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Abstract

Thermoelectric materials have been a fascinating field of research ever since their
first exploration. Due to their capability to convert excess heat into electrical en-
ergy in a clean and sustainable way they could be of great importance for future
technologies. In order to build more efficient thermoelectric devices it is crucial to
get a thorough understanding of the complex interplay of the different mechanisms
within a thermoelectric material. Especially materials with large power producing
capabilities can show transport coefficients which strongly depend on the temper-
ature as well as on the position of the chemical potential. There have been several
studies which include the temperature dependence explicitly but none including
the chemical potential at the same level.

In this work we solve the macroscopic transport equations with their full temper-
ature and chemical potential dependences and discuss the impact of this extended
treatment on the efficiency. For that reason we derive suitable equations and bound-
ary conditions for junctions between different materials.

We apply these equations to a full two-leg device consisting of two active re-
gions with arbitrary materials connected by two metallic regions. We show that
the equations which describe the different active regions can be decoupled which
strongly reduces the complexity of the problem. We build a simulation that solves
the remaining non-linear differential equations iteratively and determines the effi-
ciency from the calculated temperature- and chemical potential distribution. As
the program will be made available freely we also build a graphical user interface in
order to improve the usability. We show simulation results for three materials i.e.
Bi2Te3, SrTiO3 and FeSb2 and compare the simulated efficiencies with methods to
analytically estimate the efficiency.

We find that the chemical potential can be far away from its equilibrium value at
the junctions due to the formation of Schottky contacts which, in some cases, dra-
matically decreases the efficiency. This effect has been neglected in thermoelectrics
in the past which might have led to the discard of promising materials.

Additionally we build a numerical routine which allows to calculate the optimum
doping profile and we discuss how the efficiency can be increased with that proce-
dure. We find for Bi2Te3 that the gain of differential doping compared to uniform
doping is about 13%.



Kurzfassung

Seit ihrer Entdeckung bieten thermoelektrische Materialien ein faszinierendes
Forschungsfeld. Da sie eine einzigartige Möglichkeit darstellen Verlustwärme auf
saubere und nachhaltige Weise in elektrische Energie zu konvertieren, können sie
von großer Wichtigkeit für zukünftige Technologien sein. Gerade Materialien die
sich gut für die Energieerzeugung eignen haben oft Transportkoeffizienten die stark
von der Temperatur als auch von der Position des chemischen Potentials abhängen.
Es existieren bereits einige Studien die auf die Temperaturabhängigkeit eingehen,
aber keine die das chemische Potential auf der selben Ebene behandeln.

In dieser Arbeit lösen wir die makroskopischen Transportgleichungen wobei wir
die Abhängigkeit der Transportkoeffizienten von Temperatur und chemischem Po-
tential berücksichtigen. Wir diskutieren den Einfluss dieser erweiterten Behand-
lung auf die Effizienz thermoelektrischer Generatoren. Im Zuge dessen leiten wir
adäquate Gleichungen und Randbedingungen für Kontakte zwischen zwei unter-
schiedlichen Materialien her.

Wir nutzen diese Gleichungen um ein thermoelektrisches Gerät mit zwei Zweigen
zu beschreiben. Dabei gehen wir davon aus, dass zwei beliebige, aktive Materialien
von zwei Metallen verbunden werden. Wir zeigen, dass die Gleichungen der zwei
aktiven Regionen entkoppelt werden können, was die Komplexität stark reduziert.
Um die verbleibenden nicht-linearen Differentialgleichungen zu lösen, erstellen wir
eine Simulation die die Temperaturverteilung und das chemische Potential berech-
net und im Anschluss daraus die Effizienz bestimmt. Da das Programm öffentlich
gemacht werden soll, erstellen wir zusätzlich eine grafische Benutzeroberfläche.
Wir präsentieren Simulationsergebnisse für Bi2Te3, SrTiO3 and FeSb2 und ver-
gleichen die berechneten Effizienzen mit Methoden die eine analytische Schätzung
ermöglichen.

Wir stellen fest, dass das chemische Potential an den Kontakten weit entfernt von
seinem Gleichgewichtswert liegen kann, was auf die Formation von Schottky Kon-
takten zurückzuführen ist und zu einer dramatischen Reduktion der Effizienz führen
kann. Dieser Effekt ist im Feld der thermoelektrischen Materialien in der Vergan-
genheit vernachlässigt worden wodurch möglicherweise vielversprechende Materi-
alien verworfen worden sind.

Zusätzlich erstellen wir eine numerische Routine die es erlaubt, das optimale
Dotierungsprofil zu berechnen. Wir finden, dass die Effizienz von Bi2Te3 durch
nicht-uniforme Dotierung um 13% höher ausfällt als mit uniformer.
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1. Introduction
Thermoelectric materials have been a fascinating field of research ever since their
first exploration. In 1821 Johann Thomas Seebeck discovered that a magnetic
field was generated when he applied a temperature difference to the junctions of a
closed loop of different materials [1]. Later it was found that the reason for this
magnetic field was an electrical current which flows if two materials with different
so-called Seebeck coefficients are connected and exposed to a temperature gradient.
In a simple picture one can understand this phenomenon with charge carriers that
diffuse from the hot side to the cold one and therefore generate an electrical current.
However, in a real solid with a band-structure and interaction between the electrons
and the lattice a more sophisticated theory has to be applied.

The reverse version of the Seebeck effect is called Peltier effect and was discovered
in 1834 by Jean Charles Athanase Peltier [1]. He found that a junction of two
materials can be cooled or heated when an electrical current is driven through it in
one or the other direction.

The Seebeck and the Peltier effect give access to thermoelectric means of trans-
forming heat into electrical power or using electrical currents for cooling purposes.
In the past thermoelectric generators were only used in niche sectors as their ef-
ficiency is low compared to conventional heat converting machines. The largest
advantage of thermoelectric generators lies in their reliability. Since they only con-
sist of two blocks of different materials there are no moving parts which can break
down or cause other dysfunctions. As long as a heat source supplies the generator
with thermal energy the conversion into electrical power is ensured. This has been
used to build so-called radioisotope thermoelectric generators (RTG) where the
heat produced by the decay of a radioactive material is transformed into electrical
power by a thermoelement [2]. These RTGs have been used for satellites and space
probes like the Voyager 1 and 2. Further advantages of thermoelectric generators
are the absence of exhaust gases and their longevity.

In recent years more and more efficient materials which show efficiencies of over
10% have been discovered which brought thermoelectric generators back into the
focus as a real alternative to currently used electrical power generators [1, 3]. In or-
der to further increase the performance it is necessary to get a better understanding
of the complex interplay of different effects and mechanisms within the materials
and the thermoelectric device as a whole.

Mahan has already discussed the case of variable chemical potentials for devices
with constant transport coefficients [4, 5]. He has pointed out that the assumption
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of a constant chemical potential causes a violation of the Poisson equation and
solved the equations analytically for some special cases. He found that the effi-
ciency of a thermoelectric generator is not affected by the variation of the chemical
potential. In the case of constant transport coefficients the efficiency associated
with the figure of Merit gives the correct value and is exact.

However, novel materials like FeSb2 [6, 7] have been discovered for which the
argument of constant transport coefficients is not a good approximation since they
show a strong variation of their transport properties upon variations of the chemical
potential.

In order to estimate the efficiency of devices consisting of such materials several
strategies have been followed. One is the so-called averaged figure of Merit where
the figure of Merit at different positions is averaged and the efficiency is calculated
subsequently. This method has proven to give wrong results in some cases and
contains theoretical inconsistencies. For this reason Kim et al. have introduced the
so-called engineering figure of Merit recently [8]. They make the assumption of a
linear temperature slope and that the chemical potential is at its equilibrium value
but they include the dependence of the transport coefficients on the temperature
and the chemical potential in an exact way.

All these previous studies have neglected the junctions between the materials
since they assumed the thermal equilibrium chemical potential at every position
within the materials. This, however violates the transport equations in a similar way
as neglecting the chemical potential variations within the bulk violates the Poisson
equation. The chemical potential can be far off its equilibrium value at the junction
since it is influenced by the attached material. As a consequence the transport
properties can change dramatically in a region around the junction and in turn
strongly affect the efficiency. Therefore, in order to calculate the efficiency correctly
even in materials with strongly position dependent chemical potential we include
the junctions and the variable transport coefficients in our simulation. We calculate
the spatial chemical potential- and temperature-distributions and subsequently the
efficiency.

Furthermore we discuss the effect of differential doping on the efficiency. For that
purpose we have developed a routine which calculates the optimal doping profile
within a given material. This may open a new field for optimization and a further
increase in efficiency.



2. Theory

2.1. Basic relations and assumptions
From equilibrium thermodynamics we know that we can assign a temperature 𝑇
and a chemical potential 𝜇 to a volume which may exchange heat and particles
with its surroundings. In non-equilibrium thermodynamics we have to account for
temperature and chemical potential gradients and therefore we have to define what
is meant by a position dependent 𝑇 or 𝜇 as it is not so obvious from the theoretical
point of view. To understand this we divide our actual system into small subsystems
of finite volume 𝑉𝑖 which have to be microscopically large so that they still contain
many particles and a statistical description is justified (figure 2.1). We assume that
the temperature and chemical potential and any other macroscopic quantities are
constant within the volumes 𝑉𝑖. In the limit of macroscopically small subsystems
(i.e. 𝑉𝑖 << 𝑉 ) we can assign position dependent quantities

𝜇 → 𝜇(r) (2.1)

𝑇 → 𝑇 (r) (2.2)

which perfectly coincides with our every day experience of locally different temper-
atures. Within each subsystem 𝑉𝑖 as given in figure 2.1 we can set up the basic
equation for the energy-density change at constant volume which reads

𝑑𝑢 = 𝑇𝑑𝑠 + 𝜇𝑑𝑛 + 𝜑𝑑𝜌 . (2.3)

This equations states that the total energy-density change (𝑑𝜇) is equal to the
heat energy-density change (𝑇𝑑𝑠) plus the potential energy-density change (𝜇𝑑𝑛 +
𝜑𝑑𝜌). The explicit position dependence of 𝑇 , 𝜇 and 𝜑 is suppressed to improve
the readability of the equations. As the ions are taken to be fixed on their lattice
positions the particle number and charge variation stems from the electrons only.
Therefore we can write

𝑑𝑢 = 𝑇𝑑𝑠 + 𝜇𝑑𝑛 + 𝜑𝑑𝜌 = 𝑇𝑑𝑠 + 𝜇𝑑𝑛 + 𝜑(−𝑒)𝑑𝑛 = 𝑇𝑑𝑠− 𝑒
(︁
𝜑− 𝜇

𝑒

)︁
𝑑𝑛 (2.4)

which gives rise to the definition of the so-called electrochemical potential

𝜑 ≡ 𝜑− 𝜇

𝑒
(2.5)
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Figure 2.1.: Schematic picture showing the splitting into 𝑛 subsystems. Each subsystem
with volume 𝑉𝑖 has its own temperature 𝑇𝑖. In the limit of large 𝑛 we get a
continuous temperature distribution 𝑇 (𝑥). Note that each subsystem has
to be in local thermal equilibrium and contains many particles so that the
macroscopic quantities 𝑇 and 𝜇 are well defined.

where 𝑒 is the absolute value of the electron charge. By inserting this definition
into equation (2.4) one obtains the compact expression

𝑑𝑢 = 𝑇𝑑𝑠 + 𝜑𝑑𝜌 . (2.6)

Note that the first term on the right-hand side represents the heat content of the
total system (i.e. of the electrons and the ions) whereas the second term only
depends on the electrons and can be seen as the change of the potential energy.

As the total energy and the charge have to be conserved we can write down
continuity equations for the currents associated with these quantities which read

𝜕𝑢

𝜕𝑡
+ ∇ · j𝑢 = 0 , (2.7)

𝜕𝜌

𝜕𝑡
+ ∇ · j = 0 . (2.8)

In this work we only discuss stationary systems which means that all time deriva-
tives are zero and therefore

∇ · j𝑢 = 0 , (2.9)

∇ · j = 0 . (2.10)

Instead of using the total energy current-density it is often more convenient and
intuitive to use the heat current which is defined as

j𝑄 ≡ j𝑢 − 𝜑j . (2.11)
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Note that although the divergence of j𝑢 and j is zero in the stationary state the
divergence of j𝑄 will not be zero in general and therefore the heat is not a con-
served quantity. The combination of the equations (2.9), (2.10) and (2.11) gives
the relation

∇ · j𝑢 = 0 = ∇ · j𝑄 + ∇𝜑 · j (2.12)

which we will need later.
At the beginning we have started from the assumption that the temperature and

electrochemical potential gradients are small enough that a local thermal equilib-
rium can be established. Following this requirement of relatively slowly changing
fields it makes sense to use transport equations which are linearized with respect
to those fields, i.e.

j = −𝜎∇𝜑− 𝜎𝛼∇𝑇 , (2.13)

j𝑄 = −𝜎𝛼𝑇∇𝜑− (𝜅 + 𝜎𝛼2𝑇 )∇𝑇 . (2.14)

which are the well-known linear transport equations. The reason for the fact that
only three independent transport coefficients occur lies in the microscopical time-
reversibility of physical processes and is known as Onsager’s reciprocal relations
[9, 10] which we will not discuss here. The transport coefficients are called electrical
conductivity (𝜎), the Seebeck coefficient (𝛼) and the thermal conductivity (𝜅) which
may depend on the temperature and the chemical potential,

𝜎 → 𝜎(𝜇, 𝑇 ) , 𝛼 → 𝛼(𝜇, 𝑇 ) , 𝜅 → 𝜅(𝜇, 𝑇 ) . (2.15)

For convenience the explicit dependence will be dropped from now on. Note that in
general the transport coefficients are tensors but in this work we will treat them as
scalars as we are not interested in anisotropic effects. With equation (2.13) we can
eliminate the electrochemical potential gradient in equation (2.14) to get a more
convenient version of the transport equations,

j = −𝜎∇𝜑− 𝜎𝛼∇𝑇 , (2.16)

j𝑄 = 𝛼𝑇 j− 𝜅∇𝑇 . (2.17)

The equation (2.16) states that the driving force of an electrical current at constant
temperature is not only the electrical field but an effective field calculated from the
electrochemical potential. However in metals the chemical potential 𝜇 is almost
constant which is the reason why most people are more used to the simple form
𝑗 = 𝜎E.

When we insert equation (2.17) into equation (2.12) and exploit the vanishing
of the electrical current divergence we get the so-called Domenicali equation [11]
which reads

j2

𝜎
+ ∇ · (𝜅∇𝑇 ) − 𝑇 j · ∇𝛼 = 0 (2.18)
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and represents the local energy conservation. The first term is the well-known
irreversible Joule heating, the second term accounts for a changing thermal con-
ductivity and the third one is the reversible Thomson heating [12].

2.2. Efficiency and figure of merit

One field of applications for thermoelectric materials is power generation. In that
case two pieces of different materials are brought into thermal contact with heat
reservoirs at different temperatures (figure 2.2). Due to the Seebeck effect an elec-

x=0

j

σ2, α2, κ2   

σ1, α1, κ1    

ThTc

Rload U

x=l

x=l+lh

a

b

Figure 2.2.: Schematic picture showing a power generator with two legs consisting of
different thermoelectric materials. The blue and red areas are metals held
at constant temperatures 𝑇𝑐 and 𝑇ℎ (𝑇ℎ > 𝑇𝑐). They are assumed to be
ideal conductors which means zero electrical resistance.

trochemical potential gradient is established and an electrical current flows through
the attached load. In this section we are going to introduce the so-called figure of
merit for a device with constant transport coefficients. For the following theoreti-
cal treatment we additionally assume that all metals (i.e. the blue and red areas
and the wires which connect the load with the generator in figure 2.2) have zero
electrical resistance. This simplification is only used in this section and not in the
final simulation as discussed in section 4.1.

