
Erweiterung des Pheet
Frameworks für Pipeline-Parallele

Anwendungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Bernhard Redl
Matrikelnummer 0828401

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Scient. Jesper Larsson Träff

Wien, 20. August 2016
Bernhard Redl Jesper Larsson Träff

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Extending the Pheet framework
for Parallel Pipelined Applications

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Bernhard Redl
Registration Number 0828401

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Prof. Dr. Scient. Jesper Larsson Träff

Vienna, 20th August, 2016
Bernhard Redl Jesper Larsson Träff

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Bernhard Redl
Mitteraustraße 3/31 3500 Krems

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. August 2016
Bernhard Redl

v

Danksagung

Zuallererst möchte ich mich bei Jesper Larsson Träff für die umfangreiche Betreuung
dieser Arbeit bedanken. Ohne seine Hilfestellungen in technischen Belangen und sein
Wissen bei Fragen, die das Schreiben von wissenschaftlichen Arbeiten betrafen, wäre
diese Arbeit nicht möglich gewesen.

Ich möchte auch Martin Wimmer besonders erwähnen, da ohne seine Arbeit am Pheet-
Framework und der Beantwortung zahlreicher Fragen zu diesem, diese Implementierung
nicht möglich gewesen wäre.

Besonderen Verdienst an dieser Arbeit, die das Korrekturlesen und Unterstützung während
des Studiums umfasst, kommt meiner Familie zu. Bei meinem Bruder bedanke ich mich
für das Redigieren dieser Arbeit, welches die grammatikalische Qualität entscheidend
verbessert hat.

Ich möchte meinen guten Freund Lukas besonders erwähnen, da er mir durchwegs mit
fachlichem Feedback insbesondere zu C++ zur Seite stand.

Meiner Gruppe an Freunden, die mich durch die Studienzeit begleitet haben, ist geschuldet,
dass ich dieses Studium abschließen kann. Das betrifft besonders Andreas, Martin,
Christoph, Thomas, Roman, Sebastian, Maximilian, Claudio und alle anderen.

Last but not least, I would like to thank my group of Erasmus friends. They always
provided me with the necessary distraction and cheered me up when things were not
working as intended. Na zdrowie guys!

vii

Kurzfassung

In dieser Arbeit wurde eine Implementierung des parallelen Pipeline Patterns für das
Task-parallele Pheet framework erstellt. Das Pipeline Pattern kann in vielen Situationen
in der Praxis angewandt werden. Es teilt Eingabedaten in unabhängige Teile (chunks), die
durch eine Serie von Verarbeitungsschritten gehen. Diese Verarbeitungsschritte werden
üblicherweise als stages bezeichnet. Manche dieser Schritte können parallel ausgeführt
werden, während in anderen Schritten manche Teile auf vorangegangene Teile warten
müssen.

Für die Entwicklung einer Pipeline Implementierung ist die Kenntnis von anderen
existierenden Implementierungen notwendig. In dieser Arbeit wurden dafür die weitver-
breitetsten Implementierungen analysiert. Für jede dieser Implementierungen wird eine
technische Beschreibung und eine Analyse der Einschränkungen geliefert.

Unsere Implementierung ist nicht-blockierend (lock-free) and verwendet keine zentrali-
sierten Datenstrukturen, um die Skalierbarkeit in Mehr-CPU-Systemen zu gewährleisten.
Wir verwenden C++ atomics für die Synchronisierung in unserer Implementierung.

Um unsere Implementierung zu testen, wurden Benchmarks auf mehreren Systemen ausge-
führt. Alle Benchmarks sind bekannte Probleme die sich gut auf eine Pipeline-Schnittstelle
adaptieren lassen. Für jeden Benchmark wurde eine Referenz-Implementierung verwendet,
um Eigenschaften der Benchmarks herauszufinden. Ein von uns erstellter synthetischer
Benchmark misst den Mehraufwand für die Synchronisierung unserer Implementierung.

Das Ergebnis lautet, dass unsere Implementierung beim synthetischen Benchmark gut
skaliert. Für die anderen Benchmarks ist das Ergebnis durchwachsen und hängt von den
unterschiedlichen Systemen ab.

ix

Abstract

In this thesis we provide a competitive implementation of the Parallel Pipeline pattern
for the task parallel Pheet framework. The Pipeline pattern can be applied to many real
world problems. The Pipeline pattern splits the input into independent chunks which
go through a series of computation steps called stages. Some stages may run in parallel
while others have to wait for preceding input chunks to finish.

To develop a new Pipeline implementation deep knowledge of existing implementations
is required. Therefore this thesis analyzes common existing Pipeline implementations. A
technical description of the implementations and their limitations is given.

Our implementation is designed to be lock-free and without central data structures
to allow good scalability for many core systems. We use C++ atomics to perform
non-blocking synchronization.

To evaluate our implementation, a set of benchmarks has been executed on different
benchmark systems, each featuring a different architecture. The benchmarks contain
popular problems which can be modeled efficiently with the Pipeline pattern. For
each benchmark a reference implementation is used as baseline to compare our results.
Additionally a synthetic benchmark is proposed to measure the synchronization overhead
of our implementation.

We show that our implementation scales well using our synthetic benchmark. The other
benchmarks yield very different results on our different test systems.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Introduction . 1
1.2 Pheet framework . 3
1.3 Task Parallelism . 4
1.4 DAG - Pattern . 9
1.5 Hyperobjects . 15
1.6 Futures . 18
1.7 Summary . 19
1.8 Related work . 20

2 Pipelines 23
2.1 Pipeline Pattern . 23
2.2 Intel Threading Building Blocks . 28
2.3 Piper . 33
2.4 Nabbit . 38

3 Pheet Pipelines 41
3.1 Introduction . 41
3.2 Goals and Design decisions . 41
3.3 State of the Art Interfaces . 42
3.4 Pipeline Interface Design . 44
3.5 Pipeline Implementation . 49
3.6 Memory Management . 57
3.7 Synchronization . 58
3.8 Debug Logging . 64
3.9 Performance Counting . 64
3.10 Implementation Summary . 65

xiii

4 Benchmarks 67
4.1 Goals - Comparison . 67
4.2 Speedup . 68
4.3 Measurement . 69
4.4 Benchmark Systems . 70
4.5 Dedup . 70
4.6 PrefixSum . 74
4.7 X264 . 77
4.8 Ferret . 83
4.9 Synthetic . 87

5 Benchmark Environment 93
5.1 Mars - 8 Intel Xeon . 93
5.2 Saturn - 4 AMD Opteron . 93
5.3 Ceres - 4 Oracle SPARC T5 . 95
5.4 Pluto - 2 Xeon Phi Coprocessors . 96

6 Benchmarks Results 101
6.1 Dedup . 101
6.2 PrefixSum . 105
6.3 X264 . 108
6.4 Ferret . 112
6.5 Synthetic . 116

7 Summary 129
7.1 Pipelines in Pheet . 129
7.2 Future Research . 131
7.3 Benchmark Results . 131

List of Figures 133

List of Code Listings 135

Bibliography 137

CHAPTER 1
Introduction

1.1 Introduction

This thesis describes an efficient, lock-free implementation of the Pipeline Pattern in the
Pheet framework.

The Pheet framework [Wim13] developed at TU Vienna can be used to implement task
parallel programs in multiprogrammed environments. See Section 1.2 for details about
Pheet.

In Task parallel programs problems are decomposed into smaller independent units of
work which are called tasks. Tasks are executed by a scheduler which distributes tasks
to worker threads. Worker threads are typically bound to physical cores to increase
the locality. Tasks may have dependencies to other tasks. Computations of such a
program have to obey all dependencies and can be modeled as directed acyclic graphs
(DAGs). Tasks are represented as nodes connected with edges representing dependencies.
Dependency edges represent data dependencies between tasks. Task parallel systems are
discussed in detail in Section 1.3.

Multiprogrammed environments [ABP98] name systems where parallel computations are
executed on a growing or shrinking set of processors.

Lock-freedom is a progress property of parallel systems which requires that at least one
thread makes progress in a bounded number of steps.

Patterns [Gam+95; MSM04] provide solutions for commonly occurring programming
problems. Patterns in our context do not provide specific implementations, instead they
provide a framework how to structure the specific problems to make them efficiently
executable. Patterns for task parallel systems focus on decompositions of problems into
smaller tasks and executions of those tasks in required order.

1

1. Introduction

Task based systems are an extension to parallel models like fork-join parallelism. Often
task based systems are implemented on top of fork-join models. There are multiple
patterns for parallel programs extending the fork-join semantics. This thesis focuses on a
specific pattern called the Pipeline pattern. Besides this pattern there are other related
patterns which aim to solve similar problems on top of a parallel programming model.
These related patterns like DAG, Future and the Hyperobject pattern are described and
compared to the Pipeline pattern in this introduction.

• In the DAG pattern, an unrestricted directed acyclic graph (DAG) is specified and
executed by a scheduler under a stricter computational model. Each node in the
DAG is a task. Only DAGs where each task is executed once are considered. See
Section 1.4 for details about the DAG pattern.

• The Pipeline [MSM04] pattern is a case of the DAG pattern where the input is
divided into chunks which flow through a sequence of stages. Each stage can be
seen as a task. It performs a computation and is executed once for each input
chunk. Input chunks may have logical dependencies on previous chunks at certain
stages. This is modeled with dependency edges. The Pipeline pattern is described
in Section 2.1.

• A Hyperobject [Fri+09] is a high level construct which uses the underlying struc-
ture of the synchronization graph to merge local views of shared variables at
specific points. It allows threads to maintain coordinated local views of the same
shared variable. This allows efficient implementation of so-called Reducers and
Finishers [Wim13]. Hyperobjects are also capable of implementing the Pipeline
pattern using a special queue data structure. See Section 1.5 for details about the
Hyperobject pattern.

• Futures are a parallel language construct which is often found in functional pro-
gramming languages. Future values are computed in the background and execution
is halted only when a read access is performed on the Future argument. The Future
value acts as a placeholder of the value which is computed in the background. See
Section 1.6 for details about Futures.

The remainder of this thesis is structured as follows: The following section introduces basic
concepts of task parallelism. Additionally the three related patterns (DAG, Hyperobject
and Futures) are described in more detail and their relation to the Pipeline pattern is
shown.

The Pipeline pattern is explained in detail in Chapter 2 and properties of state of the art
implementations like Intel TBB, Piper and Nabbit are analyzed. Chapter 3 introduces
our Pipeline implementation in the Pheet framework. We introduce our C++ interface
and show our lock-free data structures and argue that our implementation is correct. Our
source code is available on request to the author.

2

1.2. Pheet framework

Chapter 4 introduces the benchmarks we used and the necessary adaptions to convert
them to our Pipeline interface. The benchmarks were used to analyze the scalability
of our implementation for real world problems and synthetic workloads. We formulate
expectations on the scalability based on previous work of others. Chapter 5 analyses our
benchmark systems in detail. The results of the benchmarks can be seen in Chapter 6.

The last Chapter 7 gives a summary of our implementation and future work.

1.2 Pheet framework

The Pheet framework implements a task parallel model and was developed by Martin
Wimmer at the TU Vienna during his PhD thesis [Wim14]. It was created with the goal
to create a framework where every data structure and scheduler is plug-able and can be
exchanged easily. It features multiple task schedulers for shared memory systems. Pheet
has been released under an open source license1.

Multiple concurrent and wait-free data structures are included in the framework. They
can be easily exchanged using the highly flexible plug-in architecture which is very
beneficial to integrate our Pipeline implementation. Implementation and interface are
written entirely in C++ and heavily use C++ templates for customizations.

The included Pheet benchmark suite is used to benchmark Pheet components. We
added new benchmarks and adapted the benchmark suite to work with our Pipeline
implementation.

The Pheet framework is very portable and runs on many different system architectures.
It only requires C++11 compiler support and the hwloc [Bro+10] library for thread
pinning.

We used the Pheet framework to implement our Pipeline because it is very flexible and
provides wait-free data structures out of the box (Finisher, Performance Counter). The
Pheet task scheduler and the Finisher are important features which we rely on for our
Pipeline implementation.

1.2.1 Pheet Data Types

Beside from multiple schedulers introduced in Section 1.2.2 Pheet contains important
data types used in our implementation:

Reducer Hyperobjects allow different threads to maintain coordinated local views
of shared variables. The reduce operation is performed on synchronization points
like object destruction. We use Pheet Performance Counters based on Reducer
Hyperobjects to measure performance across different threads without affecting
the performance. For details about Hyperobjects and Reducers see Section 1.5.

1Martin Wimmer. Pheet. url: http://pheet.org/ (visited on 05/10/2016).

3

http://pheet.org/

1. Introduction

spawn-sync async-finish

strict

fully strict terminally strict

Figure 1.1: Expressiveness of different Computation models [Guo+09] and their relations
are shown in this figure.

Finisher Hyperobjects uses a wait-free reference counting algorithm to ensure that
all spawned threads complete. We use this Finisher to ensure that our Pipeline
terminates.

1.2.2 Pheet Scheduler

Pheet provides multiple task schedulers which can be exchanged very easily using the
plug-in architecture. We focus in our work on two schedulers:

BasicScheduler The BasicScheduler is a very simple work stealing scheduler. Aside
from task scheduling it has no additional functionality and is very lightweight.

StrategyScheduler The StrategyScheduler allows the user to specify strategies which
specify which tasks of the queue are executed first. Good strategies can increase the
locality and increase performance. We used this scheduler as base for our Pipeline
scheduler.

1.3 Task Parallelism

Task parallelism describes how to “decompose a problem into a collection of tasks that can
execute concurrently” and how this “concurrency can be exploited efficiently” [MSM04].

We explain in this section how the executions of a task parallel program can be modeled.
Also, we define certain characteristics which limit the expressiveness of the mentioned
models. Further we explain how task parallel programs can be executed.

1.3.1 DAG - Structure

A DAG (directed acyclic graph) is a standard way to model an execution of a task
parallel program. The execution of every task-parallel program can be modeled as a
DAG [ALS10].

DAGs consists of nodes and directed dependency edges which are not allowed to contain
cycles. Each task of the program is modeled as a node in the graph. Edges between
nodes are dependencies.

4

1.3. Task Parallelism

1 2 3 4 5

6 7 8

9

x

(a) fully strict

1 2 3 4 5

7 8

6

9

x

(b) strict

1 2 3 4 5

6 7 8

9
x

finish region

(c) terminally strict

Figure 1.2: Expressiveness of different Computation models [Guo+09]. In the three
shows DAGs, downward edges indicate join edges whereas edges going upward indicate
spawn edges. Red crossed edges indicate forbidden join edges for this group. Fully strict
computations force each child to join directly into the parent thread. Strict computations
require each child to join into a spawn tree ancestor. In Terminally strict models children
have to join inside their finish region. The corresponding implementation can be seen in
Listing 1.1 (fully strict), Listing 1.2 (strict) and Listing 1.3 (terminally strict).

Fully strict Pheet example
1 void n1() {
2 Pheet::Finisher f; //forces that node 6 join at the return of ←↩

the function
3 Pheet::spawn(n6);
4 n2(); n3(); n4(); n5(); } // execute node 2-5
5
6 void n6() {
7 Pheet::Finisher f;
8 Pheet::spawn(n9); // execute node 9 in background
9 n7(); n8(); } // execute node 7,8

Listing 1.1: This code shows a fully strict example (see Figure 1.2a) implemented in
Pheet. Each function which spawns nodes creates an own finish region using the Pheet
Finisher object. Finisher objects force the join of all parallel computations at the end of
the function (return). The function calls correspond to the task numbers in Figure 1.2a.

5

1. Introduction

Strict C++ thread example
1 void n1() {
2 thread7 = new std::thread(n7);
3 n1(); // n1 -> node 1
4 n2(); // execute work of node 2
5 n3(); // ..
6 n4(); // ..
7 n5(); // execute work of node 5
8 }
9 void n2() {

10 // work of node 2 - not shown here
11 thread6 = new std::thread(n6); } // start node 6 in the ←↩

background
12
13 void n4() {
14 // work of node 4 - not shown here
15 thread6.join(); thread7.join(); } //join node 6,7
16
17 void n5() {
18 // work of node 5 - not shown here
19 thread9.join(); }
20
21 void n7() {
22 // work of node 7 - not shown here
23 thread9 = new std::thread(n9);
24 n8(); }

Listing 1.2: This C++11 thread code implements the strict example in Figure 1.2b.
Pheet does not give precise control for joining threads. Pheet is a task scheduler. It takes
away the thread management from the user and thus does not provide fine control when
to join subcomputations. For details about Pheet see Section 1.2.

Nodes may have multiple outgoing dependency edges. Such nodes enable multiple
successor nodes to be executed concurrently.

In spawn/sync models the execution can be represented as a DAG. In these models nodes
with multiple outgoing edges are called spawn nodes. Nodes with multiple incoming edges
are called sync nodes.

Each DAG has a special start node which has no incoming dependency edges. The
execution is started in this node.

6

1.3. Task Parallelism

Terminally strict Pheet example
1 void n1() {
2 Pheet::Finisher f;
3 Pheet::spawn(n6);
4 n2(); n3(); n4(); n5(); }
5
6 void n6() {
7 Pheet::spawn(n9);
8 n7(); n8(); }

Listing 1.3: This Pheet code implements the terminally strict example in Figure 1.2c
using a Pheet Finisher. The Finisher object creates a finish region. Note that node 6
(n6) does not create an own finish region here which is the main difference to the fully
strict example in Figure 1.2a and Listing 1.1.

1.3.2 Computation models

The expressiveness of the DAGs can be classified into the following three computation
models to obtain proveable bounds on space and time in specific implementations.

• Models with fully strict [Hal+14] semantics force a spawned child to join into
the parent thread when it ends. This implies that a parent thread is active at
least as long as its children threads are (this model is used by Cilk [Int13] and
Cilk-P [Lee+13]). Figure 1.2a shows this. In this example node 9 has to join into
node 8 because it is the last node of its parent thread. The parent thread was
started with node 6. The red edge going directly from the top most node to the
last node is forbidden because children are only allowed to join into their direct
parent thread. Listing 1.1 gives a Pheet implementation of the example.

• In Strict computations [BL99] every join edge goes to a spawn tree ancestor. An
example is given in Figure 1.2b. In this example the top most node 9 can join
directly into the last node 5 because this node is an ancestor. In a fully strict
computation node 9 would have to join into node 8. The red edge is forbidden
because its target is a predecessor and therefore can not be a join target for the red
edge. Listing 1.2 gives a C++11 threads example because Pheet does not offer fine
control for thread joining. The Pheet framework is a task scheduling framework
and takes away the handling of the threads from the user.

• Terminally strict [Aga+07; Guo+09] computations consist of finish regions. Threads
which are spawned inside a finish region have to join in this finish region. The
finish region only ends when all spawned threads have been joined. This method is
used in X10, Habanero and OpenMP tasks. Pheet supports finish regions using
the Finisher Hyperobject [Wim14]. In C++ there exists a draft for finish regions
which are called Task Blocks [Hal+15; Hal+14].

7

1. Introduction

spawn nodes
join nodes

strand1

strand2

Figure 1.3: Strands [Fri+09] are sequences of nodes in DAGs without any parallel control
nodes like sync or spawn nodes. The two strands in this example are marked with blue
boxes.

An example task graph for a terminally strict computation can be seen in Figure 1.2c.
All edges joining inside their finish region are allowed. The red dashed edge joins a
node outside the finish region and therefor is forbidden. Listing 1.3 gives a Pheet
example using a Pheet Finisher object to create a finish region. In this example
node 6 (n6()) does not create an own Finisher object in contrast to the fully strict
example in Listing 1.1.

Figure 1.1 shows the relation of the computation models to each other. In Figure 1.2
examples for the three most important models are given. Forbidden join edges are shown
in red. Edges going up represent spawn edges. Downward Edges represent join edges.

1.3.3 Programming models

There are multiple programming models for task parallelisms:

The spawn/sync model is applied by Cilk [ALS10] and provides the spawn and sync
functions to manage parallelism. All threads spawned in a region have to join on the
sync statement of the region. Also Pheet [Wim13] uses this model. The sync command
is provided using a Finisher Hyperobject.

The fork/join model defines a fork method to spawn a new subcomputation and a join
method to wait for a given subcomputation. An example can be seen in Figure 1.4.
This gives a more precise control about the point where the subcomputation is joined.
Pthreads in Linux are an example of this model.

Another related model is Futures. Futures provide an implicit form of parallelism and are
common in functional programming languages. See Section 1.6 for details about Futures
and their relation to Pipelines.

1.3.4 Strands

Strands [Fri+09] are sequences of nodes not containing any parallel control instructions.
Parallel control instructions are sync or spawn nodes. A strand may also consist only of
a single node. Figure 1.3 shows a DAG with two strands marked with blue boxes.

8

1.4. DAG - Pattern

1 2 3 4 5

6 7 8

9

continuation

subcomputation

spawn node
thread 0

thread 1

thread 2

time

time

1 6 9 7 8 2 3 4 5single thread

Figure 1.4: A possible serial execution of a DAG is shown in the upper part. Each spawn
node is treated as a function call. The parallel execution of the DAG in the lower part
uses multiple threads. The threads are shown on the y-axis whereas the time is shown
on the x-axis.

1.3.5 Executions

Executions of DAGs can be done sequentially or in parallel.

In a sequential execution for spawn nodes the new subcomputation is executed first. Once
it is finished the continuation is executed. A spawn node enables the subcomputation
and continues to the continuation. Figure 1.4 shows the spawn, continuation and
subcomputation nodes. In a sequential execution a spawn instruction is handled as a
blocking call. Join instructions can be omitted because the subcomputation has completed
before the continuation is executed.

In parallel executions DAGs can be dynamically executed by a scheduler. The scheduler
distributes tasks to worker threads which execute tasks. A parallel execution using
multiple threads can be see in Figure 1.4. One possible mechanism to coordinate
worker threads is work stealing [BL99; ALS10; ABP98] which is used in Pheet [Wim13],
Cilk [Fri+09], X10 [Aga+07] and Intel Threading Building Blocks [Ale07]. In work
stealing an empty worker thread picks a random victim and tries to steal work from the
victim’s queue.

Schedulers usually track the state of each node and its dependency edges. When all
dependencies are satisfied a node is marked as ready and is scheduled for execution by
the scheduler.

1.4 DAG - Pattern
One has to clearly distinguish between the DAG as structure of computation as described
in Section 1.3 and the DAG as programming pattern explained in this section. The DAG

9

1. Introduction

programming pattern enables the programmer to execute an arbitrary, unrestricted DAG
(structure) under a stricter programming model.

This requires that the task graph is converted to a structure supported by the underlying
scheduler.

1.4.1 Task graphs

The model of the DAG pattern is a task graph which models the dependencies of
subcomputations (tasks). Every ready task may be scheduled for execution. A ready
task is a task where all dependencies to other tasks are satisfied. This means that the
depending tasks already have been executed.

Task graphs can be modeled as DAGs. An example of a specific DAG state is given in
Figure 1.5. Blocked nodes with unsatisfied dependencies are drawn with dashed lines.

Formally a task graph is a tuple D = (V,E) where E is a set of dependency edges and V
is a set of nodes.

Pipelines can be modeled using multiple task graphs. Each Pipeline iteration can be
modeled as an own small task graph. This way a Pipeline model can be transformed into
a DAG. For more details about modeling a Pipeline using a DAG see Section 1.4.2.

In theory a task graph gives the following lower bound: The completion time [Cor+09,
p. 780] on P processors is at least max (T1/P, T∞) where T1 is the sum of all node
completion times in the DAG and T∞ is the completion time of the nodes on the longest
directed path in the DAG. A graphical representation is given in Figure 1.6 P is the
number of computation cores.

T1/T∞ is called the parallelism [ABP98]. It restricts the maximum possible speedup.
Even if more computation resources are added to the execution, the speedup can not be

ready node

start node

Figure 1.5: Example of a specific DAG state. Edges represent dependencies where
mark satisfied dependencies, mark currently unsatisfied dependencies, dashed circles

mark tasks with unsatisfied dependencies and bold circles mark completed tasks.
The circle indicates a ready node where all dependencies are satisfied but which has
not been executed yet.

10

1.4. DAG - Pattern

start node finish node

T1 = 1 · 8 number of tasks
T∞ = 1 ·M = 5 longest path in the DAG

Figure 1.6: The blue line shows the longest path T∞ in the DAG. For the longest path
T∞ only the completion time of the nodes is relevant. M is the length of T∞. T1 is the
sum of the completion times of all nodes in the DAG. For easier understanding in this
example, all nodes have a completion time of 1.

increased further. See Section 4.2 for more details about the speedup.

Task graphs can be distinguished into two types regarding the flexibility:

• In Static Task Graphs [ALS10] all nodes and dependencies between them are
known a priori. Additionally the computation time for each node is known. An
optimal schedule can be created beforehand. The generation of such a minimal-time
execution schedule is NP-complete but heuristics are available.

To show that the schedule generation is NP-complete Ullman [Ull75] showed that
the well known NP-complete 3-SAT problem can be reduced in polynomial time to
a scheduling problem. The proof is rather complex and is not given here.

• In Dynamic Task Graphs [ALS10] new nodes and dependency edges are created
on-the-fly. A dynamic scheduler is needed to maintain a task pool of ready nodes.
Scheduling decisions are made during runtime by the scheduler. Several methods
for work distribution between the workers exist. One method of distributing work
in a task pool is work stealing (used in Cilk++ and Intel TBB).

1.4.2 Relation to Pipelines

This pattern is very related to the Pipeline pattern because every Pipeline execution can
be modeled as a task graph. Because task graphs are represented using DAGs they can
not contain loops. Therefore each Pipeline iteration has to be modeled as a separate
DAG. An artificial start node connects all DAGs.

A DAG scheduler can thus execute a converted Pipeline, but it can not take advantage
of restrictions imposed by the Pipeline pattern. These restrictions, like no forward
edges, can be used to reduce the memory footprint and reduce the amount of needed
synchronization in the implementation.

11

1. Introduction

1.4.3 Nabbit

As an example of a general DAG scheduler Nabbit [ALS10] is given. Nabbit is an extension
to the multithreaded programming language Cilk++. It executes dynamic task graphs
inside the fully strict Cilk programming model. Nabbit could be implemented in any
fork-join library which supports work-stealing [ALS10].

Nabbit integrates well with Cilk++ fork-join constructs. Inside Nabbit nodes, these
Cilk++ constructs can be used to exploit additional parallelism.

Nabbit is oblivious to changes of processing resources in multiprogrammed environments.
When a worker thread is descheduled by the operating system, its nodes are stolen by
other active worker threads (work stealing). This is considered an important property in
multiprogrammed environments [ABP98].

Nabbit supports static and dynamic task graphs. In static task graphs all dependencies
and nodes are known a prior. The execution time of each node is usually not known.

In dynamic task graphs dependencies and nodes are created on-the-fly during runtime.
Nabbit offers an interface for the programmer to add new nodes and dependencies during
runtime. Dependencies are added during a discover phase before executing a node. This
discovery follows the notion that each node knows its dependencies.

As an example we use a dynamic program to compute a M(n, n) matrix with an input
matrix s(n, n). Each cell is calculated by checking the cell above and the cell left of the
current position. From the input matrix s a factor is added to each of these neighbor
cells. The bigger value is used as a result for the current cell. The equation used is:

M(i, j) = max

{
M(i− 1, j) + s(i− 1, j)
M(i, j − 1) + s(i, j − 1) (1.1)

In Listing 1.4, a Nabbit pseudo code example is given which solves this problem with
Nabbit. First, for every cell the neighbor above and left are added as dependencies.
Then the execution is started and Nabbit schedules the executions according to the
dependencies.

Implementation

To track ready nodes Nabbit intuitively counts the number of immediate (not yet
completed) predecessors for each node in the graph. Additionally Nabbit has to track
the status of each node in the dynamic task graph.

For static task graphs Nabbit has to maintain certain information for every node in the
graph. This is mainly a successor array which stores the reverse of the dependency edges
and a join counter which is used to track yet unfinished predecessors. Once a node is
finished Nabbit decrements the join counters of the successors in parallel and schedules a
successor if its counter reached 0.

12

1.4. DAG - Pattern

Nabbit static task graph example
1 g = new Node[n*n]
2 for i=0 ; i < n ; i++:
3 for j=0 ; j < n ; j++:
4 k = n*i+j
5 g[k].pos = k
6 if i > 0: g[k].AddDep(g[k-n]) //cell above
7 if j > 0: g[k].AddDep(g[k-1]) //cell left
8 g[0].execute() // start task graph execution
9 // this is a nabbit system method

10
11 class Node
12 int res;
13 void Compute():
14 // user defined function performing the work
15 res = 0;
16 for i=0 ; i < predecessors.size() ; i++:
17 Node pred = predecessors.get(i)
18 int pred_val = pred->res + s[pred->pos]
19 res = MAX(pred_val,res)

Listing 1.4: Pseudo Nabbit code to solve Equation 1.1 with a static task graph [ALS10].
The equation defines 2 dependent cells for each cell in the matrix. After the values of the
dependent cells have been computed, a value from an input matrix is added. The bigger
value is stored in the current cell. The AddDep method is used to define dependencies.
The execute method is provided by Nabbit and starts the computation. This function
has to be called on the start node of the DAG. In contrast the Compute function has to
be defined by the user. In this function the work for the node has to be performed. It is
called by Nabbit when all dependencies are met.

