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Abstract

In this thesis we introduce a new way for adaptively selecting snapshots to con-
struct a reduced basis (RB) subspace for the numerical solution of parabolic
differential equations. Our main insterest is in low frequency electromagnetic
equations where the displacement currents can be neglected. Constructing the
RB subspace by solving shifted stationary problems is a natural and often used
attempt, based on the work of Grimme [7]. In [9] the identity of shifts and eigen-
values of the reduced system was derived as a necessary optimality condition.
Because the optimal spaces are not nested, Druskin, Lieberman and Zaslavsky
proposed the usage of a nested sequence of spaces with adaptively chosen shifts
fitted to the eigenvalues in [6]. Using a modified version of the Kolmogorov
Smirnow test statistic we derive an algorithm with a better fitting of the shifts
to the eigenvalues than in [6]. We present tests on a 2D heat equation example
and a 3D electromagnetic one and observe an improved convergence rate with
our method.
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1 Introduction

The aim of this thesis is to reduce the order of the system of equations, usually
derived by finite elements (FE) or finite differences (FD) methods for a parabolic
differential equation. For this a projection onto a good subspace of the FE/FD
space is needed. Reduced basis (RB) methods decompose the problem into a
slow offline phase, where the subspace is created and a fast online phase, where
the equation is solved on the small subspace. This is an additional benefit, if
fast online evaluation is needed for known domain.
The discretized parabolic problem

M
∂u(t)

∂t
+Au(t) = f(t) = hg(t) (1.1)

with M,A ∈ Rn×n, h ∈ Rn, g ∈ L2(0,∞) and u ∈ L2([0,∞),Rn), rises in
many physical applications like heat equations or electromagnetic equations with
neglectible displacement currents after discretization of the space derivatives.
Due to Plancherel’s equality the L2 approximation of problem (1.1) is aquivalent
to the approximation of the Fourier transformed problem

ũ(s) = (A+ isM)−1h g̃(s) (1.2)

for all s ∈ R. Our aim is to find good subspaces Vr, a basis of Vr, G ∈ Rn×r
and

û(s) = (Â+ isM̂)−1ĥ g(s) (1.3)

with Â = GTAG ∈ Rr×r, M̂ = GTMG ∈ Rr×r ĥ = GTh ∈ Rr, û(t) ∈ Rr, such
that ‖ũ−Gû‖L2(R)is sufficiently small.

1.1 Electromagnetism

In this section we want to introduce our main application of the reduced basis
method. The equations linking magnetism and electricity were initially devel-
oped by Gauss, Ampere and Faraday. James Clerk Maxwell completed the set
of equations by introducing the time derivative of the electric field into Ampere’s
law. The microscopic equations or usually referred to as Maxwells equations in
vacuum relate the electric field E and the magnetic field B to electric charges ρ
and electric currents J. Displacements of the electric field create a magnetic field
and vice versa. The microscopic equations are universally applicable in classi-
cal field theory (not incorporating quantuum effects) but include complicated
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charges and currents on a microscopic level.

div (E) =
ρ

ε0
(Gauss law) (1.4)

div (B) = 0 (Gauss law for magnetism) (1.5)

curl (E) = −∂B

∂t
(Faraday’s law of induction) (1.6)

curl (B) = µ0

(
J + ε0

∂E

∂t

)
(Ampere’s law) (1.7)

The macroscopic equations average these effects using two additional fields D,
the displacement current, and H, the magnetizing field. Now the equations only
contain the free charges ρf and the free currents Jf .

div (D) =
ρf
ε0

(1.8)

div (B) = 0 (1.9)

curl (E) = −∂B

∂t
(1.10)

curl (H) = µ0

(
Jf + ε0

∂D

∂t

)
(1.11)

H and D are related to B and E through an additional set of equations de-
pending on the material, the simplest relation is a material dependent linear
one.

H =
1

µr
B (1.12)

D = εrE, (1.13)

For many materials a linear relation is not appropriate and the coefficient de-
pends nonlinear on the fields or/and the time (the history of the fields). We
will use a linear relation, however note that the RB method can also be applied
to nonlinear equations, but usually requires expensive operations on the full
space for the time stepping. In the linear case the time stepping can be done
on the RB subspace only. Using these relations, µ = µ0µr and ε = ε0εr we get
equations in six variables again.

div (E) =
ρf
ε

(1.14)

div (B) = 0 (1.15)

curl (E) = −∂B

∂t
(1.16)

curl (B) = µ

(
Jf + ε

∂E

∂t

)
(1.17)

The free current J consists of the applied current JA and the current from the
electric field JE which is by Ohm’s law

JE = σE, (1.18)
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with σ beeing the conductivity of the material. Since B is divergence free, and
because the kernel of the divergence operator is exactly the range of the curl
operator (see de Rham Complex, Theorem 2), B = curl (u) for some vector
potential u. Using this and (1.18) in (1.17) we get

µ−1curl (curl (u)) = JA + σE + ε
∂E

∂t
. (1.19)

In low frequency computations ε∂E∂t � σE and the term ε∂E∂t can be neglected.
Using (1.16) for the vector potential leads to the equation we want to consider.

σ
∂u

∂t
+ µ−1curl (curl (u)) = JA (1.20)

1.2 Function Spaces

For completeness we introduce the function spaces we use, as well as the discrete
spaces and some of their basic properties.

Definition 1
Consider the Hilbert spaces

L2(Ω) =

{
v :

∫
Ω

|v|2 <∞
}

(1.21)

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)

}
(1.22)

Hcurl(Ω) =
{
v ∈ [L2(Ω)]3 : curl (v) ∈ [L2(Ω)]3

}
(1.23)

Hdiv(Ω) =
{
v ∈ [L2(Ω)]3 : div (v) ∈ L2(Ω)

}
. (1.24)

with their scalar products, where the derivatives are defined in a weak sense.

(u, v)L2(Ω) =

∫
Ω

uvdx (1.25)

(u, v)H1(Ω) =

∫
Ω

∇u · ∇v + uvdx (1.26)

(u,v)Hcurl(Ω) =

∫
Ω

curl (u) · curl (v) + u · vdx (1.27)

(u,v)Hdiv(Ω) =

∫
Ω

div (u)div (v) + u · vdx (1.28)

and their corresponding norms ‖u‖S =
√

(u, u)S .

Definition 2 (Essential boundary conditions)
Define the essential trace operators

tr(u) := u|∂Ω (1.29)

trτ (u) := (u · τ)|∂Ω (1.30)

trn(u) := (u · n)|∂Ω (1.31)
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Theorem 1
The trace operators defined in Definition 2 are well defined bounded operators

tr : H1(Ω)→ L2(∂Ω) (1.32)

trτ : Hcurl(Ω)→ L2(∂Ω) (1.33)

trn : Hdiv(Ω)→ L2(∂Ω). (1.34)

Using this we can define the spaces with essential boundary conditions

Definition 3 (Spaces with essential boundary conditions)

H1
0 (Ω) :=

{
v ∈ H1(Ω) : tr(v) = 0

}
(1.35)

Hcurl
0 (Ω) :=

{
v ∈ Hcurl(Ω) : trτ (v) = 0

}
(1.36)

Hdiv
0 (Ω) :=

{
v ∈ Hdiv(Ω) : trn(v) = 0

}
(1.37)

Theorem 2 (De Rham Sequence)
The spaces defined in section 1.2, with their according operators form the so
called De Rham sequence

R id−→ H1 ∇−→ Hcurl curl−→ Hdiv div−→ L2 0−→ 0 (1.38)

which is exact in the sense, that the range of each operator corresponds to
the kernel of the next operator. In case of essential boundary conditions the
sequence

R id−→ H1
0
∇−→ Hcurl

0
curl−→ Hdiv

0
div−→ L2

0
0−→ 0 (1.39)

with L2
0(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω
v dx = 0

}
is valid and exact.

We want to use this sequence property, therefore our discrete spaces have to
fullfill the De Rham sequence as well. Bossavit [3], with further work of Arnold,
Falk and Winther [2] provided methods for constructing piecewise polynomial
spaces fullfilling these properties.

