
Web Browser Fingerprinting
A framework for measuring the web browser

entropy

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Vanja Culafic
Matrikelnummer 0426783

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Dr. tech. Martin Schmiedecker

Wien, 23.08.2016
(Vanja Culafic) (Edgar Weippl)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Web Browser Fingerprinting
A framework for measuring the web browser

entropy

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Vanja Culafic
Registration Number 0426783

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Dr. tech. Martin Schmiedecker

Vienna, 23.08.2016
(Vanja Culafic) (Edgar Weippl)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Vanja Culafic
Kandlgasse 44/25-26, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Vanja Culafic)

i

Acknowledgements

I would like to express my gratitude to Dr. Martin Schmiedecker for the continuous support,
creative insights and comments for the whole duration of this project. My sincere gratitude also
goes to my advisor Privatdoz. Dipl.-Ing. Mag. Dr. Edgar Weippl for helping me secure a
research-internship position in Tokyo, Japan. I would also like to thank Prof. Isao Echizen of
National Institute of Informatics Japan for his constructive criticism of my research during my
stay in Japan.

My thanks also goes to my friend and colleague Dr. Thomas Paulin for his valuable input
regarding data processing and visualization.

Furthermore, I want to thank my parents Nesiha and Ranko and my brother Vedran for
supporting me throughout my academic and professional endeavors.

Elodie, sans ton soutien et ton aide précieuse, ce projet n’aurait pas pu aboutir. Merci.

iii

Abstract

There are numerous ways in which websites track online users’ behavior for various purposes
like targeted advertising and price discrimination. Browser fingerprinting is a process of iden-
tifying a user by means of collecting and comparing the distinguishing features of the browser.
This form of stateless tracking can aid third-party websites to track users across different do-
mains without their knowledge. Fingerprinting methods exploit modern browser side technolo-
gies that provide interactive web experience (e.g. JavaScript and Flash) in order to measure
different browser and operating system attributes.

In this thesis, we conduct an extensive survey of related work-field of browser tracking
and fingerprinting. Furthermore, we implement an extensible fingerprinting framework that
encompasses all fingerprinting methods from previous research and publish it online in order
to collect browser fingerprints. We analyze 1,800 fingerprints collected in a time span between
April 7, 2016 and August 21, 2016 and compare the findings to other research.

v

Kurzfassung

Es gibt verschiedene Möglichkeiten wodurch Webseiten das Verhalten von Internet-NutzerInnen
verfolgen können, um zum Beispiel gezielte Werbung und Preisdiskriminierung durchzusetzen.

Browser Fingerprinting ist ein Prozess, der die NutzerInnen identifiziert, indem bestimm-
te, kennzeichnende Eigenschaften des Browsers gesammelt und verglichen werden. Diese Art
vom zustandlosen Tracking ermöglicht fremden, externen Webseiten, NutzerInnen ohne ihr
Wissen über verschiedene Domains zu verfolgen. Fingerprinting-Methoden verwenden moder-
ne Browser-Technologien, die eine interaktive Web-Experience anbieten (u.a. JavaScript und
Flash), um die Eigenschaften verschiedener Browser und Betriebssysteme zu messen.

In dieser Arbeit wird eine umfassende Studie zum Browser Tracking und Fringerprinting ge-
führt. Des Weiteren wird ein erweitbares Framework, das alle bereits existierenden Fingerprinting-
Methoden aus bisherigen Studien umfasst, implementiert und online gestellt. Die 1800 Finger-
prints, die dadurch im Zeitraum 7. April-21. August 2016 gesammelt wurden, werden analysiert
und zu den Ergebnissen der bisherigen Studien verglichen.

vii

Contents

List of Figures xi

List of Tables xii

Listings xiii

1 Introduction 1
1.1 Problem Definition . 1
1.2 Goals . 2
1.3 Structure of the Thesis . 2

2 Background 5
2.1 History of Online Tracking . 5
2.2 Related Work . 7
2.3 Other Projects . 11

3 Design 15
3.1 Requirements . 15
3.2 Framework Overview . 16
3.3 Fingerprinting Methods . 22

4 Implementation 39
4.1 Tools . 39
4.2 Technical Realization . 40
4.3 Deployment . 44

5 Results 47
5.1 Entropy . 47
5.2 Descriptive Results . 48
5.3 Comparison of mobile and desktop clients . 56
5.4 Comparison of two fingerprinting datasets . 58

6 Discussion 61
6.1 Data Interpretation . 61

ix

6.2 Limitations . 62
6.3 Fingerprinting Countermeasures . 62
6.4 Future Work . 63

7 Conclusion 65

Bibliography 67

x

List of Figures

3.1 General overview of the framework . 17
3.2 Fingerprinting process activity diagram . 18
3.3 Fingerprinting process without JavaScript activity diagram 19
3.4 Server-side framework component diagram . 20
3.5 Server-side framework - original design component diagram 21
3.6 Generating the fingerprinting scripts . 22
3.7 TLS handshake . 27
3.8 Font width: monospace (Courier New) vs Consolas 30
3.9 Font metrics: single character rendered with different font families 31
3.10 Image generated via canvas API . 31
3.11 Audio fingerprint . 37

4.1 Development stack . 41
4.2 Front page of the website . 45
4.3 Fingerprinting result web page . 45

5.1 Distinct vs. unique values per property . 48
5.2 Canvas images . 56
5.3 Platforms: desktop vs mobile . 57
5.4 Distinct vs. unique values per property for mobile clients 57
5.5 JavaScript: desktop vs mobile . 58

xi

List of Tables

2.1 Comparison of fingerprinting features . 13

5.1 Properties with highest entropy values . 49
5.2 Distribution of HTTP header values . 49
5.3 HTTP Accept headers . 50
5.4 HTTP Accept-Encoding headers . 50
5.5 HTTP Accept-Language headers . 50
5.6 Most frequent User-Agent strings . 51
5.7 Browser families . 51
5.8 Distribution of cipher suite values . 52
5.9 Distribution of individual cipher suites and extensions 52
5.10 Distribution of navigator values . 53
5.11 Screen resolutions . 53
5.12 Navigator platforms . 54
5.13 ’Do Not Track’ Flag . 54
5.14 Distribution of fonts and plugins . 54
5.15 Distribution of font-related values . 54
5.16 Distribution of WebGL values . 55
5.17 WebGL unmasked renderer x renderer combinations 55
5.18 Distribution of canvas values . 56
5.19 Properties with highest entropy values for mobile clients 58
5.20 Dataset 2: Properties with highest entropy values 59
5.21 Dataset 1 vs Dataset 2: Comparison of entropy values 59

6.1 Comparison of entropy values to Panopticlick and AmIUnique 62

xii

Listings

3.1 Navigator features detection . 24
3.2 Advert.js . 24
3.3 Example HTTP headers . 26
3.4 Decompiled SWF: ActionScript font detection 28
3.5 JavaScript: Flash font detection . 28
3.6 SSL/TLS ClientHello message . 29
3.7 Drawing on canvas via JavaScript . 32
3.8 WebGL initialization . 32
3.9 WebGL: unmasked vendor and renderer . 33
3.10 Feature detection with Modernizr . 34
3.11 AudioContext properties . 36
4.1 Navigator fingerprinting method metadata . 42
4.2 Navigator result handler . 43
4.3 Script runner . 43

xiii

CHAPTER 1
Introduction

1.1 Problem Definition

The web browser has been established as one of the dominant instruments for consuming and
delivering information on the Internet. As a consequence of its popularity, it presents a large
surface for misuse and exploitation. Many advertising and analytics parties developed their
business around collecting users’ personal information and tracking their online browsing habits
[38] for the purpose of targeted advertising and price discrimination, among others [30].

The most widely used tracking mechanism across browsing sessions is based on the usage of
browser (HTTP) cookies. Websites can store small files containing data such as unique identifier
on the user’s computer and retrieve this data upon each consequent visit to the website. Many
websites comply to the Cookie Law [1], that was designed to protect user’s online privacy by
asking for their consent to store and read information on a computer when visiting the website.
Some service providers even offer visitors the ability to opt out of interest based advertising.
Furthermore, web browsers allow the users to delete unwanted cookies from their computer or
disable them altogether in order to disassociate their browser from a profile created by a website
and thus limit the tracking scope of the cookies.

There exists another form of tracking that, in contrast to cookies, does not rely on storing
and reading data on a user’s computer. Browser fingerprinting is a process of identifying a user
by means of collecting and comparing the distinguishing features of the browser. Fingerprint-
ing commonly exploits client-side technologies that provide interactive web experience (e.g.
JavaScript and Flash) in order to measure different browser and operating system attributes like
User-Agent string, HTTP-Accept headers, list of browser plugins, current timezone, screen res-
olution, installed system fonts, etc. A combination of these values leads to a browser fingerprint
that can uniquely identify a user without their knowledge, since the fingerprinting occurs in the
background. Another characteristic of the browser fingerprint is that it also works when using
private or incognito browsing modes. While the cookies are separated from normal browsing
sessions and deleted afterwards, browser fingerprint is still present, both in normal and private
browsing sessions. Due to its stateless nature, a browser fingerprint is generally harder to block

1

than other tracking techniques and can bypass the user tracking regulations imposed by law and
as such poses a legitimate privacy threat on the web.

In recent years browser tracking and fingerprinting as a topic has gained interest in the pri-
vacy and security-related research community, with new fingerprinting techniques being discov-
ered and methods described on a regular basis. In order to retain an overview and keep track of
various browser fingerprinting methods we want to combine the practical part of research under
one unified platform.

1.2 Goals

We define three main goals of the master’s thesis:

• Extensive survey and summary of related work in the field of browser tracking and finger-
printing.

• Implementation of an extensible fingerprinting framework that encompasses all finger-
printing methods from the previous research in browser fingerprinting. The framework
is published at https://fingerprint.sba-research.org for the purpose of
collecting browser fingerprints. It also allows the visitors to review the fingerprinting in-
formation that their browser reveal along with statistics like uniqueness and similarity to
other fingerprints.

• Analysis of collected fingerprint data in detail to gain more understanding about finger-
printing. The results presented here are analyzed and compared to findings in other re-
search.

1.3 Structure of the Thesis

Chapter 2 gives an overview of related work regarding fingerprinting. It also describes other
tracking mechanisms like tracking during one browsing session, persistent tracking and cache-
based tracking. It finishes with the description of similar projects and a comparison table to
other fingerprinting platforms.

Chapter 3 describes the design and architectural decisions for the framework. It also breaks
down and depicts individual framework components and explains the fingerprinting process.
Finally, it gives detailed description for all fingerprinting methods used in the framework.

Chapter 4 goes into implementation details for specific framework components and lists the
implementation tools used during the development. It also describes the deployment process
and briefly mentions privacy measures that have been taken into account when deploying.

Chapter 5 presents the results of two browser fingerprinting tests conducted from May to
August 2016, first in general and then broken down on per-fingerprinting method basis. Finally,
a comparison of data from the two tests is presented.

2

https://fingerprint.sba-research.org

Chapter 6 shows a discussion and interpretation of data and also outlines the ideas for im-
provement of the framework and other future work.

Chapter 7 concludes the thesis with a short summary.

3

CHAPTER 2
Background

In this chapter we describe the development of online tracking mechanisms leading up to browser
fingerprinting. These include tracking mechanisms in the scope of current session, persistent
tracking and cache-exploiting mechanisms. Next, we present works related to browser finger-
printing upon which we base our research. Lastly, we mention projects with similar efforts and
compare different fingerprinting platforms.

2.1 History of Online Tracking

In this section we briefly describe some of the tracking mechanisms through a historical context,
while Bujlow et al. [17] and also Lerner et al. [40] give a more thorough overview.

2.1.1 Session-scoped tracking

The earlies known tracking mechanism was accomplished via HTTP protocol by adding an
arbitrary unique identifier to HTTP’s GET method or by passing it as a parameter in HTTP
POST method. This way the web server would be able to track and assign the HTTP requests
to a certain web client without relying on the IP address. The identifier could be a randomly
generated number or a time stamp, for example. The scope of this technique is bound to one
browsing session and would become useless once the user closed the web browser. It is, however,
possible to pass the identifiers to a 3rd party domain by embedding a resource, like scripts or
images, and creating a HTTP request to that domain via cross-origin resource sharing (CORS)
[51]. Despite its limited effect, this tracking mechanism is still widespread today.

Another example of session-scoped tracking mechanism was the misuse of window.name
property of Document Object Model (DOM) [37]. This property is capable of storing up to 2MB
of text which can be used by websites to store more data than allowed via cookies.

5

2.1.2 Persistent tracking

Cookies were introduced in 1994 as a state management mechanism for the otherwise state-
less HTTP protocol and allowed the web servers to store limited data (up to 4KB) on the web
client in order to keep a stateful session with that client [11]. The server stores a cookie via
Set-Cookie HTTP header followed by arbitrary data, which is then included upon each con-
sequent HTTP GET request via Cookie header. Cookies are divided in two categories:

• Session cookies that expire once the web browser is closed and

• Persistent cookies that can have a discretionary expiration date, which is set upon cookie
creation.

Research [38] [41] [43] shows that the use of cookies extends beyond the session state
management, as originally intended and is extensively (mis)used for online tracking of users.
Webpages are increasingly including content, be it multimedia or advertising scripts, hosted on
external third-party websites that often act as information aggregators [38], linking the users’
online behavior and browsing history across different websites. This type of online tracking is
called third-party tracking. Li et al. [41] have shown that 46% of home pages of Alexa’s1 top
10 thousand websites have at least one third-party tracker. Although users do have an option
to periodically remove unwanted cookies or to disable them altogether, research from 2007 [3]
shows that some of 30% users delete cookies within a span of one month from the time of their
creation. However, one can argue that this number could be higher today, considering the raised
awareness towards cookies, ad-blocking and online tracking.

Cookie leaks and cookie syncing represent another big concern because the cookies from
one domain are passed onto another. Adobe Flash and Java browser plugins also feature APIs
for storing data on the client, via Local Storage Objects (LSO) [7] (or flash cookies) and JNLP
Persistence Service [61], respectively. These methods allow for larger storage (LSO: 100KB)
and are harder to remove than regular HTTP cookies, since they are not deleted when clearing
browser data. This way, Flash cookies can facilitate cookie regeneration leading to evercookies
or supercookies since they are very hard to get rid of [68]. Other noteworthy persistent tracking
mechanisms, which will be described in Chapter 3, include:

• HTML5 globalStorage

• HTML5 localStorage

• HTML5 sessionStorage

• HTML5 IndexedDB

• IE userData storage

• Web SQL Database

One of the fingerprinting methods in our framework checks for the existence and browser
support of the above-mentioned persistence facilities and uses it as part of the fingerprint.

1http://www.alexa.com

6

2.1.3 Cache-exploiting tracking

There exist many tracking mechanisms that exploit various caching facilities of the browser. In
2010, it was possible to read browsing history via JavaScript by inspecting the color property
of URLs [75]. The technique, obsolete today, could inspect many thousands of predefined links
and reconstruct a partial browsing history. However, a similar technique that exploits browser
caching, is still utilized nowadays. It is possible for a website to check if a resource (image or
script) has been downloaded and cached by a browser at some point in the past. This can be
exploited in various ways [17]:

• by embedded identifiers in cached documents, for example a <div> element with a spe-
cific ID in a HTML document,

• by running loading performance tests with JavaScript, differences in timing could mean
that the object is either cached or downloaded from server,

• ETags [10] and Last-Modified HTTP headers, and compare versions of local resources to
their counterparts on server.

Besides browser caching facilities, a certain technique exploits the DNS cache by measuring
the responsiveness of DNS lookup - if the website was visited before, then an entry must be
present in the DNS cache and the lookup time should be shorter [26].