When we want to use generators the two most important quantities to classify
them are the output power and the efficiency. The power is defined as

𝑃 = ∆𝜑𝐼 (2.19)
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where 𝐼 denotes the electrical current. We have used the electrochemical potential
drop ∆𝜑 at the load as it represents the change in the potential energy of the
electrons rather than the electrical potential only. In metals the chemical potential
is almost constant which is the reason why one usually only takes into account
the electrical voltage 𝑈 = ∆𝜑 for power calculations. We can calculate ∆𝜑 by
expressing 𝜑′ with equation (2.16) and integrating from one side of the load to the
other one along the thermoelectric device,

∆𝜑 =

∫︁ 𝑏

𝑎

d𝑥𝜑′ =

∫︁ 𝑏

𝑎

d𝑥

(︂
− 𝑗(𝑥)

𝜎(𝑥)
− 𝛼(𝑥)𝑇 ′(𝑥)

)︂
. (2.20)

Using the definitions for the electrical resistance 𝑅 = 𝑙
𝜎𝐴

and the electrical current
𝐼 = 𝐴𝑗 where 𝐴 denotes the cross-sectional area and 𝑙 the length of the thermo-
electric leg we get

∆𝜑 = (𝛼2 − 𝛼1)(𝑇ℎ − 𝑇𝑐) − (𝑅1 + 𝑅2)𝐼 ≡ 𝛼∆𝑇 −𝑅𝐼 (2.21)

and eventually the power reads

𝑃 = (𝛼∆𝑇 −𝑅𝐼) 𝐼 . (2.22)

In this equation we have introduced new coefficients 𝛼 = 𝛼2 −𝛼1 and 𝑅 = 𝑅1 +𝑅2

which represent the whole thermoelectric device. According to equation (2.22) the
power that is delivered to the load depends on the current which itself depends
implicitly on the resistance of the load 𝑅load. We can find the optimum current by
differentiation of the power 𝜕𝑃

𝜕𝐼
(𝐼𝑚) = 0 which gives

𝐼𝑚 =
𝛼∆𝑇

2𝑅
(2.23)

and with Ohm’s law we can determine the value of the load resistance that has to
be attached in order to achieve the optimum current,

𝑅load-m =
∆𝜑(𝐼𝑚)

𝐼𝑚
= 𝑅 . (2.24)

This means that the maximum power is delivered to the load when its resistance
matches the internal resistance of the source.

The so-called efficiency of a thermoelectric generator is defined as

𝜂 ≡ 𝑃

𝐼𝑄(𝑇ℎ)
(2.25)

where 𝑃 stands for the power as discussed above and 𝐼𝑄 is the total heat current
which enters the generator from the hot side. In terms of heat current densities we
can write

𝐼𝑄 ≡ 𝐴 (𝑗𝑄(𝑙 + 𝑙ℎ) − 𝑗𝑄(𝑙)) = (𝛼2 − 𝛼1)𝑇ℎ𝐼 − 𝐴 (𝜅2𝑇
′(𝑙 + 𝑙ℎ) − 𝜅1𝑇

′(𝑙)) (2.26)
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where the different signs between 𝑗𝑄(𝑙+ 𝑙ℎ) and 𝑗𝑄(𝑙) assure that heat flowing from
the hot side into the device is counted positive. With the Domenicali equation (2.18)
we can calculate the temperature distribution and then get rid of the temperature
derivatives in equation (2.26) which gives

𝐼𝑄 = 𝛼𝑇ℎ𝐼 +
𝐴

𝑙
(𝜅1 + 𝜅2)∆𝑇 −𝑅𝐼2/2 (2.27)

where we have assumed that both legs of the generator have the same length and
cross-sectional areas for simplicity. With the definition of the efficiency (2.25) and
the relation for the output power (2.22) we eventually get

𝜂 =
(𝛼∆𝑇 −𝑅𝐼) 𝐼

𝛼𝑇ℎ𝐼 + 𝐴
𝑙
(𝜅1 + 𝜅2)∆𝑇 −𝑅𝐼2/2

. (2.28)

The efficiency can be optimized with respect to the electrical current in the same
way as the output power which gives the famous formula

𝜂𝑚 =
𝑇ℎ − 𝑇𝑐

𝑇ℎ

√
1 + 𝑍𝑇𝑚 − 1√

1 + 𝑍𝑇𝑚 + 𝑇𝑐/𝑇ℎ

(2.29)

with the mean temperature 𝑇𝑚 ≡ (𝑇ℎ + 𝑇𝑐)/2 and the so-called figure of merit for
a two-leg thermoelectric generator,

𝑍 ≡ (𝛼2 − 𝛼1)
2

(𝜅1 + 𝜅2)(
1
𝜎1

+ 1
𝜎2

)
. (2.30)

The first term on the right-hand side of equation (2.29) is the Carnot efficiency
which is the maximum that can be achieved by a generator operating between the
temperatures 𝑇ℎ and 𝑇𝑐. The load resistance for which the generator shows the
efficiency (2.29) can be derived as

𝑅load-m = 𝑅
√︀

1 + 𝑍𝑇𝑚 . (2.31)

The figure of merit is often used to classify thermoelectric materials as it corre-
sponds to the maximum efficiency. In the limit of 𝑍 → ∞ the efficiency of the
device becomes the Carnot efficiency whereas in case of 𝑍 = 0 the efficiency be-
comes zero. Note that the relations given above incorporate the single-leg relations
which can be obtained by setting 𝛼2 = 0, 𝜎2 → ∞ and 𝜅2 = 0. This gives the
single-leg figure of merit which reads

𝑍single =
𝛼2
1𝜎1

𝜅1

. (2.32)
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x=0

j

σ2, α2, κ2   

σ1, α1, κ1    

ThTc

x=l

x=l+lh

a

b

Figure 2.3.: Schematic picture showing a thermoelectric cooler with two legs consisting
of different materials and a battery which drives the electrical current. The
blue and red areas are metals held at constant temperatures 𝑇𝑐 and 𝑇ℎ

(𝑇ℎ > 𝑇𝑐).

When the load resistor 𝑅load in figure 2.2 is replaced by a battery which drives
the electrical current in the opposite direction the thermoelectric device can work
as a refrigerator. In that case the efficiency is defined as

𝜂cool ≡
𝐼𝑄(𝑇𝑐)

−∆𝜑𝐼
(2.33)

which is the heat per second taken from the cold side divided by the power that is
supplied by the battery (figure 2.3). The minus sign in the denominator accounts
for the reversed current direction and ensures that the efficiency is positive in case
of cooling. In a similar way as above one can show [9] that the efficiency at a given
current 𝐼 reads

𝜂cool =
−𝛼𝑇𝑐𝐼 − 𝐴

𝑙
(𝜅1 + 𝜅2) −𝑅𝐼2/2

−𝛼∆𝑇 + 𝑅𝐼2
(2.34)

and in total analogy the maximum efficiency is

𝜂cool-m =
𝑇𝑐

𝑇ℎ − 𝑇𝑐

√
1 + 𝑍𝑇𝑚 − 𝑇ℎ/𝑇𝑐√

1 + 𝑍𝑇𝑚 + 1
. (2.35)
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2.3. Figure of merit for non-constant transport
coefficients

The figure of merit as introduced in section 2.2 is a suitable quantity for materials
with transport coefficients that are independent of the temperature and the chem-
ical potential. However, many materials which show large Seebeck coefficients are
semiconductors and therefore have transport properties that may vary strongly. In
order to simply estimate the efficiency of a material with non-constant coefficients
two different ways have been used in the past as pointed out in [8]. The idea behind
both variants is to calculate a new figure of merit that accounts for the variation
of the transport coefficients and use equation (2.29) to determine the efficiency.

The first one is the actual figure of merit taken at the mean temperature 𝑇𝑚 =
(𝑇ℎ + 𝑇𝑐)/2 ,

𝑍avg-i ≡
𝛼(𝑇𝑚)2𝜎(𝑇𝑚)

𝜅(𝑇𝑚)
(2.36)

and the second one is to really average the figure of merit over the temperature
range, i.e.

𝑍avg-ii ≡
1

𝑇ℎ − 𝑇𝑐

∫︁ 𝑇ℎ

𝑇𝑐

d𝑇
𝛼(𝑇 )2𝜎(𝑇 )

𝜅(𝑇 )
. (2.37)

Although these methods have been commonly used they do not give very good
results for strongly varying coefficients. Additionally there is the theoretical in-
consistency that the maximum efficiency given by equation 2.2 is only valid for
the optimal output current. When the material has locally different values for
the figure of merit, the optimal current would be different at each position as it
depends on the transport coefficients as well. However, the electrical current is
constant throughout the device which means that there is a fundamental contra-
diction. This has been recognized by [8] who introduced the so-called engineering
figure of merit that gives much more realistic values for the efficiency.

The engineering figure of merit is defined as

(𝑍𝑇 )eng ≡

(︁∫︀ 𝑇ℎ

𝑇𝑐
d𝑇𝛼(𝑇 )

)︁2

∫︀ 𝑇ℎ

𝑇𝑐
d𝑇 1

𝜎(𝑇 )

∫︀ 𝑇ℎ

𝑇𝑐
d𝑇𝜅(𝑇 )

(2.38)

and the maximum efficiency is given as

𝜂eng-m = 𝜂𝑐

√︀
1 + (𝑍𝑇 )eng𝛼1𝜂−1

𝑐 − 1

𝛼0

√︀
1 + (𝑍𝑇 )eng𝛼1𝜂−1

𝑐 + 𝛼2

(2.39)

with the Carnot efficiency 𝜂𝑐 = (𝑇ℎ − 𝑇𝑐)/𝑇ℎ. The coefficients 𝛼𝑖 are defined as

𝛼𝑖 =
𝛼(𝑇ℎ)∆𝑇∫︀ 𝑇ℎ

𝑇𝑐
d𝑇𝛼(𝑇 )

−
∫︀ 𝑇ℎ

𝑇𝑐
d𝑇𝑇 𝑑𝛼(𝑇 )

𝑑𝑇∫︀ 𝑇ℎ

𝑇𝑐
d𝑇𝛼(𝑇 )

𝑊𝑇𝜂𝑐 − 𝑖𝑊𝐽𝜂𝑐 (2.40)
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with

𝑊𝑇 =

∫︀ 𝑇ℎ

𝑇𝑐
d𝑇

∫︀ 𝑇ℎ

𝑇
d𝑇

(︁
𝑇 𝑑𝛼(𝑇 )

𝑑𝑇

)︁
∆𝑇

∫︀ 𝑇ℎ

𝑇𝑐
d𝑇

(︁
𝑇 𝑑𝛼(𝑇 )

𝑑𝑇

)︁ and 𝑊𝐽 =

∫︀ 𝑇ℎ

𝑇𝑐
d𝑇

∫︀ 𝑇ℎ

𝑇
d𝑇 1

𝜎(𝑇 )

∆𝑇
∫︀ 𝑇ℎ

𝑇𝑐
d𝑇 1

𝜎(𝑇 )

. (2.41)

Although the engineering figure of merit and the formulas given for the maximum
efficiency may look complicated on the first sight they can be easily calculated by
means of numerical integration. The transport coefficients used above are evaluated
at the equilibrium chemical potential corresponding to the local temperature which
means

𝛼(𝑇 ) ≡ 𝛼(𝜇𝑒𝑞(𝑇 ), 𝑇 ) , 𝜎(𝑇 ) ≡ 𝜎(𝜇𝑒𝑞(𝑇 ), 𝑇 ) , 𝜅(𝑇 ) ≡ 𝜅(𝜇𝑒𝑞(𝑇 ), 𝑇 ) (2.42)

and the temperature distribution between the heat reservoirs is assumed to be a
linear slope. This is of course a severe simplification that can lead to significant
differences compared to the full simulation especially for materials with transport
properties strongly dependent on temperature and chemical potential.



3. Thermoelectric transport
equations and their solution

3.1. Equations used

As pointed out in chapter 1 we seek to calculate the chemical potential and temper-
ature distribution (𝜇(𝑥), 𝑇 (𝑥)) for a thermoelectric device with two legs (see figure
2.2). Once we have these quantities we can easily determine the output power and
the efficiency or the cooling efficiency respectively. For simplicity we will assume
that all quantities only depend on one spatial dimension (𝑥) which would corre-
spond to a device with constant cross-sectional areas that are large compared to
the length of the device. This is a good assumption as long as surface effects can
be neglected.

The first equation that is needed is equation (2.16) which (in one dimension)
reads

𝑗(𝑥) = −𝜎 (𝑥, 𝜇(𝑥), 𝑇 (𝑥))⏟  ⏞  
𝜎(𝑥)

⎛⎜⎜⎜⎝
(︂
𝜑′(𝑥) − 1

𝑒
𝜇′(𝑥)

)︂
⏟  ⏞  

𝜑′(𝑥)

+𝛼 (𝑥, 𝜇(𝑥), 𝑇 (𝑥))⏟  ⏞  
𝛼(𝑥)

𝑇 ′(𝑥)

⎞⎟⎟⎟⎠ (3.1)

where we have taken into account that all transport coefficients depend on the
position via their dependence on 𝜇(𝑥) and 𝑇 (𝑥) as well as explicitly which represents
regions of different materials. The current density fulfills a continuity equation as
the charge is a conserved quantity, i.e.

d𝑄

d𝑡
= −

∮︁
𝜕𝑉

df · j(x) . (3.2)

In our one dimensional case with constant cross-sectional areas this relation gives
for the steady state

𝑗(𝑥1) = 𝑗(𝑥2) ∀𝑥1, 𝑥2 (3.3)

which means that the current density is constant throughout the whole device.
The current density in equation (3.1) will be treated as an input parameter which
is equivalent to specifying the load resistance 𝑅load or the electrochemical potential
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drop ∆𝜑 at the load. Once we have solved the problem we can determine ∆𝜑 cor-
responding to the given 𝑗 by integrating equation (3.1) and subsequently calculate
the load resistance with Ohm’s law. Now that we have identified 𝑗 as input there
are three independent variables left which are the chemical potential 𝜇(𝑥), the elec-
trical potential 𝜑(𝑥) and the temperature 𝑇 (𝑥). To solve the system we therefore
need two further equations.

The first one is the so-called Domenicali equation (see chapter 2.1) which can be
derived from energy conservation (equation (2.9)),

𝑗2

𝜎(𝑥)
+ 𝜅′(𝑥)𝑇 ′(𝑥) + 𝜅(𝑥)𝑇 ′′(𝑥) − 𝑇 (𝑥)𝑗𝛼′(𝑥) = 0 . (3.4)

The second additional equation we need has to account for the fact that the elec-
trical charge and the electrical field are not independent but connected by Maxwell’s
equations. As we completely neglect magnetic fields and we are only interested in
the steady state we need Gauß’s law in matter,∮︁

𝜕𝑉

df ·D(x) =

∫︁
𝑉

d3𝑥𝜌𝑓 (x) (3.5)

where D is the displacement field used in macroscopic electrodynamics. The cor-
responding "free" charge density 𝜌𝑓 is the charge accumulation due to the possible
non-equilibrium position of the chemical potential. Within a region consisting of
one type of material the displacement field and the electrical field are connected by
the relation

D = 𝜖0𝜖E (3.6)

with 𝜖, the relative permittivity that is assumed to be constant and 𝜖0, the vacuum
permittivity. The differential version of equation (3.5) is called Poisson’s equation
and for the one dimensional case reads

𝐸 ′(𝑥) =
𝜌𝑓 (𝑥)

𝜖0𝜖
= −𝜑′′(𝑥) (3.7)

where we have used the definition of the electrical potential.
Summarizing, we have the three equations

𝑗2

𝜎
+ 𝜅′𝑇 ′ + 𝜅𝑇 ′′ − 𝑇𝑗𝛼′ = 0 , (3.8a)

𝑗 = −𝜎

(︂
𝜑′ − 1

𝑒
𝜇′
)︂
− 𝜎𝛼𝑇 ′ , (3.8b)

𝜑′′ = − 𝜌𝑓
𝜖0𝜖

(3.8c)
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where we have dropped the dependence on the position for better readability. The
equations given above are three coupled, nonlinear differential equations which are
difficult to solve even numerically. A more convenient set of equations can be
obtained by differentiating equation (3.8b), taking into account that 𝑗′ = 0 and
then substituting 𝜑′′ according to equation (3.8c) which gives

− 1

𝑒
𝜇′′ =

𝜌𝑓
𝜖0𝜖

+
𝑗

𝜎2
𝜎′ − 𝛼′𝑇 ′ − 𝛼𝑇 ′′ . (3.9)

The main advantage of this formulation is that the electrical potential has com-
pletely vanished which leaves us with only two coupled differential equations in
two variables, namely 𝑇 (𝑥) and 𝜇(𝑥). In the end the electrical potential can be
recovered with equation (3.8c) if needed.

