
A Hybrid Evolutionary Algorithm
for the Vehicle Routing Problem

with Stochastic Demands

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Sara Pourmanouchehri BSc
Matrikelnummer 0728314

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Univ.-Ass. Dipl.-Ing. Benjamin Biesinger

Univ.-Ass. Dipl.-Ing. Dr.techn. Bin Hu

Wien, 1. Juli 2016
Sara Pourmanouchehri Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Hybrid Evolutionary Algorithm
for the Vehicle Routing Problem

with Stochastic Demands

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Sara Pourmanouchehri BSc
Registration Number 0728314

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Univ.-Ass. Dipl.-Ing. Benjamin Biesinger

Univ.-Ass. Dipl.-Ing. Dr.techn. Bin Hu

Vienna, 1st July, 2016
Sara Pourmanouchehri Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Sara Pourmanouchehri BSc
Muthgasse 66/212 1190 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Juli 2016
Sara Pourmanouchehri

v

Danksagung

Zunächst möchte ich mich an dieser Stelle bei all denjenigen bedanken, die mich während
der Anfertigung dieser Arbeit unterstützt und motiviert haben.
Herrn Professor Dr. Raidl bin ich für seine Unterstützung an dieser Stelle zu tiefem Dank
verpflichtet. Mein Dank gilt zudem Herrn Dipl.-Ing. Biesinger und Herrn Dr. Hu. Ohne
die unendliche Geduld und die Gründlichkeit von Herrn Biesinger wäre die Fertigstellung
dieser Arbeit nicht möglich gewesen.
Darüber hinaus bedanke ich mich bei allen, die durch Korrekturen, Verbesserungsvorschlä-
ge und hilfreiche Diskussionen zur Qualität dieser Arbeit beigetragen haben. Gleiches
gilt für meine Eltern und Martin, die mir in dieser Zeit eine unersetzbare seelische und
moralische Stütze waren.

vii

Acknowledgements

First of all I would like to thank all those who have supported and motivated me during
the preparation of this work.
I would like to show my gratitude to my Professor Dr. Raidl for his support. Also many
thanks to Dipl.-Ing. Biesinger and Dr. Hu. Finishing this work would have not been
possible without patience and thoroughness of sir. Biesinger.
Furthermore, I thank each person who helped me with correction and increasing the
quality of this work. The same is true for my parents as well as Martin, who were always
with me with their indispensable moral support during this time.

ix

Kurzfassung

Diese Arbeit behandelt eine stochastische Erweiterung des klassischen Routenplanungs-
problem, die den Kundenbedarf als Zufallsvariablen betrachtet. Der Schwerpunkt wird
auf die Entwicklung eines hybriden evolutionären Algorithmus zur Lösung dieses so-
gennanten Vehicle Routing Problems mit stochastischem Bedarf (VRPSD) gelegt. Bei
solchen Routenplanungsproblemen verlassen die Fahrzeuge das Depot mit voller Fracht,
um Kunden zu bedienen, deren exakte Nachfrage jedoch zur Startzeit unbekannt ist
und erst bei Ankunft genau feststeht. Das VRPSD ist ein NP-schweres kombinatorisches
Optimierungsproblem. Dies bedeutet, dass es unter der Annahme von P6=NP keine Lö-
sung in Polynomialzeit für dieses Problem gibt. Aus diesem Grund wurde ein genetischer
Algorithmus entwickelt, der auf der Permutation von Knotenpunkten als Lösungskan-
didaten beruht, so dass eine möglichst gute Lösung in einem akzeptablen Zeitrahmen
gefunden werden kann. Die Evaluierung einer solchen Permutation, die jene Positionen
bestimmt, an denen das Fahrzeug wieder befüllt werden muss, beruht auf dynamischer
Programmierung. In einem nächsten Schritt wurde eine 2-opt lokale Suche implementiert,
um die Suche zu intensivieren. Um die Suche zu beschleunigen, wurde ein Multi-level
Evaluierungsschma auf den genetischen Algorithmus angewandt. Mit dieser Methode
wurde der Zielfunktionswert eines Lösungskandidaten wiederholt und mit zunehmender
Genauigkeit approximiert bis er verworfen oder exakt evaluiert werden konnte. Um ein
wiederholtes Evaluieren bereits bekannter Lösungskandidaten zu vermeiden, wurde außer-
dem ein vollständiges Trie-basiertes Lösungsarchiv implementiert, das Duplikatlösungen
in garantiert neue und meist ähnliche Lösungen konvertiert, was diesen Lösungsalgorith-
mus im Prinzip zu einem exakten Verfahren macht. Die grundsätzliche Idee besteht darin,
alle Lösungskandidaten in einer Trie-Datenstruktur zu speichern. Sobald eine neue Lösung
generiert wird, wird diese mit dem Lösungsarchiv abgeglichen, um zu garantieren, dass
es sich um eine neue Lösung handelt. Sollte die Lösung schon vorhanden sein, produziert
das Archiv automatisch eine neue Lösung, die die Duplikatlösung ersetzt statt dieselbe
Lösung ein zweites Mal zu betrachten. Die Resultate auf einer Menge von Benchmark
Instanzen zeigen, dass das Multi-level Evaluierungsschema die für die Lösungevaluierung
benötigte Zeit drastisch reduzieren kann. Die Nutzung des Lösungsarchivs führt hingegen
nur in manchen Fällen zu besseren Ergebnissen. Verglichen mit bisher in der Literatur
angewandten Algorithmen kann der in dieser Arbeit vorgeschlagene Ansatz daher zu
deutlich verbesserten Lösungen des VRPSD beitragen.

xi

Abstract

This work considers a stochastic extension to the classical vehicle routing problem by
assuming that the customers’ demand are random variables. The focus lies on the
development of a hybrid evolutionary algorithm for solving the so-called vehicle routing
problem with stochastic demands and preventive restocking (VRPSD). In the VRPSD
vehicles leave from a depot with full load, and have to serve a set of customers whose
exact demand is only known upon arrival. The VRPSD is an NP-hard combinatorial
optimization problem which means that under the assumption that P6=NP there exists no
polynomial time solution algorithm. Therefore, a genetic algorithm using the permutation
of nodes as solution representation is developed so that an acceptably good solution can
be found in reasonable time. The evaluation of such a permutation, which determines
the restocking points depending on the current load of the vehicle, is performed by a
dynamic programming algorithm. In the next step, to intensify the search, a 2-opt local
search based is implemented. Additionally, a multi-level evaluation scheme is applied
to the genetic algorithm to speed up the solution evaluations. Using this scheme, the
objective value of a solution candidate will be repeatedly approximated with increasing
accuracy until it can be discarded or it is evaluated exactly. On top of that, a complete
trie-based solution archive is implemented in order to prevent revisiting known solutions
and converting them into guaranteed new and usually similar solutions. This makes the
overall solution method, in principle, to an exact algorithm. The idea behind is to save
all candidate solutions in a trie data structure. Each time a new solution generated, first
it is looked up in the solution archive to check whether this solution is already generated
or not. In case of revisiting an old solution, a guaranteed new solution candidate will be
produced directly by the archive which replaces the duplicate. Computational results
on a set of benchmark instances show that the multi-level evaluation scheme is able to
drastically reduce the time spent in solution evaluations and that applying the solution
archive leads to an improvement only in some instances. Compared to an algorithm of
the literature the proposed approach can significantly improve its results.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem definition . 2
1.2 Thesis outline . 3

2 Previous Work 5
2.1 Vehicle Routing Problem . 5
2.2 Stochastic Vehicle Routing Problem . 6

3 Methods 11
3.1 Genetic Algorithms . 12
3.2 Local Search . 14

4 Genetic Algorithm 17
4.1 Structure of the Genetic Algorithm . 17
4.2 Local Search . 18
4.3 Multi-level evaluation scheme . 22
4.4 Solution Archive . 26

5 Computational Results 31
5.1 Construction of Test . 31
5.2 Computational Results . 32

6 Conclusions and Future Work 41
6.1 Future Work . 42

List of Figures 43

List of Tables 44

xv

Bibliography 45

CHAPTER 1
Introduction

The Vehicle Routing Problem (VRP) has important applications in the fields of trans-
portation, distribution, and coordination of logistical operations for transporting products.
It considers the problem of servicing a number of customers with a fleet of vehicles. In
practical contexts, one or several elements of the problem, for example, customers, travel
time, or demand may not be known with certainty. However, in practice these values
are usually not completely random but follow a known probability distribution [YMB00].
These problems are referred to as stochastic vehicle routing problems (SVRP).

This work concentrates on the vehicle routing problem with stochastic demands and
preventive restocking (VRPSD). In the VRPSD vehicles leave from a depot with full load,
and have to serve a set of customers whose exact demand is only known upon arrival.
The aim is to design delivery or collection routes to minimize the expected cost of the
routes. The main goal of this thesis is to develop a state-of-the-art genetic algorithm (GA)
for solving the VRPSD and to derive new insights and methods for solving SVRPs in
general. More precisely, a set of evaluation and optimization techniques will be developed
including local search, dynamic programming, a multi-level evaluation scheme, and a
solution archive.

Existing algorithms use a permutation encoding for the visit sequence of the nodes
and dynamic programming [YMB00] to evaluate candidate solutions. Due to the large
time consumption of evaluating a candidate solution a multi-level evaluation scheme
(ML-ES) will be applied. In the ML-ES, the objective value of candidate solutions will be
repeatedly approximated level by level with increasing accuracy. On each level, this value
is calculated for a vehicle with scaled down capacity and altered probability distributions.
As we show in this thesis, the value computed at a particular level is a lower bound to
the next level. If this value is also lower bound to the real objective value, we might
abort the evaluation earlier. This leads to either an exact solution evaluation or to a

1

situation where the candidate solution can be discarded due to its inferior quality. This
will make it possible to reduce the overall time needed for solution evaluations within
the GA. The ML-ES is described in more detail in section 4.3.

Finally, a complete solution archive based on a memory-efficient trie data structure
will be considered. Here, the aim is to deal with common disadvantages of GAs. One
of them is the existence of duplicate candidate solutions which could lead to a loss of
diversity and to premature convergence. Applying a solution archive can improve a GA by
avoiding (unnecessary) re-evaluations of already assessed candidate solutions, increasing
and introducing diversity and reducing the risk of premature convergence. It has already
been shown in the literature that a solution archive can improve a GA, especially for
problems with compact solution representation and time consuming evaluation [RH10].
In section 4.4 we will show how to apply such a solution archive to the VRPSD.

