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Abstract

Compositional data represent the relative information between variables that are parts
of some whole. The relevant information is contained only in the ratios between the
measured variables, and not in the absolute values. A common procedure how to analyze
this relative information is to use the so-called log-ratio approach, proposed by John
Aitchison in the 1980s. From a geometrical point of view, the compositions live in the
simplex sample space, and the log-ratio approach enables a representation in terms of
coordinates in the usual Euclidean geometry. The well known coordinates are the additive
log-ratio (alr), the centered log-ratio, and the isometric log-ratio (ilr) coordinates. The
clr and ilr coordinates are preferred, since the ilr representation constructs orthonormal
coordinates and the clr representation allows for an interpretation in terms of the original
variables.

We focus on different aspects of compositional data: One field of interest are high-
dimensional compositional data, where the interpretation of the resulting coordinates can
become a complex task. Another concern is the propagation of measurement errors in
the construction of the orthonormal coordinates. Applications in geochemistry, but also
in epidemiology, which is a new field for this kind of analysis, underline the usefulness of
this approach.
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Kurzfassung

Kompositionsdaten stellen die relative Information zwischen den Variablen, die Teile eines
Ganzen sind, dar. Die relevante Information is nicht in den absoluten Werten enthalten,
sondern in den Verhältnissen der kompositionellen Variablen. Diese relative Information
kann mit dem in den 1980er Jahren vorgeschlagenen Log-Ratio Ansatz analysiert werden.

Aus geometrischer Sicht befinden sich die Kompositionsdaten im Simplex, einer Teilmenge
des euklidischen Raums. Der Log-Ratio Ansatz representiert die Daten in Form von
Koordinaten in der üblichen euklidischen Geometrie. Die bekannten Koordinaten sind
die additive Log-Ratio (alr), die centered Log-Ratio (clr), und die Isometric Log-Ratio
Koordinaten (ilr). Die clr und ilr Koordinaten werden bevorzugt, da die ilr Darstellung
orthonormale Koordinaten erstellt und die clr Darstellung eine Interpretation in Bezug
auf die ursprünglichen Variablen ermöglicht.

Diese Dissertation legt den Schwerpuntk auf die verschiedenen Aspekte der Kompositi-
onsdaten: Ein Interessensgebiet sind die hochdimensionalen Kompositionsdaten, wobei
die Interpretation der extrahierten Koordinaten eine komplexe Aufgabe sein kann. Ein
weiteres Anliegen ist die Ausbreitung von Messfehlern bei der Darstellung der Komposi-
tionen in Form von orthonormalen Koordinaten. Anwendungen in der Geochemie sowie
in der Epidemiologie, ein neues Feld für diese Art von Analyse, heben die Brauchbarkeit
des Log-Ratio Ansatzes hervor.
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CHAPTER 1
Introduction

1.1 Introduction and History
Compositional data contain relative information consisting of non-negative values which
are parts of some whole. Such data are usually called compositions and presented in
the form of percentages, concentrations, or frequencies. The relevant information lies in
the ratios between the parts of the compositions. However, a common approach of the
practitioners is to consider such data as absolute values and apply standard statistical
methods which can lead to biased results. To illustrate this we consider a dataset, the
number of premature births in Austria, collected from 1984 to 2014, covering 30 years,
and published by Statistics Austria (sta, 2016). Depending on how premature the birth
is, the data are categorized into 4 groups: late preterm (34 to ≤36 weeks), moderate
preterm (32th or 33th week), very preterm (28 to 32 weeks), and extremely preterm (less
than 28 weeks). The data are normalized by dividing each number of premature births
by the total size in a country to obtain percentages for each preterm group resulting in
so-called closed data. The relation between the premature birth groups is analyzed by
the Pearson correlation coefficients between the groups. First, the correlation matrix
of the full composition is analyzed. Next, the group late preterm is omitted from the
original data and normalized again yielding a subcomposition. The correlation matrices
of the full composition and the subcomposition are given in Tables 1.1 and 1.2.

extreme preterm very preterm moderate preterm late preterm
extreme preterm 1.00 0.40 0.43 -0.73
very preterm 0.40 1.00 0.41 -0.74
moderate preterm 0.43 0.41 1.00 -0.86
late preterm -0.73 -0.74 -0.86 1.00

Table 1.1: Pearson correlations between the proportions of premature births in Austria:
four part composition: extremely, very, moderate, late preterm.
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1. Introduction

extreme preterm very preterm moderate preterm
extreme preterm 1.00 -0.38 -0.50
very preterm -0.38 1.00 -0.61
moderate preterm -0.50 -0.61 1.00

Table 1.2: Pearson correlations between the proportions of premature births in Austria:
three part composition: extremely, very, moderate preterm.

