
Agile Software Development in
Distributed Teams with Low

Spatial Distance: Challenges,
Benefits and Recommendations

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Manuel Stadler
Matrikelnummer 0926556

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer: Thomas Grechenig
Mitwirkung: Raoul Vallon

Wien, 22. August 2016
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Agile Software Development in
Distributed Teams with Low

Spatial Distance: Challenges,
Benefits and Recommendations

Master’s Thesis

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Manuel Stadler
Registration Number 0926556

elaborate at the
Institut of Computer Aided Automation
Research Group for Industrial Software
to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Thomas Grechenig
Assistance: Raoul Vallon

Vienna, August 22, 2016

Technische Universität Wien, Forschungsgruppe INSO
A-1040 Wien � Wiedner Hauptstr. 76/2/2 � Tel. +43-1-587 21 97 � www.inso.tuwien.ac.at





Statement by Author

Manuel Stadler
Grundsteingasse 22 / 110, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich ge-
macht habe.

I hereby declare that I am the sole author of this thesis, that I have completely indicated all sources
and help used, and that all parts of this work – including tables, maps and figures – if taken from
other works or from the internet, whether copied literally or by sense, have been labelled including
a citation of the source.

(Place, Date) (Signature of Author)

i





Acknowledgements

First I want to thank my parents for all their continuous support during my studies. I also want
to thank the employees of the INSO institute for the guidance and supervision during this thesis.
Last but not least, I want to thank all the experts who participated in the interviews and provided
valuable input for this research.

iii





Kurzfassung

In der Softwareentwicklung werden verstärkt agile Vorgehensweisen zur Strukturierung und Ko-
ordination der täglichen Arbeit eingesetzt. Methoden wie Scrum oder Extreme Programming emp-
fehlen, alle Teammitglieder am selben Ort bzw. sogar im selben Raum zu positionieren. Gleichzei-
tig gibt es aber auch einen klaren Trend in Richtung verteilten Arbeitens sowie verteilter Teams.
Trotz dieser beiden Gegensätzlichkeiten werden beide Aspekte immer öfter kombiniert und agile
Methoden vermehrt in verteilten Teams eingesetzt. Diese Diplomarbeit untersucht, wie agile Pro-
zessmodelle in verteilten Teams angewendet werden, welche Vor- und Nachteile diese mit sich
bringen und die Herausforderungen, die dabei entstehen. Als Einschränkung dieses komplexen
und weitläufigen Themengebietes wurde der Fokus explizit auf Teams, welche innerhalb eines
Landes oder in Nachbarländern verteilt sind, gelegt.

Im Zuge einer Fallstudie wurden verteilte Teams mit Standorten in Österreich und Deutschland
untersucht. Die empirische Datenerhebung erfolgte mittels qualitativer, semi-strukturierter Inter-
views mit Experten sowie Teamleitern mit praktischer Erfahrung auf diesem Gebiet. Die Analyse
der gesammelten Daten zeigt klar, dass agile Methoden erfolgreich in verteilten Teams mit gerin-
ger Distanz angewendet werden können und diese sogar Vorteile mit sich bringen. Moderne Kom-
munikationstechnologien ermöglichen es Teams, ohne bedeutende Hindernisse über Entfernun-
gen zu kommunizieren und erleichtern außerdem eine enge Zusammenarbeit über Standortgren-
zen hinaus. Typische agile Praktiken und Kennzeichen wie kurze Iterationen, Pair Programming,
tägliche Standup-Meetings, Code-Reviews oder Retrospektiven werden von verteilten Teams er-
folgreich eingesetzt und bieten neben einer Verbesserung im Softwareentwicklungsprozess gleich-
zeitig weitere Kommunikationskanäle, welche zur Stärkung der Teamstruktur beitragen.

Häufige informelle sowie formelle Kommunikation, kurze Iterationen und regelmäßiger persönli-
cher Kontakt vor Ort helfen dabei, die größten Schwierigkeiten verteilten Arbeitens, insbesondere
Herausforderungen in den Bereichen Koordination und Kontrolle, zu überwinden. Als Ergebnis
der Forschungsarbeit werden sechs grundsätzliche Herausforderungen sowie fünf Vorteile von
agilen Methoden in verteilten Teams herausgearbeitet. Abschließend werden elf Empfehlungen
für Teams in ähnlichen Situationen aus den gesammelten Daten abgeleitet.

Schlüsselwörter

agil, Scrum, Kanban, eXtreme Programming, verteilte Softwarentwicklung, verteilte Teams

v





Abstract

Agile methodologies are facing increased adoption in software engineering teams. Established
practices like Scrum or extreme programming furthermore strongly suggest to co-locate all team
members in one office. Simultaneously there is a rising trend of remote working and distributed
teams in today’s software development community. Despite this alleged contradiction there is an
increasing number of distributed teams applying agile methods. This thesis examines how agile
process models can be applied in distributed teams, which challenges have to be faced and which
benefits such process models can entail. To delimit the scope this thesis focuses on teams with a
limited spatial dispersion, explicitly investigating teams that are distributed within one or at most
across neighboring countries.

In order to achieve that the author performed a case study analyzing multiple distributed teams lo-
cated in Austria or Germany. Data collection was done through semi-structured interviews of team
leaders and experts who have practical experience in this area. The content analysis clearly indi-
cates that applying agile methods in distributed teams with low spatial distance poses no problem
but instead even brings forth several benefits.

Modern technology enables teams to communicate remotely without serious obstacles and allow
a close collaboration across geographical locations. Teams successfully mastered common agile
practices and methods like short iterations, pair programming, daily meetings, code reviews or ret-
rospective meetings in their distributed settings which not only improve the software engineering
process but furthermore pose important communication channels which strengthen the team.

Frequent informal as well as formal communication, short iteration cycles and regular face-to-
face contact help to overcome problems of distributed collaboration especially when it comes to
the problem areas of coordination and control. As a result this thesis brings up six challenges as
well as five benefits of agile methods in distributed teams. Conclusively eleven recommendations
derived from the analyzed data are presented which aim at improving the application of agile
methods in such environments.

Keywords

agile, Scrum, Kanban, eXtreme Programming, distributed software development, virtual teams,
distributed agile

vii





Contents

1 Introduction 1
1.1 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Agile Software Development 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Agile Manifesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Agile Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Agile Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Co-Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.6 Team Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Kanban Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Extreme Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.3 Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Combination of Agile Methodologies . . . . . . . . . . . . . . . . . . . . . . . 24

3 Distributed Software Development 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Taxonomy of Distributed Software Engineering . . . . . . . . . . . . . . . . . . 27

3.2.1 Reasons to distribute Development . . . . . . . . . . . . . . . . . . . . . 29
3.3 Dimensions of Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Geographical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Cultural Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Temporal Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Configurational Dimension . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Challenges of Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Communication in Distributed Teams . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 The Importance of Communication . . . . . . . . . . . . . . . . . . . . 37

ix



3.5.2 Communication Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Modalities of Communication . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4 Media Richness Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.5 Remote Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Agility in a Distributed Environment 45
4.1 Agility in a Distributed Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Impact of the Team Size . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Reasons to use Agile Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Distributed Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Distributed Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Starting a Distributed Scrum Project . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Daily Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Effective Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 XP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Distributed Pair Programming . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Case Study 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Design of the Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Units of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.5 Study Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 The Interview Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Other Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.4 Selection of Analysis Units . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.5 Presentation of the Interviewed Cases . . . . . . . . . . . . . . . . . . . 67

5.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Qualitative Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Categories and Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Presentation of the Cases 77
6.1 Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Epsilon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.7 Eta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.8 Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.9 Iota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Discussion 119
7.1 Cross-Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Agile Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

x



7.1.2 Agile Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.1.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.4 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.5 Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Examination of the Research Propositions . . . . . . . . . . . . . . . . . . . . . 124
7.3 Answering the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Recommendations for Distributed Teams . . . . . . . . . . . . . . . . . . . . . . 130
7.5 Comparison to Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6 Limitations of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Conclusion 135

Bibliography 137
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Online References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Appendix 145
A.1 Interview Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2.1 Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.2.2 Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.2.3 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.2.4 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2.5 Epsilon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.6 Zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.2.7 Eta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.8 Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2.9 Iota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xi





List of Figures

1.1 Software developers surveyed on remote work [3] . . . . . . . . . . . . . . . . . . . 2
1.2 The structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Scrum framework [27, p. 17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Task board, often used by agile teams [25, p. 37] . . . . . . . . . . . . . . . . . . . 18
2.3 Sprint burndown chart [27, p. 358] . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 A Kanban board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary of XP practices [30, Figure 3] . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 GSE taxonomy [15, p. 124] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Probability of communication [45, p. 57] . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Correlation between face-to-face and telephone communication [45, p. 59] . . . . . . 32
3.4 Impacts of distance [9, p. 24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Framework of issues in distributed development [10] . . . . . . . . . . . . . . . . . 37
3.6 Four sides of a message, adapted graphic from [60, p. 33] . . . . . . . . . . . . . . . 38
3.7 Capabilities of selected media in Richness dimensions [62, p. 3] . . . . . . . . . . . 41
3.8 Tools for distance communication and information exchange [12, p. 30] . . . . . . . 43

4.1 Types of distributed team organization [65] . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Structure of the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Forms of case studies [17, p. 27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Embedded case study: Cases and units of analysis (adapted from [17, p. 27]) . . . . 60
5.4 Procedure of data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Interview types [17, p. 51] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Six sources of evidence in case study research [16, p. 106] . . . . . . . . . . . . . . 67
5.7 Content analysis: Steps of the inductive category development method . . . . . . . . 72
5.8 Codes used to categorize the interview data . . . . . . . . . . . . . . . . . . . . . . 74

xiii





List of Tables

5.1 Overview of the interviewed experts . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xv





xvii





List of Abbreviations

CI Continuous Integration

DPP Distributed Pair Programming

GSD Global Software Development

RUP Rational Unified Process

TDD Test Driven Development

WiP Work in Progress

XP eXtreme Programming

xix





Chapter 1. Introduction

1 Introduction

This first chapter gives an introduction to the topic of this thesis, the motivation why it was chosen,
and shortly introduces the reader to the structure of the thesis as well as the chosen methodology.

1.1 Problem Statement and Motivation

„A few years ago, collocated teams were the norm, and it was unusual for a team
to be geographically distributed. By now, the reverse must be true. Personally, I’m
now surprised when someone tells me that everyone on the team works in the same
building.“ [1, p. 355]

In today’s software development world, agile processes have gained an increasing amount of at-
tention and have faced an extensive adoption. But there is also a trend of developing software in
distributed teams, using modern communication technologies which are intended to bridge chal-
lenges arising through the dispersion of teams.

The next step more and more teams are taking, is to adopt an agile way of working in distributed
teams - but this undertaking also introduces new challenges, Kajko-Mattsson, Azizyan, and Mag-
arian [2] are addressing some of those issues in their work:

„Being in stark contrast with each other, Agile and Distributed Software Development
(DSD) methods are regarded as partners in an impossible marriage. Despite this,
many organizations consider them as practices worth striving for.“ [2, p. 51]

Working in a distributed team from a remote location is an increasing trend among software de-
velopers all over the world. Stack Overflow, a very well known community for software engineers
surveyed this point and found that in the year 2016 around 30 percent of all software developers
work at least part-time from remote locations, Figure 1.1 shows the exact numbers of that survey.
This is the global number but the survey also states a number for Germany which claims that
around 25 percent of German software engineers had experience with remote work. [3]

Their survey from the previous year stated in 2015 the number of remote software engineers was
around 29 percent where in 2014 the percent was around 20 percent. This shows that especially in
the last few years the number of remote collaboration has risen enormously. [4]

The motivation for this thesis is to shed light on how those seemingly contrasting factors - agility
and team distribution - are combined in the scope of limited spatial distance between team member
locations.

Furthermore, to the authors knowledge, there was no similar case study until now that focused on
distributed agile software development in the Austrian and German area. Another personal moti-
vation is the fact that the author himself is part of a software development team that is distributed
over multiple locations in the Austrian area and applies agile methods and practices.

Agile Development in Distributed Teams 1 / 166



Chapter 1. Introduction 1.2. Related Work

Figure 1.1: Software developers surveyed on remote work [3]

1.2 Related Work

Apart from the mere fact of teams distributing, also the adoption of agile development in dis-
tributed teams is becoming more and more popular, and there exist various case studies of different
scopes analyzing the introduction, success and challenges arising. One example is the work from
Pries-Heje [5] who analyzed a „project using the agile method Scrum with participants distributed
across the two countries: Seven in a Scrum team in Denmark and eight in a Scrum team in India.“
[5, p. 21] They gathered qualitative data by conducting two rounds of interviews with project
members in both locations.

Another case study which investigated the impact of an agile development process versus a ’clas-
sical’ structured approach was performed by Estler et. al. [6]. They collected their data in two
phases, using qualitative as well as quantitative methods.

„The importance of choosing the right development process to ensure the successful
and timely completion of distributed software projects cannot be understated... Or
can it? This paper presents an extensive case study analyzing the impact of different
development processes on the success of software projects carried out by globally
distributed development teams.“ [6, p. 11]

Agile methods also entail a lot of different practices, one well known example is the practice of
pair programming, which is traditionally by two individuals sharing one workstation. Flor [7] re-
searched this practice in a distributed setting and stated that: „Remote programming pairs have the
potential for cross-workspace audio, visual, and manual channels available via their computers.“
[7, p. 58]

Smite, Brede Moe and Agerfalk [8] are discussing agile development in their book Agility Across
Time and Space: Implementing Agile Methods in Global Software Projects. This work addresses
the introduction of agile development in different kinds of distributed teams and it provides insight
and practical advice regarding this matter.

„In contrast to other engineering disciplines, developing software is recognized as a
significantly complex task that heavily relies on human interaction. Accordingly, dis-
tributed software projects with geographically, temporally and socio-culturally dis-
persed teams unavoidably experience unique pressures and challenges. There are
major problems related to communication, coordination and collaboration caused by
geographical, temporal and socio-cultural distance.“ [8, p. 4]

Agile Development in Distributed Teams 2 / 166



Chapter 1. Introduction 1.3. Objectives

Regarding distributed teams there are several aspects that have to be considered like the differ-
ent dimensions of distance (e.g. [9], [10] or [11]) or how to facilitate effective communication,
discussed by [12] or [13]. The importance of communication in distributed agile teams is also
highlighted by Dorairaj, Noble, and Malik [14] who performed a case study about effective com-
munication in distributed agile teams.

Due to the fact that combining agile methods and distributed development is a rather young enter-
prise there is not a huge amount of basic literature available, but there is a lot of research going on
as the case studies mentioned in this section indicate.

1.3 Objectives

This thesis researches agile software development in distributed teams. It investigates the different
aspects, strategies and the application of agile methods in a distributed environment where a team
of software developers is not gathered in one physical place but located in different sites. The
main research questions this thesis tries to answer will be:

• RQ1: How can agile methods be used in distributed teams (limited to a low spatial and time
dispersion)?

• RQ2: To what extent have the principles of agile methods be adopted to be applicable in
such a distributed setting?

• RQ3: Which challenges have to be faced utilizing agile methods and how can those issues
be handled?

• RQ4: Which benefits result from pursuing agile methods in such a distributed setting?

Approach
The first step to achieve this goal is by giving an overview and summary of current literature
about agile development, especially with the emphasis on how they have to be adapted and
extended to be applicable in a distributed environment with the limitations defined in the
previous section.

Secondly, with these theoretical findings in mind the empirical gained knowledge is pre-
sented and examined to report the status quo in distributed software development teams.
This results in an overview of how agile methods are applicable, which of its methods and
practices are well suited or unqualified and furthermore give suggestions on how agile meth-
ods can be efficiently applied in distributed teams.

Focus
To delimit the scope, the thesis will focus on teams with a limited spatial dispersion. Smite
et. al. [15] developed a taxonomy to classify distributed software development situations
which will be used in the thesis, and therefore focus on teams that are either classified as
Onshore - Insourcing - Geographically Close or Offshore - Insourcing - Geographically
Near. This means that locations can be in different cities of the same country, or - if span-
ning multiple countries - such situations where the local time is not deviating significantly.
Furthermore the author chose a further limitation by defining specific criteria that the units
which are used as data source in the practical part of this thesis have to fulfill. Generally this
research focuses on teams that have at least one office in Austria or Germany, the detailed
constraints are presented in Section 5.3.4.

Agile Development in Distributed Teams 3 / 166



Chapter 1. Introduction 1.4. Structure of the Thesis

The scientific value of this thesis is to improve the understanding on how agile methods are applied
in the specific area of distributed teams with low spatial distance. Which challenges arise in such
particular situations and also which benefits agile methods and practices may bring. Furthermore
the thesis uses the gathered knowledge to present recommendations for low-spatial distributed
teams.

1.4 Structure of the Thesis

The main structure of the thesis is depicted in Figure 1.2 and is divided into a theoretical part as
well as a section of empirical research. It starts with a review of literature and recent research in
the fields of distributed software development teams and how agile methods can be applied in such
situations.

Literature Review
The first part of the thesis will be dedicated to a literature research of relevant topics in
the area of agile software development. It will analyze known agile processes and strate-
gies. Furthermore literature and research focusing on distributed development will be ex-
amined. Chapter 2 investigates the agile software development approach as well as classic
established methodologies like for example Scrum. The following Chapter 3 deals with the
challenges and complexity introduced when facing a distributed team. Finally, Chapter 4 an-
alyzes approaches and literature about distributed agile methods and research that examined
virtual teams using methodologies like Scrum or eXtreme Programming (XP).

Case Study
This starts at Chapter 5 and represents the practical part of the thesis where a case study
about different distributed teams which have adopted an agile development style will be
conducted. The case study design and execution will follow the guidelines of Yin [16] and
Runeson et. al. [17] and empirical data will be collected through semi-structured interviews.
The case study is divided into the following parts:

After an introduction about case study research and the application of this method in the
field of software engineering Section 5.2 describes the design of the case study. Following,
Section 5.3 puts forward the data collection approach that was chosen and introduces the
different units of analysis. After setting up the frame of the study and gathering the empirical
data, Section 5.4 explains how the qualitative data was analyzed and presents the structure
how the analyzed data is presented to the reader.

Chapter 6 then lists the analyses of all the reviewed cases, the contained sections illustrate
the sorted and analyzed data from around one hundred pages of transcribed interview mate-
rial that was gathered during the data collection phase.

Results
Finally, in Chapter 7, Section 7.1 summarizes those cases in a cross case analysis of the an-
alyzed case study units. This is followed by Section 7.2 which uses the new gained insights
to discuss the research propositions defined in Section 5.2.5. The following Section 7.3
answers the research questions defined in section 1.3. Finally, Section 7.5 lists recommen-
dations that are derived from the collected insights to improve collaboration in distributed
teams.

The thesis ends with the conclusion in Section 8 summarizing the performed research and
providing an outlook of the future within this field of research.

Agile Development in Distributed Teams 4 / 166



Chapter 1. Introduction 1.4. Structure of the Thesis

Figure 1.2: The structure of this thesis

Agile Development in Distributed Teams 5 / 166





Chapter 2. Agile Software Development

2 Agile Software Development

2.1 Introduction

„Agile development is a philosophy. It’s a way of thinking about software develop-
ment.“ [18, p. 9]

Traditional software development methods often begin with the determination and documentation
of requirements. They usually follow a rigid plan and are often not flexible enough when it comes
to dealing with shifting requirements and a constantly changing environment. That led to many
developers becoming frustrated with this initial fixation on documentation tasks, but not only
developers had problems dealing with the constantly changing setting, also customers often had
troubles stating their exact need up front. [19, p. 1-7]

Those challenges motivated practitioners to develop new strategies, methodologies that do not
reject but rather embrace a changing and evolving environment. Williams and Cockburn [20]
explain that such approaches were simultaneously developed on three different continents - and
while they have been authored independently they still share the same fundamental principles.
Namely, those three approaches were „the Dynamic Systems Development Method in Europe;
Feature-Driven Development in Australia; and Extreme Programming, Crystal, Adaptive Software
Development, and Scrum in the US.“ [20, p. 39]

Finally, seventeen people of those who were working on the different approaches met in Utah -
and what emerged from this conference was the Agile Manifesto, with the main component being
four comparative values which represent the foundation of the agile position. [20, p. 39]

Since its introduction, the word agile has become a collective term describing different processes
and management techniques used by software developers to coordinate and execute their work.
Agile processes describe various aspects of software engineering and are applicable in a wide
range of projects. Dingsøyr, Dybå, and Moe [21] are describing agile development methods as
a reply to traditional software or plan based development methods which rely more on a formal
approach. [21, p. 1]

Augustine [22] characterizes agility as a method to face the turbulent business environment most
businesses are facing nowadays. He sees it as a way to encounter increasing project unpredictabil-
ity and the ability to adapt to change while still being able to deliver a high amount of customer
value.[22, p. 20-21]

Agile Development in Distributed Teams 7 / 166



Chapter 2. Agile Software Development 2.2. The Agile Manifesto

2.2 The Agile Manifesto

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

c© 2001, the above authors this declaration may be freely copied in any
form, but only in its entirety through this notice.

These statements from Beck et al. [23] were authored in 2001 and build the foundation of the agile
movement widely known as the agile manifesto. Its main content are four statements as well as
twelve principles which describe the idea of the agile process.

Individuals and Interactions over processes and tools. This first statement emphasizes the im-
portance of individuals and their cooperation, in the end it is them who build software and prod-
ucts. While processes and tools sure are useful by providing support and improving efficiency,
it is the knowledge and skills of the people which are needed to produce results. Furthermore,
developers are often impeded and tied down with unnecessary procedures. In agile project man-
agement processes should not dictate a teams actions but should support them. Processes have to
be adapted to suit the team and not vice versa. [24, p. 13-14]

Many agile principles support that idea of people first, before implementing new processes it is
crucial to have the team accepting them. It is most important to understand people within a team,
how they cooperate and how every individual’s work may have an impact on other team members.
[25, p. 34]

Working Software over comprehensive documentation. In software projects there is a very
high amount of things that could be documented, but it is very uncertain what is really needed in
the future - which documentation is actually read by someone and what will just get dusty. In an
agile environment, working software is preferred over documentation. Frequently presenting and
delivering versions of a real product is the essential idea of this argument, because not documenta-
tion or specification documents but real working software creates the most value for shareholders.
[24, p. 12]

Agile Development in Distributed Teams 8 / 166



Chapter 2. Agile Software Development 2.2. The Agile Manifesto

Stellman and Greene [25] argue this point in the following way: „To an agile practitioner, working
software is software that adds value to the organization. It could be software that a company sells
to make money, or it could be software that people who work at the company use to do their jobs
more efficiently. For a project to add value, it needs to deliver or save more money than it cost to
build.“ [25, p. 35]

But that does not mean that documentation is useless or should be avoided. The important factor is
the nature of documentation. Highsmith [24] argues that there is often an essential flaw in the kind
of documentation, he states that it is very important how documentation is created: On the one
hand there is the situation where the documentation is a by-product of the interaction (for example
a scenario where two people sit together and conjointly develop a specification). In the second
case, the documentation is a substitution for interaction which may impede progress. An example
for this case would be a a product manager creating a requirements document which then is sent
to a development team. [24, p. 12]

Customer Collaboration over contract negotiation. The customer in agile development can
be defined as that party that either generates business value out of the created product or - in
case of a retail product - the person using it. The function of the customer is to define value,
while other stakeholders are defining constraints. In a new, uncertain and complex product, the
relation between customer and developer is very important to the products success and should be
collaborative rather than be guided by contract disputes. [24, p. 13]

Responding to Change over following a plan. Projects always have aspects that are unknown
or uncertain. Furthermore, today’s software development takes place in a constantly and rapidly
changing environment, it is not only scope creep that has to be dealt with, furthermore it is nearly
everything that is subject to change may it be technology itself, features, scope or architectures.
This constant progress is the reason why it is often hard to just follow a fixed, made up front
plan. Highsmith [24] furthermore specifies this statement with the following points that should be
pursued [24, p. 10-11]:

• Envision-Explore versus Plan-Do

• Exploration versus production

• Adapting versus anticipating

Agile methods accept that change is unavoidable and therefore pursue adaptive planning strategies
and also include various strategies for feedback loops to improve quality. One example would be
to create plans on a high level in the beginning which are reworked later into more particular plans
once more information has become available. [26, p. 3]

That is, while there is value in the items on the right, we value the items on the left more.
The goal of this statement is to clarify that there is a big difference between one thing being
unimportant and one thing being more important than another one. The aspects on the right of
those four values are not unimportant at all. The right tools play an essential role in the whole
software development process and determine the speed of progress and therefore also the costs.
Also contracts are important for stability and the relationship between customers and developers.
[24, p. 10]

Agile Development in Distributed Teams 9 / 166



Chapter 2. Agile Software Development 2.2. The Agile Manifesto

Therefore the aspects on the right are still rather important but: „the items on the left are the
most critical. Without skilled individuals, working products, close interactions with customers
and responsiveness to change, product delivery will be nearly impossible“ [24, p. 10]

2.2.1 Agile Principles

Beside the four values presented in the previous section, the agile manifesto furthermore lists
twelve principles. They can be divided into four main topics they cover: delivery, communication,
execution and improvement. [25, p. 52]

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

The main ideas of this principle are „releasing software early, delivering value continuously,
and satisfying the customer“ [25, p. 55] This principle is also one of the reasons why agile
methods are iterative: Teams plan early releases to acquire feedback from their customers
and use that feedback to improve their product.

2. Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.

This practice often sounds easier in theory than when it comes to real world situations. When
change requests that require a lot of additional work come up it can get emotionally inside
a team, especially when additional requirements and changes are not respected in deadlines
set by superiors. It is important to get rid of the culture to blame developers for occurring
delays and that a team together with the customer owns the requirements collectively. [25,
p. 58]

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

This practice extends the previous one and helps a team embracing change by frequently
delivering working software. Such iterations represent regular deadlines where a demo is
shown to the customer and again feedback can be used to adapt the course of the project and
include new or changing requirements early. [25, p. 61]

4. Business people and developers must work together daily throughout the project.

It is important to involve the customers and business people into the development process.
This principle comes back to the core agile value of customer collaboration over contract
negotiation. To achieve a good result it is necessary to regularly discuss the product that is
produced, and it is important that „the agile team collaborates with the customer (typically
the product owner) as someone with an equal say in the way the project is run.“ [25, p. 70]

5. Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

When every team member understands the value of the software they are building projects
run best. On the other hand when people are not rewarded for building the software or do
not understand its value, projects may break down. It is for example counteractive to reward
programmers if no bugs are found during code reviews and even worse to penalize found
issues. [25, p. 70]

6. The most efficient and effective method of conveying information to and within a develop-
ment team is face-to-face conversation.

Agile Development in Distributed Teams 10 / 166



Chapter 2. Agile Software Development 2.2. The Agile Manifesto

This principle states that face-to-face communication is one of the best ways to share ideas.
But this does not mean that documentation is not necessary, instead documentation also
represents a form of communication. „That’s why agile communication practices focus
most on individual people communicating with each other, and reserve documentation for
those cases where complex information needs to be recalled in detail later.“ [25, p. 67]

7. Working software is the primary measure of progress.

Instead of using status reports to communicate the status of a project, this principle suggests
to use working software for this endeavor. „By delivering working software at the end of
each iteration, and by doing a real product demonstration that shows everyone exactly what
the team did, they keep everyone up to date on the progress of the software in a way that is
almost impossible to misread.“ [25, p. 75]

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

It is important to plan what is delivered at a sustainable pace, which is working better when
the development is done in iterations, because it is easier to estimate the work that can be
done in the next two or three weeks than it is to estimate the possible work that can be done
in the next year. [25, p. 76]

9. Continuous attention to technical excellence and good design enhances agility.

Wrong estimates are not the only thing that can bring a project out of balance, also bad
design which turns a seemingly easy part of software code into very hard pieces of work can
mess up schedules. Therefore it is advised to build up good coding habits and take enough
time to write good source code. Taking a bit more time during the coding phase to avoid
bugs saves a lot of time on the long run by saving much more time it would cost to fix issues
during a later stage. [25, p. 77]

10. Simplicity -the art of maximizing the amount of work not done- is essential.

Every additional code added to an existing project normally increases its complexity and
dependencies between services and systems make code even more complex and increase the
difficulty of changing it. This principle advertises to always just add the minimum amount
of work to complete a task successfully. Avoiding dispensable features is often cheaper in
the long run because the maintaining costs are often higher than the actual value. [25, p. 79]

11. The best architectures, requirements, and designs emerge from self-organizing teams.

In an agile project there is no explicit requirements and design phase, instead the team
continually meets and revises the project plan. Every team member is responsible for the
architecture, and instead of creating a big design upfront an agile team incrementally designs
their project. „In fact, when a team is building the software piece by piece, starting with
the most valuable chunks, the architect’s job becomes more challenging (but often more
interesting).“ [25, p. 80]

12. At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

Constantly improving the way of working is a key element of agile teams. Reviewing past
projects or project phases and using those insights to improve in the future is essential. This
requires honesty and the ability to identify and accept shortcomings because that is the only
way to become more capable in the future. [25, p. 80-81]

Agile Development in Distributed Teams 11 / 166



Chapter 2. Agile Software Development 2.3. The Agile Team

2.3 The Agile Team

2.3.1 Self-Organization

Self-Organization is a fundamental requirement for agile teams. Self-organization means that a
team can decide for itself how to best achieve the goals given to it. This means that every team
will choose different ways of organizing itself, because the way that works best for the team is
depending on multiple factors like the ability and experience of single team members, team size
and of course the project goal. Furthermore, letting a team decide the internal structure instead of
one manager giving the orders strengthens the commitment of the team to „fully own the problem“.
[1, p. 189]

A Scrum team can also be characterized as a complex adaptive system which is: „A system with
many entities interacting with each other in various ways, where these interactions are governed by
simple, localized rules operating in a context of constant feedback.“ [27, p. 404] In this context,
self-organization is a „bottom-up emergent property of a complex adaptive system whereby the
organization of the system emerges over time as a response to its environment.“ [27, p. 416]

The importance of this aspect in real project teams is also reflected in the findings of a survey
study from Chow and Cao [28] which identified the self-organization aspect as one of the critical
success factors to agile teams.

One of the main aspects to enable self-organization within a team is frequent communication, a
factor also emphasized by the following quote:

„A self-organizing team, on the other hand, does a huge amount of communica-
tion—but not those endless, useless status meetings that developers often hate being
forced to attend. Instead, team members decide for themselves what they need to talk
about in order to do the project right.“ [25, p. 83]

2.3.2 Co-Location

Many agile frameworks strongly demand co-location of teams and while not being an inevitable
requirement most authors strongly recommend to co-locate the development team if possible in
any way, e.g. [22, p. 132], [29, p. 199-201], [18, p. 45], [30].

On a closer look, co-location is nowhere claimed explicitly in the agile manifesto itself nor in one
of its 12 principles, but the reason why it is mentioned with such tenacity is after all originating
from one of them:

„The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.“ [23]

One very well known methodology that insists on co-location is XP, while not strictly enforced
in one of the values or principles of XP it is listed as one of the primary practices called "Sit
Together". Beck and Andres [30] there states his insight of how he learned „how important it is to
sit together, to communicate with all our senses.“

Also Shore and Warden [18] name co-location as their third prerequisite (out of a total of six)
that should be met if a team wants to apply XP as development methodology: „XP relies on fast,
high-bandwidth communication for many of its practices. In order to achieve that communication,
your team members needs to sit together in the same room.“ [18, p. 45]

Agile Development in Distributed Teams 12 / 166



Chapter 2. Agile Software Development 2.4. Scrum

Like a lot of other literature about agile methods, they have also dedicated a whole chapter on the
importance of co-location and spatial arrangement of an agile team. The main argument states that
all communication apart from a direct face-to-face conversation disturbs the process and flow of
work. This goes as far as providing sample workspace arrangements with workstations close to
each other accompanied by pairing stations in the same room. [18, p. 112-119]

Schwaber and Beedle [19] also suggest to use open working environments which allow easy com-
munication. They state that „silence is a bad sign“ and the presence of communication is an
indicator on how well the team is doing. [19, p. 39]

Another example is Crystal Clear - an agile software development methodology that is part of
the Crystal family - where co-location is considered a critical element of success. Crystal Clear
comprises a rule stating that all team members have to sit in the same location or in at least adjacent
rooms. [31, p. 88]

Its author Alistair Cockburn furthermore promotes the concept of osmotic communication which
means that the flow of information is not just direct between two individuals but also reaches
other team members in the background „so that they pick up relevant information as though by
osmosis.“ [32, p. 24] He furthermore argues that this concept is hard to achieve without having
the team located in the same room. In his opinion modern technology may provide a certain level
of close communication but he also states that he has never witnessed real osmotic communication
in a physically dispersed team. [32, p. 24]

But the insistence for co-location is not a claim confined to the agile movement, Teasley et al.
performed a field study about the effects of co-location of software development teams where
they "radically collocated" the project teams, so that everybody was „located in a single physi-
cal room.“ [33, p. 671] Their findings suggest that co-location „brings interactive, continuous
communication, which allows overhearing and awareness of teammates’ activities which helps in
clarification, problem solving, and learning. It also enhances team building.“ [33, p. 681] Further-
more they stated that within their co-located setting the groups „showed significantly improved
productivity and high levels of satisfaction by everyone involved, from team member to customer.
The significant improvements in productivity over the company baseline are most likely due to the
tight fit between the development method (timeboxing) and the collaborative facilities.“ [33, p.
680 - 681]

2.4 Scrum

2.4.1 Introduction

„Scrum is different. Work feels different. Management feels different. Under Scrum,
work becomes straightforward, relevant, and productive.“ [19, p. 23]

Scrum - being one of the most famous agile principles - is a framework for software development
whose main components are displayed in Figure 2.1. It is not a standardized process that can be
followed step by step, but a collection of practices based on the agile values. And while there are
defined roles and processes, each organization will add unique characteristics and adaptions. So
when applying Scrum it is not possible to change the fundamental principles, values and practices,
but the structure of single processes may be adapted to individual needs. [27, p. 14]

Agile Development in Distributed Teams 13 / 166



Chapter 2. Agile Software Development 2.4. Scrum

Figure 2.1: Scrum framework [27, p. 17]

2.4.2 Roles

Scrum distinguishes three different roles that together form a Scrum team:

The Product Owner is in charge of the Product Backlog, he is the authority who decides which
features are built, ranks the priority of those work items and defines the approval conditions.
Furthermore, the Product Owner constantly communicates a clear vision of the final product
and the bigger picture and is in continual contact with the stakeholders of the project. [27,
p. 15-16]

„On a Scrum team, the Product Owner is the person who made the commitment
to the company. He’s the person who has to stand up and promise something
specific that will be delivered at the end of the project.“ [25, p. 95]

The product owner is authorized to make decisions about the product, he answers ques-
tions about details of the product from the Development Team, and has the responsibility to
communicate a clear vision of the product to the other team members. The Product Owner
therefore meets with the other team members regularly in the Daily Scrum meeting and also
is in charge of prioritizing the Backlog. He is the link between the external stakeholders and
the development team. Normally the Product Owner does not have all the information be-
cause there usually are multiple stakeholders, so he has to be in constant contact with them
to stay informed and be able to provide answers for the development team. [25, p. 95-96]

The Scrum Master acts as coach and guide through the whole Scrum process, he helps under-
stand principles and practices and also is in charge to resolve issues and adjusts and im-
proves processes. The Scrum Master takes a leading role when impediments that cannot
be resolved by the Development Team alone have to be removed, he generally is a servant

Agile Development in Distributed Teams 14 / 166



Chapter 2. Agile Software Development 2.4. Scrum

rather than leading authority to the team. Generally the Scrum Master does not have au-
thority to control the team, so he is not the same as a project manager but more of a leading
figure. [27, p. 16]

„How the Scrum Master does his job makes the biggest difference between tra-
ditional command-and-control project management and an agile Scrum team.“
[25, p. 94]

In Scrum there is no separate role which owns the plan and schedule for a project, while the
development team just follows orders. Instead the Scrum Master assists the team creating a
plan and schedule, this way all team members own the plan together and it prevents single
team members feeling not responsible when obstacles occur. [25, p. 94]

The Development Team consists of - typically five to nine - cross-functional people who are re-
sponsible for designing the product, and also building and testing it. The Development Team
is self-organizing and together as a collective should possess all the needed skills for com-
pleting the required tasks. Although it is possible to have larger teams, it is recommended
to split those large team up into multiple smaller Scrum Teams. Furthermore the team has
the full authority to self decide on how to accomplish the goals set by the Product Owner.
[27, p. 16]

„Teams as small as three can benefit, but the small size limits the amount of
interaction that can occur and reduces productivity gains. Teams larger than
eight don’t work out well. Team productivity decreases and the Scrum’s control
mechanisms become cumbersome. (...) Most importantly, large teams generate
too much complexity for an empirical process.“ [19, p. 37]

The survey of Ambler [34] in 2008 reported that around 30% of teams are sized between
one and five people, while nearly 40% of teams have a size between 6 to 10 people. This
shows that Scrum teams in practice follow the original recommendations.

2.4.3 Artifacts

Scrum uses the following artifacts in its process:

Product Backlog The Product Backlog is a prioritized list of work items (often in the form of
user stories) for the whole project. The format of the contained items is not strictly defined:

„The Product Backlog represents everything that anyone interested in the product
or process has thought is needed or would be a good idea in the product. It
is a list of all features, functions, technologies, enhancements, and bug fixes
that constitute the changes that will be made to the product for future releases.
Anything that represents work to be done on the product is included in Product
Backlog.“ [19, p. 33]

An often chosen form to describe the elements of the Product Backlog are so called user
stories. User stories are designed to be understandable for all stakeholders, software de-
velopers as well as business people. They are of a simple structure and can be formulated
at various granularity levels. Often they follow the template: "As a <user role> I want to
<goal> so that <benefit>."

Agile Development in Distributed Teams 15 / 166



Chapter 2. Agile Software Development 2.4. Scrum

User stories have the benefit of being very conversational, discussing a user story often
enables a better form of information exchange than just relying on written requirements.
This does not mean there is no written documentation, discussing user stories often may
result in additional documentation like sketches or references to other documents. [27, p.
83]

The Product Backlog is a constantly changing and evolving artifact, work items can be
added, removed and altered as conditions of the project change. Each item has to be es-
timated in its size and costs and then prioritized depending on multiple factors including
costs, value and risks. As a size estimate teams often use relative measurements like Story
Points. The person in charge of the Product Backlog is the Product Owner, it is his duty
to constantly maintain and refine its items and keep the priority of the single items correct.
[27, p. 19-20]

Sprint backlog At the beginning of each development iteration some of the work items from the
Product Backlog are moved to a Sprint Backlog. Usually those work items with the highest
priority are chosen, but which and especially the amount of items is a decision made in the
beginning of each development iteration. Those items that are still not completed at the end
of the iteration are moved back to the Product Backlog. [13, p. 5]

When a user story from the Product Backlog is selected for a Sprint, it is pulled to the Sprint
Backlog and discussed with the Product Owner to ensure clarity on what it means and what
are the acceptance criteria for it. User stories are often broken down into multiple smaller
tasks which are estimated and prioritized as well. [25, p. 144]

Product The Product is the constantly evolving result from development work, and is presented
at the end of each Sprint (Rubin phrases this as potentially shippable product increment).
[27, p. 18]

2.4.4 Activities

Scrum knows multiple activities and routines that are part of the iterative process:

Sprint In Scrum, work is organized in iterations with a defined length, typically between one and
four weeks. Sprints are time-boxed, which means they have a specific start and end date.
Furthermore Sprints should all be of equal length, and normally any goal-altering changes
or changes in personnel are permitted during a sprint. Within one Sprint there are several
activities taking place, most importantly the Sprint planning, Sprint execution, Sprint review
and the Sprint Retrospective. [27, p. 61-62]

Originally the proposed duration for a Sprint is thirty calendar days. Schwaber and Beedle
[19] argues that this is the time a team needs to get hold of a problem and is able to bring
forth a product increment. But he also states that while this thirty day period is a good
compromises between competing pressures that „Adjustments can be made to the duration
after everyone has more experience with Scrum.“ [19, p. 52] Other experts in Scrum do
not name one fixed iteration length but state that Sprints „must also be short, somewhere
between one week and a calendar month in length.“ [27, p. 62]

Sprint Planning The Sprint Planning is always conducted at the beginning of a new Sprint. It ba-
sically is a meeting where the Development Team, the Scrum Master and the Product Owner
discuss the remaining items in the Product Backlog and define which work items should be
accomplished in that upcoming iteration. There are several techniques to effectively analyze

Agile Development in Distributed Teams 16 / 166



Chapter 2. Agile Software Development 2.4. Scrum

a work item, typically they are broken down into multiple tasks which are then estimated on
how much time their implementation would take. [27, p. 22]

There are two approaches for doing Sprint Plannings:

Two-Part Sprint Planning
In this approach the Planning is divided into two parts, the what phase and the how
phase. In the first part the team determines its capacity of work it can do within the
sprint and then together with the Product Owner selects the work items that will be
worked on in that Sprint. During this selection the Product Owner also discusses the
items and answers eventual questions to make sure everybody fully understands the
task.
When the selection of work items is done the team breaks them up into multiple
smaller individual tasks in the second phase. This can also be done with the Prod-
uct Owner’s help. Those smaller tasks are estimated and checked against the capacity
the team estimated in the previous part. Depending on that outcome the forecast of the
Sprint is adjusted. [27, p. 339]

One-Part Sprint Planning
Alternatively to the two phase approach, in this approach the team at the beginning
determines its capacity of work it can complete within the Sprint. Based on that, an
item from the Product Backlog is selected together with the Product Owner and the
team checks if it can commit to the goals of the Sprint. This selection of items from
the Product Backlog is repeated until the determined capacity is reached. [27, p. 340]

After finalizing the items for the Sprint Backlog and at the end of the Sprint Planning, the
team finalizes its commitment to what it will deliver at the Sprints end. This commitment is
embodied by the selected work items from the Product Backlog. [27, p. 346]

Sprint Execution This phase is where the actual work is done to complete the tasks of the cur-
rent Sprint Backlog. There is no fixed rule in which way and order the tasks have to be
completed, this organization is up to the team. [27, p. 22]

Daily Scrum The Daily Scrum is a meeting where the Development Team gathers every working
day and it is preferably hold always at the same time. It is the Scrum version of the daily
stand-up meeting from XP, and each team member essentially answers three questions: [27,
p. 24]

• What did I accomplish since the last daily Scrum?

• What do I plan to work on by the next daily Scrum?

• What are the obstacles or impediments that are preventing me from making progress?

There are two main purposes for this meeting: First it gives feedback about the work a team
is currently doing and the progress they make. Secondly it gives the team the opportunity
to make adjustments and plannings on a very short notice, so a team can plan work for the
upcoming day. This time to make decisions is sometimes also called the „last responsible
moment“. [25, p. 110]

There are different opinions on who exactly should actively participate in the Daily Scrum,
and who should just be in an observing role. Rubin [27] holds the opinion that everyone on
the Scrum Team should participate in the Daily Scrum and should have the right to speak.
[27, p. 24-25]

Agile Development in Distributed Teams 17 / 166



Chapter 2. Agile Software Development 2.4. Scrum

Figure 2.2: Task board, often used by agile teams [25, p. 37]

Sprint Review At the end of each Sprint there are two activities of inspective nature. The goal
of the first one - called the Sprint Review - is the inspection and adaption of the built prod-
uct. Participated by the whole Scrum Team as well as external stakeholders, the focus is on
reviewing the completed work from the current Sprint. It should serve the external stake-
holders who gain insight in the development process and progress of the product as well as
the Scrum Team members who „gain a deeper appreciation for the business and marketing
side of their product by getting frequent feedback on the convergence of the product toward
delighted customers or users.“ [27, p. 26]

Retrospective The Retrospective is the second activity held at the end of each sprint. In contrast
to the Sprint Review that is focusing on the product, this review is focusing on the process.
The Scrum Team discusses what worked well in the Sprint and which aspects did not work
well or need improvements. This results in a number of process improvements and changes
that are applied in the next Sprint. [27, p. 26-27]

2.4.5 Tools

Scrum (and generally agile methods) also use various tools to improve communication and col-
laboration. The presented tools in this section are very common in agile environments and „most
teams use a combination of a task board and a burndown and/or burnup chart as their principal
information radiator.“ [27, p. 356]

Task Board To help keeping track of tasks and schedules teams often use task boards to visualize
work items (depicted in Figure 2.2). Each element on such a task board typically represents
a user story (the concept of user stories is described in Section 2.4.3) and is written on a
sticky note or index card and attached to the board. Such a visual representation improves
collaboration and gathering in front of the board, moving stories, talking and gesturing is a
very intensive form of communication. [25, p. 37]

Burndown Chart Another common practices is the usage of burndown charts, an example de-
picted in Figure 2.3. Team members update the estimates of the amount of effort that re-
mains for each yet uncompleted task once a day. The sum of the remaining estimated hours

Agile Development in Distributed Teams 18 / 166



Chapter 2. Agile Software Development 2.4. Scrum

Figure 2.3: Sprint burndown chart [27, p. 358]

are then entered into the chart, and the resulting graph over time displays the progress dur-
ing the Sprint. It is of course possible that some estimates need correction and the graph
is not always strictly decreasing. In Sprint burndown charts the vertical axis are commonly
annotated with the remaining hours of work, and there also exists a release burndown chart
which commonly shows ideal working days or story points on the vertical axis. The hor-
izontal axis shows the days of the Sprint in the case of a Sprint burndown chart and the
Sprints in case of a release chart. [27, p. 358]

2.4.6 Team Organization

The ideal team size is suggested to be „seven people, plus or minus two“. [19, p. 36] Teams may
also be smaller and a three people team can be beneficial but in the same time the small size tends
to limit the number of interactions and may reduce productivity. Having a team larger than eight
people also decreases productivity and makes organizing meetings more difficult. [19, p. 36-37]

But Scrum is not only fit for small projects requiring less than ten people but the way the process
scales differs from other approaches. Instead of simply increasing development team size, Scrum
favors creating multiple Scrum teams. However, when there are multiple Scrum teams it is re-
quired to have a way of effectively coordinate them. This coordination is the task of the so called
Scrum of Scrums. [27, p. 218]

Scrum of Scrums

While the Daily Scrum is a meeting attended only by the members of that particular development
team, the Scrum of Scrums is a meeting attended by individuals from different teams. Each de-
velopment team chooses one member who represents it in that coordination meeting. Although
some prefer to always have the same person on the Scrum of Scrums it is not a requirement and
the representing individual may as well change depending on who is suited best to speak for the
rest of the team. In addition, some teams send their Scrum Master in addition to the normal rep-
resentative. Typically this meeting is not held every day but a few times a week, depending on

Agile Development in Distributed Teams 19 / 166



Chapter 2. Agile Software Development 2.5. Kanban

necessity and similar to the Daily Scrum the duration is often limited to not more than 15 minutes.
Also the questions discussed are similar but on an other level [27, p. 218-219]:

• What has my team done since we last met that could affect other teams?

• What will my team do before we meet again that could affect other teams?

• What problems is my team having that it could use help from other teams to resolve?

2.5 Kanban

Kanban is a technique for project management that is based on a Just-In-Time and pull-driven
production mechanism originally developed by Toyota and was adapted in a software engineering
team in 2004. [35]

2.5.1 Principles

Kanban is a rather young methodology and therefore still evolving. Originally based on three
principles, those have been extended to six core practices [36]:

Visualization
One of the main principles of Kanban is making information visible to the team. The foun-
dation of this visualization and the whole process is the Kanban board.

Limit the Work in Progress (WiP)
Limiting the work that is done simultaneously is a further principle. While Scrum limits
the WiP by defining time boxed iteration cycles, Kanban sets a limit to the number of work
items that are allowed in each step.

Manage the Workflow
The first two practices also build the foundation for this aspect which aims at improving the
way work items take while being processed. This is not a one time activity but more an
everlasting task.

Make Process Policies Explicit
Having defined processes instead of implicit assumptions helps broaching such subjects
within a team. Which in turn helps detecting problems, guard against confusion and improve
workflows.

Implement Feedback Loops
Similar to the Retrospective meetings in Scrum, Kanban also includes practices for getting
feedback on the process itself.

Improve Collaboratively, Evolve Experimentally
This practice encourages the team to try new practices as a team and improve and evolve
the own process.

Agile Development in Distributed Teams 20 / 166



Chapter 2. Agile Software Development 2.6. Extreme Programming

Figure 2.4: A Kanban board

2.5.2 Kanban Board

The Kanban Board is the basis for visualizing information and is also an information radiator. It
can be a physical board, paper cards on a wall or also a digital board available from some process
management software. Figure 2.4 shows how a typical Kanban board can look like.

„The Kanban board provides visibility to the software process, because it shows as-
signed work of each developer, clearly communicates priorities and highlights bottle-
necks. Additionally, its goal is to minimize WIP, i.e. develop only those items which
are requested. This produces constant flow of released work items to the customers,
as the developers focus only on those few items at given time.“ [35]

The board is divided into multiple vertical sections which represent the stages in the workflow.
The colored items in it represent the work items for a project. The color can be used to either
represent a prioritization or can also stand for a type of work. Those work items are then moved
from left to right, depending on its state. The number in the header defines the limit of items that
are allowed in each column, and some columns are divided into a Doing and a Done sub column to
signal a more detailed state in that stage. Hammarberg and Sunden [36] also recommend to define
acceptance criteria for each column, for example that a development task has to be reviewed by
another developer before it is moved to the Done sub column.

2.6 Extreme Programming

„Extreme Programming (XP) is about social change. It is about letting go of habits
and patterns that were adaptive in the past, but now get in the way of us doing our

Agile Development in Distributed Teams 21 / 166



Chapter 2. Agile Software Development 2.6. Extreme Programming

best work. It is about giving up the defenses that protect us but interfere with our
productivity. It may leave us feeling exposed.“ [30]

XP is a software development methodology that was designed to adapt to fast changing require-
ments and vague environments. It is based on short development cycles, teamwork and communi-
cation, shared values and various programming techniques. [30, p. 1]

2.6.1 Values

The philosophy of XP is based on some basic values which are the foundation of specific practices.