By applying Gauß’s law in the differential form with constant permittivity we
have restricted the use of the equation to a region consisting of one type of material.
As we want to describe a device consisting of several different regions we have to
find proper boundary conditions to combine the solutions.

3.2. Boundary conditions at junctions

In this section we will derive the boundary conditions that are needed to combine
the solutions of regions with different materials according to physical laws (see figure
3.1). At first we will have a look at the behavior of the free charge density 𝜌𝑓 at the

j

x=0 x=x0

region a region b

Figure 3.1.: Schematic picture of an interface between two regions 𝑎 and 𝑏 of different
materials.

interface 𝑥 = 𝑥0. As discussed above the free charge density accounts for the local
charge accumulation due to a non-equilibrium chemical potential. We explicitly
describe the spatial electron distribution via 𝜇(𝑥) and therefore, by construction,
there must not be an additional infinitesimal free surface charge layer. This means
that the charge density may be discontinuous at the interface but it does not contain
𝛿-distribution-like terms. Therefore we can apply Gauß’s law in the form (3.5) and
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integrate over a small volume including the interface. In the limit of an infinitesimal
integration volume this gives the relation

𝐷(𝑥−
0 ) = 𝐷(𝑥+

0 ) (3.10)

which means that the displacement field is continuous in case of vanishing free
surface charges. Together with equation (3.6) this gives

𝜖𝑎𝜑
′(𝑥−

0 ) = 𝜖𝑏𝜑
′(𝑥+

0 ) (3.11)

which indicates the jump of the electrical field due to polarization surface charges.
The electrical potential itself is, by construction, continuous which means

𝜑(𝑥−
0 ) = 𝜑(𝑥+

0 ) . (3.12)

From equation (3.8b) we can express the electrochemical potential derivative,

𝜑′(𝑥) = − 𝑗

𝜎(𝑥)
− 𝛼(𝑥)𝑇 ′(𝑥) (3.13)

which we integrate over a small region around 𝑥0 in order to find the behavior of 𝜑
at the interface,

𝜑(𝑥0 + ∆) − 𝜑(𝑥0 − ∆) = −
∫︁ 𝑥0+Δ

𝑥0−Δ

d𝑥

(︂
𝑗

𝜎(𝑥)
+ 𝛼(𝑥)𝑇 ′(𝑥)

)︂
. (3.14)

The first term within the integral is the (constant) current density divided by the
the electrical conductivity which may be discontinuous at 𝑥0 but must not contain
terms ∝ 𝛿(𝑥− 𝑥0) for obvious reasons. The same holds for the Seebeck coefficient
and the temperature derivative as the temperature must be continuous according
to the laws of thermodynamics. Hence, we find in the limit ∆ → 0 that the
electrochemical potential is continuous

𝜑(𝑥+
0 ) − 𝜑(𝑥−

0 ) = 0 (3.15)

and with equation (3.12) and the definition of the electrochemical potential we find
the same for the chemical potential subsequently

𝜇(𝑥+
0 ) − 𝜇(𝑥−

0 ) = 0 . (3.16)

The fact that 𝜑, 𝜑 and 𝜇 are continuous is not surprising as they are potential
energies and a discontinuous jump would lead to infinite forces which would be
unphysical in this context.

As we are going to deal with two second-order differential equations, namely for
𝑇 and 𝜇 we have to determine relations for the first derivatives of these quantities
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at the interface. We can exploit equation (3.8b) to express the electrochemical
potential derivative, evaluate it on both sides of the interface and then build the
difference which gives

𝜑′(𝑥+
0 ) − 𝜑′(𝑥−

0 ) = −𝑗

(︂
1

𝜎(𝑥+
0 )

− 1

𝜎(𝑥−
0 )

)︂
− 𝛼(𝑥+

0 )𝑇 ′(𝑥+
0 ) + 𝛼(𝑥−

0 )𝑇 ′(𝑥−
0 ) . (3.17)

However, we are going to work with 𝜇 rather than with 𝜑 which is the reason why
we would like to know the behavior of 𝜇′ as well. Therefore we calculate the first
derivative change of the electrical potential at the interface,

𝜑′(𝑥+
0 ) − 𝜑′(𝑥−

0 ) = 𝜑′(𝑥−
0 )

(︂
𝜖𝑎
𝜖𝑏

− 1

)︂
(3.18)

where we have employed equation (3.11). We can get rid of the electrical potential
on the right hand side with equation (3.8b) which gives

𝜑′(𝑥+
0 ) − 𝜑′(𝑥−

0 ) =

(︂
𝜖𝑎
𝜖𝑏

− 1

)︂(︂
− 𝑗

𝜎(𝑥−
0 )

+
1

𝑒
𝜇′(𝑥−

0 ) − 𝛼(𝑥−
0 )𝑇 ′(𝑥−

0 )

)︂
. (3.19)

When we insert equation (3.19) into (3.17) we completely get rid of 𝜑′ which leaves
a relation for the chemical potential that reads

𝜖𝑏
𝑒
𝜇′(𝑥+

0 ) − 𝜖𝑎
𝑒
𝜇′(𝑥−

0 ) = 𝑗

(︂
𝜖𝑏

𝜎(𝑥+
0 )

− 𝜖𝑎
𝜎(𝑥−

0 )

)︂
+ 𝜖𝑏𝛼(𝑥+

0 )𝑇 ′(𝑥+
0 ) − 𝜖𝑎𝛼(𝑥−

0 )𝑇 ′(𝑥−
0 ) .

(3.20)
We now have calculated all necessary relations for the chemical potential, what

is left is a set of boundary conditions for the temperature. As mentioned above the
temperature itself has to be continuous according to fundamental thermodynamics,
i.e.

𝑇 (𝑥+
0 ) − 𝑇 (𝑥−

0 ) = 0 . (3.21)

If we want to describe a junction between two different materials we in principle
need a relation for the first derivative of the temperature, too, as the Domenicali
equation is second order. However, this is only needed in case of a conserved total
energy current 𝑗𝑢 which is not the case when the junction is artificially held at
constant temperature on one side. For a two-leg thermoelectric device only such
junctions are present but for the sake of completeness we give the relation for the
temperature derivative as well. This can be obtained by exploiting the fact that
the total energy current is conserved,

𝑗𝑢(𝑥+
0 ) − 𝑗𝑢(𝑥−

0 ) = 0 (3.22)

and with the equations (2.11), (2.17), (3.21) and (3.15) we obtain

𝜅(𝑥+
0 )𝑇 ′(𝑥+

0 ) − 𝜅(𝑥−
0 )𝑇 ′(𝑥−

0 ) = 𝑗𝑇 (𝑥0)
(︀
𝛼(𝑥+

0 ) − 𝛼(𝑥−
0 )
)︀

. (3.23)
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3.3. Summary of the equations
In total we have two second-order, coupled differential equations for the tempera-
ture and the chemical potential which read

𝑗2

𝜎
+ 𝜅′𝑇 ′ + 𝜅𝑇 ′′ − 𝑇𝑗𝛼′ = 0 , (3.24a)

− 1

𝑒
𝜇′′ =

𝜌𝑓
𝜖0𝜖

+
𝑗

𝜎2
𝜎′ − 𝛼′𝑇 ′ − 𝛼𝑇 ′′ (3.24b)

where all transport coefficients and 𝜌 may depend on the 𝜇(𝑥) and 𝑇 (𝑥) and on x
explicitly,

𝜌 = 𝜌(𝑥, 𝜇, 𝑇 ) , 𝜎 = 𝜎(𝑥, 𝜇, 𝑇 ) , 𝛼 = 𝛼(𝑥, 𝜇, 𝑇 ) , 𝜅 = 𝜅(𝑥, 𝜇, 𝑇 ) . (3.25)

Note that equation (3.24a) only holds within a region where the total energy current
is conserved whereas equation (3.24b) can be applied to every region where the
electrical current is conserved i.e. the whole device. Furthermore we have derived
boundary conditions for junctions (at 𝑥 = 𝑥0) between two different regions 𝑎 and
𝑏 which read

𝜇(𝑥−
0 ) = 𝜇(𝑥+

0 ) , (3.26a)

𝜖𝑏
𝑒
𝜇′(𝑥+

0 ) − 𝜖𝑎
𝑒
𝜇′(𝑥−

0 ) = 𝑗

(︂
𝜖𝑏

𝜎(𝑥+
0 )

− 𝜖𝑎
𝜎(𝑥−

0 )

)︂
+ 𝜖𝑏𝛼(𝑥+

0 )𝑇 ′(𝑥+
0 ) − 𝜖𝑎𝛼(𝑥−

0 )𝑇 ′(𝑥−
0 ) ,

(3.26b)
𝑇 (𝑥−

0 ) = 𝑇 (𝑥+
0 ) , (3.26c)

𝜅(𝑥+
0 )𝑇 ′(𝑥+

0 ) − 𝜅(𝑥−
0 )𝑇 ′(𝑥−

0 ) = 𝑗𝑇 (𝑥0)
(︀
𝛼(𝑥+

0 ) − 𝛼(𝑥−
0 )
)︀

. (3.26d)

As the Domenicali equation itself the boundary condition (3.26d) only holds if the
total energy current through the junction is conserved.

3.4. Analytically solvable examples
As mentioned in chapter 2.2 we can analytically determine the efficiency for the
case of constant transport coefficients which is a function of the figure of merit
𝑍 = 𝜎𝛼2

𝜅
. However it is instructive to solve the full set of equations given in chapter

3.3 for some model cases and calculate the 𝜇-, 𝑇 - and 𝜑- distributions in order to
get a feeling for the physics. As this work is partially based on a previous project
thesis [13] written by myself there are parts of the following derivation that are the
same as in that previous work.

At first we will discuss an infinitely long rod of material which is held at the
temperature 𝑇0 for 𝑥 < 0 and 𝑇𝑙 for 𝑥 > 𝑙 respectively (see figure 3.2). We assume
that there is an electrical current 𝑗 flowing through the rod and as we neglect
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Figure 3.2.: Schematic picture of an infinitely long rod held at constant temperature 𝑇0

for 𝑥 < 0 and 𝑇𝑙 for 𝑥 > 𝑙 respectively.

the effects due to surfaces, 𝑗 is a constant. As we know that the Seebeck effect
generates a voltage when a temperature gradient is applied we would expect charge
accumulations at 𝑥 = 0 and 𝑥 = 𝑙 which have opposite sign. We will see that this
is indeed true but that things can become less intuitive in some cases.

Since we seek to solve the equations for 𝜇 and 𝑇 we need a model for the charge
density 𝜌𝑓 . The charge density of a material which is not highly correlated can be
written as

𝜌𝑓 (𝜇, 𝑇 ) = −𝑒

∫︁
d𝜖𝑁(𝜖)𝑓(𝜖, 𝜇, 𝑇 ) + 𝜌ION (3.27)

where we have used the non-interacting density-of-states 𝑁(𝜖) and the Fermi-Dirac
distribution 𝑓 . In case of a metal the chemical potential lies in a region where
𝑁(𝜖) has a finite and usually high value which would mean that the charge density
increases dramatically when increasing 𝜇. This justifies the assumption that the
chemical potential stays close to its equilibrium value in metals and hence, we can
linearize 𝜌𝑓 with respect to 𝜇,

𝜌𝑓 (𝜇, 𝑇 ) = 𝜌𝑓 (𝜇eq, 𝑇 )⏟  ⏞  
≡0

+
𝜕𝜌𝑓
𝜕𝜇

(𝜇eq, 𝑇 ) (𝜇− 𝜇eq) + 𝑂
(︀
(𝜇− 𝜇eq)2

)︀
(3.28)

and with equation (3.27) we get

𝜌𝑓 (𝜇, 𝑇 ) ≈ −𝑒(𝜇− 𝜇eq)

∫︁
d𝜖𝑁(𝜖)

𝜕𝑓

𝜕𝜇
(𝜖, 𝜇eq, 𝑇 ) ≈ −𝑒(𝜇− 𝜇eq)𝑁(𝜇eq) . (3.29)

In the last step we have assumed that the temperature is sufficiently low so that
𝑁(𝜖) changes only slightly within the interval 𝜇eq ± 𝑘B𝑇 . With the same argu-
ment we can justify the assumption that the equilibrium chemical potential 𝜇eq is
independent of the temperature. In order to simplify the readability we define

𝜉2 ≡ 𝑒2𝑁(𝜇eq)

𝜖0
(3.30)
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where 𝜖0 denotes the permittivity of vacuum. With this definition the charge density
for metals eventually reads

𝜌𝑓 (𝜇) = −𝜖0𝜉
2

𝑒
(𝜇− 𝜇eq) . (3.31)

With this simple relation we have enough information to solve the constant coeffi-
cient problem for the setup shown in figure 3.2. Summarizing we can say that the
transport problem can be solved analytically when the transport coefficients are
constants, the band-structure is independent of the number of particles and when
the density-of-states can be assumed constant within the interval 𝜇eq ± 𝑘𝐵𝑇 .

We can express the second derivative of 𝑇 for the region 0 ≤ 𝑥 ≤ 𝑙 with the
Domenicali equation (3.24a) which gives

𝑇 ′′(𝑥) =

⎧⎨⎩
0 𝑥 < 0

− 𝑗2

𝜎𝜅
≡ 𝑐

𝛼
= 𝑐𝑜𝑛𝑠𝑡. 0 ≤ 𝑥 ≤ 𝑙

0 𝑥 > 𝑙

(3.32)

where we have introduced the new constant 𝑐. We can solve equation (3.32) by
integrating it twice which gives

𝑇 (𝑥) =

⎧⎨⎩
𝑇0 𝑥 < 0

− 𝑗2

2𝜎𝜅
(𝑥2 − 𝑙𝑥) + 𝑇𝑙−𝑇0

𝑙
𝑥 + 𝑇0 0 ≤ 𝑥 ≤ 𝑙

𝑇𝑙 𝑥 > 𝑙

. (3.33)

When we insert equation (3.31) into equation (3.24b) we can express the second
derivative of the chemical potential as

1

𝑒
𝜇′′(𝑥) =

⎧⎪⎨⎪⎩
𝜉2

𝑒
(𝜇− 𝜇eq) 𝑥 < 0

𝜉2

𝑒
(𝜇− 𝜇eq) + 𝑐 0 ≤ 𝑥 ≤ 𝑙

𝜉2

𝑒
(𝜇− 𝜇eq) 𝑥 > 𝑙

. (3.34)

We can get rid of the 1/𝑒 factors by switching the unit of 𝜇 from Joule to Elec-
tronvolt which we do in the simulations. For the sake of generality we write them
explicitly in this section. The solution of equation (3.34) can be obtained by sub-
stitution and integration which gives

1

𝑒
𝜇 =

⎧⎨⎩
𝑎1𝑒

𝜉𝑥 + 𝑏1𝑒
−𝜉𝑥 + 1

𝑒
𝜇eq 𝑥 < 0

𝑎2𝑒
𝜉𝑥 + 𝑏2𝑒

−𝜉𝑥 − 𝑐
𝜉2

+ 1
𝑒
𝜇eq 0 ≤ 𝑥 ≤ 𝑙

𝑎3𝑒
𝜉𝑥 + 𝑏3𝑒

−𝜉𝑥 + 1
𝑒
𝜇eq 𝑥 > 𝑙

. (3.35)

The 𝑐 is the same as defined by equation (3.32) while 𝑎𝑖 and 𝑏𝑖 are integration
constants which still must be determined. Although it is true that the whole rod is
made of the same material there are discontinuities in the total energy current at
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the junctions 𝑥 = 0 and 𝑥 = 𝑙 due to the heat baths. This leads to discontinuities in
the first derivatives of the temperature and in turn affects the chemical potential.
Therefore we have to apply the boundary conditions (3.26a) and (3.26b) at the
junctions as they correctly resemble this situation. Since we describe a metal we
assume that the relative permittivity is one i.e. 𝜖𝑎/𝑏 = 1.