Table 1.1 shows that all groups except late preterm correlate positively in the full
composition. Late preterm correlates negatively with all other groups. In Table 1.2,
we see that when we analyze the subcomposition (where the group late preterm has
been omitted), the relationships between the three groups change drastically. In his
paper (Pearson, 1897), Karl Pearson deals with this phenomenon and coins a term for it:
spurious correlation. Pearson draws attention to the improperness of applying standard
statistical methods on closed data such as proportions. At the beginning of the 1960s,
the problem with the constant sum constraint is analyzed further by Felix Chayes. He
argues that the correlation is negatively biased when standard methods are applied to
data with constant sum constraint (Chayes, 1960). This led to a greater awareness of
the issues and problems associated with closed data, especially among geologists and
biologists.

The concept of log-ratio transformations introduced by Aitchison in the 1980s was the
beginning of a new perspective on how to analyze such data. He proposed the concept of
log-ratio transformations for compositions by arguing that compositions provide relative
information between the parts rather than absolute information. The resulting one-to-
one mapping onto the real space made it possible to represent the compositions in an
unconstrained space and allowed the use of standard methods.

1.2 Basic Concepts

A composition defines a vector x = (x1, . . . , xD) with D parts, where all values are
strictly positive and the relevant information is given by the ratios between those parts
(Pawlowsky-Glahn et al., 2015). Consequently, we can say that the absolute values in
a composition are non-informative. A composition can exist in the form of closed data
such as proportions or percentages with a constant sum constraint. A composition can
also be expressed in units such as ppm (parts per million) or ppb (parts per billion) that
occur in geology or chemometrics. Data with concentration units such as mg/L or meg/L
can be a composition, where no constant sum has to be given for the observations. One
can even linearly switch between different units; however, the ratios between the parts
remain the same. For the purpose of interpretability and visualization a composition can
be expressed as closed data with the help of the closure operator C. It is a rescaling of
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1.3. Principles of Compositional Data

the composition so that its parts sum up to a chosen constant value κ,

C(x) =
(

κx1∑D
j=1 xj

, · · · , κxD∑D
j=1 xj

)
. (1.1)

The sample space of compositional data is a subset of the usual Euclidean space, called
simplex, with the so called Aitchison geometry (Aitchison, 1986). For a composition
x = (x1, · · · , xD) with D parts, the simplex sample space is defined as

SD = {x = (x1, . . . , xD) such that xj > 0 ∀j,
D∑
j=1

xj = κ},

where κ is an arbitrary constant.

In practice, a full composition may not be always available, or the focus can be only on a
specific subset of the composition. For example, in epidemiology the cause of deaths by
diseases can be considered as a composition, and the epidemiologist can be interested
only in the chronic diseases. In such a case, a subcomposition should be analyzed rather
than the full composition. A subcomposition can be obtained by selecting a subset of
the parts of a full composition.

1.3 Principles of Compositional Data

Aitchison (1986) proposed three important principles that compositional data analysis
should fulfill. Those principles are scale invariance, the equivalence class of compositions,
subcompositional coherence, the independence of the results from a chosen subset of
the composition, and permutation invariance, the independence of the results from the
different permutations of the parts.

1.3.1 Scale Invariance

Compositional data analysis considers the ratios between the parts as the relevant
information. Consequently, the statistical inference remains the same independent of how
or whether the composition is scaled. For instance, recalling the example dealing with
premature births, one might express the data in form of percentages or rates per 10000
births, as it is common in epidemiology. For scaling purposes, the closure operator (see
Equation (1.1)) can be used. Considering the premature births in 2014, the composition
with four preterm groups can be given as absolute frequencies (320, 698, 875, 4587), as
probabilities (0.049, 0.108, 0.135, 0.708) or as rates per 10000 births (490, 1080, 1350,
7080). Considering the ratios between the corresponding parts, all three expressions yield
the same ratios.
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1. Introduction

1.3.2 Subcompositional Coherence

Subcompositional coherence states that the conclusions made for the common parts of
two subcompositions must agree with each other. In literature, two common criteria
stand for the coherence: The first one is that the scale invariance principle holds for any
possible subcomposition, and the second one is that the distances between two full compo-
sitions are greater or equal than the distances between their subcompositions, known as
subcompositional dominance (Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn
et al., 2015).