2.2 Related Work

This section provides a short overview of work related to browser fingerprinting. We divide the
previous research in two categories:

1. statistical analysis of fingerprints collected over some period of time and

2. individual fingerprinting methods for exploiting web browser features.

For the former, we try to explain the pros and cons and to illustrate the differences to this very
work, since it itself falls into the first category. For the latter, we briefly explain the technique
and why we decided to include it into our framework.

In his seminal work on browser fingerprinting from 2010, Eckersley [22] shows that the dis-
tribution of the browser fingerprint holds at least 18.1 bits of entropy, meaning that by picking
a browser at random, we could expect at best, that only one in 286.777 browsers shares its fin-
gerprint (218.1 ≈ 286.777). As part of the Panopticlick2 website, he developed an algorithm
which runs in a browser and calculates the fingerprint by collecting and comparing multiple sys-
tem and browser characteristics. Among the 470.161 collected fingerprints, 83,6% have shown
to be unique. This number was even higher (94,2%) for browsers with Flash and Java plug-
ins enabled [63]. He also observes the changes in fingerprints over time among the users who

2https://panopticlick.eff.org/

7

visited the website multiple times. He was able to anticipate a fingerprint change using a sim-
ple algorithm with a success rate of over 99.1%. According to the study, the most revealing
characteristics of the browsers are:

• List of installed browser plug-ins with entropy of 15.4 bits

• List of installed system fonts with 13.9 bits of entropy

• User-Agent string with 10.0 bits of entropy

• HTTP Accept header with 6.09 bits of entropy, etc.

Furthermore, he argues that anti-fingerprinting techniques are unsuccessful and make the
individual users stand out even more, if not embraced by an adequate amount of people surfing
the Web. Although this study is dated, we use it as a starting point for our research and the
framework. We build upon the browser and operating system characteristics collected in this
study and combine it with recent fingerprinting techniques in order to understand their effect on
the identifiability of the browser and their corresponding entropy values. Another downside to
this project is that there is no source-code available.

In 2012, Mowery et al. [46] presented a fingerprinting method that utilizes WebGL API [42]
to render 3D scenes in combination with text rendering on a HTML5 <canvas> element in
a web page. The fingerprint is closely tied with operating system and underlying hardware -
the GPU - because it relies on the system drivers and graphics card functionality to render a 3D
scene in the browser. The fingerprinted value consists of pixel values of the rendered images that
are passed through a cryptographic function and saved as a hash of values. This observed values
among 294 collected fingerprints appear to be consistent on multiple fingerprinting attempts
and has an observed entropy of 5.73 bits. The authors argue, however, that this value might
be even higher if the tests were constructed in a more specialized way. Another important fact
is that the WebGL fingerprint is orthogonal to other fingerprinting methods. The downside to
this research is that the WebGL fingerprinting was conducted in isolation with regards to the
browser characteristics used in the Panopticlick study. We use the ideas from this research
in our framework to query the information about GPU and their respective driver version and
capabilities.

In 2013, Acar et al. [5] implemented and deployed FPDetective, a framework for detec-
tion and analysis of browser fingerprints in the wild. They conducted a large-scale analysis
by crawling one million most popular websites according to Alexa. FPDetective was able to
detect 16 new fingerprinting scripts and expose new fingerprinting practices. 404 out of top
million websites were using scripts from 3rd party fingerprinting providers for JavaScript based
font probing, which they argue is a lower-bound figure constrained by the limitations of the
FPDetective’s automated crawler and that many fingerprinting techniques might not have been
detected. Next, 97 out of the top 10 thousand websites were using Flash based font detection.
We employ both the JavaScript font probing technique and Flash based font detection in our
framework, in which the former is used as a side-channeling mechanism in cases where Flash is
not installed or is disabled. Furthermore, Acar et al. report that many fingerprinting providers

8

employ anti-debugging measurements associated with JavaScript malware, possibly to remove
the evidence of fingerprinting actions and to evade detection from various privacy tools.

In another study from 2013, Nikiforakis et al [59] conducted a detailed analysis of three
popular commercial fingerprinting service providers: Bluecava3, Iovation4 and ThreatMetrix5.
They, too, found out that font detection was an important part of the fingerprint and that they uti-
lized both JavaScript-based font probing and Flash font detection. The usage of Flash, however,
goes beyond the sole purpose of detecting fonts - it is also used to detect screen resolution and
presence of multiple monitors, identification of OS and kernel versions on Linux devices and the
detection and circumvention of HTTP proxies in order to disclose the real IP address of the user.
In the latter case, the Flash objects employed as a part of the fingerprinting script were ignoring
the proxy preferences set in a browser and were communicating with the providers’ server di-
rectly, while exchanging certain alphanumeric tokens, possibly an identifier to correlate different
IP addresses. The authors also noticed that the aforementioned providers were probing for pres-
ence of a certain browser plugins. The plugins in questions were fingerprinting libraries shipped
as Internet Explorer ActiveX plugins, which had full access to the Windows registry, hard drive
identifiers, computer name, TCP/IP parameters, Windows Digital Product ID and system drivers
- hence creating a much stronger identification link than JavaScript/Flash based fingerprinting
techniques. Moreover, they found out that 40 from top 10 thousand Alexa websites were using
the fingerprinting scripts from the three providers, some of which used the fingerprinting scripts
to circumvent credit card fraud. They also made their own fingerprinting script that analyzes
the structure of navigator and screen DOM [37] objects between different browsers and
found that the differences in the order of properties in the objects suffices to distinguish different
browser families. We employ this technique in our framework indirectly, through the use of 3rd
party JavaScript libraries (more on that in Chapter 3). Lastly, they analyzed popular browser
extension for User-Agent spoofing and found out, that they fall short against fingerprinting.

In 2014, Acar et al. [4] conducted a first large-scale study of canvas fingerprinting methods
described in [46] and found out that 5% of the top 100 thousand Alexa websites employed
canvas fingerprinting which makes it one of the most prevalent techniques in practice. Second,
they analyzed the presence of evercookies and cookie respawning via Flash and IndexedDB
storage and found out that 5% of top 200 websites used Flash cookies and 33 different Flash
cookies were used to regenerate 175 ’regular’ HTTP cookies on 107 of top 10 thousand Alexa
websites. Cookie syncing allows cookie regeneration by passing on cookie information from one
domain to another. It allows trackers to link user’s browsing history after the clearing of cookies.
This study shows that browsing history of 1.4% of the users can be linked this way. Although
the persistent tracking methods and cookie syncing are out of bounds of this work, this research
brought the idea of checking for storage capabilities of the browser, like Web Storage [35], Web
SQL Database [34], Indexed Database [60], File Access API [9], etc. and using it as part of our
fingerprinting vector.

In 2013 Unger et al. [69] proposed a reliable browsers fingerprinting method based on CSS3
and HTML5 as part of a framework for HTTP(S) session management and prevent session hi-

3http://www.bluecava.com
4http://www.iovation.com
5http://www.threatmetrix.com

9

jacking. Since CSS3 and HTML5 standards’ implementation status may differ across diverse
browser vendors, it is possible to exploit these differences in order to detect the browser type
and version. They identified three CSS-based methods for fingerprinting: CSS properties, CSS
selectors and CSS filters. By applying CSS attributes to certain HTML elements and querying
for the result via JavaScript they were able to observe differences between various browsers.
Similarly to CSS, they applied the same methods to HTML5 and used both components as part
of a fingerprint to identify the browser without the need to rely on UserAgent string. We use
the methods described here in our framework by relying on a 3rd party JavaScript library for
CSS3/HTML5 feature detection.

In another paper from 2013. Mulazzani et al. [57] presented a similar fingerprinting method
based on the identification of browser’s underlying JavaScript engine. They compared the test
results of running a set of conformance tests that cover ECMAScript standard [24] in different
browsers and browser versions on various operating systems including mobile platforms. De-
pending on the correctness of the implementation of JavaScript specifications some browsers
would fail or successfully run certain tests. They used test2626 suite for ECMAScript, which
consists of thousands of tests. However, not all tests are necessary for a successful identifica-
tion of a certain browser, hence they identified the set of failing tests and created a minimum
fingerprint for each browser. The downside of this method is that a new test set or minimal
fingerprint has to be created for every new browser version in order to compare new browser
instances against it. The fact that all major browser vendors introduced rapid development and
release cycles would mean that, in order to include this fingerprinting method in our framework,
we would constantly have to update the database of minimal fingerprints in order for this method
to bring consistent results. Because of this, we have decided to not include this method in our
framework.

In 2015, Husák et al. [33] present a fingerprinting method for real-time identification of
HTTPS clients based on network monitoring by analyzing the handshake of SSL/TLS protocol.
Their experiment shows that it is possible to estimate the UserAgent of the client by analyzing
SSL/TLS handshake packets. By monitoring live network traffic, they managed to collect almost
13 thousand unique combinations of UserAgent strings and SSL/TLS specific cipher-suite lists
and filtered 316 unique cipher-suite lists. They were able to assign a UserAgent to almost all
cipher-suite lists with a significant level of probability. We have included this fingerprinting
method in our framework, which has had a significant impact on its design and implementation,
since the fingerprinting is performed on the server side. The process is described in detail in
section 3.3.3.

Fifield et al. [28] in 2015 presented another fingerprinting method that exploits the font
attributes by measuring the on-screen dimensions of font glyphs. They thoroughly surveyed the
layout of over 125 thousand Unicode code points by fingerprinting 1000 users and found out
that the number of code points can be reduced to 43 in order for the fingerprint to have the same
effect. The layout and font measurement is invisible to the users and takes only milliseconds to
execute. Compared to the other font-related fingerprinting methods described above, this method
does not output a list of installed fonts but rather a list of individual glyph dimensions of the font.
Authors admit that this method is inferior to other methods like canvas fingerprinting, but argue

6https://github.com/tc39/test262

10

that it is still relevant because it is effective against Tor browsers, which is at the moment of
writing the only browser capable of blocking the canvas fingerprint [66]. The authors have made
the project source-code available7 and we have included this method in our framework.

In a more recent study from 2016, Laperdrix et al. [39] perform a similar experiment to
Panopticlick with the difference of including Canvas and WebGL fingerprinting. They published
a website AmIUnique8 and collected over 100 thousand fingerprint over a course of one year
and compared the results to Eckersley [22]. They claim that innovations in HTML5, especially
Canvas API, have had a large impact on fingerprinting. They also show that fingerprinting
mobile users is as effective as for desktop browsers. The source code9 for their website has
been publushed as part of the DIVERSIFY project10. They have also stated that they removed
those fingerprints from their study that had JavaScript disabled, which is a huge difference to
our approach. With the inclusion of two fingerprinting methods that don’t rely on JavaScript
(HTTP headers and SSL/TLS handshake fingerpriting) we don’t want to ignore the datasets
with disabled JavaScript.

At the time of writing, another research related to browser fingerprinting has emerged. En-
glehardt et al. [25] conducted a similar experiment to [5]. They show the largest and most
exhaustive measurement of online tracking by crawling the top 1 million websites with the help
of OpenWPM11, a web privacy measurement framework that in reality is an automated version
of a commercial browser, developed at WebTAP Project12 of Princeton University. They ob-
serve the use of fingerprinting methods and cookies, cookie syncing and the effect of browser
privacy tools. During their investigations, they have discovered and analyzed a novel finger-
printing method utilizing Web Audio API [65] and AudioContext interface [48], an audio
processing graph that can execute audio processing and decoding. The fingerprint checks for
the availability of the API, but also calculated hash of values generated by the API. The visu-
alization of the technique is available on the WebTAB Audio Fingerprint website13. We have
retroactively included the AudioContext fingerprinting method to our framework.

2.3 Other Projects

In this section we mention a couple of more projects related to browser fingerprinting that have
emerged at the time of writing.

Study on Browser Fingerprinting 14 is a project at Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) that aims to explore the diversity of browser fingerprints. They allowed the
visitors of the website to register via and receive a link via email that would take them to the
fingerprinting website. During the period of four weeks, they sent an email once per week with

7 https://repo.eecs.berkeley.edu/git-anon/users/fifield/fontfp.git
8https://www.amiunique.org
9https://github.com/DIVERSIFY-project/amiunique

10http://diversify-project.eu
11https://github.com/citp/OpenWPM
12https://webtap.princeton.edu/
13https://webtap.princeton.edu/audio-fp
14https://browser-fingerprint.cs.fau.de/

11

the aim to analyze how the fingerprint changes over time. As of now they have not published
any results in form of a research paper. They have, however, updated their website with the
statistical analysis of the collected data.

Browserprint is a project developed at University of Adelaide whose website15 resembles that
of Panopticlick, but with updated fingerprinting methods. The project is open source16.

BrowserLeaks 17 is a website that allows the visitors to test their browsers against various
fingerprinting methods and inspect the results, but does not collect data or display statistics in
any form. It also offers brief explanation and code samples for the fingerprinting methods.

The table 2.1 shows a side-by-side comparison of features implemented on the previously
described fingerprinting platforms.

15https://browserprint.info/
16https://github.com/qqTYXn7/browserprint
17https://www.browserleaks.com/

12

Feature Panopticlick AmIUnique Browserprint Our solution
HTTP headers 3 3 3 3

Headers order 3

SSL/TLS connection info 3

SSL/TLS cipher suites 3

SSL/TLS extensions 3

Platform 3* 3 3 3*

Language 3* 3 3 3*

Screen resolution 3* 3 3 3*

Timezone 3 3 3 3

Cookies enabled 3 3 3 3

Supercookie test 3 3 3 3**

Use of AdBlockers 3 3 3 3

Flash presence 3 3 3 3

List of browser plugins 3 3 3 3

List of fonts (JS & Flash) 3 3 3 3

List of fonts (pure CSS) 3

Font metrics 3 3

HTML5 canvas 3*** 3 3 3

WebGL info 3 3 3

AudioContext 3 3

Touch events 3 3**

Social buttons 3

HTML5/CSS3 features 3

*Only JS detection, no Flash
**Via HTML5/CSS features detection
***Since version 2.0

Table 2.1: Comparison of fingerprinting features

13

CHAPTER 3
Design

This chapter introduces key concepts from the framework that form the basis of this thesis. It
starts with a list of requirements imposed on the framework. Next, it provides an overview
of the framework architecture including architectural decisions. Furthermore, the fingerprinting
process is described in detail. Last section provides detailed descriptions of the individual finger-
printing methods used in the framework, together with all properties and browser characteristics
that we collect.

3.1 Requirements

This section briefly describes both functional and non-functional requirements imposed on our
framework. The process of designing and implementing the framework was driven by the re-
quirements listed here.

Extensibility In order for our framework to encompass as many fingerprinting methods as
possible, the extensibility had to be taken into consideration. This has been a major driving
force during the systems design and has enabled us to easily incorporate additional fingerprinting
methods to the framework both during and after the development. By maintaining low coupling
and well defined interfaces, the framework provides a way to add new fingerprinting methods
without the need for changing the underlying architecture.

Robustness Modern web browsers are complex applications that support various web stan-
dards and protocols. Depending on the browser type and version, there can be slight differences
in how the browser interprets these standards and respond to certain events when processing a
web page. We have to make sure that our framework is robust and fault-tolerant to be able to
account for various corner cases and exceptions in order to successfully perform the task.

15

Scalability Although the server part of the framework does not maintain a session state with
the client, scalability in regards to processing of growing data set has to be taken into account.
The design and implementation choices have enabled the framework to effectively accommodate
that growth. Scalability was also influenced by deployment choices and configuration which will
be discussed in next chapter.

