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Kurzfassung

Kontinuierliche Integration (englisch „Continuous Integration“ (CI)), ist eine Methode
der Agilen Softwareentwicklung, die das kontinuierliche Zusammenführen und Testen von
Änderungen an der Software Codebasis vorsieht. Ein CI-Server überwacht fortlaufend
das Quellcode-Repositorium und führt bei neu eingegangenen Änderungen automatisch
den Software-Erstellungsprozess (englisch „Build“) durch. Schlägt der Build fehl, so
muss die Ursache des Fehlers gefunden und behoben werden, was eine Verzögerung im
Integrierungsprozess und der weiteren Softwareentwicklung zur Folge hat. In komplexen
Softwareprojekten kann der Build-Prozess sehr langwierig sein, wodurch sich das Problem
weiter verschärft.

Trotz des weitverbreiteten Einsatzes von CI ist nur wenig über die vielfältigen
Ursachen für fehlschlagende Builds bekannt. Jedoch ist ein eingehendes Verständnis
darüber wann und wie solche Fehler entstehen ein wichtiger Aspekt um die Produktivität
in CI-Arbeitsabläufen zu verbessern. Durch die Identifikation von Entwicklungspraktiken,
die häufig zu Ausfällen führen, wird es möglich, Vorhersagen über den Erfolg einer
bevorstehenden Integration zu treffen. Eine solche Vorhersage erlaubt es Entwicklern auf
mögliche Probleme einzugehen noch bevor der Build-Prozess ausgelöst wird, wodurch
Zeit und Ressourcen gespart werden können.

In dieser Arbeit präsentieren wir eine Vorgehensweise für die Analyse des CI-Arbeits-
ablaufs sowie eine empirische Studie basierend auf Daten von 14 Open-Source-Software-
projekten, welche CI einsetzen. Daten aus Quellcode-Repositorien und Build-Systemen
werden untersucht um qualitative und quantitative Aussagen über die Vielfalt und Häu-
figkeit von Build-Fehlern zu treffen. Mittels statistischer Verfahren wird die Beziehung
zwischen Merkmalen des Entwicklungsprozesses und Build-Fehlern analysiert und bewer-
tet. Basierend auf den Ergebnissen dieser Untersuchungen wird ein Verfahren für die
Vorhersage von Build-Fehlern vorgestellt.

Unsere Ergebnisse zeigen, dass fehlschlagende Modultests und das Verletzen von
Programmierstil-Richtlinien die häufigsten Ursachen für Build-Fehler sind. Den statis-
tischen Untersuchungen zu Folge sind die Anzahl und Art vorhergehender Fehler die
stärksten Prädiktoren für künftige Ausfälle. Unsere besten Vorhersagemodelle für Ausfäl-
le im Build-Prozess erzielen eine Trefferquote von 0.82 und eine Genauigkeit von 0.80.
Darüber hinaus erlaubt unser Ansatz das Aktualisieren einer Vorhersage während der
Ausführung eines Builds.
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Abstract

Continuous integration (CI) is a practice where developers integrate their work into the
main stream of development frequently. A CI server continuously monitors the source
code repository of a project and automatically executes the software build process when
new changes are checked in. If a build fails, developers have to identify and fix the cause
of the broken build, leading to a delay in the integration process and stalling further
development. Large software projects often have long running builds that exacerbate
this problem.

Despite the widespread use of CI, little is known about the multiplicity of errors
that cause builds to fail. Yet, understanding when and why build errors occur is
an important step towards improving developer productivity in the CI workflow. By
identifying characteristics of development practices that cause build failures, we can
predict preliminary results for an integration. This helps developers react to possible
problems even before a build is initiated, thereby saving time and resources.

In this thesis, we introduce CInsight, a comprehensive framework for analyzing CI
workflows and build failures. We conduct an empirical study on real-world data from
14 open source software projects. Data from source code repositories and build systems
are explored to gather qualitative and quantitative evidence about the multiplicity and
frequency of CI build errors. Statistical methods are used to examine the relationship
between development practices and build failures. Based on the results, we devise a
method for CI build failure prediction.

Our results show that failing unit-tests and violations of code quality rules are the
main causes for build failures. The statistical analyses reveal that the type and amount of
previous errors are the strongest predictor for future failures. Our best prediction models
yield average recall and precision values of 0.82 and 0.80, respectively. Furthermore, our
approach allows to update a prediction during the execution of a build.
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CHAPTER 1
Introduction

Motivation

The culture in which software is developed has changed dramatically over the past
decade [DSTH12]. A completely new ecosystem of tools and development practices has
evolved around social coding platforms [BCSD14, VYW+15] This ecosystem has allowed
geographically dispersed teams to collaborate effectively, and increased the amount of
contributions to open source software (OSS) projects [BRB+09]. Yet, many of these
projects are subject to high delivery pressure [WP12]. As the frequency in which software
is released increases, so does the need for early detection of software integration issues.
It is unacceptable if the release process is stalled because of compilation errors or failing
unit tests.

The effect of every change by developers to the source code should be checked to make
sure the system remains in a functioning state. To that end, many modern software
projects use version control systems (VCS) to manage their source code, and have adopted
continuous integration (CI), a practice where team members integrate their work into
the main stream of development frequently [DMG07]. Automating the building process,
i.e., the compilation, linking of dependencies, packaging, etc. of software artifacts, and
the execution of automated tests, are vital for an effective CI workflow. A dedicated
infrastructure with a sophisticated build system is often employed to fully automate
building and even deploying software after changes have been integrated. Such a CI
server monitors the VCS repository, fetches new changes, executes the build suite, and
notifies developers about the result of the build [DMG07].

Despite the widespread adoption of CI [GZSD15], little is understood about the multiplic-
ity of errors that may occur during a build, and factors that lead to build failures. Yet,
during development, a large amount of time and focus goes into finding such errors, and
then fixing broken builds to allow the continued development on top of successfully built
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1. Introduction

and tested changes [KKA14]. Furthermore, our data show that large software projects
often have long build chains that may run for several minutes, or even hours, before
returning feedback on the outcome of a build. Long builds may not only be costly in
terms of computational resources on the CI infrastructure, but also inhibit one of the
key purposes of CI: to produce rapid feedback on the effects of an integration to the
system [DMG07]. Waiting a long time on such feedback can have a negative impact on
productivity when developers are required to build on top of changes that triggered a
build [KKA14].

Substantial research exists on how data science methods (such as computational statistics
or machine learning) can be used to predict future software defects from different quality
measures [GKMS00, MPS08, ABJ10, DLR12, RHT+13, MJ15]. Only few efforts have
been made to develop similar methods for predicting build failures, or to study factors
that influence the outcome of builds. Studies that analyze build errors either focus on
builds executed in a developer’s private workspace [SSE+14], or do not consider the
multiplicity of possible errors that can occur during a CI build [CH11, KKA14]. Existing
build failure prediction approaches are either based on outdated assumptions (e.g., that
the integration process may take several days) [HZ06], or focus on the socio-technical
aspects of development [WSDN09, Sch10, KSD11].

Problem Statement

Build failures have a negative impact on the development process [KKA14]. When a build
fails, developers need to manually identify the cause for the build failure, often by reading
through the log output of the build automation system. This has a direct negative effect
on developer productivity, as time is spent on fixing a broken build, rather than the task
at hand. Despite the wide spread use of CI, we lack qualitative and quantitative evidence
of why CI builds fail.

Similarly, only a limited amount of studies exists that explore factors that lead to
CI build failures. Previous research on software quality has identified a variety of
different measures that cause an increase in software defects. Such measures include code
complexity, frequency of changes, etc. [DLR12, MJ15] It is unclear whether CI builds
are affected by the same factors. Bad work practices that lead to an increase in build
failures should be identified. This allows developers to improve existing workflows and
reduce the amount of build failures.

CI builds should be fast in order to provide rapid feedback on the state of an integration
[DMG07]. However, in many projects, long build chains are unavoidable, e.g., due to the
size of the codebase, or the amount of tests in the test suite. Build failure prediction
could complement the CI feedback mechanism. Being able to predict preliminary results
for an integration would allow developers to react faster to possible defects before even
starting a build, or, conversely, fetch changes that are safe to build upon before the build
suite has finished.
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An aspect of build failures previously unexplored is the influence of different error types
as well as the frequency of occurrence of errors during the execution of a build. A CI
build comprises different steps, and each subsequent step may produce their own specific
kinds of errors. We hypothesize that errors of the same type will cause the build to fail at
similar points in time during different phases of the build execution. Such accumulations
points allow us to reason about the likelihood of specific errors during the build execution.
It is clear that, as the build progresses, the likelihood for errors to occur continues to
decline. So does the plausibility of any prediction made by a classification model. By
leveraging this understanding of the temporal aspect of build errors it becomes possible
to update an initial prediction during the build execution.

Research Questions
Based on the research gaps we have identified, the aim of this thesis is to answer the
following four research questions:

RQ1. Why do CI builds fail?
The first research questions aims to provide qualitative and quantitative evidence
about the causes of build failures. We report on the different error types and
their distribution among software projects. These findings highlight which errors
occur most often, and can help to prioritize efforts to reduce build failures. We
also report on the frequency of occurrence of errors during the build execution.
The findings on the temporal aspect of build errors motivate RQ4.

RQ2. What factors can be associated with CI build failures?
The second research question aims to provide evidence about the relationship
between development practices and build failures. We report on the statistical
significance of measurable properties of build data on the build outcome. The
findings help us to determine which properties can be used for training statistical
classification models, explored in RQ3.

RQ3. How well can statistical models predict the outcome of a CI build?
The third research question aims to provide evidence whether CI build failure

prediction is feasible and how well different approaches perform. We report on the
performance of classification models previously used for build failure prediction.
The findings allow practitioners to effectively create prediction models from their
project data.

RQ4. Can the temporal aspect of build errors be used for prediction?
The fourth research question aims to examine a previously unexplored aspect

of build errors. We report on how the temporal aspect of build errors, i.e., their
frequency of occurrence during build execution, can be used for build failure
prediction.

3



1. Introduction

Methodology

We conduct our research using real-world data gathered from 14 OSS projects that employ
CI. To make the study reproducible, the data are gathered from publicly available data
sources. We develop a data analysis toolkit that allows us to extract, link, and structure
the heterogeneous data.

We examine the data in a mixed-method study using methods from both qualitative
[CS14] and quantitative [SO13] research. The study comprises two parts that aim to
answer RQ1 and RQ2, respectively. The goal is a) to gain new insights into the multiplicity
of errors that can occur during the execution of a CI build; and b) to provide empirical
evidence on factors that influence the outcome of a build. For part one, we develop a
systematic process to determine build errors from the build data. First, we quantitatively
explore the multiplicity of build errors across projects. We then examine the temporal
aspect of build errors, i.e., their frequency of occurrence during the build execution. In
part two of the study, we elicit and explore measurable properties of build data. Based
on existing research, we define change and process metrics that are computable from the
gathered data. We employ methods from the field of mining software repositories (MSR)
and perform correlation analyses to examine the strength of the relation between these
metrics and the build outcome.

Using the results of the study, we devise a system for predicting build failures. Methods
from data mining and machine learning are used to create and evaluate statistical
classification models. We conduct several experiments to determine the performance of
our classification approach, and provide an answer to RQ3. We proceed to incorporate
our understanding of the temporal dimension of build errors into our prediction approach.
Using methods from probability theory, we reason about the build outcome during the
build execution. We present these results to answer RQ4.

Structure

The remainder of the thesis is structured as follows. Chapter 2 describes the background
and theoretical foundations of this work. We first give an overview of development
practices in the context of CI, and briefly introduce machine learning methods used in
our approach. Chapter 3 presents related work and state-of-the-art methods of empirical
software engineering and software build failure prediction. We summarize previous
studies on factors that influence software quality, and existing systems for build failure
prediction. Chapter 4 provides a high-level overview of our solution approach and the
employed methodology. We also define our system model, formalize domain concepts,
and briefly describe the data analysis toolkit we developed for the various data science
tasks. Chapters 5 and 6 present the methods and results of the two-part study. The first
part is a systematic study of CI build errors, and is covered by Chapter 5. The second
part is a statistical analysis of factors that influence build outcomes, and is covered by
Chapter 6. The results of the two-part study are used as input for Chapter 7, in which

4



we present our approach to predict build failures. We describe our experiment design
and discuss the performance of the prediction models. Finally, Chapter 8 concludes the
thesis and provides an outlook on future research opportunities.
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CHAPTER 2
Background

This chapter presents preliminary concepts and theoretical foundations that serve as basis
for this thesis. The evolution of software development processes has spawned a variety of
different tools and methods. We provide an overview of practices that have lead to the
concept of continuous integration (CI), and how they are embedded in the CI workflow.
Section 2.1 introduces the concept of version control, and elaborates on how modern
software projects utilize version control system (VCS). Section 2.2 explains software build
automation methods and terminology. Section 2.3 discusses how methods of version
control and build automation coalesce in a modern CI workflow. Finally, Section 2.4
gives a brief introduction of machine learning and related methods relevant to this thesis.

2.1 Version Control

Software configuration management (SCM) is a set of practices that define how an
organization builds and releases products, and identifies and tracks changes [BA02]. A
key concept of SCM is version control (or revision control) of a software system’s source
code files (codebase) using a VCS. Such as system tracks changes made to the codebase,
and maintains a history of changes in a version database. This history also contains
metadata about changes, such as the author, date and time, etc. A VCS allows users to
recall earlier version of files or a set of files, and view details about specific changes. This
section introduces various concepts of VCS, and development practices when employing
version control.

2.1.1 Basic Concepts and Terminology

We briefly introduce basic VCS concepts and terminology that we will use throughout
this thesis. Terminology differs between VCS. Some terms (e.g., commit or checkout),
may have different meanings depending on the type of VCS (see Section 2.1.5). Because
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2. Background

our approach uses a distributed version control system (DVCS), we will focus on concepts
of this type of VCS. Specific terminology is drawn primarily from Git1, a popular
DVCS [CS15].

The codebase of a software project is the set of all source code and configuration files
used to build the software system. Modifications made to the codebase are tracked by
the VCS that maintains a history of these changes (or diffs, or detals) in a repository.
The repository is a data structure that stores both the content of the change, as well as
metadata for the file tree and the changes themselves (e.g. the author or the date and
time of the change).

A commit is the act of recording changes to the repository, thereby creating a new
revision. Commits occur sequentially over time and are organized as a tree or directed
acyclic graph (DAG). The VCS provides means to specify and address revisions by giving
a commit a unique id or revision number.

Example 2.1.1. Figure 2.1 illustrates the evolution of a codebase consisting of a single
Java file Main.java that was changed three times. Circles indicate commits with their
respective commit id. An arrow between commits indicates a predecessor relationship,
meaning they are subsequent commits. In the given example a is a parent of b is a parent
of c which is the latest commit.

+ class Main {
+   public static void main(String[] args) {
+   }
+ }

_ class Main {
_   public static void main(String[] args) {
+      System.exit(0);
_   }
_ }

_ class Main {
+   static int status = 0;
_   public static void main(String[] args) {
+     System.exit(status);
-     System.exit(0);
_   }
_ }

a

b

c

time

Figure 2.1: Changes to the codebase in a linear commit history

1https://git-scm.com/
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The repository also stores metadata about commits. Some examples are the author
of the change, the committer who recorded the change2 , date and time, or a written
description of the change (commit message).

The local working directory of a developer contains the version of the codebase they
are currently working with. The working directory serves as a writable view to the
repository. Developers can checkout specific revision from the repository, making their
working directory contain the state of the codebase at that given point in the timeline.

2.1.2 Branching

Conceptually, a branch is a path through the development timeline, managed by the
VCS. Berczuk and Appleton [BA02] call it a codeline and define it as follows:

A codeline is a progression of the set of source files and other artifacts that
make up some software component as it changes over time. [...] A codeline
contains every version of every artifact along one evolutionary path.

In Git, a branch is simply a named symbolic reference (or ref ) to a commit.

Typically, the development of logically cohesive units, such as features or individual bug
fixes, will be isolated from the main stream of development (master branch) by creating a
new development line (topic branch). Changes to the branch can then be made in parallel
to the main development timeline, without having to duplicate the entire codebase.

2.1.3 Merging

Once changes have been concluded, the branch is merged into its baseline, and any
conflicts are manually or automatically resolved. The baseline of a branch is the timeline
that was branched off of. The merge base of a branch and its baseline is the first ancestor
commit both branches have common. In terms of graph theory, the merge base of two
commits is their lowest common ancestor (LCA).

Example 2.1.2. Figure 2.2 shows a commit history with two diverging branches master
and topic, and the effects of merging topic into master (right). The merge base of
e and d is b. Commit f is a merge commit that has two ancestors.

A branch may be merged into a baseline that has not advanced, i.e., the merge base is
the latest commit of the baseline. In such a case, it is not necessary to create a merge
commit. This type of merge scenario is known as a fast-forward merge.

2In most cases the author and the committer are the same person. In some workflows, changes are
applied by someone other than the author. By storing these metadata separately, credit can be accurately
attributed.
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a b d

ec

master

topic

a b d

ec

master

topic

f

Figure 2.2: A commit history with two diverging branches, and the effect of merging
them

2.1.4 History Rewriting

Maintaining a readable commit history is important to allow readers to understand how
features or bugfixes were developed, and who was involved. Commits should isolate
changes that belong together to reduce possible conflicts and allow granular reverting
of changes. There are several situations when it can be beneficial to manipulate the
commit history to make sure the history remains readable. Git provides different ways of
rewriting a commit history, e.g., reordering of commits, amending changes to commits or
merging commits together.

Rebasing Rebasing is an alternative way of integrating changes of a branch. By
rebasing one branch on top of another, the merge base of the two branches is changed to
the tip of the branch being rebased onto. By changing the ancestors of commits, they
receive new commit ids, and are effectively different commits.

Example 2.1.3. Figure 2.3 shows the history of Example 2.1.2 after rebasing topic onto
master. Commits c′ and e′ are new versions of c and e respectively.

Amending Amend applies the current uncommitted changes to a previous commit.
This is useful when you have committed changes to the repository, and later realize that
you have changes the previous commit should include.

Squashing Squashing a set of subsequent commits combines their changes into a single
commit. Squashing can be used in merge scenarios to merge the changes of a branch,
but not its commit history.

Example 2.1.4. Figure 2.4 shows the state of the tree from Example 2.1.1 after the
commits b and c were squashed into a single commit d.

10
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a b d

e'c'

master

topic

Figure 2.3: The commit history from Example 2.1.2 after a rebase

+ class Main {
+   public static void main(String[] args) {
+   }
+ }

_ class Main {
+   static int status = 0;
_   public static void main(String[] args) {
+     System.exit(status);
_   }
_ }

a

d

Figure 2.4: The change history from Example 2.1.1 with squashed commits

History rewriting has consequences for mining software repositories (MSR) techniques,
because not all data of rewritten commits are retained. Specifically, process data gets lost
because the structure and order of the history may be changed completely [BRB+09].

2.1.5 Centralized vs. Distributed Version Control Systems

Two main types of VCS are distinguished: centralized version control systems (CVCS)
and DVCS. In a CVCS, such as Subversion3, the history of changes are kept solely
on a centralized server, and every command executed on the history (such as listing
all changes), requires a connection to the server. Conversely, in a DVCS, such as Git,
developers have a copy of the history in their local workspace, and regularly synchronize
with a remote repository to publish local and fetch remote changes. Figure 2.5 illustrates
the difference between CVCS and DVCS.

In the remainder of this thesis, we focus entirely on concepts and workflows of DVCS.

3http://subversion.apache.org/
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working
directory

remote
repository

Centralized

network
boundary

local
repository

Distributed

Figure 2.5: Centralized and distributed version control systems

2.1.6 Distributed Workflows

DVCS allow for many different types of distributed workflows. Public repository hosting
services such as GitHub4 or Bitbucket5, provide an additional layer of tools and processes
on top of those provided by DVCS. The fork & pull workflow, based on Git’s Integration-
Manager Workflow [CS15], is made possible by these services and has become a common
practice [GZSD15].

A fork is a personal clone of a repository, which allows developers to make changes and
publish code contributions, even if they do not have direct write access to the forked
repository (upstream). To contribute to the project, developers publish changes into their
own fork (which can be seen as a branch), and once the changes should be integrated
into the project, a pull request is opened. A pull request makes the contribution public
and opens it up for debate. This allows developers to review the changes and suggest
improvements before they are integrated. The author can now iteratively update the
pull request to add the necessary improvements. Pull requests are subsequently merged
or declined by integration managers (integrators) or privileged developers. Figure 2.6
illustrates this model.

As we have established earlier, Git provides different ways of integrating changes. GitHub
allows integrators to chose the way they merge pull requests. The GitHub web application
provides two basic ways: standard merging, or squashing commits of a pull reuquest into
one and then merging6. The integrator can also chose to manually merge the pull request
in his local repository by using any method that Git provides to integrate changes.

4https://github.com/
5https://bitbucket.org/
6https://help.github.com/articles/about-pull-request-merge-squashing/ (ac-

cessed 2016-08-20)
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developer
private

developer
public

upstream pull request
fork

integration
manager

Figure 2.6: The fork & pull workflow

2.2 Build Automation
Making distributable software binaries from source code is an integral part of software
engineering. Automating the software build process is vital for efficient development.
Build automation utilities like Make7, Ant8 or Maven9 have been around for many years.
Their purpose is to make the build process configurable (via build scripts) and automate
it to minimize or eliminate necessity for user interaction. The build script (or build
configuration) contains directives for the various build tasks, and may specify software
dependencies required to build the software. Figure 2.7 shows tasks typically performed
by such a build script.

Build
Script

Clean Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Figure 2.7: Logical processes of a build script according to [DMG07]

2.2.1 Build Types

Compiling and running unit tests after making changes to the source code is a common
task during the development process, and is known as the edit-compile-test cycle [SSE+14].
A software build executed during an edit-compile-test iteration has to be fast in order
to allow the developer to maintain focus on the task at hand. In literature, these are
referred to as private builds [BA02, DMG07], and will typically only compile the source

7https://www.gnu.org/software/make/
8http://ant.apache.org/
9http://maven.apache.org/
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and run unit tests. Many integrated development environment (IDE) facilitate the
edit-compile-test cycle with private builds by natively integrating build tools.

When parallel changes in different modules of a software are integrated into the baseline,
regressive effects of the integration may not be detected by a private build of individual
developers. For example, unit tests can, as such, not assert the correctness of complex
interaction behaviors of components. An integration build (or full software build) runs
additional build tasks that aim to avoid both functional and qualitative regression. Such
tasks can include: running integration tests, code inspections (e.g., quality metrics),
deploying the system, etc. These builds typically take significantly longer to complete
than private builds, and are therefore impractical for individual development tasks.

2.2.2 Build Server

Effectively facilitating integration builds requires a centralized system with dedicated
hardware [DMG07]. A build server is the reference environment for integrating parallel
changes, and building a shippable software product from the codebase. It eliminates build
errors that originate from any possible mismatch of individual developer environments,
such as differing codebase revisions or software dependencies. Providing dedicated
hardware that runs integration builds efficiently reduces build time which will allow the
build process to run more often.

2.3 Continuous Integration

CI is a practice where team members integrate their work into the main stream of
development frequently [FF06]. The main goal of CI is to reduce the amount of problems
resulting from integration tasks. The central idea of applied CI is a (figurative) integrate
button [DMG07], similar to a build button that many IDEs have. Developers push the
integrate button when they have changes they wish to integrate into the software system.
A process is then triggered that performs this integration in a fully automated and safe
way, and then provides feedback to the developer whether or not the integration was
successful.

Using a VCS is elementary to CI, because it centralizes software assets and provides a
central point of integration. Typically, a dedicated infrastructure is used that continuously
monitors the source code repository for changes, and runs integration builds against the
baseline. Once changes are committed to the repository, an integration build may check
whether the changes build correctly when merged into the baseline. Figure 2.8 illustrates
how the different components of a CI system work together.
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VCS

CI server

Developer Build
script

Developer

Commit
changes

Poll

Feedback
mechanism Generate

Figure 2.8: Components of a CI system according to [DMG07]

2.3.1 CI Server

Build centralization is essential for implementing CI. Build servers10 are used together
with VCS to fully automate and centralize the integration process.

At specific triggers (e.g., manual, polling or push notifications), the CI server will fetch
changes from the VCS, simulate an integration, execute the build process, and publish
the build outcome through an appropriate communication channel (see Section 2.3.3).
Figure 2.9 depicts the basic CI server system workflow.

BuildMonitor

Checkout

VerifyReport

Figure 2.9: The basic workflow of a CI server

As stated earlier, CI builds may also execute and verify integration tests, and inspections
such as checking code quality metrics. Software builds that cover all these aspects

10Although build servers have existed before CI, the terms CI server and build server are now often
used synonymously.
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may take significantly longer to complete. Another benefit of using a CI server is that,
providing dedicated hardware allows these builds to be executed faster and more often.

Build Triggering

Builds on a CI server can be triggered in different ways, and systems usually provide
configuration possibilities. A person can trigger a build manually, or some automatisms
can be employed. Typically, the CI server continuously monitors the VCS for incoming
changes to trigger the builds. Some VCS also provide commit-hooks that can be used to
trigger build executions after a change has been pushed to the repository.

Systems

Many different CI server systems exist. Tools like Hudson11 or Jenkins12 can be set up
on-premise. Hosted services such as Travis-CI have made CI available even for small
open-source projects.

2.3.2 Travis-CI

Travis-CI13 is a hosted, open-source, distributed build system14, which has gained
enormous popularity in the open source software (OSS) community [VYW+15]. Integrated
deeply with the GitHub repository hosting services, Travis-CI monitors changes made to
repositories, and executes the configured build suite against the baseline of the repository.
We briefly present different aspects of Travis-CI.

Build Database

Travis-CI records all meta-data and logs for every executed build, and provides both UI
and API based access to this history. Figure 2.10 shows Travis-CI’s web based build
history dashboard. Each row represents a build. Colors indicate the state of the build
(green means passed, red means errored or failed). The middle column features the
incremental build number within the project, and the commit SHA that was built.

Meta-data of builds include properties such as build number, build state, date and time,
runtime duration, and VCS commit information15.

11http://hudson-ci.org
12https://jenkins.io
13https://travis-ci.org
14https://github.com/travis-ci/travis-ci/blob/2ea7620f4be51a345632e355260b22511198ea64/

README.textile (accessed 2016-08-09)
15https://docs.travis-ci.com/api#builds (accessed 2016-08-09)
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Figure 2.10: The Travis-CI build history dashboard of the Spring Boot project

REST API

Travis-CI provides a REST API16 to access most of the recorded build meta-data, as
well as logs captured during the build execution. We later exploit this API for our data
acquisition tasks (See Section 4.3.1)

Pull Request

Travis-CI supports GitHub’s pull-based workflow, and distinguishes between changes
pushed directly into a branch, and those published via a pull request. When a pull request
on GitHub is updated, a hidden merge commit is created that simulates a merge into
the branch being pulled into. This merge commit is then checked out by the Travis-CI
worker which subsequently executes the build.