1.3.3 Permutation Invariance

This principle emphasizes that the results of the compositional data analysis should not
depend on the order of the compositional parts. For instance, the parts of a composition
can be arranged alphabetically or even according to their importance in ascending or
descending order. However, the composition remains the same, and due to that the ratios
between the parts do not change, no matter which component is ordered first and which
component is ordered last.

1.4 Geometric Structure of the Simplex
A D-dimensional simplex is a (D− 1)-dimensional subset of the real space RD. However,
the simplex does not possess the geometrical properties of the usual Euclidean geometry.
Hence, the traditional vector operations such as addition or multiplication do not work
properly, and the Euclidean distance, which most of the statistical analysis relies on, do
not have a proper meaning in the simplex. Therefore, a proper geometry with a vector
space structure is needed to be established to work with compositional data in simplex.
This geometry is known as Aitchison geometry and defined by special operations of
perturbation, power transformation and Aitchison inner product:

The Aitchison geometry forms a vector space under two operations: The first one
is the perturbation operator, which corresponds to addition in Euclidean geometry,
and the second one is the powering operator, which corresponds to multiplication in
Euclidean geometry. Let us consider two D-part compositions, x = (x1, . . . , xD) and
y = (y1, . . . , yD). The perturbation operator is defined as

x⊕ y = C(x1y1, x2y2, · · · , xDyD).

Powering by a scalar α ∈ R is defined as

α� x = C(xα1 , xα2 , . . . , xαD).

Using the perturbation operator, the neutral element is defined as n = C(1, 1, . . . , 1) =(
1
D ,

1
D , . . . ,

1
D

)
satisfying x⊕ n = x. Note that n is unique and is called the barycenter

of the simplex. Using the powering operator, the opposite element of a composition x,
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1.5. Log-ratio Methodology

x−1, can be defined as x−1 = C[x−1
1 , x−1

2 , . . . , x−1
D ]. It is clear that the perturbation of x

and x−1 results in the neutral element n.

Furthermore, a Euclidean vector space structure can be constructed on the simplex,
(SD,⊕,�) , by defining the Aitchison inner product, the Aitchison norm and the Aitchison
distance based on the logarithmic ratios between the compositional parts (Pawlowsky-
Glahn et al., 2015). The Aitchison inner product provides geometrical benefits such as
the projection of the compositions onto specific directions and the identification of angles
between the compositional vectors. For x and y, the inner product is defined as

〈x,y〉A = 1
2D

D∑
j=1

D∑
k=1

ln xj
xk

ln yj
yk
.

The Aitchison norm, providing the length of a composition, and the Aitchison distance
between compositions are

||x||A =
√
〈x,x〉A, dA(x,y) = ||x⊕ (−1)� y||A,

respectively.

1.5 Log-ratio Methodology
The Euclidean space is the geometry that we work on and we are familiar with. The
algebraic structure allows us to define a vector xD = (x1, . . . , xD) ∈ RD as linear
combination of any chosen orthonormal basis (e1, e2, . . . , eD) as follows,

x = x1e1 + x2e2 + · · ·+ xDeD, (1.2)

where ei = [0, 0, . . . , 1, 0, . . . , 0] and 1 is the i-th component of the vector. Let us
now assume that x ∈ SD is a composition defined in the simplex. By intuition we
would assume that the composition x can be expressed by an orthonormal basis as
above. However, the algebraic-geometric structure of the simplex is different from the
Euclidean space and does not possess the same characteristics. As a matter of fact,
the sum and product operators are not a closed operation and Equation (1.2) is not
a linear combination anymore (Pawlowsky-Glahn and Buccianti, 2011). Hence, even
the linear combination of the coefficients (x1, . . . , xD) can result in negative or zero
values which are not defined in the simplex. Therefore, a need emerges to define a
generating system (w1,w2, . . . ,wD) of the simplex within the Aitchison geometry, where
wi = (1, . . . , e, . . . , 1) and e is the i-th component of wi. Using the perturbation and
powering operators (⊕, �), the composition x can be expressed as follows:

x = (ln x1 �w1)⊕ (ln x2 �w2)⊕ · · · ⊕ (ln xD �wD) (1.3)