„Values and practices are an ocean apart. Values are universal. Ideally, my values
as I work are exactly the same as my values in the rest of my life. Practices, how-
ever, are intensely situated. If I want feedback about whether I’m doing a good job
programming, continuously building and testing my software makes sense. If I want
feedback when I’m changing a diaper, “continuously building and testing” is absurd.
The forces involved in the two activities are just too different.“ [30, p. 14-15]

Communication is one of the most important aspects in XP teams. When problems occur it
is often that case that somebody else already knows the solution, the essential part is to get that
knowledge through to the location where it is required. Intense and frequent communication can
also reduce the amount of needed documentation and prevent misunderstandings. [37, p. 5]

Simplicity means that XP strives to always find the most simple solution. The guiding question
is „What is the most simple thing that could possibly work?“. This must not be confused with
compulsory reducing complexity but it should always be considered in its context. Also this
aspect is always connected with communication, Beck and Andres [30] state that: „Improving
communication helps achieve simplicity by eliminating unneeded or deferrable requirements from
today’s concerns. Achieving simplicity gives you that much less to communicate about.“ [30, p.
19]

Feedback Getting feedback is an essential aspect of software development, it improves quality
and is happening on multiple different levels. Getting new versions of a product frequent and fast
to a customer or writing tests for software components are two examples which generate feedback
that enables quick adaptions to flaws and errors. [37, p. 5]

„XP teams strive to generate as much feedback as they can handle as quickly as pos-
sible. They try to shorten the feedback cycle to minutes or hours instead of weeks or
months. The sooner you know, the sooner you can adapt.“ [30, p. 20]

Courage is taking action in the face of fear. It requires courage when striving for simple solu-
tions since there are always things that have to be dropped. Feedback requires courage because
giving or receiving negative feedback may be understood as personal criticism or attack. [37, p.
5]

„If courage alone is dangerous, in concert with the other values it is powerful. The
courage to speak truths, pleasant or unpleasant, fosters communication and trust. The

Agile Development in Distributed Teams 22 / 166



Chapter 2. Agile Software Development 2.6. Extreme Programming

courage to discard failing solutions and seek new ones encourages simplicity. The
courage to seek real, concrete answers creates feedback.“ [30, p. 21]

Respect is the point that is the foundation of the previous four values. XP will not work suc-
cessfully if individuals in a team do not care for their team members or their project. To improve
software development in terms of productivity as well as humanity each contribution of team
members has to be respected. [30]

2.6.2 Principles

Since the distance between those values and concrete practices, there exist several principles1 that
build the bridge between those two. The principles of XP are „a set of domain-specific guidelines
for finding practices in harmony with XP’s values.“ [30, p. 22] Those principles are shortly listed
below, and can be read in more detail in the original book about XP from Beck and Andres [30].

Humanity Software is developed by people. This principle states that individual needs are as
well very important for a project’s success.

Economics Making sure that actions have value and that they serve business needs.

Mutual Benefit Activities and solutions should not be at the expense of others and maintaining
good relationships between individuals is important.

Self Similarity When a solution works try to use it again, also if the context differs try to copy
and apply it at a different scale.

Improvement Nothing is perfect therefore it is necessary to continuously improve processes,
designs or stories.

Diversity Alikeness is not effective, a team needs to be diverse and should unite individuals with
various skills, perspectives and attitudes.

Reflection Do not just finish tasks but analyze why something failed or succeeded.

Flow XP favors a steady flow of activities over discrete, separated phases.

Opportunity Try to see problems as opportunities rather than as survival mission.

Redundancy Difficult problems that are critical to the development activity should be solved in
several different ways. The additional costs of redundancy is exceedingly compensated by
the savings from preventing disasters.

Failure Fail if you are having trouble in succeeding. This is not intended to use as an excuse if
you knew better, but if you do not know what to do risking failure may be the best way to
success.

Quality Giving up quality as a means of control is not an option, quality must not be used as a
control variable.

1 The principles, as well as all other references in this thesis, are taken from the 2nd edition of the book which differs
a lot, especially in terms of naming, to the original 1st edition published in 1999. As stated in its foreword, the 2nd
edition is more a complete rewrite than a minor update.

Agile Development in Distributed Teams 23 / 166



Chapter 2. Agile Software Development 2.7. Combination of Agile Methodologies

Figure 2.5: Summary of XP practices [30, Figure 3]

Baby Steps This principle states that taking many small steps towards a certain goal instead of
making fewer big changes has a smaller overhead.

Accepted Responsibility States that it is not possible to assign responsibility, it rather has to be
accepted.

2.6.3 Practices

In contrast to the values and principles, the practices of XP are defined actions and activities, they
are depending on the situation. Applying the various practices is a choice, if a situation changes
so does the practice that should be applied. Those practices are not the capstone of software
development, they rather constitute a constant flow of improvement and are sometimes common
ways of working together or improving products and working patterns. [30]

The nature of the practices is manifold, they include technical aspects that aim to improve quality
of source code or test coverage, or team aspects like communication, trust, and collaboration. They
also include business and management related techniques to enhance customer communication or
process improvements. Figure 2.5 shows a summary of the common XP practices, some of them
are discussed in detail in Section 4.4 which especially focuses on their application in a distributed
environment.

2.7 Combination of Agile Methodologies

The methodologies presented in this chapter are often combined, and Scrum teams often apply
practices from XP. „The Scrum framework is also flexible enough to embrace many other learning

Agile Development in Distributed Teams 24 / 166



Chapter 2. Agile Software Development 2.7. Combination of Agile Methodologies

loops. For example, although not specified by Scrum, technical practice feedback loops, such as
pair programming (feedback in seconds) and test-driven development (feedback in minutes), are
frequently used with Scrum development.“ [27, p. 46]

This comes at no surprise since there are various aspects that are shared across different agile
methods. Shore and Warden [18, p. 26] for example cross-reference different practices across XP
and Scrum and there are multiple practices that are explicitly defined by one but implied by the
other practices.

There furthermore exist various form of hybrid process models where two or more different ap-
proaches are fused together. One example for this would be the so called Scrumban process, which
is „a simplified version of Scrum, keeping the daily Scrum meeting and the Kanban board (hence
the name), but eliminating the planning activities and velocity measurement.“ [38, p. 251]

In the Scrumban process, there are no time boxed Sprints but the work tasks are constantly flowing
through a Kanban board. Its main focus is on the WiP and on the task flow instead of Backlog
estimations. It is also argued that in a Scrumban process it is easier to include various XP practices
than in a Scrum process. Generally Scrumban is suggested for teams that are working on simpler
projects and face many interrupts during their work which. [38, p. 252]

„Scrumban is not about using just a few elements of both Scrum and Kanban to cre-
ate a software development process. Rather, it emphasizes applying kanban systems
within a Scrum context, and layering the Kanban Method alongside Scrum as a vehi-
cle for evolutionary change. Ultimately, it’s about aiding and amplifying the capabil-
ities already inherent in Scrum, as well as providing new perspectives and capabili-
ties.“ [39]

Another approach of a hybrid methodology is proposed by Nuevo, Piattini, and Pino [40], who
combine the Rational Unified Process (RUP) and Scrum to a methodology they call scRUmP. That
process is designed for globally distributed environments and its purpose is to „offer guidelines for
the management and development of software in a distributed environment, using the advantages
provided by the integration of agile methods such as Scrum and traditional methodologies such as
the Rational Unified Process.“ [40, p. 66]

Agile Development in Distributed Teams 25 / 166





Chapter 3. Distributed Software Development

3 Distributed Software Development

3.1 Introduction

This thesis uses the definition of Ågerfalk et al. [10] for the term development, which states that
development is „any software development lifecycle activity.“ [10, p. 48] Accordingly, develop-
ment not merely includes just writing source code but rather also comprises various aspects of
software development like planning and design activity, deployment or maintenance. Furthermore
the term activity is broadly defined as „any individual or collective human action at any level of
granularity that serves a particular purpose.“ [10, p. 48]

A software engineering team or project is accounted as distributed when team members are sited
in different - geographically dispersed - locations. But it is not necessary that every subject is in a
different place, a project can also be regarded as distributed when some of its sub-activities are not.
[10, p. 48] This is the definition that is also chosen by O’leary and Cummings [41]: „Regardless
of the units of measurement, geographically dispersed teamwork (by definition) requires that at
least two members be separated by spatial distance. By defining geographically dispersed teams
in this way, we allow for a continuum of dispersion from teams with one remote member to teams
with no co-located members.“ [41, p. 14]

3.2 Taxonomy of Distributed Software Engineering

„Since there are so many variations of the attributes associated with global software
projects a large amount of new terms has been introduced. The diversity in sourcing
jargon however has caused difficulties in determining which term to use in which sit-
uation, and thus causing further obstacles to searching and finding relevant research.“
[15, p. 105]

A distinction especially important for this thesis is the degree of distribution. This differentiation
is quite complex since a lot of literature does not really apply a strict spatial measurement and do
use different terminology for similar situations.

This problem is also stated by O’leary and Cummings [41] who argue that „Geographically dis-
persed teams are usually treated as an undifferentiated category, including everything from labo-
ratory groups separated by temporary partitions to a team spread around the globe“ [41, p. 4] and
furthermore concluded that „the majority of empirical research on geographically dispersed teams
has defined dispersion loosely and usually in spatial terms. Even when the spatial dimension of
dispersion has been defined explicitly, it has rarely been measured.“ [41, p. 9]

A rather coarse approach is presented by Woodward, Surdek, and Ganis [13, p. 8-12] and focuses
a lot on the possibility to have synchronous communication and the amount of time a team is being
co-located. It distinguishing four types of teams, ordered by their increasing level of distribution:

• Collocated

• Collocated Part-Time

Agile Development in Distributed Teams 27 / 166



Chapter 3. Distributed Software Development3.2. Taxonomy of Distributed Software Engineering

• Distributed with Overlapping Work Hours

• Distributed with No Overlapping Work Hours

A recent study from Šmite et al. [15] attended this problem by analyzing 296 articles as well
as conducting a survey with leading experts in the Global Software Development (GSD) field to
ensure and strengthen their findings. They considered multiple factors including the legal enti-
ties between sites, whether teams are situated in different countries or within the same one, the
geographical distance and the number of involved locations. Using those factors they created a
glossary to characterize the different sourcing strategies [15, p. 122-123]:

Global software engineering Development of a software artifact across more than one location

Insourcing Leveraging company-internal human resources

Nearshoring Leveraging resources from a neighboring country

Offshore insourcing Leveraging company-internal resources situated in a different country

Offshore outsourcing Leveraging external third-party resources situated in a different country

Offshoring Leveraging resources from a different country

Onshore insourcing Leveraging company-internal resources situated in the same country

Onshore outsourcing Leveraging external third-party resources situated in the same country

Onshoring Leveraging resources from the same country

Outsourcing Leveraging external third-party resources

Sourcing Leveraging resources

Using this established terminology the following taxonomy provides relationships between those
terms and creates a classification that can be used to identify branches that describe specific situa-
tions. It is segmented into five stages of distinction [15, p. 123-125]:

GSE Is the first section and determines whether there is any kind of external development at all.

Location The geographical location of the different sites can be either within the same country (
onshore) or spanning over multiple countries (offshore).

Legal Entity Determines if the development is performed within the same company (insourcing)
or in cooperation with other companies (outsourcing) for example by subcontracting.

Geographical Distance The definitions for geographical distance distinguish between offshoring
and offshoring situations:

Onshore Although if a team is distributed within the same country it still makes a differ-
ence whether two locations are within the same city, requiring a 20 minute drive to gather
a face to face meeting or for example on the west coast and the east coast of the United
States, which would require several hours of air traveling to cover that distance. Therefore
the taxonomy distinguishes close and distant situations. In close situations there are no
flights needed and it is therefore possible to have frequent face to face meetings if neces-
sary. In distant situations on the contrary it is necessary to use air travel and therefore invest
an substantial additional amount of time and money to meet personal.

Agile Development in Distributed Teams 28 / 166



Chapter 3. Distributed Software Development3.2. Taxonomy of Distributed Software Engineering

Offshore The distance measurement in an offshore situation is different, the taxonomy
differentiates between near (or nearshoring) situations on the one hand where air travel
time is less than two hours and it is possible to have the arrival, meeting and departure
within one day while still having time for a meeting of at least three hours. And on the
other hand far (or farshoring) situations where the flying time is at least two hours such as
in general makes an overnight stay necessary to conduct meetings.

Time Difference This last segment, similarly to the geographical distance section distinguishes
between on- and offshore situations:

In onshore situations those constellations with a time difference of one hour or less are
considered as similar while those with more than one hour are labeled different.

In offshore situations, a time difference of four hours or below is considered small based
on the fact that in such constellations at least half of normal workday overlaps. a large time
difference in an offshore setting is consequently defined as more four hours of time zone
difference.

Utilizing this definitions, the final taxonomy is depicted in Figure 3.1. Some of the combinations
are grayed out since they are not practicable. This created taxonomy is useful to exactly describe
and compare situations but it is noteworthy that the authors point out that it does not include
cultural differences and thus such factors may be considered in an additional step. Compared to
other approaches this taxonomy provides a very detailed and structured classification and is very
well suited for the goal and constraints of this thesis.

Following that taxonomy, this thesis will focus on teams that can either be classified as Onshore -
Insourcing - Geographically Close or as Offshore - Insourcing - Geographically Near. This means
that locations can be in different cities of the same country, or - if spanning multiple countries -
such situations where the local time is not deviating significantly and the different locations are
reachable within a reasonable amount of time.

3.2.1 Reasons to distribute Development

Although the reasons why a team ends up in a distributed setting are manifold and distributed
working usually entails various challenges and problems, there are also several arguments sup-
porting a distributed setting:

„There are lots of reasons to run a project at multiple sites. Salary differential is
only one of these reasons. The database people may be in Toronto and the telecom
people in Denver. No matter the reason for considering multi-site development, it
always comes down to a business decision: weighing whether the waste created by
not sitting together is more than offset by other advantages.“ [30, p. 149]

The People
As argument on a global scale of distribution, Ebert [42, p. 17] states that many countries do
not have enough personal resources to cover their demand of software engineers. He sees a
global race going on between companies to get the best software developers. Outsourcing is
one way to provide a company with the needed personal. Also van Solingen [43] argues in
a similar but more general way, in his opinion a company which opens itself to distributed
development can find more (well educated) people as employees. In his opinion this human
resources argument is the main reason for using distributed development.

Agile Development in Distributed Teams 29 / 166



Chapter 3. Distributed Software Development3.2. Taxonomy of Distributed Software Engineering

Figure 3.1: GSE taxonomy [15, p. 124]

Agile Development in Distributed Teams 30 / 166



Chapter 3. Distributed Software Development 3.3. Dimensions of Distance

Talent acquisition is but one part of this argument, in some points it is simply an argument
of money and availability, and outsourcing of (at least a part of) a project may reduce ex-
penses, as argued in [13, p. 6]: „With a well thought-out plan to best leverage the talent in
multiple countries, it can be less expensive to develop a product. Working with distributed
teams where the talent is available to do the work can sometimes reduce labor and business
operations costs.“

Presence
Accessing new markets and also being near to customers, that is one very important point
in most management strategies. For example, the IBM Scrum Community had members in
their development teams allocated in more than 30 countries worldwide. [13, p. 67]

Showing presence in general is very important in a globalized world, and can also improve
understanding of regional needs, not just in the matter of software development but also
with provided services. [42, p. 16-17]

24 Hours Development
This argument is relevant in a distributed setting with no or little overlapping work hours.
Where this difference in work time is normally regarded as a big challenge to face when
working within a team, it also can be a strength. Also called the "Follow the Sun" model,
one team can pass their work done to another team in a different timezone which is just
starting their work time, so it is possible to work on a project 24 hours a day. [13, p. 6]

This can also in a smaller context be of use, like van Solingen [43] arguing that in some situ-
ations it can reduce coordination problems with single tasks: by passing an assignment on to
those people working in another time zone, that task can be completed until the next morn-
ing and therefore reduce dependencies from teams that otherwise could delay the project
progress. [43]

3.3 Dimensions of Distance

Regarding a team as distributed intuitively suggests that team members are not in the same spot but
reside in different geographical locations. But this is just one dimension of distance. Additional
to the mere geographical aspect there is also a cultural, temporal and a configurational dimension,
which have different impacts on the challenges of distance portrayed in chapter 3.4. [44]

3.3.1 Geographical Distance

Geographical distance is measured directional and can be described as „the effort required for one
actor to visit another at the latter’s home site.“ [10] Therefore it is suggested to not use kilometers
as indicator but rather the effort that is needed to relocate from one location to another. If for
example two positions are well connected via air link they can be considered less distant than two
locations that are initially closer but suffer from a bad transportation infrastructure. There exist
several aspects that have an impact on that relocation effort, e.g. time and ease of travel, costs, or
bureaucratic conditions like permits or visa. [10]

The Allen Curve

The Allen curve, named after its author Thomas Allen, is a graph (shown in Figure 3.2) that dis-
plays that communication between people drops exponentially with increasing physical distance.

Agile Development in Distributed Teams 31 / 166



Chapter 3. Distributed Software Development 3.3. Dimensions of Distance

Figure 3.2: Probability of communication [45, p. 57]

Figure 3.3: Correlation between face-to-face and telephone communication [45, p. 59]

„... the probability that people in a given organization will communicate with each
other declines precipitously the farther away from each other they are situated and
reaches an asymptotic level at about 50 meters.“ [45, p. 56]

Although this finding was already published in 1984 it apparently is still a valid concept, as Allen
and Henn [45] show that their gathered data indicates a decline in the usage of all communication
media with increasing distance. One reason for this is that different communication media (also
including written communication like emails) correlate regarding their use. The more often two
people see each other face-to-face, the more likely it is for them to also communicate through other
mediums. This link is also shown in Figure 3.3 which depicts the correlation between face-to-face
and telephone communication. [45, p. 58]

Agile Development in Distributed Teams 32 / 166



Chapter 3. Distributed Software Development 3.3. Dimensions of Distance

3.3.2 Cultural Distance

Cultural distance is generally a rather manifold dimension, Carmel and Agarwal describe it as „the
degree of difference between the Center and the Foreign Entity.“ [9, p. 25].

The term culture is very complex and therefore is one of least understood dimension of distance.
But it is argued that it is also a critical element of working in a distributed setting. [46]

When relating to distributed software development it is important to distinguish between the na-
tional culture, which is especially relevant when arguing in a GSD setting, and the organizational
culture.

Carmel and Agarwal defines national culture as „an ethnic group’s norms, values, and spoken
language, often delineated by political boundaries of the nation-state“ [9, p. 25]. Organizational
culture on the other hand are the shared beliefs and values within an organization, including for
example the use of development methodologies or management practices.[9, p. 25] As a conse-
quence, it is possible that two actors A and B are culturally closer although they are located in
different countries, while on the other hand the cultural distance between A and an individual C -
residing in the same country - may be far greater. [10]

This classification is also used by Dubé and Paré [47] who state that „When members of differ-
ent organizations are united into a single team, two or more disparate socio-technical systems
meet. For example, the culture of an organization will influence how team-related activities are
valued. Faced with diverging evaluation and compensation systems, team members’ motivation
and behaviors may be affected“ [47, p. 19].

Furthermore they argue that the professional culture, especially present in cross-functional teams,
can have a strong impact on a team: „When unfamiliar professional cultures are united in a team
however, members may lack the shared meaning and language, patterns and routines to agree on a
shared purpose, goals, and priorities. They may even have problems dividing tasks, coordinating
work, handling conflict, and formulating rules“ [47, p. 20]. This shows that, while the national
culture may not be of a big concern in teams distributed within the same country, aspects like the
professional and company culture may very well be of importance.

The complexity of this dimension is also reflected in the different opinions of researchers, while a
lot of authors agree on the importance and impact of different culture on the process of distributed
software development (e.g. [9] [46] [10]), van Solingen argues that „culture in my experience is
the best excuse for your own failure“ [43, min. 42]. In his opinion national culture is dominated by
the company culture and again this shared company culture is dominated by a professional culture.
He states that it is in fact necessary to learn and understand cultural differences within a team, but
it is also not that big of a concern if the responsible leaders train their team members accordingly.

3.3.3 Temporal Distance

There are two major factors impacting temporal distance, the greater one being differences in time
zones. The second aspect is the schedule of normal work hours of the different team members or
locations. Scheduling work patterns therefore is critical since it is can either decrease that distance
but can also make it worse. For example, if there is a one hour gap between two working sites
caused by a time zone difference, different routines may increase that distance significantly. [10]

One of the biggest issues with a temporal distance is that it impedes synchronous communica-
tion between individuals and therefore having a big negative impact on communication. Small
problems that could be easily resolved by direct communication may therefore turn into bigger

Agile Development in Distributed Teams 33 / 166



Chapter 3. Distributed Software Development 3.4. Challenges of Distance

Figure 3.4: Impacts of distance [9, p. 24]

obstacles - asynchronous communication therefore frequently complicates and slows down prob-
lem resolution. [9, p. 27]

Due to the constraints of this thesis this aspect of distance will be not relevant and therefore
regarded as no obstacle.

3.3.4 Configurational Dimension

Another very important aspect in a distributed setting is the configuration which is „the arrange-
ment of members across sites independent of the spatial and temporal distances among them.“
[41, p. 16]

In difference to the previous mentioned dimensions, this dimension is dealing with the location of
team members and not the distance between them. A team of eight people could be split into 21
different configurations like for example 4-2-2 or 3-3-2. This different configurations also include
situations with a concentrated core team being on one site and isolated members being on an other
site. Such isolation decreases the awareness from other team members regarding their actions.
Furthermore, a larger number of sites increases the complexity for coordination and increases
general conflict potential. [41, p. 17]

3.4 Challenges of Distance

There are various aspects of organization within software development and a common approach is
that for an organization in order to function it is necessary to have control and coordination, both
factors driven by communication. Various authors have identified those three aspects and focus on
one or multiple of these aspects, e.g. [8] [48] [9] [10] [11] [49]. Figure 3.4 shows how distance
impedes coordination and control directly (bold arrows), as well as indirectly through its negative
effect on communication.

Agile Development in Distributed Teams 34 / 166



Chapter 3. Distributed Software Development 3.4. Challenges of Distance

3.4.1 Coordination

From a general perspective, a definition of coordination is given by Malone and Crowston stating
that: „Coordination is managing dependencies between activities.“ [50, p. 90]

In the context of software development, Wiredu [51] names people, processes, information and
technology as the four core dimensions of distributed development, and states that success de-
pends on the adequate coordination of those dimensions and the interactions between them. [51,
p. 41] He furthermore defines coordination in distributed software engineering as „managing in-
terdependencies, uncertainties and equivocalities, conflicts, technology representations, and their
interrelations.“ [51, p. 38-39]

Viewed from a management perspective, coordination is the process of integrating tasks with or-
ganizational units, to enable those entities to contribute value to the all-up objective. This process
of integration commonly requires steady and intense communication. [9, p. 23]

Traditional, co-located software development teams have built up ways of coordinating work, team
members have often a shared view on the ongoing process. Frequent interactions, formal as well
as informal, it is often clear who possesses certain expertise and where responsibilities are located.
The flow of information is free and strengthened by many informal interactions, be it joint meals
or random encounters and chats on the hallway. Based on prior collaborations there is a built up
relationship between individuals which helps preventing misunderstandings and supports resolv-
ing arising problems. In a distributed environment, many of those mechanisms of coordination are
disrupted or completely absent. Less (effective) communication, lack of awareness and incompat-
ibilities (e.g. processes, tools or work habits) are very common aspects of distributed teams that
interrupt coordination mechanisms. [52]

Ovaska, Rossi, and Marttiin [53] state that especially in a multi-site development environment
coordination is vital to success but hard to achieve. It is not enough to coordinate activities but
it is necessary to also coordinate the independencies between different activities. They propose
that the participants in their studies coordinated development work by using interfaces meaning
that the software architecture is used for coordination and generally they emphasize the impor-
tance of formal as well as informal communication to maintain a constant awareness and common
understanding of a systems architecture and the current activity on other sites.

3.4.2 Control

Controls are generally defined as mechanisms to encourage individuals to act in ways that support
objectives of organizations. They are forms of endeavors a controlling entity influences the be-
havior of a controlled individual, where both - the controller as well as the controlled - may either
be single individuals or groups. Furthermore, control is grouped into two basic categories: formal
and informal control. [54, p. 28]

Formal controls are clearly defined guidelines, in a project management environment examples are
deadlines for deliverable, acceptable error rates, schedules or budgets. These formal specifications
can also be used to measure the performance of individuals and the results can be used to reward
individuals for meeting certain goals amplifying the level of control. [55, p. 140]

Informal control can be split into clan control which operates through dynamics of members within
a team. The impact depends on the level of how strong individuals identify themselves with the
team and share equal values and commitment. The second aspect of informal control is self-control
which is generally based on the idea of intrinsic motivation. Using objectives that apply to specific
individuals, allowing them to operate independent from each other and therefore rewarding them
based on their individual performance. [55, p. 141]

Agile Development in Distributed Teams 35 / 166



Chapter 3. Distributed Software Development 3.4. Challenges of Distance

When looking at the control aspect in the context of agile development teams, it can be seen that
the self-organization (as described in Section 2.3.1) aspect taps into intrinsic motivation of team
members. This means that within a self-organized team the commitment of individuals towards
the project goal can rise due to individual motivations and allegiance towards a mutual goal. [1, p.
216]

3.4.3 Communication

Communication - serving as the coupling factor between coordination and control - is the exchange
of information between a sender and a receiver with the goal of reaching a mutual understanding.
[9, p. 23]

This can also be seen in the definition of Allen and Henn [45] who distinguish three types of
communication, each serving a specific purpose.

Communication for coordination exists nearly everywhere since there has to be some form of
communication to direct coordination and to exercise control. [45, p. 28]

Communication for information is responsible for transferring and transforming existing knowl-
edge. The importance of these "keeping up-to-date"-factors is proportional to the pace of
change within a given field.[45, p. 28]

Communication for inspiration differs from the previous type in the way that it actively creates
knowledge and is very important in fields that require creativity for solving problems. This
type of communication is often happening impromptu and between individuals working in
different areas or projects and therefore often concedes new and uncommon mixtures of
ideas. But that means that it also has to cross boundaries within an organizational structure
which is often an obstacle. Due to these uncertain factors it is hard to predict and therefore
the type that is most difficult to manage. [45, p. 28]

Ågerfalk et al. [10] put the first three dimensions of distance in relation to those challenges and
created a matrix showing the impact on each other, shown as a summary in Figure 3.5.

Conway’s Law

„The basic thesis of this article is that organizations which design systems [...] are
constrained to produce designs which are copies of the communication structures of
these organizations.“ [56]

This statement from an article authored by Marvin Conway in 1968 became known as Conway’s
law and is one of the first recognitions that communication and coordination patterns of a project
team have an impact on the resulting product. While sounding very logical it should be noted that
although called "law" it is more of a hypothesis. There is some evidence supporting Conway’s law,
like a study from MacCormack, Baldwin, and Rusnak [57] stating that they found „strong evidence
to support the mirroring hypothesis. In all of the pairs we examine, the product developed by
the loosely-coupled organization is significantly more modular than the product from the tightly-
coupled organization.“ [57, p. 2] But there are also those who doubt its general validity, for
example van Solingen argues that it’s logical that teams tend to organize the architecture of a
system based on the teams situation and distribution, which he says is a bad thing to do, because

Agile Development in Distributed Teams 36 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

Figure 3.5: Framework of issues in distributed development [10]

„architecture is not there to serve the teams, architecture is there to serve the end user.“ [43, min.
25]

One repeatedly mentioned issue in the context of Conway’s law in a distributed setting is, that
teams tend to split up the software they build into separate parts to reduce communication and
coordination needs while developing those components. The problems then arise in the integration
phase when the built components need to be put together, one reason is for example incomplete
specifications leading developers to make personal different assumptions about other components.
[58, p. 88] This is also mentioned by Ovaska, Rossi, and Marttiin [53] who study the usage of
architecture as a coordination tool and reported that in the multi-site development „there were
several coordination problems in the implementation of the final system.“ [53, p. 243]

3.5 Communication in Distributed Teams

3.5.1 The Importance of Communication

It can be seen that communication is one of the most essential aspects of agile teams, interaction
between team members is one of the first things that comes up in the agile manifesto (as described
in Section 2.2). Furthermore the agile values (discussed in Section 2.2.1) are even more specific
in this regard. They state that developers and business people have to collaborate on a daily
basis (4th principle), that the most effective way of building a product is through face-to-face
communication (6th principle), that teams have to be self organized (11th principle) - and as
discussed in Section 2.3.1 self-organized teams strongly rely on frequent informal communication

Agile Development in Distributed Teams 37 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

Factual Information

A
ppeal

Relationship

Message

S
el
f-r
ev
el
at
io
n

Sender Receiver

Figure 3.6: Four sides of a message, adapted graphic from [60, p. 33]

- and also on feedback (12th principle) to keep improving. In summary four of the 12 principles
have a direct reference to communication aspects.

3.5.2 Communication Theory

Before investigating the different ways of distributed communication with their potential benefits
and drawbacks, it is important to discuss some basic communication theory. „One cannot not
communicate“ is the first axiom of communication from Watzlawick, Helmick-Beavin, and Jack-
son [59]. It states it states that every behavior is simultaneously communication, and as it is not
possible to not act it is also not possible to not communicate. The second axiom says that every
communication has a content as well as a relationship aspect, and that the latter classifies the for-
mer. This work, together with additional approaches of other psychologist led Schulz von Thun
[60] to the creation of the Four-Sides model of communication. [60, p. 13-14]

Four-Sides Model

The Four-Sides model from Schulz von Thun is a very famous model of interpersonal communi-
cation and consists of three basic elements:

The sender is the entity that wants to communicate something, it encodes its concern in perceptible
signals, called the message. On the other end is the receiver of that message who resides with the
task to decode the message. The message itself is a very complex entity, it contains not just one
directive but multiple different ones. The message is divided into four different aspects, that are all
open to interpretation and may lead to differences between the sender and the receiver. To better
explain the different aspects of the message, Schulz von Thun provides the example of two people
within a car, where person A is the driver, and person B is the co-driver. B then says to A: "The
traffic light in front of us is green!" [60, p. 27-33]

The factual information aspect contains facts and data and is normally rather clear. In the driv-
ing example given above this aspect contains information about the traffic light - it is show-
ing green. [60, p. 28]

The self-revelation aspect says that in every message there is not just the raw factual information
but it also contains information about the sender. This self-revelation consists of two sides,
first the information that is willingly intended self-expression and as a second component it
also contains unintended self-revealing. [60, p. 29]

Agile Development in Distributed Teams 38 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

The relationship aspect covers the relationship between the sender and the receiver and is often
contained in things like phrasing, intonation and other nonverbal signals. This aspect is
critical for the receiver because it determines on how the receiver feels treated. Sending a
message always also expresses a certain relationship. The difference to the previous men-
tioned aspect is that in the relationship aspect the receiver is affected personal, while in the
self-revelation aspect the receiver is rather parsing information about the sender. Further-
more this facet also contains two messages, first it tells something about how the sender
experiences the receiver, what he thinks about him. Secondly it contains how the sender
views its relationship with the receiver.

In the driving example the relationship aspect could express that B does not really trust the
driver to drive safely without help. [60, p. 30-31]

The appeal aims to make the receiver feel, think or do certain things. This attempt to reach a
certain goal can either be open or hidden, in the first case Schulz von Thun [60] calls it
advice while in the latter case it is called manipulation. In the case of manipulation the
sender does not refrain from using the other three sides intentionally to amplify the appeal
effect. [60, p. 32-33]

3.5.3 Modalities of Communication

Communication has more to it than just the written or spoken words, a very important aspect is
the nonverbal component of a message. Schulz von Thun [60] names the voice itself, intonation,
pronunciation, facial expression and gestures as example for nonverbal components of communi-
cation. Those channels may give additional information on the original intentions of a message.
[60, p. 37]

Cockburn [31] gives the example scenario of a discussion at a whiteboard and lists the following
communication mechanisms that might be in play and have an influence on the participants:

Physical proximity is the mere fact that people are separated by a few meters from each other.
This proximity allows to detect minimal visual cues like muscle tension or eye movement.

Three dimensionality means that people experience a scene three dimensional: „The parallax
shift of the visual image is lost when the same people talk over a video link, even if they are
similarly close to the camera and screen.“ [31]

Smell may be an unimportant sense to some people but can be very important to many people
especially since it often is a subconscious perception.

Touch in terms of physical contact can have have an impact on communication and is part of a
comprehensive manipulation of personal space and closeness

Sound is on the one hand spoken language where a speaker may for example use certain formula-
tions or metaphors. Apart from the wording itself it are also aspects like the pitch, volume,
pace, emphasis, intonation or pronunciation that can determine the meaning.

Visuals is the aspect of individuals seeing each other. Gestures and body language is a very
important aspect of communication. But not only the image of persons is of importance,
also the way people interact with their environment should be considered. The way a person
draws something on a whiteboard provides information for others: while drawing obvious
things swifter, slowing down or even pausing while sketching can increase awareness for
important parts.

Agile Development in Distributed Teams 39 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

Crossmodality Timing refers to the timed correlation of the previous mentioned modalities. The
argument is that the simultaneous presence of for example seeing someone sketching while
at the same time hearing that person speak can enhance awareness and correct understand-
ing.

Low latency is aiming at the time a message takes from the sender to the receiver. A low la-
tency allows for real-time response so that it is possible to get immediate feedback within
a conversation. This responses include question and answer in real-time to clear out mis-
understandings right away and also the possibility to interrupt and ask for clarification or
express own thoughts immediately.

3.5.4 Media Richness Theory

Media Richness Theory, first introduced in 1984 by Daft and Lengel [61], tried to evaluate different
types of communication channels regarding „their ability to enable users to communicate and
change understanding – their ’richness’.“ [62, p. 1] The basic argument was that depending on
the uncertainty and the level of ambiguousness, certain media types are better suited than others.
Cockburn [31] uses the terms "temperature" as synonym for richness and uses a scale from cold to
hot: „Warmer indicates that more emotional and informational richness gets conveyed. E-mail is
cooler than audio or videotape, and two people communicating face to face is the hottest channel.“
[31]

Dennis and Valacich reviewed the basic idea of media richness and surveyed different media types
regarding the following dimension:

Immediacy of feedback is the degree to which a certain medium allows to get immediate feed-
back, and more generally it is the level of latency within a communication. [62, p. 2]

Symbol variety is the amount of different possibilities how certain information can be expressed
and communicated. This aspect also includes nonverbal aspects that are mentioned in 3.5.3.
[62, p. 2]

Parallelism is referencing to the amount of conversations that can exist simultaneous. A tradi-
tional medium like a telephone can only support one conversation effectively at a time. [62,
p. 2]

Rehearsability is the ability to fine tune a message before sending it.[62, p. 2-3]

Reprocessability describes the extent to which it is possible repeat and review a message. [62, p.
3]

Figure 3.7 from Dennis and Valacich [62] examines selected media types regarding their capabil-
ities in the listed richness dimensions. It is noticeable that one medium posses different levels of
capabilities, depending on its usage and configuration.

It can be seen in this table that no medium has the best score in all dimension which means that the
answer on the question which medium is the "best" is always depending on the situation and which
of the dimensions is of most importance. Dennis and Valacich [62] conclude that in contrast to the
original idea of Daft and Lengel [61] media cannot be simply ranked in order of richness and that
such a classification is not practical. Furthermore, they argue that „choosing one single medium
for any task may prove less effective than choosing a medium or set of media which the group
uses at different times in performing the task, depending on the current communication process.“
[62, p. 9]

Agile Development in Distributed Teams 40 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

Figure 3.7: Capabilities of selected media in Richness dimensions [62, p. 3]

3.5.5 Remote Communication

When distributed, a team faces several communication obstacles but as discussed in the introduc-
tion of this Section, communication is a vital part of agile teams. Within recent years the amount
and quality of possibilities for communicate over distance have rapidly increased, and it is ab-
solutely necessary for distributed team to find and use suitable ways of communication. To be
successful requires the utilization of the right tools for the specific situation and team. Thissen
et al. analyzed what tools different teams used and summarized different types with examples,
shown in Figure 3.8. [12, p. 29]

Video Conference

Though it may seem that seeing each other on a video link may be nearly the same as a real face
to face conversation, it still has not the same effect. First, it is the simple removal of several
communication modalities listed in Section 3.5.3, namely: Physical proximity, touch, smell and
also the perception of three-dimensionality. [31]

Further challenges regarding video conferencing are mentioned by Woodward, Surdek, and Ganis
[13, p. 104] :

„This approach needs added hardware as each location joining the video conference
will need a webcam. To be able to conference multiple video streams at the same time,
the team may also need extra software. There may be software and bandwidth limi-
tations as well, which could cause problems with the video feed. The other challenge
is when there are multiple participants in one of the video streams— where should
the focus of the webcam be? When only focusing on the current speaker, the remote
participants will lose any nonverbal reactions of other participants at that location.
When focusing on a larger group at a location, it may be difficult to see everyone.“

Audio Conference

Removing visuals simultaneously removes a lot of cross-modality timing. Furthermore, the re-
moval of visibility within a conversation eliminates a lot of non verbal communication aspects.[31]
Also actions happening in one place cannot be noticed by remote participants being it gestures or
actions like handing out papers or passing objects. [27, p. 30]

A general problem with audio transmission in conferences is the aspect of properly hearing and
being heard. A conference where multiple people sit gathered around a table with a speaker and
microphone in the center it can be difficult to clearly understand speakers. Although sounding like

Agile Development in Distributed Teams 41 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

a minor aspect, audibility is quite a relevant factor and a lot of meetings turn out to be ineffective
due to poor perceptibility. Another common obstacle, especially for fresh formed teams is to iden-
tify who is currently speaking, due to the absence of a lot of communication aspects individuals
have to put a lot of focus on the sheer voice of others. This problem can be reduced by either ev-
eryone identifying themselves before speaking or using technology that helps with identification
of speakers. [27, p. 30]

Cohn [1] also mentions this issue of identifying the speaker and suggests to speak one’s name
always when starting to talk but he also states that with such a method „calls seem to take longer
with all the "This is Mike..." prefacing that occurs. Also, during a rapid or heated discussion, it is
very hard to remember to start each statement that way.“ [1, p. 378] Therefore he reports another
approach he learned:

„One team I worked with found an interesting nuance that improved upon this speak-
your-name-before-you-speak approach. Team members called the technique “low fi-
delity videoconferencing” and often preferred it to regular videoconferencing because
of the inevitable problems and delays with that equipment. Low-fidelity videoconfer-
encing involved one person in each city who had a good ear for different voices hold-
ing up a photo of whoever was speaking at the remote location.When Sonali starts
talking, someone holds up her photo. When she finishes and Manish starts talking,
his picture is held up instead. Photos of each person had been taken in advance and
were taped to rulers, making it easy to quickly hold up the right picture.“ [1, p. 378]

Side conversations are a fundamental nuisance in remote communication situations, limiting and
preventing them is therefore a very important aspect. Apart from the previous mentioned prob-
lems, side conversations are further distracting people both the co-located people talking to each
other and missing out information as well as remote participants who get distracted. A responsible
organizer has to watch out for such occurrences and limit side conversations or postpone items
that are unrelated and to make sure that everyone on the team feels included and that there is no
location dependent grouping that excludes individuals from other sites. Getting mutual agreement
is also different in an audio based conversation, asking if everyone has understood a certain aspect
or is supporting a decision will often result in a chorus of "yes" answers, maybe drowning a single
"no" answer. Therefore it is even more important to pay attention to effective phrasing to avoid
missing out single responses. [27, p. 33]

Text based Communication

By removing voice from a communication „you lose vocal inflection, the ability to pause for effect,
to check for interruptions, to speed up or slow down to make a point, to raise your tone or volume
to indicate surprise, boredom, or the obviousness of the transmitted idea“ [31, Chapter 2]

Relying strongly on text based communication also may have an impact on leadership as sug-
gested by Tyran, Tyran, and Shepherd [63]: In co-located teams where face to face meetings
are the standard way of interaction, vocal and assertive team members tend to dominate a group
whereas virtual teams are „more likely to have emergent leaders who are skilled at facilitating and
motivating through the written word rather than those who command the leadership role through
a dominating vocal or physical presence“ [63, p. 189]

Agile Development in Distributed Teams 42 / 166



Chapter 3. Distributed Software Development 3.5. Communication in Distributed Teams

Figure 3.8: Tools for distance communication and information exchange [12, p. 30]

Agile Development in Distributed Teams 43 / 166





Chapter 4. Agility in a Distributed Environment

4 Agility in a Distributed Environment

„To encourage software development as a craft and a business through the next fifty
years, I hope that programmers everywhere will accept the challenge of producing
much more valuable software. I believe the expanding market will more than make
up for losses in any one location because of increased efficiency and multi-site devel-
opment.“ [30]

4.1 Agility in a Distributed Setting

While, as discussed in Section 2.3.2, co-location is important in agile teams with the increased
numbers of distributed teams and advances in technology, a lot of agile literature states that, while
being not an ideal situation, distributed teams can also benefit from using agile methods.

„The values of XP are just as suited to multi-site development as they are to teams
that sit together. Embrace feedback more tightly because of the natural isolation cre-
ated by distance. Nurture communication more because of the unavailability of face-
to-face, full-spectrum interaction. You’ll have to work harder to achieve simplicity
because you won’t have as many chances for serendipitous discovery of excess com-
plexity. Courage is just as important as it is in any other setting. Respecting everyone
on a distributed team is even more important because of differences in culture and
lifestyle.“ [30, p. 149]

But Beck and Andres [30] also states that that some practices will have to be adapted for distributed
teams. Some aspects have to be increased in frequency or intensity to make up for the distance
between the team members.

As already mentioned in Section 3.4, Ambler [34] did a survey on agile development in 2008
where he differenced between co-located teams, near-located teams and far-located teams. The
results showed that while the success rate of agile teams that are co-located is at 83%, the success
rate of not co-located teams is still at 72%. Another substantial drop in success can be seen in the
far-away teams which just reported a success rate of 60%.

4.1.1 Impact of the Team Size

Traditionally, agile methods encourage to have small, cross functional teams. This aspect is also an
important aspect of distributed teams, smaller teams are better at coordinating themselves without
the need of formal coordination mechanisms [64]:

„Compared to members of larger teams, we found that members of smaller teams
participated more actively on the team, were more aware of the goals of the team, were
better acquainted with other team members’ personalities, work roles and willingness
to communicate and reported higher levels of rapport.“ [64]

Agile Development in Distributed Teams 45 / 166



Chapter 4. Agility in a Distributed Environment 4.2. Reasons to use Agile Methods

Figure 4.1: Types of distributed team organization [65]

4.2 Reasons to use Agile Methods

„A common misconception is that Scrum is not a good fit for a geographically dis-
tributed team. Scrum’s preference for face-to-face communication, the argument
goes, makes it a poor choice for distributed teams. Fortunately, this argument is false.“
[1, p. 355]

Van Solingen [43, min. 6] argues that the main problems with distributed development are issues in
coordination, control and communication, as discussed in Section 3.4. He further brings forward
that for example Scrum, or agile methods in general are used to fix those problems because agile
methods are especially strong in arranging those three dimensions. So Agility is used to solve the
problems of distribution because it is firmly building on informal communication and informal
ways of coordination and control. He furthermore argues: „I see lots of advantages with using
Scrum in a distributed setting because Scrum is exactly solving those points which are weak in a
distributed setting.“ [43, min. 7]

4.3 Distributed Scrum

4.3.1 Distributed Organization

Depending on the team situation, distribution can be handled in different ways, Sutherland et al.
[65] list three possible constellations, depicted in Figure 4.1. Starting with a completely isolated
model the overlap and interaction between teams increases with each model.

Type A: Isolated Scrums In this model, the team in each location is independent and teams are
working independent from each other without cross location collaboration. This approach is
basically trying to solve the problem of distribution by avoiding it - creating teams that are
co-located to apply Scrum in a way it is originally intended. But separating the local teams
as much as possible simultaneously also dismisses the benefits of having people in different

Agile Development in Distributed Teams 46 / 166



Chapter 4. Agility in a Distributed Environment 4.3. Distributed Scrum

locations. If the expertise of one person is needed in another location it is still necessary to
find a compromise and a way of distributed collaboration. [13, p. 12]

Type B: Distributed Scrum of Scrums This second model also focuses on creating separate teams
on each location but with the difference that those teams use a regular Scrum of Scrums for
coordination between the different locations. This would be applicable for a situation where
different teams integrate create deliverables that are then integrated into an overall prod-
uct. The Scrum of Scrums meeting should be held daily (in contrast to the recommendation
mentioned in Section ). Another difference is, that there is a fourth question added as a is
proposed as addition to account for the distribution: „What blockers might you be throwing
into another team’s way?“ [13, p. 12-13]

Type C: Totally Integrated Scrums In this third model a Scrum team has members from multi-
ple locations. Such a setting also utilizes a Scrum of Scrums meeting to coordinate between
different teams and in generally needs a high amount of remote communication and col-
laboration. [13, p. 13-14] Furthermore it is strongly relying on the Daily Scrum meetings
which help reducing cultural barriers and discrepancies in work styles. So, while seemingly
creating coordination and communication burdens, Sutherland et al. [65] state that: „The
virtual nature of this approach provides location transparency, which creates performance
characteristics similar to a small co-located team.“

Choosing the right Organization

Selecting the right organization for a new project is a challenging task and always depending on the
situation. Woodward, Surdek, and Ganis [13] recommend that „Individual Scrum Teams should
aim to have the lowest distribution level possible.“ [13, p. 51] They argue that whenever possible
it should be strived to create co-located teams who work on independent features.

On the other hand, it is mentioned that IBM uses the approach of totally integrated scrum teams
successfully in a globally distributed setting. [13, p. 13-14] Also van Solingen [43] favors this
variant, he argues that this is the best practice when multiple teams are working on the same
system. He states that this way „you bring the distance within the team. And when you put the
distance in the team people will work together. And they are trying to solve problems because let’s
say they are dealing with the total problem.“ [43, min. 28] But he also points out that in situations
where it is possible to co-locate team members that should be the way to go for.

Also Sutherland et al. [65] point to similar direction, they state that instead of creating a complete
isolation between teams it is better to at least have some overlap between the teams as in a type B
organization: „This makes teams feel more co-equal and encourages communication, cooperation,
and cross- fertilization.“ [65]

Team size is especially in a distributed setting a very important factor, and it is strongly endorsed
to keep the amount of team members below ten members, teams greater than nine people should
contemplate splitting into smaller teams. Smaller teams in general reduce the amount of commu-
nication lines needed to keep everybody updated and integrated. [13, p. 51]

Proxies

In distributed teams there are sometimes individuals or organizations that partially take the role of
somebody else. This may sometimes be unavoidable but generally the use of proxy roles should
be avoided as argued by Smite, Moe, and Gerfalk [8]: „This has in most cases we have discussed
turned out to be a bad practice; an anti-pattern which we strongly discourage. It leads to reduced

Agile Development in Distributed Teams 47 / 166



Chapter 4. Agility in a Distributed Environment 4.3. Distributed Scrum

empowerment of the offshored resources and too much information being lost in the communica-
tion.“[8, p. 308]

4.3.2 Starting a Distributed Scrum Project

The very first step when starting a new Scrum project is to set up the team and artifacts. The way
the Scrum team and the artifacts are set up, influences all further processes.

Backlogs

The Product Backlog is an essential artifact in Scrum and as already mentioned the basic rule is
that there is just one single Product Backlog. But having multiple teams across different locations
sometimes leads to a modified administration.

Single Product Backlog If the distribution and team size allows it, the best way would be to
have all members work together as one single Scrum team having one single Product Backlog as
well as one single Sprint Backlog. Since the Sprint Planning meeting requires everyone on the
team being present this can become challenging depending on the level of distribution. If there are
multiple Scrum teams working on the same project, each team will have its own Sprint backlog
but it is still strongly recommended to have one single Product Backlog if possible. [13, p. 52-53]

Single Sectioned Product Backlog Another approach in a situation with two or more teams
would be the Product Owner dividing the Product Backlog into multiple sections that outline
which work items are assigned to each team. Within this section the items are then worked on by
the different teams according to their priority. [13, p. 53-54]

Separated Product Backlogs This approach is working for products that have multiple sepa-
rated components which are appointed to different teams. Here each team has an own Product
Backlog assigned which are derived from one overall Product Backlog picturing the overall prod-
uct. This procedure allows more freedom and independence within the teams but also increases
risks when it comes to the integration of the different pieces. The interdependencies have to be
planned ahead and be thoroughly discussed in the Scrum of Scrums meeting. [13, p. 54-55]

Independent from the structure of the Backlogs, in a distributed environment it is inevitable to
use a digital tool for managing and maintaining the Backlogs. In Practice there are multiple tools
available, on the one hand there are solutions specific for managing Backlogs like Scrumworks 1

or Agilefant 2, or full project management suits that include such functionality, like Jira 3. [8, p.
273]

Product Owner

The Product Owner role stays the same in distributed teams, but may face additional challenges
regarding coordination of the different team members work. [13, p. 12-13]

1 http://www.collab.net/products/scrumworks
2 http://www.agilefant.com/
3 https://www.atlassian.com/software/jira

Agile Development in Distributed Teams 48 / 166



Chapter 4. Agility in a Distributed Environment 4.3. Distributed Scrum

Also van Solingen [43] does not recommend to have multiple product owners, he argues that there
can just be one product owner in a Scrum team and that putting product owner proxies is more a
way of avoiding problems rather than solving them since it is postponing feedback which slows
down the whole development process. [43, min. 32-33] This argument is similar to the general
argument on proxies from Section 4.3.1, but especially discouraged when it comes to the role of
the Product Owner.

