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Abstract

To investigate quantum ensembles between pre- and postselection the so-called

weak value formalism was introduced by Aharonov, Albert, and Vaidman. Orig-

inally they constructed it in a non-relativistic quantum framework and hence it

should be first and foremost applicable to massive quantum systems. However,

due to the small coherence volume of massive particle beams, an experimental

determination of a simple massive-particle system’s weak value turned out to

be difficult. Here, measurement protocols are presented which can be used to

determine weak values of two-level quantum systems with arbitrary interaction

strenghts. It is implemented in several neutron optical experiments; the first

successful determination of a massive particle’s weak value is performed. In

particluar weak values of Pauli operators of the neutron’s spin and path de-

gree of freedom, as well as those of projection operators of the path degree of

freedom are determined experimentally. The newly established experimental

method is used to investigate quantum mechanics at a fundamental level: Neu-

tron ensemlbes with a purely imaginary spin weak value are created to test the

so called quantum pigeon hole principle. The path weak values are used to per-

form a so-called “direct” state tomography. Finally weak measurements are used

to experimentally investigate the quantum Cheshire cat phenomenon. Neutron

interferometry has been established as a powerful experimental method to in-

vestigate the foundations of quantum mechanics. In combination with the novel

weak value measurement schemes presented in this thesis, it offers an experi-

mental window into previously inaccessible parts of massive quantum systems.

We expect applications in future experiments studying quantum dynamics.





Zusammenfassung

Um Quantensysteme im Zeitraum zwischen ihrer Präparation (preselection) und

einer projektiven Messung (postselection) zu untersuchen, entwickelten Aharo-

nov, Albert und Vaidman den sogenannten “Weak Value Formalismus”. Die-

ser wurde ursprünglich in einem nicht relativistischen Kontext eingeführt und

sollte deshalb für massebehaftete Quantensysteme verwendet werden. Da das

Kohärenzvolumen von Strahlen, welche aus massiven Teilchen bestehen, jedoch

sehr klein ist, stellte sich die Messung eines Weak Values in einem massebehafte-

ten Quantensystem als äußerst schwierig heraus. In dieser Dissertation werden

Messprotokolle präsentiert, welche dazu verwendet werden können Weak Va-

lues von Zweizustandssystemen mittels beliebigen Mess stärken zu bestimmen.

Diese werden folglich in neutronenoptischen Experimenten zur Anwendung ge-

bracht, wodurch die erste erfolgreiche Messung eines Weak Values eines mas-

siven Teilchens gelingt. Insbesondere werden Weak Values von Pauli Spin und

Pfad Operatoren, sowie die von Pfad-Projektionsoperatoren gemessen. Die neue

experimentelle Methode erlaubt es die Grundlagen der Quantenmechanik zu un-

tersuchen: Neutronen Ensembles mit rein imaginären Spin Weak Values werden

erzeugt um das “Quanten Taubenschlagprinzip” zu testen. Die Weak Values der

Pfad Operatoren werden dazu verwendet um eine sogenannte direkte Quanten-

zustandstomographie durchzuführen. Außerdem wird das Phänomen der “Quan-

tengrinsekatze” experimentell untersucht. Neutroneninterferomterie gilt als ein

nützliches Werkzeug zur Untersuchung der Grundlagen der Quantenmechanik.

Gemeinsam mit der neuen experimentellen Technik, welche in dieser Dissertation

erarbeitet wird, werden neue Wege zur Analyse von massebehafteten Quanten-

systemen eröffnet. Wir erwarten eine Anwendung in zukünftigen Experimenten,

welche die Dynamik von Quantensystemen studieren.
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CHAPTER 1

Introduction

Here we introduce the topics of neutron interferometry and weak measurements.

The most important points of both subjects are discussed. It is shown how neutron

interferometry is used to demonstrate purely quantum mechanical effects and how

weak measurements and weak values appear in quantum mechanics.

1.1 Neutron interferometry

In introductory quantum mechanical courses, it is often taught that the phase of a

wave function Ψ is not accessible. In general this is not correct. While an absolute

phase is indeed inaccessible, relative phases between two wave functions Ψ1 and Ψ2

can be detected. The most suitable apparatus to investigate such relative phases are

interferometers. If one is interested in the behavior of matter waves, neutron interfer-

ometers are ideal experimental tools. Neutron interferometry has many similarities

to classical interferometry, e.g. using silicon perfect crystals Mach-Zehnder type

interferometers can be constructed for neutrons [Rauch et al., 1974]. A schematic

view of such an interferometer is depicted in Fig. 1.1.

In a Mach-Zehnder type interferometer, a monochromatic beam hits a 50:50 beam

splitter and the beam is divided coherently by amplitude division. The beams get

reflected towards a final 50:50 beam splitter, i.e. the analyzer, where they re re-

combined to interfere. The interferometer has two exits, one in forward and one

in reflected direction. The intensity gets divided into two exits, depending on the

relative phase between the beams in two paths. The phase difference can be tuned

1
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Figure 1.1: Schematic drawing of a Mach-Zehnder type interferometer: The interfer-
ometer consists of a beamsplitter (BS) that divides the incoming beam by amplitude
division. The sub beams are reflected by the two mirrors (M) and recombined at the
analyzer (A). The interferometer has two exits, one in forward and one in reflected di-
rection. The phase shifter (PS) makes it possible to introduce a relative phase between
the two beam paths.

by a difference in the optical path lengths, by introducing material with a different

refraction index in one of the beams.

We now give a short general quantum mechanical introduction to Mach-Zehnder

type interferometers. Subsequently the so called triple Laue (LLL) perfect crystal

neutron interferometer’s function is explained.

A wave function of the incident beam of the interferometer is given by

|Ψi〉 = Ai eiΦ, (1.1)

which describes a plane wave with amplitude Ai and phase φ. The wave function of

the recombined beam after the interferometer’s final plate is then

|Ψf〉 = |ΨI〉 ± |ΨII〉 (1.2)

with |ΨI〉 and |ΨII〉 being the contributions from path I and II. The plus sign is

valid for the forward direction and the minus sign for the reflected one. |ΨI〉 and

|ΨII〉 are of the form

|ΨI〉 = AI eiΦI , (1.3a)

|ΨII〉 = AII eiΦII . (1.3b)
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For simplicity’s sake we assume that the amplitudes are of the form

AI = AII =
1

2
Ai. (1.4)

The intensity exiting the interferometer is then

I± = |〈Ψf |Ψf〉|2 =
Ii

2
[1± cos (χ)] , (1.5)

where Ii is the incident intensity. The relative phase χ between the two beam paths

is defined as χ = ΦII − ΦI . Due to the conservation of particles, the intensities of

the two exiting beams must sum to unity, i.e. I+ + I− = 1. One can now define the

fringe contrast C as

C =
Imax − Imin

Imax + Imin

. (1.6)

The contrast of an ideal interferometer is 1 (or 100%). The most general form for

the intensity oscillation can then be expressed as

I = Ī [1 + C cos (χ+ ω)] (1.7)

with the average intensity Ī and the interferometer’s intrinsic phase ω [Sears, 1989a].

1.1.1 Perfect crystal neutron interferometer

As its name already suggest, a perfect crystal neutron interferometer is cut from

a silicon perfect crystal rod and has a monolithic structure. One typical neutron

interferometer design, called triple Laue, is depicted in Fig. 1.2. The design shows a

top view of a symmetric neutron interferometer with three plates, which are parallel

and equally separated. The interferometer is cut in a way that the crystal’s net

planes (220) are perpendicular to the plate’s surfaces. Since the interferometer is

cut from a single crystal, the parallel alignment of the Bragg planes in the three

plates is guaranteed perfectly. The cutting of the crystal has to be performed with

high precision. To ensure a good performance of the neutron interferometer, the

thickness of all three plates has to be the same within an accuracy of 1 µm. Also

the distance between the first and the second as well as the second and the third

plate hast to be equal within the same tolerance. Figure 1.3 shows a photograph of

the so called Kaiser interferometer, which has the triple Laue configuration.
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Figure 1.2: Schematic drawing of a neutron interferometer in triple Laue configuration:
The beam hits the neutron interferometer under the angle θB then it is split coherently
by amplitude division upon the first beam splitter plate (BS). In the Laue configuration
the silicon’s crystal planes are perpendicular to the surface of the plane, as is depicted
by the white stripes of the first plate. All three plates are 50:50 beam splitters. Because
of that two sub beams leave the middle plate (M). Upon the third analyzer plate (A)
the beams are recombined. A slab can be inserted in both beam paths to introduce a
phase shift.

Figure 1.3: Picture of the Kaiser interferometer: The Kaiser interferometer is a sym-
metric three plate perfect crystal neutron interferometer, which realizes the triple Laue
(LLL) configuration.
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1.2 Experimental investigation of quantum me-

chanics using neutron interferometry

From an experimental point of view quantum mechanics is one of the best-verified

theories of physics. Its predictions have been tested numerous times with many

different quantum systems and so far all predictions are confirmed to be correct

[Folger, 2009]. Until today novel theoretical predictions are made based on the

framework of quantum mechanics and continuos tests of theses predictions are ab-

solutely essential for their experimental verification.

As we have seen from the previous section neutron interferometry in combination

with spin polarimetry is a perfect tool to perform such tests (for a detailed review

see e.g. [Hasegawa and Rauch, 2011, Klepp et al., 2014]). It offers access to two

purely quantum mechanical systems under almost ideal circumstances. They can

be utilized in the investigations of the foundations of quantum mechanics. Both

degrees of freedom, the neutron interferometer’s paths and the neutron spin, can be

controlled coherently with high precision using various neutron optical components,

which are explained in detail in chapter 2. Also, as compared to optical experiments

with visible light, the approach using matter waves has the advantage that there is

no overlap with a classical theory. Here we want to give a brief description of several

historically important neutron interferometric experiments.

One of the first tests of the foundations of quantum mechanics using neutron inter-

ferometry dealt with the 4π spinor symmetry of spin-1/2 particles. The Schrödinger

equation of a fermion with mass m and a wave function Ψ (~r, t) which is subject to

an externally applied magnetic field is given by

ĤΨ (~r, t) =

[
− ~

2m
∇2 − µσ̂ · B̂ (~r, t)

]
Ψ (~r, t) = i~

∂

∂t
Ψ (~r, t) , (1.8)

where µ is the magnetic moment of the particle. The solution of this differential

equation is given by

Ψ (~r, t) = c+ (~r, t) cos

(
θ

2

)
|Ψz; +〉+ c− (~r, t) sin

(
θ

2

)
eiφ |Ψz;−〉 (1.9)

with polar and azimuthal angle θ and φ, as well as the spin base vectors |Ψz;±〉.
c± (~r, t) are space time dependent coefficients of the wave function. The wave func-

tion given by Eq. (1.9) is obviously symmetric under a 4π rotation, since a 2π

rotation would only yield a phase factor of minus ones. The first experimental

investigation of the 4π spinor symmetry was performed using a neutron interferom-
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eter. This was possible because of the macroscopic beam separation which occurs

in the interferometer. While one beam served as a reference, the spin of the other

beam was rotated by the angle α so that the beams accumulated a relative phase,

which is then observable by the shift in the interference fringes. The experiment

fully confirmed the quantum mechanical predictions [Rauch et al., 1975].

In 1975 Colella, Overhauser and Werner (COW) used a neutron interferometer setup

to investigate the role of gravity in quantum mechanics [Colella et al., 1975]. Today

the experiment is often referred to after its creators as the COW experiment.

Looking at the classical equation of motion of a falling body with mass m within

the gravitational potential V̂

m
d2~x

dt2
= −m∇V̂ = −mg~z (1.10)

one immediately sees that m does not play a role since it drops out on both sides of

the equation. In quantum mechanics, one has to use Schrödingers equation in order

to describe a particle under the influence of gravity:

[
− ~2

2m
∆ +mV̂

]
ψ = i~

∂ψ

∂t
. (1.11)

Now the mass term does not cancel out any more. It remains in combination with

~. It is therefore necessary to find a quantum mechanical situation in which grav-

ity plays an important role. This is very difficult, because of the weakness of the

gravitational force. However exactly such a situation can be created using neutron

interferometry seen from the schematic drawing in Fig. 1.4. A monochromatic neu-

Figure 1.4: Setup of the COW experiment: A monochromatic neutron beam enters
the interferometer along the axis going trough A and C. If the interferometer is rotate
around AC the neutrons travelling along the upper beam path pick up a relative phase
Φ compared to the ones travelling along the lower beam path due to the difference in
gravitational potential ∆V̂ .



1.1.2. Experimental investigation of quantum mechanics using neutron interferometry 7

tron beam enters the interferometer along the axis through A and C. If the points

A, B, C and D all lie within the same horizontal plane the gravitational potential

can be set to zero, i.e. V̂ = 0. By rotating the interferometer around AC by the

angle α, it is possible to introduce a height difference between the upper and the

lower beam path. Then there are different gravitational potentials in the respective

paths, leading to a relative phase between them. If the distance between A and

C is l1 and the distance between A and B is l2, the difference in the gravitational

potential between the upper and the lower beam path is given by

∆V̂ = V̂BD − V̂AC = mngl2 sin (α) , (1.12)

where mn is the neutron’s mass, g is the local gravitational acceleration and α is the

angle by which the interferometer is rotated. The relative phase change accumulated

by the neutrons travelling along ABD, as compared to those travelling along ACD,

is therefore

exp

(−imngl2 sin (α) τ

~

)
, (1.13)

where τ is the time spent for the neutron to go from B to D. Using the neutron’s

De-Broglie wave length given by λ = h/p the expected relative phase shift is

Φ =
m2
ngl1l2λ sin (α)

2π~2
. (1.14)

The wave length of the neutrons used in the COW experiment, was λ = 1.445 Å.

If the area l1l2 enclosed by the interferometer’s paths is l1l2 = 10 cm2, we obtain

56.64 rad for the factor

q =
m2
ngl1l2λ

2π~2
. (1.15)

This means that one should see 56.6/2π ≈ 9 maxima and minima if the interfer-

ometer is rotated by π/2. Hence the magnitude of the effect is just right to be

observed by a neutron interferometer experiment. The experiment showed a slight

deviation from the theoretical predictions. COW ascribed the difference between

the theoretical and the experimental value to the bending of the interferometer’s

base during the rotation. A more recent experiment confirmed a deviation between

quantum mechanical predictions and experimentally observed results, which cannot

be attributed to experimental imperfections, by 1% [Littrell et al., 1997].

Another notable experiment investing the foundations of quantum mechanics is the



8 Chapter 1. Introduction

direct observation of fermion spin superposition by neutron interferometry

[Summhammer et al., 1983]. Quantum mechanics predicts that a superposition of

two spin states aligned along the positive and negative z-axis, i.e. a state constructed

by the linear superposition of |Ψz;±〉, is not a classical mixture, but a new pure spin

state. This behavior is investigated using neutron interferometry by preparing an

incident beam so that its spin state is given by |Sz; +〉, i.e. it is aligned along the

positive z-axis. After the beam enters the interferometer and is split at the first

plate, the spin is flipped in one of the beam paths. After the beams recombine at

the third plate the spin state is given by

|S〉 =
1√
2

(
|Sz; +〉+ eiχ |Sz;−〉

)
, (1.16)

where χ is the phase caused by the phase shifter in the interferometer. The po-

larization vector of this spin state lies in the xy-plane and if a spin state lying in

the same plane is analyzed, a sinusoidal intensity modulation is observed. In the

actual experiment only the beam in forward direction was spin analyzed and in-

deed interference fringes were observed. In contrast to that the beam in reflected

direction, which was not spin analyzed, showing no intensity modulation due to the

orthogonality of the spin states inside the interferometer.

Yet another experiment demonstrating the non intuitive nature of quantum me-

chanics deals with absorbers present in the neutron interferometer: If neutrons are

absorbed along either one of the two beam paths inside the interferometer, the am-

plitude of the observed interference fringes reduces. In the limiting case of total

absorption in one beam path the interference vanishes and no intensity modulation

can be observed at all. Interestingly enough, quantum mechanics predicts that there

is a difference between stochastic and deterministic absorption. The former refers to

the case in which it cannot be predicted if a neutron gets absorbed or not, while the

latter one denotes the case in which one can predict with certainty if an absorption

will happen or not. If a stochastic absorber is put inside the interferometer quantum

mechanics predicts that the contrast of the observed interference fringes scales with
√
TSTO, where T is the transmissivity of the absorber. For a deterministic absorber

the contrast is expected to scale with TDET, i.e. one finds

ISTO ∝ |〈Ψ|Ψ〉|2
[
1 + 1 + TSTO + 2

√
TSTO cos (χ)

]
, (1.17a)

IDET ∝ |〈Ψ|Ψ〉|2 [1 + TDET + 2TDET cos (χ)] . (1.17b)
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In the actual experiment absorbing foils were used to test the stochastic case. Inside

the foil, the neutron is absorbed with a certain probability. To test the deterministic

case a small chopper was put inside the interferometer, which alternatingly blocked

the beam and opened it again in time. By tuning the block/open ratio of the

chopper different transmissivities could be realized. Indeed, for the same transmis-

sivity different contrasts were observed, for stochastic and deterministic absorption

[Summhammer et al., 1987].

In the four decades since its advent, neutron interferometry has put quantum me-

chanics to the test numerous times. In particular experiments have been performed

to demonstrate geometric phases [Wagh et al., 1997, Hasegawa et al., 2001] and to

show confinement induced phases [Rauch et al., 2002].

Furthermore entanglement between different degrees of freedom has been demon-

strated successfully [Hasegawa et al., 2010, Sponar et al., 2010, Erdösi et al., 2013].

This technique has been used to investigate the contextual nature of quantum me-

chanics [Hasegawa et al., 2006, Bartosik et al., 2009] as well as to demonstrate a

violation of a Bell like inequality [Hasegawa et al., 2003].

A very recent neutron interferometric experiment successfully demonstrated the co-

herent control of neutron orbital angular momentum degree of freedom

[Clark et al., 2015], which opens up the possibilities for novel experiments utiliz-

ing the entanglement between different degrees of freedom.

1.3 Weak measurements and weak values

Observables of a quantum mechanical system are described by Hermitian operators.

The eigenvalues of such operators are always real. The eigenvalue spectrum is dis-

crete and non degenerate in the simplest case. Let Â be the operator corresponding

to some physical quantity a, like energy, momentum or spin. The eigenvectors of Â

given by {|a′〉} span a basis of the Hilbert space of Â and any state can be expressed

in that basis by a linear combination of the base vectors:

|Ψ〉 =
∑

a′

ca′ |a′〉 , (1.18)

with ca′ = 〈a′ |Ψ〉 being the probability amplitudes for obtaining one of the possible

measurement outcomes a′.

According to von Neumann [von Neumann, 1932] the measurement apparatus itself

must also be described by a state in a Hilbert space. Let the base vectors of the
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measurement apparatus be {|µ〉}. The investigated system and the measurement

apparatus form a joint system |Ψ〉 |µ〉 together. From an initial product state of

the systems the measurement process leads to a coupling between them. After the

system evolution the measurement result of |Ψ〉 can be determined by “reading-

out” |µ〉. The system’s evolution can be described by an evolution operator U (α),

where the parameter α describes the interaction strength. If the initial state of the

investigated system is given by |Ψi〉 and that of the measurement apparatus by |µ0〉,
the measurement process can be schematically described in the Schrödinger picture

as

|Ψi〉 |µ0〉︸ ︷︷ ︸
initial state

−→ U (α) |Ψi〉 |µ0〉︸ ︷︷ ︸
time evolution

−→ |Ψf〉 |µf〉︸ ︷︷ ︸
final state

. (1.19)

The measurement outcome can be inferred from the measurement apparatus’ final

state |µf〉.
In 1964 Aharonov, Bergmann and Lebowitz (ABL) considered a measurement pro-

cedure that explicitly involves both initial and final state, |Ψi〉 and |Ψf〉, of the

investigated system [Aharonov et al., 1964]. If the system’s preselected state is

given by |Ψi〉 the probability of successfully postselecting the state |Ψf〉 is given

by P = |〈Ψf |Ψi〉|2. If a measurement is performed between the events of pre and

post selection, the initial state gets altered by a system evolution during the mea-

surement and the probability changes to P = |〈Ψf |U (α) |Ψi〉|2.

In 1988 Aharonov, Albert and Vaidman (AAV) considered the case in which the

influence of the intermediate measurement is made small or weak and introduced

the weak value 〈Â〉w as the parameter for the relevant observable for a system be-

tween the events of pre and postselection and weak couplings [Aharonov et al., 1988,

Duck et al., 1989]. The weak value is defined as

〈Â〉w =
〈Ψf |Â|Ψi〉
〈Ψf |Ψi〉

. (1.20)

It depends on both the initial and the final state. In general it is a complex number,

so it has a real and an imaginary part. The weak value’s real part is the shift that

the pointer system (the measurement apparatus) experiences according to the sys-

tem evolution during the measurement. As an operational definition, the weak value

can be characterized as the relative correction to a detection probability |〈Ψf |Ψi〉|2

due to a small intermediate perturbation U (α) resulting in a modified detection

probability |〈Ψf |U (α) |Ψi〉|2 [Dressel et al., 2014].
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The weak value is extracted in a procedure which is referred to as weak measure-

ment. In the standard scheme the weak measurement is performed in three steps:

First the quantum ensemble is created and the system is preselected in the initial

state. Then the measurement apparatus is coupled weakly to the quantum system

of interest in a way so that the system is only minimally disturbed and the overlap

between the initial state |Ψi〉 and the evolved state |Ψ′〉 is kept large. As a final step

the quantum system is measured strongly: It is postselected into a final state. The

weak value can then be inferred from the pointer shift of the measurement apparatus
a

It is important to note that the weak value, extracted using weak measurements, does

not refer to the property of single particle events, but that of a quantum ensemble.

Similar to the standard expectation value it cannot be determined by a measurement

performed on one single particle (with the exception of eigenstates). Also there is

a tradeoff in the precision with which the weak value can be obtained through a

weak measurement. To determine 〈Â〉w accurately the pointer shift should be large

enough to be distinguished from the uncertainty of the pointer. This corresponds

to the case where the initial and the final state of the measurement apparatus are

precisely defined. However, this is the case for standard von Neumann measurement.

The disturbance on the measured system is large and the overlap between the initial

state |Ψi〉 and the evolved state |Ψ′〉 is small. Weak measurements in the contrary

are performed in a way so that the pointer shift of the measurement apparatus small.

But then less information is obtained. The error of a weak measurement typically

scales with
√
N where N is the number of events the measurement is performed on

[Aharonov et al., 2010]. The weak value 〈Â〉w can then be determined precisely by

repeating the measurement on a large number of events as the uncertainty reduces

with 1/
√
N.

Due to the weakness of the interaction the preselected state is only minimally dis-

turbed, so that the system can evolve (almost) unchanged into the final state. This

also means that if a system is in a superposition state, it will not collapse into one

possible eigenstate if a weak measurement is performed. It is furthermore (in theory)

possible to perform simultaneous weak measurements of incompatible observables.

In an actual experiment each weak measurement will add some disturbance to the

system, so that the actual amount of measurements that can be performed at the

same time is limited [Piacentini et al., 2015].

After its introduction the debate about the interpretation of weak values imme-

aIn chapter 3 it will be discussed in detail how the weak value of a two-level quantum system
can be fully determined.
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diately sprung up [Leggett, 1989, Aharonov and Vaidman, 1989]. The argument

about the weak value’s physical content still lasts till today

[Svensson, 2013, Sokolovski, 2015, Dressel, 2015]. The discussion goes so far, it is

even debated if the weak value is a purely quantum mechanical property or if it is

also observed in classical systems [Ferrie and Combes, 2014a, Romito et al., 2016].

Besides the above arguments, the weak value is found to be very useful in three

experimental circumstances [Dressel et al., 2014]:

1. The weak value can be used to amplify detector signals below practical limita-

tions, which makes it possible to measure small parameters in an experiment.

2. The weak value is a complex number that can be linked to the quantum wave

function, which among others makes it possible to perform quantum state

reconstructions.

3. The weak value is a conditioned average of observables’ eigenvalues and its

real part can be used to investigate so called pre and postselection paradoxes.

In the following sections the three experimental applications of the weak value are

explained by listing several key experiments.

1.3.1 Weak measurements of photonic systems

In their original paper AAV proposed a Stern-Gerlach like apparatus to demonstrate

the physical validity of weak values and weak measurements: A beam of spin-1/2

particles is prepared in a certain preselected spin state and sent through a “weak”

magnet in the Stern-Gerlach apparatus. Due to the weakness of the apparatus the

two sub beams corresponding to the two spin components are not completely sepa-

rated, but have a large overlap. Nevertheless a coupling between the particle’s spin

and momentum is created. Subsequently the two sub beams pass an ideal (strong)

magnet in the Stern-Gerlach apparatus and are then recorded by a position sen-

sitive detector. The detector records a certain distribution, which depends on the

momentum of the particles. More precisely the distribution will be shifted in the

measurement direction of the weak magnet, with the shift being proportional to the

weak value.

Due to the small coherence volume of massive particles, the experimental realization

of this kind of experiment turned out to be infeasible and the first experimental de-

termination of a weak value was performed in a photonic setup [Ritchie et al., 1991].

The experiment is a purely optical analogon to the proposed experiment of AAV:
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Instead of the spin, the polarization of visible light is the system of interest in

this experiment. The Stern-Gerlach magnets are replaced by optically birefringent

crystals. A laser beam is prepared with a certain polarization and subsequently a

birefringent-crystalline quartz plate spatially separates the beams of the two orthog-

onal polarizations. By making the beam separation δ small, the condition of a weak

measurement is fulfilled. After the postselection, performed by a simple polarizer,

the light is detected by a position sensitive detector. The observed intensity pattern

is Gaussian with its peak being centered around the position of the polarization

operator’s weak value. The observed Gaussian pattern is actually a result of a con-

structive addition of two Gaussian distributions separated by a distance much less

than the Gaussian beam waist. The postselection direction can be tuned by rotat-

ing the final polarizer. For nearly orthogonal states a large shift of the Gaussian is

observed, which corresponds to large weak values. An interesting effect is observed

for orthogonal pre and postselected states. Not one but two separate Gaussians

are recorded with very low intensities. But the peak separation is two orders of

magnitude larger than the beam separation δ caused by the weak measurement.

This effect can be used in high precision measurements and is called weak value

amplification.

1.3.1.1 Weak value amplification

To understand the weak value amplification scheme, let us reconsider the experimen-

tal proposal of AAV. It can be shown that the observed momentum distribution is

in first order linear proportional to the imaginary part of the polarization operator’s

weak value, which we want to denote with 〈S〉w, times the interaction parameter,

which we want to denote with α [Dressel et al., 2014].:

∫
pPdp ∝ Im [〈S〉w]α. (1.21)

Here p is the particles momentum and P is given by P = |〈Ψf |U (α) |Ψi〉|2. If one

wants to determine the parameter α even though it is very small, the weak value’s

imaginary part can be made big by choosing nearly orthogonal pre and postselected

states. However, one has to pay a price for the amplification. Due to the orthogonal-

ity between pre and postselected states, P becomes small and therefore the detected

intensity is very low, so that this experimental technique is suboptimal for certain

situations [Ferrie and Combes, 2014b].

In contrast, in some cases the loss of intensity is not an essential factor and one
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can gain an advantage from the weak value amplification scheme. What if the the

goal of the original AAV experiment were not to determine the weak value, but the

amount of beam separation caused by the first “weak” Stern-Gerlach magnet? Due

to the weakness in the coupling, the beam separation is small. At the same time

the position sensitive detector has a certain pixel size. If the separation is below

the pixel size of the detector it cannot be resolved in the experiment even if plenty

intensity is available. Tuning the pre and postselected states to be (nearly) orthog-

onal, amplifies the separation so that it can be resolved with the given pixel size,

i.e. the resolution of the detector, at the cost of intensity. Furthermore the weak

value amplification scheme is shown to be very robust against certain types of noise

[Jordan et al., 2014].

Despite the discussions about the usefulness of the weak value amplification scheme,

this effect is confirmed in lots of experiments: One of the most notable ones is the

observation of the spin Hall effect of light, where beam displacements of approx-

imately 1 Å, which cannot be resolved in a conventional setup, were successfully

determined [Hosten and Kwiat, 2008]. In another optical experiment implementing

the weak value amplification in an interferometric scheme, beam deflections as small

as 400 frad were observed [Dixon et al., 2009].

1.3.1.2 The weak value as a mensurable complex value

As seen from the weak values definition given by Eq. (1.20), the weak value is in

general a complex number. In the publication [Lundeen et al., 2011] it is shown

that the weak value can be connected to the preselected state’s wave function which

in turn makes a “direct” state characterization possible. By “direct” it is meant

that a value proportional to the wave function appears straight on the measurement

apparatus itself without further complicated calculations or fitting as is explained

in [Lundeen and Bamber, 2012]. The “direct” state characterization procedure has

been extended to two-level quantum systems [Salvail et al., 2013] and has turned

out to be useful in many experimental situations [Wu, 2013, Malik et al., 2014,

Mirhosseini et al., 2014].

The term “direct” is controversial [Gross et al., 2015]: It is used here to refer to the

state characterization via weak values for clarity and to be in accordance with the

literature. A point of criticism of the experimental method is the weakness of the

measurement. It has been shown that it is possible to determine weak values without

weak interactions [Johansen, 2007, Kedem and Vaidman, 2010, Cormann et al., 2016]

and recently it was pointed out theoretically that the weakness of the interaction
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is also not a necessary condition to perform a state characterization via weak val-

ues [Vallone and Dequal, 2016, Zhang et al., 2016]. Determining weak values with

strong interactions preserves the experimental advantages of the direct state char-

acterization and gets rid of its downsides like excessive noise. This topic is also

discussed in further detail in chapter 5.

1.3.1.3 The weak value as a conditioned average and quantum paradoxes

Let us consider the so called the three box problem [Aharonov and Rohrlich, 2008],

in which a particle is travelling trough an interferometer, which offers three possible

paths. The particle’s state vector in such a situation is given by

|Ψi〉 =
1√
3

(|I〉+ |II〉+ |III〉) . (1.22)

Let the particle exit the interferometer so that its postselected state is given by

|Ψf〉 =
1√
3

(|I〉+ |II〉 − |III〉) . (1.23)

We now want to ask the question along which path the particle travelled during the

time of pre and postselection. This is equivalent to evaluating the projection opera-

tors of the individual path eigenstates Π̂p
j = |j〉 〈j| with j = I, II, III. To calculate

the probabilities of finding the particle along one of the paths during the time of pre

and postselection we can use the formula proposed by ABL [Aharonov et al., 1964].

The probability P that a measurements yields the outcome cj if it is performed at

the time t between pre and postselection is

P (cj,Ψi,Ψf) =
|〈Ψf |U (tf , t) | cj〉 〈cj |U (t, ti) |Ψi〉|2∑
i |〈Ψf |U (tf , t) | ci〉 〈ci |U (t, ti) |Ψi〉|2

(1.24)

with the pre and postselected states |Ψi〉 and |Ψf〉. The operators U(t, ti) represent

the evolution the state from the the initial time ti to the intermediate time t. Similar

U(tf , t) causes an evolution form the intermediate to the final time.

If the ABL rule is applied to the three path situation, we find that the parti-

cle will travel with probability one along path I. But we also find that it will

travel with probability 1 along path II [Aharonov and Rohrlich, 2008]. We found a

seemingly paradoxical situation, which is known as the so called three box paradox

[Aharonov and Vaidman, 1991]. The paradox can easily be resolved by pointing out

that the reason is counterfactual [Kastner, 1999]. If the particle is detected along

one of the interferometer’s paths, its wave function collapses into one of the three
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states and postselection in a superposition state is not possible.

The situation that seems paradoxical at the level of an individual particle can also

be analyzed at the level of ensembles using weak values. The weak value’s real part

acts as an ensemble average of an observable conditioned on pre and postselection

[Dressel et al., 2014]. This means that any meter that couples weakly to a system

will in average be affected as if the weak value’s real part were the actual system

property. Also as was already state earlier, weak measurements can in principle be

performed simultaneously and only minimally disturb the system making an evolu-

tion form the preselected to the postselected state possible. Hence the coexistence

of several weak values is permitted and their reasoning is not counterfactual.

If the relevant weak values for the three box problem are calculated, interesting

properties can be revealed. For the projection operators along path I and II one

finds 〈Π̂p
I 〉w = 〈Π̂p

II〉w = 1, which is expected from the ABL formula. Interestingly

enough one also finds 〈Π̂p
III〉w = −1. The weak values tell us that an ensemble that

is successfully pre and postselected in the states given above will in average behave

as if particles were travelling along both paths I and II. But what is the meaning

of the negative weak value of path III? The system will in average behave as if

a negative particle probability were there. Suppose for example that the experi-

ment were performed with particles that carry a positive charge. If one would then

weakly measure the particles by detecting their charges along the way, one would

register positive charges along path I and II, but a negative one in path III. The

considerations performed above are no mere gedankenexperiment. In 2004 the three

box paradox was realized in a photonic setup [Resch et al., 2004]. Another possible

interpretation of the negative weak value is that the weak value only exists as an

“effective influence” in the measurement. This is similar to effective positive and

negative charges in solid state physics [Kittel, 2004].

Treating the weak value’s real part as a conditioned average other seemingly counter-

factual quantum mechanical situations have been addressed. One example for such a

situation is Hardy’s paradox [Hardy, 1992]. It was initially designed as a gedankenex-

periment, in which an electron and a positron interact with each other without anni-

hilating. While the experimental situation in Hardy’s paradox was also dismissed as

counterfactual, it can be understood in terms of weak values [Aharonov et al., 2002].

Consequently it was also demonstrated experimentally by two independent groups,

both using photonic setups [Lundeen and Steinberg, 2009, Yokota et al., 2009].

Other examples for quantum paradoxes that can be addressed using the weak value

formalism are the quantum Cheshire cat, where a particle seems to be spatially sep-
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arated from one of its properties [Aharonov et al., 2013b] and the quantum pigeon

hole effect, where three pigeons are put into two boxes yet no two pigeons ever seem

to occupy the same box [Waegell and Tollaksen, 2015, Aharonov et al., 2016]b

In general anomalous weak values, i.e. weak values that lie outside the eigenvalue

spectrum of an operator, indicate that the system cannot be understood in a classical

way and as an ensemble average they provide a physically meaningful interpretation

of seemingly paradoxical experiments. Such situations can only happen for postse-

lected sub-ensembles of a quantum system. It has also been shown that anomalous

weak values can be connected to violations of generalized Leggett-Garg inequalities

[Williams and Jordan, 2008, Goggin et al., 2011] and that they are proof of contex-

tuality [Pusey, 2014].

In a double slit experiment weak measurements have been used to record the weak

value of photons’ momentum, which made it possible to reconstruct the average pho-

ton trajectories throughout the interference experiment [Kocsis et al., 2011]. The

weak value as an ensemble average of an observable (for this special case the mo-

mentum) gives a meaningful interpretation of the experimentally observed behavior.

1.3.2 Weak values in massive quantum systems

The weak value formalism as proposed by AAV is formulated in a non relativistic

framework. Still, due to the small coherence volume of massive particles, the first

experimental realization of a weak measurement was performed in a purely optical

setup. Most of the experimental work involving weak measurements and weak val-

ues can be explained using a semiclassical wave theory [Bliokh et al., 2013] without

the need of quantum mechanics. Albeit there are experiments that can only be

understood in terms of a nonclassical theory [Pryde et al., 2005], the experimental

observation of a weak value of a single massive system has been lacking for a long

time.