Perturbation and powering operators include closure and are scale invariant. Thus,
adding any constant or scaling by any constant does not alter the composition. Dividing
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1. Introduction

the coefficients (x1, . . . , xD) by the geometric mean of x, denoted by g(x) = D

√∏D
j=1 xj ,

results in the equivalent representation:

x =
(

ln x1
g(x) �w1

)
⊕
(

ln x2
g(x) �w2

)
⊕ · · · ⊕

(
ln xD
g(x) �wD

)
. (1.4)

Equation (1.4) defines a generating system for the simplex. The resulting coefficients
define the centered log-ratio (clr) transformation (Aitchison, 1986), a one-to-one mapping
from SD to RD:

clr(x) = y = (y1, . . . , yD) =
(

ln x1
g(x) , . . . , ln

xD
g(x)

)
. (1.5)

The clr transformation divides each component symmetrically by the geometric mean of
all the components, which simplifies the interpretation of the components. Therefore, the
original variables of the composition can be represented directly by their corresponding
clr coefficients. However, the clr transformation has some disadvantageous properties.
Due to the zero sum constraint of the coefficients,

∑D
j=1 yj = 0, the transformation results

in a singularity. As a consequence, some statistical methods such as robust procedures
can have numerical problems when applied on these coefficients.

As an alternative to clr coefficients, a new basis can be extracted from the generating
system shown in Equation (1.2) by taking any D − 1 vectors from (w1, . . . ,wD). In this
way, the composition x can be expressed as follows:

x =
(

ln x1
xj
�w1

)
⊕· · ·⊕

(
ln xj−1

xj
�wj−1

)
⊕
(

ln xj+1
xj
�wj+1

)
⊕· · ·⊕

(
ln xD
xj
�wD

)
(1.6)

The index j ∈ 1, . . . , D refers to the variable chosen as a denominator. The resulting
coefficients of Equation (1.6) correspond to the additive-log-ratio (alr) transformation
(Aitchison, 1986), a mapping from SD to RD−1,

alr(x) =
(

ln x1
xj
, . . . , ln xj−1

xj
, ln xj+1

xj
, . . . , ln xD

xj

)
. (1.7)

However, the corresponding basis (w1, . . . ,wj−1,wj+1, . . . ,wD) of the alr transforma-
tion is not orthogonal, which results in a non-isometric transformation (Egozcue and
Pawlowsky-Glahn, 2006). Furthermore, the alr transformation is not symmetrical as the
results vary according to the denominator chosen.

The disadvantages of alr and clr transformations are solved by the isometric log-ratio
(ilr) transformation introduced by Egozcue et al. (2003b). The fundamental idea of
the ilr transformation is to choose an orthonormal bases in the simplex. The simplex
possesses the Euclidean space structure which enables to generate an orthonormal basis by
employing the Gram-Schmidt orthonormalisation process to any basis (Pawlowsky-Glahn
and Buccianti, 2011). Note that infinitely many orthonormal bases can be obtained by

6



1.6. Balances

this procedure. Therefore, one must choose a basis that is relevant for a given task. A
particular basis is proposed by Egozcue et al. (2003b),

vj =
√

j

j + 1

(1
j
, . . . ,

1
j
,−1, 0, . . . , 0

)′
for j = 1, . . . , D − 1, (1.8)

resulting in ilr coordinates

z = (z1, . . . , zD−1) with zj =
√

j

j + 1 ln
j

√∏j
k=1 xk

xj+1
for j = 1, . . . , D − 1. (1.9)

Since the ilr coordinates are related to the orthonormal basis on the hyperplane H :
y1 + · · ·+ yD = 0 in RD, formed by the clr transformation, there is a clear relationship
between the clr coefficients and ilr coordinates,

y = V z

where V is a D× (D− 1) matrix consisting of the columns vj in Equation (1.8), defining
the vectors of orthonormal basis on hyperplane H (Filzmoser et al., 2009b). A specific
choice of orthonormal coordinates is suggested by Fišerová and Hron (2011).

zj = ilrj(x) =
√

D − j
D − j + 1 ln

 xj
D−j

√∏D
k=j+1 xk

 , j = 1, . . . , D − 1, (1.10)

where the first ilr coordinate z1 explains all the relative information concerning the corre-
sponding original part x1 of the considered composition. The coordinates z2, . . . , zD−1
explain the log-ratios of the remaining parts in the composition and it is not straight-
forward to interprete them. Considering the Equations (1.5) and (1.10) we see that the
first clr coefficient and the first ilr coordinates are proportional. This proportion can be
shown by the following linear relationship:

y1 =

√
D − 1
D

z1.