Privacy Since the focus of this framework is a privacy-related topic, the anonymity of data col-
lected during the research is of highest priority. In order to make data anonymous and disassoci-
ate it from actual participants in our study, certain measures in implementation and deployment
of the framework had to be made. These will be discussed in the next chapter.

3.2 Framework Overview

3.2.1 Terminology

Before proceeding with presenting the architecture of the framework and going into detail out-
lining the fingerprinting process, we define some terms used throughout this and following chap-
ters.

• Fingerprinting script is one or more JavaScript functions that run in a browser and ex-
ploit its functionality in order to return one or more values of some browser or operating
system characteristics. Scripts can be contained in separate JavaScript files, directly em-
bedded in the page or can be a combination of both.

• Fingerprinting method is usually a collection of fingerprinting scripts and other static
files on which the scripts are dependent (e.g. flash SWF files, external font files, etc.),
grouped into one fingerprinting method because they either pertain to a specific research
or fall into the same logical topic. However, not all fingerprinting methods are executed
directly in the browser, but are performed on server instead. Thus they don’t consist of
JavaScript files or similar, but of server-side code contained in one or more modules.
Result of a fingerprinting method is one or more values or attributes.

• Fingerprint is a collection of results from multiple fingerprinting methods, transmitted
from browser to the server.

3.2.2 Architecture

As visible in figure 3.1, our framework adheres to the client/server architecture and thus is
composed of two main parts:

• Client part - which is presented in form of a web page running in a browser and consists
of collection of JavaScript functions, both embedded in the web page and as standalone
script files, as well as some additional files that are necessary for fingerprinting methods
to function properly. The client part is also responsible for rendering the fingerprinting
results received from the server.

16

Figure 3.1: General overview of the framework

• Server part - which runs as a web application on a web server. This part of framework
furthermore consists of a collection of non-JavaScript fingerprinting methods (more on
this later in the chapter) and a business logic for processing the fingerprinting results. It
also defines interfaces necessary for database connectivity and a templating mechanism
for dynamically serving fingerprinting methods to clients.

Repository is not a direct part of the framework, however it is necessary for storing finger-
printing data and its evaluation.

3.2.3 Fingerprinting Process

This section describes the fingerprinting process and how the two framework parts interact with
each other.

The fingerprint process can be roughly split into three steps:

1. Client (browser) runs fingerprinting scripts and submits the fingerprint to server

2. Server parses and persists the fingerprint

3. Server calculates statistics for fingerprint and returns result to client

Figure 3.2 illustrates the process in a more detailed manner. The fingerprinting process com-
mences when the client (browser) requests a web page that contains the fingerprinting methods.
On a more technical level, this corresponds to HTTP GET method. The server crafts a web
page by referencing all fingerprinting scripts and additional resources needed for fingerprinting
and serves it to the client. Once the requested page is loaded, the fingerprinting scripts are ex-
ecuted and the fingerprint is asynchronously sent to the server. This is achieved by issuing an
HTTP POST request via AJAX [47]. The server then parses the fingerprint and persists it to
the repository. Next, it calculates the statistics for each attribute and checks if the fingerprint
is unique. The interaction ends when the server returns the result to the client. The result is a

17

Figure 3.2: Fingerprinting process activity diagram

HTML table with all the fingerprint values and corresponding statistics, which is then (again,
asynchronously) rendered by the client.

The notion of more technical terms like HTTP GET and POST methods and AJAX is nec-
essary to make a distinction to the next fingerprinting scenario. Previous example illustrated the
fingerprinting process for a client with enabled JavaScript. If, however, the client has disabled
JavaScript or does not support it (bots, headless browsers, other non-browser HTTP clients etc.),
the fingerprinting process is different, as shown in figure 3.3.

The most obvious difference is the absence of run fingerprint script loop and submit finger-
print activity. Because the client cannot run JavaScript code, there are no fingerprinting scripts
that run on the client, nor is there an asynchronous AJAX POST to server. Another deviation
from figure 3.2 is the missing response for the initial request of the fingerprinting page. When
a client that does not support JavaScript requests the fingerprinting page (via HTTP GET), all
fingerprint-relevant data is already contained in that request.

18

Figure 3.3: Fingerprinting process without JavaScript activity diagram

As mentioned before, not all fingerprinting methods are executed in the browser via JavaScript
or other client-side technologies. Server-side fingerprinting methods implemented in the frame-
work rely on analyzing the underlying HTTP(S) connection of client’s request and in the next
step framework parses and persists the fingerprint. Like in a previous scenario, the framework
calculates statistics and the uniqueness of a fingerprint and directly returns the result to a client,
without the need for an intermediate step and a HTTP POST.

3.2.4 Framework Components

Figure 3.4 illustrates a breakdown of the server part of framework into components. The figure
represents final iteration of the framework design. This section describes individual components
and the interaction between them.

Router This component can be regarded as the interface that communicates with the client
part of the framework. When a client request comes in, the router serves fingerprinting scripts

19

Figure 3.4: Server-side framework component diagram

and other static files necessary for fingerprinting. When a client response (or fingerprint) comes
in, the router forwards it to fingerprint manager (a), where the fingerprint is processed.

Fingerprint manager This component serves as a coordinator for other components of the
framework. It was mentioned before that one of the main properties of the framework is its
extensibility. To achieve this, we treat each fingerprinting method separately. That also means
the fingerprint is composed of multiple parts, each pertaining to a single fingerprinting method.
When the server receives a fingerprint from client, the fingerprint manager is responsible of
deconstructing it and forwarding the right part of fingerprint to the right fingerprint parser (b).
Once the parsing is done for all parts of fingerprint, manager forwards the parsed fingerprint to
repository interface (c).

Fingerprint parser(s) This component processes the relevant part of the fingerprint and re-
turns a partial result. For every fingerprinting method registered in the framework, there is a
metadata file with a description of that method’s attributes, parsing information etc. Fingerprint
parser consults the metadata file (f) in order to correctly interpret and process the result. That

20

way, each fingerprinting method can have its own parser and thus is independent from other
methods.

Repository interface This component communicates with the back-end fingerprint repository.
It is responsible for storing fingerprint information as well as calculating statistics for each fin-
gerprint attribute. Once the fingerprint has been stored and the statistics have been evaluated, the
component returns the information to fingerprint manager (c) who in turn forwards it to router
(a).

Result formatter(s) The fingerprint and statistics are forwarded to result formatter(s) in order
to construct a result for client to review her fingerprinting information. In a similar fashion to
fingerprint parser, each fingerprinting method has a dedicated parser that can render the result
independently. It does so by referring to fingerprinting method’s metadata file (e).

Figure 3.5 shows the original, more simple architecture of framework’s server-side part. The
absence of fingerprint parsers and multiple result formatters shows that originally fingerprinting
methods were not treated separately. In this design, all fingerprinting methods and their corre-
sponding attributes were processed in the same fashion, but the addition of server side finger-
printing methods like cipher suites fingerprinting (described in the next section) has forced us to
rethink the way how the fingerprinting data is processed and thus has influenced the framework
design. This decision to treat all fingerprinting methods individually has allowed us to make the
framework flexible and extensible.

Figure 3.5: Server-side framework - original design component diagram

Figure 3.6 illustrates how the framework produces fingerprinting page in a generic way.
By consulting fingerprinting method metadata it references all relevant fingerprinting scripts

21

and additional static files required by scripts in a template. It also references some general-
purpose JavaScripts that glue other scripts together and provide the execution mechanism on the
client side. When the client requests the fingerprinting page the templating engine generates the
fingerprinting page that contains finished HTML and JavaScript and serves it to the client.

Figure 3.6: Generating the fingerprinting scripts

3.3 Fingerprinting Methods

This section describes each fingerprinting method in detail along with their corresponding prop-
erties. All the properties listed and described here are included in the fingerprinting algorithm
and are collected and analyzed by the framework.

3.3.1 Navigator Features

This fingerprinting method encompasses the majority of fingerprinting properties that were used
in the Panopticlick1 survey [22]. Most properties described here are easily accessible via DOM
Navigator object [71] which makes it logical to leave them in the same organizational group.

Platform This property of the Navigator DOM object [54] represents the platform on which
the browser is executing, although earlier versions of JavaScript specification defined it as a
machine type for which the browser was compiled [58]. Example values for this property are

1https://panopticlick.eff.org

22

• Win32 for both 32-bit and 64-bit versions of Windows,

• Linux x86_64 for 64-bit Linux distributions,

• MacIntel for MacOS and

• Linux armv7l for Android OS running on devices with ARM v7 processor.

Language This property represents the preferred language of the user and/or the browsers UI
language. Example values are en, en-US, de-AT, de-DE etc. Since it is possible to define
more than one preferred language in the browser, this property returns the first, or the language
with highest priority. If this value differs from the first element of navigator.languages
array, we can assume that the user has lied about the language and so we append an * to the
value, e.g. en-US*.

Screen resolution This property is a combination of screen width, screen height and the color
depth. It is accessible via the Screen DOM object [55]. Example value is 1280x720x24.
If the screen width or height is smaller than the available screen width or height, respectively,
we assume the user has lied about the resolution and append an * to the value, analog to the
language. For headless browsers, this property is unavailable. Interestingly, in a multi-monitor
setup with different resolutions the Scren DOM object reports the dimensions of the screens on
which the browser windows is currently open.

Timezone This property represents the time zone offset for the current locale from UTC, ex-
pressed in minutes. For example -120 means UTC+02:00 - Central European Time (CET) with
daylight saving time.

’Do Not Track’ flag Do Not Track (or DNT for short) is a mechanism for expressing tracking
preference of the user. It is defined by W3C2 as both an HTTP header and an HTML DOM
object [70]. Values for this property are 1 if DNT is enabled, 0 if the user opted-in for tracking
and unspecified (default value) if user set no preferences. Older browsers used values yes
and no for opting out and in, respectively. Websites that honor the DNT preference can set the
Tk response header to specify the tracking status.

Cookies This property tells if the user has enabled cookies. It can take on values true and
false. Besides that, we also use cookies to track returning users in order to measure finger-
printing change over time.

AdBlocker installed This property shows if an ad-blocker is in use. In order to detect the
presence of an ad-blocker we create a JavaScript file advert.js (See code listing 3.2), define
a <div> element called ads and append it to HTML document body. Then we go on and try
to reference the element by id. If the ad-blocker is present it will block the element because its
name matches the *ad* blocking rule.

2World Wide Web Consortium, https://www.w3c.org

23

Flash installed This property tells us if Adobe Flash is installed and/or blocked. We rely on
Modernizr library [44] for detection.

Plugins This property enumerates all installed and enabled NPAPI plugins [53]. Plugins allow
the user to display additional content types that are not natively supported in a browser, like
different video formats and PDF documents. We collect plugin names, filenames alongside
their descriptions and registered media (MIME) types. In case of Internet Explorer it is not
possible to enumerate the plugins via navigator.plugins interface, but rather to reverse
lookup the most popular plugins by name, e.g. AcroPDF.PDF, QuickTime.QuickTime,
Skype.Detection, etc. We use Fingerprintjs2 library [29] for detection.

1 platform = navigator.platform;
2 language = navigator.language || navigator.userLanguage ||
3 navigator.browserLanguage || navigator.systemLanguage;
4 if (language !== navigator.languages[0].substr(0, 2))
5 language += ’*’;
6
7 screenres = screen.width + ’x’ + screen.height + ’x’ + screen.colorDepth;
8 if (screen.width < screen.availWidth ||
9 screen.height < screen.availHeight)

10 screenres += ’*’;
11
12 timezone = new Date().getTimezoneOffset();
13 dnt = navigator.doNotTrack || navigator.msDoNotTrack ||
14 window.doNotTrack; // Safari and IE use different property
15
16 cookie = navigator.cookieEnabled;
17 adblock = document.getElementById(’ads’) ? ’False’ : ’True’; // advert.js
18 flash = Modernizr.flash.blocked ? ’Blocked’ :
19 (Modernizr.flash ? ’True’ : ’False’);
20
21 var plugins = [];
22 for (var i = 0, l = navigator.plugins.length; i < l; i++)
23 plugins.push(navigator.plugins[i]);

Listing 3.1: Navigator features detection

1 var ads = document.createElement(’div’);
2 ads.setAttribute(’id’, ’ads’);
3 document.body.appendChild(ads);

Listing 3.2: Advert.js

3.3.2 HTTP Headers

Every time a browser or other HTTP client establishes a connection with server, it transmits cer-
tain HTTP headers that give detailed information about the client. This section describes HTTP
request header fields used by our fingerprinting algorithm. It is worth noting that this finger-
printing method does not depend on JavaScript since all HTTP client, regardless of JavaScript

24

support, transmit HTTP headers because they’re part of the underlying HTTP protocol. All
properties except for headers order were also used in Panopticlick [22] survey.

User Agent This header contains information about the browser (or any other client software)
initiating the request. It is used by servers to tailor or customize the response in order to take
advantage of clients’ capabilities or to work around their limitations. The header contains one or
more product tokens made up of name and version of the product and any necessary comments
that are of value to the sever when processing the request [27]. For example, User-Agent header
in code listing 3.3 (line 1) gives us following information:

• Mozilla/5.0 Browser is compatible with Mozilla rendering engine.

• Windows NT 6.3; WOW64; rv:47.0 It is running on 64-bit of Windows 8.1.

• Gecko/20100101 It uses gecko layout engine, desktop version (’20100101’).

• Firefox/47.0 It is Firefox browser, version 47.0.

Accept This header specifies the response media types acceptable by the web browser (re-
quester). It may contain multiple types and subtypes as well as an additional parameter q which
indicates the relative weight or preference. If the weight is not specified, the most specific media
type is preferred, than the first less specific and so on. Example Accept header in code listing
3.3 (line 2) has following precedence:

1. text/html and application/xhtml+xml are equally preferred

2. application/xml

3. */*

Accept-Encoding This header indicates the preferred content-encoding of the response. *
denotes any encoding is accepted. Analog to Accept header, browser can also specify qweight
when multiple encodings are present. In code listing 3.3 (line 3) the browser accepts gzip,
deflate and br encodings with equal preference.

Accept-Language This header specifies the languages that are preferred by the browser. q
weight can be also specified for each language. In code listing 3.3 (line 4) the browser has US
English as preferred language, but will accept other types of English.

Connection This header tells the server if the TCP connection should stay open and be reused
for future requests by specifying keep-value in the header. Although this value is deprecated,
it is used by all browser per default. However, there are some slight differences in capitalization
(e.g. Keep-Alive or Keep-alive).

25

Headers order This property is not a header by itself, but rather a combination of previously
mentioned headers which we collect while preserving the order in which they appear during the
HTTP(S) connection.

1 User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101
Firefox/47.0

2 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
3 Accept-Encoding: gzip, deflate, br
4 Accept-Language: en-US,en;q=0.5
5 Connection: keep-alive

Listing 3.3: Example HTTP headers

3.3.3 SSL/TLS Cipher Suites Fingerprinting

Transport Layer Security (TLS), and its predecessor Secure Sockets Layer (SSL), are crypto-
graphic protocols for secure communication over the Internet. TLS protocol offers cryptographic
security, interoperability, relative efficiency and extensibility. The latter provides a way to in-
corporate new key and bulk encryption methods into the protocol without the need for creating
a new protocol and implementing a new encryption library [20].