1.1 Problem definition

Here the problem of stochastic vehicle routing is defined on a complete graph G =
(V,A,C), where:

• V = {0, 1, ..., n}, a set of nodes with node 0 denoting the depot and nodes 1, ..., n
corresponding to the customers.

• A = {(i, j) : i, j ∈ V.i 6= j}, the set of the arcs joining the nodes.

• D = {di,j : i, j ∈ V.i 6= j}, denoting the travel cost (or distance) between nodes i
and j.

It is assumed that all customers, the depot included, are fully interconnected. All
customers have stochastic demands ξi, i = 1, ..., n which are independently distributed
with a known distribution and are known only upon arriving at the customer node. It
is also assumed that ξ does not exceed the vehicle capacity Q and follows a discrete
probability distribution with m possible values ξ1, ξ2, ..., ξm and the probability mass
function pik = Prob (ξk = ξm) ,∀i = 1, ..., n.

The goal is to find a route that starts and ends at the depot while each customer is
visited once. The objective is to minimize the expected cost of the tour by applying an
optimization method. The costs under consideration are:

• Cost of traveling from one customer to another as planned.

• Restocking cost; the cost of traveling back to the depot for restocking.

2

The cost/distance matrix D is symmetric and satisfies the triangular inequality. Each
customer i has a density function pi(k) where 0 ≤ k ≤ Q and Q is the maximum vehicle
capacity, denoting the probability of demand k at customer i.

A feasible solution for a single vehicle is a permutation s = (s(0), s(1), ..., s(n)) where
the first element is always the depot (s(0) = 0), which is called an a priori tour [Spe13].
Then, the computation of the expected costs works as follows.

After visiting a customer j of the a priori tour assume the vehicle has a remaining load
of q then fj(q) denotes the total expected cost from j onward. With this definition, the
expected cost of the a priori tour is f0(Q). Let Lj represent the set of all possible loads
at customer j then fj(q) for q ∈ Lj satisfies:

fj(q) = min
{
fp

j (q), f r
j (q)

}
(1.1)

where :

fp
j (q) = dj,j+1 +

∑
k:k≤q

fj+1(q − k)pj+1,k +
∑

k:k>q

[2dj+1,0 + fj+1(q +Q− k)] pj+1,k (1.2)

f r
j (q) = dj,0 + dj+1,0 +

k∑
k=1

fj+1(Q− k)pj+1,k (1.3)

and the boundary condition fn(q) = dn,0,q ∈ Ln. In equation 1.2, fp
j is the expected

cost when proceeding directly to the next customer, the third sum describes the case
of having not enough capacity left and therefore returning to the depot. In equation
1.3, f r

j is the expected cost when replacing the direct route with a preventive restock
[Spe13]. For every customer j there exists a load threshold hj that once reached makes
a preventive restock the better choice over continuing directly to the next customer as
shown by Yang et al. [YMB00].

1.2 Thesis outline
The remainder of this work is organized as follows: Chapter 2 presents a literature review
which deals with Stochastic Vehicle Routing Problems or more precisely Vehicle Routing
Problems with Stochastic Demands. It also provides a comparison between this work
and other literature in this field. Chapter 3 gives an overview of the applied methods.
The developed metaheuristics for the VRPSD will be discussed in chapter 4. It consists
of a comprehensive description of the GA and the multi-level evaluation scheme. Further,
the complete solution archive is introduced. Chapter 5 investigates experimental results.

3

These results are obtained from the computational tests, which have been run under
different configurations. It is concerned with the choice of best configuration in order to
achieve the best objective value. Taking the material from the fourth chapter as basis,
chapter 6 summarizes and concludes this work. Finally, also in this chapter, an outlook
on future work is provided.

4

CHAPTER 2
Previous Work

A literature review is given below to give a basic understanding of essential subtopics
related to this work. First, an introduction to Vehicle Routing Problems (VRPs) is
given. Its main principles as well as several constraints that may arise when solving those
problems are investigated in section 2.1. Further information about Stochastic Vehicle
Routing Problems (SVRPs) and selected variants is given in section 2.2.

2.1 Vehicle Routing Problem

Dantzig and Ramser [DR59] introduced the Vehicle Routing Problem (VRP) in 1960 as
a generalization of the Traveling Salesman Problem (TSP). The VRP is used in supply
chain management in the physical delivery of goods and services. VRP is concerned with
servicing a number of customer with a fleet of vehicles. The implicit goal of this kind of
problem is minimizing the cost of distributing the goods.

Many methods have been developed to reach good solutions to the problem. Determining
an optimal or near optimal solution for most variants of VRPs is hard, so in practice
heuristic and metaheuristic methods have been developed that find acceptable solutions.

The VRP is generally defined on a graph G = (ν,E,C) , where ν =
{
ν0, ..., νn

}
is the

set of vertices; E =
{(
νi, νj

)
|
(
νj , νi

)
∈ ν2, i 6= j

}
is the arc set. A matrix C =

(
Ci,j

)
,

∀
(
νi, νj

)
∈ E is defined on E. The coefficients ci,j represent distances, travel costs or

travel times.

Traditionally, vertex ν0 represents a depot and the rest represent customer locations that
need to be served. The number of vehicles can be a given constant or a decision variable.
Each vehicle has the same capacity Q [PGGM12]. The homogeneous VRP consists in

5

finding a set of routes for k identical vehicles based at the depot such that each of the
vertices is visited exactly once while satisfying some constraints.

Having a single depot, a homogeneous fleet of vehicles or one route per vehicle are among
the assumptions that belong to the basic VRP. These assumptions can be modeled by
introducing additional constraints to the problem. Usually, in real world VRPs, many side
constraints appear namely Capacitated VRP (CVRP), Multiple Depot VRP [HHJL08],
Vehicle Routing Problem with Multiple Trips (VRPMT) [PS03], VRP with Pick-Up
and Delivering (VRPPD) [Mos98], Split Delivery VRP [DT90], Stochastic VRP (SVRP),
Open Vehicle Routing Problem (OVRP) [SP00], the Heterogeneous fleet VRP (HVRP),
and Periodic VRP.

The most common constraints are the following [GLS96a]:

• Capacity constraints: each customer νi has a demand di and the total demand
of any route may not exceed the vehicle capacity, vehicles make collections or
deliveries at all customers. Delivery and collection problems are symmetrical with
one another and equivalent from a modeling point of view. Here, problems will be
described in form of collections.

• Duration constraints: the total length of each route may not exceed a preset
constant L.

• Time window constraints: each vertex νi must be visited within a time interval
[ai, bi].

• Stochastic VRPs appear whenever one or several components of the problem are
random. Applying randomness to any of the above named constraints (capacity,
duration) makes the VRP to a SVRP.

The VRP has been extensively studied in the optimization literature because of its
wide applicability and its importance in determining efficient strategies for reducing
operational cost in distribution networks.

2.2 Stochastic Vehicle Routing Problem

Whenever some elements of the problem are random, Stochastic Vehicle Routing Problems
(SVRPs) will arise. SVRPs can be viewed in the context of stochastic programming which
is modeled in two stages. At a first stage, a planned or "a priori" solution is determined.
The realizations of the random variables are then disclosed and, at a second stage, a
recourse or corrective action is applied to the first stage solution. The recourse usually
generates a cost or a saving that may have to be considered when designing the first
stage solution [GLS96a].

6

There are different variations and specializations of particular types of SVRPs which can
be studied and will be shortly described here [GLS96a].

• The Traveling Salesman Problem with Stochastic Customers (TSPSC): or proba-
bilistic travelling salesman problem (PTSP). In this problem each vertex is present
with a specified probability. In the first stage a Hamiltonian tour through all
vertices is constructed and the set of present vertices is then revealed. In the second
stage solution, the tour is followed by simply skipping absent customers.

• The Traveling Salesman Problem with Stochastic Travel Times (TSPST): Here,
times are random variables. It is attempted to determine an a priori solution such
that the probability of completing the tour within a given deadline is maximized.

• The m-Traveling Salesman Problem with Stochastic Travel Times (m-TSPST): The
only difference of this problem with the previous one is the number of vehicles.
Simpler, it is the m vehicle version of TSPST, with all routes starting and ending
at a common depot. Here, the number of vehicles is a decision variable with an
associated fixed cost.

• The Vehicle Routing Problem with Stochastic Demands (VRPSD): This problem is
the most studied of all SVRPs and also considered in this thesis. Here, customer
demands are random variables usually assumed to be independent and each customer
demand follows a probability distribution. Since the customer demand can be
uncertain, a vehicle may arrive at a customer without enough capacity to satisfy
its demand and may need to apply a recourse to recover the route’s feasibility
[MRV15].

• The Vehicle Routing Problem with Stochastic Customers (VRPSC): VRPSC is a
direct extension of the TSPSC: Customers are present with some probability but
have deterministic demands. The vehicle capacity must be respected and return
trips to the depot may be necessary whenever it becomes attained. As in the
TSPSC, absent customers are skipped in the second stage solution.

• The Vehicle Routing Problem with Stochastic Customers and Demands (VRPSCD):
This problem is a combination of the VRPSC and the VRPSD. In a first stage,
one determines a set of routes starting and ending at the depot and visiting each
customer exactly once. The set of customers with zero demand is then gradually
revealed, but the positive demand of every remaining customer becomes known
only when the vehicle arrives at the customer’s location. In the second stage,
the first stage routes are followed as planned, with the following two exceptions:
(1) any absent customer is skipped; (2) whenever the vehicle capacity becomes
exceeded, it returns to the depot to unload, and resumes collections starting at
the last visited customer; if for any customer the vehicle capacity becomes exactly
attained, the vehicle then returns to the depot and resumes collections at the next
present customer along its route.

7

The problem which will be addressed in this thesis is the VRPSD. SVRPs are usually
generalizations of VRPs and thus NP-hard problems. An important property of SVRPs
is that they have an objective function to compute the expected cost which is usually
computationally much more expensive than their deterministic counterparts [CLM01].