Build Life Cycle and Status

The status of a Travis-CI build can be started, canceled, errored, failed, or passed. Running
builds have the status started, and can be canceled by users manually, giving the build
the canceled status. Travis-CI workers split the build execution into different phases (in
addition to the phases executed by the build script itself)17. If a build does not pass,
depending on which phase it terminates in, it gets the status errored or failed. Lastly, if
a build successfully exist, it gets the status passed.

2.3.3 Feedback

A key purpose of CI is to identify and fix potential problems at an early stage. To
facilitate this, developers have to be provided with feedback on the system-wide impact
of their integration as soon as possible. Until it is clear whether changes will build
successfully, development on top of these changes is risky. The longer it takes to produce
feedback, the longer it will take to continue normal development activities [DMG07].

16https://docs.travis-ci.com/api
17https://docs.travis-ci.com/user/customizing-the-build/
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After a build is completed, its status is reported through some communication channel
(e.g., a dashboard, email or instant-messenger notifications). What type of information
is included in a build status report differs greatly between systems. The build status
itself is commonly binary: passed (successful) or failed (broken). Sometimes the status
unstable is also used to indicated builds where some secondary quality measures have not
been satisfied.

During the build, the server captures the log output of the build system, and stores it for
later usage. In case of a failure, the build log may include markers for warning or error
messages emitted by the build system, which are aggregated or highlighted when the
report is presented to a human. The developer then has to read through the messages
and try to determine why the build has failed.

Improving feedback mechanisms, e.g., by providing a preliminary risk assessment based,
can help to decrease the waiting time for developers that depend on specific changes that
have not yet been built.

2.4 Machine Learning

Machine learning is a field of study closely related to computer science and computational
statistics. It is concerned with methods and algorithms for constructing software that
can perform data predictions (e.g., classification or clustering), without being explicitly
programmed. Based on exemplary observational data (training set), such algorithms
create statistical models that describe this data.

The remainder of this section builds mainly upon definitions and terminology of Alpaydin’s
Introduction to Machine Learning [Alp14], in which he motivates machine learning as
follows:

Machine learning is programming computers to optimize performance
criterion using example data or past experience. We need learning in cases
where we cannot directly write a computer program to solve a given problem,
but need example data or experience.

Typical machine learning use cases include speech or handwriting recognition, email spam
detection, determining the topic of a document, regression problems, etc.

2.4.1 Machine Learning Approaches

Three broad categories of machine learning tasks are distinguished:

• Supervised learning: an algorithm constructs a model based on correctly labeled
training data supplied by a teacher or supervisor (e.g., classification or regression)
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• Unsupervised learning: an algorithm learns autonomously directly from unla-
beled data, and the aim is to recognize patterns in the input (e.g., clustering)

• Reinforcement learning: an algorithms learns in a dynamic environment and
operates on a sequence of observations rather than on individual data (e.g., game
playing)

We focus on methods relevant for this thesis; i.e., techniques of supervised learning
such as classification using decision trees or neural networks. Build failure prediction is
primarily a supervised learning task, because algorithms learn from historic build data
that are labeled with the individual build’s outcome. Section 3.4.3 gives an overview of
the different methods used in existing research.

2.4.2 Classification

Classification is the task of determining the category to which a specific data belongs,
based on measurable properties of the data; i.e., explanatory variables. A training
algorithm builds a classifier from existing observations that have already been assigned
its correct category (training set), either manually or through some other means. Because
some algorithms are, by their nature, limited to separating the data into two categories,
classification problems are divided in binary and multiclass classification problems.

In binary classification, data are separated into two categories. A prominent example is
email spam detection: assign a given email the category spam or non-spam automatically
based on its content. Algorithms that perform binary classification include logistic
regression ir support vector machines18.

Multiclass classification is the problem of separating data into more than two classes.
Decision trees and neural networks have been effectively used for these types of problems.

2.4.3 Classifier Model Validation

There are several methods to validate and calculate measures to compare machine learning
models. For classification problems, a popular method to test an algorithm is the K-fold
cross-validation method [FHT01]. To compare the performance of models, a variety of
accuracy measures exist.

K-Fold Cross-Validation

In K-Fold cross-validation, the dataset is divided into K equal parts. K − 1 parts are
used to train the model, and the remaining part is then used as validation set. This is
repeated K times, each time leaving out a different one of the K parts. K is typically 10,

18It should be noted that extensions of these algorithms exist that also allow multiclass classification.
Giving a detailed explanation of these machine learning algorithms would go beyond the scope of this
work.
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as it has been established that this number generally provides a good balance between
training and validation set size.

Evaluation Metrics

When classifying data, there are four possible classification result cases, shown in Table 2.1.
Testing a binary classifier means counting the number of true positive, false positive, true
negatives, and false negatives. The values are arranged in a grid (the confusion matrix).

Table 2.1: The 2x2 confusion matrix for a binary classification problem

p′ (Predicted) n′ (Predicted)
p (Actual) tp (True Positive) fn (False Negative)
n (Actual) fp (False Positive) tn (True Negative)

From the numbers in the confusion matrix we can derive the following measures: precision:
tp
p′ and recall: tp

p . The F -measure (or F1-score) is creates a distinct measure to describe
the classifiers performance, and is calculated using precision and recall. Specifically, it is
the harmonic mean of precision and recall, i.e., F1 = 2 · precision·recall

precision+recall
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CHAPTER 3
Related Work

This chapter presents related work relevant in the context of this thesis, and state-of-the
art methods in software build failure prediction. Section 3.1 presents state-of-the-
art methods in the area of mining software repositories (MSR) which are commonly
employed in empirical software engineering research. Section 3.2 summarizes studies
that quantitatively and qualitatively analyze software build errors. Section 3.3 outlines
methods in the adjacent area of software defect prediction. Section 3.4 finally presents
state-of-the-art work in the area of software build failure prediction.

3.1 Mining Software Repositories
MSR is a field of research dedicated to the extraction and analysis of data available
in software repositories. Software repositories, such as version control system (VCS)
repositories, mailing list archives, or issue tracking systems, provide a rich source of data
for research tasks. Such tasks include studies in the area of software evolution [KCM07],
or failure prediction [NBZ06]. We employ MSR techniques for mining from the combined
data of VCS repositories and continuous integration (CI) build platforms. We begin by
discussing methods of mining VCS repositories, in particular from distributed version
control system (DVCS).

3.1.1 Mining Distributed Version Control Systems

Having access to version history data of software artifacts is elementary for studying
software evolution [KCM07]. In this context, many techniques and tools exist to extract
and analyze data from VCS repositories.

In recent years, DVCS (see Section 2.1.5) have become increasingly popular and widely
used [BRB+09]. A great benefit of mining DVCS is having the entire repository and its
history locally. This makes most operations much faster compared to centralized version
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control systems (CVCS), which increases the flexibility of mining methods. However,
decentralizing software versioning also significantly impacts development processes and
workflows [VYW+15]. How this affects change and process metrics (see Section 3.1.2) is
largely unknown [BCSD14].

Mining from a DVCS such as Git brings its own set of challenges. The methods Git
provides, e.g., to rewrite commit histories (see Section 2.1.4), have significant impact
on the way we need to interpret data mined from repositories. Bird et al. [BRB+09]
identified several aspects that require special consideration when mining historical data
from Git, e.g., that one cannot always determine what branch a commit was made on, or
that the accessible data may not include all commits that were made by developers. We
later discuss how we addressed such issues in our approach.

3.1.2 Process Metrics

Process metrics are calculated from the software change history [RHT+13], typically by
mining historical data from a VCS. In contrast to code metrics which quantify properties
of software artifacts (e.g., size and complexity), process metrics aim to quantify properties
of software evolution. These metrics are popular for prediction models in software defect
prediction (see Section 3.3) because the cost of mining them is lower, and the performance
has been found to be equal or better compared to code metrics [RD13, MJ15].

Process metrics can be calculated for sets of commits, individual files, or authors.
Examples include the number of modified lines in a commit, number of revisions of a
file, or the experience of an author (e.g., total number of contributions). Many different
process metrics have been developed and studied for a variety of different research tasks
[HZ06, Has08, MPS08, ABJ10, NZZ+10, RD13, MJ15]. A summary of these studies
(many of which are very comprehensive), and process metrics would go beyond the scope
of this work.

In our approach, we use common process metrics to quantify properties of commits for
the purpose of build failure prediction.

3.1.3 Change Characterization

Knowing the characteristics or type of a change made to the source code of a program can
be useful for many different analysis tasks. Especially in software evolution research it is
a common problem to extract meaning from information contained in VCS commits. For
example, it was found that large commits are more likely to come from code management
activities [HL08]. Another challenge is to automatically determine the intention of a
commit, e.g., whether the change was to fix a bug, to introduce a new feature, or to
update documentation. Such intents may have different implications in a process, e.g., in
CI where updating a documentation file is unlikely to result in a compilation error.
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Change Activities and Commit Types

Swanson [Swa76] laid the groundwork for characterizing commits by their intent in
the context of software maintenance. He proposed that maintenance activities can be
categorized as a) corrective, b) adaptive, and c) perfective. Various researchers later
amended these categories for their specific use cases [HGH08, HL08, YFZ+16]. Hindle
et al. [HGH08], for example, extended Swanson’s categories by a) implementation, and
b) non-functional. Table 3.1 lists the categories and the issues addressed by the categories.

Table 3.1: Change activities according to Hindle et al. [HGH08]

Type Description

Corrective Processing failure, performance failure, im-
plementation failure

Adaptive Change in data environment, change in
processing environment

Perfective Processing inefficiency, performance en-
hancement, maintainability

Implementation New requirements

Non functional Legal, source control system management,
code clean-up

To find the category fitting a specific commit, they developed a taxonomy of 26 change
types that were each mapped to a category. Change types include, Legal (e.g., a change
in the license file), Merge (when a VCS branch was merged), Testing (when unit or
integration tests were added or modified), and other typical development commit types.
To determine the change type, commits were classified manually by reading the commit
log messages, looking at the filename extensions of the changed files, and studying the
diff of the commit. Each commit was then assigned a list of types determined by the
procedure.

Methods on classifying the change activity are typically based on analyzing the commit
message, i.e., a textual summary of the change written by the developer. Most approaches
simply scan the message for predefined keywords. Such algorithms work under the
assumption that a single commit is being classified. We will later see that this is
impractical for our purposes, because our observations contain multiple commits (see
Section 4.4.1), and we can therefore not assign a distinct change activity to an observation.
We later adapt these change activity measures by capturing the changes made to specific
file types (see Section 6.3.2). Also, we translate the concept of change activities into the
context of CI builds (see Section 6.4.1.
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Quantitative Characteristics

Many process metrics (see Section 3.1.2) exist that can be used to quantify properties of
commits or sets of commits. Typically, quantitative analysis of changes are interested in
the size and complexity of changes, or the amount of authors involved [Has09, MJ15].

3.1.4 Other Software Repositories

MSR techniques are not limited to VCS repositories. Data from other software repositories,
such as issue trackers [KSD11], or mailing lists [BDL10], have also been used for various
research tasks. We omit such sources in our approach, because the additional dimensions
would increase the complexity beyond the scope of this work.

Relevant to this thesis, besides VCS repositories, are build automation systems. In the
broader sense of MSR, build automation systems that track historical data can also be
seen as software repositories. Methods for mining such repositories have not yet been
systematized in the same manner as those developed for mining VCS. Only very recently,
resources such as TravisTorrent1, a database of build data gathered from Travis-CI
(see Section 2.3.2), have appeared that support analyses of CI build systems.

3.2 Systematic Analysis of Software Build Errors
Build software automation is important for efficient development. Although build failures
have a large impact on development efficiency [KKA14], the nature of automated software
build failures has not been researched thoroughly. This thesis is novel in that it analyzes
both the multiplicity of error types of CI builds, and the runtime behavior of such error
categories. Previous studies either focus on errors of private builds in the edit-compile-test
cycle, or consider only a binary build result outcome.

A study by Seo et al. [SSE+14] focused on analyzing error categories and frequencies in
the edit-compile-test cycle of developers. The goal was to understand the build process
of a large and distributed organization, and the different errors that may occur within
this process. Google’s development environment includes a centralized cloud-based build
system from which build data was gathered over a period of nine months. Over 26 million
builds triggered by around 18,000 developers were analyzed from historical data of this
build system. To understand the frequency of specific errors, a taxonomy of error kinds
(such as syntax errors, or semantic errors), and a mapping strategy of build messages
to these error kinds were created. Methods of qualitative research were employed to
elicit initial categories for errors from the log data created by the build system. Compiler
experts were then interviewed to decide which category was the best fit for an error
message. With this knowledge, a parser was developed to automatically categorize new
builds based on their log output. They found that, approximately 10% of the error types
account for 90% of the build failures, where dependency errors are the most common. It
takes developers at average one and at most two build iterations to fix a broken build.

1https://travistorrent.testroots.org/ (accessed: 2016-08-10)
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Kerzazi et al. [KKA14] conducted both quantitative analysis and interviews to understand
build errors in a commercial enterprise web application with around 200 employees. A total
of 3,214 builds produced over a period of six months were analyzed. The analyzed build
data was gathered from the centralized build server used in a CI setting. A quantitative
analysis was conducted to investigate the frequency of build failures, and the cost of
fixing them. In a qualitative study, 28 software engineers were interviewed to understand
which circumstances lead to build failures, and how failures impact the productivity
of the team. They find that, from the 17.9 % of broken builds, the main causes for
failures are missing referenced files, mistakenly checked in work-in-progress, and transitive
dependency errors. The quantitative study revealed that the most important factors
related to build failures include the authors role in the project (developer, integrator,
etc.), the build type (integration build or continuous build), and the nature of the work
(bugfix, feature development, etc.).

3.3 Software Defect Prediction

Software defect prediction has been subject of intense research over the past two decades
[GKMS00, MPS08, ABJ10, HBB+11, DLR12, MJ15]. Understanding where and why
software defects occur is a key research question for software quality assurance. Pre-
dicting future defects can potentially help to focus quality assurance efforts on the
most defect-prone system components or problematic development processes [RD13].
Creating prediction systems involves the measurement of software defects, and using this
measurement as dependent variable for statistical modeling.

3.3.1 Measuring Software Defects

Different definitions and methods of measuring software defects can be found throughout
research. Often, measuring defects relies on analyzing user submitted reports to a bug
database. Bug reports are then linked to specific components within the system [DLR12].
Such components can be software artifacts, such as source code files and modules, or
logical software components, such as methods and classes.

A common way of quantifying software defects is to calculate the amount of post-release
defects. These are measured by counting the amount of bug reports submitted in a
specific time window after the software is released, e.g. six months after a release [NB07].
This measurement is then used as a numeric dependent variable to train statistical
models to predict future defects, typically using regression or Bayesian probability models
[HBB+11].

3.3.2 Software Metrics

Software metrics are the foundation for training statistical models to predict future
defects [NBZ06]. The most common metrics used as independent variables for defect
prediction in previous research can be categorized into product, process and metrics.
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Product metrics quantify properties of a software product. Complexity measures of
software artifacts are popular product metrics and have been subject of research for
many years [BBM96]. Such complexity metrics include the number of methods of a class,
object-oriented coupling, etc. There are a vast variety of product metrics which have
been studied in great detail [RHT+13]. Because their calculation involves analyzing the
source or byte code of a program, mining them can be costly [MPS08]. In our approach,
we therefore focus on metrics that can be calculated directly from the version history of
the VCS, i.e. process metrics.

Process metrics calculated from the software change history are popular for prediction
models. Recent research suggest that process metrics have better defect prediction accu-
racy than traditional product and code-complexity metrics [RD13, MJ15]. Additionally,
mining process metrics can be more cost-effective when compared to code-complexity
metrics [MPS08].

A comparative analysis of process and complexity metrics by Rahman and Devanbu
[RD13], strongly favors process metrics for defect prediction, in a release-oriented setting.
These metrics are calculated per file of its ‘release-duration’, which means they are
aggregated in the temporal window between releases, i.e. a specific set of commits.
Additionally, neighbor metrics are employed, based on the co-commit history approach
introduced by Kim et al. [KZWZ07]. For a given file F and release duration R (number
of changes between releases), these metrics are calculated from the files co-committed
(changed and committed together) with F , weighted by the frequency of co-commits in
the history of R.

In an empirical study about the impact of process metrics in defect prediction models,
Madeyski and Jureczko [MJ15] compared product and process metrics collected from a
large amount of previous publications. They identified the four most popular process
metrics to be: number of revisions, number of distinct committers, number of modified
lines, and the number of defects in previous versions. They found that, the number of
modified lines and the number of distinct committers are the most useful metrics with
regard to the defect prediction models. We later adapt these four metrics to fit our CI
data, and study their influence on build failures.

3.4 Build Failure Prediction

While software defect prediction has been studied to a great extent, software build failure
prediction has not seen the same amount of attention. Little is understood about factors
influencing build failures, especially in the context of CI. In a broader sense, a build
failure can be seen as a type of software defect. Methods used in existing approaches are
therefore similar to those used for defect prediction. In contrast to measuring software
defects, measuring build failures is straightforward: a build can either be successful or
unsuccessful. In the context of CI, we are interested in the outcome of an integration.
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3.4.1 Measuring Integration Outcome

What constitutes a successful integration is subject to interpretation. The criteria that
have to be satisfied in order to conclude a successful integration may vary depending
on the project, the used technology stack, and the employed quality assurance metrics.
Various definitions of integration, build result, integration outcome, etc. exist in research.

Cataldo and Herbsleb [CH11] studied a project in which an integration and testing team
was responsible for the integration of new features. After merging the source code changes,
a collection of integration testing suites were executed, and their outcome documented.
The study then interprets the outcome of an integration as a binary result:

Our outcome measure is a dichotomous variable where a 1 indicates that
at least one of the tests performed by the [integration and testing] team at the
time of integrating a feature failed. Otherwise, the variable is set to 0.

The organization investigated by Kerzazi et al. [KKA14] uses a centralized CI server
that runs an automated build for an integration. The build server reports either success,
partial success, or failure. Partial success means that the changes were merged correctly
and the software compiles, but not all automated tests have passed. The study considers
this outcome as a build failure, resulting in a binary outcome variable.

Duvall et al. [DMG07] give a more general definition:

A broken build is anything that prevents the build from reporting success.
This may be a compilation error, a failed test or inspection, a problem with
the database, or a failed deployment.

There is no clear definition of a successful integration. Consequently, there is also no
clear definition of when a build should fail. Generally though, we can assume that, at
the least, successful integration means that a) there are no conflicts when merging the
changes into the source code repository, b) the source code can be compiled correctly,
c) all automated tests pass. The list of criteria can be extended to suit the project’s
needs. For example, code quality metrics can be checked for specific thresholds (e.g., test
coverage or code complexity).

The hosted CI system Travis-CI records three levels of build outcome: errored, failed, or
passed (see Section 2.3.2). In our approach, we use this measure for various experiments.
For analysis where a dichotomous variable is required, we combine Travis’ errored and
failed category. A detailed explanation of how the outcome of an integration is modeled
is given in Section 4.4.2.

27



3. Related Work

3.4.2 Predicting Software Build Failures

In an early study in 2006, Hassan and Zhang [HZ06] attempted to use decision trees to
predict the result of a build. They categorized factors impacting build results into: social
(such as work habits), technical (such as software structure and complexity), coordination
(such as parallel changes to files by different developers), and prior-build-result factors.
However, the study is based on various outdated assumptions, e.g., that test suites are
executed manually and not on dedicated infrastructures such as CI build servers. From
historical VCS and build data, they mine metrics that describe the defined influence
factors. Using these metrics as independent variables, they train a decision trees to
predict a binary build result. Their best decision tree model to predict that a build will
fail has an average accuracy of 69%.

Cataldo and Herbsleb [CH11] examined different factors leading to integration failures
(see Section 3.4.1). The outcome of a feature integration was recorded by the integra-
tion and testing team, who were responsible for running test suites against the new
features. Technical factors of integrated features, such as lines of code changed, as well
as characteristics of the teams developing features, such as the ownership of features,
were examined using logistic regression. Furthermore, to study the effect of cross-feature
interaction, the amount of architectural dependencies between components of two features
was extracted from the project’s software architecture documentation. They found that
a) organizational attributes (such as the amount, and geographic distance of developers
involved in developing a feature) have a higher impact on integration failures than
technical attributes; and b) that a high number of cross-feature dependencies increases
the likelihood of integration failures.

Kerzazi et al. [KKA14] conducted an empirical study in the context of a large software
company, and the impact of build failures on the development process. The study was
conducted in an unnamed software organization, distributed across Canada and India,
which is claimed to have 200 employees that maintain a large .net code base since 2004.
The organization is said to employ CI and to use a central build server that builds
the project when changes are triggered in the VCS. A key research goal was to elicit
factors impacting build breakage (build failures) from both a quantitative analysis of the
gathered data, and interviews conducted with developers. A set of eight hypothesized
factors were tested with different statistical methods against the data, whether they
significantly contributed to build failures or not. Using Random Forest as statistical
model for measuring variable importance, their quantitative analysis revealed that, “the
type of role, the number of simultaneous contributors in the branch, the nature of the
work (Feature, Bug fix, etc.), the build type ([integration build] vs. [continuous build]),
and the period of the project are the most important factors related to build breakage.”

In a patent application, Bird and Zimmerman [BZ14] describe a system and methods
for predicting software build errors. Much like established methods in software defect
prediction, their approach is to extract characteristics of software changes, and calculating
probabilities for these characteristics to produce build errors using logistic regression.
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Socio-Technical Factors

Other studies in the context of build failure prediction mostly analyze socio-technical
factors, such as congruence [Sch10, KSD11] or developer communication [WSDN09].

Using social network analysis on developer communication, Wolf et al. [WSDN09] were
able to utilize graph metrics to build a predictive model for CI builds that achieves
precision values between 0.5 and 0.76, and recall values between 0.55 and 0.75. The data
used in the study was obtained from a single closed-source project at IBM, making it
difficult to reproduce the results.

Extending the work by Wolf et al. [WSDN09], Schröter [Sch10] defined the notion of
socio-technical congruence as the alignment between technical dependencies and the social
coordination of the project. He found that interactions between developers and work
items, modeled as socio-technical networks, are strong predictors for build outcomes.

Kwan et al. [KSD11] substantiated the hypothesis that socio-technical congruence is
related to build outcome. Specifically, they believed that high congruence leads to a higher
probability of build success. A build is considered successful, if the software compiles
without errors, and passes every automated test case. By modeling social interaction and
relationships between work items (e.g., issues, builds, change sets), graph metrics were
calculated and correlated with build outcome. An empirical study conducted by Kwan et
al. on a project at IBM, showed that, a high congruence correlates with high success
probability for continuous builds, and, conversely, high congruence correlates with low
success probability for integration builds. There are also some conflicting results, e.g.,
that a large portion of zero-congruence builds are successful.

3.4.3 Machine Learning Methods

In the past, a variety of different machine learning algorithms have been used to train
classifiers that predict build outcome. Table 3.2 shows an overview of the different
algorithms, and the publications they were employed in.

Table 3.2: Machine learning algorithms employed for build outcome prediction

Algorithm Publication

C4.5 (Decision Trees) Hassan and Zhang [HZ06]

Bayesian classifier Wolf et al. [WSDN09]

Logistic Regression Catadlo and Herbsleb [CH11]
Kwan et al. [KSD11]
Bird and Zimmerman [BZ14]

Random Forest Kerzazi et al. [KKA14]

Support Vector Machines Schröter [Sch10]
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Most prediction approaches use a binary build result (failed or passed) as dependent
variable. In our approach, we use different-sized variables to describe the build outcome.
Some algorithms, such as support vector machines, by default only support binary
classification, or assume that the classes are linearly separable. Standard methods of
logistic regression or support vector machines are therefore not applicable. We later focus
on methods that naturally support non-linear multi-class classification (see Section 2.4),
such as decision trees and random forests.
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CHAPTER 4
Solution Approach

This chapter presents the overall research goals, the employed methodologies, and solution
approach. Section 4.1 gives a high-level overview of the work. Section 4.2 describes the
core methodologies and the research setting. Section 4.3 outlines our solution approach
and summarizes the main parts of the thesis. In Section 4.4, we define the system model
and formalize domain concepts. Finally, Section 4.5 briefly introduces the polyglot data
analysis toolkit we developed to perform the various data science tasks.

4.1 Overview

The overall goal of our approach is to create multi-categorical runtime-aware build failure
prediction models for software projects from publicly available data. To that end, we first
examine data gathered from 14 open source software (OSS) projects in a mixed-method
study. We later use the results of the study for our build failure prediction approach.
The study comprises two parts. In part one, we explore the multiplicity of build errors
and their frequency of occurrence during the build execution. We later incorporate this
temporal dimension of build errors into our prediction approach. In part two, we study
aspects of the continuous integration (CI) workflow that can be correlated with build
results. Building on existing research, we elicit measurable properties of build data. We
perform correlation analyses to examine the strength of the relationship between these
properties and the build outcome. The results of the study are used in our approach
to create a system for build failure prediction. First, we train classification models
using machine learning algorithms to predict the outcome of a build. Various machine
learning algorithms are evaluated in terms of their basic prediction performance. We
then proceed to incorporate our understanding of the temporal dimension of build errors
into our prediction approach. The approach is evaluated using common statistical model
validation techniques.
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Figure 4.1: Overview of the data science process according to Schutt and O’Neil [SO13]

4.2 Methodology

We follow the general data science process according to Shutt and O’Neil [SO13], il-
lustrated in Figure 4.1. For each step we employ methods from respective research
fields. Web data extraction techniques are used to acquire data from publicly available
sources. The gathered data come from different sources and heterogeneous data models.
A large structural gap exists between build metadata, build logs, and the graph-based
version control system (VCS) history. To perform analyses, the data first have to be
homogenized, linked, and cleaned of outliers. This process is referred to as data wran-
gling [McK12, SO13]. Using our developed data analysis toolkit CInsight, introduced
in Section 4.5, we build wrangling pipelines to structure, link, and clean the data. We
explore the normalized dataset in a mixed-method exploratory study, using methods from
both qualitative and quantitative research. Qualitative research methods, such as coding
[CS14], help us to analyze the qualitative data, and to formulate grounded theories; e.g.,
for an error type categorization from the build log data. Methods from quantitative
research are used to explore the different hypothesized influence factors, and substanti-
ate or refute these hypotheses. Statistical tools, such as R1 and WEKA2, allow us to
explore and visualize the data in different ways. We employ mining software repositories
(MSR) techniques to calculate metrics from the build data and source code repositories.
Machine learning methods are used to build and evaluate different classification models
for predicting build outcome.

1https://www.r-project.org/
2http://www.cs.waikato.ac.nz/~ml/weka/
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4.2.1 Research Setting

The study and evaluation of our approach is conducted using real-world data gathered
from publicly available data sources. We examine data from 14 OSS projects that employ
CI using GitHub and Travis-CI (see Section 2.3.2). To contain the complexity of the
data analysis process, we restricted the study to systems written mainly in the Java
programming language, and projects that use either Maven or Gradle (see Section 2.2)
as their build automation tool. This way, we can build on various working assumptions
about the data, e.g., codebase structure, build log output format, or testing environment.