Sprints

Generally the application of Sprints in a distributed team does not differ in many ways from the
application in a co-located team. But in contrast to a co-located Scrum team, where a typical
Sprint may be as long as four weeks, in a distributed team the Sprint length sometimes tends to be
shorter. But since setting up meetings is naturally more complex a to short Sprint time may also
be tedious. A practical tip from Smite, Moe, and Gerfalk [8] is to not have Sprints shorter than
two weeks and also to arrange co-located sprints at the start of a project. [8, p. 266-268]

Paasivaara, Durasiewicz, and Lassenius [66] performed a case study on three distributed develop-
ment projects utilizing Scrum. Regarding the Sprint they stated that: „Due to short sprints, clear
deadlines and goals it was quite clear for all the team members in our case projects what was
supposed to be done during the next sprint“ [66, p. 199] Short Sprints in general increase trans-
parency within a distributed project, particularly off-site team members benefit a lot since through
the frequent interactions and updates they are kept up to date and generally get more involved.
[66, p. 199]

Another case study of a very successful Scrum project reported a two weeks Sprint length. [65]

4.3.3 Daily Scrum

In a distributed team the principle of the Daily Scrum meeting does not differ from its application
in a co-located team. The whole team gets together once a day to discuss the three Scrum questions
(already mentioned in Section 2.4.4) in a roughly 15 minutes lasting meeting. But discussing these
questions in a distributed meeting can be very challenging. One very important thing, especially
relevant in a distributed setting, is to make sure every team member understands the reason of the
meeting and understands the three questions. One common mistake is team members giving a
status report which is not the basic intention of the Daily Scrum, it should not be mistaken as a
status meeting. Its purpose is rather to provide a setting where the whole team gets together and
team members mutually try to help identify and solve issues. The key point is to communicate
value adding information which helps the team as a whole to make progress. [13, p. 98-99]

Another very important factor is to keep every member committed to team which is also one of
they effects of the Daily Scrum:

„The Daily Scrum meeting is where team members make a verbal commitment to the
team. When they state what they are going to do today, they are making a verbal com-
mitment to the rest of the team. The next day, when they state what they did yesterday,
it is an opportunity for the rest of the team to confirm they met their commitments.“
[13, p. 100]

This aspect creates peer pressure within the team on two fronts: First it encourages individuals to
complete work that is impeding progress of others and secondly it creates a liability towards the
team when one continually fails delivering promised tasks. [13, p. 100] This aspect is important

Agile Development in Distributed Teams 49 / 166



Chapter 4. Agility in a Distributed Environment 4.3. Distributed Scrum

in the context of the control challenge in distributed teams (discussed in Section 3.4) because the
created liability poses a form of self-control within a team.

Logistics

The Daily Scrum is a short meeting that does not need much accessories, accordingly it can be
conducted via different media. Most recommended is of course a face-to-face meeting if possible.
In a distributed team this is normally not possible, therefore it is usually applied as mixture: Those
people that are within range meet personally in the same location and the remote members are
joined via text, audio or video communication. But using remote communication techniques often
introduces a lot of issues and disturbances as discussed in Section 3.5.5.

But there are some adaptions and arrangements that can be made to alleviate those issues. Since
the Daily Scrum is a recurring event it can be very helpful to create a steady arrangement for
joining and conducting the meeting. One very important point is to always use the same telephone
line or meeting infrastructure, this creates a routine for each team member and therefore makes it
a lot easier to dial into the meeting. [13, p. 105]

One way of conducting the Daily Scrum is using a group instant messaging software where all
team members join a group chat and answer the three Daily Scrum questions. Beside the obvious
disadvantages like the further loss of communication channels, this approach also brings some
interesting options. The most evident benefit derives from the used medium and the fact that all
communication is written: The discussed points are automatically conserved and it is very easy
to create transcripts from that chat session which can be sent to each team member by the Scrum
Master. Such notes assist in keeping track of individual commitments and furthermore provide
absent team members the possibility to review discussed tasks and issues.

The conduction of the chat session itself can become chaotic if every participants just post answers
when they feel ready. The Scrum Master then has to sort through all messages and has to organize
the different answers. Furthermore it is quite difficult to follow and hard to ask subsequent ques-
tions. A better approach would be to execute it similar to the co-located or audio based meetings,
where there is a designated order for each participant and the Scrum Master sequentially asks
everyone for his answers. [13, p. 105]

Another aspect is the tooling, physical boards do not work in distributed teams since remote team
members do not have access to them. In distributed agile teams it is therefore necessary that the
applied tools (see Section 2.4.5) are accessible by all team members. Operating the right tools
is a vital success factor for distributed teams: „Tools enable team members to sketch their ideas
on a virtual whiteboard. And today’s development tools enable anyone anywhere to view work
requests, view status of work, identify defects, and more.“ [13, p. 7]

4.3.4 Effective Collaboration

„Remember that agile teams value working software over comprehensive documen-
tation. Being a distributed team is not a good reason to invest significant cycles in
comprehensive documentation throughout the Sprint. For collocated and distributed
teams, the best way to transfer information to a new member is software code and
team discussions; however, distributed teams are likely to need to rely more on docu-
mentation to communicate.“ [13, p. 122]

The documentation mentioned here is meant in terms of strictly defined documents that have to
be created but is rather referring to the increased use of email and other written communication

Agile Development in Distributed Teams 50 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

systems that provide ah higher level of communication possibilities. This kind of informal docu-
mentation allows the building and preservation of mutual understanding.

Many teams use online chat systems as a basic communication technology that is used for com-
munication but also has a documentation characteristic. Although agile values put individuals and
interactions over processes and tools, using the right tools is a vital aspect of successful collab-
oration in distributed teams, since they often are the intermediate enables useful communication,
Woodward, Surdek, and Ganis [13] entitle this as documentation to overcome distance. [13, p.
123]

4.4 XP

4.4.1 Introduction

Beck and Andres [30] states that XP is also suited for distributed teams, but such a situation poses
the challenge of „applying XP’s values, principles, and practices outside their “sweet spot,” the
small team sitting together.“ [30]

„The values of XP are just as suited to multi-site development as they are to teams
that sit together. Embrace feedback more tightly because of the natural isolation cre-
ated by distance. Nurture communication more because of the unavailability of face-
to-face, full-spectrum interaction. You’ll have to work harder to achieve simplicity
because you won’t have as many chances for serendipitous discovery of excess com-
plexity. Courage is just as important as it is in any other setting. Respecting everyone
on a distributed team is even more important because of differences in culture and
lifestyle.“ [30, p. 149]

Regarding the practices Beck and Andres [30] argues that they may have to be adopted in a multi-
site project but teams should not abandon practices just for the reason that they seem difficult.
Also some aspects become even more important as for example maintaining a single code base
as a connection point between the different locations. The following sections will discuss various
practices that are deemed especially important in a distributed team and how they are applied in
such situations. [30]

4.4.2 Distributed Pair Programming

„Write all production programs with two people sitting at one machine. Set up the
machine so the partners can sit comfortably side-by-side. Move the keyboard and
mouse back and forth so you are comfortable while you are typing. Pair program-
ming is a dialog between two people simultaneously programming (and analyzing
and designing and testing) and trying to program better.“ [30, p. 42]

This is how Beck and Andres [30] describe pair programming, which is a very well known prac-
tice in agile teams. Pair programming requires good communication and collaboration between
two individuals, normally one person has the role of the driver who is in charge of the keyboard
and implements code. The second person is called the observer or navigator and is continually
reviewing the code and watches out for logical or syntactic errors. [67, p. 2]

Agile Development in Distributed Teams 51 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

There exist various scientific literature about the effectiveness of pair programming activities,
and while they vary in their result, a recent meta-analysis on pair programming stated in their
conclusion that:

„However, with respect to the central factors expertise and task complexity, the cur-
rent state of knowledge suggest that pair programming is beneficial for achieving
correctness on highly complex programming tasks. Pair programming may also have
a time gain on simpler tasks. By cooperating programmers may complete tasks and
attain goals that would be difficult or impossible if they worked individually. Junior
pair programmers, for example, seem able to achieve approximately the same level of
correctness in about the same amount of time (duration) as senior individuals.“ [68,
p. 1120]

If two people are geographically separated they obviously can not sit together on the same physical
machine, they instead have to use tools to collaborate virtually. This Distributed Pair Programming
(DPP) as Stotts et al. [69] defined it is: „that two members of the team (which may consist solely of
these two people) synchronously collaborate on the same design or code from different locations.
This means that both must view a copy of the same screen, and at least one of them should have
the capability to change the contents on the screen.“ [69, p. 130]

Tools

The authors of a study from 2002 [69] suggest that an infrastructure for distributed pair program-
ming should support (or at least are desirable to have) the following functions and characteristics:
[69, p. 133]

• Remote desktop sharing

• Program Sharing

• File Transfer

• Session Security

• Audio Conferencing

• Whiteboard

• Textchat

Beside the basic need like a shared screen and audio communication Silva Estácio and Prikladnicki
[67] suggest that the following requirements should be fulfilled by tools used for DPP [67, p. 7]:

Shared Repository: Distributed team members should access and manipulate the same files.

Support specific roles To improve the coordination between the pairs, tools should support the
different roles (e.g. observer and driver) and their interactions

Gesturing Screen sharing or video conferencing tools often do not support any possibility to point
out specific things or aspects, the only way to advert to something is verbally (e.g. "here in
the first line"). Non verbal ways of pointing to certain information are remote cursors (also
in [70, p. 532]).

Agile Development in Distributed Teams 52 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

Which tools to use specifically varies strongly, in general there are two different approaches: Us-
ing special purpose tools that are tailored for DPP or use general tools for screen sharing and
text/audio/video communication.

Special purpose tools offer a better user interface, especially concentrating on the aspect of col-
laboration. Such tools may provide multiple view options depending on the role of the user, or
allowing simultaneous editing of documents while also keeping it consistent. But software devel-
opment is a very complex task and often requires a lot of different tools and setups. Furthermore,
most developers have personal preferences of tools they like to use and limiting to using just those
tools that support remote collaboration limits that variety a lot. Another drawback is that due to the
complexity and variety in modern programming languages and code writing characteristics such
tools may fail in providing all the necessary features that are needed to solve particular problems
efficiently. [70, p. 532-533]

Examples of such tools can be found in [70] or [67], some selected examples are listed below:

• Moomba was a collaborative environment developed for distributed XP and included an
editor that allowed simultaneous editing of a shared file. [71]

• COPPER was a collaborative editor designed for DPP [72].

• XecliP was a plugin for Eclipse4 that aimed at providing DPP support. [73]

Shared desktops on the other hand do not limit that selection variety. By replicating the screen
(or just certain applications) to another remote team member it is possible to use any single user
software. The main disadvantage of such tools is on the other hand that they inherently are not
built for the specific purpose of DPP and therefore commonly do not offer specific functionality
for such utilization. [70, p. 532]

The selection of the right setup is a very important aspect and critical to the success of DPP,
Canfora et al. state that „one major reason of the dismissal of the pair and, consequently, of the
deterioration of the pair programming effectiveness, is the lack of an appropriate platform.“ [74,
p. 21]

Potential Benefits

A study [69] performed in 2002 used an infrastructure consisting of several tools and based around
shared desktop software like NetMeeting (Microsoft) and pcAnywhere (Symantec). They exam-
ined four groups each consisting of two people. The team members were separated by 30 miles
apart from each other and two of those groups used DPP while the other two did not. Their re-
sults reported that the teams using DPP created 70% more unit test cases compared to the other
groups, while also completing the given tasks in a lesser amount of time. The authors of the study
finally concluded that they „have further suggestive evidence that the synchronous paired teams
performed better than the non-paired teams.“ [69, p. 134]

A case study [75] performed with students at an American university compared four types of
pairs: co-located pairs that used pair programming, co-located pairs without pair programming,
distributed pairs using pair programming and distributed pairs without pair programming. The

4 Eclipse is a wide spread open source IDE, see https://eclipse.org/

Agile Development in Distributed Teams 53 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

study concluded that „software development involving distributed pair programming is compara-
ble to that developed using collocated pair programming or virtual teams without distributed pair
programming. The two metrics used for this comparison were productivity (in terms of lines of
code per hour) and quality (in terms of the grades obtained).“ [75]

Furthermore they reported that co-located teams did not accomplish significantly better results
and that the utilization of DPP had a positive impact on teamwork and communication between
the distributed team members.

Another study from Canfora, Cimitile, and Visaggio [76] used screen sharing and text messaging
for communication. The lack of voice communication was noted by the test subjects and hence it
is not surprising that 75% of the participants reported that they found finding an agreement during
DPP more difficult than in a co-located scenario. But yet still 100% agreed that DPP improves
communication and teamwork within a distributed team. The conclusion of the study suggested
that is is important to make individuals familiar with each other and also to establish a behavioral
protocol. [76]

4.4.3 Continuous Integration

In a software project integrating different pieces of work to a bigger project is a very important
aspect and when this is postponed until the end of a project it can lead to various sorts of quality
problem which often lead to delays and increase costs. Continuous Integration (CI) is a practice
that addresses those risks by breaking the issue down into small increments. [77, p. 24]

„Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading
to multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. Many teams find
that this approach leads to significantly reduced integration problems and allows a
team to develop cohesive software more rapidly.“ [78]

Values of CI

Reducing Risks
Duvall, Matyas, and Glover [77] argues that making assumptions in software development
is one of the principal problems as it increases the overall risk within a project. For example,
assuming that configuration files don’t have changed, that parameters of a method are always
right or that third party libraries are still working. CI helps reducing this by rebuilding
software every time there occurs a change in the source code which gives fast feedback to
everyone on the team about what is going on in the project. Since CI integrates and performs
tests several times a day, defects are detected much sooner and therefore can be fixed as soon
as they were introduced.

Furthermore it is possible to track the health of a product over time, by constantly testing
and inspecting the source code it is feasible to collect different health attributes over time.
[77, p. 24]

Reduce Repetitive Processes
Reducing repetitiveness saves costs, time and effort. Be it code compilation, integration of
databases, tests and inspections or deployment - all those aspects of software development
can be automated and thus saving a lot of effort. [77, p. 30]

Agile Development in Distributed Teams 54 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

Deployable Software
This is one of the most obvious benefits of using CI, it facilitates the possibility to release
a deployable product at any time. Even if there are just small changes in the source code,
they are integrated with the code base regularly and it is not necessary to wait for any larger
deployments which may cause delays. [77, p. 31]

Increase Project Visibility
This aspect is especially important in a distributed setting. A CI systems gathers and pro-
vides up to date information on build status and quality metrics or even provide reports on
defect rates and completion statuses of components. Making this data visible to all team
members raises the courage to bring in improvements and raises the overall involvement.
[77, p. 31]

Cost Reduction

Miller [79] reported the utilization of CI in a project (with a duration of 108 working days and a to-
tal of 551 check-ins to the code repository) executed in a distributed team. The estimated costs for
using CI in this project: „associated with checking in and fixing build breaks was approximately
267 hours, 7% of the total effort.“ [79, p. 291]

Furthermore they calculated the costs a hypothetical alternative would have produced. The defini-
tion for that alternative process was:

„For each check-in a developer is required to compile, run all unit tests, the installation
tests, and static analysis tools on a clean build machine. In other words developers
do all the work the CI server is doing before each check-in. This is really the only
alternative directly equivalent to CI in terms of ensuring the same quality of the code
base and product under development.“ [79, p. 291]

Their alternative, very optimistic estimated process would have been a total project overhead of
464 hours. This 200 working hours needed in addition which would be another 5% of the total
effort. In conclusion the report stated:

„The actual cost of using the CI approach on this project was at least 40% less that the
hypothetical cost of a check-in process that doesn’t leverage CI but still maintains the
same level of code base quality. Given the relatively small size of the product being
developed and the low cost of doing a complete build this study actually gives us a
number for the smallest saving likely from deploying a CI process.“ [79, p. 292]

Continuous Feedback

„Getting the right information to the right people at the right time and in the right
way - CI is the best tool for making this feedback automated, targeted, and real-time
(continuous).“ [77, p. 205]

Feedback is one of the major factors in agile teams, it is essential for self organization of agile
teams (as discussed in Section 2.3.1) and agile methods like Scrum use various tools to radiate
information to team members (see Section 2.4.5). Therefore it is quite comprehensible that agile
teams embrace CI as yet another source of feedback and a welcome information radiator.

Agile Development in Distributed Teams 55 / 166



Chapter 4. Agility in a Distributed Environment 4.4. XP

Feedback is also a very important aspect of using CI, without getting fast feedback all the other
aspects of CI become less useful. If a commit breaks a build and the report of this fact is delayed
by hours or even days this prevents taking immediate action that again may prevent further damage
and failures. A relevant factor is to get the right information to communicate, the necessary infor-
mation always depends on the recipient and may include data about the build status, inspection and
test reports and deployment results. Furthermore, the aspect of who receives what information has
to be considered as well, it often is not necessary that every team member receives every available
information all the time. Sending out to many messages can result in a decreased perception and
people tend to miss those notices that are relevant to them. The right information to deliver to
a team member depends on the role he is holding. Project managers tend to be more interested
in information about resource allocation, costs and time. Technical architects on the other hand
may be more interested in quality metrics and developers often are most interested in information
about the code they recently checked into a code repository. [77, p. 205-208] The right time is
often tantamount to as fast as possible since „the heart of continuous feedback is reducing the time
between when a defect is introduced, discovered, and fixed.“ [77, p. 209]

The last thing to consider is the right way to transmit the feedback, depending on the nature of
information, certain mechanisms are better suited than others.

E-mail is the major form of giving feedback in a CI system and sending e-mails can be auto-
mated within most available systems very easily. Also this feedback mechanism is easy deployable
in a distributed team, information can be pushed asynchronously to the right people immediately.
The disadvantage of e-mail is the risk of inundating individuals and the information sent is re-
garded more as annoying spam than as helpful information. [77, p. 210-201]

Ambient Devices are a great way of acquiring some physical representation.Duvall, Matyas, and
Glover name Ambient Orbs5 or more generally the use of devices that can be connected via home
automation protocols. Integrating such non digital systems can also enhance an office environment
and is very convenient since everyone in the room can just glance at it and gets the status of the
latest metrics. [77, p. 214]

Large Monitors can be used to display automated real-time data. [77, p. 217-218] A lot of mod-
ern CI systems include extensions for displaying information on an external screen, for example
Jenkins6 with the "Wall Display Plugin" 7 or Bamboo8 providing a built in "wallboard" feature.

Software that is running on the local machines of team members, that displays information. On
a Microsoft Windows based operating system this could be an icon in the Windows task bar that
displays the current build status. There also exists further software like web browser plugins or
various widgets for different operating systems. [77, p. 217-221]

5 See www.ambientdevices.com
6 https://jenkins-ci.org/
7 https://wiki.jenkins-ci.org/display/JENKINS/Wall+Display+Plugin
8 https://www.atlassian.com/software/bamboo

Agile Development in Distributed Teams 56 / 166



Chapter 5. Case Study

5 Case Study

5.1 Introduction

The previous chapters summarized agile methodologies and practices and examined their appli-
cation in a distributed setting. They presented different research and utilization possibilities from
multiple scientific studies and papers as well as fundamental literature from the authors of the
original agile manifest. Following this literature review, a case study is conducted. The goal is
to gather information from teams that apply agile practices in their daily software development
routine and compare those insights with the examined literature. Generally a case study can be de-
fined as „an empirical inquiry that investigates a contemporary phenomenon (the "case") in depth
and within its real-world context“ [16, p. 16]

This case study will follow the guidelines and suggestions from Runeson et al. [17] which focuses
on conducting case studies in a software engineering environment. While there is a lot of literature
available regarding case studies in social sciences and also in the context of information systems
(IS) that methodology is in some aspects different to the field of software engineering. Case
studies in IS tend to focus more on the usage context and to a lesser extent on the development and
evolution of the system. Generally the term case study is applied in a wide variety of studies and
due to the broad range of activities within software engineering processes it is adjuvant to have a
specific guideline, as stated by Runeson et al. [17] :

„There are clear overlaps with other disciplines, such as psychology, management,
business, and engineering, but software engineering brings these other disciplines
together in a unique way, a way that needs to be studied with research methods tailored
to the specifics of the discipline.“ [17, p. 7]

Therefore, Runeson et al. [17] derived a definition for case study research in the field of computer
science:

„Case study in software engineering is an empirical enquiry that draws on multiple
sources of evidence to investigate one instance (or a small number of instances) of
a contemporary software engineering phenomenon within its real-life context, espe-
cially when the boundary between phenomenon and context cannot be clearly speci-
fied.“ [17, p. 12]

In this thesis the case study is on the one hand of a descriptive nature aiming at „portraying the
current status of a situation or phenomenon“ but also of an exploratory nature, by investigating
how teams tend to adapt certain processes. [17, p. 13-14] Its execution will follow the process
depicted in Figure 5.1 and is divided into five parts.

The first step is to design the case study, determine its structure and define the objectives as well as
the courses of actions that should answer those objectives. This is done in the following Chapter
5.2.

After setting the fundamental objective and the scope of the case study, the next Chapter 5.3
describes the common strategies that are used to collect data, which strategy was chosen in this

Agile Development in Distributed Teams 57 / 166



Chapter 5. Case Study 5.2. Design of the Case Study

Figure 5.1: Structure of the case study

thesis and how it was applied. Additionally it introduces all the interviewed experts which are the
units of analysis in the case study.

After the data has been collected it is analyzed using an empirical data analysis procedure that
adapted from Mayring [80], a known expert in qualitative data analysis. As implied in Figure 5.1
it is an iterative process from data collection and data analysis because new gained insights from
analyzing the first pieces of information can be used to improve the data collection process.

Chapter 6 presents the outcome of the data analysis and reports the different approaches experts
in distributed teams have on the topic of agile software development. Finally Chapter 7 then
summarizes and compares this analyzed and presented data.

5.2 Design of the Case Study

„Software engineering case studies examine software engineering phenomena in their
real-life settings and it is because the phenomena and setting will change during the
study that such case studies require a flexible design, in contrast to for example the
fixed designs of classic experiments.“ [17, p. 23]

The first step is to set up the design of the case study, the main components for a case study
according to Yin [16, p. 29] are:

• Questions of the case study

• Research propositions (if any)

Agile Development in Distributed Teams 58 / 166



Chapter 5. Case Study 5.2. Design of the Case Study

• Units of analysis

• Linking of data to propositions

• Interpretation criteria of the findings

Those components are discussed in the now following sections. One very important note about
defined design choices is that they can be modified when new information gets available during the
data collection process. Revelations during the collection phase can be sometimes very important
and may alter some research design and shift focus of different questions and propositions. Yin
[16] states as an example that: „in a single-case study, what was thought to be a critical or unusual
case might have turned out not to be so, after initial data collection had started, ditto a multiple
case-study, where what was thought to be parallel cases for literal replication turn out not to be
so. With these revelations, you have every right to conclude that your initial design needs to be
modified.“ [16, p. 65]

5.2.1 Objective

The objective of a case study defines what the stakeholders - normally the researcher and perhaps
other industrial participants - expect to get as a result from undertaking it.

The intention for this case study is to gather insight on how teams that are distributed with low
spatial geographical distance and use an agile methodology do apply (and if necessary adapt)
the various agile methods. This gathered information will then be compared to the data of the
literature. Due to the fact that communication technology improved rapidly over the last 10 years
it may also be interesting to see if there are differences between the analyzed literature and the
data gathered within this study.

5.2.2 Units of Analysis

Depending on the formulated research questions that should be answered it is necessary to define
the units of analysis, and the type of the case study. A possible classification is to distinct between
cases and the units of analysis within them. Runeson et al. [17] names „holistic case studies, where
the case is studied as a whole, and embedded case studies where multiple units of analysis are
studied within a case.“ [17, p. 26] Holistic case studies are suited for situations where there are no
different logical units within a context, in a software development environment situations suited for
this type would be the study of individual developers or unit testing. With more complex situations
it is recommended to perform an embedded case study because „such a design anticipates the need
to collect, analyze, and report on complex detail in the case.“ [17, p. 27] Those two types can in
turn be performed in a single- or multiple-case context, resulting in four different types as shown
in Figure 5.2.

For this thesis, the case study is constructed as an embedded single-case study, where the context
is defined as distributed development teams using agile methods and the units of analysis are
different development teams, this constellation is shown in Figure 5.3.

5.2.3 Theoretical Framework

This thesis follows the suggestion from Verner et al. [81] to perform an intensive review of lit-
erature to define a theoretical frame for the case study. The literature review may also provide
additional input for the research questions and the propositions as well as insights on how other

Agile Development in Distributed Teams 59 / 166



Chapter 5. Case Study 5.2. Design of the Case Study

Figure 5.2: Forms of case studies [17, p. 27]

Figure 5.3: Embedded case study: Cases and units of analysis (adapted from [17, p. 27])

Agile Development in Distributed Teams 60 / 166



Chapter 5. Case Study 5.2. Design of the Case Study

research was designed and conducted in that field as well as different measurement approaches.
Therefore it considers previous significant work in that area of study and is used as a foundation
for the following case study:

„A comprehensive literature review and analysis with sufficient breadth and depth
is used to form a solid foundation for the research. Only once an extensive prior
art study has been completed can a researcher successfully identify where additional
contributions are possible.“ [81]

The Chapters 2, 3 and 4 build the foundation for this case study and give an overview of established
literature as well as exploring recent trends and research in the areas of agile software development,
distributed teams and using agility in a distributed setting.

5.2.4 Research Questions

The research questions will be the same as stated in the introduction chapter. They are the central
theme and starting point to investigate the different aspects of agile strategies and their application
in a distributed environment where a team of software developers is not gathered in one physi-
cal place but located in different sites. To be able to investigate this fundamental question the
following four research questions where formulated:

• RQ1: How can agile methods be used in distributed teams (limited to a low spatial and time
dispersion)?

• RQ2: To what extent have the principles of agile methods be adopted to be applicable in
such a distributed setting?

• RQ3: Which challenges have to be faced utilizing agile methods and how can those issues
be handled?

• RQ4: Which benefits result from pursuing agile methods in such a distributed setting?

5.2.5 Study Propositions

Propositions are derived from the research questions, and „are more specific ’implementations’ of
research questions, providing further detail and structure to the inquiry.“ [17, p. 31] Propositions
also have the benefit of better defining the measures and concepts that are used in the study, they
direct „attention to something that should be examined within the scope of study.“ [16, p. 30]

The following propositions are derived from the formulated research questions and are intended
to highlight different aspects of distributed agile teams:

1. The duration of iterations in distributed agile teams is similar to the duration of iterations in
co-located teams.

Section 3.4 states that coordination and control are two major issues procured by distribu-
tion. Short and frequent iteration cycles which re-evaluate the current status of a team and
project are characteristic for agile methods (like Sprints in the Scrum process, see Section
2.4). Although meetings tend to be more complex to organize in distributed teams, they are
not longer than in co-located team but are within the same duration ranges.

Agile Development in Distributed Teams 61 / 166



Chapter 5. Case Study 5.3. Data Collection

2. While for short, standardized communication situations remote communication is sufficient,
face to face communication is very helpful when it comes to longer, informal meetings with
multiple participants.

Agile methods know a lot of informal communication and processes that require interaction.
The author proposes that for some more straight forward activities like for example the daily
standup meetings (see section 4.3.3) remote communication tools are in most cases enough
and sufficient. Longer, informal communication situations with multiple participants like
the review done in the Sprint Retrospective can on the other hand benefit a lot from co-
located face to face communication.

3. Informal and frequent communication aspects of agile methods improve collaboration be-
tween sites and team members.

Frequent and informal communication which is also strongly encouraged by the agile man-
ifesto (see Chapter 2.2) which emphasizes interaction between individuals is a very impor-
tant aspect in agile teams. Also Dorairaj, Noble, and Malik [14] recommend to strengthen
informal communication in distributed agile teams to increase a teams success.

4. Usage of modern project management software and tools is a major factor for success of
distributed teams.

Chapter 3 introduced the challenges that distribution can bring and states that communica-
tion is a vital point. The different aspects of remote communication in section 3.5.5 indicate
that choosing the right channel and tool for the right purpose is very important. This is also
stated by the participants in the case study of Dorairaj, Noble, and Malik [14, p. 110] who
stated that: „leveraging communication tools and techniques promoted effective communi-
cation in their distributed teams.“

5. Technical faults and limitations are posing a serious issue on distributed communication.

Since distributed teams have to rely on remote communication techniques the infrastructure
is an essential aspect. Infrastructure problems like a failing wifi or a slow internet connection
can massively extend the general issues of remote communication described in section 3.5.5.

6. Beside extensive communicative skills there are no special requirements for team members
in distributed teams compared to co-located teams.

Agile methods generally favor individuals and interaction of individuals, which indicates
that the communication in agile teams is very high. Since distance negatively impacts com-
munication (as stated in section 3.4), team members in distributed teams need to be even
more aware of the necessity of communication. Beside this requirement there are no further
skills that are necessary for team members to be successful in a distributed environment
compared to co-located situations.

These research propositions as well as the research questions combined with the literature research
serve as starting point for the data collection and data analysis activity. They as well as the initial
research questions are evaluated in Chapter 6.

5.3 Data Collection

The general method of data collection is decided in the design phase of the case study, but during
the data collection phase itself there may occur unexpected situations and opportunities for gath-
ering additional data [17, p. 32]. Lethbridge, Sim, and Singer [82, p. 313] distinct three degrees of

Agile Development in Distributed Teams 62 / 166



Chapter 5. Case Study 5.3. Data Collection

Figure 5.4: Procedure of data collection

data collection methods. The first degree are techniques that require direct involvement of partic-
ipants: e.g. interviews, questionnaires, brainstorming, focus groups, et cetera. The second degree
demands just indirect involvement by accessing the environment of individuals, it includes anal-
ysis of tool usage logs, databases or performed work. The final and third degree does not require
contact to individuals but rather only access to work artifacts like documentation or source code.

This case study will employ first degree data collection, particularly interviews and group inter-
views. The interviews are conducted in the form of semi-structured interviews. Figure 5.4 shows
the general flow of the data collection approach.

5.3.1 Interviews

Yin [16, p. 110] names interviews as „one of the most important sources of case study evidence.“
Furthermore, interviews are by far the most used methodology when it comes to empirical research
in the social sciences, see [83, p. 434-435].

Also in the field of empirical research in software engineering interviews are one of the most used
approaches and most of the existing case studies involve at least some kind of interviews either
for validation other data as a primary data source. The reason for this is that a lot of knowledge
important to specific research is only available in the minds of the individuals situated in the
investigated cases. There are diverse ways of conducting interviews, varying in the length of the
interview sessions, the kind of questions asked, and general structuring. [17, p. 50]

Agile Development in Distributed Teams 63 / 166



Chapter 5. Case Study 5.3. Data Collection

Figure 5.5: Interview types [17, p. 51]

Strengths and Weaknesses

The advantages of interviews are that they are interactive and the researcher is able to clarify
unclear questions and react to unexpected responses. [82, p. 320] Furthermore they are highly
targeted and directly focus on the topics of the case study and also provide personal views as well
as explanations of interviewees. [16, p. 106]

Disadvantages of interviews as a method of data collection is that they are often time and cost
inefficient: „Contact with the respondent needs to be scheduled and at least one person, usually
the researcher, needs to travel to the meeting (unless it is conducted by phone but this lessens the
rapport that can be achieved). If the data from interviews consists of audio or video tapes, this
needs to be transcribed and/or coded“ [82, p. 320], although it is noted that note taking may be a
suitable substitute if done carefully. Further weaknesses of interviews are the risk of bias because
of poorly uttered questions, response bias or the risk of reflexivity - meaning that the interviewed
person answers in a way he or she thinks the interviewer wants the answer to be. [16, p. 106]

Interview Types

There are multiple classifications of interview types, one is the distinction by the degree of struc-
ture, a coarse distinction is shown in Figure 5.5.

The range from fully structured (standardized) to unstructured (non standardized) interviews is not
strictly differentiated but more a rather smooth transition. Fully structured interviews contain just
closed questions with predefined answer possibilities and are asked in a defined order. Unstruc-
tured (or also called open-) interviews on the other hand do just have minimal specification, in
extreme cases also just an interview topic. The more structured an interview is, the better are the
claims on validity, objectivity and reliability. But such rigid structuring also comes at a price, with
just closed questions, there is little to none access to information beyond the predefined answer
possibilities. In most cases it is feasible to utilize a mixed approach, using both closed as well
as open questions. Examples for lesser structured interview types would be the semi-structured
interview, a focused interview or a narrative interview. [83, p. 437-438]

A narrative interview would be an unstructured form, which aims at gaining subjective statements
from the interviewed person, the interviewer often just names the topic and encourages the inter-
viewee to talk about it. The basic idea is to trigger a narrative dynamic which should lower the

Agile Development in Distributed Teams 64 / 166



Chapter 5. Case Study 5.3. Data Collection

inhibition threshold and leads to revelation of information that would not have been revealed in
other forms of inquiry. [83, p. 540-542]

This case study will use a problem-centered, semi-structured interview, where questions are pre-
pared ahead in an interview guideline. But in contrast to fully structured interviews, the order of
the questions is not fixed it is rather the development of the individual conversation during an in-
terview session that influences which question is asked by the interviewer. The prepared guideline
is to make sure that all necessary questions are asked during the interview session, generally such
an interview technique allows improvising and more exploring during a session. [17, p. 51]

In contrast to the narrative approach, the problem-centered interview technique is not about letting
the interviewee talk and drift in any topic without control but rather guides the session by actively
participating and using a predefined guideline. Furthermore it is recommended to begin such an
interview with some quantitative questions that cover different classification information. This
should be done separately to not disturb the main part of the interview with interposed questions
about statistical data. [83, p. 542-543]

The Interview Session

Recording the interview sessions is a very convenient way of preserving the information as well
as it allows a more detailed analysis later on, even though the process of transcribing takes a
lot of energy and time. Taking notes during the interview session is often not that accurate and
furthermore it could pose a distraction and disturb the conversation. But a recording device can
just be used if the interviewed person agrees with it, so it is very important to open an interview
session with first asking the interviewee for permission to create an audio record. Furthermore
the interviewer must not make the mistake of thinking that the existence of a recording replaces
attentive listening. [16, p. 110]

The duration of the interview session can range from prolonged interviews that are taking place
for two or more hours in either a single session or split into multiple sessions to shorter interviews
that are not taking longer than one hour. In such cases the interview session can still remain open
ended, but it is recommended to follow the case study protocol more closely but allow a more open
discussion to the end of the session. Interviews do not have to be a one on one session, if there
are two or more persons interviewed at the same time it is called a group interview. Interviewing
multiple people at the same time can result in a discussion about aspects of the case study and it is
the interviewers job to moderate and try to bring out the views and opinions of each individual in
the group. [16, p. 111-112]

After an interview there are multiple post interview activities that have to be carried out. After
recording the material has to be transcribed into a text document before it can be analyzed. This
transcribing is a time consuming assignment but often brings new insights that are discovered
during this transcription process. [17, p. 53]

5.3.2 The Interview Guideline

The interview guideline was developed with the research questions and the propositions in mind
and the topics and questions are trying to gather on the one hand specific experience and ap-
proaches that the interviewee or the team he or she speaks for encountered as well as general
thoughts on the thesis topic. The used interview guideline can be found in the appendix A.1.

Agile Development in Distributed Teams 65 / 166



Chapter 5. Case Study 5.3. Data Collection

5.3.3 Other Data Sources

Beside interviews there are several other sources of evidence that could be utilized in a case study
but apart from the interviews as a data source this case study does not use any other other data
sources because it would exceed the resources of the thesis, but for the sake of completeness they
are shortly introduced in the following enumeration:

Documentation
Documents may play an explicit role in data collection within case study research. Exam-
ples for useful documents would be for example letters, e-mails, agendas, administrative
documents, formal studies or evaluations, news clippings or other media articles, etc. One
very important usage of documents is to substantiate and support evidence gathered from
other sources. [16, p. 107]

Archival records
This source, very similar to the previous source, can also be used in combination with other
evidence sources. The utilization of archival data should be done carefully and it is sug-
gested to „ascertain the conditions under which it was produced, as well as its accuracy.
Sometimes, the archival records can be highly quantitative, but numbers alone should not
automatically considered a sign of accuracy“ [16, p. 109]

Direct observations
The fact that a case study is meant to take place in a real world situation creates the op-
portunity to directly observe, such observations range from casual to formal activities of
data collection. Less formal observations also can be made while gathering other forms of
evidence, for example while conducting interviews. [16, p. 113]

Participant observation
This aspect is a special form of observation where the researcher is not just in the role of a
passive observer, on the contrary, he or she may take on various roles within a situation in
the field and actively participate in the actions that are being studied. [16, p. 115]

Physical artifacts
The last major source of evidence are cultural or physical artifacts, like technological de-
vices, artworks, instruments or tools, or other physical evidence. Overall this kind of ev-
idence has often less potential importance, but sometimes they can be of relevance in an
overall case. [16, p. 117]

Figure 5.6 summarizes the strengths and weaknesses of those most used sources of evidence in
case study research. For each source the procedures of collecting has to be developed indepen-
dently and it has to be ensured that each is used properly.

5.3.4 Selection of Analysis Units

The search and selection for suited interview partners, representing good units of analysis was a
very essential aspect of the case study. To reduce the risk of a biased selection, a rough profile of
suitable characteristics was defined which have apply to people and teams to be suited as analysis
units:

• Having at least one permanent team member who is not located with the rest of the team.

Agile Development in Distributed Teams 66 / 166



Chapter 5. Case Study 5.3. Data Collection

Figure 5.6: Six sources of evidence in case study research [16, p. 106]

• At least one office or site has to be located in Austria or Germany.

• Teams should define their process of working and development as being ’agile’.

• There is no strict criteria for the role of the interviewee, the only important thing is that he
or she is or was directly involved in the teams he is talking about.

With this criteria in mind, there was an extensive search for suitable companies and individuals.
There were multiple approaches to find suitable contacts like doing search engine inquiry for
distributed teams or checking vacancy offer websites for companies that have job offers in multiple
sites. Overall 60 candidates were contacted from which nine agreed to an interview.

5.3.5 Presentation of the Interviewed Cases

This chapter introduces the interviewed experts and the teams they speak for. Some interviews
were performed as group interview with two people being interviewed at the same time. Further-
more in some situations it is necessary to distinguish between personal experience an interviewee
might talking about that is not based on the current setting, such situations often refer to previous
experiences and teams they were part of. The roles of the interviewed individuals differ, but the
common ground is that most of them are either in leading positions or experts in the field of agile
methodologies and therefore in consulting roles for other teams. All data is anonymized and the

Agile Development in Distributed Teams 67 / 166



Chapter 5. Case Study 5.3. Data Collection

different units of analysis are referred to as Alpha, Beta, Gamma,... cases, furthermore all the
names that occur in the interview quotes are substituted by other names to further protect the pri-
vacy of the interviewed case units. Table 5.1 is giving an overview and following is an introduction
of the interviewed experts and the teams they represent. This section, as well as the discussions
in Chapter 6, includes various direct citations from the interviews. To improve readability those
interview passages where translated into English by the author, the original quotes in German can
be found in the appendix Section A.2.

Alpha
Alpha is a software engineering company with overall nine software engineers, some of them part-
time employees. The company has two main fields of business, on the one hand it develops and
sells in-house software products and on the other hand it provides software engineering services
for customers. Team members are split over three different locations within Austria, where in each
location are between two and four people. There are no fixed teams or team sizes, the teams are
composed depending on the project requirements and are changing from project to project.

The interview was done as a group interview where both the CEO and CTO were taking part in
the interview of the same time. Both are founding members of the company and are located in two
different sites. Interviewee A is mainly responsible for project management, marketing and distri-
bution. The main focus of the second person (B) is more on technical aspects and infrastructure,
as well as expert for complex software engineering tasks.

The company was founded as distributed company with two different locations in the beginning,
therefore the whole infrastructure and processes were set up with the distributed team situation in
mind.

Beta
Beta is a software agency that does software projects for industry clients. The interview was held
with the CEO who is the founder of the company and responsible for all projects. They have
around 15 employees where some of them are permanent staff and some are hired temporary
because of specific know-how or the need for more manpower.

„We have started as a software agency and we are actually developing software for
the industry sector where we also have the most projects going on. The development
of web portals and the online marketing have been added because there is currently
demand for it. What we do: We design, develop and market digital products - that is
our unique selling point.“ [Beta #1 - CEO]

Gamma
The company of Gamma is a big software company with over 200 employees who’s area of oper-
ations among other things include software development, consulting, coaching and project man-
agement. The interview partner of Gamma is the team leader of an eight software developer team
that is distributed in two major cities in Germany. There is no fixed number of individuals per site,
this is rather fluctuating depending on the need and availability of employees on the two locations.

Delta
Delta is a company that operates in multiple countries and has more than 70 employees where
roughly the half is employed in the software engineering department. The software development
is done in two locations in Austria as well as one site in Slovakia, where one of the Austrian sites

Agile Development in Distributed Teams 68 / 166



Chapter 5. Case Study 5.3. Data Collection

Table 5.1: Overview of the interviewed experts

Agile Development in Distributed Teams 69 / 166



Chapter 5. Case Study 5.3. Data Collection

is the headquarter. The interview was held with two team leaders, one of them joined via a video
call. Both are responsible for their own team, one consisting of three and one of seven people and
both teams apply a similar process. Both teams have at least one member from the Slovakian site.

Epsilon
The company in Epsilon is a contractor in the field of software quality engineering. The Organiza-
tion offers different types of services: First are trainings in the area of quality engineering for other
companies. The second aspect are consulting services in the area of software quality. Thirdly is
the evaluation of tools and advice for certain quality requirements as well as migration and training
for certain tools and setups. The fourth and largest section is the operational services area which
is a team of 20 individuals that is working in the field of operational testing. This division handles
all stages within a test process: test management, analysis, design, execution, reporting and other
tasks if required. The interview evolves around this team that is distributed over five different
locations in Austria as well as Germany.

The expert interviewed is the division manager of this team, he is responsible for that group that
within forms multiple teams with each team having a technical project leader and a variable group
size depending on the requirements.

Zeta
The expert interviewed in Zeta is a division leader who has experience in multiple distributed
teams. He has started as software engineer and had several positions from business analyst, tech-
nical analyst, team leader, project leader and is currently in charge of a software development
department at a larger company. He has experience with far distributed teams that have members
outsourced in India as well as teams with low spatial distance where the team is located in Austria
and neighboring countries like Slovakia or Poland. In the interview session he is not referring to
one specific team but to multiple teams he had worked in in the past.

Eta
Eta is an IT company that is developing in-house software products as well as developing software
for customers. They have multiple teams which are all using Scrum as process model. Apart from
the headquarter in Vienna the company has two other sites in Austria as well as one office location
in Germany, some of the teams are co-located in Vienna but also multiple teams where the team
members are composed from multiple locations.

The interviewee is involved in multiple bigger projects and also responsible for communication
with external stakeholders.

„For bigger projects I am a Scrum master - from the customers point of view maybe
project manager - but in the agile world it is a Scrum master role, maybe in a slightly
altered form. And I am a lot involved with customers, my job title there is that of a
Customer Relationship Manager.“ [Eta #13- Scrum Master]

Theta
Overall there are around 30 people in the organization of Theta, divided into five software engi-
neering teams sized between 5 to 10 people each. The interviewed expert is a certified Scrum
master and describes himself as an agile coach at Theta, where he looks after five software devel-
opment teams:

Agile Development in Distributed Teams 70 / 166



Chapter 5. Case Study 5.4. Data Analysis

„Since the beginning of my career in this company I had the role of a Scrum master,
lately this role changed towards being an agile coach. Also before that I was operating
as a Scrum master and nowadays I am working with nearly all teams that are involved
in software development.“ [Theta #21 - Agile Coach]

Teams are located in two major cities in Austria as well as one office site in Hungary. Previously
they also had team members in Russia which the interviewee also refers to in some cases. The
team formation varied over the time, there are some teams that are completely co-located and
other teams that are spread between two or - in more uncommon cases - also distributed over three
locations.

Iota
The expert of the Iota started working with distributed teams in 2010 and has experience as a team
leader and CTO of various companies and startups where he was involved with distributed teams
in different situations. During the interview there is no particular team the interviewee refers to,
but rather multiple teams and situations he has experienced as a team leader.

5.4 Data Analysis

Because case study research is a flexible method, it is common to use qualitative data analysis
methods, with the basic objective to derive conclusions from the gathered data while keeping a
traceable chain of evidence.

„Analysis of qualitative research is characterized by having analysis carried out in
parallel with the data collection. This is necessary since the analysis can reveal the
need for collecting additional data. This is one reason why systematic analysis tech-
niques are needed. Since it is constantly ongoing it is necessary to know exactly what
was found out when in the analysis. Being systematic is one condition needed in order
to present a chain of evidence.“ [17, p. 62]

Generally the steps from collecting data to analysis to reporting is done in iterations, it is a repeat-
ing circle of going from data collection to analysis and repeat back.

5.4.1 Qualitative Content Analysis

The initial point is a data-set in any form collected by the researcher, in this case the transcripts
of the performed interviews. To analyze the material the inductive category formation method,
developed by Mayring [80], was adapted to the requirements and situation of this thesis. This is
because some steps that would be necessary in the original method as described by Mayring [80]
have already been done in the definition of the case study and other other steps are not applicable
in the scope of this thesis. The process model of the developed method is shown in Figure 5.7.

The first step is to develop codes which are used to arrange and classify information, this process
means that „parts of the text is given a code representing a certain theme, area, construct, and so
on. One code is usually assigned to many pieces of text, and one piece of text can be assigned
more than one code. Codes can form a hierarchy of codes and sub-codes. The coded material can
be combined with comments and reflections by the researcher (i.e., memos).“ [17, p. 62] There
are multiple levels of formalism when it comes to analyze and structure reported data and Runeson

Agile Development in Distributed Teams 71 / 166



Chapter 5. Case Study 5.4. Data Analysis

Figure 5.7: Content analysis: Steps of the inductive category development method

et al. [17, p. 64] suggest to use either editing or template approaches. Such approaches include a
priori codings which are defined based on the previous conducted analysis or literature review.

Using this technique, some a priori codes based on the research questions and propositions were
defined and used to analyze the first interview. During this process the codes were adapted the
material was coded again. This is an iterative process, which is similar to the overall iterative
procedure of collecting and analyzing data as described in the beginning of Section 5.4. Generally
the codes and their grouping to main categories is repeated multiple times from step four back to
step two, following the flow in Figure 5.7.

When the whole material is then worked through it results in multiple main categories that group
the codes together, those final categories and their content are shown in Figure 5.8 as well as
explained in detail in Section 5.4.2.

5.4.2 Categories and Codes

The coding of the transcribed data was done with a supportive data analysis tool called QCAmap1.
Mayring [80], who is also the author of the base method that was adapted and used for the qualita-
tive analysis of the interview data is also one of the main authors of this tool. Figure 5.8 shows the

1 https://www.qcamap.org

Agile Development in Distributed Teams 72 / 166



Chapter 5. Case Study 5.4. Data Analysis

codes that were used to structure and analyze the transcribed interviews, as well as the categories
those codes then were assigned to group interview passages to different topics. Some categories
also contain sub-categories, this is to improve the readability and emphasize some aspects within
a broader topic.

The following list contains the codes that were used during the analysis phase:

• process-model

• control-aspect

• coordination-aspect

• process-model-history

• iterations

• agile-practices

• knowledge-transfer

• information-radiator

• documentation

• planned-processes

• not-practicable-processes

• communication

• communication-tools

• hardware

• meetings

• face-to-face

• language

• distribution

• reasons-for-distribution

• far-distributed

• distribution-advantages

• distribution-disadvantages

• cultural-aspects

• configurational-distance

• technical-problems

• teambuilding

• employee-requirements

Agile Development in Distributed Teams 73 / 166



Chapter 5. Case Study 5.4. Data Analysis

Figure 5.8: Codes used to categorize the interview data

Agile Development in Distributed Teams 74 / 166



Chapter 5. Case Study 5.4. Data Analysis

The following categories are used to present the evaluation of the data. Some categories contain
sub-categories which are more specific questions within its bigger category. This introduction of
sub-categories intends to improve the readability to the reader since it introduces more structure to
the multiple topics. Figure 5.8 shows the exact codes that were used as well as to which category
or sub-category they belong. In the headlines of the categories the codes that were matched to that
category are written in brackets.

Agile Development (process-model, control-aspect, coordination-aspect)
This category refers to the general process model the interviewed person has experience with
or is currently applying in a team. It is not limited to one single process model, some teams
may apply different approaches for different situations, and some interview partners may be
responsible (or have experience) for multiple teams applying different process models. This
section analyzes how the main process model works, which important components there are
and which tools and techniques the cases use to support the process. To better graduate the
information, the following sub categories were introduced:

• Evolution (process-model-history)
What was the history that lead to the current situation? Was the team using any other
approaches in the past and if so, why did it end up using the current solution?

• Iterations (iterations)
What is the duration of iteration cycles? Why were they chosen as they are?

Agile Practices (agile-practices, knowledge-transfer)
What is the opinion on different agile practices, which were implemented and was there a
need for alteration or adaption to be applicable? This section examines agile practices like
pair programming, continuous integration or code reviews.

How is the transfer of knowledge done within the team and is there also knowledge transfer
out of the team into the rest of the organization?

• Documentation (documentation)
What is the take on documentation? Is there a difference in documentation due to the
distribution?

• Information Radiator (information-radiator)
Are there any experiences with the usage of information radiators?

• Planned or Failed Practices (planned-processes, not-practicable-processes)
Where there practices that have failed due to the distribution or are there any plans to
introduce new practices in the future?