Definition 4 (Legendre Polynomials)
The Legendre polynomials are defined by the three-term recurrence

l0(x) := 1, (1.40)

l1(x) := x, (1.41)

(n+ 1)ln+1(x) := (2n+ 1)ln(x)x− nln−1(x), n ≥ 1 (1.42)
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The integrated Legendre polynomials of order n ≥ 2 are defined as

Ln(x) :=

∫ x

−1

ln−1(y)dy (1.43)

Lemma 3 (Properties of Legendre polynomials)
The legendre polynomials are L2([−1, 1])-orthogonal∫ 1

−1

li(x)lj(x)dx =
2

2i+ 1
δij (1.44)

and span P p([−1, 1]). The integrated Legendre polynomials are orthogonal with
respect to the H1 seminorm∫ 1

−1

L′i(x)− L′j(x)dx = 0, for i 6= j, (1.45)

they vanish at the interval boundaries and span P p0 ([−1, 1]). The three term
recurrence

L1(x) =x, (1.46)

L2(x) =
1

2
(x2 − 1), (1.47)

(n+ 1)Ln+1(x) =(2n− 1)xLn(x)− (n− 2)Ln−1(x), n ≥ 2. (1.48)

holds.

Definition 5 (Scaled Legendre Polynomials)
For the tensor product structure on tetrahedral elements we will need scaled
versions of the Legendre polynomials

lSn (x, t) := tnln

(x
t

)
, x ∈ [−t, t], t ∈ (0, 1] (1.49)

LSn(x, t) := tnLn

(x
t

)
, x ∈ [−t, t], t ∈ (0, 1] (1.50)

(1.51)

Definition 6 (H1 Shape Functions on Tetrahedral Element)
Let λi be the hat function in the vertex i then the vertex based basis functions

are ϕVi = λvi . For v1, v2 being the vertices of the edge Ej, for 0 ≤ j ≤ pEi
−2

the edge based functions of up to order p are

ϕEi
j = LSj+2(λv1 − λv2 , λv1 + λv2). (1.52)
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For the face Fi = {v1, v2, v3}, define λF := λv1 + λv2 + λv3 , for 0 ≤ j + k ≤
pFi − 3 the face based functions are

ϕFi

j,k = LSj+1(λv1 − λv2 , λv1 + λv2)λv3 l
S
k (2λv3 − λF , λF ) (1.53)

For 0 ≤ j + k + l ≤ pC − 4 the cell based functions of the cell Ci =
{v1, v2, v3, v4} are

ϕCj,k,l = LSj+2(λv1 − λv2 , λv1 + λv2)· (1.54)

·λv3 lSk (2λv3 − (1− λv4), 1− λv4)λv4 ll(2λv4 − 1) (1.55)

Definition 7 (Hcurl Shape Functions on Tetrahedral Element)
Let λi be the hat function in the vertex i again, then the Hcurl conforming
shape functions of order p are

• Edge-based functions of the edge Em = [v1, v2]:

– Nédélec functions:

ϕNm = ∇λv1λv2 − λv1∇λv2 (1.56)

– Gradient fields of the H1 conforming edge functions:
for 0 ≤ i ≤ pEm

− 1:

ϕEm
i = ∇(LSi+2(λv1 − λv2 , λv1 + λv2) (1.57)

• Face-based functions on the face Fm = [v1, v2, v3], define:

ui := LSi+2(λv1 − λv2 , λv1 + λv2), (1.58)

vi := λv3 l
S
i (2λv3 − λF , λF ) (1.59)

for 0 ≤ i+ j ≤ pFm − 2:

– Type 1 (gradient fields):

ϕFm,1
(i,j) = ∇(uivi) (1.60)

– Type 2:

ϕFm,2
(i,j) = ∇uivj − ui∇vj (1.61)

– Type 3:

ϕFm,3
(0,j) = (∇λv1λv2 − λv1∇λv2)vj (1.62)

• Cell-based functions on the cell C = [v1, v2, v3, v4], define:

ui := LSi+2(λv1 − λv2 , λv1 + λv2), (1.63)

vi := λv3 l
S
i (2λv3 − (1− λv4), 1− λv4), (1.64)

wi := λv4 li(2λv4 − 1), (1.65)

for 0 ≤ i+ j + k ≤ pCm
− 3:
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– Type 1 (gradient fields):

ϕC,1(i,j,k) = ∇(uivjwk) (1.66)

– Type 2:

ϕC,2(i,j,k) = ∇uivjwk − ui∇viwk + uivj∇wk (1.67)

ϕC,2pC+(i,j,k) = ∇uivjwk + ui∇viwk − uivj∇wk (1.68)

– Type 3:

ϕC,3(0,j,k) = (∇λv1λv2 − λv1∇λv2)vjwk (1.69)

Theorem 4 (Commuting Diagram)
Using the local basis for the H1 space (Definition 6) for the space Vh and for

the Hcurl space (Definition 7) for Wh. Let ΠV and ΠW be the corresponding
interpolation operators, then the left hand side of the commuting diagram

R H1 Hcurl Hdiv L2 0

V W X Y

Vh Wh Xh Yh

id ∇

⊇

curl

⊇

div

⊇

0

⊇

ΠV ΠW ΠX ΠY

∇ curl div

holds.

Remark: For the proofs of these properties, other element types and shape
functions for the other spaces (Hdiv, L2) see [12].
Since we want to solve parabolic problems, we have to define functional spaces
in time and space. Parabolic equations are of second order in space, but only
first order in time, therefore we want to demand different regularity assumptions
on the time and space dependence of our solution.

Definition 8
Let H be a Hilbert space,

• the space Ck([0, T ], H) is the set of all functions u : [0, T ]→ H, which
are k-times continuously differentiable. The space is a Banach space
with norm

‖u‖Ck([0,T ],H) :=

k∑
i=0

sup
0≤t≤T

∥∥∥u(i)(t)
∥∥∥
H
. (1.70)
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• the space L2((0, T ), H) is the set of all (aquivalence classes of) mea-
surable functions u : (0, T )→ H with

‖u‖L2((0,T ),H) :=

√∫ T

0

‖u(t)‖H dt <∞ (1.71)

L2((0, T ), H) is a Hilbert space with scalar product

(u, v)L2((0,T ),H) :=

∫ T

0

(u(t), v(t))H dt (1.72)

For our solution to the parabolic equation we need our weak solution to be in
the dual space of the solution space only

Definition 9
Define the weak time-space Sobolev space H1((0, T ), H) as

H1((0, T ), H) :=
{
u ∈ L2((0, T ), H) : ut ∈ L2((0, T ), H ′)

}
(1.73)

with H ′ the dual space of H.

1.3 Weak Formulation and Discrete Setting

We want to solve equation (1.20) using the finite element method for space
discretization and a time stepping method to solve the resulting system of or-
dinary differential equations. For the finite element method we need a weak
formulation.

Definition 10 (Weak formulation)
Given JA, find u ∈ C1(R+, Hcurl

0 (Ω)) such that∫
Ω

σ
∂u

∂t
vdx+

∫
Ω

µ−1curl (u) curl (v) dx =

∫
Ω

JAv dx (1.74)

holds for all v ∈ Hcurl
0 (Ω) and all t ∈ R+.

Using finite element discretization for equation (1.74) leads to:
Find u ∈ C1(R+,Rn) solution to

M
∂u(t)

∂t
+Au(t) = f(t) (1.75)
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with M ∈ Rn×n, A ∈ Rn×n and f(t) = g(t) · h with g ∈ C(R+,R), h ∈ Rn and

Mij =

∫
Ω

σϕiϕjdx (1.76)

Aij =

∫
Ω

µ−1curl (ϕi) curl (ϕj) dx (1.77)

hi =

∫
Ω

JAϕidx, (1.78)

where ϕi are the basis functions of the finite element space.

1.4 Existence and Uniqueness

The existence and uniqueness of a solution to problem (1.74) is an essential
property to obtain a reliable discrete solution. We will first show these properties
on the assumptions of σ, µ > 0 and discuss the non conducting (σ = 0) case
later in Theorem 11. We will show the existence and uniqueness not for the
space C1([0, T ], Hcurl

0 (Ω)), but for the weaker space H1((0, T ), Hcurl
0 (Ω)) from

definition 9.

Definition 11
A function u ∈ H1((0, T ), Hcurl

0 ) is a weak solution of equation (1.74) if∫
Ω

σu′v dx+

∫
Ω

µ−1curl (u) curl (v) dx =

∫
Ω

Jv dx (1.79)

holds for all v ∈ Hcurl
0 (Ω), almost all t ∈ [0, T ] and u(0) = g.

We will proof the existence and uniqueness of solutions for this equation with
the Galerkin method.