High-profile projects fitting these requirements were selected by first querying the GitHub
repository list. The initial set of repositories was then filtered by their use of Travis-CI
and their level of activity (high number of commits, contributors, and builds). Table 4.1
list the projects that were ultimately selected for the study.

Table 4.1: Name and description of projects used as research subjects

Name Description

Apache Storm Distributed Computation Framework
Crate.IO Scalable SQL database
JabRef Graphical Java application for managing BibTeX databases
Butterknife Android Dependency Injection Library
jcabi-github Object Oriented Wrapper of Github API
Hystrix Latency and fault tolerance library for distributed systems
Presto Distributed SQL query engine for big data
Openmicroscopy Microscopy data environment
RxAndroid RxJava bindings for Android
SpongeAPI Minecraft plugin API
Spring Boot Java Application Fraemwork
Square OkHttp HTTP+HTTP/2 client for Android and Java
Square Retrofit HTTP client for Android and Java
WordPress-Android WordPress for Android

4.3 Approach Outline

The overall goal of our approach is to create a system for predicting the outcome of a CI
build. Figure 4.2 gives an overview of the entire process. In the following subsections we
outline the overall approach and briefly summarize the steps involved. First, real-world
build and VCS data are collected (Section 4.3.1). The data are processed and structured
using wrangling pipelines and our developed method of topology mapping. We then
conduct an exploratory study consisting of two parts. The goal of our two-part study
is to gain a deeper understanding of CI build errors (Section 4.3.2), and factors that
influence the outcome of a build (Section 4.3.3). The results of the study are then used
to build a system for predicting build failures (Section 4.3.4). Using the acquired data,
we train and evaluate different classification models using machine learning algorithms.
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4.3.1 Data Acquisition

Our goal is not only to gain new insights into the multiplicity of build errors on CI
systems, but also to understand how changes to the source code impact build results.
We therefore require two main kinds of real-world data: build data from CI servers, and
change data from VCS repositories. Metadata of build runs (outcome, runtime duration,
etc.) as well as log output of the build system are the basis for our study. Most VCS
provide a rich change history and methods to access different kinds of information about
changes. Our analyses require metadata about commits (author, date, etc.), as well as
revision deltas, that allows us to analyze the actual changes.

Many publicly available CI systems provide APIs to access exactly these kinds of data.
However, our data analysis approach relies heavily on ad hoc queries. Because of the large
volume, running such queries on the on-line data would be impractical. Using web data
extraction methods, we target a CI platform and extract the data we require for running
analyses locally. Distributed version control systems (DVCS) are ideal for local analysis,
because, as such, they provide a local copy of the entire change history [BRB+09]. Public
repository hosting platforms have emerged, on which many open source projects publish
their source code [DSTH12]. Because of their popularity and easily accessible APIs, we
choose Travis-CI and GitHub as the concrete data sources for build data and VCS data
respectively.

We process the raw data using wrangling pipelines built with our data analysis toolkit.
Using our developed method of topology mapping (see Section 6.1.1), we map change
data from the project’s source code repository to the CI build data. The normalized and
cleaned data are then used as input for our part study. We discuss concrete wrangling
techniques in individual chapters as the techniques become relevant.

4.3.2 Systematic Study of Build Errors

The first part of our study is discussed in Chapter 5. In this first part, we analyze both
qualitative and quantitative data on build errors. Build automation is a key aspect of CI.
However, little is understood about the multiplicity of errors that can occur during a CI
build. To gain an understanding of such errors, we first devise a method for determining
the build error type (e.g., compile error or test failure) from the log output generated by
build tools. Furthermore, we examine the temporal aspects of build results. We analyze
frequency of occurrence of different build errors within the build execution duration.
Using methods from probability theory, we later calculate the likelihood of such build
errors occurring at specific points in time during the build execution.

4.3.3 Systematic Study of Factors Influencing Build Results

The second of our study is discussed in Chapter 6. The goal of this second part is to gain
a deeper understanding of factors that influence software build results in CI workflows.
We elicit a set of measurable properties (metrics) of CI builds, that can be calculated
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from CI and VCS domain data. These are later used as features for training machine
learning models that predict the outcome of a build. Metrics used in existing research on
software defect [MJ15] and build failure prediction [HZ06, KKA14] are used as a starting
point for the study. By performing correlation analyses, we determine the strength of
the relationship between these metrics and the build outcome. We proceed to use our
data analysis toolkit to extract the metrics as feature vectors, and to export training
data used as input for creating build failure prediction models.

4.3.4 Build Failure Prediction

Based on the results obtained from our two-part study, we aim to create machine learning
models for predicting build failures. Our approach is discussed in Chapter 7. We first
examine how well existing build failure prediction approaches are applicable to the CI
domain. We build classification models using different algorithms and training features.
The models are evaluated using standard model validation techniques [Alp14, Dem06].
Next, we incorporate the temporal dimension of CI builds into our prediction approach.
The results from our analyses on the frequency of occurrence of different error types
enable us to reason about a prediction during the build execution. The experiments are
performed using WEKA, a popular machine learning toolkit that provides a variety of
training algorithms for classification tasks and parameterization of these algorithms.

4.4 System Model
The following section gives an overview of the system model and of different dimensions
of the CI domain relevant for our approach. We also present a formalization of domain
concepts that will later enable us to derive and concisely define functions that quantify
properties of these concepts.

4.4.1 Domain Model

The CI domain comprises several dimensional layers. Concepts of build automation
and revision control coalesce in a development process model (see Section 2.3). A CI
domain model must therefore incorporate concepts of build automation, VCS, and the
CI workflow. We now formalize these concepts and introduce term definitions.

Revision Control

A VCS repository manages a history of changes (commits) to files (or more generally,
content) in the form of a directed acyclic graph (DAG). We define a repository R as
the collection of files F , and a directed acyclic commit graph GC = (C,P ), where
C = {c0, c1, ...} is the set of commits uniquely identified by their SHA-1 hash sum.
P ⊆ {(cv, cu) | cv, cu ∈ C, cv 6= cu} is the set of directed edges that describe the parent
relation between commits. A directed edge from c1 to c2, i.e. (c1, c2), denotes that c2
is a parent of c1. A commit with more than one parent (out-degree ≥ 2) is a merge
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commit. We define a commit c ∈ C as a tuple: c = (sha, date, author, message, D),
where D is the set of diffs, i.e., the set of changes encapsulated by the commit. Formally,
we define a diff d ∈ D as a tuple d = (f, s, l+, l−), where f ∈ F is the file being changed,
s ∈ {add, del,mod} is the modification status of the file (added, deleted, or modified),
and l+ and l− are the number of lines added to and deleted from the file, respectively.

Given a tuple t, the notation t.x is used to reference the element in tuple t denoted by
the symbol held by x. For example, c.sha references the SHA-1 hash sum of commit c.

We define Fc ⊆ F as the set of distinct files that were changed by commit c, i.e.,
Fc = {d.f | d ∈ c.D}.

Build Automation

Build automation systems allow the configuration and automation of the software build
process (see Section 2.2). A build consists of various consecutive tasks, e.g., the com-
pilation of the source code, or running automated unit tests. Build tasks that do not
depend on each other can also be parallelized (e.g., static code analysis, integration
testing, or running the build in different configurations). Each task reports the result of
its execution to log output in human readable form. The final outcome of a build can be
interpreted in different ways. Section 4.4.2 discusses how we model the build outcome
for our approach. In our study we examine metadata about the build process, and log
output of the build execution. Travis-CI has devised an entity model that makes these
concepts explicit3. Our definitions are based on their model.

A build b may comprise several jobs. A job is the execution of a specific set of build
tasks. The log output of each job is stored in a separate logfile. In the remainder of this
thesis, when we refer to properties of a build, unless explicitly stated, we refer to build
metadata (e.g., the person who triggered the build, or the time it was started), as well as
properties of the individual job that was identified to cause the build failure (e.g., the
result or execution duration).

We define the execution duration (or runtime) of a build, as the time it takes for the
build to report a result. Because jobs are executed in parallel, determining both the build
outcome and execution duration in cases where multiple jobs fail may be ambiguous.
A detailed description of our disambiguation approach and how the build execution
duration is measured is given in Section 5.2.1.

CI Workflow

In a CI workflow, a VCS and a build automation server are used conjointly. Our model
has to reflect this relationship. When developers publish their changes (as commits), the
build automation server checks out the commits from the VCS repository, and executes
the build process. Several commits may be checked out since the last build. These

3https://docs.travis-ci.com/api#entities (accessed: 2016-08-10)
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commits are the change set of a build. We write Cb to denote the commits in the change
set of build b. The latest commit of the change set triggers the build.

Example 4.4.1. Figure 4.3 shows an example scenario to illustrate the concepts of
trigger commits and change sets. Commit a triggers build b1 and commit d triggers b2.
The change set of b2 includes all changes commited since the last build, i.e., Cb2 = 〈b, c, d〉

a b c d

b1 b2

triggers

Change set of b
2

Commits
from VCS

Builds from
CI system

time

Figure 4.3: Relationship between builds and commits

If the trigger is a merge commit, we consider the effective changes to be all commits in
the change set, except the merge commit. In case the change set includes only a merge
commit, the effective changes are made up of that commit. This distinction is later used
for determining the main author of a change set. Furthermore, differentiating trigger
commits allows us to define the concept of a build type (see Section 6.4.1).

4.4.2 Modeling Build Outcome

Typically, the outcome of a build is interpreted as a binary result: failed or passed. A
build failure denotes the fact that a build has not passed. We define a build error to be
the root cause for a build failure. For example, a build may fail because of a compilation
error, unit-test failure, etc. If no error occurred, we consider the build to be successful.
Unrelated to our definitions, Travis-CI distinguishes between errored and failed builds,
based on the execution phase the build terminated in (see Section 2.3.2). Based on these
observations, we model the build outcome in three different ways. The build outcome is
later used dependent variable for our statistical analyses.

• The binary outcome: did the build pass or fail?

• The state of a build in terms of the Travis-CI lifecycle: errored, failed, or passed.
Builds in the state errored or failed are considered build failures.

• The build result: either successful, or one of the different error types (compile error,
test failure, etc.)
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4.5 CInsight Data Analysis Framework
In order to perform the multitude of data science tasks, we developed CInsight: a polyglot
system that facilitates collection, structuring, extraction and finally preparation of CI
domain data for further processing with data mining tools. It leverages a variety of other
technologies, such as pandas4 (a Python data analysis toolkit), R5 (statistical computing
environment), whatthepatch6 (a library for parsing diff patches for python), etc.

The system comprises the following modules:

• Crawler: A Web crawler application written in Java that gathers CI domain data.
Specifically, it crawls build metadata from the Travis-CI API, and stores it into a
local MongoDB instance for ad hoc analysis. Furthermore, it fetches the raw build
log data from Travis-CI’s storage service, namely Amazon S3.

• Marvin: A bot written in Python that fetches pull request data from a GitHub
repository when builds are triggered on Travis-CI. The bot’s purpose is to re-
tain historical VCS data that may get lost during the development process (see
Section 6.1.2).

• LogCat: A tool to aid the process of categorizing build results based on build log
data. It is written in bash and uses Redis for set operations.

• PyMunger: A toolkit, written in Python, to facilitate data processing, linking,
and extraction of CI data gathered by the Crawler, and the locally cloned Git
repositories.

• RLoupe: A set of R programs to facilitate exploration, visualization, and statistical
analysis of the extracted data.

4http://pandas.pydata.org/pandas-docs/stable/
5https://www.r-project.org/
6https://github.com/cscorley/whatthepatch
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CHAPTER 5
Systematic Analysis of Build

Errors

Software build automation is an integral part of efficient software development. Build
automation is also a key aspect of continuous integration (CI). There has been some
research on build errors of private builds, i.e., builds that developers execute in their
local environment to compile the software [SSE+14]. However, little is understood about
the multiplicity of errors that can occur during a CI build. In this chapter, we present
an empirical study of both qualitative and quantitative data on build errors, gathered
from 14 open source software (OSS) projects that employ CI. In Section 5.1, we first
present methods and results on analyzing the multiplicity of error types of CI builds.
In Section 5.2, we examine the runtime behavior of such error kinds during the build
execution. The gathered insights are later used in our multi-categorical runtime-aware
build failure prediction approach.

5.1 Build Error Categorization
As discussed in Section 3.4.1, build results are typically represented as binary variable:
failed or passed. However, builds may fail due to a variety of different errors. The impact
of a build failure on the development process depends on the error that caused the failure
[SSE+14]. One goal of this thesis is to uncover what different errors occur during the
build process, and how this knowledge can be incorporated into a prediction mechanism.

A CI build comprises different steps, i.e., build phases (see Section 2.2). In an initial
phase, the codebase is checked out from the version control system (VCS) repository.
The source code is then compiled, and the software is tested using unit tests. Depending
on the project’s build configuration, many other steps may be executed. Each of these
build phases produce their own specific kinds of errors. Some errors will consequently
occur more often at certain points in time during the build execution.
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To further study the runtime behavior of build errors, such error categories have to be
found. The log output of build tools is analyzed by searching for patterns that match
error messages. Search patterns are then grouped to describe a specific error category.
This allows us to associate logfiles to an error category based on the search patterns of the
category. Our developed open coding workflow allows us to efficiently and systematically
categorize a large number of logfiles. Next, we present this methodology in more detail.

5.1.1 Methodology

Parsing Logfiles

The projects we analyze use either Maven or Gradle as build tool. Both create log output
of the entire build process, and report results of each phase. Typically, when a build
fails, the build tools will terminate at the point that the error occurred, or report the
error at the end of the phase. To identify a specific error kind, it is thus often enough
to inspect the last few lines of the log output. To find all logfiles that exhibit the same
error kind, we search for a distinct message in the log that describes the respective error.
From such a message we generalize a regular expression, and search for logfiles matching
this pattern. The process of finding patterns that can isolate an error category is not
trivial and requires knowledge of both the build tool, and the build configuration.

Example 5.1.1. Compilation errors are a common reason why builds fail. Listing 5.1
shows the log output of a build from the Spring Boot project. The maven-compile-plugin,
responsible for compiling the source code, outputs a distinctive string (highlighted) to
indicate this error. We know from the internal workings of the maven-compiler-plugin1,
that this message is reported if and only if the compilation process fails. Therefore, unless
the project uses a custom compilation procedure, searching for this string is sufficient to
identify errors of this kind among all logfiles.

Listing 5.1: Log output of a build from the Spring Boot project that caused a compilation
error� �

1 [INFO] Compiling 67 source files to /home/travis/build/spring-projects/spring
2 -boot/spring-boot-autoconfigure/target/classes
3 [INFO] -------------------------------------------------------------
4 [ERROR] COMPILATION ERROR :
5 [INFO] -------------------------------------------------------------
6 [ERROR] /home/travis/build/spring-projects/spring-boot/spring-boot-autoconfig
7 ure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisAutoConfi
8 guration.java:[143,10] cannot find symbol
9 symbol: class ConfigurationProperties

10 location: class org.springframework.boot.autoconfigure.redis.RedisAutoConfi
11 guration
12 [INFO] 1 error� �

1https://svn.apache.org/repos/asf/maven/plugins/trunk/maven-compiler-
plugin/src/main/java/org/apache/maven/plugin/compiler/AbstractCompilerMojo.
java (accessed 2016-08-28)
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LogCat Open Coding Workflow

To elicit error categories the build data have to be systematically explored. A well known
method in qualitative research, employed for the systematic exploration and labeling of
data, is the concept of open coding [CS14]. In the work by Seo et al. [SSE+14], open
coding was also employed to elicit error categories from compiler messages. In their study,
after categories were defined, experts were interviewed to map error message kinds to
those categories. We developed LogCat, a tool to assist the process of analyzing logfiles
based on the concept open coding. LogCat systematizes the exploration process of open
coding, and facilitates the efficient categorization of build logs from a project in a short
period of time.

Figure 5.1 illustrates the LogCat workflow as a flowchart. From the set of logfiles that
have not yet been associated with a category, one random file is selected as sample. The
log output is examined, and a tentative hypothesis is formed about the message that
captures the (possibly yet undefined) error category. Once a pattern has been defined, it
is tested by sampling a different logfile that contains this message. If enough evidence
exists to support the hypothesis, all logfiles containing the message are assigned the given
error category. This process is repeated until all logfiles (or certain percentage thereof to
an acceptable margin of error) have been successfully assigned a category.

more
uncategorized

logs?

does the
message capture a

category?

Export mapping
for further use

no

Sample an
uncategorized

logfile

yes

Select a message
that may capture

a category

Sample a different
logfile containing

the message
not
sure

no

Categorize
all logfiles that

contain the message

yes

Start process
for a repository

Figure 5.1: A flowchart of the LogCat open coding workflow
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LogCat stores the results of the categorization as a mapping of category labels to a set of
job IDs, and exports it as simple JSON for further processing. It also stores the patterns
of each error categories. A log file matching at least one pattern is assigned the respective
category. This way, an existing categorization model can be updated by simply applying
the search patterns again.

Example 5.1.2. This example shows a LogCat categorization model as JSON output.
This specific model captures all messages exhibited in Example 5.1.1. The jobs property
holds the IDs of all jobs in our build database that were identified with the specific error
category.

Listing 5.2: Example JSON output of LogCat� �
1 {
2 "categories": [
3 { "label": "compile", "pattern": ["^\[ERROR\] COMPILATION ERROR"] },
4 ...
5 ],
6 "jobs": {
7 "compile": [1,2,3,...],
8 ...
9 }

10 }� �
Systematic Categorization of Collected Log Data

The categorization process was performed for each project individually. Using LogCat
and its parser, we first explored the data gathered from the projects’ build data repository
to create a taxonomy of error categories. We then extracted appropriate search patterns
and labeled matching logfiles with the associated category. To reduce the amount of logs
that have to be parsed, we gathered only logfiles of builds that have failed. In total, we
analyzed 54 248 logfiles from failed jobs.

Maven and Gradle both support a variety of plugins that allow heavy customization of
the build process. Naturally, individual build configurations will cause a certain disparity
of error categories across projects. However, some build phases are common across build
configurations, e.g., a compilation phase, as the compilation is a prerequisite for further
build tasks. When we started the categorization process for a project, we focused on
these commonalities first. As the categorization progressed, we developed new categories
by studying the log output, and the project’s build configuration. Some projects use
an elaborate build configuration that makes use of plugins to solve specific task, e.g.,
measuring code quality. If we could not determine the error kind from the log data based
on the examination of the build configuration, we analyzed the change that led to this
specific build failure. We repeated this process until we were confident that the defined
message pattern is indeed sufficient to capture the entire error category.

We omitted the error categorization for WordPress-Android. The project uses a very
elaborate Gradle build configuration with a high number of build goals. Many of these,
specifically those used for the Android packaging and release process, report vague or
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incomprehensible error messages. We were not able to make sound decisions about the
error types. Similarly, Openmicroscopy uses a large variety of programming languages,
third party modules, and, consequently, a heterogeneous build environment. Additionally,
their build environment has been subject to drastic changes over the project’s lifetime.
We were therefore unable to produce a concise error categorization.

5.1.2 Results

Overall, projects exhibit a mean failure ratio of 37%, as made evident by Table A.1. Only
four projects have a failure ratio above 50%. In terms of Travis-CI build state results,
most failed builds are in the state failed. We analyzed a total of 54 248 logfiles from failed
jobs, roughly 92% of which were successfully assigned an error category. A total of 21
different categories were created, some of which were subsequently collapsed. For example,
some projects use multiple static code analysis tools for measuring different aspects of
code quality. We labeled errors generated by each tool separately (e.g., checkstyle or
findbugs). While this may be desirable for prediction, for the purpose of comparing
projects we grouped these categories into a single quality category. This resulted in a
total of 14 and an average of 9 categories per project. Table 5.1 lists the 14 labels we
created, the amount of projects they occurred in, and a short description of each error
kind.

Table 5.1: Summary of error categories and their occurrence frequency across projects

Label Projects Description

testfailure 12 An automated test did not pass
compile 12 The compilation process failed
git 12 The build worker could not fetch the changes that triggered the

build, e.g., because the pull request was merged before the build
started

buildconfig 11 The build configuration has an error, e.g., a syntax error in the
XML structure of the Maven pom.xml

crash 11 The build environment crashed or exceeded some time limit
dependency 11 The build configuration requests a dependency that could not

be resolved, e.g., because of a wrong version number
quality 10 A code inspection reported that a quality criterion was not met
other 9 Errors without an identifiable cause
itestfailure 4 An automated integration test failed
doc 3 An error occurred while processing the documentation, e.g.,

because a method had undocumented parameters
license 3 A plugin that checks license criteria reported an error, e.g.,

because not all source files include a correct license header
incompatibility 2 An API incompatibility was detected, e.g., because of a version

conflict
androidsdk 1 An error associated with the Android SDK occurred, e.g., because

it could not be downloaded
buildout 1 An error of a specific build tool used for a submodule of Crate.IO

written in Python

45



5. Systematic Analysis of Build Errors

A build may comprise several jobs, and each job may fail independently. It is also possible
that all jobs fail because of the same error. A build failure may therefore be caused by
several different errors (see Section 5.2.1 for a more detailed explanation). If multiple
jobs of a build fail, we only count each error types once. Table A.2 in Appendix A lists
all 14 error categories per project, and the amount of builds categorized with the given
error. Figure 5.2 shows a boxplot of the frequency of error categories common to 10 or
more projects.

Figure 5.2: Distribution of common error categories

Among all categories and projects, the most frequent error types are: testfailure, quality,
and compile. These errors account for approximately 62% of all reported errors. Together
with the error categories git, buildconfig, and itestfailure, they make up more than 80%
of all errors.

On average, 41% of builds fail because of test failures. Further splitting up this error
category would require the dimensioning of test-configuration details, e.g., labeling which
submodules are tested, or grouping kinds of tests. This would involve significantly
more effort during the categorization, and require deep knowledge of the systems test
configuration. It would also increase the number of defined categories, which may be
undesirable for prediction purposes.

5.2 Runtime Behavior of Builds

This thesis is novel in that it analyzes the runtime behavior of errors in CI builds. We
wish to understand 1) how the build execution duration evolves during the course of the
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project, and 2) the frequency of errors at specific points during the build execution. By
explaining build error kinds by their frequency of occurrence during a build, it becomes
possible to update a prediction during the execution time. For example, when the most
likely error predicted by a model is a compilation error, and we know that these errors
most likely occur in, e.g., the first 20 seconds of the build, then we can update the
prediction after 30 seconds saying that it is unlikely that the build will fail.

To get an initial understanding of the temporal dimension of the data, we first study how
the execution durations of builds change as the examined project evolves. We then use
the labeled data generated by the build categorization process to examine the frequency
of occurrence of build errors during the execution time. That is, we study at which points
in time during the build execution specific errors occur most frequently.

Next, we describe our data extraction and analysis methodology in more detail.

5.2.1 Methodology

To perform the analysis, we first need to extract the necessary properties from our
data. Each build of a project is numbered by a sequential identifier, starting with 1.
We calculate the runtime of a build using the date information of the build metadata
provided by Travis-CI. Using these two properties, we effectively generate time series
data that allow us to use methods from time series analysis to interpret the data [CM09].
We enrich the data with the labels generated by the error categorization process discussed
in Section 5.1. With the runtime property and the error category association we can
analyze the frequency of occurrence of specific errors during the build execution. We first
explain how we measure the execution time (or runtime) of a build.

Measuring Runtime

Measuring the execution time (or runtime) of a Travis-CI build can be ambiguous. Travis-
CI supports a concept called build matrix2. It allows to create a setup of multiple build
environments with different configurations. For example, a Java project could be tested
in both the Java 7 and 8 environment. Additionally, the project could be built in different
configuration modes, such as development and production. This 2 × 2 configuration
matrix expands to four individual jobs. When the build starts, Travis-CI spawns four
workers that execute these jobs in parallel.

Some projects in our dataset make heavy use of this feature. For example, build #150373

of the Presto project included five jobs, one failed job and four with a runtime of roughly
30 minutes. The Travis-CI build metadata contains the accumulated total time over all
jobs, in this case about 2.5 hours. As soon as a single job fails, by our definition of a
successful integration (see Section 3.4.1), the build can no longer be considered successful.

2https://docs.travis-ci.com/user/customizing-the-build/#Build-Matrix (ac-
cessed: 2016-08-10)

3https://travis-ci.org/prestodb/presto/builds/153706379 (accessed: 2016-09-10)
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Although Travis-CI continues to execute the other jobs, for our purpose, the runtime
duration of the build should be that of the first failed job. Conversely, when all jobs pass,
the runtime duration should be that of the longest running job, and not the sum over
all jobs. Travis-CI does not explicitly store this information. However, job metadata
contain the date and time they were started and finished. This allows us to calculate the
runtime duration of individual jobs.

Jobs may be scheduled at different points in time after the build initialization. Measuring
the runtime from the beginning of the build initialization may thus not capture the
true execution duration of the individual job that performed the build process. We
therefore consider the runtime of each job individually. When multiple jobs fail, we
consider only the first failing job in terms of execution duration. The overall runtime
and state of the build is then the runtime and state of that job. In case there are no
failing jobs, the runtime duration of the overall build is the temporal window between
the build initialization and last finished job. Figure 5.3 shows a timing diagram of a
build with three jobs, j1, j2, j3, where job j1 and j3 failed at a specific point during the
build execution, indicated by the red bars. In such a case, we define the build runtime as
the shortest duration from the start of a job to the point the error occurred.

j1

j2

j3
t

Build Job failed

Runtime

Figure 5.3: Measuring the build execution duration (runtime) when multiple jobs fail

Cleaning Outliers

The error category crash (see Section 5.1.2), includes builds that were terminated after
50 minutes of inactivity. Because we can not determine the point in time the build
became unresponsive, these data skew our statistics. We clean the dataset of builds of
these extreme outliers by removing data with a runtime above the 0.99 percentile of the
particular project.

Besides the states failed, errored, or passed, builds may also be labeled with the states
canceled (when the build was manually canceled by the user), or started (when the build
is currently running during data extraction). Because the latter two are both rare and
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uninteresting events for our analysis, we clear the dataset of any builds that are labeled
with canceled or started.

With the cleaned dataset, we can now perform meaningful analysis.

5.2.2 Runtime Evolution

We first analyzed how the execution duration of builds changes as the examined project
evolves. There are many events in the course of a project that can drastically change
the execution duration of a build, e.g., adding or removing complex tests, changing the
build configuration, or changes in the build infrastructure. To effectively use runtime
occurrence frequency of errors, these changes have to be taken into account.

Because each build is identified by a sequential identifier, we can use the execution
duration measurement to create a time series. We explored the data by creating plots of
this time series, and examining the runtime behavior of specific error types. We next
present results of this initial analysis.