Communication (communication, communication-tools, hardware, meetings)
This is one of the main topics during the interview and multiple questions are referring
to this aspect. How is communication within the team and between multiple sites done,
which meeting types are existing, and which communication channels are used by the team
members? Is the communication structure changed depending on the occasion and which
communication channels are used for different meeting types?

• Face to Face Communication (face-to-face)
How is the situation regarding face to face communication, how often does it happen
in a distributed team and how valuable is it in the eyes of the interviewee?

Agile Development in Distributed Teams 75 / 166



Chapter 5. Case Study 5.4. Data Analysis

• Language (language)
What role does the language of team members play in distributed teams? Are there
difficulties if there are different native tongues within one team?

Distribution (distribution, reasons-for-distribution, far-distributed)
This section explores general aspects of the distribution and also explores the initial cause
of the team ending up in a distributed setting.

• Advantages (distribution-advantages)
Which advantages can be seen coming from this distribution?

• Disadvantages (distribution-disadvantages)
Which disadvantages can be seen coming from this distribution?

• Culture (cultural-aspects)
Is culture a factor in distributed teams limited to the constraint described in Section
3.2?

• Configuration (configurational-distance)
Relating to Section 3.3.4, this topic is dealing wit the importance of configuration
within a team. Are there issues arising due to certain constellations?

• Technology and Infrastructure (technical-problems)
Is the available infrastructure or available tool-set posing problems?

Team (team building)
This section is dealing with aspects within the team as well as team members. It is for
looking closer at the team itself, requirements for team members and how team building is
done.

Requirements (employee-requirements)
Are there special requirements that team members have to have when working in a
distributed setting?

Agile Development in Distributed Teams 76 / 166



Chapter 6. Presentation of the Cases

6 Presentation of the Cases

This chapter presents the results from the data analysis of the different units of analysis.

6.1 Alpha

Agile Development
Alpha uses a Scrum like process model, which uses some basic concepts of Scrum as well as other
agile techniques. Due to the company size of 10 people that form multiple, overlapping teams
which are working on different projects they made some alterations and simplifications, but the
reason for this is not the distribution.

"We simply have few employees split to multiple Scrum projects and there you would
need to have multiple roles for the different projects - that would be far too much
overhead. In some situations there are projects where the team consists of two people,
there it is just not possible. But that is more a problem due to the proportion of
employees to the number of projects." [Alpha #1 - CEO]

They have fixed length sprints for each project and within a sprint they utilize daily standup meet-
ings for each project and have a weekly "Jour Fixe" meeting where the whole team is participating.
They have done Retrospective meetings in the past but stopped doing them, but account this that
they just were not practical and the stop of holding them has nothing to do with the distribution.
Furthermore it is not really enforced to close all issues within a sprint, there is not much overall
planning between different projects therefore it may happen that work with lesser priority is left
over at the end of an iteration.

„We have discovered that for us - due to the multiple projects we have and their
different priorities - the story points are just for a basic estimation on how hard an
issue is, but it is not important for us how many issues we can do during a Sprint
because that is very dependent on the number of projects that are done at that moment
and there it comes to adjustments depending on the priorities.“ [Alpha #2 - CEO]

Regarding the tooling they use Jira for tracking Scrum boards, the Sprint Backlogs and the Product
Backlog as well as error reports. Furthermore they use several other tools discussed in more details
in the respective sections.

One important thing that was mentioned is the constant need to adapt and improve the process.
They noticed that the geographical distribution needs to be met with more explicit communication
to keep the work and knowledge status synchronized between different sites.

„You have to adapt and improve the process constantly, that comes up very clear
lately. We have made some changes during the last year where we have noticed that
you have to do certain things because of the geographical distribution that you would
not have to do otherwise. When it comes to synchronizing so everybody keeps in

Agile Development in Distributed Teams 77 / 166



Chapter 6. Presentation of the Cases 6.1. Alpha

touch with what is happening in other locations, what do the people there do at the
moment. Like this sprint planning - like in Scrum - so you better integrate and know
what we do now and what we have to do next. So you do not work separated from
each other.“ [Alpha #3 - CTO]

• Evolution
They reported that they have started working in an somewhat Agile way right from the
beginning. They did milestone planning and iterative development with the goal of getting
early working prototypes to show for customers and getting frequent customer feedback.
Over the years they kept adapting and improving their process by shortening the iteration
length and experimenting with other activities.

• Iterations
Their standard Sprint duration is two weeks and they report good results with this length.
Initially they started with iterations lasting between one and two month but reported that they
soon realized that such periods are too long and did not work for them. The short iterations
combined with the daily meetings are the two aspects that brought the most improvement to
their process.

Agile Practices
They use a modern setup with Continuous Integration servers for all projects as well as error
reporting and a ticketing system. They also have a setup to quickly build test versions of software
to be able to get early and contemporary feedback from customers as well as other test users.

One very important point that comes up during the interview is their way of doing code reviews:
They do not do classic code review sessions but use so called Pull Requests - a functionality some
code repositories provide - for this activity. This practice has beneath the improvement of code
quality multiple other benefits like a communication as well as knowledge transferring effect.

„What I find also very important are the code reviews in the form of pull requests. The
way we have set it up is very easy to use and other team members learn what their
team mates are doing. It is of course also very helpful in terms of code quality but it
is just as useful to spread knowledge about what other people are currently working
on.“ [Alpha #4 - CTO]

They are that happy with this practice because they feel that it in a certain way it substitutes the
need for bigger code reviews and can detect and correct flaws earlier.

„It is a better form of code reviews, it substitutes classical code reviews by about 90
percent because when we sit together and say: ’Today we are doing a code review’
then it is often already a very big piece where it is to late to do a review.“ [Alpha #5 -
CEO]

• Documentation
For documentation they use Evernote1 as well as the issue tracking functionality of Jira. Pre-
viously they used Atlassians Confluence tool but moved on from it due to some issues they
experienced. Although they document some important things they do not have dedicated

1 A software solution for taking and sharing notes, see https://evernote.com

Agile Development in Distributed Teams 78 / 166



Chapter 6. Presentation of the Cases 6.1. Alpha

documentation for each project but rather see the issue tracking as a form of it. Smaller de-
cisions, be it in design or functionality are discussed and therefore also documented within
the ticketing system while bigger or more important principles are often written down as
specific documents.

• Information Radiator
They have nearly all of their information stored and distributed digitally. The Scrum board
functionality offered by the Atlassian tools is used for visualizing which state a working
package is. But also one interviewee expressed that he would also like the idea of a physical
board with post-it notes stuck on it. But this is not practicable due to the distribution but
also due to the fact that some team members occasionally work from home where they then
would not have access to such information.

• Planned or Failed Practices
They did not name any specific practice that failed because of the distribution but rather told
that the process itself and single tasks are constantly changing and adapting and that they
are continually experimenting with new practices to find out what is working best for them.

Communication
They use an online messaging application for the basic team communication called Slack2. This
tool allows one on one text communication as well as groups which they use for different project
teams. Furthermore it is integrated with their ticketing system and it also possible to integrate
other tools like CI messages or error reports.

Beside the text communication that is the basis for every team member the team uses Skype for
situations where two people need to talk and Goto Meeting3, an audio and video meeting tool with
screen sharing and remote desktop control transfer functionality for meetings where more team
members attend.

The weekly held Jour Fixe meeting where the whole team is present is held as a video conference
and the individuals in each site gather in a meeting location (if there is any) while remote people
join from their current work station. In the main office there is also a big TV screen used to
enhance team member visibility as well as dedicated microphones to enhance the audio quality.

The Daily Standup meetings within the projects are held via audio communication without video
support. An interview partner also stated that he sees video as an obstacle in short common
meetings like the Daily Standup since it is just supposed to quickly update every team member
and be of short length.

• Face to Face Communication
For daily communication as well as collaboration face to face communication is not that
important. The highest importance of physical contact is more in team building aspects than
in daily work.

„It is for sure necessary for the team constellation that you see each other and
talk to each other, also about not work related topics. But it is not necessary all
the time when it comes to implementing something.“ [Alpha #6 - CEO]

Also for complex topics like architecture design or other strategy planning they prefer to
gather the needed people in the same physical location to cope with a task.

2 https://www.slack.com
3 http://www.gotomeeting.com/

Agile Development in Distributed Teams 79 / 166



Chapter 6. Presentation of the Cases 6.1. Alpha

„We want to collectively sit together and discuss a topic where we will talk for an
hour or two and also do brainstorming. This is not working very well with GoTo
meeting because it is not as interactive as being co-located. For such situations
it is nice to sit together, but this are rather exception because normal project
meetings, standup meetings or Sprint planning are working quite well with GoTo
meeting.“ [Alpha #7 - CTO]

• Language
Since all team members share the same native tongue, language is not a factor that came up
during the conversation in any way.

Distribution
Alpha started out as a distributed team so the setup and everything they introduced was already
with the distribution in mind. They have been encouraged by the enhancement in remote work
infrastructure and technology and the fact that this way of working was adopted by other teams as
well, so they decided to set up their team distributed over two locations.

„We were distributed from the very beginning. Thereby that Andreas was in Linz
and we were here, we have been from the beginning, from the very first minute on
distributed and have therefore set up everything we did from this perspective. In
parallel to this the field of remote work has advanced and because of this we have
stayed with this way of working because we have seen that other people do the same
thing.“ [Alpha #8 - CEO]

• Advantages
Since Alpha started out as distributed team from the beginning they experienced various
advantages of this way of working. The first argument is of personnel nature: Because of the
fact that the main office is located in a smaller town it is not easy to find suitable employees
and by having another location to offer as a workplace they increase their chances of finding
developers.

„The topics in software development keep increasing and it gets more and more
difficult in this broad spectrum of technologies to find a specialist for a certain
subject. Somebody who is located at location X, wherever that may be. Therefore
we said: Ok, we have gained experience in the distributed working since our
beginning, then we stay on course and benefit from the advantages and so there
is no regional or temporal condition for working at Alpha.“ [Alpha #9 - CEO]

Another argument of the distributed work is the flexibility with current employees. When
one team member changes his residence to another city that does not automatically mean an
end to the employment. It is no problem to stay in the team also when moving to another
city because the whole way of collaboration is constructed for distributed teams. A further
benefit is the possibility of working from home if necessary, there is no need to be physi-
cally present in the office every day, this can be a great benefit for team members because
combined with flexible working time it allows for better taking care of personal matters like
taking care of family or children. This is also a factor that Alpha openly names as a benefit
for themselves as well as employees.

„It happens every now and then that somebody does home office work. Because
of the family - we all have children - this makes the situation much more easy

Agile Development in Distributed Teams 80 / 166



Chapter 6. Presentation of the Cases 6.1. Alpha

when I can say: Ok, today I work from home because I have to handle some
personal matter and then I can save the driveway to the office. [...] This is simply
given because everything is prepared for remote collaboration, everything that I
need is a stable internet connection. And this benefit is something that we can
offer our employees as well.“ [Alpha #10 - CEO]

• Disadvantages
As first general disadvantage they mention the lack of communication channels that are
available when been physically present in the same room. Although they have a lot of
communication channels set up by online collaboration tools the lack of face to face contact
is still noticeable.

„But anyway, I would consider this as a disadvantage, you are a little bit de-
tached. When I am in the main office you sometimes just shout something across
the room, or you notice two other people talking about a problem where you
maybe can contribute. This detachment is kind of a disadvantage for me.“ [Al-
pha #11 - CTO]

• Culture
Similar to the language the topic of cultural differences is no matter in Alpha and did not
come up in the interview.

• Configuration
Initially when Alpha started the team consisted of three people distributed over two locations
and while they never had a doubt about the general remote working process they still where
aware of the problems that configuration of the team situation can have:

„The challenge really was: We never have asked ourselves if we can work as
distributed team but we rather asked: Is it posing a danger that there may emerge
two separated blocks or that Andreas feels excluded in Linz.“ [Alpha #12 - CEO]

Furthermore one member of a site where there usually are two people located reported the
problem of feeling separated, especially in situations where a high amount of team members
gathered in one other location.

"Then it is not like four - two - four but it is four - two - eight; and there you notice
that it is forming a whole new dynamic with eight people. There is much more
talking among each other, there is much more progress in a project in contrast
to the rest of the year and when you sit in Linz you are not really part of this."
[Alpha #13 - CTO]

Although this fact was declined immediately from the second interviewee who stated that
this is a subjective feeling and it is in reality more the matter that he is also often not up to
date what is going on in each team it is anyway noteworthy and a factor that has to be kept
in mind permanently.

• Technology and Infrastructure
Alpha reports that the current infrastructure is one of the most problematic points in the
aspect of working as a distributed team. One issue is the internet connection that is some-
times not stable enough to maintain a continuous high quality audio and video transmission
which can block a lot of work when preventing team members from communicating. Beside
the lack in connection quality they also report issues with the remote communication tools,
ranging from bad positioning of the camera at video conferences (so other attendees see just
shadows of the remote participant) or bad microphone quality.

Agile Development in Distributed Teams 81 / 166



Chapter 6. Presentation of the Cases 6.2. Beta

„But there is still a lot to do. Partially there are technical things that are barriers,
like how bad video via the internet is sometimes. Also with the tools we have
not found the perfect solution yet when it comes to microphones and cameras.
The technical interaction is not as smooth that it can be used without thinking.
This is an aspect where the infrastructure and technology is behind the way of
working.“ [Alpha #14 - CEO]

Team
Every few months the team comes together to do technology exploring workday where the team
mixes up and works on freely chosen topics. This should on the one hand arouse interest in new
technologies and offer room for trying new things but also improve the communication in the
team.

Once or sometimes also twice a year they furthermore gather the whole team and do a two day
activity where they reflect on the past work, present completed projects and talk about processes
and improvement possibilities. This has some characteristics of Retrospective meetings but on an
other level. The second day is normally for some team event where they do some leisure activities.

Requirements
The interviewed experts did not report any special requirements for their team members but
indicated that a high level of self organization is necessary as well as being communicative
in the team channels.

6.2 Beta

Agile Development
Beta reported they started with a Scrum process because they already where accustomed to it from
previous work experience. They work with Sprint iterations where they conduct Daily Scrum
meetings, Sprint planning meetings and Retrospective meetings. The CEO, who takes the role
of the Product Owner in each team, travels between different sites to be physically present when
needed. The team size ranges from at least three developers to more depending on the project size.

„We have realized that within the team everybody is forced to improve himself and
to concentrate on the essential things. It is important that every employee can work
independently because of the distribution over multiple locations. But luckily this
was working well right from the beginning.“ [Beta #2 - CEO]

They are using Jira for tracking work packages and errors and Grasshopper for digital Agile
Boards.

• Evolution
The team started with Scrum since they already knew the process from former employ-
ments. Following their description they stick to a standard Scrum process with the common
adaptions necessary in every team. In the beginning they had to adapt some aspects to the
project management tools they use which is currently Jira and Grasshopper.

• Iterations
They are working in Sprints with a normal duration of three- or sometimes if the project is
requiring shorter iterations, two weeks. Their Sprints are not based on single projects but
rather on the time factor so they put working packages of multiple projects into one Sprint.

Agile Development in Distributed Teams 82 / 166



Chapter 6. Presentation of the Cases 6.2. Beta

Agile Practices
Beta facilitates pair programming as an essential activity to improve communication between team
members as well as an important activity for transferring knowledge. Pair Programming is done
between co-located individuals as well as remote, they report that they have no issues practicing it
using online screen sharing tools.

„Pair Programming is mandatory for transferring knowledge. Because we have spe-
cialists and everybody is specialized in certain areas - one is a 3D developer, one is
good in data processing, another one in machine learning or in fronted development.
And we would like that people share their knowledge because if somebody leaves
or becomes absent - for example because of going on holidays - another one should
know what he was working on.“ [Beta #3 - CEO]

They furthermore do classic code reviews occasionally but not as a standardized process.

• Documentation
Documentation is done in Confluence, a software for managing documents and an element
of the Atlassian tool suit.

• Information Radiator
They do not have any special information radiators but use the digital Scrum board func-
tionality of Jira.

• Planned or Failed Practices
In general they are satisfied with their current situation and process although they emphasize
that their process is always evolving and the pursuit of reducing and optimizing organiza-
tional costs is a constant element.

„Currently we are very satisfied with our process and we want to stick with it. But
of course we also would like to minimize the effort necessary for organizational
tasks.“ [Beta #4 - CEO]

One thing the CEO brings up is the idea of rotating the location of members. In his opinion
this would be great to improve the homogeneity within the team.

Communication
The main communication channel for the team is Skype, each team member has a company ac-
count and they emphasize the usage of this company Skype account instead of private accounts -
this should prevent team members from being distracted by private communication.

„We want colleagues to concentrate on their work, (...) we have made the experience
- in our previous jobs - that it is beneficial to not use private communication accounts
for the daily work. People are just too distracted by this.“ [Beta #5 - CEO]

External stakeholders also get access to the relevant information and documents in Jira and for
those who are overstrained by the tools complexity they use simpler shaped tools like Trello 4.
Beside the usage of Skype as a basic, daily communication tool they also utilize it in remote
meetings like the Daily Standup or for Pair Programming sessions:

4 https://trello.com/

Agile Development in Distributed Teams 83 / 166



Chapter 6. Presentation of the Cases 6.2. Beta

„We use Skype and share the screen with the agile board. The Scrum master then
moves the tickets in the name of the present team members“ [Beta #6 - CEO]

The access to internal project management information combined with their participation in the
Daily Scrum - which is a free choice for them to join - is also a way to hold steady communication
with external stakeholders since they always have insights on the current status and the progress.

„This way it is also more transparent for our customers because when they take part
in the daily standup meeting they see what is going on and what they are spending
their money for.“ [Beta #7 - CEO]

• Face to Face Communication
Regarding the regular communication they do not have concerns for not having face to face
communication, one aspect they argue why the remote communication is working well for
them is because of fitting team members. Although face to face communication may provide
benefits they also see aspects militating in favor to being distributed:

„I cannot tell if it is equally efficient, maybe it would be a bit more efficient if the
team is co-located. But, and that is an advantage - because of the professionalism
of the people - there are no email spam and team members first think about it
before they contact another team member if they really want to disturb now.
That is maybe an advantage.“ [Beta #8 - CEO]

But while the remote communication is not an issue in the daily communication, every
three Sprints one project team - or sometimes multiple teams - meet in one location to on
the one hand discuss issues, plan upcoming tasks and impart knowledge as well as doing
some leisure activities together.

• Language
All team members share the same native tongue, therefore language is not a factor that came
up during the conversation in any way.

Distribution
The reason for the distributed team is the need to be physically near to their customers locations
because it is for some projects necessary to be physically present at the stakeholders site. Fur-
thermore they have one office in Vienna especially for visibility reasons and for being present and
thereby attract new customers.

• Advantages
One mentioned advantage is the access to a larger market due to the location in or near
different cities. But with mentioning this advantage the CEO simultaneously mentioned a
small downside: The time on the road that is necessary to regularly visit to each location.

„What I wish for would be that I do not have to drive that often. But it is not
important because I have chosen this myself and therefore we have a good area
coverage and demand in different cities. It is often the case that we have cus-
tomers from Vienna and because of our distributed team we have the chance to
get such customers because they want to have on-site service.“ [Beta #9 - CEO]

Agile Development in Distributed Teams 84 / 166



Chapter 6. Presentation of the Cases 6.2. Beta

• Disadvantages
Besides the increased time for traveling a further disadvantage is the less close relationship
between team members.

„The interpersonal relationships are not as good as in teams that are co-located
and are having lunch together. People in the same place are of course closer to
each other which is a big advantage. This is the disadvantage for us that we do
not see each other in that frequency we would like to do.“ [Beta #10 - CEO]

• Culture
Cultural aspects did not come up during the Beta interview.

• Configuration
There where no real indications of specific configurational issues that where addressed in
the interview.

• Technology and Infrastructure
One of the main problems that occur with the distributed collaboration process again is the
problem with unstable internet connection.

„To be honest, the choke point is the internet connection. When UPC does not
work we have a problem. That is the reason why we have switched to connection
provided by A1 which is a bit more stable. It is not the fastest but it works
everywhere. The whole problem is that if we have no internet connection or
when the connection is bad. But this is primarily a technical issue.“ [Beta #11 -
CEO]

Team
While the interviewee states that the mere work activity is no problem in the distributed team they
perform regular encounters of a team building nature where they meet on weekends and do some
leisure activity together.

„The team meets every two months and we do some activity together, for example on
a weekend. The interpersonal connection to each other is there, also in private aspects.
But not like in a company that meets every day after work.“ [Beta #12 - CEO]

Requirements
The team members in beta have a high qualification and are generally experienced develop-
ers which all have a background in the field of software engineering. The interview partner
of Beta explained that it is their policy to only employ senior developers because their pro-
fessional experience is adjuvant in distributed teams, although such employees also connote
a higher financial aspect due to higher wages compared to junior level employees.

„Being autonomous is very important and being responsible for one’s own tasks
is also important. It is not easy to find employees who can live up to that entirely.“
[Beta #13 - CEO]

Beta reported that they had to let team members go because they lacked those required self
organizing and responsibility skills.

„We already made the experience with developers who could not satisfy those
requirements and we had to let them go because they did not fit our team very
well.“ [Beta #14 - CEO]

Agile Development in Distributed Teams 85 / 166



Chapter 6. Presentation of the Cases 6.3. Gamma

6.3 Gamma

Agile Development
The team is following a classical Scrum approach with very short Sprint durations. But while the
internal process is Scrum but they state that there are always adaptions to make, especially when it
comes to delivering products and dealing with processes that are required by external stakeholders.
They reported that it is often hard to get a highly available contact person from external customers
which have the full domain knowledge that is necessary therefore they normally use the own
project leader for that role:

„That is why we have a proxy Product Owner, this role is carried out by the project
leader who bundles certain know how elements and serves as a first contact for the
team and then again checks with the real product owner. This is breaking up the whole
process a bit because some team members have more visibility to an outside customer
than others but in the end we would not be able to work without having such a proxy
product owner. We would have incredibly long preliminary durations before a Sprint
and very long Sprint durations where we would have to adapt the scope constantly
because it would take to long waiting for answers to questions that team members
have.“ [Gamma #1 - Team Leader]

The Sprint planning meetings are done via video conferencing and they bring the whole team to-
gether on a regular basis. Those gatherings are used to share knowledge and perform Retrospective
meetings.

• Evolution
They started with a Scrum Process that they had to adapt to their specific needs.

„We started from the very beginning with something that was similar to Scrum.
We also had phases where we deviated because of lack in discipline. This is just
the challenge with agile methods I think - that they are rather strict. They provide
flexibility for product development but do not really tolerate deviation from the
process model itself.“ [Gamma #2 - Team Leader]

• Iterations
They are currently using one week Sprints which are working very good for them.

„We had three weeks at first because we had to try that and we had pending
infrastructure tasks which always take some time to resolve. We came to the
one week duration because of a simple reason: To quickly see results and to
counter the trend of delaying and rescheduling things. One week requires a lot of
discipline and to define the stories very precisely and appropriately so they can
be done in the given time frame.“ [Gamma #3 - Team Leader]

They reported that with longer iterations they tended to have user stories with to many
acceptance criteria; and when only a single one is not met the story has to be reopened and
was often not finished during a Sprint. This resulted in stories going back to the Product
Backlog again and again and the overall state that can be seen by looking at the backlog
status is not very precise. Interestingly they are very aware that one week sprints are not
that common but maybe this awareness is exactly the reason it works so well for them:

Agile Development in Distributed Teams 86 / 166



Chapter 6. Presentation of the Cases 6.3. Gamma

„All in all we are very happy with the one week duration and we would not want
to switch back. Although people returned from external trainings where they
where told that one week is impossible and can never work and a Sprint has to be
at least two weeks long. This seems to be a bit of a religious question.“ [Gamma
#4 - Team Leader]

Agile Practices
They have a modern setup with CI and continuous deployment, use practices like Pair Program-
ming which is done with screen sharing tools and code reviews where a specific purpose tool is
used. They report that peer reviews are highly used in the team as well as Pair Programming be-
cause it has review- as well as creation aspects. Those activities are done co-located as well as
distributed, this does not make a big difference since it are always the same tool that are used for
the process.

• Documentation
They use a wiki where everything is documented. This is not somehow formalized but rather
very offhandedly handled which keeps the communication simple and quick:

„We quickly transfer topics into tickets or in our wiki. If somebody creates some-
thing or needs a review we just take a picture of the sketches and add them to a
ticket. We do not wait until it is formally created or drawn in a specific tool but
we are very casual with such things. This way we reach short cycles: Taking a
picture of the whiteboard, uploading it and then calling some remote team mem-
ber: ’We are in a meeting and are thinking about an optimization, could you take
a look I just have taken a picture.’“ [Gamma #5 - Team Leader]

• Information Radiator
They actually have an accessible monitor in one of the locations but it turned out that it is
not really used.

„We have a screen in one team office but I think it is rarely used. Also in other
teams, when I pass by there are mostly playing funny Youtube clips or bad source
code highlights. But real information is rarely radiated there. Also nobody looks
at it, I would also not get up and go to a screen just for getting some information.“
[Gamma #6 - Team Leader]

• Planned or Failed Practices
There where no processes that explicitly failed or are planned in the future. Those things
that are planned are rather aspects that try to increase standards and improve processes:

„Not in the area of agile methods. It more refers to the fact that process au-
tomation is never at its end, infrastructure is never good enough, build times are
never short enough and code quality is never good enough. So it means it is more
referring to technical things and infrastructure.“ [Gamma #7 - Team Leader]

This can be seen in the following example where the team leader talks about trying new
communication tools:

„I think we will start experimenting with enterprise messenger software. We will
have a look if people like it and if they do we use it, if we see that such things
are not used and accepted then we end it. We also act agile in such aspects, we

Agile Development in Distributed Teams 87 / 166



Chapter 6. Presentation of the Cases 6.3. Gamma

try things and make first steps and also improve them or discontinue them if they
are not working. I think it is not reasonable to force specific tools on a team.“
[Gamma #8 - Team Leader]

Communication
They are overall very pleased with the communication within the team and see continuous com-
munication as important factor for keeping knowledge synchronized.

„The assumed communication overhead of most agile methods is not that high if you
take a closer look. Fifteen minutes a day per team member, people are spending more
time in coffee kitchen each day. A quarter of an hour of work time for communication
each day is not at all painful.“ [Gamma #9 - Team Leader]

A lot of communication is done via audio communication. Even when use video conferencing they
use the visual part not for sharing a view on individuals but rather use it to display information
from planning tools or documentation.

„Primarily via telephone or personally but there are also some colleagues that favor
using instant messengers. Additionally the communication is supported by screen
sharing tools like Teamviewer to be able to collectively have a look at a board or at
some source code. But all in all surprisingly much telephone.“ [Gamma #10 - Team
Leader]

Most of the meetings like the Daily Scrum Meeting as well as Sprint plannings are done either via
telephone calls or sometimes using video conferencing tools. Apart from the daily work where the
communication is done via audio and process management tools they use the regular gatherings
where the whole team meets in one location to discuss more complex topics.

• Face to Face Communication
Due to the lesser effective knowledge sharing and knowledge transfer as discussed in the
disadvantages section, they regularly bring the whole team together to exchange knowledge
and discuss bigger topics.

„And this leads to the fact that we bring together the whole team each few weeks.
Normally we switch between locations to even that out and use that time to dis-
cuss new developments, plan upcoming topics, do pair programming and gener-
ally improve knowledge transfer.“ [Gamma #11 - Team Leader]

• Language
They report that the language can be especially ambiguous when communication is not face
to face.

„A situation that is troublesome is when colleagues do not speak German. Nor-
mally this handicap is not notable but it becomes an issue when using the tele-
phone. This is an aspect I would give more attention to in the future because
it is really not working very good. It is because you understand people bad via
telephone and it becomes exhausting for everyone. And when communication
becomes exhausting people tend to circumvent it.“ [Gamma #12 - Team Leader]

Agile Development in Distributed Teams 88 / 166



Chapter 6. Presentation of the Cases 6.3. Gamma

Distribution
Two reasons where named as cause for the distribution:

„We are around 200 people and when you suddenly need a team of six to eight people
- now it are already ten overall - then it is not that easy to find suitable team members.
The second aspect is that the two locations have a historical background and evolved
from different core focuses. One location had more experience with web portals and
therefore we started with a small share of team members from one location but ex-
tended that share in the meantime because everything is working very well.“ [Gamma
#13 - Team Leader]

They told that they where themselves surprised on how good the distributed team worked and that
they by now it is of no importance from which location a new team member comes from.

• Advantages
The first advantage of the distribution that is mentioned is the greater pool of human re-
sources that can be used to build a team:

„We can access different experts from two locations because of the different core
areas they have. An expert in for example back-end development may be located
in one location and if we need help we can go there, while on the other hand a
security expert may be located in the other location. Overall we have access to a
larger network of colleagues that way.“ [Gamma #14 - Team Leader]

Another reason that actually is seen as an advantage of the distribution is the focus on com-
munication and the focus on carefully choosing and reviewing communication processes
and other tools that are used in the team.

• Disadvantages
The first big disadvantage of the distributed team that is mentioned are the high costs for
travel that are needed and the increased complexity when it comes to doing something in
person on a remote site. A second mentioned downside is the lesser efficiency of communi-
cation:

„One disadvantage is that know how transfer in distributed teams is in principle
not that effective. People often use the telephone or sharing their screen but this
is not as effective as just walking up to somebody sitting two meters away and
asking for help. Tools, regardless how good they are, simply pose an obstacle.“
[Gamma #15 - Team Leader]

• Culture
In their team they do not have any cultural aspects that came up, but the interviewee ar-
gues that culture may become a problem when working with locations where the cultural
difference is very high.

„All projects I know have ended with flying in the remote team members to have
them work in Germany. I am very skeptical when it comes to far distributed
teams and I think it maybe can work in software maintenance where there are
no high professional requirements. But since an agile team should include very
skilled team members with different domain knowledge and not hand over re-
sponsibility to a project manager this is getting very difficult in my opinion.“
[Gamma #16 - Team Leader]

Agile Development in Distributed Teams 89 / 166



Chapter 6. Presentation of the Cases 6.4. Delta

• Configuration
An important factor is to agree and then stick to a process and toolset, otherwise this causes
problems especially with distributed team members:

„When I have processes that are passing by a certain toolset the whole system
looses its validity because I can not rely on it anymore. Every time I do not see
something I have to ask if that has already happened or not.“ [Gamma #17 -
Team Leader]

• Technology and Infrastructure
Gamma reported that for simplicity as well as reliability they choose telephones as a base
communication strategy. They also use internet based communication tools but always have
the telephone infrastructure as a backup option. This extensive use of telephones may also
be the reason they did not report any big issues with technology or network availability.

Team
They have a lot of team building activities that are done on each site as well as between sites.
Since the team members from one site regularly visit the other location and this is done in turns
there is a lot of physical contact also over the distant sites.

„In our company face to face contact is important, this is maybe because of our com-
pany culture. Playing tabletop soccer together, doing coding activities with pizza
and beer, or having innovation days where people can use work time for personal
projects; this kind of collaboration and exchange has a high significance in our com-
pany.“ [Gamma #18 - Team Leader]

Requirements
From the interviewee’s point of view team members in distributed agile teams have to have
a high qualification. They have to be self organizing and communicative.

„They have to be more qualified, this is notable. Agile methods in my opinion
require better qualified and dedicated employees. Just so it does not get lost
in the noise. Because processes are meant to be done quickly and continuous
improvement plays a major role.“ [Gamma #19 - Team Leader]

6.4 Delta

Agile Development
Delta uses a process model that takes parts from Scrum as well as Kanban. Each team has a team
leader who is the main contact person within a team and who also coordinates the communication
outside the team. Furthermore - apart from dedicated developers - they also have other roles like
quality managers, and tester.

„In the Backlog we proceed like in Kanban but the planning we are doing like in
Scrum. We have Retrospectives but we do not have them fixed in the process but
rather do them when we feel like we need one.“ [Delta #1 - Team Leader A]

Agile Development in Distributed Teams 90 / 166



Chapter 6. Presentation of the Cases 6.4. Delta

They have several kinds of meeting activities within their process, the most frequent being the
daily standup meetings each day which last for 15 minutes. Furthermore they have regular groom-
ing sessions together with agents from the product management department where they estimate
upcoming tasks. For bigger upcoming topics they also have planning meetings where they gather
the whole team in one location to discuss the requirements and do architectural planning.

• Evolution
They started with Scrum about three years ago and also had one team in the company that
used Kansan. They felt that Scrum was too restricted for them so they adapted it, weakened
some of its rules and took in some elements from other process models. Having dedicated
roles like quality managers and testers in the team indicates that the team comes from a
more classical software engineering approach.

„We have started with Scrum some years ago, then later on one team used Kan-
ban. Now we have a mixture of both, we have taken the best of both and adapted
to our needs.“ [Delta #2 - Team Leader B]

• Iterations
Initially they started with Sprints of two weeks length but changed that to one month lasting
Sprints. The two week iterations where to short for some bigger work packages they had
therefore they decided to extend the duration.

Agile Practices
They sometimes use Pair Programming when there are certain problems or in situations where they
feel two people should have a look at some code. When utilized it is done either by co-located
team members or via screen sharing tools that does not make a difference for them. But generally
it is not a fixed part but just used occasionally. They have a CI system with Jenkins but do not use
strict Test Driven Development (TDD) although they are paying heed to having new implemented
functionality covered with appropriate tests.

They also do code reviews occasionally via Skype where they use the screen sharing functionality
to go through the code.

They reported that they use GoTo-Meeting for meetings and sometimes record the meeting ses-
sions to preserve it and make it available for other people who might not have participated in the
meeting as well. This is used for informative meetings which a lot of people should witness:

„There are always meetings where you do not get all employees to join, but some
meetings - for example from the corporate management - are mandatory for everyone
because those meetings discuss the next goals and steps“ [Delta #3 - Team Leader A]

Furthermore they are experimenting with doing more documentation in video form:

„The next idea is to do more documentation using video recordings. In the past we
just wrote topics like: ’How to use the password manager’ in a Confluence document,
but now we plan to have a video for that because it is faster. One can view that in five
minutes and gets the information that he needs.“ [Delta #4 - Team Leader A]

• Documentation
Generally they use the wiki functionality of Confluence from Atlassian as knowledge base.

Agile Development in Distributed Teams 91 / 166



Chapter 6. Presentation of the Cases 6.4. Delta

This is the first place to go for a team member who is searching something, if it is not found
there he or she may ask the team leader who then can forward to an appropriate contact
person. But they also state that not everything is inside such wikis yet and there is still a
problem with having not everything in it and the general usage of emails to inform team
members of new entries.

• Information Radiator
They reported that they used a non digital approach in the past but changed that to just the
digital version:

„We have our planning board in Jira and everything is managed using Jira. There
you can see the progress of each team and what still has to be done. We have had
sticky notes in the past but there is the problem that the remote people do not see
it. Using cameras was also not a solution and therefore we decided to stop that
and just use the digital version.“ [Delta #5 - Team Leader B]

• Planned or Failed Practices
Apart from the to short and fixed Sprint length discussed in the Evolution section above
there where no specific processes that where reported as failed.

Communication
They use Skype as a general communication tool for the daily communication as well as for
meetings where they also sometimes use GoTo-Meeting. Furthermore they made the experience
that it is necessary to set a fixed meeting schedule because without dedicated motivation there is
not enough communication between the sites.

„Experience has shown that it is necessary to set fixed schedules for meetings to
synchronize each other. Without fixed schedules you have not much contact to remote
offices.“ [Delta #6 - Team Leader A]

The daily standup meeting is held in Skype where the the team leader enables screen sharing and
displays the agile kanban board for all attendees.

• Face to Face Communication
Although they bring together a team in certain situations they don’t see an absolute require-
ment for a face to face meeting:

„Actually there was no situation in the last seven years where it would have been
absolutely required to have everybody in the same place to be able to start a new
project. But what we do regularly is when there are a lot of people from a certain
location involved in a project then we invite them for a kick-off and combine that
occasion with other procedures.“ [Delta #7 - Team Leader A]

• Language
They state that not sharing the same native tongue can impose problems within a team.
Having non German native speakers in the team results in doing the main communication
in a team in English as a common chosen language:

„Sometimes - although this should normally be no problem - it is English. Some
colleagues are having difficulties when they have to use English instead of their
native tongue.“ [Delta #8 - Team Leader A]

Agile Development in Distributed Teams 92 / 166



Chapter 6. Presentation of the Cases 6.4. Delta

Furthermore the remote communication imposes an additional difficulty in understand each
other:

„Face to face it is easier to understand each other, especially when you do not
share the same native tongue. I am no native speaker myself and when I talk
face to face it is much easier to understand my counterpart than when I use a
telephone or Skype, there it comes to misunderstandings more often.“ [Delta #9
- Team Leader B]

Distribution
The main reason for the distribution is of workforce aspects. In the main location there where
insufficient employees available therefore the company expanded to Vienna as well as Slovakia.

• Advantages
The main advantage as argued by the team leaders is the flexibility in creating teams because
the pool of potential team members for certain tasks is bigger and experts can be chosen
from different sites depending on the current need. This increases the flexibility for creating
and also scaling teams.

• Disadvantages
They reported that generally remote communication feels more distant and is more complex
than face to face communication. During the interview which was performed in one site with
a second project leader of Delta joining the conversation with Skype there where multiple
connection problems and slow downs during the interview session.

„What is for sure a disadvantage - we are currently experiencing it now - is
communication with digital technologies. Because of Skype or GoTo meeting it
is already a lot simpler than in the past but still not the same as being co-located
in the same room. “ [Delta #10 - Team Leader B]

Regarding the communication in the daily standup meeting the missing communication
channels where mentioned explicitly. They reported that without seeing facial expressions
and gestures from the other meeting participants it is much harder to understand their state-
ments. They tried using cameras to display the image of other meeting attendees but found
that this also was no solution for them because people then had to decide whether to con-
centrate on the people or on the shared screens, therefore complicating the situation even
further. Another aspect that came up are general problems that arise when not being co-
located:

„What we miss are some basic things like knowing if your team mate is still
at work or already at home. If you are in the same room you can just take a
look at his place or ask a coworker. But if he is from Linz you do not know it,
sometimes his Skype is still active and you call but get no answer. This are some
basic communication issues we are currently facing.“ [Delta #11 - Team Leader
A]

They furthermore told that they tried to fix this problem by each remote team member noti-
fying the rest of the team via email that they get the information of his or her current status.
But beside the problems of additional email traffic and the issue that the remote party is not
aware of the status of the main site this could not really fix the issue to date.

A good summarizing statement about the disadvantage in their distributed experience was:

Agile Development in Distributed Teams 93 / 166



Chapter 6. Presentation of the Cases 6.4. Delta

„Distributed teams cost a lot of time, this is the biggest disadvantage. Everything
is going slower and this leads to decreasing acceptance where people are viewing
meetings as useless time because they cannot really understand remote attendees
anyway.“ [Delta #12 - Team Leader A]

• Culture
Since the team consists of members from Austria as well as Slovakia the team has some
limited experience with multiple cultures and they see having multiple cultures generally as
a benefit.

„I think being multicultural is never bad, you learn other things and get to know
other educations from universities. Also it is not bad if you bring together dif-
ferent nationalities and bring different know-how together.“ [Delta #13 - Team
Leader A]

• Configuration
One situation where the configurational distance was noticeable was the situation where
most of the team is sited in the same open-plan office and just a few team members are
sited in a neighboring country. They reported that it is much more easy to communicate
with people on the same site due just being some meters away. This results in a lot of
communication done just on this site which is completely invisible for team members on
different sites.

• Technology and Infrastructure
Delta report various obstacles introduced by the infrastructure and although they are not
traveling but sited in fixed office locations the impediments caused by infrastructure are
sometimes cumbersome.

„But we have this over and over again: Which microphone do we use, then the
wifi disconnects, then a cable is defect; this are all things that cost a lot of time.
I can not just simply go and have a meeting, I need to set up my notebook, open
Skype and call somebody. This requires a few extra minutes every time and
when you have four meetings a day you just waste a quarter of an hour setting up
a connection. “ [Delta #14 - Team Leader A]

They tried to improve the situation by standardizing certain aspects like which adapters are
necessary to connect to communication infrastructure and providing each team member with
the same necessary equipment.

„But you can see: It is always the same problems, and the main problem - in the
year 2015 - is the infrastructure.“ [Delta #15 - Team Leader A]

They furthermore reported situations where they just used the screen sharing functionality
but muted the audio and instead used telephony for audio communication to improve the
voice quality and avoid bad audio connection.

Team
Both teams that were topic in the interview were distributed over two locations and at least one
team member in each team was from Slovakia. They did not mention explicit team building
measures that the team performs on a regular basis, but a fixed cornerstone is the half yearly
company gathering which lasts for one week and is considered helpful for team building.

Agile Development in Distributed Teams 94 / 166



Chapter 6. Presentation of the Cases 6.5. Epsilon

„In my opinion it is very important and we try to cover that point: We have a winter
and summer week where the whole company gets together. There we meet and talk
to each other which also improves interpersonal relationships. That just has had a
positive effect so far.“ [Delta #16 - Team Leader B]

Requirements
There were no special requirements that came up for team members in the Delta teams.

6.5 Epsilon

Agile Development
The team of Epsilon is operating in the field of software quality, therefore they often are part of
external projects where they may have been called in to support in certain processes like software
testing, reviewing or consulting. In those cases where they are part of a project for some other
company or team they have to adapt to that customers process. In those cases where they have a
scope of own processes or are free to decide for them self they have two different processes which
they apply: Scrum and Kanban. This depends if their customer is depending on some third party,
in that case they can not use a time boxed iterative process since they are also depending on this
third party. Therefore they apply Kanban in such situations because they are more flexible and do
not have fixed time schedules but can adapt to the progress of the other parties.

If the choice would be totally free the interviewee would favor Scrum as a development process.
For their agile boards and as a general project management software they use Jira.

• Evolution
There is no information about the early evolution of the team and used process, but overall
there are regular workshops where the team recaps the process and tries to improve.

• Iterations
There is no fixed iteration length since it most of the time is depending on external factors,
but generally they favor typical iteration lengths around two to three weeks.

Agile Practices
They have a modern setup with automated tests which are documented as well as code reviews,
coding conventions and pair programming. They do Pair Programming remote and do not see any
difference when doing it via screen sharing functionality. They regularly do meetings where they
transfer knowledge this is done either in situations where the team gathers in one place but it is
also commonly done in a distributed setting.

„We have occasional know-how transfer meetings which I schedule which are done
co-located or remote. They gather information from different projects where every
time someone does a presentation about a newsworthy topic. This is working quite
well with our normal tools, given the connection is stable“ [Epsilon #1 - Department
Manager]

• Documentation
They use tools and setups like Sharepoint for organizing and maintain documents to ensure
and enhance knowledge transfer as well as documentation.

Agile Development in Distributed Teams 95 / 166



Chapter 6. Presentation of the Cases 6.5. Epsilon

„We also use Sharepoint and have a dedicated page there which has to be well
structured. It is necessary to implement the knowledge transfer in a way that
others can use it and are able to find the information they need.“ [Epsilon #2 -
Department Manager]

• Information Radiator
Epsilon argues that in his opinion there is no big difference between co-located and dis-
tributed teams when it comes to information radiators, even when using analog techniques:

„You can just set up a camera at a Scrum board and then use sticky notes, or
you can do it online. I am more a fan of the sticky notes method but online is
no problem, I do not see a deviation in this topic when a team is distributed.“
[Epsilon #7 - Department Manager]

• Planned or Failed Practices
They reported that they had some problems with the self determination when doing Scrum
while being dependent from external factors which led them to using Kansan for such situ-
ations.

„Once we had the situation where we started with Scrum but overlooked that we
were very dependent from external factors so we could not regulate it ourself.
A Scrum team should be self-contained, if a second stakeholder is onboard you
cannot regulate well. That was the reason we switched to Kanban in that situation
because it was much more flexible.“ [Epsilon #3 - Department Manager]

Communication
They use a variety of tools and communication channels, for the basic communication during the
day they relay a lot on a text based chat communication.

„This is a very interesting point: It has shown that often the most basic methods are
the best. Very much communication is going on - you will not believe it - not by
using a camera and sharing the image of one remote location to another location, no
it is by using a chat software. Simple, old school chat software. Where you just join,
others respond to you and you have a constant active communication channel during
the whole day.“ [Epsilon #4 - Department Manager]

The reason for this is argued with the convenience and casual way of its utilization:

„The reason for it is that it is easy applicable along the way. Using video and audio
communication is always a direct synchronous interaction. This can be obstructive or
you feel watched. A text communication channel has turned out to work very well for
short and quick communication.“ [Epsilon #5 - Department Manager]

Furthermore they use Skype, GoTo-Meeting and Teamviewer for audio and video communication.
Regarding this tools they have specific requirements that a tool has to meet to be usable:

„What a tool needs: A stable connection, easy to configure, if it lags and the quality
is bad it is ruled out. It is important to be able to share your screen, this is an essential
feature. When we have two people from different locations working on the same task

Agile Development in Distributed Teams 96 / 166



Chapter 6. Presentation of the Cases 6.5. Epsilon

they share their screen to see what the other one is currently doing. If this is not
possible it is a problem. But nowadays tools are good enough and support this, I do
not see problems in that regards.“ [Epsilon #6 - Department Manager]

Also what they have is an etiquette and set of rules for remote communication, when a meeting is
scheduled it has to be determined how attendees connect to it or who moderates it. Furthermore
they have a rule that nobody turns of their microphone, is making faces or is rude in some other
way. The daily standup meetings are done with just audio communication without video, this has
no technical reasons but is just because they feel audio is enough for such short meetings.

• Face to Face Communication
Face to face communication is important in terms of team building and to build and maintain
a team spirit. Furthermore it is helpful in creative processes and group activities where
multiple people are actively participating.

„Face to face is indispensable in some situations, for example when doing work-
shops or reviewing a product. Furthermore to actually build a team spirit it is
necessary to sometimes meet in person. Getting to know each other personally
requires a certain kind of communication.“ [Epsilon #8 - Department Manager]

Another aspect for the relevance of being co-located is the certainty or uncertainty of a
situation. The more undetermined a situation is, the more helpful is discussing it face to
face. When nobody on the team knows anything about a new project remote communication
is not very effective as a starting point and can lead to misunderstandings.

• Language
The team itself does not have any difficulty with language but the interviewee recognizes
that language can pose a significant problem especially when it comes to remote communi-
cation.

„The most important thing when communicating is language, and if this factor
is not proper enough it leads to problems. If you are transnational you have a
language barrier. This negatively impacts the efficiency of a team. If you have
a team meeting and you talk to each other but you do not really understand the
other attendees it comes to misunderstandings. It is very important that everyone
has an equal level, whatever language is chosen, but if there are differences it
gets difficult and wastes a lot of potential.“ [Epsilon #9 - Department Manager]

Distribution
The main reason for the distribution is the access to qualified employees. The area of software
quality and testing is a very broad field that requires a wide range of skills and knowledge. Skills
are not seen as individual competences but as competence of the team. The expert of Epsilon
argues that it is one of the duties of the leader to bring the team together and create and foster
a team spirit. Especially in distributed teams this means more traveling to visit remote sites and
keep contact with the team members there.

„It massively depends on the leadership, and this is an interpersonal aspect, some
people are suited and others are not. The best tools can not help there. You can do
everything like I said and it still may fail. Having this perception, visiting a team for
a short period, reading and interpreting the atmosphere and passing it on at another

Agile Development in Distributed Teams 97 / 166



Chapter 6. Presentation of the Cases 6.5. Epsilon

location. You sometimes have to be a multiplication and that is especially difficult
when it comes to distributed teams.“ [Epsilon #10 - Department Manager]

• Advantages
The argued biggest advantage is that it is possible to be on-site for customers and generally
being present in a bigger area. Furthermore it is easier to recruit suitable employees and find
needed skills.

• Disadvantages
The interviewee argues that he sees it more like a challenge than a mere disadvantage that
he has to travel a lot between different sites and generally has to invest more in terms of
leadership.

„You have to invest more as a leader than in co-located teams. I am visiting all
our remote offices at least every 14 days, I am always traveling.“ [Epsilon #11 -
Department Manager]

He sees it as his task to hold the team together and to ensure information exchange be-
tween sites. It is the responsibility of the leader to maintain a team spirit and make sure
team members get to know each other in the first place as well as maintain communication.
The biggest problem and disadvantage of the distribution is not due to processes or team
members but because of technical limitations, discussed in the Infrastructure section.

• Culture
Culture was not a topic that came up in the course of the interview session.

• Configuration
Configurational aspects were not a specific topic during the interview, but the aspect came up
in some situations when it came to increased problems due to single remote team members.

• Technology and Infrastructure
Overall the team is very happy with their process, used hardware and tools, but one very big
issue for the division leader is the bad internet connection that is available while traveling.
Since he - and also some other team members - is traveling a lot between the team locations
he is spending a lot of time in public transport like trains where he has little to no internet
connectivity which is a huge hindrance for productivity.

„There is another big impediment that plays a huge role in our distributed team:
The infrastructure within Europe regarding the mobile network services. This is
for me, as a leader, as a team and as a service provider a very big obstacle. We
are traveling a lot by train and would like to use this travel time to work but that is
not possible. This is an absolute scandal.“ [Epsilon #12 - Department Manager]

Apart from his personal strong affection of this problem it is a general issue in his opinion
that is an obstacle for all individuals which are not having one fixed workplace.

Team
In distributed teams it is necessary to keep track of the team spirit and to invest more in terms
of time and money to bring the team together on a regular basis. The team leader holds three
appraisal interviews with every team member per year to exchange feedback. Additionally they
have half-yearly gatherings where the whole company meets.

Agile Development in Distributed Teams 98 / 166



Chapter 6. Presentation of the Cases 6.6. Zeta

Requirements
In his opinion the communication skills of team members are very important and highly
required in a distributed team.