Neutron interferometry has been successfully used several times to demonstrate

purely quantum mechanical effects. The aim of this thesis is to develop an experi-

mental scheme to determine weak values using massive particles and to implement

the scheme in an neutron interferometric setup. In the following chapters it is shown

how weak measurements using neutrons are achieved. The alignment of the setup

and experimental data together with the theory are presented, demonstrating the

successful weak value determination.

bBoth paradoxes will be subject of later chapters.



CHAPTER 2

Neutron optical setup and components

In this chapter several key components for neutron optical experiments are described.

At neutron sources and ionization counter tube neutron detectors are briefly ex-

plained. It is followed by a description of spin-manipulating components. Finally

interferometric components are explained. The working principle behind those neu-

tron optical devices is shortly laid out. As was explained in chapter 1 the neutron’s

path degree of freedom and its spin degree of freedom can be described as two-level

quantum system. Here it is shown how the presented neutron optical components

can be used to manipulate the state vectors of each degree of freedom.

2.1 Neutron sources and detectors

To perform neutron optical experiments it is essential to get neutrons from a suit-

able source and to subsequently detect them. Here important neutron sources and

detectors are briefly presented.

2.1.1 Neutron sources

One of the most widely used neutron sources in large scale research facilities are

nuclear reactors. In a nuclear reactor, neutrons are produced by nuclear fission. As

compared to a commercial powerplants, the aim of a research reactor is to produce

a high flux neutron beams, where the released fission energy is only a byproduct.

18
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Research reactors provide a steady neutron beam, with a whole spectrum of wave-

lengths.

The two most important research reactors for neutron optical experiments, which

we carried out and describe here, are the TRIGA reactor of the Institute of Atomic

and Subatomic Physics (Atominstitut) operated by the TU Wien and the high flux

research reactor of the Institut Laue-Langevin (ILL) in Grenoble, France. TRIGA is

an acronym for Training Research Isotope production Generl Atomics. The design

of the reactor done by General Atomics allows for a wide range of applications in

research. The Vienna reactor operates at a thermal power of 250 kW and offers

a neutron flux of 1 × 1013 neutrons per square centimeter and second (in contin-

uos mode). Practically this flux can only be sustained in the core. The observed

count rate in polarimetric and interferometric experiments is orders of magnitude

lower (typically ∼ 1 × 102 cm−1s−1 and ∼ 1 × 101 cm−1s−1 at the final counters

respectively). While the available intensity is high enough for polarimetric experi-

ments, neutron interferometric experiments with polarized neutrons are not feasible

in Vienna. The ILL research reactor produces a thermal power of 58 MW with one

highly enriched fuel element. Consequently its peak flux of 1.5 × 1015 cm−1s−1 is

considerably higher than in Vienna and also the highest flux available from a con-

tinuos source worldwide. The typical intensity in neutron interferometric setup with

polarized beams are ∼ 1× 102 cm−1s−1, which makes actual experiments feasible.

2.1.2 Counter tubes

To detect thermal, i.e. slow neutrons gaseous ionization counter tubes are generally.

The neutron is electrically neutral and therefore it does not produce any charge

when passing through. However it is possible to fill a counter tube with nuclei that

have a large neutron absorption cross section and that emit an electrically charged

particle after absorbing a neutron. The charged particle then produces an ionization

and the absorbed neutron can be indirectly detected. A schematic depiction of a

neutron detector and its radiation shield is shown in Fig. 2.1. A suitable gas for

a neutron detector is Helium-3 (3He). Helium-3 counter tubes utilize the nuclear

reaction

3
2He + 1

0n→ 3
1H + 1

1p, Q = 0.764 MeV.

When a 3He nucleus absorbs a neutron, it decays into a triton (3
1H) and a proton

(1
1p). The energy of 0.764 MeV that is released due to the decay, gets distributed on
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Figure 2.1: Artistic depiction of a neutron detector and its radiation shield (left) and
picture of a counter tube (right): To reduce the background counts from scattered
neutrons, which are irrelevant to the experiment, the counter tubes (gray; at the center)
are usually encased in a neutron absorbing radiation shield (yellow; cut open to make
counter tube visible).

the decay products. Since the thermal neutron’s energy (∼ 20 meV) is much smaller

than Q, it is not possible resolve the energy of the absorbed neutrons. 3He has a

very large absorption cross section and is at the same time insensitive to gamma

rays, making it a perfect gas for neutron detectors. At the moment the supply of

Helium-3 is limited, which makes it very expensive.

A possible alternative gas is boron trifluoride BF3, which makes use of the following

nuclear reaction:

10
5 B + 1

0n→





7
3Li + 4

2α, Q = 2.792 MeV

7
3Li∗ + 4

2α, Q = 2.310 MeV

If the boron nucleus absorbs a neutron it decays into a Lithium nucleus and an α

particle. Boron can either decay into an excited state of Lithium (7
3Li∗) or into a

non excited one (7
3Li). For both cases the released energy Q is much larger then the

neutron’s energy. BF3 offers a high neutron absorption cross section. In addition

there is a high abundance of boron available. Nevertheless, boron trifluoride has the

disadvantage of being highly toxic [Knoll, 2010].
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2.2 Neutron interferometer and associated com-

ponents

In addition to the perfect crystal neutron interferometer itself, interferometric com-

ponents are used in those parts of the experimental setup, which manipulated the

neutron’s path degree of freedom, i.e. they tune the state vector moving it on the

path Bloch sphere.

If the incident beam hits the interferometer under the angle θB, it is split coherently

by amplitude division upon the first beam splitter plate (BS). All three plates work

as 50:50 beam splitters. Because of that two sub beams leave the interferometer loop

at the middle plate (M). Those beams are usually not of interest in our experiment.

Upon the third analyzer plate (A) the beams are recombined. A slab can be inserted

across both beam paths to introduce a phase shift.

The phase shift is caused by a slab of certain materials, which alters the optical

path lengths of the two beams, due to the fact that, the neutron behaves according

to a refraction index n, which depends on the material. It is given by

n2 = 1− V

E
, (2.1)

where E is the neutron’s kinetic energy and V represents the height of the Fermi

pseudo potential of the material. It is given by

V =
2π~2

mn

Nbc, (2.2)

where mn is the neutron’s mass, N is the density of nuclei, bc is the nuclear scat-

tering length and ~ is the reduced Planck’s constant (h/2π). The neutron refraction

index depends on the neutron’s energy and therefore on the neutron wavelength

λ [Utsuro and Ignatovich, 2010]. The potential V does not necessarily need to

be produced by material. It can be also introduced by external magnetic fields

[Werner et al., 1975, Rauch et al., 1975] or by gravity [Colella et al., 1975].

If V � E, the refraction index n is simply given by the approximation

n =

√
1− V

E
≈ 1− V

2E
= 1− λ2Nbc

2π
(2.3)
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for non magnetic materials. For magnetic materials the potential has to be extended

and the refraction index is then given by

n = 1− λ2

(
Nbc
2π
∓ µmnB

h

)
, (2.4)

with the saturation induction B and the neutron’s magnetic moment µ.

In neutron interferometry, the interfering beam leaving the interferometer in forward

direction is called O-beam and the beam leaving in reflected direction is called H-

beam. We now proceed to calculate the intensities of both beams. The incident

wave function is given by a plane wave in the form

|Ψi〉 = Ai ei~k·~r (2.5)

with the wave’s momentum vector ~k and its position vector ~r. After the interferom-

eter’s first plate a transmitted and a reflected wave appear. Their wave functions

are given by

|Ψt〉 = t ei~k·~r (2.6a)

|Ψr〉 = r i ei~k·~r′ (2.6b)

with the reflected wave vector ~k′ and the normalized amplitudes t = At/Ai and

r = Ar/Ai. Using dynamical diffraction theory the intensities of the reflected and

transmitted beams relative to the incident beam are calculated and they are given

by

T = |t|2 =
sin
(
B
√

1 + y2
)

1 + y2
(2.7a)

R = |r|2 = 1−
sin
(
B
√

1 + y2
)

1 + y2
(2.7b)

where the parameter B is a function of the thickness of the plate and y takes into

account a possible deviation of the incident beam from the exact Bragg angle (see

[Suda, 2005] for details). Note that R + T = 1. Furthermore in the case of a

symmetric beam splitter the transmitted and the reflected waves are phase shifted

by π/2 [Zeilinger, 1981].

Repeating the steps performed above for the interferometer’s remaining two plates

one obtains the wave function for the O- and the H-beam. The relations given by

Eqs. (2.7a) already consider a deviation from the exact Bragg angle. For simplicity,
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here we assume that the incident beam is monoenergetic and perfectly collimated,

so that Bragg’s law is satisfied exactly. Using these assumptions the parameter y

becomes zero and we find

|ΨO〉 =
(
rrt+ trr eiχ

)
ei~k·~r (2.8a)

|ΨH〉 =
(
trt+ rrr eiχ

)
ei~k′·~r (2.8b)

The factor eiχ is a phase shift typically caused by a sample, i.e the phase shifter, in

the beam. The intensities of the beams are then given by

IO = 2R2T [1 + cos (χ)] (2.9a)

IH = R
(
R2 + T 2

)
− 2R2T cos (χ) (2.9b)

Taking Eq. (1.7) and using the method of equating coefficients one finds relations

for an ideal situation so that ĪO = 2R2T , CO = 1 and ωO = 0 as well as ĪH =

R (R2 + T 2), CH = 2RT/R2+T 2 and ωH = π.

This calculation shows that the O-beam has perfect contrast, where CH can only

become one if R = T = 1/2. A more general calculation, which includes possible

deviations of the incident beam from the Bragg angle shows that only the forward

beam can show a perfect contrast of 100% [Rauch and Suda, 1974] and that the

reflected beam can not even in theory reach CH = 1. This is simply because the

neutrons detected at the O detector get reflected twice and transmitted once, if they

take the lower beam path and also if they take the upper beam path. In comparison

to that the number of reflections and transmissions is different for the lower and

upper beam path for neutrons detected at the H-detector. Whereas the neutrons

travelling along the lower beam path get reflected only once and transmitted twice,

they are reflected three times along the upper beam path. While having a lower

contrast than the O-detector, the H-detector offers a higher average intensity, due

to the single reflected beam [Sears, 1989b].

2.2.1 The neutron’s path degree of freedom

The description of the neutron interferometer using dynamical theory of diffraction

is undoubtedly very powerful. However, its formulation is complicated. A much

simpler description of the neutron interferometer is obtained by treating it as a two-

level quantum system [Basu et al., 2001, Allen and Eberly, 2012].

A two-level quantum system is one of the most simplest systems of quantum me-
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chanics. As its name already suggests, the system only consists of two states |+〉
and |−〉. The quantum system can either be in one of the two possible eigenstates

or in a superposition of them. Examples for two-level quantum systems are the the

spin of a spin-1/2 particle or the energy levels of an atom (ground and excited state).

Mathematically a two-level quantum system is described by a complex two dimen-

sional Hilbert space and follows the SU(2) formalism. The two states of the system

span a basis and any other state can be represented by a linear combination of those

two base vectors.

|Ψ〉 = c+ |+〉+ c− |−〉 = c+

(
1

0

)
+ c−

(
0

1

)
. (2.10)

Since the state vectors have to be normalized, the relation |c+|2 + |c−|2 = 1 holds. In

the standard representation the |+〉 state defines the positive z-axis and the |−〉 state

the negative one. It is therefore convenient to introduce the following notation: The

two base states of the two level system Ψ shall be notated as |Ψz; +〉 and |Ψz;−〉,
i.e. |Ψz; +〉 ≡ |+〉 and |Ψz;−〉 ≡ |−〉. A superposition can then be expressed by a

linear combination of both states. In particular we define the x- and y-states as

|Ψx;±〉 =
1√
2

(|Ψz; +〉 ± |Ψz;−〉) (2.11)

and

|Ψy;±〉 =
1√
2

(|Ψz; +〉 ± i |Ψz;−〉) . (2.12)

Note that the x, y and z directions of the Hilbert space do not necessarily coincide

with the directions in real space! All possible states can be depicted as points on

the surface of the so called Bloch sphere. The |Ψz; +〉 points towards the upper pole

of the sphere and |Ψz;−〉 to the lower one. Points on the equator of the sphere are

in a superposition of those states with the same relative weighting for both base

states. Examples for equatorial states are |Ψx;±〉 and |Ψy;±〉. If the azimuth and

polar angles of the sphere are given by φ and θ, the Bloch vector

|Ψ〉 = cos

(
θ

2

)
|Ψz; +〉+ eiφ sin

(
θ

2

)
|Ψz;−〉 (2.13)

can be used to reach any point on the Bloch sphere.

The relevant observables of a two-level quantum system are the Pauli matrices. They
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are the three traceless Hermitian 2× 2 matrices given by

σx = |Ψx; +〉 〈Ψx;−| − |Ψx;−〉 〈Ψx; +| =

(
0 1

1 0

)
(2.14a)

σy = i (|Ψy;−〉 〈Ψy; +| − |Ψy; +〉 〈Ψy;−|) =

(
0 −i

i 0

)
(2.14b)

σz = |Ψz; +〉 〈Ψz; +| − |Ψz;−〉 〈Ψz;−| =

(
1 0

0 −1

)
(2.14c)

The vectors |Ψx;±〉, |Ψy;±〉 and |Ψz;±〉 are the eigenvectors of the corresponding

Pauli matrices. Together with the identity matrix, the Pauli matrices form a basis

for the vector space of all 2× 2 matrices [Cohen-Tannoudji et al., 1977].

2.2.2 The neutron’s path degree of freedom as a two-level

quantum system

We apply the formalism from the previous section to the neutron interferometer

[Yurke et al., 1986]. Inside the interferometer the neutron travels along two possible

paths, I and II. Those two paths of the interferometer form the basis of the neutron

path degree of freedom two-level quantum system. The eigenvectors are denoted as

|Pz; +〉 ≡ |I〉 and |Pz;−〉 ≡ |II〉.
In an ideal interferometer the first plate is a perfect 50:50 beam splitter. The neutron

is reflected or transmitted with equal probability. In terms of the two-level quantum

system, the beam splitter brings the neutron in a superposition state of path I and

II, i.e. it is in the |Ψx; +〉 = 1/
√

2 (|Ψz; +〉+ |Ψz;−〉) state after passing the first

plate. Any additional phase χ that is introduced inside the interferometer, does not

change the fact that the neutron stays in a superposition of the two path states, but

it moves the state around on the equator of the Bloch sphere. Figure 2.2 depicts

the path degree of freedom on the Bloch sphere. The |Ψx; +〉 state vector, prepared

by the first beam splitter, is depicted as a blue arrow.

Here will now show the way the two-level formalism is used, to understand the

evolution of the path two-level system. For this we start with the initial system

state given by

|Ψi〉 = |Px; +〉 =
1√
2

(|Pz; +〉+ |Pz;−〉) . (2.15)
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Figure 2.2: Representation of the path degree of freedom on the Bloch sphere: After
the interferometer’s first plate, the neutron is found in either path I or II with equal
probabilities. It is therefore in a superposition of the two path eigenstates which is
indicated by the blue vector. χ represents the relative phase between the two path
eigenstates.

As discussed above a slab of non absorbing material can be put into the path to

introduce a phase shift. This manifests itself in an additional phase factor in the

state vector

|Ψ (χ)〉 =
1√
2

(
|Pz; +〉+ eiχ |Pz;−〉

)
. (2.16)

The beams are recombined at the interferometer’s third plate. Mathematically this

is represented by a projection onto a specific state. The projectors for O- and H-

beam are given by Π̂p
x± = |Px;±〉 〈Px;±| with the projection on the positive x state

corresponding to the O- and the one on the negative corresponding to the H-beam.

After the projection the state vectors of the two exiting beams can be written as

|ΨO〉 =
1

2

(
1 + eiχ

)
|Px; +〉 (2.17a)

|ΨH〉 =
1

2

(
1− eiχ

)
|Px;−〉 , (2.17b)

so that we find the intensities

IO = |〈ΨO|ΨO〉|2 =
1

2
[1 + cos (χ)] (2.18a)

IH = |〈ΨH|ΨH〉|2 =
1

2
[1− cos (χ)] . (2.18b)
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The neutron interferometer’s path form a two-level system. Using the phase shifter

and absorbers it is possible to manipulate and access this degree of freedom exper-

imentally in the interferometer. The neutron offers another two level system that

can be used experimentally: The spin degree of freedom, which will be subject of a

later section.

2.2.3 Phase shifters

A typical phase shifters is a parallel-sided slab of thickness D0, which is inserted

across both beam paths of the neutron interferometer, the optical path length dif-

ference ∆D (δ) of the neutron passing through the phase shifter on the lower beam

path minus the one on the upper beam path is given by

∆D (δ) =

[
1

cos (ΘB + δ)
− 1

cos (ΘB − δ)

]
D0, (2.19)

where ΘB is the interferometer’s Bragg angle and δ is the rotation angle of the phase

shifter. For small δ the phase shift is nearly linear and consequently an interferogram

is sinusoidal in δ. The zero phase position is given by the parallel position of the

phase shifter [Rauch and Werner, 2015]. A sketch of this phase shifter configuration

is depicted in Fig. 2.3. In a material of thickness D0 and with an refraction index

H

O

Figure 2.3: Sketch of a phase shifter rotated in both beam paths in a triple Laue
interferometer.



28 Chapter 2. Neutron optical setup and components

n, the magnitude of the phase shift for neutrons with a wave vector k is given by

∆χ = (n− 1)kD0 = −NbcλD0, (2.20)

where N is the atomic density of the material, bc is the materials nuclear scattering

length and λ is the neutron wave length. Materials used for a phase shifter should

have a high neutron transmission. Frequently used materials are aluminum, silicon

and sapphire.

2.2.4 Absorbers

Phase shifters manipulate the path state vector along longitudinal circles of the

Bloch sphere. For the latitudinal manipulation, absorbers are used. They move

the path state away from the equatorial plane towards the poles of the path Bloch

sphere. If either one of the interferometer’s paths is completely blocked, the state

vector points at a pole.

The transmissivity T , and thus also the absorption coefficient A, of neutrons by

a plane slab can be phenomenologically described by the Beer-Lambert Law: The

transmissivity of a slab of thickness D is defined by

T =
Jt
Ji

= e−µD, (2.21)

where Jt is the neutron flux transmitted by the material and Ji is the incoming one.

The absorption coefficient µ can be stated in terms of the absorption cross section

σa

µ = ρσa, (2.22)

where ρ is the average number of atoms per unit volume. Eq. (2.22) assumes that

there is no diffuse scattering inside the material, but only absorption. In reality

this is not the case and µ has to be modified so that it is given by µ = ρσt, where

σt = σa + σd is the total collision cross section, which includes the absorption cross

section as well as the scattering cross section [Sears, 1989c].

For interferometric experiments it is essential to find materials that have a high σa

and a low σd to keep a high contrast of the interferogram. Reasonable choices are

gold and indium. For the former the absorption and scattering cross sections are

σa = 98.65(9) and σd = 7.75(13) barn. For the latter they are σa = 193.8(1.5) and

σd = 2.62(11) barn [Hainbuchner and Jericha, 2001].
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2.3 Neutron polarimeter and associated compo-

nents

The neutron has a magnetic moment ~µ with a magnitude of |~µ| = 9.66× 10−27 J/T,

which is directly related to the neutron spin by

~µ = γ~S, (2.23)

where γ is the so called gyromagnetic ratio. It is equal to γ = −1.8301×108 s−1T−1

[Abele, 2008].

The neutron spin vector itself is given by

~S =
~
2



〈σ̂s

x〉
〈σ̂s

y〉
〈σ̂s

z〉


 , (2.24)

where ~ is the reduced Planck constant and 〈σ̂s
j〉 are the expectation values of the

Pauli spin operators [Mezei, 1972]. Note the factor 1/2 in the above equation. The

neutron is a fermion and therefore a spin-1/2 particle.

The equation of motion of the spin vector in an externally applied magnetic field ~B

is given by

d~S

dt
= −γ~S× ~B = ~S× ~ωL, (2.25)

where ~ωL = −γ ~B is the so called Larmor frequency. The change of ~S in time is

normal to both ~S and ~B. Because of that that ~S precesses around the external field

~B.

In a white beam produced by a neutron source the neutrons’ spin direction is ran-

domly distributed. If a measurement along a quantization axis is performed, one

will find that half of the neutrons are aligned parallel and the other half anti-parallel

to the direction of measurement. Such a neutron beam is called unpolarized. To

quantify the polarization the so called degree of polarization P is used. It is defined

as

P =
|N+ −N−|
N+ +N−

, (2.26)

where N± are the number of neutrons found to be aligned parallel (+) or anti-parallel

(-) to the direction of measurement. The degree of polarization can vary between
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zero and one. For one it describes a completely polarized beam with a polarization

parallel to an externally defined axis, for zero the beam is completely unpolarized.

For 0 < P < 1 the beam is partially polarized.

In order to create a polarized neutron beam, so called polarizers are necessary. All of

them work by simply removing either the plus or the minus spin component from the

beam by various means. A polarizer frequently used in neutron optical experiments

is the so called supermirror, which is explained in the a subsequent subsection.

Once the neutron beam is polarized a guide field pointing in the same direction as

the neutron spin has to be applied to prevent depolarization. If the direction of the

external guide field changes, the neutron spin will follow the change if it is happening

slowly on a time scale compared to the spin’s Larmor precession (adiabatic case).

If the guide field changes abruptly, then the neutron spins stays unaffected (non-

adiabatic case) [Schärpf, 1980].

2.3.1 The neutron’s spin degree of freedom as a two-level

quantum system

The spin of a spin-1/2 particle is the one of the best known examples of a two-level

quantum system. If a measurement of the spin is performed it will always be found

in one of two possible eigenstates. For the neutron spin the base states are given by

|Sz; +〉 and |Sz;−〉. The ±z direction can be set by an external magnetic field.

The neutron spin can be depicted on a Bloch sphere, as is shown in Fig. 2.4. Neu-

tron polarizers usually align the neutron spin along the positive z-axis, which is

represented by the blue state vector in the above figure. As was already discussed

earlier, magnetic fields can be used to coherently manipulate the neutron spin.

2.3.2 Polarizing supermirrors

Historically so called Heusler crystals were used as polarizers, which utilize a spin

dependent Bragg reflection. However, Heusler alloys have two experimental disad-

vantages: Their reflectivity and degree of polarization is low (typically ∼30% and

∼95% respectively).

An alternative element for a polarizer to Heusler crystals is a so called polarizing su-

permirror, which offers a higher degree of polarization (> 99%) and are also suitable

for neutrons with a higher energy (small wavelengths down to λ ∼ 1.7 Å). Let us

first consider a multilayer structure of two different materials A and B as depicted in

Fig. 2.5 When a monochromatic neutron beam hits the multilayer under the angle
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Figure 2.4: Representation of the neutron’s spin degree of freedom on the Bloch sphere:
Polarizers usually align the spin state along the positive z-axis, as is represented by the
blue state vector. The sphere’s azimuth and polar angle are given by φ and θ from the
equator respectively as depicted.

θ it is partially reflected and refracted at each interface, so that due to interference

effects the amount of reflected intensity will be high for some angles θ and low for

others. This behavior can be understood in terms of Bragg reflection: The multi-

layer forms an artificial one dimensional pseudo periodic structure with the period

a. The reflected intensity is maximum when the Bragg’s condition nλ = 2a sin (θ)

(with the order of reflection n) is fulfilled [Sears, 1989d].

If the multilayer is constructed so that the bilayer thickness a increases with the

thinnest bilayers on the surface, the Bragg peaks of the individual multilayers over-

lap. Using such a construction the critical angle θc, until which a total reflection

Figure 2.5: Multilayer structure: A multilayer consists of two materials A (white) and
B (black) deposited on a smooth surface. The thickness of one double layer is a.
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occurs is extendable by a factor of ∼ 5. A multilayer with gradually increasing values

of a is called a supermirror [Mezei, 1976]. A structure in a polarizing supermirror

is depicted in Fig. 2.6. A supermirror simply reflects the beam, while a polariz-

Figure 2.6: Multilayer structure in a supermirror polarizer: A supermirror consists of
many layers which form an artificial structure at which reflection can occur. By making
the layers thickest on the surface the critical angle θc can be extended by a factor of
∼ 5. Neutrons which do not get reflected are filtered out by an absorbing layer on the
bottom (bronze).

ing supermirror only reflects one spin component and thereby polarizes the neutron

beam. This special kind of spin dependent reflectivity is achieved by making one

of the materials in the bilayer structure ferromagnetic: Suppose material A is non

magnetic, while material B is ferromagnetic. For the former material the refraction

index is given by Eq. (2.3), while for the latter one the scattering length has to be

extended by a magnetic part given by Eq. (2.4). The magnetization of the materi-

als has to be tuned in a way that the refraction index becomes the same for both

materials for one spin component, but different for the other. Then the neutrons

with a spin component for which the refraction index is different for both layers,

“see” the layer structure and are reflected. Those with the other spin component

the boundaries between the layers vanish and they go straight through the structure

and are eventually filtered out by a neutron absorbing layer on the bottom.

The polarizer prepares the spin state on the spin Bloch sphere, so that it is aligned

along one direction with unit length.
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2.3.3 DC coils as spin rotators

The easiest way to perform a spin rotation is by the use of stationary magnetic

fields. When the neutron enters a DC coil, which generates a static magnetic field

and it experiences a non-adiabatic field change the, it starts to rotate around the

magnetic field vector generated by the coil due to Larmor precession. In order to

achieve a spin flip, the time for the neutron spent inside the coil has to correspond

to one full Larmor precession which gives us the flip condition

d =
vπ

ωL
=

vπ

|γ ~Br|
, (2.27)

where d is the width of the coil, v is the neutron speed and ~Br is the resulting vector

of the fields produced by the DC coil and the externally applied guide field. For a

given coil width one can adjust the magnetic fields by applying different currents

in order to perform the desired spin rotation. Note that DC coils are used only

for monochromatic beams, because they can only flip the spin of neutrons with one

specific wavelength [Mezei, 1972].

In practice a DC coil is a spin turning device that consists of two coils wound

perpendicular to each other: The inner coil is wound in a way that a static magnetic

field in the positive y-direction is generated ( ~By = (0, By, 0)) when a current is

applied. On top of this coil a second one is wound, which generates a static magnetic

field in the negative z-direction ( ~By = (0, 0, Bz)). The outer coil is also called

compensation coil, because it is used to compensate the externally applied guide

field. An artistic depiction of a DC coil is shown in Fig. 2.7. Inside a guide field a

DC coil in combination with a translation stage can be used to move the spin vector

around in any direction on the Bloch sphere one desires.

2.3.4 Helmholtz coils producing homogenous magnetic Fields

Ideal Helmholtz coils consist of a pair of circular coils with radius R separated by

a distance d, which equals the radius. The coils are supplied with a current so that

the current flows in the same direction in both of them.

If the origin of the coordinate system is put in the center between the two circular

coils and if they are placed with a distance d = R between them, it can be shown that

the magnetic field along the symmetric axis (z-axis) at the center is approximated
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Figure 2.7: Artistic depiction of a DC coil (left) and a picture of a polarimeter DC coil
(right): Two layers of wires are wound perpendicular to each other, so that magnetic
fields in the z− and y-directions can be created. A combination of both fields makes it
possible to flip the neutron spin.

by

B (z) ≈ µ0I

(5/4)
3/2 R

(
1− 144z4

125R4

)
, (2.28)

where I is the current applied to the coils and µ0 is the permeability of free space

[Demtröder, 2013]. Around the center of the coil (z=0) the field is almost to con-

stant.

This property is convenient for two experimental applications. As discussed above

an external guide field is necessary in order to prevent depolarization. For this the

geometry of the Helmholtz coils is altered in a way that they are not circular but

rather rectangular and bent up at the end, as is shown schematically in Fig. 2.8.

The modification at the entrance and exit of the beam is to avoid magnetic fields

pointing in the opposite direction of the field one wants to create. Using this ge-

ometry a uniform magnetic field pointing in the ±z direction depending on the sign

of the applied current can be generated. The field is homogenous along the longer

center line of the coils. If the center line coincides with the neutron path of flight the

neutrons are travelling along a uniform guide field and do not lose their polarization.

Helmholtz coils can also be used to manipulate the neutron spin. If the spin vector

is lying in the xy-plane and an external magnetic field is applied along the z-axis

parallel to the guide field, the spin’s equation of motion given by Eq. (2.25) tells us

that the spin vector will precess in the xy-plane. Again in terms of the vector on

the Bloch sphere, Helmholtz coils can be used to shift the spin state around on the
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Figure 2.8: Artistic depiction of an altered Helmholtz coil pair with the beam (green)
at the center (left) and photograph of an actual coil pair on a 3D printed frame (right):
For experimental reasons the geometry is changed from circular to rectangular. Coils
shaped that way produce a homogenous magnetic field along the beam trajectory with
the field’s direction depending on the sign of the applied current.

equator. If the coils are sized down accordingly they can be put inside the inter-

ferometer, where they can be used to perform path dependent spin manipulations.

To avoid thermal stress from the coils heat waste the coils that are put inside the

interferometer are flooded with temperature controlled water [Geppert et al., 2014].



CHAPTER 3

Weak values of two-level quantum systems

In this chapter it is shown how it is possible to determine the real and imaginary

part as well as the modulus of weak values of two-level quantum systems. In partic-

ular measurement schemes is presented, which make it possible to extract the weak

value of Pauli operators and those of projection operators using weak and strong

interactions.

3.1 Weak values of Pauli operators

Let us assume that we have full coherent control over two two-level quantum systems

HA and HB. Each of the two quantum system is described by a two dimensional

Hilbert space, which commute with each other. Let us denote states aligned along

the ±j-direction as |Aj;±〉 and |Bj;±〉 respectively. The state vectors |Az;±〉 and

|Bz;±〉 span a basis of the respective Hilbert spaces and any other vector can be

represented as a linear combination of them, e.g. |Ax; +〉 = 1/
√

2 (|Az; +〉+ |Az;−〉)
or |By; +〉 = 1/

√
2 (|Bz; +〉+ i |Bz;−〉). At this moment we do not want to restrict

our considerations to specific two-level systems, like the spin of a spin-1/2 particle,

but keep them completely general.

To determine weak values of either one of the quantum systems, relations between

experimentally accessible quantities, namely intensities, and operator’s weak values

have to be derived. For all our considerations A shall be the investigated quantum

system, whose weak value should be determined and B shall serve as a meter system.

As the first step we concentrate on the weak value of σ̂a
z , i.e. the weak value of the

36
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Pauli operator given by

σ̂a
z = |Az; +〉 〈Az; +| − |Az;−〉 〈Az;−| =

(
1 0

0 −1

)
(3.1)

and on weak interactions. We then proceed to extend our analysis to strong inter-

actions and other operators.

3.1.1 Weak interactions

In the standard weak measurement scheme [Aharonov et al., 1988] three steps have

to be taken to determine the weak value of σ̂a
z :

i) Preselection: A certain initial state of the composite system |Ψi〉 = |Ai〉 |Bi〉
has to be prepared.

ii) Interaction: A coupling between A and B has to be created.

iii) Postselection: Only certain final states |Af〉 and |Bf〉 must be selected.

Let us assume that the initial state of our composite system is prepared to be given

by

|Ψi〉 = |Ai〉 |Bi〉 = |Ax; +〉 |Bx; +〉 =

√
1

2
(|Az; +〉+ |Az;−〉)

√
1

2
(|Bz; +〉+ |Bz;−〉) .

(3.2)

The quantum ensemble is preselected in a way that the states of both subsystems A

and B are aligned along the positive x-axisa.Note that the state vector of the com-

posite system is given by a completely separable state. There is no coupling between

them. As a next step a coupling is created by letting the interaction Hamiltonian

Ĥint act upon the initial state vector given by Eq. (3.2). Let this Hamiltonian be of

the form

Ĥint =
ασ̂a

z σ̂
b
z

2
. (3.3)

This interaction can be understood as a rotation of the state vector |Ai〉 around the z-

axis of Hilbert space HA by the angle α conditioned on the state in the Hilbert space

of HB. The condition for a weak measurement is fulfilled by making α sufficiently

aAt this stage the choice for the initial state might seem arbitrary. However, there are important
experimental reasons why it was chosen exactly that way. We will come back to this point at a
later stage.
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small.

The interaction Hamiltonian given by Eq. (3.3) causes an evolution of the system

state vector from an initial state |Ψi〉 to the evolved state |Ψ′〉.

|Ψ′〉 = e
−iασ̂a

zσ̂
b
z/2 |Ψi〉 ≈

(
1− iασ̂a

z σ̂
b
z/2
)
|Ψi〉 =

(
1− iασ̂a

z σ̂
b
z/2
)
|Ai〉 |Bi〉

= |Ax; +〉 |Bx; +〉 − iα

2
σ̂a
z |Ax; +〉 σ̂b

z |Bx; +〉

= |Ax; +〉 |Bx; +〉 − iα

2
σ̂a
z |Ax; +〉 (|Bz; +〉 〈Bz; +| − |Bz;−〉 〈Bz;−|) |Bx; +〉

= |Ax; +〉 |Bx; +〉 − iα

2
σ̂a
z |Ax; +〉 |Bx;−〉 . (3.4)

Now the post selection onto a general final state of |Af〉

|Af〉 = cos

(
θ

2

)
|Az; +〉+ sin

(
θ

2

)
eiφ |Az;−〉 (3.5)

with φ and θ denoting azimuth and polar angle on the Bloch sphere of HA respec-

tively, is performed. Then the final state of the composite system is given by

|Ψf〉 = |Af〉 〈Af |Ψ′〉 = |Af〉
(
〈Af |Ai〉 |Bx; +〉 − iα

2
〈Af | σ̂a

z |Ai〉 |Bx;−〉
)

= |Af〉 〈Af |Ai〉


|Bx; +〉 − iα

2

〈Af | σ̂a
z |Ai〉

〈Af |Ai〉︸ ︷︷ ︸
≡〈σ̂a

z〉w

|Bx;−〉




= |Af〉
〈Af |Ai〉√

2

[
(|Bz; +〉+ |Bz;−〉)−

iα

2
〈σ̂a

z〉w (|Bz; +〉 − |Bz;−〉)
]

= |Af〉
〈Af |Ai〉√

2

[(
1− iα

2
〈σ̂a

z〉w
)
|Bz; +〉+

(
1 +

iα

2
〈σ̂a

z〉w
)
|Bz;−〉

]

≈ |Af〉
〈Af |Ai〉√

2

[
e
−iα〈σ̂a

z〉w/2 |Bz; +〉+ e
iα〈σ̂a

z〉w/2 |Bz;−〉
]
. (3.6)

With Eq. (3.6), which is obtained for α� 1, we arrived at a very important result.

Recalling that in general the weak value is a complex quantity, i.e.