In the VRPSD, the stochastic parameter is customer’s demand. However, the actual
demand is not totally unknown: The potential demand is known but only with a certain
probability. Additionally, the vehicle’s capacity is limited and due to uncertainty of
demand, vehicles may be depleted before the entire demand of the customers has been
met. In this case, the vehicle has to return to the depot for restocking.

There exist different restocking policies. According to the simplest policy, the vehicle
returns to the depot whenever it cannot (completely) satisfy the demand of the current
customer. Whenever this happens the vehicle restocks at the depot and continues the
tour at the (partially) unsatisfied customer. This strategy is used in the majority of the
work of the literature.

A more efficient but also more complex policy is a preventive restocking. Preventive
restocking is introduced by Yang et al. [YMB00]. They have utilized a restocking policy
which enables the option of preemptive replenishment of capacity before the actual
stockout occurs. The goal of this action is to avoid the bad situation when the vehicle
has not enough load to serve a customer and thus it has to perform a back and forth trip
to the depot for completing the delivery at the customer. As it was shown that this is
the optimal restocking strategy [YMB00], the preventive restocking policy is applied in
this thesis. The dynamic programming formulation introduced in section 1.1 describes
the computation of the expected costs using this policy.

In the next paragraphs solution methods for VRPSDs, which have been proposed in the
literature, are listed and briefly presented.

The underlying GA used in this thesis is based on the work of Sperl [Spe13]. The VRPSD
has been comprehensively considered in Yang et. al. [YMB00]. Here, it has been assumed
that the demands are uncertain, and actual demand is revealed only upon the visit
to the customer. Two heuristic algorithms are developed to construct both single and
multiple routes that minimize total travel cost. The author also claims that the heuristic
procedures produce quality solutions and are efficient. Going even further, Marinakis et
al. [MMM14] use a clonal selection algorithm for the VRPSD. They also combine this
algorithm with a Variable Neighborhood Search (VNS), and an Iterated Local Search
(ILS) algorithm.

Additionally, Yang et al. [YMB00] pointed to the most important characteristic of the
SVRP, which is the uncertainty of demand of each customer. Due to this characteristic,
the goods on the vehicle may be depleted at some point along a route before the total
demand on the route has been met.

8

In their work, Yang et al. described preventive restocking, which is to force the vehicle
return to the depot for reloading and to return to the route at the point where the
out-of-stock occurred [YMB00]. However, this solution is manipulated and the probability
of the demand of the following customer plays an important role in taking the decision.

Christiansen et al. [CL07] introduced a new exact algorithm for the capacitated vehicle
routing problem with stochastic demands (CVRPSD). The CVRPSD can be formulated
as a set partitioning problem and it is shown that the associated column generation
subproblem can be solved using a dynamic programming scheme. However in this work,
a different restocking strategy has been used.

Shanmugam et al. [SGV11] studied a Particle Swarm Optimization (PSO) and Hybrid
PSO (HPSO) approach besides a very basic GA used to solve VRPSD. The Dynamic
Programming method by Yang et al. [YMB00] is used to find objective values of candidate
solutions generated by the GA, PSO, and HPSO.

Shanmugan et al.[GLS96b] used a tabu search for this kind of problem. They used tabu
search and compared the results with known optimal solutions whose size vary from 6 to
46 customers. It has been observed that the heuristics produce an optimal solution in
89.45% of cases, with an average deviation of 0.38% from optimality.

Bianchi et al. [BBC+06] analyzed the performance of metaheuristics on the vehicle
routing problem with stochastic demands (VRPSD). Fast approximations of the objective
function are therefore appealing because they would allow for an extended exploration of
the search space. It has been claimed that two hybridized versions of iterated local search
and evolutionary algorithm achieve better solutions than state-of-the-art algorithms.

Additionally a comparison of the performance of five well-known different metaheuristic
were performed by Bianchi. These metaheuristics are Simulated Annealing (SA), Tabu
Search (TS), Iterated Local Search (ILS), Ant Colony Optimization (ACO), and Evolu-
tionary Algorithm (EA). The results show that iterated local search and evolutionary
algorithm attain better solutions than the other algorithms.

Complete solution archives have been used for optimization problems as well. Raidl
and Hu [RH10] discuss common weaknesses of GAs and propose a complete solution
archive based on a special binary trie structure for GAs with binary representations that
efficiently stores all evaluated solutions during the heuristic search.

9

CHAPTER 3
Methods

The VRPSD is, like most VRPs, an NP-hard problem for which a computationally efficient
solution algorithm has neither been found nor shown to be non-existent [BBC+06] (under
the assumption that P 6= NP).

Not only the VRPSD but many other combinatorial optimization problems are also
NP-hard. This means that a polynomial time solution algorithm does not exist and
therefore solution algorithms generally do not scale well with the problem size and usually
only small instances can be optimally solved. When the problems involve large instances,
it may be hard to solve these problems in reasonable CPU times, which occurs often in
real-life optimization problems. They are usually of big size and since exact approaches
are inadequate, heuristics are commonly used in practice [SCP+13].

A heuristic is a technique designed for approximately solving a problem more quickly
when exact methods are too slow, or for finding an approximate solution when exact
methods fail [Ben82].

A metaheuristic is designed to find, generate, or select a heuristic that may provide
a sufficiently good solution to an optimization problem, especially with incomplete or
imperfect information or limited computation capacity [BDGG09]. Metaheuristics sample
a set of solutions which is too large to be completely enumerated. Metaheuristics may
make few assumptions about the optimization problem being solved, and so they may be
usable for a variety of problems [BR03].

There is a wide selection of metaheuristics such as Simulated Annealing, Tabu Search, Ant
Colony Optimization, and Genetic Algorithms. These techniques have been extensively
used and their robustness and applications are well established in the VRP literature.

As this thesis strongly build upon a genetic algorithm and local search both of these

11

methods are described next.

3.1 Genetic Algorithms

Genetic algorithms (GAs) are one of the most popular evolutionary algorithms and a
majority of optimization problems have been approached by GAs [GH88]. They are
search heuristics that produce a set of solutions based on selection and evolution. They
provide efficient and effective techniques to generate solutions to optimization and search
problems, and machine learning applications using techniques inspired by Darwin’s theory
about evolution, such as inheritance, mutation, selection, and crossover [Mit98].

GAs derive their behavior from the processes of evolution in nature. This is done by the
creation of a population of individuals represented by chromosomes within a machine.
Each individual represents a point in a search space and a feasible solution. These
individuals follow the genetic analogy. This means that their behavior is linked to
chromosomes and the variables are analogous to genes. The chromosome is composed of
several genes; accordingly the solution is composed of several variables. A fitness value is
assigned to each solution using a fitness function (often the objective function), which
enables the individuals to compete with each other to produce offsprings better than the
parents by combining information from the chromosomes.

The individuals in the population then go through a process of evolution. This means that
solutions from one population are taken and used to form a new population. Solutions
which are selected to form new solutions (offsprings) are selected according to their fitness,
resembling a survival of the fittest principle. Accordingly, the more suitable they are,
the more chances they have to reproduce. This is repeated until a certain condition is
satisfied (see Algorithm 3.1).

Algorithm 3.1: A standard GA in pseudocode
1 Initialize initialize population (t)
2 Evaluate determine fitness of population (t)
3 while Termination condition is not satisfied do
4 Select select parents from population (t)
5 Crossover perform crossover on parents creating population (t+ 1)
6 Mutate perform mutation of population (t+ 1)
7 Evaluate determine fitness of population (t+ 1)
8 t = t+ 1
9 end

New populations are created during the steps inside the while loop which is shown in
algorithm 3.1. Crossover occurs in these steps. It selects genes from parent chromosomes
and creates a new offspring. There are different ways to make crossover, e.g. One-point

12

crossover, Two-point crossover, Cut and splice, Uniform Crossover and Half Uniform
Crossover, and Arithmetic crossover, that can be rather complicated.

Take 11001011 as parent-A and 11011111 as parent-B. In One-point crossover, one
crossover point is selected and a binary string from the beginning of the chromosome to
the crossover point is copied from one parent. The rest is copied from the second parent.
So parent-A + parent-B is equal to 11001011 + 11011111 = 11001111.

By just applying crossover the diversity of the population may decrease. Therefore, the
mutation introduces new solution elements by occasionally making random changes to
the new offspring. For example in Bit Inversion mutation, selected bits are inverted. In
the following example, the selected bit is marked in bold: 11001001. After mutation, the
new solution is 10001001.

There are various kinds of termination conditions which have been traditionally used in
GA. Some of these conditions are described here [SCPB04].

• Generation Number : An upper limit on the number of generations can be set by
user. The algorithm will terminate when reaching this value.

• Evolution Time: A maximum evolution time has to be defined. Whenever the
elapsed evolution time exceeds this value, the evolution will be terminated. By
default, the evolution is not stopped until the evolution of the current generation
has completed, but this behavior can be changed so that the evolution can be
stopped within a generation. This is the fair method that is used in this work.

• Fitness Threshold: A fitness threshold has to be defined. The algorithm will
terminate when the best fitness in the current population becomes less or greater
than this value. Being less or greater depend on the definition of the objective
value and if the aim is to maximize or minimize the fitness function.

• Fitness Convergence: Here the evolution ends when the fitness is deemed as
converged. A genetic algorithm is usually said to converge when there is no
significant improvement in the values of fitness of the population in the last few
generations. However, this convergence should be considered as the convergence
of the population to the global optimum. While crossover tries to converge to a
specific point in the search area, mutation does its best to avoid convergence and
to explore more areas. Whenever a population converges to a local optimum, the
algorithm should increase the population diversity to explore other areas. Then
it is possible to decide whether the algorithm has reached a convergence of the
population to the global optimum.

• Population Convergence: The population is deemed as converged when the average
fitness across the current population is less than a user-specified percentage away

13

from the best fitness of the current population. When this criteria is satisfied then
the algorithm will be terminated.

• Gene Convergence: A gene is deemed as converged when the average value of that
gene across all of the chromosomes in the current population is less than a user-
specified percentage away from the maximum gene value across the chromosomes.
When a user-specified percentage of the genes that make up a chromosome are
deemed as converged, the algorithm will be terminated.

The defined GA in this section is very general. There are many things that can and
must be implemented differently in various problems. However, GAs tend to thrive in an
environment in which there is a very large set of candidate solutions and in which the
search space is uneven and has many hills and valleys.