„The challenge is that you need very good communicative processes. That means
also people that join our team have to have good communicative skills. The need
to be able to early anticipate problems and build a team spirit and connection
to the team without seeing the other team members in real.“ [Epsilon #13 -
Department Manager]

6.6 Zeta

Agile Development
Development teams nearly exclusively used a Scrum process that was always adapted to match
the specific needs of the company. On the other hand, when it comes to not develop new software
but doing service and maintenance work in a software environment the Zeta expert used Kanban
without time boxed iterations to be more flexible.

„This is also my credo, especially bigger companies tend to lump together all teams
even though it does not make sense. When I think about a team that does maintenance
work: You have a stable product deployed at the customer where no new development
happens but it is just maintained in the sense of fixing bugs and making small adap-
tions. In such a situation I for sure do not use Scrum, I rather use Kanban. Because
the overhead of a product development process that I assume when I use Scrum is not
there in this situation. On the contrary, I create much unnecessary overhead which I
do not need.“ [Zeta #1 - Department Manager]

The team sizes were always at most eight or nine people and the interviewee specifies that his
ideal team size is between seven and nine team members which relates to the recommendations of
Scrum literature.

In the role as coordinator for multiple distributed teams the interviewee reported the advantage of
iterative working in terms of control and fast feedback which is just as important for co-located
teams as for distributed teams.

„Especially agile methods make it easier because I am faster in control. Due to the
daily standup and the fact that the upcoming work is broken down to small work item
pieces I am able to see progress much faster. Also seen from a control aspect, I was
project leader where I was in charge for seven to eight teams, the agile world is much
better because I get much more feedback. When the user stories move through the
different progress states.“ [Zeta #2 - Department Manager]

They also had clear rules regarding the artifacts in their Scrum processes as well as the role allo-
cation.

„One team one Backlog, that is a basic rule. One Scrum master for each team, but
if a team was very stable and functioning well they do not need a full time Scrum
master, they organize them self. In our situation, especially in the back-end area there
were teams where one very experienced Scrum master had three teams, two of them

Agile Development in Distributed Teams 99 / 166



Chapter 6. Presentation of the Cases 6.6. Zeta

also with Polish team members - which were very experienced and functional. In
such situations one Product Owner for three teams is enough.“ [Zeta #3 - Department
Manager]

While the one single Backlog per team rule was universal they had multiple models for the product
owner role. Depending on the importance of the projects done a team had either one own dedicated
product owner or one product owner proxy for multiple teams who then reported to some other
entity.

• Evolution
There was no real evolution to follow since the interview partner was not speaking for one
specific team but rather reported experiences from multiple teams in different situations.

• Iterations
The iteration length varied always between two to four weeks.

Agile Practices
The teams often were made up from experienced senior software engineers which the interviewee
used as an argument to not do much Pair Programming because of the already vast knowledge of
team members. On the other hand, TDD is very important and having code covered with tests is
mandatory.

Another practices that was done regularly were grooming sessions where two or three team mem-
bers used audio communication and screen sharing tools to inspect the backlog and update its
contained work items.

• Documentation
The interviewee reported different experiences with using a wiki for documentation, in those
cases where the organization of documentation was following the idea of agile self organi-
zation and was the task of the whole team it seemed to be a positive and successful endeavor
whereas situations where responsibility was taken from team members it was described as
futile effort.

Other documentation like specifications of functionality was documented in text documents
which were then turned to use stories. One reported drawback in such cases was the change
in media from office documents to specific project management tools, which resulted in
sometimes unnecessary task overhead.

• Information Radiator
While not being directly involved in teams that utilized physical information radiators the
interviewee reported he has witnessed such systems from time to time and generally is very
fond of such applications because they can increase team ethics and motivation.

„Especially when it comes to things like build status, or build is broken and then
a light is flashing red. I see such things from time to time but would not reduce it
to just distributed teams. This things are generally very helpful also in co-located
situations because it is improving the team spirit and puts a kind of pressure on
the team because they say: ’We cannot afford having this red light flashing.’ I
think this is a very applicable idea in distributed teams.“ [Zeta #4 - Department
Manager]

Agile Development in Distributed Teams 100 / 166



Chapter 6. Presentation of the Cases 6.6. Zeta

• Planned or Failed Practices
Depending on the independence of team members and how well teams were doing in the
aspect of self organization, some situations required team leaders who set goals and were
responsible for making decisions.

Communication
Teams used various communication channels which were chosen depending on the situation, but
the biggest portion of communication was done with Skype or Lync.

„We had multiple channels, Daily Standup meetings were done with Lync, the com-
municator software from Microsoft. For bigger coordination meetings like Sprint
planning, Reviews or Retrospective we had dedicated video conferencing rooms and
if some technical issues occurred there was always the telephone left. And for some
special occasions there is still always the possibility of travel.“ [Zeta #6 - Department
Manager]

Meetings like the Daily Scrum was done with video conferencing software where one team mem-
ber in each location put his notebook on the desk and all other team members gathered in front of
it. The interviewee generally favors video conferencing with the possibility to see the other team
members:

„Seeing is always better than hearing. Because if you hear something you don’t get
as much information as when also seeing it. If I see my counterpart, his posture, his
mood, this are things nobody can hide. When I just communicate using audio then
this is very different.“ [Zeta #7 - Department Manager]

He also argues this usage of visual information to be better able to get information about the status
of remote teams because as a team leader he gets more feedback from other team members.

„That is the reason why I insist on seeing my counterparts in the Daily Standup meet-
ings and not just use audio. Because that is a channel where I can get further infor-
mation from.“ [Zeta #8 - Department Manager]

• Face to Face Communication
Face to face communication is especially important to acquaint team members with each
other.

„I think it is very important that people get to know each other in person, that
they really shake hands. This is something essential in my opinion especially if
a collaboration should work smooth.“ [Zeta #9 - Department Manager]

He reports that this has often been done, no matter where the team was distributed.

„When we start a collaboration I try to get the remote people to Vienna for some
time. It does not matter if the remote team is from Poland or Slovakia or India. I
always tried getting the core team to Vienna to train it here so they can afterwards
pass on their gained knowledge when they are back. Those were big handover
sessions we had.“ [Zeta #10 - Department Manager]

Agile Development in Distributed Teams 101 / 166



Chapter 6. Presentation of the Cases 6.6. Zeta

Furthermore bigger meetings that are scheduled at the start and end of development itera-
tions were held face to face and those situations were furthermore used to build and maintain
a team spirit.

„Once a month we flew in the remote team from Poland. Then we did: Sprint
Review, Sprint Retrospective, the next day then Sprint planning, the following
day Sprint planning two. This way we have spread those meetings over two
or three days and planned ahead for the next Sprints. Simultaneously we used
the evenings for some social events like playing board games or eating pizza
together. This has been working very well for us.“ [Zeta #11 - Department
Manager]

• Language
Though the expert had experience with multiple distributed teams the aspect of different
native tongues did not come up in any situation during the interview.

Distribution
The interviewee names multiple aspects that can lead to distributed teams. The first one is cost
pressure and the ambition to lower the costs of software development. This is true for offshoring
projects that are done with India but also for adding team members from neighboring countries
where the wage would be not as high as the original country.

• Advantages
Advantages mentioned were the cheaper labor costs in some countries and generally being
more flexible when it comes to put a team together.

• Disadvantages
The interviewee argues that the number of locations is a very important aspect of distributed
teams, and that more than two locations are increasingly problematic.

„When I have a part of the team in Vienna and the other part in Poland it is okay.
But if I distribute a team over more than two locations then the communication
overhead is immense, higher than the benefits of the distribution. This is some-
thing somebody would have to show me the calculations of the savings before I
believe it.“ [Zeta #5 - Department Manager]

• Culture
In the opinion of the interviewed expert of Zeta offshoring is not a good option because of
the high cultural distance that is often present when working with teams distributed over
multiple continents and which is causing serious obstacles. He argues that there is a very
high human resource fluctuation and it is very hard to establish a stable team because team
members tend to come and go very frequently. On the other hand he says that he has
made some good experiences with teams distributed in neighboring countries if those are
culturally similar.

„On the one hand there are models of collaboration in distributed teams which are
working. Especially when I think about countries like Poland or Slovakia which
are very similar to us in their cultural aspects. Those collaborations always have
worked best for us because the culture and the main parts of the collaboration
were very similar. Agile methods argue to be cross-functional but to have that
aspect going well you always have to consider cultural aspects.“ [Zeta #12 -
Department Manager]

Agile Development in Distributed Teams 102 / 166



Chapter 6. Presentation of the Cases 6.7. Eta

The interviewee reported his experience with a lot of different situations of distribution, but
in general reported that that the further countries were from each other in his opinion the
more difficult the collaboration got.

• Configuration
Although the interviewed expert reported multiple team situations the topic of configura-
tional problems did not come during the interview session.

• Technology and Infrastructure
Technology and infrastructure did not pose serious issues for the distributed teams.

„The technical infrastructure is nowadays very mature and there are no technical
obstacle for me. Video conferencing is cheap, everybody has Skype and espe-
cially within Europa, a flight to Poland or to Germany is very cheap, that is no
problem.“ [Zeta #13 - Department Manager]

Team
One aspect brought up is the appreciation for team members in other locations and especially in
other countries.

„If I appreciate the remote team, maybe travel there and look at their working con-
ditions and go drink a beer together then it is completely different than just sitting
here and it also improves the work the remote team does.“ [Zeta #14 - Department
Manager]

Requirements
There is no special requirement in terms of technical knowledge but being communicative
and openly approaching other individuals is an important trait for members in a distributed
team. Another mentioned requirement is the willingness to travel which is important when
bringing a team together for some days in one location.

„Communication is an essential part, introverts have it even harder in distributed
teams. I think that it is necessary to have at least one or two communicative
individuals on each site, if you just have introverts in one location it is very
difficult. Technical knowledge is not important, a good developer is a good de-
veloper. What is important is the communication and I think it is important to
look out for communicative individuals when building a distributed team. And
also people that do not have a problem with traveling once in a while.“ [Zeta #15
- Department Manager]

6.7 Eta

Agile Development
Nearly all teams at Eta use Scrum, Kanban is sometimes used for situations where there is no
new development but maintenance work to do. As a reason why they use Scrum they state that
more important than the specific method is the general idea of Agile methodologies. Team size
is between at least four people to rarely more than seven, if there are projects that require more
resources they scale the number of teams working on that project.

Agile Development in Distributed Teams 103 / 166



Chapter 6. Presentation of the Cases 6.7. Eta

Teams are following the proposed Scrum process quite closely, they have the team consisting of
software developers, a Scrum master and a Product Owner who should be provided by the external
customer if possible. The fact that the Product owner is also a member of the team but is mostly
located in a separate location introduces another level of distribution within the team. This means
it is rather common for a project team to be distributed over three different locations: The location
of the external Product Owner and up to two locations of the team members of Eta. They use
software and tools for which are dedicated for agile methods, namely they use Jira and Kunagi.

The interview partner has more than 20 years of experience in more traditional software engineer-
ing methodologies like the waterfall process. Compared to such practices he values the idea of
frequent communication in agile methods and argues that frequent interactions and short cycles of
development are enhancing the productivity and quality of software development in general just
as well as in distributed teams.

„Using agile methods in distributed situations is still a major advantage over classical
approaches. I also have done a lot of successful waterfall projects, but issues emerge
much faster when using agile methods, also if you are in a distributed team.“ [Eta #1-
Scrum Master]

• Evolution
Teams are using agile methods for more than six years now although their process model
was not called Scrum but was rather an own developed and grown process.

• Iterations
They have iterations between two to three weeks, but especially in distributed teams they
tend to have the longer duration for iterations:

„We mainly apply three week Sprints, sometimes also two week Sprints. In my
experience two weeks is sometimes a financial obstacle because team members
have to travel a lot if you are distributed over three locations. And also if you
apply two weeks iterations you need six hours for starting a new Sprint, this
means one day is quickly over. Therefore we have made good experiences with
a three weeks duration.“ [Eta #2- Scrum Master]

Agile Practices
Development at Eta is setting a high value on CI as well as getting prompt feedback in case
anything is wrong with a compiled build. They also value testing but do not strictly follow test
driven development paradigm.

Furthermore they emphasize Pair Programming as a welcome aspect for transferring knowledge
as well as sharing responsibilities within the team.

„On the one hand our goal is to have experts in their fields within our team but we do
not want to have one single expert for one topic. Instead we would like the team to
be able to do multiple things so we do not have bottlenecks. This is the reason why
Pair Programming is a very important aspect, but it lies within the responsibility of
the team to use it when they see fit.“ [Eta #3- Scrum Master]

In situations where familiar team members use Pair Programming it is no problem with remote
communication, but in case of new employees that should be familiarized with the teams processes
they prefer face to face contact. As with Pair Programming, code reviews are also a practice that
lies in the responsibility of the team and is applied when individuals think it is beneficial.

Agile Development in Distributed Teams 104 / 166



Chapter 6. Presentation of the Cases 6.7. Eta

• Documentation
If documentation is necessary it has to be part of user stories. That always depends on the
the project and the needs of the external customer. If documentation is a dedicated point of
the contract or if just the regular amount is required.

„Our approach is simple: If documentation is important it has to be part of the
User Story.“ [Eta #4- Scrum Master]

• Information Radiator
They do not have explicit screens as information radiators rather they are using the function-
ality of their tools for such tasks. The prompt feedback that is provided by their CI systems
in form of emails and other electronic notifications is their form of information radiator that
is working well for their distributed teams.

• Planned or Failed Practices
Eta did not really mention failed or special planned practices, they rather improve their
processes constantly.

Communication
They use written communication in the form of team chats for the base communication within a
team. Shorter meetings are done with just audio communication where team members stay at their
working place while bigger meetings are done with dedicated communication hard- and software.

Apart from Skype as a basis communication tool they use different remote conferencing solutions
like WebEx. They also have specific hardware in the form of video cameras to enhance the quality
of meetings. Daily Standup meetings are the smallest and shortest meetings and are done using
audio communication without video conferencing.

„It has shown that for the 15 minutes Standup meeting everybody uses his screen to
have a look at the agile board and we just do audio conferencing where everyone
stays at his work place. There are a few teams that do video conferencing for it, but
the majority just uses audio.“ [Eta #5- Scrum Master]

Furthermore they have regular bigger grooming meetings. The difference here is that using video
conferencing equipment means that team members have to leave their current work place which is
considered not necessary for the short daily standup meetings.

„Groomings are those meetings where we re-evaluate and prepare the next Sprint.
We are doing them with video conferencing if possible, we have a very good video
conferencing setup on each of our remote locations where audio and video quality
is excellent and it is possible to share your screen. In most cases also our customers
have that at their sites so they can join as well. This means, even when distributed over
three locations, video conferencing is working very well.“ [Eta #6- Scrum Master]

Transition from one Sprint to the next is preferably done face to face but also sometimes done with
remote communication if it is not possible to bring the whole team together:

„Retrospectives are an important part of our process and we take them seriously be-
cause they are used to improve our process. We sometimes do them remotely but
especially at the Retrospectives it is beneficial to be co-located and communicate face
to face.“ [Eta #7- Scrum Master]

Agile Development in Distributed Teams 105 / 166



Chapter 6. Presentation of the Cases 6.7. Eta

• Face to Face Communication
They value face to face communication very much and try to bring the team together on a
regular basis.

„When it comes to transitioning to a new Sprint, this is normally taking us a day,
we try to bring together the team in one single location. We always choose a
different location for this, one time at the site of the customer, the next time in
our office and so on. It is important to do this face to face if possible, but it is of
course not always achievable.“ [Eta #8- Scrum Master]

The argument is that in those situations where everything is going well within a project the
need for a good team spirit is not that high, but when problems arise it is important to have
a good team spirit and responsibility which is strongly improved by regular face to face
communication. Also in more complex meetings like the already mentioned Retrospective
they prefer doing it in a co-located situation.

• Language
Language is not an issue in the current teams since they are distributed in Austria and Ger-
many and all team members are speaking the language fluently. But the interviewee also
reports his experience with teams that are distributed over multiple distant countries or even
continents where language may become a quite relevant factor:

„This is an issue of project communication, how clear are things communicated
or is the communication faulty because of insufficient language knowledge, this
is a thing that is happening from time to time! When an extra language like
English is used as communication language then it is working quite well as long
as every team member has a good level but you never can assure this.“ [Eta #9-
Scrum Master]

Distribution
The reason for the multiple office sites is because of the know-how distribution as well as the
location of external customers.

• Advantages
There are no definite advantages that would favor distributed teams over co-located teams,
but they see the distributed work as the second best option given the situation with multiple
office sites.

• Disadvantages
The biggest disadvantage that came up is that it is more difficult to form a team and develop
a team spirit when dealing with remote team members:

„Scrum is relying strongly on the team spirit and the team formation process.
When you create new teams and they are distributed this takes much longer to
form a functioning team. Another issue is the ability to solve problems which is
harder to do in distributed teams.“ [Eta #10- Scrum Master]

• Culture
Cultural aspects did not come up in the interview.

• Configuration
Configurational aspects did not come up during the interview.

Agile Development in Distributed Teams 106 / 166



Chapter 6. Presentation of the Cases 6.8. Theta

• Technology and Infrastructure
The interview partner regards good and functioning infrastructure as absolute necessity and
premise for distributed teams to work. Furthermore he underlines the importance of having
multiple communication possibilities ready so a team can choose the right tools and channels
which work best for them.

„If the Skype quality is bad in a daily Standup meeting and you are sitting in front
of your scream and cannot understand two or three other team members you drift
away and are not able to follow the topic. That is the reason why infrastructure is
so important and is an aspect where you must not skimp. Also provide the team
multiple communication channels they can choose which suits them best.“ [Eta
#11- Scrum Master]

While the Eta expert did not report any serious problem with connectivity and infrastructure within
the different office locations he pointed out that the infrastructure during traveling is very bad. He
stated that when he travels he has given up trying to join remote meetings because the connection
is not stable enough.

Team
The team spirit is a very essential aspects for teams in Eta, therefore they try to bring the team
together on a regular basis.

Requirements
There are no special technical requirements for team members but the soft skills and per-
sonality of candidates is very important:

„What is very important for us is to find colleagues which are willing to work
in a team, to share knowledge and do for example Pair Programming. Also
people which are willing to address issues in Retrospective and are also willing
to endure Criticism and Feedback. But this is a general thing and nothing we say
is especially important just because of the distribution.“ [Eta #12- Scrum Master]

6.8 Theta

Agile Development
The teams in Theta use Scrum as process models which they adapted to their needs. While using
and implementing some strategies from Kanban, the interviewed expert generally favors Scrum
over a pure Kanban as a process model:

„With Kanban you need to synchronize more often, when you use Scrum you can say:
’Ok, we all meet face to face every two weeks and discuss those topics’. Otherwise
you have the daily synchronizations but you have to schedule a dedicated session
every time some issue comes up.“ [Theta #1 - Agile Coach]

Teams meet regularly in one physical location, this is done especially at the beginning of each
Sprint, where the Sprint planning as well as other meetings that they prefer doing face to face are
then done together.

Agile Development in Distributed Teams 107 / 166



Chapter 6. Presentation of the Cases 6.8. Theta

„We have our Sprint planning every second Monday where the remote team members
travel to Vienna. This is the easiest way, in the past when the teams were more
balanced we alternated the location but now it is always Vienna. How long they stay
depends if there are other things apart from the Sprintplanning that have to be done
like for example complex architecture discussions.“ [Theta #11 - Agile Coach]

• Evolution
The expert of Theta started with with Scrum and reported a continuous improvement and
adaptation instead of complete process changes.

„When I joined the company they already had iterative cycles, of course there
were a lot of things that could be improved, but a lot was already predetermined.
We do not have a Scrum out of the book, I think nobody has that, but it is also
no requirement for me. We focus on being agile, we use practices from Scrum as
well as Kanban and we also pursue automated roll-out processes and continuous
delivery systems. Generally we are very happy with our Scrum process.“ [Theta
#2 - Agile Coach]

• Iterations
Their Sprints are lasting for two weeks.

Agile Practices
Doing code reviews is a major aspect at Theta and is most of the time done asynchronously.
They report that co-located pair reviews where two people sit together on one work station and go
through the code jointly has not been used by the teams, instead most of the code reviews is done
via dedicated software. They use pull requests to review every new addition to a code base as well
as more dedicated reviews were existing parts or components of a software are reviewed.

„If somebody finishes a piece of source code he or she creates a code review with
for example Fisheye, a tool from Atlassian. Or you make a pull request and mention
other team members who are then notified and review your code. They can comment
on that code or just simply call you via audio call.“ [Theta #3 - Agile Coach]

Pair programming is also done whenever needed but is not a regulated process. They have no
problem doing that remote and are using screen sharing functionality of their regular communica-
tion tools for it. A lot of knowledge transfer, especially between different, sites is realized by the
use of code reviews and including pull requests into their workflow.

„After some time we intentionally established that code reviews are done from differ-
ent locations. Especially when we had colleagues from Russia, which was a difficult
challenge, this has worked very well.“ [Theta #4 - Agile Coach]

When reviewing bigger parts of source code they added a policy to share knowledge about that
code with other teams as well:

„We have established that every time some code has changed some team member
from an other team has to join the code review process. So they at least passively get
informed about changes.“ [Theta #5 - Agile Coach]

Agile Development in Distributed Teams 108 / 166



Chapter 6. Presentation of the Cases 6.8. Theta

• Documentation
There is no real difference in documentation between a co-located and a distributed team.
Generally they do not create extensive documentation that can be read by somebody outside
the project who has no context to what the team is doing, documentation is rather done one
small summaries and notes that sum up made decisions and are often part of user stories.
Creating notes for discussed topics and decisions is an aspect that sometimes has to be
enforced in both, co-located as well as distributed teams.

• Information Radiator
They do not have one clear form of information radiator and also no policy regarding this.
Instead each team has its own adaption and while there are some that use classical white-
boards with sticky notes, most tend to use digital representations:

„For the dynamic things we simply use Jira. We pay attention to transfer all tasks
to it because otherwise you would have extra costs of additional synchronization.
And every team has a team chat, that is maybe also a form of information radia-
tor.“ [Theta #6 - Agile Coach]

• Planned or Failed Practices
They generally had no problems applying various agile principles but report that some al-
terations that are needed sometimes can feel awkward.

„We have mastered most of the best practices of Scrum in a way they are working
for us, even when we for some situations say that has to be co-located. The only
thing that is maybe a bit strange is that we do estimations using a planning poker,
this is a bit strange with remote members who just type in their estimates. But
all in all that is not big issue.“ [Theta #7 - Agile Coach]

Communication
As a general communication channel teams use standard tool which support text as well as video
and audio communication. They use Google Hangout for the daily standup meetings and Skype
for one on one communication between team members. Since the major communication is done
in the different text communication channels of the tools they also have set some rules for each
team member:

„We have a gentleman’s agreement that everybody checks Skype at least once every
half an hour so it does not come to constant interruptions but also so that nothing gets
lost.“ [Theta #8 - Agile Coach]

They report that their intensive usage of the basic text communication channels creates a virtual
feeling of being near to each other:

„People are sitting side by side, although just virtual. But if you are actively collabo-
rating, if you for example would now work with a team mate from Budapest, there is
always a chat channel open or an audio call. We really use this very extensively, the
team members are chatting the whole time.“ [Theta #9 - Agile Coach]

They are doing daily standup meetings where they have dedicated meeting room with a big tele-
vision screen and microphones where the team members from the same location gather. Those
daily standup meetings are often rather short and sometimes over in two minutes because a lot of

Agile Development in Distributed Teams 109 / 166



Chapter 6. Presentation of the Cases 6.8. Theta

synchronization and problem solving is done during the regular work time and the daily meetings
are really just used to update other team members of the current status. While generally they are
very happy with their meetings the interviewee also reports that the issue of side conversations is a
factor that must not be underestimated, especially in meetings which are not straight forward and
short like the daily standups:

„It happens over and over again that people tend to start parallel discussions in a
meeting. Normally this would not bother much but when you have remote people in
the meeting you loose them very quickly. This is very interesting to find the right
balance between not cutting out remote attendees and on the other hand deliberately
cut of an often necessary discussion.“ [Theta #10 - Agile Coach]

He argues that this is on the one hand regulated by itself because the hierarchy within the team
and also the whole company is very flat and team members can speak very openly about potential
problems they have. But nevertheless it is in some situations necessary to intervene and keep an
eye on the course of a conversation.

• Face to Face Communication
The Theta expert feels that more complex topics and problems can be best solved in face to
face situations:

„My preference, and this is something I often hear from other colleagues as well,
is that I prefer discussing complex topics face to face. Maybe there are good
tools for that nowadays but we have not found them yet, or better said we have
not looked for them. I also often hear other colleagues say: ’Let us discuss this in
two days when you are on-site’. Furthermore a lot of team members are generally
one or two days a week on-site on a remote location.“ [Theta #12 - Agile Coach]

The interviewed expert gives an explicit example of why he favors doing complex topics
face to face:

„In the past I tried doing planning sessions remotely, but the costs were not jus-
tifiable. You just have so much overhead in communication, so much misunder-
standings and callback inquiries that the efficiency cannot be compared to being
co-located. Just such simple tasks like going through the backlog can take up
three times as much time as when doing it face to face.“ [Theta #13 - Agile
Coach]

This is not only mentioned when it comes to the normal distribution of multiple offices but
also for situations where single team members work from home from time to time. They
mention that while it is perfectly fine to do home-office once in a while they often postpone
more complex discussions to later when they see each other in person again.

• Language
Language poses a very important factor in distributed teams because using remote commu-
nication and the lack of communication channels they bring with them intensify problems
that having different languages can bring. Especially when there are different levels of lan-
guage skills within a team:

„It is very important that people have a similar language skill level in English. If
you have a colleague with whom you normally can communicate very well but

Agile Development in Distributed Teams 110 / 166



Chapter 6. Presentation of the Cases 6.8. Theta

switch then to English this can all change. If the other person can not express
himself well enough this leads to an unbalanced situation. This is not as bad
in a co-located situation because you see your counterpart and can wait until he
formulated his sentence. But if you are just using audio you might not see his
face and might not notice that he is still trying to formulate a sentence.“ [Theta
#14 - Agile Coach]

Distribution
The first mentioned reason for the distribution is the necessity to find the right people having
needed skills. A second argument was that in some situations there was no other choice for setting
up the team with distributed members when knowledge or skills needed are not available in one
location.

• Advantages
Cultural aspects are the first thing that are mentioned when it comes to advantages and
disadvantages in distributed teams. Theta reports that it is strongly depending on the culture
how well a team is building a team spirit.

Having multiple different cultures within a team can on the one hand be an advantage and
bring new points of view and opinions to a project but also may require more discipline and
steady communication.

• Disadvantages
The biggest disadvantage of distributed teams is that building a team spirit becomes a lot
more challenging. Without interpersonal relationships between team members there is less
trust within a team which can lead to problems in certain situations.

„The general underlying problem is the communication during the daily work
and the interpersonal relationships. I would not go as far and say it is a trust
issue because if you work with a team for years you have built up some trust but
it still is a bit different.“ [Theta #15 - Agile Coach]

• Culture
The interviewee reports that in his experience culture is a very important factor for the
success of distributed teams. He also explicitly points out that different cultures can have an
impact when just being distributed over neighboring countries. This effect is not as strong
if staying within certain boundaries like for example within Europe but still can have an
impact.

• Configuration
Depending on the configuration of the team the interviewee reported some problems they
had in some meetings where a few individuals joined via remote video conferencing and
the majority of the team was present in one physical location. This was specifically men-
tioned when doing remote Retrospective meetings where some remote attendees were rather
reluctant while the co-located part of the team engaged in a lively discussion.

„If you have just one remote person and the rest of the team is co-located they
tend to think that they are already completely gathered and when a discussion
becomes intense the remote person may not even come to speak. If you have it
equally divided where one half of the team sits in one location and the other in
another then the normal situation is that one location says: ’Ok, this is our opin-
ion, what do you guys think?’. This may be not that much of a fluid discussion
but people still pay more attention.“ [Theta #16 - Agile Coach]

Agile Development in Distributed Teams 111 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

• Technology and Infrastructure
They experienced some issues in their past but those seemed to fade over the years. Gener-
ally they report that unstable network connection of course can be a nuisance but all in all
they did not report serious issues.

„Nowadays this is not causing problems anymore. In the past it sometimes was
unstable and shaky and establishing a meeting took sometimes between 10 and
15 minutes. This is the whole duration of the daily Standup meeting and therefore
very irritating. But nowadays connection problems are exceptions.“ [Theta #17
- Agile Coach]

Team
The team at Theta meets on a regular basis around two times each month and apart from meetings
and work related discussions this time is also used for team building. If remote team members are
staying for two days they sometimes use the evening to have a drink together or organize smaller
team events like table soccer contests or cooking something together.

When new teams form they also do dedicated workshops for team building and giving team mem-
bers the opportunity to getting to know each other.

„Nowadays we are also doing team building workshops where we gather the remote
people in one single place and try to build up a team spirit and reach the communica-
tion goals I mentioned earlier.“ [Theta #18 - Agile Coach]

Requirements
They report no special requirements in terms of special knowledge, but again point out that
being communicative and willing to openly communicate within a team is very important.

„You have to be communicative or at least are willing to openly communicate.
We already got feedback from our remote colleagues in Budapest where they
said: ’Guys you have to work on your audio conferencing culture!’. But yeah,
apart from being able to speak English and write software you just have to be a
nice individual.“ [Theta #19 - Agile Coach]

6.9 Iota

Agile Development
The Iota expert argues that there is a general trend towards the usage of agile methods, indepen-
dently from team distribution. In his opinion more classical methods are just as well suited for
distributed teams as agile methods and that it comes down to the specific implementation and the
team.

When being able to choose the process model in a distributed team the interviewee favors a Kanban
like process which is enriched with other agile elements but not having strict iterations like the
sprints in Scrum.

„At my Kanban process there is a Kanban board and there is a simple prioritization
process in parallel to the software implementation process. At the management I dis-
tinct between managing the software and managing the product, the latter is about

Agile Development in Distributed Teams 112 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

informing all stakeholders about what is currently done, and how the project is evolv-
ing. Parallel to this there is as mentioned the implementation, and those things are just
coupled in a sense of information exchange to always know what has to be done next.
But we can release every day, we can release bug fixes every day and it is generally
a more loose coupling and not bound to harder checks and reviews in the middle of
development.“ [Iota #2 - Team Leader]

• Evolution
The Iota expert talks about different experiences and therefore there is no clear evolution in
the process models to see.

• Iterations
There are no fixed time boxed iterations in the sense of Scrum Sprints. But there are several
regular meetings which assess the current progress, work that has to be done as well as
updating several stakeholders. Those iterations are held weekly with a smaller scope as well
as every two month where the process itself is reviewed.

Agile Practices
Iota tries emphasizing and using a lot of common agile practices in distributed teams. One very
important topic is to set up a good continuous integration setup which automatically performs
checks and tests as well as automated build systems that simply allow creating new builds and
deployments.

The Iota expert also uses two kind of retrospectives in his development process, one to assess a
certain product as well as one which aims at reviewing and improving the process of working
itself. The first is done on a weekly basis while the second one that is dealing with the process and
is not bound to a specific project is done in longer cycles.

„On the one hand there is a weekly product retrospective meeting and on the other
hand I do bigger retrospectives for the IT about every two months in specific work-
shops where all developers take part. There we discuss the process as a whole, what is
going well and where we feel could be problems or also things like where would peo-
ple feel a refactoring would be necessary. Because if you just focus on your features
then you may notice some flaws but it is very individually handled. If you reserve time
for it and talk about it in a dedicated setting then you get new insights about which
things are really bothersome and should be improved.“ [Iota #3 - Team Leader]

Iota is using code reviews extensively in the form of pull requests, where each new code that is
added to an existing code base is reviewed by another team member. This improves the code
quality and also helps with transferring knowledge between team members.

„We always do code reviews to ensure a certain quality as well as encourage a knowl-
edge transfer between team members. Every time somebody implements a new fea-
ture he opens a pull request in the source code repository and some other team member
then has a look at it, reviews the code and maybe the author and reviewer then call
each other and discuss the code. After the feedback they fix potential issues and then
they merge the new code into the code base.“ [Iota #4 - Team Leader]

Another agile aspect with the use of pull requests is that code is a collectively owned thing in a
project and a team member should not identify with own written code in terms of being its owner.

Agile Development in Distributed Teams 113 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

This also means that everyone in the team - also if it is not his or her field of expertise - is allowed
to make suggestions and improvements to existing source code.

„Also it divides the responsibility for some pieces of source code because that person
that is doing the review then also merges it into the code base and thereby there is
no single individual who owns the code. For met it is important that we have Code
Stewardship, that means that the whole team is responsible for the whole code base.“
[Iota #5 - Team Leader]

Knowledge transfer is done a lot by the usage of pull requests where other team members get to
know techniques and code of their peers. Another fixed part of the process is a defined communi-
cation channel for exchanging knowledge and presenting new ideas:

„We have a specific tech channel in our chat system for knowledge transfer purposes.
Every time someone finds something new or tries something he can share the new
knowledge there with the rest of the team. Another form would be writing blog arti-
cles, doing presentations or simply report what one has learned at a conference. This
are things I always allocate some time for that such knowledge transfer can happen.“
[Iota #6 - Team Leader]

• Documentation
The interviewee argues that bad documentation or the lack of documentation in general is
discovered more quickly and is having a more severe impact in distributed teams than in
co-located situations.

„When you have a team co-located in the same room then there is a kind of
information bubble hanging over them that is just there. If you have a distributed
team you do not have something like that, this means you have to actively share
and spread information. You have to explicitly watch out that everyone gets new
information.“ [Iota #7 - Team Leader]

• Information Radiator
The interviewee states that he has experienced both, analog information radiators like big
whiteboards full of sticky notes as well as digital variants which he prefers.

„For me digital tools are the natural way of working because the advantages are
just overwhelming. You can access them everywhere, also when you are on the
way, I can search it, I can mass-edit it and I can easily regroup it. This possibil-
ities to manipulate and re-arrange data is much more complex and versatile than
physical boards. But I also like the virtual Kanban boards which look like the
real ones because there is more information in the graphical representation of the
single cards and their position. I can remember that better than if I just have a
list of issues like in classic bug tracking software.“ [Iota #8 - Team Leader]

He argues that that apart from the mentioned advantages in the quote they are also generally
a lot more versatile: It is possible to notify involved people via email depending on their
interest, send reports and also connect other tools and data from and to it, like linking to
source. Furthermore there are no limitations in fitting text in one card and it generally is
also better preserved.

Agile Development in Distributed Teams 114 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

• Planned or Failed Practices
The interviewee did not mention any planned practices that he has not already tried and also
did not name specific practices that failed. Instead it can rather be said he generally has
made better experiences using Kanban than Scrum.

Communication
As a general communication channel the Iota expert favors text based chat communication, and
reports very good results with using Slack5, a text messaging system for teams that includes fea-
tures like group communication, one on one communication, file sharing, audio calls and also a
lot integration possibilities.

„Text chats are a very non-bonding communication in terms of when is a message
received and when is it read. That means you always need a more committing tool
where you can set tasks. This is always some kind of task tracking software where
you can create tasks, assign them to somebody, see who is responsible for it and what
the progress is.“ [Iota #10 - Team Leader]

Apart from those text communication channels the Iota expert argues that audio is always neces-
sary and also video conferencing has a lot of benefits:

„With text communication there is a lot of additional information missing, the band-
width is low that means you need some kind of audio communication, like Google
Hangouts or something like that. Furthermore a camera, this is not stringently re-
quired but very helpful in discussions for example to see if somebody would like
to speak. You can not notice that if you do not see the other participants. This is
something I have seen in every company so far: A text communication system, a
Task-tracker and something for audio communication. In the past this was a lot of
phone calls nowadays it shifted to video conferences. Skype is often the norm.“ [Iota
#11 - Team Leader]

• Face to Face Communication
The Iota expert argues that face to face communication and getting to know other team
members in real life is not optional. Especially because of the remote situation the probabil-
ity of misunderstandings and general communication problems is higher than in co-located
teams.

„You have to get to know your opposite, you have to understand his or her mo-
tivations and fears to be able to comprehend its actions. And this understanding
is something you just can get when you regularly meet in person, not only in a
professional context also outside the normal work area. Go get lunch together,
have an argument or solve some problems together. This things work best if you
are face to face.“ [Iota #12 - Team Leader]

• Language
The Iota expert pointed out that while having multiple languages is fine as long as there is
one of them that is commonly agreed for communication it can get troublesome if informa-
tion has to be translated twice to be passed between two individuals:

5 https://slack.com/

Agile Development in Distributed Teams 115 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

„In my experience it is very troublesome if you have two languages you have to
translate to. For example if you have to translate from German to English and
then again English to Ukrainian and then those steps backwards it gets complex.
Also because words may have a different meaning in every language. If I am
in such a situation again i would care for that more and try to avoid translating
things twice.“ [Iota #17 - Team Leader]

Distribution
The Iota expert mentions two main reasons for the formation of a distributed team that he expe-
rienced. The first reason is that a co-located team member starts working remote because of for
example personal reasons like family or relocation. The second reason is the need for know-how
and expertise that is not available at a certain location.

• Advantages
The biggest advantage as argued by Iota is the flexibility that comes with distributed teams.
Working from remote enables much more freedom to the developers which in turn then also
may produce better results.

„I think that working remotely has more advantages than disadvantages. But it is
also an aspect that introduces a whole new set of problems, it is not just that an
employee is sitting in another office and everything is the same. But it is exactly
this that there are happening new unexpected things which you are not really
aware of in the beginning.“ [Iota #13 - Team Leader]

• Disadvantages
Building a team is more difficult and communication has to be enforced more specifically.
A team has to be aware and to care about remote team members, which may sometimes be
accompanied by a higher effort.

• Culture
Including different cultures is an aspect that can bring new ideas and views into a team:

„I like having team members from different cultures, from different political or
economic system because they bring in new opinions. How they have grown
up, what is important for them, how do they feel about things, how do they
recognize text or user interfaces. Such topics require a high amount of sensibility,
for example we Germans are very straight forward among ourselves, something
that would totally not work in other cultures. But bringing in cultural topics can
provide a new view and may be quite valuable.“ [Iota #14 - Team Leader]

But this cultural differences are not very high or nearly not existing when a team is just
distributed over just neighboring countries and is having a much higher impact with further
remote locations.

• Configuration
Beside the typical problems that may appear in remote meeting sessions, configuration was
not a topic that came up during the interview.

• Technology and Infrastructure
In terms of technology and available tools the expert is happy and thinks that the currently
available tools are good enough for supporting distributed teams. He argues that the selec-
tion of tools is huge and they are constantly evolving.

Agile Development in Distributed Teams 116 / 166



Chapter 6. Presentation of the Cases 6.9. Iota

Infrastructure on the other hand is a topic that again is mentioned as problematic, the major
issue that comes up is again a stable and fast enough internet connection which is often
simply not available.

Team
It is very important to regularly meet face to face with other team members and if somebody joins
the team it is best to give that new member some time on-site with other colleagues.

„This is for two or three weeks, depending on the complexity of the task, where a
new team member is present at the location of his colleagues. This creates a certain
proximity and improves knowledge about other team mates. This is also a foundation
for later on to better know why he or she reacted in a certain way or why they did
something a certain way.“ [Iota #15 - Team Leader]

Requirements
There are no special technical requirements for team members, but the interviewee argues
that while not being of technical nature, there are certain characteristics members of a dis-
tributed team should have:

„Not every employee is suited for it. It is important to bring a high level of
self organization, that you actively look for work and are able to work without
requirement constant help from others. And you need employees who do not
loose sight of the long term goal, if you have to stand by all the time and look
out that they do not loose their way it is not working. This are two characteristics
not everybody possess.“ [Iota #16 - Team Leader]

Agile Development in Distributed Teams 117 / 166





Chapter 7. Discussion

7 Discussion

This chapter presents the results of this thesis. It begins with summarizing the data gathered and
presented in Chapter 6, and then attempts to discuss the research propositions as well as answering
the research questions. Furthermore it states the limitations of the research performed in this thesis.

7.1 Cross-Case Analysis

The cross-case analysis summarizes the different units of analysis presented in Chapter 6. It
investigates the single cases and points out similarities and differences within the aspects that
where collected through the interviews and presented in the sub chapters of Section 6.

7.1.1 Agile Development

The following quote from Iota gives a good summary of the situation how most of the interviewed
experts felt about the discussed topic.

„There is a clear trend towards agile methods and there is a trend towards more flex-
ible work conditions and working remote. Those trends have happened over the last
ten years simultaneously. In my opinion there is no reason why you should not be
able to combine the one thing with the other.“ [Iota #1 - Team Leader]

Generally all teams reported that they were very satisfied with the application of agile method-
ologies in their distributed settings and nobody reported that he would prefer some other process
model.

Nearly all investigated teams and experts report that they are using an adapted Scrum process
model. Two teams (Epsilon and Zeta) reported the additional usage of Kanban elements as well as
sometimes using Kanban if they felt it was better suited. Just one interviewee, the expert of Iota,
reported that he generally favors Kanban over Scrum, but the approach he described still is a very
iterative process that includes regular Retrospective meetings and other typical Scrum features.

Every interviewee reported the application of short daily standup meetings which all followed
the standardized Scrum like suggestions of the three questions and being of short duration, as
presented in Section 2.4.4.

All teams that used Scrum also execute Sprint planning meetings where they define the scopes of
the upcoming Sprint and most teams were also doing Retrospective meetings where they reflected
about the past iteration.

• Evolution
Six out of the nine units of analysis explicitly reported that they started with some kind of
agile process model, while from the other three (Epsilon, Zeta and Iota), due to the fact
that those experts where talking about multiple different teams and experiences, it was not

Agile Development in Distributed Teams 119 / 166



Chapter 7. Discussion 7.1. Cross-Case Analysis

possible to identify a specific kind of evolution. Overall there was no straight forward
evolution, in all cases it was reported that the adaption was an incremental process that
progressively introduces new things as well as alters and changes deployed practices.

• Iterations
The typical duration of iterations or Sprints is very similar to that of co-located teams and
ranges from one week (deployed by Gamma) to a maximum of four weeks (applied by
Delta), where all other teams have sprints with the typical duration of two or three weeks.
This means that in terms of iterations there is no notable difference between distributed and
co-located teams.

7.1.2 Agile Practices

Code reviews were a topic that came up in every interview but the implementations of that prac-
tice differed in some ways. Some teams reported that they use pull requests as code review process
(namely Alpha, Theta and Iota), which means that whenever new source code is added to a repos-
itory or also if existing source code is edited or refactored, that changes have to be reviewed by
some other team member before they are merged into the code base. Those teams that used that
review variation reported very good results with it and praised that method as being highly effec-
tive. The reason why this practice becomes such a good assessment is because it serves multiple
purposes: not only does it improve code quality but it also has a knowledge sharing aspect because
multiple team members review code and edit and improve it collaboratively. Furthermore it shifts
away from a single code owner since everybody who approved a pull request also takes up some
responsibility for that source code.

Pair programming was another agile practice that most of the teams (Beta, Gamma, Delta, Ep-
silon, Eta, Theta) reported but no team had a defined policy for it. The overall approach was that
team members use it if they feel it could help but it is nowhere mandatory. No team of those
applying pair programming reported any problems with performing that activity remotely, on the
contrary the Beta expert also argued that pair programming is helpful because team members have
a dedicated session to interact, share knowledge and communicate updates:

„Pair Programming is mandatory for transferring knowledge. Because we have spe-
cialists and everybody is specialized in certain areas - one is a 3D developer, one is
good in data processing, another one in machine learning or in fronted development.
And we would like that people share their knowledge because if somebody leaves
or becomes absent - for example because of going on holidays - another one should
know what he was working on.“ [Beta #3 - CEO]

All teams reported that they intensively use a CI system that performs different tests and also
have set up a continuous delivery system that allows to create new builds of a software easy and
frequently.

• Documentation
For documentation there was no major mutuality, some teams used a wiki system or note
taking and organizing tools like Evernote (mentioned by Alpha). One common practice
most teams applied was the usage of established process management tools like Jira or
Confluence from Atlassian (those two tools where explicitly mentioned by Alpha, Beta,
Delta, Epsilon, Eta and Theta) where they include a lot of documentation into created work
items.

Agile Development in Distributed Teams 120 / 166



Chapter 7. Discussion 7.1. Cross-Case Analysis

On the other hand some experts reported that in distributed teams documentation is a more
important aspect than in a co-located situation since there is sometimes fewer communica-
tion going on. This aspect is hinted by Epsilon and Iota who argued that having a good
documentation solution is necessary to enable knowledge transfer between locations.

• Information Radiator
All teams used digital boards from their project management tools for radiating information,
there was little application of dedicated analog systems like a board with sticky notes on it.
Two experts (Epsilon and Iota) mentioned that they had experience with analog boards, and
two (one expert of Alpha and Epsilon) also proposed they would like the idea of having a
real board but overall there seemed to be no real demand by the teams. The applied tools and
communication channels were sufficient enough in every team to keep the team members
informed and updated on current events.

Such information radiators are not only valuable inside a team, but also for external Stake-
holder. This comes as far as that the Beta expert reported they give their customers access to
the Jira boards they use. In those cases where such tools are too complex for their external
stakeholders they also create a second stripped down board where customers can view the
teams progress.

„External stakeholder get access to our Jira board. Those who are not famil-
iar with it can also have a second board, for example via Trello which is more
lightweight and which can be used by external employees and also by our Cus-
tomers.“ [Beta #15 - CEO]

• Planned or Failed Practices
Some teams reported that they adapted longer meetings like Sprint Planning and Retro-
spectives from a complete remote approach to gathering the team at least regularly in one
location. Two experts, Eta and Theta, reported they co-locate the team at the beginning of
every Sprint.

„In the past I tried doing planning sessions remotely, but the costs were not jus-
tifiable. You just have so much overhead in communication, so much misunder-
standings and callback inquiries that the efficiency cannot be compared to being
co-located. Just such simple tasks like going through the backlog can take up
three times as much time as when doing it face to face.“ [Theta #13 - Agile
Coach]

When it comes to shorter, formal practices like the Daily Scrum meeting or Code Reviews, it
appeared as if the interviewed experts teams did not really attach great importance whether
a Standup meeting was done in Skype or co-located, all reported that the digital version was
working just as well as the traditional, co-located approach for them.

There were no practices mentioned that were not yet applied but planned for the future.
Teams rather reported that when they came up with new ideas and suggestions they dis-
cussed and tried that in the following iterations rather than planning long ahead.

7.1.3 Communication

Every team has some tool or setup they use as a basic communication channel. Most teams use
messenger tools, especially Skype (applied by Beta, Delta, Epsilon, Zeta, Eta and Theta), while

Agile Development in Distributed Teams 121 / 166



Chapter 7. Discussion 7.1. Cross-Case Analysis

two teams used to use Skype in the past, but shifted to a more dedicated text communication tool
named Slack (which is used by Alpha and Iota).

The reported mutual benefit of those tools is that they provide a constant communication channel
that every team member can use at any time but simultaneously is without much obligation. This
creates a constant connection between team members regardless of their physical location.

Meetings are done with common audio and video communication tools. Some teams (Zeta, Theta
reported that they have special meeting rooms for team meetings with dedicated hardware like
microphones, big screens or even video projectors.

There was no consent about the usage of video communication, some teams reported that they use
audio as well as video channels while other teams just talk and use their computer screens to look
at agile boards or other metrics from their used project management tools.

• Face to Face Communication
All teams point out that face to face communication is very important, especially for two
reasons.

Building trust and interpersonal relationships between team members is one of the main
goals that most of the teams try to achieve when meeting in one physical location, because
during the distributed collaboration the communication mainly focuses on professional as-
pects and not personal matters. In co-located situations there are a lot of situations like lunch
or coffee-breaks which are used to also engage in personal chats which form relationships
between colleagues. This is not happening in distributed situations, therefore the situations
where team meets in person are also used to catch up on those aspects.

A second aspect is that when it comes to complex topics that have to be discussed or meet-
ings with a lot of attendees are preferably done when all team members are in one location.
The expert from Iota argues in a similar way as the Theta expert in the previous "Failed
Practices" section, he stated that for the Retrospective meetings it is necessary for the team
members to be together in a mutual location:

„Especially there it is important to have all people in one location [at the Ret-
rospective meetings]. The discussions are taking longer, you need a whiteboard
from time to time to sketch something and explain something to others. This is
very difficult when doing it over remote, it does not work.“ [Iota #19 - Team
Leader]

The exact realization differs from team to team. Some teams, like Eta and Theta bring the
team together every new Sprint iteration to do the Sprint planning meeting co-located. Other
teams do not co-locate the team that often but also on a regular basis, for example Gamma -
who apply short weekly Sprints - gather the team each few weeks to do the Sprint planning
for the next Sprint as well as do some up front planning for the next upcoming iterations.

• Language
Having team members that do not share the same native tongue was an aspect some teams
reported to raise complexity especially when communicating remotely. This is an aspect that
also can occur in teams that are just distributed over neighboring countries or also within
the same country. The experts of Gamma, Delta, Theta and Iota explicitly mentioned that
having different native tongues within a distributed team can cause problems and is factor
that must not be underestimated. In such a case it has to be taken seriously and it is important
to ensure a good team collaboration and avoid penalizing individual team members.

Agile Development in Distributed Teams 122 / 166



Chapter 7. Discussion 7.1. Cross-Case Analysis

7.1.4 Distribution

The main reason that a team ended up as a distributed team in the first place was because of human
resource aspects. It always was the case that needed know-how or resources were not available in
one location and therefore the only way to solve that problem was to take in remote team members.

• Advantages
One of the main advantages is also the reason for the distribution, namely having access to
more employee options and being able to choose from a wider range of skilled individuals.
The importance of this advantage can be seen by the consistency of the argument since it
was brought up by every interviewed expert.