〈σ̂a
z〉w = Re [〈σ̂a

z〉w] + i Im [〈σ̂a
z〉w] , (3.7)

we see that the weak value of σ̂a
z gets “encoded” in the system in HB: The real

part of the Pauli operator’s weak value acts as an additional phase shift, i.e. a

longitudinal move, of the state vector, whereas the imaginary part causes a change

in the weight, i.e. a latitudinal shift. This situation is shown in Fig 3.1, which depicts
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the evolution of the state on the Bloch sphere forHB. Re [〈σ̂a
z〉w] rotates the system’s

Figure 3.1: Effect of 〈σ̂a
z〉w on the state vector of the system B, depicted on the Bloch

sphere: Re [〈σ̂a
z〉w] rotates the state vector in the xy-plane (left); Im [〈σ̂a

z〉w] moves the
state vector out of the xy-plane towards the poles (middle); the modulus is simply a
combination of both (right).

state around the z-axis in the xy-plane. In comparison Im [〈σ̂a
z〉w] moves the state

out of that plane towards the poles of the Bloch sphere. The weak value’s modulus

is then a combination of both movements on the sphere, just as the modulus of a

general complex number consists of a combination of its real and imaginary part. It

is also instructive to note that the weak value’s modulus only appears with α2. It

is a second order effect.

The real and imaginary part as well as the modulus of the weak value of the Pauli

operator σ̂s
z can now be extracted by evaluating the expectation values of the three

Pauli operators of B, namely σ̂b
x, σ̂b

y and σ̂b
z . Hence the six intensities Ix±, Iy± and

Iz± have to be used. Basic algebra leads to the resultb.

Ix+ = |〈Bx; + |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
e

iα(u−iv)/2 + e
−iα(u−iv)/2

] [
e
−iα(u+iv)/2 + e

iα(u+iv)/2
]

=
|〈Af |Ai〉|2

2
{cosh (α Im [〈σ̂a

z〉w]) + cos (αRe [〈σ̂a
z〉w])} , (3.8)

bFor simplicity’s sake the short notation

〈σ̂a
z〉w = Re [〈σ̂a

z〉w] + i Im [〈σ̂a
z〉w] ≡ u+ iv

was introduced in the above equations.
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Ix− = |〈Bx;− |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
e

iα(u−iv)/2 − e−
iα(u−iv)/2

] [
e
−iα(u+iv)/2 − e

iα(u+iv)/2
]

=
|〈Af |Ai〉|2

2
{cosh (α Im [〈σ̂a

z〉w])− cos (αRe [〈σ̂a
z〉w])} , (3.9)

Iy+ = |〈By; + |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
e

iα(u−iv)/2 + i e
−iα(u−iv)/2

] [
e
−iα(u+iv)/2 − i e

iα(u+iv)/2
]

=
|〈Af |Ai〉|2

2
{cosh (α Im [〈σ̂a

z〉w]) + sin (αRe [〈σ̂a
z〉w])} , (3.10)

Iy− = |〈By;− |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
e

iα(u−iv)/2 − i e
−iα(u−iv)/2

] [
e
−iα(u+iv)/2 + i e

iα(u+iv)/2
]

=
|〈Af |Ai〉|2

2
{cosh (α Im [〈σ̂a

z〉w])− sin (αRe [〈σ̂a
z〉w])} , (3.11)

Iz+ = |〈Bz; + |Ψf〉|2 =
|〈Af |Ai〉|2

2
e
−iα(u+iv)/2 e

iα(u−iv)/2

=
|〈Af |Ai〉|2

2
eα Im[〈σ̂a

z〉w] (3.12)

and

Iz− = |〈Bz;− |Ψf〉|2 =
|〈Af |Ai〉|2

2
e

iα(u+iv)/2 e
−iα(u−iv)/2

=
|〈Af |Ai〉|2

2
e−α Im[〈σ̂a

z〉w]. (3.13)

Combining the results for the intensities, all components of the weak value of the

Pauli matrix are explicitly obtained as

〈
σ̂b
x

〉
=

Ix+ − Ix−
Ix+ + Ix−

=
cos (αRe [〈σ̂a

z〉w])

cosh (α Im [〈σ̂a
z〉w])

(3.14a)

〈
σ̂b
y

〉
=

Iy+ − Iy−
Iy+ + Iy−

=
sin (αRe [〈σ̂a

z〉w])

cosh (α Im [〈σ̂a
z〉w])

(3.14b)

〈
σ̂b
z

〉
=

Iz+ − Iz−
Iz+ + Iz−

= tanh (α Im [〈σ̂a
z〉w]) (3.14c)
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In Eq. (3.4) the evolution operator was already expanded, considering only terms

up to the first order in α. To arrive at a direct relation between experimentally ob-

servable quantities and the real as well as the imaginary part of the Pauli operator’s

weak value we expand Eqs. (3.14a) and (3.14b) once again around α. We get

〈
σ̂b
x

〉
=

cos (αRe [〈σ̂a
z〉w])

cosh (α Im [〈σ̂a
z〉w])

= 1− 1

2
α2
(
Re [〈σ̂a

z〉w]2 + Im [〈σ̂a
z〉w]2

)
+O

(
α4
)

≈ cos (α |〈σ̂a
z〉w|) (3.15a)

and

〈
σ̂b
y

〉
=

sin (αRe [〈σ̂a
z〉w])

cosh (α Im [〈σ̂a
z〉w])

= αRe [〈σ̂a
z〉w]− α3 Re [〈σ̂a

z〉w]3

3!
− α3 Re [〈σ̂a

z〉w] Im [〈σ̂a
z〉w]2

2
+O

(
α5
)

= αRe [〈σ̂a
z〉w]− α3 Re [〈σ̂a

z〉w]3

3!

[
1− 3 Im [〈σ̂a

z〉w]2

Re [〈σ̂a
z〉w]2

]
+O

(
α5
)

≈ sin (αRe [〈σ̂a
z〉w]) . (3.15b)

Eqs. (3.14c), (3.15a) and (3.15b) are a very important result, since they allow us to

directly relate real and imaginary part as well as the modulus of 〈σ̂a
z〉w to expecta-

tion values of the two-level quantum system HB, i.e. to intensities obtained in an

experiment. The relations

Re [〈σ̂a
z〉w] =

1

α
arcsin

(〈
σ̂b
y

〉)
=

1

α
arcsin

(
Iy+ − Iy−
Iy+ + Iy−

)
(3.16a)

Im [〈σ̂a
z〉w] =

1

α
artanh

(〈
σ̂b
z

〉)
=

1

α
artanh

(
Iz+ − Iz−
Iz+ + Iz−

)
(3.16b)

|〈σ̂a
z〉w| =

1

α
arccos

(〈
σ̂b
x

〉)
=

1

α
arccos

(
Ix+ − Ix−
Ix+ + Ix−

)
(3.16c)

hold up to the first order in α. Note that they not only link all components of

the weak value to experimentally accessible quantities, but also hint at essential

properties of the weak value. In general the weak value gives no meaningful infor-

mation about a single event, but only about the ensemble average [Johansen, 2004,

Dressel et al., 2014]. This property is evident in Eqs. (3.16), since they cannot be

evaluated using a measurement of a single particle. The measurements needs to

be repeated many times and therefore the knowledge about the whole ensemble is

necessary to determine the expectation values of the σ̂b
j operators.

It should be emphasized here that, given the intensities in Eqs. (3.8) to (3.13), we
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can derive other relations in order to extract components of the Pauli operator’s

weak value. For example the imaginary part of 〈σ̂a
z〉w can be expressed by the sum

of Ix+ and Ix− or Iy+ and Iy− as

Im [〈σ̂a
z〉w] =

1

α
arccosh

(
Iy+ + Iy−

|〈Af |Ai〉|2
)
, (3.17)

where |〈Af |Ai〉|2 acts as a normalization factor. However, Eq. (3.17) is obviously

plain wrong! For an arbitrary postselected state the imaginary part of 〈σ̂a
z〉w can be

negative. This means that the arccosh-function in Eq. (3.17) has to yield a negative

number somehow. This is only possible if the function’s argument becomes negative.

In Eq. (3.17) the top of the fraction is a sum of two count rates, which is always

positive. At the bottom of the fraction is a quantity’s absolute square, which can

never become negative by definition. Thus the argument in Eq. (3.17) will never

become negative and it will never yield the imaginary part of the complex weak

value.

Where did we go wrong? In Eq. (3.4) we expanded the evolution operator and

neglected all terms but the linear one. In Eq. (3.6) we re-exponentiated, even though

we only had terms of linear order in α. By using the exponential we made an

approximation, which is afflicted with an error. This ultimately lead to the incorrect

relation in Eq. (3.17). Then the question arises how we can be sure that the other

relations we derived will hold? Fortunately the coupling between our two two-level

systems can be solved analytically and the intensities expected in the experiment

can be calculated.

3.1.2 Expected intensities for ideal situations

The intensities Ix+, Ix−, Iy+, Iy−, Iz+ and Iz− are calculated analytically by tak-

ing the system’s initial wave function given by Eq. (3.2) and letting the coupling

Hamiltonian act on it.

|Ψ′〉 = e
−iασ̂b

z σ̂
a
z/2

[√
1

2
(|Bz; +〉+ |Bz;−〉)

√
1

2
(|Az; +〉+ |Az;−〉)

]

= e
−iασ̂b

z σ̂
a
z/2 1

2
(|Bz; +〉 |Az; +〉+ |Bz; +〉 |Az;−〉+ |Bz;−〉 |Az; +〉+ |Bz;−〉 |Az;−〉)

=
1

2

(
e
−iα/2 |Bz; +〉 |Az; +〉+ e

iα/2 |Bz; +〉 |Az;−〉+

+e
iα/2 |Bz;−〉 |Az; +〉+ e

−iα/2 |Bz;−〉 |Az;−〉
)

(3.18)
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Now we postselect on the final state to get |Ψf〉 = |Af〉 〈Af |Ψ′〉

|Ψf〉 = |Af〉
[
cos

(
θ

2

)
〈Az; +|+ sin

(
θ

2

)
e−iφ 〈Az;−|

]
×

× 1

2

[
e−

iα/2 |Bz; +〉 |Az; +〉+ e
iα/2 |Bz; +〉 |Az;−〉+

+e
iα/2 |Bz;−〉 |Az; +〉+ e

−iα/2 |Bz;−〉 |Az;−〉
]

= |Af〉
1

2

[
cos

(
θ

2

)
e
−iα/2 |Bz; +〉+ cos

(
θ

2

)
e

iα/2 |Bz;−〉+

+ sin

(
θ

2

)
e−iφe

iα/2 |Bz; +〉+ sin

(
θ

2

)
e−iφe

−iα/2 |Bz;−〉
]

= |Af〉
1

2

{[
cos

(
θ

2

)
e
−iα/2 + sin

(
θ

2

)
e−iφe

iα/2

]
|Bz; +〉+

+

[
cos

(
θ

2

)
e

iα/2 + sin

(
θ

2

)
e−iφe

−iα/2

]
|Bz;−〉

}
(3.19)

Using Eq.(3.19) the intensities Ix+, Ix−, Iy+, Iy−, Iz+ and Iz− are found to be

Ix+ = |〈Bx; + |Ψf〉|2 =
1

2
cos
(α

2

)2

[1 + cos (φ) sin (θ)] , (3.20)

Ix− = |〈Bx;− |Ψf〉|2 =
1

2
sin
(α

2

)2

[1− cos (φ) sin (θ)] , (3.21)

Iy+ = |〈By; + |Ψf〉|2 =
1

4
[1 + cos (θ) sin (α) + cos (α) cos (φ) sin (θ)] , (3.22)

Iy− = |〈By;− |Ψf〉|2 =
1

4
[1− cos (θ) sin (α) + cos (α) cos (φ) sin (θ)] , (3.23)

Iz+ = |〈Bz; + |Ψf〉|2 =
1

4
[1 + cos (α− φ) sin (θ)] (3.24)

and

Iz− = |〈Bz;− |Ψf〉|2 =
1

4
[1 + cos (α + φ) sin (θ)] . (3.25)
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Putting the intensities given above, into Eqs. (3.16a), (3.16b) and (3.16c), we get

Re [〈σ̂a
z〉w] =

1

α
arcsin

[
1

csc (α) sec (θ) + cos (φ) cot (α) tan (θ)

]
. (3.26a)

Im [〈σ̂a
z〉w] =

1

α
artanh

[
sin (α) sin (φ)

cos (α) cos (φ) + csc (θ)

]
(3.26b)

|〈σ̂a
z〉w| =

1

α
arccos

[
cos (α) + cos (φ) sin (θ)

1 + cos (α) cos (φ) sin (θ)

]
(3.26c)

The analytic solution of the weak value is given by

〈σ̂a
z〉w =

〈Af | σ̂a
z |Ai〉

〈Af |Ai〉
=

cos
(
θ
2

)
− sin

(
θ
2

)
e−iφ

cos
(
θ
2

)
+ sin

(
θ
2

)
e−iφ

=
cos (θ)

1 + sin (θ) cos (φ)
− i

sin (φ) sin (θ)

1 + sin (θ) cos (φ)
(3.27)

The analytic solution of 〈σ̂a
z〉w can now be compared to an experimentally expected

outcome for ideal measurements, which is given by the Eqs. (3.26a) to (3.26c). The

result of such a comparison is depicted in Fig. 3.2, where Eqs. (3.26a) to (3.26c) are

plotted in dashed red and the real and imaginary part of the weak value’s analytic

solution as well as its modulus are plotted in solid blue. For fixed parameters of φ =

60◦ and α = 15◦ a perfect agreement between the experimentally expected outcome

and the analytic solution is found. This leads to the conclusion that Eqs. (3.16a) to

(3.16c) can indeed be used to extract 〈σ̂a
z〉w from our measurement data.

3.1.3 Interactions with arbitrary strengths

For a deeper understanding we show here how relations between experimentally

observable intensities and the weak value are derived without approximations. The

derived relations can be used for measurements with arbitrary interaction strengths.

Again the system’s preselected sate vector given by Eq.(3.2) is the starting point

of the calculation. The evolution operator containing the interaction Hamiltonian

acts upon it, but now instead of performing a series expansion around α the exact

formula

exp
(
−iασ̂a

z σ̂
b
z/2
)

= cos (α/2)− iσ̂a
z σ̂

b
z sin (α/2) (3.28)
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Figure 3.2: Comparison of the analytic solution and the experimentally expected out-
come: The experimentally expected outcome [Eqs. (3.26a) to (3.26c)] is plotted in
dashed red. The real and imaginary part of the weak value’s analytic solution (top and
middle) as well as its modulus (bottom) are plotted in solid blue. The analytic solution
is given by Eq.(3.27). The parameters for the plot are φ = 60◦ and α = 15◦.
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is used [Sakurai and Napolitano, 2011]. This is equivalent to taking all orders of α

into account. The action of the evolution operator is then given by

|Ψ′〉 = e
−iασ̂a

zσ̂
b
z/2 |Ψi〉 =

[
cos
(α

2

)
− iσ̂a

z σ̂
b
z sin

(α
2

)]
|Bx; +〉 |Ax; +〉

= cos
(α

2

)
|Bx; +〉 |Ax; +〉 − iσ̂a

z σ̂
b
z sin

(α
2

)
|Bx; +〉 |Ax; +〉

= cos
(α

2

)
|Bx; +〉 |Ax; +〉 − iσ̂a

z sin
(α

2

)
|Bx;−〉 |Ax; +〉 , (3.29)

Now the postselection on the the final state |Af〉 is performed, leading to

|Ψf〉 = |Af〉
[
cos
(α

2

)
〈Af |Ai〉 |Bx; +〉 − i sin

(α
2

)
|Bx;−〉 〈Af | σ̂a

z |Ai〉
]

= |Af〉 〈Af |Ai〉
[
cos
(α

2

)
|Bx; +〉 − i sin

(α
2

)
〈σ̂a

z〉w |Bx;−〉
]

= |Af〉 〈Af |Ai〉
[
cos
(α

2

)
|Bx; +〉 − i sin

(α
2

)
(u+ iv) |Bx;−〉

]

= |Af〉
〈Af |Ai〉√

2

{[
cos
(α

2

)
− i sin

(α
2

)
(u+ iv)

]
|Bz; +〉+

+
[
cos
(α

2

)
+ i sin

(α
2

)
(u+ iv)

]
|Bz;−〉

}
. (3.30)

Again the six intensities Ix±, Iy± and Iz± are of interest. They are given by

Ix+ = |〈Bx; + |Ψf〉|2 = |〈Af |Ai〉|2 cos
(α

2

)2

, (3.31)

Ix− = |〈Bx;− |Ψf〉|2 = |〈Af |Ai〉|2 sin
(α

2

)2

(v − iu) (v + iu)

= |〈Af |Ai〉|2 sin
(α

2

)2 (
u2 + v2

)

= |〈Af |Ai〉|2 sin
(α

2

)2

|〈σ̂a
z〉w|

2 , (3.32)

Iy+ = |〈By; + |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
cos
(α

2

)
(1− i)− sin

(α
2

)
(iu− v − u− iv)

]
×

×
[
cos
(α

2

)
(1 + i)− sin

(α
2

)
(−iu− v − u+ iv)

]

=
|〈Af |Ai〉|2

4

{
1 +

[
u2 + v2

]
+
[
1−

(
u2 + v2

)]
cos (α) + 2u sin (α)

}

=
|〈Af |Ai〉|2

4

{
1 + cos (α) + [1− cos (α)] |〈σ̂a

z〉w|
2 + 2 Re [〈σ̂a

z〉w] sin (α)
}
,

(3.33)
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Iy− = |〈By;− |Ψf〉|2

=
|〈Af |Ai〉|2

4

[
cos
(α

2

)
(1 + i)− sin

(α
2

)
(iu− v + u+ iv)

]
×

×
[
cos
(α

2

)
(1− i)− sin

(α
2

)
(−iu− v + u− iu)

]

=
|〈Af |Ai〉|2

4

{
1 +

[
u2 + v2

]
+
[
1−

(
u2 + v2

)]
cos (α)− 2u sin (α)

}

=
|〈Af |Ai〉|2

4

{
1 + cos (α) + [1− cos (α)] |〈σ̂a

z〉w|
2 − 2 Re [〈σ̂a

z〉w] sin (α)
}
,

(3.34)

Iz+ = |〈Bz; + |Ψf〉|2

=
|〈Af |Ai〉|2

2

[
cos
(α

2

)
− i sin

(α
2

)
(u+ iv)

] [
cos
(α

2

)
+ i sin

(α
2

)
(u− iv)

]

=
|〈Af |Ai〉|2

4

[
1 + u2 + v2 −

(
u2 + v2 − 1

)
cos (α) + 2v sin (α)

]

=
|〈Af |Ai〉|2

4

{
1 + cos (α)− [cos (α)− 1] |〈σ̂a

z〉w|
2 + 2 Im [〈σ̂a

z〉w] sin (α)
}

(3.35)

and

Iz− = |〈Bz; + |Ψf〉|2

=
|〈Af |Ai〉|2

2

[
cos
(α

2

)
+ i sin

(α
2

)
(u+ iv)

] [
cos
(α

2

)
− i sin

(α
2

)
(u− iv)

]

=
|〈Af |Ai〉|2

4

[
1 + u2 + v2 −

(
u2 + v2 − 1

)
cos (α)− 2v sin (α)

]

=
|〈Af |Ai〉|2

4

{
1 + cos (α)− [cos (α)− 1] |〈σ̂a

z〉w|
2 − 2 Im [〈σ̂a

z〉w] sin (α)
}
.

(3.36)

At this point one easily sees why the relation given by Eq. (3.17) fails to yield the

imaginary part of the weak value. If an exact calculation using no approximations

is performed, the imaginary part does not appear independently in the intensities

Ix+, Ix−, Iy+ and Iy−. The imaginary part of 〈σ̂a
z〉w appears nowhere on its own. It

is always squared and always in combination with Re [〈σ̂a
z〉w]. This means that the

only information obtained from these intensities about the imaginary part is some-

how extracted from the weak value’s modulus. We can only extract the imaginary

part’s modulus. That is why one needs the intensities Iz+ and Iz− to determine

the imaginary part. Again we calculate the expectation 〈σ̂b
x〉, 〈σ̂b

y 〉 and 〈σ̂b
z 〉, to see

whether they give the information needed to determine the weak value. Starting
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with
〈
σ̂b
x

〉
we find

〈
σ̂b
x

〉
=

Ix+ − Ix−
Ix+ + Ix−

=
cos
(
α
2

)2 − |〈σ̂a
z〉w|

2 sin
(
α
2

)2

cos
(
α
2

)2
+ |〈σ̂a

z〉w|
2 sin

(
α
2

)2 , (3.37)

some basic mathematical simplifications show that the modulus of the Pauli opera-

tor’s weak value can be determined by

|〈σ̂a
z〉w| = cot

(α
2

)√Ix−
Ix+

. (3.38)

Note that Eq. (3.38) is exact. No approximations are made during its derivation.

The expectation value of σ̂b
y becomes

〈
σ̂b
y

〉
=

Iy+ − Iy−
Iy+ + Iy−

=
2 Re [〈σ̂a

z〉w] sin (α)

1 + |〈σ̂a
z〉w|

2 +
(
1− |〈σ̂a

z〉w|
2) cos (α)

. (3.39)

Similarly we find for the expectation value of σ̂b
z

〈
σ̂b
z

〉
=

Iz+ − Iz−
Iz+ + Iz−

=
2 Im [〈σ̂a

z〉w] sin (α)

1 + |〈σ̂a
z〉w|

2 +
(
1− |〈σ̂a

z〉w|
2) cos (α)

. (3.40)

Note that the expectation values given by Eqs. (3.39) and (3.40) have no direct

relations between the weak value and experimentally observable intensities, which

make it possible to extract the real and imaginary part of the weak value respectively.

Nevertheless it can be shown that they are equivalent to relations (3.16a) and (3.16b)

up to the first order of α:

〈
σ̂b
y

〉
=

2 Re [〈σ̂a
z〉w] sin (α)

1 + |〈σ̂a
z〉w|

2 +
(
1− |〈σ̂a

z〉w|
2) cos (α)

≈ Re [〈σ̂a
z〉w] +O

(
α2
)
, (3.41a)

〈
σ̂b
z

〉
=

2 Im [〈σ̂a
z〉w] sin (α)

1 + |〈σ̂a
z〉w|

2 +
(
1− |〈σ̂a

z〉w|
2) cos (α)

≈ Im [〈σ̂a
z〉w] +O

(
α2
)
. (3.41b)

Making the same expansions for Eqs. (3.14c) and (3.15b) one finds the equivalency

with the approximation α� 1.

The direct relations between the components of the weak value and experimentally
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observable quantities are given by.

Ix+ − Ix− = |〈Af |Ai〉|2
[
cos
(α

2

)2

− |〈σ̂a
z〉w|

2 sin
(α

2

)2
]
, (3.42a)

Ix+ + Ix− = |〈Af |Ai〉|2
[
cos
(α

2

)2

+ |〈σ̂a
z〉w|

2 sin
(α

2

)2
]
, (3.42b)

Iy+ − Iy− = |〈Af |Ai〉|2 Re [〈σ̂a
z〉w] sin (α) , (3.42c)

Iy+ + Iy− =
|〈Af |Ai〉|2

2

{
1 + cos (α)− [cos (α)− 1] |〈σ̂a

z〉w|
2} , (3.42d)

Iz+ − Iz− = |〈Af |Ai〉|2 Im [〈σ̂a
z〉w] sin (α) , (3.42e)

Iz+ + Iz− =
|〈Af |Ai〉|2

2

{
1 + cos (α)− [cos (α)− 1] |〈σ̂a

z〉w|
2} . (3.42f)

The relations

Re [〈σ̂a
z〉w] =

1

2
cot
(α

2

) Iy+ − Iy−
Ix+

(3.43)

and

Im [〈σ̂a
z〉w] =

1

2
cot
(α

2

) Iz+ − Iz−
Ix+

(3.44)

allow to extract the real and the imaginary part of the Pauli operator’s weak value,

without using any approximations or dealing with any normalization factors. As

an incidental remark we now want to show how it is possible to use the system

HB to strongly measure the |Ax; +〉 state of HA in an ideal Stern-Gerlach sense.

This means that only maximum interaction strengths (α = π/2) are considered and

that the the initial state |Ax; +〉 should be separated into its eigenstates, i.e. the

measurement should allow to select the state vectors |Az; +〉 and |Az;−〉.
We start with the system’s preselected sate vector given by Eq.(3.2)

|Ψi〉 = |Ai〉 |Bi〉 = |Ax; +〉 |Bx; +〉 =
1√
2

(|Bz; +〉+ |Bz;−〉) |Ax; +〉 . (3.45)

and let the the evolution operator with the interaction Hamiltonian act on the state

vector:

|Ψ′〉 = e
−iασ̂a

zσ̂
b
z/2 |ψ〉 = e

−iασ̂a
zσ̂

b
z/2 |Bx; +〉 |Ax; +〉

=
[
cos
(α

2

)
− i σ̂a

z σ̂
b
z sin

(α
2

)]
|Bx; +〉 |Ax; +〉 (3.46)
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We set α = π/2 and get

|Ψ′〉 (π/2) =
1√
2
|Ax; +〉 |Bx; +〉 − i√

2
|Ax;−〉 |Bx;−〉

=
1√
8

[|Bz; +〉 |Az; +〉+ |Bz; +〉 |Az;−〉+ |Bz;−〉 |Az; +〉+ |Bz;−〉 |Az;−〉−

−i (|Bz; +〉 |Az; +〉 − |Bz; +〉 |Az;−〉 − |Bz;−〉 |Az; +〉+ |Bz;−〉 |Az;−〉)]

=
1√
8
{[(1− i) |Az; +〉+ (1 + i) |Az;−〉] |Bz; +〉+

+ [(1 + i) |Az; +〉+ (1− i) |Az;−〉] |Bz;−〉} (3.47)

Finally we add an additional phase shift of exp (iπ/4) = 1+i/
√

2 to the state |Bz; +〉
and one of exp (−iπ/4) = 1−i/

√
2 to |Bz;−〉.

|Ψ′′〉 =
1√
16
{(1 + i) [(1− i) |Az; +〉+ (1 + i) |Az;−〉] |Bz; +〉+

+ (1− i) [(1 + i) |Az; +〉+ (1− i) |Az;−〉] |Bz;−〉}

=
1

2
{[|Az; +〉+ i |Az;−〉] |Bz; +〉+ [|Az; +〉 − i |Az;−〉] |Bz;−〉} (3.48)

To select either the |Az; +〉 or the |Az;−〉 states of the initial superposition state

|Ax; +〉 one needs to postselect on either |Bx; +〉 or |Bx;−〉 respectively.Then one

can select the |Az; +〉 state

|Ψf〉x+ = |Bx;−〉 〈Bx;−| |Ψ′′〉

=
1√
32
{2 |Az; +〉 − 2i |Az;−〉+ 2 |Az; +〉+ 2i |Az;−〉} |Bx; +〉

=
1√
2
|Az; +〉 |Bx; +〉 (3.49)

or the |Az;−〉 state

|Ψf〉x− = |Bx;−〉 〈Bx;−| |Ψ′′〉

=
1√
32
{2 |Az; +〉 − 2i |Az;−〉 − 2 |Az; +〉 − 2i |Az;−〉} |Bx;−〉

=
−i√

2
|Az;−〉 |Bx;−〉 . (3.50)

We see that two two-level quantum systems can be used to build a Stern-Gerlach like

apparatus, which separates the |Az; +〉 and |Az;−〉 states of an initial state |Ax; +〉
up to an irrelevant phase.
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3.2 Weak values of projection operators

In this section we show how to completely determine the weak value of projection

operators using two two-level quantum systems. As in the previous section we want

to measure operators of system HA using HB as a meter system.

Let 〈Π̂a
z±〉w be the projection operator onto the states |Az;±〉. If one relies on the

completeness of two-level system, i.e. if one uses the relations

〈σ̂a
z〉w = 〈Π̂a

z+〉w − 〈Π̂a
z−〉w (3.51a)

1 = 〈Π̂a
z+〉w + 〈Π̂a

z−〉w (3.51b)

the measurement of the Pauli operator σ̂a
z also yields the projection operators’ weak

values 〈Π̂a
z+〉w and 〈Π̂a

z−〉w. Here we show a more direct way, which does not rely on

the assumption of linearity and completeness.

3.2.1 Weak interaction

Again we want to use the same preselected state as in the last section, which was

given by Eq. (3.2). Then, in order to measure 〈Π̂a
z±〉w we have to change the inter-

action Hamiltonian accordingly. We modify the Hamiltonian from Eq. (3.3) to

Ĥint =
αΠ̂a

z±σ̂
b
z

2
. (3.52)

Instead of coupling two Pauli operators to each other the interaction Hamiltonian

now couples projection operators of system A to the meter system B. The action of

the Hamiltonian can still be understood as a rotation of the state vector |Ai〉 around

the z-axis of Hilbert space A by the angle α conditioned on the Hilbert space of B.

While in Eq. (3.3) the conditioning was symmetric on the states |Bz;±〉, it is now

asymmetric on either |Bz; +〉 or |Bz;−〉.
First we make the standard weak measurement approach, in which we series expand

an evolution operator and then neglect all terms higher then the linear order.

|Ψ′〉 = e
−iαΠ̂a

z±σ̂
b
z/2 |Ψi〉 ≈

(
1− iαΠ̂a

z±σ̂
b
z/2
)
|Ψi〉 =

(
1− iαΠ̂a

z±σ̂
b
z/2
)
|Bi〉 |Ai〉 (3.53)
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It is trivial to show that Eqs. (3.16a) to (3.16c) will hold for the case of projection

operators as well. We can extract all parts of 〈Π̂a
z±〉w using

Re
[〈

Π̂a
z±

〉
w

]
=

1

α
arcsin

(〈
σ̂b
y

〉)
(3.54a)

Im
[〈

Π̂a
z±

〉
w

]
=

1

α
artanh

(〈
σ̂b
z

〉)
(3.54b)

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣ =
1

α
arccos

(〈
σ̂b
x

〉)
. (3.54c)

3.2.2 Strong interactions

Here we now want to proceed with the case of strong interactions. For this we have

to take a closer look at the evolution operator U (α) = exp
(
−iαΠ̂a

z±σ̂
b
z/2
)
. The exact

formula we used in subsection 3.1.3 does not hold any more since
(

Π̂a
z±

)2

6= 1.

However, we can use the idempotence of projection operators to find a different

analytic solution for the evolution operator.

U (α) = e
−iαΠ̂a

z±σ̂
b
z/2

= 1− i

2
αΠ̂a

z±σ̂
b
z −

1

8
α2
(

Π̂a
z±

)2 (
σ̂b
z

)2
+

i

48
α3
(
σ̂b
z

)3
(

Π̂a
z±

)3

+O
(
α4
)

= 1− i

2
αΠ̂a

z±σ̂
b
z −

1

8
α2Π̂a

z± +
i

48
α3σ̂b

z Π̂a
z± + · · ·

= 1− Π̂a
z±

(
i

2
ασ̂b

z +
1

8
α2 − i

48
α3σ̂b

z + · · ·
)

= 1− Π̂a
z±

{
i

[
1

2
ασ̂b

z −
(
σ̂b
z

)3

3!

(α
2

)3

+ · · ·
]

+

[
1

2!

(α
2

)2

− 1

4!

(α
4

)2

+ · · ·
]}

= 1− Π̂a
z±

[
iσ̂b
z sin

(α
2

)
+ 2 sin

(α
4

)2
]

(3.55)

Equation. (3.55) is exact [Vallone and Dequal, 2016]. No approximations are made

and it is valid for any angle α. As in the previous section we can now let the

evolution operator act upon our system’s state vector:

|Ψ′〉 = e
−iασ̂b

z Π̂a
z±/2 |Ψi〉 = e

−iασ̂b
z Π̂a

z±/2 |Ai〉 |Bi〉

=

{
1− Π̂a

z±

[
iσ̂b
z sin

(α
2

)
+ 2 sin

(α
4

)2
]}
|Ai〉 |Bx; +〉

= |Bx; +〉 |Ai〉 − Π̂a
z± |Ai〉

[
iσ̂b
z sin

(α
2

)
+ 2 sin

(α
4

)2
]
|Bx; +〉

= |Bx; +〉 |Ai〉 − Π̂a
z± |Ai〉

[
i sin

(α
2

)
|Bx;−〉+ 2 sin

(α
4

)2

|Bx; +〉
]
. (3.56)
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Now postselection on some final state |Af〉 is carried out.

|Ψf〉 = |Af〉 〈Af |Ψ′〉

= |Af〉 〈Af |Ai〉 |Bx; +〉 −
〈

Af

∣∣∣ Π̂a
z±

∣∣∣Ai

〉[
i sin

(α
2

)
|Bx;−〉+ 2 sin

(α
4

)2

|Bx; +〉
]

= |Af〉 〈Af |Ai〉
{
|Bx; +〉 −

〈
Π̂a
z±

〉
w

[
i sin

(α
2

)
|Bx;−〉+ 2 sin

(α
4

)2

|Bx; +〉
]}

= |Af〉
〈Af |Ai〉√

2

{[
1− i sin

(α
2

)〈
Π̂a
z±

〉
w
− 2 sin

(α
4

)2 〈
Π̂a
z±

〉
w

]
|Bz; +〉+

+

[
1 + i sin

(α
2

)〈
Π̂a
z±

〉
w
− 2 sin

(α
4

)2 〈
Π̂a
z±

〉
w

]
|Bz;−〉

}

(3.57)

Similar to the treatment of weak values of Pauli operators, the weak value of pro-

jection operator Π̂a
z± gets “encoded” on the two-level quantum system B. In the

limiting case of zero interaction, i.e. α = 0, the weak value vanishes. To read out

the the real and imaginary part of the weak value, as well as its modulus the meter

system B has to be evaluated. For this we perform strong projective measurements

along the six directions |Bx;±〉, |By;±〉 and |Bz;±〉. We find the six intensities

corresponding to the projective spin measurements to be

Ix+ = |〈Bx; + |Ψf〉|2

= |〈Af |Ai〉|2
{

1− 4 Re
[〈

Π̂a
z±

〉
w

]
sin
(α

4

)2

+ 4
∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

sin
(α

4

)4
}
, (3.58)

Ix− = |〈Bx;− |Ψf〉|2

= |〈Af |Ai〉|2
∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

sin
(α

2

)2

, (3.59)
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Iy+ = |〈By; + |Ψf〉|2

=
|〈Af |Ai〉|2

2

{
1 +

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

[2 + sin (α)]− 2 Re
[〈

Π̂a
z±

〉
w

]
−

−2
[
cos
(α

2

)
+ sin

(α
2

)] [∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− Re
[〈

Π̂a
z±

〉
w

]]}
,

(3.60)

Iy− = |〈By;− |Ψf〉|2

=
|〈Af |Ai〉|2

2

{
1 +

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

[2− sin (α)]− 2 Re
[〈

Π̂a
z±

〉
w

]
−

−2
[
cos
(α

2

)
− sin

(α
2

)] [∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− Re
[〈

Π̂a
z±

〉
w

]]}
,

(3.61)

Iz+ = |〈Bz; + |Ψf〉|2

=
|〈Af |Ai〉|2

2

{
1 + 2

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− 2 Re
[〈

Π̂a
z±

〉
w

]
+ 2 sin

(α
2

)
Im
[〈

Π̂a
z±

〉
w

]
−

−2 cos
(α

2

)[∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− Re
[〈

Π̂a
z±

〉
w

]]}
, (3.62)

and

Iz− = |〈Bz;− |Ψf〉|2

=
|〈Af |Ai〉|2

2

{
1 + 2

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− 2 Re
[〈

Π̂a
z±

〉
w

]
− 2 sin

(α
2

)
Im
[〈

Π̂a
z±

〉
w

]
−

−2 cos
(α

2

)[∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− Re
[〈

Π̂a
z±

〉
w

]]}
, (3.63)

These rather complicated expressions can be dramatically simplified, if we only

consider the special case of a measurement with maximum strength, i.e. if α = −π.