The boundary conditions (3.26b) then read

𝜇(0−) = 𝜇(0+) , (3.36a)

𝜇(𝑙−) = 𝜇(𝑙+) , (3.36b)

and with the temperature distribution (3.33) and (3.26b) we additionally get

1

𝑒
𝜇′(0+) − 1

𝑒
𝜇′(0−) = 𝛼

(︀
𝑇 ′(0+) − 𝑇 ′(0−)

)︀
= 𝛼

(︂
𝑗2𝑙

2𝜎𝜅
+

𝑇𝑙 − 𝑇0

𝑙

)︂
, (3.37a)

1

𝑒
𝜇′(𝑙+) − 1

𝑒
𝜇′(𝑙−) = 𝛼

(︀
𝑇 ′(𝑙+) − 𝑇 ′(𝑙−)

)︀
= 𝛼

(︂
𝑗2𝑙

2𝜎𝜅
− 𝑇𝑙 − 𝑇0

𝑙

)︂
. (3.37b)

Furthermore we know that the chemical potential has to stay finite for 𝑥 → ±∞
which gives another two conditions. Eventually we find for the constants

𝑎1 =

(︂
𝑐

2𝜉2
− 𝑏

)︂(︀
𝑒−𝜉𝑙 − 1

)︀
+

𝑐𝑙

4𝜉

(︀
𝑒−𝜉𝑙 + 1

)︀
(3.38a)

𝑏1 = 0 (3.38b)

𝑎2 =

(︂
𝑐

2𝜉2
+

𝑐𝑙

4𝜉
− 𝑏

)︂
𝑒−𝜉𝑙 (3.38c)

𝑏2 =
𝑐

2𝜉2
+

𝑐𝑙

4𝜉
+ 𝑏 (3.38d)

𝑎3 = 0 (3.38e)

𝑏3 =

(︂
𝑐

2𝜉2
+ 𝑏

)︂(︀
1 − 𝑒𝜉𝑙

)︀
+

𝑐𝑙

4𝜉

(︀
𝑒𝜉𝑙 + 1

)︀
(3.38f)

with the factors 𝑐 and 𝑏 which are defined as

𝑐 ≡ −𝛼𝑗2

𝜎𝜅
, (3.39)

𝑏 ≡ − 𝛼

2𝜉

𝑇 𝑙 − 𝑇0

𝑙
. (3.40)

The results are shown in figures 3.3(a)-3.3(d). In this example the Seebeck coeffi-
cient is negative which represents a material which excess electrons if the Seebeck
coefficient stems from an electron hole asymmetry and not from other effects like
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Figure 3.3.: The analytically calculated chemical potential (a), temperature (b), electro-
chemical potential (c) and effective field −𝜑′ (d) in dependence of the posi-
tion for different currents. The used parameters are 𝑇0 = 10𝐾, 𝑇𝑙 = 25𝐾,
𝑙 = 2𝑚, 𝜅 = 1𝑊/𝑚, 𝜎 = 1𝑆/𝑚, 𝜉2 = 70 and 𝛼 = −1𝑉/𝑚. The val-
ues for the parameters are not very realistic as this is merely an example,
however the 𝜇−𝜇eq distribution is similar for realistic values as shown later.
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phonon-drag. As one can see in figure 3.3(a) the electrons accumulate at the cold
side at 𝑥 = 0 which generates a negative charge and leaves a positive charge at
the hot end at 𝑥 = 𝑙. This generates an electrical field and together with the non-
equilibrium shape of 𝜇 they build an effective field −𝜑′ which counters the electron
drift (𝛼𝑇 ′) due to the temperature gradient in case of zero current.

When a positive current is injected into the device, the negative charge density
around the surface at 𝑥 = 0 is increased while the positive charge density at 𝑥 = 𝑙
spreads into the bulk of the material (figure 3.3(a)). The fact that the positive
charge is smeared when a current flows can be explained with the Joule-heating.
Due to the current the material is heated at the rate 𝑗2/𝜎 which leads to a non-
linear temperature slope. This in turn affects the Seebeck induced current 𝛼𝑇 ′

which is no longer a constant but position dependent. As a consequence, to have
a constant current along the device the voltage induced current has to vary, which
can be obtained only if the region is charged.

In figure 3.3(c) we see that the electrochemical potential gain gradually breaks
down when the current is increased. This is due to the finite conductivity which
generates a voltage loss that counters the Seebeck voltage.

The example of one infinitely long rod helps building a physical intuition of the
Seebeck effect and how the chemical potential responds but cannot cover the physics
at junctions between different materials. Therefore we will discuss another model
case which is closer to a real thermoelectric generator but still analytically solvable.
We assume two legs consisting of different metals (so that we can use 𝜌𝑓 as given
by equation (3.31)) which are connected at their ends (figure 3.4). The junctions
are held at constant temperatures 𝑇0/𝑇𝑙 and both legs are assumed to be of equal
length 𝑙.

When we apply equation (3.24a) we find that the temperature distribution within
both legs is the same as for the single rod discussed above. This gives for the total
temperature distribution

𝑇 (𝑥) =

{︃
− 𝑗2

2𝜎1𝜅1
(𝑥2 − 𝑙𝑥) + 𝑇𝑙−𝑇0

𝑙
𝑥 + 𝑇0 0 ≤ 𝑥 < 𝑙

− 𝑗2

2𝜎2𝜅2
((2𝑙 − 𝑥)2 − 𝑙(2𝑙 − 𝑥)) + 𝑇𝑙−𝑇0

𝑙
(2𝑙 − 𝑥) + 𝑇0 𝑙 ≤ 𝑥 < 2𝑙

(3.41)
where we have used the coordinate system introduced in figure 3.4. For the chemical
potential we find the general solution

1

𝑒
𝜇 =

{︃
𝑎1𝑒

𝜉1𝑥 + 𝑏1𝑒
−𝜉1𝑥 − 𝑐1

𝜉21
+ 1

𝑒
𝜇eq1 0 ≤ 𝑥 < 𝑙

𝑎2𝑒
𝜉2(2𝑙−𝑥) + 𝑏2𝑒

−𝜉2(2𝑙−𝑥) − 𝑐2
𝜉22

+ 1
𝑒
𝜇eq2 𝑙 ≤ 𝑥 < 2𝑙

(3.42)

which contains four integration constants and the constants 𝑐1 and 𝑐2 that are
defined as

𝑐1 ≡ −𝛼1𝑗
2

𝜎1𝜅1

, 𝑐2 ≡ −𝛼2𝑗
2

𝜎2𝜅2

. (3.43)
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Figure 3.4.: This simple model of a thermoelectric generator consists of two legs of
different materials which are described by their transport properties, their
equilibrium chemical potential and the parameter 𝜉 ∝

√︀
𝑁(𝜇eq). The two

legs are assumed two have the same length 𝑙.

We can determine the integration constants by applying the boundary conditions
which read

𝜇(0) = 𝜇(2𝑙) , (3.44a)
𝜇(𝑙−) = 𝜇(𝑙+) , (3.44b)

𝜇′(0)−𝜇′(2𝑙) = 𝑗

(︂
1

𝜎1

− 1

𝜎2

)︂
+

𝑗2𝑙

2

(︂
𝛼1

𝜎1𝜅1

+
𝛼2

𝜎2𝜅2

)︂
+

𝑇𝑙 − 𝑇0

𝑙
(𝛼1 + 𝛼2) , (3.44c)

𝜇′(𝑙+)−𝜇′(𝑙−) = 𝑗

(︂
1

𝜎2

− 1

𝜎1

)︂
+
𝑗2𝑙

2

(︂
𝛼1

𝜎1𝜅1

+
𝛼2

𝜎2𝜅2

)︂
−𝑇𝑙 − 𝑇0

𝑙
(𝛼1 + 𝛼2) . (3.44d)

We do not give the analytical solution of this set of equations as it is rather long
and confusing and it is easy to obtain by using software that is capable of solving
analytical equations like Mathematica.

So far we have treated the electrical current as an independent input parameter
which is not correct for the setup given in figure 3.4. As the electrical circuit is
closed at 𝑥 = 2𝑙 and the electrochemical potential has to be continuous we have
the additional boundary condition

0 = 𝜑(2𝑙) − 𝜑(0) =

∫︁ 2𝑙

0

d𝑥𝜑′(𝑥) . (3.45)

With equation (3.8b) we can calculate this expression which gives

0 = −𝑗𝑙

(︂
1

𝜎1

+
1

𝜎2

)︂
+ (𝑇𝑙 − 𝑇0)(𝛼2 − 𝛼1) (3.46)
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and therefore the electrical current has to fulfill

𝑗 =
(𝑇𝑙 − 𝑇0)(𝛼2 − 𝛼1)

𝑙
(︁

1
𝜎1

+ 1
𝜎2

)︁ . (3.47)

This relation is basically the total electrochemical potential difference generated by
the Seebeck effect divided by the total resistance which is known as Ohm’s law.

The figures 3.5(a)-3.5(e) show several quantities for the case of two materials that
have the same Seebeck coefficients but different equilibrium chemical potentials.
According to equation (3.47) the electrical current is zero which represents the well
known fact that only the difference of the Seebeck coefficients determines the output
voltage of thermoelements.

As the equilibrium values of the chemical potentials are different their electro-
chemical potentials are different as well if the materials are uncharged. When they
are attached at the junctions the electrons diffuse from the material with the higher
potential into the one with the lower potential until the electrochemical potential
becomes the same. In case of non-zero but equal Seebeck coefficients there are
additional charge densities generated which counter the current that would flow
due to the Seebeck effect. These charges add to those already existing which is the
reason for the asymmetric shape of the chemical potentials in figure 3.5(a).

The figures 3.6(a)-3.6(e) show the same quantities for two materials with Seebeck
coefficients that have opposite sign. As we have imposed a temperature gradient
there is a current flowing according to equation (3.47) which leads to a non-linear
temperature slope. This in turn generates a charge accumulation within the bulk
which is the same effect as observed for the infinitely long rod we have already
discussed.
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Figure 3.5.: The chemical potential (a), charge density (b), electrochemical potential
(c), electrical potential (d) and the temperature (e) in dependence of the
position for the case 𝛼1 = 𝛼2 and different equilibrium chemical potentials
𝜇eq1 = 1𝑒𝑉 , 𝜇eq2 = 0𝑒𝑉 . For this case there is no electrical current
flowing, i.e. 𝑗 = 0. We see that the chemical potentials are forced off their
equilibrium values at the junctions which generates charge densities. In case
of non-vanishing 𝛼 there is an additional charging due to the Seebeck effect.
The parameters used are 𝑇0 = 20𝐾, 𝑇𝑙 = 40𝐾, 𝜅1 = 𝜅2 = 50𝑊𝐾−1𝑚−2,
𝜉1 = 𝜉2 = 30, 𝜎1 = 𝜎2 = 1𝑆𝑚−1



3. Thermoelectric transport equations and their solution 31

α1=-α2=-1

α1=-α2=-2

0.5 1.0 1.5 2.0
x [m]

0.2

0.4

0.6

0.8

1.0

µ(x) [eV]

(a)

0.5 1.0 1.5 2.0
x [m]

-400

-200

200

400

ρ(x) [C/m³]

(b)

0.5 1.0 1.5 2.0
x [m]

-5

5

ϕ(x) [V]

(c)

0.5 1.0 1.5 2.0
x [m]

-5

5

ϕ(x) [V]

(d)

0.5 1.0 1.5 2.0
x [m]

25

30

35

40

T(x) [K]

(e)

Figure 3.6.: Same as figure 3.5 but for the case 𝛼1 = −𝛼2. The electrical current
which flows is 𝑗 = 20𝐴𝑚−2 for 𝛼1 = −𝛼2 = −1𝑉 𝐾−1 and 𝑗 = 40𝐴𝑚−2

for 𝛼1 = −𝛼2 = −2𝑉 𝐾−1. As in the example with the infinitely long rod
we observe a charge accumulation within the bulk for non-vanishing current
due to the non-linear temperature distribution. The parameters used are
the same as in figure 3.5.



4. Simulation of the full
thermoelement

4.1. Model and equations

In the previous sections we have introduced the equations which describe the physics
within a thermoelectric device and we have applied these equations to two analyti-
cally solvable cases. There we were restricted to metals as we needed an analytical
model for the charge density 𝜌𝑓 and we only used constant transport coefficients.
However, most of the materials that show good thermoelectric properties are semi-
conductors which have a bandgap from some 𝑚𝑒𝑉 to 𝑒𝑉 . The equilibrium chemical
potential typically lies inside the gap or at the edge of the band in case of highly
doped semiconductors which leads to transport coefficients with a strong depen-
dence on 𝜇 and 𝑇 . This is the reason why we would like to have a simulation
that calculates the chemical potential and temperature distributions for arbitrary
transport coefficients and then calculates the correct efficiency subsequently.

As a first step towards a numerical simulation we have to define the geometry of
the thermoelectric device (figure 4.1). We choose a two-leg device where the legs
may consist of any material with 𝜇- and 𝑇 - dependent coefficients. The electrical
connections are assumed to be metals held at different temperatures 𝑇0 and 𝑇𝑙

which are described by constant transport coefficients and the charge density model
introduced in section 3.4. As we assume that the metallic regions have constant
temperatures their Seebeck coefficients and their thermal conductivities are not
relevant. As for the analytical two-leg device in section 3.4 we neglect surface
effects and assume constant cross-sectional areas which again gives an effective
one-dimensional problem with a constant electrical current density 𝑗. We have
labeled the four different regions with indexes ranging from 1-4 where the regions
2 and 4 are the thermoelectric materials and 1 and 3 are the metals. The length of
the metals is 𝑙ex while the length of the regions 2 and 4 is 𝑙.

In the following discussion we will use different coordinate systems. The global
system has its origin in the middle of region 1 according to figure 4.1. We will also
make use of two local coordinate systems that have their origins at the left borders
of the regions 2 and 4. With these local coordinate systems we define the global
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Figure 4.1.: Picture of the system the simulation is going to solve. We split the device
into four regions (1 - 4) consisting of different materials which are described
by their transport coefficients. The regions 1 and 3 are restricted to metals
which have constant transport coefficient and a simple relation for the
charge density (equation (3.31)).

chemical potential and temperature distributions as

𝜇(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜇1 (𝑥) 0 ≤ 𝑥 < 𝑙ex

2

𝜇2

(︀
𝑥− 𝑙ex

2

)︀
𝑙ex
2
≤ 𝑥 < 𝑙 + 𝑙ex

2

𝜇3 (𝑥) 𝑙 + 𝑙ex
2
≤ 𝑥 < 𝑙 + 3𝑙ex

2

𝜇4

(︀
(2𝑙 + 3𝑙ex

2
) − 𝑥

)︀
𝑙 + 3𝑙ex

2
≤ 𝑥 < 2𝑙 + 3𝑙ex

2

𝜇1 (𝑥− 2(𝑙 + 𝑙ex)) 2𝑙 + 3𝑙ex
2

≤ 𝑥 < 2(𝑙 + 𝑙ex)

(4.1)

and

𝑇 (𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑇0 0 ≤ 𝑥 < 𝑙ex

2

𝑇2

(︀
𝑥− 𝑙ex

2

)︀
𝑙ex
2
≤ 𝑥 < 𝑙 + 𝑙ex

2

𝑇𝑙 𝑙 + 𝑙ex
2
≤ 𝑥 < 𝑙 + 3𝑙ex

2

𝑇4

(︀
(2𝑙 + 3𝑙ex

2
) − 𝑥

)︀
𝑙 + 3𝑙ex

2
≤ 𝑥 < 2𝑙 + 3𝑙ex

2

𝑇0 2𝑙 + 3𝑙ex
2

≤ 𝑥 < 2(𝑙 + 𝑙ex)

(4.2)

where we have split the global chemical potential 𝜇(𝑥) and temperature 𝑇 (𝑥) into
functions 𝜇𝑖(𝑥) and 𝑇𝑖(𝑥), that are only locally defined within each part of the
device. Note that the local system we use in region 4 has the opposite direction
compared to the global one. The reason for this is a simplification of the equations
we will derive in the following.
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In order to calculate the chemical potential and temperature distribution for the
whole device we have to solve the equations (3.24a) and (3.24b) for every region
and combine them according to the boundary conditions (3.26a) - (3.26d). When
the transport coefficients depend on 𝜇 and 𝑇 we can only achieve this numerically
which means that we would have to discretize the whole device and solve it at once.
This can be computationally demanding and numerically unstable. For this reason
we apply further simplifications. We will show in the following that it is possible to
mathematically decouple the equations for the four different regions and solve them
independently while the main effects that stem from the junctions are preserved.