Another advantage is that distributed teams also are often more flexible because having the
processes and tools set up for remote work also means that team members can work without
a problem from other places than the regular office. Such liberty is often well appreciated
by team members, as argued explicitly by Alpha and Iota.

A third aspect (mentioned by Zeta and Eta) was the ability to be near to customers and gen-
erally being present in multiple locations as a company and therefore increasing visibility.

• Disadvantages
Due to the nature of distribution communication in general is more difficult and has to be
more cared for. Team members are more detached from each other and there is a certain
distance between locations. Furthermore communication is the biggest aspect that is im-
paired by the distance between team members and is something that has to be taken into
account explicitly. Finding the right communication tools that work best for the team can be
time consuming and remote communication setups like conferencing rooms and hardware
(like TVs or LCD Projectors, external microphones and speakers) have to be serviced and
maintained. Generally this additional effort adds complexity which can again may become
error sources in the future.

Another issue some interviewees reported are the increased travel times and costs traveling
entails. Beta, Gamma, Epsilon and Zeta where directly addressing this aspect but also ar-
gued that the increased travel effort is necessary and it is not wise to cut the increased costs
in time and money those travel times bring.

• Culture
Due to the spatial limitation of the research subjects, there where some teams that were
rather homogeneous when it comes to cultural aspects of team members.

Nevertheless there were teams which had team members from multiple nationalities and
all of them reported that having a multi cultural team can be very enriching because it can
bring diversity and new insights and opinions inside a team. But it was also stated that this
effect was not very high due to the cultures being very similar. Some experts also reported
experiences with team members from more distant locations where they on the one hand
argued that the diversity can bring valuable new insights but can also be very troublesome
due to different work styles and priorities.

• Configuration
Configurational distance was mentioned explicitly by Alpha and Theta but was also hinted
in some other interviews. Theta stated that this imbalance can be especially problematic
in meeting sessions where the majority of the team is co-located in one place and just a
few meeting individuals are attending with remote tools. Unbalanced situations like this

Agile Development in Distributed Teams 123 / 166



Chapter 7. Discussion 7.2. Examination of the Research Propositions

reinforce the typical problems of remote communication, introduced in Section 3.5.5, like
side conversations or feeling left out.

• Technology and Infrastructure
More than half of the interviewees reported that bad infrastructure and internet availability
is one of the biggest problems when working in remote teams since it has a direct negative
impact on communication tools. This aspect was directly addressed by Alpha, Beta and
Delta and mentioned in the context of bad connectivity while traveling between sites by
Epsilon and Eta. In summary a good share of communication issues lead back to poor
network connectivity which in turn then cause problems with remote communication.

7.1.5 Team

Having a communicative and trusting team is something that all interviewees reported as a basic
condition for successful remote collaboration. All teams have some sort of team building strategies
like bringing the whole team together on a regular basis for some sort of team events. Those teams
that regularly meet in one place, for example when doing Sprint planning meetings, often use
those situations to do some activities together after work. This is regarded to compensate the lack
of informal communication which is often coming short in distributed communication situations.

• Requirements
No team named special technical requirements for remote team members. But most of them
agreed that especially in distributed agile teams it is necessary for team members to be
communicative and self organizing. Initiating communication is not as easy as in co-located
teams and therefore it is necessary that every team member is aware of this fact and still
holds up communication.

7.2 Examination of the Research Propositions

1. The duration of iterations in distributed agile teams is similar to the duration of iterations
in co-located teams.

Interviewees agreed that the periodic activities like Sprint planning or Retrospective meet-
ings are very valuable, especially in distributed teams. Such activities update every team
member with the latest news and status of a project and what is going on in remote lo-
cations. Furthermore it increases the trust in remote team members when everybody sees
that - although not physically present - those members are still participating and delivering
valuable input to a project.

Those short iteration cycles are also helping with the problems of distance, discussed in
Section 3.4. This can be seen by the statements of several interviewed experts like Eta
who argued that „issues emerge much faster when using agile methods“ [Eta #1- Scrum
Master]. As discussed in the previous Section 7.1.1, all teams stayed within the classic
maximal Sprint duration of 30 days (which was applied just by the Delta team). Apart from
the Gamma team (which applied one week Sprints) seven out of the nine interviewed teams
had Sprint durations of two or three weeks.

Therefore the empirical data supports this proposition and its validity in a distributed setting,
and it can also be noted that a lot of the investigated teams followed the suggestion to an

Agile Development in Distributed Teams 124 / 166



Chapter 7. Discussion 7.2. Examination of the Research Propositions

ideal Sprint duration of two weeks for distributed Scrum teams, as mentioned in Section
4.3.2.

2. While for short, standardized communication situations remote communication is sufficient,
face to face communication is very helpful when it comes to longer, informal meetings with
multiple participants.

This trend can be seen in most of the interviews. The daily meetings that are very predeter-
mined and of a short duration are done without problem using video conferencing. Some
teams even reported that they just use audio communication and use their screens to look at
their agile boards or other screens of their used project management software.

But there is also a consent when it comes to informal, complex communication situations,
every expert reported that they regularly bring their teams together in one physical location.
This mutual time in the same location is used for more extensive discussions like architec-
ture or design meetings and also for things like the Retrospectives or planning meetings.

3. Informal and frequent communication aspects of agile methods improve collaboration be-
tween sites and team members.

All interviewed teams had some sort of constant basic remote communication channel that
was used by the team as default way of getting in touch with each other. The majority (Beta,
Delta, Epsilon, Zeta, Eta, Theta) named Skype as a tool they used for basic text commu-
nication, while Alpha and Iota reported they use Slack for that purpose. This text based
communication is characterized as very informal and therefore convenient to use which si-
multaneously reduces the feeling of distance between team members.

This is also stated by several of the interviewed experts, the Epsilon and Theta experts
both formulated this aspect with nearly identical words stating that this usage of a channel
creates a proximity and a feeling of sitting together, while the expert of Iota began the topic
of communication with the following statement:

„Communication is the essential thing, software engineering is basically noth-
ing else than we talk about something and then put that into words, and I mean
software is nothing else than words and is also basically written down communi-
cation. That is a thing you just have to deal with.“ [Iota #9 - Team Leader]

This communication channels between team locations are an essential factor to enable the
self-organization (a cornerstone of agile teams, described in Section 2.3.1) because they
allow team members frequent and easy interaction.

4. Usage of modern project management software and tools is a major factor for success of
distributed teams.

All teams used software tools designed for agile project management, the most used one
being Jira from Atlassian. Those project management tools provide virtual boards and visual
representations which are used by most teams to spread and share information between
multiple locations. The majority of the interviewed experts reported that they used those
tools to coordinate their work progress or that they do not see a disadvantage of digital tools
over analog information radiators like boards with sticky notes.

„Regarding the tools we have available to support our mode of operation I do not
see a problem. The available selection you can pick from is huge and they are
still constantly enhancing. There for sure is room to still upgrade and improve
but for my daily routine there are very few challenges that have not already been
solved.“ [Iota #18 - Team Leader]

Agile Development in Distributed Teams 125 / 166



Chapter 7. Discussion 7.3. Answering the Research Questions

The factor why the tools are so important is because they pose an essential link between
different locations. They function as information radiators to keep distant team members
updated and are not bound to a specific location and therefore can be accessed from any-
where. This information radiator functionality is not only valuable within a team but also for
external stakeholders who can get information about the project status. (This was directly
mentioned by the Beta expert, as discussed in Section 7.1.2.)

The empirical data clearly shows the importance of collaboration tools. All teams invested
a significant amount of time in finding the right tools for them and in optimizing how they
use them.

5. Technical faults and limitations are posing a serious issue on distributed communication.

Infrastructure was an issue that was pointed out in multiple situations during the interview.
Alpha, Beta, Delta, Epsilon and Iota explicitly mentioned bad internet connection and in-
frastructure as a major downside of the distributed working due to the negative impact on
communication. This resembles closely to the challenges of video conferencing mentioned
in Section 3.5.5.

Eta and Epsilon furthermore pointed out the dire situation during travel. While the clear
statement form the Epsilon expert is already mentioned in the Technology and Infrastructure
paragraph in Section 6.5, also the Eta expert told a similar point of view:

„In transit [between the two offices] I do not join any meeting. Maybe briefly
if somebody calls me - but generally, you know that on this route the network
connection fails two or three times, you can not really participate in a meeting.“
[Eta #14- Scrum Master]

6. Beside extensive communicative skills there are no special requirements for team members
in distributed teams compared to co-located teams.

This is an aspect that came out clearly during the interviews. There was no team that named
any technical requirements that are needed to be able to be successful in a distributed team.
But all stated that the ability to communicate is a vital skill every team member has to
posses. This relates to the increase difficulty of communicating with team members over a
distance, if an individual additionally is a very introvert character or simply someone who
does not like to communicate this problem tremendously intensifies. Furthermore being
self-reliant is a characteristic which importance was highlighted multiple times. Those clear
statements are indicating empirical evidence for this proposition.

7.3 Answering the Research Questions

After the previous section discussed the research propositions that were defined in the course of
the case study, this section again uses and summarizes those insights to finally answer the research
questions of this thesis.

1. How can agile methods be used in distributed teams (limited to a low spatial and time
dispersion)?

When applying agile methods like Scrum or Kanban in a distributed team the overall process
and the applied practices stay basically the same. The big difference - the distance between
team members which prevents face to face communication and direct interaction is met by
replacing this direct communication and interaction channel by different, digital channels

Agile Development in Distributed Teams 126 / 166



Chapter 7. Discussion 7.3. Answering the Research Questions

like text chats, audio or video calls and conferences. Interacting with remote team mates is
done with the excessive use of collaboration and management tools which are also a form
of information radiator to keep distant team members informed about what is going on at
different locations.

When using agile methods distributed teams started just the same as co-located teams, they
set up the same processes and practices. In such situations the teams also used the sug-
gestions and recommendations from classic literature. This can be for example seen in the
Sprint duration or team size, discussed in more detail in the second research question.

The result of the cross case analysis shows that all investigated teams successfully applied
agile methods in their distributed teams by using that strategy. The comment from the
Epsilon expert, who told the following opinion during discussing the agile manifest, sum-
marizes the overall point of view of all experts in the case study very well:

„In my opinion this [the constraint of co-location] has changed by now, people
are noticing and hearing things because they are constantly chatting with each
other, that is similar to talking. Maybe it is even better because it does not disturb
you, you can inquire when you want and are not forced to listen at a certain
moment. That is definitely an advantage.“ [Epsilon #14 - Department Manager]

This quote as well as the overall attitude of all the interview partners suggests that the
application of agile methodology in distributed teams does not pose problems any more, on
the contrary all experts expressed their opinion that agile ways of collaboration are beneficial
in distributed teams because they bring the team closer together and allow quicker reactions
when problems arise.

Similar to the theory part about the right organization of teams in Section 4.3.1, the in-
vestigated teams all tried to embrace the distance as a part of their team and accepting it.
The approach of the interviewed experts is therefore very similar to van Solingens advice to
„bring the distance within the team“. [43, min. 28]

To not just report the status of the investigated teams, the author proposes 11 recommenda-
tions for distributed teams which are derived from the empirical insights done in this thesis
in the following Section 7.4.

2. To what extent have the principles of agile methods be adopted to be applicable in such a
distributed setting?

The first thing that can be seen from the case study units is that there is no difference in
the Sprint duration length as well as in the team size. Both metrics are similar to what
is proposed in the basic literature. The typical iteration length of Sprints was chosen to
be two or three weeks (apart Gamma with a one week and Delta with a four week iteration
length). This means that the data from the case units does not differ compared to the classical
suggestion of between one to four weeks. No team had reported durations longer than four
weeks, which correlates strongly with the suggested Sprint lengths discussed in Section
2.4.4.

Apart from the Sprint duration length it furthermore can be seen from the case study units
that there is no difference in the team size. The largest mentioned team size was not more
than ten people while the reported average ranked at six team members. Again this metric is
very similar to the originally proposed size of around seven people as mentioned in Section
2.4.6.

Communication, self-organization and feedback are still the cornerstones in distributed ag-
ile teams and instead of cutting down on communication and interaction between remote

Agile Development in Distributed Teams 127 / 166



Chapter 7. Discussion 7.3. Answering the Research Questions

locations teams try to strengthen those remote bonds and overcome the distance by encour-
aging collaboration (for example through remote pair programming) and also find alterna-
tive communication channels (like code reviews in the form of pull-requests, open text and
audio channels, virtual task boards and feedback from CI systems) to improve cohesion of
the team. Also for the communication with external stakeholders teams use their project
management tools and virtual boards to communicate progress to business partners.

The principles of agile development do not really have to be altered, teams rather reported
that instead there are other things that have to be adapted like scheduling of meetings, extra
effort to improve communication or co-locating the team every few weeks.

„What is important if I do not have the optimum like being co-located in one big
room is to try and solve the problems another way. We for example say: If we
are distributed we do at least the Sprint transitions in the same location.“ [Eta
#15- Scrum Master]

This regular co-location was very important to most of the teams, and therefore is a sig-
nificant aspect of the low spatial distance, since the remote locations where still reachable
within acceptable costs.

3. Which challenges have to be faced utilizing agile methods and how can those issues be
handled?

This section investigates the impact and significance of the three challenges of distribution,
as discussed in Section 3.4, as well as other impediments that were identified by analyzing
the empirical data.

Coordination
Coordination was regarded no problem when using modern project management tools.
Information can be accessed independently from being present in a certain location,
every team member can check the status of a project, the remaining work that is to do,
planned scopes and all other things that might be of interest.

Control
Generally the problems of control (introduced in Section 3.4.2) are one of the main
mentioned issues in distributed development, but seem to be mitigated by agile meth-
ods, an aspect that is still valid when it comes to distributed teams. The benefits of
agile methods on this challenge are discussed in the following last research question.

Communication
Out of the three classic challenges, communication is argued to be the biggest hin-
drance in remote agile teams. Agile methods strongly rely on frequent communica-
tion and a certain amount of trust within a team. Although it is not regarded as an
insuperable barrier it still requires attention and strategies to improve the situation.
Poor communication negatively impacts the two previously listed aspects and is in
turn threatened by the distance and lack of face to face contact. Therefore most teams
tended on bringing the whole team together in one physical location on a regular basis.

Language
Team members who do not share the same native tongue were quite common despite
the focus on low spatial distance and such a case was directly mentioned in four out of
the nine interview sessions.
Interviewees in such situations reported that language can be a critical aspect and
should be considered. This is especially important in distributed teams because of

Agile Development in Distributed Teams 128 / 166



Chapter 7. Discussion 7.3. Answering the Research Questions

the increased usage of remote communication and the fact that face to face commu-
nication is just happening on some occasions. Remote communication lacks various
channels which makes it especially hard for non native speakers to follow conversa-
tions and also to argue with colleagues. Different language levels therefore are having
a bigger impact than in face to face situations. It can be seen that having multiple
languages has to be accounted for, otherwise it might evolve into a communication
obstacle impeding the whole team collaboration.

Awareness of remote team members
Some teams reported that creating and maintaining awareness about the status of re-
mote team members can be challenging. Such a situation was explicitly mentioned by
one of the Delta experts, who stated: „What we miss are some basic things like know-
ing if your team mate is still at work or already at home. If you are in the same room
you can just take a look at his place or ask a coworker.“ [Delta #11 - Team Leader A]
Overcoming the distance between geographical locations is a major tasks for totally
integrated agile teams and therefore also needs specific attention and arrangements on
how to tackle such basic issues.

Technology and connectivity
Communication and collaboration in distributed teams directly relies on technology
and internet connectivity. This is a very practical issue that a lot of teams mentioned
they have faced in the past or are still having troubles with. A bad connection mas-
sively impedes direct and frequent communication which in turn has a negative impact
on collaboration, coordination and control.

4. Which benefits result from pursuing agile methods in such a distributed setting?

The empirical data suggests that agile methods in distributed teams have a positive impact
on especially the control and coordination challenges common in distributed teams. Mod-
ern communication technology as well as the possibility to meet face to face in one physical
location if it should be necessary are two important cornerstones of well functioning dis-
tributed agile teams. Therefore the following benefits were identified which suggest that
agile methods have a positive impact on geographically dispersed teams:

Compensate the control challenge due to short iterations and fast feedback
As already discussed in the previous research question, problems with control are a
typical issue in distributed teams, but agile methodologies reduce the issue and there-
fore are having a positive impact in this regard. Setting up clear schedules and practices
are some forms of formal control, and practices like a daily Standup meeting can bring
forth a form of informal self-control when each team member daily communicates his
or her progress and commits one self to certain tasks by telling plans for the near fu-
ture. This means, that control aspects are very well handled within an agile team even
if the team members are distributed.
The control aspect is also directly mentioned by the Zeta expert, who argued that:
„agile methods make it easier because I am faster in control. Due to the daily standup
and the fact that upcoming work is broken down to small work item pieces I am able
to see progress much faster.“ [Zeta #2 - Department Manager]

Increase team spirit and collaboration between remote sites
Agile methods strongly rely on frequent communication which is just as necessary
in distributed teams as it is in co-located situations. This leads to the fact that teams
accept the distance and the high amount of communication within the team positively
impacts collaboration between geographical locations.

Agile Development in Distributed Teams 129 / 166



Chapter 7. Discussion 7.4. Recommendations for Distributed Teams

Reveals communication and collaboration issues faster
Instead of specifying and planning work tasks for a longer period, agile methods
rely on short iterations and continuous communication and feedback. Communica-
tion problems like misapprehensions can lead to much severe outcomes in distributed
teams but the frequent communication and manifold practices that further encourage
collaboration reveal obstacles very swiftly. This is also summed up by the Theta expert
who issued the following statement:

„The reason why I think agile methods are very helpful in distributed teams
is that they generally focus on an open and short-term communication, com-
munication in short iterations. What I have seen in distributed teams without
short communication iterations is that they drift apart very easily.“ [Theta
#20 - Agile Coach]

Agile practices spread information between sites
Automated tests and CI that give quick feedback about a build status are an excel-
lent way of communicating information to multiple locations. Remote team members
which where not actively participating in implementing a certain feature still may get
notified automatically from the build system and are thereby constantly informed about
a project’s progress.

Low spatial distance allows to co-locate teams for longer, informal meetings
In contrast to global distributed teams it is comparatively easy to co-locate team if nec-
essary. Teams regularly made use of this possibility to gather in one place for various
activities. As discussed in the second research proposition in Section 7.2, teams tend
to co-locate for planning or Retrospective meetings. This is an exclusive benefit of
low spatial distribution, because the costs in time and money for the temporary reloca-
tion of team members is still affordable and accepted facing the benefits those regular
face-to-face sessions bring.

7.4 Recommendations for Distributed Teams

The discussion of the research questions in the previous section summarized six challenges and
five benefits of agile methods in distributed teams. Based on those findings the author makes the
following ten proposals derived from the examined teams to further improve the effectiveness of
distributed teams and get the most out of agile methods in such settings:

Provide channels and encourage communication
Teams need to have the possibility to communicate whenever they want, getting in touch
with a remote colleague has to be as easy as possible. To reach such situations there is on
the one hand the need for a good communication infrastructure like microphones, speakers,
TV-screens or headphones as well as software tools. Furthermore it is necessary to let the
team decide which communication channels they want to use. This is well summed up in
a statement from the Eta expert: „That [bad quality of remote communication tools] is the
reason why infrastructure is so important and is an aspect where you must not skimp. Also
provide the team multiple communication channels they can choose which suits them best.“
[Eta #11- Scrum Master]

Have a plan B
When distributed teams communicate via audio or video channels there are multiple things

Agile Development in Distributed Teams 130 / 166



Chapter 7. Discussion 7.4. Recommendations for Distributed Teams

that can go wrong, like a failing internet connection or hardware defects. Therefore it is ad-
visable to have a backup plan for communication channels. This could be using telephones
or written communication, an alternative internet access or standby hardware.

Plan for communication
Spreading information in distributed teams does not happen as naturally as in co-located
situations. There is no space where individuals meet for informal and personal communi-
cation. Also getting information through listening to other conversations in the same room
(the principle of osmotic communication as mentioned in Section 2.3.2) is impeded by the
distribution. Therefore it is advisable to schedule dedicated communication opportunities
and meetings. This can also be done with more informal topics, Theta for example reported
they once clinked glasses virtually in a video conference on some team members birthday or
Alpha who planned introducing a virtual coffee break where everyone who wants can join
a video conference and drink coffee together.

Use management tools to radiate information
Project management tools like issue tracker or digital Kanban boards are vital components
of a distributed agile team. Those tools are functioning as an information radiator and are
essential to make information accessible for remote team members. The investigated teams
often used them as a central information source where team members can find information
about things like requirements, documentation or planned schedules.

Use software development practices to radiate information
Various software development practices are well suited not only to produce source code
but can also be used to foster communication and spread information. Pair programming
for example can be used to share knowledge between different locations when remote team
members work together. Also text based code reviews or the usage of pull-requests as a
form of code review is a practice that as a side effect communicates information and can
inform remote team members about progress.

Do Retrospectives
The physical distance between team members can often cause disconnectedness between
team members and increase misunderstandings. Therefore it is especially important to do
regular Retrospective meetings to evaluate the used methodology and established processes
and identify eventual problems within a team as early as possible.

Adapt the process model
Scrum and other agile process models were originally built for co-located teams and build
a lot on direct face-to-face communication. When using an agile process model in a dis-
tributed teams it is advisable to adapt it to the actual situation. One example would be
doing practices that where originally done in a synchronous communication situation asyn-
chronously. This could be Standup meetings that are held in a text chat where members
report their status not all at the exact same time but in the course of a halfway or code
reviews that are discussed via text comments.

Stick to the defined processes and practices
Especially in distributed teams it is important to stick to defined processes and practices.
This does not mean that such procedures should never be changed, on the contrary, it is im-
portant to constantly adapt end evolve (as argued in the previous bullet point). It means that
team members should be able to rely on established processes. When a reoccurring meeting
is scheduled at a certain date, this date should be as steady as possible. Re-scheduling on
short notice may be more problematic especially with remote team members since all of

Agile Development in Distributed Teams 131 / 166



Chapter 7. Discussion 7.5. Comparison to Related Work

them have to be noticed and it furthermore disturbs established habits and can bring uncer-
tainty.

Find the right team members
When it comes to build a team that collaborates over distributed locations it is vital to employ
the right team members. The interviews showed that there where little to none technical
requirements exclusively necessary for team members, but communication skills on the
other hand where mentioned quite often. For introvert characters it may be more difficult in
a distributed team because communication has to be pursued more actively.

Co-locate the team together regularly
Because of the fewer times team members see each other in person, building and maintain-
ing a team spirit is more difficult. Due to the situation that the distance between teams is
not that huge it can be overcome without too high costs which leads to the situation that
nearly all teams regularly gather in one place. This costs in time and money for regularly
co-locating a team may still be relevant, but are just a fact that has to be accepted if a team
is distributed.

Build a team spirit
Having a good team spirit is important in every software development team, but especially
critical when team members do not have that much time together. Collective activities,
either when being co-located or also using virtual communication channels are important to
build and maintain a good team. Enabling new team members to become acquainted with
normally remote colleagues as well as improving trust and build more personal connections
between remote co-workers.

7.5 Comparison to Related Work

Section 1.2 already introduced related work at the beginning of this thesis, this closing section now
brings up the conclusions of some related scientific work to compare the outcome of this research
and it can be seen that the results of the case study are resembling closely to the findings of other
researchers.

Paasivaara, Durasiewicz, and Lassenius [66] did a multiple case study on three globally distributed
software development projects using Scrum. They found quite similar numbers when it comes to
the iteration length and also reported that the daily Scrum meeting „was clearly the most important
Scrum practice used by all case projects.“ [66, p. 197] Their results regarding challenges and
benefits report a quite similar outcome as this case study did, but also contains a lot of issues
that are typical for a global distribution. Aspects like different time zones and cultures where
mentioned as impediments, which had no real significance in this thesis. The problems with
different native tongues on the other hand is an aspect that also came up in this research.

Korkala and Abrahamsson [84] did two separate semi-industrial case studies, where the first one
was distributed in the same city and the other one between Oulu and Helsinki in Finland. They
focused on the communication aspect of the distributed team and discussed their findings against
recommendations on distributed software development team from [85]. One very interesting find-
ing, that also matches with the results from this case study, was the recommendation that: „teams
should be able to communicate directly in order to achieve successful results. The lack of direct
peer-to-peer communication can result in significant problems.“ [84]

Dorairaj, Noble, and Malik [14] also focused on communication in globally distributed software
development teams where they interviewed 18 agile practitioners and concluded that „distributed

Agile Development in Distributed Teams 132 / 166



Chapter 7. Discussion 7.6. Limitations of this Thesis

Agile teams face communication challenges caused by the time zone, lack of communication tools,
language barriers, and lack of teamwork. The participants adopted several practical strategies to
overcome communication challenges in distributed Agile software development by reducing time
zone, leveraging communication tools and techniques, addressing language barriers, developing
trusted relationships, increasing formal communication, and increasing informal communication.“
[14, p. 114] They furthermore presented several aspects that cause communication issues as well
as strategies to overcome those obstacles. Apart from typical global issues like time zone differ-
ences they mention some aspects that were also concluded in this research like the importance of
the right communication tools and techniques or the necessity to still have a certain amount of
formal communication through several scheduled meetings.

Nuevo, Piattini, and Pino [40] proposed an agile methodology for distributed software develop-
ment which is based on combining Scrum with the RUP. They concluded that Scrum is benefi-
cial to distributed development because „these methods emphasize the most critical challenges
of distributed development, such as communication and coordination. The application of RUP
to distributed software development strengthens it by means of an established development pro-
cess, and by ensuring that there is the documentation needed to enable project monitoring for
distributed teams.“ [40, p. 73] Although the clear differences of that approach due to the addition
of elements from the RUP, there are still some similarities to this thesis: Likewise to the outcome
of this research they for example propose the importance of CI the daily Scrum meeting and the
Retrospective meeting.

Karsten and Cannizzo [86] describe the story of a distributed team adapting agile methodologies,
namely a combination of Scrum and XP. In their description they state some findings that resemble
the outcome of this study, for example the usage of several practices to not only improve the
software development process but also improve the communication between remote sites. Also
they pointed out the importance of regularly co-locating remote team members and the necessity of
continuous process improvements. Overall they concluded that „high bandwidth communication
is one of the most critical aspects of software development, especially, as in this case, when the
group is distributed geographically. But through commitment in adopting agile methodologies and
judicious use of travel, co-location, and new technologies it is possible to create an environment
where teams can survive, grow and thrive all, delivering quality software quickly.“ [86, p. 239]

7.6 Limitations of this Thesis

Internal validity is especially important for explanatory and causal studies and not so much for
exploratory or descriptive studies. To ensure internal validity, Yin suggests various analytic tactics
that should be done in the analytic phase of the case study. One general strategy is to rely on
theoretical propositions which was done in this research. [16, p. 139] Also the analysis method of
doing a cross-case synthesis where data is gathered from multiple sources, grouped and compared
to each other was a technique that was used in this research. [16, p. 164]

External validity of a case study refers to the generalizability of the outcome. Since the focus
on this case study units was set to a very narrow area with defined requirements (as described in
Section 5.3.4) the findings of this study cannot be generalized for all software development teams.
Especially insights regarding the infrastructure situation are very specific for certain areas and may
vary depending on the location. It is also not reasonable to generalize cultural aspects since this is
also an area that is very diverse.

Another main limitation of this thesis is that it just uses interviews as a data source. As stated
in Section 5.3.3 there are various other sources of data which could be used in a case study to

Agile Development in Distributed Teams 133 / 166



Chapter 7. Discussion 7.6. Limitations of this Thesis

increase the accuracy of the research. This limitation was forced due to the limited resources of
the author and the scope of the thesis.

When it comes to the qualitative content analysis of the gathered interview material described
in Section 5.4, Mayring [80] suggests to give the gathered material to another researcher who
also should do the coding of the material independently. Afterwards the two researcher should
compare their results and use those gained insights to improve their original coding. Again this
was not really doable in the scope of this thesis since the author was conducting the research by
himself without a second researcher participating.

The proposed measurements that are listed at the last part of the research question Section 7.3 are
derived from the empirical data and are not checked for their validity. Those proposed aspects
could be the subject of a followup study that evaluates them explicitly to check their effectiveness.

Agile Development in Distributed Teams 134 / 166



Chapter 8. Conclusion

8 Conclusion

Using agile methods in distributed teams did not seem to be the way to strive for when taking a look
at the original literature about Scrum or XP. But the progress in technology and the improvements
in collaboration tools increased the number of software engineers working in remote teams year by
year. In 2015 a survey among software developers reported that around 30 percent have experience
in working part-time or full-time remote. Simultaneously more and more teams are adopting agile
methods like Scrum as their way of work and collaboration.

Agile methodologies value interaction and communication over processes and tools, they pro-
pose frequent informal communication between team members to share knowledge and coordinate
working. Agile process models like Scrum or XP strongly recommend to co-locate the software
development team in one big office, and claim that co-location is a vital skill for agile teams.
When it comes to distributed teams on the other hand there are the three main aspects that are
often referred to as the challenges of distance, namely coordination, control and communication.

The goal of this thesis was to investigate how these two aspects can be combined. This was done
by starting with an extensive literature research to build a basis for the empirical research. On
top of this theoretical foundation a case study was designed and performed, where the author
interviewed nine experts that represented one or multiple agile teams, which build the source of
evidence for the study.

There are already several case studies investigating distributed agile teams, but most of them are
looking at the topic from a global perspective. Contrary to this worldwide view which discusses
teams that are spread over different time zones and continents this thesis brought focus on teams
that are distributed within a low spatial distance. To accurately confine the boundaries of the
empirical study, a list of criteria was defined that teams and experts had to meet in order to be
subject to the case study:

• Having at least one permanent team member who is not located with the rest of the team.

• At least one office or site had to be located in Austria or Germany.

• Teams should define their process of working and development as being ’agile’.

• There was no strict criteria for the role of the interviewee, the only important thing was that
he or she is or was directly involved with the teams.

Analyzing the empirical data showed that distributed teams started just the same as co-located
teams when using agile methodologies, they set up the same processes and practices. Teams
generally followed the suggestions and recommendations from classic literature. There were no
deviations to most of the basic agile principles like team size and iteration length proposed in
original literature for Scrum or XP. Furthermore there were no agile practices that were doomed to
fail due to the distributed setting of a team, instead every team managed to apply all the techniques
and processes they felt worth using.

As a result this thesis identified six challenges as well as five benefits of agile methods in dis-
tributed teams. Conclusively eleven recommendations derived from the analyzed data were pre-
sented which aim at improving the application of agile methods in such environments.

Agile Development in Distributed Teams 135 / 166



Chapter 8. Conclusion

The data indicates that the short iterations and the increased and encouraged communication of
agile methods are very effective in solving problems in the areas of coordination and control. Iter-
atively and constantly reviewing, reevaluating and re-prioritizing the workflow and work that has
to be done increases social cohesion in distributed teams. No team reported any serious obstacles
in terms of control and coordination and most of them named procedures like short Sprint cycles
and frequent short meetings like daily standups, plannings and Retrospectives as reasons for this.

The importance of communication was significant, and the topic came up in various situations
and forms during the research. This is not surprising since agility and its requirement for a self-
organizing team builds a lot on communication and interaction within a team. Modern technology
in the form of a wide variety of text, audio or video communication tools, are nowadays providing
enough flexibility and convenience to create a constant stream of communication between remote
team members.

An important distinction between far and near distributed teams is the fact that the teams inves-
tigated in this research all had the characteristic of being able to gather all team members in one
place within reasonable costs. This is maybe one of the biggest differences in the actively applied
processes: that all teams frequently bring the team together. Such situations are used for taking
on more complex topics like architecture planning and also for agile practices like retrospective
meetings. Furthermore the regular face to face contact is used to build and foster a team spirit and
interpersonal relationships between team members. All experts reported that in their situations
they see face to face contact as a very important aspect in their teams.

Cultural distance was not having a huge impact due to the limitation of near distributed teams but
was still relevant in some situations. Overall having team members from multiple cultures was
regarded as very valuable because of new insights and other perspectives on certain topics. But it
is also argued that a too big cultural distance can lead to big differences if not handled appropri-
ately. A similar issue are posing different native tongues within a team. While such differences
in language are mostly no problem in co-located teams due to the high amount of simultaneously
present communication channels, differences in language abilities are notable in remote commu-
nication. A strong impediment was named with the available infrastructure especially regarding
internet connectivity. Bad network connectivity directly impacts the quality of remote communi-
cation when it comes to audio and video conferencing which in turn spoils communication.

Regarding the skills of team members there were no notable differences in technical know how
that are required to work in a distributed team. Instead there was a common emphasis on com-
munication skills and also self organization. Due to the obstacles that remote communication
introduces it is necessary to have communicative team members who compensate those barriers
by actively seeking communication.

In summary the data of this thesis indicates that applying agile methods in distributed teams with
low spatial distance poses no problem but instead brings forth several benefits. Common agile
practices like pair programming, Continuous Integration, code reviews, daily standup meetings
or Retrospective meetings were all mastered successfully by the distributed teams by replacing
face to face communication with a variety of digital communication channels. Those practices not
only improve the software engineering process but furthermore pose additional communication
channels which further strengthen the team.

Regarding the outlook in this area it seems that there is much to come. Around 30 percent of
software engineers are already working at least part time remote and there is no indication that
this number will decrease anywhere soon. Due to the nature of empirical qualitative research the
resulting arguments and findings of the case study within the defined bounds could be evaluated in
a quantitative study to gather further insights and also strengthen the findings or suggest alterations.

Agile Development in Distributed Teams 136 / 166



Bibliography

Bibliography

References

[1] Mike Cohn. Succeeding with Agile: Software Development Using Scrum. 1st. Addison-
Wesley Professional, 2009. ISBN: 0-321-57936-4, 978-0-321-57936-2.

[2] Mira Kajko-Mattsson, Gayane Azizyan, and Miganoush K. Magarian. „Classes of Dis-
tributed Agile Development Problems“. In: Agile Conference (AGILE), 2010. 2010, pp. 51–
58. DOI: 10.1109/AGILE.2010.14.

[5] Lene Pries-Heje and Jan Pries-Heje. „Why Scrum Works: A Case Study from an Agile
Distributed Project in Denmark and India“. In: Agile Conference (AGILE), 2011. 2011,
pp. 20–28. DOI: 10.1109/AGILE.2011.34.

[6] Hans-Christian Estler et al. „Agile vs. Structured Distributed Software Development: A
Case Study“. In: Global Software Engineering (ICGSE), 2012 IEEE Seventh International
Conference on. 2012, pp. 11–20. DOI: 10.1109/ICGSE.2012.22.

[7] Nick V. Flor. „Globally Distributed Software Development and Pair Programming“. In:
Commun. ACM 49.10 (Oct. 2006), pp. 57–58. ISSN: 0001-0782. DOI: 10.1145/1164394.
1164421. URL: http://doi.acm.org/10.1145/1164394.1164421.

[8] Darja Smite, Nils Brede Moe, and Pr J. Gerfalk. Agility Across Time and Space: Imple-
menting Agile Methods in Global Software Projects. 1st. Springer Publishing Company,
Incorporated, 2010. ISBN: 3642124410, 9783642124419.

[9] Erran Carmel and Ritu Agarwal. „Tactical Approaches for Alleviating Distance in Global
Software Development“. In: IEEE Softw. 18.2 (Mar. 2001), pp. 22–29. ISSN: 0740-7459.
DOI: 10.1109/52.914734. URL: http://dx.doi.org/10.1109/52.914734.

[10] Pär J Ågerfalk et al. „A framework for considering opportunities and threats in distributed
software development“. In: In Proceedings of the International Workshop on Distributed
Software Development (Paris, Aug. 29, 2005). Austrian Computer Society, pp. 47–61.

[11] Liz Lee-Kelley and Tim Sankey. „Global virtual teams for value creation and project suc-
cess: A case study“. In: International Journal of Project Management 26.1 (2008). Euro-
pean Academy of Management (EURAM 2007) Conference, pp. 51 –62. ISSN: 0263-7863.
DOI: http://dx.doi.org/10.1016/j.ijproman.2007.08.010. URL: http://www.sciencedirect.
com/science/article/pii/S0263786307001305.

[12] M. Rita Thissen et al. „Communication Tools for Distributed Software Development Teams“.
In: Proceedings of the 2007 ACM SIGMIS CPR Conference on Computer Personnel Re-
search: The Global Information Technology Workforce. SIGMIS CPR ’07. St. Louis, Mis-
souri, USA: ACM, 2007, pp. 28–35. ISBN: 978-1-59593-641-7. DOI: 10.1145/1235000.
1235007. URL: http://doi.acm.org/10.1145/1235000.1235007.

[13] Elizabeth Woodward, Steffan Surdek, and Matthew Ganis. A Practical Guide to Distributed
Scrum. 1st. IBM Press, 2010. ISBN: 0137041136, 9780137041138.

Agile Development in Distributed Teams 137 / 166

http://dx.doi.org/10.1109/AGILE.2010.14
http://dx.doi.org/10.1109/AGILE.2011.34
http://dx.doi.org/10.1109/ICGSE.2012.22
http://dx.doi.org/10.1145/1164394.1164421
http://dx.doi.org/10.1145/1164394.1164421
http://doi.acm.org/10.1145/1164394.1164421
http://dx.doi.org/10.1109/52.914734
http://dx.doi.org/10.1109/52.914734
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijproman.2007.08.010
http://www.sciencedirect.com/science/article/pii/S0263786307001305
http://www.sciencedirect.com/science/article/pii/S0263786307001305
http://dx.doi.org/10.1145/1235000.1235007
http://dx.doi.org/10.1145/1235000.1235007
http://doi.acm.org/10.1145/1235000.1235007


Bibliography

[14] Siva Dorairaj, James Noble, and Petra Malik. „Agile Processes in Software Engineering
and Extreme Programming: 12th International Conference, XP 2011, Madrid, Spain, May
10-13, 2011. Proceedings“. In: ed. by Alberto Sillitti et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011. Chap. Effective Communication in Distributed Agile Software
Development Teams, pp. 102–116. ISBN: 978-3-642-20677-1. DOI: 10.1007/978-3-642-
20677-1_8. URL: http://dx.doi.org/10.1007/978-3-642-20677-1_8.

[15] Darja Šmite et al. „An empirically based terminology and taxonomy for global software
engineering“. English. In: Empirical Software Engineering 19.1 (2014), pp. 105–153. ISSN:
1382-3256. DOI: 10.1007/s10664-012-9217-9. URL: http://dx.doi.org/10.1007/s10664-
012-9217-9.

[16] Robert K. Yin. Case Study Research: Design and Methods: Design and Methods. Fifth.
SAGE Publications, 2014. ISBN: 9781452242569. URL: https://books.google.at/books?id=
AjV1AwAAQBAJ.

[17] Per Runeson et al. Case Study Research in Software Engineering: Guidelines and Ex-
amples. Wiley, 2012. ISBN: 9781118104354. URL: https : / / books .google . at / books? id=
BU2YZwEACAAJ.

[18] James Shore and Shane Warden. The Art of Agile Development. First. O’Reilly, 2007. ISBN:
9780596527679.

[19] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. 1st. Upper Sad-
dle River, NJ, USA: Prentice Hall PTR, 2001. ISBN: 0130676349.

[20] Laurie Williams and Alistair Cockburn. „Agile Software Development: It’s about feedback
and change“. In: IEEE Computer 36.6 (2003), pp. 39–43.

[21] Torgeir Dingsøyr, Tore Dybå, and Nils Brede Moe. Agile Software Development: Current
Research and Future Directions. 1st. Springer Publishing Company, Incorporated, 2010.
ISBN: 3642125743, 9783642125744.

[22] Sanjiv Augustine. Managing Agile Projects. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005. ISBN: 0131240714.

[24] Jim Highsmith. Agile Project Management: Creating Innovative Products. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004. ISBN: 0321219775.

[25] Andrew Stellman and Jennifer Greene. Learning Agile: Understanding Scrum, XP, Lean,
and Kanban. Oreilly & Associates Incorporated, 2014. ISBN: 9781449331924.

[26] Alan Moran. Managing Agile: Strategy, Implementation, Organisation and People. Springer
International Publishing, 2015. ISBN: 9783319162614.

[27] Kenneth S. Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile Process.
1st. Addison-Wesley Professional, 2012. ISBN: 0137043295, 9780137043293.

[28] Tsun Chow and Dac-Buu Cao. „A Survey Study of Critical Success Factors in Agile Soft-
ware Projects“. In: J. Syst. Softw. 81.6 (June 2008), pp. 961–971. ISSN: 0164-1212. DOI:
10.1016/j.jss.2007.08.020. URL: http://dx.doi.org/10.1016/j.jss.2007.08.020.

[29] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software Devel-
opment. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2004. ISBN: 0131467409.

[30] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change (2Nd
Edition). Addison-Wesley Professional, 2004. ISBN: 0321278658.

[31] Alistair Cockburn. Agile Software Development: The Cooperative Game (2Nd Edition) (Ag-
ile Software Development Series). Addison-Wesley Professional, 2006. ISBN: 0321482751.

Agile Development in Distributed Teams 138 / 166

http://dx.doi.org/10.1007/978-3-642-20677-1_8
http://dx.doi.org/10.1007/978-3-642-20677-1_8
http://dx.doi.org/10.1007/978-3-642-20677-1_8
http://dx.doi.org/10.1007/s10664-012-9217-9
http://dx.doi.org/10.1007/s10664-012-9217-9
http://dx.doi.org/10.1007/s10664-012-9217-9
https://books.google.at/books?id=AjV1AwAAQBAJ
https://books.google.at/books?id=AjV1AwAAQBAJ
https://books.google.at/books?id=BU2YZwEACAAJ
https://books.google.at/books?id=BU2YZwEACAAJ
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1016/j.jss.2007.08.020


Bibliography

[32] Alistair Cockburn. Crystal Clear a Human-powered Methodology for Small Teams. First.
Addison-Wesley Professional, 2004. ISBN: 0201699478.

[33] Stephanie Teasley et al. „Rapid software development through team collocation“. In: Soft-
ware Engineering, IEEE Transactions on 28.7 (2002), pp. 671–683. ISSN: 0098-5589. DOI:
10.1109/TSE.2002.1019481.

[35] Muhammad O. Ahmad, Jouni Markkula, and Markku Oivo. „Kanban in software develop-
ment: A systematic literature review“. In: Software Engineering and Advanced Applications
(SEAA), 2013 39th EUROMICRO Conference on. 2013, pp. 9–16. DOI: 10.1109/SEAA.
2013.28.

[36] Marcus Hammarberg and Joakim Sunden. Kanban in Action. 1st. Greenwich, CT, USA:
Manning Publications Co., 2014. ISBN: 1617291056, 9781617291050.

[37] Henning Wolf, Stefan Roock, and Martin Lippert. „eXtreme Programming - eine Ein-
führung mit Empfehlungen und Erfahrungen aus der Praxis (2. Aufl.)“ In: dpunkt.verlag,
2005. ISBN: 3-89864-339-5.

[38] George Ellis. „Chapter 8 - Agile Project Management: Scrum, eXtreme Programming, and
Scrumban“. In: Project Management in Product Development. Ed. by George Ellis. Boston:
Butterworth-Heinemann, 2016, pp. 223 –260. ISBN: 978-0-12-802322-8. DOI: http://dx.doi.
org/10.1016/B978-0-12-802322-8.00008-5. URL: http://www.sciencedirect.com/science/
article/pii/B9780128023228000085.

[39] Ajay Reddy. The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum, and Lean
Kanban. 1st. Addison-Wesley Professional, 2015. ISBN: 013408621X, 9780134086217.

[40] Eva del Nuevo, Mario Piattini, and Francisco J. Pino. „Scrum-based Methodology for Dis-
tributed Software Development“. In: 2011 IEEE Sixth International Conference on Global
Software Engineering. 2011, pp. 66–74. DOI: 10.1109/ICGSE.2011.23.

[41] Michael B. O’leary and Jonathon N. Cummings. The Spatial, Temporal, and Configura-
tional Characteristics of Geographic Dispersion in Teams. 2007. URL: http : / / ssrn .com/
abstract=1739905.

[42] Christof Ebert. Global Software and IT: A Guide to Distributed Development, Projects, and
Outsourcing. 1st. Wiley-IEEE Computer Society Pr, 2011. ISBN: 047063619X, 9780470636190.

[43] Rini van Solingen and Volker Mosthaf. Episode 181: Distributed Scrum with Rini van Solin-
gen. Dec. 2011. URL: http://www.se-radio.net/2011/12/episode-181-distributed-scrum-
with-rini-van-solingen/.

[44] Rosalie J. Ocker et al. „Leadership Dynamics in Partially Distributed Teams: an Exploratory
Study of the Effects of Configuration and Distance“. English. In: Group Decision and Ne-
gotiation 20.3 (2011), pp. 273–292. ISSN: 0926-2644. DOI: 10.1007/s10726-009-9180-z.
URL: http://dx.doi.org/10.1007/s10726-009-9180-z.

[45] Thomas J. Allen and Gunter Henn. The Organization and Architecture of Innovation. Taylor
& Francis, 2007. ISBN: 0-7506-8236-1, 978-0-7506-8236-1.

[46] Valentine Casey. „Imparting the Importance of Culture to Global Software Development“.
In: ACM Inroads 1.3 (Sept. 2011), pp. 51–57. ISSN: 2153-2184. DOI: 10.1145/1835428.
1835443. URL: http://doi.acm.org/10.1145/1835428.1835443.

[47] Line Dubé and Guy Paré. „The Multi-faceted Nature of Virtual Teams“. In: In D.J. Pauleen
(Ed.), Virtual teams: Projects, protocols, and practices. Idea Group Publishing, 2002, pp. 1–
39.

Agile Development in Distributed Teams 139 / 166

http://dx.doi.org/10.1109/TSE.2002.1019481
http://dx.doi.org/10.1109/SEAA.2013.28
http://dx.doi.org/10.1109/SEAA.2013.28
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-802322-8.00008-5
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-802322-8.00008-5
http://www.sciencedirect.com/science/article/pii/B9780128023228000085
http://www.sciencedirect.com/science/article/pii/B9780128023228000085
http://dx.doi.org/10.1109/ICGSE.2011.23
http://ssrn.com/abstract=1739905
http://ssrn.com/abstract=1739905
http://www.se-radio.net/2011/12/episode-181-distributed-scrum-with-rini-van-solingen/
http://www.se-radio.net/2011/12/episode-181-distributed-scrum-with-rini-van-solingen/
http://dx.doi.org/10.1007/s10726-009-9180-z
http://dx.doi.org/10.1007/s10726-009-9180-z
http://dx.doi.org/10.1145/1835428.1835443
http://dx.doi.org/10.1145/1835428.1835443
http://doi.acm.org/10.1145/1835428.1835443


Bibliography

[48] J.Roberto Evaristo et al. „A dimensional analysis of geographically distributed project
teams: a case study“. In: Journal of Engineering and Technology Management 21.3 (2004),
pp. 175 –189. ISSN: 0923-4748. DOI: http://dx.doi.org/10.1016/j.jengtecman.2003.05.001.
URL: http://www.sciencedirect.com/science/article/pii/S0923474804000293.

[49] Liz Lee-Kelley. „Locus of control and attitudes to working in virtual teams“. In: Interna-
tional Journal of Project Management 24.3 (2006), pp. 234 –243. ISSN: 0263-7863. DOI:
http://dx.doi.org/10.1016/j.ijproman.2006.01.003. URL: http://www.sciencedirect.com/
science/article/pii/S0263786306000135.

[50] Thomas W. Malone and Kevin Crowston. „The Interdisciplinary Study of Coordination“.
In: ACM Comput. Surv. 26.1 (Mar. 1994), pp. 87–119. ISSN: 0360-0300. DOI: 10 .1145/
174666.174668. URL: http://doi.acm.org/10.1145/174666.174668.

[51] Gamel O. Wiredu. „A Framework for the Analysis of Coordination in Global Software De-
velopment“. In: Proceedings of the 2006 International Workshop on Global Software De-
velopment for the Practitioner. GSD ’06. Shanghai, China: ACM, 2006, pp. 38–44. ISBN:
1-59593-404-9. DOI: 10 . 1145 / 1138506 . 1138516. URL: http : / / doi . acm . org / 10 . 1145 /
1138506.1138516.

[52] James D. Herbsleb. „Global Software Engineering: The Future of Socio-technical Coordi-
nation“. In: 2007 Future of Software Engineering. FOSE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 188–198. ISBN: 0-7695-2829-5. DOI: 10.1109/FOSE.2007.11.
URL: http://dx.doi.org/10.1109/FOSE.2007.11.

[53] Päivi Ovaska, Matti Rossi, and Pentti Marttiin. „Architecture as a coordination tool in
multi-site software development“. In: Software Process: Improvement and Practice. 2003,
pp. 233–247.

[54] Jo Ellen Moore, Clay K. Williams, and Mary Sumner. „The Role of Informal Control in
PMO Lite Environments“. In: Proceedings of the 50th Annual Conference on Comput-
ers and People Research. SIGMIS-CPR ’12. Milwaukee, Wisconsin, USA: ACM, 2012,
pp. 27–30. ISBN: 978-1-4503-1110-6. DOI: 10.1145/2214091.2214101. URL: http://doi.
acm.org/10.1145/2214091.2214101.

[55] Ravi Narayanaswamy and Raymond M. Henry. „Effects of Culture on Control Mecha-
nisms in Offshore Outsourced IT Projects“. In: Proceedings of the 2005 ACM SIGMIS CPR
Conference on Computer Personnel Research. SIGMIS CPR ’05. Atlanta, Georgia, USA:
ACM, 2005, pp. 139–145. ISBN: 1-59593-011-6. DOI: 10.1145/1055973.1056004. URL:
http://doi.acm.org/10.1145/1055973.1056004.