In this case we get

Ix+ = |〈Af |Ai〉|2
{

1− 2 Re
[〈

Π̂a
z±

〉
w

]
+
∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2
}
, (3.64a)

Ix− = |〈Af |Ai〉|2
∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

, (3.64b)

Iy+ =
|〈Af |Ai〉|2

2

{
1− 4 Re

[〈
Π̂a
z±

〉
w

]
+ 4

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2
}
, (3.64c)

Iy− =
|〈Af |Ai〉|2

2
, (3.64d)

Iz+ =
|〈Af |Ai〉|2

2

{
1 + 2

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− 2 Re
[〈

Π̂a
z±

〉
w

]
− 2 Im

[〈
Π̂a
z±

〉
w

]}
,(3.64e)

Iz− =
|〈Af |Ai〉|2

2

{
1 + 2

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣
2

− 2 Re
[〈

Π̂a
z±

〉
w

]
+ 2 Im

[〈
Π̂a
z±

〉
w

]}
.(3.64f)
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Using Eqs. (3.64a) to (3.64f) it is easy to find relations to extract the real and

imaginary part of A’s projection operator as well as its modulus.

Re
[〈

Π̂a
z±

〉
w

]
=

2 Ix− + Iy− − Iy+

4 Iy−
, (3.65a)

Im
[〈

Π̂a
z±

〉
w

]
=

Iz− − Iz+
4 Iy−

, (3.65b)

∣∣∣
〈

Π̂a
z±

〉
w

∣∣∣ =

√
Ix−

2 Iy−
. (3.65c)

These relations can be used to completely determine a projection operator’s using

maximum strength interactions.

3.3 Summary

In this chapter measurement protocols were presented, to determine the weak value

of the Pauli operator σ̂a
z and that of the projection operator Π̂a

z± using weak and

strong interactions. For all schemes the initial state of both the investigated and

the meter system were assumed to be aligned along the positive x-direction. While

this choice seems arbitrary in the theoretical context of chapter 3, the directions are

carefully selected bearing in mind the experimental conditions of neutron interfer-

ometry. In the next chapters the reason for this choice is shown. The analysis of

this chapter is restricted to the z-component of the Pauli and the projection oper-

ator. However, it is straightforward to change the measurement scheme in order to

measure operators along other directions. To do so the interaction Hamiltonian has

to be changed accordingly. Again the choice for z-component seems arbitrary, but

has solid experimental reasons.



CHAPTER 4

Spin weak values

In this chapter neutron interferometric experiments are presented, in which the

weak value of the Pauli spin operator σ̂s
z is determined. In the experiments the

measurement scheme described in chapter 3, is implemented. The system of interest

is the neutron spin degree of freedom S and the neutron path degree of freedom P

serves as a meter system.

Parts of the results are published in [Sponar et al., 2015] and [Sponar et al., 2016].

4.1 Background and motivation of the experiment

To determine the Pauli operator’s weak value, the neutron spin is weakly coupled

to the neutron’s path degree of freedom. The way to achieve this in an actual

experiment using neutron optical components is depicted schematically in Fig. 4.1.

The experiment starts with a polarized neutron beam, so that the neutron’s spin

state is given by |Sz; +〉. Before the neutron enters the interferometer the spin is

turned by π
2

around the y-axis, leading to the initial spin state |Si〉 ≡ |Sx; +〉. As

soon as the neutron enters the interferometer, its state vector has to be extended

by a path dependent part:

|Ψi〉 = |Pi〉 |Si〉 =

√
1

2

(
|Pz; +〉+ eiχ |Pz;−〉

)
|Sx; +〉 , (4.1)

where the states |Pz; +〉 and |Pz;−〉 are the eigenstates of the path I and II re-

spectively. The parameter χ describes the relative phase between the paths. For

56
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Figure 4.1: Artistic depiction of the experimental setup: The neutron beam passes
through polarizing magnetic prisms (P). To prevent depolarization a magnetic guide field
(GF) is applied around the whole setup (not depicted). Before the neutrons enter the
interferometer a DC coil (DC1) prepares the initial spin state |Si〉. At the interferometer’s
first plate the neutron beam gets split into path I and II, preparing |Pi〉. In each beam
path small coils in Helmholtz configuration (HCj in path j) allow the manipulation of
the neutron spin in the xy-plane. A cadmium holder (CD) can be rotated inside the
interferometer to block either one of the beam paths. The phase shifter (PS) tunes
the relative phase χ between I and II and therefore the selection of the state |Pf〉.
The postselection on the spin state |Sf〉 is performed using a second DC coil (DC2) on
a translation stage (TS) in combination with a CoTi supermirror analyzer (A). Of the
two outgoing beams of the interferometer, only the O-beam is spin analyzed (O). Both
detectors (O & H) are 3He counter tubes.

simplicity’s sake, we assume that the phase shifter is in the position χ = 0, leading

to

|Ψi〉 = |Pi〉 |Si〉 =

√
1

2
(|Pz; +〉+ |Pz;−〉)

√
1

2
(|Sz; +〉+ |Sz;−〉) . (4.2)

After the preselection the state vector of both degrees of freedom is aligned along the

positive x-direction, as proposed in the measurement protocol presented in chapter 3.

This is an experimentally convenient situation. The spin state can be produced using

a combination of a polarizer and a simple spin rotator. The path state |Px; +〉 is

automatically set by the neutron interferometer’s first plate, which acts as a 50:50

beam splitter for the incoming beam by amplitude division. At the interferometer’s

first plate the preselection is accomplished.

Recalling our measurement scheme a coupling between the two degrees of freedom
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is created. This is done by performing path-dependent spin rotations. To be precise

the spin is rotated by a certain angle α around the z-axis in the xy-plane. In addition

the spin rotation is positive (clockwise) in path I and negative (counter clockwise)

in path II. The interaction Hamiltonian for such a measurement is given by

Ĥint = −~µ · ~BΠ̂p
z+ + ~µ · ~BΠ̂p

z−, (4.3)

where ~µ is the neutron’s magnetic moment, ~B = (0, 0, Bz) an externally applied

magnetic field and Π̂p
z± are the projection operators on the path eigenstates |Pz; +〉

and |Pz;−〉 respectively. Just like the choice for the initial state, the rotational axis

is also chosen in a very convenient manner from an experimental point of view. The

spin rotation is performed with coils in Helmholtz configuration, placing no material

in the neutron beam and thus avoiding decoherence.

If an evolution operator is given by an interaction Hamiltonian its effect upon the

initial state of the composite system is written in the form

|Ψ′〉 = e
−i/~

∫
Ĥintdt |Ψi〉 = e

−iασ̂s
zσ̂

p
z/2 |Ψi〉 . (4.4)

The parameter α describes an angle of rotation and therefore represents the inter-

action strength of the measurement. It is given by −2µBzτ/~, where τ is the neutron’s

time of flight in the magnetic field. σ̂s
z is the spin operator, that describes the rota-

tion around the z-axis. σ̂p
z is a linear combination of the path projection operators.

It is given by a Pauli matrix as σ̂p
z = |Pz; +〉 〈Pz; +|−|Pz;−〉 〈Pz;−| in consideration

of the fact that the spin rotation is positive along path I and negative along path

II. The condition for a weak measurement is fulfilled by making α small.

At the interferometer’s third plate the beams a recombined and the final path state

|Pf〉 is postselected. Subsequently a combination of a coil mounted on a translation

stage and a CoTi super mirror carries out the postselection onto a general spin state

|Sf〉 = cos

(
θ

2

)
|Sz; +〉+ sin

(
θ

2

)
eiφ |Sz;−〉 (4.5)

parameterized with φ and θ denoting azimuth and polar angle on the spin Bloch

sphere respectively. This neutron interferometric setup permits all procedures nec-

essary to complete each step of the weak value measurement protocol of chapter 3.
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4.2 Experimental realizations of spin weak mea-

surements

To experimentally realize the measurement of 〈σ̂s
z〉w the neutron’s spin and path de-

gree of freedom should be well manipulated. To control the neutron spin, magnetic

fields are well suited, which utilize the spin’s Larmor precession. In our experiment

the control of the path degree of freedom is achieved by inserting a phase shifter and

beam blocks into the interferometer. The phase shifter makes it possible to tune

the relative phase χ between beam path I and II, making among others the states

|Px;±〉 and |Py;±〉 accessible. By performing phase shifter scans, during which the

spin manipulation inside the interferometer is turned on and off alternately, two

interferograms are recorded together, which then allow one to extract the phase of

the empty interferogram and evaluate the expectation values of σ̂p
x and σ̂p

y .

To evaluate σ̂p
z the eigenstates of path I and II have to be accessed. This is done

by measuring intensities with blocking one beam path at a time. If either one of

the beam paths is blocked, no interference effects appear and one ends up with a

purely neutron polarimetric setup, needed to determine Iz±. This has the advantage

of much higher experimental stability, such as resistance against temperature fluc-

tuations and vibrations. Consequently Im [〈σ̂s
z〉w] was determined with two different

approaches. One was performed using the neutron interferometric setup with alter-

natively blocked beam paths at the S18 beam line at the research reactor of the Insti-

tute Laue Langevin (ILL) [Kroupa et al., 2000, Geppert et al., 2014]. A schematic

drawing of the interferometric setup at ILL was already depicted in Fig. 4.1. The

measurements were performed during reactor cycle 169 in April/May in 2013. For

the experiment a triple Laue interferometer (the so called Kaiser interferometer)

was used. Another experiment was carried out at the TRIGA Mark II research

reactor at Institute of Atomic and Subatomic Physics of the Vienna University of

Technology in 2014a. Such a polarimetric setup is depicted in Fig. 4.2. The two

experimental approaches are now explained in more detail.

4.2.1 Interferometer experiment

The experiment can be divided into three main parts. Here a short overview of

each component is given, followed by a detail descriptions of their adjustment in the

aOne might object to the approach that modulus and real part were measured using a different
setup than for the measurement of the imaginary part. To counter this criticism the imaginary
part of 〈σ̂s

z〉w was measured using the interferometer setup at a later point during reactor cycle
177 in December 2015.
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Figure 4.2: Artistic depiction of the polarimetric setup at the Institute of Atomic and
Subatomic Physics: A monochromatic neutron beam passes a CoTi supermirror polarizer
(P). To prevent depolarization a magnetic guide field (GF) is applied around the whole
setup (not depicted). Subsequently a DC coil (DC1) generates the initial spin state |Si〉.
Along the polarimetric beam line two spin rotators in Helmholtz configuration (HC1
& HC2) allow to either increase or decrease the neutron spin’s Larmor precession by
creating magnetic fields along the z-axis. Similar to the interferometric setup the spin
postselection is performed using a second DC coil (DC2) mounted on a translation stage
(TS) in combination with a second CoTi supermirror analyzer (A). The neutrons are
detected by a BF3 counter (D). In comparison to the interferometer the polarimeter offers
much higher stability and resistance against vibrations and temperature fluctuations.

subsequent subsection.

i) Preselection: A monochromatic neutron beam of wavelength λ0 = 1.91 Å(λ/λ0 ∼
0.02) and a cross section of 5×5 mm2 passes two magnetic prisms which deflect

spin down component. Due to this deflection only neutrons with a spin com-

ponent aligned along the positive z-axis, fulfill Bragg’s law and get reflected

at the first plate of the interferometer. Neutrons with a spin component along

the negative z-axis pass through the first plate and do not contribute to the

experiment. This leads to a polarization of the neutron beam along the posi-

tive z-axis. A DC coil turns the neutron spin by π/2 so that it is aligned along

the positive x-axis. After the first plate of the interferometer the system’s

state vector is given by Eq. (4.2).

ii) Interaction: Inside the interferometer one coil in Helmholtz configuration in

each beam path perform the path conditioned spin rotations that lead to a

coupling between the path and spin degree of freedom. The coils produce addi-
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tional magnetic fields in the ±z-direction that cause the neutron spin’s Larmor

precession to decrease or increase respectively. The strength of the magnetic

field determines the magnitude of the rotation angle α and is related to the

coupling parameter in Eq. (4.4) and . In the experiment the angle of rotation

was fixed at α = 15◦. To reduce the thermal stress on the interferometer the

coils are water cooled.

iii) Postselection: A sapphire slab is inserted between the second and the third

plate of the interferometer, to tune the relative phase χ. In a χ-scan, the

path system is systematically investigated on the equator of the Bloch sphere.

One phase shifter scan is enough to a access the states |Px;±〉 and |Py;±〉. A

cadmium slab mounted on a rotational stage can be used to block either one of

the beam paths. After the interferometer the spin postselection is performed

by a second DC coil mounted on a translation stage. By positioning the

coil at different points along the neutrons’ flight path, the neutrons’ Larmor

precession within the guide filed is utilized to tune the azimuth angle φ. By

applying different currents, the polar angle θ can be adjusted. Subsequently a

CoTi supermirror array filters out all neutrons but those with a spin aligned

along (φ, θ)-direction beforehand. Finally the neutrons are detected by a 3He

detector.

4.2.1.1 Adjustment

To obtain sound results it is essential to have a well adjusted experimental setup. In

this section the most important steps of the setup adjustment, are described in detail.

To build up and tune the whole experiment it takes two to three experimentalists

and 100 to 200 hours of work.

First of all the monochromator crystal that feeds the neutrons from the beam guide

to the experimental box, was oriented. A single-cut triple-bounce silicon crystal is

used. It has the advantage of a very good monochromatization resulting in a very

narrow rocking curve. It is shown later how a high monochromatization is crucial

for the increase of the initial degree of polarization.

Next the interferometer itself can be placed in the beam and it has to be rotated

around the z-axis so that the incoming neutron beam fulfills the Bragg condition at

the first plate. A Piezo drive is used to adjust the interferometer with an accuracy of

one ten thousandth of a degree. For the final adjustment the ρ-axis (a tilting axis)
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has to be adjustedb, to obtain the narrowest and highest peak possible. In Fig. 4.3

a typical rocking curve is depicted. Subsequently a phase shifter has to be inserted
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Figure 4.3: Rocking curve of the interferometer: After the interferometer is adjusted
correctly in the beam a rocking peak with a full width at half maximum (FWHM) of less
then one thousandth of a degree is obtained (typically ≈ 0.5′′ or 2× 10−6 rad. The fit
to the data was performed with a single Gaussian of the form y0 +A∗ exp

[
(−x−x0/∆)2].

into interferometer setup to obtain interference fringes. For all experiments present

in this thesis phase plates made out of sapphire (Al2O3) are used. By rotating the

phase shifter by a few degrees, an optical path difference is introduced and sinusoidal

intensity modulation is observed. A typical interference fringe is plotted in Fig. 4.4.

If a phase shifter is put into the interferometer and rotated, as depicted in Fig. 4.1,

sinusoidal interference patterns are observed, as described in section 2.2.3. A χ2-fit

to the recorded data points is performed, in the form

g (x) = y0 + A cos (p x+ f) (4.6)

bThis adjustment tilts the interferometer relative to the xy-plane, so that its base is parallel to
the incoming neutron beam.



4.4.2. Experimental realizations of spin weak measurements 63

−2π −π 0 π 2π
χ [rad]

0

50

100

150

200

250

300

350

In
te

n
si

ty
[c

p
s]

y0 = 100.76 ± 0.42

A = −83.85 ± 0.51

p = 115981.13± 214.67

f = 2.38 ± 0.01

χ2
RED = 2.32

y0 = 207.98 ± 0.62

A = 87.07 ± 0.81

p = 116384.77± 306.76

f = 2.37 ± 0.01

χ2
RED = 2.80

O− FIT

H− FIT

O− DATA

H− DATA

Figure 4.4: Typical interference fringes of the unpolarized setup: The contrast of the
O-detector is over 80%, whereas the H-detector contrast is over 40%.

where the parameters y0, A, p and f represent the mean intensity, amplitude, pe-

riod and phase of the oscillation respectively. Using these fit parameters once can

calculate the contrast C of the interference fringes by C = A/y0. Note that the con-

trast of the O-beam (forward direction) is always higher than that for the H-beam

(reflected direction): it is over 80% for the O-beam and over 40% for the H-beam

for the interferograms depicted in 4.4.

The interferometer hast certain spots on its plates, where it will work better. To find

those “sweetspots” it is helpful to perform a rast scan with the aperture. During

such a scan the aperture is moved systematically in x and y direction and for every

xy pair a phase shifter scan is performed. The results of such a scan are depicted

in Fig. 4.5. For the Kaiser interferometer, which is used to determine the spin weak

values, it has repeatedly been observed that the obtained contrast is highest closest

to the base. The best experimental conditions are given when the spot of highest

contrast coincides with the spot of highest intensity.

To determine the spin operator’s weak value it is necessary to manipulate the spin

degree of freedom. First the neutron beam needs to be polarized, by using magnetic

prisms [Badurek et al., 1979, Badurek et al., 2000]. The permanent magnetic field

of those prisms leads to a deflection of the neutron beam depending on whether

the neutrons’ spin component is aligned parallel (up) or anti-parallel (down) to the

z-axis. Although the deflection of the spin down component is below 8′′, this is suf-
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Figure 4.5: Results of a scan of the apertures position: for every xy value a phase shifter
scan is performed and the obtained contrast is recorded. The spot of highes contrast is
found for (x, y)=(0,12).

ficiently large to clearly distinguish two separate peaks in the rocking curve of the

interferometer. A typical rocking curve with two peaks obtained during the setup

adjustment is depicted in Fig. 4.6.

If the interferometer is now turned at the left peak, only neutrons with a spin

state given by |Sz; +〉 get reflected at the first plate. Neutrons with a spin aligned

anti-parallel to the z-axis do not fulfill the Bragg conditions any more, due to the

deflection caused by the prisms and therefore do not contribute to the experiment

after the interferometer’s first plate. A good collimation of the incoming beam is im-

portant to achieve a high degree of polarization. This is because a good collimation

leads to a narrow rocking peak. A narrow rocking peak in turn leads to a large peak

separation of the spin up and spin down component when the prisms are inserted

before the interferometer. Finally the large peak separation prevents neutrons with

a spin down component to be reflected at the first plate, which guarantees a high

degree of initial polarization. When the triple bounce monochromator is used, a

neutron beam with a degree of polarization above 99% is achieved. To prevent a

depolarization of the neutron beam, a guide field pointing in the positive z-direction

is applied around the whole setup. The guide field strength was set to ∼ 13 G. At

this point the polarizing supermirror is put into the setup. It acts as a filter that

lets only neutrons with a |Sz; +〉 spin state pass, as is described in chapter 2. The

supermirror is put directly in front of the O-detector and dramatically reduces the

count rate, due to its small window of acceptance. Neutrons have to hit the super-

mirror with the correct angle (within ∼ 1◦ of accuracy) so that they fulfill Bragg’s
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Figure 4.6: Rocking curve of the interferometer with a beam deflection by the polarizing
magnetic prisms: After the polarizing prisms are introduced into the setup two rocking
peaks appear. If the interferometer is turned into the left peak only neutrons with a spin
state given by |Sz; +〉 get reflected at the first plate. The fit to the data was performed
with a single Gaussian of the form y0 + A ∗ exp

[
(−x−x1/∆)2]+ A ∗ exp

[
(−x−x2/∆)2].

condition at its many layers. Its position is adjusted so that the count rate at the

O-detector becomes maximum. This ensures that the beam hits it in the center of

the aperture window and also under the correct angle.

Although the prisms polarize the neutron beam, they are not enough to prepare

an arbitrary initial spin state. The neutron’s spin wave function is only set to the

state |Sz; +〉. To prepare |Sx; +〉, the initial spin state needed to measure the spin

operator’s weak value, a spin rotator, made of a so called DC coil, as described in

chapter 2 is used. By shifting a DC coil positioned between the polarizing prisms

and the interferometer it is possible to generate arbitrary initial spin states.

The adjustment of a DC coil requires three steps. First of all a current is applied

only to the inner coil, generating a magnetic field in the ±y-direction. This results

in an intensity modulation in dependence of the applied current, as can be seen

in Fig. 4.7. A χ2-fit to the data points, using a fit function of the same form as

Eq. (4.6), is performed.
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Figure 4.7: By-scan of DC1 (not compensated): If a current is applied to the DC coil
sinusoidal intensity oscillations are observed. As long as the compensation field is not
adjusted the contrast of the oscillation is very poor and hence only low flipping ratios
can be achieved.

As long as the compensation field in z-direction is not suitably adjusted the contrast

of the oscillation is very poor and hence only low flipping ratios can be achieved.

This is of course due to the fact that the guide field applied around the whole setup

tilts the magnetic field vector generated by the inner coil away from the ±y-direction

and consequently a π-flip of the neutron’s spin state is never achieved. Therefore

in a second step the current of the compensations coil has to be adjusted. To do

that again a current is applied to the inner coil so that it a magnetic field By is

generated. The current to produce By is adjusted so that a minimum in count rate

is observed. In the case of DC1 this was around ±3 A, as can be seen in Fig. 4.7.

Subsequently the outer coil is applied with a current. With increasing current the

guide field gets compensated more and more until a minimum in count rate appears

and the external guide field is completely cancelled. After this point the count rate

starts to increase again due to an overcompensation of the guide field. A current

scan of DC1’s compensation coil (Bz) is plotted in Fig. 4.8.

Again a χ2-fit to the data points is performed, but now the fit function is a second

order polynomial function in the form

g (x) = a+ b x+ c x2. (4.7)
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The correct current for the compensation coil is given by the local minimum of the

fit function in the scanned current range.

Finally the first step has to be repeated with the correct current applied to the

compensation coil so that a Bz is generated. Again a sinusoidal intensity oscillation

is observed. Now the contrast and the flipping ratio are much higher. From the fit

function additional information about the coil can be gained. If the coil is tilted

in the yz-plane, the field vectors of the guide field and Bz in the DC coil are not

normal to each other. This misalignment will manifest itself in the parameter f (a

phase shift). More precisely f will not equal 0◦ within the error of the fit function.

Hence, the coil has to be tilted and the current scan has to be repeated till a value

sufficiently close to f = 0◦ is obtained in the data fit. The final plot of the DC1

adjustment is seen in Fig. 4.9.

After the final adjustment, the DC1 coil showed a flipping ratio (defined as IMAX/IMIN)

of ∼ 70, a contrast of ∼ 97% and a phase of f = −0.009 rad (all without a back-

ground correction). In our experimental circumstances this is considered excellent.

There are several limiting factors for the adjustment of the coil: First and most im-

portantly we mention the inhomogeneity of the external guide field, which leads to a

suboptimal field distribution within the DC coil. This problem is made worse by the
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Figure 4.8: Bz-scan of DC1 (compensation field): Inside the coil the guide field gets
compensated more and more with increasing current until a minimum in count rate
is observed, until it is completely cancelled. After this point the count rate starts to
increase again due to an overcompensation of the guide field.
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Figure 4.9: By-scan of DC1 obtained with a suitable compensation field Bz: After the
final adjustment, the DC1 coil showed a flipping ratio of ∼ 70, a contrast of ∼ 97% and
a phase of f = −0.009 rad (without background correction).

strong stray fields emerging from the polarizing prisms. In addition the tilting of the

coil during its adjustment is done manually using a micrometer rocker. Coils at the

TRIGA Mark II research reactor at Institute of Atomic and Subatomic Physics used

to be adjusted with manual rockers as well. After switching to motorized rockers

the Vienna coils doubled their flipping ratio. Switching to motorized rockers can

lead to the same performance increase in Grenoble. Figure 4.10 shows a picture of

part of the experimental setup including the interferometer, the aperture, the guide

field and DC1 and its micrometer rocker.

Note that the coils of the guide field are very close to the interferometer, which

decreases the field homogeneity along the neutron’s path through the interferom-

eter. The small guide field coils also have the disadvantage, that make the setup

crammed together not leaving a lot of space to work with. In a more recent version

of the setup the guide field coils are replaced by bigger ones. The results of this

modification is described in chapter 5.

To postselect an arbitrary final spin state |Sf〉 the same problem as with the pres-

election arises: The polarizing supermirror is a passive element. It acts as a filter

that lets only |Sz; +〉 spin states pass so that arbitrary spin states cannot be simply

selected. Therefore the second DC coil (DC2), has to be mounted on a motorized

stage between the interferometer and the supermirror. This second coil turns the
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Figure 4.10: Picture of parts of the experimental setup: The interferometer sits at the
center enclosed by the coils of the guide field. The aperture is placed between the
interferometer and the DC1 coil, which sits on a micrometer rocker. A cadmium slab is
placed in the interferometer to block one beam path for setup adjustment. To guide the
eye a schematic drawing of the beam path has been added to the picture (green).

spin into the positive z-direction. By tuning the current to DC2 any polar angle

θ can be selected. By moving the coil on the translation stage along the x-axis

any azimuth angle φ is adjusted, by utilizing the neutrons Larmor precession in the

guide field. Thus, a combination of the correct position and current can realize an

arbitrary postselected spin state.

The adjustment of DC2 is performed in the same way as DC1’s. First current has

to be applied to the inner coil to generate By and to find a minimum in the count

rate of the By-scan, then the compensation field Bz is adjusted as described above

and finally the current scan of By is repeated till the correct tilt of the coil is found.

Unfortunately this procedure has to be repeated for every motor position, i.e. for

different azimuth angles φ. This is due to inhomogeneities in the magnetic guide

field. In Fig. 4.11 the final adjustment of the DC2 coil at a midway position of the

translation stage is plotted.

At this position the By-scan of DC2 coil showed a flipping ratio of ∼ 60, a contrast
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Figure 4.11: By-scan of DC2 obtained with a suitable compensation field Bz: After the
final adjustment, the DC2 coil showed a flipping ratio of ∼ 60, a contrast of ∼ 97% and
a phase of φ = 0.001 rad (without background correction).

of ∼ 97% and a phase of φ = 0.001 rad (all without background correction). While

the stray field of the polarizing prisms does not cause serious any problems at the

position of the DC2 coil, the supermirror analyzer behind DC2 produces a strong

magnetic field as well, which causes inhomogeneities in the guide field. For both DC

coils the efficiency is basically limited by those stray fields. Since the stray fields

of the polarizer and analyzer cannot be shielded,we could have put the coils farther

away from the prisms and supermirror at most. Sometimes, this was not actually

possible with the available setup, since the coils of the guide field are a practical

boundary, limiting the usable space. To increase the precision of the experiment

it is necessary to construct new guide field Helmholtz coils, which are larger and

can offer more space. Figure 4.12 shows a picture of a larger part of the setup also

including DC2 on its translation stage.

Once DC1 and DC2 are adjusted, the spin manipulating Helmholtz coils are in-

serted into the interferometer [Geppert et al., 2014]. During the whole process of

setting up the experiment, this is the most difficult task and great care has to be

taken, in order to position them correctly and not to damage the interferometer

during the adjustment. To test the spin manipulators, DC1 is adjusted to prepare

the initial spin state |Sx; +〉, i.e after the prisms the spin gets turned by π/2 around

the y-axis and is aligned along the direction of neutron flight. The current applied
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Figure 4.12: Picture of parts of the experimental setup: In addition to the interferometer,
DC1 and the aperture, DC2 and its translation stage are also visible in this picture. Note
that the whole setup is enclosed by the guide field coils. To guide the eye a schematic
drawing of the beam path has been added to the picture (green).

to DC2 is then set so that the polar angle θ = π/2 is selected. That is, for an

azimuth angle of φ = 0 a maximum is expected in the intensity, while for φ = π

the intensity is minimum, because the incident beam is prepared in the spin state

|Sx; +〉. As already mentioned above, φ is tuned by the position of DC2 along the

x-axis. For fixed currents, so that a π/2 spin rotation is performed by both DC1 and

DC2 a full intensity oscillation in dependence of the position of DC2 is expected.

To test and configure the spin manipulators, two scans of DC2’s position with fixed

current values are done. For the first scan a slab of Cadmium is put into path II of

the interferometer, for the second scan the Cadmium slab is put into path I. The

results of both scans are combined in Fig. 4.13 and tell us two important facts.

First there is a notable difference in the count rate, depending on whether path

I or II of the interferometer is blocked. This can be caused by the spin manipula-

tors that are not correctly positioned in the beam. If this is the case the neutron

beam hit material along one of the two possible paths inside the interferometer and

neutrons get absorbed or scattered. To get rid of this problem the intensity is mon-



72 Chapter 4. Spin weak values

0 10 20 30 40 50
Translation of DC2 [mm]

0

2

4

6

8

10

12

14

16
In

te
n

si
ty

[c
p

s]

y0 = 5.90 ± 0.07

A = −5.42± 0.07

p = 0.11 ± 0.00

f = 1.07 ± 0.03

χ2
RED = 0.92

y0 = 7.34 ± 0.07

A = −6.86± 0.08

p = 0.11 ± 0.00

f = 1.14 ± 0.02

χ2
RED = 2.05

FIT− Path 1

FIT− Path 2

DATA− Path 1

DATA− Path 2

Figure 4.13: Position scan of DC2 with misaligned Helmholtz coils inside the interfer-
ometer: The count rates depend on whether path I or II is blocked. In addition to that
the intensity oscillations are phase shifted by several degrees.

itored while the coils are moved diagonally through the interferometer with one of

the paths blocked at a time. In addition to that a similar scan is performed with

the coils being rotated instead of translated. This ensures that the coils are parallel

to the neutron beam and that it does not hit them anywhere.

The difference in count rate can also occur if the interferometer’s crystal is disturbed

by temperature fluctuations. Then, due to a shift of the pendellösung oscillation

of each of the three beam splitters, the ratio between reflection and transmission

can vary, which also leads to a count rate difference. To increase thermal stability

of the whole setup, the guide field coils are water cooled. The temperature of the

cooling water can be adjusted with an external pump. One can now perform phase

shifter scans at different cooling water temperatures until a maximum in observ-

able contrast is found. Figure 4.14 shows the measurement results of a systematic

change in guide field temperature. The highest contrast is observed for a guide field

temperature of 23.6◦ C. Note that for any temperature the contrast is poor (below

60%). Similar to the guide field coils, the small Helmholtz coil spin manipulators

inside the interferometer are flooded with temperature controlled water. The scan

of the guide field temperature is performed at an earlier point in time, then the

scan of the spin manipulator temperature. Since the spin manipulators are placed

inside the interferometer, their temperature has much more effect on observable
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Figure 4.14: Observed contrast as a function of the guide field temperature: The temper-
ature of the guide field’s cooling water is changed and subsequently phase shifter scans
are performed. The highest value in contrast indicates the correct optimum temperature.

contrast. A detuned temperature of the Helmholtz coils inside the interferometer

is the reason for the poor contrast during the guide field scan. However, once the

correct guide field temperature is found the temperature of the spin manipulators

can also be changed systematically while doing contrast scans. Again the correct

temperature is found, when the contrast of the recorded interference fringes is the

highest. Figure 4.15 shows the results of a scan of the spin manipulator’s tempera-

ture. The maximum in contrast is now over 80%. It is observed for a temperature

of 23.4◦ C. To increase thermal stability the interferometer has to be insulated from

the environment as well as possible by putting it inside an extra box.

Once thermal stabilization is achieved the second problem visible, in Fig. 4.13,

should be solved. Namely, when the data is fitted using a function of the same

form as Eq. (4.6), a phase shift of several degrees is visible between the two curves.

Even though the current applied at DC1 and DC2 is the same for the scans for

path I and path II the phase of the Larmor precession depends on the path in the

interferometer. This is a consequence of the guide field inhomogeneities. During its
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Figure 4.15: Observed contrast as a function of the spin manipulator temperature: The
temperature of the spin manipulator’s cooling water is changed and subsequently phase
shifter scans are performed. The highest value in contrast indicates the correct optimum
temperature.

Larmor precession in the xy-plane the neutron picks up a path dependent phase for

up and down spin eigenstates.

It is very important that the accumulated phase between path I and II is the same

in order to be able to control the neutron spin manipulation within a accuracy of

one degree in the setup. To compensate the different phases between the paths a

so called zero point calibration of the spin manipulators has to be done. As with

the position scan of DC2, DC1 is set so that the preselected spin state is given by

|Sx; +〉. The current supplied to DC2 is chosen so that the polar angle is posts-

elected on θ = π/2. Instead of moving DC2 along the x-axis the current of the

spin manipulators inside the interferometer is varied. Since they are two small coils

in Helmholtz configuration, they create an additional field pointing in the positive

z-direction, when a positive current is applied, and in the negative one for negative

current. This additional field accelerates or decelerates the neutron’s Larmor pre-

cession in the xy-plane during its passing through the coils. As with the position

scan this equals a change of the azimuth angle; this time the variation in φ is not
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due to the position change of DC2 but due to the current supplied to the Helmholtz

coils inside the interferometer. The result of the current scan of the Helmholtz coils

in path I and II are plotted in Fig. 4.16

The first thing one may notice is the difference of count rate in Fig. 4.16. Within the
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Figure 4.16: Current scan of the spin manipulators inside the interferometer: If a current
is applied to the Helmholtz coils inside the interferometer they cause an additional Larmor
precession of the neutron’s spin in the xy-plane leading to an effective change of the
azimuth angle φ and a sinusoidal intensity oscillation appears after the spin postselection.

error it is now equal in both paths with a maximum intensity of about 12 counts per

second. The Helmholtz coils are now positioned correctly in the interferometer and

that thermal stability is achieved. We also find a phase difference of ∼ 5◦ between

the data fits in the upper and the lower plot. This is hardly noticeable to the naked

eye, but very important for the configuration of the experiment. From the current

scans of both Helmholtz coils though, we do know how much phase shift we obtain

per applied ampere and so we can set the phase between path I and II to be zero.

By applying a small constant current “offset” to one of the two spin manipulators

a zero point calibration is achieved. Furthermore the data fits in Fig. 4.16 allows us

to calculate a flipping ratio as well as a contrast for each spin manipulator in the

interferometer. Both Helmholtz coils have a flipping ratio of ∼ 30 and a contrast of

∼ 94%. The Helmholtz coils used in the weak spin experiment are the components

that cause the largest imprecision in the experiment.

Once the phase difference between path I and II is corrected by a current offset
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at one of the two Helmholtz coils inside the interferometer, the position scan with

DC2, as it was described above, is repeated. The result of two such position scans

with compensated and correctly aligned spin manipulators is plotted in Fig. 4.17.

Finally the problems described at an earlier stage are now obviously solved. The
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Figure 4.17: Position scan of DC2 with compensated and correctly aligned spin manip-
ulators: After the position of the spin manipulators inside the interferometer has been
adjusted and a current offset is applied to one of the Helmholtz coils inside the inter-
ferometer, the data fits for HCI and HCI show no more count rate and phase difference
within the error of the fit. The contrast of the position scans is ∼ 93%, their flipping
ratio is ∼ 28. The phase shift between path I and II is reduced to ∼ 0.003rad.

phase shift between path I and II is reduced to ∼ 0.003rad. Also the count rate is

now equal no matter which path of the interferometer is blocked. The contrast of

the position scans is ∼ 93%, their flipping ratio is ∼ 28.