As can be seen in figure 4.1 there is a cut in region 1 where two wires are attached
that connect the thermoelectric device to the load (or battery in case of a cooler).
Since the wires would influence the local chemical potential in region 1 we would
have to include them into the calculation as another region for a proper treatment
of the whole device. We start analyzing the case of a closed device (i.e. no cut in
region 1), and later we will show how to adapt the treatment to the general case.
The continuity of the electrochemical potential requires

𝜑(0) = 𝜑(2𝑙 + 2𝑙ex). (4.3)

In analogy to the analytical solution of the two-leg device in section 3.4 this bound-
ary condition would give the electrical current that flows through the device.

As we have assumed metals for the regions 1 and 3 we can describe them with
constant transport coefficients and linearized dependence of the charge density on
the chemical potential and therefore solve them analytically as shown above. In
these regions the Domenicali equation (3.24a) is not necessary since the tempera-
tures are constant and given as an input. For the charge density we use the relation

𝜌𝑓𝑖(𝜇) = −𝜖0𝜉
2
𝑖

𝑒
(𝜇− 𝜇eq i) 𝑖 ∈ {2, 4} (4.4)

where the factors 𝜉𝑖 depend on the density-of-states according to equation (3.30) and
are input parameters for each metal. The chemical potentials within the metallic
regions are solutions of equation (3.24b) and read

1

𝑒
𝜇1(𝑥) = 𝑎1𝑒

𝜉1(𝑥− 𝑙ex
2 ) + 𝑏1𝑒

−𝜉1(𝑥+ 𝑙ex
2 ) +

1

𝑒
𝜇eq1 , (4.5)

1

𝑒
𝜇3(𝑥) = 𝑎3𝑒

𝜉3(𝑥−(𝑙+ 3𝑙ex
2

)) + 𝑏3𝑒
−𝜉3(𝑥−(𝑙+ 𝑙ex

2
)) +

1

𝑒
𝜇eq3 . (4.6)

We have chosen the offsets in the exponentials so that they become zero at the
junctions according to equation (4.1) which ensures easier to handle expressions.
The 𝑎𝑖 and 𝑏𝑖 are integration constants which determine the shape of the final
solutions.
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The boundary conditions (3.26a) and (3.26b) applied to all junctions give{︃
𝜇1

(︀
𝑙ex
2

)︀
= 𝜇2(0)

𝜖2
𝑒
𝜇′
2(0) − 1

𝑒
𝜇′
1

(︀
𝑙ex
2

)︀
= 𝑗

(︁
𝜖2

𝜎2(0)
− 1

𝜎1

)︁
+ 𝜖2𝛼2(0)𝑇 ′

2(0)

}︃
for 𝑥 =

𝑙ex
2

(4.7){︃
𝜇2(𝑙) = 𝜇3

(︀
𝑙 + 𝑙ex

2

)︀
1
𝑒
𝜇′
3

(︀
𝑙 + 𝑙ex

2

)︀
− 𝜖2

𝑒
𝜇′
2(𝑙) = 𝑗

(︁
1
𝜎3

− 𝜖2
𝜎2(𝑙)

)︁
− 𝜖2𝛼2(𝑙)𝑇

′
2(𝑙)

}︃
for 𝑥 = 𝑙 +

𝑙ex
2

(4.8){︃
𝜇3

(︀
𝑙 + 3𝑙ex

2

)︀
= 𝜇4(𝑙)

− 𝜖4
𝑒
𝜇′
4(𝑙) − 1

𝑒
𝜇′
3

(︀
𝑙 + 3𝑙ex

2

)︀
= 𝑗

(︁
𝜖4

𝜎4(𝑙)
− 1

𝜎3

)︁
− 𝜖4𝛼4(𝑙)𝑇

′
4(𝑙)

}︃
for 𝑥 = 𝑙 +

3𝑙ex
2

(4.9){︃
𝜇4(0) = 𝜇1

(︀
− 𝑙ex

2

)︀
1
𝑒
𝜇′
1

(︀
− 𝑙ex

2

)︀
+ 𝜖4

𝑒
𝜇′
4(0) = 𝑗

(︁
1
𝜎1

− 𝜖4
𝜎4(0)

)︁
+ 𝜖4𝛼4(0)𝑇 ′

2(0)

}︃
for 𝑥 = 2𝑙 +

3𝑙ex
2

(4.10)

and with the analytical solutions of regions 1 and 3 (equations (4.5) and (4.6)) they
become⎧⎪⎪⎨⎪⎪⎩

𝑎1 + 𝑏1𝑒
−𝜉1𝑙ex + 1

𝑒
𝜇eq1 = 1

𝑒
𝜇2(0)

𝜖2
𝑒𝜉1

𝜇′
2(0) − 𝑎1 + 𝑏1𝑒

−𝜉1𝑙ex =
1

𝜉1

[︂
𝑗

(︂
𝜖2

𝜎2(0)
− 1

𝜎1

)︂
+ 𝜖2𝛼2(0)𝑇 ′

2(0)

]︂
⏟  ⏞  

𝜆

⎫⎪⎪⎬⎪⎪⎭ for 𝑥 =
𝑙ex
2

(4.11)⎧⎪⎪⎨⎪⎪⎩
1
𝑒
𝜇2(𝑙) = 𝑎3𝑒

−𝜉3𝑙ex + 𝑏3 + 1
𝑒
𝜇eq3

𝑎3𝑒
−𝜉3𝑙ex − 𝑏3 − 𝜖2

𝑒𝜉3
𝜇′
2(𝑙) =

1

𝜉3

[︂
𝑗

(︂
1

𝜎3

− 𝜖2
𝜎2(𝑙)

)︂
− 𝜖2𝛼2(𝑙)𝑇

′
2(𝑙)

]︂
⏟  ⏞  

𝛿

⎫⎪⎪⎬⎪⎪⎭ for 𝑥 = 𝑙 +
𝑙ex
2

(4.12)⎧⎪⎪⎨⎪⎪⎩
𝑎3 + 𝑏3𝑒

−𝜉3𝑙ex + 1
𝑒
𝜇eq3 = 𝜇4(𝑙)

𝜖4
𝑒
𝜇′
4(𝑙) + 𝑎3 − 𝑏3𝑒

−𝜉3𝑙ex = − 1

𝜉3

[︂
𝑗

(︂
𝜖4

𝜎4(𝑙)
− 1

𝜎3

)︂
− 𝜖4𝛼4(𝑙)𝑇

′
4(𝑙)

]︂
⏟  ⏞  

𝛾

⎫⎪⎪⎬⎪⎪⎭ for 𝑥 = 𝑙 +
3𝑙ex
2

(4.13)⎧⎪⎪⎨⎪⎪⎩
𝜇4(0) = 𝑎1𝑒

−𝜉1𝑙ex + 𝑏1 + 1
𝑒
𝜇eq1

𝑎1𝑒
−𝜉1𝑙ex − 𝑏1 + 𝜖4

𝑒𝜉1
𝜇′
4(0) =

1

𝜉1

[︂
𝑗

(︂
1

𝜎1

− 𝜖4
𝜎4(0)

)︂
+ 𝜖4𝛼4(0)𝑇 ′

2(0)

]︂
⏟  ⏞  

𝛽

⎫⎪⎪⎬⎪⎪⎭ for 𝑥 = 2𝑙 +
3𝑙ex
2

.

(4.14)

where we have defined the quantities 𝜆, 𝛿, 𝛾 and 𝛽. The eight boundary conditions
depend on the integration constants and on the values of the chemical potentials
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and their derivatives at the junctions in a linear fashion. Therefore it is possi-
ble to eliminate the four integration constants 𝑎𝑖 and 𝑏𝑖 analytically which leaves
expressions that couple only the active regions, i.e. regions 2 and 4,

1

𝑒

[︂
𝜇2(0) − 𝜇eq1 −

𝜖2
𝜉1
𝜇′
2(0)

]︂
+ 𝜆 = 𝑒−𝜉1𝑙ex

(︂
1

𝑒

[︂
𝜇4(0) − 𝜇eq1 +

𝜖4
𝜉1
𝜇′
4(0)

]︂
− 𝛽

)︂
,

(4.15a)
1

𝑒

[︂
𝜇2(𝑙) − 𝜇eq3 +

𝜖2
𝜉1
𝜇′
2(𝑙)

]︂
+ 𝛿 = 𝑒−𝜉3𝑙ex

(︂
1

𝑒

[︂
𝜇4(𝑙) − 𝜇eq3 −

𝜖4
𝜉3
𝜇′
4(𝑙)

]︂
− 𝛾

)︂
,

(4.15b)
1

𝑒

[︂
𝜇4(0) − 𝜇eq1 −

𝜖4
𝜉1
𝜇′
4(0)

]︂
+ 𝛽 = 𝑒−𝜉1𝑙ex

(︂
1

𝑒

[︂
𝜇2(0) − 𝜇eq1 +

𝜖2
𝜉1
𝜇′
2(0)

]︂
− 𝜆

)︂
,

(4.15c)
1

𝑒

[︂
𝜇4(𝑙) − 𝜇eq3 +

𝜖4
𝜉3
𝜇′
4(𝑙)

]︂
+ 𝛾 = 𝑒−𝜉3𝑙ex

(︂
1

𝑒

[︂
𝜇2(𝑙) − 𝜇eq3 −

𝜖2
𝜉1
𝜇′
2(𝑙)

]︂
− 𝛿

)︂
.

(4.15d)

These four relations only contain 𝜇 and 𝜇′ of regions 2 and 4, leading to a complex-
ity reduction of the problem from four coupled regions to two. Since the terms on
the left-hand side and the terms within the outer brackets on the right-hand side
of the equations have the same order of magnitude we can apply a further simpli-
fication and set the right-hand side to zero. This only holds when the exponential
is sufficiently small. This, however, is always the case as the following reasoning
shows. Metals usually have a large density-of-states at the Fermi level, for example
copper has 𝑁(𝜖𝑓 ) ≈ 1047𝐽−1𝑚−3 (obtained from WIEN2K-DFT simulation [14–20]
+ BoltzTraP [21]). According to equation (3.30) this gives for the inverse decay
length 𝜉 ≈ 1010𝑚−1. The length of the metallic connections (𝑙ex) in real devices
are always much larger than 1𝜇𝑚 hence we will assume this value as a lower limit.
With this we get for the exponential

𝑒−𝜉𝑙ex ≈ 𝑒−104 ≈ 10−4343 (4.16)

which ensures that we are always allowed to set the exponentials to zero. The
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boundary conditions then become

1

𝑒

[︂
𝜇2(0) − 𝜇eq1 −

𝜖2
𝜉1
𝜇′
2(0)

]︂
= − 1

𝜉1

[︂
𝑗

(︂
𝜖2

𝜎2(0)
− 1

𝜎1

)︂
+ 𝜖2𝛼2(0)𝑇 ′

2(0)

]︂
, (4.17a)

1

𝑒

[︂
𝜇2(𝑙) − 𝜇eq3 +

𝜖2
𝜉1
𝜇′
2(𝑙)

]︂
= − 1

𝜉3

[︂
𝑗

(︂
1

𝜎3

− 𝜖2
𝜎2(𝑙)

)︂
− 𝜖2𝛼2(𝑙)𝑇

′
2(𝑙)

]︂
, (4.17b)

1

𝑒

[︂
𝜇4(0) − 𝜇eq1 −

𝜖4
𝜉1
𝜇′
4(0)

]︂
= − 1

𝜉1

[︂
𝑗

(︂
1

𝜎1

− 𝜖4
𝜎4(0)

)︂
+ 𝜖4𝛼4(0)𝑇 ′

2(0)

]︂
, (4.17c)

1

𝑒

[︂
𝜇4(𝑙) − 𝜇eq3 +

𝜖4
𝜉3
𝜇′
4(𝑙)

]︂
= − 1

𝜉3

[︂
𝑗

(︂
𝜖4

𝜎4(𝑙)
− 1

𝜎3

)︂
− 𝜖4𝛼4(𝑙)𝑇

′
4(𝑙)

]︂
(4.17d)

which are four robin-type boundary conditions. It can be noticed that the first
two equations (4.17a), (4.17b) only depend on 𝜇2 while the other two (4.17c),
(4.17d) only depend on 𝜇4. This means that we are now left with two completely
independent regions we can solve separately in contrast to the initial four coupled
regions.

The temperature distributions in the regions 2 and 4 are determined by the
Domenicali equation (3.24a) and the corresponding boundary condition (3.26c)
which reads for this specific case

𝑇2(0) = 𝑇4(0) = 𝑇0 , (4.18a)

𝑇2(𝑙) = 𝑇4(𝑙) = 𝑇𝑙 . (4.18b)

Overall we have the differential equations

𝑗2

𝜎2

+ 𝜅′
2𝑇

′
2 + 𝜅2𝑇

′′
2 − 𝑇2𝑗𝛼

′
2 = 0 , (4.19a)

− 1

𝑒
𝜇′′
2 =

𝜌𝑓2
𝜖0𝜖2

+
𝑗

𝜎2
2

𝜎′
2 − 𝛼′

2𝑇
′
2 − 𝛼2𝑇

′′
2 (4.19b)

for the region 2 and

𝑗2

𝜎4

+ 𝜅′
4𝑇

′
4 + 𝜅4𝑇

′′
4 − 𝑇4(−𝑗)𝛼′

4 = 0 , (4.20a)

− 1

𝑒
𝜇′′
4 =

𝜌𝑓4
𝜖0𝜖4

+
(−𝑗)

𝜎2
4

𝜎′
4 − 𝛼′

4𝑇
′
4 − 𝛼4𝑇

′′
4 (4.20b)

for the region 4 where the minus sign of the current takes into account the reverse
direction of the coordinate system introduced by equation (4.1). Together with
the boundary conditions (4.18a), (4.18b) and (4.17a)-(4.17d) we have a full set of
equations which we are going to solve numerically. Once we have the solutions for
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the regions 2 and 4 we can obtain the 𝑎𝑖 and 𝑏𝑖 which determine the solutions in
the regions 1 and 3 by solving the equations (4.11)-(4.14) with the simplification
𝑒−𝜉𝑖𝑙ex → 0. This eventually gives for the integration constants

𝑎1 =
1

2

[︂
1

𝑒
𝜇2(0) − 1

𝑒
𝜇eq1 +

1

𝜉1

(︂
𝜖2
𝑒
𝜇′
2(0) − 𝑗

(︂
𝜖2

𝜎2(0)
− 1

𝜎1

)︂
− 𝜖2𝛼2(0)𝑇 ′

2(0)

)︂]︂
(4.21a)

𝑏1 =
1

2

[︂
1

𝑒
𝜇4(0) − 1

𝑒
𝜇eq1 +

1

𝜉1

(︂
𝜖4
𝑒
𝜇′
4(0) + 𝑗

(︂
𝜖4

𝜎4(0)
− 1

𝜎1

)︂
− 𝜖4𝛼4(0)𝑇 ′

4(0)

)︂]︂
(4.21b)

𝑎3 =
1

2

[︂
1

𝑒
𝜇4(𝑙) −

1

𝑒
𝜇eq3 −

1

𝜉3

(︂
𝜖4
𝑒
𝜇′
4(𝑙) − 𝑗

(︂
1

𝜎3

− 𝜖4
𝜎4(𝑙)

)︂
− 𝜖4𝛼4(𝑙)𝑇

′
4(𝑙)

)︂]︂
(4.21c)

𝑏3 =
1

2

[︂
1

𝑒
𝜇2(𝑙) −

1

𝑒
𝜇eq3 −

1

𝜉3

(︂
𝜖2
𝑒
𝜇′
2(𝑙) + 𝑗

(︂
1

𝜎3

− 𝜖2
𝜎2(𝑙)

)︂
− 𝜖2𝛼2(𝑙)𝑇

′
2(𝑙)

)︂]︂
.