In order to establish a secure connection, the client and the server first have to agree upon an
encryption method they both understand. This agreement takes place during the TLS handshake
phase which is depicted in figure 3.7. The client begins by sending a ClientHello message
to the server. This message contains the TLS version supported by the client, a list of cipher
suites, a list of supported extensions and a compression method. It also contains a sequence of
random 32 bytes, as well as a session ID, which are of little interest for fingerprinting purposes
since they change for every session. The server then responds with a ServerHello message
that contains the TLS version and supported ciphers, followed by the X.509 Certificate.
Since the parties have not yet agreed upon a mutual encryption method, the initial packets of the
communication are unencrypted and transmitted in plain text over the network. As it turns out,
the packets, especially the list of cipher suites, differ from one client to another and as such are
subject to fingerprinting.

Listing 3.6 shows a formatted ClientHello message. We use Fiddler3 debugging proxy
to intercept the HTTPS traffic by installing Fiddler’s 3rd party certificate which enables us to
extract the ClientHello message from HTTP CONNECT tunnel.

This is another fingerprinting method that does not depend on the availability of JavaScript
on the client. In any case, client connecting to HTTPS server transmits the SSL/TLS attributes
described below, that were also used in [33].

Handshake Version This property shows the SSL/TLS handshake version: either 2 for SSL
v2 or (usually) 3 for SSL v3+.

3http://www.telerik.com/fiddler

26

Figure 3.7: TLS handshake

Protocol Version This property tells us the preferred SSL/TLS version of the client during the
session. The protocol version may take on values 3.0 that indicates the old and insecure SSL
3.0 protocol version, susceptible to POODLE attacks [45] to 3.1, 3.2 and 3.3 indicating TLS
protocol versions 1.0, 1.1, 1.2 and 1.3, respectively. According to the specifications, this should
be the latest version supported by the client [20]. See listing 3.6 (line 9), for example.

Extensions This is the ordered list of TLS extensions which is browser specific, but also de-
pends on the underlying operating system. RFC6066 [2] provides specification for existing TLS
extensions, while [36] contains a comprehensive lists of all standardized extensions. Listing 3.6
(lines 14-23) show a list of extensions for Firefox 47.0 on Windows 8.1.

Compression This property indicates the compression methods supported by the client. All
clients support NULL compression method, but some also support additional compression meth-

27

ods [32] like DEFLATE, a lossless compressed data format that uses LZ77 algorithm and Huff-
man coding [19]. See listing 3.6 (line 40).

Cipher Suites This is the list of cryptographic options supported by the client. The list is
ordered from client’s most to least preferable cipher suite. Each cipher suite consists of a key
exchange algorithm, a bulk encryption algorithm, a MAC algorithm and a pseudo-random func-
tion. The server picks the preferred cipher and communicates it to the client. Listing 3.6 (lines
25-37) shows an example list of cipher suites.

3.3.4 Font detection

Detected fonts We use two different approaches to detect installed system fonts. First, we try
enumerating the fonts via Flash by embedding a hidden SWF object [8] in a HTML page. The
SWF object contains ActionScript code that can enumerate all installed system fonts [6] in the
background:

1 var user_fonts = TextField.getFontList();
2 getURL("javascript:fontList(\"" + escape(user_fonts) + "\")","_self");

Listing 3.4: Decompiled SWF: ActionScript font detection

If Flash is enabled in the browser, we can retrieve the fonts from SWF via JavaScript:

1 if (!!Modernizr.flash && Modernizr.flash.blocked !== undefined) {
2 var swfObj = document.getElementById("flh");
3 if (swfObj && typeof(swfObj.GetVariable) != "undefined") {
4 var available = swfObj.GetVariable("/:user_fonts");
5 return available + ’ (via Flash)’;
6 }
7 } // ...else detect via JS

Listing 3.5: JavaScript: Flash font detection

If, however, Flash is not installed or the Flash plugin is disabled, we rely on a fall-back mech-
anism by probing a predefined list of fonts with the help of JS/CSS Font Detector JavaScript
library [64]. This approach is based on the assumption that text characters have different di-
mensions when rendered with different fonts (see figure 3.8). First we render three text strings
with the browser default font faces serif, sans-serif and monospace and calculate the
widths of the strings via CSS. Next, we render each font from our predefined list and compare
the widths - if the width differs from all three default fonts we assume that the font is present. In
contrast, if the width of our font matches one of the three default fonts, it can be assumed that
the font is missing and one of the fallback default fonts is used.

This method, however, has some drawbacks. The biggest one is that it can’t detected all
system fonts, but rather can reverse lookup fonts from a predefined list. Next, it yields false
positives, especially when the font names contain empty characters or numbers. This is probably
due to the implementation bug in the JS library. It is important to note that the values of false
positives remain stable. That is, when performing multiple fingerprints with this method, the
values do not change. It is obvious that this fall-back font probing is not as powerful as Flash

28

1 CONNECT fingerprint.sba-research.org:443 HTTP/1.1
2 User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101

Firefox/47.0
3 Connection: keep-alive
4 Connection: keep-alive
5 Host: fingerprint.sba-research.org:443
6
7 A SSLv3-compatible ClientHello handshake was found. Fiddler extracted the

parameters below.
8
9 Version: 3.3 (TLS/1.2)

10 Random: CD 0F 37 92 2F 91 F9 10 7B 5C 9F 44 0A B3 AF 64 8C D6 9D 48 EA B2
2C 2C A1 95 68 3D 90 B5 64 C3

11 Time: 9/26/2047 5:41:01 AM
12 SessionID: D1 0A 00 00 A0 DD 3D 17 1D 4D 71 8B 74 37 01 7C 6A 88 D6 60 EE

20 A1 61 C0 BB 45 DC 55 8C 74 13
13 Extensions:
14 server_name fingerprint.sba-research.org
15 extended_master_secret empty
16 renegotiation_info 00
17 elliptic_curves secp256r1 [0x17], secp384r1 [0x18], secp521r1 [0x19]
18 ec_point_formats uncompressed [0x0]
19 SessionTicket empty
20 NextProtocolNego empty
21 ALPN h2, spdy/3.1, http/1.1
22 status_request OCSP - Implicit Responder
23 signature_algs sha256_rsa, sha384_rsa, sha512_rsa, sha1_rsa,

sha256_ecdsa, sha384_ecdsa, sha512_ecdsa, sha1_ecdsa, sha256_dsa,
sha1_dsa

24 Ciphers:
25 [C02B] TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
26 [C02F] TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
27 [CCA9] TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
28 [CCA8] TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
29 [C00A] TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
30 [C009] TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
31 [C013] TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA
32 [C014] TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA
33 [0033] TLS_DHE_RSA_WITH_AES_128_SHA
34 [0039] TLS_DHE_RSA_WITH_AES_256_SHA
35 [002F] TLS_RSA_AES_128_SHA
36 [0035] TLS_RSA_AES_256_SHA
37 [000A] SSL_RSA_WITH_3DES_EDE_SHA
38
39 Compression:
40 [00] NO_COMPRESSION

Listing 3.6: SSL/TLS ClientHello message

29

font detection, because not only less popular fonts might not detected for they were not included
in the predefined list of fonts, but also the font order is not a fingerprintable feature anymore.

One could argue that another drawback to this approach of font detection is slower than the
Flash method. We have measured that the reverse lookup of 510 fonts in Firefox 47 takes under
300 ms on our test machine.4, however we could not compare it to the Flash method since we
found no easy way of measuring performance of initialization and execution of Flash without
modifying and recompiling the SWF file.

Figure 3.8: Font width: monospace (Courier New) vs Consolas

It is theoretically also possible to fingerprint fonts via Java and Silverlight plugins, but we
have decided to exclude these method since browser vendors have started phasing out [14] sup-
port for NPAPI plugins [18] or disabling them for security reasons by default [15].

Font metrics This property is a checksum of measuring the on-screen dimension of individual
font glyphs described in [28]. The glyphs are rendered in very large size to exaggerate the
smallest differences in rendering dimensions. Figure 3.95 shows an example of a single font
glyph rendered with default, serif, sans-serif, monospace, cursive and fantasy font families. The
measurements of 43 code points are hashed and checksummed. The process is repeated three
times:

• With all system fonts

• With standard fonts

• With only one standard font - also effective against Tor Browser hat limits font enumera-
tion

3.3.5 HTML5 Canvas Fingerprinting

HTML5 Canvas API [49] allows web applications to draw 2D graphics on a HTML <canvas>
element using JavaScript. This fingerprinting method utilizes canvas API to draw shapes, arcs
and text to the canvas element and measure the differences in rendering and anti-aliasing on a
pixel level. This fingerprinting method was first reported in [46].

4Windows 8.1; Intel Core i5-4200 CPU @ 2x1.60 GHz; 8GB RAM
5Image generated in Firefox 47 on Widows 10 machine, via https://www.bamsoftware.com/talks/fc15-

fontfp/fontfp.html

30

Figure 3.9: Font metrics: single character rendered with different font families

Canvas Image This property represents the image generated via canvas API. Using JavaScript
3.7, we draw two text strings with different size and color followed by a couple of special
characters and a smiley face (Unicode characters). Additionally, we use an invalid font name for
one of the two strings to force the browser to fall back to default font. The actual results of the
script is a base64 encoded image, that we embed in the HTML page via <image> element.
Figure 3.10 shows the results of the same canvas script rendered on different browsers - Firefox
47/Windows 8.1, Chrome 51/Windows 8.1 and Chrome 52/Android 6.0.1, from top to bottom.

Figure 3.10: Image generated via canvas API

3.3.6 WebGL Fingerprinting

WebGL [42] is a low level 3D graphics API for the browsers that allows drawing of interactive
3D and 2D graphics on the <canvas> element, similarly to Cavas API. WebGL is based on
OpenGL ES 2.0 and is integrated into the browser, removing the need for 3rd party plug-ins.

WebGL Support In order for a browser to support WebGL, it has to be supported by the
underlying hardware - the GPU. This property shows if the browser supports WebGL and can
take values true and false.

31

1 function drawOnCanvas() {
2 var cEl = document.createElement("canvas");
3 cEl.setAttribute("height", 50);
4 cEl.setAttribute("width", 400);
5 cEl.style.display = "inline";
6
7 var cCtx = cEl.getContext("2d");
8 cCtx.textBaseline = "alphabetic";
9 cCtx.fillStyle = "#f60";

10 cCtx.fillRect(230, 1, 62, 20);
11 cCtx.fillStyle = "#069";
12 cCtx.font = "12pt invalid-font-42";
13 var txt = "Cwm fjord veg balks nth pyx quiz! ,$% \ud83d\ude03";
14 cCtx.fillText(txt, 2, 15);
15 cCtx.fillStyle = "rgba(102, 204, 0, 0.7)";
16 cCtx.font = "14pt Arial";
17 cCtx.fillText(txt, 4, 37);
18
19 return cEl.toDataURL();
20 }

Listing 3.7: Drawing on canvas via JavaScript

1 if (window.WebGLRenderingContext) {
2 var names = ["webgl", "experimental-webgl", "moz-webgl"];
3 var supported = [];
4 for (var i in names) {
5 try {
6 var gl = document.createElement(’canvas’).getContext(names[i]);
7 if (gl && typeof gl.getParameter == "function")
8 supported.push(names[i]);
9 } catch(e) {}

10 }
11 }

Listing 3.8: WebGL initialization

WebGL Enabled It is possible, although not straightforward, to disable WebGL in the browser.
It usually involves setting the right flags on the advanced settings page (about:config in
Firefox or chrome://flags in Chrome). This property shows if the WebGL is enabled in
browser and can take values true and false.

Supported Context Names In order to draw via WebGL onto the canvas element, a WebGL
context needs to be initialized. The context is used to render to the drawing buffer and to man-
age the state of WebGL. It is initialized via canvas by supplying the context name (see listing
3.8). Standard context names are webgl, experimental-webgl and moz-webgl. This
property shows all available context names.

32

Version This property indicates the version or the release number of the WebGL implementa-
tion. For example:

• WebGL 0.94 on Internet Explorer 11,

• WebGL 1.0 (OpenGL ES 2.0 Chromium) on Chrome on Android

Shading Language Version Similar to version, but more specific:

• WebGL 0.94 GLSL ES 0.94 on Internet Explorer 11,

• WebGL GLSL ES 1.0 (OpenGL ES GLSL ES 1.0 Chromium) on Chrome on
Android

Vendor This property shows the vendor of the WebGL implementation and in many cases it
is equivalent to the browser platform (e.g. Mozilla, WebKit, etc.).

Renderer This property shows the WebGL renderer which is typically equivalent to the browser
platform (e.g. Mozilla, Webkit, WebKit WebGL, etc.).

Unmasked Vendor This property shows the real vendor of the WebGL implementation (e.g.
Google Inc., Microsoft, Qualcomm, etc.). Some browsers, like newer versions of Fire-
fox are hiding the real vendor and renderer with the values n/a. Retreiving the unmasked vendor
and renderer is straighforward, as seen in listing 3.9.

1 var ctx = document.createElement("canvas").getContext(’webgl’);
2 var dbgRend = ctx.getExtension(’WEBGL_debug_renderer_info’)
3 if (dbgRend != null) {
4 vendorReal = ctx.getParameter(dbgrnd.UNMASKED_VENDOR_WEBGL);
5 rendererReal = ctx.getParameter(dbgrnd.UNMASKED_RENDERER_WEBGL);
6 }

Listing 3.9: WebGL: unmasked vendor and renderer

Unmasked Renderer This property indicates the real renderer and may contain information
about the GPU and the version of the installed drivers. For example, three browsers reveal
different amount of information on the same machine:

• Mozilla Firefox 47: n/a

• Internet Explorer 11: Intel(R) HD Graphics Family

• Google Chrome 51: ANGLE (Intel(R) HD Graphics Family Direct3D11
vs_5_0 ps_5_0)

33

Supported Extensions WebGL API, like OpenGL API, supports extensions that offer addi-
tional functionalities. Extensions are prefixed with ANGLE_, OES_, EXT and. WEBGL. There
are also vendor specific extensions. These are prefixed with MOZ_, WEBKIT_ etc. This property
list all supported extensions in this particular WebGL implementation.

Max Anisotropy The extension EXT_texture_filter_anisotropic enables support
for anisotropic filtering in WebGL. This property shows the maximum anisotropy level sup-
ported by the extension. Example values are 2, 16, etc.

3.3.7 HTML5/CSS3 Features Detection

Modern web browsers support a vast number of Internet technologies and implement various
W3C standards like HTML, CSS, JavaScript etc. Many of these standard have not yet reached
the final status and are in an ongoing process of revision and rewriting. Some browser vendors
like Google and Mozilla have shortened the development and release cycles of their browsers to
be able to keep up with the growing number of features defined by aforementioned standards, in
addition to fixing bugs and security updates [12] [16].

This race to implement the best and newest features in the next browser release has led to
fragmentation of implementation status of various features across different browsers. Websites
like HTML5 Test6 and CSS3 Test7 rate the browsers with score points based on the implemen-
tation status of HTML5 and CSS3 standards, respectively. Another website Can I Use8 helps
web application developers to keep track of the features which they might or might not use in
order to accomplish an unique cross-browser experience for their web application. Modernizr9

is a JavaScript library for HTML5/CSS3 feature detection that enables web developers to pro-
grammatically check if the browser supports a certain feature. Code listing 3.10 shows a check
for a Web Animation API.

1 if (Modernizr.animation) {
2 // show animation
3 } else {
4 // display static content
5 }

Listing 3.10: Feature detection with Modernizr

We utilize Modernizr to detect almost 300 features and use it as part of our fingerprinting
algorithm as proposed in [69]. The detections range from various CSS properties, over HTML5
features from different APIs, to storage capabilities of the browser, like local storage, session
storage and Web SQL database.