[56] Melvin E. Conway. „How do committees invent“. In: Datamation 14.4 (1968), pp. 28–31.
URL: http://www.melconway.com/Home/pdf/committees.pdf.

[57] Alan MacCormack, Carliss Baldwin, and John Rusnak. „Exploring the duality between
product and organizational architectures: A test of the “mirroring” hypothesis“. In: Re-
search Policy 41.8 (2012), pp. 1309–1324. URL: http : / / ideas . repec . org / a / eee / respol /
v41y2012i8p1309-1324.html.

[58] James D. Herbsleb and Rebecca E. Grinter. „Splitting the Organization and Integrating the
Code: Conway’s Law Revisited“. In: Proceedings of the 21st International Conference on
Software Engineering. ICSE ’99. Los Angeles, California, USA: ACM, 1999, pp. 85–95.
ISBN: 1-58113-074-0. DOI: 10.1145/302405.302455. URL: http://doi.acm.org/10.1145/
302405.302455.

[59] Paul Watzlawick, Janet Helmick-Beavin, and Don D. Jackson. Pragmatics of Human Com-
munication - a study of interactional patterns, pathologies, and paradoxes. New York: Nor-
ton, 1967. ISBN: 0-393-01009-0.

Agile Development in Distributed Teams 140 / 166

http://dx.doi.org/http://dx.doi.org/10.1016/j.jengtecman.2003.05.001
http://www.sciencedirect.com/science/article/pii/S0923474804000293
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijproman.2006.01.003
http://www.sciencedirect.com/science/article/pii/S0263786306000135
http://www.sciencedirect.com/science/article/pii/S0263786306000135
http://dx.doi.org/10.1145/174666.174668
http://dx.doi.org/10.1145/174666.174668
http://doi.acm.org/10.1145/174666.174668
http://dx.doi.org/10.1145/1138506.1138516
http://doi.acm.org/10.1145/1138506.1138516
http://doi.acm.org/10.1145/1138506.1138516
http://dx.doi.org/10.1109/FOSE.2007.11
http://dx.doi.org/10.1109/FOSE.2007.11
http://dx.doi.org/10.1145/2214091.2214101
http://doi.acm.org/10.1145/2214091.2214101
http://doi.acm.org/10.1145/2214091.2214101
http://dx.doi.org/10.1145/1055973.1056004
http://doi.acm.org/10.1145/1055973.1056004
http://www.melconway.com/Home/pdf/committees.pdf
http://ideas.repec.org/a/eee/respol/v41y2012i8p1309-1324.html
http://ideas.repec.org/a/eee/respol/v41y2012i8p1309-1324.html
http://dx.doi.org/10.1145/302405.302455
http://doi.acm.org/10.1145/302405.302455
http://doi.acm.org/10.1145/302405.302455


Bibliography

[60] Friedemann Schulz von Thun. Miteinander reden 1 – Störungen und Klärungen. Allgemeine
Psychologie der Kommunikation. 51st ed. Rowholt Taschenbuch Verlag, 2014. ISBN: 978-
3-499-17489-6.

[61] Richard L. Daft and Robert H. Lengel. „Information Richness: A New Approach to Man-
agerial Behaviour and Organizational Design“. In: Research in Organizational Behaviour
6 (1984). Ed. by Bm Staw, pp. 191–233.

[62] Alan R. Dennis and Joseph S. Valacich. „Rethinking Media Richness: Towards a Theory of
Media Synchronicity“. In: Proceedings of the Thirty-Second Annual Hawaii International
Conference on System Sciences-Volume 1 - Volume 1. HICSS ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 1017–. ISBN: 0-7695-0001-3. URL: http://dl.acm.org/
citation.cfm?id=874068.875924.

[63] Kristi Lewis Tyran, Craig K. Tyran, and Morgan Shepherd. „Exploring Emerging Lead-
ership in Virtual Teams“. In: Virtual Teams That Work: Creating Conditions for Effective
Virtual Teams. Jossey-Bass Inc., Publishers, 2003, pp. 183–195. ISBN: 0787961620.

[64] Erin Bradner, Gloria Mark, and Tammie D. Hertel. „Effects of team size on participation,
awareness, and technology choice in geographically distributed teams“. In: System Sci-
ences, 2003. Proceedings of the 36th Annual Hawaii International Conference on. 2003,
10 pp.–. DOI: 10.1109/HICSS.2003.1174795.

[65] Jeff Sutherland et al. „Distributed Scrum: Agile Project Management with Outsourced De-
velopment Teams“. In: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences. HICSS ’07. Washington, DC, USA: IEEE Computer Society, 2007,
274a–. ISBN: 0-7695-2755-8. DOI: 10.1109/HICSS.2007.180. URL: http://dx.doi.org/10.
1109/HICSS.2007.180.

[66] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. „Using Scrum in Distributed
Agile Development: A Multiple Case Study.“ In: ICGSE. IEEE, 2009, pp. 195–204. ISBN:
978-0-7695-3710-8. URL: http : / / dblp . uni - trier . de / db / conf / icgse / icgse2009 . html #
PaasivaaraDL09.

[67] Bernardo José da Silva Estácio and Rafael Prikladnicki. „Distributed Pair Programming: A
Systematic Literature Review“. In: Inf. Softw. Technol. 63.C (July 2015), pp. 1–10. ISSN:
0950-5849. DOI: 10.1016/j.infsof.2015.02.011. URL: http://dx.doi.org/10.1016/j.infsof.
2015.02.011.

[68] Jo E. Hannay et al. „The Effectiveness of Pair Programming: A Meta-analysis“. In: Inf.
Softw. Technol. 51.7 (July 2009), pp. 1110–1122. ISSN: 0950-5849. DOI: 10.1016/j.infsof.
2009.02.001. URL: http://dx.doi.org/10.1016/j.infsof.2009.02.001.

[69] David Stotts et al. „Virtual Teaming: Experiments and Experiences with Distributed Pair
Programming“. English. In: Extreme Programming and Agile Methods - XP/Agile Universe
2003. Ed. by Frank Maurer and Don Wells. Vol. 2753. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 129–141. ISBN: 978-3-540-40662-4. DOI: 10.1007/
978-3-540-45122-8_15. URL: http://dx.doi.org/10.1007/978-3-540-45122-8_15.

[70] Brian Hanks. „Empirical Evaluation of Distributed Pair Programming“. In: Int. J. Hum.-
Comput. Stud. 66.7 (July 2008), pp. 530–544. ISSN: 1071-5819. DOI: 10.1016/j.ijhcs.2007.
10.003. URL: http://dx.doi.org/10.1016/j.ijhcs.2007.10.003.

Agile Development in Distributed Teams 141 / 166

http://dl.acm.org/citation.cfm?id=874068.875924
http://dl.acm.org/citation.cfm?id=874068.875924
http://dx.doi.org/10.1109/HICSS.2003.1174795
http://dx.doi.org/10.1109/HICSS.2007.180
http://dx.doi.org/10.1109/HICSS.2007.180
http://dx.doi.org/10.1109/HICSS.2007.180
http://dblp.uni-trier.de/db/conf/icgse/icgse2009.html#PaasivaaraDL09
http://dblp.uni-trier.de/db/conf/icgse/icgse2009.html#PaasivaaraDL09
http://dx.doi.org/10.1016/j.infsof.2015.02.011
http://dx.doi.org/10.1016/j.infsof.2015.02.011
http://dx.doi.org/10.1016/j.infsof.2015.02.011
http://dx.doi.org/10.1016/j.infsof.2009.02.001
http://dx.doi.org/10.1016/j.infsof.2009.02.001
http://dx.doi.org/10.1016/j.infsof.2009.02.001
http://dx.doi.org/10.1007/978-3-540-45122-8_15
http://dx.doi.org/10.1007/978-3-540-45122-8_15
http://dx.doi.org/10.1007/978-3-540-45122-8_15
http://dx.doi.org/10.1016/j.ijhcs.2007.10.003
http://dx.doi.org/10.1016/j.ijhcs.2007.10.003
http://dx.doi.org/10.1016/j.ijhcs.2007.10.003


Bibliography

[71] Michael Reeves and Jihan Zhu. „Moomba – A Collaborative Environment for Supporting
Distributed Extreme Programming in Global Software Development“. English. In: Extreme
Programming and Agile Processes in Software Engineering. Ed. by Jutta Eckstein and Hu-
bert Baumeister. Vol. 3092. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2004, pp. 38–50. ISBN: 978-3-540-22137-1. DOI: 10.1007/978-3-540-24853-8_5.
URL: http://dx.doi.org/10.1007/978-3-540-24853-8_5.

[72] Jesus Favela et al. „Empirical Evaluation of Collaborative Support for Distributed Pair Pro-
gramming“. English. In: Groupware: Design, Implementation, and Use. Ed. by Gert-Jan de
Vreede, LuisA. Guerrero, and Gabriela Marín Raventós. Vol. 3198. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2004, pp. 215–222. ISBN: 978-3-540-23016-8.
DOI: 10.1007/978-3-540-30112-7_18. URL: http://dx.doi.org/10.1007/978-3-540-30112-
7_18.

[73] Despina Tsompanoudi, Maya Satratzemi, and Stelios Xinogalos. „Exploring the Effects
of Collaboration Scripts Embedded in a Distributed Pair Programming System“. In: Pro-
ceedings of the 18th ACM Conference on Innovation and Technology in Computer Science
Education. ITiCSE ’13. Canterbury, England, UK: ACM, 2013, pp. 225–230. ISBN: 978-1-
4503-2078-8. DOI: 10.1145/2462476.2462500. URL: http://doi.acm.org/10.1145/2462476.
2462500.

[74] Gerardo Canfora et al. „How distribution affects the success of pair programming“. In:
International Journal of Software Engineering and Knowledge Engineering 16.02 (2006),
pp. 293–313.

[75] Prashant Baheti, Edward F. Gehringer, and P. David Stotts. „Exploring the Efficacy of Dis-
tributed Pair Programming“. In: Proceedings of the Second XP Universe and First Agile
Universe Conference on Extreme Programming and Agile Methods - XP/Agile Universe
2002. London, UK, UK: Springer-Verlag, 2002, pp. 208–220. ISBN: 3-540-44024-0. URL:
http://dl.acm.org/citation.cfm?id=647276.722333.

[76] Gerardo Canfora, Aaniello Cimitile, and Corrado A. Visaggio. „Lessons learned about dis-
tributed pair programming: what are the knowledge needs to address?“ In: Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on. 2003, pp. 314–319. DOI: 10.1109/ENABL.2003.
1231429.

[77] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration: Improv-
ing Software Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-
Wesley Professional, 2007. ISBN: 0321336380.

[79] Ade Miller. „A Hundred Days of Continuous Integration“. In: Agile, 2008. AGILE ’08.
Conference. 2008, pp. 289–293. DOI: 10.1109/Agile.2008.8.

[81] J.M. Verner et al. „Guidelines for industrially-based multiple case studies in software engi-
neering“. In: Research Challenges in Information Science, 2009. RCIS 2009. Third Inter-
national Conference on. 2009, pp. 313–324. DOI: 10.1109/RCIS.2009.5089295.

[82] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. „Studying Software Engi-
neers: Data Collection Techniques for Software Field Studies“. In: Empirical Softw. Engg.
10.3 (July 2005), pp. 311–341. ISSN: 1382-3256. DOI: 10.1007/s10664-005-1290-x. URL:
http://dx.doi.org/10.1007/s10664-005-1290-x.

[83] Andreas Diekmann. Empirische Sozialforschung: Grundlagen, Methoden, Anwendungen.
Reinbek bei Hamburg. 2010.

Agile Development in Distributed Teams 142 / 166

http://dx.doi.org/10.1007/978-3-540-24853-8_5
http://dx.doi.org/10.1007/978-3-540-24853-8_5
http://dx.doi.org/10.1007/978-3-540-30112-7_18
http://dx.doi.org/10.1007/978-3-540-30112-7_18
http://dx.doi.org/10.1007/978-3-540-30112-7_18
http://dx.doi.org/10.1145/2462476.2462500
http://doi.acm.org/10.1145/2462476.2462500
http://doi.acm.org/10.1145/2462476.2462500
http://dl.acm.org/citation.cfm?id=647276.722333
http://dx.doi.org/10.1109/ENABL.2003.1231429
http://dx.doi.org/10.1109/ENABL.2003.1231429
http://dx.doi.org/10.1109/Agile.2008.8
http://dx.doi.org/10.1109/RCIS.2009.5089295
http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1007/s10664-005-1290-x


Bibliography

[84] Mikko Korkala and Pekka Abrahamsson. „Communication in Distributed Agile Develop-
ment: A Case Study“. In: 33rd EUROMICRO Conference on Software Engineering and Ad-
vanced Applications (EUROMICRO 2007). 2007, pp. 203–210. DOI: 10.1109/EUROMICRO.
2007.23.

[85] Lucas Layman et al. „Essential communication practices for Extreme Programming in a
global software development team“. In: Information and Software Technology 48.9 (2006),
pp. 781–794. URL: http : / / www. sciencedirect . com / science / article / B6V0B - 4JF8H93 -
2/2/625aa9c8d29f7c60b2a5a38425f9a41f.

[86] Paul Karsten and Fabrizio Cannizzo. „The Creation of a Distributed Agile Team“. In: Pro-
ceedings of the 8th International Conference on Agile Processes in Software Engineer-
ing and Extreme Programming. XP’07. Como, Italy: Springer-Verlag, 2007, pp. 235–239.
ISBN: 978-3-540-73100-9. URL: http://dl.acm.org/citation.cfm?id=1768961.1769014.

Online References

[3] Stack Overflow. Stack Overflow Developer Survey 2016. 2016. URL: http://stackoverflow.
com/research/developer-survey-2016#work-remote (visited on 06/19/2016).

[4] Stack Overflow. Stack Overflow Developer Survey 2015. 2015. URL: http://stackoverflow.
com/research/developer-survey-2015#work-remote (visited on 06/19/2016).

[23] Kent Beck et al. Manifesto for Agile Software Development. 2001. URL: http : / / www.
agilemanifesto.org/ (visited on 06/19/2016).

[34] Scott W. Ambler. Agile Adoption Rate Survey Results: February 2008. June 2001. URL: http:
//www.drdobbs.com/open-source/the-agile-manifesto/184414755 (visited on 06/19/2016).

[78] Martin Fowler. Continuous Integration. May 2006. URL: http://www.martinfowler.com/
articles/continuousIntegration.html (visited on 06/19/2016).

[80] Philipp Mayring. Qualitative content analysis: theoretical foundation, basic procedures and
software solution. 2014. URL: http: / /nbn- resolving.de/urn:nbn:de:0168- ssoar- 395173
(visited on 06/19/2016).

Agile Development in Distributed Teams 143 / 166

http://dx.doi.org/10.1109/EUROMICRO.2007.23
http://dx.doi.org/10.1109/EUROMICRO.2007.23
http://www.sciencedirect.com/science/article/B6V0B-4JF8H93-2/2/625aa9c8d29f7c60b2a5a38425f9a41f
http://www.sciencedirect.com/science/article/B6V0B-4JF8H93-2/2/625aa9c8d29f7c60b2a5a38425f9a41f
http://dl.acm.org/citation.cfm?id=1768961.1769014
http://stackoverflow.com/research/developer-survey-2016#work-remote
http://stackoverflow.com/research/developer-survey-2016#work-remote
http://stackoverflow.com/research/developer-survey-2015#work-remote
http://stackoverflow.com/research/developer-survey-2015#work-remote
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://www.drdobbs.com/open-source/the-agile-manifesto/184414755
http://www.drdobbs.com/open-source/the-agile-manifesto/184414755
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173




Appendix A. Appendix

A Appendix

A.1 Interview Guideline

Interviewleitfaden - Agile Development in Distributed Teams

1. Herzlichen Dank, dass Sie sich Zeit genommen haben für dieses Interview. Würden Sie sich
bitte kurz vorstellen?

2. Könnten Sie bitte kurz ein paar Eckdaten zu Ihrer Firma/Team liefern? Welche Art von
Projekten führen Sie durch und wieviele Personen sind beschäftigt?

3. Je nach Tätigkeit der interviewten Person:

a) Wieviele Personen arbeiten in Ihrem Team?

b) Was ist ihre konkrete Aufgabe im Team?

4. Wie sieht die geographische Verteilung in Ihrem Team aus? (Auf wie viele Orte ist das Team
verteilt und wie viele Personen befinden sich an dem jeweiligen Ort? Wie weit befinden sich
die Orte auseinander?)

5. Aus welchen Gründen ist es zu dieser Verteilung gekommen?

6. Welche Vor und Nachteile ergeben sich Ihrer Meinung nach aus der Verteilung?

7. Welches (Agile) Prozessmodell setzen Sie in Ihrem Team ein?

8. Aus welchem Grund haben Sie sich entschieden, Agile Prozesse in ihrem Team einzusetzen?

a) Seit wann setzen sie auf Agile?

b) Mit welchem Prozessmodell haben Sie vorher gearbeitet?

9. Können Sie kurz skizzieren, wie ein Projekt abläuft, welche Phasen es gibt?

10. Wie läuft eine Iteration (Sprint) ab und welche Phasen es gibt?

11. Wie wird in Ihrem Team kommuniziert? (Welche technischen Lösungen setzen Sie ein um
die Distanz zu überbrücken?)

a) Wie funktioniert die Kommunikation mit externen Stakeholdern?

12. Wie wichtig schätzen Sie direkten face-to-face Kontakt zwischen Teammitgliedern ein?

13. Wie funktioniert der Wissensaustausch in ihrem Team?

14. Gibt es Situationen wo sich das gesamte Team am selben Ort trifft? Wenn ja, wie oft und zu
welchen Anlässen kommt es dazu?

a) Wenn nein: Gibt es Situation wo sich zumindest einzelne Teammitglieder persönlich
treffen?

Agile Development in Distributed Teams 145 / 166



Appendix A. Appendix A.2. Quotes

15. Welche Agilen Prozesse werden sonst noch in Ihrem Team eingesetzt? (Iterationen, Pair
Programming, Daily Scrum, Sprintplanung, TDD, Retrospektiven, Code Reviews . . . )

a) Wie genau sieht der Einsatz von Prozess X in dem verteilten Umfeld aus?

b) Ergeben sich durch die verteilte Situation Probleme beim Einsatz von Prozess X?

c) Mussten Sie Prozess X anpassen, um ihn in ihrem Team anwenden zu können?

d) Setzen Sie spezielle (Software)Lösungen als Hilfsmittel für Prozess X ein?

16. Setzen Sie irgendwelche generellen Tools oder auch Hardware ein um diese Prozesse zu
unterstützen? (zb Jira, Trello, Redmine, . . . )

17. Setzen Sie Techniken ein um gewisse Informationen innerhalb des Teams (Buildstatus, Pro-
jektstatus, . . . ) dauerhaft einsehbar zu kommunizieren? (Information Radiators)

18. Was und wie wird bei Ihnen dokumentiert? Setzen sie aufgrund der Verteilung auf mehr
Dokumentation?

19. Wie sieht es in Ihrem Team bei den Aspekten Koordination und Kontrolle aus?

20. Wie zufrieden sind Sie mit der Kommunikation im Team? Wo liegen Stärken und Schwächen?

21. Gibt es Prozesse die Sie eingesetzt haben, die aber aufgrund der verteilten Situation gescheit-
ert sind bzw so nicht praktikabel waren?

22. Gibt es Prozesse die Sie gerne einsetzen würden, aber bis jetzt (aufgrund der Verteilung)
nicht tun?

a) Aus welchen Gründen?

b) Planen Sie diesen Prozess noch einzuführen?

23. Denken Sie, dass Agile Prozesse in verteilten Teams hilfreich sind? Wo liegen Ihrer Mein-
ung nach die Vor- und Nachteile?

a) Was sind die wichtigsten Aspekte bei Agiler Softwareentwicklung in verteilten Teams?

24. Macht es einen Unterschied ob Teams im selben Land oder über mehrere Kontinente verteilt
sind? Wo liegen die Unterschiede?

A.2 Quotes

This section lists the original quotes from the interviews, grouped by the unit of analysis and also
pointing out the role of the person who said it.

A.2.1 Alpha

Alpha #1 - CEO „Wir haben halt einfach sehr wenige Mitarbeiter auf sehr viele Scrum Projekte
aufgeteilt und du müsstest dann mehrere Rollen in verschiedenen Projekten haben, das würde
viel zu viel Overhead sein. Teilweise sind es auch Projekte wo das Team aus 2 Leuten besteht,
da geht das einfach nicht. Das ist aber eher ein Problem vom Verhältnis von Mitarbeitern und
verschiedenen Projekten.“

Agile Development in Distributed Teams 146 / 166



Appendix A. Appendix A.2. Quotes

Alpha #2 - CEO „Wir sind draufgekommen das es für uns, eben wegen der viele Projekte
und unterschiedliche Prioritäten bei diesen, diese Story Points eher für eine grundsätzliche Ein-
schätzung wie schwer ein Issue ist geeignet sind, uns ist es aber dann egal ist wieviele Issues wir
durchbringen weil das sehr davon abhängt wieviele Projekte gerade durchgeführt werden und je
nach Priorität sich da Verschiebungen ergeben.“

Alpha #3 - CTO „Man muss halt natürlich auch - und das zeigt sich schon sehr deutlich in
letzter Zeit - den Prozess immer wieder anpassen. Wir haben ja einige Veränderungen in den
letzten Jahren gemacht wo wir einfach gemerkt haben, durch die örtliche Trennung muss man
gewisse Dinge machen, die man sonst nicht machen muss. Von der Abstimmung her, das man
besser mitbekommt was passiert denn am anderen Ort, was tun denn die gerade. Wie eben, diese
Sprintplanung - Scrum mäßig - das man das eben etwas besser verflechtet und besser weiß was
machen wir denn jetzt, was ist zu tun. Damit man nicht so nebeneinander hinarbeitet.“

Alpha #4 - CTO „Was ich noch einwerfen würde was irrsinnig wichtig ist, ist das Code Review
in Form von Pull Requests. Das - so wie wir es aufgesetzt haben - auch einfach funktioniert und
das wir dadurch auch mitbekommen was tun denn die anderen. Es ist natürlich auch nützlich für
die Code Qualität aber man bekommt einfach auch mit wer an was arbeitet.“

Alpha #5 - CEO „Es ist eine bessere Form von Code Reviews, es ersetzt für uns zu 90 Prozent
die Code Reviews, weil wenn wir uns hinsetzten und sagen: Heute machen wir ein Code Re-
view, dann stehst du vor so einem großen Ding, wo es schon viel zu spät ist ein Code Review zu
machen.“

Alpha #6 - CEO „Es ist sicherlich nötig für dieses Teamgefüge, dass man sich da wiedermal
sieht, dass man sich gemeinsam austauscht. Auch zu nicht Job Themen vielleicht. Es ist aber nicht
permanent notwendig wenn es darum geht etwas umzusetzen.“

Alpha #7 - CTO „Wir wollen uns auch noch zusammensetzen wo wir dann über ein Thema
diskutieren wo wir vielleicht eine Stunde oder zwei diskutieren müssen, ein bisschen Brainstor-
men, das geht halt im GoTo Meeting nicht so gut, einfach weil man nicht so interaktiv und so gut
beieinander ist. Da ist es einmal nett sich so zusammenzusetzen. Aber das sind eher die Ausnah-
men, weil die meisten Projektbesprechungen, Standups, Sprintplanungen und so weiter gehen gut
über GoTo Meeting.“

Alpha #8 - CEO „Wir waren von Beginn an verteilt. Dadurch, dass Andreas in Linz und wir
hier waren, waren wir von Beginn an, von der ersten Minute an verteilt und haben deshalb auch
von Beginn an in diese Richtung das aufgesetzt. Parallel dazu hat sich auch, sag ich mal, in der
Entwicklung in Richtung von Remote Work was getan und somit sind wir mehr oder weniger auf
dem Zug drangeblieben weil man gesehen hat, das machen andere auch so.“

Alpha #9 - CEO „Das Themenfeld in der Entwicklung wird immer breiter, es wird immer
schwieriger das man zu einem gewissen Thema in diesem breiten Spektrum an Technologien
Spezialisten findet, die dann genau am Punkt x - oder wo auch immer - sitzen. Somit haben
wir gesagt: Naja wenn wir sowieso von Beginn an so Erfahrungen damit gesammelt haben, dann
bleiben wir da drauf und nutzen die Vorteile daraus und es gibt somit eigentlich keine örtliche

Agile Development in Distributed Teams 147 / 166



Appendix A. Appendix A.2. Quotes

oder zeitliche Bedingung an die Arbeit bei Alpha. [Hier wurde der Name des Unternehmens
durch ’Alpha’ ersetzt]“

Alpha #10 - CEO „Es kommt immer wieder vor das einer Homeoffice macht. Einfach wegen
der Familie, wir haben alle Kinder, und das erleichtert das ganze extrem wenn ich sagen kann:
Ok ich arbeite heute den Tag zuhause weil man am frühen Morgen noch etwas erledigen muss
und sich den Weg ins Büro einfach erspart. [...] Das ist einfach automatisch gegeben weil alles
vorbereitet ist für remote, da ist Home-Office automatisch dabei, alles was ich brauche ist eine
Internetverbindung - und das kann man dann natürlich auch Mitarbeitern bieten.“

Alpha #11 - CTO „Aber trotzdem, das würde ich jetzt als kleinen- oder halt als Nachteil beze-
ichnen, man ist halt schon ein bisschen entkoppelt. Wenn ich wieder einen Tag da bin so wie
heute, dann ruft man sich eben mal schnell quer durch den Raum irgendetwas zu, oder bekommt
mit das die einen Zwei da an dem Problem gerade arbeiten und du könntest da jetzt auch einen
Beitrag leisten oder auch halt nicht. Diese Entkopplung ist ein bisschen ein Nachteil, ist schon ein
bisschen negativ für mich finde ich.“

Alpha #12 - CEO „Die Herausforderung war eigentlich: Wir haben uns nie die Frage gestellt ob
wir so verteilt arbeiten können, sondern wir haben uns eher die Frage gestellt: Ist es eine Gefahr,
dass sich dann zwei Blöcke bilden, oder das Andreas in Linz ausgeschlossener wäre.“

Alpha #13 - CTO „Dann ist es nicht so das es vier - zwei - vier ist, sondern dann ist es vier -
zwei -acht und da merkt man schon, da entsteht eine ganz andere Dynamik bei den acht Leuten.
Da wird viel mehr untereinander geredet, da geht in dem Projekt viel mehr weiter als sonst unterm
Jahr, und man ist aber in Linz nicht mitbeteiligt an dem so richtig.“

Alpha #14 - CEO „Aber es gibt noch jede Menge zu tun, und es ist teilweise schon auch so
das technische Sachen Hemmnisse sind. Wie schlecht teilweise echt eine Video über Internet
Konferenz funktioniert. Bei den Tools dafür haben wir auch noch nicht das perfekte: Mikrofone,
Kameras. . . dieses technische Zusammenspiel ist leider ein Punkt wo es noch nicht so smooth
geht das man es einfach so nutzt. Das ist einfach etwas wo die Technik dem wie die Arbeit sich
entwickelt hat nachhängt.“

A.2.2 Beta

Beta #1 - CEO „Wir haben eigentlich begonnen als Software Agentur, wir bedienen eigentlich
die Industrie und machen damit auch die meisten Projekte. Die Entwicklung von Web-Portalen
und das Online Marketing ist hinzugekommen weil zurzeit Bedarf da ist. Was wir tun ist: wir
konzipieren, entwickeln und vermarkten digitale Produkte - das ist eigentlich genau unser Allein-
stellungsmerkmal.“

Beta #2 - CEO „Wir haben gemerkt innerhalb des Teams ist jeder in Zugzwang sich zu verbessern
und sich auf das Wesentliche zu konzentrieren. Es ist wichtig, dass jeder Mitarbeiter selbstständig
arbeiten kann eben weil wir an verschiedenen Standorten sind, also das hat sowieso zum Glück
von Anfang an funktioniert.“ [Beta #2 - CEO]

Agile Development in Distributed Teams 148 / 166



Appendix A. Appendix A.2. Quotes

Beta #3 - CEO „Pair Programming ist sowieso obligatorisch im Sinne der Wissensübertragung,
wir haben eben Spezialisten und jeder für sich ist spezialisiert in einem gewissen Bereich - der
eine betreibt 3D-Entwicklung, der andere Datenverarbeitung der nächste für Machine Learning,
ein dritter eben für Frontend Entwicklung. Und da möchten wir schon, dass Leute ihr Wissen hin
und wieder übergeben, einfach nur wenn jemand ausfällt - zum Beispiel in Urlaub geht - das der
andere weiß was er gemacht hat.“ [Beta #3 - CEO]

Beta #4 - CEO „Gegenwärtig sind wir sehr zufrieden mit dem Prozess, da möchten wir dabei
bleiben. Natürlich möchten wir den Organisationsaufwand so weit als möglich gering halten.“
[Beta #4 - CEO]

Beta #5 - CEO „Wir möchten dass sich die Mitarbeiter in der Arbeit auf die Arbeit konzentrieren
können, (...) wir haben die Erfahrung gemacht - also von unseren vorigen Jobs - das es vorteilhaft
ist wenn man das private Communicator Konto eben nicht verwendet für die alltägliche Arbeit.
Man ist einfach zu abgelenkt.“ [Beta #5 - CEO]

Beta #6 - CEO „Wir benutzen Skype und da wird eben der Screen geshared mit dem Board, und
eben der Scrum Master kümmert sich darum das er die Tickets verschiebt im Namen der Kollegen
die anwesend sind.“ [Beta #6 - CEO]

Beta #7 - CEO „So ist es auch für den Kunden transparenter wenn er an den Daily Standup
Meetings teilnimmt: eben das da wirklich auch was passiert und so weiß er wofür er sein Geld
ausgibt.“ [Beta #7 - CEO]

Beta #8 - CEO „Ob es gleich effizient ist kann ich jetzt nicht sagen, es wäre sicher ein bisschen
effizienter wenn man vor Ort ist. Auf der anderen Seite ist sicher der Vorteil - oder aufgrund der
Professionalität der Leute - gibt es bei uns keine email Lawinen oder man überlegt sich in dem Fall
wenn man nicht direkt vor Ort ist: Möchte ich diese Person jetzt stören oder nicht die an meinem
Projekt arbeitet? Das ist vielleicht ein Vorteil.“ [Beta #8 - CEO]

Beta #9 - CEO „Was ich mir natürlich wünschen würde wäre wenn ich nicht so oft fahren
müsste. Aber das ist für mich kein Thema, das haben wir uns so ausgesucht deswegen haben wir
gute Bereichsabdeckung und Nachfragen von verschiedenen Ballungszentrum. Also oft ist es so,
dass wir Wiener Unternehmen als Kunden haben, wir haben durch die Verteilung eben die Chance
bei Kunden reinzukommen die eigentlich einen Vor-Ort Service haben wollen.“ [Beta #9 - CEO]

Beta #10 - CEO „Die persönlichen Beziehungen zueinander sind sicher nicht so eng wie in
Teams die jetzt alle in einem Raum sitzen und zusammen Mittagessen gehen. Die Personen vor Ort
verstehen sich natürlich sehr freundschaftlich das ist schon ein riesengroßer Vorteil. Der Nachteil
ist eben das wir uns nicht so oft sehen wie wir wollen, sagen wir mal so.“ [Beta #10 - CEO]

Beta #11 - CEO „Also ganz ehrlich, das Nadelöhr am Ganzen ist die Internetverbindung. Also
wenn UPC einmal nicht geht dann haben wir natürlich ein Problem. Deswegen sind wir umgestiegen
auf A1 Internet, das ist ein wenig stabiler. Es ist zwar nicht das schnellste aber funktioniert über-
all. Das Nadelöhr am Ganzen, der Nachteil ist eben was wenn kein Internet da ist, oder wenn die
Verbindung schlecht ist. Das ist vor allem ein technisches Problem.“ [Beta #11 - CEO]

Agile Development in Distributed Teams 149 / 166



Appendix A. Appendix A.2. Quotes

Beta #12 - CEO „Wir treffen uns alle zwei Monate irgendwo und unternehmen irgendwas, also
zum Beispiel am Wochenende. Also das Verhältnis zueinander ist schon auch zueinander im
privaten Leben vorhanden. Aber nicht so wie in einer Softwarefirma wo man sich am Abend
zusammensetzt.“ [Beta #12 - CEO]

Beta #13 - CEO „Selbstständigkeit ist bei uns sehr sehr wichtig, und die Eigenverantwortlichkeit
für die eigenen Aufgaben ist sehr sehr wichtig. Und das ist nicht so einfach Personal zu finden
oder Entwickler zu finden die das auch hundertprozentig leben können.“ [Beta #13 - CEO]

Beta #14 - CEO „Wir haben schon auch die Erfahrung gemacht das wir Entwickler gehabt haben
die genau diesen Anspruch eben nicht erfüllt haben von denen wir uns dann natürlich getrennt
haben weil es nicht in unser Gruppenmodell reinpasst.“ [Beta #14 - CEO]

Beta #15 - CEO „Die Externen bekommen einen Zugang zu dem Jira Board. Diejenigen die
sich damit nicht auskennen haben ein zweites Board, eben über Trello zum Beispiel, welches viel
einfacher gestaltet ist und das auch externe Mitarbeiter beziehungsweise Teammitglieder nutzen
können und auch Kunden nutzen können. “ [Beta #15 - CEO]

A.2.3 Gamma

Gamma #1 - Team Leader „Deshalb haben wir letztendlich eine Art Proxy Product Owner,
das macht der Projektleiter der eben letztendlich gewisse KnowHow Konzepte bündelt und als er-
ster Ansprechpartner für das Team als Product Owner dient und dann punktuell Rückfragen stellt.
Es löst sich dadurch letztendlich ein wenig auf weil einzelne Leute im Team mehr Kundensicht-
barkeit erlangen weil andere, aber letztendlich würden wir ohne einen Proxy Product Owner nicht
arbeiten können. Wir hätten dann unglaublich lange Sprintvorlaufzeiten und unglaublich lange
Sprintdauern in denen wir dauernd wieder den Scope ändern müssten weil Antworten auf Fragen
zu lange dauern.“ [Gamma #1 - Team Leader]

Gamma #2 - Team Leader „Wir sind sofort mit etwas an Scrum orientiertem gestartet. Und wir
hatten auch Phasen in denen wir abgewichen sind, einfach aus mangelnder Disziplin. Das ist ein-
fach eine Herausforderung bei agilen Methoden finde ich, dass sie sehr strikt sind und zwar für die
Produktentwicklung Flexibilität bieten aber Abweichung vom Prozessmodell wenig tolerieren.“
[Gamma #2 - Team Leader]

Gamma #3 - Team Leader „Wir hatten am Anfang drei Wochen weil wir das erst austesten
mussten und viele Infrastruktur Themen da waren die immer lange dauern. Auf die eine Woche
sind wir aus einem ganz einfachen Grund gekommen: Das man wirklich schneller Ergebnisse
sieht und das man die Tendenz etwas eindämmt die Sachen zu schieben oder fertig zu lassen.
Eine Woche erfordert eben sehr viel Disziplin und die Stories entsprechend klein und präzise zu
schneiden. “ [Gamma #3 - Team Leader]

Gamma #4 - Team Leader „ Also insgesamt sind wir mit der Woche sehr zufrieden, wir würden
nicht wieder zurück wechseln wollen, obwohl auch Leute aus Trainings zurückkamen von uns die
meinten: Der Trainer meinte eine Woche ginge gar nicht, könne gar nicht funktionieren. Scrum
also mindestens zwei und eher drei Wochen. Das scheint eine religiöse Frage zu sein.“ [Gamma
#4 - Team Leader]

Agile Development in Distributed Teams 150 / 166



Appendix A. Appendix A.2. Quotes

Gamma #5 - Team Leader „Wir übernehmen Themen sehr schnell in Tickets oder ins Wiki,
das bedeutet wenn jemand etwas macht oder auch ein Review braucht dann kommen halt die
Fotos vom Whiteboard an ein Ticket dran oder auch ins Wiki. Da warten wir dann nicht bis man
das formal irgendwo reingezeichnet hat oder in speziellen Tools visualisiert, sondern das ist sehr
locker. Auf die Art schafft man auch ja relativ kurze Zyklen, also Foto vom Whiteboard machen
und einstellen, oder eine Telefonspinne geschnappt, anrufen und sagen: "Wir sitzen hier gerade
zusammen und überlegen uns eine Optimierung, kannst du bitte mal draufkucken, ich hab das mal
abfotografiert.“ [Gamma #5 - Team Leader]

Gamma #6 - Team Leader „In einem Teambüro haben wir einen Monitor, aber der wird glaube
ich kaum verwendet. Auch in anderen Teams laufen auf den Monitoren wenn ich dort vorbeilaufe
eher witzige Youtube Videos oder sonst irgendwas, oder Code Highlights - in der Regel schlechter
Code - aber tatsächlich Information wird darüber kaum verteilt. Da kuckt niemand, ich würde auch
nicht zu einem Monitor hinlaufen und das tut auch sonst keiner.“ [Gamma #6 - Team Leader]

Gamma #7 - Team Leader „Nicht im Bereich Agiler Methoden oder Vorgehensweisen. Das
bezieht sich eher darauf das natürlich Prozessautomatisierung nie am Ende ist; und Infrastruktur
nie gut genug; und Buildzeiten nie kurz genug; und Codequalität nie gut genug. Also das heißt
das bezieht sich eher auf technische Dinge und Infrastruktur.“ [Gamma #7 - Team Leader]

Gamma #8 - Team Leader „Wir werden denke ich mal mit einem Enterprise Messenger Ex-
perimente starten. Mal sehen, wenn die Leute sagen das ist cool und hilft uns, wir werden besser
dadurch, dann machen wir es. Wenn wir feststellen, dass die Sachen nicht genutzt werden stellen
wir sie halt wieder ein. Also auch da arbeiten wir eher Agil, das wir Sachen ausprobieren, er-
ste Schritte machen, sie auch verbessern aber auch wieder verwerfen. Weil es wenig bringt jetzt
glaube ich einem Team die Arbeitsmittel aufzudrücken. “ [Gamma #8 - Team Leader]

Gamma #9 - Team Leader „Der gefühlte Kommunikationsoverhead bei den meisten Agilen
Methoden ist wenn man das mal genauer betrachtet glaube ich garnicht so hoch. Täglich eine
Viertelstunde pro Teammitglied - da verbringen die Leute mehr Zeit in der Kaffeeküche über den
Tag. Also eine Viertelstunde Arbeitszeit für Kommunikation am Tag offiziell sind überhaupt kein
Schmerz.“ [Gamma #9 - Team Leader]

Gamma #10 - Team Leader „In erster Linie per Telefon. per Telefon oder persönlich. Es gibt
aber auch Leute die setzen ganz gerne Instant Messenger ein. In der Regel wird die Kommunika-
tion flankiert von Desktop Sharing Tools, Teamviewer um wirklich gemeinsam auf das Board zu
sehen oder auf den Code zu sehen oder was auch immer. Aber sonst wirklich überraschend viel
Telefon.“ [Gamma #10 - Team Leader]

Gamma #11 - Team Leader „So und das führt eben dazu, das wir alle paar Wochen die Teams
zusammenziehen, meist wechselnd mal in LOCATION mal in LOCATION um uns da wieder
abzugleichen, neue Entwicklung oder neue größere Themen gemeinsam anzugehen, zu planen,
Pair Programmings zu machen um halt genau den Know How Austausch zu fördern.“ [Gamma
#11 - Team Leader]

Gamma #12 - Team Leader „Was ein bisschen schwierig ist was wir feststellen, wenn man
Mitarbeiter hat die nicht Deutsch sprechen, und bei denen man das Handycap im Normalfall kaum

Agile Development in Distributed Teams 151 / 166



Appendix A. Appendix A.2. Quotes

feststellt - am Telefon aber schon - das ist ein immer währendes Thema. Darauf würde ich in
Zukunft auch stärker achten. Das funktioniert nämlich wirklich nicht so gut. Also wenn man
Leute halt einfach über das Telefon schlechter versteht, und das dann für Kollegen anstrengend
wird. Und wenn Kommunikation anstrengend wird, dann umgeht man sie natürlich.“ [Gamma
#12 - Team Leader]

Gamma #13 - Team Leader „Wir sind etwa 200 Leute und wenn man plötzlich ein Team von
sechs bis acht Leuten braucht, inzwischen sind es zehn insgesamt, dann ist es bei 200 Leuten
garnicht so einfach das passend hinzubekommen, das ist der eine Punkt. Der zweite Punkt ist, dass
die Standorte aus historischen Gründen etwas unterschiedliche Schwerpunkte von der Technologie
hatten, und Portalgeschäft hatten einige aus LOCATION mehr Erfahrung, deshalb haben wir mit
einem kleinen Teamanteil begonnen und den Teil dann ausgebaut weil es so gut klappt. “ [Gamma
#13 - Team Leader]

Gamma #14 - Team Leader „Wir können sowohl in LOCATION als auch in LOCATION
auf unterschiedliche Kompetenzen zugreifen, weil die Standorte unterschiedliche Schwerpunkte
haben. Bei dem einen ist halt irgendwie das Java-Backend Know How ausgeprägter und wenn man
dort Hilfe braucht um irgendwelche seltsamen Bugs zu jagen findet man die halt an dem einem
Standort vielleicht besser, während man Security Experten im Web Bereich am anderen Standort
besser findet. So haben wir in Summe zugriff auf ein deutlich größeres Mitarbeiternetzwerk.“
[Gamma #14 - Team Leader]

Gamma #15 - Team Leader „Ein kleinerer Nachteil ist das sich KnowHow in Verteilung - und
zwar ich glaube prinzipiell - nicht so gut harmonisieren lässt. Also die Leute greifen häufig zum
Telefon und machen häufig einen Teamviewer auf, aber es ist das nicht das Gleiche wie wenn ich
zwei Meter weiter laufe und einen Kollegen frage ob er mit mir schnell mal auf den Bildschirm
sieht. Da sind Tools, so gut sie sein mögen, halt doch nochmal eine Hürde.“ [Gamma #15 - Team
Leader]

Gamma #16 - Team Leader „Also alle Projekte die ich kenne enden immer damit, das man
die Offshore partner nach Deutschland fliegt und sie dann hier arbeiten. Also da bin ich extrem
skeptisch und das muss schon, ja, das kann glaub ich gehen bei Software Wartung, also wenn man
rein technische Aspekte hat, aber sobald es fachlich wird wird es halt schwierig. Und weil man
die Fachlichkeit in einem agilen Team hat, und nicht an einen Anforderungsmanager abdrückt
sondern der Entwickler das sozusagen mitmacht oder gefordert ist, vermute ich das das sehr sehr
schwierig wird. “ [Gamma #16 - Team Leader]

Gamma #17 - Team Leader „Wenn ich da unterschiedliche Prozesse hab die teilweise neben
dem Toolset laufen, verliert das ganze System an Aussagekraft weil ich mich plötzlich auf nichts
mehr verlassen kann. Weil jedesmal wenn ich etwas nicht sehe da nachhaken müsste ob jetzt was
passiert ist oder nicht.“ [Gamma #17 - Team Leader]

Gamma #18 - Team Leader „ Für unsere Firma würde ich sagen ist direkter Kontakt wichtig,
das liegt aber auch daran, dass wir so von der Firmenkultur aufgestellt sind. Also nachmittagliches
Kickern, abends Coding Dojos, mal Pizza und Bier, Freitags Innovationsthemen wo sich Leute
im Prinzip von der Firma zur Verfügung gestellter freier Zeit mit eigenen Themen befassen und
die mit anderen Kollegen vorantreiben. Also diese Zusammenarbeit und der Austausch hat halt
einfach einen hohen Stellenwert. “ [Gamma #18 - Team Leader]

Agile Development in Distributed Teams 152 / 166



Appendix A. Appendix A.2. Quotes

Gamma #19 - Team Leader „Die müssen höher qualifiziert sein, das macht sich bemerkbar.
Agile Vorgehensweisen erfordern in meinen Augen besser qualifizierte und engagiertere Mitar-
beiter. Einfach damit es nicht untergeht im Rauschen. Weil man auch sichtbar wird und weil die
Prozesse darauf ausgelegt sind, zügig durchgeführt zu werden und die kontinuierliche, ständige
Verbesserung im Fokus steht.“ [Gamma #19 - Team Leader]

A.2.4 Delta

Delta #1 - Team Leader A „Zum Beispiel im Backlog gehen wir nach Kanban vor im Team,
Planung ist aber eher so auf Scrum. Natürlich haben wir wie man es in Scrum kennt so Retros, die
machen wir aber nicht fix, sondern wir machen das je nach Bedarf.“ [Delta #1 - Team Leader A]

Delta #2 - Team Leader B „Wir haben am Anfang nur Scrum verwendet für einige Jahre, dann
hatten wir ein Team mit Kanban. Jetzt haben wir eine Mischform, wir haben das Beste von jeder
Technik genommen und an uns angepasst.“ [Delta #2 - Team Leader B]

Delta #3 - Team Leader A „Es gibt immer Meetings wo man es nie schaffen wird das alle Mitar-
beiter verfügbar sind. Aber es gibt auch Meetings - wie zum Beispiel von der Unternehmensführung
- die sollte jeder mitbekommen. Da gehts darum was sind die nächsten Schritte, Ziele, und so
weiter.“ [Delta #3 - Team Leader A]

Delta #4 - Team Leader A „ Und es ist jetzt auch die Idee immer mehr Dokumentation über
Video zu machen - auch intern - weil früher hat man das ins Confluence reingeschrieben: Wie
benutze ich den Passwort manager? Und dazu soll es aber in Zukunft ein Video geben, weil es
einfach schneller geht. Jemand schaut sich das fünf Minuten an und versteht es einfacher was
gemeint ist.“ [Delta #4 - Team Leader A]

Delta #5 - Team Leader B „Wir haben unser Planning Board in Jira, es wird alles über Jira
gemanaged. Im Jira kann man von jedem Team den Fortschritt ansehen, was noch offen ist. Wir
haben früher Post-Its gehabt, und da ist natürlich das Problem das sehen die Leute remote nicht -
mit Kamera sieht mans auch nicht so gut - und deswegen wurde entschieden - doppelt wollten wir
es auch nicht machen mit post-its - deswegen verwenden wir nur Jira.“ [Delta #5 - Team Leader
B]

Delta #6 - Team Leader A „Die Erfahrung hat gezeigt: von selbst aus machen es wenig Leute,
man muss fast immer fixe Meetings machen wo man sich abstimmt. Von selbst aus bekommt
man wenig mit als Aussenstelle wie es jetzt jetzt zum Beispiel in Wien ist wenn man keine fixen
Termine hat. “ [Delta #6 - Team Leader A]

Delta #7 - Team Leader A „Eigentlich muss man sagen hätte ich noch nie in den letzten sieben
Jahren eine Situation bei uns ergeben wo man sagt die müssen jetzt alle kommen damit man das
Projekt starten kann. Was man natürlich schon oft macht ist, wenn zum Beispiel bei einem Thema
viele aus Kosice beteiligt sind und es ist eine Art kickoff dann laden wir die schon ein, dann sagen
wir wir haben was anderes auch noch zu erledigen oder wir sind abgesprochen wenn die Designer
auch in Wien sind, die kommen dann schon oft direkt her.“ [Delta #7 - Team Leader A]

Agile Development in Distributed Teams 153 / 166



Appendix A. Appendix A.2. Quotes

Delta #8 - Team Leader A „Manchmal auch noch - das sollte zwar eigentlich kein Problem sein
- aber Englisch. Manche tun sich einfach schwerer wenn sie in Englisch etwas reden müssen als
wenn sie in ihrer Muttersprache, also Deutsch sprechen könnten.“ [Delta #8 - Team Leader A]

Delta #9 - Team Leader B „Face to Face ist es leichter einander zu verstehen, vor allem wenn
man nicht die gleiche Sprache spricht. Ich bin auch kein Native Speaker in Deutsch und wenn man
Face to Face spricht ist es immer viel leichter sich zu verstehen, über Telefon oder Skype kommt
es leichter zu Missverständnissen.“ [Delta #9 - Team Leader B]

Delta #10 - Team Leader B „Zu den Nachteilen gehört sicher - wie wir selber gerade merken -
kommunizieren über digitale Technologie ist zwar aufgrund von Skype und GoTo Meeting schon
um einiges einfacher als früher, als über Telefon, aber trotzdem, es ist etwas anderes als wenn die
Person im selben Raum ist.“ [Delta #10 - Team Leader B]

Delta #11 - Team Leader A „Was man vermisst sind diese grundlegenden Sachen, ob dein
Kollege noch in der Arbeit ist oder nicht. Wenn ihr im gleichen Raum sitzt schaust du einfach
auf seinen Tisch, fragst nach - okay er ist nach Hause gegangen. Wenn er in Linz sitzt, weißt
du gar nichts; sein Skype läuft noch und rufst an und bekommst keine Antwort und fragst dich
warum und kommst nach einer halben Stunde drauf das er nach Hause gegangen ist. Das sind
grundlegende kommunikative Missverständnisse.“ [Delta #11 - Team Leader A]

Delta #12 - Team Leader A „Da geht einfach viel Zeit bei verteilten Teams drauf, das ist einer
der größten Nachteile. Das alles einfach langsamer funktioniert und träger ist. Dadurch sinkt auch
die Akzeptanz: Jetzt hab ich schon wieder ein Meeting, und den versteh ich mein gegenüber ja eh
nicht, warum machen wir es dann überhaupt?“ [Delta #12 - Team Leader A]

Delta #13 - Team Leader A „Multikulturell finde ich nie schlecht, man lernt andere Sachen,
man sieht auch andere Ausbildungen auf Universitäten. Also ich find das nicht schlecht, wenn
man von unterschiedlichen Nationalitäten Leute zusammen mischt die Wissen zusammenführen.“
[Delta #13 - Team Leader A]