Lemma 5 (Existence of a Galerkin approximant)
Let {wk}∞k=1 be an orthogonal basis of Hcurl

0 (Ω) and an orthonormal basis of
[L2(Ω)]3. There is a unique function

um(t) =

m∑
k=1

dkm(t)wk (1.80)

such that

dkm(0) = (u0, wk)L2(Ω) (1.81)

and um solves the Galerkin problem∫
Ω

σu′mwk dx+

∫
Ω

µ−1curl (um) curl (wk) dx =

∫
Ω

Jwk dx (1.82)

for all wk ∈ {wj}mj=1.
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Proof:

Define the matrices M and A and the vectors f and ϕ with

Mij =

∫
Ω

σwiwj dx (1.83)

Aij =

∫
Ω

µ−1curl (wi) curl (wj) dx (1.84)

fi =

∫
Ω

Jwi dx (1.85)

ϕi =

∫
Ω

u0wi dx. (1.86)

Note that M is a positive definite and A a positive semidefinite diagonal matrix.

Then dm(t) =

d
1
m(t)
...

dmm(t)

 from (1.80) solves

Md′m +Adm = f (1.87)

⇔ d′m +M−1Adm = M−1f (1.88)

This equation has the unique solution

dm(t) = e−M
−1Atϕ+

∫ t

0

e−M
−1AτM−1f(t− τ) dτ (1.89)

with eB the matrix exponential

eB =

∞∑
k=0

Bk

k!
. (1.90)

Using this solution, the um in (1.80) solves (1.82).

�

For the proof of the uniform continuity of the sequence {um}∞m=1 we need Gron-
wall’s lemma

Lemma 6 (Gronwall’s Lemma)
Let 0 ≤ ξ(t) be absolutely continuous function on [0, T ] with

ξ′(t) ≤ φ(t)ξ(t) + ψ(t) (1.91)

for almost every t ∈ (0, T ), with 0 ≤ φ(t), ψ(t) ∈ L1(0, T ). Then

ξ(t) ≤ e
∫ t
0
φ(x) dx

(
ξ(0) +

∫ t

0

ψ(x)dx

)
(1.92)

for all 0 ≤ t ≤ T .
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Lemma 7 (Uniform continuity of the Galerkin approximant)
The sequence {um} is uniformly bounde and the constant C in

max
0≤t≤T

‖um(t)‖L2(Ω) + ‖um‖L2((0,T ),Hcurl
0 (Ω)) + ‖u′m‖L2((0,T ),(Hcurl

0 )′) (1.93)

≤ C(‖J‖L2((0,T ),L2(Ω)) + ‖g‖L2(Ω)) (1.94)

depends only on Ω, T and the coefficient µ and σ.

Proof:
Multiplying equation (1.82) with dkm and summing over k gives∫

Ω

σu′mum dx+

∫
Ω

µ−1curl (um) curl (um) dx =

∫
Ω

Jum dx (1.95)

Using ∫
Ω

σu′mum dx =
∂

∂t

(
1

2

∫
Ω

σu2
m dx

)
(1.96)

leads to

∂

∂t

(
1

2

∫
Ω

σu2
m dx

)
+

∫
Ω

µ−1curl (um) curl (um) dx =

∫
Ω

Jum dx. (1.97)

σ > 0 is only dependent on the space coordinates, therefore

∂

∂t
‖um‖L2(Ω) ≤ C

∂

∂t

(∫
Ω

σu2
m dx

)
(1.98)

Using ∫
Ω

µ−1curl (um) curl (um) dx ≥ 0 (1.99)

and ∫
Ω

Jum dx ≤
1

2
(‖J‖2L2(Ω) + ‖um‖2L2(Ω)) (1.100)

we get

∂

∂t
‖um‖2L2(Ω) ≤ C(‖J‖2L2(Ω) + ‖um‖2L2(Ω)) (1.101)

With

ξ(t) := ‖um(t)‖2L2(Ω) (1.102)

ψ(t) := ‖J‖2L2(Ω) . (1.103)

we can use Gronwall’s lemma (Lemma 6) for

ξ′(t) ≤ C(ξ(t) + ψ(t)) (1.104)
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and get

‖um(t)‖2L2(Ω) ≤ e
Ct

(
‖um(0)‖2L2(Ω) +

∫ t

0

‖J(τ)‖2L2(Ω) dτ

)
≤ eCT︸︷︷︸

C1

(‖g‖2L2(Ω) + ‖J‖2L2((0,T ),L2(Ω)))
(1.105)

Next we want to estimate the L2((0, T ), Hcurl
0 ) norm of um:

‖um‖2L2((0,T ),Hcurl
0 (Ω)) =

∫ T

0

‖um(t)‖2L2(Ω) + ‖curl (u)‖2L2(Ω) dt (1.106)

(1.105)

≤ TC1(‖g‖2L2(Ω) + ‖J‖2L2((0,T ),L2(Ω))) +

∫ T

0

‖curl (u)‖2L2(Ω) dt (1.107)

µ > 0, so there holds

‖curl (u)‖2L2(Ω) ≤ C2

∫
Ω

µ−1curl (um) curl (um) dx (1.108)

By integrating equation (1.95) we get an estimate for (1.108).

‖um‖2L2((0,T ),Hcurl
0 (Ω)) ≤ (1.109)

≤ C2

(
‖um(0)‖2L2(Ω) +

1

2

(∫ T

0

‖um(t)‖2L2(Ω) + ‖J‖2L2(Ω) dt

))
(1.110)

≤ C2

(
‖g‖2L2(Ω) +

(
T

2
C1 + 1

)(
‖g‖2L2(Ω) + ‖J‖2L2((0,T ),L2(Ω))

))
(1.111)

≤ C3(‖g‖2L2(Ω) + ‖J‖2L2((0,T ),L2(Ω))) (1.112)

Let v ∈ Hcurl
0 (Ω) with ‖v‖Hcurl

0 (Ω) ≤ 1. Let v = v1+v2 be the decomposition into

the Galerkin space and the complement, so v1 ∈ span{wk}mk=1 and
∫

Ω
v2wk dx =

0. Since um is a Galerkin solution, there holds∫
Ω

σu′mv1 dx+

∫
Ω

µ−1curl (um) curl (v1) dx =

∫
Ω

Jv1 dx (1.113)

This implies that∫
Ω

σu′mv1 dx =

∫
Ω

σu′mv1 dx =

∫
Ω

Jv1 dx−
∫

Ω

µ−1curl (um) curl (v1) dx

(1.114)

and with Cauchy-Schwarz inequality, ‖v1‖Hcurl
0 (Ω) ≤ 1

‖u′m‖
2
(Hcurl

0 )′(Ω) ≤ C(‖J‖2L2(Ω) + ‖um‖2Hcurl
0 (Ω)) (1.115)

Integration in t results in

‖u′m‖L2((0,T ),(Hcurl
0 )′(Ω)) ≤ C(‖J‖L2((0,T ),L2(Ω)) + ‖um‖L2((0,T ),Hcurl

0 (Ω)))

(1.116)

≤ C̃(‖J‖L2((0,T ),L2(Ω)) + ‖g‖L2(Ω))

(1.117)
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Theorem 8 (Existence of a weak solution)
There exists a weak solution of equation (1.79)

Proof:
According to Lemma 7 {um} and {u′m} are uniformly bounded, so there exist
weakly converging subsequences

umk
⇀ u in L2((0, T ), Hcurl

0 (Ω)) and (1.118)

u′mk
⇀ u′ in L2((0, T ), (Hcurl

0 )′(Ω)). (1.119)

Next fix an integer n, let v ∈ C1((0, T ), Hcurl
0 ) be of the form

v =

n∑
k=1

αk(t)wk (1.120)

and m ≥ n, then∫ T

0

∫
Ω

σu′mv dx+

∫
Ω

µ−1curl (um) curl (v) dxdt =

∫ T

0

∫
Ω

Jv dxdt (1.121)

and with passing to the weak limit∫ T

0

∫
Ω

σu′v dx+

∫
Ω

µ−1curl (u) curl (v) dxdt =

∫ T

0

∫
Ω

Jv dxdt (1.122)

This holds for all v ∈ L2((0, T ), Hcurl
0 ), since the functions are dense in this

space. Therefore∫
Ω

σu′v dx+

∫
Ω

µ−1curl (u) curl (v) dx =

∫
Ω

Jv dx (1.123)

holds for every v ∈ Hcurl
0 and almost every t ∈ (0, T ).

�

Theorem 9 (Uniqueness of the weak solution)
The solution of (1.79) is unique.