For dynamic task graphs dependencies of each node have to be discovered by Nabbit
before executing the node. To accomplish this, the user has to provide a method to
Nabbit which returns the direct predecessors for a given node. This method is guaranteed
to be called once per node by Nabbit. A new status field for each node ensures this.

13

1. Introduction

Performance

To analyze the performance of Nabbit a work/span analysis [Cor+09, Chapter 27] is
used.

It is known that the Cilk work-stealing scheduler [BL99] has the following time bounds
with probability of 1− ε, where ε can be chosen freely.

O (T1/P + T∞ + lg (P/ε)) (1.2)

Where

T1 is the total work of all nodes,

P is the amount of used computation cores and

T∞ is the span which is also called critical path length

T1 is the time it takes to execute the computation on a single computation core. The
critical path length T∞ is the time it would take on ∞ computation cores. This is
visualized in Figure 1.6.

Agrawal, Leiserson, and Sukha [ALS10] have shown the computation time bounds for
Nabbit to be (with freely chosen probability 1− ε):

O(T1/P + T∞︸ ︷︷ ︸
lower bound

+ lg(P/ε) + M lg ∆o︸ ︷︷ ︸
visit successors

in parallel

) +O((|E|/P +M︸ ︷︷ ︸
graph traversal

in parallel

) ·min{∆i, P}︸ ︷︷ ︸
worst case
contention

)) (1.3)

Where

∆o is the maximum out degree of nodes in the DAG. out-going edge represents a
dependency for the target node.

∆i is the maximum in degree of nodes in the DAG,

M is the number of nodes on the longest path.

M lg ∆o represents the work to visit successor nodes in parallel, which is dominated by
the T∞ term in graphs with reasonable work in the nodes.

(|E|/P +M) ·min{∆i, P} models the worst-case contention (waiting for join counters)
where,

(|E|/P +M) is a bound for the parallel traversal of the DAG.

14

1.5. Hyperobjects

min{∆i, P} term indicates the worst case where P computation cores try to decrement
the join counter of a single node. The join counter is decremented using an atomic
decrement operation. The DAG is traversed in parallel by P threads. So up to P
threads may decrement the join counter of a single node concurrently. If the node
has less input edges ∆i than threads, at most ∆i threads can reach this node at
the same time.

For dynamic task graphs the time bounds of the static version have to be slightly modified:

min{∆i, P} → min{∆ , P}
M lg ∆O → M∆

(1.4)

Where ∆ is the maximum degree of any node in the graph. This term arises because
every node is visited twice in the dynamic version: Once during the Init phase and
once when the Compute function is called by Nabbit. The new M∆ term arises because
successors may be discovered and added serially to the successor array. The static version
of Nabbit visits successors in parallel (lg ∆O).

According to the authors of Nabbit the dynamic version suffers a slowdown of factor 5 in
practice compared to the static version. The benchmark was done with a constructed
medium size task graph where the work done inside the nodes is small compared to
the scheduler overhead. In graphs where the work inside the nodes dominates the
bookkeeping, the static and the dynamic version perform nearly the same.

Agrawal, Leiserson, and Sukha [ALS10] claim that the overhead for a single core exe-
cution of a problem implemented in static Nabbit is about 16 % compared to a serial
implementation of the same problem.

1.5 Hyperobjects

Hyperobjects [Fri+09] are a high level construct which allows different threads “to maintain
coordinated local views of the same shared variable” [Fri+09]. They use the structure of
the underlying synchronization graph to merge local views at defined points. The goal is
to reduce the synchronization overhead for shared variables in parallel environments.

The Hyperobject Pattern can be used to implement a Pipeline, therefore it is explained
here.

For each strand a local view of the shared variable exists. As explained in Section 1.3.4 a
strand is an instruction sequence without concurrency instructions (join, spawn). Inside
a strand no synchronization is needed to access the shared variable because the local
view is exclusively owned by the strand’s thread. On synchronization points where two
strands are joined, the local views are combined. New local views are created in spawn
nodes in the computation DAG.

15

1. Introduction

A Hyperobject also provides an abstraction to coordinate different strands that depend
on the same variables. Generally, Hyperobjects are used to separate dependent strands
and perform synchronization. [Fri+09]

An alternative to Hyperobjects for synchronization of shared variables would be a
centralized lock to protect the shared variable which may increase contention as the
worker count increases.

The main usages of Hyperobjects are:

Reducer [Fri+09] which provide a way to merge partial results computed in parallel.
Preferably the order is preserved as in a serial execution. The reduction operation
can be user-defined and applied in the background once intermediate results are
available.

Finisher [Wim13] can be used to implement the basic synchronization primitive finish
in async finish models. Async finish models are more flexible than fully strict
models like Cilk (see Section 1.3.2). A finish region [Wim13] forms a boundary for
all threads spawned inside the region. An example of a finish region can be seen in
Figure 1.2c.

Hyperqueues [VCN13] are special queues which allow program construction in a
Pipeline fashion. They extend the local views of Hyperobjects by introducing shared
views between a single producer and a consumer. Each stage is represented as a
thread which takes a Hyperqueue object parameter. This parameter is annotated to
define if the Hyperqueue object is used as producer (output) or consumer (input).
All stage threads are operating on the same Hyperqueue object instance. The
synchronization is done using the Hyperobject Pattern. Hyperqueues are discussed
in detail in Section 1.5.1.

Wimmer showed that Hyperobjects can be implemented wait-free [Wim13].

1.5.1 Hyperqueues

Hyperqueues [VCN13] are special queues which are an implementation of the Pipeline
pattern. They extend Hyperobjects with the addition that two threads can share a
common view, in contrast to exclusive local views in the above mentioned Hyperobjects.

Hyperqueues implement the Pipeline pattern using techniques from Hyperobjects and
from task dataflow models. In task dataflow models programmers describe what variables
are inputs to tasks and what variables are used as output. These annotations model task
dependencies.

Other approaches which provide the Pipeline pattern are often tuned to a specific number
of processing cores. Hyperqueues instead are scale-free [VCN13] which means that they
are oblivious to the specific number of computation cores.

16

1.5. Hyperobjects

Hyperqueue Pipeline example
1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while(!queue.empty()) {
4 data d = queue.pop();
5 // ... operate on data ...
6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if (end-start <= 10) {

10 for (int n=start; n < end; ++n) {
11 data d = f(n); // create chunk n
12 queue.push(d) ;
13 }
14 } else {
15 spawn producer(queue, start , (start +end)/2);
16 spawn producer(queue, (start +end)/2, end);
17 sync;
18 }
19 }
20 void pipeline (int total) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>) queue, 0, total);
23 spawn consumer((popdep<data>) queue);
24 sync;
25 }

Listing 1.5: This example shows a simple Pipeline which consists of a single producer
stage and a consumer stage. Both stages are spawned as threads and operate on the same
Hyperqueue Hyperobject. The arguments are annotated with pushdep for producer and
popdep for consumers [VCN13].

They are executed in a predictable, deterministic way which can reduce debugging effort.
Deterministic execution is considered an important property [Boc+09].

Implementation

As a specific implementation the only to our knowledge known implementation of Hyper-
queues [VCN13] will be discussed. In this implementation threads are classified as
producers, consumers or both. The Hyperqueue is a special single-producer, single-
consumer queue and each local view is shared between one producer and one consumer
thread.

Each task is represented by a procedure which takes arguments. Annotations of these
arguments decide if the task is a producer or a consumer, which models the dependencies.

17

1. Introduction

Possible annotations for task arguments are:

Consumer Threads executing tasks with this annotation can only run when older
consumer threads are already completed. This ensures a deterministic order which
is considered an important property.

Producer Multiple producer threads may push created values concurrently into the
same queue. In this case every producer creates a different range of data. Reductions
are used to merge the different ranges on synchronization points (like Hyperobjects).
Producer threads can also execute concurrently with earlier started consumer
threads, with the limitation that older consumer threads can not see newly created
data.

A combination of consumer and producer is also possible. In this case the executing
thread inherits the restrictions from both types.

It is important for the program order that consumers can only read values written
by preceding producers (the data of a later started producer is not visible to earlier
consumers).

An example of a simple Pipeline program implemented with Hyperqueues is given in
Listing 1.5. In this example the Pipeline consists of two stages. A producer stage which
creates data in parallel and a consumer stage which consumes the data. All stages
are modeled as threads which take the same instance of the Hyperqueue object. This
argument is annotated to specify if it is used to consume (input) or to produce data
(output).

1.6 Futures
Futures are parallel language constructs which can be commonly found in functional
orientated programming languages [BR97].

When a Future value is declared the computation of the value is spawned in a new thread
but a pointer to the result location is returned immediately. This pointer can be used
like the normal value and can be passed to functions or added to lists. When a thread
actually tries to read the value of the pointer it is checked if the value has already been
computed. In case the value is ready, the thread can continue immediately and in case it
is not ready it has to wait.

Futures exploit the fact that often the results of a computation are not needed immediately.
Often results are just passed to functions or are added to lists without reading / processing
them instantly. Later when the actual value is read the other thread may already have
finished the computation.

Futures are a very easy to use concept of parallelism because the user does not have to
care about synchronization issues and can phrase his algorithm naturally.

18

1.7. Summary

1 fun produce(n) =
2 if (n < 0) then nil
3 else n::?produce(n-1);
4
5 fun consume(sum,nil) = sum
6 | consume(sum, h::t) = consume(h+sum,t);
7
8 consume(0,?produce(n));

Listing 1.6: This example shows a Pipeline consisting of a producer and a consumer using
Futures implemented in the functional programming language ML [BR97]. In ML syntax
the ? operator defines a Future argument. The :: operation performs list concatenation.
In this example the producer creates numbers which are concatenated into an output list.
The consumer splits the list into a head and a tail list (h::t) and adds the head element
to the calculated sum. The functions call themselves recursively, which is very common
for functional programming. An execution diagram of this listing is shown in Figure 1.7.

1.6.1 Pipelines

Blelloch and Reid-Miller first used Futures [BR97] to model Pipelines. It allows much
simpler Pipelines by not coding the Pipeline explicitly. A consumer gets a Future list
where the data elements are constructed on-the-fly in background. This method works
very well in functional languages without side effects. Although the approach is very
versatile it suffers from possible unbounded memory usage.

Executions of such Pipelines implemented with Futures in a functional programming
language can be modeled using a DAG. The code of a Pipeline modeled in ML using
Futures can be seen in Listing 1.6. The Pipeline consists of a single producer and a
consumer. A list of elements is created by the producer and passed to the consumer.
The consumer splits the list into a head and a tail list and adds the read head element to
the computed sum. The corresponding DAG is shown in Figure 1.7.

1.7 Summary

We have shown three commonly used patterns for task parallelism beside of the Pipeline
Pattern.

The DAG pattern, where a generic DAG (structure) is scheduled efficiently by a stricter
scheduler. An open scalability problem is the limited memory bandwidth. A future
research topic is the combination of multiple nodes into a single node in regular graphs
to improve locality. Also the garbage collection is a further research topic for DAG
schedulers.

The Hyperobject pattern uses local views of shared variables which are reduced on specific
synchronization points. The local views allow concurrent computations without syn-

19

1. Introduction

?

consume

h::t

h+sum

consume

h::t

produce

n<0

?

n::produce

n<0

?

n::

Figure 1.7: This DAG shows the execution of a Future Pipeline [BR97] from Listing 1.6
containing a single producer and a single consumer. Edges going left indicate spawns of
new threads, whereas edges going right indicate join edges. The ? operator denotes a
Future argument. n:: denotes adding element n to the beginning of the list.

chronization during instruction sequences without parallel control instructions (strands).
They provide an efficient method to implement Reducer and Finish regions. Also the
synchronization burden of shared variables is moved away from the user into the library
or runtime system. We showed that Hyperqueues can implement Pipelines by annotating
arguments as producer or consumer. A topic for further research could be hierarchical
tree-based reductions. Concurrent consumer threads for producer-consumer systems would
be another topic for further research. The same applies to Garbage collection.

Futures are a parallel language construct which is very common in functional programming
languages. Future arguments are computed by spawned threads in the background. A
thread only blocks when it tries to read values which are not yet ready. Pipelines can
be modeled with Futures very compact and the user does not have to take care about
synchronization.

1.8 Related work

A related pattern not described in detail is Stream Programming [UGT09]. Stream
Programming is a programming model where programs consist of filters that are applied

20

1.8. Related work

to independent data in parallel. This model can be used to program GPU architectures
or Stream CPUs efficiently because they consist of a large number of independent
computation cores. These cores execute the same code in parallel for independent input
data.

Gordon, Thies, and Amarasinghe created the StreamIt library to exploit parallelism with
coarse-grain pipeline tasks [GTA06].

Sanchez et al. implemented a GRAMPS runtime which bounds the memory footprint
of a Pipeline program [San+11]. The GRAMPS programming model supports irregular
Pipelines. They use per-stage queues and backpressure to limit the memory usage.

Pop and Cohen proposed an extention to the widely known OpenMP framework to
support stream computing and Pipelines [PC11]. Pipelines are defined using input and
output queues but support for dependency edges and non-linear Pipelines is limited.

Macdonald, Szafron, and Schaeffer showed that it is possible to model Pipelines as
state transformation in an object orientated context [MSS04]. They use a master/slave
approach to mitigate startup effects and allow better dynamic scalability. The state
design pattern, where the behavior of an object changes depending on the state, is used
to implement the Pipeline pattern. Worker threads pick arbitrary ready objects and
transform them to their next stage.

21

CHAPTER 2
Pipelines

This chapter describes the Pipeline pattern in detail and shows different classifications
for Pipelines. Additionally three state of the art implementations of the Pipeline pattern
are analyzed. Advantages and disadvantages are given.

2.1 Pipeline Pattern

The Pipeline pattern [MSM04] targets problems where input can be split into partially
independent chunks. These chunks all have to go through a series of processing steps
often called stages.

An example of the Pipeline pattern is shown in Figure 2.1. It shows the production of
cars Cn in a factory. Cars have to go through four stages. After a start-up phase every
stage is filled with work and the computation runs in parallel [MSM04, p. 86]. A specific
state of the Pipeline execution is shaded in orange. It is the first state after the start-up
phase is completed. In the upper part of Figure 2.1 the corresponding serial execution is
shown. Pipelines do not reduce the processing time for specific elements, instead they
reduce the total processing time of all inputs.

The Pipeline pattern provides a natural way to express a lot of relevant real world
problems like deduplication, video encoding and similarity search. For example many
server software [BL12] related problems can be addressed with this pattern. Server
software often has to perform a series of tasks per client request. These tasks can be
modeled as Pipeline stages.

Because of the frequent use of this pattern, three Pipeline problems Ferret [Lv+07a],
Dedup [Bie11] and x264 [Vid] have been included in PARSEC benchmark suite [BL12].
Ferret searches for similarities in data sequences, Dedup compresses files by deduplicating
blocks of data (Listing 2.3) and x264 is the popular H.264 video encoder.

23

2. Pipelines

C1,0 C1,1 C1,2 C1,3

stage 1

C2,0 C2,1 C2,2 C2,3

stage 2

· · ·

C1,0 C2,0 C3,0 C4,0 C5,0 C6,0stage 0

C1,1 C2,1 C3,1 C4,1 C5,1 C6,1stage 1

C1,2 C2,2 C3,2 C4,2 C5,2 C6,2stage 2

C1,3 C2,3 C3,3 C4,3 C5,3 C6,3stage 3

time

Serial execution
Pipeline execution

time to finish C1

Figure 2.1: Visualization of the Pipeline Pattern [MSM04]. The stages are numbered
starting from 0. The used example shows the production of a car Cn. Each car requires
four processing steps called Cn,0, · · · , Cn,3. In the Pipeline model each processing step
is modeled as a stage. The area shaded in orange marks a specific state of the entire
Pipeline. At that moment the startup of the Pipeline is completed and every stage is
processing work.

2.1.1 Definition

Formally Pipelines consist of abstract functions which are called stages S = S0, . . . Ss−1
and independent input chunks named I = I0, I1, . . . , In−1. Every input chunk element
must sequentially go through these stages.

Pipelines can be more complex than the previous car production example. In the previous
example dependencies between iterations have been omitted. More complex Pipelines
can have dependencies between adjacent iterations.

A linear Pipeline with four stages and n input chunks can be seen in Figure 2.2. This
figure shows dashed nodes (input chunks at a specific stage) which are ready to be
executed and nodes which have yet unresolved dependencies to other iterations. Two of
the four stages are executed in parallel (filter1, filter2) resulting in no dependency edges
between adjacent iterations. The first and the last stage do have dependencies between
adjacent iterations. This means that an iteration has to wait for its preceding iteration
until it reaches the required stage.

A Pipeline computation can be represented as a DAG (see Section 1.3.1). For each input

24

2.1. Pipeline Pattern

0 1 2 3 4 5 6 7

iterations / input chunks

stages

input(serial)

filter1(parallel)

filter2(parallel)

output(serial)

n-1
· · ·

· · ·

Figure 2.2: Specific execution state of a linear Pipeline with four stages. The first
stage is a serial stage input stage, the second and the third stage are parallel stages
(no dependencies between adjacent iterations). The last stage is a serial stage again (≈
output stage). This represents a typical Pipeline in Intel TBB. Bold circles mark
completed tasks. The filled node indicates the start node. Dashed circles mark ready
tasks. Circles mark tasks which are not ready yet because of unfulfilled dependencies.

chunk there is a separate DAG because every node is executed exactly once in a DAG.
We name the node representing chunk i at stage j (i, j). These DAGs are merged into
one big DAG connected by the following edge types (see Figure 2.4):

stage edges (i, j)→ (i, j′) | j < j′, j ∈ S, i ∈ I where j ∈ S denotes the stage and i ∈ I
denotes the input data. This edge means that stagej′ depends on the previous
stagej , which is usually the case in most problem instances. It is possible to skip
stages with these edges which is useful in on-the-fly Pipelines.

cross edges (i− 1, j) → (i, j) | j < j′, j ∈ S, i ∈ I means that the next input item at
stagej can only be processed after the input chunk at iteration i− 1 has completed
stagej (blue edge in Figure 2.4). Stages not containing any cross edges are called
parallel stages. In serial stages all iterations of the stage are connected with cross
edges. Mixed stages are called hybrid stages.

throttle edges In the Pipeline pattern stack space usage is an important consideration.
Stack space may grow to an unlimited size because started, yet unfinished iterations
have to be kept on the stack. To ensure proveable bounds, the maximum number
of running iterations must be limited. Therefore, logical throttle edges are added in
implementations supporting arbitrary dependency edges (represented as dashed
blue lines in Figure 2.4). For further information see Section 2.1.2.

2.1.2 Throttling

For large problem instances not every input chunk can be held in memory. Each started
input chunk has to be kept in memory until it is finished. If the scheduler does not take

25

2. Pipelines

Cilk-P Pipeline example
1 #define STAGE1 1
2 #define STAGE2 2
3 #define STAGE3 3
4
5 int fd_out = open_output_file();
6 bool done = false;
7 pipe_while (! done) {
8 chunk_t *chunk = get_next_chunk();
9 if (chunk == NULL) {

10 done = true;
11 } else {
12 pipe_wait(STAGE1); //Stage 1 is a serial input stage
13 bool isDuplicate = deduplicate(chunk);
14 pipe_continue(STAGE2); //Stage 2 (compress) runs in ←↩

parallel
15 if (! isDuplicate)
16 compress(chunk);
17 pipe_wait(STAGE3); //Stage 3 is a serial output stage
18 write_to_file(fd_out, chunk);
19 }
20 }

Figure 2.3: Pipeline code example with two serial stages (pipe_wait(STAGE1 ←↩
), pipe_wait(STAGE3)) and one parallel stage (pipe_continue(STAGE2)). This
pseudo code implements the Dedup benchmark [BL12] using the Cilk-P Pipeline in-
terface [Lee+13]. The Dedup benchmark deduplicates duplicate file chunks to reduce the
file size.

care of the amount of running iterations this may lead to a runaway Pipeline [Lee+13].

Multiple different approaches exists to limit the amount of running iterations. In
implementations supporting arbitrary dependency edges, throttle edges can be added by
the implementation to limit the amount of running iterations. A Pipeline example with
throttle edges can be seen in Figure 2.4.

Another possibility is to count the amount of running iterations and block the spawning
of new iterations if the counter exceeds the limit.

2.1.3 Result Passing

Every Pipeline stage has input and output data. We consider output data of stages as
their result. Stage results may be passed in two dimensions during a Pipeline execution:

• Results have to be passed in an iteration from stage to stage. This is required
because a specific input chunk has to go through the series of stages.

26

2.1. Pipeline Pattern

st
ag

e
0

st
ag

e
1

st
ag

e
2

st
ag

e
3

st
ag

e
4

chunk 0 (I0) skip

chunk 1 (I1)

chunk 2 (I2)

chunk K (IK)

th
ro
ttl
e

cr
os
s

cr
os
s

Figure 2.4: In theory the computation of every chunk may be modeled with an individual
DAG. In practice this leads to hard to maintain code. In this example only the DAG for
the first chunk is different compared to the other chunks. The DAGs are connected with
cross edges and throttle edges. Filled circles indicate start nodes. Blue arrows indicate
cross edges which are used to model dependencies between different input chunks. A
black edge indicates a stage edge. The red stage edge is used to skip stage 3. To prevent
unbounded stack space usage throttle edges (dashed blue edges) are added to restrict the
amount of concurrently running iterations.

• In case an iteration depends on a preceding iteration, results may be passed from
iteration to iteration. Whether this is necessary depends on the specific algorithm.
Some algorithms only use dependencies for synchronization while others need result
values from dependent iterations.

2.1.4 Execution of Pipelines

Pipelines can be distinguished according their type into two major groups. These two
groups require different execution methods.

Construct-and-Run Pipelines require a static structure before the Pipeline is executed.
The structure can not be changed during runtime. Every input chunk has to go
through the same series of stages. Systems like TBB (Intel Threading Building
Blocks) use this approach.

27

2. Pipelines

The dependent stages can be connected with queues. Worker threads use these
queues to retrieve ready tasks and execute them. The queue data type has to be
thread safe to allow a parallel execution of the Pipeline.
With this restricted Pipeline pattern some algorithms which require dynamic
runtime decisions (like x264) can not be easily implemented [RCJ11].

On-the-Fly [Lee+13] Pipelines are types where the structure emerges during runtime.
Dependencies between the stages can be different for each input chunk Ii. This
type of Pipelines can not be implemented using static queues between stages.
It can be implemented on top of a scheduler which allows arbitrary dependencies
between nodes. Also the DAG pattern can be used to create the structure during
runtime and execute it on a more strict scheduler.
There are two possible scheduling approaches. Firstly, bind-to-element [Lee+13]
where a worker executes tasks from multiple stages and only suspends a task if
it hits an unresolved dependency. In this method, work stealing is applied to
synchronize workers. Secondly, with bind-to-stage [Lee+13] every worker is bound
to a stage and only executes ready nodes of this stage.
One possibility to coordinate stages in On-the-Fly Pipelines is to use Futures [BR97].
Futures are a construct used in functional languages to enable parallelism. This
allows even more expressive definitions but may lead to unbounded space [Lee+13;
BL93]. See Section 1.6 for details about Futures.

2.1.5 Flexibility of Pipelines

Pipelines can be distinguished according their flexibility into two groups:

Linear Pipelines have a simple structure. Each stage consumes one input element and
outputs one element. All input chunks have to go through the same series of stages
although stage skipping is allowed. Examples of implementations supporting linear
Pipelines are Intel TBB (see Section 2.2) and Cilk-P (see Section 2.3).

Non-linear Pipelines allow that each stage outputs more than one element. This
allows to model nested Pipelines which are required by some benchmark instances
like the Dedup [Bie11] benchmark of the Parsec suite. It gives more flexibility to
express parallelism. At the moment only DAG scheduler like Nabbit and the Intel
TBB flow interface support this.

The following sections provide in depth analysis of three well known Pipeline implemen-
tations.

2.2 Intel Threading Building Blocks
Intel TBB [Nav+09] provide an implementation supporting linear Pipelines.

28

2.2. Intel Threading Building Blocks

A restriction in TBB before version 4 was that it only supported linear, construct-and-run
(see Section 2.1.4) Pipelines where every stage had to produce the same number of output
elements. Because of this limitation it is “hard but not impossible” [RCJ11] to model
on-the-fly algorithms like x264 with TBB. Additionally there was no way to model cross
edges which made it hard to express non-linear Pipelines. This limitation has been
lifted partially with the new flow construct introduced in TBB 4 [MRR12]. To limit the
stack space usage, TBB provides a tunable argument limiting the amount of concurrent
iterations.

To coordinate the workers which use a bind-to-element approach [Lee+13], TBB uses
work stealing [Nav+09]. In a bind-to-element approach a worker tries to execute all
stages for a single input chunk. It only switches to another input chunk when there are
unsatisfied dependencies. A typical execution diagram can be seen in Figure 2.2.

2.2.1 Interface

Intel Threading Build Blocks offers three interfaces to create a Pipeline application [Ale07].
The oldest is C++ class focused whereas the newer interfaces take advantage of the
Lambda construct [JF10] (see Section 3.3.1) introduced in the C++11 ISO standard. The
newest interface is the flow interface which allows dynamic construction of task graphs
with nodes and dependency edges during runtime. This interface can also be used to
model Pipelines. Examples and detailed descriptions are given later in this section.

Pipeline stages are called filters in TBB and can be combined into chains. Each filter
can either run in parallel or serial. A linear input stage would be modeled as a serial
filter. For each filter the input and the output data type have to be specified and can not
be changed during runtime.

During construction a throttle limit can be specified. This value caps the number of
concurrently active iterations to limit the memory usage. It is mandatory and effects
performance in case it is set too low.

C++ Class Interface

Each filter is a C++ class which has to inherit from the tbb::filter class. The
concurrency is controlled by calling the parent class constructor with parallel or
serial_in_order enum values. An example is given in Listing 2.1. The filters are
added to and the execution is controlled by an instance of the tbb::pipeline class.
Filters can not be modified or added once the execution of the Pipeline has started.

Lambda based Interface

This interface uses the construction method make_filter which specifies the concurrency
of the stage with the first argument and accepts a Lambda function expression (see
Section 3.3.1) as second argument. The concurrency is specified by two enum values
(filter::serial, filter::parallel). The construction function makes use of C++

29

2. Pipelines

Intel TBB Pipeline class interface
1 #include "tbb/pipeline.h"
2 class Filter1 : public tbb::filter {
3 Filter1() : tbb::filter(serial_in_order) {} // serial stage
4 // generatetokens
5 void* operator()(void* token);
6 };
7 class Filter2 : public tbb::filter {
8 Filter2() : tbb::filter(parallel) {} // parallel stage
9 // process tokens and output tokens

10 void* operator()(void* token);
11 };
12 class Filter3 : public tbb::filter {
13 Filter3() : tbb::filter(serial_in_order) {} // serial stage
14 // process tokens
15 void* operator()(void* token);
16 };
17 tbb::pipeline ThreeStagePipeline; //Create the pipeline
18 ThreeStagePipeline.addfilter(new Filter1());
19 ThreeStagePipeline.addfilter(new Filter2());
20 ThreeStagePipeline.addfilter(new Filter3());
21 ThreeStagePipeline.run(); //Run the pipeline

Listing 2.1: Code example showing the Intel TBB C++ class interface by Reed, Chen,
and Johnson [RCJ11] with small modifications (also showing the parent constructor call
which specifies the concurrency for the filter).

templates to specify the input and output data types of the filter. Listing 2.2 shows the
definition and a Pipeline consisting of three filters (serial input, parallel, serial output).
The number of concurrently active iterations is specified in the first argument to the
parallel_pipe loop. In this example float numbers are passed between stages as result
data. The actual work in the stages has been omitted in this example.

Flow interface

The new flow graph [Vos11] interface which is fully supported since TBB 4 can be used
to model Pipelines more dynamically. It allows to model nodes and dependency edges
between them. The chunks are passed from node to node with a message interface. The
work can be expressed with Lambda functions as shown in Listing 2.3.

A major advantage over TBB Pipelines is that the flow graph interface allows multiple
successor nodes. This allows the creation of non-linear Pipelines (see Section 2.1.5).
This means that a stage with a single input can split the input into multiple output
chunks which flow through the following stages. The dedup [Bie11] benchmark requires
non-linear Pipelines for full parallelism.