HTML5 APIs Battery, Emojis, Fullscreen API, Gamepad, Geolocation, History, Internation-
alization, Page Visibility, MathML, Navigation Timing, Notifications, DOM Pointer Events,

6https://html5test.com/
7http://css3test.com/
8http://caniuse.com/
9https://modernizr.com

34

Pointer Lock, Proximity, Quota Storage Management, ServiceWorker, IE User Data, Vibration,
Web Animation, Web Audio, Dataset, File, Filesystem, Beacon, Fetch, Speech Recognition,
Speech Synthesis, Timed Text Track, Web Cryptography, Web Intents, WebSockets, Binary
WebSockets, Touch Events, RTC Data Channel, RTC Peer Connection, Web Workers, Shared
Workers.

ECMAScript 5 and 6 ES5 Array, ES5 Date, ES5 Function, ES5 Object, ES5, ES5 Strict
Mode, ES5 String, ES5 Syntax, ES5 Immutable Undefined, ES6 Array, ES6 Collections, ES5
String.prototype.contains, ES6 Generators, ES6 Math, ES6 Number, ES6 Object, ES6 Promises,
ES6 String.

CSS Properties and Attributes Animations, Background Blend Mode, Clip Text, Calc, Fil-
ters, :checked :nth-child and :last-child Pseudo-Selectors, :target :valid
and :invalid Pseudo-Classes, Font ch ex and rem Units, Columns attributes, Cubic Bezier
Range, Display Table, text-overflow Ellipsis, CSS.escape(), Gradients, HSLA Col-
ors, Hyphens, Mask, Media Queries, Multiple Backgrounds, Object Fit, Opacity, Overflow
Scrolling, Pointer Events, position: sticky, Generated Content Animations and Transitions,
Reflections, Regions, UI Resize, rgba, Stylable Scrollbars, Shapes, general sibling selector,
Supports, text-align-last, textshadow, Transforms, Transforms 3D, Transform Style
preserve-3d, Transitions, user-select, vh vmax and vmin unit, cssall, wrap-flow.

Multimedia HTML5 Audio Element (ogg, mp3, opus, wav, m4a), HTML5 Video (ogg, h264,
webm, vp9, hls), Audio Loop Attribute, Audio Preload, JPEG 2000, JPEG XR, EXIF Orien-
tation, WebP, WebP Lossless, Animated WebP, Animated PNG, SVG clip paths, SVG filters,
SVG foreignObject, Inline SVG, SVG SMIL animation, Video Loop Attribute, Video Preload
Attribute.

Storage Application Cache, Local Storage, Session Storage, Web SQL Database, IndexedDB,
IndexedDB Blob, deleteDatabase().

Other Ambient Light Events, Blob constructor, Canvas, Canvas text, Content Editable, Con-
text menus, Cross-Origin Resource Sharing, Custom protocol handler, CustomEvent, Dart, Data-
View, Emoji, Event Listener, Hashchange event, Hidden Scrollbar, HTML Imports, IE8 compat
mode, input element attributes, input[search] search event, input type attributes, JSON,
Font Ligatures, Reverse Ordered Lists, postMessage, QuerySelector, requestAnimationFrame,
Template strings, Touch Events, Typed arrays, Unicode characters, VML, XDomainRequest,
a[download]Attribute, Low Battery Level, canvas blending support, canvas.toDataURL
type support, getRandomValues, Appearance, Backdrop Filter, Background Position Shorthand
and XY, Background Repeat (bgrepeatspace and bgrepeatround), Background Size
and Cover, Border Image, Border Radius, Box Shadow, Box Sizing, Flexbox, Flex Line Wrap-
ping, @font-face, will-change, classList, Document Fragment, [hidden] Attribute, mi-
crodata, DOM4 MutationObserver, bdi Element, datalist Element, details Element, output El-
ement, picture Element, progress Element (progressbar), progress Element (meter), ruby, rp,

35

rt Elements, Template Tag, time Element, Track element, Unknown Elements, Motion Event,
Orientation Event, onInput Event, input[capture] Attribute, input[file] Attribute,
input[directory]Attribute, input[form]Attribute, input[type="number"] Lo-
calization, placeholder attribute, form #requestAutocomplete(), Form Validation, Server
SentEvents, iframe[sandbox] Attribute, iframe[seamless]\verb Attribute, Image
crossOrigin, sizes attribute, srcset attribute, input formaction, input formenctype, input form-
method, input formtarget, Low Bandwidth Connection, Server SentEvents, XML HTTP Re-
quest Level 2 XHR2, script[async], script[defer], style[scoped], SVG as
an tag source, textarea maxlength, Blob URLs, Data URI, URL parser, getUserMe-
dia, Framed window, Workers from Data URIs, Transferables Objects, iframe[srcdoc]
Attribute.

Modernizr documentation [44] contains brief descriptions for each property.

3.3.8 AudioContext Fingerprinting

This fingerprinting method exploits the WebAudio API [65] by generating audio signal which
is then hashed and used as an identifier. This method does not generate audio playable on the
speakers nor does it use the microphone. Instead it analyzes the differences in how the audio
signal is processed. There are two ways of analyzing audio signal: via Oscillator [52] and
Dynamics Compressor [50] nodes. The fingerprinting method has first been analyzed in [25].

AudioContext properties This is a collection of general browser/system audio properties
available to AudioContext API. An example value might look like listing 3.11:

1 {
2 "ac-sampleRate": 44100,
3 "ac-state": "suspended",
4 "ac-maxChannelCount": 2,
5 "ac-numberOfInputs": 1,
6 "ac-numberOfOutputs": 0,
7 "ac-channelCount": 2,
8 "ac-channelCountMode": "explicit",
9 "ac-channelInterpretation": "speakers",

10 "an-fftSize": 2048,
11 "an-frequencyBinCount": 1024,
12 "an-minDecibels": -100,
13 "an-maxDecibels": -30,
14 "an-smoothingTimeConstant": 0.8,
15 "an-numberOfInputs": 1,
16 "an-numberOfOutputs": 1,
17 "an-channelCount": 1,
18 "an-channelCountMode": "max",
19 "an-channelInterpretation": "speakers"
20 }

Listing 3.11: AudioContext properties

36

DynamicsCompressor values By using Dynamics Compressor API the fingeprinting scripts
generates audio signal, whose resulting values which are utilized in two ways to add to the
fingerprinting algorithm:

• Sum of buffer values

• Hash of full buffer

OscillatorNode values This is a result of generating audio signal via OscillatorNode API. The
results is a list of node values which when visualized look like figure 3.1110.

Figure 3.11: Audio fingerprint

10Values generated on Firefox 47 on Windows 10 machine via https://audiofingerprint.openwpm.com/

37

CHAPTER 4
Implementation

This chapter lists the tools and technologies used for implementation and shows how they are
combined in order to create the framework in its final form. Next, it outlines details about the
deployment in form of a website. Finally, some privacy considerations are mentioned.

4.1 Tools

This section lists the tools and libraries used to develop and deploy the framework.

Python 2.7 1 This is the programming language used for the development of the server part of
our framework. Python was chosen for following reasons:

• it allows for fast application prototyping and testing

• it has good tooling support and an extensive ecosystem of libraries and web frameworks

Bottle 2 This is a web framework of choice. Bottle describes itself as a fast, simple and
lightweight WSGI micro web-framework for Python [31]. This open-source framework is con-
tained in a single Python module and has no external dependencies. It supports function binding
to URL routes, has a built-in template engine for server-side content generation and a built-in
(and interchangeable) WSGI [21] HTTP server.

MongoDB 3 This is an open-source document-oriented (NoSQL) database where browser fin-
gerprints are stored. The choice of NoSQL over more traditional relational database is further
discussed in the next section.

1https://www.python.org/
2http://bottlepy.org
3https://www.mongodb.com/

39

PyMongo 4 This is a Python library/driver for MongoDB that allows interaction with the said
database. We use it to store fingerprints and derive statistics from the data.

Virtualenv 5 This tool is used to create isolated Python environment for our web application,
during both development and production.

pip 6 This is a package management system for Python ecosystem and is used to install de-
pendencies for the web application when deploying on the server.

Apache Web Server 7 This is the web server used for hosting our framework as a web appli-
cation.

mod_ssl 8 This is an Apache module that provides SSL/TLS support for the Apache Web
Server.

ssl_haf 9 This is an Apache module for SSL/TLS handshake analysis used by Cipher Suite
fingerprinting method in Section 3.3.3.

mod_wsgi 10 This is an Apache module that provides an WSGI-compliant interface for hosting
Python based web applications.

jQuery 11 This is the most popular JavaScript library intended on simplifying the client-
scripting with cross-browser compatibility in mind. We use it to execute fingerprinting scripts
and arrange results in the browser.

Twitter Bootstrap 12 This is a front-end framework for developing responsive web sites which
is used to design a user-friendly website for our framework.

4.2 Technical Realization

Figure 4.1 shows how the above-mentioned tools fit together to form the development and de-
ployment stack for the framework. Since the fingerprinting framework was developed with
Python, we had a choice of developing it on top of an existing web application framework.

4https://api.mongodb.com/python/current/
5https://virtualenv.pypa.io/en/stable/
6https://pip.pypa.io/en/stable/
7https://httpd.apache.org/
8https://httpd.apache.org/docs/current/mod/mod_ssl.html
9https://github.com/ssllabs/sslhaf

10https://modwsgi.readthedocs.io/en/develop/
11https://jquery.com
12http://getbootstrap.com

40

Bottle framework was chosen because it supported URL routing, templating and had an inter-
changeable WSGI component. WSGI is a Python standard that specifies the interface between
web servers and Python applications and defines how they should interact [21]. That way Bot-
tle’s own primitive WSGI implementation could be replaced with another, more robust WSGI
server.

Initially, the plan was to deploy the website on Microsoft Azure13 cloud platform, because
it offered ’one-click deployment’ directly from Visual Studio IDE. However, the decision to in-
clude SSL/TLS fingerprinting has forced us to switch to Apache Web Server and use ssl_haf
module to analyze the SSL/TLS handshake. Additionally, mod_ssl was employed in order to
enable HTTPS communication in Apache in the first place.

In order for Bottle to be able to communicate with Apache Web Server, we had to use
mod_wsgi module, since Apache does not support WSGI natively. We utilize virtualenv
to create an isolated Python environment for Bottle framework and our application, and pip to
install Python library dependencies. For communication with MongoDB, we use PyMongo.

Apache Web Server

mod_wsgissl_hafmod_ssl

Bottle.py Web Framework

FP Framework

Browser

WSGI

HTTPS

BSON
PyMongo MongoDB

Figure 4.1: Development stack

4.2.1 Database choice

For persisting fingerprints we have opted for a schema-less database, more specifically Mon-
goDB. There are 3 main reasons we picked document-oriented over relational database:

13https://azure.microsoft.com/

41

1. Our fingerprinting data has no relations to other entities, hence we would theoretically
only need one table for fingerprints in a relational database. One possibility would be to
have a table per fingerprinting method and then joining all tables to form a fingerprint,
however it would add unnecessary complexity to the DB-model. In our case, one finger-
print equals one document (or data entry) in the database.

2. There is no purpose in defining a schema for our fingerprint model. Fingerprints can have
varying number of fields depending on the result of a fingerprinting scripts. If a browser
has disabled JavaScript, then only server-side fingerprinting methods will run and the rest
of results is not present. Since the fingerprinting metadata file already contains the list of
properties for that method, we can check for presence of property values in the database
via simple business logic. Second argument for having a schema-less database is the
extensibility aspect of framework. When adding new fingerprinting methods, there is no
need for schema adaptation or update scripts.

3. Fingerprinting result and MongoDB database have a matching document format. Finger-
prints are sent to server as JSON (JavaScript Object Notation) [23], whereas MongoDB
uses BSON (or Binary JSON) as a format for storing documents. This way we can store
verbatim fingerprinting results in the database without prior modification.

4.2.2 Extendibility

To make the framework extensible, we had to define fingerprinting methods in an abstract way.
We achieved this by introducing a metadata file for each and every fingerprinting method. The
file is named method_info.js and its content is shown in listing 4.1.

1 {
2 "id": "navigator",
3 "name": "Navigator",
4 "js": "navfp()",
5 "scripts": [
6 "/js/advert.js",
7 "/js/fingerprint2.js",
8 "/js/navigator.js"
9],

10 "properties": {
11 "plugins": "Plugins",
12 "lang": "Language",
13 "video": "Screen Resolution",
14 "tz": "Timezone",
15 ...
16 },
17 "hashed_properties" : {
18 "plugins" : "Browser Plugins"
19 },
20 "result_handler": "PluginsResultHandler"
21 }

Listing 4.1: Navigator fingerprinting method metadata

42

Fingerprint method metadata specifies the id and names of fingerprinting properties for that
method (keys in the properties element). The naming schema is also used when constructing
fingerprinting result and persisting a fingerprint to database. Name and property descriptions
(values in the properties element) are used for displaying full property names on the result page.
Hashed properties are properties with long values, for which the framework creates database
indexes during startup, for faster value comparison. Scripts represents the list of JavaScript
files to be embedded in the web page which are necessary for performing fingerprinting. js is
the main function for that fingerprinting method, from which the embedded scripts are called.
result_handler is the implementation of fingerprint parser and result manager (see sec-
tion 3.2.4). It is a python module where one can define how the results should be parsed and
displayed. Listing 4.2 shows an excerpt from result_handler for Navigator fingerprinting
method, which checks the value of plugins property. If it’s empty, it will display ’No plugins
detected’ on the display page.

1 def format_property(self, property_name, property_value):
2 if property_name == ’plugins’:
3 if not str(property_value).strip():
4 return ’No plugins detected’

Listing 4.2: Navigator result handler

This way we have decoupled the business logic of individual fingerprinting methods from
the core part of the framework.

4.2.3 Script Execution

Listing 4.3 shows the JavaScript code that performs the execution of scripts and sends the result
to server once the fingerprinting is done. names and requests are dynamically generated
server-side before serving a page to the client. Server does this by enumerating the registered
fingerprinting methods and consulting metadata. When the fingerprinting is finished, the script
packs the results into a JSON object and sends it to server.

1 $(document).ready(function () {
2 setTimeout(function() {
3 var names = ... // array of fp ids, for nesting results
4 var requests = ... // array of js functions to execute
5
6 $.when.apply($, requests).done(function () {
7 var result = new Object();
8 $.each(arguments, function (index, responseData) {
9 result[names[index]] = responseData;

10 });
11
12 $.ajax({
13 type: "POST",
14 url: "/fp",
15 data: JSON.stringify({ ’fp’: result }),
16 contentType: "application/json; charset=utf-8",
17 dataType: "json",

43

18 converters: { ’text json’: true },
19 success: // wait for results
20 failure: // display error message
21 });
22 });
23 }, 2000);
24 });

Listing 4.3: Script runner

4.3 Deployment

The framework was deployed at DigitalOcean14, where a virtual private server (VPS or droplet
in DigitalOcean jargon) was created. The VPS had 1 CPU and 30GB SSD at disposal. In
order to support HTTPS communication, installation of a SSL/TLS certificate on the server was
necessary. We have used Let’s Encrypt15 which is a free and automatic open cartificate authority.

Figure 4.2 shows the front page of the website16 where framework is deployed. When the
user clicks on View my fingerprint button the fingerprinting is performed and once finished the
fingerprinting result page is shown 4.3.

4.3.1 Privacy Considerations

In order to respect the privacy of website visitors some measures had to be taken into consider-
ation. First, when saving fingerprints into the database we SHA256 encrypted the IP addresses
in combination with a secret key. Furthermore, we periodically deleted the web server logs with
access times and IPs. Lastly, we have fuzzed the fingerprinting times by rounding it to the next
full hour.