Initial Results

We plotted the time series data as a scatter plot, and highlighted result types returned
by Travis-CI (errored, failed, or passed). Figure 5.4 shows scatter plots of data from four
different projects. The x-axis describes the sequential run-number, beginning from the
first build. The y-axis describes the build execution duration. The colors red, orange,
and green indicate the build result: errored, failed, or passed respectively.

Errors in a build will cause it to terminate before any other phases are executed. Con-
sequently, most errored builds have a shorter runtime than, e.g., passed builds. In
Figure 5.4d, there is a cluster of errors that run significantly longer than any other builds
during this timespan. Travis-CI workers may terminate builds that take longer than
15 minutes, and if a build, e.g., crashes during an early phase and the build is later
terminated, this build will be labeled as errored, and have a runtime of 15 minutes. Such
errors should be isolated by their error kind for any further detailed analysis of error
frequencies to be meaningful.

All 14 projects analyzed in this thesis have points in their lifespan, where the average
build runtime drastically changes. The four plots in Figure 5.4 are exemplary of this
behavior. This is an important discovery for later stages when we analyze the frequency
of occurrence of specific build errors.

Detailed Analysis

We present our detailed analysis using the Spring Boot project. The characteristics of
this project are exemplary of the other 14 in our dataset. For the remaining projects,
our analysis follows the same principles, although the actual results vary slightly from
project to project, as made evident in Section 5.2.3 and Figure 5.7.
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(a) Spring Boot (b) Apache Storm

(c) JabRef (d) Square OkHttp

Figure 5.4: Time series scatter plots of builds from four different projects

One would intuitively expect the runtime distribution of passed builds to be approximated
by a normal distribution. However, as we have shown, average build execution durations
may change drastically during a project’s lifetime. When analyzing the runtime over the
entire project-lifetime, it is therefore easy to explain why the runtime is not normally
distributed. Figure 5.5 shows this disparity. The plot to the left shows a simple moving
average (of the previous 50 data) over the time series of passed builds. The plot to the
right shows a density histogram of build execution durations with a 24 second bin width.

We later reason about the execution duration of future builds based on the probability
density of historical observations (see Section 7.1.3). However, as we can see from the
histogram, the constructed probability density is not representative for builds from the
later stages of the project. Therefore, using the entire dataset to construct the probability
density is not desirable for our purpose. Instead, we want to prune outdated data about
the build execution time from the dataset.
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Figure 5.5: Time series data of passed builds from Spring Boot

Given a specific time window, the runtime duration distribution now resembles a normal
distribution. Figure 5.6 shows the same information as the previous plots, only in a
window of 1100 passed builds from the later stages of the project. From this distribution
we can determine that 50% of builds that pass do so after 2120 seconds.

Figure 5.6: Windowed time series data of passed builds from Spring Boot

Failed or errored builds exhibit similar behavior, but require a more careful interpretation.
We now examine the temporal aspects of different error types in more detail.

5.2.3 Frequency of Occurrence of Error Types

As we have established in Section 5.1, there exists a multiplicity of error types. A build
runs in different phases, and each phase may produce its own specific kinds of errors.
Consequently, error types that belong to different execution phases also have different
frequency of occurrence accumulation points. For example, compilation errors will
naturally occur during the compilation phase, which is executed before the unit-testing
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phase. Our goal is to describe this behavior for individual error categories. This will
allow us to calculate the likelihood that a specific error can occur at a given instant
during the build execution.

To gain an understanding of the data, we first explore the basic build result categories
provided by Travis-CI. We then proceed to repeat the analysis with the error types
generated by the categorization process.

Initial Results

We initially analyze the frequency of occurrence of the three basic build result categories
provided by Travis-CI: errored, failed, and passed. As shown in Section 5.2.2, the average
build execution time may change during the course of a project. Using a limiting window
over the time series yields a more expressive runtime distribution. For the purpose of
this initial experiment, we select the last 10% of the builds for the respective project.

Figure 5.7 shows a summary of the build execution duration of eight different projects.
The three boxes per plot indicate the runtime of the respective build result categories.

Figure 5.7: Boxplots of the build execution duration of different result categories
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We observe that, on average, errored builds terminate before failed builds. In most
cases, the runtime distribution of failed builds is wider than that of passed or errored
builds. However, errored builds exhibit a higher outlier rate. We also observe that the
gap between the medians of failed and passed builds is typically smaller than that of
failed and errored builds. We later discuss how this affects our runtime-aware prediction
approach (see Section 7.3.3).

These initial results show that with our approach we can locate specific points during the
build execution at which errors are likely to occur. Interpreting the temporal dimension
of build results in this way allows us to make assumptions about the result of a build
during the execution. Given the observed runtime distribution of an error type, we can
calculate the likelihood that this particular error has occurred at a specific point in time
during the build execution. For example, in the Spring Boot project, if a build has
already been executed for 600 seconds, it becomes increasingly unlikely that the build
will terminate with the errored status (see Figure 5.7).

Detailed Analysis

We now study the runtime behavior of result categories we have gathered through the
categorization process (see Section 5.1.2). First, the build data are enriched with the
result categories we extracted using LogCat. This allows us to examine the frequency of
occurrence of different result categories in more detail. The analysis is again exemplified
on the Spring Boot project.

As we have seen, selecting build data from a time window yields a more expressive
runtime distribution. For this experiment, we select the last 10% of builds from each
error category. Selecting the overall last 10% of builds for the following analyses, without

Figure 5.8: Runtime histogram of different error categories from Spring Boot
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consideration of the build result, may lead to certain result categories being truncated.
For example, if none of the last 10% of builds resulted in a specific error type, the selected
subset will not contain data about this particular result category. While this could be
due to the root cause for the particular error type having been eliminated, it could also
be by chance. As a solution, we perform stratified subsampling by selecting a window
over each category individually. This way, builds from all error categories are included,
and the runtime distribution will be more representative than using the entire dataset.

We analyze the frequency of error categories extracted from the Spring Boot project (see
Table A.2 in Appendix A). Figure 5.8 shows a histogram of the execution duration (with
a bin width of 60 seconds) for different error categories. We omitted the categories other
and crash because, as such, they contain both spurious and extreme values that are not
purposeful for the illustration.

We want to answer questions of the form: how likely is it that error type e occurs
before the given runtime point t. To that end, we examine the probability density of the
execution duration of individual error categories. We define the random variable Xe as
the execution duration of a build that terminated with the error e. From the observed
data, we use kernel density estimation (KDE) [KM14] to estimate the probability density
function (PDF) fXe for each Xe.

Figure 5.9 shows the estimated PDF of two time windows from the sample also used for
Figure 5.8. The first plot (left) shows the time window between 0 and 50 seconds. We can
see that in this time only the two error types git and buildconfig occur. The second plot
shows the time window between 50 and 640 seconds (before the first testfailure occurred).
Most builds exceeding the second window are associated with testfailure (see Figure 5.8).

Figure 5.9: Runtime density of different result categories
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The cumulative distribution function (CDF) FXe , i.e., the area under fXe , allows us to
calculate the probability, given a runtime point t, that the error e has occurred: P (Xe ≤ t).
For example, from FXgit , we can determine that, if t = 20, FXgit(t) ≈ 0.77. In other
words, 77% of builds that failed with a git error did so after 20 seconds. If we assume
that the build will terminate with e = git, the tail distribution F̄Xe(x) = 1− FXe(x) lets
us determine that the remaining probability for the build to fail is ≈ 0.23. As the build
execution progresses, the probability for the build to terminate with this error continues
to decline.

The CDF of individual error categories are later incorporated in the prediction mechanism
we propose (see Section 7.1.3). The prediction that a build is likely to fail with a given
error is determined by our classifier. As the build execution progresses, we can update
this determination with the probability of individual errors to have occurred.

5.3 Discussion

There are many reasons why builds fail. Seo et al. [SSE+14] uncovered this fact in the
context of the edit-compile-test cycle of developers (see Section 3.2). The purpose of this
chapter was to provide quantitative and qualitative evidence about the multiplicity of
errors types that cause CI builds to fail. We also examined the runtime behavior of these
different error types, to identify accumulation points of certain errors during the runtime.

Categorizing build errors is a challenging task where many trade-offs have to be considered.
Categories have to be expressive enough to capture error kinds that allow the isolation of
influence factors (e.g., finding types of changes that induce specific errors more often than
others). However, if the amount of categories (which later serve as dependent variables)
is too high, the amount of observations per category will be lower. Consequently,
classification will also become more imprecise (see Section 7.3). Finding a balance
between the amount of categories, and their expressiveness (i.e., how well the category
isolates specific errors) is challenging.

Using our developed LogCat method, we elicited 21 different error kinds by analyzing a
total of 54 248 log files. We found that, on average, the most common reasons for builds
failures are failing unit-tests, code quality measures being below a certain threshold, and
compilation errors. A surprising amount of builds fail because the build worker can not
fetch the change data from GitHub. We observed that pull requests are often updated
and immediately merged. The pull request update causes a build to be triggered, however
when Travis-CI initiates the build worker, the pull request data on GitHub is already
gone, causing the build to immediately fail.

We have demonstrate how the build execution duration (runtime) is affected by certain
types of build errors, and how the runtime can be used to reason about errors (or vice
versa). However, accurately determining the runtime distribution of builds is challenging.
The average runtime of builds changes as the project evolves. Events in the project’s life
time, such as adding or removing tests, or changes in the build configuration, can make
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the average runtime increase or decrease drastically. This makes it difficult to precisely
reason over the runtime distribution of builds that terminate with different errors.

5.3.1 Limitations

Categorizing build errors is a challenging task where many trade-offs have to be considered.
We discuss some of the problems and limitations of our categorization approach.

Parsing Accuracy

Categorizing based on a single message string may not always be accurate. For example,
the message “No output has been received in the last 10 minutes”, indicates that the
build failed because it has timed out. Why the build has timed out is not captured by
the message. It is possible that a deadlock occurred during the execution of a test, or
that the build environment crashed. The category may therefore contain different types
of errors. This is a clear limitation of the automatic classification of build errors based
on parsing the log files based on a single string.

Runtime Accuracy of Build Phases

Software build tools like Maven support the configuration of multiple modules that
may depend on each other. Each module contains its own build sub-configuration and
source folder structure. Modules are built in dependency order, i.e., after their respective
dependencies. Parts of a build chain (e.g., compilation, code metrics validation) may be
executed for an entire module, before the next module is built. This means that runtime
accumulation points of phase-specific errors do not have to adhere to the order in the
build chain.

Similarly, Gradle can be configured to incrementally compile parts of the source code.
For example, integration tests may be compiled after unit tests were compiled and
executed. When categorizing errors for the purpose of runtime analysis, this type of build
configuration poses a dilemma. Assigning each incremental compilation its own category
may increase the number of error categories to an undesirable amount. Conversely, by
unifying all compilation phase errors into one category, it may become difficult to isolate
code changes that lead to this type of error category. For example, changes to test source
files may be incorrectly linked with integration-test compilation errors.
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CHAPTER 6
Factors Influencing Build Results

A main goal of this thesis is to provide evidence of the relationship between aspects of
the development process and build failures. This chapter, we present an empirical study
on factors that influence build results. In Section 6.1 we describe the methods used to
process the raw data we have gathered. Section 6.2 outlines the different characteristics
of build data we will examine. Section 6.3 and 6.4 explain in detail our definition and
extraction methods of the change and process characteristics. Section 6.5 we examine
the relationship between the defined characteristics and the build outcome. Finally,
Section 6.6 discusses the overall results and concludes the chapter.

6.1 Data Processing

Data from version control system (VCS) repositories and continuous integration (CI)
systems are gathered to investigate how development practices impact CI build results.
To elicit measurable properties of CI builds for the purpose of build failure prediction,
these data have to be integrated, structured, and cleaned. Furthermore, various challenges
that arise from mining process data from distributed version control system (DVCS)
have to be addressed. This section describes the data integration process, and how we
deal with missing or incomplete data.

6.1.1 Linking Change and Build Data

Process data in DVCS is naturally graph-based, and the software configuration manage-
ment (SCM) workflow employed by the team has a large impact on the structure of the
version history and change deltas. In contrast, build data from CI servers consist of log
files, and a traditional relational data model for build metadata. To generate datasets
that can be used to train machine learning models, data from the different heterogeneous
sources have to be aggregated and normalized. Specifically, it is necessary to map change
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6. Factors Influencing Build Results

data from the project’s source code repository to the CI build data. We call this process
topology mapping.

Topology Mapping

From previous research, we know that the result of the previous build is a strong predictor
for the outcome of a build [HZ06]. In this context, the term previous implies that, given
a set of builds, there is some ordering function to determine the predecessor of a build.
Using the execution timestamp of the build as ordering is insufficient when considering
the graph-based nature of the commit history of the VCS, because different branches
may be built in parallel. Furthermore, we want to study the effects of code changes on
build results, but the build data does not contain change information. These challenges
are overcome by mapping build data to the graph structure of the VCS.

Travis-CI build metadata contains some information (e.g., the SHA-1 identifier [CS15],
or the author) about the trigger commit, i.e., the tip of the change set that was pushed
since the last build. With this information, we can locate the trigger commit in the Git
history, and link build data from the CI system with commit data from the VCS. We
call this process topology mapping. Figure 6.1 illustrates a branching scenario and how
build data is mapped to commits. Green and red elements indicate successful and failed
builds, respectively.
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VCS Builds

Figure 6.1: Mapping build data to the VCS history topology
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The linked build data inherits the graph structure of the Git history, which allows us
to do two things in particular: define an ordering of builds based on the VCS history
topology (allowing us determine build predecessors), and precisely determine the change
set of a build.

6.1.2 Retaining Rewritten History Data

At this point, we rely on historical data of both build and source code repositories. This is
problematic in DVCS repositories maintained by teams that employ workflows involving
history rewriting (see Section 2.1.4). During early experiments, we realized that we
cannot rely solely on historical data available in repositories stored at GitHub. We briefly
describe the arising issues and how we addressed them.

Pull Requests When a pull request is updated, GitHub creates a transient merge
commit that simulates the merge, and is checked out and built by Travis-CI (see Sec-
tion 2.3.2). Unless explicitly pulled, these commits are not part of the local history, and
are discarded after a certain amount of days on the remote repository. This prevents
any detailed analysis of pull requests from historical data. Figure 6.2 shows the topology
mapping for pull request builds. Commits g and e are pull-request-merge commits.

b1

b3: pr1

b2: pr1

a

b

c

f

e

g

h b4

Figure 6.2: Topology mapping of an updated pull request

Rebase Workflows A common practice, when implementing changes suggested in
code reviews in the context of a pull request, is to amend the suggested changes to the
respective commit, and overwrite the remote history. The updated commits are then
built by the CI server, but the commits being amended are lost on the remote repository.
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Locally, such rebased commits are stored up to a certain amount of days in the reflog1.
However, unless there is a specific reference that links the changed commits to the tree
(e.g., in the form of an annotated tag), these commits are inevitably lost.

Repository Monitoring

When we analyze historical data, and a given pull request has been updated at least once,
it is no longer possible to retrieve the changes from the remote repository that triggered
the previous builds. This makes analysis of changes that triggered builds in the context
of updated pull requests impossible or imprecise. To address this problem, we built a
bot (see Section 4.5) that fetches the remote repository immediately after a new build
is triggered, and then creates an annotated tag on the commit that triggered the build,
thereby maintaining a link to the tree. This way, our local copy of the repository retains,
indefinitely, all changes that triggered a build, in contrast to the limited amount of days
they remain in the reflog. While this method allows us to precisely analyze changes that
were built, it also limits the analysis to the data collected by the bot.

In general, such workarounds for mining DVCS data are unavoidable. The potential loss
of historical data has been found to be an inherent aspect of the distributed workflow
made possible by Git and GitHub [BRB+09, KGB+14]. This loss of data also has
implications on the overall data quality. To perform meaningful analyses, we therefore
require additional methods for cleaning the data.

6.1.3 Data Cleansing

As we have established, build and VCS data are both noisy (see Section 5.1) and
incomplete (see Section 2.1.4). Limitations in topology mapping on historical data
further exacerbates this problem. Next, we give a more detailed explanation of how the
data is cleaned of outliers and missing data, to retain a set of observations that allow
sound reasoning. The first problem we address is that of dangling builds, i.e., builds that
can not be associated with change data from the VCS.

Dangling Builds

A consequence of the limitations in topology mapping using historical data (see Sec-
tion 6.1.2) are dangling builds. These cannot be linked to VCS data because the commits
do not exist in the history anymore. Changes that triggered these builds can either not
be determined accurately, or not at all. Consequently, any metrics involving change
or process characterization cannot be calculated on such build data. We introduce a
flag is_in_tree into our feature vector, that indicates whether a build can be linked to
changes in the commit history. This allows us to easily filter relevant observations during
data processing. Table B.1 in Appendix B lists the amount of observations in total, the
observations after the filtering, and the ratio of the retained data.

1https://git-scm.com/docs/git-reflog (accessed: 2016-08-10)
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Missing Data

Dangling builds have, as such, no change data associated with them. This inhibits many
of our conducted tests. For example, it is no longer possible to determine any complexity
metrics (see Section 6.3). We mark missing data in our feature vector as follows. All of
our measurements are either categorical, or numeric values with values ≥ 0. Values of
missing categorical variables are marked with NONE or UNKNOWN. Missing numerical
data are assigned the value −1. This allows us to filter data where these values would be
relevant for the particular test.

Outliers

Besides missing data, extreme data can also be problematic in statistical analyses. An
outlier is a data value that is not representative of the population from which the sample
is derived [She03]. Many of our data exhibit high variance values. An example we have
already discussed is the build execution duration 5.2. With change and process data we
have similar issues. Often, Travis-CI was introduced long after the project’s inception.
Consequently, the first build will be linked to the entire history up until then. This has
an effect on many measurements, including any type of change metric. Some categorical
variables also require filtering. Apart from the three build states failed, errored, and
passed (see Section 4.4.2), the state of builds may also be labeled canceled (build was
manually canceled by the user), or started (when the build is currently running during
data extraction). In general, we only consider builds with the state failed, errored, or
passed.

6.2 Factors to Explore
Using the processed, linked, and cleaned dataset, we now wish to explore different
measurable properties of the data. This section gives a summary of the factors we
explore. In later sections, we give a detailed explanation of how they can be measured
and extracted from the data for the purpose of training machine learning models for build
result prediction. We distinguish two main categories of measurements (metrics): process
and change characteristics. First we explore how well metrics from existing research can
be applied to our problem, and subsequently introduce improvements and new metrics
that we develop from our observations.

Terminology There is no consistent terminology about different types of metrics
throughout research. The term change metrics is sometimes used for measurements
that qualify changes in the structure of the software system, e.g., moving methods,
renaming classes, or changing loop parameters. Our approach does not include such
analyses, instead we focus on metrics of VCS commits, e.g., lines of code added or
removed, amounts of files changed, or change entropy [Has09] across files. These are
typically termed process metrics, however we want to distinguish between properties of the
development process (e.g., measurements of the employed workflows), and properties of
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commits (change metrics). We use the following definitions. For our purposes, we use the
term change metrics to describe what previous researchers often term “process metrics”.
Furthermore, we re-define process metrics to be measurements (typically qualitative) of
the development process.

6.2.1 Change Characteristics

A major goal is to understand the impact of changes to the codebase on CI build results.
To that end, we need to categorize and quantify characteristics of commits that trigger
automated builds, to find predictors for the plurality of build results. Complexity of
changes (e.g., size, churn, or entropy), have already been found to impact software quality
[Has09, KKA14]. Furthermore, we study the variety of file types in a software system,
and how changes to files of a certain type can be linked to specific errors.

We study the following categories of change characteristics:

• Complexity of changes
This category includes size and complexity measurements of the change set. The
underlying rationale is that complex change are more error prone [Has09].

• File types
This category aims to describe the intent of the commit by measuring which types
of files (e.g. a system, test, or documentation file) were changed, and is inspired by
the concept of change activities (see Section 3.1.3). Changes made to system-critical
files may be more error prone that those made to documentation files.

• Date and time
This category includes measurements of work habits of developers. For example,
researchers have suggested that changes made on a Friday night are more error
prone [ŚZZ05].

• Author classification
This category aims to describe the different levels of experience of developers. It
has been suggested that authors who commit more frequently produce fewer faulty
commits [ETL11].

6.2.2 Process Characteristics

Modern SCM tools allow a high degree of freedom when it comes to implementing
workflows [GZSD15]. The context of steps within the workflow can give additional
meaning to the intent of CI builds. For example, repository hosting services, such as
GitHub, provide an additional layer of features on top of the DVCS process: the concept
of pull requests (see Section 2.1.6). A build can be executed in the context of a pull
request (e.g., when it is updated), or when users with write-access push directly into a
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branch. Our goal is to investigate different process measures, and how they affect build
results.

We study the following categories of process characteristics:

• Build types Builds are executed during different stages of the workflow. This
category aims to describe the context in which a build is triggered.

• Pull request scenarios The pull requests workflow allow a high degree of freedom
in its implementation. This category aims to describe the qualitative characteristics
of a pull request.

• Build history This category describes characteristics of the build history. For
example, the previous build result has been found to be a strong predictor for
future failures [HZ06].

6.2.3 Dependent Variables

We use three different types of dependent variables to the describe the outcome of a
CI build: A) the binary result type of an automated build, i.e., failed or passed; B)
the build result reported by Travis-CI, i.e., errored, failed, or passed; and C) the error
kind determined by our build error categorization approach (see Section 5.1). The failed
category of variable type A is a union of the builds in the error and failed category of
variable type B.

In almost all of the conducted experiments, we study the impact on the build result. In
some, we are interested only in the dichotomous nature of the result: failed or passed.
This allows us to use binary classification algorithms, such as logistic regression, on the
data. A finer grained analysis can be done on the three result states Travis-CI provides.
Finally, when we study, e.g., the impact of changes on certain file types, we use the
categories determined by the error categorization as dependent variable. The possible
values of this categorical variable are therefore determined for each project separately.

6.3 Change Characterization
Capturing the characteristics of a change that leads to a specific build result is essential
to building the prediction models we propose. Based on existing research described in
Section 3.1 and Section 3.4, we adopt various measures that capture such characteristics.
This section describes the measures we later use to create feature vectors for the machine
learning step.

6.3.1 Complexity of Changes

In software defect prediction, the most widely used change metrics are: number of
revision (NR), number of distinct committers (NDC), number of modified lines (NML),
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and number of defects in previous versions (NDPV) [MJ15]. Complexity measurements
using entropy functions from information theory have also been used to effectively predict
faults [Has09]. The underlying hypothesis is that changes with high complexity are more
error prone and will consequently cause more defects.

We adapt these common metrics to fit our data, and define them as follows. Each metric
is calculated over the change set Cb of the observed build b (see Section 4.4).

• Number of commits: The size of the change set Cb, i.e., the amount of commits
that are pushed since the last build.

NC(b) = |Cb| (6.1)

• Number of authors: The number of distinct authors involved in the change set.

NA(b) = |
⋃

c∈Cb

c.author | (6.2)

• Number of lines added: The number of lines added across all commits of the
change set.

NLA(b) =
∑

c∈Cb

c.l+ (6.3)

• Number of lines removed: The number of lines deleted across all commits of
the change set.

NLR(b) =
∑

c∈Cb

c.l− (6.4)

• Number of modified files: The total number of distinct files modified across all
commits of the change set.

NMF(b) = |
⋃

c∈Cb

Fc | (6.5)

• Change scattering across files: We adapt the Shannon entropy H = −
∑k

i pi ∗
log2(pi) to measure how changes are scattered across files. For a change set Cb, we
define k = NMF(b), and pi to describe the percentage the i-th file was changed
in the change set. We follow the approach by Hassan [Has09] and normalize the
entropy value with the total amount of files n in the system at the observed time.

CX(b) = H ∗ 1
log2(n) (6.6)
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Extraction

From our structured dataset, we retrieve for each observation (build) b the change set
Cb = {c1, ..., cn}. Auxiliary functions to extract properties of commits, e.g. c.l+ or
c.author, are provided by our data analysis toolkit. These functions ignore changes
that involve only whitespaces or moving of files. We now simply calculate the functions
described above over Cb, and add them to our feature vector. NC, NA, NLA, NLR, NMF
are functions that return integer values, CX returns a real value.

6.3.2 File Types

It is reasonable to assume that changes to specific types of files will lead to some types
of errors more frequently than others. For example, it is unlikely that a single change to
a plain text resource (e.g., a README file), will lead to a compilation error. It is also
unlikely that such a change would fix an already broken build. Similarly, errors regarding
the build configuration will typically be caused by changes to a build configuration file.

To study this relation between file and error types, we first need to classify files into
their different types. We leverage the project structure convention dictated by Maven2 or
Gradle3, to identify types of files based on their location in the file tree. Table 6.1 lists
the globally defined file type categories and the glob pattern we use to identify them.

Table 6.1: File type categories and associated glob patterns

Category Glob Patterns

system **/src/main/java/*.java
system_resources **/src/main/resources/*
test **/src/test/java/*.java
test_resources **/src/test/resources/*
webapp **/src/main/webapp/*
benchmark **/src/jmh/java/*.java
build_config *pom.xml, mvnw, mvnw.cmd, mvnw.bat, *.gradle,

gradlew, gradlew.bat, *checkstyle.xml
git .gitmodules, .gitattributes, .gitignore, .mailmap
ci_config .travis.yml
properties *.properties
documentation *.md, *.markdown, *.txt, *.rst, *.adoc, *NOTICE,

VERSION, README, AUTHORS, *LICENSE, DEVELOPERS

Projects can customize this structure, or use, e.g., scripts in programming languages that
are not covered by the patterns. We consulted the documentation of individual projects
for guidance when assigning additional glob patterns to file types. For example, parts

2https://maven.apache.org/guides/introduction/introduction-to-the-
standard-directory-layout.html (accessed: 2016-08-10)

3https://docs.gradle.org/current/userguide/java_plugin.html#N152C8 (accessed:
2016-08-12)
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of Apache Storm are written in the Clojure programming language, so we extend the
respective patterns with a .clj suffix.

To avoid mismatches in the size of the feature vector, we do not add additional categories
for projects that would require a rare kind of file type. Instead, we create a category
unknown, that contains any unclassified files. Also, we do not give special consideration to
evolving patterns (e.g., integration tests may be restructured into other modules during
the course of the project).

Extraction

To create a feature vector, we calculate the percentage of changes for a file type category
within a commit or set of commits. For example, if a system and a test file were changed
by adding seven and deleting three lines respectively, the feature vector would contain 0.7
for the system category, 0.3 for the test category, and 0 for all others. Change amounts
are calculated by summing up added and deleted lines. To resolve possible ambiguities
(e.g. .gitignore files should always be categorized as such, even if they reside in a
resource directory), we run the more specific patterns first.

6.3.3 Date and Time

The effects of work habits, such as the time of day or the weekday changes are committed,
on software quality have been studied with some conflicting results [ŚZZ05, HZ06, ETL11,
KKA14]. Eyolfson et al. [ETL11] found that late night commits (after midnight) are
significantly buggier (fault inducing) than commits authored in the morning hours.
Kerzazi et al. [KKA14] found that working hours do not significantly impact software
build results. In the build failure prediction approach by Hassan and Zhang [HZ06],
working hours and weekdays were used in their decision tree approach with some success.