30

2.2. Intel Threading Building Blocks

TBB Pipeline Lambda interface - Definition
1 parallel_pipeline(max_number_of_live_tokens,
2 make_filter<void,I1>(mode0,g0) &
3 make_filter<I1,I2>(mode1,g1) &
4 make_filter<I2,I3>(mode2,g2) &
5 ...
6 make_filter<In,void>(moden,gn));

1 parallel_pipeline(/*max_number_of_live_token=*/16,
2 make_filter<void,float*>(/* serial stage void => float */
3 filter::serial,
4 [&](flow_control& fc)->float*{
5 if(first<last) {
6 return first++;
7 } else {
8 fc.stop();
9 return NULL;

10 }
11 }
12) &
13 make_filter<float*,float>(/* parallel computation stage */
14 filter::parallel,
15 [](float* p){return (*p)*(*p);} /* Lambda function */
16) &
17 make_filter<float,void>(/* serial stage float => void */
18 filter::serial,
19 [&](float x) {sum+=x;} /* Lambda function */
20)
21);
22

λ function

[&] - capture

(flow_control& fc) - parameter

float* - return type

Listing 2.2: Code example showing the construction of a TBB Pipeline with three filters
(serial input, parallel processing, serial output). The Pipeline is constructed using the
make_filter function which takes an input and an output type and a Lambda expression
(see Section 3.3.1). The Lambda expression represents the work done in the filter. The
capture [&] specifies that all variables in the calling scope can be accessed by reference in
the Lambda function. It takes a pointer to a flow control object as parameter and returns
a pointer of type float. The input stage generates numbers from one to a parameter
value and the computation stage calculates n2 for each input. The last stage sums up all
the computed square values. Input and output data types for each filter are specified
using C++ template arguments [Int15].

31

2. Pipelines

1 tbb::flow::graph g;
2 int sum=0;
3 function_node< int, int > input(g, 1 /* serial */, [](int v) ←↩

-> int {
4 return v;
5 });
6 function_node< int, int > parallel_compute(g, tbb::flow:: ←↩

unlimited, [](int v) -> int {
7 return v * v;
8 });
9 function_node< int, int > stage_sum(g, 1 /* serial */, [](int ←↩

v) -> int {
10 sum +=v;
11 });
12
13 make_edge(input,parallel_compute);
14 make_edge(parallel_compute,stage_sum);
15 for(int i = 1 ; i < param ; i++) {
16 input.try_put(i); //send message to the node
17 }
18 g.wait_for_all();

Listing 2.3: Intel TBB flow example creating a Pipeline consisting of two stages (serial,
parallel) using the TBB 4 flow interface [Int11]. Concurrency for each node is specified in
the constructor with a numeric argument between 1 and ∞ (tbb::flow::unlimited).
Iterations are messages which are sent to the first node and make their way through the
Pipeline. This example models the same Pipeline as in Listing 2.2 but using the flow
interface. It calculates the sum of square values using three stages.

It allows dynamic edge creation during runtime which is not possible with the static TBB
Pipeline interface mentioned before. This is an advantage which opens the possibility to
port the x264 video encoder to the flow interface [RCJ11].

2.2.2 Implementation

In this section the implementation of the Intel TBB Pipeline class interface will be
described. Our analysis is based on the source of the latest Intel TBB version 4.4 [Ale07].

Each TBB filter object has an input buffer (input_buffer) which is used to store tasks
in an array. This array is of dynamic size and can grow during runtime. In case there is
no free slot in the array, the grow operation doubles the size of the array until the space
requirements are fulfilled. In the grow operation all task pointers in the array are copied
to a newly allocated array.

The write access to the array of task objects is protected with a spin mutex. Also read
access to the array is protected using a mutex.

32

2.3. Piper

Intel TBB supports user defined threads which execute Pipeline stages. This construct is
called bound threads. These user defined threads us a semaphore in case the buffer is
empty.

The throttle limit (see Section 2.1.2) is controlled by the max_number_of_live_tokens ←↩
variable. It gets decremented when a new task is started and incremented again when
the task finishes. If the counter reaches 0 no new threads are spawned. The computations
are executed using normal blocking calls.

2.3 Piper

A further implementation of the Pipeline pattern is Cilk-P [Lee+13] with the Piper
scheduler. Piper [Lee+13] is implemented using the fork-join semantics of Cilk. It
uses a bind-to-element approach (see Section 2.1.4) combined with work stealing for
communication between different workers. As of this writing Piper is not included in the
official Cilk package but the source is publicly available1.

The execution is controlled by a custom while loop which replaces the normal while loop.
The Pipeline loop is related to a serial loop but executes the body in parallel. We discuss
the necessary manual transformation of this loop in Section 2.3.3.

Cilk-P does automatic throttling in the scheduler to prevent uncontained memory growth
caused by runaway Pipelines [Lee+13] (see Section 2.1.2).

2.3.1 Interface

The Pipeline interface of Piper is written in C. This makes the adaption of legacy
application written in C easier. On the other hand an object orientated interface creates
a much more readable structure. The main parts of the interface are:

Loop The interface consists of a new loop function called pipe_while(bool ←↩
running). This function executes stage0 serially but spawns new threads for
each iteration. This is necessary to not block the spawn of new iterations in case
an older iteration blocks.

Wait Inside the loop the pipe_wait(int stage) function is used to create a cross
dependency to the preceding iteration. This creates a serial stage. It is only possible
to create wait dependencies between adjacent (directly preceeding) iterations. See
Section 2.3.2 about limitations of Piper. Therefore the interface does not offer
a parameter to specify the iteration in the wait method. Implicitly the previous
iteration is taken as dependency target.

1Intel. Piper: Experimental Language Support for Pipeline Parallelism in Intel R© CilkTM Plus.
url: https://www.cilkplus.org/piper-experimental-language-support-pipeline-
parallelism-intel-cilk-plus (visited on 05/10/2016).

33

https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus

2. Pipelines

The dependencies between iterations are specified dynamically during runtime. E.g.
Iteration Ii at stage Sn has to wait for its predecessor whereas Iteration Ij at the
same stage Sn may continue without waiting. This enables the implementation of
algorithms which behave differently in each iterations. One such example is the
video encoder x2642.

Continue The pipe_continue(int stage) function advances the current iteration
to the given stage without waiting for predecessors. This creates a parallel stage.
It is possible to skip stages dynamically.
As example a Cilk-P Pipeline program consisting of three stages is given in List-
ing 2.4. In this example a simple non-linear Pipeline is shown. During runtime for
each input chunk at stage 1 it is decided whether it should be processed in parallel
or if it should wait for the preceding input chunk. The first and last stage are serial
stages.

2.3.2 Limitations

Piper allows only dependencies to directly preceding iterations. Dependencies like
Ii → Ii+n|n > 1 are not possible. This limitation is useful to hold memory guarantees.
For some benchmarks like x264 this limitation requires special workarounds to transform
the benchmark into a Pipeline. Lee et al. [Lee+13] used a Pipeline model with a huge
number of stages to compensate this.

Another limitation is the lack of support for non-linear Pipelines (see Section 2.1.5). Com-
plex non-linear Pipelines are required to model the Dedup benchmark. Lee et al. [Lee+13]
used only a single level of input granularity in their Piper Dedup implementation. They
skipped the stage from the Parsec implementation which splits chunks into course grain
chunks. Their Pipeline implementation does not support nested Pipelines, which makes
this modification necessary. The pseudocode for their Dedup implementation can be seen
in Listing 2.3.

The interface does not provide a method to pass results between iterations. The user
has to pass stage results by other means, like shared memory resources or broadcasts.
This is a disadvantage because thread safe access to these results may require locks or
additional logic. The result type between stages is not explicitly specified.

2.3.3 Implementation

An adapted Cilk scheduler and worker threads are used in Piper to execute Pipeline
programs. The custom scheduler is necessary to handle throttle edges correctly.

As of this writing, the Cilk-P functions are not fully integrated into the Cilk language
and therefore have to be hand compiled. This means that the new pipe_while loop

2Videolan. x264 the best H.264/AVC encoder. url: https://www.videolan.org/developers/
x264.html (visited on 10/13/2015).

34

https://www.videolan.org/developers/x264.html
https://www.videolan.org/developers/x264.html

2.3. Piper

1 #define STAGE1 1
2 #define STAGE2 2
3
4 // actual work is done in here
5 void work_stage0(int); void work_stage1(int); void work_stage2(←↩

int);
6
7 pipe_while(!done) {
8 // Each iteration starts executing in Stage 0.
9 iterarion++;

10 done = work_stage0(iteration);
11 if(!done) {
12 if(decide(iteration)) { // on-the-fly dynamic Pipeline
13 pipe_continue(STAGE1); // Advance to Stage 1 (parallel)
14 } else {
15 pipe_wait(STAGE1); // Advance to Stage 1 (serial)
16 }
17 work_stage1(iteration);
18 pipe_wait(STAGE2); // Advance to Stage 2 (serial)
19 work_stage2(iteration);
20 }
21 }

Listing 2.4: Example of a dynamic (on-the-fly) Pipeline program written in Cilk-
P [Lee+13] adapted from [Suk13]. The example consists of an input stage (stage
0) which is always serial in Cilk-P. It is followed by a stage which decides during runtime
for each input chunk if it processed in parallel or has to wait for its predecessor. The
last stage is a serial output stage (stage 2). This example only shows the creation of the
Pipeline structure. The actual work is hidden in the work_stage0-2 functions.

has to be hand replaced in the source with a Lambda function and an ordinary while
loop which spawns a new thread for each iteration [Lee+13]. The result of this manual
replacement is shown in Listing 2.5. Because of this modification Stage 0 (input stage) is
always a serial stage.

During execution the program is transformed into a fork-join computation DAG. The
last step adds cross and throttle edges to the computation DAG which can be executed
using the Cilk scheduler.

Finally, the resulting DAG is a normal Cilk fork-join DAG with the following edge types:

serial edge from one instruction to the next instruction inside a strand (instruction
sequence without parallel control instructions).

spawn edge after a spawn node to the first node of the newly spawned function.

continuation after a spawn to the first node after the spawn instruction.

35

2. Pipelines

Cilk-P Pipeline example
1 #define STAGE1 1
2 #define STAGE2 2
3 #define STAGE3 3
4
5 // actual work is done in here
6 void work_stage0(int); void work_stage1(int); void work_stage2(←↩

int);
7
8 bool done = false;
9 [&]() { // lambda function

10 while (!done) { // pipe_while
11 iteration++;
12 done = work_stage0(iteration);
13 if(!done) {
14 cilk_sync; // ensure stage 0 is completed
15 cilk_spawn [iteration]() { //spawn
16 if(decide(iteration)) {
17 pipe_continue(STAGE1);
18 } else {
19 pipe_wait(STAGE1);
20 }
21 work_stage1(iteration);
22 pipe_wait(STAGE2);
23 work_stage2(iteration);
24 cilk_sync; // wait for iteration to finish
25 }();
26 }
27 }
28 cilk_sync; // wait for Pipeline to finish
29 }();

Listing 2.5: Piper example after the pipe_while loop was manually transformed into a
Lambda function and an ordinary while loop which spawns a new task for every iteration.
Only the first stage has to be a serial stage. The original code can be seen in Listing 2.4.
cilk_sync waits for subcomputations spawned in the enclosing function. The sync in
line 14 ensures that stage 0 has finished computing. Line 24 ensures that the Pipeline
iteration is finished. The last sync in line 28 ensures that all iterations of the Pipeline
are finished.

36

2.3. Piper

return edge from the last node of a spawned thread to the node directly after the sync
instruction.

The Piper scheduler adds virtual throttle edges [Lee+13] to prevent runaway Pipelines
(see Section 2.1.2). Internally this is implemented using counters tracking the number of
currently running iterations for each pipe_while loop. If a worker tries to start a new
iteration and the throttle limit is already reached the iteration is suspended.

2.3.4 Performance

Lee et al. shows that the implementation is asymptotically efficient with an expected
runtime of (with high probability 1− ε, where ε can freely be chosen):

T1/P +O(T∞ + lgP︸︷︷︸
work-steal
contention

+ lg(1/ε)) (2.1)

Where T1 is the runtime of all nodes in the Pipeline DAG, P is the number of used
computation cores and T∞ is the computation time of the longest path. The additional
lgP term arises because multiple processors may try to steal work from the victim’s
queue concurrently.

Lee et al. have shown space bounds for Piper to be:

SP ≤ PS1︸︷︷︸
P times

serial space

+PfDK︸ ︷︷ ︸
nested
factor

(2.2)

Where

SP is the stack space of a parallel execution,

S1 is the stack space of a serial execution (executed with only one computational core).
This means that only one input instance has to be kept on the stack at any time,

P is the number of used computation cores,

f is the frame size which represents the size of the activation record and local variables
of a worker,

D is the number of nested Pipelines and

K is the throttling limit restricting the amount of concurrent iterations.

The proof uses trees of contours where a contour is a path in the DAG which only contains
serial and continue edges. The contours are organized in a tree, representing a spawn
hierarchy. Space usage is represented by the frame size of all contours where a node is
currently in a workers queue or where the earliest not yet executed node is not ready
(suspended). The proof is given in detail in [Lee+13].

37

2. Pipelines

2.4 Nabbit
Nabbit [ALS10] provides a library for executing task graphs with arbitrary dependency
edges. It implements the DAG pattern which enables the execution of arbitrary task
graphs on a stricter scheduler.

For details about the pattern and the implementation see Section 1.4.

Task graphs can be used to model Pipeline programs therefore the interface is discussed
here.

2.4.1 Interface

The interface models each task as a C++ class. This means for a Pipeline program every
stage has to be modeled as a dedicated class. A special init method is called by the
library on every class instance. In this method new dependencies can be added. This
method is called during runtime and allows the implementation of on-the-fly Pipelines
(see Section 2.1.4).

The execution of the DAG is started by calling Execute() on the first task. The first
task has to be an artificial start node enabling all iterations at stage 0. This function
blocks the execution flow until the entire DAG has been executed.

An example of a Pipeline program implemented in Nabbit is given in Listing 2.4. The
program consists of three stages (serial, parallel, serial). The example shows only the
creation of the Pipeline structure. The actual work for each Pipeline stage is hidden in
the workStage0, workStage1 and workStage2 functions. In our example the nodes are
identified using a string of the schema iteration@stage.

2.4.2 Limitations

Nabbit is capable of executing arbitrary DAGs which makes it difficult to implement
effective throttling. Because arbitrary DAGs allow a more complex non-linear structure
than the Pipeline Pattern allows, delaying a task may lead to delayed executions. Partic-
ularly the limitations of only backward dependencies in the Pipeline pattern makes the
throttling easier.

The class interface requires a lot of boilerplate code which makes the source code hard to
read. The example in Listing 2.6 which models a Pipeline with only three stages requires
46 lines of source code.

38

2.4. Nabbit

1 class Start : public DAGNode { ... }
2 class Stage0 : public DAGNode {
3 int iteration;
4 Stage0(int i_) : iteration(i_) { }
5 void Init() {
6 this->AddDep("start");
7 if(iteration>0) {
8 //Add Dependecy to stage 0 of the preceeding iteration
9 this->AddDep(iteration-1 +"@" + 0);

10 }
11 }
12 void Compute() {
13 workStage0(); //serial input stage
14 new Stage1(iteration);
15 } } };
16
17 class Stage1 : public DAGNode {
18 int iteration;
19 Stage1(int i_) : iteration(i_) { }
20 void Init() {
21 this->AddDep(iteration +"@" + 0); //Dependecy to stage 0
22 }
23 void Compute() {
24 workStage1(); //parallel stage 1
25 new Stage2(iteration);
26 } } };
27
28 class Stage2 : public DAGNode {
29 int iteration;
30 Stage2(int i_) : iteration(i_) { }
31 void Init() {
32 this->AddDep(iteration-1 +"@" + 2); //Dependecy to prev. ←↩

iteration
33 }
34 void Compute() {
35 workStage2(); //serial output stage
36 } } };
37
38 int main() {
39 int iter++;
40 Start start;
41 while(!stop) {
42 Stage0 *iter = new Stage0(iteration);
43 }
44 start->Execute(); //blocks
45 }

Listing 2.6: Pipeline program created using the task graph library Nabbit [ALS10]. The
example consists of a serial input stage followed by a parallel processing stage. The
last stage is a serial output stage. This example only shows the construction of the
Pipeline structure. The actual work is hidden in the workStage0(), workStage1() and
workStage2() functions.

39

CHAPTER 3
Pheet Pipelines

3.1 Introduction
The Pheet framework [Wim14] currently lacks an implementation of the Pipeline pattern.
In this thesis we created a competitive implementation. This chapter gives an overview
of design decisions, interface and synchronization details. Also data structures created
for our implementation are explained in detail. We also argue that our implementation
is lock-free.

3.2 Goals and Design decisions
Based on the analyzed related work we propose the following Pipeline design:

• The design should allow on-the-fly and non-linear nested Pipelines (see Sec-
tion 2.1.5). Both features are necessary to implement all benchmarks in a Pipelined
version.

• An interface which allows short Pipeline definitions. No boilerplate code should be
contained in Pipeline definitions. Adapting legacy applications should only require
few changes.
Support for passing results between dependent iterations should be provided by our
design. Having a tested and fast way to query and store results removes complexity
from user-code. The interface should be type safe to reduce the likelihood of
programming errors.

• Our design should be scalable even on systems with more than 16 cores. Therefore
centralized locks are avoided to reduce contention on many-core systems. Lock-free
data structures and synchronization is used to make our implementation scale well.

41

3. Pheet Pipelines

In case active waiting is not avoidable it should be reduced to a minimum extent.
The scalability will be measured and compared on our test systems.

• Even for very lightweight tasks the overhead of the Pipeline creation should not
be dramatically high. It should feature a comparable performance to a Pthread
implementation of a given problem.

• The memory system should not be stressed even on many-core systems. Centralized
data-structures should only be used where unavoidable. Memory should be freed
as soon as possible to support long running Pipelines.

The amount of running iterations should be controlled by the user to limit memory
usage. This throttle limit should be tunable during runtime.

• No additional requirements other than Pheet support should be necessary to compile
Pheet Pipelines. It should be compilable on every platform supporting the hwloc
library [Bro+10] and providing a C++11 compiler.

• Performance characteristics about the execution should be recorded by our frame-
work to allow optimization of programs using our Pipeline implementation.

3.3 State of the Art Interfaces

The programming interface for Pipeline modelling is a key factor for readability and
maintainability of source code. The new Pipeline interface should be easy to use and
allow good adaption of legacy applications. Additionally it should provide a built-in
mechanism to pass result data between stages and dependent iterations.

Most of the adapted benchmarks are legacy software written in C. Nevertheless it was
chosen not to provide a C interface to the Pheet Pipeline because the whole Pheet
framework is written in C++. Therefore all benchmarks have to be compiled with a
C++ compiler to use the new Pheet Pipeline interface. For some benchmarks, particular
those with a good modular design, linking of existing object files was possible.

Another important consideration is control of the number of concurrently running
iterations. This topic has been in discussed in Section 2.1.2. Intel TBB [Ale07] refers
to this issue with the term live tokens whereas Piper [Lee+13] uses the term throttling.
Too many uncompleted but started iterations may waste memory space. The design goal
is to allow dynamic modifications of the upper limit based on the maschine’s current
resource allocation.

The interfaces of Intel TBB (Section 2.2.1), Cilk-P (Section 2.3.1) and Nabbit (Sec-
tion 2.4.1) have been discussed in previous sections. In this section we give a short
summary of advantages and disadvantages of these interfaces. Then we present our Pheet
Pipeline interface mitigating some of the mentioned disadvantages.

42

3.3. State of the Art Interfaces

1 flowcontrol fc; // outer scope
2 auto f = [&](param& p)->float*{
3 if(first<last) {
4 return first++;
5 } else {
6 fc.stop();
7 return NULL;
8 }
9 };

10 f(p1);
11

λ function

[&] - capture

(param& p) - parameter

float* - return type

Figure 3.1: This example shows the definition of a named C++ Lambda function. The
capture [&] specifies that all variables in the calling scope can be accessed by reference
in the Lambda function.

3.3.1 Lambda Functions

Lambda functions are a C++11 construct for “local unnamed functions which can be
defined on-the-fly” [JF10]. Lambda function can also be assigned a name and can be
used similar to a function pointer.

The main difference to a function pointer is that the Lambda function allows to use
variables from the enclosing scope. Variables in the enclosing scope which are used
inside the Lambda body have to be listed in the capture list in the Lambda declaration.
Variables must be locally defined to the current scope and can either be passed by value
or by reference.

An example with a named Lambda function can be seen in Listing 3.1. This Lambda
function takes a single parameter of type param and returns a float pointer.

These functions can be used to create very short (no boilerplate code) Pipeline interfaces,
because they can effectively use variables of the enclosing scope and can be defined locally
inline.

3.3.2 Intel TBB

All the mentioned Intel TBB interfaces are written in C++ and force the specification of
an input and an output data type for each stage. The specification of input and output
types can be considered as advantage because it takes the burden from the user to pass
results from stage to stage. One major drawback of the interface is that there is no
interface to pass results from iteration to iteration.

The first two mentioned TBB interfaces (Pipeline and Lambda based) only support
construct-and-run Pipelines where the structure can not change during runtime. Every
input chunk has to follow the exact same path from the first filter to the last filter which
implies that no filter can be skipped dynamically.

43

3. Pheet Pipelines

Compared to the traditional TBB Pipeline interface the new flow interface allows more
than one output value per stage. This is a major practical advantage for some benchmark
problems which require non-linear Pipelines, most noteable the Dedup Benchmark [Bie11;
RCJ11].

The upper limit for concurrently running iterations can only be set during startup and
can not be changed dynamically. This makes dynamic user defined adaptions during
runtime impossible [Int15]. For more details about the interface see Section 2.2.1.

3.3.3 Cilk-P (Piper)

The Cilk-P C interface supports on-the-fly Pipelines. Throttling is implemented in the
Piper scheduler. The decision between serial and parallel stage can be done per iteration
during runtime.

The interface does not provide a mechanism to pass results between iterations. There is
no clear specification of input and output types for stages.

There is no support for non-linear Pipelines. Non-linear Pipelines like nested Pipelines
are important to port the Dedup benchmark to a Pipeline model. Lee et al. [Lee+13]
ported the Dedup benchmark by omitting one nested Pipeline stage.

Only adjacent (directly preceding) iterations can form dependencies. This is a limitation
for benchmarks like x264 but allows to infer strong memory-bounds.

Several manual transformation steps have to be conducted to make the while loop
compilable. Further details can be seen in Section 2.3.1.

3.3.4 Nabbit

The Nabbit interface encapsulates each task into a class. Because the interface is built-in
Cilk++, C++ is required as programming language. This may pose more work on
porting legacy applications to Nabbit.

Tasks and dependencies can be created during runtime on-the-fly. With this dynamic
approach also benchmarks like x264 can be implemented. The interface was designed for
DAG execution and is not ideally fitted for Pipelines.

The interface requires a lot of boilerplate code because of the C++ class definitions. It
requires about 60 lines of code even for a simple three stage Pipeline.

For further details see Section 2.4.1.

3.4 Pipeline Interface Design

This section shows how the Pipeline design decisions formed our C++ Pipeline interface.

44

3.4. Pipeline Interface Design

3.4.1 Overview

The Pheet Pipeline interface is object orientated and realized in C++. It consists of two
important classes:

• The Pipeline Environment object is used to control the Pipeline. It keeps track of
all the running instances and only exists once for each Pipeline. Also the throttling
is performed by this class.

• For each iteration a Pipeline Iteration object is created. This object controls the
stages. It is used to advance the stages and takes care about stage results.

For nested Pipelines this class takes care about nested children and ensures that
all objects are freed when they are not needed any more.

Listing 3.1 shows a basic Pheet Pipeline example. In this example a Pipeline with two
stages is created. The first stage is a parallel stage and the second stage is a serial stage.
This example only models the structure of the Pipeline, no work is performed in the
stages. Every stage is identified by an integer number.

In our implementation the work of each stage has to be modeled as a dedicated Lambda
expression. This is necessary because the Pheet scheduler does not allow tasks to wait or
use locks. A blocking task blocks the whole worker thread and slows down the whole
Pipeline computation.

To ensure termination of all Pipeline iterations the actual Pheet Pipeline loop is wrapped
inside a block. In this block a Pheet Finisher Hyperobject ensures that all spawned tasks
have finished. Our classes require the C++ typename prefix, but for better readability it
is omitted in all examples. This prefix is required because of the customizable template
architecture of the Pheet framework.

3.4.2 Pipeline Iteration

Each iteration is represented with an object instance of type PipelineIteration. It
embeds the state and all stage result values. A unique numeric id is used to identify
iterations. This id has to be created by the user. In Listing 3.1 line 13 a counter is used
to create unique ids in the Pipeline loop.

Two special functions are used to advance the current stage. A pipe_continue call is
used to advance in parallel while pipe_wait waits for the preceding iteration to finish
the required stage. We named our functions the same way as Lee et al. named their
Cilk-P interface [Lee+13].

45

3. Pheet Pipelines

Parallel Stage

A parallel stage is created using the pipe_continue method. Figure 3.2 gives a graph-
ical overview of the method call. The pipe_continue call takes the following three
arguments.

1. The stage number to proceed to. Stages have to be monotonic growing, but stage
skipping is possible. Stage skipping is an important property for on-the-fly Pipelines
(see Section 2.1.4).

2. A result value of the completed stage. The value type is specified using template
arguments. The programmer has to provide a special null value called null trait in
case he does not want to pass results from iteration to iteration. Null traits are
explained in detail in Section 3.5.7.

3. A Lambda expression representing the code of the next stage. Lambda expressions
have been chosen because they allow easy capturing of variables but can also be
used as tasks in the Pheet scheduler. Section 3.3.1 gives details about C++ Lambda
functions.

Serial Stage

The pipe_wait method creates a serial stage where the current iteration has to wait for a
given preceding iteration. Compared to the continue call pipe_wait takes an additional
optimal argument:

4. An iteration id specifies the iteration to wait for. In combination with the stage
parameter the iteration has to wait until the specified iteration finishes the specified
stage. In case the parameter is omitted, the previous iteration is used.
The Pipeline pattern restricts wait dependencies to go only backward. Therefore
only ids of preceding iterations can be passed to this function.

3.4.3 Nested Pipelines

To allow non-linear Pipelines we added the possibility of nesting to our interface. With
nested Pipelines a single iteration can have multiple outputs at a stage, which is equal to
creating multiple child iterations. Nevertheless we do not weaken the other restrictions
of the Pipeline DAG, like only backward edges.

This is necessary to fully exploit parallelism for problems like Dedup (see Section 4.5).
The interfaces of Cilk-P (Piper) and Intel TBB do not support nested Pipelines.

To create a child iteration a call to gen_nest_iteration(child_id) on the current
iteration object is required. Usually this method is called in a loop to create all the
needed child iteration objects. The numbering schema of the subcomputations follows

46

3.4. Pipeline Interface Design

1 #define STAGE1 1
2 #define STAGE2 2
3 // result datatype:int bock-size: 1024
4 typedef PheetPipelineEnvironment<Pheet,int,1024> PipelineEnv;
5
6 PipelineEnv penv { ppc };
7 {
8 //Finisher Hyperobject to ensure termination
9 typename Pheet::Finish f;

10 size_t counter = 0;
11
12 while(...) {
13 PipelineEnv::PipelineIteration* piter =
14 new PipelineEnv::PipelineIteration(&penv, counter++);
15
16 piter->pipe_continue(STAGE1,0, [piter] () {
17 // STAGE1 is executed in parallel
18 piter->log("stage 1"); //create a debug message
19
20 piter->pipe_wait(STAGE2,0, [piter] () {
21 // STAGE2 waits for the preceeding iteratoin
22 piter->finished(0); //iteration completed
23 });
24 });
25 }
26 }

Listing 3.1: A simple Pheet Pipeline example with two stages. The Finisher Hy-
perobject in line 8 is required to ensure termination of all spawned iterations. New
PipelineIterations have to be created in the main thread with a monotonic growing
user supplied id. The stage is advanced by calling pipe_continue with the next stage id.
pipe_continue starts a parallel stage where the work is executed concurrently, whereas
pipe_wait creates a serial stage which maintains serial iteration order. An iteration
is marked as finished by calling the finished method (line 21). typedef in line 3 is
recommended to define template arguments for the environment. See Section 3.5.2 for
details about the Pipeline Environment class.

47

3. Pheet Pipelines

piter->pipe_continue(STAGE1,0, [piter] (){

work(); //body

});

stage id capture “piter”

Lambda expression

result value

Figure 3.2: The continue call takes three arguments: The numeric id of the next stage,
the result value with the data type depending on template arguments and finally the
code for the next stage in a Lambda expression. In the Lambda expression a copy of the
Pipeline iteration pointer (piter) is made available using the capture. See Section 3.3.1
for an introduction to the C++ lambda construct. The arguments are passed using the
capture list, no parameters () are accepted by the Pheet Pipeline system for the Lambda
function. Code or function calls are contained in the Lambda expression body.

the same system: For each iteration the sub iteration ids start with zero and need to
grow monotonically.

This leads to a situation where not all iterations of a given stage follow a global monotonic
numbering schema. To address this issue a new hierarchical addressing scheme for
iterations is proposed. This proposal is shown with an example in Figure 3.5. The
address of the second child of iteration number 3 would be 3→ 2. The third sub-iteration
of this iteration would be identified by 3→ 2→ 3. Figure 3.5 visualizes this. Iteration
3→ 1→ 5 may be the predecessor of 3→ 2→ 1. The implementation ensures that wait
calls wait for the right preceding iteration.

3.4.4 Throttling

Throttling is used to limit the amount of concurrent active iterations. Our Pheet Pipeline
implementation relies on the user to specify the desired iteration limit. The limit is not
static and may be changed by the user during runtime.