Moreover, the relative information of part xk to the remaining parts (x1, . . . , xk−1, xk+1, . . . , xD)
can be easily extracted by putting part xk on the first position and constructing the ilr
coordinates based on the rearranged order (Fišerová and Hron, 2011).

1.6 Balances
Working with the ilr coordinates based on an orthonormal basis has various geometric
advantages. However, in most cases it is challenging to interpret the ilr coordinates
easily, especially with a high number of parts in a composition. To circumvent this
problem, balances can be used. They are coordinates of an orthonormal basis expressing

7



1. Introduction

the relative information between groups of parts in a composition. Hence, specific
orthonormal coordinates can be chosen to represent specific information according to the
problem to be analyzed.

In order to construct orthonormal balances, a procedure called sequential binary partition
(SBP) can be applied to a composition (Egozcue and Pawlowsky-Glahn, 2005). SBP is
an iterative procedure which generates a hierarchy of the parts of a composition. In the
first step, two groups of parts are defined, usually based on expert knowledge. In the
following steps, the groups generated are split into smaller groups until a single part
remains in each group. Note that the generated groups refer to the subcompositions. Let
us assume that the i-th step of SBP results in two subcompositions x+ with r parts and
x− with s parts of a D-part composition x, where i < D − 1 and r + s ≤ D. A balance
between x+ and x− can be expressed as a log-ratio of the geometric mean of the two
subcompositions (Egozcue and Pawlowsky-Glahn, 2005):

bi =
√

rs

r + s
ln gm(x+)
gm(x−) . (1.11)

The balancing element of such a balance is then given as C(a1, a2, . . . , aD) ∈ SD, where
C is the closure operator and ai gets the value exp

(
1
r

√
rs
r+s

)
for the part i in x+, and

exp
(
−1
s

√
rs
r+s

)
for the part i in x− (Pawlowsky-Glahn et al., 2011).

1.6.1 Example: Childbirth data

An illustration of SBP can be shown by using a dataset, expressing the number of live
childbirths in the countries of the European Union by the mother’s age. The corresponding
data matrix has 28 observations (countries), and 7 parts describing the age groups of
mother: age10−19, age20−24, age25−29, age30−34, age35−39, age40−44, age>45. The data are
shown in detail in Table 1.3. The idea of the balances is that they are easy to interpret.
Therefore, in most cases a-priori information is needed to split the parts into groups, so
that the generated balance represents the sought information.

Here, the first balance (b1) is chosen as the relative information between the live childbirths
at normal age phase and early-late age phase of mother at birth. This balance can be
used to identify the countries with higher rate of childbirths at the early-late phase
compared to the normal phase. The first balance is given by the quantitative information
expressed in the following equation,

b1 =
√

4 ∗ 3
4 + 3 ln

gm(age10−19, age20−24, age40−44, age>45)
gm(age25−29, age30−34, age35−39) .

The sign of the balance indicates which country is dominated by which age group and
the quantity of the balance shows the intensity of that dominance. A second balance (b2)
can be considered by taking the parts in the previous group with the negative sign and
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1.6. Balances