We test whether this controversial hypothesis holds for CI builds. To that end, we
calculate the time-of-day (0-23) and day-of-the-week (0-6) for every build. We follow the
approach by Eyolfson et al. [ETL11] to account for different time zones of developers.

Time Zone Adjustment

In open source software (OSS) projects, developers from all over the world contribute
to the codebase. All dates in the build metadata are recorded in timezone of the build
server, i.e., UTC. To reason about the effects of time-of-day of individual developers on
the build result, we first need to adjust the build time to the developer’s local timezone.

Timezone information of the author is encoded in the commit data. A lookup of the
build commit date recorded in the Git history is sufficiently accurate for time of day
or weekday reasoning. If the build commit is not in the Git tree, we guess the author’s
timezone by checking all available historical data, and determine the timezone the author
is most frequently working in.
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Extraction

From the observed build b, we extract the date of the commit that triggered the build (see
Section 4.4). We run our time zone adjustment, and extract the time of day TD ∈ [0, 23],
and the weekday WD ∈ [0, 6], 0 being Monday.

6.3.4 Author Classification

It has been established that developers have different habits when running software builds
and tests in their local development environment [KKA14, SSE+14, BGPZ15]. Eyolfson
et al. [ETL11] suggested that developer experience and commit frequency influences
commit bugginess. Jiang et al. [JTK13] argued that the uneven distribution of coding
habits and experience levels among developers should be expressly considered when
building defect prediction models.

It is clear that if a developer runs the entire test suite locally before pushing, it is less likely
that the CI build will fail. We did not find a way to adequately describe this circumstance
using our data. However, because author classification has been successfully employed
in the past, we adapt classification approaches (experience and commit frequency) of
[ETL11] to fit our data.

We define the author of a build the be the main author of the effective change set (see
Section 4.4). The main author is the developer with the most commits in the effective
change set of the build.

• Experience: The time delta between the first time the developer was determined
to be an author of a build, and the current observation.

• Commit frequency: The authors most occurring time difference between two
consecutive commits. We distinguish between daily, weekly, monthly, other (less
than 20 commits, but more than 1 commit), and single (a single commit)

Extraction

The experience of a developer is extracted by calculating the time delta between two
specific events: the current observation, and the first time the developer authored a build.
If the effective change set contains more than one author, we determine the main author
to be the person with the most commits in the change set. In the rare case that a change
set has the same amount of authors, we break the tie by choosing the developer that
authored the latest commit. The time delta is calculated in days and is therefore an
integer value.

The commit frequency of a developer is a nominal value as described in the section above.
We determine the commit frequency by first calculating the time delta between every
consecutive commit by that developer. If the time delta between two commits is less
than 30 minutes, the two consecutive commits are considered a single commit. The
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time delta δt (calculated in days) information is then grouped into four intervals: δt ≤ 1
(daily), 1 < δt ≤ 7 (weekly), 7 < δt ≤ 30 (monthly), and δt > 30 (other). Finally, the
most frequently occurring interval denotes the developers commit frequency. We also
consider the special case that a developer only has a single commit (single).

6.4 Process Characterization

The employed SCM workflows, particularly branching and pull-based workflows, have been
found to impact both software quality and work productivity [SBZ12, VYW+15]. Our
goal is to investigate different process measures, specifically those relating to CI practices,
and how they affect build results. This section describes the process characteristics we
explore, and methods we use to measure them.

6.4.1 Build Types

When changes are pushed to the VCS repository, Travis-CI is notified to check out the
changes and execute the build process. Travis-CI distinguishes between push and pull
request triggers, i.e., when changes are pushed directly into a branch, or a pull request is
updated. This distinction is important when reasoning about the build outcome, because
the build process of these two build types is fundamentally different: when pull requests
are updated, a merge into the baseline is simulated by creating a merge commit, which is
then built.

Every time a pull request is updated, a merge into the baseline is simulated. The resulting
merge commits are not retained in the history because they are only relevant for the build
server. Travis-CI labels builds of this type as pull-request builds. When pull requests are
finalized, an integrator manually merges the pull request into the baseline. The resulting
merge commit (which remains in the history) triggers a build that is labeled as a push
build.

When a developer merges two successfully built branches locally, the resulting merge
commit will typically contain no changes. Builds that are triggered by such commits are
also labeled as push builds by Travis-CI.

To more accurately describe these different types of builds, we extend the build types
introduced by Travis-CI, with merge, integration and pull-request merge:

• Push: The class of push builds retains those builds triggered by regular commits
pushed directly into a branch.

• Merge: A merge build is a push build triggered by a merge commit, i.e., a commit
with two or more parents. The change set Cb of a merge build contains only the
merge commit.
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• Integration: An integration build is a push build triggered by a merge commit,
but the build change set Cb contains more than one commit (i.e., unbuilt non-merge
commits).

• Pull request: A pull request build is triggered by creating or updating a pull
request. It simulates a merge into the baseline.

• Pull-request merge: A pull-request merge build is triggered when a finalized pull
request is merged by an integrator. Such builds can be seen as a special case of
merge builds.

Determine Merge Commits

Merge builds are triggered by merge commits. There are two ways of determining whether
a build was triggered by a merge commit: either looking up the trigger in the Git tree,
or examining the commit message.

Checking the commit tree is the easiest and also most accurate method: we simply check
if the commit has two parents. As we have discussed, not all commits that triggered
a build are retained in the history (see Section 6.1.2). However, Travis-CI stores some
metadata about the trigger commit, including the commit message. Git creates a default
message for merge commits of the format “Merge branch ’source’ into target”, which
is typically not changed. This allows us to determine merge builds directly from their
metadata with reasonable accuracy.

A general limitation is that we cannot detect fast-forward merges (see Section 2.1.3), and
there is, to the best of our knowledge, no data about how often branches are updated via
manual fast-forwards merges.

Determine the Merge Commit of a Pull Request

GitHub’s pull request mechanism facilitates different workflows. Per default, branches
are merged with the ‘--no-ff’ option, which forces the creation a merge commit with a
default message of the format “Merge pull request #<pr-nr> [...]”. This convention
allows us to easily write a parser that determines the commit that eventually merged a
specific pull request into the baseline.

Pull requests can also be merged by squashing all commits of the branch into a single
commit, with a new message, and then performing a rebase (see Section 2.1.6). Figure 6.3
illustrates how a commit history changes through this process. Because this method
leaves no apparent reference to the pull request in the history, it is effectively impossible
to precisely determine the commit that merged the respective pull request from the
historical build or VCS data. An exception is a pull request that contained only a single
commit, in which case there is nothing to squash and the commit SHA can therefore be
found in the target branch.
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Figure 6.3: Pull request merge squashing

Extraction

We extract this information into the categorical variable BUILD_TYPE ∈ {PUSH, PR,
MERGE, INTEGRATION, PR_MERGE, UNKNOWN}. We first determine the event
type (push or pull request) from the Travis-CI build metadata. If possible, we check
the commits in the Git history, as it is more reliable. As a fallback, we use the commit
information supplied in the build metadata.

6.4.2 Pull Request Scenarios

Pull-request-based workflows on hosted repository services have recently become subject
of intense research [VYW+15, GZSD15, YWF+15]. Git and GitHub provide a variety of
ways to update pull requests, and we examine how differences in this workflow affect build
results. To that end, we first explore different update scenarios. Figure 6.4 illustrates an
example of a simple update scenario. The left tree shows a pull request scenario where e
is the pull-request-merge commit that simulates the merging of c into d. The right tree
shows the same pull request updated with f , where the baseline has not advanced.

We create a taxonomy of pull request update scenarios by defining a set of four predicates:

1. Pulling into foundations: The target of the merge is equal to the merge base of
the source and target. This means there are has been no parallel development that
would have to be considered when merging.

2. The PR has advanced: Changes have been introduced to the PR since the last
build. The source of the previous build is therefore different from the source of the
current build.

3. Upstream has advanced: Since the last build, changes were made in the branch
being merged into. The target of the previous build is therefore different from the
target of the current build.
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Figure 6.4: Example of a pull-request-update scenario

4. The PR was rebased: A special case of 2., which states that the branch of the
history of the PR was somehow re-written, either via rebase, amend or similar
commands. This means that the previous build has commits that are not reachable
from the current build.

Extraction

We create five variables to accurately describe the pull request scenario. A categorical
variable stores the pull request scenario: PR_SCEN ∈ {A,...,P,SIMPLE_1, SIMPLE_2,
NONE}. For the categorization, we create a truth table (see Table 6.2) with all four
predicates, and enumerate the update scenarios from A to P. For the first build of a pull
request we can determine only predicate 1. We label these builds with SIMPLE_1 or
SIMPLE_2. The other four variables hold the truth value for each predicate respectively.
This allows a more detailed analysis.

Scenarios marked with a * are implausible. For example, predicate 4. implies 2., therefore
scenarios E, G, M, and O are not possible. The pull request scenario is determined
exclusively for PR builds (see Section 6.4.1), any others are marked with NONE. If the
build has no previous build, the update scenario cannot be accurately determined, and is
therefore also marked with NONE.

6.4.3 Build History

Hassan and Zhang [HZ06] considered three types of measurements of the build history:
days since the last build failure, number of passed builds prior to a given build, and the
previous build result. They found that these factors outperform all others when training
decision trees to predict build failures. Based on these insights, we adapt the metrics to
our data, and define them as follows:
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Table 6.2: Truth table for determining the pull request scenario

Predicates
Label 1. 2. 3. 4.

A T T T T
B T T T F
C T T F T
D T T F F
E* T F T T
F* T F T F
G* T F F T
H T F F F
I F T T T
J F T T F
K F T F T
L F T F F
M* F F T T
N F F T F
O* F F F T
P F F F F

SIMPLE_1 T - - -
SIMPLE_2 F - - -

• Previous build result: The result of the previous build(s). As we have discussed,
when mapping builds to the VCS history structure, a build may not have a single
distinct predecessor (see Section 6.1.1). Because most builds have either one or
two predecessors, we use two fields: prev_left and prev_right, indicating the
previous build result in the left or right most subtree respectively. For example,
in the scenario shown in Figure 6.1, build b5 has two predecessors, where b3 is of
the left most, and b4 is the right most subtree. This distinction is particularly
interesting for merge commits: merging a working branch into a broken branch
may indicate an attempt fix the broken build.

• Climate: The build climate, or build stability, is a moving ratio window over the
fail rate. We measure the fail ratio of the last k builds.

• Days since last fail: This variable describes the amount of days that have passed
since the last build failure. In our analysis, we later create time intervals to
transform the variable into a categorical type.

Extraction

Through the process of topology mapping, the build history inherits the graph structure
of the VCS history. This allows us to use simple graph search algorithms, such as
breadth first search (BFS), on the structured build data. The predecessors of a build
are determined by traversing each branch until a build is found. When we determine k
predecessors of a builds, e.g., for calculating the climate, we traverse the graph using
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BFS from right to left, until all branches have been traversed and Fat least k builds
have been found. The resulting set of builds is then ordered by their occurrence in the
topology, and the first k builds are selected.

Pull Request Builds Pull requests are built differently than normal push builds (see
Section 6.1.2). When a pull request is updated, a merge commit is created that simulates
a merge into the baseline. Pull-request-merge commits are not reachable through the
ancestry path of a later commit. Consider the example in Figure 6.2. The previous
build of b3 is b2. As we traverse the graph from node g to find the previous build of
b3, a normal graph traversal would find commit b, and therefore b1. By shadowing the
build link to the source of the pull request (in this example, the source of e is commit
c), we can proceed to use our graph traversal approach to find the previous commit of a
pull-request-build. When a pull request is rebased, this approach also fails to find the
previous pull request build. In this case, we simply look up the previous build from the
list of pull-request builds as prev_right.

6.5 Statistical Analyses
We extract from the structured build and VCS data all previously described measures.
Different statistical methods, such as Pearson’s chi-square test, or the Mann–Whitney U
test, are then used to examine the influence of the different factors on the build outcome.
This section presents our findings, and we first give more detailed explanation of our
methodology.

6.5.1 Methodology

Determining causal relationships of build failures from our data set is very difficult and
would involve elaborate testing with numerous control factors. Because the understanding
of such relationships is important for assisting the software quality assurance process,
it has been attempted by researches to draw conclusions about causation from tests
similar to ours. However, we believe that accurately describing causes of build failures
is ultimately not necessary for building a strong prediction system [Shm10]. While
our study is motivated by hypotheses proposed in previous research, we examine solely
statistical correlation, and draw no conclusions about causality. The goal is to gain a
deeper understanding of why certain measures work well as features for build failure
prediction models. Hence, when we speak about influence, we do this from a purely
statistical point of view.

For each variable, we study the correlation of the developed measures and build outcome.
All our experiments require nonparametric statistical test, i.e., tests that make no
assumption about the probability distribution of the examined variables. We select the
tests based the decision procedure described by Sheskin [She03]. The selected tests are
in accord with the approach of Kerzazi et al. [KKA14], who also studied factors that
can be linked to build automation failures.
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Categorical variables (such as build types or pull request scenarios), are examined using
Pearson’s chi-square test. Additionally, we calculate Cramér’s V (φc) to determine the
effect size of each test. φc is a measure of association, and is used together with the
chi-squared test to interpret the strength of a relationship. For continuous measures
(such as the complexity of changes), we use the two-sample Wilcoxon rank sum test,
also known as the Mann–Whitney U test (from hereon called the Mann–Whitney test).
Unlike the chi-square test, the Mann–Whitney test requires the dependent variable to
have exactly two levels, i.e., to be a binary variable. Both of the employed test methods
are executed using the R statistical computing system [KM14].

Using these tests, we perform standard significance testing of null hypotheses. A null
hypothesis states that there is no relationship between two sets of observations. For
every statistical significance test, we determine the p-value of the test, and evaluate the
null hypothesis using the common cutoff value α = 0.05. If p < α, we reject the null
hypothesis and conclude that there is a statistical significant relationship between the
samples. For the Pearson’s chi-square test, we also calculate the effect size φc ∈ [0, 1] to
determine the strength of the relation. Higher φc values indicate a stronger relationship.

In each of the following sections we test a specific type of factors we have defined in
Section 6.2.

6.5.2 Complexity of Changes

The complexity of changes have been used in numerous studies on software defect [MJ15]
and build failure analysis [HZ06, CH11] alike. We calculate these metrics from the
effective change set (see Section 4.4.1) of a build. Consequently, change complexity
metrics can only be calculated on build data that have been successfully linked to change
data with topology mapping (see Section 6.1.3).

Our dataset on these metrics is highly skewed, as made evident by Table B.4 in Appendix B.
We therefore trim the dataset of extreme outliers by dropping observations where NMF
(number of modified files) is above the 99th percentile (individually for each project).
This effectively eliminates rare events, such as the first build which contains all changes
committed since the repository was initialized. An exception is made for the project
RxAndroid, on which very little change data is available. Table B.6 in Appendix B
lists mean values of all change complexity metrics per build outcome and project after
filtering.

For each metric we run the Mann–Whitney test against the binary build result (failed or
passed). Table 6.3 lists the resulting p-values for each metric and project. Highlighted
values are p < 0.05.

As we have established, previous researchers have linked change complexity metrics to
build outcome and software defects. The experiments we perform do not give conclusive
evidence that this can be applied in the same way to CI builds. For example, Hassan
and Zhang [HZ06] argued that, integrating a large number of files will lead to build
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Table 6.3: Results of the Mann–Whitney test of change complexity metrics

NC NA NLA NLR NMF CX

Apache Storm < 0.001 < 0.001 0.437 0.208 0.216 0.743
Crate.IO 0.391 0.222 0.003 0.208 0.211 0.209
JabRef 0.001 0.360 < 0.001 < 0.001 < 0.001 < 0.001
Butterknife 0.004 0.537 0.162 0.169 0.105 0.460
jcabi-github < 0.001 0.040 0.024 0.011 < 0.001 < 0.001
Hystrix 0.063 0.696 0.434 0.458 0.445 0.897
Openmicroscopy 0.016 0.035 0.927 0.475 0.016 0.484
Presto < 0.001 0.004 < 0.001 < 0.001 < 0.001 < 0.001
RxAndroid 0.491 0.771 0.352 0.663 0.755 0.961
SpongeAPI 0.019 0.139 < 0.001 0.005 0.007 0.003
Spring Boot 0.101 0.041 < 0.001 0.002 < 0.001 < 0.001
Square OkHttp 0.255 0.988 0.220 0.009 0.012 0.212
Square Retrofit 0.746 0.485 0.017 0.161 0.107 0.316
WordPress Android 0.555 0.172 < 0.001 < 0.001 < 0.001 < 0.001

failures more often. In eight of the studied projects, the number of modified files has
a statistical significant influence on the build result. However, there are cases in which
the average number of modified files for passed builds is larger than that of failed builds.
This unintuitive phenomenon holds for many of our observations.

6.5.3 File Types

It is reasonable to assume that changes to specific types of files will lead to some errors
more frequently than others. We test this hypothesis by classifying each file into our
defined file types (see Section 6.3.2). In this scenario, there are multiple continuous
independent variables, i.e., one for each file type. Testing multiple independent variables
against a nominal variable would require advanced statistical methods. Instead, we
design the experiments so we can continue to employ our methodological approach. We
are interested in what types of changes induce which result types.

The data is prepared as follows: we create categories based on whether a specific file type
was changed or not (indicated by the file type name). For example, when a change set
includes changes to a system and a test file (and nothing else), the build is labeled with
system+test. To contain the amount of categories, when a change set contains changes
to more than three different file types, we label it tangled [HZ13]. The resulting list
is sorted by the amount of builds per category, and the top n categories selected. Per
category we count the amount of builds in the specific state (errored, failed, or passed).
Table 6.4 shows the result of our data preparation approach for the Spring Boot Project
with n = 6.

The chi-squared test is now conducted on these contingency tables. We select n = 6. We
observed that for higher n values, the amount of observations would generally drop too far
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Table 6.4: Contingency table of file type changes and build results for Spring Boot

errored failed passed

test+system 139 101 608
system 140 86 576
build_config 101 74 530
documentation 90 70 417
tangled 58 52 205
test 45 39 190

to produce representative results. Table B.5 in Appendix B lists all project contingency
tables. The cell values correspond to ratio between errored, failed, and passed builds for
the respective file type change. Table 6.5 lists the result of the chi-squared test.

Table 6.5: Results of the χ2 test on file types

p φc

Apache Storm < 0.001 0.142
Crate.IO < 0.001 0.075
JabRef < 0.001 0.155
Butterknife 0.002 0.223
jcabi-github 0.002 0.182
Hystrix 0.156 0.128
Openmicroscopy < 0.001 0.086
Presto < 0.001 0.079
RxAndroid 0.039 0.272
SpongeAPI 0.006 0.088
Spring Boot 0.110 0.047
Square OkHttp < 0.001 0.117
Square Retrofit 0.261 0.109
WordPress Android < 0.001 0.061

The low amount of data for the projects RxAndroid, and Square Retrofit, make the
results for these projects inconclusive. We observe that in 10 out of 14 cases, the p-value
is below the cutoff point, with a moderate to low effect size. Although the values indicate
a relationship between file type changes and the build outcome, it is unclear whether
changes to a specific file type leads to errors more frequently.

Table B.5 in Appendix B shows some paradoxical results. For example, in the Spring
Boot project, there are 577 builds in which only documentation files were changed. We
can see that these builds have the same error rates as the builds where test and system
files were changed. This can be explained, at least partially, by two facts. First, our test
does not control for builds that were already previously in a broken state. It is reasonable
to assume that a change to a documentation file will not fix a broken build. Therefore,
any builds that previously fail, will most likely fail again. Secondly, we observed several
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spurious errors in the Spring Boot project. Some tests may randomly fail, even when
effectively harmless changes are made. We conducted an experiment where we considered
only original failures, i.e., failed builds preceded by a successful build. From the 577
builds where only a documentation file was changed, a total of 40 caused original failures.
21 of these failures were caused by failing tests, 18 by test environment crashes, and one
because of a dependency error. All of these errors can be, as such, spurious.

6.5.4 Date and Time

The time-of-day and weekday changes are made, have been hypothesized to have a
significant influence on software quality [ETL11]. A popular theory is that changes made
on Friday evening (before developers leave work for the weekend) are more likely to be of
low quality [ŚZZ05]. We calculate the time-of-day and weekday of the build trigger of
build b (see Section 6.3.3).

The resulting values are interpreted as nominal values, with time-of-day ∈ {0, ..., 23} and
weekday ∈ {0, ..., 6}. On these values, we run the chi-squared test against the binary
build outcome. Table 6.6 shows the results of the test.

Table 6.6: Results of the χ2 test on time of day, and weekday measures

Time of Day Weekday
p φc p φc

Apache Storm 0.175 0.087 0.322 0.042
Crate.IO < 0.001 0.068 < 0.001 0.061
JabRef 0.045 0.078 < 0.001 0.069
Butterknife < 0.001 0.238 < 0.001 0.167
jcabi-github 0.030 0.190 0.221 0.089
Hystrix 0.065 0.180 0.082 0.104
Openmicroscopy < 0.001 0.100 0.010 0.035
Presto 0.173 0.047 0.007 0.037
RxAndroid < 0.001 0.379 < 0.001 0.232
SpongeAPI < 0.001 0.089 < 0.001 0.075
Spring Boot 0.045 0.074 0.117 0.040
Square OkHttp < 0.001 0.110 < 0.001 0.103
Square Retrofit 0.004 0.134 < 0.001 0.167
WordPress Android < 0.001 0.074 < 0.001 0.050

We observe that in 10 out of 14 cases the chi-squared test on the time-of-day value
reported a significant influence, with a confidence interval p ≤ 0.05. However, the results
show predominantly a small to medium effect size, indicated by φc < .21. Similarly, the
weekday value also has a significant influence in 10 out of 14 cases. The effect size is
generally smaller than in the time-of-day experiment.

In conclusion, we do not have enough evidence to make a sound claim about the general
effect of time-of-day on the build outcome. However, the results indicate that in some
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cases (for example the RxAndroid project), the metrics could have a positive effect on
the performance of a prediction model.

6.5.5 Author Classification

Contributors in OSS projects have different development habits and experience levels.
We classify authors in two dimensions: experience level and commit frequency. We test
our author classification approach against the binary build outcome. To that end, the
Mann–Whitney test is used on the developer experience, and the chi-squared test on the
commit frequency.

We consider only data that contain author information. This is roughly 40% of our
dataset, and an average of 58% per project.

Developer Experience

In this first experiment, we test the developer experience value against the binary build
result outcome using the Mann–Whitney test. Table 6.7 shows the resulting p-values,
and the mean experience values of passed and failed builds, respectively.

Table 6.7: Results of the Mann–Whitney test on developer experience

p x̄p x̄f

Apache Storm < 0.001 200 233
Crate.IO < 0.001 386 333
JabRef 0.782 467 459
Butterknife < 0.001 676 176
jcabi-github 0.047 212 263
Hystrix < 0.001 255 332
Openmicroscopy 0.861 590 619
Presto 0.661 424 403
RxAndroid 0.341 227 181
SpongeAPI 0.001 260 310
Spring Boot < 0.001 466 407
Square OkHttp < 0.001 720 545
Square Retrofit < 0.001 625 284
WordPress Android < 0.001 512 422

We observe that in 10 out of 14 cases, the Mann–Whitney test reported a p-value < 0.05.
However, we also observe five cases in which the mean experience of passed builds is
lower than that of failed builds. Although there appears to be a correlation between
developer experience and build failures, we can not provide sufficient evidence for the
claim that a high experience level inevitably leads to less failed builds.
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Commit Frequency

In this second experiment we test the defined commit frequency intervals (single, daily,
weekly, monthly, other) against the binary build outcome using the chi-squared test (see
Section 6.3.4). Table B.7 in Appendix B lists failed and passed builds per project and
commit frequency intervals. The table shows that some intervals occur rarely in some
projects. For example, the Crate.IO project has no authors that commit consistently on
a monthly basis. For the purpose of the chi-squared test, intervals with a low amount of
data are removed. Table B.8 in Appendix B lists the failure ratio per project and commit
frequency interval. Table 6.8 shows the results of the test.

Table 6.8: Results of the χ2 test on commit frequency

p φc

Apache Storm < 0.001 0.109
Crate.IO < 0.001 0.073
JabRef 0.002 0.073
Butterknife < 0.001 0.279
jcabi-github < 0.001 0.190
Hystrix 0.017 0.149
Openmicroscopy 0.090 0.042
Presto 0.003 0.064
RxAndroid 0.519 0.077
SpongeAPI < 0.001 0.173
Spring Boot < 0.001 0.063
Square OkHttp < 0.001 0.083
Square Retrofit < 0.001 0.143
WordPress Android 0.186 0.020

We observe that in 11 out of 14 cases the chi-squared test returned a p-value < 0.05.
However, the effect size is predominantly small. Overall the commit frequency appears
to have only a moderate influence on the build outcome. From Table B.8 in Appendix B,
we can also not conclusively determine whether, e.g., daily committers produce less build
failures.

6.5.6 Build Types

We categorize builds into: merge, integration, push, pull-request, or pull-request-merge.
Figure 6.5 shows the distribution of the different build types among projects.

As we have established earlier, GitHub allows two basic workflows for merging pull requests:
the default merge-commit approach, and merge squashing. With merge squashing, we
cannot detect, from our historic data, when a pull request is merged. Instead, these
builds will be counted in the push category. Some projects in our dataset (e.g., Apache
Storm, Crate.IO, or Presto) employ the merge-squashing workflow, as made evident by
the distribution of build types, i.e., the absence of pull-request-merge builds. The project
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Figure 6.5: Distribution of build types

Openmicroscopy has a very strict contribution policy: changes are integrated almost
exclusively through pull requests. This may be the case for other projects, e.g., Presto,
but because of the limitation in our build type detection approach, we cannot detect this
in our data. The disparity of workflows among projects makes it difficult to compare
them.

We now investigate whether different build types have a significant influence on the build
outcome. The separation of merge builds is essential because they have a fundamentally
different build characteristic and would falsify any conclusions. Consequently, this
investigation cannot be done properly on projects that employ merge squashing, because
pull-request-merge builds are mixed into the push category. For the purpose of the
chi-squared test, rare build events are removed. For example, the RxAndroid project has
only a single merge build. Per project, we filter those types where the overall amount of
builds of that type make up less than 1% of all builds.

We run two experiments using the chi-squared test. The first tests all build types against
the binary build outcome. The second test considers only push and pull request builds.
Table 6.9 shows the p-values and the effect size of the chi-squared test.

We observe that in all eight cases the build type has a significant influence on the build
result, with a moderate effect size.