14https://www.digitalocean.com/
15https://letsencrypt.org/about/
16https://fingerprint.sba-research.org

44

Figure 4.2: Front page of the website

Figure 4.3: Fingerprinting result web page

45

CHAPTER 5
Results

This chapter presents the dataset of collected fingerprints in detail. First section introduces the
mathematical foundation of the work - entropy - and how it is used in the context of fingerprint-
ing. Next, the results are presented on a per-fingerprint method basis. After that, a comparison
of desktop and mobile fingerprints is given. Finally, a comparison of fingerprint data from two
different datasets is presented.

5.1 Entropy

In information theory, entropy tells us how much information is contained in a certain event or
variable by quantifying the amount of randomness of a variable. We use Shannon’s entropy to
measure the expected value of self-information or surprisal of fingerprints. The equation

H(X) = −
n∑

i=1

P (xi)log2P (xi) (5.1)

represents the entropy of a discrete random variable x with possible values {x1, ..., xn}, where
P(xi) is the size of data sample with x = i, divided by the size of dataset N:

P (xi) =
|xi|
|N |

. (5.2)

Shannon’s entropy is measured in bits, since it uses base 2 logarithm for calculation. If we
had three fingerprints with two of them having JavaScript enabled (P(JS=1) = 0.667) and one
JavaScript disabled (P(JS=0) = 0.333), the entropy of that fingerprint property would be

H(JS) = −[(0.667log20.667) + (0.333log20.333)] = 0.9183. (5.3)

This simple example illustrates how the distribution of values of a discrete variable influ-
ences the entropy. We apply this method for all fingerprinting properties that we collect in order
to understand which of them are most revealing.

47

5.2 Descriptive Results

5.2.1 Data Overview

This section describes the fingerprinting data that was collected over two periods of time. We
will analyze the two sets separately, concentrating on the first and then making a comparison to
the second, later on in this chapter.

During the first collection phase, that occurred from April 7, 2016 to July 29, 2016 we have
managed to collect exactly 1,500 fingerprints. The framework website was promoted to friends
and colleagues via email and through social network channels, like Facebook and Twitter.

In the second phase, which took place from July 29, 2016 to August 21, 2016 we collected
310 fingerprints. Before collecting in the second phase, a few changes have been made to the
framework. First, an additional property Headers order has been added to HTTP Headers fin-
gerprinting method. Second, AudioContext fingerprinting method has been implemented in the
framework. Besides that, no other changes except for a couple of smaller bug fixes in the frame-
work were made. The website was promoted in the same fashion as in the first phase.

For the first data set we had to remove 119 fingerprints that belonged to various crawlers and
bots, since we did not deploy Robots exclusion standard or robots.txt [62] on the server
to explicitly tell bots and crawlers like Googlebot [13]to refrain from accessing URLs used for
fingerprinting. That reduced the number of valid fingerprints from the first set to 1,381.

0 100 200 300 400 500 600

number of values

Accept-Encoding Header

WebGL Shading Language Version

Platform

Timezone

WebGL Unmasked Vendor

WebGL Version

Font Checksum (One standard font)

Language

TLS Extensions

Supported WebGL Extensions

TLS Cipher Suites

Font Checksum (Standard fonts)

Screen Resolution

WebGL Unmasked Renderer

Accept-Language Header

Canvas Image

Browser Plugins

Font Checksum (No defense)

User-Agent Header

Detected Fonts

distinct

unique

Figure 5.1: Distinct vs. unique values per property

Figure 5.1 shows the properties with most distinct and unique values, with detected fonts
having highest number of distinct (557) and unique (428) values. It is worth noting that this

48

amounts to number of different sets or combinations of installed fonts and not individual fonts.
The next property is user agent HTTP header with 482 distinct and 302 unique values, followed
by font-metrics checksum with 457 distinct and 269 unique values. The order of properties in
table 5.1 is different, since they are sorted by their respective entropy values, which is of more
significance to our research.

Property Distinct Values Unique Values Entropy
User-Agent 482 302 7.952
Font-metrics (No defense) 457 269 7.781
Detected Fonts 557 428 7.548
Canvas Image 266 135 6.648
Browser Plugins 329 224 5.461
Accept-Language 212 116 5.236
Unmasked WebGL Renderer 154 70 4.691
Supported WebGL Extensions 75 23 4.677
Screen Resolution 112 64 4.582
Font-metrics (Standard fonts) 80 27 4.241

Table 5.1: Properties with highest entropy values

Detected fonts are now on the third place with entropy of 7.548 bits after user agent HTTP
header, being the property with highest entropy of 7.952 bits and font-metrics of 7.781 bits. This
again illustrates how entropy takes the distribution of values of the variable into account.

5.2.2 HTTP headers

The table 5.2 shows the entropy values for all HTTP headers that we collect. Each header is
discussed separately.

Property Distinct Values Unique Values Entropy
User-Agent 482 302 7.952
Accept-Language 212 116 5.236
Accept-Encoding 12 1 2.094
Accept 12 3 1.42
Connection 4 1 0.379

Table 5.2: Distribution of HTTP header values

Connection header had only four values: keep-alive, Keep-Alive, n/a and close
with the first one being predominant (in 93.34% browsers).

Accept header had two dominant, almost equally distributed groups of values. It was possible
to correlate the accept headers to the user-agent string, or rather browser family derived from
user-agent. For example, first value from table 5.3 was found within Firefox and Safari browsers

49

(50.11% of all browsers), where the second value exclusively matched Chrome’s user agent
strings, both desktop and mobile (43.01%). The third value corresponded to IE and IE mobile
(3.77%) and the last entry to Microsoft Edge browser included in Windows 10 (1.96

Freq. Accept header
692 text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
594 text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
52 text/html, application/xhtml+xml, */*
27 text/html, application/xhtml+xml, image/jxr, */*

Table 5.3: HTTP Accept headers

Accept-Encoding header had seven different individual encoding values: deflate, gzip, sdch,
lzma, br, peerdist, identity and an additional empty value. The largest combinations of the indi-
vidual values are shown in table 5.4. Similarly to Accept header, there were some correlations
to browser family. The first group correlates to Chrome (31.14%), second group to Firefox
(29.62%) and the third to Safari, IE and older versions of Firefox (28.96%).

Accept-Encoding header Frequency %
gzip, deflate, sdch 430 31.14
gzip, deflate, br 409 29.62
gzip, deflate 400 29.96

Table 5.4: HTTP Accept-Encoding headers

Accept-Language header Frequency %
en-US,en;q=0.5 318 23.02
en-US,en;q=0.8 147 10.64
de,en-US;q=0.7,en;q=0.3 93 6.73
de-DE,de;q=0.8,en-US;q=0.6,en;q=0.4 92 6.66
en-us 72 5.21

Table 5.5: HTTP Accept-Language headers

Accept-Language has five large sets of values, as shown in table 5.5 with a lot of distinct val-
ues which are a product of multiple individual language tokens and their corresponding weight-
s/priorities, for example:

• nl-NL,nl;q=0.8,en-US;q=0.6,en;q=0.4,de;q=0.2,fr;q=0.2,it;q=0.2 or

• de-DE,de;q=0.8,en-US;q=0.6,en;q=0.4,fr;q=0.2,zh-TW;q=0.2,zh;q=0.2,it;q=0.2 .

50

The User-Agent string is one of the more interesting fingerprint properties, not only from
the statistical point of view since it has a high entropy value, but also from the semantical stand-
point. User agent shows the browser version, vendor and the platform the browser is running
on. Besides that, it can also contain information about the device it is running on and in case
of mobile clients, the network operator. Table 5.6 shows the most frequent user agents while
table 5.7 lists the browser family classifications. Most prevalent browser is Firefox with 32.44%
followed by Chrome (26.36%) and Chrome Mobile (10.86%).

Freq. User-Agent String
40 Mozilla/5.0 (Windows NT 6.1; rv:38.0) Gecko/20100101 Firefox/38.0
35 Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101 Firefox/45.0
34 Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/20100101 Firefox/46.0
32 Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0
30 Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/49.0.2623.112 Safari/537.36
26 Mozilla/5.0 (iPhone; CPU iPhone OS 9_3_1 like Mac OS X) AppleWebKit/601.1.46

(KHTML, like Gecko) Version/9.0 Mobile/13E238 Safari/601.1
24 Mozilla/5.0 (Windows NT 10.0; WOW64; rv:46.0) Gecko/20100101 Firefox/46.0
21 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/49.0.2623.112 Safari/537.36
20 Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
19 Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0

Table 5.6: Most frequent User-Agent strings

Browser Family Frequency %
Firefox 448 32.44
Chrome 364 26.36
Chrome Mobile 150 10.86
IE 62 4.49
Mobile Safari 58 4.20
Safari 50 3.62
Firefox Mobile 44 3.18
Facebook 40 2.89
Opera 35 2.53
Mobile Safari UI/WKWebView 29 2.01
Other 100 7.24

Table 5.7: Browser families

In table 5.7 one can see the Facebook browser family, which corresponds to Facebook mobile
application that uses the rendering engine of the mobile platform’s browser. The application

51

appends additional headers, in some cases even the name of mobile network provider like T-
MobileA, Telekom.de or OrangeFrance.

5.2.3 Cipher Suites

Table 5.8 shows all cipher suite properties with related statistics. All fingerprinted browsers sup-
port the TLS 1.2 version of SSL/TLS protocol and SSL V3+ version of handshake protocol, while
99.71% have the same compression value NULL with 4 browsers having the value DEFLATE,
NULL instead. There are 76 different cipher suites composed of 115 individual ciphers, two of
which were present in all cipher suites. In contrast, there are 71 distinct extension method values
that are composed of only 17 individual extensions. However, the order in which extensions and
ciphers appear is preserved which leads to a large number of combinations.

Property Distinct Values Unique Values Entropy
Extensions 71 21 4.062
Supported Cipher Suites 76 26 3.665
Protocol Version 3 0 0.193
Compression 2 0 0.029
Handshake Version 1 0 0

Table 5.8: Distribution of cipher suite values

Table 5.9 shows the distribution of individual values with relation to the number of finger-
prints in which they appear. The columns show amount and percentage of individual values that
are present in 95%, 50%, 10% and 1% of all fingerprints.

Property Total <95% FP <50% FP <10% FP <1% FP
TLS Cipher Suites 115 107 (93%) 105 (91%) 81 (70%) 51 (44%)
TLS Extensions 17 13 (76%) 5 (29%) 4 (24%) 2 (12%)

Table 5.9: Distribution of individual cipher suites and extensions

5.2.4 Navigator features

Table 5.10 shows all navigator properties with the related entropy values. There are 329 different
plugin sets of which 224 are unique. The sets are made up of 538 individual plugins. The
majority of plugins are used for playback of 3rd party media types or reading particular file
formats in the browsers, but many plugins can also reveal information about installed software on
the machine that perform drive-by browser plugin installations without user’s knowledge. Table
5.14 illustrates the distribution of plugins with relation to percent of all fingerprints containing
the individual plugins. It shows that 39% of all individual plugins are contained in less than 1%
fingerprints.

52

Property Distinct Values Unique Values Entropy
Browser Plugins 329 224 5.461
Screen Resolution 112 64 4.582
Language 63 18 3.242
Platform 16 2 2.609
’Do Not Track’ Flag 5 0 1.626
Timezone 16 2 1.49
Flash Installed 2 0 0.999
AdBlocker Installed 2 0 0.945
Cookies enabled 2 0 0.078

Table 5.10: Distribution of navigator values

Screen resolution has 112 distinct and 64 unique values. Many of these values seem like
fake or random resolutions like 1829x1143x24, 1512x829x24, 1371x771x24. Such
values could represent Tor browsers or an attempt to mask the real resolution with the available
screen width and height. Most frequent values are show in table 5.11. The highest reported
3840x1080x24 and the smallest is 480x320x32.

Screen resolution Frequency %
1920x1080x24 273 19.77
640x360x32 125 9.05
1920x1200x24 100 7.24
1600x900x24 89 6.44
1366x768x24 79 5.72
1440x900x24 62 4.49
667x375x32 52 3.77

Table 5.11: Screen resolutions

Navigator language almost always correlates to the Accept-Language header except in a few
cases where there’s a mismatch. For example navigator language is set to fr, but the Accept-
Language header is en-US,en;q=0.5.

Navigator platform also correlated with User-Agent string, which also contains operating
system information. However, navigator platform is less significant when compared to user
agent, especially in Windows’ case where it does not distinguish between x86 and 64-bit win-
dows, since both platforms are reported as Win32. The table 5.14 lists the most frequent plat-
forms.

The ’Do Not Track’ flag has values as shown in table 5.13. If we assume that unknown and
unspecified are the same, we derive that around 22% browsers have explicitly stated not to be
tracked by activating the DNT setting.

53

Navigator platform Frequency %
Win32 524 37.94
Linux x86_64 187 13.54
MacIntel 154 11.15
Linux armv7l 147 10.64
iPhone 92 6.67
Linux armv8l 66 4.78
iPad 26 1.81

Table 5.12: Navigator platforms

Do Not Track Frequency %
unknown 712 56.87
unspecified 246 19.65
1 225 17.97
yes 62 4.95
0 7 0.56

Table 5.13: ’Do Not Track’ Flag

Property Total <50% FP <10% FP <1% FP <0.1% FP
Plugins 538 538 (100%) 531 (99%) 473 (88%) 212 (39%)
Fonts 10,197 10,165 (99.7%) 9,822 (96%) 8,280 (81%) 4,789 (47%)

Table 5.14: Distribution of fonts and plugins

5.2.5 Fonts

Property Distinct Values Unique Values Entropy
Font-metric Checksum (No defense) 457 269 7.781
Detected Fonts 557 428 7.548
Font-metric Checksum (Standard fonts only) 80 27 4.241
Font-metric Checksum (One standard font only) 48 17 2.377

Table 5.15: Distribution of font-related values

Detected fonts have 557 distinct values, of which 428 are unique. The number of individual
fonts is 10,197. Table 5.14 shows the distribution of number of individual fonts with relation to
fingerprints count. The highest count of fonts in one fingerprint is 2,217.

54

In 65% of cases, font detection was done via JavaScript, and in 35% (or 440 fingerprints) via
Flash. However, if we look at the Flash statistics, we can see that Flash was detected in almost
half of all fingerprints (600 to be specific). From this we can deduce that 160 fingerprints had
the Flash installed but blocked, hence the fall-back detection via JavaScript. This check was
implemented in the framework before the second fingerprint collecting period.

The largest anonymity set sizes with relation to font-metric checksum without defense are
93 (7.42%), 52 (4.15%) and 37 (2.15%). The rest of anonymity sets are lower than 28.

5.2.6 WebGL

Property Distinct Values Unique Values Entropy
Unmasked Renderer 154 70 4.691
Supported Extensions 75 23 4.677
Unmasked Vendor 17 4 2.751
Version 43 19 2.574
Shading Language Version 12 1 2.194
Renderer 10 4 1.619
Vendor 8 2 1.613

Table 5.16: Distribution of WebGL values

The largest group of unmasked renderer is ’n/a’ or unknown (39,6%), the rest is visible in
table 5.17 that shows largest sets in regards to combination of regular and unmasked renderer
values and the prevalence of WebKit WebGL renderer, which can be correlated to Chrome
browsers. WebGL extensions have 75 distinct and 23 unique values. They are composed of 39
different individual extensions, with 50% of extensions found in 50% of fingerprints.