The calibration of the Helmholtz coils inside the interferometer ends the adjustment

of the experimental components. In general it is true that the best results will be

obtained, when the whole experimental system is put in thermodynamic equilibrium

and no stress acts upon it due to temperature gradients. To achieve this thermal

equilibrium once the correct guide field and Helmholtz temperature are found as

described above, we simply have to wait. During the calibration of the experimen-

tal setup it was also observed that the contrast improved, when the setup was left

undisturbed for longer periods of time, i.e. when no one came close to it and the

experiment was operated via remote control.

A high contrast interference fringe of the completely adjusted setup after the po-
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larimeter’s adjustment, is depicted in Fig. 4.18.

Fig. 4.18 shows that even though the count rate of the O-detector is reduced dra-
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Figure 4.18: Interference fringes of the polarized setup: Even though the count rate is
reduced dramatically, the contrast of the O-detector is still over 80%. The H-detector
contrast is also still at ∼ 40%.

matically, its contrast is still over 80% and that the H-detector contrast is also still

at ∼ 40%, showing that the setup is excellently calibrated.

4.2.1.2 Optimizing the measurement strength

The question of how weak the interaction of the measurement should be comes nat-

urally to the mind of the experimentalist, in dealing with weak measurements. The

theoretical considerations of chapter 3 tell us that the relations to extract the weak

value for weak interactions, i.e. Eq. (3.16a) to (3.16c), will give a more accurate

result if the interaction strength is decreased. At the same time experimental cir-

cumstances, including noise, demand to determine an interaction strength that can

be used in practice.

To find an experimentally suitable magnitude for α, two interference fringes are

recorded for different values of α. One without any spin manipulation between pre

and postselection, the OUT curve, and one with a spin rotation of α in each path,

the IN curve. In particular the postselection direction φ = 0◦ and θ = 0◦ is regarded.

For this direction the spin manipulation inside the interferometer manifests itself in

a phase shift of α between the IN and the OUT curve. Fig. 4.19 shows the IN and



78 Chapter 4. Spin weak values

OUT interferogram for an interaction strength of α = 10◦. The phase shift between
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Figure 4.19: IN and OUT curve for an interaction parameter α = 10◦. A phase shift of
8.6◦ ± 1.6◦ between the IN and the OUT curve is observed (without a phase correction
from the H-beam).

the two curves can be determined from the data fit. It is given by 8.6◦ ± 1.6◦. Fig-

ure 4.20 shows the same measurement results for an interaction strength of α = 15◦.

The phase shift between the IN and the OUT curve is now noticeable larger. From

the fit parameters a phase shift of 12.1◦ ± 1.6◦ is obtained. Systematic phase fluc-

tuations between the IN and the OUT curve can be taken into account using the

H-detector interference fringes as a reference. If this is done the obtained value

improves to 16.5◦ ± 1.6◦ so that it is in accordance with the theoretical prediction

of α = 15◦.

We see that reasonable results are already obtained for interaction strengths as small

as α = 10◦ and we expect the experiment to yield accurate results for the weak value

for such small interactions. However, in general it is true that every extra increase

in the interaction strength makes the experiment easier to performc.

Using the correlation function defined as [Sakurai and Napolitano, 2011]

C (t) = 〈ψ (t)ψ (0)〉 , (4.8)

cThe advantages of larger interaction strengths are also discussed in chapter 5.
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Figure 4.20: IN and OUT curve for an interaction parameter α = 15◦. A phase shift of
12.1◦± 1.6◦ between the IN and the OUT curve is observed (without a phase correction
from the H-beam).

one can calculate the wave function overlap between the preselected state and the

evolved state spin state, i.e. the state after the spin rotation of α. For α = 15◦ it

is still over 98% and consequently α = 15◦ is chosen for the interaction strength for

the actual experiment.

To illustrate the experimental advantages of larger interaction strengths, the results

of a measurement with α = 90◦, i.e. with maximum interactions strength, are

depicted in Fig. 4.21. For the maximum interaction strength a phase shift of α = 90◦

between the IN and the OUT curve is expected. A phase shift of 90.5◦ ± 1.3◦ is

experimentally observedd.

4.2.1.3 Data acquisition

The experiment to determine the spin weak value was carried out for different post-

selected spin states |Sf〉. For each experimental run the azimuth angle is held fixed.

As explained in the previous section this is equivalent to fixing the position of DC2.

Then the polar angle is varied, i.e. the current applied to DC2 is tuned. Four

different azimuth angles changed to φ = 0◦, φ = 30◦, φ = 60◦ and φ = 90◦ are

investigated. For each φ-direction the weak value of thirteen different polar angles

dThe interferogram was obtained during cycle 175 in June 2015 with a very similar setup.
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Figure 4.21: IN and OUT curve for an interaction parameter α = 90◦. A phase shift of
90.5◦± 1.3◦ between the IN and the OUT curve is observed (without a phase correction
from the H-beam).

from θ = −180◦ to θ = +180◦ in 30 degree steps is evaluated. A total of 52 interfer-

ograms are recorded through which the real part as well as the modulus of the spin

operator’s weak value 〈σ̂s
z〉w are determined.

The angle of spin rotation inside the interferometer is set α = ±15◦ in each path.

This corresponds to a relative interaction strengthe of ∼ 17%. One additional test

measurement was performed for a lower interaction strength of α = ±10◦.

All measurements are performed in the IN/OUT style, i.e. the spin rotation is

turned on, then the intensity is recorded for a fixed phase shifter position. After

that the spin rotation is turned off and again the intensity is measured for the same

phase shifter position. This style makes it possible to determine the phase χ of the

“empty” interferometer. With scan the whole path qubit is scanned in the xy-plane

by using the phase shifter. Therefore it is possible to extract all necessary data to

obtain the real part, as well as the modulus of the spin operator’s weak value from

one such phase shifter scan. The H-beam is not spin analyzed. Therefore it is not

used to extract the weak value. Nevertheless it can be used to determine the period

of the interference measurements (also those of the O-beam) with the advantage of

better statistics due to a higher intensity. The H-beam can also be used as a monitor

eThe maximum measurement strength is α = 90◦ which corresponds to a relative interaction
strength of 100%. α = 45◦ corresponds to a relative interaction strength of 50%, etc.
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to correct phase fluctuations.

As already mentioned before the imaginary part was not determined during reac-

tor cycle 169 in April/May 2013. To counter criticism against the experimental

approach, the experiment was built up for a second time during reactor cycle 177

December in 2015 and Im [〈σ̂s
z〉w] was determined for a spin postselection direction

of φ = 90◦ using the interferometric setup at ILL. Both the results for Im [〈σ̂s
z〉w]

obtained in Vienna and in Grenoble at a later stage, will be subject of the following

sections.

All measurements are fitted with a function of the form of Eq. (4.6). The period

of the measurement is extracted from the H-beam results and then used to fit the

O-beam. Therefore the error of the period for the O-beam fits is per definition zero.

For the estimation of an error for the O-beam fits, a mean error of the period is used

to calculate the weak value. The purpose of the OUT measurement, i.e. the one

without a spin rotation inside the interferometer, is to find the phase values of χ = 0,

χ = π/2, χ = π and χ = 3π/2 of the empty interferogram. The maximum of the

OUT curve corresponds to χ = 0, the minimum to χ = π, i.e. χ = 0 =̂ χ|max(OUT)

and χ = π =̂ χ|min(OUT). The phase value of χ = π/2 is then given by χ = π/2 =̂

χ|max(OUT) +
[
χ|min(OUT) − χ|max(OUT)

]
/2. The phase value of χ = 3π/2 is deter-

mined by finding the point χ = 3π/2 =̂ χ|min(OUT) +
[
χ|min(OUT) − χ|max(OUT)

]
/2.

In order to calculate the intensities corresponding to the states |Px;±〉 and |Py;±〉
the phase values obtained from the OUT measurements are inserted into the IN

measurement’s fit functions. The result of this process is depicted by Fig. 4.22.

We now know how to experimentally record intensities that can be linked to certain

pre and post selected states. We also know how to use these intensities to get the

real and imaginary part of the weak value. The last thing that needs to be clarified

is the way to derive the weak value’s error.

Looking again at Eqs. (3.16a) to (3.16c) we see that they are basically functions of

three parameters, i.e. g (α, Ij+, Ij−). Each of theses three parameters has an error

attached to it. Since there is no correlation between the three parameters and the

functions to extract the weak values are linear in the region we are interested in, we

can use the simple rule for propagation of uncertainty

σwv =

[(
∂g

∂α

)2

(∆α)2 +

(
∂g

∂Ij+

)2

(∆Ij+)2 +

(
∂g

∂Ij−

)2

(∆Ij−)2

] 1
2

, (4.9)

where ∆wv is the weak value’s error of the and ∆α and ∆Ij± are the errors of the

quantities that are used to calculate the weak value [Ku, 1966].
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Figure 4.22: O-detector interferogram for a direction of spin postselection of φ = 0◦ and
θ = 0◦. The dashed lines are least-square fits to the data. The error bars represent one
standard deviation. The measurements without spin rotation inside the interferometer
(OUT-scan in magenta) are used to determine the phase of the empty interferometer
and therefore the value of χ for the states |Px;±〉 and |Py;±〉. The intensities Ix± and
Iy± are then taken from the data fit of the measurements with an additional spin rotation
inside the interferometer (IN-scan in cyan). Both interference fringes are plotted without
background correction.

Finally we have to clarify the sources of the individual errors of theses quantities.

The error of the rotation angel of the spin in the interferometer α is obtained from

the calibration measurement of the spin manipulators inside the interferometers. It

can be read off the fit parameter errors in Fig. 4.16. If it is set to ∆α = 2◦. This is

a conservative upper boundary.

For the imaginary part of the weak value σIz± are simply given by the square roots

of the single intensities Iz± due to the Poissonian counting statistics. For the weak

value’s real part and its modulus the intensities are not directly recorded, but taken

from the fit to many recorded data points. Because of that the situation becomes

more complicated. The measurements are fitted with a function of the form of

Eq. (4.6) using the method of minimizing chi square. For each fitted parameter the

fit yields an error, which can be used to calculate the intensities’ error. First the

OUT measurement has to be fitted to get the phase values of χ = 0, χ = π/2, χ = π

and χ = 3π/2. The phase values are of course defined by the position on the cosine

function. However they are still attached by an error, which is given by the phase
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error obtained from the OUT fit. In the example given in Fig. 4.22 this error ∆χ is

given by ∆χ = 0.01. As was already mentioned the intensities Iy± and Ix± are taken

from the fit of the IN curve. To get the errors ∆Iy± again the rules of propagation

of uncertainty can be applied using the errors the fit on the IN data points yields.

When the fit function g is given by Eq. (4.6) we get the intensities error

∆Ij± =

[(
∂g

∂y0

)2

(∆y0)2 +

(
∂g

∂A

)2

(∆A)2 +

(
∂g

∂p

)2

(∆p)2

+

(
∂g

∂x

)2

(∆x)2 +

(
∂g

∂f

)2

(∆f)2 ,

] 1
2

(4.10)

where ∆x = ∆χ is given by the phase error of the OUT fit (0.01 in the example

above) and ∆y0, ∆A, ∆f as well as ∆f are given by the parameter errors of the IN

fit.

The effect of the weak interaction is clearly visible in Fig. 4.22. Compared to the

OUT curve, recorded without active spin rotation during the events of pre and post-

selection, the IN curve, with active spin rotation, is phase shifted. With the intuitive

picture developed in chapter 3 and visualized in Fig. 3.1 we can easily understand

this behavior. Let us recall that the real part of the spin operator’s weak value

acts as an additional phase in the meter system. This additional phase can now

be observed in the measurement. The theoretical considerations performed in chap-

ter 3 are fully supported by the experiment. In addition to those at the O-detector

two interferograms are also recorded at the H-detector during the measurement of

one postselection direction. In Fig. 4.23 the H-detector results for the direction

(θ, φ) = (0, 0) are plotted.

As was already stated, in contrast to the O-beam, the H-beam is not spin analyzed.

This means that the neutrons detected at the H-detector are not subject to any spin

postselection and not all effects of the weak interaction are observable. While in

Fig. 4.22 the IN curve is shifted to the right of the OUT curve, no systematic phase

shift can be seen in the H-detector interferograms. Nevertheless the spin rotation

inside the interferometer brings the spin states closer to orthogonality, which man-

ifests itself in a loss of contrast also at the H-beam. This loss in contrast scales

with the interaction parameter α and is for α = ±15◦ too small to be observed at

the H-beam. Note that the least square fits to the IN and the OUT curve yield

slightly different periods. The average of both periods is used to fit the O-detector

as described previously.

During the weak spin measurement a total of 52 interferograms were recorded. In
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Figure 4.23: H-beam interferogram for a direction of spin postselection of φ = 0◦ and
θ = 0◦. The dashed lines are least-square fits to the data. The error bars represent
one standard deviation. Since the H-beam is not spin analyzed, the effects of the weak
interaction are not observable. Note that average of both periods is p̄ = 113250, which
was used to fit the O-data. Both interference fringes are without background correction.

the following pages a selection is presented: Fig. 4.24 shows three interferograms

for an postselection azimuthal direction of φ = 0◦. For clarity Bloch spheres are

included besides the interferograms, where the preselected state |Si〉 is indicated by

a green and the postselected state |Sf〉 by a blue arrow.

As was already mentioned in the previous chapter the weak value’s real part

manifests itself in a phase shift in the meter system. This shift is already visible

in the interferograms. For the postselection direction (θ, φ) = (0◦, 0◦), Re [〈σ̂s
z〉w] is

expected to be plus one. Indeed we find that the IN curve is slightly shifted to the

right as compared to the OUT curve, when looking at the middle panel of Fig. 4.24.

For the postselection directions (θ, φ) = (−150◦, 0◦) and (θ, φ) = (150◦, 0◦) (upper

and lower panel of Fig. 4.24, respectively) negative values for the spin operator’s

weak value are expected and actually we find that for those interferograms the IN

curve is shifted to the left, compared to the OUT curve. In addition the magni-

tude of Re [〈σ̂s
z〉w] is bigger for (θ, φ) = (−150◦, 0◦) than it is for (θ, φ) = (150◦, 0◦).

Therefore the phase shift between IN and OUT curve is larger in the first case.

Figure 4.25 shows the obtained interference fringes for the postselection directions

(θ, φ) = (−150◦, 30◦), (θ, φ) = (0◦, 30◦) and (θ, φ) = (150◦, 30◦).

It is interesting to note that for any azimuthal angle φ the postselected spin state
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Figure 4.24: O-detector interferograms for the postselection directions (θ, φ) =
(−150◦, 0◦), (θ, φ) = (0◦, 0◦) and (θ, φ) = (150◦, 0◦). The lines are a least-square
fits to the data. The error bars show one standard deviation.
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Figure 4.25: O-detector interferograms for the postselection directions (θ, φ) =
(−150◦, 30◦), (θ, φ) = (0◦, 30◦) and (θ, φ) = (150◦, 30◦). The lines are a least-square
fits to the data. The error bars show one standard deviation.



4.4.2. Experimental realizations of spin weak measurements 87

Figure 4.26: O-detector interferograms for the postselection directions (θ, φ) =
(−150◦, 60◦), (θ, φ) = (0◦, 60◦) and (θ, φ) = (150◦, 60◦). The lines are a least-square
fits to the data. The error bars show one standard deviation.
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Figure 4.27: O-detector interferograms for the postselection directions (θ, φ) =
(−150◦, 90◦), (θ, φ) = (0◦, 90◦) and (θ, φ) = (150◦, 90◦). The lines are a least-square
fits to the data. The error bars show one standard deviation.
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|Sf〉 will be |Sf〉 ≡ |Sz; +〉 as long as θ = 0. Because of that the weak value’s real

part will be plus one for all values of φ. Consequently all interferograms for this

direction are expected to be similar. Looking at Figs. 4.24 to 4.27 one sees that this

is indeed the true. All eight interferograms (4 IN and 4 OUT measurements) have

roughly the same amplitude A and mean y0. The phase shift between IN and OUT

curves is also ∼ 0.2 rad for all four φ postselection directions.

The interferograms in Fig. 4.26 are noteworthy because they demonstrate an exper-

imental problem that arose during the measurements. Due to limited beam time

at the S18 interferometer station in Grenoble the points that were recorded for

each interferogram were set to a minimum. Only 17 data points were recorded per

interference fringe. This guaranteed that a full period was observed for every in-

terferogram, which is needed to get good results for minimizing χ2-fit to the data

points. However, during the experiment a problem with the setup arose. The phase

shifter made unwanted movements rendering parts of the recorded interferogram

useless. This is the reason why the interference fringes in the upper two panels of

Fig. 4.26 offer less data points then the others. Of course the lack of data does not

help to get sound results. Later we will see that in general the theory is in very

good agreement with the measurement, but that there are some data points that

show a large deviation. The “broken” interferograms are exactly the reason for that.

There are even data points missing. This is the case whenever the interferogram was

cut into pieces by the experimental problem, rendering it useless, due to the wrong

movement of the phase shifter. The interested reader is surely happy to know that

the cause of the unwanted phase shifter movements was eventually identified and

eliminated. A loose screw allowed the phase shifter to move unwantedly. Fastening

the screw tight solved the problem.

Finally Fig. 4.27 shows the interference fringes for the azimuthal postselection direc-

tion φ = 90◦. For this postselection direction the weak value’s real part is symmetric

in θ around zero. Because of that the interference fringes of θ = −150◦ and θ = 150◦

are very similar. As we will see in the next section they will yield an identical weak

value.

4.2.1.4 Background and contrast corrections

The aim of weak measurements is to perform quantum measurements only with

minimal disturbance of the quantum system. While this brings the advantage that

the wave function of the investigated system does not necessarily gets altered much

and collapses, it also has the disadvantage that one needs to deal with very low
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signals. Therefore it is important to be able to deal with bad signal to noise ratios.

First it is important to realize that there are neutrons that are coherent in the spin

Hilbert space, but not coherent in the path Hilbert space and vice versa. Both sort

of particles reduce the overall contrast of the experiment. This kind of effect hast

to be taken into account for a detailed analysis.

Let us first consider those particles that are not coherent in the spin space. In

general the polarimetric part of the experimentf offers a higher contrast than the

interferometer itself. Taking all components into account one typically achieves a

contrast of ∼ 95%. Albeit this is very high it still has to be considered, for the treat-

ment of weak interactions and small signals. When pre and postselected states are

orthogonal, i.e. |Si〉 ≡ |Sx; +〉 and |Sf〉 ≡ |Sx;−〉, one expects to detect no neutrons

at all for zero interaction. But due to experimental imperfections of the polarimetric

part, this never happens. The recorded interference fringes (IN and OUT curve) for

orthogonal pre and postselected states are shown in Fig. 4.28.

For the OUT curve one would expect to see no intensity at all, but due to imperfec-
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Figure 4.28: Interference fringes of the O-beam for orthogonal pre and postselected
states: For the OUT curve one would expect no intensity at all. When the OUT curve’s
fit is subtracted from the IN curve, the correct signal is observed.

tions in the experimental setup, there is a “leak” intensity. Instead an interference

fThe polarimetric part of the experiment are all components that manipulate the neutron spin,
such as polarizer, analyzer, coils and so on.
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fringe with very little intensity is observed. Note that the contrast of the interfer-

ence is ∼ 80%, which also corresponds to the contrast of the empty interferometer.

Moreover, from the H-detector data it can be inferred, that this interference is in

phase with the empty interferogram. The OUT curve is obtained by neutrons that

are coherent in the path space, independent of spin. The OUT curve for orthogonal

pre and postselected states is an effective background, which also present in the

IN signal. The ratio between IN signal and background depends on the direction

of spin postselection and is worst for orthogonal pre and postselected states. For

this case the IN signal is very low, because of the weakness of the interaction and

the signal to noise ration (ratio between IN and OUT curve) is ∼ 1 : 1. Only

when the OUT fit is subtracted from the IN fit the correct IN signal is observed.

For |Sf〉 ≡ |Sx;−〉 and α = 15◦ the IN curve is expected to be phase shifted by π

compared to the interference fringe of the empty interferometer. We see that the

black line in Fig. 4.28 is phase shifted by π as compared to the OUT curve. We can

therefore treat the OUT signal for orthogonal states as an effective background and

subtract it from any IN curve in the experiment. This takes the background into

account and therefore allows to resolve the correct signal also for weak interactions.

Note that for the determination of the spin operator’s weak value we are only inter-

ested in the data fits, not in a point to point comparison. This makes the problem

easier to solve, since single outliers can be neglected. If a point to point comparison

is needed, the stability of the setup and the alignment of the components has to be

improved considerably, so that no single point of the IN curve drops below the OUT

curve. This experimental obstacle will be discussed in more detail in chapter 5.

It is true for polarized neutron interferometry in general that the maximally achiev-

able contrast is 90% at most. The reduced contrast is mainly due to incoherent

neutrons and not due to background of the detector or the polarimetric part. The

calculations performed in chapter 3 assume that the neutron interferometer works

perfectly. It is therefore necessary to consider the influences of the interferometer’s

contrast for the final analysis of the data.

If both the pre and postselected state are the same, i.e. |Si〉 ≡ |Sx; +〉 and |Sf〉 ≡
|Sx; +〉, one expects to have a perfect cosine interference fringe for the OUT curve.

As Fig. 4.29 shows, this is not the case. The OUT curve in Fig. 4.29 can be used as

a reference intensity IR. If the neutron interferometer worked perfectly this interfer-

ogram would show 100% contrast. Therefore the contrast of this interference fringe

serves as a reference for all other measurements. Having determined this value a
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Figure 4.29: Contrast Correction: For identical pre and postselected states a perfect
cosine interference fringe is expected. Due to imperfections of the neutron interferometer
this is not the case. The contrast of the OUT interferogram can be used to renormalize.

measured intensity IM can be normalized using the relation

IN =
IM

CR

− 1

2
sin (θ) cos (φ) min [IR] , (4.11)

where CR is the reference contrast, min [IR] the minimum of the reference intensity,

from which the reference contrast was extracted and θ and φ are the polar and

azimuthal spin postselection directions respectively. The naive approach would be

to simply divide the intensity by the contrast to normalize it. But this leaves the

normalized intensity IN sitting on a large offset, which has to be considered as well.

The offset given by the minimum of the reference intensity times a weighting factor,

which takes into account the spin postselection direction. The term 1
2

sin (θ) cos (φ)

scales the offset subtraction according to the expected count rate for each spin

direction. In Fig. 4.29 the IN curve was normalized using Eq. (4.11) and the result

is given by the black line, which shows ∼ 98% contrast. This is exactly what one

would expect for the IN curve of this spin direction, showing that the model we use

to normalize the contrast works well. Note that the relative error of y0 and A of

the normalized curve increases. This is a consequence of propagation of uncertainty.

Again it has to be remarked, that a more stable experimental setup is needed if a
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point to point normalization is performed instead of working with a fit.

As a remark we want to introduce another normalization model, that can be used

whenever one wants to normalize two intensities Ij± that are expected to show full

contrast while being phase shifted by π relative to each other. In this case the

relation

Ij+N =
Ij+ + Ij+

2
+

Ij+ − Ij+
2CR

(4.12)

leads to a satisfying result. Again CR is the contrast extracted from the reference

measurement with identical pre and postselected spin states and no interaction in

the interferometer.

For both operations, the background correction and the contrast normalization,

propagation of uncertainty are essential for the data analysis and are taken into

account for the final measurement results.

4.2.1.5 Results

The final results of the interferometric part of the weak spin measurement are shown

in Figs. 4.30 and 4.31. To illustrate the directions of spin pre and postselection

Bloch spheres are included in each graph. While the green arrow represents the pre-

selected spin state, one of the postselection directions is implied by the blue arrow.

All postselection directions lie on the blue circle. To extract the spin weak value’s

components from the measured intensities the relations given by Eqs. (3.16a) and

(3.16c) are used. An excellent agreement between theory and experiment is found.

For φ = 0◦ the modulus of 〈σ̂s
z〉w is simply given by the absolute of the real part,

with no contribution from the imaginary part. |〈σ̂s
z〉w| and Re [〈σ̂s

z〉w] have a discon-

tinuity where |Si〉 and |Sf〉 are orthogonal. It is interesting to note that for θ = 90◦

initial and final states coincide. For this case the weak value reduces to the expec-

tation value, which is zero (marked by a green circle). Also for the case θ = 0◦,

|Sf〉 is an eigenstate of the operator σ̂s
z and the eigenvalue one appears (marked by

a green arrow). For φ = 30◦ the discontinuities of |〈σ̂s
z〉w| and Re [〈σ̂s

z〉w] disappear,

since pre and postselected spin state are nowhere orthogonal. With an increasing

postselection azimuth angle the pre and postselected spin state move further away

from orthogonality and the magnitude of the weak value’s real part as well as that of

its modulus becomes smaller as can be seen in the results for φ = 60◦. For φ = 90◦,

Re [〈σ̂s
z〉w] oscillates describing a cosine function while |〈σ̂s

z〉w| is constant.

As is already discussed in chapter 3 the weak value’s modulus only appears in the
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Figure 4.30: Main measurement results (red) together with the theoretical prediction
(blue) for the spin operator’s weak value. The error bars represent one standard devi-
ation. Pre and postselected states are depicted on the Bloch sphere in green and blue
respectively: For φ = 0◦ the weak value’s real part and its modulus have a discontinuity
where |Si〉 and |Sf〉 are orthogonal. For θ = 90◦ initial and final states coincide, the weak
value reduces to the expectation value, which is zero (marked by a green circle). For
the case θ = 0◦, |Sf〉 is an eigenstate of the operator σ̂s

z and the eigenvalue one appears
(marked by a green arrow). For φ = 30◦ the pre and postselected state are orthogonal
nowhere, the discontinuity disappears.
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Figure 4.31: Main measurement results (red) together with the theoretical prediction
(blue) for the spin operator’s weak value. The error bars represent one standard deviation.
Pre and postselected states are depicted on the Bloch sphere in green and blue respec-
tively: For φ = 60◦ |Si〉 and |Sf〉 are further away from orthogonality and Re [〈σ̂s

z〉w] as
well as |〈σ̂s

z〉w| become smaller. For φ = 90◦, Re [〈σ̂s
z〉w] oscillates describing a cosine

function while |〈σ̂s
z〉w| is constant.
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second order of the interaction parameter α. In practice this means α2 ≈ 0.07 for

our setup, which corresponds to only 2.8% of relative interaction strength. For weak

interactions as is the case in this experiment the second order term is hard to resolve.

In contrast Re [〈σ̂s
z〉w] already appears in the linear order. This is the reason why in

general the agreement between theory and experiment is better for the weak value’s

real part that it is for its modulus.

In the final results the contrast of the interferometer has been taken into account.

The average reproducible contrast of all measurements is C ∼ 80 %. Although this

is excellent for neutron interferometry, the influence of the limited contrast has to be

considered when the absolute of the weak value is extracted from the measurement

data. For the weak value’s real part this is not necessary. The reason for this is sim-

ple: For |〈σ̂s
z〉w| the intensities corresponding to the states |Px;±〉 are investigated.

|Px; +〉 yields a maximum in intensity, while |Px;−〉 gives a minimum, as can be

seen in Fig. 4.22. So Eq. (3.16c), the relation to obtain |〈σ̂s
z〉w| from the measure-

ment data, directly compares a maximum and a minimum to each other. If, due to

the reduced contrast of the interferometer, the minimum does not reach zero but a

larger value, Eq. (3.16c) will never reproduce the weak value’s modulus correctly. In

addition a small deviation from zero leads to a large change in the obtained values.

Therefore the contrast C of the empty interferogram has to be considered when the

data is evaluated. At the same time C is of minor importance when Re [〈σ̂s
z〉w] is

evaluated, since Iy+ and Iy− are of approximately the same magnitude as can again

be seen in Fig. 4.22. The data necessary to evaluate Eq. (3.16a) is taken from the

flanks of the sine fit, where C has no significant effect. This is also the reason why

the error bars are significantly larger for the weak value’s modulus. For all data

points background has been subtracted as described in section 4.2.1.4 for the final

results (typically ∼1 cps). Propagation of uncertainty as described above is taken

into account when calculating the error of each component of the weak value from

the experimentally obtained intensities.

Note that some data points for |〈σ̂s
z〉w| and Re [〈σ̂s

z〉w] are missing in Figs. 4.30 and

4.31 (see for example the direction [θ, φ] = [−120◦, 90◦]). This is due to the technical

problems with the phase shifter, which have already been mentioned.

As an addition we also want to present the weak values obtained for smaller in-

teraction strengths, i.e. for α = ±10◦. The weak value’s real part was well as its

modulus were extracted only for the postselection azimuthal direction of φ = 0◦.

The results are depicted in Fig. 4.32. As anticipated in the previous section con-

cerning the optimization of the interaction parameter α, a good agreement between
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Figure 4.32: Measurement results (red) together with the theoretical prediction (blue)
for the spin operator’s weak value for an interaction strength of α = 10◦. The error bars
represent one standard deviation.

the theoretical prediction and the measurement is also found for α = ±10◦. When

compared to the 15 degree results the most obvious difference are found for weak

values bigger then one. While the α = 15◦ measurement results accurately describe

the weak value outside the eigenvalue spectrum of the operator, the α = 10◦ fail to

do so for several measured points. Also the error bars of the individual points are

in general larger.

Nevertheless the results let us conclude that weak values of a quantum system can be

accurately determined using neutron interferometry using spin manipulations with

a magnitude as small as only 10 degrees.
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4.2.2 Polarimeter experiment

In comparison to the interferometer experiment, in which the real part of 〈σ̂s
z〉w as

well as its modulus are measured, the polarimeter experiment to determine Im [〈σ̂s
z〉w]

is much simpler. An artistic representation of the experiment is presented in Fig. 4.2.

Again it can be divided into three main parts:

i) Preselection: The wavelength of the monochromatic neutron beam of the

polarimeter at the Institute of Atomic and Subatomic Physics in Vienna is

λ0 = 2.02 Å(λ/λ0 ∼ 0.02). It is polarized by a CoTi supermirror polarizer

which offers a degree of polarization of ∼ 99%. To preselect the neutron’s spin

state a DC coil is used. For the weak spin experiment it is tuned in a way that

the neutron spin is turned by by π/2 so that it is aligned along the positive

x-axis.

ii) Interaction: For the polarimetric version of the weak spin experiment the

neutron spin has to be first rotated by +α and then by −α in two consecutive

experimental runs. For simplicity’s sake, no additional coils are used for the

spin rotation. Instead the neutron’s Larmor precession in the xy-plane, caused

by the guide field applied around the whole setup, is exploited. To obtain an

effective rotation of ±α the position of the second DC coil, which also used

for the postselection of the spin state, is changed accordingly.

iii) Postselection: No path postselection is necessary at the polarimeter. The spin

postselection is performed in the exact same manner as in the interferometer

experiment. A DC coil is mounted on a translation stage. The polar angle

θ is tuned by applying different currents to the coil. The azimuth angle φ is

changed by moving the DC coil along the neutron’s direction of flight. After

the postselection angles are set by the DC coil a second CoTi supermirror

analyzer, which is of identical construction as the polarizer, filters all neutrons

but those with a spin aligned along the chosen direction. Finally the neutrons

are detected by a BF3 counter.

4.2.2.1 Adjustment

Throughout the preceding sections it was stated several times that the polarimetric

setup is easier to handle and much more robust against external influences such as

temperature fluctuations and vibrations than the interferometer. During this sec-

tion we explain these statements.



4.4.2. Experimental realizations of spin weak measurements 99

First of all the one component most difficult and fragile to adjust is not included

in the setup any longer, i.e. the interferometer. The supermirrors used as polarizer

and analyzer in the polarimeter, are installed routinely in the setup and do not

need to be further adjusted. External guide fields applied around the whole setup

are also permanent installations and do not need to be configured either. As with

the interferometer experiment the guide field strength is set to ∼ 13 G. The first

component to be adjusted is the DC1 coil. This is done in exactly the same manner

as in the interferometer experiment. The results of the adjustment are plotted in

Fig. 4.33.

After the final adjustment DC1 showed a flipping ration of ∼ 185, a contrast of
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Figure 4.33: By-scan of DC1 obtained with a suitable compensation field Bz: After the
final adjustment, the DC1 coil at the polarimeter showed a flipping ratio of ∼ 185, a
contrast of ∼ 99% and a phase of φ = 0.003 rad (without background correction).

∼ 99% and a phase of φ = 0.003 rad (all without a background correction). The

flipping ratio is more than twice as high as in the interferometric experiment at the

ILL. This is due to two reasons: First the guide field at the polarimeter is more

spacious and therefore offers a more homogenous field distribution. In addition mo-

torized micrometer rockers are used to adjust the tilt of the coils, which dramatically

increases the precision of the positioning of the coil.

The spin postselection is performed in the exact same manner as in the interfer-

ometer experiment. Again a second DC coil, also dubbed DC2, is mounted on a

translation stage. The motorized translation stage can move the DC2 in the ±x-
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direction, which enables the adjustment of the azimuth angle φ. Again the polar

angle θ is selected by applying current to the coil. DC2 is adjusted in the conven-

tional manner. The results of the adjustment procedure at a midway position are

plotted in Fig. 4.34.

Also with DC2 a very good adjustment has been be achieved. A flipping ratio of
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Figure 4.34: By-scan of DC2 obtained with a suitable compensation field Bz: After the
final adjustment, the DC2 coil at the polarimeter showed a flipping ratio of ∼ 160, a
contrast of ∼ 99% and a phase of φ = −0.001 rad (without background correction).

∼ 160, a contrast of ∼ 99% and a phase of φ = −0.001 rad are obtained (all without

background correction). The slightly lower flipping ratio than that of DC1 can be

explained by the proximity to the supermirror. For any position of the translation

stage, DC2 is closer to the analyzer than DC1 is to the polarizer. The stray fields

produced by the analyzer cause the reduction of the flipping ratio.

Next the adjustment of the polarimetric setup a position scan with active DC1 and

DC2 has to be performed. Again this is very similar to the interferometric experi-

ment. For the position scan DC1 is set in a way that |Sx; +〉 is preselected. Then

a constant current is applied to DC2 so that the a polar angle of θ = π/2 is posts-

elected. By changing the position of DC2 the azimuth angle is scanned. Fig. 4.35

shows the result of DC2’s position scan at the polarimeter setup.

The contrast of the intensity oscillation that can be observed the motor position is

scanned reached ∼ 96%. The position scan of DC2 includes all errors of the whole

measurement apparatus, since all components are involved during the measurement.
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Figure 4.35: DC2 position scan at the polarimeter beam line: Since the neutrons are not
separated into two ways at the polarimeter, no fluctuations between the paths has to be
taken into account and a single position scan is enough to adjust DC2. The contrast of
the intensity oscillations is ∼ 96%.

Hence, the polarimeter offers a much higher overall contrast than the interferometer

setup. In addition no beam separation exists in the polarimeter. Thus there is no

phase fluctuations between different paths and only one position scan is sufficient

to adjust the entire spin postselection.

4.2.2.2 Optimizing the measurement strength

In addition to the measurement presented in section 4.2.1.2, the spin weak value’s

imaginary part has been determined using different interaction strengths at the po-

larimeter. Measurements performed there are highly precise and the available beam

time is quite flexible at the Vienna research reactor. Therefore a more thorough

investigation of the optimal magnitude for α can be performed.