3.2 Local Search

GAs are introduced as a solution to combinatorial optimization problems like the VRPSD.
They have been seen as search procedures that can quickly locate high performance
regions of vast and complex search spaces. However, it is not always possible to use them
for the fine-tuning of those solutions that are very close to optimal ones [GML08].

Hence, GAs may be specifically designed to be mixed with efficient local and neighborhood
search techniques to solve NP-hard problems as VRPs [BBC+06]. Local search (LS) can
be used on problems that can be formulated as finding a solution maximizing a criterion
among a number of candidate solutions [HS04].

Algorithm 3.2: A generic local search in pseudocode
1 Input: initial solution x
2 Output: possibly improved solution
3 while Termination condition is not satisfied do
4 select x′ ∈ N(x)
5 if x′ is better that x then
6 x = x′

7 end
8 end

The LS algorithm starts from an initial candidate solution and explores the search space
iteratively within its neighborhood. LS uses a single search path of solutions instead of
a search tree. It goes from current solution to a better solution in each iteration. The
best solution will be used in the next iteration as current solution until the iteration
terminates.

14

The iteration can be terminated under different criteria. For example the process can
terminated based on a time bound or after a given number of steps. Another possible
reason for termination could be a continuing process while there is no better solution
within the neighborhood of the current solution. Algorithm 3.2 shows a generic local
search in pseudocode.

15

CHAPTER 4
Genetic Algorithm

In this chapter the developed genetic algorithm and its extensions are presented. Section
4.2 and 4.3 describe how the 2-opt local search is combined with the GA and how to
benefit from an approximation method, a multi-level evaluation method, in order to get
better result. This combination of methods is used to speed up the solution evaluation.
The implementation of a complete solution archive is described in section 4.4.

4.1 Structure of the Genetic Algorithm

An overview of GAs is given in section 3.1. This section focuses on the problem specific
details of the proposed GA.

Foremost, an initial population is needed which is produced using a stochastic greedy
nearest neighbor heuristic algorithm. This algorithm starts at the depot and finds the
shortest edges connecting the depot and an unvisited customer. It then sets one of the
found customer as a new starting point. This is repeated until all customers have been
visited. The sequence of customers will be count as one possible solution. The nearest
neighbor algorithm executes quickly but, due to its "greedy" nature, it can sometimes
miss shorter routes which are easily noticed with human insight.

The initialization algorithm is described in algorithm 4.1. In the stochastic greedy nearest
neighbor heuristic algorithm, the probability of the arc (l, u) from the last customer
l added to the tour to any not yet added customer u is PU (l, u) = wl,u ∗ 1

2RankU (u) .
RankU (u) is the position of u in a list of all unused U sorted ascending by distances
to l and wl,u is the normalized and inverse distance between l and u (the most distant
customer has w = 0 and the closest w = 1). In general, any density function giving a
dominating probability to the nearest neighbors can be used instead [Spe13]. Then the
next customer is chosen based on these computed probabilities.

17

Algorithm 4.1: Initialization
1 unused = [1, . . . , n]
2 result = [0]
3 while unused.Count > 0 do
4 // SelectRandom uses PU(l; u)
5 nextCustomer = SelectRandom(result[result.Count-1], unused)
6 result.Add(nextCustomer)
7 unused.Remove(nextCustomer)
8 end

To increase the solution quality in a next step, the algorithm performs crossover and
mutation operations, which are the two basic operators the GA relies on. As Sperl
[Spe13] showed in his work, the custom edge and cyclic recombination operator perform
better than a classical edge recombination operator. In this work cyclic recombination is
used as well, where a child solution is constructed by taking a random subsequence of
one parent and then following the other parent from the end of the random subsequence,
omitting already visited customers.

The mutation operator is selected randomly among the following three operators:

• Swap mutation where two customers change their position in the tour.

• Subsequence reverse mutation where a random subsequence of the tour is reversed.

• Weighted insert mutation where a random customer at position c is inserted at
position p in tour s with probability Pc (p) = 1

2Rankc(p) where Rankc(p) is the
position of p in a list of customers sorted by d (c, p) = ds(c−1),s(c+1) − ds(c−1),s(c) −
ds(c),s(c+1) − ds(p−1),s(p) + ds(p−1),s(c) + ds(c),s(p). The intention is that a random
customer is removed and inserted more likely into a part of the tour that passes
close by.

4.2 Local Search

One of the powerful local search methods that can be combined with GA for optimizing
VRPs is 2-opt. The 2-opt neighborhood structure was first proposed by Croes in 1958
for solving the traveling salesman problem [Cro58]. It works on a tour and removes two
edges in a tour, and then one of the resulting segments is reversed and the two segments
are reconnected. Once the two edges to be deleted have been chosen, there is no choice
about which edges to add since there is only one way to add new edges that results in a
valid tour.

18

If 2-opt results in an improved tour, the change is preserved. Otherwise, the tour is
returned to the original form. Compared with the 2-opt, k-Opt (k = 3, 4, . . .) uses more
edges to rearrange the tours [GITN04].

In the first step, the 2-opt is added to the GA. As described below in algorithm, 4.2 line
number 7 is added to the standard GA. Applying 2-opt to the GA improves convergence
and provides the GA with a search intensification. Applying 2-opt to every single
individual reduces the performance, hence 2-opt is applied to only a fraction of the
individuals of the whole population.

Algorithm 4.2: Optimized GA using 2-opt
1 Initialize randomly initialize population (t)
2 Evaluate determine fitness of population (t)
3 while Termination condition is not satisfied do
4 Select select parents from population (t)
5 Crossover perform crossover on parents creating population (t+1)
6 Mutate perform mutation of population (t+1)
7 2-opt optimization apply 2-opt to population (t+1)
8 Evaluate determine fitness of population (t+1)
9 end

Figure 4.1 shows one step of the 2-opt local search. The left side of the figure shows an
initial route and an improved version found on the right side. The 2 - 3 and 4 - 5 links
on the left have been removed and replaced by the 2 - 4 and 3 - 5 edges in red on the
right. Notice also that the path 2 - 3 - 4 - 5 on the left was reversed to 2 - 4 - 3 - 5 on
the right to keep the route valid.

After moving to a neighbor solution in the 2-opt procedure, the improvement is calculated
which can be done in at least two reasonable ways. First, the improvement can be
approximated by computing only the distance as in a normal VRP problem. Assume we
remove the edges from node A to A1 and from node B to node B1. Then the improvement
is computed as follows:

temp-improvement = distance from nodeA to nodeB−
distance from nodeA to nodeA1+

distance from nodeA1 to nodeB1−
distance from nodeB to nodeB1

(4.1)

However, this approximation does not take the randomness of the demand into account.
So another possibility is to compute the exact objective value of the neighbor solution
using the dynamic programming algorithm.

19

1

2

3

4

5

6

7

8 1

2

3

4

5

6

7

8

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 1 - 2 - 4 - 3 - 5 - 6 - 7 - 8

Figure 4.1: 2-opt move

1

2

3

4

5

6

7

8 1

2

3

4

5

6

7

8

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 1 - 2 - 4 - 3 - 5 - 6 - 7 - Depot - 7 - 8

Figure 4.2: 2-opt considering exact evaluation parameters

Figure 4.2 shows the same route as depicted in figure 4.1 but additionally considers
the criteria of the VRPSD before and after applying 2-opt procedure illustrated by the

20

dashed lines representing restocking trips.

Algorithm 4.3: Exact 2-opt
1 obj = objective of currentRoute
2 bestObj = obj
3 while Termination condition is not satisfied do
4 for i← 0 to n do
5 nodeA = customer i in currentRoute
6 for j ← i+ 1 to n− 1 do
7 nodeB = customer j in currentRoute
8 newRoute = invert node order between nodeA and nodeB
9 temp-obj = compute objective value of newRoute

10 if temp-obj < bestobj then
11 bestobj = temp-obj
12 temp-route = newRoute
13 end
14 end
15 end
16 if bestObj < obj then
17 currentRoute = temp-route
18 obj = bestObj
19 end
20 end

Algorithm 4.3 shows the complete 2-opt local search. There it can be seen that the
algorithm iterates over the tour and makes all possible 2-opt moves. After each move, in
line 11, the exact fitness of the neighbor solution is calculated. Then the best neighbor
is chosen as next starting solution. The process of calculating the exact value via the
dynamic programming algorithm is time consuming. In the next section, it will be
described how the multi-level evaluation procedure is used to speed up this process.

4.2.1 Dynamic Programming

Dynamic programming (DP) is a popular algorithm design technique which is used
to solve combinatorial search and optimization problems. A DP algorithm stores and
examines the previously solved sub problems and combines their solutions to give the
best solution for the given problem [Bel54]. In DP, a single step is sequentially related to
the preceding steps and is not itself a solution to the problem. A single step contains
information that identifies a segment or a part of the optimal solution. In DP, the time
is usually reduced by increasing the amount of memory/space needed.

For solving a problem using DP, the problem should have an optimal substructure and
overlapping subproblems. Having an optimal substructure means that the solution to a

21

given optimization problem can be obtained by the combination of optimal solutions to
its subproblems. Consequently, the first step towards devising a dynamic programming
solution is to check whether the problem exhibits such optimal substructure[BBBB95].

Overlapping subproblems mean that the space of subproblems must be small, that is,
any recursive algorithm solving the problem should solve the same subproblems over and
over rather than generating new subproblems [BBBB95].

In this study, a GA is used to generate the sequence of customers and each sequence of
customers is evaluated using a dynamic programming algorithm. Equation 1.1 shows the
dynamic programming formulation to calculate the total expected costs of a sequence.
The implementation of this formulation is shown in algorithm 4.4, which runs in O

(
nQ2)

time. The memory requirement is O (nQ) if one stores all intermediate values for fj (q),
and O (Q) otherwise.