To apply a throttle limit, a call to the Pipeline Environment function throttle(←↩
limit) must be inserted in the main Pipeline loop. In case the limit has been reached
this function call executes other ready iterations until the number of running iterations
decreases. This can not deadlock the Pipeline because iterations are only allowed to have
backward dependencies and only newly created iterations are throttled.

In nested iterations obeying a global throttle limit may be suboptimal. One solution
would be to define the throttle limit per stage. This topic is left open for further research.

3.4.5 Logging

Log messages can be printed using two methods:

48

3.5. Pipeline Implementation

The first method is to invoke a log function in the Pipeline Iteration class. piter ←↩
->log("output ",4711) prints “iter 55 stage 3:output 4711” when executed in
iteration 55 in stage 3. This method accepts a variable number of arguments.

The second method is a log function in the Pipeline Environment class. penv->log(←↩
"string") directly prints text and ensures thread safety. This method only accepts a
single std::string as argument.

3.4.6 Disadvantages of the Interface

Our interface features several disadvantages which could be addressed by future work:

• Nested Lambda functions lead to convoluted code. Each Pipeline stage has to be
defined in an own indented block to allow on-the-fly Pipelines.

• Our implementation only supports a single results data type for all stages. As a
workaround we proposed the use of C++ union data types to pass results, which
on the downside are not type safe.

• Null traits have to be defined manually by the user to allow our current implemen-
tation to track null values.

• The throttle functionality is not included directly in the scheduler. This requires the
user to manually insert a call to the throttle function at the end of the Pipeline
while loop.

3.5 Pipeline Implementation
This section explains the implementation of the three main data structures used in our
Pheet Pipeline implementation to model and control Pipeline executions.

• Pipeline Environment object is used to control the execution of the Pipeline. It
performs cleanup tasks after execution and has some sanity checks built-in to check
if the Pipeline has been executed successfully. Additionally it provides logic for
thread-save debug output and keeps track of performance data.

• A Pipeline Iteration object represents a single iteration in the Pipeline. It keeps
track of its own state and checks the state of adjacent iterations in case it has to
wait for dependent iterations. The interface of the Pipeline Iteration object has
been discussed in Section 3.4.2. This class contains the synchronization logic of the
Pipeline.

• Blocks are used in multiple places in our implementation. They store data in a
given (gap) free order and provide a combination of very fast and lightweight access
and dynamic growth.

49

3. Pheet Pipelines

These classes can be found under the primitives folder of the Pheet framework. The
source is available on request by contacting the author under bernhard.redl@vishap.at.
Our implementation is part of the Pheet framework and is built with the Pheet framework
by executing the make command.

3.5.1 C++11 atomics

We used the atomic data type of C++11 to handle synchronization. The advantage is
that atomics have less overhead than mutex locks and allow wait free data structures.

The most important two operations on the atomic data type are load and store which
both allow to specify the memory order using an optional argument. In our context the
most important memory orders are [ISO12]:

sequential consistency which is the default if no memory order is specified. This
memory order creates a single total order of all threads observing the value. No
reordering with other atomic instructions is allowed. We use this memory order to
formulate all our critical sections and to perform synchronization.

relaxed is the most loose memory order. It only guarantees atomicity, but does not
guarantee any ordering constraints.

Additionally atomics support an atomic compare and swap operation (short CAS) which
replaces a given value only if the old value matched the expected value. A compare and
swap operation is a very expensive operation and may produce a cache miss.

3.5.2 Pipeline Environment

Iterations are registered and managed by the central PipelineEnvironment entity. After
Pipeline Environment runs out of scope, memory is freed. In case the mandatory Finisher
Hyperobject had been omitted by the user, sanity checks raise a fault. Additionally it
provides a mutex lock to serialize debug log messages generated by concurrently running
iterations.

The Pipeline Environment is also used to perform throttling (see Section 2.1.2). Because
our interface does not feature a special loop function the throttle function has to be called
manually by the user during each loop iteration. The throttle logic uses an user supplied
parameter to limit the number of running iterations. If more iterations are active, ready
stages of existing iterations are executed to delay the execution of the main loop until
the throttle limit is ensured again. To prevent fast flipping of the state the main loop
can only continue when the current iteration count is 20 % below the throttle limit.

The number of currently active iterations is measured using the atomic running member
variable. It is incremented by Pipeline iterations during startup and decremented when
iterations finish. To prevent negative scalability effects of this centralized variable, it
is fetched with relaxed memory order (see Section 3.5.1). It is possible that there are

50

3.5. Pipeline Implementation

more active iterations than the throttle function observes, because of the relaxed read
operation. Therefore the throttle limit is not a hard limit.

3.5.3 Template arguments

C++ template arguments were used to allow the user to specify data types of result
values and performance values during runtime. Template arguments allow type safe code
which is easier to maintain.

To simplify the usage of the environment class and to specify template arguments a
typedef as shown in Listing 3.1 line 3 is recommended. The Pipeline Environment takes
three template arguments.

1 PheetPipelineEnvironment<Pheet,int,1024>

1. The first arguments specifies the Pheet scheduler. Pheet supports several schedulers
which can be plugged in (see Section 1.2). Only schedulers which have been slightly
modified to allow direct task execution are supported by our Pipelines. This
modification is necessary to allow the execution of ready tasks during the throttling
phase. See Section 2.1.2 for more details about throttling.

2. The data type of Pipeline stages result values. Each iteration can store results for
every completed stage. Results of stages in any iteration can be queried with this
interface. See Section 3.5.7 for details.

3. The block-size specifies the size of internally used blocks which store the iteration
objects and stage result values. See Section 3.5.4 for details about our block data
structure.

3.5.4 Blocks

The number of iterations and stages is not known a priori and is only limited by the
amount of available memory. All iterations have to be stored in a central data structure to
allow wait dependencies between iterations. The interface to retrieve results of dependent
iterations benefits from a central data structure containing iterations.

This data structure requires the following properties:

• Access to list elements should not get slower when the amount of elements increases.

• Read operations to neighbor elements should be possible in constant time. The
key for a given element is a strictly increasing number. No gaps are allowed in this
sequence. Read operations are performed concurrently.

• Write operations to a given list element happen only once and are performed
only by a single thread. No incomplete value is ever read because only backward
dependencies are allowed.

51

3. Pheet Pipelines

Block<size>
previous p

next p

data<T> p

current size 4
T T T T

Block<size>
previous p

next p

data<T> p

current size 2
T T

a
a

Figure 3.3: Shows the block chain used to store iteration instances and stage results.
The size and the content data type are defined by template parameters. The keys to
access elements are numeric values which have to be a gap-free sequence starting from
zero. The data is stored in constant size plain C++ arrays. The pointer to the last
written position is stored in current size. The blocks are connected in both directions
with pointers (previous, next).

To meet these requirements a doubly linked list consisting of blocks was implemented.
We call this list block chain. A single block is show in Figure 3.3. The block size is defined
by a template parameter and has to be consistent for a given block chain. The data
type for elements is specified using template arguments. The block chain is visualized
in Figure 3.3. In this example the block-size is four and two blocks store in total six
elements in this block chain.

The Pipeline Environment keeps all iterations in a block chain. Each iteration knows the
parent block it is contained in. In most Pipeline programs iterations only wait for the
directly preceding iteration. Therefore a direct array access is performed to find adjacent
iterations taking O(1) time on average.

Access across blocks requires reading the whole block chain. To access an element by id
without a direct block reference, the block chain has to be searched from the start. Only
the next pointer of every block has to be read. Once the right block reference has been
obtained a direct array access reads the element.

Access to iterations far away is uncommon and therefore no time was spend to optimize
these lookups. This operation takes O(n) time where n is the number of blocks in the
block chain. The number of blocks and iterations have a linear relation of n ≈ |I|.

For future work new blocks could be allocated with the double size of the previous block
to achieve asymptotic time O(log2(|I|)) where |I| is the number of iterations.

This optimization is not realized in the current implementation because random access
is very uncommon for our benchmark instances. In the most case (read of adjacent
iterations) the block reference is already known resulting in O(1) time to read an element.

The block-size is specified using template arguments to the Pipeline Environment class.
This value depends highly on the problem size and can be optimized by the user. Although
in practice we did not experience big performance differences for different block-sizes
values between 1024− 4096. In the current implementation the block-size of the stage

52

3.5. Pipeline Implementation

result block is set to block-size/8. This initial value fits well for most problem instances
which have more iterations than stages. In case memory overhead should be limited
a lower value may be considered. It is trivial to implement the block-size of the stage
results as template argument. This feature is not implemented in the current version.

3.5.5 Pipeline Iteration

In Pheet Pipelines a dedicated object is used to represent an iteration. All iteration
objects have to be initialized in a single thread with strictly increasing, gap free, iteration
ids.

The interface of the Pipeline Iteration was explained in Section 3.4.2.

In the following a detailed explanation of each field will be given. The fields can be seen
in Figure 3.4.

id Identifies the iteration using a numeric id. Because the iteration number is defined by
the user and can not be changed after object initialization, it is stored as a const ←↩
int. No concurrent reads can occur during object creation because dependencies

can only go backwards and iteration objects creation is done in a single thread.

stage The stage number represents the current stage of the iteration. Each stage is
identified by an integer number. It is monotonically growing during execution.
The stage number is read by multiple threads concurrently. Only the thread
executing the iteration is allowed to update the stage variable. Therefore a simple
std::atomic<size_t> is used to store the current stage.

results The stage results are stored in a block chain. The result data type is specified
using template arguments (denoted T in Figure 3.4). Result values are only written
by the executing thread and never change afterwards. Therefore our block chain
with atomic members is sufficient. The implementation does not check if for a given
stage actual data exists. In case a stage is skipped, positions in the result array are
filled with null values.
As an optimization the result block chain is not allocated at the iteration object
construction. It is only created when the first stage has completed and a non-null
result value is saved. If the user does not need result passing he can pass a null
value and the block chain is never allocated. Null traits allow the user to specify
type safe null values. See Section 3.5.7 for details.

parent block Each iteration has a reference to the parent block of the iteration block
chain in the containing Pipeline Environment. This allows the iteration to have
direct access to neighbor iterations. In most benchmarks, iterations only have to
wait for direct predecessors, making this an important optimization. Access to
direct predecessors is a simple array access for all but one iterations of a block.
Only the first iteration of a block has to perform an additional lockup to get the
address of the preceding block to find its predecessor.

53

3. Pheet Pipelines

block chain
3
p

a

Iteration
id 3

stage 2
results<T> p
parent block p

status C
children p
running 2

dependent p

environment p
perf. counters

block chain
1 2 3 4
T T

a

block chain
1 2 3 4
p p

a

Iteration
id 2

stage 2
nest parent

. . .

Array
Environment

Environment

nesting level 0

nesting level 1

Figure 3.4: Shows the fields of a Pipeline iteration object. For each iteration in the
Pipeline an object instance is created. The id and current stage of the iteration are stored
in the object. Other iterations have to check this atomic field to obtain the current stage.
Results are managed by iterations and stored in blocks. The type of results is decided by
the user (type T). Each iteration has a direct reference to the parent block it is contained
in. This allows fast access to direct predecessors. The status of iterations specifies if the
iteration is already finished, if it is active or if nested sub-iterations are running. These
nested sub-iterations are stored in the children block list. The dependent array is used
by other iterations to get notified when the iteration advances to the next stage. Various
performance counters are used to record performance characteristics.

54

3.5. Pipeline Implementation

status The status tracks the state of the current iteration. It can have the following
states:

• ACTIVE iterations have been initialized and started. They can advance to
following stages using either wait or continue calls.
• CHILDREN is the state which denotes that the iteration has spawned child
iterations at the next nest level. This creates a non-linear Pipeline (see
Section 2.1.5). Iterations in this state can not advance their stage, they can
only create child iterations. They stay in this state until all nested children
have been created. Then the iteration is changed to the CHILDREN_WAIT state
with a finished() call.
• CHILDREN_WAIT is the state for iterations which have finished creating nested

children. In this state the iteration waits till all its children have finished.
• FINISHED is the state reached by an iteration without children after ter-

miniation (finished() call). In case an iteration has children, the last child
iteration changes the parent’s state to FINISHED. The children use the running
counter of their parent iteration to check if other children are still running.

running is used only in nested Pipelines. It tracks the number of currently running
child iterations. This counter is used to check when the last children finishes. The
last children marks the parent iteration as finished. Because the value is updated
by multiple threads a std::atomic is used.

dependent array tracks dependent iterations which are waiting for this iteration to
proceed. Iterations which depend on this iteration and can not proceed until it
reaches the required stage, can put their reference into the dependent array. Once
the iteration advances, it checks its dependent array for waiting iterations. If the
iteration reached the stage the dependent iteration was waiting for, it enables the
waiting iteration.

environment points to the PipelineEnvironment object. As explained in Section 3.5.2
the environment is used to synchronize debug output and keeps a list of all iterations
of nesting level 0. Iterations at nesting level 0 which try to access other iterations
outside of their own block have to use the block chain of the environment to get
the reference.

performance counters are the last member of the Pipeline Iteration class. They are
used to gather multiple performance values of the Pipeline execution. See Section 3.9
for details.

3.5.6 Nested Pipelines

To support nested Pipelines iterations are organized in several layers. Figure 3.5 gives a
graphical representation of a nested Pipeline. Iterations of nesting level 0 are stored in

55

3. Pheet Pipelines

1 2 3 4
⊥ 4 4 4

5 6 7 8
4 ↓ 3 3

1 2
4 ↓

1 2 3
4 4 4

block block

nesting level 0

nesting level 1

nesting level 2

iteration 4

stage 4

· · ·

a

a

id: 6→ 2→ 1

Figure 3.5: Example of the Pheet block data structure to manage nested iterations for
non-linear Pipelines. The first row shows the iteration number and the second row shows
the current stage for the iteration. For example in the first block in the top level (nesting
level 0) iteration 2, 3 and 4 are all at stage 4. ⊥ denotes iterations which have finished
already. ↓ indicates that this iteration has created nested sub-iterations. The numbering
schema for sub-iterations starts again with iteration 1. The combined unique iteration id
is shown in grey (e.g id: 6→ 2→ 1).

the block chain of the Pipeline Environment object. Iterations of nesting level 1+ are
stored in block chains of their parent iterations.

Each block chain starts the numbering at one. To allow unique identification of iterations
a hierarchical iteration id is proposed. Details of this id can be seen in Figure 3.5.

Nested iterations use the special states CHILDREN and CHILDREN_WAIT which are ex-
plained in Section 3.5.5.

3.5.7 Result types

Each iteration can store a result value for every completed stage. The type of result
values is specified with template arguments to the Pipeline Environment class. Only a
single result type for all Pipeline stages can be specified.

In case different stages have different output types, a C++ union data type is recom-
mended. Union is a data type which holds only one of its members at a time. One
member for every stage data type should be created in the union. The disadvantage of
this method is that it is not type safe.

To query results of an arbitrary iteration the iteration reference has to be obtained by
querying the Pipeline Environment using the find method. With the correct iteration
reference the get_result(stage) method returns result values.

56

3.6. Memory Management

1 template <>
2 class nullable_traits<int > {
3 public:
4 static int const null_value = 0;
5 };

Listing 3.2: This example shows the null trait definition for the int data type. Null
traits are template constructs allowing type safe null values. They are specified by
the user. The Pheet Pipeline implementation uses nullable_traits from the Pheet
framework [Wim13].

There are no sanity checks in the implementation to ensure that the iteration already
has finished the stage. Although it is safe to call the get_result method on iterations
after waiting for them with pipe_wait.

For the specified result data type a null trait has to be created by the user. This trait
allows Pheet Pipelines to detect null values in a type safe manner. The Pheet framework
provides default null traits for all C++ pointer data types. An example of the null trait
for the data type int can be seen in Listing 3.2.

No memory is allocated for results in case the user stores only null values.

3.6 Memory Management
Iterations are stored in blocks of fixed size. Once a block only contains iterations in a
finished state it is ready to be freed. Iteration objects store the results of completed
stages. Once a block is freed these results are not available any more.

To circumvent this issue the user can specify a delayed deallocation of blocks. The
minimum delay is one block to correctly handle wait calls from the begin of the following
block.

Two dedicated variables are required in the block data-structure to handle the memory
management correctly.

• finished is an atomic counter which is incremented by every finished iteration.
Once an iteration reads finished equal to the block-size it calls to free the block.

• Multiple threads may experience the finished variable equal to the block-size
simultaneously. It is critical that each block is only freed once. To ensure mutual
exclusivity a compare and swap operation is performed on the atomic freed boolean
variable. Only one thread succeeds and frees the content of the block.

Every block chain is exclusively owned by a single thread. There are no race-conditions
possible during block creation because iterations are only added serially by the owning

57

3. Pheet Pipelines

thread. Blocks are never removed from the block chain. Once a block is freed all iteration
objects are freed and the block is marked as finished.

3.7 Synchronization

Synchronization in Pheet Pipelines is done without locks except for the optional debug
logging interface.

In all other cases std::atomics (see Section 3.5.1) are used to perform synchronization.

Theorem 3.1 We show that our implementation is lock-free and correct.

In the following sections the critical points in a Pipeline execution which need synchro-
nization are described and shown to be lock-free.

3.7.1 Iteration Object creation

Lemma 3.2 The Iteration object creation is lock-free and correct.

Pheet Pipelines benefit from the restricted Pipeline task graph. In our implementation
only backward dependencies are allowed. Iteration objects of a nesting level must be
created serially by a single thread. This ensures that the iteration id sequence is gap
free and monotonically growing. It also ensures that when iteration n is constructed, all
previous iterations 0, . . ., n− 1 already have been fully initialized. The copy constructor
of Pheet performance counters is not thread safe and needs to be executed in the parent
thread. Because iteration object creation can become a serial bottleneck, several members
of the object are initialized later in parallel.

During object creation all iterations increment an atomic running counter in their parent
objects. This is done by calling the thread_register parent method which also stores
the iteration pointer in the block chain. For objects at nesting level 0 the parent is the
Pipeline Environment class. For objects at deeper nesting levels the counter of the parent
iteration is incremented.

This running counter is crucial to check if all iterations have correctly terminated. Each
iteration only decrements the parent running counter when all of its own children have
finished. �

3.7.2 Iteration termination

Lemma 3.3 Every finished iteration is freed and enables all dependent iterations.

58

3.7. Synchronization

thread 1

thread 2

update counter check dep. array

read (old) counter insert dep. array reread counter

Figure 3.6: Critical case during Iteration object destruction where the waiting iteration
reads an old stage counter value and then inserts its reference in the dependent array.
But at a position already checked by the finishing iteration. It is guaranteed to be correct
because thread 2 rechecks the stage counter after putting the reference into the dependent
array.

Iterations track their state using the status field. An iteration is considered as
FINISHED when it has been correctly marked as finished by calling the finished function
of our interface. Iterations with nested children change their state to CHILDREN_WAIT at
the finish call. The last child changes the parent’s state to FINISHED during termination.
An atomic compare and swap operation ensures that exactly one child thread sets its
parent to finished.

Only iterations in FINISHED state are allowed to be freed. This is ensured using asserts.
During object destruction all nested child iterations are destructed too. All other
operations (wait, continue) on a finished iteration are prohibited.

During the finish call all waiting iterations are enabled, after increasing the stage counter
atomically.

No iteration can be forgotten in the dependent array. The critical case (Figure 3.6) is
when an iteration observed the old stage counter and inserted itself at an empty position
at the beginning of the dependent array. Even when the finishing iteration already has
advanced further in the dependent array, the waiting iteration will reread the stage
counter and continue execution.

The Finisher Hyperobject guarantees that all spawned Pheet tasks are executed. Therefore
all dependent iterations of the Pipeline are executed and the iteration object is freed.�

3.7.3 Block destruction

Lemma 3.4 A block only containing finished iterations gets freed by exactly one thread.

Iterations increment the finished counter in their block during termination. If an
iteration experiences finished equal to block-size it requests the block to be freed.
This is done by calling the Pipeline Environment function free_block with the block
reference.

59

3. Pheet Pipelines

first iteration?

Case 1

ye
s

target stage counter satisfied?

Case 2 insert in dependent array successful?

stage counter satisfied?

CAS reset?

Case 3 Case 4

Case 5

random number

tried <3 times?

Case 6 throttle

Case 6’

no

Figure 3.7: Decision diagram of the Pheet Pipeline wait function. Left edges mean yes or
success and right edges mean no or failure. Filled black circles mark end stages. The
circle with the pattern is used as a jump target.

Multiple iterations may experience finished = block-size because of threading issues. A
compare and swap operation on a boolean variable of the block instance is used to ensure
that blocks are only freed by one thread. �

3.7.4 Pipeline Wait

Lemma 3.5 The Pipeline wait function is lock-free and correct.

The most critical part is to synchronize iterations with dependencies. The control flow
diagram in Figure 3.7 shows the critical steps. The control flow is shown from the
iteration calling the wait function to create a dependency to a preceding iteration.

If the iteration is not the first iteration, the stage counter of the dependent iteration
is compared with the requirement. In case the stage requirement is not satisfied, a
PheetPipelineTask object is created which contains the stage. It is then tried to insert
this task object into the fixed size dependent array of the iteration we are depending.
To ensure no previous element is overwritten an atomic compare and swap operation is
performed. In case this atomic insert fails it is tried again at another random position
until it succeeds or the requirements are met. After a successfully insert the stage counter

60

3.7. Synchronization

is rechecked to cover a corner case. In case the iteration already has advanced the inserted
task object is removed again from the dependent array.

Case 1 In the simple case the first iteration (I0) tries to wait for a preceding iteration.
In this case no actual wait has to occur and the call is treated internally as a
continue call. This allows the user to consistently use pipe_wait and does not
require a dedicated if expression for the first iteration. �

Case 2 In case this iteration is not the first one the atomic stage counter of the depending
iteration is loaded. In this case the other stage already satisfies the required stage,
no wait has to occur. And the iteration can directly proceed to the next stage. �

Case 3 In this case the insert into the dependent array was successful but the reread
of the stage counter resulted in a satisfied dependency. The inserted element was
removed using a compare and swap operation again because waiting is not necessary
any more. In this case the CAS operation was successful. The waiting iteration
can now be executed directly because the dependencies are already fulfilled. �

Case 4 In case after a successful insertion into the dependent array the stage counter is
reread. If the new stage counter satisfies the requirement and the CAS operation
failed, the dependent iteration already has scheduled (and removed) the waiting
task and no further action has to be performed. �

Case 5 In case after a successful insert into the dependent array, the stage counter is
reread. If the stage counter of the dependent iteration is still not satisfying this
iteration, it has to wait until it is enabled by the other iteration. �

Case 6 and Case 6’ In case the stage counter was not satisfied and the insertion into
the dependent array failed, a new random position in the array is diced. This
random number is used as index in the dependent array in the next loop iteration.
The insert into the dependent array fails when the chosen slot is already taken by
another waiting iteration.

In case the insert failed three times in a row, the iteration is throttled and other
ready work is executed. Then in both cases the control flow goes back up and reads
again the stage counter. �

3.7.5 Pipeline Continue

Lemma 3.6 The Pipeline continue function is lock-free and correct.

The Pipeline continue operation increases the atomic stage counter of the iteration. Then
it is checked if the increased stage counter enabled dependent iterations. The control
flow diagram of the continue path is shown in Figure 3.8.

61

3. Pheet Pipelines

increase stage counter

iterate array done?

ye
s

element empty?

Case 1 satisfied?

CAS reference ↔ empty

execute in background

Case 4

Case 2 (already started)

Case 3
no

Figure 3.8: Decision diagram of the Pheet Pipeline continue function. Left edges mean
yes or success and right edges mean no or failure. Filled black circles mark end stages.
The circle with the pattern is used as a jump target.

To check if the new stage counter enables other dependent iterations the dependent

array is checked. This is done by iterating over all array elements.

Case 1 In this case the slot is empty we proceed to the next slot. �

Case 2 In case a non-empty element is found, the stage counter of the found iteration
is checked. In case the required stage dependency is now satisfied with the new
stage, an atomic compare and swap operation is executed to reset the array element
in order to schedule it. In case the value could not be swapped no operation is
performed. If the element can not be swapped it has already been reset by the
dependent iteration itself because it already noticed the updated stage counter. �

Case 3 In case a non-empty element is found, the stage counter of the found iteration
is checked. In case the stage counter of the dependent iteration is still not satisfied,
no operation is performed. Latest when the dependent iteration is finished using
the finished method, all depending iterations are enabled. �

Case 4 In case a non-empty element is found, the stage counter of the found iteration
is checked. In case the required stage dependency is now satisfied with the new

62

3.7. Synchronization

stage, an atomic compare and swap operation is executed to reset the array element.
After successfully resetting the array element, the corresponding iteration object is
loaded and the element’s stage counter is incremented. Then the task is spawned
in background. �

After possible dependent iterations have been enabled, the Lambda body is executed.
In the first stage the continue call is spawned in background while in later stages a
direct Pheet::call is executed. This corresponds to a work-first strategy which finishes
running iterations faster. This reduces the memory usage because only finished iteration
can be freed.

3.7.6 Stage results

Lemma 3.7 Stage results are available after waiting for a dependent iteration.

Stage results are only added by the iteration itself. The result block is only allocated
when a non-null result is added. In case the result block has not been allocated the
get_result method always returns a null value.

Result blocks store results in an atomic list. To store the values the memory order relaxed
is used (see Section 3.5.1). The later stage counter increase is done using a sequential
consistent order making the result value visible for other threads. Reading threads are
only allowed to access the result after they waited for the iteration creating the result. To
ensure correct order, results are always stored before the stage counter is incremented. �

3.7.7 Pipeline termination

Lemma 3.8 The Pipeline executes all iterations correctly.

The Pipeline must be enclosed in a Pheet::Finisher Hyperobject to ensure termination
of all spawned tasks. After all children have finished, the running counter in the
Environment is zero. This is ensured with a check during Pipeline destruction. In further
version the Pipeline Environment instance may be used directly as Finisher object.

As we have shown in Lemma 3.5, all stages of all iterations are spawned as Pheet tasks
during the Pipeline execution. In combination with the Finisher Hyperobject this ensures
that the Pipeline is executed correctly.

The Environment object has to be freed after all iterations have been freed. Only after all
iterations and the Environment class were freed the performance counters are accessible.
Performance counters in Pheet are based on Hyperobject Reducers which merge their
separate values during destruction. �

63

3. Pheet Pipelines

3.8 Debug Logging
Debug output is a complicated issue in multithreaded programming. The output from
concurrent threads has to be synchronized before written to the system output. Otherwise
different lines may be mangled and displayed incorrectly.

To solve this issue and to make development of Pipeline programs easier a debug output
interface was integrated into Pheet Pipelines. This integration makes it possible to
display information about the current iteration like stage and iteration number. The
logging interface is discussed in Section 3.4.5.

To coordinate the different worker threads a mutex (std::mutex) is used in combination
with a std::lock_guard to protect the system output. Because this reduces the
scalability of programs, the debug output can be disabled using compiler options. When
debug logging is disabled the compiler removes all the log calls during optimization.

This function is deadlock-free because only a single lock is used. In the critical section
only the output to the terminal is performed.

The logging function is defined in the PipelineIteration object and therefore always
accessible for the user. It is implemented using Variadic templates [ISO12] which have
been included in the C++11 standard.

Variadic templates accept a variable number of template arguments. The templates are
not available directly to the function, so a recursive approach is used to process the
arguments one by one and then call the function again with the tail of the template list.
This construct can be used to create a type safe print function using recursion.

The new construct make the usage of the log function very straight forward. The user
can simply put all the information he wants to display as arguments to the function.

3.9 Performance Counting
Performance values are important to investigate problems with scalability on many-core
systems. The Pheet Pipeline implementation uses various performance counters provided
by the Pheet framework to measure important characteristic values during execution.

Pheet Pipelines provide the following performance counters:

• The number of created blocks to store Pipeline iterations. When this value is very
high, the overhead of the block creation can be reduced by increasing the block-size
parameter.

• The total number of wait, continue calls. This number is mainly interesting for
non-linear programs, where the number of continue calls is data dependent.

• The number of how many wait calls had to actually block because the dependent
iteration had not yet completed the required stage.

64

3.10. Implementation Summary

• The total number of created iteration objects on all nesting levels. This value may
be useful to determine the best block-size. It may also give some insight about the
best throttle limit.

BasicPerformanceCounter of the Pheet framework were used to implement the counters.
They use a Sum-Reducer [Wim13] internally to prevent contention induced by a single
counter variable. Reducers provide per thread local views which are merged on defined
synchronization points. Reducers in Pheet are implemented as Hyperobjects and are
wait-free [Wim13]. In our implementation synchronization points are the terminations of
iterations. Performance values are collected by all iteration objects independently and
are moved to their parents during destruction.

Because of the way how Reducers work, performance values can not be inspected during
runtime. The values are available after the central Pipeline Environment object has been
destructed.

For most of our benchmark instances the overhead of performance counting was ne-
glectable, although they can be disabled easily using compile time flags.

3.10 Implementation Summary
We have shown our interface and design decisions of our C++ Lambda based Pheet
Pipeline interface. Our interface allows short Pipeline definitions without boilerplate
code.