For the spin postselection the azimuth angle is held fixed at φ = 90◦ and the polar

angle θ is varied. This postselection direction is chosen intentionally. In Fig. 4.35

one sees that for this value of φ the measurement takes place at the flanks of the sine

curve obtained during the adjustment of the azimuth angle. Thus, any deviation

from the correct experimental parameters will manifest itself most prominently at

this direction. If the measurement yields accurate results for φ = 90◦ it will yield

accurate results for any other azimuthal direction.
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The test has been performed with three different interaction strengths: α = 6◦,

α = 9◦ and α = 15◦. The results are depicted in Fig. 4.36.

The upper panel depicts the measurement results for α = 6◦, which is a relative
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Figure 4.36: Measurement of Im [〈σ̂s
z〉w] using different measurement strengths param-

eterized by α: For α = 6◦ (upper panel) there are several points that are outside of
the theoretical prediction (not even in the limit of error). For α = 9◦ (middle panel)
the agreement becomes better, till for α = 15◦ (lower panel) all points agree with the
theoretical prediction (within the error).

interaction strength of ∼ 7%. A noticeable spread of the measurement results, un-

certainty, around the theoretical prediction can be observed. Also the individual

error bars of each data point are large. In general the measurement results reflect

the theoretical prediction of the weak value correctly, albeit being noisy. We con-

clude that an interaction strength of six degrees is too small from an experimental
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point of view.

Next the measurement strength is tuned to α = 9◦ corresponding a relative interac-

tion strength of 10%. The measurement results are depicted in the middle panel of

Fig. 4.36. They are less noisy and the agreement between the theoretical prediction

and the measurement results is now much better. There are only a few data points

that lie offside the theoretical curve. The interaction strength of α = 9◦ is suffi-

ciently large to perform experiments. While the α = 6◦ results would be difficult

to reproduce, the α = 9◦ are good enough to accurately extract the weak value’s

imaginary part with that interaction strength. The change from six to nine degrees

does not seem much, but one has to consider that the three extra degrees increase

the interaction strength by 50%!

For comparison the lower panel of Fig. 4.36 shows the measurement results for

α = 15◦, which is the interaction strength used in the interferometer experiment. A

perfect agreement between theory and the experimentally determined values can be

observed. Within the error all determined weak values touch the theoretical curve.

4.2.2.3 Data acquisition

While for each post selection direction a whole interferogram has to be recorded

during the interferometer experiment in order to obtain the real part as well as the

modulus of the spin operator’s weak value, two simple intensity measurements are

sufficient to determine Im [〈σ̂s
z〉w]. Instead of 52 interferograms only 52 intensity

pairs have to be collected. In Fig. 4.37 the recorded intensities for α = ±15◦ for all

data points are shown.

For a postselection direction of (θ, φ) = (−π ≤ θ ≤ π, 0) the imaginary part of 〈σ̂s
z〉w

vanishes. This can already be seen when looking at the measurement data depicted

in the upper left panel of Fig. 4.37. The artanh function used to extract Im [〈σ̂s
z〉w]

becomes zero if its argument is zero. It is given by Iz+−Iz−/Iz++Iz−, which becomes

(close to) zero when the observed intensities are nearly identical. An alternative

understanding of the results can be gained through Fig. 4.35. An azimuth angle of

φ = 0◦ is equivalent to a maximum in the position scan. To record the intensity Iz+

the coil has to be positioned 15◦ to the right of the maximum, for Iz− 15◦ to the

left. It is easy to see that in this case the recorded intensities will be the same for

any polar angle θ for symmetry reasons. This picture also intuitively explains the

intensity differences in the other three panels of Fig. 4.37.
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Figure 4.37: Polarimeter intensities for all postselection directions. The error bars rep-
resent one standard deviation. The dashed lines are drawn to guide the eye, but do
not have any further purpose. Note that at φ = 0◦ the intensities for ±α coincide and
Im [〈σ̂s

z〉w] vanishes.

4.2.2.4 Results

The polarimeter data presented above makes it possible to extract the imaginary

part of the spin operator’s weak value with high accuracy for four different azimuth

angles φ.

The final results of the weak spin experiment at the polarimeter are shown in

Fig. 4.38. To extract the spin weak value’s components from the measured in-

tensities the relation given by Eq. (3.16b) is used. An excellent agreement between

theory and experiment is seen.

For φ = 0◦ the imaginary part of 〈σ̂s
z〉w is always zero. This result was already antic-

ipated in the previous sections while looking at the measurement data in Fig. 4.37.

The intensities coincided for ±α which hints at a vanishing imaginary part of the

weak value. With increasing azimuthal angle pre and postselected spin states move

away from orthogonal positions and the weak value’s imaginary part starts to os-

cillate, describing a sine for φ = 90◦. The average contrast of the polarimeter



4.4.2. Experimental realizations of spin weak measurements 105

−4.0

−2.0

0.0

2.0

4.0

Im
[ 〈σ̂

s z
〉 w

]

φ = 0◦ analytic

experimental

−π −π/2 0 π/2 π

Polar Angle θ [rad]

−4.0

−2.0

0.0

2.0

4.0

Im
[ 〈σ̂

s z
〉 w

]

φ = 60◦ analytic

experimental

φ = 30◦ analytic

experimental

−π −π/2 0 π/2 π

Polar Angle θ [rad]

φ = 90◦ analytic

experimental

Figure 4.38: Final results of the measurement of Im [〈σ̂s
z〉w] for all postselection direc-

tions: The measurement results (red) are plotted together with the theoretical prediction
(blue). The error bars represent one standard deviation. For φ = 0◦ Im [〈σ̂s

z〉w] is always
zero. With increasing azimuthal angle the weak value’s imaginary part starts to oscillate,
describing a sine for φ = 90◦.

measurements is over 96%. Because of that no contrast corrections as with the in-

terferometer data has to be performed, when the imaginary part of the weak value is

extracted from the data. For all measurements the background has been subtracted

and propagation of uncertainty is taken into account, when calculating the weak

value’s error.

As already stated several times the purely polarimetric setup is far more robust than

the interferometric one. Therefore the precision that can be achieved is even higher

than the one an interferometric setup offers. Also the average intensity available

at the polarimeter beam line is higher, which makes the necessary data collection

times shorter. Therefore it possible to tune the angle α, and hence the disturbance

of the measurement, to even smaller values. In addition the high stability makes it

possible to systematically vary the postselection angles θ and φ in small increments:

the imaginary part of the spin weak value is scanned on the whole Bloch sphere.

Additional data was collected at the polarimetric setup in which Im [〈σ̂s
z〉w] is sys-
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tematically investigated: The post selection angle φ and θ are varied between −π
and π with an increment of π/18 respectively, yielding a total of 441 data points.

For all measurements the angle of rotation α is fixed at α = 9◦. The measurement

results are presented in Fig. 4.39, where they are compared to the analytic solution

of Im [〈σ̂s
z〉w].

Again an excellent agreement between the theoretical prediction on the left and the

Figure 4.39: Contour plot of Im [〈σ̂s
z〉w] (left) in comparison to the measurement results

(right) as a function of θ and φ: The polarimetric setup made it possible to systematically
evaluated Im [〈σ̂s

z〉w] on the whole Bloch sphere. The postselection angles φ and θ were
varied between −π and π with a step size of π/18, yielding a total of 441 data points,
which make it possible to interpolate a contour plot of the measurement results. For all
measurements α was fixed at α = 9◦.

actual measurement results on the right can be observed. For φ = 0◦ the imaginary

part of the weak value is expected to be zero, which is indicated by the white line in

the contour plot. This line is perfectly reproduced in the experiment. In addition

one expects to find four discontinuous points, wherever pre and postselected spin

state become orthogonal. These points are also clearly visible in the measurement

data. To obtain the contour plot shown in Fig. 4.39 it is necessary to interpolate

between the recorded data points. It is also possible to plot the data in a discretized

way so that each pixel on the image represents one data point. The discretized data

is depicted in Fig. 4.40.

One may object to the way the measurement data is presented in Fig. 4.39, since

no error bar is depicted and so no assertion of the data’s quality can be made. How-

ever, one can “cut” out slices of Fig. 4.39 for a fixed value of φ, as has been done
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Figure 4.40: Discretized Contour plot of Im [〈σ̂s
z〉w]: Each of the 441 recorded data

points is represented by one square.

in Fig. 4.41, which shows the measurement results for a fixed azimuth postselection

angle of φ = −144◦.

As can be seen in this Figure the quality of the measurement data is superb, with

very little error and in complete agreement with the theoretical predictions.

4.2.3 Measurement of Im [〈σ̂s
z〉w] using the interferometric

setup

To overcome possible criticism that the imaginary part of 〈σ̂s
z〉w was initially mea-

sured using another setup than Re [〈σ̂s
z〉w] and |〈σ̂s

z〉w|, the experiment was carried

out once more, this time using an updated interferometer setup during reactor cycle

177 at ILL. An important new component is added to the setup, which is worth

mentioning. In the first version of the experiment the interferometer’s beams had

to be blocked by manually putting small cadmium slabs in the beam path. This ap-

proach has a big disadvantage: whenever a beam needs to be blocked, someone has

to come physically close to the interferometer. The body heat of the experimentalist

induces thermal stress and one has to wait for thermal stabilization to be reached

again. To avoid this experimental inconvenience and to increase the precision of the

experiment a rotational motor stage is introduced in the new setup. A special cad-
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Figure 4.41: Slice of the contour plot of Im [〈σ̂s
z〉w] shown in Fig. 4.39 for φ = −144◦

as a function of θ. The error bars represent one standard deviation: Measurement data
(red) and theoretical prediction (blue) are in excellent agreement. α was fixed at α = 9◦.

mium holder, which is 3D printed, is rotated through the setup as seen in Fig. 4.42.

If the cadmium holder is in a central position both beams can pass through the

interferometer undisturbed. If it is rotated either to the left or to the right, one of

the beams gets blocked, so that path eigenstates of the interferometer are accessible.

Figure 4.43 shows the results of one position scan of the cadmium rotator.

Looking at the combined count rate of O and H detector it is easy to see that for

∼ 40◦ both beam paths are free, because the full count rate is reached. For ∼ 10◦

and ∼ 70◦ the count rate decreases to halve its initial value, which indicates that

either one of the two beam paths is blocked. If the cadmium holder is rotated even

further, the count rate goes back up to its maximum. At this point the beam stop-

per is completely outside of the interferometer. The adjustment of the rest updated

setup is very similar to the old one and will not be presented here in detail.

Using the new setup it is possible to reproduce the data of the measurements per-

formed at the polarimeter in Vienna using an interferometric setup. Due to limited

beam time only one postselection azimuthal direction is investigated. The imaginary

part of the spin operator’s weak value is measured for thirteen different postselection

directions given by (−180◦ ≤ θ ≤ 180◦, φ = 90◦). For this 26 single intensities are

recorded and additional background measurements are performed. The results of

the experiment are depicted in Fig. 4.44.
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Figure 4.42: Picture of the updated interferometric setup at ILL during reactor cycle
177: To increase the precision of the experiment and for experimental convenience a
cadmium holder is inserted into the interferometer.

For the final results presented here the background has been taken into account.

The interferometric experiment again fully confirms the results which were obtained

with the polarimeter at an earlier point in time. The weak value’s imaginary part

is determined with high precision and an excellent agreement between theory and

experiment is observed.

4.3 The quantum pigeon hole effect

The experiments presented above show that it is possible to determine all compo-

nents of the neutron spin’s weak value with high precision. While the measurement

of weak values using massive particles seems to be a purely pedagogic exercise at

first, the newly established technique can be used to investigate the foundations of

quantum mechanics experimentally.

One example for a test of the foundations of quantum mechanics is the so called

quantum pigeon hole effect: The classical pigeon hole principle states that if n pi-

geons are put into m boxes and if n > m, then at least two pigeons end up in

the same box [Herstein, 1964]. In 2016 Aharonov et al. theoretically proposed the

quantum pigeonhole effect [Aharonov et al., 2016], showing that the classical pigeon
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Figure 4.43: Position scan of the cadmium rotator: The combined count rate of both
the O and the H detector is plotted versus the rotational angle of the cadmium holder.
If it is in a neutral position (∼ 40◦) both beam paths are free and the full count rate
is obtained. When it gets rotated into either one of the beams (∼ 10◦ and ∼ 70◦) the
count rate gets halved due to the block of one of the beams.

hole principle is in general not valid in quantum mechanics and that situations can

arise in which three pigeons are put into two boxes and yet no two pigeons seem to

be in the same box at a given time.

Since pigeons as macroscopic objects do not obey the laws of quantum mechanics,

let us consider quantum particles. The role of the pigeons is taken by the neutrons’

spins and the two boxes are replaced by the two spin eigenstates |Sz; +〉 and |Sz;−〉.
Let all three particles be prepared in a spin state that is aligned along the positive

x-axis, so that they are in a superposition |Sx; +〉 = 1/
√

2 (|Sz; +〉+ |Sz;−〉). The

initial state of the three particles is then given by a product state

|Ψi〉 = |Sx; +〉1 |Sx; +〉2 |Sx; +〉3 . (4.13)

We now only consider situations in which the three particles get successfully postse-

lected in the spin state |Sy; +〉 = 1/
√

2 (|Sz; +〉+ i |Sz;−〉) so that their spin is aligned
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Figure 4.44: Results of the weak spin measurement for Im [〈σ̂s
z〉w] for φ = 90◦ using the

upgraded interferometric setup: Theoretical predictions (blue) and measurement results
(red) for the imaginary part of the spin operator’s weak value. The error bars represent
one standard deviation. The results obtained using the polarimetric setup are reproduced
using the interferometric one. A perfect agreement between theory and experiment is
observed.

along the positive y-axis. The final product state of the three neutrons is given by

|Ψf〉 = |Sy; +〉1 |Sy; +〉2 |Sy; +〉3 . (4.14)

Let us look at the product of the Pauli spin operator’s weak values 〈σ̂s
zk
〉
w

and

〈σ̂s
zl
〉
w

of the k-th and l-th neutron. Due to the choice for the preselected and the

postselected spin states the spin weak value of each neutron will be 〈σ̂s
z〉w = i and

hence the weak value of the product any of two Pauli operators will equal minus one

〈σ̂s
zk
σ̂s
zl
〉
w

= −1g, showing that the two neutron spins are anti correlated. Because

the problem is symmetric under permutation the operator product will be minus

one for any two out of the three particles, implying that no two spins are ever in

the same state.

For a better understanding of the reason why the classical pigeon hole principle is

gNote that in general the weak value of a product of operators is not equal to the product of
weak values of the operators, i.e 〈σ̂s

zk
σ̂s
zl
〉
w
6= 〈σ̂s

zk
〉
w
〈σ̂s
zl
〉
w

. However, if initial and final states are
given by product states, as is the case for the states in Eq. (4.13) and (4.14), the product rule
holds, so that 〈σ̂s

zk
σ̂s
zl
〉
w

= 〈σ̂s
zk
〉
w
〈σ̂s
zl
〉
w

is true.
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violated by that, the product operator σ̂s
zk
σ̂s
zl

is decomposed into projection operators

so that σ̂s
zk
σ̂s
zl

= (+1) Π̂s
e + (−1) Π̂s

o with

Π̂s
e = |Sz; +〉k |Sz; +〉l 〈Sz; +|k 〈Sz; +|l + |Sz;−〉k |Sz;−〉l 〈Sz;−|k 〈Sz;−|l , (4.15a)

Π̂s
o = |Sz; +〉k |Sz;−〉l 〈Sz; +|k 〈Sz;−|l + |Sz;−〉k |Sz; +〉l 〈Sz;−|k 〈Sz; +|l . (4.15b)

The even and odd projection operators Π̂s
e and Π̂s

o tell us how many neutron spins

are in one state. If the spins of both the kth and the lth neutron are in the same

state, the weak value of the even projection operator Π̂s
e equals one. If they are

in different states the odd projection operator Π̂s
o equals one. Given the pre and

postselected states of Eq. (4.13) and (4.14) we find that Π̂s
e = 0 and Π̂s

o = 1. The

spin of the kth and the lth neutron are always in different states. Because the initial

and final states are symmetric, no two spins ever seem to be in the same state, but

at the same time we have only two states for three spins, leading to a violation of

the classical pigeon hole principle.

4.3.1 Experimental realization

In the paper by Aharonov et. al [Aharonov et al., 2016] an experiment in which

three particles are simultaneously sent through a Mach-Zehnder type interferometer

is proposed. The two boxes are then given by the two paths of the interferometer.

Would such an experiment be feasible with neutrons? The answer to this question

is no. Any neutron interferometric experiment is a single particle experiment and

it is impossible to inject three particles into the interferometer at the same time.

Nevertheless there is still hope for an experimental investigation of the effect us-

ing neutrons. The nature of the quantum pigeon hole principle is such that each

particle is prepared and postselected individually. It is a widely accepted assump-

tion that any non-classical correlation between particles must be due to the fact

that the particles are in an entangled state, which requires them to be near each

other during preparation. However, in the alternative correlation concept consid-

ered in [Aharonov et al., 2016], the particles could have been prepared at arbitrary

separations. They are in a product state and there does not appear to be any en-

tanglement or interaction involved. Nevertheless, any pair with purely imaginary

weak values would exhibit non-classical correlations. We therefore use the neutron

interferometer and the experimental technique described in the sections above to

prepare different ensembles in time. Note that for all pairs of spins the operator

product σ̂s
zk
σ̂s
zl

will equal minus one, which implies a nonclassical correlation.
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During reactor cycle 177 in December 2015 the technique presented above was im-

plemented in a neutron interferometric experimenth. To measure the weak value of

the Pauli spin operator σ̂s
z the spin degree of freedom is weakly coupled to the path

degree of freedom. As described above the weak value’s real part is then inferred

from a interference fringe, while two single intensity measurements are necessary to

determine the weak value’s imaginary part. For the quantum pigeon hole effect the

weak value’s modulus is not of interest and is not extracted during the experiment.

To determine Re [〈σ̂s
z〉w] three interference fringes are recorded:

1. The OUT curve without any interaction, to evaluate the phase of the empty

interferogram.

2. The IN curve with a weak spin rotation of α = 15◦ in each of the interferom-

eter’s arms.

3. One interference fringe with orthogonal pre and postselected states, which is

then subtracted from the IN/OUT curve as an effective background as de-

scribed in section 4.2.1.4i.

Additionally two single intensities with alternately closed beam paths as described

in section 4.2.3 are recorded. Also for those two intensities a background mea-

surement with orthogonal pre and postselected states are performed. The recorded

background intensities are then subtracted from the signal.

Altogether the beam time of 14 days at S18 was enough to measure the spin weak

value of 19 different ensembles. Figure 4.45 shows typical IN and OUT curves of

one experimental run.

Using the intuitive geometric picture of the weak value on the Bloch sphere devel-

oped in Fig. 3.1 of chapter 3 the results of the weak value determination are obvious.

There is no phase shift between the IN and the OUT interference fringes leading

to a vanishing real part of the weak value. Looking at the recorded intensities Iz±

shows that the relative amplitudes of the path eigenstates are not equal. This is

because Im [〈σ̂s
z〉w] shifts the pointer state away from the equatorial plane, towards

the poles of the path Bloch sphere.

The measured intensities are inserted into the relations given by Eqs. (3.16a) and

(3.16b) to determine the real and imaginary part of the weak value. We repeated

the measurement to study 19 individual ensembles. The results for each ensemble

are listed in Tab. 4.1. In general a very good agreement between the theory and

hThe aperture cross section was reduced to 4× 4 mm2 in the pigeon hole experiment
iA correction of the neutron interferometer’s contrast was not needed, since only the spin

operator’s real and imaginary part is of interest.
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Figure 4.45: Obtained interferogram for one quantum ensemble: Since the weak value’s
real part is zero no phase shift is observable between the IN and the OUT curve. Iz±
are obtained by two single intensity measurements. Background has been taken into
account.

Set Number Re
[〈
σ̂s

z

〉
w

]
Im
[〈
σ̂s

z

〉
w

]

# 1 0.002± 0.049 0.912± 0.099
# 2 −0.041± 0.049 0.985± 0.102
# 3 0.101± 0.051 0.920± 0.099
# 4 −0.020± 0.050 0.931± 0.099
# 5 0.022± 0.050 1.037± 0.104
# 6 0.056± 0.049 1.301± 0.129
# 7 −0.070± 0.049 0.874± 0.095
# 8 0.011± 0.049 0.790± 0.092
# 9 0.062± 0.050 0.910± 0.096
# 10 −0.084± 0.051 1.039± 0.105
# 11 −0.121± 0.052 0.973± 0.103
# 12 −0.079± 0.050 1.003± 0.103
# 13 0.022± 0.043 0.889± 0.090
# 14 −0.024± 0.044 0.970± 0.094
# 15 −0.005± 0.044 1.050± 0.098
# 16 0.018± 0.045 1.002± 0.095
# 17 −0.103± 0.045 0.925± 0.092
# 18 −0.032± 0.044 0.979± 0.094
# 19 −0.097± 0.045 1.024± 0.096

Table 4.1: Experimentally determined weak values for 19 different ensembles.
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the experiment is found. Nonetheless, there is one set that lies outside the expected

range. For set number six Im [〈σ̂s
z〉w] = 1.301 is determined, which is almost three

sigmas away from the expected value. Log files of the experiment show that the

large deviation from the expected value is caused by a defect in one of the setup’s

coils.

It is also noteworthy that the errors of set 13 to 19 are smaller than the others.

This is due to a change in reactor power. While the first twelve interferograms were

recorded at a power of ∼ 43MW, for the last seven a power of ∼ 58MW was avail-

ablej. The increase in reactor power leads to an increase in neutron flux. A higher

count rate offers better statistics and reduces the uncertainty of the recorded values.

4.3.2 The quantum pigeon hole effect and contextuality

The idea of the quantum pigeon hole effect is further investigated in the theoret-

ical paper [Waegell and Tollaksen, 2015], where a structural connections between

the Kochen-Specker theorem and the observed anomalous weak values is analyzed,

showing that the quantum pigeon hole effect is strongly related to contextuality.

Quantum mechanics is contextual, meaning that for a given observable the mea-

surement outcome depends in which “context”, i.e. the setup, the combination of

observables, etc. the measurement is performed at. Also quantum mechanics is

non deterministic, meaning that in general it does not predict the outcome of any

measurement with certainty. It only predicts the probabilities that a certain out-

come will be observed. This inability to predict the outcome of a measurement with

certainty motivated the development of so called hidden variable theories. In those

theories the properties of a quantum system are predefined and fixed. This simple

classical extension leads to the fact that the measurement outcome for any com-

muting observable will be the same regardless of the measurement context. Such

theories are often called non-contextual hidden variable theories (NCHVT).

If a NCHVT exists, the standard interpretation of quantum mechanics would be

an incomplete description of nature. A NCHVT would then be a more fundamen-

tal theory than quantum mechanics. However, as Kochen and Specker showed, no

NCHVT can reconstruct the correct measurement outcome for certain sets of ob-

servables [Kochen and Specker, 1967]. In other words, it is impossible for hidden

variable assignments to agree with the predictions made by quantum mechanics.

An example for such a set of observables are the tensor products of Pauli matri-

jThere are different operational powers of the reactor at ILL, two of them being ∼ 43MW and
∼ 58MW
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ces of three spins and the identity matrix. They are mutually commuting and

can be simultaneously measured. Nine such observables can be arranged in a

square [Mermin, 1990]. A modified Mermin square for such a three spin system

is shown in Fig. 4.46.

The possible eigenvalues of the observables are plus and minus one. According

Figure 4.46: Mermin square used to illustrate the set of three spins demonstrating the
Kochen-Specker theorem: The product of the three observables is minus one in each
column and plus one in each row.

to quantum mechanics the eigenvalues of each observable must obey the product

rule in each basis they are being measured. In Fig. 4.46 the product of the three

observables is minus one in each column and plus one in each row. Consequently

the products from the columns is plus one and the product of the rows is minus one,

which is a contradiction.

We now want to consider the case discussed above, where the spins are pre and post-

selected with the initial state given by Eq. (4.13) and final one by Eq. (4.14). Any

predictions made by a NCHVT must be consistent with the boundary conditions

given the pre and postselection. This constrains the results of products of the x and

y direction in Fig. 4.46 to plus one. As was shown above the product of any two

spin operators can be spectrally decomposed [Eqs. (4.15a) and (4.15b]. Using this

decomposition for the given pre and postselection the measurement outcome will be

minus one for any pair of spins involving the z basis, i.e. σ̂s
zσ̂

s
z = −1. Consequently

all observable of the uppermost row in Fig. 4.46 have an eigenvalue of minus one,

but no NCHVT can satisfy this result by assigning plus and minus one to each spin

independently. The quantum pigeon hole effect is strongly related to contextuality.



4.4.4. Summary and perspective 117

4.4 Summary and perspective

In chapter 3 a theoretical treatment of a weak measurement scheme is presented,

which can be used to completely determine the weak value of one two-level quan-

tum system using another two-level quantum system as a meter. This is applied

to different experimental situations in which the neutron’s spin degree of freedom

is investigated by coupling it weakly to the neutron’s path degree of freedom. In

this chapter the raw data of the experimental realization is described along with a

detailed explanation of the way to reach such high quality data despite bad signal

to noise ratios caused by the weakness of the interaction. From the experimental

data the theoretical prediction is confirmed. Also the intuitive picture developed

within the theoretical section, is fully justified by the experiment and helps to gain

a deeper understanding of the involved physics.

For the spin operator’s real part, weak values ranging from -3.2 to 3.4 are obtained,

which is clearly outside the eigenvalue range of the spin operator. For its modulus,

a value well above 3 is obtained. The imaginary part of 〈σ̂s
z〉w is determined using

two slightly different experimental approaches, one with a purely polarimetric and

one with an interferometric setup. Additionally Im [〈σ̂s
z〉w] = 1.301 is mapped out in

several hundred measurements in a minimally disturbing polarimetric experiment.

For the special situation in which the preselected spin state is given by |Si〉 = |Sx; +〉
and the postselected one by |Sf〉 = |Sy; +〉 19 quantum ensembles were created in

a sequence of time, which have a purely imaginary weak value of 〈σ̂s
z〉w = i. These

ensembles are used for the test of the quantum pigeon hole principle. The experi-

ment showed that the weak value of each ensemble is indeed purely imaginary with

a vanishing real contribution. Consequently any two of the 19 ensembles will show

non-classical correlations in the sense of Aharonov et. al..

It has to be stressed that all measurement results are of a purely quantum me-

chanical nature, since the neutron is modeled with a matter wave following the

Schrödinger equation. No classical theory can describe the results. In addition the

obtained results establish a way to determine weak values of massive particles with

high accuracy. This establishes a new measurement technique that allows to test

quantum mechanics at a fundamental level.

The measurement scheme presented in chapter 3 is in fact completely general and

can be extended easily to a coupling between any two two-level systems. Therefore

it can be used to not only investigate the spin degree of freedom, but also the path

degree of freedom. In the following chapter a neutron interferometric experiment

will is presented in which the role of spin and path are swapped. Then the spin
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degree of freedom serves as a meter system to measure 〈σ̂p
z 〉w and 〈Π̂p

z±〉w.

Furthermore the measurement scheme can be easily extended to higher level quan-

tum systems. An example for such a system would be a four plate interferometer.

In such an interferometer, the neutron can travel along three different paths. It is

a three level quantum system. Another example for a higher dimensional system

is the neutron energy degree of freedom, which is a n-dimensional system. If the

energy degree of freedom established as a meter, which can be used to completely

determine all components of the spin operator’s weak value, novel experimental

schemes are possible. For example the energy degree of freedom could play the role

of the path at a purely polarimetric experiment. Also the n-dimensional nature of

the energy degree of freedom would open up the possibility to perform simultaneous

weak measurements of incompatible observables.



CHAPTER 5

Path weak values

In this chapter a neutron interferometric experiment is presented, in which the weak

value of the Pauli path operator σ̂p
z is fully determined using both weak and strong

interactions. Due to the completeness of two-level quantum systems this also yields

the weak values of the operators Π̂p
z± Π̂p

z±, i.e. of the projection operators on the

path eigenstates |Pz; +〉 and |Pz;−〉. Additionally measurements are presented in

which 〈Π̂p
z±〉w are directly determined using maximum strength measurements not

relying on the completeness of the system. The determined weak values can be

used for a “direct” state characterization [Lundeen et al., 2011, Salvail et al., 2013]

in the Mach-Zehnder interferometer. Precision and accuracy of weak and strong in-

teraction approach are compared, showing that strong interactions outperform weak

ones.

For the determination of 〈σ̂p
z 〉w and 〈Π̂p

z±〉w individual intensity points on different

interference fringes have to be compared to each other. This makes it necessary to

record up to 16 interferograms at the same time. To perform this experimental task

the stability of the setup has to be improved. Additionally a new supermirror with

a larger window of acceptance is installed in the setup, doubling the count rate and

thus halving the measurement time.

At first a short summary of the underlying experimental idea is presented. The

improvements in the setup including their effects on the alignment of the compo-

nents are demonstrated. Subsequently the experimental raw data are shown and

the measurement results of 〈σ̂p
z 〉w and 〈Π̂p

z±〉w are shown. Finally a “direct” state

characterization of the neutron interferometer’s path degree of freedom is performed.

119
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The results of a weak and strong interaction approach for such are compared to each

other.

5.1 Underlying experimental idea

To determine 〈σ̂p
z 〉w and 〈Π̂p

z±〉w the roles of the path and the spin degree of freedom

are switched as compared to the experiments described in chapter 4. Experimen-

tally this is achieved by minimally modifying the setup. Figure 5.1 shows an artistic

depiction of the experimental setup. It is not necessary any more to access the

Figure 5.1: Artistic depiction of the experimental setup: The neutron beam passes
magnetic prisms (P) that polarize it. To prevent depolarization a magnetic guide field
(GF) is applied around the whole setup. Before the neutrons enter the interferometer
a DC coil (DC1) prepares the initial spin state |Si〉. At the interferometer’s first plate
the neutron beam gets separated into path I and II. The phase shifter (PS) placed
between the first and the second plate of the interferometer prepares the initial path
state |Pi〉. In each beam path small coils in Helmholtz configuration (HCs) allow the
manipulation of the neutron spin in the xy-plane, making the measurement of 〈σ̂p

z 〉w
and 〈Π̂p

z±〉w possible. At the interferometer’s third plate the final path state |Pf〉 gets
postselected. The projective measurement of the meter system |Sf〉 is performed using
a second DC coil (DC2) mounted on a translation stage (TS) in combination with a
CoTi supermirror analyzer (A). Of the two outgoing beams of the interferometer, only
the O-beam is spin analyzed (O). Both detectors (O & H) are 3He counter tubes.

interferometer’s path eigenstates. Therefore a cadmium beam block inside the in-

terferometer is not needed. Also for clarity we want to change the preselected path

state |Pi〉 and keep the postselected one |Pf〉 fixed. Therefore the phase shifter is

moved between the first and the second plate of the interferometer.
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Again the experiment starts with a polarized neutron beam, so that the neutron’s

spin state is given by |Sz; +〉. Before the neutron enters the interferometer the spin

is turned by π
2

around the y-axis, leading to the initial spin state |Si〉 ≡ |Sx; +〉,
which is exactly the same as in chapter 4. After the interferometer’s first plate the

neutron’s state vector is extended by a path dependent component:

|Ψ〉 = |Pi〉 |Si〉 = (c+ |Pz; +〉+ c− |Pz;−〉) |Sx; +〉 , (5.1)

where the states |Pz; +〉 and |Pz;−〉 are the eigenstates of the path I and II re-

spectively, with the corresponding probability amplitudes c+ and c−.a After the

phase shifter the ensemble’s preselection is complete. Again the coupling between

the two degrees of freedom is created by performing small path dependent spin ro-

tations. If 〈σ̂p
z 〉w is measured, the spin is rotated by a certain angle α around the

z-axis in the xy-plane with a positive (clockwise) rotation in path I and negative

(counter clockwise) one in path II. The same interaction Hamiltonian is given for

the measurement of the spin weak value:

Ĥint = −~µ · ~BΠ̂p
z+ + ~µ · ~BΠ̂p

z−, (5.3)

where ~µ is the neutron’s magnetic moment, ~B = (0, 0, Bz) an externally applied

magnetic field. If Π̂p
z± is the observable of interest, the spin rotation is set to take

place only in one beam path and the interaction Hamiltonian is simplified to

Ĥ ′int = −~µ · ~BΠ̂p
z±. (5.4)

The Hamiltonian of either Eq. (5.3) or (5.4) can be realized as an evolution oper-

ator to obtain the evolved state vector. For the measurement of 〈σ̂p
z 〉w exactly the

same spin evolution as in Eq. (4.4) of the spin measurements is carried out. If the

projection operators are of interest, the evolved state is given by

|Ψ′〉 = e
−i/~

∫
Ĥintdt |Ψi〉 = e

−iαΠ̂
p
z±σ̂

s
z/2 |Ψi〉 (5.5)

aFor a 50:50 beam splitter as is the case in a Mach-Zehnder type interferometer the probability
amplitudes are c+ = c− = 1/

√
2, so that the initial path state is given by

|Pi〉 =
1√
2

(
|Pz; +〉+ eiχ |Pz;−〉

)
, (5.2)

with some relative phase χ between the path eigenstates.
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Again the parameter α describes an angle of rotation and therefore the interaction

strength of the measurement. It is given by −2µBzτ/~, where τ is the neutron’s time

of flight in the externally applied magnetic field. σ̂s
z is the Pauli spin operator, that

describes the rotation around the z-axis.

At the interferometer’s third plate the beams a recombined and the final path state

|Pf〉 =
1√
2

(|Pz; +〉+ |Pz;−〉) (5.6)

is postselected. Subsequently a combination of a coil mounted on a translation

stage and a CoTi super mirror is used to evaluate the pointer system. This is done

by projective measurements along the six spin directions ±x, ±y and ±z, which

yields the six intensities Ij± = |〈Sj;±|Ψf〉| with j = x, y, z. The relations derived

in chapter 3 can then be used to extract the path weak values from the recorded

intensities.

5.2 Experimental realization

The setup used for the measurement of 〈σ̂p
z 〉w and 〈Π̂p

z±〉w is very similar to that

described in section 4.2.1, but for the determination of path weak values a higher

stability is necessary since at least six intensities, corresponding to the six spin

postselection directions, have to be recorded in a combined measurement. In practice

twelve interference fringes are recorded for the measurement of 〈σ̂p
z 〉w (one with and

one without a spin rotation for each spin direction) in one experimental run. For

the direct determination of 〈Π̂p
z±〉w 16 interferograms are recorded in a combined

measurement (one measurement with a spin rotation for each beam path and spin

direction plus one without a spin rotation for each spin postselection direction).

Since the data points of the individual interferograms should be directly compared

to each other it is not possible to rely on the data fits and perform phase corrections

as was the case in the measurement of the spin weak value. It is necessary to have

a highly stable setup.

To increase the stability of the setup, the old Helmholtz coils of the guide field

are replaced by larger ones, which create a more homogenous magnetic field than

the old coils. At the same time make a larger experimental space available, so

that the interferometer itself can be placed in an extra box insulating it from the

environment. Also during the cycles 174 and 175 (April to July 2015) a thermal

stabilization system is installed at the instrument S18, which minimizes the thermal

fluctuations of the experimental area.
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In addition the efficiency of the polarimetric part of the setup is further improved by

installing motorized micrometer rockers to adjust the DC coils. Furthermore a new

supermirror with a larger window of acceptance is used as an analyzer, doubling the

count rate without losing any sensitivity and degree of polarization. Finally simple

line lasers are used to align all components correctly. Figure 5.2 shows a picture of

the renewed setup (upper panel) and one of the alignment using the line laser (lower

panel). In the experimental setup the aperture serves as an original starting point

along which all other setup components are aligned.