Algorithm 4.4: Objective function (fitness) of an a priori tour
1 Q = maximum vehicle capacity
2 q = remaining load of vehicle
3 j = visisted customer
4 hn = threshold
5 for q ∈ (Q,Q− 1, ..., 0) do
6 fn (q) = the travel costs (distances) between depot and customer n
7 for j = (n− 1, n− 2, ..., 1) do
8 f r

j (q) = the expected cost when replacing the direct route with a preventive
restock (see 1.3)

9 hn = Q
10 for q = (Q,Q− 1, ..., 0) do
11 fp

j (q) = the expected cost when proceeding directly to the next
customer (see 1.2)

12 fj(q) = min
{
fp

j (q), f r
j (q)

}
13 if fp

j (q) ≥ f r
j (q) then

14 hn = q
15 end
16 end
17 end
18 end
19 output fn (Q)

4.3 Multi-level evaluation scheme

In addition to the DP approach, a multi-level evaluation scheme (ML-ES) is also proposed
for faster solution evaluations. ML-ES iteratively approximates the quality of a solution

22

candidate with increasing accuracy until it can be discarded or it is evaluated exactly. In
the deterministic case of the VRPSD, each customer’s demand is defined clearly but in
the stochastic case, this demand is a stochastic variable and only the probability of each
demand value is given.

Here, the focus is on creating a simple multi-level analysis model to avoid unnecessary
calculations. The preliminary tests showed that the best results were obtained at the
first three levels. Hence, the objective value is calculated at three levels. On each level, a
new objective value will be calculated for the same route but for a the vehicle with a
lower capacity. As a new capacity is applied to the vehicle, the probability of customer’s
demands should be updated as well.

On the first level, the new capacity will be calculated by dividing the original capacity
by two. When the fitness value of the route (computed using the DP algorithm) with a
vehicle of reduced capacity is worse than or equal to the fitness value of the best found
route so far, it will not be necessary to evaluate this solution candidate more accurately
because, as we will see later, its exact objective value cannot be better than the current
best solution.

If the fitness of the route with new vehicle capacity is better than the best fitness, the
procedure continues until the next level is reached. The same routine will be performed
on the second level. Here, the capacity will be divided by four to calculate the new
capacity, while it will be divided by eight on the third level. If the process finds a better
fitness on all three levels, it can be true that the new route has a better fitness value
than the old one.

Algorithm 4.5 shows the exact steps taken using DP and ML-ES.

Algorithm 4.5: Exact fitness evaluation using multi-level evaluation scheme
1 numberOfLevel = 3
2 while newFitness < bestFitness and numberOfLevel != 0 do
3 newFitness = compute fitness according to numberOfLevel
4 numberOfLevel = numberOfLevel -1
5 end
6 return newFitness

Applying this three level approach, the performance of the overall algorithm improves
efficiently as can be seen in the computational results in chapter 5.

Next, we will show why the solution evaluation using this method is still exact for
solutions that could improve the best found solution. By scaling down the capacity and
adapting the probability distributions, the resulting value on each level is a lower bound
to the objective value of the upper level. This can be proved as follows.

23

In the ML-ES, which is applied to GA in this work, there are 3 levels of approximation,
where level 0 is the exact evaluation and third level is the roughest approximation level.
Starting with level 0, increasing the level by one means to scale down the vehicle capacity
Q and all demand distributions pjk by a factor of two. Here a new vehicle capacity Qi

will be introduced and new probabilities pi
jk subject to level i, which are defined in the

following way [BHR15]:

Q0 = Q (4.2)

p0
jk = pjk, ∀j = 1, ..., n, k = 0, ..., Qi (4.3)

Qi =
⌈
Qi−1

2

⌉
,∀i = 1, ..., 3 (4.4)

pi
jk = pi−1

j,2k + pi−1
j,2k+1, ∀j = 1, ..., n, k = 0, ..., Qi,∀i = 1, ..., 3 (4.5)

Figure 4.3 shows exemplarily for one node how the probability distribution for the demand
changes at each level [BHR15].

Not only is level i ≥ 1 an approximation, but its objective value is also a lower bound for
the objective value of the preceding level i− 1, which will be showed next.

Lemma 1. With increasing level i the ratio of the scaled expected demand of each node
to the vehicle capacity Qi is non-increasing [BHR15].

Proof. It hast to be shown that for each node j and each demand 0 ≤ k ≤ Q that

∑Qi

k=0 kp
i
jk

Qi
≤
∑Qi−1

k=0 kpi−1
jk

Qi−1 Qi−1,∀i = 1, ..., 3

is valid. Suppose to the contrary that for one node j and one demand k the following
holds:

kpi
jk

Qi
=
k
(
pi−1

j,2k + pi−1
j,2k+1

)
Qi−1

2
>

2kpi−1
j,2k + (2k + 1) pi−1

j,2k+1
Qi−1 =

kpi−1
jk

Qi−1

24

Figure 4.3: An exemplary demand probability distribution and its different levels of
approximation [BHR15].

2kpi−1
j,2k + 2kpi−1

j,2k+1 > 2kpi−1
j,2k + 2kpi−1

j,2k+1 + pi−1
j,2k+1

0 > pi−1
j,2k+1

Obviously, this is a contradiction because all probabilities must be non-negative. Therefore,
as no kpi

jk

Qi can be larger than kpi−1
jk

Qi−1 for any node j this also holds for the sum over all
demands, which proves the Lemma [BHR15].

Theorem 1. Let ci (t) be the objective value of a tour t on approximation level i. For
each tour t it holds that ci (t) ≤ ci−1 (t) , ∀i = 1, ..., 3 [BHR15].

Proof. Due to Lemma 1 it follows that the total expected relative demand of all nodes on
level i is smaller or equal to that of level i− 1. So we can possibly service more customers

25

before a restocking is needed and therefore the resulting objective ci (t) value is a lower
bound to the exact objective value c0 (t) and to the objective value at the preceding level
ci−1 (t) [BHR15].

As it has been observed in the computational results, applying these technique improved
the result significantly. In next section, it has been tried to apply a memory-efficient
structure for keeping track of already evaluated solution candidates.

4.4 Solution Archive

There are several ways to classify metaheuristic algorithms. One way is to classify them
based on the usage of the memory. The metaheuristics can be divided into memory usage
algorithms such as Tabu search and memoryless algorithms such as simulated annealing
[BK78].

In genetic algorithms, identical solutions may be generated repeatedly because GAs do
not keep track of the history and already evaluated solutions are often revisited. What is
more, there is no assurance that a GA will find a global optimum and that the algorithm
will not start to generate duplicate solution candidates.

One way to speed up the algorithm and possibly avoiding duplicate solutions is to avoid
visiting a solution repeatedly. There exist various kinds of population management
strategies to counteract premature convergence and to ensure a reasonable diversity in
the population.

In this work, a complete solution archive proposed by Raidl and Hu [RH10] is implemented.
The complete solution archive is based on a memory efficient trie data structure. It
is implemented in order to (a) efficiently detect already evaluated candidate solutions
and to (b) efficiently transform them by applying typically small adaptations into yet
unconsidered candidate solutions [RH10].

A trie is an efficient information retrieval data structure that is used to store a dynamic
set or associative array where the keys are usually strings. The main use of trie is for
large dictionaries of english words in spell-checking and natural language understanding
programs. The idea is that all strings which have a common stem or prefix hang off a
common node. The elements in a string can be recovered by scanning from the root to
the leaf that ends the string. All strings in a trie can be recovered by doing a depth first
scan of the tree.

Here, a trie is used to save all generated solutions. Every node of the trie consists of
multiple sequence of nodes and each branch represents a possible solution candidate.
Each entry of each node of the trie can obtain one of the following three states at a time.
It can contain an object which is either a pointer to the rest of a possible solution or a
null object, or as another state signed by ’C’ as a complete flag to show a leaf node.

26

Inserting a customer as a key into the trie is a simple approach. Every customer of an
input solution candidate is inserted as an individual trie node. The children are an array
of pointers to next level trie nodes. The key acts as an index into the array children.

The insertion procedure is described in algorithm 4.6

Algorithm 4.6: Inserting a solution candidate into the trie
1 Candidate solution (x1, ..., xn)
2 q = root
3 l = 1
4 while q != ’C’ and l != n do
5 if (q.next(xl) == null) then
6 q.next(xl) = new trie node
7 end
8 if (q.next(xl) == ’C’) then
9 return true

10 end
11 q = q.next(xl)
12 l = l + 1
13 end
14 q.next(xl) = ’C’
15 prune the trie bottom up
16 return false

To have a better understanding of the insertion of a solution into a trie, take the example
below using a solution found for delivering to four customers:

[4, 3, 2, 1], [4, 3, 1, 2]

As can be seen in figure 4.4 (1) the first solution is inserted into an empty trie and the
value of each element of trie is set to null. In the next step, the rest of the solution has
to be inserted, which started with customer number three. The customer three has to be
found on the first level of the trie while the rest of the solution is inserted as a new child
for this customer. The value of that element will be replaced with a pointer to the rest
of the solution. This is depicted in figure 4.4 (2).

This will be repeated until the last customer will be inserted as a leaf node and the value
of the node set to ’c’ to show that this branch is completed (figure 4.4 (4)). The same
steps have to be taken for inserting the second solution which can be seen in figure 4.4
(5).

Using trie data structure, search complexities can be brought to optimal limit which is
equal to the length of the solution (L). Using a trie, the search process of a key can be
accomplished in O(L) time. However, trie storage requirements are another important

27

(1) (2) (3)

(4)

C

(5)

C C

(6)

C

Figure 4.4: Inserting a solution into an empty trie data structure

factor that should be considered. Inserting found solutions one by one enlarges the trie
over the time. It is also very important to keep the tree as small as possible to reduce the
search effort. For this aim, a technique should be used for pruning the trie. Pruning can
occur in a top down or bottom up fashion. A top down pruning will traverse nodes and
trim subtrees starting at the root, while a bottom up pruning will start at the leaf nodes.

In this thesis, bottom up pruning is applied. For this reason, the trie structure will be

28

checked after inserting a new solution. If all leaf nodes of a subtree have the ’C’, all
the leaves will be cut and the parent flag set to ’C’, which was previously set with the
pointer to the rest of the found solution. This process is depicted in figure 4.4 (6).

The process of pruning the trie can continue until the root of the trie can be set to ’C’.
This indicates that all solutions of the whole search space have been added, and the GA
can be terminated returning its best found solution as (proven) optimum. However, this
might happen in rare cases only.

In many problems, GAs may have a tendency to converge towards local optima or even
arbitrary points rather than the global optimum of the problem. A local optimum
of an optimization problem is a solution that is optimal (either maximal or minimal)
within a neighboring set of candidate solutions. This is in contrast to a global optimum,
which is the optimal solution among all possible solutions, not just those in a particular
neighborhood of values.