(4.21d)

For now we have treated the model (figure 4.1) as if the cut in region 1 would
not be there. With the same argument we have used to split the regions 2 and
4 we can argue that if there was a cut with attached wires the distortion of the
chemical potential would not influence the junctions of region 1 with the regions 2
and 4. Since the transport coefficients are assumed to be constants in metals the
local distortion of the chemical potential would not affect the transport properties
of the whole device either. Therefore the initial assumption of a non-existent cut
is retrospectively justified. However, we have to set up the boundary condition of
the continuous electrochemical potential for the whole system which is the ther-
moelectric device plus the attached load. When we apply the equation (2.16) we
get

0 =

∮︁
d𝑥𝜑′(𝑥) =

∫︁ 2𝑙+2𝑙ex

0

𝑑𝑥𝜑′(𝑥) − 𝑈 = −
∫︁ 2𝑙+2𝑙ex

0

d𝑥

(︂
𝑗

𝜎(𝑥)
+ 𝛼(𝑥)𝑇 ′(𝑥)

)︂
− 𝑈

(4.22)
where 𝑈 is the voltage at the load or the attached battery respectively. The load
resistance is connected to the current and the voltage by Ohm’s law which reads

𝑅load =
𝑈

𝑗𝐴
(4.23)

with the cross-sectional area 𝐴. For a given load the equations (4.22) and (4.23)
define the electrical current that flows through the device. Since it is difficult to
include the condition of one specific load resistance in the calculation we treat 𝑗 as
an input parameter. The output voltage is then calculated after we have obtained
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the solution for the chemical potential and the temperature. Eventually one can
calculate the corresponding load resistance with equation (4.23) and then vary the
electrical current until the load resistance matches the sought value.

4.2. Numerical implementation

In chapter 4.1 we have derived the equations and boundary conditions for the
thermoelectric device and we have seen that the equations of the different regions
can be decoupled under some circumstances. However, the remaining equations for
temperature and chemical potential are mutually coupled within each region and
the transport coefficients depend on the sought quantities as well. Therefore we
need an algorithm to obtain the solutions numerically. For the implementation we
use 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 10 which provides several built-in routines. Furthermore it is
possible to create graphical user interfaces which was an aim in order to simplify
the usability of the final program.

For the solution we choose an iterative self-consistent strategy. We make an
initial guess for the temperature and the chemical potential that we call 𝑇 [0]

𝑖 (𝑥) and
𝜇
[0]
𝑖 (𝑥) where the superscript is the iteration count (figure 4.2). For the starting

distribution we choose
𝑇

[0]
𝑖 (𝑥) =

𝑇𝑙 − 𝑇0

𝑙
𝑥 + 𝑇0 , (4.24)

𝜇
[0]
𝑖 (𝑥) = 𝜇eq-i

(︁
𝑇

[0]
𝑖 (𝑥)

)︁
(4.25)

where 𝜇eq-i(𝑇 ) denotes the equilibrium chemical potential, i.e. the chemical poten-
tial for which the charge density at the given temperature 𝑇 is zero.

With these starting distributions we can calculate the position dependent trans-
port coefficients which read

𝜎
[0]
𝑖 (𝑥) ≡ 𝜎𝑖(𝜇

[0]
𝑖 (𝑥), 𝑇

[0]
𝑖 (𝑥)) , (4.26a)

𝛼
[0]
𝑖 (𝑥) ≡ 𝛼𝑖(𝜇

[0]
𝑖 (𝑥), 𝑇

[0]
𝑖 (𝑥)) , (4.26b)

𝜅
[0]
𝑖 (𝑥) ≡ 𝜅𝑖(𝜇

[0]
𝑖 (𝑥), 𝑇

[0]
𝑖 (𝑥)) , (4.26c)

where the index 𝑖 stands for the region and can have the values 2 or 4. By inserting
these functions into the equations (4.19) we get

𝑗2

𝜎
[0]
2 (𝑥)

+ 𝜅
[0]
2 (𝑥)′𝑇2(𝑥)′ + 𝜅

[0]
2 (𝑥)𝑇2(𝑥)′′ − 𝑇2(𝑥)𝑗𝛼

[0]
2 (𝑥)′ = 0 , (4.27a)

− 1

𝑒
𝜇2(𝑥)′′ =

𝜌𝑓2
𝜖0𝜖2

+
𝑗

𝜎
[0]
2 (𝑥)2

𝜎
[0]
2 (𝑥)′ − 𝛼

[0]
2 (𝑥)′𝑇2(𝑥)′ − 𝛼

[0]
2 (𝑥)𝑇2(𝑥)′′ (4.27b)
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for the region 2 and a similar expression is obtained for region 4. The equation
(4.27a) is now a linear differential equation which does not depend on 𝜇(𝑥) explicitly
and therefore can be solved for 𝑇 (𝑥) with a standard solver. For the implementa-
tion we use the standard 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 routine 𝑁𝐷𝑆𝑜𝑙𝑣𝑒 which internally uses a
Runge-Kutta solver plus a shooting method for problems with Dirichlet boundary
conditions as we have here.

The equation (4.27b) for 𝜇2(𝑥) still contains the charge density 𝜌𝑓 (𝜇2(𝑥), 𝑇 (𝑥))
which depends on 𝜇2(𝑥). In principle we could proceed as we did with the transport
coefficients and just insert the previous solution but the problem is that the charge
density usually has a very strong dependence on the chemical potential. That simple
strategy would increase the likelihood of overshooting and dramatically affect the
stability of the numerical solver. This may lead to slow or even no convergence in
the iteration cycle. Therefore we linearize the charge density with respect to the
previous solution of the chemical potential 𝜇[0]

2 (𝑥) which reads

𝜌𝑓2(𝑥) ≈ 𝜌𝑓2(𝜇
[0](𝑥), 𝑇 [0](𝑥))⏟  ⏞  

𝜌
[0]
𝑓2(𝑥)

+
𝜕𝜌𝑓2
𝜕𝜇

(𝜇[0](𝑥), 𝑇 [0](𝑥))⏟  ⏞  
𝜕𝜌

[0]
𝑓2

𝜕𝜇
(𝑥)

(︁
𝜇2(𝑥) − 𝜇

[0]
2 (𝑥)

)︁
. (4.28)

With this simplification the equation (4.27b) becomes

−1

𝑒
𝜇2(𝑥)′′ =

1

𝜖0𝜖2

[︃
𝜌
[0]
𝑓2(𝑥) +

𝜕𝜌
[0]
𝑓2

𝜕𝜇
(𝑥)

(︁
𝜇2(𝑥) − 𝜇

[0]
2 (𝑥)

)︁]︃
+ (4.29)

+
𝑗

𝜎
[0]
2 (𝑥)2

𝜎
[0]
2 (𝑥)′ − 𝛼

[0]
2 (𝑥)′𝑇2(𝑥)′ − 𝛼

[0]
2 (𝑥)𝑇2(𝑥)′′ (4.30)

where the 𝑇2(𝑥) is the solution of equation (4.27a) we have already calculated. With
the given simplifications the equation (4.30) is linear in the chemical potential and
we can apply an appropriate algorithm to obtain a solution. As we have robin-
type boundary conditions which contain the first derivatives as well as the value
of the chemical potential itself at the junctions, the shooting method proves very
inefficient as we would have to vary 𝜇2(0) and 𝜇2(0)′ until 𝜇2(𝑙) and 𝜇2(𝑙)

′ show
the correct values. Furthermore the shooting method results are unstable as the
solution is rather sensitive on the starting values of 𝜇2. Therefore we choose the
finite-element method as it has proven to be stable and to have good performance.
The 𝑁𝐷𝑆𝑜𝑙𝑣𝑒 framework already provides a finite-element solver in 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎
10 which we use for the implementation. We know from the analytical solutions
in chapter 3.4 that the chemical potential has its steepest change at the junctions
as it tries to match the equilibrium value of the attached metal. To take this into
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account we use elements with two different element sizes ∆𝑥,

∆𝑥 =

⎧⎪⎨⎪⎩
𝑛dep
𝑙dep

0 ≤ 𝑥 < 𝑙dep
𝑛l
𝑙

𝑙dep ≤ 𝑥 < 𝑙 − 𝑙dep
𝑛dep
𝑙dep

𝑙 − 𝑙dep ≤ 𝑥 < 𝑙
(4.31)

where the values 𝑛l, 𝑛dep and the size of the areas around the junctions 𝑙dep may be
chosen freely.

After obtaining the numerical solutions 𝑇2(𝑥) and 𝜇2(𝑥) for the temperature
and the chemical potential we mix them with the solutions of the previous step
according to the relations

𝑇
[1]
2 (𝑥) ≡ 𝑇

[0]
2 (𝑥) + 𝛿

(︁
𝑇2(𝑥) − 𝑇

[0]
2 (𝑥)

)︁
, (4.32)

𝜇
[1]
2 (𝑥) ≡ 𝜇

[0]
2 (𝑥) + 𝛿

(︁
𝜇2(𝑥) − 𝜇

[0]
2 (𝑥)

)︁
, (4.33)

where 𝛿 is the so-called mixing parameter (not to be confused with the 𝛿 defined
in equation (4.12)). For the value 𝛿 = 1 the new solutions would coincide with the
calculated ones while a value of 𝛿 = 0 would mean that we stick to the initially
chosen distributions which, of course, would not make sense. The reason for this
mixing is that it can happen that the numerical solutions oscillate around the real
solution which can be prevented by a reduction of the mixing-parameter. With
these new distributions for the temperature and the chemical potential the whole
procedure can be repeated until the solution does not change any more, i.e. it is
converged (figure 4.2). The convergence is checked with the quantities

∆𝑇2 ≡ Max
{︁
𝑇

[𝑖]
2 (𝑥) − 𝑇

[𝑖−1]
2 (𝑥)

}︁
(4.34a)

∆𝜇2 ≡ Max
{︁
𝜇
[𝑖]
2 (𝑥) − 𝜇

[𝑖−1]
2 (𝑥)

}︁
. (4.34b)

Both values are compared to specified termination values and if both are smaller
the iteration cycle stops, i.e. when

(∆𝑇2 < 𝑇𝑟𝑒𝑠) & (∆𝜇2 < 𝜇𝑟𝑒𝑠) (4.35)

is true.
With the chemical potential and the temperature distributions of region 2 and

4 we can calculate the integration constants 𝑎𝑖 and 𝑏𝑖 with the equations (4.21a)-
(4.21d) providing the solutions of the regions 1 and 3. Now we can combine the
different solutions according to the equations (4.1) and (4.2) which gives the com-
plete 𝜇(𝑥) and 𝑇 (𝑥).

With these quantities we can determine the output voltage according to equation
(4.22) where we calculate the integral in the regions 1 and 3 analytically and in
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def  µ2
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Figure 4.2.: Flow chart of the iteration cycle for the solution in the region 2. The
solver for region 4 works exactly the same except from the slightly different
equations (4.20a), (4.20b).
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ITERATION CYCLE
region 2

define system & simulation 
           parameters

ITERATION CYCLE
region 4

calculate 
a1, b1, a3, b3 = solution region 1, 3

calculate 
efficiency η

Figure 4.3.: Flow chart of the of the total program. At the beginning the input param-
eters, transport coefficient functions and the system geometry have to be
defined. Then the program calculates the numeric solutions of the regions
2 and 4 and the integration constants i.e. the solutions of regions 1 and
3 subsequently. Finally the efficiency can be obtained by using equation
(4.36) or (4.37) respectively.

the regions 2 and 4 numerically with finite-element integration using the same non-
equidistant elements defined by equation (4.31).

The last step is to calculate the output efficiency or the cooling efficiency in case
the device operates as a cooler. The efficiency is defined as

𝜂gen ≡ 𝑗∆𝜑

± (𝑗𝑄2(𝑇ℎ) + 𝑗𝑄4(𝑇ℎ))
(4.36)

for a generator and as

𝜂cool ≡
± (𝑗𝑄2(𝑇𝑐) + 𝑗𝑄4(𝑇𝑐))

𝑗∆𝜑
(4.37)

for a cooler. The heat currents 𝑗𝑄𝑖 are defined by equation (2.17) and their argument
means that they are evaluated at the junction where the temperature is hottest (𝑇ℎ)
or coldest (𝑇𝑐). The ± sign in front of the heat currents accounts for the fact that
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they are counted positive when they flow from the junction into the device and the
sign depends whether they are evaluated at 𝑥 = 0 or 𝑥 = 𝑙. The total program
structure is shown in figure 4.3.

4.3. Optimization of the chemical potential position
Our simulation calculates the real position of the chemical potential within a ther-
moelectric device which does not need to be the equilibrium value. Therefore it can
happen that the chemical potential in a certain region stays at a position where the
transport coefficients have inefficient values while they might have optimal values
for a different chemical potential position.

The actual position of the chemical potential can be influenced by doping which
lead to the idea that we could calculate a doping distribution for which the effi-
ciency of the whole device shows a maximum. We do not discuss in this work the
stability of this doping distribution in a real device or how it can be established
physically. We simply treat the doping as an additional charge density that is
position dependent,

𝜌𝑓𝑖 (𝜇(𝑥), 𝑇 (𝑥)) → 𝜌𝑓𝑖 (𝜇𝑖(𝑥), 𝑇𝑖(𝑥)) + 𝑒𝑑𝑖(𝑥) (4.38)

where 𝑒 is the positive elementary charge. This convention ensures that an electron
donor corresponds to 𝑑𝑖(𝑥) > 0 whereas an electron acceptor is represented by
𝑑𝑖(𝑥) < 0. If the dopant has one more or less valence electrons than the original
atom, the function 𝑑𝑖(𝑥) is equivalent to the dopant concentration.

In general the efficiency is a functional of all transport coefficients and, which is
relevant here, the charge density. As 𝜌𝑓𝑖 depends on the doping function 𝑑𝑖(𝑥) the
idea is to maximize the efficiency with respect to the doping function. The numer-
ical maximization of a continuous function is in principle an infinitely dimensional
problem which is the reason why we only take 𝑛 points {𝑑𝑖(𝑥𝑗)} which we vary.
The continuous doping function is then calculated by linear interpolation. With
this trick we have reduced the dimension of the optimization problem to 𝑛.

For every evaluation of the efficiency 𝜂 we have to run the full simulation which
can be rather demanding. Therefore optimization methods where we have to cal-
culate a gradient are not appropriate as they require many evaluations in order
to determine the derivatives. A method which requires few evaluations of the
quantity we want to maximize, which is called objective function, is the so-called
Nelder-Mead method [22]. For this procedure we have to specify 𝑛+1 initial sets of
parameters which are basically 𝑛+1 points in the 𝑛-dimensional optimization space.
These points build a simplex which is the simplest geometric form that accounts
for the dimensionality, i.e. a triangle in two dimensions or a straight line in one
dimension. Then the objective function is evaluated for each of the 𝑛 + 1 point in
the parameter space and the point with the worst value is moved into the direction
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where a better value is expected due to the value of the other points. When the
algorithm is converged in the end it happens that all points in the parameter space
approach the same value. For the termination criterion we use the function

∆ ≡ 1

2
(|𝜂[𝑑worst(𝑥)]𝑘 − 𝜂[𝑑worst(𝑥)]𝑘−1| + |𝜂[𝑑worst(𝑥)]𝑘 − 𝜂[𝑑best(𝑥)]𝑘|) (4.39)

where 𝑘 is the iteration index and 𝑑worst(𝑥) / 𝑑best(𝑥) correspond to the worst /
best points in the parameter space. The optimization stops when ∆ is smaller than
some defined value.

Additionally we have introduced upper and lower limits for the doping function as
we are usually bound to physical limits when a material is doped. In the algorithm it
is checked whether a new calculated point in the parameter space would lie outside
the boundaries and if that is the case, the point is discarded and the best point
which still lies inside the boundaries is taken. This ensures that the optimization
is done within the defined maximum values of the doping function.
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We are interested in the effect the actual chemical potential and temperature dis-
tributions 𝜇(𝑥) and 𝑇 (𝑥) have on the efficiency of a thermoelectric device. For that
reason we have done simulations of different materials which are used in thermo-
electric generators or show interesting features. The program needs the transport
coefficients and the charge density in dependence of the chemical potential and
temperature. One way to obtain these functions is to perform a DFT simulation of
the sought material using, for example, WIEN2K [14] and then to employ the band-
structure as an input for BoltzTraP [21]. This program calculates the transport
properties using the linearized Boltzmann equation in the relaxation time approx-
imation. Furthermore the relaxation time is assumed to be independent of the
energy which makes it a multiplicative factor. Note that BoltzTrap only calculates
the electronic properties. Therefore the heat conductivity needs to be adapted if
the transport by phonons is relevant. The following discussions focus on the qual-
itative behavior of the chemical potential and the impact it has on the efficiency.
The simplification of a constant relaxation time is sufficient for this purpose.

