost of performance is significant by utilizing GPU.

3.3.4 Evaluation of Expressions

The final results, obtained from our optimization, are the filtering expressions sorted
by their fitness values. It is possible that one filtering expression with higher numerical
error gives more visually satisfactory image than the expression with lower error. For
that reason manual evaluation of the potential best expressions is needed. The resulting
set of expressions is restricted to the top 10 expressions from every island due to the
time consuming manual evaluation. Such manual evaluation is done by rendering the
datasets and testing scenes at 4 samples per pixel, then filtering the image with a given
expression and measuring the results. These measurements consist of relMSE for the
specific scene, filtering time and subjective visual pleasantness ranging from 0 to 10.
For the evaluation of the expressions Optix framework is used. Filtering function with
obtained expressions is implemented as additional ray generation program. This ray
generation program computes for every pixel the importance weights of the neighbours
with filtering expression and substitute the pixel color by the weighted average of the
neighbours.
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CHAPTER 4
Results

This chapter evaluates the main results of the thesis. We perform time measurements
of our algorithm and observe influence of certain parameters in Section 4.1. Besides
the performance, relative error is measured and discussed in Section 4.2. Additionally
to that, we answer the third research question in Section 4.3. Finally, we evaluate our
generated expressions in Section 4.4 and assess the whole algorithm in Section 4.5

4.1 Performance Evaluation

4.1.1 CPU vs GPU

GP algorithms are generally demanding big computational power or computational time.
The straightforward implementation for computation of fitness values on CPU becomes
inapplicable for the resolutions of 512x512 and more. In order to speed up the algorithm
and fit the computational time into acceptable 2-3 days the GPU computation was used.
Computation of fitness values was performed on GPU with the use of CUDA and data
was transferred from CPU to GPU as textures. With the use of GPU computation the
tangible speed up was achieved, that can be seen in the Table 4.1.

Resolution in pixels GPU [s] CPU [s]
32x32 0.457 2.667
128x128 6.799 734.623
256x256 22.038 3165.72
512x512 183.14 27501.9

Table 4.1: Comparison of the running time of one iteration on GPU and CPU with
different resolutions.
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4.1.2 Perfromance Measurements

In our evaluation we measured the runtime of our Genetic Programming algorithm with
different sizes of population, maximum number of iterations and resolutions. As long as
it is not mentioned explicitly all measures are made with the population of 4 islands, each
with 50 individuals, number of iterations of 50, resolution of 512x512 and the teapots
scene shown in Figure 1.1b as training scene. Several insights can be derived from the
performed measurements:

As can be seen in Figures 4.1, 4.2, 4.3 the running time is increasing with increase
of population size, number of iterations and resolution. There is no straightforward
linear dependency on the length of the expressions, what can be seen in Figure 4.4. The
reason for that would be that the time spend on the fitness assignment depends a lot on
the number of requests to the global memory and such requests are much slower than
requests to local memory. Reading feature values is a request to global memory. Therefore,
smaller expression with high number of feature distance calculation can have higher
computational time then bigger expression, that contains mostly arithmetic operators
with constants.

Since for the algorithm the scene is just a set of pixels with feature values, in terms of
computational costs all the scenes are the same. Therefore, the dependency of running
time on the number of the scenes is linear.

Figure 4.1: The dependency of the running time of the algorithm on the size of the
population.
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Figure 4.2: The dependency of the running time of the algorithm on the number of
iterations.

Figure 4.3: The dependency of the running time of the algorithm on the resolution of
the scene.
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Figure 4.4: The dependency of the running time of expression’s fitness assignment on
the length of expression.

4.1.3 Performance Discussion

The algorithm spends most of the time in the fitness evaluation procedure. Time spent in
one iteration for selection and expansion does not depend on the resolution and number
of scenes. It is only dependent on the size of population and the length of the expressions.
But since we have the restriction on the maximum length of the expression and the
population is not bigger than 2000, the time spent in such operations is only a tiny fraction
of the second, as can be seen in Table 4.5. In contrast to that, fitness evaluation function
is a bottleneck of the algorithm. Because of the recursive evaluation of the neighbour
weights, the algorithm is not well suited for parallelization. Additionally, because of the
random nature of the algorithm the expression can contain a lot of calculation involving
features. Reading feature values in our implementation is performed through the reading
of the texture values from the global memory and requests to the global memory are
expensive in GPU.