Unmasked Renderer Renderer Freq.
ANGLE (Intel(R) HD Graphics Family Direct3D11 vs_5_0 ps_5_0) WebKit WebGL 60
Adreno (TM) 330 WebKit WebGL 49
Adreno (TM) 418 WebKit WebGL 37
Apple A8 GPU WebKit WebGL 37
Apple A7 GPU WebKit WebGL 24
Apple A9 GPU WebKit WebGL 23
Intel(R) HD Graphics Family Internet Explorer 21
Adreno (TM) 305 WebKit WebGL 21
ANGLE (Intel(R) HD Graphics 4000 Direct3D11 vs_5_0 ps_5_0) WebKit WebGL 20

Table 5.17: WebGL unmasked renderer x renderer combinations

55

5.2.7 Canvas

Canvas generated image has 266 distinct and 135 unique values as seen in table 5.18. The top
15 anonymity sets with relation to canvas image are of sizes 75 to 25 which encompasses 50%
of the fingerprints. Figure 5.2 illustrates how the image looks on different devices.

Property Distinct Values Unique Values Entropy
Image 266 135 6.648

Table 5.18: Distribution of canvas values

Figure 5.2: Canvas images

5.3 Comparison of mobile and desktop clients

By analyzing the User-Agent string it is possible to classify fingerprints into mobile and desktop
browsers. As seen in figure 5.4, around three quarters of fingerprints are classified as desktop
browsers (1,007, or 74%) and the rest is mobile (364 fingerprints).

Figure 5.4 shows the fingerprinting properties with highest distinct and unique value count,
analog to 5.1. The most obvious difference to previous figure is the absence of fonts and plugins.
The reason behind this is the lack of support for NPAPI plugins on mobile browsers and inabil-

56

0 20 40 60 80 100
%

Platform

desktop mobile

Figure 5.3: Platforms: desktop vs mobile

0 50 100 150 200 250

number of values

Accept-Encoding Header

WebGL Shading Language Version

Platform

WebGL Unmasked Vendor

WebGL Renderer

Timezone

Detected Fonts

TLS Cipher Suites

Font Checksum (One standard font)

TLS Extensions

WebGL Version

WebGL Unmasked Renderer

Font Checksum (Standard fonts)

Supported WebGL Extensions

Language

Screen Resolution

Canvas Image

Font Checksum (No defense)

Accept-Language Header

User-Agent Header

distinct

unique

Figure 5.4: Distinct vs. unique values per property for mobile clients

ity to install additional fonts. However, mobile browsers compensate this by having very rich
User-Agent strings which usually include version and build number of the operating system and
in some cases even the name of mobile operator. Table 5.19 shows the top ten properties ordered
by entropy, analog to table 5.1. From the set of 364 mobile fingerprints, it is possible to iden-
tify almost one in two fingerprints by checking only User-Agent string. Font-metric checksum
without defense shows high entropy value also for mobile browsers. Another interesting value
is canvas generated image. Although the number of WebGL vendors and renderer is lower, cor-
related to the number of graphics chip manufacturers for the mobile platform, canvas image still
produces high entropy values since the majority of mobile vendors include custom emoticons in
their own flavor of the mobile operating system, e.g. Android. This is visible in the figure 5.2
where, beside the slight differences in font rendering, the ’smiley face’ looks clearly different
from one to next image.

Another noticeable difference between desktop and mobile clients is the percentage of browsers

57

Property Distinct Values Unique Values Entropy
User-Agent 210 155 7.124
Accept-Language 91 52 5.331
Font-metrics (No defense) 89 48 4.831
Canvas Image 66 33 4.689
Language 39 13 3.847
Unmasked WebGL Renderer 29 8 3.823
Supported WebGL Extensions 36 13 3.53
Screen Resolution 39 19 3.503
SSL/TLS Extensions 25 5 3.477
SSLCipher Suites 23 3 2.963

Table 5.19: Properties with highest entropy values for mobile clients

with disabled JavaScript. Figure 5.5 shows that around 11% of desktop clients had JavaScript
disabled or blocked in contrast to around 3% for mobile clients.

0 20 40 60 80 100
%

D
e
s
k
to

p
M

o
b

il
e

JavaScript

disabled enabled

Figure 5.5: JavaScript: desktop vs mobile

5.4 Comparison of two fingerprinting datasets

Like previously stated, the second fingerprinting dataset contains 310 fingerprints. This time,
bots and crawlers were not present in the database so no preprocessing step was necessary be-
fore analyzing data. Table 5.20 shows the fingerprint properties with highest entropy values,
analog to table 5.19. The properties are same as in first dataset with a slightly different order,
namely browser plugins have higher entropy value than Accept-Language header and unmasked
WebGL renderer and supported WebGL extensions are higher compared to screen resolution and
standard font metrics.

However, in order to compare two datasets that obviously differ in size, it is necessary to
calculate normalized Shannon’s entropy:

HN (X) =
H(X)

log2N
, (5.4)

58

Property Distinct Values Unique Values Entropy
User-Agent 113 53 6.295
Font-metrics (No defense) 119 69 6.226
Detected Fonts 135 101 6.188
Canvas Image 94 54 5.712
Accept-Language 69 39 4.617
Unmasked WebGL Renderer 65 31 4.555
Browser Plugins 85 59 4.483
Font-metrics (Standard fonts) 43 18 4.345
Supported WebGL Extensions 33 13 3.977
Screen Resolution 37 12 3.831

Table 5.20: Dataset 2: Properties with highest entropy values

where N is the size of dataset. This method does not depend on the size of the dataset,
however it does depend on the distribution of data. Table 5.21 compares the normalized entropy
values of the first and second dataset.

Attribute Entropy (Dataset 1) Entropy (Dataset 2)
User-Agent 0.762 0.762
Font-metrics (No defense) 0.756 0.762
Detected Fonts 0.734 0.757
Canvas Image 0.646 0.699
Accept-Language 0.502 0.558
Unmasked WebGL Renderer 0.456 0.558
Browser Plugins 0.531 0.549
Font-metrics (Standard fonts) 0.412 0.532
Supported WebGL Extensions 0.455 0.487
Screen Resolution 0.445 0.469

Table 5.21: Dataset 1 vs Dataset 2: Comparison of entropy values

From the table 5.21 we observe that the entropy values for both dataset are almost identical,
except for two properties with a difference of >0.1 bits: Unmasked WebGL Renderer and Font-
metrics with standard font. The explanation could be that the distribution of values for the
two properties in the second dataset is not in line with other values. As previously mentioned,
normalized entropy does not depend on the dataset size, but is influenced by the distribution of
anonymity sets.

59

CHAPTER 6
Discussion

This chapter shows the interpretation of collected data and comparison to other research. Fur-
thermore, drawbacks of the dataset are pointed out. Next, fingerprinting countermeasures are
discussed. Finally, future work is presented.

6.1 Data Interpretation

After detailed data analysis in the previous chapter, we now compare our findings to other sim-
ilar fingerprinting projects, namely Panopticlick and AmIUnique. Table 6.1 shows normalized
entropy values for fingerprinting properties from both project compared to our findings.

For Panopticlick only 6 of 15 values are available, some were not collected at all and others
were omitted from statistics without explanation. Panopticlick’ dataset size is 470,161 finger-
prints, while IAmUnique have collected 118,934 fingerprints. Our combined dataset size from
both fingerprinting phases consists of 1,691 fingerprints. In order to compare the datasets of
different sizes, we use normalized entropy like in previous chapter.

We can see that the majority of entropy values in our dataset is higher than in AmIUnique.
That is probably the side-effect of different distribution of anonymity sets with relation to the
whole fingerprint dataset, analog to comparison of fingerprinting dataset 1 and 2 in previous
chapter. If we use only dataset 2, the entropy values are even higher, despite smaller dataset
and normalization of entropy. One thing to note is lower value for browser plugins and detected
fonts which indicates a drop in NPAPI plugins and disappearance of Flash font fingerprinting
over time, especially when AmIUnique values are taken into consideration. Font entropy in our
case is higher than AmIUnique, since we revert to JavaScript font probing in case Flash is not
installed or disabled. The differences in AdBlock and Cookies can hint at bias of fingerprinted
users towards privacy and security.

61

Attribute Panopticlick AmIUnique Normalized entropy
User-Agent 0.531 0.580 0.766
Browser Plugins 0.817 0.656 0.534
Detected Fonts 0.738 0.497 0.724
Screen Resolution 0.256 0.290 0.427
Timezone 0.161 0.198 0.136
Cookies enabled 0.019 0.015 0.008
Accept Header 0.082 0.126
Accept-Encoding 0.091 0.207
Accept-Language 0.351 0.504
Platform 0.137 0.247
DNT 0.056 0.156
Canvas 0.491 0.635
WebGL Vendor 0.127 0.266
WebGL Renderer 0.202 0.453
AdBlock 0.059 0.091

Table 6.1: Comparison of entropy values to Panopticlick and AmIUnique

6.2 Limitations

From the previous section we can understand that our dataset, and thus the interpretation thereof,
has its limitations. There are two reasons why the fingerprints sample we collected might not be
representative of the whole population.

First, the dataset size of two other projects are 70- and 280-fold compared to the size of our
dataset, for AmIUnique and Panopticlick, respectively. Our attempts to promote the fingerprint-
ing website on news aggregate websites like Slashdot1 and Reddit2, in order to collect more data,
have been met with limited success. We believe this has significantly skewed the distribution of
our dataset.

Second, our dataset was also affected by the running time of the experiment, which was just
under four months for the first and almost one month for the second dataset. In contrast, other
two projects were active over a year before presenting the results. However, even if he have
managed to collect enough fingerprints in that short amount of time, we would have been able to
capture only a snapshot of the fingerprint distribution and could still not measure the change of
fingerprints distribution over time and the change in fingerprint properties of returning visitors.

6.3 Fingerprinting Countermeasures

The main idea when combating fingerprinting is to reduce the differences in resulting fingerprint
across browsers. Browser vendors have acknowledged the problem of fingerprinting [56] [67]

1https://www.slashdot.org
2https://www.reddit.com

62

[72], but the concrete measures against it are very limited. The phasing-out of NPAPI Plugins
could be seen as a move in a right direction, only to be replaced by numerous HTML5 APIs
that reveal lots of information about the browser and the underlying operating system. Flash is
slowly disappearing and so is font fingerprinting becoming more difficult, but there are already
other fingerprinting methods for font probing.

Tor Browser3 has a more active stance on preventing fingerprinting since privacy is an in-
tegral part of its design [66]. Tor reduces a fingerprint by disabling enumeration of plugins
by default, faking the screen resolution, preventing canvas fingerprinting [74], limiting the font
list [73] etc. However, even Tor is susceptible to font metrics checksum [28] which was part of
our framework.

There are also multiple browser add-ons and extensions, designed to prevent or limit the
extent of fingerprinting. Ghostery4 and Privacy Badger5 are browser add-ons that block ads
and scripts by referring to a predefined list of blacklisted third-party domains. NoScript6 is a
Firefox add-on that prevents JavaScript execution and gives the user ability to selectively enable
or disable execution for every script in the web page.

Besides installing third-party add-ons, regular user could also turn off automatic Flash exe-
cution in the browser’ plugins settings and disable WebRTC API to prevent private network IP
leaks.

6.4 Future Work

Our browser fingerprinting project with help of the framework is not concluded with the finaliza-
tion of this thesis. As previously mentioned, a plan for the framework is for it to be an ongoing
project in which additional fingerprinting features - either discovered in the wild via analysis of
the advertising networks or fingerprinting service providers or presented as proof of concept by
researchers - will be included and deployed on the website. A goal is to have a long running fin-
gerprinting project in order to gather more data and understand how the fingerprinting changes
over time, something we have sadly not managed to do during the duration of this thesis.

The framework will be published as an open source project and will be available for free. The
next concrete step in framework development is creating an additional page where the visitors
can interactively review their fingerprinting data, but also compare it to other data entries. In
general, it would be in the best interest to research community if other projects were to publish
their collected fingerprinting data for researchers to analyze. We believe that such a project is
feasible if correct measures are taken to make data anonymous and disassociate it from the real
person.

3https://www.torproject.org/projects/torbrowser.html.en
4https://www.ghostery.com/
5https://www.eff.org/privacybadger
6https://addons.mozilla.org/en-US/firefox/addon/noscript/

63

CHAPTER 7
Conclusion

In this thesis we have conducted an extensive survey of research related to browser tracking
and fingerprinting. We have described the evolution of tracking methods in a historical context,
starting with session-scoped and persistent tracking, over cache-exploiting mechanisms and on
to fingerprinting.

We have developed a fingerprinting framework based on an extensible client-server archi-
tecture, where we join all previous fingerprinting methods under one roof. Furthermore, we de-
ployed the framework as a website under https://fingerprint.sba-research.org
in order to collect fingerprints.

In a period from April 7, 2016 to August 21, 2016 we have managed to collect 1,800 browser
fingerprints. By examining the result for each fingerprinting method separately, we analyzed
the distinct and unique values for each property and calculated the entropy. Results show that
the most revealing property of a browser from our dataset is list of installed fonts with 7.952
bits of entropy, followed by HTTP User-Agent header, font-metric checksum, list of installed
browser plugins and so on. We analyzed mobile browsers separately, which represented 26%
of our dataset. The most identifying property was HTTP User-Agent header with 7.124 bits
of entropy, followed by HTTP Accept-Language header, font-metric checksum and HTML5
Canvas generated image.

Despite the limitations of our dataset, both in size and data distribution, we have managed
to identify some trends in fingerprinting by comparing our results to previous research. The
disappearance of NPAPI plugins have displaced browser plugins from being most identifiable
feature further down the line. List of fonts have retained high entropy values, in spite of decrease
in Flash presence and due to new JavaScript/CSS font probing methods. More recent methods
like WebGL, Canvas and AudioContext fingerprinting can generate high entropy results, for both
desktop and mobile browsers, by relying on rich and expressive HTML5 API - a trend that will
very likely extend into future.

65

https://fingerprint.sba-research.org

Bibliography

[1] The Cookie Law Explained. https://www.cookielaw.org/
the-cookie-law/. [Online; accessed: 28-March-2016].

[2] Donald E. Eastlake 3rd. Transport Layer Security (TLS) Extensions: Extension Defini-
tions. RFC 6066, October 2015.

[3] M Abraham, CAMERON Meierhoefer, and ANDREW Lipsman. The impact of cookie
deletion on the accuracy of site-server and ad-server metrics: An empirical comscore study.
Retrieved October, 14:2009, 2007.

[4] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and
Claudia Diaz. The web never forgets: Persistent tracking mechanisms in the wild. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 674–689, New York, NY, USA, 2014. ACM.

[5] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens,
and Bart Preneel. Fpdetective: dusting the web for fingerprinters. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages 1129–
1140. ACM, 2013.

[6] Adobe. ActionScript 2.0 Language Reference. http://help.adobe.com/en_
US/FlashPlatform/reference/actionscript/2/help.html?content=
00001593.html#505940. [Online; accessed: 16-June-2016].

[7] Adobe. Adobe Flash Platform * Shared Objects. http://help.adobe.com/en_
US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html.
[Online; accessed: 5-August-2016].

[8] Adobe. SWF and AMF Technology Center, SWF File Format Specification (version 19).
http://www.adobe.com/devnet/swf.html. [Online; accessed: 16-June-2016].

[9] Arun Ranganathan, Jonas Sicking. Web storage (Second Edition), W3C Working Draft 21
April 2015. https://www.w3.org/TR/FileAPI/. [Online; accessed: 02-August-
2016].

67

https://www.cookielaw.org/the-cookie-law/
https://www.cookielaw.org/the-cookie-law/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html?content=00001593.html#505940
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html?content=00001593.html#505940
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html?content=00001593.html#505940
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html
http://www.adobe.com/devnet/swf.html
https://www.w3.org/TR/FileAPI/

[10] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan Good, and Chris Jay
Hoofnagle. Flash cookies and privacy ii: Now with html5 and etag respawning. Available
at SSRN 1898390, 2011.