Next, we examine the effect of individual build types. Table 6.10 list the failure ratio
of individual build types. For example, in the JabRef project, only 6% of pull request
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Table 6.9: Results of the χ2 test on build types

Overall Push vs. PR
p φc p φc

JabRef < 0.001 0.148 < 0.001 0.080
Butterknife < 0.001 0.214 0.020 0.079
jcabi-github < 0.001 0.177 0.022 0.081
RxAndroid < 0.001 0.148 0.003 0.129
Spring Boot < 0.001 0.075 0.004 0.035
Square OkHttp < 0.001 0.125 0.038 0.029
Square Retrofit < 0.001 0.183 0.066 0.037
WordPress Android < 0.001 0.139 < 0.001 0.104

merge builds failed, compared to 27% of pull request builds. This is consistent across all
projects. Results on whether or not pull request builds fail more often push builds, or
vice versa, across projects, remain inconclusive.

Table 6.10: Failure ratio of different build types

(1) (2) (3) (4) (5)

JabRef 0.17 0.28 0.27 0.20 0.06
Butterknife - - 0.36 0.44 0.14
jcabi-github 0.32 - 0.50 0.40 0.19
RxAndroid - - 0.14 0.24 0.10
Spring Boot 0.32 0.25 0.33 0.30 0.20
Square OkHttp - - 0.53 0.56 0.40
Square Retrofit - - 0.22 0.26 0.04
WordPress Android 0.14 0.17 0.12 0.19 0.04

(1) INTEGRATION, (2) MERGE, (3) PR, (4) PUSH, (5) PR_MERGE

6.5.7 Pull Request Scenarios

We now examine whether the pull request scenario defined by our taxonomy, or differences
in individual predicates that define the taxonomy, have a significant influence on the
build outcome. We chose again for our experiment a confidence level of 95% (p ≤ 0.05).
The dependent variable used in the test is the binary failed/passed build outcome.

Analyzing pull request types is highly reliant on data we have gathered through the
repository monitoring approach. Because we started monitoring repositories roughly 80
days before the study, we have very little pull request scenario data on projects that
run builds less frequently. Specifically, the projects Butterknife, Hystrix, jcabi-github,
RxAndroid, and Square Retrofit, have less than 50 records with pull request scenario
information. This low amount of data will make any statistical analyses on this categorical
variable imprecise, and we therefore omit the listed projects from the analyses. Overall,
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only 6.2% of pull request observations contain data about the pull request scenario (see
Table B.2). Furthermore, although scenarios H and N are plausible, they practically
never occur. The total occurrences in our dataset are 2 and 0 respectively (see Table B.2).
In fact, there are only two records in which predicate 2. (the PR has advanced) is not
satisfied (meaning that a rebuild of a pull request is almost never manually triggered). We
omit the scenarios H and N by completely removing them as values from the categorical
variable. Predicate 2. is also omitted in our experiments.

Table 6.11 gives an overview over the test results. Column two and three show the result
of testing all scenario types observed within the project. The last six columns show
the results of testing the respective predicate (True or False). Highlighted values are
p < 0.05.

Table 6.11: Results of the χ2 test on pull request scenarios and their predicates

Predicates
Scenarios 1. 3. 4.

p φc p φc p φc p φc

Apache Storm 0.456 0.19 0.859 0.01 1.000 0.00 1.000 0.00
Crate.IO 0.513 0.15 0.421 0.04 1.000 0.00 1.000 0.00
JabRef 0.003 0.19 0.211 0.05 0.014 0.10 0.340 0.04
Openmicroscopy 0.001 0.26 0.013 0.12 0.094 0.09 0.123 0.08
Presto 0.012 0.20 0.003 0.13 1.000 0.00 1.000 0.00
SpongeAPI 0.023 0.45 0.043 0.21 1.000 0.00 0.064 0.22
Spring Boot 0.344 0.37 0.728 0.04 0.761 0.06 0.956 0.01
Square OkHttp 0.403 0.29 0.419 0.08 0.296 0.15 0.588 0.08
WordPress Andr. 0.002 0.27 < 0.001 0.18 0.395 0.05 0.210 0.08

We observe that in five out of nine cases, the pull request scenario has a significant
influence on the build outcome, with a medium effect size in most cases. In four cases,
the first predicate also has a significant influence, with a lower effect size. We intuitively
assumed that pull requests that underwent a rebase (predicate 4) would lead to build
failures more often, due to the complexity of the rebase process. Our data does not
support this hypothesis, as made evident by the results of predicate 4.

6.5.8 Build History

Measurements of the build history, such as the outcome of the previous build, have been
found to be strong predictors for build results [HZ06]. As we will show, our data supports
this to a high degree.

Previous Build Result

Through the process of topology mapping, the build history inherits the graph structure
of the VCS history (see Section 6.1.1). Consequently, we are no longer able to define a
distinct predecessor of a build. In Figure 6.1, build b5 has two predecessors, namely b3
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and b4. In terms of the topology, we say that b3 is the left, and b4 is the right predecessor.
This distinction allows us to examine the effects of previous errors in the context of merge
commits. There are scenarios where a build has more than two predecessors. However,
in our dataset, these scenarios make up only 1.5% of observations. In these cases, we
search for the left-most and right-most predecessor. We map the results of the previous
builds to the categorical variables prev_left and prev_right. Both can take the values
failed, errored, or passed.

We initially run three experiments that test the influence of the previous build outcome on
the build outcome. The build outcome is measured as passed, errored, or failed. The first
experiment uses observations with one previous build (n = 1), the second and third uses
those with n >= 2 previous builds. Table 6.12 shows an example of three contingency
tables on which we executed the chi-square test.

Table 6.12: Contingency tables for the previous-build test from the Spring Boot project

n = 1 n ≥ 2
left right

outcome e f p e f p e f p

errored 520 36 252 56 3 53 61 4 47
failed 33 250 264 2 19 31 9 7 36
passed 226 258 3058 17 25 332 111 9 254

(p = passed, e = errored, f = failed)

We observed that, for 12 out of 14 projects in our dataset, the result of the chi-square test
was p < 0.0001 for every experiment, and average effect size φc of 0.43 for experiment one,
0.41 for experiment two, and 0.34 for experiment three. The exceptions were projects
RxAndroid and SpongeAPI, for which the chi-square test did not give conclusive results.
This is due to the low amount of data for these particular projects (see Table B.3 in
Appendix B). The results for the other projects indicate that the previous build result,
whether one or more previous builds, is a major influence on the build outcome.

By taking a closer look at the individual build outcomes for builds with n = 1 predecessors,
we can see that build outcomes mostly follow the outcome of their predecessor. For
example, a failed build will much more likely follow a failed build than an errored build.
Figure 6.6 shows this phenomenon on eight of the projects in our dataset (selected by
the amount of available data). Red, orange, and green colors indicate errored, failed, and
passed results respectively

Climate

The build climate, or build stability, is a small-windowed moving ratio over the previous
build failures. For each build, we calculate the failure ratio of the last k builds. For our
experiments, we use k = 10. The Mann–Whitney test is used to test the climate against
the binary build outcome failed or passed.
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Figure 6.6: Previous build results and the percentage of build outcomes

The Mann–Whitney test revealed a p-value < 0.0001 for every project in our dataset,
showing that the build climate of failed and passed builds are non-identical populations.
Table 6.13 lists the mean climate values for the entire project, passed, and failed builds.
We observe that, in every project, there are periods of high stability or instability. Builds
pass more frequently if the previous builds also passed.

It is apparent that build failures often occur consecutively. A high build climate indicates
that there is a period of build instability which has to be addressed. Conversely, a low
build climate also means significantly more future passed builds. We conclude that the
build climate is a major contributor to build failures.
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Table 6.13: Mean build climate (k = 10) values of projects

Overall failed passed

Apache Storm 0.660 0.904 0.169
Crate.IO 0.704 0.924 0.147
JabRef 0.199 0.716 0.048
Butterknife 0.358 0.965 0.027
jcabi-github 0.415 0.755 0.123
Hystrix 0.491 0.829 0.152
Openmicroscopy 0.161 0.867 0.026
Presto 0.501 0.918 0.069
RxAndroid 0.173 0.880 0.036
SpongeAPI 0.249 0.912 0.021
Spring Boot 0.312 0.715 0.136
Square OkHttp 0.477 0.880 0.107
Square Retrofit 0.207 0.960 0.013
WordPress Android 0.116 0.589 0.031

85



6. Factors Influencing Build Results

Days Since Since Last Failure

This experiment is conducted using the chi-squared test. To that end, we create four
different time intervals to group the data. The variable t denotes the days since the last
failure.

1. t = 0: Less than a day ago

2. t = 1: A day ago

3. 1 < t ≤ 7: A week ago

4. t > 7: More than a week ago

Table B.9 in Appendix B lists, per project, the amount of failed and passed builds for
each interval. Table 6.14 lists the result of the chi-squared test.

Table 6.14: Results of the χ2 test on days since last failure

p φc

Apache Storm 0.374 0.046
Crate.IO < 0.001 0.152
JabRef < 0.001 0.239
jcabi-github 0.149 0.101
Hystrix < 0.001 0.242
Openmicroscopy < 0.001 0.259
Presto < 0.001 0.223
SpongeAPI < 0.001 0.244
Spring Boot < 0.001 0.254
Square Retrofit < 0.001 0.470
WordPress Android < 0.001 0.427

Because of low amounts of data, the results of the chi-squared test were inconclusive for
the projects Butterknife, RxAndroid, and Square Retrofit. We observe that in 9 out of
11 cases the p-value is < 0.001 with a medium to large effect size. As the results make
apparent, in almost all projects there are phases of instability. During theses phases, the
amount of failed builds increase. We conclude that the time since the last failure is a
major contributor to build failures.

6.6 Discussion
The purpose of this chapter was to identify factors that influence build failures, and
provide evidence about the strength of such relationships. We have examined seven
different aspects and a total of 17 different variables of build and VCS data. Some of
these variables, such as change complexity, or the date and time changes were committed,
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have been linked to both software defects and build failures in the past [HZ06, ETL11].
Additionally, we have elicited several new measures, such as the pull request scenario, to
examine the relationship between aspects of the development process and build failures.

In general, our results strongly favor process over change metrics. The analyses how
that process metrics, i.e., measurements of the development processes, have a stronger
correlation with the build outcome than change metrics. Among all variables, the
strongest predictor for build failures is the outcome of the previous build. This shows
that build errors often occur consecutively.

We have also observed some paradoxical phenomena. For example, it has been shown
that the different experience levels of developers have a significant influence on software
quality [ETL11]. It is intuitive to assume that a high degree of experience leads to
a higher code quality and therefore less problems. We could not provide conclusive
evidence that developers that commit daily or have a high experience level, produce
less build failures. A possible interpretation is that daily committers are more careless
when pushing changes. It is also possible that the limitations of our approach inhibit the
detailed analysis of such hypotheses. We now discuss these limitations.

6.6.1 Limitations

Data Quality

During early experiments in the study, we uncovered the problem of missing historic
data (see Section 6.1.2). Table B.1 in Appendix B shows that on average only 28%
of build data can be linked to change data. We addressed the problem by creating a
monitoring system that fetches the changes from the VCS repository as they are made.
This approach does however not allow us to recover lost historic data. Up until the point
we started the monitoring process, our dataset may have gaps of missing data. How this
exactly affects the analyses is however unclear. A different aspect of data quality is noise.

Noise

Data obtained through techniques of mining software repositories (MSR) have been found
to be inherently noisy [KZWG11]. There are different types of noise in our data that
have an influence on the test results. For example, badly written test cases, or tests that
cover unstable parts of the system can fail randomly. Change data is associated with
these failures regardless. This is particularly problematic, when changes that can not
affect the build process are associated with build failures (we given a example below).
This introduces noise that distorts our analysis. As we have discussed in Section 6.5.3,
some paradoxical results can be explained by looking at these data.

Changes that can not affect the build process should not be associated with build failures.
For example, some projects maintain a changelog file, i.e., a text file that lists major
changes introduced by a change set. After a successful integration, an additional commit
is made to update the changelog. Such a commit should clearly not cause a build failure.
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Yet, in the Hystrix project, 34% of builds in which only changelog entries were added,
introduced original failures. Conversely, changes made exclusively to test classes only
introduced original errors in 25% of cases.

Such spurious data has problematic effects. The performance of machine learning models
will ultimately suffer due to skewed statistics. Also, it becomes hard or impossible to
draw sound conclusions about causal relationships between calculated metrics and build
failures.

Interpretation of Process Metrics

Process metrics can be deceptive, and their meaning heavily dependent on the project’s
workflow. We give an example of how a project’s workflow can impact the meaning of a
process measure such as the build type.

We have defined integration builds to be those triggered by a merge commit and where the
build change set Cb contains additional commits (see Section 6.4.1). Unlike integration
builds, merge builds do not have the risk of additional changes that may not have been
tested locally. It is tempting to immediately reason that integration builds fail more
often than merge builds. However, such reasoning can be erroneous. For example, in
the Apache Storm projects, when a pull request is merged, the changelog is typically
updated to reflect the change. Because this is done manually by an integrator, by our
approach the build is then considered an integration build.

We conclude that causal reasoning based on interpretations of process metrics should be
done with care.
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CHAPTER 7
Predicting Build Failures

In the last two chapters we have examined what errors cause continuous integration (CI)
builds fail, and what factors can be associated with the build outcome. In this chapter,
we present how we use the previously developed methods and gained insights, to predict
the outcome of a CI build. Section 7.1 gives an overview of the general approach. Section
7.2 presents details of the experiment design and employed machine learning methods.
To determine the effectiveness of our approach, we employ common statistical model
validation techniques. The results of this performance evaluation are presented in Section
7.3. Finally, we discuss the results and limitations of our approach in Section 7.4.

7.1 Approach

In order to examine the feasibility of build failure prediction, we conducted an empirical
study on the data we have used in previous chapters. The factors we have examined in
Chapter 6 are extracted as feature vectors to train different machine learning models.
We also devised an approach to update the prediction during the build execution.

7.1.1 Training Features

In the previous chapter we examined a total of 17 different variables of build and version
control system (VCS) data. These variables cover two main aspects of build and change
data: change and process characteristics. Our analyses suggest that process metrics
are stronger predictors for build failures than change metrics. We will substantiate this
observation by creating three subsets of features for generating training data. The first
set will contain all 17 variables, the second and third will contain variables of change and
process metrics, respectively. These features are then extracted from our data to create
training input for the selected algorithms.
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7.1.2 Machine Learning Algorithms

Different types of machine learning algorithms have been used throughout research for
build failure prediction, to a varying degree of success (see Section 3.4.3). There is no
conclusive evidence whether a specific algorithm works best for this type of problem.
Our approach to update the prediction during the build execution requires non-linear
multi-class classification algorithms. We elicited from previous research three well-known
training algorithms that satisfy these properties.

• C4.5 decision trees: The C4.5 algorithm creates a decision tree where each node
checks a specific attribute for a threshold value [FHT01]. The values are selected
by the algorithm such that the classified training data are effectively divided by
their class.

• Random Forest: Random forests are an ensemble learning method that combine
multiple decision trees into a single classifier. Given a large enough depth, they
can capture complex structures in the data [FHT01].

• Naive Bayes: Naive Bayes classifiers are based on the well-known Bayesian
theorem. They are often used on data with high dimensionality and have been
found to often outperform sophisticated algorithms on such data [FHT01].

We attempted to replicate the decision-tree-construction configuration used by Hassan
[HZ06]. The only information we could extract was that they used the C4.5 algorithm
with pruning. We set these properties and leave the others at their default values provided
by Weka. The same is done for configuring the Random Forest algorithm, previously
used by Kerzazi [KKA14]; and the bayesian classifier, used by Wolf et al. [WSDN09]. All
algorithms are tested against a 0-R classifier, which predicts the mode of a nominal class.

Our first goal is to examine how well our approach can predict the binary build outcome.
We will then test how well the approach can predict the multiplicity of build errors.
By predicting individual errors, we can then use our understanding of the temporal
dimension of build errors to update the prediction during the build execution.

7.1.3 Runtime-Aware Prediction

A probabilistic classifier, such as Bagging using Random Forest, is capable of predicting
the class membership probability of an instance for each class [FHT01]. Rather than
computing a unary result (i.e., the predicted class) for an instance, the classifier calculates
a probability vector p = [p1 p2 . . . pn]. The number n of components of the vector
equals the number of classes. The vector component pi is the probability of the instance
being a member of the i-th class, where 0 ≤ pi ≤ 1. The sum of the vector components
is one:

∑n
i=1 pi = 1. The class with the highest probability value is considered to be the

predicted class.
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As the build execution progresses, the probability for a specific error to occur declines.
For example, if we know that compilation errors occur in the first 20 seconds of the build,
and the build has been running for more than 20 seconds, it is unlikely for the build fail
due to a compilation error. This temporal aspect of build errors is not considered by the
classifier. The predicted class membership probability becomes implausible as the build
execution progresses.

We leverage our understanding of the temporal dimension of build errors to update
a prediction during the build execution. We use the estimated probability density of
the execution duration of individual error categories fXe (see Section 5.2.3). Given a
runtime point t and an error type e, the remaining probability for the error e to occur,
is calculated by the tail distribution: P (Xe > t) = F̄Xe(t) = 1 −

∫ t
0 fXe(t). The set of

predicted classes include the error types and the class passed. At a point in time t, we
calculate for each class ci the value of the tail distribution F̄Xci

(t). The result is the
vector

rt = [F̄Xc1
(t) . . . F̄Xcn

(t)] (7.1)

To that end, we first need to estimate FXe from our sample data.

Estimating the Cumulative Probability of an Error Type

To construct the cumulative distribution function (CDF) FXc for the result class c, we
first stratify the data by their result class c. Each stratum contains the runtime values of
the respective result class, and represents the random variable Xc. For each result class,
we estimate FXc from the stratified sample.

We first construct the empirical distribution function F̂Xc , which simply counts the
occurrence ratio of samples

F̂Xc(t) = #samples < t

n
(7.2)

where #samples < t is the number of observations in Xc that are less than t, and n is
the total number of samples of Xc. We then construct the piecewise linear function over
F̂Xc . This creates a nonparametric approximation of the CDF, by linearly interpolating
between known values of F̂Xc (known from our sample data). Using the estimated CDF,
we can now proceed to update our prediction during the build execution.

Calculating the Runtime-Aware Prediction

To update the prediction p during the build execution, we proceed as follows. We
discretize the runtime into time steps equal to one second. At each second, we update
the prediction by computing rt, and calculating the component-wise product of p and rt

p ◦ rt = [p1rt1 . . . pnrtn ] (7.3)
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This continuously reduces membership probabilities of errors that are unlikely to occur
from point t. The resulting vector is no longer a probability vector because the sum of
its components may be < 1. To compute a probability vector for the updated prediction
at point t, we calculate the closure C [PGETD15] over p ◦ rt. That is, we divide each
component by the vector component sum s(x) =

∑n
i=1 xi. This rescales the vector such

that the sum of its components is 1.

pt = C[p ◦ rt] =
[

p1rt1

s(p ◦ rt)
. . .

pnrtn

s(p ◦ rt)

]
(7.4)

The updated prediction pt allows us to determine a point in time during the build
execution, at which the probability of a build failure is low enough for us to assume
that no error will occur. During a build, a developer could decide that a 25% remaining
probability for a build failure is low enough to assume that the build will pass. Developers
can continue their development as if the build had passed. Given a high enough confidence,
the build could even be terminated to save computational resources.

7.2 Experiment Design

We evaluate our approach by conducting several experiments. WEKA1 is a popular
machine learning toolkit that provides a variety of training algorithms for classification
task and parameterization of these algorithms. WEKA provides implementations of all
algorithms we have selected for our evaluation, and allows the design of experiments
using common machine learning model validation techniques.

7.2.1 Testing Features and Algorithms

To test and compare the effectiveness of the features we have developed, we generate
multiple datasets for each project. In total, we will have three datasets per project. One
for each set of feature groups, i.e, change and process characteristics; and a dataset
containing all features.

For each project we run experiments using different datasets and algorithms. Specifically,
we test each algorithm we have selected against all datasets. We evaluate each experiment
using 10-fold cross validation method and calculate various statistical performance
measures, such as the κ-statistic or F1-score. The result is a matrix that allows us
compare the overall performance of features and algorithms. A common approach to test
whether the performance scores of two classifiers over multiple datasets are significantly
different is to perform a pairwise t-test [Dem06]. This is also the method provided by
the WEKA experimenter tool. The t-test allows us to conclude, given the performance
scores, whether or not one algorithm outperforms another.

1http://www.cs.waikato.ac.nz/~ml/weka/
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Using these results, we select the best performing combination of features and algorithms,
and examine their classification performance in more detail. Specifically, we will analyze
and interpret the confusion matrix of selected experiment results. We are particularly
interested in how well failures are detected.

The next step is to test and evaluate our approach to update the prediction during the
build execution.

7.2.2 Testing Runtime-Aware Prediction

For this experiment, the K-fold cross-validation approach is impractical. One of the
concepts of this evaluation techniques is the randomization of the data within the folds.
As we have seen during the examination in Section 5.2.2, the average build execution
duration changes during the course of the project. We have also demonstrated that the
runtime CDF only produces meaningful results if a specific window over the project
lifetime is selected. When sample folds are randomized, the runtime distribution is
subsequently distorted, and will not produce meaningful results. We therefore require a
sampling and evaluation approach that takes this circumstance into account.

Sampling

As we have discussed, the K-fold cross-validation is impractical, given the nature of our
data. Instead, we use the holdout method, where the data are split into two disjoint
sets. At a defined point r, the sample data is split. From our observations we know that
projects often have a stabilization phase when CI is introduced (see Section 5.1.2). In this
phase, build errors may occur in an increased amount while the CI configuration is being
tuned. To take this into account, we select from our observation dataset with size N , a
sample of the last n = N · q data. Training and testing data are taken from this sample,
and the size of the training dataset is given by n · r. Figure 7.1 illustrates this approach.

n = Nq

Training Test

nr

Figure 7.1: Sampling approach for holdout evaluation

We perform stratified sampling as we did during the frequency of occurrence analysis in
Section 5.2.3
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Evaluation Method

To the best of our knowledge, there are no common validation techniques for the method
we propose. Our approach should be able to eliminate false positives, i.e., builds that were
actually successful, but were predicted to fail. We examine in detail how the prediction of
individual observations changes during the build execution duration, and calculate how
the overall prediction performance changes. Also, we calculate how much runtime can
be saved by terminating builds that are predicted to be successful with high confidence.
The approach is evaluated by examining an exemplary project. We chose Presto because
it has high amounts of data, and the test data exhibit a stable runtime distribution.

7.3 Results
We now present the results of our performance evaluation. First, we examined the
performance of the binary build outcome classification. We then used similar experiments
to test the performance of our multi-class classification approach. Finally, we tested
various aspects of the runtime-aware prediction approach.

7.3.1 Binary Result Classification

In this set of experiments we attempt to predict the binary result outcome of a build.
Because most previous research also uses the binary build result, this allows us to
tentatively compare our approach to others. With these initial results, we can also
identify the best performing features and algorithms, to focus our efforts in the later
stages.

Our results on binary build outcome prediction show that our approach is generally
feasible for predicting the outcome of a build. Table C.1 in Appendix C gives an overview
of the results of the pairwise t-test against a 0-R classifier. The compared values are
the F1-scores, calculated from the confusion matrix of the individual prediction results.
Except for rare cases, all algorithms perform significantly better than the baseline given
by the 0-R classifier. Naive Bayes performed moderately. In over 32 cases, decision trees
and random forests performed better than Naive Bayes. The C4.5 decision tree algorithm
performed the best overall. However, the performance is only marginally better than that
of the random forest algorithm. In three cases, C4.5 performed better than random forest,
and in two cases, C4.5 performed worse than random forests. The average F1-score of
both algorithms only differs by 0.01. In terms of feature sets, we see that process metrics
consistently outperform change metrics. This substantiates the observations we have
made in Chapter 6. Generally, the combination of all features performs about the same
as using just process metrics.

We now inspect the results for projects with different levels of classification performance.
Specifically, we select three projects to cover a range of medium performing, badly
performing, and well performing classifiers. Table 7.1 shows the summary of results from
the binary classification for the Spring Boot, Hystrix, and RxAndroid projects. Listed are
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the values for precision, recall, the result F1-score, and the overall amount of observations
in the respective class. We observe that in all three cases, the class with less observations

Table 7.1: Summary of binary result classification for different projects

Spring Boot
Precision Recall F1-Score n

Passed 0.855 0.927 0.890 4 254
Failed 0.757 0.592 0.665 1 636

Weighted Avg. 0.828 0.834 0.827

Hystrix
Precision Recall F1-Score n

Passed 0.690 0.683 0.687 287
Failed 0.707 0.714 0.711 308

Weighted Avg. 0.699 0.699 0.699

RxAndroid
Precision Recall F1-Score n

Passed 0.945 0.958 0.951 214
Failed 0.559 0.487 0.512 23

Weighted Avg. 0.906 0.911 0.909

has lower precision and recall values. The weighted average F1-score of the RxAndroid
project is high, because the model has difficulty detecting failed instances, of which
very few observations exist. Only 49% of failed builds are detected. With the relatively
balanced dataset of the Hystrix project, we observe a better performance in detecting
build failures. Although 71% of build failures are detected, the weighted F1 score is lower
because the prediction performance is balanced. These observations indicated that a
large factor in the classifier performance is the balance in data of different classes. It
is clear that, if there are only few build failures to observe, it is more difficult to fit a
model to adequately explain the class of build failures.

7.3.2 Multi-Class Result Classification

Previous research on build failure prediction has focused on the binary outcome of a
build: failed or passed. We have uncovered a variety of error types that cause a build
to fail (see Section 5.1.2). We have also seen that different errors cause builds to fail at
different times during the build execution. Predicting the exact error a build may fail
with, allows developers to react faster to possible problems induced by their changes.
Using the same three algorithms we used in our previous example, we now present the
results of the multi-class classification approach.

The κ-statistic represents a score that can be used to interpret the performance of a
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multi-class classifier. However, for the 0-R classifier, the κ-statistic will, as such, always
be zero (see Table C.2 in Appendix C). Comparing our prediction approach against the
0-R classifier therefore requires a different metric. For this comparison we chose the
root-mean-squared error (RMSE), which is calculated over the probability distribution of
each prediction rather than just the confusion matrix results.

Table C.3 in Appendix C shows the results of the pairwise t-test of RMSE values against
the 0-R classifier. We observe that in 30 out of 36 cases, random forest outperformed the
0-R classifier. Only a single experiment (change metrics for the Crate.IO project) shows
a significantly worse result. The difference in the average error is -0.03, i.e., in favor of
random forest. The results for C4.5 decision trees is similar. Naive Bayes exhibits a
significantly worse result in 21 cases, with an average error difference of 0.04 in favor of
the 0-R classifier. Overall, random forests performed best in this experiment. However,
compared to C4.5, the average error difference is marginal at 0.004. In 12 cases random
forest show a significant improvement over C4.5, and a significantly worse result in 6
cases.

Table C.2 in Appendix C lists the κ-statistic values of each experiment. We observe that,
again, process metrics consistently outperform process metrics in terms of prediction
performance. Except for the Apache Storm project, combining all features does not
increase the overall prediction performance compared to process metrics.