4.2 Error Evaluation

The relMSE in figures 4.6 and 4.7 is calculated as the minimum of all relMSEs of
expressions generated during the optimization. As it can be seen in Figure 4.6 the error
is decreasing linearly with the increase of the iterations number. In contrast to that,
in relation of population size and relMSE we can not observe such dependency. This
can be explained by random nature of the algorithm, even tough with bigger population
the algorithm has more variety, if optimization with smaller population size performs
only one good mutation and obtains better expression, it will be propagated till the end.
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Figure 4.5: The time spent by one iteration of GP algorithm with different resolutions.
The timing was obtained by running optimization on the teapots scene shown in Figure
1.1b with population of 4 islands and 300 individuals in each island.

Therefore, the result of optimization run with the smaller population can have lower
relMSE than the optimization run with bigger population.

The dependency of relMSE on the number of scenes is complicated because we
normalize the final fitness value by the number of scenes and the scenes rendered with
different resolutions have different initial relMSE values.

As it can be seen from Table 4.2 the relMSE of the optimizaition’s best expression
depends on which expansion methods are used. Utilization of 90% of all methods as
crossover proposed by Koza [Koz92] does not work good in our case. The best results were
achieved by the use of 45% of crossovers, 45% of mutations and 10% of reproductions, to
assure the propagation of good filtering expressions to the next generation.
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Figure 4.6: The dependency of the relMSE of the algorithm on the number of iterations.

Figure 4.7: The dependency of the relMSE of the algorithm on the size of the population.

4.3 Empirical Investigation of Features

After performing numerous experiments with different parameters we can plot the
frequencies of usage of different features during our optimization. These frequencies are
shown in Figure 4.8. As can be seen in the figure the most frequently used feature is
normal. The best set of features would be normal, direct illumination, textures,
depth, secondary texture gradient and world position.
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Different probabilities distribution RelMSE
0.1 reproduction, 0.15 crossover, 0.75 mutation 0.98257
0.1 reproduction, 0.45 crossover, 0.45 mutation 0.377417
0.33 reproduction, 0.33 crossover, 0.34 mutation 0.70105
0.01 reproduction, 0.9 crossover, 0.09 mutation 1.16676

Table 4.2: Comparison of the relMSE obtained from the optimization run with different
expansion methods probabilities.

Figure 4.8: Frequencies of occurrences of different features after 20 experiments with
different parameters and trained with different training scenes.

4.4 Qualitative Comparison of the Results
In this section we present novel high-dimensional filtering expressions, the best expressions
obtained after numerous optimization runs of our algorithm. We compare the results of
filtering with such expressions with the cross-bilateral (CB) filter with constant feature
sigmas and with implementation of Learning Based Filtering (LBF) [KBS15]. To be
able to compare the results with LBF the testing scenes were taken from the PBRT
renderer. Expressions are presented as formulas of weight calculations for filtering
equation (Equation 2.10).
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First expression. First expression was obtained by running optimization with 3
training scenes from PBRT.

w1
ij = e−(||fd
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where ||·||L2 is Euclidean distance, ||·||max is Chebychev distance, · is dot product, biweight
is biweight kernel (Equation 3.2), fdi is the depth feature value, fni is the normal feature
value, f ti is the texture feature value, fdii is the direct illumination feature value and ci
is the noisy color value of ith pixel. Evaluation of this expression can be seen in Figure
4.9. Cross-bilateral filter perform poorly on that scene. Relative MSE of our algorithm
and LBF is comparable. The roughness of the material on the second floor of the scene
and the edges are preserved better by our expression. The textures of paved stone of
the floor are more blurred by our method than in LBF and some of the grained noise is
distinguishable on the darkened parts of the scene.

Second expression Second expression was trained with all 6 training scenes:
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, power is
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, ||·||L1 is Manhattan distance, wp is world position and wpg is its gradient, pi are
coordinates of the ith pixel. Evaluation of this expression can be seen in Figure 4.10.
Second expression outperform both LBF and CB in terms of error and LBF in the speed.
But in terms of visual pleasantness the scene filtered with our expression is more blurred
than scene filtered with LBF.

Third expression Third expression was trained with all 6 training scenes:
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, power1 is
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, varwp is variance of the world position feature. sinc (Equation 3.2.2), tricube (Equation
3.3) and mitchell (Equation 3.1) are unary operators from the codebook. Evaluation
of this expression can be seen in Figure 4.11. San-Miguel scene with such point of view
contains a lot of details and is complex. Cross-bilateral filter leaves a lot of noise on that
scene. Even tough relMSE error in our method is less than LBF, it overblurs the small
details, as vases and plates, and the shadow of the bulk near the roof.