Additionally we have shown how our implementation supports non-linear nested Pipelines
which are important for some benchmark instances like Dedup.

Our interface supports the passing of results between iterations which removes synchro-
nization burden from the user. This is not supported by most other analyzed Pipeline
implementations. Nabbit supports result passing between dependent iterations.

To avoid central contention points our implementation is lock-free and deadlock-free which
we also argued in the previous sections. We extensively use the C++11 atomic data type.

Our interface supports a dynamic user editable throttle limit to limit the amount of
memory used during the Pipeline execution. Other implementations only support static
throttle limits which we consider not flexible enough in multiprogrammed environments.

Future work may address the following open issues: Only a single data type can be
specified as result data type for stages. This is not very flexible and leads to code which
is not type safe.

The throttle function has to be manually called by the user to take effect. This should
be moved directly into the scheduler.

The user has to manually create a Finisher Hyperobject which ensures termination of all
Pipeline iterations. This should be moved into our Pipeline Environment object.

65

CHAPTER 4
Benchmarks

This section describes the benchmarks used and how the benchmark values have been
measured. Where possible we provide an expectation for each of our benchmarks based on
previous work of others. We also formulate the goals of our benchmarks in this chapter.

To show the scalability of our Pipeline implementation following benchmarks were
implemented with our Pheet Pipeline interface:

• Dedup [Bie11] is a block level data deduplication and compression algorithm. The
input is two times fragmented into smaller chunks. These chunks are compressed
and duplicates are eliminated based on a fingerprint. See Section 4.5 for details.

• PrefixSum [Ble89] sums all previous items in an array for each position. See
Section 4.6 for details.

• X264 [Vid] is the popular H.264 video encoder. See Section 4.7 for details.

• Ferret [Lv+07a] is a similarity framework developed at Princeton University. See
Section 4.8 for details.

• Synthetic is a new benchmark to test the scalability of our implementation itself. It
contains a parametrized workload of matrix rotations. See Section 4.9 for details.

4.1 Goals - Comparison
The goal of our benchmarks is to investigate the scalability of our Pheet Pipeline
implementation. To achieve this goal multiple known Pipeline benchmarks have been
ported to our Pipeline interface. The benchmarks are described in detail in Chapter 4.

We executed the transformed benchmarks on our test systems with varying cores to
measure the speedup and scalability. We tried to predict the scalability for executions

67

4. Benchmarks

utilizing many threads using information about the hardware architecture of the bench-
mark systems. The scalability characteristics mentioned in other papers were used to
formulate our scalability expectations for our implementation.

To our knowledge no work had been published comparing the Pheet framework with
other task parallel frameworks. Because our implementation is implemented on top of
Pheet we can not compare our Pipeline performance to other Pipeline implementations
because we can not rule out effects of the Pheet scheduler itself. Therefore no comparison
tests with other Pipeline implementations (like Intel TBB, Piper) have been conducted.
Comparing performance with other Pipeline implementations would require a detailed
comparison of the Pheet framework first, which would go beyond the scope of this thesis.

The different benchmarks have different requirements to the memory subsystem. Some
work on independent data, some require access to results of adjacent iterations. We
generally want to see if our implementation scales well for real world problems even
beyond 16 cores.

To give a reference value most of our benchmarks have been benchmarked using a
Pthreaded version as well. All of the Pthreaded implementations can be considered as
reference implementation by the creators of the benchmarks. We used these Pthread
versions to investigate characteristics of the benchmarks itself.

4.2 Speedup
The speedup gives the speed improvement of an execution with multiple threads compared
to single threaded execution.

The speedup of an actual execution is calculated as follows:

Speedupn = T1
Tn

(4.1)

Where T1 denotes the execution time for a single threaded execution and Tn denotes the
execution time with n threads.

A speedup is linear when it satisfies the condition T1
Tn

= Ω(P) [ALS10].

Amdahl’s Law

Amdahl’s Law [Amd67] can be used to hint the speedup of parallel application.

Speedup = 1
rs + rp

n

(4.2)

Where rs defines the sequential portion and rp the parallel fraction of a program. Together
rs + rp = 1. n names the number of computation cores.

This law restricts the possible parallelism to the serial part of the algorithm. In case we
assume a 10 % serial portion of a problem and let the limn→∞ = 1

rs
we are limited to a

speedup of 10.

68

4.3. Measurement

Gustafson’s Law

Gustafson’s law [Gus88] is an alternative to Amdahl’s law. It says that “the problem size
scales with the number of processors” [Gus88]. This idea can be used to explain good
speedup on modern multi core systems. Whereas Amdahl’s law assumes that the problem
size is constant, Gustafson’s law makes the total execution time constant [JM12].

Some of our benchmark systems have a theoretical speedup limit about 160. We run all
our benchmarks with two different instance sizes to check if a bigger instance also yields
a better speedup.

4.3 Measurement

To remove the possibility of one time effects, all benchmark instances were run n = 50
times on each system. Based on the results the standard error of the mean with a 95 %
confidence interval was computed.

The 95 % confidence interval (ci0.95) was calculated assuming a normal distribution Θ.
In our benchmark plots the confidence interval is shown using a vertical stroke for every
data point.

We calculated the confidence interval as follows:

1− α = 0.95→ α = 0.05 (4.3)

Θ−1
(

1− α

2

)
= Θ−1(0.975) = 1.96 (4.4)

se = σ√
n

(4.5)

ci0.95 = 1.96 · σ√
n

(4.6)

P (X̄ − 1.96 · σ√
n
≤µ ≤ X̄ + 1.96 · σ√

n
) = 0.95 (4.7)

Where σ denotes the standard derivation, n denotes the number of repeated test runs
and X̄ is the sample mean. se denotes the standard error.

The tests are run with a set of CPUs cores to investigate scalability. To remove statistical
errors the benchmarks are run in a randomized order.

Time is measured using two time stamps obtained with high_resolution_clock from
the std::chrono namespace. Time needed by benchmarks is calculated in microseconds
and then converted to seconds with six fractional digits.

69

4. Benchmarks

4.4 Benchmark Systems

The benchmarks have been executed on four different systems. Each system features
different architectural and performance properties.

• Mars is an Intel Xeon system with 8 CPUs each having 10 cores. Each core can
execute two threads (Hyper Threading) to hide memory based latency. Each CPU
has a shared 24 MB L3 cache. See Section 5.1 for details.

• Ceres is an Oracle Spark T5-4 system with 4 CPUs each having 16 cores. The
CPU features a high number of 8 threads per core (similar to Hyper Threading)
and makes use of out-of-order executions to speedup single thread performance.
See Section 5.3 for details.

• Pluto is a system equipped with 2 Intel Xeon Phi coprocessor cards each having 61
cores. The coprocessor cards run a customized Linux but require binaries to be
compiled for the special MIC architecture. See Section 5.4 for details.

• Saturn is a AMD Opteron based system with 4 CPUs each having 12 cores. Each
CPU has a shared 12 MB cache. See Section 5.2 for details.

4.5 Dedup

Dedup [Bie11] is a data deduplication and compression kernel developed at Princeton
University. It is included in the Parsec [Bie11] suite because of its combination of global
and local compression resulting in high compression rates. Furthermore it is a mainstream
method for backup storage systems to reduce disk space usage.

The input data is first split into fixed size blocks which are processed in parallel af-
terwards. Each block is split into further coarse grained fragments using Rabin-Karp
fingerprints [KR87]. For each fragment a hash value is computed. Afterwards new
fragments are compressed using the GZIP compression which is based on the Ziv-Lempel
algorithm [ZL77]. The compress stage is skipped when the same fragment already oc-
curred before. This requires stage skipping support in the Pipeline. Hash values are
stored in a global hash table. For duplicate fragments the compressed data is written
only once to the output file.

4.5.1 Aim of this benchmark

The benchmark was included in the Parsec [Bie11] suite because the method is getting
attention in enterprise backup storage and network solutions [ZLP08]. The algorithm
offers a good speedup on multi-core systems and has a very good data locality. Because
of its non-linear structure it requires support for non-linear (nested) Pipelines (see
Section 2.1.5).

70

4.5. Dedup

The benchmark is heavily data dependent and thus can reveal problems with non local
code execution and cache flushes. We used this benchmark to find the memory limits of
our different test systems.

4.5.2 Testdata

We used the simlarge test instance of the Parsec [Bie11] suite for our benchmarks. The
input is 184 MB of data containing literature text from Project Gutenberg1. The ratio of
uncompressed to compressed data is about 2.2 : 1. The instance creates two iterations at
the first nesting level and ≈93 000 iterations at the second.

Additionally the native test instance of Parsec was used as benchmark. The input of
this instance is a 704 MB FedoraCore2 6 disc image (FC-6-x86_64-disc1.iso). The
file has a compression ration of 1.07 : 1, which is not surprising because the disk image
mostly contains already compressed software archives. The instance creates six iterations
at the first nesting level and ≈370 000 iterations at the second.

4.5.3 Expectations

With Piper [Lee+13] Lee et al. showed that speedup comparable to the Pthread version
can be achieved using their Pipeline implementation. They showed that a speedup of
6.7 is possible for a Pipeline implementation with 16 threads on a system similar to our
Saturn system. Because the number of physical cores of their AMD based system was
limited to 16 threads, no tests with more threads had been published.

The Pthreaded Dedup version contained in the Parsec [Bie11] suite was used as reference
implementation. We expect a similar or slightly worse performance compared to the
Pthreads implementation because it is carefully optimized and the bind-to-element
approach is beneficial for this benchmark [Lee+13].

We do not expect much speedup after the chip boundaries (16 for Ceres, 10 for Mars,
24 for Saturn). After this thread counts, cross chip memory latency is expected to be a
limiting factor.

Better speedup of the bigger native test instance is expected because it yields more
parallelism. The simlarge instance yields only two iterations at the first level while the
larger native instance yields six iterations. According to Gustafson’s law [JM12] the
bigger instance should scale better.

4.5.4 Implementation

The algorithm can be modeled with the following five stages in a Pipeline fashion. Only
the first (input) and the last (output) stage have to be serial. The Pipeline schema can

1Project Gutenberg. url: http://www.gutenberg.org/wiki/Main_Page (visited on
01/10/2016).

2Fedora Project. url: https://getfedora.org/de/ (visited on 01/10/2016).

71

http://www.gutenberg.org/wiki/Main_Page
https://getfedora.org/de/

4. Benchmarks

be seen in Figure 4.1 and the stages are:

1. Coarse-grained fragmentation is a serial stage which splits the input data into fixed
size chunks. The file is read from disk. To eliminate effects of the I/O subsystem
and the caching system the benchmark was run multiple times and the worst
execution was dropped from the results.

2. Fine-grained fragmentation is a parallel stage which processes chunks generated
in the previous stage. This stage uses Rabin-Karp fingerprints to further refine
chunks into smaller fragments. This stage is a non-linear stage and creates for one
input element n output elements.

3. Hash computation is a parallel stage which calculates a SHA1 sum of each fragment.
Then the hash is looked up in the global hash table to check if the same fragment
already occurred. If the hash is not present it is added and the compression stage
is not omitted. The hash table is protected using a dedicated lock for each bucket.
See below for details.

4. Compression is a parallel stage which compresses duplicate fragments using a GZIP
or BZIP2 compression based on compiler flags. In our benchmarks we used the
fast GZIP compression.

5. Assemble output stream stage is the last serial stage which creates the compressed
output file. The function either writes a compressed fragment or a SHA1 hash in
case it already occurred earlier.
The Parsec reference implementation [Bie11] needs extra logic to reconstruct the
original order of fragments in the output stage.

Locks

Because the global hash table is accessed in a parallel stage by multiple threads, locks
are required for synchronization. The hash table is split into a large number of buckets
(≈ 100 000 for our benchmark). Each bucket has its own lock, reducing the chance of
lock contention.

Non-linear Pipelines

The algorithm requires a non-linear Pipeline because stage three further coarsens the
chunks. This stage takes a single input chunk as input but outputs multiple smaller
fragments. The algorithm requires stage skipping (see Section 2.1.4) because dupli-
cate segments are not compressed and therefore the compression stage is omitted (see
Figure 4.1).

Piper lacks support for non-linear Pipelines therefore they omitted stage three resulting
in less parallelism.

72

4.5. Dedup

coarse grain frag. (serial)

fine grain frag. (parallel)

hash calculation (parallel)

compression (parallel)

output (serial)

· · ·

· · · · · · · · ·

iterations (blocks)

stages

chunk fragments

Figure 4.1: The Dedup Pipeline schema shows the non-linearity of the parallel algorithm.
Input is divided into fixed size chunks in the first serial stage. Then each chunk is
further divided into smaller fragments in a parallel stage. This stage takes one input
element and outputs multiple elements. The number of smaller fragments depends on the
algorithm and varies from iteration to iteration. For each of these small fragments a hash
is calculated and stored in a global hash table. Duplicate fragments are not compressed
resulting in stage skips. The output stage writes either the compressed fragment or a
placeholder hash into the output stream.

Adaptions

In the Parsec reference implementation not the whole chunk is consumed in a single
iteration. Remaining parts are added to the next chunk read from the input file. In a
parallel computation this would create a serial stage and chunks could not be processed
in parallel. To avoid this issue the remaining parts of a chunk are processed in an extra
sub iteration.

Because chunks are processed in parallel a duplicated fragment may be first discovered
in a later chunk. Only the first occurrence of a chunk is compressed and written to the
file in the final stage. For all further occurrences only a SHA1 hash is written to the file
instead. Because of this possible miss order, the hash would be written before the actual
compressed data.

To circumvent this, for every fragment already existing in the global hash table, which is
in the wrong order, the fragment is compressed too. No additional hash table lookup
is necessary. This modification may increase the output file size by a small amount.
Correctness of the algorithm is untouched by this modification.

To make this fix possible the sequence of the Pthread Dedup implementation is used to
store the original fragment position in the input stream. This sequence contains the id of
the chunk (1st level) and the id of the number of the fragment (2nd level). Is is stored for
each fragment and uniquely identifies it.

73

4. Benchmarks

In our test instance from the Parsec suite reordering affected only 4 out of ≈100 000
fragments.

To run the benchmarks on the Xeon Phi architecture it was necessary to compile
libressl3 2.2.5 and zlib4 1.2.8 for the MIC architecture.

Reference Implementation

As reference the Pthreaded version of the original Dedup variant was benchmarked on all
systems with the same input instances. The Pthreaded version is more complex because
an additional reordering stage is needed to output output chunks in order. Output chunks
are cached in this stage until all preceding chunks have been written.

The additional Pthreads code results in 1600 additional lines of source. Pthreads parts
are enabled by a compile-time switch (ENABLE_PTHREADS).

Our non-linear Pipeline version of Dedup is only about 20 lines of additional code. Most
of this code is used to initialize the Pipeline Iterations correctly.

The Pthreaded version starts dedicated threads for each stage. This results in a total of
at least five threads. Our implementation uses the Pheet task scheduler which can have
an arbitrary amount of worker threads. To make the results comparable with our task
scheduler the number of operating system threads had been limited for the Pthreads
version using the hwloc library [Bro+10].

4.6 PrefixSum
PrefixSum is a common problem and the bases for many parallel algorithms [Ble89]. It
calculates the sum of all previous items in an array for each position. The single threaded
implementation is trivial - a single pass is sufficient. For the list 1 3 5 the PrefixSum
would be 1 4 9.

A parallel implementation requires a different algorithm with multiple passes. In the
first pass the input array is split into blocks. Then for each block the sum is computed
and stored in an auxiliary array. The content of the newly created auxiliary array is
replaced by the computed PrefixSum of the array itself. In the final pass the values of
the auxiliary array are used as offset to compute the PrefixSum of he original blocks in
parallel. Figure 4.3 shows an example of a parallel PrefixSum computation.

4.6.1 Aim of this benchmark

PrefixSum is commonly used to implement other parallel algorithms [Wim14]. Although
it reads data sequentially, it is memory-bound because every list element is read only
once.

3LibreSSL. url: http://www.libressl.org/ (visited on 01/10/2016).
4zlib. url: http://www.zlib.net/ (visited on 01/10/2016).

74

http://www.libressl.org/
http://www.zlib.net/

4.6. PrefixSum

0 1 2 3 4 5

iterations (blocks)

stages

block split (serial)

block sums (parallel)

aux. array (serial)

block sums w. offset (parallel)

n
· · ·

· · ·

· · ·

· · ·

Figure 4.2: PrefixSum Pipeline schema showing the four stages. The first stage splits
data into blocks. In the second stage the sum for each block is calculated in parallel.
Results are stored in an auxiliary array. In stage three the PrefixSum for the auxiliary
array is computed. In the last parallel stage the PrefixSum for each block is computed
using the offset from the auxiliary array.

3 5 2 8 4 7 3 5 9 7 1 4 2 3 7 3

18 19 21 15

0 18 37 58

3 8 10 18 22 29 32 37 46 53 54 58 60 63 70 73

PrefixSum 58 + 2

Stage0 Blocks

Stage1 Parallel

Stage2 Serial

Stage3 Parallel

Figure 4.3: Example of a parallel PrefixSum computation [Wim14]. The input array
is split into blocks. The sum of each block is calculated in parallel and stored in an
auxiliary array. For the auxiliary array itself the PrefixSum is computed. In the final
stage the computed values are used as offset to compute the PrefixSums in parallel per
block.

75

4. Benchmarks

It was used as benchmark for our Pipeline implementation because there exist various
implementations in the Pheet [Wim14] test suite. This benchmark measures the overhead
of our Pipeline implementation and allows comparison of the scalability with the version
implemented with Pheet tasks.

4.6.2 Testdata

The test instances used to benchmark our Pipelined implementation of PrefixSum was
derived from existing testdata of the Pheet framework.

We benchmarked with two instances with an array size of 225 and 227. The data type
of all array values is a 32 bit integer. All array elements are set to 1 which makes the
correctness check very easy.

We used a block-size (Cutoff-size) of 4096 for our Pipeline implementation and for the
Pheet Threads reference implementation.

4.6.3 Expectations

The PrefixSum computation yields only very little work for each Pipeline iteration. To
improve the performance the block-size is set to 4096. This block-size results in ≈8000
iterations for the first test instance and ≈32 000 for the second instance. The first serial
stage only calculates the boundaries of the blocks which are processed in parallel in the
second stage. Therefore we expect that there is enough possible parallelism for our test
systems.

Previous benchmarks of the Parallel PrefixSums implementation showed that speedup
up to 48 cores is possible on the Saturn system [Wim14]. We used this parallel Pheet
implementation as the first reference for our Pipeline version. Wimmer used an array of
size 108 ≈ 226. We also expect a similar speedup of 2.8 at 48 cores on the Saturn system.

Because there exists only one array instance on which all threads operate, we expect
some NUMA effects at around 24 threads because of cross chip traffic on the Saturn
system. The Saturn system features 12 cores per CPU with two CPUs on one die. The
testdata array is initialized with multiple threads. This may lead to bad locality on Ceres
because of its first touch policy. See Section 5.3 for details about Ceres.

The last stage replaces the values of the input array, thus we expect some cache misses
there for executions using many threads.

Our second reference implementation is a primitive sequential implementation. We expect
this implementation to outperform our implementation for low core counts (1-4) because
of our Pipeline overhead.

4.6.4 Implementation

We did not put any effort into macro optimizations like vectorization and stick with a
basic implementation of the parallel PrefixSum algorithm. Listing 4.4 shows the continue

76

4.7. X264

and wait calls to create a parallel and a serial stage. The first stage in our implementation
is always a serial stage, which calculates only the block boundaries.

The results of each stage are passed to the continue, wait and finished calls. Stages
without results like the first stage (stage0) pass a null value as result.

On Ceres we experienced problems with the Pheet StrategyScheduler which also forms
the base for our PipelineScheduler. In particular we ran into segmentation faults at
executions using a high thread count. We asume that there is a problem with the reuse
of datastructures in the Pheet scheduler on Ceres but it was not possible to investigate
this issue into more detail. We switched to the Pheet BasicScheduler (see Section 1.2.2)
to mitigate this issue.

4.6.5 Reference Implementation

As reference implementation an existing Pheet task version was used. This PrefixSums
implementation uses a divide and conquer approach and splits the input array in the
middle. Then for both parts of the split array a new task is started in a recursive fashion.
A Finisher Hyperobject is used to wait for both child computations to be finished.

The parallel recursion is stopped at the Cutoff -Limit which is also set to 4096. This
Cutoff-Limit is also the block size in our Pipeline implementation. Below the Cutoff-Limit
the PrefixSum is calculated using a single pass over the array.

Each iteration tracks its stage using a numeric value. A memory fence is used to ensure
synchronization before the stage is increased.

As second reference version an existing sequential version of the sequential algorithm was
used. This algorithm just performs one pass over the input array.

4.7 X264

The x264 encoder5 is a popular open source encoder for the widely used H.264 [Ric11]
video compression. H.264 is a highly space efficient video codec. X264 is capable of
converting a range of video formats into the H.264 codec which is widely used in the
internet.

X264 uses Pthread mutexes for thread synchronization and is considered as one of the
fastest H.264 encoders.

4.7.1 Aim of this benchmark

X264 is included in the Parsec [Bie11] benchmark suite because of its sophisticated
Pthreads implementation featuring almost linear speedup [Lee+13]. The H.264 video

5Videolan. x264 the best H.264/AVC encoder. url: https://www.videolan.org/developers/
x264.html (visited on 10/13/2015).

77

https://www.videolan.org/developers/x264.html
https://www.videolan.org/developers/x264.html

4. Benchmarks

PrefixSum Pipeline implementation
1 #define STAGE1 1
2 #define STAGE2 2
3 #define STAGE3 3
4
5 Pheet::Environment env {cpus}; // Pheet Environment
6 Pheet::Pipeline penv { ppc }; // Pipeline Environment
7 int counter = 0; /* iteration counter */
8 size_t Cutoff = 4096; //block size
9 while(Cutoff*counter <= length) {

10 Pipeline::PipelineIteration* piter =
11 new Pipeline::PipelineIteration(&penv, counter);
12 //stage0 - calculate block-size
13 size_t blength = length-counter*Cutoff;
14 if(blength > Cutoff) {
15 blength = Cutoff;
16 }
17 auto bdata = data+counter*Cutoff; // block start
18 piter->pipe_continue(STAGE1,0, [piter,bdata,blength,&penv] () ←↩

{
19 //stage1 parallel computation of block sums
20 int blocksum = 0;
21 for(size_t i = 0; i < blength; ++i) {
22 blocksum += bdata[i];
23 }
24 piter->pipe_wait(STAGE2,blocksum, [piter,bdata,blength, ←↩

blocksum,&penv] () {
25 //stage2 add sum prev block
26 int prevBlockSum = 0;
27 if(piter->iteration > 0) {
28 prevBlockSum = penv.find(piter->iteration)-> ←↩

get_result(STAGE2);
29 }
30 int STAGE2_RESULT = prevBlockSum +blocksum
31 piter->pipe_continue(STAGE3, STAGE2_RESULT, [piter, ←↩

bdata,blength,prevBlockSum] () {
32 //stage3 PrefixSum of block with offset
33 bdata[0] += blockResult;
34 for(size_t i = 1; i < blength; ++i) {
35 bdata[i] += bdata[i-1];
36 }
37 piter->finished(0);
38 });
39 });
40 });
41 counter++;
42 }

Figure 4.4: Implementation of the parallel PrefixSum algorithm using our Pipeline
interface. For easier readability some necessary C++ modifiers (typename) have been
omitted.

78

4.7. X264

codec is used widely for internet video applications. X264 is one of the most popular
open source encoders for H.264.

Lee et al. [Lee+13] showed that the algorithm can be modeled in a Pipeline fashion with
a near linear speedup up to 16 cores. The original algorithm was adapted to use their
Cilk-P framework running on their Piper scheduler [Lee+13].

In this benchmark we use an uncompressed video in raw yuv format which is converted into
the H.264 format by x264. The yuv format is an uncompressed video format consisting
only of still images.

4.7.2 H.264

A H.264 video sequence consists of frames which contain the actual image. To achieve a
small file size, not all frames contain a full image. Some information may be referred
from another frames to save space like file compression algorithms do.

Therefore each frame is divided into a two dimensional array of macroblocks which can
be referenced by other frames if they contain similar content. This is beneficial because
often only parts of a picture change between near frames (e.g static scene and camera
with only one moving object).

To achieve a balance between coding efficency and computational effort during encoding
and decoding the range of reference frames is limited. The H.264 standard [Ric11]
describes three different frame types:

I/IDR-Frames contain a full picture. Macroblocks of these frames can only reference
preceding macroblocks of the same frame. IDR-Frames are a reference barrier and
are important to enable quick seeking in video files. They also support fast error
recovery in case some frames are dropped in video streams. No frame after an
IDR-Frame can reference frames before.

P-Frames Macroblocks in P-Frames can only reference macroblocks in preceding P-
Frames and I-Frames. In practice the number of reference frames is limited to the
two closest preceding P or I-Frames.

B/BREF-Frames Additionally to the previously mentioned P-Frames macroblocks in
these frames may also reference macroblocks in future frames. B-Frames are the
most space efficient frames. B-Frames can not be referenced by other frames. Only
BREF-Frames can be used as reference by other frames.

The x264 encoder generates a list of I P B P B P ... I P B P B .. frames [CJ11].
About every 70 frames an IDR-Frame is inserted to enable good seeking performance.
Because the H.264 video codec was designed also for streaming, regular IDR-Frames are
beneficial to restore the full picture in case of dropped frames. The exact amount of P
and B-Frames is not specified by the H.264 specification [Ric11]. For our tests only the
x264 implementation was investigated.

79

4. Benchmarks

Figure 4.5: Frame encoding times and types of a sample input video (Elephants
Dream [Roo+06; Bie11] 640x480 128 frames). In frame 10-73 the camera is moving
and the frame content is changing a lot. From frame 74-128 the camera is steady and
only parts of the scene are changing. The data was measured using debug output of the
original x264 implementation encoding the Elephants Dream video [Roo+06].

Encoding times and decided frametypes of a sample input video (Elephants Dream [Roo+06;
Bie11]) are shown in Figure 4.5. Because B-Frames have more possible reference frames
the encoding of these frames takes longer by a factor of two. IDR-Frames are shown in
pink and can be seen at frame number 0 and 77.

4.7.3 Testdata

We used the Parsec [Bie11] input sequences of the open source movie Elephants Dream [Roo+06].
The inputs are stored as uncompressed yuv image sequences.

In particular we used the small instance containing only 32 frames (eledream_640x360_32.y4m).
As large instance we used the 480 frames sample (eledream_640x360_480.y4m).

4.7.4 Implementation

To our knowledge, there exists no up-to-date documentation about the x264 code base.
The x264 code is partly documented using C source file comments. Because of the very
specific complexity of video encoders a lot of effort has been put into understanding the
way x264 works. In this short overview of the x264 architecture important functions are
explained to make x264 Pipeline modifications more understandable for the reader.

80

4.7. X264

0 1 2 3 4 5 6 7 8 9 10 11 12 input frame-nr

IDR B B P B P I B P B P B P decided frame type

0 123 45 6 78 910 1112 reorded by x264

I* BBP BP I BP BP BP Stage0: decide frame type

e

ee

e

e

e

e

e

e

e

e

e

e Stage1: encode

Figure 4.6: This figure shows the Pheet Pipeline x264 version. It shows how the first
twelve input frames are re-ordered by x264 and how the frame type is decided. I-Frames
can only be self-referencing on a macroblock level. P-Frames may refer I or P-Frames
up to the next preceding I-Frame, whereas B-Frames may also refer frames ahead. This
diagram shows a Pipeline schema applied on a frame level. Lee et al. used a macroblock-
level Pipeline [Lee+13] which can achieve more parallelism but is beyond the scope of
this thesis.

In general x264 uses Pthreads for parallelism. The threads are grouped into multiple
pools executing tasks from central queues. The synchronization between the threads is
done using Pthread mutexes. X264 uses the following threads in the default configuration:

Main thread This thread is used to parse command line arguments and does all data
structure initialization. It then waits for frames read by a lookahead thread.
The frame type is decided and frames are passed to the encoding thread pool.
Synchronization between the encoder threads is done in the main thread.

Lookahead threadpool This pool reads frames from the input file and analyses them.
In case parallelism is enabled using command line options, multiple lookahead
threads are started. The actual number is based on the used encoding settings.

Lookahead manager thread This manager thread orchestrates the lookahead pool
threads.

Encoder threadpool The threads of this thread pool are used to encode frames. The
corresponding function is named x264_slices_write. Each thread encoding a
frame with dependencies waits on a macroblock level for the depending thread to
proceed. The number of encoder threads is set with the command line argument
threads.

81

4. Benchmarks

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

MB MB MB MB MB

thread0 thread1 thread2
P-Framen P-Framen+1 P-Framen+2

Figure 4.7: X246 P-Frame macroblock (MB) encoding dependencies [CJ11]. A P-Frame
macroblock can refer to macroblocks in the preceding P-Frame up to his own position.
Macroblocks are encoded row-wise. Once a macroblock is encoded the next thread
encoding the following P-Frame can continue up to the just completed position. This
interleaving is the main source of parallelism in x264. The current macroblock is colored
blue. The already completed macroblocks are colored orange. Macroblocks ready for
encoding are shown in a light orange.