We next examine the prediction performance for the Spring Boot project. Table 7.2
shows a summary of the prediction performance for individual classes from the Spring
Boot project. We observe a similar trend as in the results for the binary build outcome
prediction. Classes with less observations are significantly harder to predict. An exception
is the dependency class, of which 85% of observation were correctly classified. We examined
this phenomenon in detail, and found that there is a specific phase during the project,
during which this error occurred in a high frequency. Similar observations were made for
the crash class. The previous-build-result metric is capable of detecting such consecutive
occurrences of errors with a high precision.

7.3.3 Runtime-Aware Prediction

We examine how the prediction error rate is affected by updating the prediction during
the build execution. To that end, we reduce the multi-class classification result into a
binary variable: failed or passed. All builds classified with an error type are counted
towards the failed category. The class of passed builds remains unchanged. Prediction
classes are defined as follows. A true negative is a failed build that was detected as such.
A false negative is an undetected build failure, i.e, failed builds that were labeled as
successful. Conversely, a false positive is a successful build that was predicted to fail. We
first calculate the number of prediction for each class, given by the classifier. For example,
the prediction is a true positive if the actual class is not passed, and the predicted class is
not passed. Using our runtime aware approach, we check whether the prediction changed
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Table 7.2: Summary of multi-class prediction performance for the Spring Boot project

Class Precision Recall F1-score n

passed 0.841 0.953 0.894 4254
dependency 0.927 0.858 0.891 310
buildconfig 0.796 0.667 0.726 123
itestfailure 0.862 0.802 0.831 101
testfailure 0.572 0.268 0.365 593
crash 0.607 0.443 0.513 345
other 0.000 0.000 0.000 2
git 0.000 0.000 0.000 3
compile 0.400 0.073 0.123 55
checkstyle 0.344 0.116 0.173 95

Weighted Avg. 0.791 0.818 0.794

to passed at some point during the execution runtime. If the actual class is an error, and
the prediction was never updated to passed, then the observation remains a true positive.

Using the process metric dataset of the Presto project, we train a random forest classifier
with roughly 3 085 records. The test set comprises 736 observations. The classifier
detected 114 true positives, 399 true negatives, 137 false negatives, and 86 false positives.
Our runtime aware approach eliminated 79 false positives. The false positives that were
detected were mostly classified with errors that typically occur early during the runtime.
There were 37 checkstyle errors, 2 compile errors, 1 dependency error, 1 git error, 3
integration test failures, and 35 test failures. We recorded for each observation the point
in time t at which the prediction was updated to passed. The ratio between the mean
runtime of the builds, and the mean of t, gives us an idea of how much runtime resources
can be saved by canceling the build once the predicted outcome is passed. The mean
runtime of the 79 eliminated false positives was 2 221.9. The mean runtime at which the
prediction was updated to passed was 953.1, giving us a ratio of 0.43.

Figure 7.2 shows how a concrete false positive was eliminated. The build was predicted
to fail with a compile error. Lines indicate the probability of a specific result class during
the build runtime. The point tmax indicates the point in time where the prediction was
updated to passed. The points tp indicate the points in time where the probability for
passed reached p.

A total of 43 false negatives were introduced. These are builds correctly identified as
build failures by the classifier, but subsequently classified as passed by our updating
approach. 83% of these misclassified builds were test failures. From our study of build
errors we know that test failures occur predominantly in the later stages of the build (see
Section 5.2). Also, at the point were test failures occur, most other error types are highly
improbable. This explains why the additionally introduced false negatives are mostly
test failures. To address this, we also recorded the points in time where the updated
probability for passed reached 50%, 75%, 95%, and 99% (reflecting the commonly used
quartiles in statistical distributions).
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tmax t50 t75

Figure 7.2: Probability of errors during the build execution

As we have seen, the probability for an error declines as the build progresses. It is
therefore not surprising that the amount of introduced false positives is reduced if a
higher confidence is considered. Table 7.3 lists the amount of introduced false positives
that remain after considering the respective probability levels. It also lists the ratio
between the mean runtime t̄ the respective probability level was reached, and the mean
runtime r̄ of the builds.

Table 7.3: Number of introduced false positives compared to confidence levels

Probability False positives t̄/r̄

50% 39 0.46
75% 21 0.71
95% 11 0.92
99% 1 0.93

We observe that the number of false positives is reduced, if one considers a higher
probability for a passed build. It is clear from the mean runtime ratio that it also takes
longer for the probability to be reached. In a practical example a developer could, during
the build execution, decide that a 75% probability for a passed build is sufficient to
consider the build successful. In this case, the developer could terminate the build to
save the remaining 29% of runtime.
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7.4 Discussion
In this chapter, we presented our approach for CI build failure prediction. The results
from our two-part study on build failures were used to devise methods for a) predicting
the binary result outcome of a build, b) predicting the concrete error a build may fail
with, and c) updating a prediction during the execution of a build. We performed
evaluation experiments using three different algorithms and three different feature sets.
The purpose was to determine whether CI build failure prediction is feasible, and how
well classification models perform. Additionally, we examined how the temporal aspect
of build errors can be used to reason about predictions during the build execution.

Our results indicate that predicting CI build failures from change and process metrics
is feasible. We have shown that our approach is significantly better than using a 0-R
classifier that predicts the mode (or average) of a class. Decision trees and random forest
training algorithms performed similarly well. In terms of feature sets, process metrics
consistently outperformed change metrics. Using a combination of all features did not
increase the prediction performance compared to process metrics.

By analyzing the runtime CDF of individual error categories, it becomes possible to
reason about a prediction during the build execution. We devised an approach to update
the initial probability distribution given by the classifier. We estimated the CDF for
individual error categories from our sample data. At every second during the build
execution, we update the probability distribution of the prediction using values of the
CDF. The updated prediction also includes the likelihood of error occurrences at a specific
point in time. With this approach, we were able to reduce the amount of false positives,
i.e., successful builds initially predicted to fail. As a trade-off, false negatives, i.e. failed
builds that were eventually predicted to be successful, were introduced.

7.4.1 Limitations

Although overall results of the binary classification indicate a high prediction accuracy
(average F1-scores of 0.80), it is clear that an imbalanced data set may distort these
performance measurements. Another consequence of imbalanced data is the low classifi-
cation performance of the class with less observations. Learning on imbalanced data is a
challenging task that requires advanced machine learning methods [HG09] to be properly
addressed.

The average runtime distribution of builds changes significantly during the evolution
of the project (see Section 5.2.2). Consequently, an estimation of the CDF of errors
categories from previous observations will become increasingly inaccurate as the project
evolves. Accurately estimating robust CDFs, requires advanced techniques of time-series
analysis and transformation. For the purpose of our study, we estimated the CDFs from
the data set the classifier was tested with.
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CHAPTER 8
Conclusion

Build automation is a key aspect of continuous integration (CI), and build failures have a
direct negative impact on the development process. Yet, there has been little research on
the different aspects and causes of build failures. In this thesis we presented qualitative
and quantitative evidence on CI build failures based on publicly available data gathered
from 14 different open source software (OSS) project. We have demonstrated that the
prediction of CI build failures is feasible. We have also shown that incorporating the
runtime behavior of errors allows a prediction to be updated during the execution of a
build. Although there are some limitations to our approach, we believe that practitioners
can benefit from using our CI build failure prediction method. By using a prediction
system, practitioners can react faster to possible problems and save time and resources
by making decisions before a build has completed.

8.1 Discussion of Research Questions
In Chapter 1, we introduced four concrete research questions that are concerned with
addressing the existing research gaps in the context of CI build failures. We now present
concrete answers to these research questions based on the evidence we have gathered
throughout this work.

RQ1: Why do CI builds fail? In Chapter 5, we presented our systematic study of
build errors that cause builds to fail. A total of 54 248 logfiles of executed CI builds
were analyzed to elicit 14 different error kinds. We observed that, on average across all
projects, the three most frequent causes of builds failures are 1) failing unit tests (40%),
2) code quality measures being below a certain threshold (11%), and 3) compilation
errors (10%). We also found that many builds fail because of faulty interaction between
the version control system (VCS) and the CI system. For example, when pull requests
are merged before the build worker can check out the change, the build will fail in the
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8. Conclusion

first 5-20 seconds. Another common error is a crash or the exceeding of some time limit
of the build worker.

RQ2: What factors can be associated with CI build failures? In Chapter 6,
we examined different aspects of build and VCS data. Using statistical methods, we
studied the strength of the relationship between these aspects and the build outcome.
A statistical significance in almost all variables was found, to a varying degree of effect.
In general, our results strongly suggest that process metrics outperform change metrics
in terms of build failure prediction. We found that measurements of the development
process (e.g., build type or pull request scenario) have a higher correlation with the build
outcome than measurements of change data (e.g., size and complexity of the introduced
changes). Our results show that errors often occur consecutively, and that, in the majority
of cases, the strongest predictor for future build failures is the outcome of the previous
builds.

RQ3: How well can statistical models predict the outcome of a CI build? In
Chapter 7, we presented our approach to build statistical models for the purpose of
predicting build failures. We evaluated our approach using three different multi-class
non-linear classification models, and comparing them using common statistical model
validation techniques. First, the performance of the binary build result outcome was
tested. We found that overall, C4.5 (decision trees) was the best performing algorithm.
We also found that process metrics consistently outperformed change metrics. Using
C4.5 and training data with process metrics, the generated classifiers showed an average
F1-scores ranging from 0.71 up to 0.98 in extreme cases, with an overall average of 0.84.
The performance evaluation of multi-class classification showed that we could determine
the concrete error that might occur, reasonably well. Using C4.5 and process metrics, we
recorded an average root-mean-squared error (RMSE) of 0.17, compared to 0.21 produced
by the 0-R classifier.

RQ4: Can the temporal aspect of build errors be used for prediction? In
Chapter 5 we examined not only the multiplicity of build errors, but also the frequency
of occurrence of errors during the build execution. We found that we could determine
accumulation points of certain errors, and reason about the probability of errors occurring
at a given point in time during the build execution. This allowed us to update error
probabilities determined by a classifier, and address the issue of declining plausibility
of predictions as the build progresses (see Chapter 7). By updating the prediction at
each second during the runtime, we found that we could eliminate false positives, i.e.,
builds that were predicted to fail but were, in fact, successful. However, a trade-off of
introducing additional false negatives was also observed.
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8.2. Future Work

8.2 Future Work

Although research in the area of build failure detection has begun over a decade ago
[HZ06], we believe that there are many more problems to be solved in order to create a
robust and accurate build failure prediction system for modern CI environments. This
section lists some of the issues this thesis leaves open for future work.

8.2.1 Further Investigation of Factors Influencing Build Results

There are a multitude of factors that influence build results. Even among the factors we
have explored, there are additional aspects of causality to be considered. For example,
a build can be interpreted in different ways depending on the context it is executed in.
Push builds and pull request builds are fundamentally different in their purpose and
in the way they are executed (see Section 6.4.1). It is reasonable to assume that the
factors influencing the outcome of such builds are also different. Another example are
the intents of a change in reaction to a build. Changes made to fix a defect are different
from those that cause defects [ŚZZ05]. It is reasonable to assume that this also holds
true for build failures. Furthermore, incorporating personalized prediction models, as
suggested by Jiang et al. [JTK13], could help capture the uneven distribution of coding
habits and experience levels among developers. To fully understand the causal relation
between development practices and build failures, these aspects need to be investigated
in more detail.

Investigating Developer Behavior

It is reasonable to assume that build results on CI servers are strongly dependent on
habitual behavior of individual developers. This has been investigated in the past, and
researchers have found that few developers test their software locally, or are aware of CI
build failures [KKA14, BGPZ15]. However, some developers may run a full build locally
before pushing their changes, more often than others. If a build fails locally, and the
developer applies a fix before pushing, information about the failure and subsequent fix
is lost. Because the previous build result is a very strong predictor for future failures (see
Section 6.5.8), it is clear that a prediction model could greatly benefit from this local
build information. Further investigating the influence of developer behavior on CI build
failures is therefore a promising research effort.

8.2.2 Improving Data Quality

Transient Failure Detection and Noise

Transient build failures occur in many projects during phases where the build environment
is unstable, badly configured or when badly written tests exist with non-deterministic
behavior (see Section 6.5.8). Variables related to such failures, when included in the
training set, can skew statistics and have a negative impact on the prediction accuracy.
For example, it is unlikely that changing a line in a README file leads to test failures.
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8. Conclusion

However such observations exist, and should be considered as noise (see Section 6.5.3).
Detecting and cleaning the data set of such noise could increase the performance of a
prediction model. How to deal with such noise in the context of software defect prediction
has already been investigated [KZWG11], however, to the best of our knowledge, no such
efforts have been made in the context of build failure prediction.

Inclusion of Project Meta-Data

We omitted information from project management tools, such as issue trackers, in our
approach, because the additional dimension would have increased the overall system
complexity beyond the scope of this work. However, many effective approaches in software
defect prediction leverage data from issue and bug trackers [RKBD14]. Linking bug and
issue data with build and VCS data opens many possibilities for additional metrics to be
included in the feature engineering process.

8.2.3 Improving Learning Methods

Imbalance of Data

Our datasets are highly imbalanced in terms of the dependent variable, i.e., the build
outcome. Imbalanced data can significantly compromise the performance of standard
machine learning algorithms [HG09]. We have not studied to which extent the imbalance
in data affects the performance of our models, but it is clear that there is an opportunity
to improve overall performance by considering the imbalance of data.

Bootstrapping

The presented approach requires the presence of a large amount of historical data to train
a model for each project from ground up. Predicting builds may also be interesting for
projects that are just starting off, which do not have such data. There has been research
in the area of cross-project defect prediction [ZLXS15], which could be a useful starting
point to devise a bootstrapping mechanism. This way, a classifier for a new project could
be created based on existing data from projects we know to be similar.
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APPENDIX A
Statistical Data on Build Errors

Table A.1: Summary of builds by project and build state category

errored failed passed Sum

Apache Storm 514 2249 1469 4232
Butterknife 238 132 673 1043
Crate.IO 4584 7612 5232 17428
Hystrix 67 484 567 1118
JabRef 201 1235 4824 6260
jcabi-github 118 384 628 1130
Openmicroscopy 1600 936 12143 14679
Presto 4208 3281 7192 14681
RxAndroid 23 81 560 664
SpongeAPI 235 1795 6140 8170
Spring Boot 1337 1014 5656 8007
Square OkHttp 1909 1536 3393 6838
Square Retrofit 405 189 2288 2882
WordPress Android 151 1721 10620 12492

Sum 15590 22649 61385 99624
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Table A.2: Summary of builds by project and build error category

te
st
fa
ilu
re

ite
st
fa
ilu
re

gi
t

cr
as
h

qu
al
ity

co
m
pi
le
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Apache Storm 2008 0 16 59 0 139 176
Butterknife 55 0 25 9 85 21 8
Crate.IO 1697 5333 3293 1077 563 467 154
Hystrix 453 0 35 4 0 17 8
JabRef 685 78 49 12 213 206 4
jcabi-github 263 0 3 9 115 41 17
Presto 3036 298 1619 1008 658 281 324
RxAndroid 19 0 11 0 5 20 0
SpongeAPI 379 0 171 7 31 694 149
Spring Boot 918 118 31 447 210 95 335
Square OkHttp 2430 0 302 2 413 159 96
Square Retrofit 105 0 86 26 211 103 6

Sum 12048 5827 5641 2660 2504 2243 1277

bu
ild
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lic
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r
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ds
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in
co
m
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ty

bu
ild
ou
t

Su
m

Apache Storm 106 114 156 0 0 0 0 2774
Butterknife 5 0 0 5 163 0 0 376
Crate.IO 16 0 249 144 0 0 91 13084
Hystrix 10 0 0 0 0 0 0 527
JabRef 53 0 33 0 0 0 0 1333
jcabi-github 0 0 20 0 0 87 0 555
Presto 217 75 50 61 0 0 0 7627
RxAndroid 46 0 0 0 0 0 0 101
SpongeAPI 75 499 4 123 0 0 0 2132
Spring Boot 165 0 18 0 0 0 0 2337
Square OkHttp 11 0 3 0 0 30 0 3446
Square Retrofit 2 0 57 0 0 0 0 596

Sum 706 688 590 333 163 117 91 34888
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APPENDIX B
Statistical Data on Factors
Influencing Build Results

Table B.1: Result of filtering observations that have linked change data

Project Total Filtered Ratio

Apache Storm 4233 1620 0.28
Crate.IO 17787 4748 0.21
JabRef 6261 3296 0.34
Butterknife 1043 501 0.32
jcabi-github 1130 379 0.25
Hystrix 1118 595 0.35
Openmicroscopy 14726 3874 0.21
Presto 14882 4198 0.22
RxAndroid 665 237 0.26
SpongeAPI 8177 1896 0.19
Spring Boot 8013 5890 0.42
Square OkHttp 6843 3049 0.31
Square Retrofit 2882 1019 0.26
WordPress Android 12509 8555 0.41
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B. Statistical Data on Factors Influencing Build Results

Table B.2: Summary of pull request scenarios per project

A B C D H I J K L N S1 S2 NONE Sum

Apache Storm 8 5 13 23 0 14 15 10 11 0 97 40 2496 2732
Butterknife 3 0 6 1 0 0 0 4 0 0 21 3 418 456
Crate.IO 25 0 72 58 0 6 13 10 15 0 122 21 7036 7378
Hystrix 0 0 5 8 0 0 2 0 8 0 21 0 469 513
JabRef 106 21 105 176 0 23 76 13 56 0 107 39 2456 3178
jcabi-github 0 0 0 6 0 0 0 0 0 0 2 0 470 478
Openmicroscopy 17 3 39 65 2 3 72 20 118 0 68 24 10211 10642
Presto 103 1 76 14 0 57 28 48 14 0 112 74 10166 10693
RxAndroid 0 0 2 2 0 0 0 0 0 0 5 0 270 279
SpongeAPI 1 1 13 22 0 4 12 3 18 0 17 3 3598 3692
Spring Boot 1 1 7 6 0 3 6 1 3 0 37 10 1901 1976
Square OkHttp 6 0 22 2 0 10 1 9 1 0 34 14 2379 2478
Square Retrofit 0 0 1 3 0 0 0 1 1 0 11 6 1211 1234
WordPress Andr. 0 53 5 104 0 1 53 1 41 0 108 48 3138 3552

Sum 270 85 366 490 2 121 278 120 286 0 762 282 46219 49281

(S1 = SIMPLE_1, S2 = SIMPLE_2, implausible scenarios were omitted)

Table B.3: Summary of previous build results per project

p e f p/p p/e p/f e/p f/p e/e e/f f/f f/e Sum

Apache Storm 200 64 352 175 23 131 17 156 34 36 227 23 1438
Crate.IO 1686 355 1714 80 59 95 7 63 34 14 133 76 4316
JabRef 1526 38 221 853 3 264 7 42 1 1 53 2 3011
Butterknife 237 44 5 98 2 4 1 0 5 1 1 0 398
jcabi-github 266 39 54 67 2 11 2 38 1 0 24 1 505
Hystrix 192 4 165 43 0 29 0 26 0 1 41 3 504
Openmicroscopy 408 56 19 2577 172 98 126 92 81 2 11 11 3653
Presto 1909 476 697 210 124 80 6 37 4 4 27 20 3594
RxAndroid 112 0 13 63 0 0 0 3 0 0 2 0 193
SpongeAPI 1352 1 153 208 4 27 0 13 0 0 2 0 1760
Spring Boot 3574 779 544 277 126 13 26 34 47 2 5 8 5435
Square OkHttp 924 248 246 734 54 127 44 164 162 23 80 29 2835
Square Retrofit 534 9 5 315 11 2 2 2 1 0 0 0 881
WordPress Andr. 4149 19 920 2499 24 75 17 226 0 1 97 5 8032

Sum 17069 2132 5108 8199 604 956 255 896 370 85 703 178 36555

(p = passed, e = errored, f = failed. p/e = left passed, right errored)

Table B.5: Contingency tables of common file type changes

Square Retrofit
e f p Builds

test+ system 0.02 0.02 0.96 186
system 0.05 0.05 0.89 152
build_config 0.02 0.03 0.95 60
documentation 0.02 0.00 0.98 51
test+
build_config+
system

0.00 0.04 0.96 48

build_config+
documentation

0.00 0.00 1.00 26

Butterknife
e f p Builds

test+ system 0.07 0.06 0.87 71
documentation 0.35 0.02 0.63 65
system 0.24 0.05 0.71 59
build_config 0.42 0.00 0.58 48
build_config+
documentation

0.38 0.00 0.62 24

test+
build_config+
system

0.33 0.00 0.67 15
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Apache Storm
e f p Builds

system+ docu-
mentation

0.10 0.54 0.35 345

documentation 0.06 0.60 0.34 225
system 0.15 0.65 0.20 143
test+ system+
documentation

0.09 0.55 0.35 127

build_config 0.16 0.75 0.09 75
test+ system 0.14 0.47 0.40 43

Crate.IO
e f p Builds

test+ system+
documentation

0.18 0.41 0.41 900

test+ system 0.17 0.47 0.37 800
system 0.17 0.42 0.41 497
documentation 0.12 0.46 0.42 411
system+ docu-
mentation

0.08 0.47 0.45 383

test 0.11 0.51 0.38 291

JabRef
e f p Builds

system 0.01 0.15 0.84 774
test+ system 0.02 0.26 0.72 436
system_resources 0.00 0.07 0.93 181
test 0.00 0.34 0.66 176
tangled 0.01 0.26 0.72 155
documentation 0.02 0.07 0.92 121

Hystrix
e f p Builds

system 0.01 0.58 0.41 124
test+ system 0.02 0.50 0.48 104
test 0.01 0.53 0.45 77
documentation 0.02 0.53 0.45 66
build_config 0.07 0.43 0.50 44
webapp 0.00 0.32 0.68 25

jcabi-github
e f p Builds

documentation 0.14 0.35 0.51 165
test+ system 0.04 0.24 0.73 102
build_config 0.10 0.30 0.59 69
system 0.13 0.45 0.43 47
test 0.04 0.14 0.82 28
test+
build_config+
system

0.10 0.10 0.80 10

Presto
e f p Builds

system 0.15 0.22 0.63 2267
documentation 0.10 0.23 0.67 359
system+ docu-
mentation

0.10 0.28 0.62 268

build_config 0.15 0.31 0.54 264
build_config+
system

0.22 0.25 0.53 237

system+ itest 0.05 0.17 0.78 58

Openmicroscopy
e f p Builds

system 0.07 0.03 0.90 1060
webapp 0.11 0.04 0.85 489
test+ system 0.06 0.03 0.91 176
documentation 0.02 0.05 0.93 126
test 0.10 0.05 0.85 110
itest 0.18 0.02 0.80 90

RxAndroid
e f p Builds

documentation 0.00 0.00 1.00 35
test+ system 0.06 0.00 0.94 35
build_config 0.00 0.16 0.84 25
system 0.00 0.07 0.93 15
properties 0.00 0.00 1.00 13
test 0.00 0.00 1.00 6

Square OkHttp
e f p Builds

test+ system 0.13 0.20 0.66 766
system 0.18 0.16 0.66 348
documentation 0.11 0.17 0.71 167
build_config+
itest

0.00 0.10 0.90 83

build_config 0.26 0.22 0.52 82
test 0.14 0.20 0.66 80

SpongeAPI
e f p Builds

system 0.01 0.12 0.87 1318
test+ system 0.02 0.20 0.78 101
build_config 0.00 0.06 0.94 83
build_config+
system

0.00 0.26 0.74 31

documentation 0.00 0.03 0.97 31
test 0.04 0.21 0.75 28
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B. Statistical Data on Factors Influencing Build Results

WordPress Android
e f p Builds

system 0.01 0.16 0.84 3119
system_resources+
system

0.00 0.22 0.78 1025

system_resources 0.00 0.20 0.79 550
build_config 0.01 0.15 0.84 330
test+ system 0.03 0.14 0.83 59
build_config+
system

0.00 0.20 0.80 50

Spring Boot
e f p Builds

test+ system 0.16 0.12 0.72 848
system 0.17 0.11 0.72 802
build_config 0.14 0.10 0.75 705
documentation 0.16 0.12 0.72 577
tangled 0.18 0.17 0.65 315
test 0.16 0.14 0.69 274
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Table B.4: Mean and max values of change complexity metrics per project (before
filtering)

Apache Storm
Crate.IO
JabRef
Butterknife
jcabi-github
Hystrix
Openmicroscopy
Presto
RxAndroid
SpongeAPI
Spring Boot
Square OkHttp
Square Retrofit
WordPress Andr.

NC
x̄ max

35.80 3153
2.70 1719
3.32 818
1.13 6

19.54 914
2.96 540

42.62 23333
2.16 74
1.13 7
1.43 27
1.35 106
1.09 106
1.19 13
2.30 4933

NA
x̄ max

3.40 181
1.08 11
1.05 17
1.00 2
1.52 28
1.08 29
1.24 59
1.05 7
1.01 2
1.04 4
1.06 9
1.01 17
1.02 6
1.02 46

NLA
x̄ max

4535.84 858497
722.81 801973
288.15 46663
99.73 3412

1413.96 70458
342.97 79910
9724.36 5884058
443.27 236067
121.11 1450
170.80 7968
103.94 35607
119.20 73756
59.34 2518

278.52 397718

Apache Storm
Crate.IO
JabRef
Butterknife
jcabi-github
Hystrix
Openmicroscopy
Presto
RxAndroid
SpongeAPI
Spring Boot
Square OkHttp
Square Retrofit
WordPress Andr.

NLR
x̄ max

1949.23 857814
562.72 678499
282.87 51947
46.68 1821
259.45 12503
176.48 30328

6025.97 4376524
114.21 19050
111.58 6257
77.67 7235
43.58 35492
77.22 40094
38.32 3214
120.42 288973

NMF
x̄ max

94.23 7931
14.92 8712
20.65 4445
3.79 39

59.95 2862
7.54 883

147.02 84668
12.96 2100
1.91 44
7.19 1533
8.48 893
3.27 527
3.53 73
7.31 16119

CX
x̄ max

0.14 6.80
0.13 0.95
0.14 0.83
0.15 0.77
0.07 0.99
0.10 0.72
0.09 0.95
0.15 0.81
0.13 1.12
0.12 0.99
0.10 0.78
0.10 0.99
0.13 0.91
0.05 0.87
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B. Statistical Data on Factors Influencing Build Results

Table B.6: Mean values of change complexity metrics per build outcome and project
(after filtering)

Apache Storm
Crate.IO
JabRef
Butterknife
jcabi-github
Hystrix
Openmicroscopy
Presto
RxAndroid
SpongeAPI
Spring Boot
Square OkHttp
Square Retrofit
WordPress Andr.