5.2.1 Adjustment

The adjustment procedure of the setup is quite similar to that presented in sec-

tion 4.2.1.1 and therefore a detailed description of its procedure is not repeated

here. Only the final adjustment results of several components are presented, be-

cause they serve as a reference for future experimentalists.

All results presented in this chapter were recorded during reactor cycles 174 and 175

(April to July 2015) at ILL during which a reactor power of 53MW was available.

The aperture used in the experiments has a cross section of 6× 4 mm2, which offers

almost the same cross section as a 5×5 mm2 aperture. This aperture size is chosen,

because the entrance of the spin manipulation devices inside the interferometer are

narrow and every extra millimeter in width helps to install them correctly. The

change of aperture size has no significant effect on the count rate. In general great

care is taken to maximize the count rate for the experiment. At the early stages of

the experiment the monochromator adjusted several times. The higher count rate

is of importance because it reduces the necessary time for each experimental run

and consequently also the time during which the setup has to be kept stable. It

is worth noting that during all measurements a triple Laue interferometer, the so

called Kaiser interferometer, was used. This is exactly the same interferometer that

was already used during the measurement of the spin operator’s weak value. The

Kaiser interferometer is a symmetric three plate Mach-Zehnder type interferometer.

It has the “FRONT” and “BACK” carved into the faces of its base. While during

the previous experiment the “FRONT” side was facing the polarizing prisms, it is

now facing the detector. The interferometer is turned by 180 degree as compared

to the previous experiments. In theory this should not change anything, since the

interferometer is symmetric. The observed contrast during the measurements of

the path degree of freedom’s weak values was lower than during the experiments

concerning the spin weak values (an average of 75% as compared to an average of
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Figure 5.2: Picture of the experimental setup during cycles 174 and 175 (April to July
2015): The newly installed guide field coils (red) offer more space, making it possible to
put a small box around the interferometer. The DC coils are put onto motorized rockers
and a novel supermirror with a larger window of acceptance is used (all upper panel).
The aperture serves as an original starting point along which all other setup components
are aligned using linear lasers. Note that this picture shows a four plate interferometer,
which was also tested during these cycles but was not in use for the actual experiment
described here (lower panel).

80% in the previous experiment). Whether the decrease in contrast is due to the



5.5.2. Experimental realization 125

positioning of the interferometer is only speculation. Due to the complexity of the

system it can also have a number of other reasons. For future experiments it can be

noted that it is certainly not a mistake to position the Kaiser interferometer with

the carving “FRONT” facing the polarizing prisms.

As in the previous experiment the monochromator is adjusted first and subsequently

the interferometer is set correctly in the beam, so that its region of maximum con-

trast coincides with the beam’s spot of maximum intensity. After that polarizer and

analyzer are put into the setup, so that the adjustment of the spin manipulating

devices can be done.

The DC coils used in this experiment are of the same design as in the previous

experiment, which are especially built for the experiment. A new manufacturing

technique using 3D printing, allows us to make the coils thinner and more precisely

wound. Also a thinner copper band is used to minimize neutron absorption in the

coil. The result of the final adjustment of the DC1 coil is shown in Fig. 5.3 After the
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Figure 5.3: By-scan of DC2 obtained with a suitable compensation field Bz: After the
final adjustment, the DC1 coil showed a flipping ratio of ∼ 85, a contrast of ∼ 98% and
a phase shift of f = 0.004 rad (without background correction).

final adjustment, the DC1 coil showed a flipping ratio of ∼ 85, a contrast of ∼ 98%

and a phase shift of f = 0.004 rad. The flipping ratio is already better than the

results obtained in previous experiments, but it is still bounded by the stray fields

of the polarizing prisms.

The DC2 coil is adjusted in the same manner. During the experiment investigating



126 Chapter 5. Path weak values

the spin operator’s weak value the coil had to be readjusted for every azimuthal

angle, i.e. for different translation stage positions in the setup. Now this is not the

case any more, because the new guide field is far more homogenous. Once the correct

settings are found they can be used for any translation stage position. Figure 5.4

shows the final adjustment results of DC2 After the final adjustment, the DC2 coil
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Figure 5.4: By-scan of DC2 obtained with a suitable compensation field Bz: After the
final adjustment, the DC1 coil showed a flipping ratio of ∼ 121, a contrast of ∼ 98%
and a phase shift of f = 0.005 rad (without background correction).

showed a flipping ratio of ∼ 121, a contrast of ∼ 98% and a phase of f = 0.005◦.

Note that the count rate is slightly lower than during the adjustment of DC1. This

is due to neutron absorption in the coils copper band. The flipping ratio is higher,

more then doubling the results of the previous experiment. This is owing to the

motorized rockers, the new guide field and an increased distance to the supermirror

analyzer.

The results of the adjustment of the other components (position scan with DC2,

current scan of the spin manipulators, etc.) are, aside from the higher count rate,

very similar to previous results and will not be shown here in detail. In Fig. 5.5 a

direct comparison between the old and the new data of adjustment measurements of

DC1 is shown. Note that the count rate more than doubled in the new experimental

setup. This is mostly the consequence of the new analyzer and its larger window

of acceptance. At a first glance a doubling in count rate might not contribute a

lot, but for an experimentalist this is very exciting news since it will open up new



5.5.2. Experimental realization 127

−4.0 −2.0 0.0 2.0 4.0
Current [A]

0

5

10

15

20

25

30

In
te

n
si

ty
[c

p
s]

y0 = 15.95± 0.11

A = 15.69± 0.12

p = 0.92 ± 0.00

f = 0.00 ± 0.01

χ2
RED = 0.43

y0 = 6.16 ± 0.10

A = 5.99 ± 0.11

p = 0.92 ± 0.00

f = −0.01± 0.01

χ2
RED = 1.09

NEW − FIT

OLD− FIT

NEW − DATA

OLD− DATA

Figure 5.5: Comparison between DC adjustment with old and new analyzer. Note the
dramatically increased count rate in the new data.

possibilities for experiments. To put the number in perspective one has to consider

that a typical beam time last six weeks. Doubling the count rate equals a doubling

of beam time to 12 weeks. Or one can also think the other way around: The results

which previously took six weeks to accomplish can now be done in only three weeks!

5.2.2 Measurement of Pauli operators

One of the goals of the beam times of reactor cycles 174 and 175 (April to July

2015) was to determine the weak value of the Pauli path operator σ̂p
z . In this section

the recorded intensities as well as the results of the weak value determination are

presented.

A general preselected path state is given by

|Pi〉 = cos
(κ

2

)
|Pz; +〉+ sin

(κ
2

)
eiρ |Pz;−〉 , (5.7)

where κ and ρ are the polar and azimuth angles on the path Bloch sphere re-

spectively. The azimuthal angle ρ describes the relative phase between the path

eigenstates |Pz; +〉 and |Pz;−〉. In the experiment it is controlled by the phase

shifter. If one assumes that κ = π/2 as is the case for a 50:50 beam splitter realized

in a Mach-Zehnder type neutron interferometer and if the postselected path state is
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given by Eq. (5.6), the weak value of the Pauli path operator σ̂p
z is expected to be

〈σ̂p
z 〉w =

〈Pf | σ̂p
z |Pi〉

〈Pf |Pi〉
=

1− eiρ

1 + eiρ
= −i tan

ρ

2
. (5.8)

The weak value 〈σ̂p
z 〉w has no real part. It is purely imaginary with Im [〈σ̂p

z 〉w] given

by the negative tangent oscillating with a period of double the phase. The tangent

has points of discontinuity for multiples of ±π/2. For these phase values, i.e. for

ρ = ±π pre and postselected path states become orthogonal.

In the experiment, 〈σ̂p
z 〉w is determined using two different interaction strengths. To

perform measurements in the weak regime α is set to α = 15◦. For strong interactions

the maximum value is set for α, i.e. it is given by α = 90◦. All components of the

Pauli path operator’s weak value are extracted from the experimentally recorded

intensities using the relations given by Eqs. (3.38), (3.43) and (3.44). Since they are

valid for arbitrary angles of α they can be equally applied for both the weak and the

strong interaction case and allow for a comparison of both experimental approaches.

5.2.2.1 Data

To fully determine the path operator’s weak value the meter system, i.e. the neutron

spin degree of freedom, has to be projectively measured along the six directions ±x,

±y and ±z which yields the six intensities Ij± = |〈Sj;±|Ψf〉| with j = x, y, z. Given

the preselected system state of Eq. (5.1), the evolution operator of Eq. (5.3) and

the postslected path state of Eq. (5.6) it is possible to analytically calculate those

intensities for ideal circumstances. They are given by

Ix+ = cos
(α

2

)2

cos
(χ

2

)2

(5.9a)

Ix− = sin
(α

2

)2

sin
(χ

2

)2

(5.9b)

Iy+ =
1

4
[1 + cos (α) cos (χ)] (5.9c)

Iy− =
1

4
[1 + cos (α) cos (χ)] (5.9d)

Iz+ =
1

4
[1 + cos (α + χ)] (5.9e)

Iz− =
1

4
[1 + cos (α− χ)] (5.9f)

If the initial and final spin states are the same, the intensity Ix+ is obtained. It

comes as no surprise that in this case an interference fringe with full intensity and

full contrast is expected to be observed, as long as there is no interaction, i.e. as
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long as α = 0◦. At the same time initial and final spin states are orthogonal for

the Ix− measurement. Thus null intensity is expected for zero interaction. Also Ix+

and Ix− are expected to be phase shifted by π for χ. For α = 90◦ the intensities are

expected to have equal average intensity.

The intensities Iy± are expected to be equal with in average half of the maximum

intensity. With increasing measurement strength the contrasts are expected to be

reduced, so that they show zero contrast for α = 90◦. This is because the spin

rotation inside the interferometer brings the spin state towards orthogonality with

increasing α.

For Iz± a phase shift is expected to be observed with Iz+ being shifted by α to the left

and Iz− to the right in the χ-scan. In the maximum interaction case, the intensity

modulations are supposed to be phase shifted by π, which is two times the angle α.

Figure 5.6 shows the intensity modulations of the weak interaction case. The

recorded intensities are exactly what one would expect: Maximum and minimum

average count rates are observed for Ix+ and Ix− respectively. Within error Iy+ and

Iy− are equal. Iz+ and Iz− are phase shifted by ∼ 2α. It is true that the neutron in-

terferometer - just like any other quantum system - cannot exhibit an ideal behavior

as assumed in the intensity calculations. Therefore Ix+ does not show full contrast:

the average contrast of the recorded interference fringes is ∼ 75%, which is taken

into account in the final weak value determination as described in chapter 4.

In Fig. 5.6 six intensities are plotted, one for each spin postselection direction of in-

terest with an interaction strength of α = 15◦ for each (IN measurements). In the ac-

tual experiment also six additional interference fringes with zero interaction, α = 0,

(OUT measurements) are recorded. In total twelve interferograms are recorded in

a combined measurement at the O-detector. Additionally there are also twelve in-

tensity curves measured at the H-detector. They are not spin analyzed, but the

H-detector’s OUT measurements can be used to accurately determine the period

of the empty interferometer. This is done by fitting the H-detector data with a

function of the same form as Eq. (4.6), where the period of the fit is initially set

as a free parameter. The average of all obtained periods is then used to fit the

O-detector data. The curves in Fig. 5.6 are minimizing χ2-fits to the data. For the

determination of the Pauli path operator’s weak value they are of minor importance,

since the intensities are compared point by point. Only for the determination of the

weak value’s phase, the phase of the intensity Ix+ is used, which is extracted from

the data fit.

Figure 5.7 shows the intensity modulations for the strong interaction case. Again
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Figure 5.6: Intensity modulations obtained in the χ-scan for the weak interaction case:
maximum and minimum average count rates are observed for Ix± respectively. Within
error Iy± are equal. Iz± are phase shifted by ∼ 2α. The lines represent minimizing
χ2-fits to the data. The error bars show one standard deviation. Background has been
subtracted for all measurements.

they confirm what one would expect to see. The intensities Ix± are phase shifted by

∼ π with the same average count rate. Iy± show only negligible little contrast. Iz±

are phase shifted by ∼ 2α. Again the interferometer does not show 100% contrast,

which has to be considered in the final weak value determination. Again additional

OUT intensities are recorded in the experiment, which are not shown here.

Looking at the intensities plotted in Figs. 5.6 and 5.7 one can already make asser-

tions about the weak value using the intuitive picture of the weak value’s action in

the meter system presented in chapter 3: The weak value’s modulus can only be

determined in second order of the interaction parameter. Therefore we see that the
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Figure 5.7: Intensity modulations obtained in the χ-scan for the strong interaction case:
the intensities Ix± are phase shifted by ∼ π with the same average count rate. Iy±
show only negligible little contrast. Iz± are phase shifted by ∼ 2α. The lines represent
minimizing χ2-fits to the data. The error bars show one standard deviation. Background
has been subtracted for all measurements.

intensity Ix−, which is crucial to determine, also scales with the second order of α.

In the weak interaction approach the huge signal Ix+ has to be compared to the

tiny signal Ix− to determine |〈σ̂p
z 〉w|. For the strong interaction measurement this is

not the case any more, since Ix± have an intensity in the same order. This already

suggests qualitatively that the strong interaction approach can be favorable for the

determination of weak values.

The weak value’s real part isis extracted from the intensities Iy± and expected to

be zero. Iy± are nearly identical: there is no significant difference in the intensities

that would lead to a non zero result when they are inserted into Eq. (3.43) and
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consequently Re [〈σ̂p
z 〉w] is close to zero.

In the geometric picture presented in chapter 3 Im [〈σ̂p
z 〉w] tilts the state vector of

the meter system away from the equator towards the poles of the Bloch sphere. In

the case of the measurements of the Pauli path operator this manifests itself in a

phase shift of the interference fringes. The relevant signal to determine the weak

value’s imaginary part is the phase shift between Iz±. Since it is expected to be 2α,

it can be resolved with less relative error in the strong interaction case.

5.2.2.2 Results

Figure 5.8 shows the results of the weak value determination using weak interac-

tions. In general a very good agreement between the theoretical prediction and the

experimentally obtained results is observed.

The weak value’s real part is bunched around zero. It is not surprising that no solid

flat line is observed in the experiment. That is every point of the two Iy± intensity

modulations would need to be identical, which is hard do achieve experimentally.

The weak value’s imaginary part can be inferred from the phase shift of two in-

terference fringes. The interferometer is well suited to determine phase shifts and

therefore the measurement results of Im [〈σ̂p
z 〉w] agree well with the theoretical pre-

diction. The largest deviation between theory and experiment are observed in the

determination of the weak value’s modulus, where especially small values deviate

from the theoretical prediction. This is due to the fact that in a coupling between

two two-level quantum systems, the weak value’s modulus appears as a second order

term. This makes is hard to resolve, in the weak interaction case, especially wher-

ever its value becomes small.

Figure 5.9 shows the results of the weak value determination using strong interac-

tions. Again a very good agreement between theory and experiment is observed.

Note that now also the weak value’s modulus is resolved with smaller deviation from

the expected curve also for very small values, because the relative error for larger

α is small. That is, if the absolute uncertainty for the spin manipulation during

the spin path coupling is 2◦, the relative uncertainty for the weak interaction mea-

surement is ∼ 13%, while it is only ∼ 2% for the strong interaction measurement.

This small relative uncertainty manifests itself in small error bars in the weak value

determination.

The results presented in this section will later be used to reconstruct the interfer-

ometer’s preselected path vector. The strong and weak interaction approach will

be compared in terms of accuracy and precisions. Qualitative arguments from the
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Figure 5.8: Measurement results for 〈σ̂p
z 〉w for weak interaction: Measurement results

(red) and theoretical predictions (blue) for the path operator’s weak value. The error
bars represent one standard deviation.

interference fringes and the obtained weak values is then quantified, namely that

strong interactions outperform weak ones in both precision and accuracy.
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Figure 5.9: Measurement results for 〈σ̂p
z 〉w for strong interaction: Measurement results

(red) and theoretical predictions (blue) for the path operator’s weak value. The error
bars represent one standard deviation.
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5.2.3 Measurement of projection operators

In the previous section the measurement results for the Pauli path operator’s weak

value 〈σ̂p
z 〉w are presented. Using these results it is possible to also reconstruct the

path projection operator’s weak values. Furthermore, it is also possible to directly

measure those operators. For this the experiment has only to be minimally changed.

While in the previous section the spin path interaction is symmetric along both

paths, one has to turn the interaction on along only either one of the pats to measure

〈Π̂p
z±〉w, so that the interaction Hamiltonian is turned in the same form as Eq. (5.4).

Taking the general initial path state given by Eq. (5.1) and again assuming equally

weighted path eigenstates, the projection operators’ weak values are expected to be

〈Π̂p
z±〉w =

〈Pf |Π̂p
z±|Pi〉

〈Pf |Pi〉
=

1

2
∓ i

2
tan
(χ

2

)
. (5.10)

As with the Pauli operator’s weak value also the projection operators’ weak value

has a constant real component. Now it is one half. Again the imaginary part is

of the form of a tangent function. Note the opposing signs of Im
[
〈Π̂p

z±〉w
]

for the

respective path eigenstate.

All components of 〈Π̂p
z±〉w are determined experimentally using the same setup as

described above. The weak value determination is only performed for maximum

measurement strength, i.e. for α = −180◦b. The relations given by Eqs. (3.65a)

to (3.65c) are used to extract the weak value from the recorded intensities. In

the subsequent sections the data as well as the final results for the weak value

determination are presented.

5.2.3.1 Data

To fully determine 〈σ̂p
z 〉w it is necessary to evaluate the meter system along six spin

directions. For the determination of the projection operator’s weak value only five

directions of spin postselection are necessary. They are set by −x, ±y and ±z.

The intensities are calculated from the initial and final state. Assuming perfect

bThe interaction parameter was chosen to be negative for experimental reasons. Negative
angles of rotation correspond to positive magnetic fields. Applying a magnetic field which induces
a positive spin rotation of 180◦ reduces the guide field and can lead to depolarization of the neutron
spin, which would in turn lead to annoying effects in the experiment.
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circumstances, a spin rotation along path I yields the five intensities

IIx− =
1

8
[1− cos (α)] (5.11a)

IIy+ =
1

8

{
2 + 2 cos (χ)

[
cos
(α

2

)
+ sin

(α
2

)]
+ sin (α)

}
(5.11b)

IIy− =
1

8

{
2 + 2 cos (χ)

[
cos
(α

2

)
− sin

(α
2

)]
− sin (α)

}
(5.11c)

IIz+ =
1

4

[
1 + cos

(α
2

+ χ
)]

(5.11d)

IIz− =
1

2
cos

[
1

4
(α− 2χ)

]2

(5.11e)

These intensities listed are valid for arbitrary values of α. If it is set to α = −π IIx−

is expected to show a flat line and no intensity modulation. IIy± are expected to be

phase shifted by π showing full contrast. The Ix± and Iy± intensities switched their

roles when the measurement of the Pauli and the projection operators is compared

to each other. In the first case Ix+ acts as a normalization factor. In the latter this

role is taken by IIy−. Also while for maximum measurement strength zero contrast is

expected for the IIy±, if the Pauli operator is of interest, the IIx− intensity shows no

modulation during the measurement of the path projection operators. IIz± are also

expected to show full contrast and a phase shift of π.

If the spin rotation is performed along path II of the interferometer the expected

intensities are

IIIx− =
1

8
[1− cos (α)] (5.12a)

IIIy+ =
1

8

{
2 + 2 cos (χ)

[
cos
(α

2

)
+ sin

(α
2

)]
+ sin (α)

}
(5.12b)

IIIy− =
1

8

{
2 + 2 cos (χ)

[
cos
(α

2

)
− sin

(α
2

)]
− sin (α)

}
(5.12c)

IIIz+ =
1

2
cos

[
1

4
(α− 2χ)

]2

(5.12d)

IIIz− =
1

4

[
1 + cos

(α
2

+ χ
)]

(5.12e)

IIx− and IIIx− as well as IIy± and IIIy± are equal for both cases. Those intensities are

necessary to determine the modulus and the real part of the path projection oper-

ators’ weak value, which are equal for both paths. Therefore it is only reasonable

that also the intensities are the same. IIz± and IIIz± are exchanged so that IIz+ = IIIz−

and vice versa. The z-intensities are crucial in the determination of the weak value’s

imaginary part, which is equal for path I and II up to an opposite sing. The change

of sign is due to the fact that the Iz± intensities depend in which path the rotation
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is performed.

In the experiment five IN intensities, with a spin rotation inside the interferometer,

are recorded for each path projection operator. Furthermore six OUT measurements

with no spin rotation inside the interferometer are performed. In total 16 interfer-

ograms are recorded in a nested way. The IN intensities are plotted in Fig.5.10.

IIx− and IIIx− show only negligible small contrast. IIy± and IIIy± are phase shifted by
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Figure 5.10: Intensity modulations obtained in the χ-scan for the measurement of the
path projection operators: The intensities Iy± and Iz± are phase shifted by ∼ π with the
same average count rate. Ix− show only negligible small contrast. The error bars show
one standard deviation. Background has been subtracted for all measurements. The
lines represent minimizing χ2-fits to the data.

π. Note that the intensity IIIy− has a little less count rate than IIIy+. This suggests

a small misalignment in the spin postselection or the spin manipulation inside the
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interferometerc. It will manifest itself in the final result as a deviation from the

theoretical curve for phase values close to odd multiples of π. The Iz± intensities

are phase shifted by π for both paths and in average they show the same count rate

as expected.

5.2.3.2 Results

The intensities presented in Fig.5.10 are inserted point to point into Eqs. (3.65a)

to (3.65c) to determine the path projection operators’ weak values. The results

are depicted in Fig. 5.11 A very good agreement between experiment and theory is

Figure 5.11: Measurement Results for 〈Π̂p
z±〉w. Theoretical predictions (blue) and mea-

surement results (red) for the projection operators’ weak value. The error bars represent
one standard deviation.

cAn inaccuracy generated during the spin manipulation is more likely. If it were made during
the postselection Iy− should show the same behavior also for path I.
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observed. The real part of 〈Π̂p
z±〉w is expected to be constant one half. While the

measurement very accurately produces this result for 〈Π̂p
z+〉w, small deviations from

the theoretical expectations are observed for 〈Π̂p
z−〉w for phase values close to odd

multiples of π. This is because the average count rate of the recorded intensity IIIy−

is less than expected, as was already suggested above, manifesting itself in the weak

value’s real part being smaller than one would expect.

The imaginary part of 〈Π̂p
z±〉w is accurately determined for both paths, showing the

opposite sings. Only for almost orthogonal pre and postselected states, deviations

between the theoretical predictions and the measured values are observed.

The weak value’s modulus is directly extracted from the data. Note that the minima

in the theoretical curve are clearly resolved with only minimal deviation. The good

results for
∣∣∣〈Π̂p

z±〉w
∣∣∣ are due to the large interaction strength of α = −180◦, making

it possible to resolve the second order effect precisely.

5.2.4 Summary and conclusion

The results presented in section 5.2.2 confirm the validity of the measurement pro-

tocol to fully determine a Pauli operator’s weak value using arbitrary measurement

strengths, which is established theoretically in chapter 3. It is tested in the weak

and strong regime and a very good agreement between the experimental results and

the theoretical prediction is observed. It has to be stressed that the measurement

results show that it is possible to determine weak values without making any ap-

proximations due to neglected terms in a series expansion.

In section 5.2.3 the experiment is adapted so that the weak value of projection oper-

ators can be determined using maximum measurement strengths. Again the strong

measurement protocol is successfully implemented and its validity is confirmed in

the experiment.

One of the advantages of weak interactions in a measurement is, that the prese-

lected state only gets minimally disturbed during the system evolution caused by

the measurement process. This allows for example to validate counter factual state-

ments made by the ABL formula. Tuning the measurement strength to maximum

invalidates this concept, because the strong measurement changes the probability

of postselection [Brodutch and Cohen, 2016]. The strong measurement scheme is

therefore not a suitable measurement protocol to investigate pre and postselection

paradoxes. However, recent theoretical works suggest that the quantum state is

ontic [Leifer, 2014]. Following that reasoning, the properties of a quantum state are

elements of reality, which exist independently of any observer. Then if a quantum
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system is successfully pre and postselection weak values of its observables also ex-

ists independently of the amount of disturbance introduced by the measurement.

Consequently, for any experiment which has the sole purpose to determine the weak

value of a pre and postselected system, strong interactions are favorable, since large

experimental inaccuracies due to weak interactions can be avoided.

As with the measurements of the Pauli spin operator one might claim that deter-

mining weak value’s of the neutron’s path degree of freedom is a purely academic

exercise without any practical use to it. However as the measurement protocol is

completely general, its successful experimental realization makes an application in a

wide range of quantum systems possible. Furthermore the experimental results can

be used to perform a so called “direct” state characterization which will be subject

of the following section.

5.3 “Direct” state characterization

In chapter 1 the concept of the so called direct state characterization is presented. In

the following it will be shown how the measurement results obtained in section 5.2.2

can be used to perform a characterization of the neurons path state using both weak

and strong interactions. Experimental evidence is given that strong interactions

outperform weak ones for tomographic purposes in both accuracy and precision. The

newly established method makes it possible to keep the experimental advantages of

a state tomography via weak values without dealing with weak interactions. These

results are also reported in [Denkmayr et al., 2016].

5.3.1 Characterizing the preselected path state via weak

values

Here a short overview of the “direct” state characterization procedure for two-level

quantum systems with special respect to the path system is presented.

Given a complete N -dimensional orthonormal basis, the preselected state vector |Ψi〉
of a quantum system can be written as

|Ψi〉 =
∑

a′

ca′ |a′〉 , (5.13)
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with the basis states |a′〉, |a′′〉, ... up to |a(N)〉. The expansion coefficients ca′ are

the probability amplitudes of the state vector. They are given by,

ca′ = 〈a′ |Ψi〉 . (5.14)

As an example we consider the neutron’s path degree of freedom. Its dimension

is N = 2 with the basis given by |a′〉 = |Pz; +〉 and |a′′〉 = |Pz;−〉. We set the

neutron’s preselected path state to

|Ψi〉 =
∑

a′

ca′ |a′〉 = ca′ |a′〉+ ca′′ |a′′〉 ≡ c+ |Pz; +〉+ c− |Pz;−〉 , (5.15)

with probability amplitudes c+ and c− of to the eigenstates of path I and II respec-

tively.

We now connect the weak value to the state vector of our quantum system. Let |Ψf〉
its postselected state. The weak value of a projection operator Π̂a′ on the state |a′〉
is then defined as

〈
Π̂a′

〉
w

=

〈
Ψf

∣∣∣ Π̂a′

∣∣∣Ψi

〉

〈Ψf |Ψi〉
=
〈Ψf | a′〉 〈a′ |Ψi〉
〈Ψf |Ψi〉

. (5.16)

Using basic algebra we can rearrange Eq. (5.16) to

〈a′ |Ψi〉 =
〈Ψf |Ψi〉
〈Ψf | a′〉

〈
Π̂a′

〉
w

(5.17)

Comparing the relations given by Eq. (5.14) and (5.17) we see that the probability

amplitude can be connected to the weak values of the projection operators. The

system’s pre selected state vector is then given by

|Ψi〉 =
∑

a′

ca′ |a′〉 =
〈Ψf |Ψi〉
〈Ψf | a′〉

〈
Π̂a′

〉
w
|a′〉+

〈Ψf |Ψi〉
〈Ψf | a′′〉

〈
Π̂a′′

〉
w
|a′′〉 (5.18)

Again considering the interferometer’s path, the projection operators given by Π̂p
z+ =

|Pz; +〉〈Pz; +| and Π̂p
z− = |Pz;−〉〈Pz;−| lead to

|Ψi〉 =
〈Ψf |Ψi〉
〈Ψf |Pz; +〉

〈
Π̂p
z+

〉
w
|Pz; +〉+

〈Ψf |Ψi〉
〈Ψf |Pz;−〉

〈
Π̂p
z−

〉
w
|Pz;−〉 . (5.19)

The preselected state vector is directly proportional to the projection operator’s

weak values. To fully characterize the initial state |Ψi〉, the prefactors 〈Ψf |Ψi〉
〈Ψf |Pz ;+〉 and

〈Ψf |Ψi〉
〈Ψf |Pz ;−〉 have to be determined as well. If the measurement of the weak value and the
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post selection are mutually unbiased, they are identical [Wootters and Fields, 1989].

The z-basis of the path degree of freedom is mutually unbiased with respect to the x-

basis [Salvail et al., 2013]. Therefore the preselected state vector given by Eq. (5.19)

can be simplified to

|Ψi〉 = ε
(〈

Π̂p
z+

〉
w
|Pz; +〉+

〈
Π̂p
z−

〉
w
|Pz;−〉

)
, (5.20)

with ε ≡ 〈Ψf |Ψi〉
〈Ψf |Pz ;+〉 = 〈Ψf |Ψi〉

〈Ψf |Pz ;−〉 . Finally the state vector needs to be normalized, i.e.

〈Ψi|Ψi〉 = 1. This leads to

〈Ψi |Ψi〉 = ε∗ε

(〈
Π̂p
z+

〉∗
w

〈
Π̂p
z+

〉
w

+
〈

Π̂p
z−

〉∗
w

〈
Π̂p
z−

〉
w

)
= 1

= |ε|2
(∣∣∣
〈

Π̂p
z+

〉
w

∣∣∣
2

+
∣∣∣
〈

Π̂p
z−

〉
w

∣∣∣
2
)

= 1

⇒ ν ≡ |ε| =
√√√√

1∣∣∣
〈

Π̂p
z+

〉
w

∣∣∣
2

+
∣∣∣
〈

Π̂p
z−

〉
w

∣∣∣
2 (5.21)

The neutron’s preselected path state |Ψi〉 is directly proportional to quantities that

can be accessed experimentally, namely through real and imaginary part as well as

the modulus of the path projection operators’ weak values. Furthermore, as has

been successfully demonstrate by the experiments presented previously, we do not

have to rely on weak measurements to determine 〈Π̂p
z±〉w. We can perform measure-

ments with arbitrary interaction strengths.

As was already mentioned above, a general preselected path state is given by

Eq. (5.7). Using the method of equating the coefficients, one can relate the po-

lar and azimuthal angle of Eq. (5.7) to the probability amplitudes c+ and c− of

Eq. (5.15) by the relations

ρ = arg (c+)− arg (c+) , (5.22a)

κ = arccos
(
|c+|2 − |c−|2

)
. (5.22b)

The probability amplitudes c+ and c− are directly related to the path projection

operator’s weak values and therefore to experimentally accessible quantities. Using

the relations given by Eqs. (5.22a) and (5.22b) they can be linked to a general

preselected path state making a “direct” state characterization possible.
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5.3.2 Results

In section 5.2.2 the measurement results for the Pauli path operator’s weak value

〈σ̂p
z 〉w are presented. The weak value is determined using weak and strong inter-

action. As was explained above, the measurement results of 〈σ̂p
z 〉w can be used to

reconstruct the preselected path state by a so-called “direct” state characterization.

The results of such a characterization are shown in Fig. 5.12. The left column
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Figure 5.12: Results of the “direct” state characterization of the neutron’s path degree
of freedom using weak (α = 15◦) and strong interactions (α = 90◦): The error bars
show one standard deviation. The solid lines are the theoretical predictions

shows the results for weak interactions (α = 15◦), the right one that for maximum

strength interactions (α = 90◦). In the upper two panels the state vector’s normal-

ization factor ν is plotted. In the middle two panels the relative phase ρ between the

path eigenstates is depicted. In the lower two panels the factor κ is shown, which
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describes the relative weighting of the path eigenstates. The solid lines represent

theoretical predictions based upon the adjustment of the experimental setup. For

the final results the imperfect contrast of the interferometer is considered.

Both measurements are in good agreement with the theory. The normalization fac-

tor is expected to oscillate between zero and square root of two, showing a maximum

for even multiples of π and a minimum for odd ones. The relative phase ρ between

the two paths is expected to vary linearly between −π and π with the phase intro-

duces by the phase shifter. Again the reconstructed preselected state shows exactly

this behavior. Finally the parameter κ, the relative weighting between the path

eigenstates is expected to be constant, since the phase shifter only changes the pre-

selected path state in the xy-plane of the Path Bloch sphere. The experiment fully

confirms this theoretical prediction.

While both measurement approaches are in good agreement with the theoretical pre-

diction, it is already visible to the naked eye that the strong interaction approach

works better in terms of accuracy and precision. It is clearly visible that the error

bars of the weak interaction approach are larger than those of the strong interaction

one. Also looking at the upper two panels one can see that the experimental results

are closer to the theoretical prediction for the strong interaction measurements.

Using the theoretical prediction and the measurement results we can make quanti-

tative statements about the accuracy and the precision of both measurements. The

precision is a measure of fluctuation and can be quantified by the root mean square

statistical error σ̄

σ̄ =

√√√√ 1

N

N∑

i

|σi|2, (5.23)

where σi are the standard deviations of each individual data point. The accuracy is

a measure of the deviation from the theoretical prediction. The root mean square

deviation ∆̄ can be defined as

∆̄ =

√√√√ 1

N

N∑

i

|ti −mi|2, (5.24)

where ti is the theoretical prediction for each measurement point and mi is the ex-

perimentally obtained value [Vallone and Dequal, 2016].

Using σ̄ and ∆̄ a quantitative comparison between the weak and the strong interac-

tion approach is performed. The values calculated from the results of our measure-
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ment are listed in Table 5.1. The strong interaction approach performs significantly

Table 5.1: Quantitative comparison of precision σ̄ and accuracy ∆̄ of the weak and
the strong interaction approach. The strong interaction approach performs significantly
better in terms of accuracy and precision.

Precision σ̄ Accuracy ∆̄
Weak Strong Weak Strong

ν 0.100 0.036 ν 0.152 0.062
θ 0.191 0.065 θ 0.100 0.067
φ 0.355 0.159 φ 0.860 0.580

better in terms of accuracy and precision. This shows that the statistical fluctuation

and the deviation from the theoretical predictions is smaller for strong interactions

measurements. It also gives experimental evidence that strong interactions outper-

form weak ones for tomographic purposes.

What has not been considered yet is the measurement time. While it took 540s to

obtain one point of the weak interaction measurement, it took only 290s for one of

the strong interaction measurement. This is mainly due to the fact that Iw
x−, i.e.

the intensity for orthogonal pre and postselected spin states, is very close to zero

in the weak interaction approach. Therefore it takes a long time to resolve it from

the background. From the signal extent, we simply estimate the gain of equivalent

measurement time by 3 for the strong interaction case.