[11] Adam Barth. Rfc 6265-http state management mechanism. Internet Engineering Task
Force (IETF), pages 2070–1721, 2011.

[12] Anthony Laforge. Chromium Blog. Release Early, Release Often. http://blog.
chromium.org/2010/07/release-early-release-often.html. [Online;
accessed: 19-June-2016].

[13] Google Webmaster Central Blog. Updating the smartphone user-agent of
Googlebot. https://webmasters.googleblog.com/2016/03/
updating-smartphone-user-agent-of.html. [Online; accessed: 11-
August-2016].

[14] Justin Schuh. Chromium Blog. Saying Goodbye to Our Old
Friend NPAPI. http://blog.chromium.org/2013/09/
saying-goodbye-to-our-old-friend-npapi.html. [Online; accessed:
17-August-2016].

[15] Michael Coates. Mozilla Security Blog. Protecting Users Against Java Vul-
nerability. https://blog.mozilla.org/security/2013/01/11/
protecting-users-against-java-vulnerability/. [Online; accessed:
17-August-2016].

[16] The Mozilla Blog. New Channels for Firefox Rapid Re-
leases. https://blog.mozilla.org/blog/2011/04/13/
new-channels-for-firefox-rapid-releases/. [Online; accessed: 19-
June-2016].

[17] Tomasz Bujlow, Valentín Carela-Español, Josep Solé-Pareta, and Pere Barlet-Ros. Web
tracking: Mechanisms, implications, and defenses. CoRR, abs/1507.07872, 2015.

[18] Chrome Developer. NPAPI Plugins. https://developer.chrome.com/
extensions/npapi. [Online; accessed: 17-August-2016.

[19] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951, May 1996.

[20] Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, October
2015.

[21] Phillip J. Eby. PEP 333 – Python Web Server Gateway Interface v1.0. https://www.
python.org/dev/peps/pep-0333/. [Online; accessed: 03-May-2016].

[22] Peter Eckersley. How Unique Is Your Web Browser?, pages 1–18. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

68

http://blog.chromium.org/2010/07/release-early-release-often.html
http://blog.chromium.org/2010/07/release-early-release-often.html
https://webmasters.googleblog.com/2016/03/updating-smartphone-user-agent-of.html
https://webmasters.googleblog.com/2016/03/updating-smartphone-user-agent-of.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://blog.mozilla.org/security/2013/01/11/protecting-users-against-java-vulnerability/
https://blog.mozilla.org/security/2013/01/11/protecting-users-against-java-vulnerability/
https://blog.mozilla.org/blog/2011/04/13/new-channels-for-firefox-rapid-releases/
https://blog.mozilla.org/blog/2011/04/13/new-channels-for-firefox-rapid-releases/
https://developer.chrome.com/extensions/npapi
https://developer.chrome.com/extensions/npapi
https://www.python.org/dev/peps/pep-0333/
https://www.python.org/dev/peps/pep-0333/

[23] E.C.M. Association. ECMA-404: The JSON Data Interchange Format, 1st Edition
(October 2013). http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf. [Online; accessed: 22-August-2016].

[24] E.C.M. Association. ECMAScript 2016 Language Specification, 7th Edition (June
2016). http://www.ecma-international.org/ecma-262/7.0/index.
html. [Online; accessed: 23-July-2016].

[25] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site measurement
and analysis. [Technical Report], May 2016.

[26] Edward W Felten and Michael A Schneider. Timing attacks on web privacy. In Proceedings
of the 7th ACM conference on Computer and communications security, pages 25–32. ACM,
2000.

[27] Roy T. Fielding and Julian F. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231, October 2015.

[28] David Fifield and Serge Egelman. Fingerprinting web users through font metrics. In
International Conference on Financial Cryptography and Data Security, pages 107–124.
Springer, 2015.

[29] Fingerprintjs2. Modern & flexible browser fingerprinting library. https://github.
com/Valve/fingerprintjs2. [Online; accessed: 15-May-2016].

[30] Avi Goldfarb and Catherine E. Tucker. Online advertising, behavioral targeting, and pri-
vacy. Commun. ACM, 54(5):25–27, May 2011.

[31] Marcel Hellkamp. Bottle: Python Web Framework. http://bottlepy.org/docs/
dev/index.html. [Online; accessed: 03-May-2016].

[32] Scott Hollenbeck. Transport Layer Security Protocol Compression Methods. RFC 3749,
March 2013.

[33] M. Husák, M. Cermák, T. Jirsík, and P. Celeda. Network-based https client identification
using ssl/tls fingerprinting. In Availability, Reliability and Security (ARES), 2015 10th
International Conference on, pages 389–396, Aug 2015.

[34] Ian Hickson. Web SQL Database, W3C Working Group Note 18 November 2010. https:
//dev.w3.org/html5/webdatabase/. [Online; accessed: 02-August-2016].

[35] Ian Hickson. Web storage (Second Edition), W3C Recommendation 19 April 2016.
https://www.w3.org/TR/webstorage/. [Online; accessed: 02-August-2016].

[36] Internet Assigned Numbers Authority (IANA). Transport Layer Secu-
rity (TLS) Extensions. http://www.iana.org/assignments/
tls-extensiontype-values/tls-extensiontype-values.xml. [Online;
accessed: 12-June-2016].

69

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
https://github.com/Valve/fingerprintjs2
https://github.com/Valve/fingerprintjs2
http://bottlepy.org/docs/dev/index.html
http://bottlepy.org/docs/dev/index.html
https://dev.w3.org/html5/webdatabase/
https://dev.w3.org/html5/webdatabase/
https://www.w3.org/TR/webstorage/
http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml
http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml

[37] Jonathan Robie. What is the Document Object Model? https://www.w3.org/TR/
WD-DOM/introduction.html. [Online; accessed: 31-July-2016].

[38] Balachander Krishnamurthy and Craig E. Wills. Generating a privacy footprint on the
internet. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement,
IMC ’06, pages 65–70, New York, NY, USA, 2006. ACM.

[39] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast: Diverting
modern web browsers to build unique browser fingerprints. In 37th IEEE Symposium on
Security and Privacy (S&P 2016), 2016.

[40] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner. Internet
jones and the raiders of the lost trackers: An archaeological study of web tracking from
1996 to 2016. In 25th USENIX Security Symposium (USENIX Security 16), Austin, TX,
August 2016. USENIX Association.

[41] Tai-Ching Li, Huy Hang, Michalis Faloutsos, and Petros Efstathopoulos. Trackadvisor:
Taking back browsing privacy from third-party trackers. In International Conference on
Passive and Active Network Measurement, pages 277–289. Springer, 2015.

[42] Marrin, Chris. WebGL Specification; Version 1.0.3, 27 October 2014. Khronos WebGL
working Group. [Online; accessed: 18-June-2016].

[43] J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology. In 2012
IEEE Symposium on Security and Privacy, pages 413–427, May 2012.

[44] Modernizr. The feature detection library for HTML5/CSS3 - documentation. https:
//modernizr.com/. [Online; accessed: 15-May-2016].

[45] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites: exploiting the ssl
3.0 fallback. PDF online, 2014.

[46] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in html5. Pro-
ceedings of W2SP, 2012.

[47] Mozilla Developer Network. AJAX: Asynchronous JavaScript + XML. https://
developer.mozilla.org/en-US/docs/AJAX. [Online; accessed: 11-August-
2016.

[48] Mozilla Developer Network. AudioContext. https://developer.mozilla.org/
en-US/docs/Web/API/AudioContext. [Online; accessed: 02-August-2016.

[49] Mozilla Developer Network. Canvas API. https://developer.mozilla.org/
en-US/docs/Web/API/Canvas_API. [Online; accessed: 16-June-2016.

[50] Mozilla Developer Network. DynamicsCompressorNode. https://developer.
mozilla.org/en-US/docs/Web/API/DynamicsCompressorNode. [Online;
accessed: 02-August-2016.

70

https://www.w3.org/TR/WD-DOM/introduction.html
https://www.w3.org/TR/WD-DOM/introduction.html
https://modernizr.com/
https://modernizr.com/
https://developer.mozilla.org/en-US/docs/AJAX
https://developer.mozilla.org/en-US/docs/AJAX
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/DynamicsCompressorNode
https://developer.mozilla.org/en-US/docs/Web/API/DynamicsCompressorNode

[51] Mozilla Developer Network. HTTP access control (CORS). https://developer.
mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS. [Online; ac-
cessed: 05-August-2016.

[52] Mozilla Developer Network. OscillatorNode. https://developer.mozilla.
org/en-US/docs/Web/API/OscillatorNode. [Online; accessed: 02-August-
2016.

[53] Mozilla Developer Network. Plugins. https://developer.mozilla.org/
en-US/Add-ons/Plugins. [Online; accessed: 15-May-2016.

[54] Mozilla Developer Network. Web APIs - Navigator. https://developer.
mozilla.org/en/docs/Web/API/Navigator. [Online; accessed: 15-May-
2016].

[55] Mozilla Developer Network. Web APIs - Screen. https://developer.mozilla.
org/en/docs/Web/API/Screen. [Online; accessed: 15-May-2016.

[56] MozillaWiki. Fingerprinting. https://wiki.mozilla.org/Fingerprinting.
[Online; accessed: 22-August-2016].

[57] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian Schrit-
twieser, Edgar Weippl, and FC Wien. Fast and reliable browser identification with JavasS-
ript engine fingerprinting. In Web 2.0 Workshop on Security and Privacy (W2SP), volume 5,
2013.

[58] Netscape DevEdge (Internet Archive WayBack Machine). What’s New In
JavaScript 1.2. https://web.archive.org/web/19971015223714/http:
//developer.netscape.com/library/documentation/communicator/
jsguide/js1_2.htm. [Online; accessed: 15-May-2016].

[59] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Security and privacy (SP), 2013 IEEE symposium on, pages 541–
555. IEEE, 2013.

[60] Nikunj Mehta, Jonas Sicking, Eliot Graff, Andrei Popescu, Jeremy Orlow, Joshua Bell.
Indexed Database API, W3C Recommendation 08 January 2015. https://www.w3.
org/TR/IndexedDB/. [Online; accessed: 02-August-2016].

[61] Oracle. PersistenceService, JNLP API 1.7.0_95. http://docs.
oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/
PersistenceService.html. [Online; accessed: 5-August-2016].

[62] The Web Robots Pages. Frequently Asked Questions. http://www.robotstxt.
org/faq.html. [Online; accessed: 11-August-2016].

71

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/API/OscillatorNode
https://developer.mozilla.org/en-US/docs/Web/API/OscillatorNode
https://developer.mozilla.org/en-US/Add-ons/Plugins
https://developer.mozilla.org/en-US/Add-ons/Plugins
https://developer.mozilla.org/en/docs/Web/API/Navigator
https://developer.mozilla.org/en/docs/Web/API/Navigator
https://developer.mozilla.org/en/docs/Web/API/Screen
https://developer.mozilla.org/en/docs/Web/API/Screen
https://wiki.mozilla.org/Fingerprinting
https://web.archive.org/web/19971015223714/http://developer.netscape.com/library/documentation/communicator/jsguide/js1_2.htm
https://web.archive.org/web/19971015223714/http://developer.netscape.com/library/documentation/communicator/jsguide/js1_2.htm
https://web.archive.org/web/19971015223714/http://developer.netscape.com/library/documentation/communicator/jsguide/js1_2.htm
https://www.w3.org/TR/IndexedDB/
https://www.w3.org/TR/IndexedDB/
http://docs.oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/PersistenceService.html
http://docs.oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/PersistenceService.html
http://docs.oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/PersistenceService.html
http://www.robotstxt.org/faq.html
http://www.robotstxt.org/faq.html

[63] Panopticlick. How unique, and trackable, is your browser? https://panopticlick.
eff.org/. [Online; accessed: 17-August-2015].

[64] Latit Patel. JavaScript/CSS Font Detector. http://www.lalit.org/lab/
javascript-css-font-detect/. [Online; accessed: 15-May-2016].

[65] Paul Adenot, Chris Wilson, Chris Rogers. Web Audio API, W3C Working Draft 08
December 2015. https://www.w3.org/TR/webaudio/. [Online; accessed: 02-
August-2016].

[66] Clark E. Murdoch S. Perry, M. The Design and Implementation of the Tor Browser
[DRAFT]. https://www.torproject.org/projects/torbrowser/
design/#fingerprinting-linkability, May 2016. [Online; accessed:
16-June-2016].

[67] The Chromium Project. Technical analysis of client identifi-
cation mechanisms. https://www.chromium.org/Home/
chromium-security/client-identification-mechanisms#
TOC-Browser-level-fingerprints. [Online; accessed: 22-August-2016].

[68] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay Hoofnagle.
Flash cookies and privacy. In AAAI spring symposium: intelligent information privacy
management, volume 2010, pages 158–163, 2010.

[69] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl. SHPF:
Enhancing HTTP(S) session security with browser fingerprinting. In Availability, Reliabil-
ity and Security (ARES), 2013 Eighth International Conference on, pages 255–261, Sept
2013.

[70] W3C. Tracking Preference Expression (DNT). https://www.w3.org/2011/
tracking-protection/drafts/tracking-dnt.html. [Online; accessed: 15-
May-2016].

[71] W3C. Web application APIs, W3C Candidate Recommendation 20 August 2015. https:
//www.w3.org/TR/html5/webappapis.html#the-navigator-object.
[Online; accessed: 15-May-2016].

[72] WebKit. Fingerprinting. https://trac.webkit.org/wiki/Fingerprinting.
[Online; accessed: 22-August-2016].

[73] Tor Bug Tracker & Wiki. Limit the fonts available in Tor Browser. https://trac.
torproject.org/projects/tor/ticket/2872. [Online; accessed: 16-June-
2016].

[74] Tor Bug Tracker & Wiki. Prompt before allowing HTML5 Canvas image extraction.
https://trac.torproject.org/projects/tor/ticket/6253. [Online;
accessed: 22-August-2016].

72

https://panopticlick.eff.org/
https://panopticlick.eff.org/
http://www.lalit.org/lab/javascript-css-font-detect/
http://www.lalit.org/lab/javascript-css-font-detect/
https://www.w3.org/TR/webaudio/
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms#TOC-Browser-level-fingerprints
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms#TOC-Browser-level-fingerprints
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms#TOC-Browser-level-fingerprints
https://www.w3.org/2011/tracking-protection/drafts/tracking-dnt.html
https://www.w3.org/2011/tracking-protection/drafts/tracking-dnt.html
https://www.w3.org/TR/html5/webappapis.html#the-navigator-object
https://www.w3.org/TR/html5/webappapis.html#the-navigator-object
https://trac.webkit.org/wiki/Fingerprinting
https://trac.torproject.org/projects/tor/ticket/2872
https://trac.torproject.org/projects/tor/ticket/2872
https://trac.torproject.org/projects/tor/ticket/6253

[75] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. A practical
attack to de-anonymize social network users. In 2010 IEEE Symposium on Security and
Privacy, pages 223–238. IEEE, 2010.

73

	List of Figures
	List of Tables
	Listings
	Introduction
	Problem Definition
	Goals
	Structure of the Thesis

	Background
	History of Online Tracking
	Related Work
	Other Projects

	Design
	Requirements
	Framework Overview
	Fingerprinting Methods

	Implementation
	Tools
	Technical Realization
	Deployment

	Results
	Entropy
	Descriptive Results
	Comparison of mobile and desktop clients
	Comparison of two fingerprinting datasets

	Discussion
	Data Interpretation
	Limitations
	Fingerprinting Countermeasures
	Future Work

	Conclusion
	Bibliography