All three expressions perform relatively good. They outperform the cross-bilateral
filter in all of the cases in terms of quality and have lower relMSE than LBF in two
scenes. In terms of timing our expressions outperform significantly LBF on all of the
testing scenes and have comparable time with CB. First expression is trained only on the
PBRT scenes, it preserves edges better than other two expressions but does not remove
all the grained noise from the scenes. In contrast to that, remaining two expressions are
trained on all of the training scenes, obtained both from PBRT and Optix, and remove
grained noise from the image. The disadvantage of these two expressions is that they in
some cases overblur without preservation of all of the edges.

4.5 Discussion
Genetic Programming algorithm is capable of deriving novel filtering expressions. With
the assistance of the features it can generate expressions that can outperform the cross-
bilateral filter in terms of quality and LBF in terms of time. Because the main algorithm’s
evaluation criterion on expression’s quality is relMSE, what is not the same as assessment
by the human eye, our results could not outperform state of the art in terms of subjective
visual quality. The biggest hurdle for the use of GP algorithm in our case was time spent
on fitness evaluation of the expressions. It poses restriction on the resolution and the
amount of the training scenes that can be used for the optimization, because in such
cases the running time of the algorithm becomes too long for multiple experiments.
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4. Results

(a) Noisy input, relMSE = 2.5267 (b) CB, relMSE = 1.773,
time = 0.407s

(c) Ours, relMSE = 0.8567,
time = 0.483s

(d) LBF, relMSE = 0.762053,
time = 5.79s

(e) Ground truth, time = 24 hours

Figure 4.9: Evaluation of first expression. The noisy input was rendered using 4 samples
per pixel at the 512x512 resolution. Sponza model is the courtesy of Marko Dabrovic
and Mihovil Odak.
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4.5. Discussion

(a) Noisy input, relMSE = 3.41 (b) CB, relMSE = 0.6482,
time = 0.846s

(c) Ours, relMSE = 0.3017,
time = 0.883s

(d) LBF, relMSE = 0.50219,
time = 9.468s

(e) Ground truth, time = 48 hours

Figure 4.10: Evaluation of second expression. The noisy input was rendered using 4
samples per pixel at the 800x550 resolution. The scene - San Miguel is the courtesy of
Guillermo M. Leal Llaguno.
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4. Results

(a) Noisy input, relMSE = 6.847 (b) CB, relMSE = 1.1282,
time = 0.8s

(c) Ours, relMSE = 0.3875,
time = 0.852s

(d) LBF, relMSE = 0.4016,
time = 9.513s

(e) Ground truth, time = 48 hours

Figure 4.11: Evaluation of third expression. The noisy input was rendered using 4
samples per pixel at the 800x550 resolution. The scene - San Miguel is the courtesy of
Guillermo M. Leal Llaguno.
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CHAPTER 5
Limitations and Future Work

Search Space Limitations. Expressiveness is an ability of possible equations in search
space to represent the optimal solution. We use strongly typed genetic programming
(STGP) [Mon95] in our method. STGP is a genetic programming algorithm where each
terminal value is assigned to a certain type and functional operators can take only certain
types of terminal values as arguments. Such technique suits our method well, because
we have scalar variables and constants with features, which are represented as vectors,
and we would like to use different operators on each of them. STGP limits the search
space of the possible solutions, by introducing the constraints on the alternation of nodes
in the AST. Further limitations of the search space are the initial population and the
expressions in the codebook. It is only possible to obtain a high-dimensional filter, that
uses features, coordinates and colors as the means for assignment of weights. Therefore,
our GP can not derive something like frequency domain filters with utilization of wavelet
and Fourier transform. The more variety the codebook has, the bigger the search space
will be.