To help the GA to find the best solution, another method provided inside the trie is
responsible for generating new solutions based on not yet visited paths in trie data
structure. For this aim, every time that the insertion finds a duplicate it automatically
generates a new solution, inserts it into trie and returns it back to the GA for calculating
the fitness. Algorithm 4.7 shows how the algorithms converts an existing solution.

The entire process of how the solution archive works is summarized in 4.8. The described
steps in algorithm 4.8 should be integrated into the GA. This part is placed after ’2-opt
optimization’ step and should be applied to each generated individual.

29

Algorithm 4.7: Convert a duplicate solution
1 Input x, nodes
2 q = random node from nodes
3 l = level of q
4 x

′
l = value of randomly chosen non-complete entry of q

5 swap xl with x
′
l

6 while q != ’C’ do
7 if q.next(xl) == null then
8 q.next(xl) = new trie node
9 end

10 if q.next(xl) == ’C’ then
11 q.next(xl) = new trie node
12 x

′′
l = value of randomly chosen non-complete entry of q

13 swap x′l with x
′′
l

14 continue
15 end
16 q = q.next(xl)
17 l = l + 1
18 end
19 q.next(xl) = ’C’
20 prune the trie bottom up
21 return x

Algorithm 4.8: High-level description of the solution archive
1 solutionArchive = an instance of solutionArchive
2 Solution = An individual which is generated using GA
3 bool solutionExisted = solutionArchive.AddNewSolution(Solution)
4 if solutionExisted==true then
5 newPath = solutionArchive.convertSolution
6 end

30

CHAPTER 5
Computational Results

An overview of the problem and a comprehensive description of the solutions are given
in chapters 1 and 4. A valid approach to evaluate the discussed algorithm is to run
computational tests, whose construction is described in section 5.1 of this chapter. Based
on the data resulting from the tests, the different results will then be further investigated
in section 5.2.

5.1 Construction of Test
The tests for the VRPSD were designed on the basis of an existing algorithm from
[Spe13] and instances from Bianchi1. These instances are interesting since the position of
customers was not chosen uniformly at random but randomly with normal distributions
around two centers (so customers are grouped in two clusters). This is done in order to
consider instances that reflect real world situations, where customers may, for instance,
be located in two different cities. The clusters’ centers have coordinates in [0,99], and
customers’ coordinates are all different.

Fifteen random instances have been chosen with 50 customers. Two main strategies have
been chosen to test the instances and evaluate the results. The first strategy focuses on
finding a good population size to produce good results within a limited timeframe. The
second strategy consists of different optimization methods being applied to the default
genetic algorithm. This default genetic algorithm, in turn, is already applied to the
optimal population size, which has been determined based on the results of the first
strategy.

In the first strategy the basic algorithm is used to find an optimal population size. Testing
different methods in the second strategy has been performed based on the result in this

1http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html

31

http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html

step. Here the algorithm has been run for population sizes of 100, 300, and 500. Then
in the second strategy computational experimental tests have been run after applying
different optimization methods: Local search, multi-level evaluation scheme, and the
solution archive. These will be discussed in detail later in this chapter.

Before going into greater detail, several terms in in the table of results should be described.

"Objective value" is the average value calculated by the algorithms over all (here 30)
runs and is shown as "Obj. Val." in tables. "Standard deviation" is a measure that is
used to quantify the amount of variation or dispersion of a set of data values. A standard
deviation close to 0 indicates that the data points tend to be very close to Objective mean.
These values are calculated for each instance. To have a good overview of all instances,
"Objective mean" and "Objective geometric mean" also calculated separately to
give an overview of all runs over all instances at once.

"Objective mean" shows the average value over all runs and over all instances and
can be seen as "obj. mean" in the tables. "Objective geometric mean" is a type of
average, which indicates the central tendency of a set of value by using the product of
these values, as opposed to the objective mean, which uses their sum. In the tables "obj.
g. mean" refers to this term.

Furthermore, the Wilcoxon rank-sum test, that compares results to the objective values,
will be run to better highlight the improvements. This test is a nonparametric test which
can often be used provided the two independent samples are drawn from populations
with an ordinal distribution. This test is also applied to the results to find a significant
difference between configurations.

5.2 Computational Results

All tests were run on an Intel Core i3 1.90GHz computer with 4 GB of RAM. Evolution
time has been selected as the termination condition and the maximum evolution time has
been set to 10 minutes. All reported statistics are averages of over 30 runs per instance.

5.2.1 Test on population size

Attempting to solve optimization problems using GAs raises the problem of finding a
good set of solutions and finding a good initial population. Moreover, the probability
and type of crossover, the probability and type of mutation, the stopping criteria, the
type of selection operator, and the fitness function play an important role in finding a
good solution and in the performance of GA.

The results of the computational tests performed on most of the named parameters are
published in [Spe13]. Here, the focus lies on finding a good initial population. Table 5.1

32

shows the configured value of the used parameter for running the computational tests.
These parameters are as follows:

• Mutation Rate is the probability that the new solution is mutated.

• Population Size is number of population in each generation of GA

• Survival Rate specifies a percentage of the fittest solutions which are used exclu-
sively to generate the next generation.

• Tournament Size is the size of the tournament selector. It is a method of selecting
an individual from a population of individuals in a genetic algorithm.

• Number of Runs per Problem Instance which shows how many times the GA
runs for one instance of problem

Table 5.1: Used parameter for capturing the result of computational tests on GA

Parameter Value

Mutation Rate 0.25
Population Size 500
Survival Rate 35
Tournament Size 6
Number of Runs per Problem Instance 30

In GAs, each candidate solution is an individual in a population. Research [KK06]
shows that population size plays an important role in evolutionary computation like
GAs. Hence, in the first step, an attempt was made to find a reasonably good population
size. The determined population size will be used later for designing a computational
experimental analysis based on different optimization techniques.

The results in table 5.2 show that small population sizes render the algorithm unreliable,
and large population sizes affect the computation time in finding a solution. Due to the
significant influence of population size on the solution quality and search time, finding a
trade-off between population size and computation time is necessary to obtain a good
final within a reasonable timeframe.

Table 5.2 gives an overview of the result of the GA for population sizes of 100, 300, and
500 on 15 different instances. These population sizes are selected from many other tested
population sizes and the most stable results, based on termination condition, are selected
as the experiment’s results.

A higher level overview over all runs over all instances is given in the last row of the table,
where the objective mean and the objective geometric mean for the different population

33

Table 5.2: Computational results on instances using default GA for population size of
100, 300, and 500

Instance 100 Population 300 Population 500 Population
Obj. Val. Std. Dev. Obj. Val. Std. Dev. Obj. Val. Std. Dev.

s05551 1576.3 10.4 1560.5 14.3 1563.3 9.0
s55510 2734.6 16.5 2721.0 12.3 2715.8 14.7
s55515 1875.1 9.1 1868.9 7.9 1856.8 9.7
s55520 1858.5 14.8 1839.2 9.7 1838.2 10.2
s55525 1718.2 12.0 1703.1 13.7 1705.0 12.5
s55530 2234.8 15.7 2223.1 12.4 2211.9 10.1
s55535 2074.6 9.6 2064.0 11.0 2059.8 8.1
s55540 1954.9 10.5 1947.7 8.9 1947.1 9.5
s55545 1455.1 15.0 1435.8 12.2 1435.6 9.4
s55550 2725.6 13.3 2711.1 19.3 2705.8 15.4
s55555 2014.0 13.4 2003.5 12.2 2002.3 12.3
s55560 2612.8 14.0 2599.6 13.6 2589.9 10.6
s55565 2799.4 15.1 2785.4 12.4 2776.9 12.4
s55570 2071.7 11.2 2063.1 9.6 2056.3 8.8
s55575 2474.8 13.3 2473.2 7.1 2468.0 10.0

sizes are shown. It has been recognized that if the initial population increases from 100
up to 300, the objectives mean decreases from 1977.3 down to 1971.7 and when initial
population increases from 300 up to 500, the objectives mean decreases from 1971.7 down
to 1968.7.

The objective mean and the objective geometric mean over all runs are also summarized
in table 5.3.

Table 5.3: Objective mean and the objective geometric mean of different population size

Population 100 300 500

obj. mean 2145.3 2133.3 2128.8
obj. g. mean 2103.9 2091.3 2087.3

The summary of statistical results can be taken from table 5.4. The header of rows and
columns shows the population size and the cells contains the frequency of better results
in percentage. The statistics parameters, which are used to obtain these results, are the
calculated objective values in table 5.2.

Observing every single instance has shown that as the size of population increased from
100 to 300 or from 100 to 500, the objective values have improved in all instances. It was

34

Table 5.4: Statistical results of increasing population size

Population 100 300 500

100 — 100% 100%
300 0% — 81.5%
500 0% 12.5% —

also expected that increasing the population from 300 to 500 would lead to better results.
However, not all but only 81.5% (table 5.4) of instances have shown improvement.

Table 5.5: Wilcoxon rank-sum results on population size

Population 100 300 500

100 - 0 0
300 14 - 0
500 15 7 -

The results of running the Wilcoxon rank-sum test is summarized in table 5.5. It
shows that the small population sizes are never better than the bigger population sizes.
The population size of 300 leads to better results in 14 instances in comparison to the
population size of 100 and the population size of 500 is better than the population size of
100 in all 15 instances. However, comparing the population size of 500 to the population
size of 300, the results are better only in 7 instances.

5.2.2 Applying optimization method

Taking into account the results of section 5.2.1, it is reasonable to investigate how
the optimization method affects the GA in generating a better solution for an initial
population size of 500. As described in chapter 4, mainly two methods are used to
optimize the performance of the GA. Firstly, the multi-level evaluation scheme and
secondly, the complete solution archive are implemented.

The exact evaluation of the solution based on dynamic programming was very time
consuming. Therefore, a multi-level evaluation was applied, which significantly reduced
the evaluation time of the candidate solution.

In order to verify the advantages of each method separately, the tests are run once
after the application of the multi-level evaluation scheme, and then additionally after
implementing the complete solution archive for a population size of 500.