Proof:
Because of the linearity of the problem it is enough to show that u = 0 if
J = u0 = 0. Equation (1.97) with J = 0 yields

∂

∂t

(
1

2
‖u‖2L2(Ω)

)
≤ α

(
∂

∂t

(
1

2

∫
Ω

σu · udx
)

+

∫
Ω

µ−1curl (u) curl (u) dx

)
= 0

(1.124)

and since ‖u(0)‖L2(Ω) = ‖u0‖L2(Ω) = 0, u = 0 for all times.
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For the case σ = 0 on some part of the domain we need another basic analysis
result:

Theorem 10 (Helmholtz decomposition)
Let q ∈ [L2(Ω)]3. Then there exists a unique decomposition

q = ∇φ+ curl (ψ) (1.125)

with φ ∈ H1
0 and ψ ∈ Hcurl.

Proof:
Define φ by solving the Dirichlet problem, find φ ∈ H1

0 (Ω) with

(∇φ,∇v)L2(Ω) = (q,∇v)L2(Ω) ∀v ∈ H1
0 (Ω). (1.126)

Then q − ∇φ is divergence free and using the De Rham sequence property
(Theorem 2) the existence of a vector potential ψ with curl (ψ) = q − ∇φ
follows.

�

Remark: For u = curl (ψ) there follows

div (u) = div (curl (ψ)) = 0 (1.127)

from the De Rham sequence (Theorem 2).

Theorem 11
If σ = 0 on some part Ω0 of the domain Ω a unique solution u to (1.79) still
exists on the additional assumption that

div (u) = 0 (1.128)

Proof:
Assume again, that J(t, x) = f(x)g(t) and define

V =
{
v ∈ Hcurl

0 : div (v) = 0
}

(1.129)

and let u := g(t)u1 + u2 with u1 ∈ V the solution of∫
Ω

µ−1curl (u1) curl (v) dx =

∫
Ω

fv dx (1.130)

for all v ∈ V . Because of the Helmholtz decomposition of L2 (Theorem 10)
there exists a unique u1 ∈ V . Plugging g(t)u1 +u2 into equation (1.79) leads to∫

Ω

σ
∂

∂t
(g(t)u1 + u2)v + µ−1curl (g(t)u1 + u2) curl (v) dx =

∫
Ω

g(t)fv dx.

(1.131)

16



Using (1.130) gives∫
Ω

σ
∂u2

∂t
v + µ−1curl (u2) curl (v) dx = −

∫
Ω

σ
∂g(t)

∂t
u1v dx (1.132)

On Ω0, u2 solves

0 =

∫
Ω0

µ−1curl (u2) curl (v) dx (1.133)

From this we get on Ω0:

0 = curl (curl (u2)) = ∇div (u2)︸ ︷︷ ︸
=0

+∆u2, (1.134)

so u2 is only a harmonic extension on Ω0. Therefore solving u2 on the entire
domain is aquivalent to solving it on Ω \ Ω0, where σ > 0 and we get unique
solvability from Theorem 8 and Theorem 9.

�

Remark: If σ > 0 we get div (u) = 0 from the formulation, because let u∇ = ∇ϕ
be the gradient part of the Helmholtz decomposition of u, then equation (1.79)
for the gradient part leads to∫

Ω

σ
∂

∂t
u∇v dx+

∫
Ω

µ−1curl
(
u∇
)

curl (v) dx︸ ︷︷ ︸
=0

=

∫
Ω

Jv dx (1.135)

Because J and u0 is divergence free we get∫
Ω

σ
∂

∂t
u∇v dx = 0 (1.136)

for all v ∈ Hcurl
0 . And therefore

u∇ ≡ 0 (1.137)

and so

div (u) = 0. (1.138)

As a result, if σ = 0 we have to put the divergence free condition into the space
V to get uniqueness.

1.5 The Fourier Transformed Problem

In this section we transfer the time dependent problem using the fourier trans-
formation. Since this tranformation is a unitary map from L2(R) → L2(R) we
can use it in section 1.6 to construct our basis vectors for the approximation in
the RB method.
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Definition 12
Define the fourier transform of a function f ∈ L1(R) as

Ff(s) = f̂(s) :=
1√
2π

∫
R
f(x)e−ixsdx (1.139)

with (if existing) the fourier back transform

f(x) = F−1f̂(x) :=
1√
2π

∫
R
f̂(s)eixsdx (1.140)

Theorem 12 (Parseval’s Identity)
The fourier transform can be extended to a unitary map from L2(R)→ L2(R),
this extension will be called F as well. For all f ∈ L2(R) there holds

‖f‖L2(R) = ‖Ff‖L2(R) . (1.141)

The problem (1.75) transfers to

isMFu(s) +AFu(s) = hFg(s) (1.142)

with the solution

Fu(s) = (A+ isM)−1hFg(s). (1.143)

Because the L2 norms of the error and the fourier transform of the error are
identical, we need to approximate (A+ isM)−1 well on our subspace to have a
good time dependent solution.

1.6 Reduced Basis Method

The space discretization of problem (1.79) usually leads to a large system of or-
dinary differential equations in time. Standard time stepping methods solve this
system by solving linear equations for each step. Since solving these equations
is the most expensive part in terms of computing recources and time, many
numerical methods are based on reducing the number of equations one has to
solve. Reduced basis methods rely on finding a good subspace for the approx-
imation of the solution and project the system of ODEs onto this subspace.
Let

M
∂u(t)

∂t
+Au(t) = hg(t) (1.144)

be the (i.e. by finite element method in space) discretized problem, with A,M ∈
Rn×n, u(t), h ∈ Rn. We want to find a subspaces Vm and a basis of Vm, {bi}mi=1

such that the solution u(t) can be well approximated in Vm. In section 1.5
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we showed that approximating the solution u of (1.144) in the space L2(Ω) is
equivalent to approximating ũ

ũ(s) = (A+ isM)−1hg̃(s). (1.145)

The standard method for creating the subspace Vm is to use (1.145) and build
the basis from shifts si ∈ C

bi = (A+ siM)−1h. (1.146)

Using real shifts si has the advantage of solving real, symmetric systems of
equations in (1.146). In [5] it was shown that when using real shifts, the op-
timal error is at most twice the error of using shifts in C, so we get the same
convergence rate. In section 2 we discuss necessary optimality conditions and
error estimates for the shifts si, which we use in section 3 to construct nested
RB spaces.

1.7 Residuum

The reduced basis method allows us to compute the residuum for each time step
in an efficient way. Let G be the projection matrix from the discretized space
to the reduced basis subspace. The residuum of our problem is

r(t) = M
∂u(t)

∂t
+Au(t)− f(t). (1.147)

On the assumption that the error of the solution of the reduced problem is
neglectable (since we can compute it with high order) we can insert the RB-
solution u = GTus(t). us(t) is the solution of the reduced problem on the RB
subspace

∂us(t)

∂t
= M−1

s (fs(t)−Asus(t)). (1.148)

Inserting this into (1.147) leads to

r(t) = MGTM−1
s (fs(t)−Asus(t)) +AGTus(t)− f(t) (1.149)

using fs(t) = Gf(t) and As = GAGT we get

r(t) = (MGTM−1
s G− I)(f(t)−AGTus(t)) (1.150)

which can be computed for each time step. In the numerical examples in section
5 we show the applicability of this residuum, it converges with the same rate as
the error.

1.8 Time stepping - Runge Kutta Methods

Because the reduced problem is small, higher order time stepping methods are
feasible. Runge Kutta methods allow arbitrary order, stable methods and are
easy to apply.
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Definition 13 (Runge Kutta method and Butcher tableau)
A Runge Kutta method of stage number s is defined by

yn+1 = yn + h

s∑
i=1

biki (1.151)

ki = f

tn + cih, yn + h

s∑
j=1

aijkj

 , i = 1, . . . , s (1.152)

where the coefficients are given by the methods Butcher tableau

b1 a11 . . . a1s

...
...

. . .
...

bs as1 . . . ass
c1 . . . cs

(1.153)

The concept of stability is very important for our problem because we get rapidly
decaying solutions, having a time stepping method which doesn’t overshoot is
necessary.

Lemma 13 (Stability function)
The stability function of a numerical method is defined as the evolution function
R(z) of the method on the equation

y′(t) = λy(t) (1.154)

y(0) = 1 (1.155)

where R(hλ) is the solution after a numerical step of size h.
The stability function of a Runge Kutta method is

R(z) = 1 + zbT (I − za)−1e (1.156)

where e is the vector of ones.