Expression’s Bloat. The algorithm is prone to the problem of expression’s bloat,
the growth of expression without significant improvement of fitness value. One possible
solution to that would be to use Pareto frontier for fitness value assignment in every
iteration. The problem of Pareto frontier is that, if we make a graph depending on
expression’s length and fitness value some of the points on that graph would not be
formally comparable, take for example an expression of length 60 with fitness value of
0.5 and an expression of length 30 with fitness value of 0.87. Therefore, it would require
manual selection of the fittest after every iteration, what is not admissible in our case.
The problem of big expressions is the lack of demonstrativeness. Because of the random
nature of the algorithm big expression is hard to interpret, as they represent only big
sequence of operations with no logic behind it. Additionally, the bigger the expression is,
the bigger space should be investigated for optimization. It then takes more iterations
for tangible improvement of fitness value.
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5. Limitations and Future Work

Generality of the Approach Our GP optimization does not include effects such
as motion blur, depth of the field and participating media. Extracted features from such
scenes contain high level of noise and therefore, they can not be used as guiding means
for the filtering. Possible solution to that would be either prefiltering, for example with
NLM filter [RKZ12] or utilization of modified distance function [LWC12] by dividing
the distance by the sum of sample variances of variables. The problem with prefiltering
the features during rendering is its additional computational overhead, what would
significantly slow down the filtering process.

Implementation Limitations. We had to restrict the maximum length of the
expression to 75, because GPU can not evaluate longer expressions in one pass. Despite
constraining the size of the search space this restriction also solves a problem of uncontrol-
lable bloat of the expressions. As a tradeoff between efficiency and computational time
the maximum number of iterations is set to 200. Because of the very long computational
time of algorithm for big resolutions (around four to five days for 512x512 resolution and
population of 400 individuals) the further improvement of fitness value by increasing the
number of iterations was not investigated.

Computation of the Filter Parameters. Another limitation of our algorithm
is the absence of ability to change the filter width or feature weights. We introduced
the sample variance in form of scalars to the algorithm to give GP optimization an
opportunity to use them as parameters. For example GP algorithm can exchange color
variance for constant sigma in cross-bilateral filter. The work of Kalantari et al. [KBS15]
uses neural network to look for relation between statistical data extracted from features
and filter parameters. Taking into account the generality of the genetic programming
it is worth trying to look for explicit expressions to couple this statistical data with
feature weights. In addition to our main genetic programming algorithm we performed an
experiment for optimizing the expressions for feature weights calculation in cross-bilateral
filter. The statistical data of features that were used were mean and standard deviation,
gradient, mean deviation and sampling rate. The unary and the binary operators were
the same as in our main GP implementation. The only functional operator was length of
the feature vector. As there are no known expressions for such relation no codebook could
be used in the optimization. The population was initialized with the sum of the scalar
variables and the length of the gradient of feature. The final result of the experiment was
not successful and after numerous iterations fitness value stuck in the local minimum.
One of the possible shortcomings could be the banal initialization of the population.
Since there is no good starting point for the search the ramped half-and-half would be
more preferable in this case. The possible application for that method is improvement of
our basic GP algorithm. We can introduce the obtained expressions for feature weights
as variables, which can work as adjusting parameters for the generated expressions in
every pixel for different scenes. For example, if the variance at the certain pixel for the
normal is big and the normal weight is proportional to the variance, the expression will
lower the significance of that feature during neighbour weight calculation.
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Combination of Filters. Another possible future work is combination of filters
trained for the specific effects, by adding them to the filter bank. During the filtering
phase we can then apply the specific filtering expression on the neighbourhood of the
pixel, where certain effect was identified. It may require additional information such as
per sample depth or motion information, but it should not be much of the computational
overhead.
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CHAPTER 6
Conclusion

We presented a framework for searching novel filtering expressions with the utilization of
GP algorithm. We found out that GP algorithm is applicable for the filtering and has
only one big limitation - long fitness evaluation time. The end result of our framework
are the novel high-dimensional filtering expressions. The best expressions obtained from
the experiments are better in terms of quality than cross-bilateral filter with constant
sigmas for features. Filtering implementations of such expressions on the GPU in Optix
are significantly faster than state of the art filtering algorithm presented by Kalantari
et al. [KBS15]. Despite of not trying to train expressions on effects such as depth of
field and motion blur due to the noisiness of the features, it is possible to use such
scenes for training if we prefilter features by NLM filter [RKZ12] or use modified distance
function [LWC12]. Therefore, our framework can be generalized for many effects in
Monte Carlo rendering. The search space of the algorithm is wide and restrained only by
our grammar. Potentially, with the big number of good training scenes and excessive
amount of iterations other very good filtering expressions could be obtained.

Additionally, after the run of the numerous experiments we investigated the occurrences
of the features in the final results of the optimizations. According to our results the most
frequently used features are normal, texture and direct illumination. The application of
the GP for filtering of Monte Carlo noise is a novel approach with the promising results.
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