Table 5.6 allows for a comparison of the results after applying the optimization methods

35

Table 5.6: Comparison of applying optimization method on the population size of 500

Instance Default GA ML-ES ML-ES + Sol. Arch.
Obj. Val. Std. Dev. Obj. Val. Std. Dev. Obj. Val. Std. Dev.

s05551 1563.3 9.0 1416.8 15.7 1410.5 15.3
s55510 2715.8 14.7 2534.9 12.1 2540.9 12.6
s55515 1856.8 9.7 1724.3 9.8 1722.0 12.9
s55520 1838.2 10.2 1680.5 14.1 1688.7 13.4
s55525 1705.0 12.5 1570.7 9.3 1576.8 13.7
s55530 2211.9 10.1 2077.2 11.5 2068.7 15.1
s55535 2059.8 8.1 1879.9 12.7 1877.1 15.6
s55540 1947.1 9.5 1797.4 16.6 1802.8 10.7
s55545 1435.6 9.4 1320.8 9.6 1322.3 18.2
s55550 2705.8 15.4 2525.2 16.0 2522.8 14.1
s55555 2002.3 12.3 1830.8 15.5 1833.5 18.5
s55560 2589.9 10.6 2379.8 18.3 2376.3 18.4
s55565 2776.9 12.4 2572.0 14.8 2583.0 21.8
s55570 2056.3 8.8 1916.2 10.4 1916.8 11.5
s55575 2468.0 10.0 2303.7 14.3 2305.5 18.4

on the default GA. The first column shows the instances, columns 2 and 3, respectively,
contain the objective value and standard deviation of the default GA while columns 4
and 5 show the values after applying the multi-level evaluation scheme. Finally, columns
6 and 7 give the results after the complete solution archive has been applied.

It is also important to note that ML-ES is able to reduce the overall runtime of the
algorithm, which allows for setting a timeframe of 10 minutes as termination condition.
The algorithm was able to generate and evaluate more solution candidates, which increases
the reliability of the final solution.

The application of the multi-level evaluation scheme improved the results significantly. In
this case, the objective mean decreases from 2128.8 to 1968.7. It can also be observed that
this method leads to an improvement in all instances while applying the solution archive
fails to result in significant improvements over most instances. However, in comparison to
the default GA, a significant improvement can be reached by using the solution archive.
In the latter case, the objective mean decreases from 2128.8 to 1969.9.

Table 5.7 gives a better overview of applying optimization methods on the population
size of 500.

The results of running the Wilcoxon rank-sum test show that applying ML-ES leads to
better results in all 450 runs in comparison to the default GA. However, comparing the
results using the ML-ES method with and without applying the solution archive, fails to

36

Table 5.7: Objective mean and the objective geometric mean of all runs after applying
optimization method on the population size 500

Population Default GA ML-ES ML-ES + Sol. Arch.

obj. mean 2128.8 1968.7 1969.9
obj. g. mean 2087.3 1928.1 1929.2

show a clear improvement due to the solution archive. Out of 450 runs, ML-ES without
applying the solution archive was better than ML-ES combined with the archive in 235
runs.

The results of the Wilcoxon rank-sum test on different optimization methods are summa-
rized in table 5.8. The data shows that applying optimization methods has improved the
default GA significantly. The ML-ES was better than ML-ES using the solution archive
in 3 instances while ML-ES combined with the solution archive was better than ML-ES
only in 2 instances.

Table 5.8: Wilcoxon rank-sum test results on applying optimization method

Population Default GA ML-ES ML-ES + Sol. Arch.

Default GA - 0 0
ML-ES 15 - 3
ML-ES + Sol. Arch. 15 2 -

5.2.3 Results of applying ML-ES and DP

Additionally, table 5.9 and table 5.10 show the intermediate results of applying ML-ES.
These results are only examples and cannot be generalized, partly because they were
gathered after different runs. The solutions differ from run to run and also the duration,
shown in table 5.9 and table 5.10, may vary from run to run for the same instance.

The table 5.9 shows the fitness value before (Main Fitness) and after (Best Fitness)
applying the ML-ES. The third column shows the duration of calculating the Best Fitness
using ML-ES.

Table 5.10 shows the calculated objective value and the duration of this calculation on
three different levels of ML-ES.

Taking instance s05551 as an example, it can be taken from table 5.9 that the best fitness
was calculated within 00:00:26.2 seconds, which is fairly close to the duration of the same
instance on the first level in the table 5.10. This means that the best fitness of this

37

Table 5.9: Intermediate result of testing ML-ES

Main Fitness Best Fitness Duration

s05551 1662.2 1519.9 00:00:26.2
s05552 2434.4 2222.4 00:00:29.2
s05553 1539.7 1392.5 00:00:11.6
s05554 1674.9 1544.6 00:00:22.1
s05555 2387.0 2183.7 00:00:17.0
s05556 2562.2 2450.6 00:00:17.5
s05557 2626.4 2455.0 00:00:20.0

instance is calculated on the first level of the algorithm. However, looking at instance
s05553, it becomes clear that this value was calculated on the second level of the ML-ES,
because the registered duration in table 5.9 is close to the calculated duration of the
second level.

Table 5.10: Intermediate result of testing ML-ES

level 1 level 2 level 3
Obj. Val. Duration Obj. Val. Duration Obj. Val. Duration

s05551 1609.3 00:00:28.2 1592.6 00:00:09.3 1496.1 00:00:03.5
s05552 2214.1 00:00:33.0 2172.0 00:00:10.3 2074.0 00:00:04.1
s05553 1375.1 00:00:39.3 1364.6 00:00:11.4 1343.4 00:00:04.2
s05554 1474.1 00:00:37.0 1453.4 00:00:11.2 1402.8 00:00:04.2
s05555 2146.0 00:00:31.5 2016.5 00:00:09.7 1957.1 00:00:03.8
s05556 2512.5 00:00:36.2 2445.9 00:00:10.8 2380.2 00:00:04.1
s05557 2458.7 00:00:39.2 2393.4 00:00:12.1 2309.8 00:00:04.3

5.2.4 Comparison with existing approaches

The main goals of the two computational experiments in section 5.2.1 and 5.2.2 are:

• The analysis of the GA performance for different population sizes. The results
show that the default GA performs better with a population size of 500.

• The analysis of the existing GA performance after applying the optimization
method.

Two optimization methods were applied, namely multi-level evaluation and the complete
solution archive, both of which lead to significant improvements in the results.

38

In this section, the best result of section 5.2.2 is compared with Genetic Algorithm (GA)
and Iterated Local Search (ILS). The latter was described by Bianchi et al. [BBC+06].
Bianchi et al. [BBC+06] analyzes the performance of metaheuristics on the vehicle
routing problem with stochastic demands (VRPSD).

Since the performance comparison between applied optimization methods shows that
multi-level evaluation leads to a better result than the complete solution archive, the
results of the multi-level evaluation optimization method have been used for the compari-
son.

Table 5.11: Comparison of applying ML-ES with existing approaches

Instance Multi-level evl. Bianchi (GA) Bianchi (ILS)
Obj. Val. Std. Dev. Obj. Val. Std. Dev. Obj. Val. Std. Dev.

s05551 1416.8 15.7 1464.6 7.9 1458.3 5.2
s55510 2534.9 12.1 2596.1 10.3 2590.9 9.2
s55515 1724.3 9.8 1792.2 5.1 1792.1 5.3
s55520 1680.5 14.1 1749.9 7.0 1744.1 11.4
s55525 1570.7 9.3 1616.9 6.5 1621.3 5.5
s55530 2077.2 11.5 2119.2 7.1 2107.4 10.9
s55535 1879.9 12.7 1977.6 7.3 1975.1 5.8
s55540 1797.4 16.6 1858.7 3.7 1859.3 8.1
s55545 1320.8 9.6 1339.6 5.4 1336.4 7.4
s55550 2525.2 16.0 2575.0 5.2 2564.4 6.5
s55555 1830.8 15.5 1909.0 10.8 1907.2 7.3
s55560 2379.8 18.3 2487.2 6.4 2484.2 3.5
s55565 2572.0 14.8 2671.6 7.6 2666.8 6.0
s55570 1916.2 10.4 1972.0 7.2 1961.1 8.0
s55575 2303.7 14.3 2396.8 3.5 2389.4 3.7

To make the comparison as accurate as possible, all the tests should be run under the
same conditions. Therefore, the two algorithms, which are taken from Bianchi http:
//iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html, are run on the
same machine. It is also worth mentioning that two versions of metaheuristic exist based
on the type of approximation scheme used in the local search: VRPSD-approximation or
TSP-approximation. In the latter case, the algorithms utilize TSP-approximation, as the
authors showed that it performed better.

The results are shown in table 5.11. Bianchi (ILS) with an objective mean of 2030.5 is
better than Bianchi (GA) with an objective mean of 2035.1 in 81.25% of the instances.
It is evident that the multi-level evaluation with a mean objective of 1968.7 is better
than both Bianchi (ILS) and Bianchi (GA), and significantly improved the final objective
value.

39

http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html
http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html

A summary of the objective mean and the objective geometric mean of applying ML-ES
to default GA and existing approaches can be found in table 5.12.

Table 5.12: Objective mean and the objective geometric mean of applying ML-ES with
existing approaches

Population Multi-level evl. Bianchi (GA) Bianchi (ILS) Arch.

obj. mean 1968.7 2035.1 2030.5
obj. g. mean 1928.1 1992.9 1988.6

40

CHAPTER 6
Conclusions and Future Work

The Vehicle Routing Problem is of central importance in distribution management. There
exist several versions of the problem, and a wide variety of exact and approximate
algorithms have been proposed for solving them. This work considers a metaheuristic
based on an evolutionary algorithm for solving the Vehicle Routing Problem with
stochastic demands. We developed several genetic operators, included a local search
and extended the algorithm with more advanced techniques. As this problem has a
time-consuming solution evaluation function, which is based on dynamic programming,
a multi-level evaluation scheme is applied to reduce the time spent for evaluations.
Furthermore, a complete trie-based solution archive was implemented which stores all
generated solutions in order to convert identified duplicate solutions into guaranteed new
ones, which are also usually similar to the duplicate.