In this work we discuss three different materials: Bi2Te3, SrTiO3 and FeSb2. For
all the simulations we assume an electrical conductivity for the regions 1 and 3 that
is approximately the value of copper at 300K, i.e. 𝜎𝑖 = 108𝑆𝑚−1 𝑖 ∈ {1, 3}. For the
decay length we use 𝜉𝑖 = 104𝜇𝑚−1 𝑖 ∈ {1, 3} if not stated differently. This value
corresponds to 𝑁(𝜖𝑓 ) ≈ 1047𝑚−3𝐽−1 which is the same order of magnitude as the
density-of-states of copper.

Furthermore we test the thermoelectric efficiency the program calculates against
the averaged figures of merit and the engineering figure of merit (see chapters 2.2
and 2.3) and discuss the origin of possible differences.

5.1. Bi2Te3

Bismuth telluride is one of the most industrially used thermoelectric materials. It
is a narrow band-gap (𝐸𝑔𝑎𝑝 ≈ 0.11𝑒𝑉 [23]) semiconductor which is used p- as well
as n-doped. For the unit cell volume we have used 𝑉𝑢𝑐 = 5.01 * 10−28𝑚3 [24] and
for the relaxation time 𝜏 = 2.2*10−14𝑠 [23]. The phononic contribution to the heat
conductivity was assumed to be temperature independent and was added to the
electronic heat conductivity, i.e. 𝜅𝑝ℎ ≈ 1𝑊𝑚−1𝐾−1 [25], 𝜅 = 𝜅𝑒𝑙 + 𝜅𝑝ℎ. We have
applied the doping in the same way as explained in chapter 4.3. For the doping
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concentration we have used

𝑑𝑛 = +5 * 1024𝑚−3 for n-doped-, (5.1)

𝑑𝑝 = −5 * 1024𝑚−3 for p-doped Bi2Te3 (5.2)

which are typical carrier concentration in doped bismuth telluride [23]. The figure
5.1 gives an example of the calculated 𝜇-distribution. We have used n- and p-doped
bismuth telluride for the two legs and the temperatures 𝑇0 = 300𝐾 and 𝑇𝑙 = 600𝐾
(see figure 4.1 for the convention). The equilibrium chemical potentials of the
metals are 𝜇eq -i = 4.73𝑒𝑉 𝑖 ∈ {1, 3} which lies approximately in the middle of the
band-gap. For the dielectric permittivity of bismuth telluride we have used 𝜖 = 100
which is the same order of magnitude as suggested in Ref. [26]. For illustrative
purposes we use a length of 𝑙 = 𝑙ex = 2𝜇𝑚 even if real devices have usually much
longer legs. However, this length scale allows for an easier visualization of the
behavior near the junctions. Real size devices display similar effects and will be
discussed in the end of this section.

We see (figure 5.1) that the chemical potential bends towards the equilibrium
value of the metal at the junctions. However, the Bi2Te3 also slightly distorts the
chemical potential within the metal which is shown in the inset of figure 5.1(a).
The figure 5.1(b) compares the calculated chemical potential in region 2 with the
equilibrium chemical potential (i.e. zero local charge density) assuming a linear
temperature slope 𝜇eq (𝑇0 + 𝑥∆𝑇/𝑙) and for the calculated temperature distribu-
tion 𝜇eq (𝑇2(𝑥)). In the bulk the equilibrium chemical potential for the calculated
temperature is in very good agreement with the calculated 𝜇(𝑥) while close to the
junctions there is a remarkable discrepancy.

The efficiency corresponding to the figure of merit and its improved versions is,
by construction, the maximal possible efficiency for the applied temperatures. In
the simulation we set the electrical current to a fixed value and then determine
the corresponding efficiency. To determine the electrical current for which the
efficiency shows a maximum, we perform several simulations with different currents
𝑗 and estimate from the corresponding efficiencies the current 𝑗𝑚 that gives the
maximum efficiency. Then we do another simulation with this current to get the
exact numerical value for the performance. The efficiency simulations have been
done with n-doped Bi2Te3 in region 2 and transport coefficients of a metal in region
4. This means that we are left with an effective one-leg thermoelectric generator.
The reason for this is that the engineering figure of merit has only been defined
for a one-leg device. Furthermore this treatment makes it easier to understand
the different effects as they only stem from one material. The other simulation
parameters are the same as above except for the length which is 𝑙 = 𝑙ex = 1𝑚𝑚, a
realistic order of magnitude. The results of the 1𝑚𝑚 calculations are
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Figure 5.1.: Chemical potential for a device composed of n-doped Bi2Ti3 for region
2 (from 𝑥 = 0.5𝜇𝑚 to 𝑥 = 1.5𝜇𝑚) and p-doped for region 4 (from
𝑥 = 2.5𝜇𝑚 to 𝑥 = 3.5𝜇𝑚). Panel (a) shows the chemical potential distri-
bution across the whole device. The inset is a zoom around 𝑥 = 0.5 and
emphasizes the fact that the chemical potential is continuous and deviates
from the Fermi-energy also within the metal (𝑥 < 0.5). The second plot (b)
shows 𝜇(𝑥) in region 2 (blue), the equilibrium chemical potential assum-
ing a linear temperature slope (red, dashed) and the equilibrium chemical
potential for the calculated temperature distribution (green, dashed).
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𝑇0 = 300 𝑇𝑙 = 600 𝑇0 = 300 𝑇𝑙 = 301
𝜂(𝑍av-1𝑇𝑚) 3.27% 0.0252%
𝜂(𝑍av-2𝑇𝑚) 3.63% 0.0252%
𝜂eng(𝑍𝑇eng) 2.81% 0.0252%

𝜂sim 2.98% 0.0251%

Here, we can see that the two averaged figures of merit (see equations (2.36) and
(2.37)) slightly overestimate the efficiency while the engineering figure of merit
(equation (2.38)) gives a smaller value. The reason for the difference between the
simulation and the engineering figure of merit purely stems from the non-linear
temperature distribution. As can be seen in figure 5.1 the equilibrium chemical
potential for a linear temperature profile is different from the equilibrium chemical
potential for the real temperature distribution. The engineering figure of merit uses
the transport coefficients at the equilibrium chemical potential for an assumed linear
𝑇 (𝑥). Hence, the efficiency differs from the simulation. The non-linear temperature
distribution is due to the strongly temperature dependent thermal conductivity 𝜅.
In principle the Joule and Thomson heating can also lead to a deviation of the
temperature profile from a linear behavior. However, in this case they do not play
an important role as can be inferred by noticing that the temperature distribution is
only marginally affected by the current running through the device (figure 5.2(b)).

The current induced distortion of the chemical potential is negligible (figure
5.2(a)) and 𝜇(𝑥) is almost at its equilibrium value 𝜇eq(𝑇2(𝑥)) (figure 5.1(b)). There-
fore we can be sure that the difference in the efficiencies does not stem from explicit
chemical potential distortions.

In case of small temperature differences the four efficiencies become equal which
is required by consistency.

We can conclude that for Bi2Te3 the engineering figure of merit gives the best
agreement with the efficiency obtained by simulation. The small deviation is due
to the fact that the engineering figure of merit assumes a linear temperature slope
rather than the real temperature distribution. The explicit treatment of the chem-
ical potential has little influence on the efficiency in this example. However, we
will see that there can be severe differences in other materials as I will discuss for
SrTiO3.

5.1.1. Optimization

As explained in section 4.3 we have implemented an optimization routine for the
doping level. This routine is capable of calculating the optimum uniform doping
level as well as the optimum doping distribution. In the latter case the doping
is varied at 𝑛 different points which gives rise to an 𝑛-dimensional optimization
problem. In a first step we calculate the optimum uniform doping. For that purpose
we apply the algorithm to the n-doped Bi2Te3 we have already used before. The
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Figure 5.2.: Different quantities calculated for Bi2Te3 at the current 𝑗𝑚 that gives the
maximum efficiency. The chemical potential for 𝑗 = 𝑗𝑚 is almost the same
as for 𝑗 = 0 (a) as well as the temperature distribution (b). The green line
in (b) is a linear slope which would be the correct temperature distribution
for zero current and constant transport coefficients. As explained in the
text the non-linear temperature profile stems from the non-linear thermal
conductivity 𝜅. Figure (b) shows the electrochemical potential distribution.
The shape is determined by the Seebeck effect and the voltage loss due
to the internal resistance. The transport coefficients in dependence of the
position are also given for completeness (d)-(f). The seeming discontinuity
at the outermost points are merely sharp bends and stem from the chemical
potential distortion at the junctions.



5. Results and interpretation 51

device parameters are the same as in the initial example at the beginning of this
chapter. The lengths of the device legs are 𝑙 = 𝑙ex = 2𝜇𝑚 as above which reduces
the computational demand. However, the results can be extended to systems of
realistic size as verified at the end of this section.

The optimization routine optimizes the efficiency at a fixed current. We know
that the optimal current 𝑗𝑚 depends on the properties of the material, hence, the
current for which the optimization was done is not the optimal current for the newly
doped system. Therefore the new optimal current �̃�𝑚 must be calculated for the
new doping level. Then the optimization routine must be restarted with the new
current, and so on until the doping does not change within the specified tolerance.

This iteration yields an optimal uniform doping level which is 𝑑 = 1.6476 *
1025𝑚−3 with a corresponding efficiency of 𝜂 = 4.935% for Bi2Te3. Starting from
this level we employ the optimization routine with a five-dimensional parameter
space. This means that on top of the optimal uniform doping level the program
searches for a non-uniform doping distribution relative to the current one that
further increases the efficiency. We find that the doping distribution shown in
figure 5.3 increases the efficiency to a value of 𝜂 = 5.596%. This is an increase of
0.661 percent points or a relative increase by 13.4%.

In addition to the calculated doping distribution we also studied the behavior
of the ordinary figure of merit for different temperatures and doping levels. We
find that for a certain temperature 𝑇 the figure of merit shows a maximum for a
certain uniform doping level 𝑑𝑚(𝑇 ). In figure 5.3 we show this plot in dependence of
the calculated temperature 𝑇2(𝑥), i.e. 𝑑𝑚 (𝑇2(𝑥)) (green, dashed). Surprisingly the
numerically calculated optimum doping concentration is in fairly good agreement
with the green, dashed line that only follows the maximum of the ordinary figure
of merit. The efficiency for this doping distribution is 𝜂 = 5.543% which is almost
the same as for the optimized doping. Note that this correlation does not need to
be true for different materials.

To verify that the doping distributions are applicable to larger devices as well, we
calculate the efficiencies for the uniform and the non-uniform case for a device with
𝑙 = 𝑙ex = 1𝑚𝑚. The non-uniform distribution has been scaled to the new length.
We find that the efficiency is 𝜂 = 4.935% for uniform doping and 𝜂 = 5.581% for the
scaled non-uniform doping. This indicates that the efficiency of Bi2Te3 is almost
independent of the actual leg-size and therefore the doping distribution is also the
optimum for the larger device.
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Figure 5.3.: Optimum uniform doping (dashed, red) and non-uniform doping (blue).
The efficiency for uniform doping is 𝜂 = 4.935% and 𝜂 = 5.596% for the
non-uniform case. The dashed, green line shows the doping for which the
ordinary figure of merit would be the maximum for the calculated temper-
ature distribution 𝑇2(𝑥). The efficiency for this case is 𝜂 = 5.543% which
is almost identical with the efficiency of the optimized doping.

5.2. SrTiO3

Strontium titanate is a perovskite-type transition-metal oxide. In its pure state it
is an insulator with a band-gap of about 3.25eV [27]. However, it can be doped
with rare earths in order to bring the chemical potential up to the edge of the
conduction band. This makes SrTiO3 an admirable thermoelectric with a power
factor comparable to bismuth telluride [28]. Even when the efficiency is worse due
to the higher lattice thermal conductivity it is an interesting candidate for high
temperature thermoelectric generators due to its high melting point of 𝑇𝑚 = 2080𝐾
[29].

We have performed the WIEN2K-DFT simulation of the band structure [14, 16–
20, 30] and then obtained the transport properties using BoltrTraP [21]. For the
unit cell volume we use 𝑉uc = 5.95 * 10−29𝑚3 [28] and for the relaxation time 𝜏 =
0.43*10−14𝑠 [31]. We discuss n-doped SrTiO3 were we apply a doping concentration
of

𝑑𝑛 = 5 * 1026𝑚−3 (5.3)

for which the calculated Seebeck coefficient and electronic conductivity are in rea-
sonable agreement with the experimentally measured values of similarly doped
strontium titanate [28]. We choose the phononic part of the thermal conductivity
as 𝜅𝑝ℎ ≈ 4𝑊𝑚−1𝐾−1 in order to restore the correct order of magnitude [28]. The
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static dielectric constant is obtained from a Curie-Weiss fit at room temperature
and yields 𝜖 ≈ 288 [32]. The temperatures we use are 𝑇0 = 400𝐾 and 𝑇𝑙 = 700𝐾
and the equilibrium chemical potentials of the metals are 𝜇eq -i = 8𝑒𝑉 𝑖 ∈ {1, 3}.
The lengths of the device legs are 𝑙 = 𝑙ex = 1𝑚𝑚. From the DFT calculations of
SrTiO3 we find the bottom of the conduction band at 𝜖cond = 8.1𝑒𝑉 .

For the differently obtained efficiencies we find

𝑇0 = 400 𝑇𝑙 = 700
𝜂(𝑍av-1𝑇𝑚) 2.58%
𝜂(𝑍av-2𝑇𝑚) 2.53%
𝜂eng(𝑍𝑇eng) 2.52%

𝜂sim 2.52%

In contrast to the previously discussed case of Bi2Te3 all three versions of the
figure of merit are in very good agreement with the simulation. The reason is
that the transport coefficients change almost linearly with temperature (figures
5.4(d)-5.4(f)) which makes the averaged figures of merit a good approximation.
The temperature profile is close to a linear slope as the (constant) phononic heat
conductivity contribution is larger than the electronic part. As for bismuth telluride
the chemical potential is hardly affected by the electrical current (figure 5.4(a))
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Figure 5.4.: Same as figure 5.2 but for SrTiO3.
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Although the figures of merit are in almost perfect agreement with the simu-
lation given in the example above, there are cases when the simulated efficiency
dramatically deviates from the predicted values. This happens for certain equilib-
rium chemical potentials (𝜇eq-i) and decay lengths (𝜉i) of the metallic contacts. The
efficiencies we find for different parameters are

𝑇0 = 400 𝑇𝑙 = 700 𝜉i = 1 * 104𝜇𝑚−1 𝜉i = 2 * 104𝜇𝑚−1 𝜉i = 3 * 104𝜇𝑚−1

𝜇eq-i − 𝜖cond = −0.1𝑒𝑉 2.518% 2.518% 2.518%
𝜇eq-i − 𝜖cond = −1.1𝑒𝑉 2.518% 2.518% 2.518%
𝜇eq-i − 𝜖cond = −2.1𝑒𝑉 2.518% 2.516% 1.848%

where the three decay lengths correspond to the three following densities of states:

𝜉i = 1 * 104𝜇𝑚−1 → 𝑁 (𝜖𝑓 ) = 0.345 * 1047𝐽−1𝑚−3, (5.4a)
𝜉i = 2 * 104𝜇𝑚−1 → 𝑁 (𝜖𝑓 ) = 1.380 * 1047𝐽−1𝑚−3, (5.4b)
𝜉i = 3 * 104𝜇𝑚−1 → 𝑁 (𝜖𝑓 ) = 3.105 * 1047𝐽−1𝑚−3. (5.4c)

The efficiencies for 𝜇eq-i − 𝜇cond = −2𝑒𝑉 depend on the decay length of the at-
tached metals while they are independent of the decay length for higher chemical
potential values. We can identify the so-called Schottky effect [33] as the reason
for this behavior. This effect describes the drop in the electrochemical potential at
metal-semiconductor junctions. When a metal and a (doped) semiconductor are
brought into electrical contact their chemical potentials align as electrons diffuse
from the material with the higher equilibrium chemical potential into the material
with the lower one. This distortion of the chemical potential affects the transport
coefficients, especially if the chemical potential of the semiconductor is forced to
cross its band gap. If this is happening the electrical conductivity can drop dra-
matically which creates an insulating layer at the junction (figures 5.5(c), 5.5(d)).
When an electrical current is driven through the device that layer generates an
additional electrochemical potential drop. This is the cause of the strong reduction
in the efficiency for the strontium titanate in the simulations shown in the last row
of the table above. The output voltage (𝑈 = 𝜑(2𝑙 + 2𝑙ex) − 𝜑(0)) is reduced by the
loss at the junction which, in turn, decreases the efficiency (figures 5.5(e), 5.5(f)).