Proof:
See [4], Lemma 6.30

�

Definition 14 (A-Stability)
A numerical method for the equation

u′(t)−Au(t) = f(t) (1.157)

is called A-stable if |R(z)| ≤ 1 for all h > 0 with z = hλ, λ ∈ σ(A)
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Definition 15 (L-Stability)
A numerical method is called L-stable if it is A-stable and R(z) → 0 for
h→∞.

The concept of A- and L- stability can be explained on the example of the
definition of the stability function

y′(t) = λy(t) (1.158)

y(0) = 1 (1.159)

with the solution y(t) = eλt. L-stable methods are usually required if the
eigenvalue λ < 0. Then the norm of the solution is exponentially decaying,
the A-stability claims, that the numerical solution is not growing and the L-
stability assumtion results in our solution to tend to 0 as t → ∞. In our case
the eigenvalues of A are all negative, so we want L-stability to prevent growing
numerical solutions. In our examples in section 5 we will use the third order
L-stable Gauss Radau RK-method for the solution of the reduced problem.

Theorem 14
The 3 stage Gauss Radau Runge-Kutta method with the butcher tableau

b a
c

=

16−
√

6
36

88−7·
√

6
360

296−169·
√

6
1800

−2+3·
√

6
225

16+
√

6
36

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1
9

16−
√

6
36

16+
√

6
36

1
9

4−
√

6
10

4+
√

6
10 1

(1.160)

is L-stable and of order 3.

Proof:
See [4]

�
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2 Optimality Conditions for the Shifts

We want to consider two approaches for construcing good shifts, first we follow
[6] to see when using the skeleton approximation, finding optimal shifts relates
to solving the third Zolotarev problem in the complex plane. The adaptive
algorithm of this paper uses this problem to get good snapshots. Secondly, in
section 2.3, we derive the equivalence of reduced eigenvalues and shifts as a
necessary optimality condition and use this condition to construct an adaptive
method for the next snapshots.
Consider the discretized parabolic problem

Au(t) +M
∂u(t)

∂t
= f(t) (2.1)

and let f(t) = h · g(t) with h ∈ Rn, g(t) ∈ L2(R+). In this section we will follow
the steps in [5] to reduce our subspace approximation problem to a rational
function approximation problem. The fourier transfered problem states

AFu(s) + isMFu(s) = hFg(s) (2.2)

with solution

Fu(s) = (A+ isM)−1hFg(s). (2.3)

Let um(t) be the reduced basis solution to equation (2.1),

Amum(t) +Mm
∂um(t)

∂t
= hmg(t) (2.4)

and V ∈ Rm×n the orthonormal projection matrix from Rn to the reduced basis
subspace, with Am = V AV T ,Mm = VMV T ∈ Rm×m and hm = V h ∈ Rm the
projections of the matrices and vectors onto the reduced basis subspace. Then

Fum(s) = (Am + isMm)−1hmFg(s) = V (A+ isM)−1V TV hFg(s). (2.5)

Let ΩT := Ω×R+ and ΩF := Ω×R the corresponding frequency domain, with
Parseval’s identity, the L2-error of the RB method is

‖u− um‖2L2(ΩT ) = ‖Fu−Fum‖2L2(ΩF ) = (2.6)∫
R

∥∥(A+ isM)−1hFg(s)− V (a+ isM)−1V TV hFg(s)
∥∥2

L2(Ω)
ds (2.7)
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2.1 Rational function approximation

Lemma 15
Let q(λ) :=

∏m
l=1(λ+sl), with sl being the shifts of the RB-space with projection

matrix V . Then for all polynomials p with degree less than m there holds

p(A)

q(A)
ϕ = V

p(a)

q(a)
V Tϕ. (2.8)

Proof:
Let

P := {v ∈ Rn : v =
p(A)

q(A)
ϕ with dim p ≤ m− 1} (2.9)

Q := {v ∈ Rn : v = V
p(a)

q(a)
V Tϕ with dim p ≤ m− 1} (2.10)

Note that dimP = dimQ = m. Let vi = (A+siM)−1ϕ, ṽi = V (a+siM)−1V Tϕ.
Since vi ∈ P and ṽi ∈ Q these vectors span the spaces P and Q. So to proof the
lemma we have to show that vi = ṽi. This is fulfilled since ṽi is the Galerkin
approximation of vi and vi ∈ V.

�

Theorem 16
The error of the approximation f̂ = V fV T of a function f onto the RB sub-
space fullfilles: For any p with degree less than m and ϕ ∈ L2(Ω) there holds

∥∥f(A)ϕ− V f(a)V Tϕ
∥∥
L2(Ω)

≤ 2 max
λ∈[λmin,λmax]

∣∣∣∣f(λ)− p(λ)

q(λ)

∣∣∣∣ ‖ϕ‖L2(Ω) . (2.11)

with q(λ) defined in Lemma 15 and [λmin, λmax] the spectral interval of A.

Proof:
Using Lemma 15, the triangle inequality and the eigenvalue decomposition of
the symmetric matrices A and a = V AV T there holds∥∥f(A)ϕ− V f(a)V Tϕ

∥∥
L2(Ω)

L 15
=

∥∥∥∥f(A)ϕ− p(A)

q(A)
ϕ+ V

p(a)

q(a)
V Tϕ− V f(a)V Tϕ

∥∥∥∥
L2(Ω)

(2.12)

≤
∥∥∥∥f(A)ϕ− p(A)

q(A)
ϕ

∥∥∥∥
L2(Ω)

+

∥∥∥∥V f(a)V Tϕ− V p(a)

q(a)
V Tϕ

∥∥∥∥
L2(Ω)

(2.13)

=

∥∥∥∥∥
n∑
i=1

(
f(λi)−

p(λi)

q(λi)

)
(zi, ϕ)

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
m∑
i=1

(
f(θi)−

p(θi)

q(θi)

)
(φi, ϕ)

∥∥∥∥∥
L2Ω)

(2.14)
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With λi and θi the respective eigenvalues and zi and φi the corresponding nor-
malized eigenvectors of M−1A and m−1a. Because a and m are the projection
matrix of A and M on a subspace there holds λmin ≤ θi ≤ λmax for all 1 ≤ i ≤ m
and∥∥f(A)ϕ− V f(a)V Tϕ

∥∥
L2(Ω)

≤ 2 max
λ∈[λmin,λmax]

∣∣∣∣f(λ)− p(λ)

q(λ)

∣∣∣∣ ‖ϕ‖L2(Ω) . (2.15)

�

Theorem 16 reduces the problem of finding the optimal shifts to a rational
approximation problem for the function 1

λ+is for λ in the spectrum of M−1A
and s ∈ supp(Fg).

Corollary 17
With q(λ) =

∏m
i=1(λ + si) and the subspace V chosen as in (6.1), the RKSM

error is bound by

‖u− um‖L2(ΩT ) ≤ (2.16)√∫
R

min
p∈Pm−1(R)

max
λ∈[λmin,λmax]

∣∣∣∣ 1

λ+ is
− p(λ)

q(λ)

∣∣∣∣2 |Fg(s)|2ds ‖ϕ‖L2(Ω) (2.17)

Proof:
Use theorem 16 with f(λ) = (λ+is)−1 in (2.7) and take the minimal polynomial.

�

2.2 Skeleton approximation

The skeleton approximation of functions in two variables was introduced in [11].
In the following section we follow the investigation of this approximation for the
function 1

x+y in [10]. It is defined as

fskel(λ, s) =
(

1
λ+s1

... 1
λ+sm

)
M̃−1


1

s+λ1

...
1

s+λm

 (2.18)

with

M̃ =


1

λ1+s1
. . . 1

λ1+sm
...

. . .
...

1
λm+s1

. . . 1
λm+sm

 (2.19)
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Lemma 18
The skeleton approximation is a decomposition of a seperable function of rank
m. For the seperable function

g(x, y) =

m∑
k=1

uk(x)vk(y) (2.20)

there holds

g(x, y) = gskel(x, y) (2.21)

Sketch of Proof:
This problem relates to the skeleton decomposition for matrices. Let A ∈ Rn×n
be of rank r < n, choose C ∈ Rn×r as r rows of A and R ∈ Rr×n as r columns
of A and let Â ∈ Rr×r be their intersection matrix. If Â is nonsingular then
A = CÂ−1R. The Lemma states the same for the continous setting. For a
rigorous proof see [8].

.

The more interesting property of the skeleton approximation is how good it is
if g is not seperable. Lemma 18 suggests that the best approximation in the
space of seperable functions of rank m can be achieved. The following theorem
and corollary show that the problem of finding good interpolation points leads
to the Zolotarev problem in the complex plane.