Delta #14 - Team Leader A „Aber wir haben auch immer: Welches Mikrofon nehmen wir,
dann reisst auf einmal das WLAN wieder ab, dann ist ein Kabel wiedermal kaputt; das sind schon
so viele Sachen wo viel Zeit drauf geht. Wo ich sage ich kann jetzt nicht in ein Meeting gehen und
bau meinen Laptop auf und sehe alle, sondern da muss ich zuerst Skype aufmachen, dann anrufen,
das sind auch jedesmal ein bis zwei Minuten und wenn du dann mal vier Meetings hast, hast du
eigentlich schon eine Viertelstunde mit dem Starten und Verbindung aufbauen verbraucht.“ [Delta
#14 - Team Leader A]

Delta #15 - Team Leader A „ Aber man sieht: es sind immer die selben Probleme, das Haupt-
problem ist immer noch - und das im Jahr 2015 - die Infrastruktur. “ [Delta #15 - Team Leader
A]

Delta #16 - Team Leader B „Meiner Meinung nach ist es sehr wichtig und wir versuchen diesen
Punkt genau abzudecken, wir haben immer Winter-Week und Summer-Week wo wir die ganze

Agile Development in Distributed Teams 154 / 166



Appendix A. Appendix A.2. Quotes

Firma zusammenbringen in Linz in der Zentrale. Wir treffen einander und wir sprechen miteinan-
der direkt und es bringt uns immer auch sozial näher. Bis jetzt hat das nur positive Wirkung
gebracht. “ [Delta #16 - Team Leader B]

A.2.5 Epsilon

Epsilon #1 - Department Manager „Wir haben auch Wissenstransfer Meetings die ich ein-
berufe, auch online, um aus den verschiedenen Projekten die Informationen zusammentragen, wo
jeder mal einen Vortrag macht - auch einen online - zu dem was gerade jetzt wichtig ist, das kann
alles mögliche sein.Das funktioniert mit standard Tools wenn die Verbindung passt.“ [Epsilon #1
- Department Manager]

Epsilon #2 - Department Manager „Was wir noch verwenden ist der Sharepoint, da haben wir
unsere eigene Seite, das muss gut strukturiert sein das man sich wiederfindet. Das man auch eben
den Wissenstransfer so gestalten kann das die Leute darauf zugreifen können und sehen können
was sie brauchen.“ [Epsilon #2 - Department Manager]

Epsilon #3 - Department Manager „Es war mal so, dass wir am Anfang sofort mit Scrum
starten wollten und dort übersehen haben das wir innerhalb der Sprintdurchführung von äußeren
Faktoren sowas von abhängig waren das wir es nicht mehr selber steuern konnten. Ein Scrum
Team sollte in sich abgeschlossen sein, wenn noch ein anderer Anbieter im Boot ist, kann man
nicht nachregeln, da hat sich das so nicht bewährt. Deswegen sind wir dann auf Kanban umgestiegen
das war dann viel flexibler.“ [Epsilon #3 - Department Manager]

Epsilon #4 - Department Manager „Das ist ein ganz interessanter Punkt: Es hat sich gezeigt
das oftmals die ganz einfachsten Mittel die besten sind. Ganz viel Kommunikation läuft, Sie
werden es nicht glauben - nicht das wir eine Kamera daneben stellen und dann die Leute die
anderen über den Bildschirm sehen, nein das läuft über den Chat. Ganz normalen uralten Chat.
Wo man sich sofort reinhängt und der andere antwortet und den ganzen Tag lang hat man da so
einen Kommunikationsstrang. “ [Epsilon #4 - Department Manager]

Epsilon #5 - Department Manager „Das liegt daran, dass das einfach wunderbar nebenher
gemacht werden kann. Video reden ist immer etwas das eine direkte Interaktion bedeutet. Das
kann hinderlich sein, oder man fühlt sich beobachtet und möchte das nicht. Ein Chat hat sich
so für diese schnelle, kurzzeitige Kommunikation als sehr praktikabel erwiesen.“ [Epsilon #5 -
Department Manager]

Epsilon #6 - Department Manager „Was ein Tool braucht: Stabile Verbindung, leicht konfig-
urierbar, wenn das hakt und die Video- und Audioqualität schlecht ist fällt das durch den Rost.
Bildschirm teilen muss möglich sein, das ist ganz essentiell. Wir haben zum Beispiel das zwei
Leute an unterschiedlichen Standorten an der gemeinsamen Aufgabe arbeiten und da müssen die
ihren Bildschirm teilen können, damit der eine sieht was der andere gerade macht. Wenn das nicht
geht gibt es ein Problem. Aber die Tools sind da mächtig genug und unterstützen das, dass es da
meiner Ansicht nach keine Probleme gibt.“ [Epsilon #6 - Department Manager]

Agile Development in Distributed Teams 155 / 166



Appendix A. Appendix A.2. Quotes

Epsilon #7 - Department Manager „Man kann bei einem Scrumboard entweder eine Kamera
aufstellen und dann macht man es mit Zetteln, oder man macht es online. Ich bin eher ein Ver-
fechter der Zettelmethode, aber man kann das auch online machen, da sehe ich eigentlich keine
Abweichungen aufgrund der Tatsache das es ein verteiltes team ist.“ [Epsilon #7 - Department
Manager]

Epsilon #8 - Department Manager „Face to Face Meeting ist bei gewissen Gruppenaktivitäten
unabdinglich, zum Beispiel wenn man Workshops zusammen macht, wenn man ein Projektreview
macht. Es ist auch so, dass sich ein Team überhaupt findet und sich ein Spirit aufbaut ist Face
to Face ab und zu definitiv notwendig. Sich einmal kennenlernen und mal sehen, da findet eine
andere Art von Kommunikation statt, das ist einfach so.“ [Epsilon #8 - Department Manager]

Epsilon #9 - Department Manager „Das wichtigste Kommunikationsmittel ist die Sprache und
wenn die nicht passt, wenn man sich dort nicht sehr gut ausdrücken kann hat man ein Problem.
Wenn Sie halt länderübergreifend sind, haben sie Sprachbarrieren. Das zieht in einem verteilten
Team die Effizienz massiv in den Keller, das ist einfach so. Wenn da ein Team Meeting ist und
man tauscht sich aus und man versteht sich nicht richtig dann führt das zu Problemen und Missver-
ständnissen. Da ist es wichtig, dass alle ein gleich gutes Level haben, egal welche Sprache, aber
wenn es da Unterschiede gibt dann wird das schwierig und führt zu Reibungsverlusten.“ [Epsilon
#9 - Department Manager]

Epsilon #10 - Department Manager „Es kommt ganz wesentlich auf die Führungskraft an,
und das ist ein zwischenmenschlicher Aspekt, manche können es und manche nicht. Da helfen die
besten Tools nicht. Man kann alles so machen wie ich es jetzt gesagt habe und es funktioniert aber
trotzdem nicht. Diese Sensorik zu haben, ein Team relativ kurzzeitig zu besuchen, Stimmungen
einzuholen und weiterzugeben zu einem gewissen Maß. Da muss man ein gewisser Multiplikator
sein und das ist gerade in verteilten Teams schwierig.“ [Epsilon #10 - Department Manager]

Epsilon #11 - Department Manager „Man muss also da als Führungskraft deutlich mehr in-
vestieren als wenn man das in einem in sich geschlossenen Umfeld macht. Ich bin zum Beispiel
als Führungskraft mindestens alle 14 tage an allen Standorten ständig präsent, ich bin ständig am
rumreisen.“ [Epsilon #11 - Department Manager]

Epsilon #12 - Department Manager „Es gibt noch ein Impediment das bei uns als verteiltes
Team eine Rolle spielt: das ist die Infrastruktur in Europa innerhalb der Mobilfunknetze. Das
ist für mich als Führungskraft, als Team und als Dienstleister ein ganz wesentliches Impediment,
aber sowas von! Das hängt damit zusammen, im Team sind wir sehr viel mit der Bahn unterwegs
und nützen aber auch die Reisezeit als Arbeitszeit und viele Leute können und würden gerne fürs
Projekt arbeiten, können aber nicht. Das ist ein absoluter Skandal.“ [Epsilon #12 - Department
Manager]

Epsilon #13 - Department Manager „ Die Herausforderung darin liegt darin, dass wir sehr
gute kommunikative Prozesse benötigen. Also auch Leute die bei uns anfangen müssen über gute
kommunikative Skills verfügen, man muss also in der Lage sein, möglichst frühzeitig Probleme
zu erkennen, man muss in der Lage sein einen Teamspirit aufzubauen, auch wenn die Leute sich
nicht sehen.“ [Epsilon #13 - Department Manager]

Agile Development in Distributed Teams 156 / 166



Appendix A. Appendix A.2. Quotes

Epsilon #14 - Department Manager „Ich glaube das hat sich mittlerweile gewandelt, die Leute
kriegen alles mit weil sie ja miteinander chatten - und das ist genauso wie zurufen. Sogar besser
weil man da nicht gestört wird, man kann nachfragen wie man will und nicht dann wenn man
zuhören muss. Das ist definitiv ein Vorteil.“ [Epsilon #14 - Department Manager]

A.2.6 Zeta

Zeta #1 - Department Manager „Das ist auch mein Credo, gerade in den großen Unternehmen,
die tendieren dann so alles über einen Kamm zu scheren auch wenn es gar keinen Sinn macht.
Gerade wenn ich jetzt denke an ein Team das sich mit Wartung beschäftigt: Ich habe ein stabiles
Produkt das ist beim Kunden draussen, das wird aus den verschiedensten Gründen nicht mehr
weiterentwickelt, da findet keine Produktentwicklung mehr statt sondern da gehts nur mehr um
Wartung. Bugs beheben, minimalste Kundenanforderungen umzusetzen,... aber in Wahrheit steht
das Produkt. Da setze ich sicher nicht Scrum ein, da setze ich viel eher Kanban ein. Weil der
Overhead einer Produktentwicklung den ich bei Scrum voraussetze der ist da nicht mehr gegeben
beziehungsweise da ist dann soviel Overhead da, das brauch ich dann nicht.“ [Zeta #1 - Depart-
ment Manager]

Zeta #2 - Department Manager „Gerade bei agilen Methoden ist es einfacher weil ich die
Kontrolle schneller habe. Weil ich mein Daily Standup habe und dadurch das ich die Arbeit in
kleine Teile herunter breche sehe ich den Fortschritt viel schneller. Also von einem Kontrollaspekt
her, ich habe auch die Rolle als Projektleiter gehabt wo ich sieben bis acht Teams koordiniert habe,
dort war es in der agilen Welt sehr einfach weil ich sehr schnell den Fortschritt sehe, wenn sich
die Stories bewegen durch den einzelnen Status durch.“ [Zeta #2 - Department Manager]

Zeta #3 - Department Manager „Ein team ein Backlog, das ist eine Grundregel. Pro Team
ein Scrum Master, es gab aber wenn es sehr stabile Teams sind die schon lange zusammen sind
brauchen die nicht einen full time Scrum Master, die organisieren sich dann selber sehr sehr viel.
Bei uns gerade im Backend Bereich da gabs Teams - eine sehr erfahrene Scrum Masterin hatte drei
Teams, unter anderem auch zwei davon in Polen, die waren alle sehr erfahren und sehr eingespielt.
Da reicht ein Product Owner für drei Teams. “ [Zeta #3 - Department Manager]

Zeta #4 - Department Manager „Vor allem wenn es in Richtung Build Status geht, ’build
is broken’, und da leuchtet es rot, sowas gibts immer mehr, das würde ich nicht unbedingt auf
verteilte Teams reduzieren. Das ist auch sehr sehr hilfreich generell wenn das Team wie in einem
Raum wie hier zusammensitzt. Weil es ein bisschen das Teamgefüge fördert, nach dem Motto wir
können es uns nicht leisten das es da rot blinkt. In verteilten Teams kann ich mir das aber auch
sehr gut vorstellen.“ [Zeta #4 - Department Manager]

Zeta #5 - Department Manager „Wenn ich sage ich hab einen Teil des Teams in Wien und
einen Teil des Teams in Polen, dann ist es okay. Verteile ich das über mehr als zwei Standorte
dann ist der Kommunikationsoverhead so riesengroß, dass mir die ganze Verteilung nichts bringt.
Das müsste mir dann wirklich einer vorrechnen was es dann an Kostenersparnis wieder bringen
würde weil die Kommunikation so an Überhand gewinnt - also der Overhead der dadurch entsteht
- das es nichts bringt.“ [Zeta #5 - Department Manager]

Zeta #6 - Department Manager „Das waren die verschiedensten Kanäle, das hat angefangen
die Daily Standups über Lync zu machen, also den Communicator von Microsoft. Dann gabs für

Agile Development in Distributed Teams 157 / 166



Appendix A. Appendix A.2. Quotes

die größeren Abstimmungsmeetings, wie eine Sprintplanung oder Reviews oder Retros gabs dann
Videokonferenzräume und wenn das zum Beispiel mal was ausgefallen ist gabs auch das gute alte
Telefon. Und für gewisse Zwecke gab es noch immer auch das Reisen. “ [Zeta #6 - Department
Manager]

Zeta #7 - Department Manager „Sehen ist immer besser als nur Hören. Weil über das Gehörte
kommt bei weitem nicht soviel rüber als über das Gesehene. Wenn ich jemanden sehe, wie der
dasitzt, wie dem seine Körperhaltung ist, wie der drauf ist, dann ist das etwas was keiner verbergen
kann. Wenn ich den nur über Telefon oder Audio höre ist das ganz was anderes.“ [Zeta #7 -
Department Manager]

Zeta #8 - Department Manager „Darum ist es mir auch ganz wichtig bei den Daily Standups
das Bild zu sehen bei Videokonferenzen und nicht nur die Audio Spur, weil auch da kann ich sehr
viel ablesen.“ [Zeta #8 - Department Manager]

Zeta #9 - Department Manager „Ich denke es ist ganz ganz wichtig das sich die Leute auch
kennen lernen - Face to Face - und sich wirklich die Hand schütteln. Das ist essentiell denk ich,
gerade wenn die Zusammenarbeit funktionieren soll und wenn ein Teamgefüge entstehen soll.“
[Zeta #9 - Department Manager]

Zeta #10 - Department Manager „Wenn die Zusammenarbeit gestartet hat, hat man versucht
die Leute mal generell für eine gewisse Zeit nach Wien zu holen. Das ist egal ob da in Polen ein
Team aufgebaut wurde, in der Slowakei oder in Indien. Man hat einmal versucht das Kernteam
nach Wien zu holen, das dort aufgebaut werden soll und die geben das Wissen dann in der Organ-
isation lokal weiter. Das waren große Handover Sessions.“ [Zeta #10 - Department Manager]

Zeta #11 - Department Manager „Dort wars so das man einmal im Monat für drei bis vier
Tage das Team aus Polen oder die Teams aus Polen eingeflogen hat. Dann wurde gemacht: Sprint
Review, Retro, und am nächsten Tag dann Sprint Planning und am nächsten Tag dann Sprint Plan-
ning zwei, so hat man es auf zwei bis drei Tage dann aufgeteilt, also für den nächsten Sprint dann,
und hat dann gleichzeitig die Tage und Abende genutzt für soziale Events. Es gab zum Beispiel
die Brettspiel Events am Abend, da hat man sich zusammengesetzt in der Firma, irgendjemand
hat ein Brettspiel organisiert, Bier und Pizza kommen lassen um so ein bisschen ein Socializing
zu erzeugen, um ein Teamgefüge zu erzeugen. Das hat so ganz gut funktioniert. “ [Zeta #11 -
Department Manager]

Zeta #12 - Department Manager „Auf der anderen Seite ist es so, das es schon modelle der
zusammenarbeit in verteilten teams gibt die funktionieren können, gerade wenn ich jetzt denke an
länder wie polen, an länder wie die slowakei, die uns vom kulturellen aspekt her sehr ähnlich sind.
Dort hat meiner Erfahrung nach die Zusammenarbeit immer am besten funktioniert. Weil gerade
der kulturelle Aspekt ein sehr wesentlicher Aspekt ist in der Zusammenarbeit und Agilität schreibt
sich auf die Fahnen, in einem team cross funktional zu funktionieren, und ein Team funktioniert
nur dann wenn ich auch die kulturellen Aspekte beachte.“ [Zeta #12 - Department Manager]

Zeta #13 - Department Manager „Die Technik ist mittlerweile schon so ausgereift das es eine
technische Hürde für mich nicht gibt, Videokonferenz ist billig, jeder hat Skype, gerade innerhalb

Agile Development in Distributed Teams 158 / 166



Appendix A. Appendix A.2. Quotes

europa, ein Flug nach polen, nach Deutschland ist super billig, das ist nicht das Problem.“ [Zeta
#13 - Department Manager]

Zeta #14 - Department Manager „Wenn ich Wertschätzung entgegenbringe, mal dorthin reise,
mir anschaue wo arbeiten die, wie arbeiten die, in ein lokal auf ein bier gehen dann ist das ganz was
anderes und führt zu besserer Arbeit auch in verteilten Teams.“ [Zeta #14 - Department Manager]

Zeta #15 - Department Manager „ Kommunikation ist schon ein essenzieller Part, sehr intro-
vertierte Menschen tun sich in einem verteilten Team noch schwerer. Ich denke schon, dass es
notwendig ist, das es mindestens ein zwei Personen auf jeder Seite des Teams gibt die kommu-
nizieren können, wenn ich da lauter introvertierte Menschen hab dann wird es noch schwieriger.
Ich sag mal vom technischen Skillset her ist es irrelevant, ein guter Entwickler ist ein guter En-
twickler, da gibts keine speziellen Anforderungen vom technischen Standpunkt her. Eher die
Kommunikation ist wichtig, und da sollte man schauen das man kommunikativere Leute hat ger-
ade wenns in verteilte Teams geht. und die auch nicht davor scheuen auch mal zu verreisen.“ [Zeta
#15 - Department Manager]

A.2.7 Eta

Eta #1- Scrum Master „Agile Vorgehensweisen jetzt verteilt zu machen ist es immer noch ein
riesen riesen Vorteil gegenüber klassischen Vorgehensweisen. Ich hab auch sehr viele erfolgreiche
Wasserfall Projekte gemacht, aber Dinge kommen einfach bei der agilen Vorgehensweise viel viel
schneller hoch, auch wenn man verteilt arbeitet. “ [Eta #1- Scrum Master]

Eta #2- Scrum Master „Wir arbeiten hauptsächlich mit drei Wochen sprints, auch teilweise mit
zwei Wochen Sprints. Meine Erfahrung ist, zwei Wochen Sprints in verteilten Teams sind manch-
mal eine kommerzielle Hürde. Muss man einfach sagen, wenn Leute dann viel reisen müssen,
wenn man Leute auf drei Standorten sitzen hat. Auch wenn man sagt zwei Wochen Sprints, es
reichen sechs Stunden für den Sprintwechsel, ein Tag ist ’gone’ sag ich mal. Darum hat sich bei
uns der drei Wochen Sprint sehr gut eingeschwungen.“ [Eta #2- Scrum Master]

Eta #3- Scrum Master „Auf der einen Seite ist unser Ziel natürlich schon Experten und Topleute
zu haben, aber unser Ziel ist es in einem Team nicht einen Experten für das und einen Experten für
das zu haben, sondern die Teams sollen in der Lage sein, überall hin zu greifen damit man keine
Flaschenhälse erzeugt. Deswegen ist das Thema Pair Programming ganz ganz wichtig, ist aber ein
Thema das in der Eigenverantwortung des Teams liegt.“ [Eta #3- Scrum Master]

Eta #4- Scrum Master „Unsere Herangehensweise ist ganz einfach: wenn Dokumentation
wichtig ist dann muss es Teil der User Story sein.“ [Eta #4- Scrum Master]

Eta #5- Scrum Master „ es hat sich gezeigt, dass durch diese 15 Minuten und sozusagen das
Tooling das wir da verwenden wo jeder auch am Monitor sein Whiteboard sieht hat sich das bei
den meisten - nicht bei allen Projekte - bei den meisten Projekten so eingebürgert, dass man eine
Telefonkonferenz macht und das vom Platz aus macht. Es gibt ein paar Teams bei uns die machen
es auch auf Video, aber der größere Teil macht nur auf Audio. “ [Eta #5- Scrum Master]

Agile Development in Distributed Teams 159 / 166



Appendix A. Appendix A.2. Quotes

Eta #6- Scrum Master „Groomings - das sind die Meetings wo es darum geht Vertiefungen,
vorbereitende Klärungen, für den nächsten Sprint zu machen, die versuchen wir wenns möglich
ist über Video zu machen. Darum haben wir einerseits auf allen unseren Standorten ein sehr gutes
Video Konferenzsystem wo Bild und Ton sehr gut sind, wo Screensharing möglich ist, und in den
meisten Fällen haben wir das auch beim Kunden. Das heißt auch wenn es drei Standorte sind, das
zusammenschalten per Video kein Thema ist. “ [Eta #6- Scrum Master]

Eta #7- Scrum Master „Die Retrospektive ist ein ganz ganz wichtiger Teil bei uns der auch
sehr ernstgenommen wird, weil auch das Verbesserungen anspricht. Retros verteilt machen wir
auch manchmal, aber v.a. bei der Retrospektive ist es einfach ganz ganz gut wenn man Face to
Face sitzt.“ [Eta #7- Scrum Master]

Eta #8- Scrum Master „Beim Sprintwechsel selbst, das ist üblicherweise bei uns ein Tag wo
man sich zusammenfindet, ist das Ziel das immer Face to Face zu machen, das alle Leute an
einem Standort zusammenkommen. Ein Weg ist da das wir das rotieren auf den unterschiedlichen
Standorten, einmal beim Kunden, einmal bei uns bei dem Standort, einmal bei dem Standort.
Wichtig ist, wenns möglich ist, es face to face zu machen, klappt natürlich nicht immer.“ [Eta #8-
Scrum Master]

Eta #9- Scrum Master „Das ist das Thema Projektkommunikation, wie klar werden Dinge
kommuniziert, oder sind sie mangelhaft aufgrund mangelhafter Sprachkenntnisse, das kommt
absolut vor. Wenn eine Drittsprache wie Englisch als Kommunikationssprache verwendet wird
klappt es sehr gut wenn der Level bei allen Kollegen sehr hoch ist, aber das kann man fast nicht
gewährleisten.“ [Eta #9- Scrum Master]

Eta #10- Scrum Master „Scrum funktioniert sehr viel aus dem Teamgedanken und aus dem
Teamformungsprozess heraus. Natürlich wenn man neue Teams zusammenstellt wenn die verteilt
sind dauert es einfach länger bis die Teamformungsprozesse da durchlaufen. Die andere Geschichte
ist da die Fähigkeit Probleme zu lösen, im Team zu lösen, ist im Verteilten einfach schwieriger.“
[Eta #10- Scrum Master]

Eta #11- Scrum Master „Wenn Skype schlecht ist einem Daily zu folgen, wenn man vorm
Monitor sitzt und der Ton is schlecht bei zwei oder drei Kollegen dann driftet man ab, man kann
nicht folgen. Deswegen ist saubere Infrastruktur ganz ganz wichtig wenn man sich für sowas
entscheidet und man darf daran nicht sparen. Und generell viele Möglichkeiten zu bieten.“ [Eta
#11- Scrum Master]

Eta #12- Scrum Master „Viel wichtiger für uns ist, Kollegen und Kolleginnen zu bekommen
die bereit sind in Teams zu arbeiten, die bereit sind wissen zu Sharen eben das Thema Pair Pro-
gramming. Was auch nicht selbstverständlich ist, bereit sind in Retros Dinge anzusprechen und
oft auch Dinge zu ertragen und Feedback zu bekommen was Verbesserung betrifft. Das ist für uns
ganz eine wichtige Geschichte. Aber es gibt keine Anforderungen die jetzt sagen weil wir verteilt
sind müssen wir auf was spezielles schauen.“ [Eta #12- Scrum Master]

Eta #13- Scrum Master „Auf der einen Seite bin ich bei größeren Projekten sowas wie Scrum
Master - in Richtung Kunde vielleicht Projektmanager - aber in der agilen Sprache ist es Scrum

Agile Development in Distributed Teams 160 / 166



Appendix A. Appendix A.2. Quotes

Master, vielleicht in etwas abgeänderter Eigenschaft. Und ich mache sehr viel an der Kunden-
schnittstelle. Mein Job da ist Customer Relationship Manager.“ [Eta #13- Scrum Master]

Eta #14- Scrum Master „Unterwegs wähle ich mich in kein Meeting ein! Vielleicht kurz wenn
mich wer anruft, aber generell, man weiß auf der Wegstrecke fällt zwei bis drei mal das Internet
aus, man kann nicht vernünftig teilnehmen. “ [Eta #14- Scrum Master]

Eta #15- Scrum Master „Wichtig ist, wenn ich den Optimalzustand nicht habe, wie ein gemein-
samer Raum und die sehen sich immer, dann muss ich das was ich nicht habe wenn Leute verteilt
sitzen durch andere Dinge versuchen wieder zu lösen. Wo wir sagen: Wenn verteilt, dann Sprint-
wechsel zusammen.“ [Eta #15- Scrum Master]

A.2.8 Theta

Theta #1 - Agile Coach „Mit Kanban brauchst du viel öfter einen Sync, mit Scrum kannst du
das machen das du sagt: ’Ok, jetzt setzen wir uns alle zwei Wochen wirklich physisch zusammen
und diskutieren das aus.’ Sonst machst du halt die täglichen Syncs und man muss nur dann eine
dedizierte session machen wenn etwas aufkommt.“ [Theta #1 - Agile Coach]

Theta #2 - Agile Coach „Wie ich zur Firma gekommen bin hatten sie schon diese Cycle, und
ja, man hat natürlich schon immer noch was verbessern können aber es war auch sozusagen
vorgegeben und wir haben gute Erfahrungen damit gemacht. Wir machen kein Scrum out of
the Book, ich denke das macht keiner, und für mich ist es auch keine Bedingung. Wir fokussieren
darauf das wir agil sind, wir nutzen einige Tools von Scrum, wir nutzen aber auch einige Tools
von Kanban, und wir streben aber auch in die Richtung automatisierter Rollout Prozess und haben
Continuous Delivery anvisiert, aber sowas passiert natürlich nicht über Nacht. Generell kommen
wir mit Scrum gut zurecht.“ [Theta #2 - Agile Coach]

Theta #3 - Agile Coach „Wenn andere mit einem Stück Code fertig sind dann erstellt man ein
Code Review mit zum Beispiel Fisheye, das ist so ein Tool von Atlassian. Oder man macht einen
Pull Request und setzt die anderen drauf und sie bekommen eine Benachrichtigung und reviewen
den Code und machen Kommentare oder rufen die Person an. “ [Theta #3 - Agile Coach]

Theta #4 - Agile Coach „Wir haben nach einer Zeit bewusst darauf geschaut, dass das Code Re-
view von unterschiedlichen Standorten gemacht wird. Vor allem wenn wir Kollegen in Russland
gehabt haben, das war eine ziemlich komplexe Herausforderung, hat aber ziemlich gut funktion-
iert. “ [Theta #4 - Agile Coach]

Theta #5 - Agile Coach „Deswegen haben wir dort eingeführt, wenn etwas im Code geändert
wird, muss immer wenigstens einer vom anderen Team beim Code Review dabei sein. Damit sie
es zumindest passiv mitbekommt was sich geändert hat. “ [Theta #5 - Agile Coach]

Theta #6 - Agile Coach „Für die dynamischeren Sachen nutzen wir einfach Jira. Wir schauen
das wir alle unsere Aufgaben grundsätzlich dort abbilden, weil sonst hast du halt extra Aufwand
das alles zu synchronisieren. Also jedes Team hat einen Teamchat, das zählt vielleicht auch als
Radiator.“ [Theta #6 - Agile Coach]

Agile Development in Distributed Teams 161 / 166



Appendix A. Appendix A.2. Quotes

Theta #7 - Agile Coach „Die meisten Best Practices von Scrum haben wir irgendwie gemeistert
das sie funktionieren, auch wenn wir manchmal gesagt haben das geht nicht ausser wenn die Leute
zusammensitzen. Das einzige ist was ein bisschen mühsam ist, wir machen in einem Team die
Estimations mit Planning Poker, da ist es halt ein bisschen komisch wo die Leute halt dann den
Wert eintippen, aber das ist jetzt einfach so, das ist jetzt kein Blocker.“ [Theta #7 - Agile Coach]

Theta #8 - Agile Coach „Wir haben ein Gentlemans Agreement und zwar jeder schaut grundsät-
zlich alle halbe bis Dreiviertelstunde ins Skype damit es nicht ständig zu Unterbrechungen kommt
aber auch nichts untergeht. “ [Theta #8 - Agile Coach]

Theta #9 - Agile Coach „Die Leute sitzen nebeneinander wenn auch nur virtuell. Also wenn
sie miteinander aktiv arbeiten, würdest du jetzt mit einem Kollegen aus Budapest arbeiten, ist
meistens ein Chat offen oder Hangout oder ein Call. Wir nutzen das wirklich extensive, die Leute
hängen fast die ganze Zeit im Chat. “ [Theta #9 - Agile Coach]

Theta #10 - Agile Coach „Es passiert immer wieder, das Leute parallel Diskussionen führen
und wenn du jetzt in einem Meeting bist wo du was ausdiskutierst wird das nicht stören. Aber
mit einem online Call hast du die anderen gleich verloren. Das ist immer eine spannende Balance
zu halten wie sehr schaut man auf die anderen damit sie nicht ganz abgeschnitten werden aber
wieviel Zeit will man damit verschwenden diese Diskussion absichtlich auseinander zu halten.“
[Theta #10 - Agile Coach]

Theta #11 - Agile Coach „Wir haben jeden zweiten Montag Sprintplanning und da fahren die
Leute dann meistens nach Wien. Das ist einfacher, das ist historisch so gewachsen, früher wie das
Team mehr ausbalanciert war haben wir es immer abwechselnd gemacht, dass das Team nach Linz
gefahren ist. Wie lange sie bleiben hängt halt davon ab ob es vom Sprint unabhängige Architektur
Diskussion gibt, das dort auch ausdiskutiert dann.“ [Theta #11 - Agile Coach]

Theta #12 - Agile Coach „Meine Präferenz ist, und soweit ich das gesehen hab ist das auch bei
vielen anderen so, das komplexere Themen gerne Face to Face ausdiskutiert werden. Vielleicht
gibts auch schon gute Tools, nur haben wir die noch nicht gefunden beziehungsweise haben auch
noch nicht danach gesucht. Aber ich höre auch von anderen Kollegen oft: ’Ja das besprechen wir
dann lieber in zwei Tagen wenn du da bist’. Viele Kollegen machen es dann auch so, dass sie ein
oder zwei Tage in der Woche fix an den anderen Standorten sind.“ [Theta #12 - Agile Coach]

Theta #13 - Agile Coach „Ich hab schon mal versucht remote Planning Sessions zu machen,
das war nicht hier sondern in meiner früheren Firma und der Aufwand ist nicht vertretbar. Du hast
einfach soviel Kommunikationsoverhead, so viele Missverständnisse und Rückfragen, die Effek-
tivität ist nicht vergleichbar. Also einfach so stupide Aufgaben das man den Backlog durchgeht
und sagt: ’Ok, wo ist der Scope?’, allein schon diese Diskussion wenn es ein bisschen ausufert,
dann brauchst du drei mal soviel Zeit.“ [Theta #13 - Agile Coach]

Theta #14 - Agile Coach „Es ist sehr wichtig, dass die Leute ein ähnliches Niveau von En-
glisch sprechen. Weil auch wenn du jetzt Kollegen hast mit denen du generell gut auskommst,
im Sinne von du bist nicht mehr dominant, ich bin nicht mehr dominant und du kannst mit dem
gut diskutieren, aber wenn das jetzt plötzlich Englisch wird und eine Person kann sich viel besser
ausdrücken, führt das einfach zu einer unbalancierten Situation. Bei Face to Face ist das nicht

Agile Development in Distributed Teams 162 / 166



Appendix A. Appendix A.2. Quotes

so schlimm, weil du erkennst den Gesichtsausdruck. Du hast die Geduld: ’Ok jetzt sitzt er mir
gegenüber und er braucht 10 Sekunden den Satz zusammen zu setzen und ich warte es ab’. Aber
wenn das remote ist und der andere die Wörter sucht siehst du ja nicht unbedingt sein Gesicht.“
[Theta #14 - Agile Coach]

Theta #15 - Agile Coach „Grundsätzlich was ein unterlegendes Problem ist, ist die Kommu-
nikation von tagtäglicher Arbeit aber auch von zwischenmenschlichen Beziehungen. Ich würde
nicht sagen Vertrauensproblem weil das stimmt nicht, weil man arbeitet miteinander jahrelang
zusammen dann ist das Vertrauen da, aber es ist schon ein bisschen anders.“ [Theta #15 - Agile
Coach]

Theta #16 - Agile Coach „ Wenn du eine Person hast und der Rest des Teams denkt: ’Ok wir
sind mehr oder weniger vollzählig hier im Raum’ und es gibt eine Diskussion wo es ziemlich
schnell hin und her geht, und die andere Person online kommt nichtmal zum Wort. Wenn die
Hälfte da und die andere da ist, wird wirklich dann gesagt: ’Ok das ist unsere Meinung, was denkt
ihr?’, dann ist es nicht so fließend wie eine Roundtable Diskussion, aber trotzdem, es wird mehr
acht darauf gegeben.“ [Theta #16 - Agile Coach]

Theta #17 - Agile Coach „Inzwischen macht das keine großen Probleme mehr. ich kann mich
erinnern in der früheren Zeit hat es manchmal gewackelt und manchmal haben wir 10 bis 15
Minuten warten müssen bis wir irgendwie eine Connection aufbauen haben können. Das war ja
der ganze Zeitraum von den Daily Meetings dann war es ziemlich irritierend. In letzter Zeit ist das
wirklich schon die Ausnahme.“ [Theta #17 - Agile Coach]

Theta #18 - Agile Coach „Jetzt machen wir zum Beispiel auch so Teambuilding Workshops wo
genau das Kommunikationsziel das ich vorher angesprochen habe adressiert wird und dort holen
wir einfach die Leute gemeinsam zu einem externen Standort. “ [Theta #18 - Agile Coach]

Theta #19 - Agile Coach „Das sie halt kommunikativ sind, oder wenigstens offen kommu-
nizieren wollen und damit hat sich die Sache eigentlich schon. Weil wir haben schon von unseren
Kollegen in Budapest als Feedback bekommen: ’Leute ihr müsst einfach an eurer Kultur arbeiten
beim Teleconferencing’. Und ja, du musst außer Englisch und programmieren können nur ein
netter Mensch sein.“ [Theta #19 - Agile Coach]

Theta #20 - Agile Coach „Der Punkt warum ich denke das agile Methoden sehr hilfreich sind in
verteilten Teams ist, dass der Fokus grundsätzlich auf einer offenen kurzfristigen Kommunikation
liegt, also Kommunikation mit kurzen Schleifen. Was ich gesehen habe in verteilten Teams ohne
kurze Kommunikations-Iterationen ist, dass du viel leichter voneinander abweichst.“ [Theta #20 -
Agile Coach]

Theta #21 - Agile Coach „Ich bin in der Firma seit Beginn als Scrum Master tätig, in letzter
Zeit hat sich die Rolle so als Agile Coach entwickelt. Vorher war ich schon auch Scrum Master
und ich arbeite nun fast mit allen Teams die Software entwickeln.“ [Theta #21 - Agile Coach]

A.2.9 Iota

Agile Development in Distributed Teams 163 / 166



Appendix A. Appendix A.2. Quotes

Iota #1 - Team Leader „Es gibt einen ganz klar allgemeinen Trend hin zu agilen Methoden und
es gibt einen Trend hin zu flexiblerer Arbeitsgestaltung und remote Arbeit. Diese Entwicklung hat
aber in den letzten 10 Jahren parallel stattgefunden. Aus meiner Sicht gibt es da keinen konkreten
Grund warum man das eine nicht mit dem anderen kombinieren könnte.“ [Iota #1 - Team Leader]

Iota #2 - Team Leader „ Bei meinem Kanban ist es so, es gibt ein Kanban Board, es gibt
ganz einfache Priorisierung und wir haben den Softwareentwicklungsprozess parallel zum Man-
agement, ich unterscheide da noch zwischen dem Softwaremanagement oder Produktmanagement
Prozess, also derjenige der sich darum kümmert alle beteiligten oder alle stakeholder irgendwie
auf einen Wissensstand zu bringen: Was ist gerade wichtig, was wird getan, wo stehen wir. Dazu
läuft eben parallel die Implementierung und beides ist insofern nur gekoppelt das einfach klar wird
was wird als nächstes erledigt. Aber wir können jeden tag releasen, wir können jeden Tag Bugfixes
rausbringen, und das ist für mich wichtiger diese Geschwindigkeit und ein bisschen diese losere
Kopplung als diese harten Check-Ins und Abnahmen und so weiter.“ [Iota #2 - Team Leader]

Iota #3 - Team Leader „Da gibt es praktisch eine Produktretrospektive - einmal die Woche -
und ich mach eine größere Retrospektive für die IT an sich so alle zwei Monate in so Workshops
wo dann alle Entwickler zusammenkommen. Wir reden da dann generell mehr über den Prozess
als ganzes, wo fühlen wir uns wohl, wo sehen wir Probleme, wo sind einfach Dinge bei denen
mehrere Leute das Gefühl haben da müssten wir ein größeres Refactoring angehen. Weil wenn
man sich nur auf Features und so fokussiert dann ist es klar das man oft so technische Schulden
mitbekommt aber jeder trifft das sich so für sich selbst, und wenn man sich ein bisschen Zeit
nimmt und länger über das Thema spricht dann entstehen auch neue Erkenntnisse in der Gruppe
dadrüber welche Themen tatsächlich irgendwie kritisch sein könnten.“ [Iota #3 - Team Leader]

Iota #4 - Team Leader „Code Reviews benutzen wir immer, nämlich um einfach eine gewisse
Form von Qualität sicher zu stellen und auch sicher zu stellen das es einen Wissenstransfer zwis-
chen den Mitarbeitern gibt. Immer wenn jemand ein Feature einbaut gibt es Pull Requests in der
Quellcodeverwaltung und da muss ein anderer Mitarbeiter drüberschauen, macht ein Coderview
und macht dann einen gemeinsamen Videocall und dann sprechen sie über den Pull Request, geben
sich ein bisschen Feedback und dann wird das gefixt und dann wird das von der anderen Person
gemerged.“ [Iota #4 - Team Leader]

Iota #5 - Team Leader „Auch die Verantwortung wird da aufgeteilt, es gibt jemand der schreibt
den Code und derjenige der den Pull Request reviewed ist derjenige der ihn merged und dadurch
gibts auch niemanden der den Code besitzt. Für mich ist wichtig das es das Code Stewardship gibt,
das heißt alle im Team sind für den kompletten Code verantwortlich. “ [Iota #5 - Team Leader]

Iota #6 - Team Leader „Generell ist es so, dass wir immer über einen so genannten Tech Chan-
nel den wir im Gruppenchat haben im Austausch stehen und wenn jemand was neues entdeckt
oder was neues implementiert oder sich was ansieht das dann immer geteilt wird. Immer das Wis-
sen was man gerade entdeckt das den anderen Kollegen mitteilt. Eine andere Form ist natürlich
auch einen Blog Artikel zu schreiben, eine Präsentation zu machen, darüber zu berichten auch
wenn man auf einer Konferenz war. Dafür reservier ich auch immer Zeit, das man auch über diese
Themen redet.“ [Iota #6 - Team Leader]

Iota #7 - Team Leader „Wenn das ganze Team in einem Raum sitzt gibts einfach so eine Blase
an Informationen die ständig aktualisiert wird, das hängt so im Raum das bekommt man so mit.

Agile Development in Distributed Teams 164 / 166



Appendix A. Appendix A.2. Quotes

(...) Wenn man ein verteiltes Team hat dann passiert das halt nicht. Das heißt man muss diese
Information auch aktiv verteilen, man muss sich darum kümmern das es alle mitbekommen und
von daher ist es natürlich wichtiger von da drauf zu achten.“ [Iota #7 - Team Leader]

Iota #8 - Team Leader „Für mich sind digitale Tools einfach die natürliche Arbeitsweise, weil
die Vorteile sind einfach für mich schlagend. Ich hab es erstmal überall, egal wo ich bin, auch un-
terwegs kann ich drauf zugreifen, es ist durchsuchbar, ich kann es massenweise editieren, ich kann
bestimmte Dinge neu gruppieren. Also diese Möglichkeiten wie ich diese Daten manipulieren
kann ist einfach viel viel komplexer und viel vielfältiger als wenn ich ein Board habe. Ich mag
zum Beispiel auch virtuelle Kanban Boards, die genauso funktionieren wie das physische Board,
also ich hab drei Spalten weil ich gemerkt habe es hängt eine zusätzliche Information da dran
wo eine Karte genau hängt, das heißt ich kann es mir besser merken und ich hab einen besseren
Überblick anstatt wenn ich nur eine Liste von Issues habe wie in klassischen Bugtrackern.“ [Iota
#8 - Team Leader]

Iota #9 - Team Leader „Also Kommunikation ist das A und O und ich meine Softwareentwick-
lung ist ja auch nichts anderes als wir sprechen irgendwas und dann packen wir es in Worte, also
Software sind ja auch Worte, ist auch wieder herunter geschriebene Kommunikation. Daran muss
man einfach arbeiten.“ [Iota #9 - Team Leader]

Iota #10 - Team Leader „ Chat ist sehr unverbindlich einfach bezüglich wann kommt eine
Nachricht an und wann wird sie gelesen. Das heißt es braucht immer ein weiteres Kommunika-
tionswerkzeug in dem tatsächlich verbindlich festgelegt wird was wann wie gemacht wird. Das
heißt da braucht es immer einen - ich nenn es mal Task Tracker ganz allgemein. Also irgendeine
Form wo ich sagen kann da gibts eine Aufgabe, ich kann die irgendwem zuweisen, der andere
kann sehen was ihm für Aufgaben zugewiesen sind und er kann dort den Status aktualisieren.“
[Iota #10 - Team Leader]

Iota #11 - Team Leader „Bei Text Kommunikation fehlt jede Menge an Zusatzinformation, die
Bandbreite ist gering, also braucht man irgendeinen Sprachchat, also entweder Google Hangouts
oder sowas, wo man Audio übertragen kann. Das ist extrem wichtig und dann braucht man noch
eine Kamera, also das ist nicht entscheidend aber es ist extrem hilfreich in Diskussionen, auch
um zu sehen wenn eine Telko stattfindet dann kann man sehen wenn jemand sprechen möchte
und wenn jemand das Wort ergreifen möchte. Das funktioniert halt nicht wenn man die anderen
nicht sieht. Das hab ich bisher in jeder Firma gesehen: also Chat, Tasktracker und irgendwas für
Sprache. Früher war es viel Telefon, heute ist es vermehrter Videochat und so, Skype ist eigentlich
die Regel.“ [Iota #11 - Team Leader]

Iota #12 - Team Leader „Es ist so, das du dein Gegenüber und die Motivation verstehen musst,
auch seine Ängste kennen musst um seine Entscheidungen nachvollziehen zu können. Dieses
Wissen darüber was das Gegenüber für Ängste und Bedürfnisse hat das ist etwas das kann man
nur lernen wenn man sich regelmäßig in vielfältigen Begegnungen mit seinen Kollegen begibt.
Und die außerhalb auch von einem Arbeits- und Auftragskontext sind. Das man zusammen auch
essen geht und auch streitet und Probleme wälzt, und das funktioniert am besten eben physisch.“
[Iota #12 - Team Leader]

Iota #13 - Team Leader „Ich glaube das sozusagen die remote Arbeit mehr Vorteile bietet als
Nachteile. Aber das es eben eine neue Kategorie von Problemen eröffnet und das die eigentliche

Agile Development in Distributed Teams 165 / 166



Appendix A. Appendix A.2. Quotes

Schwierigkeit ist das zu erkennen. Das ist nicht einfach nur die Mitarbeiter sitzen woanders.
Sondern das genau da andere Dinge passieren die einem erstmal per-se nicht so bewusst sind.“
[Iota #13 - Team Leader]

Iota #14 - Team Leader „ Was ich aber als vorteilhaft empfinde ist eben doch Leute aus anderen
Kulturkreisen, aus anderen politischen Systemen, aus anderen wirtschaftlichen Systemen mit dazu
zu bekommen weil die einfach komplett neue Aspekte mit rein bringen. Wie sie aufgewachsen
sind, was für sie wichtig ist, wie sie Dinge empfinden, wie sie Text wahrnehmen, wie sie UI
wahrnehmen. Diese ganzen Themen erfordern ein höheres Maß an Sensibilität im Umgang, wir
Deutschen untereinander sind sehr direkt was in anderen Kulturkreisen gar nicht funktioniert, aber
das schadet einfach nicht das man das sozusagen lernt. Und auch kulturelle Themen reinzubrin-
gen kann einfach einen zusätzlichen Blickpunkt auf Themen bringen die unter Umständen sehr
wertvoll sind, was ich mir eigentlich Wünsche.“ [Iota #14 - Team Leader]

Iota #15 - Team Leader „Also das sie wirklich zwei bis drei Wochen, je nachdem wie komplex
die Aufgaben sind, gemeinsam mit den Kollegen vor Ort sind. Das schafft schon extrem viel Nähe
und viel Wissen über den anderen. Es ist eine wichtige Basis um dann später auch zu wissen wie
reagiert er gerade oder warum macht er das gerade.“ [Iota #15 - Team Leader]

Iota #16 - Team Leader „Nicht jeder Mitarbeiter ist dafür geeignet. Es ist wichtig das man
erstens ein hohes Maß an Selbstorganisation an den Tag legt, das man sich auch aktiv darum
kümmert das man arbeiten kann ohne ständig auf Hilfe von Kollegen zurückzugreifen denn die
sind ja auch nicht ständig verfügbar. Und zum anderen brauche ich einfach Mitarbeiter die das
Ziel nicht aus den Augen verlieren, wo man konstant daneben stehen muss und sagen muss: geht
das noch in die richtige Richtung, hast du daran und daran und daran gedacht. Das sind zwei
Dinge die nicht jeder mitbringt.“ [Iota #16 - Team Leader]

Iota #17 - Team Leader „Ich habe die Erfahrung gemacht wenn es zwei Sprachen gibt über
die übersetzt werden muss, zum Beispiel von Deutsch ins Englische ins Ukrainische, und dann
wieder zurück, das ist sehr anstrengend. Weil es gibt zu beiden Sprachen immer unterschiedliche
Bedeutungen von Wörtern und dann bringt man noch eine dritte Sprache ins Spiel und das macht
es extrem aufwändig. Wenn man sowas hat würde ich drauf achten das etwas nicht zweimal
übersetzt wird.“ [Iota #17 - Team Leader]

Iota #18 - Team Leader „Rein von den anderen Werkzeugen und Tools die wir haben um un-
sere Arbeit zu unterstützen sehe ich kein Problem. Die Auswahl ist riesig, die Entwicklung geht
immer weiter, es gibt immer neue Tools. Da ist sicher noch Luft nach oben aber so für meinen
Alltagsbedarf gibt es relativ wenig Probleme die irgendwie nicht gelöst sind.“ [Iota #18 - Team
Leader]

Iota #19 - Team Leader „Das ist gerade sehr wichtig die Leute da zusammenzuhaben. Die
Diskussionen sind ein bisschen länger, und man braucht mal ein Whiteboard und muss mal was
aufmalen und muss mal anderen Leuten was erklären. Das das über Remote zu machen ist zu
schwierig, das funktioniert nicht.“ [Iota #19 - Team Leader]

Agile Development in Distributed Teams 166 / 166


	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Related Work
	Objectives
	Structure of the Thesis

	Agile Software Development
	Introduction
	The Agile Manifesto
	Agile Principles

	The Agile Team
	Self-Organization
	Co-Location

	Scrum
	Introduction
	Roles
	Artifacts
	Activities
	Tools
	Team Organization

	Kanban
	Principles
	Kanban Board

	Extreme Programming
	Values
	Principles
	Practices

	Combination of Agile Methodologies

	Distributed Software Development
	Introduction
	Taxonomy of Distributed Software Engineering
	Reasons to distribute Development

	Dimensions of Distance
	Geographical Distance
	Cultural Distance
	Temporal Distance
	Configurational Dimension 

	Challenges of Distance
	Coordination
	Control
	Communication

	Communication in Distributed Teams
	The Importance of Communication
	Communication Theory
	Modalities of Communication
	Media Richness Theory
	Remote Communication


	Agility in a Distributed Environment
	Agility in a Distributed Setting
	Impact of the Team Size

	Reasons to use Agile Methods
	Distributed Scrum
	Distributed Organization
	Starting a Distributed Scrum Project
	Daily Scrum
	Effective Collaboration

	XP
	Introduction
	Distributed Pair Programming
	Continuous Integration


	Case Study
	Introduction
	Design of the Case Study
	Objective
	Units of Analysis
	Theoretical Framework
	Research Questions
	Study Propositions

	Data Collection
	Interviews
	The Interview Guideline
	Other Data Sources
	Selection of Analysis Units
	Presentation of the Interviewed Cases

	Data Analysis
	Qualitative Content Analysis
	Categories and Codes


	Presentation of the Cases
	Alpha
	Beta
	Gamma
	Delta
	Epsilon
	Zeta
	Eta
	Theta
	Iota

	Discussion
	Cross-Case Analysis
	Agile Development
	Agile Practices
	Communication
	Distribution
	Team

	Examination of the Research Propositions
	Answering the Research Questions
	Recommendations for Distributed Teams
	Comparison to Related Work
	Limitations of this Thesis

	Conclusion
	Bibliography
	References
	Online References

	Appendix
	Interview Guideline
	Quotes
	Alpha
	Beta
	Gamma
	Delta
	Epsilon
	Zeta
	Eta
	Theta
	Iota