In the publication [Gross et al., 2015] the merits of then direct state characteriza-

tion method are critically evaluated in terms of novelty, efficacy and foundational

significance. In terms of novelty and significance it is concluded that the direct state

tomography (DST) “adds very little to a tomographic framework based on random

one-dimensional orthogonal projective measurements”. The discussion of novelty

and significance is of theoretical nature and not of prime importance to an experi-

mentalist. From an experimental point of view it can be added that certain protocols

may be easier to implement in an actual experiment than others given certain setup

boundary conditions. Regarding efficacy it is found theoretically that the weakness

of the interaction actually decreases the performance of the DST protocol and that

stronger interactions are superior. In particular the information gain about the in-

vestigated system is very slow when weak measurements are used. Our experimental

results fully support this statement. For the strong interaction approach significantly

less measurement time was needed than for the weak interaction measurements.
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5.4 Summary and perspective

In this chapter experiments determining the weak value’s of path operators’s is pre-

sented. In section 5.2.2 the measurement results of the Pauli path operator 〈σ̂p
z 〉w

are shown for both weak and strong interactions. Additionally in section 5.2.3 the

weak value of the projection operators Π̂z± on the path eigenstates is successfully

performed. The measurement results are presented . The results of both sections

give experimental confirmation that the weakness of a measurement is not a neces-

sary condition to determine weak values.

Furthermore the measurement data of section 5.2.2 is used to perform a “direct”

state characterization as is shown in section 5.3. Accuracy and precision of the

strong and the weak interaction approach are quantitatively compared, showing

that strong interactions outperform weak ones for both parameters.

The results presented in this chapter are not limited to the neutron and its degrees

of freedom, because they are obtained using the measurement protocol of chapter 3,

which is in fact general and can be applied to a wide range of two-level quantum

systems.

It is interesting to note that the “direct” state characterization via weak values can

be extended to mixed states also for strong interactions. It would be very interesting

to test if the benefits of the strong interactions are also present for this case. Nev-

ertheless, a mixed path state is difficult to grasp conceptually and also difficult to

realize experimentally. It would therefore be advantageous to switch the roles of the

spin and path once again, so that the neutron’s path degree of freedom serves as a

meter and the spin is the investigated system. Then one could generate for example

a completely mixed spin state by removing the polarizing prisms. A partially mixed

spin state would be generated by misaligning the prisms. This is easy to implement

experimentally and offers a good repeatability.



CHAPTER 6

The quantum Cheshire cat effect

“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin

without a cat! It’s the most curious thing I ever saw in my life!”

said Alice in Wonderland [Carroll, 1965]. Alice’s surprise stems from her experience

that an object and its property cannot exist independently. It seems to be impos-

sible to find a grin without a cat. However, the laws of quantum mechanics tell

us that under very specific circumstances it is indeed possible to create a quantum

ensemble that behaves as if it was spatially separated from one of its properties,

a phenomenon which is strikingly analogous to the Cheshire Cat story and conse-

quently named quantum Cheshire cat.

The so called quantum Cheshire Cat effect was proposed by Aharonov et. al

[Aharonov and Rohrlich, 2008, Aharonov et al., 2013b] and has been experimentally

demonstrated for the first time in 2014 using neutron interferometry

[Denkmayr et al., 2014, Sponar et al., 2016]. In this chapter a brief review of the

theoretical concept of the quantum Cheshire Cat is given. Subsequently the exper-

imental results are presented. A the end possible future experiments are discussed.

6.1 Theory

Cats, being classical objects of our everyday world, are not well suited to perform

quantum mechanical experiments. We therefore use a neutron passing through a

Mach-Zehnder type interferometer. In the quantum Cheshire cat experiment the

147
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cat is substituted by the neutron itself and the cat’s grin is replaced by the neutrons

z-spin component. It is now possible to create a pre and postselected quantum

ensemble that behaves in average as if the neutron and its spin component are

spatially separated. While the neutrons (the cat) take the upper beam path their

spin components (the grin) travel along the lower one. An artistic depiction of this

behavior is shown in Fig. 6.1. In order to create a quantum Cheshire cat the initial

Figure 6.1: Artistic depiction of the quantum Cheshire Cat phenomenon. Figure courtesy
of Leon Filter [Denkmayr et al., 2014].

state has to be preselected in a state is given by a superposition of the two path

eigenstates with orthogonal spin states. The preselected state is then given by

|Ψi〉 =
1√
2

(|Pz; +〉 |Sx; +〉+ |Pz;−〉 |Sx;−〉) . (6.1)

The system’s postselected state in turn is given by

|Ψf〉 =
1√
2

(|Pz; +〉+ |Pz;−〉) |Sx;−〉 , (6.2)

i.e. only particles with a spin aligned along the negative x-direction and leaving the

interferometer in forward direction are considered. We now want to ask about the

location of the neutron between pre- and postselection. For this we calculate the
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weak values of the path projection operators Π̂p
z±. They are given by

〈
Π̂p
z+

〉
w

=

〈
Ψf

∣∣∣ Π̂p
z+

∣∣∣Ψi

〉

〈Ψf |Ψi〉
= 0, (6.3a)

〈
Π̂p
z−

〉
w

=

〈
Ψf

∣∣∣ Π̂p
z−

∣∣∣Ψi

〉

〈Ψf |Ψi〉
= 1. (6.3b)

The weak values of the projection operators tell us that any weak coupling to the

path dependent part of the system’s state vector will behave as if there were no

neutrons travelling along path I but only along path II. Since Π̂p
z± are dichotomic

operators this result will also hold in the strong limit, because it can be shown

that if the weak value of a dichotomic operator equals one of its eigenvalues, then

the outcome of a strong measurement of the operator is that same eigenvalue with

probability one [Aharonov and Vaidman, 1991].

To reveal the Cheshire cat we not only have to locate the particle itself but also its

property: the spin’s z-components. For this we have to calculate the weak values of

the operator product σ̂s
zΠ̂

p
z±, i.e. the spin’s z-components conditioned on the path.

They are

〈
σ̂s
zΠ̂

p
z+

〉
w

=

〈
Ψf

∣∣∣ σ̂s
zΠ̂

p
z+

∣∣∣Ψi

〉

〈Ψf |Ψi〉
= 1, (6.4a)

〈
σ̂s
zΠ̂

p
z−

〉
w

=

〈
Ψf

∣∣∣ σ̂s
zΠ̂

p
z−

∣∣∣Ψi

〉

〈Ψf |Ψi〉
= 0. (6.4b)

This result tells us that in the weak regime any coupling to the neutrons spin’s

z-component is only effected on path I while there is no effect on path II. At the

same time we found that a coupling to the spatial part of the wave function is only

effective along path II. We can create a quantum ensemble that behaves in average

as if it were separated from one of its properties: a quantum Cheshire cat emerges!

A typical criticism of the argument presented above is that it is counterfactual since

ideal successive quantum measurements in the interferometer are not feasible. They

contradict with postselection. To overcome this kind of criticism weak measure-

ments have to be used to reveal the quantum Cheshire cat. They can be performed

simultaneously on the same ensemble since, at least in theory, they do not disturb

each other. Also they do not prevent the ensemble from being successfully post-

selected. Therefore, all the counterfactual statements can be verified weakly on

the same ensemble. One has to bear in mind that weak values have a limitation
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though: they can only make assertions about an ensemble average as is the case

for the measurement of expectation values. They are not the outcome of individual

(weak) measurements performed on individual particles. They are averages over

many outcomes, of individual weak measurements on ensembles of equally prepared

individual particles. Therefore weak values are only properties of an ensemble of

measurement outcomes, not of individual measurement outcomes. Because of that

one has to be careful with the statements one makes about the quantum Cheshire

cat. Nevertheless, if a quantum system is successfully preselected in an the initial

state given by Eq. (6.1) and postselected into the state given by Eq. (6.2), we can

state, that it will in average behave as if the neutron and its spin z-component are

travelling along different paths inside the interferometer.

6.2 Experiment

The experimental realization of the quantum Cheshire cat effect using neutron inter-

ferometry was performed during reactor cycle 169 in May 2013 at the interferometer

beam line S18 at the research reactor of ILL. The experimental setup is almost iden-

tical to that presented in chapter 4. The only extension is the use of small absorbing

foils. Since a detailed explanation of the adjustment procedure of this setup has al-

ready been given previously is not be repeated here. Figure 6.2 shows an artistic

depiction of the experimental setup. The incident neutron spin state is prepared

by a combination of the polarizing prisms and a DC coil. Inside the interferometer

small coils in Helmholtz configuration in each beam path are used to probe the lo-

cation of the neutron spin components. In comparison to the setup used to measure

the spin weak values, the Cheshire cat setup additionally uses indium foils which

are weak absorbers to probe the neutron’s location inside the interferometer. The

phase shifter inserted into the setup is used to tune the relative phase between the

two path eigenstates. A general postselected path state is given by

|Pf〉 =
1√
2

(
|Pz; +〉+ eiχ |Pz;−〉

)
. (6.5)

In the experiment of the quantum Cheshire cat effect, only the postselected state

|Pf〉 = |Px; +〉 (χ = 0) is of interest. However it would be very difficult experimen-

tally to set and keep the phase shifter to this exact position. Instead phase shifter

scans are performed. The intensity for χ = 0 is extracted from least square fits to

the data and is used to directly determine the weak values of interest. The spin

postselection is performed by a combination of a DC coil mounted on a translation
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Figure 6.2: Artistic depiction of the experimental setup: The neutron beam passes
polarizing magnetic prisms (P). To prevent depolarization a magnetic guide field (GF) is
applied around the whole setup. Before the neutrons enter the interferometer a DC coil
(DC1) prepares the initial spin state |Si〉. At the interferometer’s first plate the neutron
beam gets separated into path I and II, preparing |Pi〉 and thereby completing the
preselection process. In each beam path small coils in Helmholtz configuration (HCs)
make it possible to manipulation the neutron spin in the xy-plane. They can be used
to probe for the spin’s location. The phase shifter (PS) tunes the relative phase χ
between I and II and selects the state |Pf〉. Weak absorbers can be inserted into
the interferometer’s paths to probe the neutron’s location. The postselection on the
state |Sf〉 is performed using the second DC coil (DC2) on a translation stage (TS) in
combination with a CoTi supermirror analyzer (A). Of the two outgoing beams from the
interferometer, only the O-beam is spin analyzed (O). Both detectors (O & H) are 3He
counter tubes.

stage and a CoTi supermirror analyzer as has already been described several times

in previous sections.

6.2.1 Probing the location of the neutrons

To reveal the quantum Cheshire cat ,first the location of the neutron inside the

interferometer is probed. This is done by performing a phase shifter scan of the

empty interferometer with no interaction between pre and postselection to establish

a reference. The initial state is given by Eq. (6.1). This is a fully entangled state

with orthogonal spin states in path I and II. Full which-way information can be

revealed and thus no interference is observed [Englert, 1996, Banaszek et al., 2013].

Subsequently a 0.25 mm thick Indium foil is put into the interferometer. The trans-

missivity of the foil is T= 0.79(1). When the foil is put in the lower beam path
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(path I), no significant drop in intensity is observed, as compared to the reference

intensity. In the third measurement the absorber is taken out of the lower beam

path and put into the upper one (path II). Now the observed intensity drops

to about 80% of the reference intensity. The measurement results are depicted in

Fig. 6.3. The absorber interacts with the spatial part of the neutron’s wave func-

O-Det.SAO-Det.SA O-Det.SA

PATH II

PATH I

Figure 6.3: Results of the path measurement: The middle panels depicts a reference
measurement with no interaction between pre and postselection. When the absorbers
are put into the lower beam path no significant change in count rate can be observed
(left panels). In contrast to that the count rate drops according to the transmissivity of
the absorbers, when they are put into the upper beam path (right panels). Error bars
represent one standard deviation. The lines represent minimizing χ2-fits to the data.

tion. As one would expect when looking at the weak values, the absorber influences

the obtained intensity pattern only when it is put into the upper beam path and

none when it is put in the lower one. Furthermore the theorem about weak values
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of dichotomic operators presented above applies to the path projection operators.

Because of that the same result is also expected for strong absorptions, i.e. T= 0.

To test stronger absorptions the same measurement is repeated with 0.5 mm and

0.75 mm thick Indium foils. Those absorbers have a transmission of T = 0.61(1)

and T = 0.47(1) respectively. Again the same effect is observed. The absorbers do

not influence the obtained intensity pattern when they are put into path I, but the

count rate reduces to ∼ 59% and ∼ 48% of the reference intensity (obtained without

absorbers) respectively, if they are put into path II. The measurement results for

stronger absorptions are also depicted in Fig. 6.3. From the absorber measurement

results we can conclude that the neutrons travel along the upper beam path of the

interferometer.

Note that the observed behavior is solely due to the spin postselection. This can

be easily recognized when looking at the H-detector interference fringes obtained

during the absorber measurement, which are depicted in Fig.6.4. The H-detector is

not spin analyzed. Hence the particles detected there do not get spin postselected.

When an absorber is put in either one of the beams the intensity decreases and no

path dependency of the absorption is observed.

6.2.2 Probing the location of the neutrons’ spin component

To probe the location of the neutrons’ spin component small magnetic fields point-

ing in the z-direction are applied in either one of the beam paths. The magnetic

field cause a spin rotation, which allows us to check for a magnetic moment (the

neutrons’ spin component). If there is a magnetic moment present in one of the in-

terferometer’s arms then the externally applied magnetic field should have an effect

on it. If there is no spin component present the applied field should not have any

effect.

In the experiment the field strength is set so that it is equivalent to a spin rota-

tion of α = 20◦. Again first a reference measurement with no spin rotation at all

is performed. Then the magnetic field is applied in the upper beam path. Since

〈σ̂s
zΠ̂

p
z−〉w = 0, we expect nothing to happen. Finally the a magnetic field with the

same magnitude is applied in the lower beam path. The results of such a measure-

ment is depicted in Fig. 6.5. The results are what one would expect from the weak

value calculation. When no magnetic field is applied between pre and postselection,

a flat intensity without a sinusoidal pattern is recorded. When a magnetic field is

applied to the lower beam path an interference fringe with ∼ 30% contrast appears.

Obviously a magnetic moment is present in the lower beam path, because otherwise
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Figure 6.4: Results of the path measurement at the H-detector: The reference measure-
ment shows no interference pattern, also for the H-detector, because of the orthogonal
spin states inside the interferometer (middle panel). When an absorber is put in ei-
ther one of the beam paths the observed intensity decreases. Error bars represent one
standard deviation. The lines represent minimizing χ2-fits to the data.

the magnetic field would not have any effect. If the same magnetic field is now

applied to the upper beam path no significant change in the interference fringes is

observed. There is a very tiny oscillation with ∼ 4% contrast, due to imperfections

in the experimental apparatus, but this is negligibly small.

From the absorber measurement and the measurements with the magnetic field, we

conclude that the absorber is only effective when it is put in the upper beam path.

At the same time a magnetic field has only an effect on the measurement results

when it is applied in the lower beam path and vice versa. Using pre and postselec-
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O-Det.SA O-Det.SA

PATH II

PATH I

O-Det.SA
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Figure 6.5: Result of the spin measurement at the O-Detector: First a reference measure-
ment without any spin rotation is performed, which shows no contrast due to orthogonal
spin states inside the interferometer (middle panel). If a magnetic field is applied in
the lower beam path a sinusoidal interference fringe appears (left panel). If the same
magnetic field is applied at the upper beam path no significant change in the recorded
intensity is detected (right panel). Error bars represent one standard deviation. The
lines represent minimizing χ2-fits to the data.

tion we have created a quantum system that behaves in average as if a particle (the

neutron) and one of its properties (the spin z-component) are spatially separated:

the quantum Cheshire cat is revealed!

To confirm the fact that the quantum Cheshire cat is really an effect of postse-

lection, the the H-detector’s intensity modulation is studied once again. In our

experiment only the O-detector is spin analyzed. Figure 6.6 shows the H-detector

interferograms of the same measurements as in Fig. 6.5. Since the H-detector is not

spin analyzed, the neutrons detected there are not postselected and therefore the

behavior of the interference fringes is different. For the reference measurement no

modulation emerges like at the O-detector, since this is due to the orthogonality

of the spin states inside the interferometer and not an effect of postselection. If a

magnetic field is applied in either of the beam paths an interference pattern with

a contrast in the same order of magnitude appears and the Cheshire cat effect, i.e.

the spin travels only along one path, is not observed. The H-detector can be used

as a monitor for phase fluctuations and count rate normalization.
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Figure 6.6: Result of the spin measurement at the H-Detector: The reference measure-
ment shows no interference pattern, also for the H-detector, because of the orthogonal
spin states inside the interferometer (middle panel). When a magnetic field is applied in
either one of the beam paths, sinusoidal interference fringes appear for both. Error bars
represent one standard deviation. The lines represent minimizing χ2-fits to the data.

6.2.3 Quantifying the results

Using the fits to the obtained data, weak values are extracted for the measurement

result.

The measurement of 〈Π̂p
z±〉w is performed using indium foils with a high transmis-

sivity. As was already explained in chapter 2, an absorption is described by an

imaginary potential. Conditioned on the respective path eigenstate it is given by

V̂z± = −iµz±(r)Π̂p
z±, (6.6)

where the absorption coefficient is given by Mz± =
∫
µz±(r)dr for the respective

path eigenstate with r being integrated on the absorber’s thickness. For Mz± � 1

the absorption coefficient can be related to the transmissivity Tz± through Mz± ≈
1 −√Tz±. After the interaction with the absorber the evolved sate vector is given

by

|Ψ′〉 = e−i
∫

drV̂z± |Ψi〉 ≈
[
1−Mz±Π̂p

z± + · · ·
]
|Ψi〉 (6.7)
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Using the definition of the path projectors’ weak value the obtained intensity after

postselection is given by

IABS
z± = |〈Ψf |Ψi〉|2

[
1− 2Mj 〈Π̂p

z±〉w
]
. (6.8)

The above calculation assumes that a possible contribution from an imaginary part

of 〈Π̂z±〉w can be neglected. This requires that the pre and postselected state are

prepared correctly in the experiment. A deviation from the ideal initial and final

state in any direction on the Bloch sphere, would manifest itself in the appearance of

intensity modulations during the reference measurements. Since in the experiment

the average contrast of the reference measurements was below 3%, it is reasonable

to assume that the ensemble is pre and postelected in the correct states, namely in

those given by Eqs. (6.1) and (6.2). Since IREF = |〈Ψf |Ψi〉|2, the weak values can be

extracted from the observation of IABS
z± /IREF, i.e. from the recorded intensity with

absorbers present in the interferometer and from the reference measurement.

The weak values of σ̂s
zΠ̂

p
z± are determined using path conditioned spin rotations. To

determine 〈σ̂s
zΠ̂

p
z±〉w, a small magnetic field is applied in either path I or II. The

interaction Hamiltonian for this measurement is

Ĥz± = −~µ · ~BΠ̂p
z+ (6.9)

where ~µ is the neutron’s moment and ~B = (0, 0, Bz) is an externally applied magnetic

field. As in interaction Hamiltonians of previous experiments Π̂z± denotes the fact

that the magnetic field is applied only along one of the paths. The effect of the

interaction Hamiltonian upon the initial state of the composite system is given by

|Ψ′〉 = e−i
∫

dtĤz± |Ψi〉 = e
iασ̂s

zΠ̂
p
z±/2 |Ψi〉 ≈

[
1 +

iα

2
σ̂s
zΠ̂

p
z± + · · ·

]
|Ψi〉 . (6.10)

Taking the interaction parameter into account up to α2, the intensity after postse-

lection is given by

IMAG
z± = |〈Ψf |Ψ′〉|2 = |〈Ψf |Ψi〉|2 −

α2

4
〈Ψf |Π̂p

z±|Ψi〉 〈Ψi|Ψf〉+
α2

4

∣∣∣〈Ψf |σ̂s
zΠ̂z±|Ψi〉

∣∣∣
2

,

(6.11)

Again it is assumed that a possible contribution from any imaginary part can be

neglected. Again this is justified by the average maximal contrast of the empty
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interferometer and we get

IMAG
z± = |〈Ψf |Ψi〉|2

[
1− α2

4
〈Π̂p

z±〉w +
α2

4

∣∣∣〈σ̂s
zΠ̂

p
z±〉w

∣∣∣
2
]

(6.12)

The weak values of Π̂p
z± are known from the absorber measurements and because

IREF = |〈Ψf |Ψi〉|2 the weak values are extracted from the measurements of the inten-

sities with the magnetic field applied along path I and applied along path II as well

as with the magnetic field turned off (for further details see also [Denkmayr, 2013]

and “Methods” in [Denkmayr et al., 2014]).

Due to experimental limitations the weak values are not determined by coupling

spin and path to a meter system. Only the absolute square of the joint weak value

〈σ̂s
zΠ̂

p
z±〉w is determined. For the given pre and postselected states in the Cheshire

cat experiment, the weak values for any operator of interest are either one or zero

per definition and because of that the absolute square of the weak values will equal

the weak value itself. Since we know from the reference measurements that the

states are correctly pre and postselected, it is reasonable to assume that the abso-

lute square of the weak values will equal the weak value itself also in the experiment.

The intensities IABS
z± , IMAG

z± and IREF
z± are extracted from the fits to the data. The

final results are given by: IREF = 11.25(5), IABS
z+ = 10.90(9), IABS

z− = 8.83(8),

IMAG
z+ = 11.57(6) and IMAG

z− = 10.93(6) (all in counts per second)a. Using these

intensities the weak values are determined. The results are listed in Table 6.1.

Table 6.1: Results for the weak value determination in the Cheshire Cat experiment:
Path I Path II

〈Π̂p
z±〉w 0.14± 0.04 0.96± 0.06∣∣∣〈σ̂s

zΠ̂
p
z±〉w

∣∣∣
2

1.07± 0.25 0.02± 0.24

The theoretically predicted results for the weak values are 〈Π̂p
z+〉w = 0 and

〈Π̂p
z−〉w = 1, as well as

∣∣∣〈σ̂s
zΠ̂

p
z+〉w

∣∣∣
2

= 1 and
∣∣∣〈σ̂s

zΠ̂
p
z−〉w

∣∣∣
2

= 0. Also the path

projection operators must sum up to unity. The experiment confirms the predictions

within the errors of the measurement. The observed deviations from the theoretically

predicted values is due to imperfections in the setup, such as misalignments during

the spin manipulation and a degree of polarization below one.

aThese intensities are the average of all performed measurements.
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6.2.4 Discussion

There are several important points that have to be kept in mind concerning the

quantum Cheshire cat effect. Most importantly it has to be stressed that everything

all arguments presented so far are within standard quantum mechanics. The weak

values and the prediction made by them do not violate quantum mechanics. All

calculations followed from standard quantum mechanics and the only the way to

interpret the obtained results is open to debate.

The weak values are a powerful tool that give an heuristic insight into the dynamical

behavior between pre and postselected quantum ensembles [Popescu, 2010]. Since

〈Π̂p
z+〉w = 0 and 〈Π̂p

z−〉w = 1 one expects that a coupling to the neutron itself will

only be effective along path II. Because of 〈σ̂s
zΠ̂

p
z+〉w = 1 and 〈σ̂s

zΠ̂
p
z−〉w = 0, a

coupling to the spin component should only show an effect along path I. This is

exactly the behavior observed in the experiment. The weak values give a simple

prediction, which is found to be correct.

To gain a deeper understanding of the experiment, one can now think of the reason

why the system behaves the way it does following the evolution of the system in

the interferometer. Inside the interferometer the spin is aligned along the positive

x-direction in path I and aligned along the negative one along path II. The spin

postselection only lets particles with a spin aligned along the negative x-direction

pass to the detector. This is the reason why the absorber has no effect in path

I. It only takes away neutrons that would never pass through the postselection

anyways. The behavior of the system under the influence of the magnetic field

is more subtle to understand. The magnetic field minimally alters the spin state

inside the interferometer so that a part in the systems wave function is created that

can show interference. But again the spin postselection has to be considered: If

the spin manipulation is performed along path I, the |Sx; +〉 state will be turned

away from orthogonality towards the spin postselection direction. Thus a certain

part contributing interference will be able to pass postselection. Therefore we see

an interference fringe arising. If a magnetic field is applied along path II the spin

state |Sx;−〉 is altered, with the spin actually turning away from the postselection

direction and any part created which would contribute interference cannot pass the

spin postselection. Therefore no interference fringes appear if a magnetic field is

applied along the upper beam path. If the postselection direction is changed from

|Sx; +〉 to |Sx;−〉 the role of the paths switches. In that case the system will behave

as if neutrons were travelling along path II, while their spin moves along path I.

It is also interesting to note that the effect of the spin rotation on the recorded
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intensity scales with sin (α/2) in path I and with cos (α/2) in path II. Also the

operators 〈σ̂s
zΠ̂

p
z±〉w are not dichotomic, so that they can only be evaluated weakly.

If one would turn the neutron spin by α = 90◦ along the upper beam path one would

see the intensity drop to zero.

We see that the experiment has a perfectly simple explanation in terms of standard

quantum interference. However it is long winded and not very intuitive. At the same

time the weak values give a quick and easy to understanding of the phenomena in

the experiment.

6.3 Summary and perspective

Investigating a spin/path pre and postelected ensemble in a neutron interferom-

eter made it possible to observed the quantum Cheshire cat effect proposed by

Aharonov et al.. Using absorbers and magnetic fields it has been shown that the

system behaves as if the neutrons and their property took a different path through

the interferometer. If an absorbing foil is inserted into the lower beam path it shows

no effect on the recorded intensity. At the same time a weak magnetic field shows

only an effect at the lower beam path while it has none in the upper one. This is

exactly what one expects from the theoretical predictions. While the experiment

can be understood in terms of simple quantum interference the weak values give an

easier understanding of what is happening in the experiment.

The experimental realization of the Cheshire cat effect published in

[Denkmayr et al., 2014] was the first of its kind and therefore received a lot of cov-

erage in the media and popular science magazines (see e.g. [Ananthaswamy, 2014]

and [Lemmel, 2014]). There has also been a lot of interest from the scientific

community, which lead to the observation of the Cheshire cat effect in other sys-

tems [Atherton et al., 2015, Ashby et al., 2016]. In addition the experiment has

been reconstructed by event to event simulations [Michielsen et al., 2015].

There are also several possible future experiments that would be very interesting to

perform: In the first version of the Cheshire cat experiment the weak values were

not determined by coupling the system to an external meter. So it would be inter-

esting to extend the measurement protocol established in chapter 3 to three degrees

of freedom and then to perform the experiment. For this either the neutron’s en-

ergy degree of freedom [Sponar et al., 2008] or the recently demonstrated angular

momentum degree of freedom [Clark et al., 2015] could be used.

As a next step the scheme can then be extended to measure the observable simul-



6.6.3. Summary and perspective 161

taneously, i.e. one would need to measure the four pairs 〈Π̂p
z+〉w and 〈σ̂s

zΠ̂
p
z+〉w,

〈Π̂p
z+〉w and 〈σ̂s

zΠ̂
p
z−〉w, 〈Π̂p

z−〉w and 〈σ̂s
zΠ̂

p
z+〉w, as well as 〈Π̂p

z−〉w and 〈σ̂s
zΠ̂

p
z−〉w. To

perform the simultaneous weak measurements the neutrons energy degree of free-

dom is a promising choice. One could put a small RF spin turner in each beam

path and perform time resolved measurements (see also the dissertation project of

H. Geppert). A qualitative analysis of the effect could then be done by analyzing

the Fourier transform of the time resolved signal. To give a quantitative description

using weak values the mathematical formalism developed in chapter 3 would have

to be adopted.

In the Cheshire cat experiment only one spin component is regarded, but there is also

an experimental proposal in which all spin components are seemingly separated from

a particle [Guryanova et al., 2012, Aharonov et al., 2013a]. In the original proposal

the state vector of an entangled system is regarded. This is not a feasible approach

for neutron interferometry since sources of entangled neutron pairs are not avail-

able. A similar state vector, but in a mixture form, can also be created if the DC

coils, which pre and postselect the spin coils are switched rapidly between the states

|Sx;±〉. The switching would have to be faster than the detector resolution (above

10 kHz) for the experiment to work.

In a recent proposal extends the Cheshire cat effect to a dynamical situation

[Aharonov et al., 2015]. While the gedankenexperiment presented therein is also

not feasible using the technique of neutron interferometry, it might be possible to

extend the experimental scheme of [Schuster et al., 1990] to investigate the a dy-

namical Cheshire cat.

Finally it would be interesting to perform a delayed choice version of the quantum

Cheshire cat experiment. This would open up the possibility of investigating the so

called two-state vector formalism of quantum mechanics.



CHAPTER 7

Conclusion and outlook

In this thesis weak values and weak measurements have been studied in neutron

optical experiments:

In chapter 3 several measurement schemes are derived which make it possible to

fully determine the weak value of either Pauli or projection operators using a cou-

pling between two two-level quantum systems. It is shown that weakness is not a

necessary condition to determine weak values. An intuitive geometric picture of the

physical content of weak value derivation is developed.

In chapter 4 various experimental implementations of the previously derived mea-

surement scheme are described. The results of the weak value determination of the

Pauli spin operator σ̂s
z for one preselected and many different postselected states are

shown. The newly established experimental technique is used to generate ensembles

with a purely imaginary weak value. The results are used to show the quantum

pigeon hole effect.

In chapter 5 the results of a neutron interferometric experiment is presented in

which the weak value the Pauli operator σ̂p
z for the path degree of freedom in a

Mach-Zehnder interferometer is fully determined using both weak and strong inter-

actions. The results are used to reconstruct the neutron’s preselected path state

using the “direct” state tomography method. A quantitative comparison for weak

and strong interactions is performed and experimental evidence is given that strong

interactions outperform weak ones in terms of accuracy and precision. Additionally

the measurement results for the weak values of path projection operators 〈Π̂p
z±〉w

are presented. They are obtained by slightly altering the experimental scheme so
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that 〈Π̂p
z±〉w are determined using maximum measurement strengths.

Chapter 6 shows the results of the experimental investigation of the so called quan-

tum Cheshire cat effect. A pre and postselected ensemble is created, which behaves

in average as if the neutron and one of its properties (the spin z-component) are

spatially separated inside the interferometer. To quantify the behavior of the sys-

tem, weak values are utilized.

At the time of their performance, the experiments presented in this thesis were the

first of their kind using massive particles. The newly developed experimental tech-

nique described here opens a window into previously unexplored realms of the study

of quantum mechanic’s the foundations: The experimental schemes presented in

chapters 4 and 5 can be combined to performed a “direct” state characterization of

mixed states. For such an experiment the neutron spin degree of freedom would be

the system under investigation and the neutrons path degree of freedom would serve

as a meter system. The (partially) mixed spin states can be created by intentionally

misaligning the polarizing prisms in the interferometric setup.

It would also be of great interest to extend the measurement protocol of chapter 3

including additional meters, so that more complicated weak measurements can be

performed. While this seems quite easy to do on paper, the actual experimental

implementation will be the far more tricky part. Possible candidates for additional

meters are the neutron orbital angular momentum and the neutron energy.

Concerning the quantum Cheshire cat effect it would be interesting to “simultane-

ously” measure the location of the neutrons and their spin components. This would

require two additional meters. Also the observation of a complete Cheshire cat is

still lacking, which will be an interesting future experimental challenge.

Implementing additional meter systems in the experiment will also make the simul-

taneous determination of several weak values of quantum systems other than of the

Cheshire cat possible. While for positive operator valued measures (POVM) consid-

erable disturbance is unavoidable, weak measurements are a new way to investigate

quantum systems. In their realm the study of dynamical and complimentary prop-

erties of quantum systems is possible. The ultimate goal of our studies is to reach

new possibilities to get to know and to control quantum systems.



Bibliography

[Abele, 2008] Abele, H. (2008). The neutron. its properties and basic interactions.

Progress in Particle and Nuclear Physics, 60(1):1 – 81.

[Aharonov et al., 1988] Aharonov, Y., Albert, D. Z., and Vaidman, L. (1988). How

the result of a measurement of a component of the spin of a spin-1/2 particle can

turn out to be 100. Physical review letters, 60(14):1351.

[Aharonov et al., 1964] Aharonov, Y., Bergmann, P. G., and Lebowitz, J. L. (1964).

Time symmetry in the quantum process of measurement. Physical Review,

134(6B):B1410.

[Aharonov et al., 2002] Aharonov, Y., Botero, A., Popescu, S., Reznik, B., and Tol-

laksen, J. (2002). Revisiting hardy’s paradox: counterfactual statements, real

measurements, entanglement and weak values. Physics Letters A, 301(3–4):130 –

138.

[Aharonov et al., 2015] Aharonov, Y., Cohen, E., and Popescu, S. (2015). A current

of the cheshire cat’s smile: Dynamical analysis of weak values. arXiv preprint

arXiv:1510.03087.

[Aharonov et al., 2016] Aharonov, Y., Colombo, F., Popescu, S., Sabadini, I.,

Struppa, D. C., and Tollaksen, J. (2016). Quantum violation of the pigeonhole

principle and the nature of quantum correlations. Proceedings of the National

Academy of Sciences, 113(3):532–535.

[Aharonov et al., 2013a] Aharonov, Y., Nussinov, S., Popescu, S., and Vaidman, L.

164



Bibliography 165

(2013a). Peculiar features of entangled states with postselection. Physical Review

A, 87(1):014105.

[Aharonov et al., 2013b] Aharonov, Y., Popescu, S., Rohrlich, D., and Skrzypczyk,

P. (2013b). Quantum cheshire cats. New Journal of Physics, 15(11):113015.

[Aharonov et al., 2010] Aharonov, Y., Popescu, S., and Tollaksen, J. (2010). A

time-symmetric formulation of quantum mechanics. Physics Today, 63(11):27–

32.

[Aharonov and Rohrlich, 2008] Aharonov, Y. and Rohrlich, D. (2008). Quantum

paradoxes: quantum theory for the perplexed. John Wiley & Sons.

[Aharonov and Vaidman, 1989] Aharonov, Y. and Vaidman, L. (1989). Aharonov

and vaidman reply. Phys. Rev. Lett., 62:2327–2327.

[Aharonov and Vaidman, 1991] Aharonov, Y. and Vaidman, L. (1991). Complete

description of a quantum system at a given time. Journal of Physics A: Mathe-

matical and General, 24(10):2315.

[Allen and Eberly, 2012] Allen, L. and Eberly, J. H. (2012). Optical resonance and

two-level atoms. Courier Corporation.

[Ananthaswamy, 2014] Ananthaswamy, A. (2014). Lost and found. New Scientist,

223(2979):32 – 35.

[Ashby et al., 2016] Ashby, J. M., Schwarz, P. D., and Schlosshauer, M. (2016).

Observation of the quantum paradox of separation of a single photon from one of

its properties. Phys. Rev. A, 94:012102.

[Atherton et al., 2015] Atherton, D. P., Ranjit, G., Geraci, A. A., and Weinstein,

J. D. (2015). Observation of a classical cheshire cat in an optical interferometer.

Optics letters, 40(6):879–881.

[Badurek et al., 2000] Badurek, G., Buchelt, R., Kroupa, G., Baron, M., and Villa,

M. (2000). Permanent magnetic field-prism polarizer for perfect crystal neutron

interferometers. Physica B: Condensed Matter, 283(4):389 – 392.

[Badurek et al., 1979] Badurek, G., Rauch, H., Wilfing, A., Bonse, U., and Graeff,

W. (1979). A perfect-crystal neutron polarizer as an application of magnetic prism

refraction. J. Appl. Cryst., 12(2):186–191.



166 Bibliography

[Banaszek et al., 2013] Banaszek, K., Horodecki, P., Karpiński, M., and Radzewicz,
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