Extensive computational tests were performed, which show a significant improvement in
the duration of calculating the fitness and consequently in the whole algorithm. These
results demonstrate that the multi-level evaluation scheme is able to improve the results
significantly in terms of running time and final solution quality. The experimental
results after applying the solution archive indicate an improvement in some of the
benchmark instances. In particular, using both the multi-level evaluation scheme and
the solution archive lead to statistically significant better results in 2 instances compared
to the configuration in which only the solution archive is used, which resulted in an
improvement in 3 instances. Therefore it seems that in some of the test instances the
time overhead of the operations in the solution archive does not pay off but that it can
still be viable.

Compared to two algorithms from the literature which use the same set of instances as
we do, revealed a strong indication that the developed genetic algorithm has the better
performance. In all of the tested benchmark instances, the proposed algorithm finds

41

solution with a higher quality in the same amount of computation time.

6.1 Future Work
There is a wide variety of possibilities and research directions to continue this work. As
possible future work the following points can be considered.

In metaheuristics there are a plenty of well-known neighborhood structures described in
the literature which can be used for solving a set of combinatorial optimization problems.
In this thesis the 2-opt local search was considered. This can be extended by k-opt
local search and be optimized for a better performance. Furthermore, any other search
algorithms, which repeatedly trying to improve the current solution by looking for a
better solution which is in the neighborhood of the current solution, can be used, e.g., an
embedded tabu search approach.

The techniques developed in this thesis can also be used when additional constraints are
considered. A maximal tour length, for example, can be respected by altering the solution
evaluation. Then, a giant tour decoder has to be applied and the dynamic programming
algorithm must be executed for each individual tour. Moreover, the algorithm, which
has been developed in this work, can potentially be used in many real world problems
involving stochastic routing problems, for example, the daily demand for cash at a bank’s
automatic teller machine. The maximal amount of cash that may be carried on a vehicle
is dictated by security policy and corresponds to the vehicles’ capacity.

42

List of Algorithms

3.1 A standard GA in pseudocode . 12

3.2 A generic local search in pseudocode . 14

4.1 Initialization . 18

4.2 Optimized GA using 2-opt . 19

4.3 Exact 2-opt . 21

4.4 Objective function (fitness) of an a priori tour 22

4.5 Exact fitness evaluation using multi-level evaluation scheme 23

4.6 Inserting a solution candidate into the trie 27

4.7 Convert a duplicate solution . 30

4.8 High-level description of the solution archive 30

List of Figures

4.1 2-opt move . 20
4.2 2-opt considering exact evaluation parameters 20
4.3 An exemplary demand probability distribution and its different levels of

approximation [BHR15]. 25

43

4.4 Inserting a solution into an empty trie data structure 28

List of Tables

5.1 Used parameter for capturing the result of computational tests on GA 33
5.2 Computational results on instances using default GA for population size of

100, 300, and 500 . 34
5.3 Objective mean and the objective geometric mean of different population size 34
5.4 Statistical results of increasing population size 35
5.5 Wilcoxon rank-sum results on population size 35
5.6 Comparison of applying optimization method on the population size of 500 . 36
5.7 Objective mean and the objective geometric mean of all runs after applying

optimization method on the population size 500 37
5.8 Wilcoxon rank-sum test results on applying optimization method 37
5.9 Intermediate result of testing ML-ES . 38
5.10 Intermediate result of testing ML-ES . 38
5.11 Comparison of applying ML-ES with existing approaches 39
5.12 Objective mean and the objective geometric mean of applying ML-ES with

existing approaches . 40

44

Bibliography

[BBBB95] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P
Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, MA, 1995.

[BBC+06] Leonora Bianchi, Mauro Birattari, Marco Chiarandini, Max Manfrin, Mon-
aldo Mastrolilli, Luis Paquete, Olivia Rossi-Doria, and Tommaso Schiavinotto.
Hybrid metaheuristics for the vehicle routing problem with stochastic de-
mands. Journal of Mathematical Modelling and Algorithms, 5(1):91–110,
2006.

[BDGG09] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J
Gutjahr. A survey on metaheuristics for stochastic combinatorial optimization.
Natural Computing: an international journal, 8(2):239–287, 2009.

[Bel54] Richard Bellman. The theory of dynamic programming. Technical report,
DTIC Document, 1954.

[Ben82] J. L. Bentley. Writing Efficient Programs. Prentice Hall, 1982.

[BHR15] Benjamin Biesinger, Bin Hu, and Günther R. Raidl. A variable neighborhood
search for the generalized vehicle routing problem with stochastic demands.
In Gabriela Ochoa and Francisco Chicano, editors, Evolutionary Computation
in Combinatorial Optimization – EvoCOP 2015, volume 9026 of LNCS, pages
48–60. Springer, 2015.

[BK78] W Bialas and M Karwan. Multilevel linear programming. State University
of New York at Buffalo, 1978.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial opti-
mization: Overview and conceptual comparison. ACM Computing Surveys
(CSUR), 35(3):268–308, 2003.

[CL07] Christian H. Christiansen and Jens Lysgaard. A branch-and-price algorithm
for the capacitated vehicle routing problem with stochastic demands. Oper.
Res. Lett., 35(6):773–781, 2007.

45

[CLM01] Jean-François Cordeau, Gilbert Laporte, and Anne Mercier. A unified tabu
search heuristic for vehicle routing problems with time windows. Journal of
the Operational research society, pages 928–936, 2001.

[Cro58] Georges A Croes. A method for solving traveling-salesman problems. Opera-
tions research, 6(6):791–812, 1958.

[DR59] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management
Science, 6:80–91, 10 1959.

[DT90] Moshe Dror and Pierre Trudeau. Split delivery routing. Naval Research
Logistics (NRL), 37(3):383–402, 1990.

[GH88] David E Goldberg and John H Holland. Genetic algorithms and machine
learning. Machine learning, 3(2):95–99, 1988.

[GITN04] Peng Gang, Ichiro Iimura, Hidenobu Tsurusawa, and Shigeru Nakayama. A
local search algorithm based on genetic recombination for traveling salesman
problem. In Maarten Keijzer, editor, Late Breaking Papers at the 2004
Genetic and Evolutionary Computation Conference, Seattle, Washington,
USA, 26 July 2004.

[GLS96a] Michel Gendreau, Gilbert Laporte, and René Séguin. Stochastic vehicle
routing. European Journal of Operational Research, 88(1):3 – 12, 1996.

[GLS96b] Michel Gendreau, Gilbert Laporte, and René Séguin. A tabu search heuristic
for the vehicle routing problem with stochastic demands and customers.
Operations Research, 44(3):469–477, 1996.

[GML08] Carlos García-Martínez and Manuel Lozano. Local search based on genetic
algorithms. In Patrick Siarry and Zbigniew Michalewicz, editors, Advances
in Metaheuristics for Hard Optimization, Natural Computing Series, pages
199–221. Springer, 2008.

[HHJL08] William Ho, George TS Ho, Ping Ji, and Henry CW Lau. A hybrid ge-
netic algorithm for the multi-depot vehicle routing problem. Engineering
Applications of Artificial Intelligence, 21(4):548–557, 2008.

[HS04] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations &
applications. Elsevier, 2004.

[KK06] Vlasis K Koumousis and Christos P Katsaras. A saw-tooth genetic algorithm
combining the effects of variable population size and reinitialization to enhance
performance. Evolutionary Computation, IEEE Transactions on, 10(1):19–28,
2006.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

46

[MMM14] Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas. A Hybrid
Clonal Selection Algorithm for the Vehicle Routing Problem with Stochastic
Demands, pages 258–273. Springer International Publishing, 2014.

[Mos98] Gur Mosheiov. Vehicle routing with pick-up and delivery: tour-partitioning
heuristics. Computers & Industrial Engineering, 34(3):669–684, 1998.

[MRV15] Jorge E Mendoza, Louis-Martin Rousseau, and Juan G Villegas. A hybrid
metaheuristic for the vehicle routing problem with stochastic demand and
duration constraints. Journal of Heuristics, pages 1–28, 2015.

[PGGM12] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L. Medaglia. A
review of dynamic vehicle routing problems. European Journal of Operational
Research, 225(1):1–11, 2012.

[PS03] Russel J Petch and Said Salhi. A multi-phase constructive heuristic for the
vehicle routing problem with multiple trips. Discrete Applied Mathematics,
133(1):69–92, 2003.

[RH10] G. R. Raidl and B. Hu. Enhancing genetic algorithms by a trie-based complete
solution archive. In Peter Cowling and Peter Merz, editors, Evolutionary
Computation in Combinatorial Optimization, volume 6022 of LNCS, pages
239–251. Springer Berlin Heidelberg, 2010.

[SCP+13] Nagesh Shukla, AK Choudhary, PKS Prakash, KJ Fernandes, and MK Tiwari.
Algorithm portfolios for logistics optimization considering stochastic demands
and mobility allowance. International Journal of Production Economics,
141(1):146–166, 2013.

[SCPB04] Martín Safe, Jessica Carballido, Ignacio Ponzoni, and Nélida Brignole. On
stopping criteria for genetic algorithms. In Advances in Artificial Intelligence–
SBIA 2004, pages 405–413. Springer, 2004.

[SGV11] Geetha Shanmugam, Poonthalir Ganesan, and PT Vanathi. Meta heuristic
algorithms for vehicle routing problem with stochastic demands. Journal of
Computer Science, 7(4):533, 2011.

[SP00] Dimitrios Sariklis and Susan Powell. A heuristic method for the open vehicle
routing problem. Journal of the Operational Research Society, 51(5):564–573,
2000.

[Spe13] Simon Sperl. A Genetic Algorithm for the Stochastic Vehicle Routing
Problem, 2013. Bachelor thesis, Vienna University of Technology.

[YMB00] Wen-Huei Yang, Kamlesh Mathur, and Ronald H Ballou. Stochastic vehicle
routing problem with restocking. Transportation Science, 34(1):99–112, 2000.

47

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem definition
	Thesis outline

	Previous Work
	Vehicle Routing Problem
	Stochastic Vehicle Routing Problem

	Methods
	Genetic Algorithms
	Local Search

	Genetic Algorithm
	Structure of the Genetic Algorithm
	Local Search
	Multi-level evaluation scheme
	Solution Archive

	Computational Results
	Construction of Test
	Computational Results

	Conclusions and Future Work
	Future Work

	List of Figures
	List of Tables
	Bibliography