The general state is stored in one big data structure (struct x264_t) which exists for
each encoder thread. After an encoder thread has finished its work, the data structure is
cleaned and reused for the next thread.

Data from the analyze threads is also passed using the global data structure. The fact
that so much data is passed using global variables and the high amount of data structure
reuse makes it very challenging to adapt the algorithm to a Pipeline schema.

The main parallelism in x264 arises because of the interleaving of macroblock encoding.
As shown in Figure 4.7 the encoding of P-Framen+1 can start even before P-Framen is
complete. Each P-Frame macroblock can reference preceding macroblocks in previous
frames up to his own position. A dedicated thread is running for every P-Frame in
Figure 4.7. The already encoded macroblocks are colored in orange. The macroblock
currently encoded by threads are colored in blue. Macroblocks which are ready to be
encoded because of their satisfied dependencies are colored in a light orange.

Cilk-P Implementation

Lee et al. [Lee+13] already ported the algorithm to a Pipeline version using the Cilk-
P [Lee+13] interface. We use some of their results with their kind permission.

Their version used Pipeline paralellsim on a macroblock level which yields good speedup.

Pheet Pipeline Implementation

Our Pheet implementation only relies on IDR-frames for parallelism. All frames between
two IDR-frames only depend on the preceding IDR-Frame. This schema can be seen in

82

4.8. Ferret

Figure 4.6. As a simplification we treated B-Frames as P-Frames.

Pthread Reference Implementation

The Pthread reference implementation is the unmodified x264 version from the Parsec
suite [Bie11]. We restricted the number of concurrently running threads using the
hwloc [Bro+10] library.

This version uses a lot of data structure reuse and features macroblock level parallelism.
It is carefully optimized and considered as very fast H.264 encoder.

4.8 Ferret
The Ferret [Lv+07a] benchmark of the Parsec [Bie11] suite is used to perform content-
based similarity search and was developed at Princeton University. Ferret just provides
base functionality every similarity search needs. Specific implementations for images,
audio data and 3D data are added with data type plugins. Ferret features a comparable
performance to domain specific algorithms [Lv+07a].

The Parsec Ferret benchmark provides different input instances which consist of a database
containing reference images and a number of query image files. During the benchmark
the closest k matches of each query file in the reference database are computeted. The
results are written into the output file including their similarity score.

4.8.1 Aim of this benchmark

The benchmark was included into the Parsec suite because it covers the emerging field
of “next-generation desktop and internet search engines for non-text document data
types” [Bie11]. It was included in this thesis because the problem can be easily addressed
with the Pipeline pattern. In addition the near ideal speedup of the Pipelined version
observed by the Parsec authors is promising.

4.8.2 Testdata

The simlarge benchmark instance of the Parsec suite [Bie11] was used for benchmarking.
This instance contains 256 queries (images) and a database with 34 973 images. The goal
is to extract the top k = 10 closest images for each query [Bie11].

As second instance the native Parsec instance was used. This instance contains 3500
queries and a database with 59 695 images. The closest k = 50 images are extracted [Bie11].

4.8.3 Expectations

Each query image is processed in a single iteration. The first stage is a serial stage
although it only reads the filenames of the query images. After this stage all query images
are processed in parallel. The last serial stage writes the result values in the output file.

83

4. Benchmarks

We expect good scalability because even the small instance contains 256 query images
which are processed in parallel. Bienia [Bie11] calculated a theoretical possible speedup
of 16 for 16 threads.

Because of the 10 cores per chip on Mars and 16 on Ceres, we expect a drop in speedup
afterwards because of cross chip memory access. For the Saturn system we expect the
drop to be at about 24 threads because two CPUs with 12 cores each are on one die. After
these thread counts cross chip memory access is expected to slow down the computation.
The memory architecture of the Xeon Phi card in the Pluto system is quite different,
therefore we can not give a prediction on the speedup for this system.

We also expect the runtime of the bigger native instance to be about 10× longer than
the simlarge instance because of a 10× bigger query count.

Because the Pthreads version uses per stage central queues we expect that our Pipeline
version, which uses work-stealing, has a better scalability for higher thread counts. We
expect a better performance for the Pthread version for low thread counts because of the
Pipeline overhead.

4.8.4 Implementation

The Ferret algorithm can be modeled with six Pipeline stages (schema and stages are
shown in Figure 4.8):

1. Load is the serial input stage. It loads a single query from the queries directory.
Each query is represented as a single file. In this benchmark the queries are JPEG
image files which are read into memory in this stage.

2. Segment is a parallel stage which performs segmentation of the image into similar
regions. A similar region may have the same color or same contrast information.

3. Extract is a parallel stage and extracts feature vectors from found segments. Feature
vectors pose a dimension reduction and make it possible to compute the distance
between two segments.

4. Vector / Filter is a parallel stage which uses Locality Sensitive Hashing [Lv+07b]
to index candidate sets [Bie11]. The distance between vectors of the query image
and database candidates are first computed using a fast algorithm. Results are
used to filter out candidate images which are not similar at all.

5. Rank is a parallel stage which uses Locality Sensitive Hashing [Lv+07b] to rank the
different candidate sets [Bie11]. Because the exact distance calculation between
two feature vectors takes more time, only filtered candidates are considered. After
ranking the best k reference images are saved.

6. Output is a serial output stage. For each query the k best matching candidates
from the database are written into the output file. Also the similarity score is
saved.

84

4.8. Ferret

0 1 2 3 4 5 6 7

iterations

stages

load (serial)

segment (parallel)

extract (parallel)

vector (parallel)

rank (parallel)

output (serial)

256
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.8: The Ferret Pipeline schema showing six work stages and 256 iterations. Each
query can be executed in parallel. Results of each query are stored in a single file and
require a serial output stage.

There exists an Intel TBB Pipeline version of Ferret in the Parsec suite. The Intel TBB
Pipeline interface is similar to our Pipeline interface. Therefore it was easy to port the
Intel TBB Ferret version to our Pipeline interface.

Listing 4.1 shows our Pheet Pipeline Ferret implementation. Mainly the nested Lambda
expressions which are necessary to provide dynamic Pipelines are shown. Because all
operations perform their changes in-place, no result values are passed between iterations.
The current work item is passed via the capture list of the closure (see Section 3.3.1
about the C++ Lambda expression).

4.8.5 Reference Implementation

We used the existing Ferret Pthreads implementation included in the Parsec suite [Bie11]
for reference.

For each stage a number of worker threads is started. Because we limit the number of
threads globally we have to reduce the threads per stage to obey our global limit.

Each stage has an own queue which is used by the worker threads to obtain work. The
queue length was set to 100 elements for our benchmarks. Access to the queue is protected
using Pthread mutex locks. We expect this central lock structure to be a bottleneck for
executions with a high number of threads.

85

4. Benchmarks

1 #define STAGE_SEQUENCE 1
2 #define STAGE_EXTRACT 2
3 #define STAGE_VECTOR 3
4 #define STAGE_RANK 4
5 #define STAGE_OUTPUT 5
6
7 Pipeline penv { ppc }; // initialize the Pipeline Environment
8 int counter = 0; /* iteration counter */
9

10 while((item= this->filter_load(nullptr,ref_m_single_file, ←↩
ref_m_path,m_path_stack,m_dir_stack)) != nullptr) {

11 Pipeline::PipelineIteration* piter =
12 new Pipeline::PipelineIteration(&penv, counter);
13 counter++;
14 piter->pipe_continue(STAGE_SEQUENCE,0, [piter,this,item] () {
15 this->filter_seg(item);
16 piter->pipe_continue(STAGE_EXTRACT,0, [piter,this,item] () ←↩

{
17 this->filter_extract(item);
18 piter->pipe_continue(STAGE_VECTOR,0, [piter,this,item] () ←↩

{
19 this->filter_vec(item);
20 piter->pipe_continue(STAGE_RANK,0, [piter,this,item] () ←↩

{
21 this->filter_rank(item);
22 piter->pipe_wait(STAGE_OUTPUT,0, [piter,this,item] () ←↩

{
23 this->filter_out(item);
24 piter->finished(0);
25 });
26 });
27 });
28 });
29 });
30 }

Listing 4.1: This listing shows Ferret implemented in Pheet Pipelines. No results are
passed between iterations. The Lambda capture list is used to pass iteration items from
stage to stage.

86

4.9. Synthetic

4.9 Synthetic
A synthetic benchmark was created to measure the overhead of our Pipeline Scheduler
and the scalability on many core systems. This synthetic Pipeline benchmark simulates
work by performing matrix rotations in multiple Pipeline stages and iterations.

To be able to control the amount of work in the Pipeline, different numbers of iterations
have been benchmarked. A 128× 128 matrix was rotate 256 times in 1000 and 10 000
iterations.

The matrix rotation was picked because it needs n2 work for a n× n matrix and can be
performed in place which is very memory efficient. Each iteration has a dedicated matrix
instance which is rotated 90◦ counterclockwise in each stage.

We implemented this benchmark in the following versions:

Pipeline - Wait This version has dependencies between all adjacent iterations. It is
called wait version from now on. The Pipeline schema of the wait version can be
seen in Figure 4.11. The Pipeline with 256 stages was benchmarked with 1000
iterations for the small instance and with 10 000 iterations for the large instance.
The huge Pipeline depth of 256 stages should enable enough parallelism in the wait
version. It is used to measure the overhead of the dependency waiting logic of our
Pipeline implementation.

Pipeline - Continue This version only consists of parallel stages. The structure of the
Pipeline is the same as in the wait version. It has no dependencies between iterations.
It is called continue version from now on. The schema of this dependency-free
version can be seen in Figure 4.10. The first serial stage only starts iterations and
does not perform work on its own. Therefore it is not a limiting factor. This version
should measure the overhead of the Pipeline object creation.

Pheet Tasks This version calculates the matrix rotations using a dedicated Pheet task
for each iteration. This results in 10 000 tasks performing 256 rotation operations in
a row for the large instance. For the small instance only 1000 tasks were spawned.
The tasks are executed by Pheet worker threads. The number of worker threads
is controlled by the Pheet Environment to allow comparisons of different worker
counts.

C++11 Threads This version uses C++11 Threads to start a dedicated thread for
each iteration. The number of concurrently running threads is limited with the
hwloc [Bro+10] library for comparable results. This version is used to measure the
overhead of the Pheet scheduler.
On the Ceres system the hwloc library does not allow arbitrary thread limitations.
Therefore this benchmark starts a number of worker threads which rotate more
than one matrix instance. This keeps the overall number of matrix rotations the
same.

87

4. Benchmarks

The above mentioned Pipeline versions can be executed with or without a throttle limit
(see Section 2.1.2). This limit reduced the amount of concurrently active iterations.

4.9.1 Aim of this benchmark

This benchmark should measure multiple characteristics of our Pipeline implementation
in a controlled environment.

Wait vs Continue It should measure the scalability of the wait version compared to
the continue version. A wave front execution of the wait Pipeline schema should
yield enough parallelism because of the huge Pipeline depth of 256 stages. It should
show how the additional dependency bookkeeping slows down the speedup of the
wait version.

Continue vs Pheet task It should measure the overhead of a Pipeline execution with-
out dependencies (continue-version) compared to a reference Pheet task version.
This will give us the overhead of the Pipeline bookkeeping which mainly consists of
creating iteration object instances.

Pheet tasks vs C++ threads Additionally we check the overhead of the Pheet Sched-
uler compared to an execution with operating system threads. This will show how
much the Pheet scheduler overhead effects our implementation in general.

Throtteling It should show the effects of throtteling concurrently running iterations
on the performance. Throtteling should increase the locality and create a lower
memory usage in general. The memory usage is lower because the number of
currently running, yet unfinished, iterations is constrained.

4.9.2 Testdata

The testdata consists of n = 10 000 or n = 1000 iterations and 256 stages. The matrix
size is always 128× 128 and contains values of type int with a size of 4 byte on our test
systems. The huge number of iterations should mitigate startup effects of the Pipeline.

The small instance runs 1000 iteration which perform 256 rotations each. This leads to a
total memory requirement of 62.5 MB for the matrices.

The large instance uses 10 000 iterations and the same number of stages. This instance
requires 625 MB of main memory for the matrix instances.

4.9.3 Expectations

Overall we expect that the continue version outperforms the wait version and that the
C++11 Thread version outperforms all other versions because of less overhead.

88

4.9. Synthetic

In detail we expect:

Wait vs Continue We expect better scalability for the continue version than for the
wait version because it features more parallelism. We also expect a faster total run
time for the continue version on executions with more than one thread.
The difference between wait and continue version for an execution performed with
only one thread can give us insight about the overhead of the wait version. We
expect this overhead to be neglectable for bigger matrix sizes.
We can not give a specific speedup expectation, but the independence of the data
should be beneficial even for high thread executions. Also the wait version should
benefit from more threads by doing a wave front execution.

Continue vs Pheet task We expect that the Pipeline continue version and the Pheet
task version perform exactly the same. The continue version only has a very slight
overhead for creating a Pipeline iteration instance compared to the plain Pheet
task version.
The Pipeline iteration object creation is not thread safe and has to be performed
in a single thread. Pipeline iteration objects have to be registered in a central data
structure in the Pipeline Environment. We expect some contention for high thread
counts because of this.

Pheet Tasks vs C++ threads The C++ threads are directly scheduled by the op-
erating system whereas the Pheet tasks are executed by worker threads. The
bookkeeping of this tasks queues is expected to have a negative impact on the
Pheet task version.
To our knowledge no comparisons of Pheet tasks and C++11 threads have been
published.
Because we create a C++ thread for each iteration we have to limit the concurrently
running threads to the number of Pheet worker threads for comparable results. It
is unclear if this thread limitation done using the hwloc [Bro+10] library has a
direct impact on the performance.
We modified the benchmark on the Ceres system to feature C++ working threads,
because the Ceres system does not allow pinning of threads. This is expected
to affect performance because less threads mean less overhead and allow better
compiler optimizations.
We tested two Pheet schedulers [Wim14] (BasicScheduler, StrategyScheduler) to
investigate the effect of the chosen scheduler on the performance. See Section 1.2.2
for details about Pheet schedulers.

Throtteling We run the benchmark with a throttle limit of 512 iterations and compared
it to a run without a throttle limit. We expect that this restriction of concurrently
running iterations increases the locality and therefore reduces the cache misses. A

89

4. Benchmarks

3 5 2 8 9
1 2 3 5 1
5 5 2 2 8
6 3 1 1 4
5 2 7 9 3

a = m[y, x] ≡ m[0, 3]
b = m[x, d− 1− y] ≡ m[3, 4]
c = m[d− 1− y, d− 1− x] ≡ m[4, 1]
d = m[d− 1− x, y] ≡ m[1, 0]

9 1 8 4 3
8 5 2 1 9
2 3 2 1 7
5 2 5 3 2
3 1 5 6 5

x
90◦

Figure 4.9: In place rotation of a (quadratic) matrix by 90◦ counter clockwise. All items
addressed by the two nested for loops are shown in a light orange. The yellow cell is an
arbitrary cell (y = 0, x = 3) in range of the two loops. Grey arrows show how the four
cells are shifted to perform the rotation.

better overall run time is expected for the throttle version in executions with high
thread counts.

4.9.4 Implementation

The algorithm to rotate the matrix 90◦ counter clockwise is shown in Algorithm 4.1. For
easier understanding the rotation of a single cell is shown in Figure 4.9. The light orange
areas show the area of the two nested loops. The yellow square is an arbitrary cell of the
matrix. The grey arrow shows the shift of the other touched cells (orange).

Algorithm 4.1: Rotate Matrix 90◦ counter clockwise
Input: A reference to the matrix m and a scalar dimension d
Output: The rotated matrix 90◦ counter clockwise in place

1 for y ← 0 to d/2 do
2 for x← y to d− 1− y do
3 a← m[y][x] ;
4 b← m[x][d− 1− y] ;
5 c← m[d− 1− y][d− 1− x] ;
6 d← m[d− 1− x][y] ;
7 rshift a, b, c, d ; // right shift: a← b; b← c; c← d; d← a

8 end
9 end

4.9.5 Reference Implementation

To measure the overhead of our Pipeline implementation, a version using Pheet tasks
and a C++11 thread version have been created.

Both reference implementations are only compared to the continue Pipeline version and
thus do not perform any synchronization between threads. The reference versions execute

90

4.9. Synthetic

0

...

1

...

2

...

3

...

4

...

5

...

6

...

7
...

iterations

stages

input(serial)

work stage0

work stage1

work stage255

10 000
· · ·

Figure 4.10: Continue version of the synthetic benchmark Pipeline with 256 work stages
and the n = 10 000 iterations. This diagram shows the large test instance. The small
instances instead uses 1000 iterations. Each stage in the Pipeline performs a single matrix
rotation and waits for the preceding stage of the same iteration. All work stages are
parallel stages to benchmark the continue version code path and determin the general
overhead of our Pipeline implementation.

0

...

1

...

2

...

3

...

4

...

5

...

6

...

7

...

iterations

stages

input(serial)

work stage0

work stage1

work stage255

10 000
· · ·

· · ·

· · ·

· · ·

Figure 4.11: Wait version of the synthetic benchmark Pipeline with 256 work stages and
the n = 10 000 iterations. All work stages are serial stages where every iteration waits for
the preceding iteration. This benchmark shows the additional synchronization overhead
of the wait version.

91

4. Benchmarks

256 matrix rotations using recursive function calls. The Pipeline version calculates each
matrix rotation in a dedicated stage which yields more overhead.

Pheet Reference

The Pheet task version creates a task for each iteration. The tasks are executed by the
Pheet scheduler using worker threads. The Pheet Environment allows to restrict the
number of worker threads to test scalability.

Because no synchronization is used in this version it provides an upper bound and shows
the maximum speedup for the given Pipeline structure. For each iteration a Pheet task
was created which results in 10 000 tasks. The concurrently running Pheet tasks are
restricted using the Pheet Environment object.

C++ Reference

A version using C++11 threads to measure the overhead of the Pheet scheduler was
created. In Linux C++11 threads are implemented with Pthreads.

In the C++ version for each iteration a C++ thread was created. The number of
concurrently running threads was restricted using the hwloc [Bro+10] library.

92

CHAPTER 5
Benchmark Environment

5.1 Mars - 8 Intel Xeon

The first system used for benchmarks has eight Intel Xeon E7-8850 CPUs with ten cores
each. Cores run at a frequency of 2 GHz and have a shared 24 MB L3 cache per CPU1.
Each core can run two threads (Hyper Threading) to hide memory latency resulting
in a total of 160 threads. Each core features a 32 kB L1 cache per thread and a shared
256 kB L2 cache per core. The machine is a fully cache coherent NUMA system with
eight NUMA nodes. The schema can be seen in Figure 5.1.

The theoretical speedup limit is 80 (8 CPUs × 10 cores).

It has a total of 1 TB main memory and is running a Debian Testing on a 4.1.0-1
Linux kernel. We used gcc 5.2.1. Additional tests were performed with the Intel 64 bit
C++ compiler icpc in version 14.0.1.

We used hwloc 1.11.2 for our tests on this system.

In the performance analysis of a similar hardware configuration the Cern Openlab [SJ11]
data shows a first break in speedup at around 20 threads. The next break happens at
around 40 threads but there is still speedup till 80 threads. They used the HEP-SPEC2006
benchmark [Spe] for their measurements.

5.2 Saturn - 4 AMD Opteron

The Saturn benchmark system is equipped with four AMD Opteron 6168 CPUs. Each of
these CPUs has twelve cores running at 1.9 GHz and has 12 MB of L3 cache. Each core

1Intel. Intel R© Xeon R© Processor E7-8850. url: http://ark.intel.com/products/53575/
(visited on 05/01/2016).

93

http://ark.intel.com/products/53575/

5. Benchmark Environment
M

achine (1008G
B total)

N
U

M
AN

ode P#
0 (126G

B)

Package P#
0

L3 (24M
B)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
0

PU
 P#

0

PU
 P#

120

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
1

PU
 P#

81

PU
 P#

121

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
2

PU
 P#

82

PU
 P#

122

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
8

PU
 P#

83

PU
 P#

123

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
9

PU
 P#

84

PU
 P#

124

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
16

PU
 P#

85

PU
 P#

125

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
17

PU
 P#

86

PU
 P#

126

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
18

PU
 P#

87

PU
 P#

127

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
24

PU
 P#

88

PU
 P#

128

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
25

PU
 P#

89

PU
 P#

129

PCI 1000:0079

sda

PCI 102b:0532

PCI 8086:3a20

PCI 8086:3a26

N
U

M
AN

ode P#
3 (126G

B)

Package P#
3

L3 (24M
B)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
0

PU
 P#

110

PU
 P#

150

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
1

PU
 P#

111

PU
 P#

151

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
2

PU
 P#

112

PU
 P#

152

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
8

PU
 P#

113

PU
 P#

153

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
9

PU
 P#

114

PU
 P#

154

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
16

PU
 P#

115

PU
 P#

155

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
17

PU
 P#

116

PU
 P#

156

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
18

PU
 P#

117

PU
 P#

157

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
24

PU
 P#

118

PU
 P#

158

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
25

PU
 P#

119

PU
 P#

159

Indexes: physical

D
ate: So 04 O

kt 2015 17:13:06 CEST

6 Packages inbetw
een

Figure 5.1: Processor and memory topology on the Mars benchmark system. The system
is equipped with eight Intel Xeon E7-8850 CPUs having 10 cores each. Each CPU can run
two threads resulting in a total of 160 threads. For easier readability six CPUs in between
have been omitted. Diagram generated with lstopo which is part of the hwloc [Bro+10]
library.

94

5.3. Ceres - 4 Oracle SPARC T5

features 512 kB of L2 cache. Two CPUs are on one die thus NUMA effects are expected
to take place above 24 threads.

The system has a total of 128 GB of DDR3-1333 memory and is running a Debian Testing
on a 4.6.2-2 Linux kernel. We used gcc 5.4.0.

The theoretical speedup is 48 (4 CPUs × 12 cores).

We used hwloc 1.11.3 for our tests on this system.

5.3 Ceres - 4 Oracle SPARC T5

The SPARC system consists of four Oracle SPARC T5-4 CPUs each having 16 cores
(SPARC S3). The system has a total 1 TB of DDR3 main memory and is running Oracle
Solaris 11 (SunOS 5.11) and gcc 4.8.2. The overall topology is shown in Figure 5.3.

The theoretical speedup limit is 64 (4 CPUs × 16 cores). Although the parallel execution
of up to two instructions in once cycle may increase this limit.

Each CPU has 8 MB L3 cache which is not shared among CPUs. Interconnection distance
between two arbitrary CPUs is always only a single hop. Each core has 128 kB of L2
cache and can run eight threads which results in a total of 512 threads.

The large number of eight threads per CPU is used to hide memory latency (cache
misses, long latency) from the execution. The schema of the Sparc S3 core is shown in
Figure 5.2. In each cycle one out of eight ready threads is picked. This prevents wasting
of core cycles when one thread experienced a cache miss. To avoid starvation a LRU
(least recently used) algorithm is used. Each core features two pipelines resulting in up
to two instructions executed per cycle (2-way superscalar). Instructions are executed
Out-of-Order2 resulting in good single thread performance.

The system is a cache coherent NUMA system (cc-NUMA). Oracle Solaris uses a First
Touch3 policy which means that the thread using the data for the first time owns it.
Touched data will be stored in a memory space connected to the processor executing the
thread. In practice this means that data initialization should be parallelized and each
thread should initialize his portion of data.

We used hwloc 1.11.0 for our tests on this system. The Sun C++ compiler 5.13
lacks support for std::atomic and therefore could not be used to compile the Pheet
framework. g++ 4.8.2 also had some issues with std::to_string which could be
mitigated by patching this method in our implementation.

2Oracle. url: http://www.oracle.com/technetwork/server-storage/sun-sparc-
enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf (visited on
10/10/2015).

3Oracle. url: http://www.oracle.com/technetwork/server-storage/sun-sparc-
enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf (visited
on 10/10/2015).

95

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf

5. Benchmark Environment

Figure 5.2: Block diagram of the SPARC S3 core used in our SPARC T5-4 ceres system.
It shows the two pipelines which execute two instructions per cycle. In addition the
eight instruction buffers for the eight threads per core are shown in the upper part of the
schema. During each cycle one of the ready threads is selected and executed [Orab].

5.4 Pluto - 2 Xeon Phi Coprocessors
The host system utilizes two Intel Xeon E5-2650 with eight cores each. It has a total of
256 GB of main memory. The main system is running with CentOS 7 on a 3.10 Linux
kernel.

The system is equipped with two Intel Xeon Phi 7120P extension cards. Overall topology
including extension cards is shown in Figure 5.5.

Each of the cards runs a customized Linux on 61 cores with 16 GB of memory. The full
featured Linux system runs with a customized kernel (2.6.38). It features 244 software
cores (61 cores × 4 threads) running at 1238 MHz. Each core has 512 kB of L2 locally.

The theoretical speedup limit are the 61 cores of a single coprocessor card.

The schema of the coprocessor card is shown in Figure 5.4. Only six of the 61 cores
are shown for visual reasons. Each core has an associated L2 cache which is kept fully
coherent using the distributed TD (Tag Directory)4. All components are connected by a
ring interconnect [Rei12].

Whilst the Intel Xeon Host CPUs are cache coherent and share access to the same main
memory, the Xeon Phi is a cache coherent SMP (Symmetric Multi-Processor) which is
connected to other cards and devices only via PCIe bus. There is no hardware cache

4Beilun Wang, Lin Gong, and Chunkun Bo. url: https://www.cs.virginia.edu/~lg5bt/
files/Intel%20Xeon%20Phi%20Coprocessor.pdf (visited on 10/10/2015).

96

https://www.cs.virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.pdf
https://www.cs.virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.pdf

5.4. Pluto - 2 Xeon Phi Coprocessors

M
achine (1023G

B total)

N
U

M
AN

ode P#
1 (255G

B)

Package P#
16

Core P#
201457665

PU
 P#

0
PU

 P#
1

PU
 P#

2
PU

 P#
3

PU
 P#

4
PU

 P#
5

PU
 P#

6
PU

 P#
7

Core P#
201654273

PU
 P#

8
PU

 P#
9

PU
 P#

10
PU

 P#
11

PU
 P#

12
PU

 P#
13

PU
 P#

14
PU

 P#
15

Core P#
201850881

PU
 P#

16
PU

 P#
17

PU
 P#

18
PU

 P#
19

PU
 P#

20
PU

 P#
21

PU
 P#

22
PU

 P#
23

Core P#
202047489

PU
 P#

24
PU

 P#
25

PU
 P#

26
PU

 P#
27

PU
 P#

28
PU

 P#
29

PU
 P#

30
PU

 P#
31

Core P#
202244097

PU
 P#

32
PU

 P#
33

PU
 P#

34
PU

 P#
35

PU
 P#

36
PU

 P#
37

PU
 P#

38
PU

 P#
39

Core P#
202440705

PU
 P#

40
PU

 P#
41

PU
 P#

42
PU

 P#
43

PU
 P#

44
PU

 P#
45

PU
 P#

46
PU

 P#
47

Core P#
202637313

PU
 P#

48
PU

 P#
49

PU
 P#

50
PU

 P#
51

PU
 P#

52
PU

 P#
53

PU
 P#

54
PU

 P#
55

Core P#
202833921

PU
 P#

56
PU

 P#
57

PU
 P#

58
PU

 P#
59

PU
 P#

60
PU

 P#
61

PU
 P#

62
PU

 P#
63

Core P#
203030529

PU
 P#

64
PU

 P#
65

PU
 P#

66
PU

 P#
67

PU
 P#

68
PU

 P#
69

PU
 P#

70
PU

 P#
71

Core P#
203227137

PU
 P#

72
PU

 P#
73

PU
 P#

74
PU

 P#
75

PU
 P#

76
PU

 P#
77

PU
 P#

78
PU

 P#
79

Core P#
203423745

PU
 P#

80
PU

 P#
81

PU
 P#

82
PU

 P#
83

PU
 P#

84
PU

 P#
85

PU
 P#

86
PU

 P#
87

Core P#
203620353

PU
 P#

88
PU

 P#
89

PU
 P#

90
PU

 P#
91

PU
 P#

92
PU

 P#
93

PU
 P#

94
PU

 P#
95

Core P#
203816961

PU
 P#

96
PU

 P#
97

PU
 P#

98
PU

 P#
99

PU
 P#

100
PU

 P#
101

PU
 P#

102
PU

 P#
103

Core P#
204013569

PU
 P#

104
PU

 P#
105

PU
 P#

106
PU

 P#
107

PU
 P#

108
PU

 P#
109

PU
 P#

110
PU

 P#
111

Core P#
204210177

PU
 P#

112
PU

 P#
113

PU
 P#

114
PU

 P#
115

PU
 P#

116
PU

 P#
117

PU
 P#

118
PU

 P#
119

Core P#
204406785

PU
 P#

120
PU

 P#
121

PU
 P#

122
PU

 P#
123

PU
 P#

124
PU

 P#
125

PU
 P#

126
PU

 P#
127

3 Packages follow
ing

Figure 5.3: Processor and memory topology on the Ceres benchmark system. The system
is equipped with four SPARC T5-4 processors. Each processor has 16 cores running at
3600 MHz. Each core can run eight hardware threads resulting in a total of 512 threads.
For easier reading only the schema of the first of the four CPUs is displayed. Diagram
generated with lstopo which is part of the hwloc [Bro+10] library.