Theorem 19
For f(λ, s) = 1

λ+s the relative error is

(λ+ s)(f(λ, s)− fskel(λ, s)) =

m∏
i=1

λ− λi
λ+ si

s− si
s+ λi

=
r(λ)

r(−s)
(2.22)

with

r(x) =

m∏
i=1

x− λi
x+ si

. (2.23)

Proof:
Define f̃skel as

f̃skel(λ, s) :=
1

λ+ s

(
1 +

m∏
i=1

λ− λi
λ+ si

s− si
s+ λi

)
(2.24)

To proof the theorem we need to show that fskel = f̃skel. First note that fskel

and f̃skel interpolate 1
λ+s in (λi)

m
i=1 and (si)

m
i=1. So if we can show that f̃skel
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has seperable rank m, we can use Lemma 18 to proof the result.

f̃skel =
1∏m

i=1(λ+ si)(s+ λi)

 1

λ+ s

(
m∏
i=1

(λ+ si)(s+ λi) +

m∏
i=1

(λ− λi)(s− si)

)
︸ ︷︷ ︸

:=p


(2.25)

p is a rational function which vanishes in its singularity λ = −s and is therefore
a polynomial and p can be rewritten as

p(λ, s) =

m∑
i=1

m∑
j=1

pijλ
isj (2.26)

From that follows that fskel is of seperable rank m since

p(λ, s) =

m∑
i=1

λi
m∑
j=1

pijs
j (2.27)

and the result follows from Lemma 18.

�

Corollary 20
With r(x) = x−λi

x+si
the RKSM error on the subspace V is bounded by

‖u− um‖L2(ΩT ) ≤
1

λmin
‖g‖L2(R) ‖ϕ‖L2(Ω)

maxλ∈[λmin,λmax] |r(λ)|
mins∈iR |r(s)|

(2.28)

Proof:
With theorem 19 we get

‖u− um‖L2(ΩT ) ≤ max
λ∈[λmin,λmax]

|r(λ)|

√∫
R

∣∣∣∣ 1

λmin + is

∣∣∣∣2 ∣∣∣∣ Fg(s)

r(−is)

∣∣∣∣2 ds ‖ϕ‖L2(Ω) .

(2.29)

Taking the minimum on the denominators and then using Parseval’s identity
gives us the stated result.

�

Remark: Using the skeleton approximation may cost us the sharpness of the
bound, since from Corollary 17 it follows that the best approximation to

1

λ+ s
' fapprox(λ, s) =

f̃(λ, s)

q(λ)
(2.30)
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with f̃(·, s) ∈ Pm−1 for each s ∈ iR is optimal. However the skeleton ap-
proximation leads to an easy way to compute good snapshots for the RKSM
subspace.

Remark: Here we neglect a possible usage of the function g. If we want to
simulate just some specific frequencies, a better estimate would be i.e. to have
the minima in the denominator only on the interval of the desired frequencies.
So this estimate can be viewed as a general reduced basis subspace independent
of g.

2.3 L2 - Optimality Conditions

We want to use the results of Gugercin, Antoulas and Beattie in [9], where they
analyseH2 optimality conditions for the transfer functions of linear SISO (single
input single output) dynamical systems. Their necessary optimality condition
for the selection of the snapshots in the reduced basis model will be used later
in our adaptive algorithm. For this result we will need a basic complex analysis
result, the residuum theorem.

Definition 16 (Residuum)
Let U be a simply connected domain, µ a point and f : U \ {µ} → C holo-
morphic. The residuum of f in µ is

res[f, µ] :=
1

2πi

∮
∂U

f(z)dz (2.31)

Theorem 21 (Residuum Theorem)
Let U be a simply connected open subset of C, µ1, ..., µn points of U and f a
function which is holomorphic on U \ {µ1, ..., µn}. If γ is a positive orientated
simple closed curve with the points µi in it’s interior, then

1

2πi

∫
γ

f(z)dz =

n∑
k=1

res[f, µk] (2.32)

Lemma 22
Let µi be a simple pole of f , then

res[f, µi] = lim
s→µi

(s− µi)f(s) (2.33)

27



Definition 17 (Transfer Function)
Considering the frequency domain problem (1.142), the transfer function
G ∈ L2(C,Cn) =: H in the frequency domain is defined as

Fu(s) = G(s)Fg(s) (2.34)

G(is) = (A+ isM)−1h (2.35)

G Hilbert space with with scalar product

〈G,H〉H :=
1

2π

∫
R
G(is)M0H(is)ds (2.36)

where M is defined by ∫
Ω

ϕiϕj dx, (2.37)

with {ϕi}ni=1 the basis functions of our discrete space.
In [1], Antoulas optained an expression for ‖G‖H2

, that can be used for our
space H as well.

Lemma 23
Suppose that G(s) has singularities at λ1, ..., λn and H(s) at µ1, ..., µm, both
sets in the open right half plane. Then

〈G,H〉H =

m∑
k=1

res[G(−s)MH(s), µk] (2.38)

furthermore if µi is a simple pole then

[res[G(−s)MH(s), µi] = G(−µi)Mres[H(s), µi] (2.39)

Proof:
For R ∈ R+ define the right half circle

CR := {z ∈ C : z = iw,w ∈ [−R,R]} ∪
{
z ∈ C : z = Reiξ, ξ ∈

[
π

2
,

3π

2

]}
.

(2.40)

For R large enough, all µi are enclosed by CR. Using the Residue Theorem
(Theorem 21) we get

〈G,H〉H =
1

2π

∫
R
G(−is)MH(is)ds = (2.41)

= lim
R→∞

1

2πi

∫
CR

G(−s)MH(s)ds (2.42)

=

n∑
k=1

res[G(−s)MH(s), µk] (2.43)
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If µi is a simple pole of H(s) then µi is a simple pole of G(−s)MH(s) as well,
therefore

res[G(−s)MH(s), µi] = lim
s→µi

(s− µi)G(−s)MH(s) (2.44)

= G(−µi)M lim
s→µi

(s− µi)H(s) (2.45)

= G(−µi)Mres[H(s), µi]. (2.46)

�

Corollary 24
If G(s) has simple poles at λ1, ...λn ∈ R+ then

‖G‖H =

√√√√ n∑
k=1

G(−λk)Mres[G(s), λk] (2.47)

Lemma 25
Define the space M(µ), µ ∈ Rr of all transfer functions with simple poles
exactly at µ1, ..., µr ∈ R+. Gr ∈ M(µ) fulfilles necessary local optimality
conditions if

〈G−Gr, H〉H = 0 (2.48)

for all H ∈M(µ).

Proof:
This follows directly fromM(µ) beeing a Hilbert space, since M(µ) is a closed
subspace of H.

�

This lets us introduce our necessary optimality condition for the reduced order
transfer function

Theorem 26
A necessary local optimality condition for Gr beeing a reduced order transfer
function of rank r of G with simple poles at µ1, ..., µr is that

Gr(−µi) = G(−µi) (2.49)

for all i = 1, ..., r.

Proof:
For all H ∈M(µ), Gr fullfilles

0 = 〈G−Gr, H〉H =

r∑
i=1

(G(−µi)−Gr(−µi))res[H(s), µi]. (2.50)
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Since res[H(s), µi] is arbitrary the result follows.

�

Corollary 27
For the RB subspace to fullfill necessary optimality conditions, the shifts
{si}mi=1 must match the eigenvalues {λi}mi=1 of M−1

m Am.

Proof:
From definition 17 there follows, that the poles µ1, ..., µr of Gr are the negative
eigenvalues of the reduced system

µi = −λi (2.51)

Using theorem 26 we get that our transfer function has to fullfill

(A+ λiM)−1h = (Am + λiMm)−1h (2.52)

This is exactly the case if (A+ λiM)−1h ∈ V. So

si = λi (2.53)

�

Remark: Note that {µi}ri=1 are not initially known. One way to create the
subspace is to start with an arbitrary one, i.e. with geometrically distributed
shifts and iteratively compute new subspaces which interpolate G in the negative
poles of the old Gr. This technique was analysed in [9]. It has significant
disadvantages. First, for one order r the subspace needs to be computed multiple
times with expensive large sparse matrices operations and secondly, the lower
order subspaces are not included in higher order ones, so you cannot iteratively
extend the space dimension if the accuracy is not good enough. The second
disadvantage is shared by all optimal subspaces, therefore we want to consider
not optimal, but asymptotic optimal spaces which can be computed iteratively.