NC
all f p

4.36 5.20 2.76
1.33 1.36 1.30
1.73 1.89 1.69
1.12 1.31 1.09
8.98 1.50 14.31
1.71 1.69 1.74
5.50 5.12 5.55
2.00 2.22 1.86
1.13 1.12 1.13
1.34 1.74 1.28
1.30 1.33 1.29
1.04 1.03 1.04
1.17 1.11 1.17
1.27 1.28 1.27

NA
all f p

1.58 1.58 1.58
1.06 1.06 1.05
1.02 1.01 1.02
1.00 1.00 1.01
1.22 1.00 1.37
1.02 1.02 1.02
1.14 1.15 1.14
1.05 1.07 1.04
1.01 1.00 1.01
1.04 1.05 1.04
1.06 1.07 1.05
1.00 1.00 1.00
1.02 1.00 1.02
0.99 1.00 0.99

NLA
all f p

1649.23 2291.15 427.39
130.68 143.62 111.93
181.64 252.00 163.33
88.54 81.45 89.91

599.68 34.19 1002.78
135.61 152.90 117.39
223.19 188.85 228.04
400.10 594.24 273.78
121.11 173.06 116.15
147.45 191.73 141.09
85.51 108.32 76.74
76.47 66.34 81.79
53.43 95.59 52.10
52.45 58.73 51.24

Apache Storm
Crate.IO
JabRef
Butterknife
jcabi-github
Hystrix
Openmicroscopy
Presto
RxAndroid
SpongeAPI
Spring Boot
Square OkHttp
Square Retrofit
WordPress Andr.

NLR
all f p

1188.33 1689.39 234.61
74.73 85.85 58.60

165.94 234.32 148.14
39.42 39.69 39.36

115.88 9.18 191.95
87.17 78.08 96.75

340.43 636.32 298.69
91.77 112.24 78.46

111.58 127.35 110.08
64.16 85.30 61.12
29.84 30.69 29.51
46.94 25.36 58.27
32.19 30.67 32.24
31.58 41.63 29.64

NMF
all f p

15.27 18.97 8.25
6.67 7.05 6.12

10.87 13.35 10.22
3.43 3.20 3.47

26.93 1.99 44.71
4.22 4.07 4.37
9.62 9.26 9.67

10.12 11.88 8.98
1.91 1.71 1.93
4.47 6.04 4.25
5.77 6.95 5.31
2.69 2.31 2.90
3.17 3.22 3.17
2.35 2.88 2.25

CX
all f p

0.14 0.14 0.12
0.13 0.13 0.12
0.14 0.16 0.13
0.15 0.16 0.15
0.06 0.03 0.08
0.09 0.09 0.09
0.09 0.09 0.09
0.14 0.16 0.13
0.13 0.16 0.13
0.12 0.14 0.11
0.09 0.10 0.09
0.10 0.09 0.10
0.13 0.15 0.13
0.05 0.06 0.05

Table B.7: Summary of builds per project and author commit frequency

Daily Weekly Monthly Single Other
f p f p f p f p f p Sum

Apache Storm 398 137 333 154 1 0 49 41 258 133 1504
Crate.IO 59 230 0 0 0 0 16 56 47 44 452
JabRef 2356 1443 113 101 0 0 23 14 207 198 4455
Butterknife 190 192 6 1 6 2 31 32 54 28 542
jcabi-github 480 1986 10 31 3 16 4 86 109 373 3098
Hystrix 53 125 91 81 0 0 8 11 68 97 534
Openmicroscopy 406 2843 28 212 2 5 0 12 11 151 3670
Presto 879 1324 253 488 26 68 71 142 241 448 3940
RxAndroid 8 80 0 0 0 0 2 40 10 82 222
SpongeAPI 109 656 18 157 13 8 8 107 77 599 1752
Spring Boot 1247 3131 55 134 55 59 96 236 138 375 5526
Square OkHttp 817 1563 34 32 0 0 51 126 100 127 2850
Square Retrofit 14 536 9 69 0 3 9 98 12 158 908
WordPress Android 1256 6400 0 5 0 0 8 30 44 294 8037

Sum 8272 20646 950 1465 106 161 376 1031 1376 3107 37490
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Table B.8: Summary of failure ratio per project and author commit frequency

Daily Weekly Monthly Single Other

Apache Storm 0.74 0.68 1.00 0.54 0.66
Crate.IO 0.20 0.22 0.52
JabRef 0.62 0.53 0.62 0.51
Butterknife 0.50 0.86 0.75 0.49 0.66
jcabi-github 0.19 0.24 0.16 0.04 0.23
Hystrix 0.30 0.53 0.42 0.41
Openmicroscopy 0.12 0.12 0.29 0.00 0.07
Presto 0.40 0.34 0.28 0.33 0.35
RxAndroid 0.09 0.05 0.11
SpongeAPI 0.14 0.10 0.62 0.07 0.11
Spring Boot 0.28 0.29 0.48 0.29 0.27
Square OkHttp 0.34 0.52 0.29 0.44
Square Retrofit 0.03 0.12 0.00 0.08 0.07
WordPress Android 0.16 0.00 0.21 0.13

Table B.9: Summary of builds in days-since-last-failure intervals

t = 0 t = 1 1 < t ≤ 7 t > 7
f p f p f p f p

Apache Storm 637 267 130 69 216 109 50 23
Crate.IO 2038 1091 186 164 382 377 54 91
JabRef 389 846 43 256 129 862 38 388
Butterknife 79 7 3 3 14 14 15 184
jcabi-github 56 56 14 18 52 70 97 163
Hystrix 164 90 26 20 66 78 34 67
Openmicroscopy 203 499 34 185 91 863 117 1677
Presto 1066 1114 108 259 140 441 22 79
RxAndroid 12 12 1 1 0 10 5 96
SpongeAPI 109 287 13 112 24 421 80 718
Spring Boot 1254 1958 110 466 171 852 36 393
Square OkHttp 691 824 108 205 123 407 76 398
Square Retrofit 25 47 0 17 3 82 5 363
WordPress Android 901 1232 87 757 197 2799 115 1959

(p = passed, f = failed)
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APPENDIX C
Statistical Data on Build Failure

Prediction

Table C.1: Weighted average F1-score results of binary build outcome prediction

Project Dataset (1) (2) (3) (4)

Apache Storm
All 0.54 0.68 ◦ 0.72 ◦ 0.71 ◦
Change 0.54 0.48 • 0.59 ◦ 0.60 ◦
Process 0.54 0.71 ◦ 0.73 ◦ 0.73 ◦

Crate.IO
All 0.44 0.44 0.70 ◦ 0.70 ◦
Change 0.44 0.27 • 0.59 ◦ 0.59 ◦
Process 0.44 0.67 ◦ 0.73 ◦ 0.71 ◦

JabRef
All 0.71 0.82 ◦ 0.86 ◦ 0.84 ◦
Change 0.71 0.73 0.74 ◦ 0.77 ◦
Process 0.71 0.82 ◦ 0.87 ◦ 0.87 ◦

Butterknife
All 0.62 0.96 ◦ 0.98 ◦ 0.97 ◦
Change 0.62 0.69 ◦ 0.88 ◦ 0.85 ◦
Process 0.62 0.96 ◦ 0.98 ◦ 0.97 ◦

jcabi-github
All 0.50 0.69 ◦ 0.75 ◦ 0.75 ◦
Change 0.50 0.50 0.66 ◦ 0.66 ◦
Process 0.50 0.74 ◦ 0.79 ◦ 0.77 ◦

Hystrix
All 0.35 0.47 ◦ 0.72 ◦ 0.69 ◦
Change 0.35 0.38 0.64 ◦ 0.61 ◦
Process 0.35 0.70 ◦ 0.71 ◦ 0.69 ◦

Openmicroscopy
All 0.80 0.84 ◦ 0.86 ◦ 0.86 ◦
Change 0.80 0.80 0.84 ◦ 0.83 ◦
Process 0.80 0.85 ◦ 0.87 ◦ 0.87 ◦

Presto
All 0.47 0.75 ◦ 0.79 ◦ 0.78 ◦
Change 0.47 0.57 ◦ 0.64 ◦ 0.63 ◦
Process 0.47 0.74 ◦ 0.80 ◦ 0.80 ◦
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RxAndroid
All 0.86 0.85 0.89 ◦ 0.91 ◦
Change 0.86 0.85 0.86 0.88
Process 0.86 0.91 ◦ 0.90 ◦ 0.92 ◦

SpongeAPI
All 0.82 0.86 ◦ 0.90 ◦ 0.87 ◦
Change 0.82 0.81 0.83 ◦ 0.85 ◦
Process 0.82 0.86 ◦ 0.90 ◦ 0.90 ◦

Spring Boot
All 0.61 0.78 ◦ 0.81 ◦ 0.81 ◦
Change 0.61 0.61 ◦ 0.67 ◦ 0.67 ◦
Process 0.61 0.79 ◦ 0.82 ◦ 0.83 ◦

Square OkHttp
All 0.47 0.76 ◦ 0.80 ◦ 0.81 ◦
Change 0.47 0.50 0.70 ◦ 0.69 ◦
Process 0.47 0.77 ◦ 0.80 ◦ 0.81 ◦

Square Retrofit
All 0.91 0.95 ◦ 0.96 ◦ 0.95 ◦
Change 0.91 0.91 0.94 ◦ 0.93 ◦
Process 0.91 0.95 ◦ 0.97 ◦ 0.97 ◦

WordPress Android
All 0.77 0.85 ◦ 0.94 ◦ 0.94 ◦
Change 0.77 0.77 0.81 ◦ 0.80 ◦
Process 0.77 0.91 ◦ 0.94 ◦ 0.94 ◦

Average 0.63 0.74 0.81 0.80

◦, • statistically significant improvement or degradation
(1) 0-R
(2) Naive Bayes
(3) C4.5 Decision Tree
(4) Random Forest

Table C.2: κ-statistic results of multi-class build outcome prediction

Project Dataset (1) (2) (3) (4)

Apache Storm
All 0.00 0.13 ◦ 0.40 ◦ 0.38 ◦
Change 0.00 0.02 ◦ 0.13 ◦ 0.15 ◦
Process 0.00 0.37 ◦ 0.41 ◦ 0.37 ◦

Crate.IO
All 0.00 0.25 ◦ 0.31 ◦ 0.27 ◦
Change 0.00 0.10 ◦ 0.19 ◦ 0.14 ◦
Process 0.00 0.27 ◦ 0.31 ◦ 0.29 ◦

JabRef
All 0.00 0.14 ◦ 0.48 ◦ 0.33 ◦
Change 0.00 0.01 0.01 0.13 ◦
Process 0.00 0.35 ◦ 0.50 ◦ 0.47 ◦

Butterknife
All 0.00 0.79 ◦ 0.84 ◦ 0.89 ◦
Change 0.00 0.25 ◦ 0.62 ◦ 0.59 ◦
Process 0.00 0.81 ◦ 0.84 ◦ 0.89 ◦

jcabi-github
All 0.00 0.17 ◦ 0.44 ◦ 0.39 ◦
Change 0.00 0.02 0.22 ◦ 0.22 ◦
Process 0.00 0.42 ◦ 0.49 ◦ 0.46 ◦

Hystrix
All 0.00 0.11 ◦ 0.38 ◦ 0.35 ◦
Change 0.00 0.06 ◦ 0.27 ◦ 0.21 ◦
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Process 0.00 0.33 ◦ 0.38 ◦ 0.36 ◦

Presto
All 0.00 0.20 ◦ 0.46 ◦ 0.40 ◦
Change 0.00 0.01 0.21 ◦ 0.10 ◦
Process 0.00 0.36 ◦ 0.45 ◦ 0.45 ◦

RxAndroid
All 0.00 0.54 ◦ 0.56 ◦ 0.54 ◦
Change 0.00 0.14 0.02 0.25
Process 0.00 0.49 ◦ 0.62 ◦ 0.54 ◦

SpongeAPI
All 0.00 0.22 ◦ 0.33 ◦ 0.29 ◦
Change 0.00 -0.01 0.01 0.18 ◦
Process 0.00 0.28 ◦ 0.35 ◦ 0.36 ◦

Spring Boot
All 0.00 0.38 ◦ 0.53 ◦ 0.49 ◦
Change 0.00 0.03 ◦ 0.11 ◦ 0.10 ◦
Process 0.00 0.50 ◦ 0.53 ◦ 0.52 ◦

Square OkHttp
All 0.00 0.41 ◦ 0.55 ◦ 0.58 ◦
Change 0.00 0.13 ◦ 0.36 ◦ 0.31 ◦
Process 0.00 0.47 ◦ 0.56 ◦ 0.58 ◦

Square Retrofit
All 0.00 0.43 ◦ 0.59 ◦ 0.52 ◦
Change 0.00 -0.02 0.42 ◦ 0.22 ◦
Process 0.00 0.52 ◦ 0.58 ◦ 0.61 ◦

Average 0.00 0.27 0.40 0.39

◦, • statistically significant improvement or degradation
(1) 0-R
(2) Naive Bayes
(3) C4.5 Decision Tree
(4) Random Forest

Table C.3: Root-mean-squared error (RMSE) results of multi-class build outcome predic-
tion

Project Dataset (1) (2) (3) (4)

Apache Storm
All 0.27 0.35 • 0.26 ◦ 0.24 ◦
Change 0.27 0.38 • 0.31 • 0.28
Process 0.27 0.26 ◦ 0.24 ◦ 0.25 ◦

Crate.IO
All 0.24 0.25 • 0.23 0.23 ◦
Change 0.24 0.25 • 0.25 • 0.25 •
Process 0.24 0.24 0.22 ◦ 0.22 ◦

JabRef
All 0.17 0.27 • 0.15 ◦ 0.15 ◦
Change 0.17 0.35 • 0.17 0.17 ◦
Process 0.17 0.19 • 0.15 ◦ 0.15 ◦

Butterknife
All 0.24 0.15 ◦ 0.13 ◦ 0.11 ◦
Change 0.24 0.26 0.19 ◦ 0.18 ◦
Process 0.24 0.13 ◦ 0.13 ◦ 0.10 ◦

jcabi-github
All 0.26 0.36 • 0.23 ◦ 0.22 ◦
Change 0.26 0.44 • 0.25 0.25 ◦
Process 0.26 0.23 ◦ 0.22 ◦ 0.23 ◦
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Hystrix
All 0.28 0.37 • 0.26 0.25 ◦
Change 0.28 0.39 • 0.27 0.27
Process 0.28 0.28 0.25 ◦ 0.25 ◦

Presto
All 0.20 0.25 • 0.17 ◦ 0.17 ◦
Change 0.20 0.32 • 0.20 ◦ 0.20
Process 0.20 0.21 • 0.17 ◦ 0.17 ◦

RxAndroid
All 0.20 0.19 0.15 ◦ 0.15 ◦
Change 0.20 0.28 • 0.20 0.17 ◦
Process 0.20 0.19 0.14 ◦ 0.14 ◦

SpongeAPI
All 0.16 0.19 • 0.14 ◦ 0.14 ◦
Change 0.16 0.28 • 0.16 0.15
Process 0.16 0.17 • 0.14 ◦ 0.14 ◦

Spring Boot
All 0.20 0.20 ◦ 0.17 ◦ 0.16 ◦
Change 0.20 0.23 • 0.20 ◦ 0.20
Process 0.20 0.19 ◦ 0.16 ◦ 0.16 ◦

Square OkHttp
All 0.21 0.22 0.17 ◦ 0.16 ◦
Change 0.21 0.26 • 0.20 ◦ 0.20 ◦
Process 0.21 0.19 ◦ 0.17 ◦ 0.16 ◦

Square Retrofit
All 0.12 0.13 0.09 ◦ 0.09 ◦
Change 0.12 0.22 • 0.10 ◦ 0.11 ◦
Process 0.12 0.11 0.09 ◦ 0.09 ◦

Average 0.21 0.25 0.19 0.18

◦, • statistically significant improvement or degradation
(1) 0-R
(2) Naive Bayes
(3) C4.5 Decision Tree
(4) Random Forest

118



119





Acronyms

BFS breadth first search. 72

CDF cumulative distribution function. 55, 91, 93, 99

CI continuous integration. xi, 1–4, 7, 14–17, 21–24, 26–28, 31, 33, 35–37, 39, 41, 46, 55,
57–59, 63, 66–68, 74, 89, 93, 99, 101–103

CVCS centralized version control system. 11, 21

DAG directed acyclic graph. 8, 36

DVCS distributed version control system. 8, 11, 12, 21, 22, 35, 57, 59, 60, 62

IDE integrated development environment. 14

KDE kernel density estimation. 54

MSR mining software repositories. 4, 11, 21, 24, 32, 87

OSS open source software. 1, 4, 16, 31, 33, 41, 66, 78, 101

PDF probability density function. 54

RMSE root-mean-squared error. 95, 96, 102, 117

SCM software configuration management. 7, 57, 62, 68

VCS version control system. 1, 7–9, 11, 14–16, 21–24, 26, 28, 32, 33, 35–37, 39, 41, 57,
60, 61, 68, 71–73, 82, 86, 87, 89, 101, 102

121





Bibliography

[ABJ10] Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen. A systematic
and comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1):2–17, 2010.

[Alp14] Ethem Alpaydin. Introduction to machine learning. MIT press, second
edition, 2014.

[BA02] Stephen P Berczuk and Brad Appleton. Software Configuration Manage-
ment Patterns: Effective Teamwork, Practical Integration. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[BBM96] V R Basili, L C Briand, and W L Melo. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, oct 1996.

[BCSD14] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig.
How do centralized and distributed version control systems impact software
changes? Proceedings of the 36th International Conference on Software
Engineering, undefined(undefined):322–333, 2014.

[BDL10] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Are popular classes
more defect prone? Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6013 LNCS:59–73, 2010.

[BGPZ15] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.
When, how, and why developers (do not) test in their IDEs. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2015, ESEC/FSE 2015, pages 179–190, New York, NY, USA,
2015. ACM.

[BRB+09] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Prem Devanbu. The promises and perils of mining git. Pro-
ceedings of the 2009 6th IEEE International Working Conference on Mining
Software Repositories, MSR 2009, pages 1–10, 2009.

123



[BZ14] Chrstian Bird and Thomas Zimmermann. Predicting software build errors,
2014.

[CH11] Marcelo Cataldo and James D Herbsleb. Factors leading to integration
failures in global feature-oriented development. In Proceeding of the 33rd
international conference on Software engineering - ICSE ’11, page 161, New
York, New York, USA, 2011. ACM Press.

[CM09] Paul S P Cowpertwait and Andrew V Metcalfe. Introductory time series
with R. Springer Science & Business Media, 2009.

[CS14] Juliet Corbin and Anselm Strauss. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications, 2014.

[CS15] Scott Chacon and Ben Straub. Pro git. Apress, 2015.

[Dem06] Janez Demšar. Statistical Comparisons of Classifiers over Multiple Data
Sets. The Journal of Machine Learning Research, 7(Jan):1–30, 2006.

[DLR12] Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating defect
prediction approaches: a benchmark and an extensive comparison, volume 17.
2012.

[DMG07] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.

[DSTH12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social
Coding in GitHub: Transparency and Collaboration in an Open Software
Repository. In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, CSCW ’12, pages 1277–1286, New York, NY,
USA, 2012. ACM.

[ETL11] Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and developer
experience affect commit bugginess. 8th Working Conference on Mining
Software Repositories, MSR 2011, Co-located with ICSE 2011, May 21, 2011
- May 22, 2011, pages 153–162, 2011.

[FF06] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-
Works http://www.thoughtworks.com/Continuous Integration.pdf, page 122,
2006.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics Springer, Berlin,
2001.

[GKMS00] Todd L. Graves, Alan F. Karr, U. S. Marron, and Harvey Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, 2000.

124



[GZSD15] Georgios Gousios, Andy Zaidman, Margaret-anne Storey, and Arie Van
Deursen. Work Practices and Challenges in Pull-Based Development: The
Integrator’s Perspective. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, pages 358–368, 2015.

[Has08] Ahmed E Hassan. Automated Classification of Change Messages in Open
Source Projects. Applied Computing 2008, Vols 1-3, pages 837–841, 2008.

[Has09] Ahmed E. Hassan. Predicting faults using the complexity of code changes.
Proceedings - International Conference on Software Engineering, pages
78–88, 2009.

[HBB+11] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A
Systematic Review of Fault Prediction Performance in Software Engineering.
IEEE Transactions on Software Engineering, 38(6):1276–1304, 2011.

[HG09] H He and E A Garcia. Learning from Imbalanced Data. IEEE Transactions
on Knowledge and Data Engineering, 21(9):1263–1284, sep 2009.

[HGH08] Abram Hindle, Daniel M. German, and Ric Holt. What do large commits
tell us?: a taxonomical study of large commits. Proc. MSR, pages 99–108,
2008.

[HL08] Lile P. Hattori and Michele Lanza. On the nature of commits. Aramis 2008
- 1st International Workshop on Automated engineeRing of Autonomous and
runtiMe evolvIng Systems, and ASE2008 the 23rd IEEE/ACM Int. Conf.
Automated Software Engineering, pages 63–71, 2008.

[HZ06] Ahmed Hassan and Ken Zhang. Using Decision Trees to Predict the
Certification Result of a Build. 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06), pages 189–198, 2006.

[HZ13] Kim Herzig and Andreas Zeller. The Impact of Tangled Code Changes. In
Proceedings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 121–130, Piscataway, NJ, USA, 2013. IEEE Press.

[JTK13] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction. In
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 279–289, nov 2013.

[KCM07] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and
taxonomy of approaches for mining software repositories in the context
of software evolution. Journal of Software Maintenance and Evolution:
Research and Practice, 19(2):77–131, 2007.

[KGB+14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. The Promises and Perils of Mining GitHub. In

125



Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014. ACM.

[KKA14] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why Do Automated
Builds Break? An Empirical Study. 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 41–50, 2014.

[KM14] John Kloke and Joseph W McKean. Nonparametric statistical methods using
R. CRC Press, 2014.

[KSD11] Irwin Kwan, Adrian Schröter, and Daniela Damian. Does socio-technical
congruence have an effect on software build success? A study of coordination
in a software project. IEEE Transactions on Software Engineering, 37(3):307–
324, 2011.

[KZWG11] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. Dealing with
noise in defect prediction. 2011 33rd International Conference on Software
Engineering (ICSE), pages 481–490, 2011.

[KZWZ07] Sunghun Kim, Thomas Zimmermann, E. James Whitehead, and Andreas
Zeller. Predicting faults from cached history. Proceedings - International
Conference on Software Engineering, pages 489–498, 2007.

[McK12] Wes McKinney. Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, Inc., 2012.

[MJ15] Lech Madeyski and Marian Jureczko. Which process metrics can significantly
improve defect prediction models? An empirical study. Software Quality
Journal, 23(3):393–422, 2015.

[MPS08] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. Proceedings of the 13th international conference on Software
engineering - ICSE ’08, page 181, 2008.

[NB07] Nachiappan Nagappan and Thomas Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case study. Proceedings
- 1st International Symposium on Empirical Software Engineering and
Measurement, ESEM 2007, pages 364–373, 2007.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. Proceedings of the 28th international conference
on Software engineering, pages 452–461, 2006.

[NZZ+10] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig,
and Brendan Murphy. Change bursts as defect predictors. Proceedings -
International Symposium on Software Reliability Engineering, ISSRE, pages
309–318, 2010.

126



[PGETD15] Vera Pawlowsky-Glahn, Juan José Egozcue, and Raimon Tolosana-Delgado.
Modeling and analysis of compositional data. John Wiley & Sons, 2015.

[RD13] Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics
are better. Proceedings - International Conference on Software Engineering,
pages 432–441, 2013.

[RHT+13] Danijel Radjenovic, Marjan Hericko, Richard Torkar, Aleš Zivkovic, Danijel
Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software
fault prediction metrics: A systematic literature review. Information and
Software Technology, 55(8):1397–1418, 2013.

[RKBD14] Foyzur Rahman, Sameer Khatri, Earl T. Barr, and Premkumar Devanbu.
Comparing static bug finders and statistical prediction. Proceedings of the
36th International Conference on Software Engineering - ICSE 2014, pages
424–434, 2014.

[SBZ12] Emad Shihab, Christian Bird, and Thomas Zimmermann. The effect of
branching strategies on software quality. Proceedings of the ACM-IEEE in-
ternational symposium on Empirical software engineering and measurement
- ESEM ’12, page 301, 2012.

[Sch10] Adrian Schroter. Predicting build outcome with developer interaction in Jazz.
2010 ACM/IEEE 32nd International Conference on Software Engineering,
2:511–512, 2010.

[She03] David J Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. crc Press, 2003.

[Shm10] Galit Shmueli. To Explain or to Predict? Statistical Science, 25(3):289–310,
2010.

[SO13] Rachel Schutt and Cathy O’Neil. Doing data science: Straight talk from the
frontline. O’Reilly Media, Inc., 2013.

[SSE+14] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian,
and Robert Bowdidge. Programmers’ build errors: a case study (at google).
Proceedings of the 36th International Conference on Software Engineering -
ICSE 2014, (Section 2):724–734, 2014.

[Swa76] E. Burton Swanson. The Dimensions of Maintenance. In 2nd international
conference on Software engineering, volume XXXIII of ICSE ’76, pages
81–87, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[ŚZZ05] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? ACM SIGSOFT Software Engineering Notes, 30(4):1,
may 2005.

127



[VYW+15] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and
Vladimir Filkov. Quality and productivity outcomes relating to continuous
integration in GitHub. Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2015, pages 805–816,
2015.

[WP12] Hyrum K. Wright and Dewayne E. Perry. Release engineering practices and
pitfalls. Proceedings - International Conference on Software Engineering,
pages 1281–1284, 2012.

[WSDN09] Timo Wolf, Adrian Schröter, Daniela Damian, and Thanh Nguyen. Predict-
ing build failures using social network analysis on developer communication.
Proceedings - International Conference on Software Engineering, pages 1–11,
2009.

[YFZ+16] Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D.
Kymer. Automatically classifying software changes via discriminative topic
model: Supporting multi-category and cross-project. Journal of Systems
and Software, 113:296–308, 2016.

[YWF+15] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. Wait For It: Determinants of Pull Request Evaluation Latency on
GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 367–371, 2015.

[ZLXS15] Yun Zhang, David Lo, Xin Xia, and Jianling Sun. An Empirical Study of
Classifier Combination for Cross-Project Defect Prediction. 2015 IEEE 39th
Annual Computer Software and Applications Conference, pages 264–269,
2015.

128


	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Version Control
	Build Automation
	Continuous Integration
	Machine Learning

	Related Work
	Mining Software Repositories
	Systematic Analysis of Software Build Errors
	Software Defect Prediction
	Build Failure Prediction

	Solution Approach
	Overview
	Methodology
	Approach Outline
	System Model
	CInsight Data Analysis Framework

	Systematic Analysis of Build Errors
	Build Error Categorization
	Runtime Behavior of Builds
	Discussion

	Factors Influencing Build Results
	Data Processing
	Factors to Explore
	Change Characterization
	Process Characterization
	Statistical Analyses
	Discussion

	Predicting Build Failures
	Approach
	Experiment Design
	Results
	Discussion

	Conclusion
	Discussion of Research Questions
	Future Work

	Statistical Data on Build Errors
	Statistical Data on Factors Influencing Build Results
	Statistical Data on Build Failure Prediction
	Acronyms
	Bibliography