In most cases the chemical potential of the semiconductor is forced to the equilib-
rium value of the metal as the latter has a much higher free charge carrier concentra-
tion. For SrTiO3 this is not necessarily true as it needs a high doping concentration
to bring the chemical potential up to the band-edge where the figure of merit is the
highest. Note that in our model the doping concentration is equal to the charge
carrier concentration. Therefore the chemical potential of the strontium titanate
tends to stay close to the equilibrium value while the chemical potential of the
attached metal is driven away in case the metal density of states at the Fermi level
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(which corresponds to 𝜉i according to equation (3.30)) is too low (see figures 5.5(a),
5.5(b)).

The electrical conductivities given by the figures 5.5(c), 5.5(d) show that there is
a conductivity drop for all three values of 𝜉i while the corresponding electrochemical
potentials only show an effect for the highest 𝜉i. This can be understood with the
different resistances of the insulating areas. Only when the total resistance of the
badly conducting layer (which is proportional to its thickness and which depends
exponentially on the position of the chemical potential) becomes comparable to the
resistance of the rest of the device, the voltage loss is strong enough to become
important.

We can conclude that the explicit inclusion of the chemical potential in the
simulation leads to qualitative and quantitative differences for SrTiO3. The reason
for that is the Schottky effect which cannot be accounted for by simulations which
only incorporate the temperature dependence of the transport properties. However,
the effect might not be seen in experiments as doped strontium titanate has a
high charge carrier concentration which counteracts the distortion of the chemical
potential at the junction.
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Figure 5.5.: The chemical potential ((a),(b)) and the electrical conductivity ((c),(d))
at the junctions for different decay lengths 𝜉i of the attached metals. The
equilibrium chemical potential of the metals is 𝜇eq-i = 6𝑒𝑉 (the conduction
band starts from 𝜖cond = 8.1𝑒𝑉 ). We see that the electrical conductivities
are dramatically decreased at the junctions ((c),(d)). For the case 𝜉i =
3 * 104𝜇𝑚−1 we observe a drop in the electrochemical potential at the left
junction (e). This happens when the resistance of the badly conducting
junction-area becomes comparable to the total resistance of the rest of the
device. The drop is not discontinuous but very sharp which is shown by
figure (f) where the dots mark the calculated points.
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5.3. FeSb2

The correlated inter-metallic compound FeSb2 has attracted attention recently as
it exhibits a uniquely high power-factor at low temperatures [7]. It shows a narrow
band-gap of about several meV depending on the temperature [7]. The mechanism
behind colossal Seebeck coefficient could be identified as in-gap states which couple
to phonons [6]. Although the power-factor of FeSb2 is enormous (about 65 time
larger than Bi2Te3) the figure of merit and therefore the efficiency as well, are rather
moderate due to the large thermal conductivity. The transport coefficients we use
were not calculated from a real band-structure but from a model density of states
which takes into account the narrow in-gap bands and the phonon-drag effect. The
details can be found in Ref. [6]. The major part of the heat conductivity at low
temperatures stems from the lattice contribution and was taken from Ref. [7]. For
the dielectric constant we use 𝜖 = 30 [34] and the lengths of the device legs are
𝑙 = 𝑙ex = 1𝑚𝑚.

For the different efficiencies we find

𝑇0 = 5 𝑇𝑙 = 25
𝜂(𝑍av-1𝑇𝑚) 0.0275%
𝜂(𝑍av-2𝑇𝑚) 0.0222%
𝜂eng(𝑍𝑇eng) 0.0144%

𝜂sim 0.0169%

The averaged figures of merit overestimate the efficiency even more than for Bi2Te3
as the transport coefficients of FeSb2 are highly non-linear (figures 5.6(d)-5.6(f)).
Again the engineering figure of merit is in much better agreement with the simu-
lation but also slightly underestimates the efficiency. As for bismuth telluride this
can be explained with the influence that the temperature has on the position of the
equilibrium chemical potential.

We can conclude that although FeSb2 has highly non-linear transport properties
the engineering figure of merit gives a very precise estimation of the real efficiency.
This is due to the fact the non-linearities mainly stem from the locally different
temperature which is also taken into account to some extent by the engineering
figure of merit. The explicit treatment of the chemical potential does not uncover
any unexpected features in contrast to SrTiO3.
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Figure 5.6.: Same as figure 5.2 but for FeSb2. The negative slope at the left junction
stems from the voltage loss due to the low electrical conductivity and a
poor Seebeck coefficient at 𝑇 = 5𝐾.



6. Conclusion

In this work we have applied the macroscopic transport equations to a two-leg ther-
moelectric device including the full dependence of the transport properties on the
temperature as well as on the chemical potential. We have derived general boundary
conditions for junctions between different materials and applied them to a simpli-
fied model system. In order to solve the non-linear, coupled differential equations
a numerical solver was built which eventually gives the actual temperature- and
chemical potential distributions 𝑇 (𝑥) and 𝜇(𝑥) for the operating point of the de-
vice. We describe the metallic leads of the device by constant transport coefficients
but take distortions of the chemical potential into account. After the program has
calculated 𝑇 (𝑥) and 𝜇(𝑥) the corresponding efficiency can be determined.

In order to check if the explicit treatment of the chemical potential leads to sig-
nificant differences we have simulated Bi2Te3, SrTiO3 and FeSb2 and compared the
efficiencies to the values the different figures of merit propose, including the recently
introduced engineering figure of merit. We find that in most cases the simulation
is in good agreement with the engineering figure of merit and the small differences
mainly emerge from the non-linear temperature distribution that is established in
the real device.

However, the attached metals can strongly distort the chemical potential in the
active material. In some specific cases an insulating layer at the junction is gen-
erated. This layer can be large enough that the voltage loss due to its poor con-
ductivity is comparable to the loss in the rest of the device which can dramatically
reduce the efficiency. This junction effect is known as Schottky-contact and has
always been neglected so far in thermoelectric simulations. The size of the effect is
determined by the gap-size of the active material but also by the density-of-states
and the equilibrium chemical potential of the attached metal. Interestingly in the
studied materials the effect does not play a role or, in case of the SrTiO3, it does
only for specific parameters of the attached metal. This may be the case why this
effect has always been neglected in this context hitherto. However, this does not
exclude that this effect might have led to the discard of theoretically promising
materials which proved to perform below the expectations experimentally.

Additionally we have implemented a routine that calculates the optimum dop-
ing distribution along the active material. For bismuth telluride we find that the
efficiency can be increased by ≈ 13% by a non-uniform doping profile compared to
uniform doping.



A. Program

The simulation program needs several input parameters which define the system
geometry (figure 4.1) and the materials in the four different regions. The program
requires the transport coefficients and the charge density in dependence of the
chemical potential (in 𝑒𝑉 ) and the temperature (in 𝐾) for regions 2 and 4 as files
in the 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎-𝑊𝐷𝑋 format. The program assumes that the first argument
is the temperature and the second one is the chemical potential. Furthermore the
program needs the equilibrium chemical potential in dependence of the tempera-
ture. The files containing the data have to have specific names which are defined
as

quantity unit description filename
𝜌𝑓 [𝑇, 𝜇] 𝐶𝑚−3 charge density charge.dat
𝜎[𝑇, 𝜇] 𝑆𝑚−1 electrical conductivity conduct.dat
𝛼[𝑇, 𝜇] 𝑉 𝐾−1 Seebeck coefficient seebeck.dat
𝜅[𝑇, 𝜇] 𝑊𝐾−1 thermal conductivity thermcond.dat
𝜇eq[𝑇 ] 𝑒𝑉 equilibrium chemical potential chemequil.dat

and have to be located in the same directory. As the program needs precise equi-
librium chemical potential values it calculates them on its own and the distribution
given by 𝑐ℎ𝑒𝑚𝑒𝑞𝑢𝑖𝑙.𝑑𝑎𝑡 is only taken as starting point for finding the correct value.
The user is supposed to use the program via the provided graphical user interface
(GUI) which can be started by executing the function 𝑤𝑖𝑑𝑔𝑒𝑡[]. There is an input
mask for all the necessary input parameters that are needed which are
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quantity unit description
𝑇0 𝐾 temperature at the left side of the device
𝑇𝑙 𝐾 temperature at the right side of the device
𝑙 𝜇𝑚 length of the regions 2 and 4
𝑙ex 𝜇𝑚 length of the regions 1 and 3
𝑙dep 𝜇𝑚 size of the regions with the grid point number 𝑛dep

(see equation (4.31))
𝑗 𝐴𝑚𝑚−2 electrical current density

𝜇eq 1/3 𝑒𝑉 equilibrium chemical potential of the metal in region 1/3
𝜎1/3 𝑆𝑚−1 electrical conductivity in region 1/3
𝜉1/3 𝑚−1 decay length according to equation (3.30) in region 1/3
𝑛l 1 number of points within 𝑙dep ≤ 𝑥 < 𝑙 − 𝑙dep for regions 2/4
𝑛dep 1 number of points in each of the intervals 0 ≤ 𝑥 < 𝑙dep

and 𝑙 − 𝑙dep ≤ 𝑥 < 𝑙
𝑚𝑎𝑥 𝑟𝑢𝑛𝑠 1 maximum number of iteration cycles
𝑇 − 𝑟𝑒𝑠 K termination value which determines when the

temperature iteration is converged
𝜇− 𝑟𝑒𝑠 eV termination value which determines when the

chemical potential iteration is converged
𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑠ℎ 𝜇𝑚 point spacing for 𝑒𝑥𝑝𝑜𝑟𝑡𝑑𝑎𝑡𝑎 routine

𝜑𝑚𝑒𝑠ℎ 𝜇𝑚 point spacing for the electrochemical potential
𝛿2/4 1 mixing parameter for the iteration cycle
𝜖2/4 1 relative permittivity of region 2/4
𝑠𝑖𝑧𝑒 1 changes the size of the displayed plots; a new value has to

be acknowledged by pressing the return-button

The figure A.1 shows the graphical user interface where different regions are labeled
with the letters 𝑎-𝑓 . In the section 𝑎 one can enter the paths of the directories where
the files with the transport properties for the areas 2 and 4 are located. The third
mask is for the output path which is the directory in which the files are saved
when the 𝑒𝑥𝑝𝑜𝑟𝑡 𝑑𝑎𝑡𝑎 routine is executed. The section 𝑏 shows the input fields
for the parameters given by the table above. With the drop down menu one can
decide whether the heat currents through both legs of the device shall be taken
into account for the efficiency calculation or just one which then is the area 2 in
particular. This makes sense when one wants to study only one material which can
be achieved by using a material with zero Seebeck coefficient for region 4 and the
𝑠𝑖𝑛𝑔𝑙𝑒 𝑗𝑄 - option. The region 𝑓 gives status informations on the current simulation
and in the end of one simulation the calculated efficiency is displayed here as well.
The program is controlled by the buttons in region 𝑐 which are explained by the
table below. In the region 𝑑 the program plots some of the important quantities
such as the chemical potential or the temperature distribution after the calculation
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Figure A.1.: Picture of the graphical user interface.

has finished. The area 𝑒 is for the optimization routine which is explained in detail
in section A.2.

button name function
compute starts a calculation with the current parameters

re-calculate 𝜑 calculates only 𝜑
export data saves the quantities 𝜇(𝑥), 𝜇2/4(𝑥), 𝑇2/4(𝑥), 𝜌(𝑥), 𝜎2/4(𝑥), 𝛼2/4(𝑥)

and 𝜑(𝑥) as tables or Mathematica-definitions; the coefficients 𝑎𝑖/𝑏𝑖
are saved in the file 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙.𝑑𝑎𝑡 some of the input parameters

are saved in 𝑖𝑛𝑓𝑜.𝑑𝑎𝑡
reset doping 2/4 sets the doping function of area 2/4 to zero
get doping 2/4 imports a previously saved doping function; the location is the one

specified with the 𝑏𝑟𝑜𝑤𝑠𝑒 button
browse specifies the location of the directory for the 𝑔𝑒𝑡 𝑑𝑜𝑝𝑖𝑛𝑔2/4 routines
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A.1. Starting a simulation

The first step is to start the graphical user interface by executing the function
𝑤𝑖𝑑𝑔𝑒𝑡[]. Then one has to set the paths of the directories where the necessary
input files are located with the 𝐵𝑟𝑜𝑤𝑠𝑒... buttons (region 𝑎 in figure A.1). Note
that both input paths may be the same which would mean that the program uses
the same transport properties for the regions 2 and 4. Then the input files have to
be loaded with the 𝑙𝑜𝑎𝑑 𝑑𝑎𝑡𝑎 button. The success or failure of the loading process
is reported in the information panel (region 𝑓). Then one has to enter the input
parameters (region 𝑏) where one has to be careful whether the temperature- and
equilibrium chemical potential-ranges are covered by the loaded transport property
- files. If not the program extrapolates which may lead to wrong or unphysical
results. After all parameters are set the simulation is started with the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒
button (region 𝑐).

If everything worked the efficiency of the device and its output power in case of a
generator are displayed in the information panel and the calculated quantities are
plotted (region 𝑑).

A.2. Optimization routine

The optimization routine calculates the doping function 𝑑𝑖(𝑥) (see section 4.3) for
which the efficiency approaches a maximum. With the drop down menu one can
select whether the device has to be optimized for power generation or for cooling.
Usually only one of these options works for a specific parameter set as the device is
either cooling or generating power. As explained in section 4.3 the doping function
is only varied on some points and the continuous function is then calculated by linear
interpolation. The input parameter 𝑑𝑝𝑜𝑖𝑛𝑡𝑠𝑖 specifies the number of these points
which is equal to the dimension of the optimization problem. A value of 1 would
mean that the doping function is a constant which can be used to find the optimal
uniform doping level. For a value of 2 the doping function values at the boundaries
are used (𝑑𝑖(0) and 𝑑𝑖(𝑙)) and for higher 𝑑𝑝𝑜𝑖𝑛𝑡𝑠𝑖-values additional points are added
between so that the resulting intervals are equidistant. The input parameter 𝑟𝑒𝑠𝑖
is the test for the convergence which means that the optimization stops when ∆ <
𝑟𝑒𝑠𝑖 where ∆ is defined by equation (4.39). The 𝑚𝑎𝑥 𝑠𝑡𝑒𝑝𝑠 parameter stands
for the maximum number of iteration cycles after which the optimization routine
is stopped regardless of convergence. Since not every arbitrary doping level can
be achieved physically one can restrict the doping function to a certain interval
which is specified by the parameters 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 and 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡. The last input
parameter is 𝑖𝑛𝑖𝑡 𝑑𝑒𝑣𝑖 which is needed for the initial points. As explained in section
4.3 the used Nelder-Mead algorithm needs 𝑑𝑝𝑜𝑖𝑛𝑡𝑠𝑖+1 initial points in the 𝑑𝑝𝑜𝑖𝑛𝑡𝑠𝑖-
dimensional optimization space. The first of these points is generated by setting
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all doping function points to zero while the other points are generated by letting
all doping function points be zero except one. At this point the doping function is
given the value that would shift the equilibrium chemical potential by a factor of
𝑖𝑛𝑖𝑡 𝑑𝑒𝑣𝑖.
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