Remark: Theorem 26 states that λi = si is a necessary optimality condition.
Using this in Corollary 20 gives |r(s)| = 1 for s ∈ iR and there holds

‖u− um‖L2(ΩT ) ≤
1

λmin
‖g‖L2(R) ‖ϕ‖L2(Ω) max

λ∈[λmin,λmax]
|r(λ)|. (2.54)

So as an additional condition, one can minimize

max
λ∈[λmin,λmax]

|r(λ)| (2.55)
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3 Nested Reduced Subspaces

The main problem with optimal reduced order subspaces is that they are not
nested. Because the shifts of an n dimensional optimal subspace are usually
not included in the shifts of the optimal n + 1 dimensional space, a lot of
expensive big matrix operations have to be done for each dimension (even if we
can somehow get the optimal shifts without any expensive operations). Since
we do not know the needed dimension of our reduced order space we want to
extend it iteratively until the error is small enough. The two approaches we
want to compare are derived from the two results of section 2. First the new
shift sn+1 is obtained by solving

sj+1 = max
s∈[λmin,λmax]

∣∣∣∣ 1

rn(−s)

∣∣∣∣ with r(s) =

m∏
j=1

s− λj
s+ sj

(3.1)

proposed in [6], which is derived from the RKSM residual of Corollary 20, with
λj and sj the eigenvalues and shifts of the reduced m dimensional system. Sec-
ond, we use the necessary optimality condition of Theorem 26 to derive a method
based on the statistical Kolmogorov Smirnow test to match the distribution of
the shifts to the distribution of the eigenvalues.

3.1 The Kolmogorov-Smirnow Test Method

The Kolmogorov-Smirnow test is a statistical test on equal distribution of two
data sets. We want to minimize the statistic of a slightly modified version of
this test to fit the shifts to the eigenvalues.

Definition 18
The empirical distribution function of a sample {αi}mi=1 is defined as

Fα(x) =
1

m

m∑
i=1

1αi≤x, (3.2)

or in words, the number of sample values lower than x divided by the sample
size.
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Definition 19 (Two Sample Kolmogorov-Smirnow-Test)
The Kolmogorov Smirnow statistic Dαβ for two (not necessarily equal sized)
samples {αni=1} and {βmi=1} is

Dαβ = sup
x
|Fα(x)− Fβ(x)| (3.3)

A method for finding the next shift sm+1 is to find the minimum

min
sm+1

= Ds,λ (3.4)

with s1, ..., sm being the old shifts, s = {s1, ..., sm+1} and λ = {λ1, ...λm} the
eigenvalues of the reduced system.
This method has some problems. Firstly, it doesn’t give a unique result. Con-
sider the example s = {1, 3} and λ = {2, 4}. The minimum will be Dsλ = 1,
but this minimum is aquired for any s ∈ R, so we get no information about
the next shift for that setup. The second problem is that the eigenvalue of the
next step can differ from the eigenvalues of the previous one. Let us consider
some eigenvalues which are close together, λ = {101, 102, 103} which we got
from using the same shifts s = {101, 102, 103}. In the next step the eigenvalues
change slightly and a new small eigenvalue is added, λ = {1, 98, 99, 100}. Then
the small eigenvalue should be more important, but the supremum is smallest at
Ds,λ = 3 for s4 ∈ [100,∞). Another problem arises, if there is a concentration
of eigenvalues at a point x1 and a single exposed value at x2. If the number
of eigenvalues at x1 is larger than the number of shifts at x1 plus one, the new
shift will be at x1. In Appendix 6.3 we explain that it is possible that other
eigenvalues at x2 are missed, because having big shifts will lead to too many
big eigenvalues and vice versa.
This is why we will consider the L2 norm of the difference of the empirical dis-
tribution functions, instead of the C∞ norm. This gives exposed eigenvalues
more weight and makes the choice for the new shift (almost) unique.

Definition 20
The L2-KS statistic Eαβ for two (not necessary equally sized) samples {αni=1}
and {βmi=1} is

Eαβ =

√∫
Ω

|Fα(x)− Fβ(x)|2 dx (3.5)

Definition 21 (Modified KS-Method)
Our modified KS-method is:
Find sn+1 ∈ R+ minimizer of

min
sn+1∈R+

Es∪{sn+1},λ. (3.6)
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4 Additional Stabilization Techniques

In this chapter we want to discuss some additional techniques which are useful
for solving the parabolic electromagnetic equation

∂σu

∂t
+ curl

(
µ−1curl (u)

)
= f (4.1)

4.1 Avoiding numerical instabilities by transfor-
mation of the source term

Let the source term of J be in the non conducting part of the domain. Define
the matrices A and M as in section 1.3:

Aij :=

∫
Ω

µ−1curl (ϕi) curl (ϕj) dx (4.2)

Mij :=

∫
Ω

σϕiϕj dx (4.3)

with µ > 0, σ ≥ 0. The right hand side h is defined as

hi :=

∫
Ω

Jϕi dx (4.4)

For stability of the parabolic problem, h must be bounded in the M−1-norm.
This is only true if J has support in the conducting (σ > 0) regions of our
domain only. To avoid the instability we transform the problem.
Let u(t) = g(t) · u0(x) + u1(t,x) with u0 being the solution of∫

Ω

µ−1curl (u0) curl (v) +
σ

τ
u0v dx =

∫
Ω

hv dx (4.5)

with τ being a characteristic time length. The mass term is introduced to obtain
a divergence free u0. The equation for u1 is∫

Ω

σ
∂u0

∂t
v + σ

∂u1

∂t
v dx+

∫
Ω

µ−1curl (u0) curl (v) + µ−1curl (u1) curl (v) dx

(4.6)

=

∫
Ω

f(t)v dx

(4.7)
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Using equation (4.5) the red terms cancel by adding the green term and the new
equation for u1 is∫

Ω

σ
∂u1

∂t
v dx+

∫
Ω

µ−1curl (u1) curl (v) dx =

∫
Ω

(−g′(t)+ 1

τ
g(t))σu0v dx. (4.8)

Now the divergence free source term only has support in the conducting do-
mains. In table 4.1 the eigenvalues of a 10 and a 30 dimensional reduced sub-
space are compared. Note that the condition number of the small problem
gets huge, which makes the problem numerically instable. For the transformed
problem the condition number stays about the same.

20 dim no trans 30 dim no trans 20 dim with trans 30 dim with trans
1.95947289e-01 2.10047073e+01 1.95695396e-01 1.95644509e-01
7.82974279e-01 2.73784021e+02 3.89371266e-01 2.38667095e-01
1.93787152e+00 5.30874470e+02 7.80847242e-01 4.67867657e-01
4.62113296e+00 8.36620953e+02 1.78840639e+00 7.84457914e-01
1.02480189e+01 9.73680483e+02 3.22387721e+00 1.78427235e+00
2.24998426e+01 1.94997973e+03 5.79450818e+00 2.04529485e+00
5.01608197e+01 3.14153248e+03 1.09141669e+01 3.21436691e+00
8.69875120e+01 4.99464561e+03 2.04747803e+01 5.56740766e+00
2.11404023e+02 8.70629788e+03 4.02332591e+01 9.99115652e+00
4.47746366e+02 1.72952052e+04 7.86688876e+01 1.72027581e+01
8.91462639e+02 3.31938884e+04 1.42849203e+02 2.53247391e+01
1.78805940e+03 5.05666805e+04 2.77333361e+02 4.12533297e+01
3.44004485e+03 5.59727432e+04 5.46430523e+02 7.60508859e+01
6.47510040e+03 6.10054565e+04 1.06125099e+03 9.83109436e+01
1.16620345e+04 6.55373127e+04 2.14542666e+03 1.67811541e+02
2.71980266e+04 9.47971734e+04 4.40168454e+03 2.95340558e+02
5.00148351e+04 1.48644118e+05 9.06320070e+03 5.08341879e+02
6.98020688e+04 1.64982606e+05 2.57185639e+04 7.47692466e+02
1.90010001e+05 4.65132124e+05 5.66114319e+04 1.21401175e+03
3.80993390e+12 3.16121792e+05 1.05612187e+05 1.69815635e+03

1.25410044e+06 2.20313305e+03
2.08922750e+06 3.58597804e+03
3.17310051e+06 5.18029895e+03
5.73427778e+06 8.67824545e+03
1.14229067e+07 1.68474955e+04
2.36064745e+07 3.13138055e+04
5.75226236e+07 5.92777995e+04
1.12919589e+08 8.60327481e+04
2.02206711e+08 1.99720601e+05
1.40882134e+21 1.75594147e+06

Table 4.1: Eigenvalues of 10-dim and 30-dim reduced basis subspace without
and with transformation of the source term.