97

5. Benchmark Environment

Figure 5.4: Internal architecture of the Intel Xeon Phi coprocessor card. Only a subset of
the 61 cores is displayed for visual reasons. TD (Tag Directory) is distributed and used
to keep different L2 caches fully coherent with each other. CPUs are connected using a
ring interconnect [Rei12].

coherency between two Xeon Phi coprocessors or between a Xeon host CPU and a Xeon
Phi coprocessor [Rei12].

The large number of threads per core and the 512-bit SIMD instructions are key to
performance. SIMD instructions perform operations on multiple data elements at once.
Intel recommends to run at least two threads on each core as this always improves the
overall performance [Rei12].

Our Pipeline implementation is not optimized for the SIMD instruction set, but the Intel
compiler may optimize the code of our benchmarks.

To run applications on the extension cards the Intel compiler flag -mmic has to be used.
All used libraries also have to be compiled with this flag. The application is executed
using a special Intel Loader (micnativeloadex) [Ama14]. We used the Intel 64 bit
compiler icpc in version 14.0.01.

98

5.4. Pluto - 2 Xeon Phi Coprocessors

Previous versions of gcc (< 5) did not support Intel MIC instructions. This offloading
support was added partially in gcc 5 which allows OpenMP offloading to Intel MIC
targets5. Intel recommends gcc (patched MIC architecture support) only for building the
embedded Linux kernel but not the actual application because it lacks SIMD instruction
support. The Intel XE composer studio compiler is recommended to build applications
because it offers full vector instruction support on the MIC architecture6.

Benchmarks were run entirely native on one of the coprocessor cards. The host system
was only used to cross compile binaries but was not utilized in the benchmarks itself.
It is possible to execute a program on the host system and offload work to both of the
coprocessor cards which is called hybrid execution [Dok+12]. Hybrid execution goes
beyond the scope of this thesis and is not explained in detail. It would be beneficial for
performance and is left open for future research. It is noted that the newly released gcc
6.1 supports hybrid executions.

5GCC. GCC5 Offloading Support. url: https://gcc.gnu.org/wiki/Offloading (visited on
05/01/2016).

6Intel. Intel and Third Party Tools and Libraries available with support for Intel R© Xeon PhiTM

Coprocessor. Oct. 2014. url: https://software.intel.com/en-us/articles/intel-and-
third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
(visited on 10/10/2015).

99

https://gcc.gnu.org/wiki/Offloading
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm

5. Benchmark Environment
M

achine (256G
B total)

N
U

M
AN

ode P#
0 (128G

B)

Package P#
0

L3 (20M
B)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
0

PU
 P#

0

PU
 P#

16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
1

PU
 P#

1

PU
 P#

17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
2

PU
 P#

2

PU
 P#

18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
3

PU
 P#

3

PU
 P#

19

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
4

PU
 P#

4

PU
 P#

20

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
5

PU
 P#

5

PU
 P#

21

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
6

PU
 P#

6

PU
 P#

22

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
7

PU
 P#

7

PU
 P#

23

PCI 10de:1021

card1

PCI 10de:1021

card2

PCI 8086:1d6b

PCI 102b:0532

card0

controlD
64

PCI 8086:1d02

sda
sdb

N
U

M
AN

ode P#
1 (128G

B)

Package P#
1

L3 (20M
B)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
0

PU
 P#

8

PU
 P#

24

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
1

PU
 P#

9

PU
 P#

25

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
2

PU
 P#

10

PU
 P#

26

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
3

PU
 P#

11

PU
 P#

27

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
4

PU
 P#

12

PU
 P#

28

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
5

PU
 P#

13

PU
 P#

29

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
6

PU
 P#

14

PU
 P#

30

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#
7

PU
 P#

15

PU
 P#

31

PCI 8086:1521

enp129s0f0

PCI 8086:1521

enp129s0f1

PCI 8086:225c

m
ic0

61 cores

15 G
B

PCI 8086:225c

m
ic1

61 cores

15 G
B

Indexes: physical

D
ate: Fr 09 O

kt 2015 01:11:13 CEST

Figure 5.5: Processor and memory topology of the Pluto benchmark system. Diagram
generated with lstopo which is part of the hwloc [Bro+10] library. This topology mainly
shows the host system containing two Intel Xeon CPUs. The two Xeon Phi extension
cards connected via the PCIe bus are visualized in orange at the bottom right. Each
extension card has 61 cores and 15 GB of memory.

100

CHAPTER 6
Benchmarks Results

6.1 Dedup

The results of the Dedup benchmark can be seen in the following figures:

• Figure 6.1 shows the absolute benchmark execution times on a linear scale. Only
the thread range from 1 to 32 is displayed here to allow comparison with related
work.

• Figure 6.2 shows the speedup relative to a single thread execution. Execution
speeds for single thread executions differ significantly between the different im-
plementations. Therefore this plot is only used to measure the scalability of the
different implementations.

6.1.1 Results

We expected a speedup of at least 10 for 16 threads for the unmodified Pthread ver-
sion [Lee+13]. Lee et al. published a speedup of their Pipeline implementation of 6.7
for 16 threads. On our test systems we only achieved a speedup of 5 for 16 threads. No
further improvements could be measured after 16 threads and beyond.

Our Pipeline implementation was slower than the reference Pthread version as it was
expected. The only exception is the execution of the native instance with 16 threads on
our Pluto system where our version outperformed the Pthread implementation.

We tried to show that a bigger instance would yield more parallelism and result in a
better speedup above eight threads. Our expectation was based on the Gustafson’s
law [JM12] and on an evaluation of the spawned iteration numbers for each instance.
The relevant speedup is shown in Figure 6.2.

101

6. Benchmarks Results

On the left side the simlarge instance is shown. On the right side the native (Fedora
disk image) instance is shown. The native instance is about four times bigger than the
simlarge instance. The difference between the two instances can be clearly seen in the
absolut time plot in Figure 6.1.

Against our expectation for this benchmark no improvement in the speedup could be
seen in the bigger test instance. Clearly Figure 6.2 shows that the speedup is the same
for both test instances on all our systems. The Pthread reference implementation did
not yield more speedup from a bigger instance size.

Figure 6.1 shows that the total execution time even goes up after 16 threads. The speedup
does not get better after 32 threads thus the plots with more threads are not shown.

We assume that this is the case for our implementation because of worker threads
performing unsuccessful steal attempts. It is not clear why the Pthreaded version also
suffers from this problem.

We measured the cache misses and cache references during our benchmark runs using the
Linux kernel perf interface. We experienced a massive increase of the cache references
after eight threads only for our Pheet Pipeline version. The Pthreads reference version
has a constant number of cache references for all runs using different thread counts. The
number of cache misses in the Pipeline execution did only grow slowly with more threads.
Compared to our Pheet Pipeline version, executions of the Pthread reference had more
cache misses, by a factor of four. This issue is left open for future research.

102

6.1. Dedup

simlarge.dat FC−6−x86_64−disc1.iso

0

100

200

0

10

20

30

40

50

0

25

50

75

0

20

40

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

ideal Pipeline@StrategySched Pthread@StrategySched

Dedup

Figure 6.1: Dedup absolute benchmark times in seconds showing up to 32 threads. Ideal
execution time based on the fastest single thread execution is shown in red. On the left
side the simlarge.dat instance is shown, whereas on the right side the larger Fedora Core
6 CD image is shown. Both instances are part of the Parsec benchmark instances [Bie11]. 103

6. Benchmarks Results

simlarge.dat FC−6−x86_64−disc1.iso

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

ideal Pipeline@StrategySched Pthread@StrategySched

Dedup

Figure 6.2: Dedup speedup relativ to a single core execution showing up to 32 threads.
Ideal speedup is shown in red. On the left side the simlarge.dat instance is shown, whereas
on the right side the larger Fedora Core 6 CD image is shown. Both instances are part
of the Parsec benchmark instances [Bie11].104

6.2. PrefixSum

6.2 PrefixSum
The results of the PrefixSum benchmark can be seen in the following figures:

• Figure 6.3 shows the absolute benchmark execution times on a linear scale. Only
the thread range from 1 to 32 is displayed here to allow comparison with related
work.

• Figure 6.4 shows the speedup relative to a single thread execution. Execution
speeds for single thread executions differ significantly between the different im-
plementations. Therefore this plot is only used to measure the scalability of the
different implementations.

We expected speedup till 48 cores because of previously published work [Wim14].

6.2.1 Results

In the range from 1 to 4 threads our Pipeline PrefixSums implementation outperforms the
reference implementation which is based on Pheet tasks. After four threads we do not see
any further speedup of our Pipeline version. The Pheet tasks reference implementation
still shows slight speedup till 32 cores on all benchmark systems except Ceres.

We see very different results regarding the architecture: On the Ceres and Pluto systems
the Pipeline version always outperforms the Pheet task version. On Saturn and Mars
the Pheet tasks version beats the Pipeline version after four (Mars) and eight (Saturn)
threads.

The sequential implementation of PrefixSums always outperforms both other versions
on Saturn, Ceres and Pluto. On Mars the Pheet task based version outperforms the
sequential version at around four threads. Our Pipeline version does never outperform
the sequential version.

The speedup of the Pipeline version ends at around four threads on all test systems. Only
the Pheet tasks version has a good speedup till 32 threads on the Mars system.

105

6. Benchmarks Results

2^27 2^25

0

5

10

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

1.25

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

ideal
PheetTask@BasicSched

Pipeline@BasicSched
Sequential@SynchSched

Prefixsum

Figure 6.3: Prefixsum absolute benchmark times in seconds showing up to 32 threads.

106

6.2. PrefixSum

2^27 2^25

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

ideal
PheetTask@BasicSched

Pipeline@BasicSched
Sequential@SynchSched

Prefixsum

Figure 6.4: Prefixsum speedup relativ to a single core execution showing up to 32 threads.

107

6. Benchmarks Results

6.3 X264
The results of the x264 benchmark can be seen in the following figures:

• Figure 6.5 Shows the absolute benchmark execution times on a linear scale. Only
the thread range from 1 to 32 is displayed here to allow comparison with related
work.

• Figure 6.6 shows the speedup relative to a single thread execution. Execution
speeds for single thread executions differ significantly between the different im-
plementations. Therefore this plot is only used to measure the scalability of the
different implementations.

• Figure 6.7 shows the speedup relative to a single thread execution. It shows the
thread range from 1 to 160. In theory the speedup should grow till 160 threads on
the Mars system.

The x264 implementation is strongly optimized for a x86 architecture. We experienced
multiple memory alignment problems on our Ceres system. Also the MIC command set
of the Pluto system is not beneficial for x264.

Therefore this benchmark was only ported successfully to our Mars system.

6.3.1 Results

We can clearly see that our Pipeline implementation benefits from a bigger input size.
This is the case because our implementation relies on independent IDR-frames to execute
the encoding work in parallel. In longer video sequences more IDR-frames appear and
therefore more parallelism can be exploited.

The Pthread reference version utilizes marcoblock level parallelism and also features a
good speedup for the small benchmark instance. The speedup for this version drops at
32 threads because there are only 32 frames to encode.

On the large benchmark instance with 480 frames we see a good speedup of our Pipeline
implementation till 32 cores. We used an IDR-frame interval of 10 frames thus resulting
in 48 key frames for the bigger benchmark instance. Nevertheless we see a stall of the
speedup at around 32 threads on Mars.

On this bigger instance the Pipeline version has a better scalability up to 48 threads
compared to our reference Pthread version.

108

6.3. X264

eledream_640x360_32.y4m eledream_640x360_480.y4m

0

100

200

M
ars

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

ideal PheetTasks@PipeSched Pipeline@StrategySched

X264

Figure 6.5: X264 absolute benchmark times in seconds showing up to 32 threads. For
the left side 32 frames of the Elephants Dream [Roo+06] movie were used as input to
the x264 encoder. On the right side 480 frames had been encoded.

109

6. Benchmarks Results

eledream_640x360_32.y4m eledream_640x360_480.y4m

0

10

20

30

M
ars

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

ideal PheetTasks@PipeSched Pipeline@StrategySched

X264

Figure 6.6: X264 speedup relativ to a single core execution showing up to 32 threads.
For the left side 32 frames of the Elephants Dream [Roo+06] movie were used as input
to the x264 encoder. On the right side 480 frames had been encoded.

110

6.3. X264

eledream_640x360_32.y4m eledream_640x360_480.y4m

0

20

40

60

80

M
ars

1 816 32 64 96 128 160 1 816 32 64 96 128 160
Cpus

sp
ee

du
p

ideal PheetTasks@PipeSched Pipeline@StrategySched

X264

Figure 6.7: X264 speedup relativ to a single core execution showing up to 160 threads.
For the left side 32 frames of the Elephants Dream [Roo+06] movie were used as input
to the x264 encoder. On the right side 480 frames had been encoded.

111

6. Benchmarks Results

6.4 Ferret
The results of the Ferret benchmark can be seen in the following figures:

• Figure 6.8 shows the absolute benchmark execution times on a linear scale. Thread
range from 1 to 32 is displayed here to allow comparison with related work.

• Figure 6.9 shows the speedup relative to a single thread execution. Execution
speeds for single thread executions differ significantly between the different im-
plementations. Therefore this plot is only used to measure the scalability of the
different implementations.

• Figure 6.10 shows the speedup relative to a single thread execution. It shows the
thread range from 1 to 160.

As we expected the absolute runtime for the larger benchmark instance (native) is about
10× bigger compared to the small test instance. This can be seen in Figure 6.8.

We see an almost ideal speedup on all systems till four threads using the small instance
and till eight cores using the large instance. After eight (simlarge) and 32 (simnative)
threads the speedup slows down on all four benchmark systems.

We expected a better scalability of our Pipeline version because of work-stealing. In
Figure 6.9 we see that our Pipeline version outperforms the Pthread version after four
threads for the small instance and after eight threads for the big instance.

But if we look also at the absolute times in Figure 6.8 we can see that our Pipeline
version is still slower than the Pthread version from 1 to 16 threads on the small instance
and from 1 to 32 threads on the big instance. Only on the Saturn system our Pipeline
version outperforms the Pthread version at all thread counts.

On the big instance after 32 threads hardly any speedup can be seen in Figure 6.10. Only
the Ceres systems improves slightly till 200 threads for the Pipeline version.

Although the Pluto system features a very different memory architecture it also shows a
slowdown at about 20 threads.

On the Saturn system we get a near ideal speedup curve till the theoretical speedup limit
of 48 on this system.

We measured the cache references and cache misses on our Mars system using the Linux
perf kernel interface. For our Pipeline version we experience a rapid growth of cache
references after 96 threads. For the cache misses we see a constant growth which changes
speed at around 32 threads. In relation to the cache references we see around 30 % cache
misses. The rise of the cache references corresponds with a drop of speedup at 96 threads.

For the Pthread reference implementation we see a very constant and similar count of
cache references from 4 to 160 threads. The cache misses are almost identical but slightly
higher.

112

6.4. Ferret

simlarge simnative

0

400

800

1200

0

500

1000

1500

0

100

200

300

0

500

1000

1500

2000

2500

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

ideal Pipeline@PipeSched Pthread@PipeSched

Ferret

Figure 6.8: Ferret absolute benchmark times in seconds showing up to 32 threads. The
left side shows the small test instance. The right size shows the big instance.

113

6. Benchmarks Results

simlarge simnative

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

ideal Pipeline@PipeSched Pthread@PipeSched

Ferret

Figure 6.9: Ferret speedup relativ to a single core execution showing up to 32 threads.
The left side shows the small test instance. The right size shows the big instance.

114

6.4. Ferret

simlarge simnative

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

P
luto

M
ars

C
eres

S
aturn

1 816 32 64 96 128 160 1 816 32 64 96 128 160
Cpus

sp
ee

du
p

ideal Pipeline@PipeSched Pthread@PipeSched

Ferret

Figure 6.10: Ferret speedup relativ to a single core execution showing up to 160 threads.
The left side shows the small test instance. The right size shows the big instance.

115

6. Benchmarks Results

6.5 Synthetic
The synthetic Pipeline benchmark was designed to measure different characteristics. The
different versions are explained in Section 4.9.

6.5.1 Wait vs Continue

This version shows the scalability of the Pipeline wait version in comparison to the
continue version. Both versions have been executed with two different Pheet scheduler
(BasicScheduler and StrategyScheduler see Section 1.2.2) to measure the impact of the
used Pheet scheduler.

We expected that the continue version outperforms the wait version because there are no
dependencies between the iterations.

The absolute execution times in Figure 6.11 show clearly that the wait version is slightly
slower than the continue version. We expected the difference to be bigger. The difference
can be seen more clearly in the Figure 6.12 which shows the speedup from 1 to 32 threads.
After eight threads the speedup of the continue versions still grows almost ideally whereas
the speedup stalls for the wait versions.

At 16 threads we see the next drop in the speedup on the Ceres system. This drop occurs
for both the continue and the wait version. We assume that this drop on the Ceres
systems occurs because each CPU has 16 cores. After 16 threads cross CPU memory
contention slows down the overall progress. We see no big effect of the eight thread
queues per core on the Ceres system.

The Pluto systems features good speedup until 128 threads. This speedup is visualized
in Figure 6.13 which shows thread counts from 1 to 160. We assume that the Xeon Phi
can benefit from two threads per core but not much more with more threads. In theory
the Xeon Phi card has Hyper Threading with four threads per core. In addition we see a
decrease in speedup (increase of total execution time) after more than 192 threads on
this system.

6.5.2 Throtteling

The Pipeline wait version and the continue version were executed with a throttle limit of
512 iterations and throttling disabled.

We expected the throttled version to outperform the non-throttled version because of
increased locality.

In Figure 6.11, which shows the absolute runtime, we see that throttling only effects the
wait version. The speedup in Figure 6.12 shows that the continue+throttle version is
slightly better than the continue version.

For the Pluto system we can see a drop in speedup for the version without throtteling at
twelve threads. The throttled version only slows down very slightly. In the speedup plot

116

6.5. Synthetic

in Figure 6.13 ranging from 1 to 160 threads we can see that the peak speedup of the
throttled wait version is at 120 threads.

On the Ceres system the throttled wait version and the non-throttled version are much
closer. Starting at 48 threads we see a bigger speedup difference in Figure 6.13.

6.5.3 Continue vs Pheet task vs C++ threads

This benchmark shows the overhead of the Pipeline continue version to the Pheet task
version. The overhead is mainly creation and registration of the Pipeline iteration objects.

We expected a negative impact of the Pheet bookkeeping on the performance.

Due to a technical restriction of the hwloc library [Bro+10] on the Ceres system we can
only constrain the number of threads to one or not constraint at all. For this benchmark
only the requested number of Pthreads is started. The matrix rotation work is evenly
distributed to these Pthreads.

In the absolute execution time results in Figure 6.14 we can see that our Pipeline
implementation is faster than the Pthread implementation even for an execution with
only one thread. This is the case because the Pthread version has to create 10 000 threads
whereas the Pheet version only has to create 10 000 tasks and a single worker thread.
Creating a task does not require a context switch in the operating system and thus is
faster.

We executed the Pheet task versions with the Pheet BasicScheduler and the Strate-
gyScheduler. In the speedup plot in Figure 6.15 the better scalability of the Pheet
versions can be seen more clearly. We also see in this plot that the Pipeline version
outperforms the Pheet task version. We assume that creating a PipelineIteration objects
is more lightweight than creating a Pheet task object.

On the Pluto system we see almost linear speedup till 32 cores for the Pheet version.

6.5.4 Scheduler

To test the effect of different Pheet schedulers the Pipeline continue version and the wait
version were executed using the PipelineScheduler (derived from the StrategyScheduler)
and the BasicScheduler of Pheet. See details about the Pheet schedulers in Section 1.2.2.

For the absolute execution time the plot is shown in Figure 6.17. It clearly shows that
the wait version suffers strongly from the BasicScheduler. This effect can be seen on all
our test systems. The investigation of this scheduler bottleneck is out of the scope of
this thesis.

The speedup plot in Figure 6.18 shows more clearly the differences for the continue
version. In the range of 1 to 8 threads both scheduler perform equally well. For more
threads we get different results on our benchmark systems.

117

6. Benchmarks Results

1000 10000

0

200

400

0

10

20

30

0

10

20

30

40

0

100

200

300

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

Continue@PipeSched
Continue+Throttle@PipeSched

ideal
Wait@PipeSched

Wait+Throttle@PipeSched

Pipeline Throttle

Figure 6.11: This figure shows the pipeline continue version vs wait version executed with
two different throttle limits (see Section 2.1.2). The throttling was set to 512 iteration
for one run and disabled for the other. This plot shows the absolute benchmark times in
seconds from 1 to 32 threads.118

6.5. Synthetic

1000 10000

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

Continue@PipeSched
Continue+Throttle@PipeSched

ideal
Wait@PipeSched

Wait+Throttle@PipeSched

Pipeline Throttle

Figure 6.12: This figure shows the Pipeline continue version vs wait version executed
with two different throttle limits. The throttling was set to 512 iteration for one run and
disabled for the other. This plot shows the speedup relativ to a single core execution
showing up to 32 threads. 119

6. Benchmarks Results

1000 10000

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

P
luto

M
ars

C
eres

S
aturn

1 816 32 64 96 128 160 1 816 32 64 96 128 160
Cpus

sp
ee

du
p

Continue@PipeSched
Continue+Throttle@PipeSched

ideal
Wait@PipeSched

Wait+Throttle@PipeSched

Pipeline Throttle

Figure 6.13: This figure shows the Pipeline continue version vs wait version executed
with two different throttle limits. The throttling was set to 512 iteration and disabled in
the run. Pipeline speedup relativ to a single core execution showing up to 160 threads.

120

6.5. Synthetic

1000 10000

0

100

200

300

400

0

10

20

30

0

10

20

30

40

0

100

200

300

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

Continue@PipeSched
ideal

PheetTasks@BasicSched
PheetTasks@PipeSched

Pthread@Pthreads

Pipeline vs Pheet task vs C++ threads

Figure 6.14: This benchmark compares our Pipeline implementation with Pheet tasks
and with Pthreads (C++11 threads). It shows the absolute times in seconds from 1 to
32 threads. The Pheet Pipeline scheduler had some stability issues on our Saturn system
and was therefore replaced by the BasicScheduler on this system. 121

6. Benchmarks Results

1000 10000

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

Continue@PipeSched
ideal

PheetTasks@BasicSched
PheetTasks@PipeSched

Pthread@Pthreads

Pipeline vs Pheet task vs C++ threads

Figure 6.15: This benchmark compares our Pipeline implementation with Pheet tasks
and with Pthreads. It shows the speedup of 1 to 32 threads relative to a single core
execution. The Pheet Pipeline scheduler had some stability issues on our Saturn system
and was therefore replaced by the BasicScheduler on this system.122

6.5. Synthetic

1000 10000

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

P
luto

M
ars

C
eres

S
aturn

1 64 128 192 256 320 384 448 512 1 64 128 192 256 320 384 448 512
Cpus

sp
ee

du
p

Continue@PipeSched
ideal

PheetTasks@BasicSched
PheetTasks@PipeSched

Pthread@Pthreads

Pipeline vs Pheet task vs C++ threads

Figure 6.16: This benchmark compares our Pipeline implementation with Pheet tasks
and with Pthreads. It shows the speedup up to 512 threads relative to a single core
execution. The Pheet Pipeline scheduler had some stability issues on our Saturn system
and was therefore replaced by the BasicScheduler on this system. 123

6. Benchmarks Results

On the Pluto system which has a working hwloc library [Bro+10] we see that the
PipelineScheduler (StrategyScheduler) outperforms the simpler BasicScheduler. The
hwloc library pins Pheet worker threads to specific cores. This increases the locality
because the worker can not be moved by the operating system between two tasks. On
this system the speedups for the continue version are quite close for all thread counts.

On the Ceres system the BasicScheduler outperforms the PipelineScheduler. On the
Ceres system the pinning of working threads to Sparc cores using the hwloc [Bro+10]
library did not work as expected. The reason is that threads on Sparc systems can not
be arbitrarily pinned on Sparc cores.

On Ceres we see a drop of speedup for both schedulers at the continue version at around
16 threads. We assume that the reason is that there are 16 cores on each Sun CPU and
thus a greater thread count creates cross CPU traffic.

In the small benchmark instances with only 1000 iterations the overhead for task switching
and iteration creation does not allow any speedup after four cores on the Ceres system.
On the Pluto system we see speedup even after four threads but it is far away from ideal
speedup.

124

6.5. Synthetic

1000 10000

0

100

200

300

400

500

0

10

20

30

40

0

10

20

30

40

0

100

200

300

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

ab
st

im
e

[s
]

Continue@BasicSched
Continue@PipeSched

ideal
Wait@BasicSched

Wait@PipeSched

Pipeline Scheduler

Figure 6.17: Measures the Pipeline wait and continue version with two different Pheet
schedulers, namely the PipelineScheduler (StrategyScheduler) and the BasicScheduler.
This test should give some insights about the scalability of different Pipeline scheduler.
This plot shows the absolute execution times for executions from 1 to 32 threads. 125

6. Benchmarks Results

1000 10000

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

P
luto

M
ars

C
eres

S
aturn

12 4 8 16 24 32 12 4 8 16 24 32
Cpus

sp
ee

du
p

Continue@BasicSched
Continue@PipeSched

ideal
Wait@BasicSched

Wait@PipeSched

Pipeline Scheduler

Figure 6.18: Measures the Pipeline wait and continue version with two different Pheet
schedulers, namely the PipelineScheduler (StrategyScheduler) and the BasicScheduler.
This test should give some insights about the scalability of different Pipeline scheduler.
It shows the speedup relativ to a single core execution ranging from 1 to 32 threads.126

6.5. Synthetic

1000 10000

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

P
luto

M
ars

C
eres

S
aturn

1 816 32 64 96 128 160 1 816 32 64 96 128 160
Cpus

sp
ee

du
p

Continue@BasicSched
Continue@PipeSched

ideal
Wait@BasicSched

Wait@PipeSched

Pipeline Scheduler

Figure 6.19: Measures the Pipeline wait and continue version with two different Pheet
schedulers, namely the PipelineScheduler (StrategyScheduler) and the BasicScheduler.
This test should give some insights about the scalability of different Pipeline scheduler.
It shows the speedup relativ to a single core execution ranging from 1 to 160 threads. 127

CHAPTER 7
Summary

7.1 Pipelines in Pheet
We created a competitive implementation of the Parallel Pipeline pattern in the Pheet
framework. The Pipeline pattern is very relevant for parallel programs because in this
pattern the synchronization is performed by the framework and not by the user. This
leads to less errors and better maintainable programs.

Our implementation was based on analyzing existing state of the art frameworks which
support Pipeline construction. By analyzing the strong points and the weaknesses of other
implementations we were able to define the main design goals for our implementation.

We defined the following points as our main design goals for our Pheet Pipeline imple-
mentation:

• Our benchmark systems are multi chip NUMA systems. All our systems are able
to execute up to 60 threads in parallel. Some of our benchmark systems can
even execute more than 160 threads concurrently. Therefore we optimized our
implementation to be lock-free and scale well on multi CPU NUMA systems.
We realized lock-freedom by strongly relying on the C++11 atomic data type. When
used correctly it has much less overhead and produces less contention compared
to a lock data structure. We also avoided creating centralized data structures to
reduce cross chip memory accesses.

• Short Pipeline definitions make it easier to port legacy applications to our Pipeline
interface. Shorter code also leads to less programming errors and increases the
readability. Compared to Nabbit, definitions in our interface only require 10 % of
code. Piper Pipeline definitions are the same size compared to our interface, but
require hand compilation.

129

7. Summary

We rely on C++ Lambda functions to create unnamed local functions for every
stage, which can access variables of the containing scope. The Pheet task scheduler
requires to formulate every Pipeline stage as an independent task by design. Piper
does not have this restriction because their scheduler can handle blocking tasks,
while the Pheet scheduler does not support this.

• Some of our benchmarks require support for non-linear Pipelines. Non-linear
Pipelines are more flexible and allow stages to produce multiple sub iterations for
a single input iteration. Not every stage has to obey the same static schema for
every iteration.
The support for non-linear Pipelines leads to challenges regarding the unique
identification of a Pipeline iteration. We solved this by using a hierarchical id for
each iteration.
Piper and Intel TBB do not support non-linear Pipelines. The DAG scheduler
Nabbit and the new Intel flow interface allow specification of non-linear Pipelines.

• Most other Pipeline implementations support passing results from stage to stage for
iterations. But most problem instances also require passing results from iteration
to iteration, which is not supported by most other implementations. Providing a
framework method to pass results from iteration to iteration reduces the chance of
possible bugs and reduces the code complexity of the user code.
We implemented this feature in our Pipeline and provide fast access to the results of
adjacent iterations. The passing of results is optional, unless it is used no additional
memory or computation time is used for storing results.
Cilk and Intel TBB do not support result passing from iteration to iteration. Nabbit
supports access to results of dependent nodes.