4.2 Orthogonalization to Gradients

As mentioned in section 4.1 it is important to have a divergence free source
term. When approximating prescribed (divergence free) currents on the finite
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element space, the geometry can cause some numerical errors and lead to a non
divergence free term. Divergence free is equivalent to L2-orthogonal to gradients
as can be seen by applying Gauss divergence theorem. Because the high order
basis functions on our finite element contain by construction the gradients of
the H1 functions (see section 1.2), which can be removed from the finite element
space, only an orthogonalization to the lowest order Nedelec basis functions has
to be done. We will need the following lemma to construct the orthogonalization
scheme.

Lemma 28
Let λi be the vertex basis functions (hat functions) and ϕij the Nedelec edge
basis functions. Let N (i) be the vertex patch of i, so all neighboring vertices
of vertex i. There holds

∇λi =
∑

j∈N (i)

ϕij . (4.9)

Proof:
For all i there holds ∑

j∈N (i)

ϕij =
∑

j∈N (i)

(∇λiλj −∇λjλi) = (4.10)

∇λi

 ∑
j∈N (i)

λj


︸ ︷︷ ︸

=1−λi

−

 ∑
j∈N (i)

∇λj


︸ ︷︷ ︸
=∇(1−λi)=−∇λi

λi = (4.11)

∇λi(1− λi) +∇λiλi = ∇λi (4.12)

�

Let G be the mapping of Nedelec basis functions to the corresponding vertex
basis functions and u a basis function of our reduced order subspace of Hcurl.
We want to find ϕ ∈ H1

0 (Ω) with ∇ϕ · ∇w = u · ∇w for all w ∈ H1
0 (Ω). Then∫

Ω

u · ∇wkdx = (GMu)k (4.13)

with M beeing the mass matrix on Ω. So the equation∫
Ω

∇ϕ · ∇wdx =

∫
Ω

u · ∇wdx (4.14)

for all w ∈ H1
0 (Ω) is

ALϕ = GMu (4.15)

with AL beeing the laplacian matrix on Ω. ∇ϕ transformed to Hcurl basis
functions is GTϕ. Therefore the orthogonalized ũ is

ũ = u−GTA−1
L GMu. (4.16)
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We will use the orthogonalized basis functions for our subspace to eliminate zero
eigenvalues in the reduced order curl-curl matrix.

Remark: For a right hand side the orthogonalization would be

h̃ = h−MGTA−1
L Gh. (4.17)

Instead of orthogonalizing the basis functions one could also orthogonalize the
numerically disturbed right hand side.
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5 Numerical Examples

5.1 Heat Equation

The first example is a basis reduction for a dynamic heat equation in 2 dimen-
sions. There is a small region with high conductivity and the heat source inside
the bigger enclosing region.
We want to solve

∂u

∂t
− α∆u = f , in Ω (5.1)

u = 0, on ∂Ω (5.2)

on Ω = [−1, 1]2, with f = sin(50 · 2πt) in [0, 0.5]2 and 0 elsewhere, and α = 100
on [0, 0.5]2 and 1 elsewhere. Figure 5.1 contains the L2 norm of the error and
the relative error of the n-dimensional subspace reduced basis solution against
a solution on the big FEM space. In the left bottom the eigenvalue distribution
and the shift distribution are plotted on a logarithmic scale for the two methods.
One can see that the distribution of the eigenvalues matches the distribution of
the shifts better with the KS-method than with the method using the minimizing
function (3.1), which is called “Druskin” in the plots. The error convergence is
slightly better when using the KS-method as well. In the right bottom we see
that the residuum derived in section 1.7 is a good error indicator. The “true”
solution on the big FEM space was computed with an relative error of about
10−6, the KS-method reaches this error with a subspace dimension of 30, method
(3.1) with a space dimension of 35. A hierarchical geometrical distribution on
the spectral range, independent of the distrubution of the eigenvalues reaches the
desired accuracy for a 42 dimensional subspace. The residuum improves further
with increasing subspace dimension, so further convergence can be expected.
The most expensive part in the computation of this problem is the solution
of linear systems. To obtain this accuracy with an implicit euler method we
had to solve the problem with a time step size of 2 · 10−8, meaning that at a
frequency of 50 hertz the simulation of one wavelength needs the solution of
one million linear systems. With our KS-RB-method we can compute arbitrary
time intervals with only 30 solutions of linear problems of the same size.
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Figure 5.1: KS-method vs minimization of (3.1)(labeled Druskin) for the 2D
heat equation example
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5.2 Electromagnetic Equation

The main problem of this thesis is the parabolic electromagnetic equation. As
a test example we want to calculate the electric fluxes arising in a conducting
plate when exposed to a dynamic magnetic field. In figure 5.2 the geometry is
shown. A magnet with changing magnetic field is put above a conducting plate.
The equations for this problem are

σ
∂u

∂t
+ curl

(
µ−1curl (u)

)
= f , in Ω (5.3)

trτu = 0, on ∂Ω (5.4)

With µ = µ0µr, µ0 = 1.257 · 10−6, µr = 2000 in the plate, else µr = 1.

σ = 2 ·106 in the plate, else 10−6 (regularization factor). f =

 0
0

− sin(50 · 2πt)


in the magnet, else

0
0
0

. Figure 5.3 displays the results. The better fitting of

the shifts to the eigenvalues of the KS-method is again represented in a faster
convergence. Our reference solution on the big space is of relative accuracy of
10−4. The KS-method obtains this accuracy at a subspace dimension of 18,
method (3.1) at a dimension of 22. For this accuracy we needed a step size of
10−7 with an implicit euler method on the full space , so at a frequency of 50
hertz, 200.000 solutions to large linear problems for one wavelength. With the
RB method we could reduce that number to 18 independent of the time interval.
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Figure 5.2: Geometry for problem (5.3)

Figure 5.3: KS-method vs minimization of (3.1)(labeled Druskin) for the 3D
electromagnetic example
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6 Appendix

6.1 Construction of orthonormal, divergence free
basis

Let Vm be the reduced basis subspace

Vm = span {((A+ s1M)−1h), ..., ((A+ smM)−1h)} (6.1)

An orthonormal basis (with respect to M) V of Vm can be constructed with the
following algorithm, the orthogonalization to gradients is explained in section
4.2.

Algorithm 1 Reduced subspace basis

for i = 0 to i < m do
vi = (A+ siM)−1h
vi −= GTA−1

L GMvi {orthogonalization to gradients}
for j = 0 to j < i do
vi −= (vTj Mvi)vj {Gram Schmidt orthogonalization}

end for
vi ∗= 1/(vTi Mvi) {normalization}

end for

V =

v
T
1
...
vTm



6.2 Geometrical Distribution of Reduced Eigen-
values

Consider the time dependent initial problem

M
∂u

∂t
+Au = 0 in Ω× (0, T ) (6.2)

u(0) = u0 (6.3)

u = 0 on ∂Ω× [0, T ). (6.4)
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Let {λi}ni=1 the eigenvalues and {vi}ni=1 the eigenvectors of M−1A. The solution
to this problem is

u(t) =

n∑
i=1

e−λit(u0,vi)M (6.5)

If (u0,vi)M is not neglectable on all parts of the spectrum [λminλmax] then the

optimal reduced eigenvalues would be geometrically distributed, such that {eλ̃i}
is uniformly distributed. This is true for the problem with a source term as well.

6.3 Shift - Eigenvalue Correlation

Our reduced subspace basis {bi} is defined by

bi = (A+ siM)−1h =

n∑
i=1

1

λi + si
(f, ei)ei (6.6)

with λi and ei the eigenvalues and eigenvectors of A with respect to M . If si is
small then for λ1 small and λ2 large there holds

1

λ1 + si
≈ 1

2λ1
(6.7)

1

λ2 + si
≈ 1

λ2
. (6.8)

Because 1
2λ1
� 1

λ2
mainly the small eigenvectors are put into the reduced sys-

tem. For si large there holds

1

λ1 + si
≈ 1

si
(6.9)

1

λ2 + si
≈ 1

2si
. (6.10)

Now 1
si
≈ 1

2si
, so the small and the large eigenvectors are both put into the

reduced system with the same weight, so a uniform distribution of reduced
eigenvalues can be expected if only large shifts are used. In section 6.2 we
discuss why a geometric distribution is optimal for arbitrary right hand side, so
there are too many large eigenvectors in the reduced system then. As a result,
using only small shifts leads to a reduced system with too many small shifts and
vice versa.
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