• Analyzing performance parameters in parallel programs in challenging. Most
methods require special privileges or slow down the execution on many core systems.
We used Pheet performance counters based on Hyperobject Reducers which scale
very well for multi CPU systems. The disadvantage of these Pheet performance
counters is that the results are only available after the Pipeline execution has
terminated.
To our knowledge none of the other implementations support performance counters
based on Reducer Hyperobjects.

• Limiting the number of concurrently running iterations is an important issue for
Pipeline programs to limit the used memory space.
We implemented throttling of iterations in our scheduler and allow the user to
dynamically change the throttle limit. We consider dynamic adaptions important
in multiprogrammed environments.
Piper and Intel TBB support static throttle limits. Nabbit does not support
throttling.

130

7.2. Future Research

7.2 Future Research

The following topics are open for future research:

We strongly rely on the Lambda construct and model every Pipeline stage as an own
Lambda function expression. This is necessary because the Pheet scheduler can not handle
blocking tasks correctly. A blocking task blocks the whole worker thread. Changing this
would require deep changes in the Pheet scheduler which were beyond the scope of this
thesis. With these changes the Pipeline declarations could be done in a single Lambda
function which would increase readability.

Another open issue is that our implementation only allows to specify a single data type
for result values for all stages. As a workaround we suggested using the C++ union
data type, but this leads to none type safe code. Future work could investigate template
methods to specify result types per stage in a type safe manner.

The usage of our type safe null values called null traits pose an additional burden to the
user. Compiler error messages are very unclear in case this essential definition is omitted
by the user.

During our benchmark runs we saw a huge increase of cache references for higher
thread counts. This only affected the Pheet scheduler and not our Pthread reference
implementations. Future work could investigate this issue.

We did not utilize the strategy support of our Pheet scheduler. Priortizing ealier iterations
may increase locality and reduce the memory usage be reducing the number of concurrently
active iterations.

7.3 Benchmark Results

We benchmarked our implementation using four real world benchmarks and one synthetic
benchmark. No work comparing the Pheet scheduler with other task scheduler has been
published yet, therefore we did only compare a Pipelined version of each benchmark with
a reference Pthread version. All Pthread versions had been carefully optimized by the
creators of these benchmarks. We did not expect to beat them in speed, but we showed
that the code complexity is significantly less using our Pipeline interface.

Benchmark results for the Dedup file deduplication benchmark showed acceptable results.
On three of our test systems our Pipeline implementation even outperformed the Pthreads
reference implementation. Both implementations did not show any further speedup after
eight threads. The best speedup reached at eight threads was only about four, which
was lower than expected.

For the PrefixSum benchmark we saw very different results on our test systems. On two
test systems our Pipeline version achieved a better speedup than the reference Pheet
task based version. On nearly all of our test systems the speedup was limited to values

131

7. Summary

around three. Only on the Mars system we saw steady speedup till 32 threads but only
for the reference Pheet tasks version.

The popular H.264 video encoder x264 was benchmarked only on our Mars system.
Porting this benchmarks to different systems is a great challenge because of heavy use of
low level code and assembly optimizations. We experienced a steady speedup for our
Pipeline version which even outperformed the reference Pthread version but only on the
bigger input instance. This was the case because in our Pipeline version parallelism is
achieved using the independence of IDR-Frames whereas the Pthread reference relied
on fine grained parallelism from macroblocks. The speedup for the Pipeline version was
almost ideally till 24 threads.

The similarity search Ferret benchmark also showed different results on different test
systems. On the Mars and on the Saturn test system our Pipeline version always
outperformed the reference Pthread version. On our other test systems which feature
different architectures the Pthread version was faster. On most of our test systems we
saw almost linear speedup till 32-48 threads (regarding the test system).

We created a synthetic benchmark to measure the overhead of our Pipeline implementation.
We performed matrix rotations inside the stages to simulate work. We compared the
code for wait with the continue code path to investigate the synchronization overhead.
We also investigated the effects of our throttle function to the overall performance. At
the end we compared the performance with a Pheet task reference version and with a
C++ threads (Pthreads) reference version. In conclusion we saw very good scalability
of all versions. The continue version features ideal speedup like the reference C++11
threads version did. We achieved a speedup peak for the wait version (using throttling)
of 40 running with 96 threads and for the version without throttling of 32 running with
the same thread count on the Pluto system. We saw similar results on all benchmark
systems.

To summarize we have shown that our Pipeline implementation theoretically can achieve
a high speedup even for high thread executions. Most of the real world test cases did not
yield a good speedup, but neither did the Pthreads reference versions. We assume that
compilers and modern CPUs add many optimizations which make the serial execution
very fast. This results in less speedup for executions using many cores. We can back this
assumption by executing the benchmarks without compiler optimizations. These runs
yield a better speedup curve (but longer runtime) on all benchmark systems.

132

List of Figures

1.1 Relation of different computation models . 4
1.2 Three different computation models (fully strict, strict, terminally strict) . . 5
1.3 Strands - sequences without parallel control nodes 8
1.4 Serial and parallel DAG execution . 9
1.5 Specific DAG state . 10
1.6 DAG schema for critical paths . 11
1.7 Future Pipeline execution DAG . 20

2.1 Car production Pipeline example . 24
2.2 Linear Pipeline with four stages . 25
2.3 Pipeline code example with two serial stages 26
2.4 Pipeline modeled as multiple DAGs . 27

3.1 Lambda function . 43
3.2 Pheet Pipeline continue call . 48
3.3 Pheet Pipeline Block Chain . 52
3.4 Pipeline Iteration data structure . 54
3.5 PipelineBlock data structure . 56
3.6 Pipeline finish . 59
3.7 Pipeline wait flow diagram . 60
3.8 Pipeline continue flow diagram . 62

4.1 Dedup Pipeline . 73
4.2 PrefixSums Pipeline . 75
4.3 Parallel PrefixSum computation example . 75
4.4 PrefixSum implementation with Pheet Pipelines 78
4.5 x264 Frame encoding times . 80
4.6 x264 2 stages pipelined version . 81
4.7 x264 P-Frame encoding . 82
4.8 Ferret Pipeline . 85
4.9 In-place matrix rotation . 90
4.10 Synthetic Benchmark Pipeline - Continue version 91
4.11 Synthetic Benchmark Pipeline - Wait version 91

133

5.1 Mars system . 94
5.2 Sparc S3 Core . 96
5.3 Ceres system . 97
5.4 Xeon Phi architecture . 98
5.5 Pluto system . 100

6.1 Dedup absolute times 32 threads . 103
6.2 Dedup Speedup 32 Threads . 104
6.3 Prefixsum absolute times 32 threads . 106
6.4 Prefixsum Speedup 32 Threads . 107
6.5 X264 absolute times 32 threads . 109
6.6 X264 Speedup 32 Threads . 110
6.7 X264 Speedup 160 Threads . 111
6.8 Ferret absolute times 32 threads . 113
6.9 Ferret Speedup 32 Threads . 114
6.10 Ferret Speedup 160 Threads . 115
6.11 Pipeline absolute times 32 threads . 118
6.12 Pipeline Speedup 32 Threads . 119
6.13 Pipeline Speedup 160 Threads . 120
6.14 Pipeline absolute times 32 threads . 121
6.15 Pipeline Speedup 32 Threads . 122
6.16 Pipeline Speedup 160 Threads . 123
6.17 Pipeline Scheduler comparison absolute time 32 threads 125
6.18 Pipeline Scheduler comparison Speedup 16 Threads 126
6.19 Pipeline Scheduler comparison Speedup 160 Threads 127

134

List of Code Listings

1.1 Fully strict Pheet example . 5
1.2 Strict C++ thread example . 6
1.3 Terminally strict Pheet example . 7
1.4 Pseudo Nabbit code for a static task graph 13
1.5 Hyperqueue Pipeline example . 17
1.6 Future Pipeline in ML . 19

2.1 Intel TBB Pipeline class interface . 30
2.2 Intel TBB Pipeline Lambda interface . 31
2.3 Intel TBB Pipeline interface example . 32
2.4 Cilk-P Pipeline interface example . 35
2.5 Transformed Piper program . 36
2.6 Pipeline program using Nabbit interface 39

3.1 Pheet Pipeline interface . 47
3.2 Defining null values for the Pheet Pipeline 57

4.1 Ferret Pipeline implementation . 86

135

Bibliography

[ABP98] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. “Thread Schedul-
ing for Multiprogrammed Multiprocessors”. In: Proceedings of the Tenth
Annual ACM Symposium on Parallel Algorithms and Architectures. SPAA
’98. Puerto Vallarta, Mexico: ACM, 1998, pp. 119–129. isbn: 0-89791-989-0.
url: http://doi.acm.org/10.1145/277651.277678.

[Aga+07] Shivali Agarwal et al. “Deadlock-free Scheduling of X10 Computations
with Bounded Resources”. In: Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures. SPAA ’07. San Diego,
California, USA: ACM, 2007, pp. 229–240. isbn: 978-1-59593-667-7. url:
http://doi.acm.org/10.1145/1248377.1248416.

[Ale07] Michael J. Voss Alexey Kukanov. The Foundations for Scalable Multi-Core
Software in Intel R© Threading Building Blocks Methodology, Tools, and
Techniques to Parallelize Large-Scale Applications: A Case Study Future-
Proof Data Parallel Algorithms and Software on Intel R© Multi-Core Archite.
2007.

[ALS10] K. Agrawal, C.E. Leiserson, and J. Sukha. “Executing task graphs using work-
stealing”. In: 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS). Apr. 2010, pp. 1–12.

[Ama14] S. Amanda. Building a Native Application for Intel R© Xeon PhiTM Copro-
cessors. Tech. rep. Intel, Mar. 2014. url: https://software.intel.
com/en-us/articles/building-a-native-application-for-
intel-xeon-phi-coprocessors (visited on 10/10/2015).

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities”. In: Proceedings of the April 18-20,
1967, Spring Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City,
New Jersey: ACM, 1967, pp. 483–485. url: http://doi.acm.org/10.
1145/1465482.1465560.

[Bie11] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis.
Princeton University, Jan. 2011.

137

http://doi.acm.org/10.1145/277651.277678
http://doi.acm.org/10.1145/1248377.1248416
https://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560

[BL12] Christian Bienia and Kai Li. “Characteristics of Workloads Using the Pipeline
Programming Model”. In: Proceedings of the 2010 International Conference
on Computer Architecture. ISCA’10. Saint-Malo, France: Springer-Verlag,
2012, pp. 161–171. isbn: 978-3-642-24321-9. url: http://dx.doi.org/
10.1007/978-3-642-24322-6_14.

[BL93] Robert D. Blumofe and Charles E. Leiserson. “Space-efficient Scheduling of
Multithreaded Computations”. In: Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing. STOC ’93. San Diego, California,
USA: ACM, 1993, pp. 362–371. isbn: 0-89791-591-7. url: http://doi.
acm.org/10.1145/167088.167196.

[BL99] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded
Computations by Work Stealing”. In: J. ACM 46.5 (Sept. 1999), pp. 720–
748. issn: 0004-5411. url: http://doi.acm.org/10.1145/324133.
324234.

[Ble89] Guy E Blelloch. “Scans as primitive parallel operations”. In: Computers,
IEEE Transactions on 38.11 (1989), pp. 1526–1538.

[Boc+09] Robert L. Bocchino Jr. et al. “Parallel Programming Must Be Deterministic
by Default”. In: Proceedings of the First USENIX Conference on Hot Topics
in Parallelism. HotPar’09. Berkeley, California: USENIX Association, 2009,
pp. 4–4. url: http://dl.acm.org/citation.cfm?id=1855591.
1855595.

[BR97] Guy E. Blelloch and Margaret Reid-Miller. “Pipelining with Futures”. In:
Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms
and Architectures. SPAA ’97. Newport, Rhode Island, USA: ACM, 1997,
pp. 249–259. isbn: 0-89791-890-8. url: http://doi.acm.org/10.1145/
258492.258517.

[Bro+10] F. Broquedis et al. “hwloc: A Generic Framework for Managing Hardware
Affinities in HPC Applications”. In: Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International Conference on. Feb.
2010, pp. 180–186.

[CJ11] Chi Ching Chi and Ben Juurlink. “A QHD-capable Parallel H.264 Decoder”.
In: Proceedings of the International Conference on Supercomputing. ICS ’11.
Tucson, Arizona, USA: ACM, 2011, pp. 317–326. isbn: 978-1-4503-0102-2.
url: http://doi.acm.org/10.1145/1995896.1995945.

[Cor+09] T.H. Cormen et al. Introduction to Algorithms. 3rd ed. Cambridge, MA: The
MIT Press, 2009. isbn: 0262033844.

[Dok+12] Jiri Dokulil et al. “Efficient Hybrid Execution of C++ Applications using
Intel(R) Xeon Phi(TM) Coprocessor”. In: CoRR abs/1211.5530 (2012). url:
http://arxiv.org/abs/1211.5530.

138

http://dx.doi.org/10.1007/978-3-642-24322-6_14
http://dx.doi.org/10.1007/978-3-642-24322-6_14
http://doi.acm.org/10.1145/167088.167196
http://doi.acm.org/10.1145/167088.167196
http://doi.acm.org/10.1145/324133.324234
http://doi.acm.org/10.1145/324133.324234
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://doi.acm.org/10.1145/258492.258517
http://doi.acm.org/10.1145/258492.258517
http://doi.acm.org/10.1145/1995896.1995945
http://arxiv.org/abs/1211.5530

[Fri+09] Matteo Frigo et al. “Reducers and Other Cilk++ Hyperobjects”. In: Proceed-
ings of the Twenty-first Annual Symposium on Parallelism in Algorithms and
Architectures. SPAA ’09. Calgary, AB, Canada: ACM, 2009, pp. 79–90. isbn:
978-1-60558-606-9. url: http://doi.acm.org/10.1145/1583991.
1584017.

[Gam+95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. isbn: 0-201-63361-2.

[GCC] GCC. GCC5 Offloading Support. url: https://gcc.gnu.org/wiki/
Offloading (visited on 05/01/2016).

[GTA06] Michael I. Gordon, William Thies, and Saman Amarasinghe. “Exploiting
Coarse-grained Task, Data, and Pipeline Parallelism in Stream Programs”.
In: SIGPLAN Not. 41.11 (Oct. 2006), pp. 151–162. issn: 0362-1340. url:
http://doi.acm.org/10.1145/1168918.1168877.

[Guo+09] Yi Guo et al. “Work-first and Help-first Scheduling Policies for Async-
finish Task Parallelism”. In: Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing. IPDPS ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 1–12. isbn: 978-1-4244-3751-1. url:
http://dx.doi.org/10.1109/IPDPS.2009.5161079.

[Gus88] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commun. ACM 31.5
(May 1988), pp. 532–533. issn: 0001-0782. url: http://doi.acm.org/
10.1145/42411.42415.

[Gut] Project Gutenberg. url: http://www.gutenberg.org/wiki/Main_
Page (visited on 01/10/2016).

[Hal+14] Halpern et al. Task Region N3832. Tech. rep. N3832. Programming Language
C++ Proposal, Jan. 2014.

[Hal+15] Halpern et al. Task Block N4411. Tech. rep. N4411. Programming Language
C++ Proposal, Apr. 2015.

[Inta] Intel. Intel R© Xeon R© Processor E7-8850. url: http://ark.intel.com/
products/53575/ (visited on 05/01/2016).

[Intb] Intel. Piper: Experimental Language Support for Pipeline Parallelism in
Intel R© CilkTM Plus. url: https : / / www . cilkplus . org / piper -
experimental-language-support-pipeline-parallelism-intel-
cilk-plus (visited on 05/10/2016).

[Int11] Intel. Intel TBB Documentation. Tech. rep. Intel Developer Zone, 2011. url:
https://software.intel.com/de-de/node/517344 (visited on
09/10/2015).

139

http://doi.acm.org/10.1145/1583991.1584017
http://doi.acm.org/10.1145/1583991.1584017
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/wiki/Offloading
http://doi.acm.org/10.1145/1168918.1168877
http://dx.doi.org/10.1109/IPDPS.2009.5161079
http://doi.acm.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page
http://ark.intel.com/products/53575/
http://ark.intel.com/products/53575/
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://software.intel.com/de-de/node/517344

[Int13] Intel. Intel R© CilkTM Plus Language Extension Specification Version 1.2.
Tech. rep. Intel, Sept. 2013. url: https : / / www . cilkplus . org /
sites/default/files/open_specifications/Intel_Cilk_
plus_lang_spec_1.2.htm (visited on 09/20/2015).

[Int14] Intel. Intel and Third Party Tools and Libraries available with support for
Intel R© Xeon PhiTM Coprocessor. Oct. 2014. url: https://software.
intel.com/en-us/articles/intel-and-third-party-tools-
and-libraries-available-with-support-for-intelr-xeon-
phitm (visited on 10/10/2015).

[Int15] Intel. Intel TBB Documentation. Tech. rep. Intel, 2015. url: https://
www.threadingbuildingblocks.org/docs/help/reference/
algorithms/parallel_pipeline_func.htm (visited on 09/10/2015).

[ISO12] ISO. ISO/IEC 14882:2011 Information technology — Programming languages
— C++. Geneva, Switzerland: International Organization for Standardization,
Feb. 28, 2012, 1338 (est.) url: http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.htm?csnumber=
50372.

[JF10] Jaakko Järvi and John Freeman. “C++ Lambda Expressions and Closures”.
In: Sci. Comput. Program. 75.9 (Sept. 2010), pp. 762–772. issn: 0167-6423.

[JM12] B.H.H. Juurlink and C. H. Meenderinck. “Amdahl’s Law for Predicting the
Future of Multicores Considered Harmful”. In: SIGARCH Comput. Archit.
News 40.2 (May 2012), pp. 1–9. issn: 0163-5964. url: http://doi.acm.
org/10.1145/2234336.2234338.

[KR87] Richard M. Karp and Michael O. Rabin. “Efficient Randomized Pattern-
matching Algorithms”. In: IBM J. Res. Dev. 31.2 (Mar. 1987), pp. 249–260.
issn: 0018-8646. url: http://dx.doi.org/10.1147/rd.312.0249.

[Lee+13] I-Ting Angelina Lee et al. “On-the-fly Pipeline Parallelism”. In: Proceed-
ings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures. SPAA ’13. Montreal, Canada: ACM, 2013, pp. 140–
151. isbn: 978-1-4503-1572-2. url: http://doi.acm.org/10.1145/
2486159.2486174.

[Lib] LibreSSL. url: http://www.libressl.org/ (visited on 01/10/2016).
[Lv+07a] Qin Lv et al. “Ferret: a toolkit for content-based similarity search of feature-

rich data.” In: EuroSys. Ed. by Yolande Berbers and Willy Zwaenepoel.
ACM, May 16, 2007, pp. 317–330.

[Lv+07b] Qin Lv et al. “Multi-probe LSH: Efficient Indexing for High-dimensional
Similarity Search”. In: Proceedings of the 33rd International Conference on
Very Large Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment,
2007, pp. 950–961. isbn: 978-1-59593-649-3. url: http://dl.acm.org/
citation.cfm?id=1325851.1325958.

140

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_pipeline_func.htm
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_pipeline_func.htm
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_pipeline_func.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://doi.acm.org/10.1145/2234336.2234338
http://doi.acm.org/10.1145/2234336.2234338
http://dx.doi.org/10.1147/rd.312.0249
http://doi.acm.org/10.1145/2486159.2486174
http://doi.acm.org/10.1145/2486159.2486174
http://www.libressl.org/
http://dl.acm.org/citation.cfm?id=1325851.1325958
http://dl.acm.org/citation.cfm?id=1325851.1325958

[MRR12] M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier Science, 2012. isbn:
9780123914439.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Paral-
lel Programming. First. Addison-Wesley Professional, 2004. isbn: 0321228111.

[MSS04] Steve Macdonald, Duane Szafron, and Jonathan Schaeffer. “Rethinking the
pipeline as object–oriented states with transformations”. In: 9th Interna-
tional Workshop on High-Level Parallel Programming Models and Supportive
Environments. 2004, pp. 12–21.

[Nav+09] Angeles Navarro et al. “Analytical Modeling of Pipeline Parallelism”. In:
Proceedings of the 2009 18th International Conference on Parallel Architec-
tures and Compilation Techniques. PACT ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 281–290. isbn: 978-0-7695-3771-9.

[Oraa] Oracle. url: http://www.oracle.com/technetwork/server-
storage/sun- sparc- enterprise/documentation/o13- 024-
sparc-t5-architecture-1920540.pdf (visited on 10/10/2015).

[Orab] Oracle. url: http://www.oracle.com/technetwork/server-
storage/sun-sparc-enterprise/documentation/o13-060-t5-
multicore-using-threads-1999179.pdf (visited on 10/10/2015).

[PC11] Antoniu Pop and Albert Cohen. “A Stream-computing Extension to OpenMP”.
In: Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers. HiPEAC ’11. Heraklion, Greece:
ACM, 2011, pp. 5–14. isbn: 978-1-4503-0241-8. url: http://doi.acm.
org/10.1145/1944862.1944867.

[Pro] Fedora Project. url: https://getfedora.org/de/ (visited on 01/10/2016).
[RCJ11] Eric C. Reed, Nicholas Chen, and Ralph E. Johnson. “Expressing Pipeline

Parallelism Using TBB Constructs: A Case Study on What Works and What
Doesn’t”. In: Proceedings of the Compilation of the Co-located Workshops on
DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, VMIL’11. SPLASH
’11 Workshops. Portland, Oregon, USA: ACM, 2011, pp. 133–138. isbn: 978-
1-4503-1183-0.

[Rei12] James Reinders. An Overview of Programming for Intel Xeon processors and
Intel Xeon Phi coprocessors. Tech. rep. Intel, Oct. 2012. url: https://
software.intel.com/sites/default/files/article/330164/
an-overview-of-programming-for-intel-xeon-processors-
and-intel-xeon-phi-coprocessors_1.pdf (visited on 10/10/2015).

[Ric11] I.E. Richardson. The H.264 Advanced Video Compression Standard. Wiley,
2011. isbn: 9781119965305. url: https://books.google.at/books?
id=k7nOAiIUo9IC.

141

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-060-t5-multicore-using-threads-1999179.pdf
http://doi.acm.org/10.1145/1944862.1944867
http://doi.acm.org/10.1145/1944862.1944867
https://getfedora.org/de/
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://books.google.at/books?id=k7nOAiIUo9IC
https://books.google.at/books?id=k7nOAiIUo9IC

[Roo+06] Ton Roosendaal et al. Elephants Dream. Tech. rep. Blender, Mar. 2006. url:
https://orange.blender.org/download/ (visited on 10/13/2015).

[San+11] Daniel Sanchez et al. “Dynamic Fine-Grain Scheduling of Pipeline Paral-
lelism”. In: Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques. PACT ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 22–32. isbn: 978-0-7695-4566-0.
url: http://dx.doi.org/10.1109/PACT.2011.9.

[SJ11] A. Lazzaro S. Jarp and A. Nowak J. Leduc. “Evaluation of the Intel Westmere-
EX server processor”. In: (July 2011).

[Spe] Spec. HEP-SPEC06 Benchmark. url: https://w3.hepix.org/benchmarks/
doku.php (visited on 05/01/2016).

[Suk13] Jim Sukha. Piper: Experimental Support for Parallel Pipelines in Intel Cilk
Plus. Tech. rep. Intel, Aug. 2013. url: https://www.cilkplus.org/
sites/default/files/experimental-software/PiperReferenceGuideV1.
0_0.pdf (visited on 09/20/2015).

[UGT09] Abhishek Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil. “Soft-
ware Pipelined Execution of Stream Programs on GPUs”. In: In CGO ’09:
Proc. of the seventh annual IEEE/ACM Intl. Symp. on Code Generation
and Optimization. 2009.

[Ull75] J.D. Ullman. “NP-complete scheduling problems”. In: Journal of Computer
and System Sciences 10.3 (1975), pp. 384–393. issn: 0022-0000. url: http:
//www.sciencedirect.com/science/article/pii/S0022000075800080.

[VCN13] Hans Vandierendonck, Kallia Chronaki, and Dimitrios S. Nikolopoulos. “De-
terministic Scale-free Pipeline Parallelism with Hyperqueues”. In: Proceedings
of SC13: International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’13. Denver, Colorado: ACM, 2013, 32:1–
32:12. isbn: 978-1-4503-2378-9. url: http://doi.acm.org/10.1145/
2503210.2503233.

[Vid] Videolan. x264 the best H.264/AVC encoder. url: https://www.videolan.
org/developers/x264.html (visited on 10/13/2015).

[Vos11] M. Voss. How to make a pipeline with an Intel R© Threading Building Blocks
flow graph. Tech. rep. Intel Developer Zone, 2011. url: https://software.
intel . com / en - us / blogs / 2011 / 09 / 14 / how - to - make - a -
pipeline-with-an-intel-threading-building-blocks-flow-
graph (visited on 02/10/2015).

[WGB] Beilun Wang, Lin Gong, and Chunkun Bo. url: https://www.cs.
virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.
pdf (visited on 10/10/2015).

[Wim] Martin Wimmer. Pheet. url: http://pheet.org/ (visited on 05/10/2016).

142

https://orange.blender.org/download/
http://dx.doi.org/10.1109/PACT.2011.9
https://w3.hepix.org/benchmarks/doku.php
https://w3.hepix.org/benchmarks/doku.php
https://www.cilkplus.org/sites/default/files/experimental-software/PiperReferenceGuideV1.0_0.pdf
https://www.cilkplus.org/sites/default/files/experimental-software/PiperReferenceGuideV1.0_0.pdf
https://www.cilkplus.org/sites/default/files/experimental-software/PiperReferenceGuideV1.0_0.pdf
http://www.sciencedirect.com/science/article/pii/S0022000075800080
http://www.sciencedirect.com/science/article/pii/S0022000075800080
http://doi.acm.org/10.1145/2503210.2503233
http://doi.acm.org/10.1145/2503210.2503233
https://www.videolan.org/developers/x264.html
https://www.videolan.org/developers/x264.html
https://software.intel.com/en-us/blogs/2011/09/14/how-to-make-a-pipeline-with-an-intel-threading-building-blocks-flow-graph
https://software.intel.com/en-us/blogs/2011/09/14/how-to-make-a-pipeline-with-an-intel-threading-building-blocks-flow-graph
https://software.intel.com/en-us/blogs/2011/09/14/how-to-make-a-pipeline-with-an-intel-threading-building-blocks-flow-graph
https://software.intel.com/en-us/blogs/2011/09/14/how-to-make-a-pipeline-with-an-intel-threading-building-blocks-flow-graph
https://www.cs.virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.pdf
https://www.cs.virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.pdf
https://www.cs.virginia.edu/~lg5bt/files/Intel%20Xeon%20Phi%20Coprocessor.pdf
http://pheet.org/

[Wim13] M. Wimmer. “Wait-free Hyperobjects for Task-Parallel Programming Sys-
tems”. In: 2013 IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS). May 2013, pp. 803–812.

[Wim14] Martin Wimmer. “Variations on Task Scheduling for Shared Memory Sys-
tems”. PhD thesis. 2014.

[ZL77] J. Ziv and A. Lempel. “A universal algorithm for sequential data compres-
sion”. In: Information Theory, IEEE Transactions on 23.3 (May 1977),
pp. 337–343. issn: 0018-9448.

[zli] zlib. url: http://www.zlib.net/ (visited on 01/10/2016).
[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. “Avoiding the Disk Bottleneck

in the Data Domain Deduplication File System”. In: Proceedings of the 6th
USENIX Conference on File and Storage Technologies. FAST’08. San Jose,
California: USENIX Association, 2008, 18:1–18:14. url: http://dl.acm.
org/citation.cfm?id=1364813.1364831.

143

http://www.zlib.net/
http://dl.acm.org/citation.cfm?id=1364813.1364831
http://dl.acm.org/citation.cfm?id=1364813.1364831

	Kurzfassung
	Abstract
	Contents
	Introduction
	Introduction
	Pheet framework
	Task Parallelism
	DAG - Pattern
	Hyperobjects
	Futures
	Summary
	Related work

	Pipelines
	Pipeline Pattern
	Intel Threading Building Blocks
	Piper
	Nabbit

	Pheet Pipelines
	Introduction
	Goals and Design decisions
	State of the Art Interfaces
	Pipeline Interface Design
	Pipeline Implementation
	Memory Management
	Synchronization
	Debug Logging
	Performance Counting
	Implementation Summary

	Benchmarks
	Goals - Comparison
	Speedup
	Measurement
	Benchmark Systems
	Dedup
	PrefixSum
	X264
	Ferret
	Synthetic

	Benchmark Environment
	Mars - 8 Intel Xeon
	Saturn - 4 AMD Opteron
	Ceres - 4 Oracle SPARC T5
	Pluto - 2 Xeon Phi Coprocessors

	Benchmarks Results
	Dedup
	PrefixSum
	X264
	Ferret
	Synthetic

	Summary
	Pipelines in Pheet
	Future Research
	Benchmark Results

	List of Figures
	List of Code Listings
	Bibliography