country age10−19 age20−24 age25−29 age30−34 age35−39 age40−44 age>45

BE 2130.00 15225 41977 42177 18189 3908 236.00
BG 6655.00 14454 20770 16204 7978 1401 116.00
CZ 2734.00 13339 32643 38620 19449 2935 140.00
DK 632.00 6254 18155 19414 10192 2117 106.00
DE 15467.00 80364 202696 253567 133254 27484 1574.00
EE 460.00 2156 4510 3803 2084 514 24.00
IE 1226.00 5954 13123 24659 18188 3887 248.00
GR 2272.00 7905 21682 34800 20541 4347 602.00
ES 8552.00 30752 77856 153787 124271 28819 2039.00
FR 19520.00 109500 258919 267351 129480 32602 1956.00
HR 1222.00 5750 12376 13087 5912 1161 53.00
IT 7819.00 46029 112818 167806 128358 36654 3112.00
CY 128.00 906 2932 3477 1438 316 52.00
LV 866.00 3993 7357 5754 3044 705 26.00
LT 1158.00 5430 10762 8476 3703 796 38.00
LU 92.00 558 1490 2228 1419 257 21.00
HU 6040.00 13308 23444 28846 18177 3268 101.00
MT 152.00 565 1265 1408 689 105 7.00
NL 1796.00 16731 54087 66460 30118 5706 283.00
AT 1686.00 11305 24498 27622 13424 2996 191.00
PL 13287.00 60053 129245 117017 46891 8321 346.00
PT 2491.00 8772 19040 28645 19156 4034 229.00
RO 19381.00 39176 61486 46319 22422 4092 227.00
SI 233.00 2256 7151 7554 3413 529 29.00
SK 3470.00 8938 16544 16906 7891 1242 42.00
FI 1101.00 8259 17158 19013 9659 1897 145.00
SE 1300.00 14554 35425 38676 20003 4663 286.00
GB 29244.00 125377 219258 241237 128610 29950 2172.00

Table 1.3: Number of live births according to age groups of mother at birth in the
countries of the European Union.
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1. Introduction

representing the ratio of the childbirths between the early and late phase,

b2 =
√

2 ∗ 2
2 + 2 ln

gm(age10−19, age20−24)
gm(age40−44, age>45) .

age10−19 age20−24 age25−29 age30−34 age35−39 age40−44 age>45 r s
1 +1 +1 -1 -1 -1 +1 +1 4 3
2 +1 +1 0 0 0 -1 -1 2 2
3 +1 -1 0 0 0 0 0 1 1
4 0 0 0 0 0 +1 -1 1 1
5 0 0 +1 -1 -1 0 0 1 2
6 0 0 0 +1 -1 0 0 1 1

Table 1.4: An example of sequential binary partition to construct an orthonormal basis
based on the live birth data.

The constructed balances are depicted in a scatter plot in Figure 1.1. The horizontal
axis represents the first balance (b1), while the second balance (b2) is shown on the
vertical axis. The points are labeled by abbreviations of the European countries. In
countries like Romania (RO), Bulgaria (BG), Slovakia (SK), and Hungary (HU) the rate
of childbirths at early phase is higher than in other countries compared to the late phase.
On the other hand, in southern countries such as Greece (GR), Spain (ES), and Italy
(IT) the early-late age phase at childbirth is more dominant than the normal age phase
at childbirth compared to other countries. By considering the first balance, it is not
possible to make any statement about the second balance since both reveal completely
different information as they are geometrically orthogonal. This is an important fact to
consider about the concept of balances.

10
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Figure 1.1: Scatter plot of the constructed balances based on the live birth data.

An important drawback of balances is that the extracted balances do not represent the
maximum information unconditionally as the primary focus is on the interpretation
aspect. That issue is treated with the concept of principal balances, balances representing
the maximum information of the data. Regarding that three algorithms are suggested by
(Pawlowsky-Glahn et al., 2011). Moreover, those algorithms work for low dimensions.
For this reason, a new tool called sparse principal balance is proposed in Chapter 2 to
build an interpretable orthonormal basis for high-dimensional data with a minimum loss
of information.

1.7 Irregularities in Compositional Data

In contrast to the simulated data, issues with data quality can occur when the focus is
on real data. Especially for compositional data, zero values and missing values cause
problems when applying the log-ratio methodology since the logarithm of a zero or
missing value is not defined in Euclidean geometry. From a geometrical point of view,
the closure operator would not work properly when a part presents zero or missing values
as the total sum is either biased or can not be calculated. Having such irregular values in
most of the observations of a component could even lead us to disregard that component
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1. Introduction

which means that we would then work with a subcomposition.

In the fields of geology, chemometrics, and metabolomics, compositional data are gathered
by analyzing samples with measurement tools. In some cases, the values are so small that
those measurement tools can not detect the value. Therefore, the value is rounded to zero
or defined as a missing value. Usually, such cases are treated with imputation methods
or by substituting that value with a small value, such as 2/3 of its detection limit, the
smallest value that can be measured. Zeros can also occur conditionally due to the
specific structure of a population or when a specific factor is analyzed as a compositional
component that distinguishes two or more populations (Aitchison, 1986). For instance,
the proportion of alcohol in non-alcoholic cocktails or proportion of causes of deaths
from a tropic disease in a country in which nobody was infected from that disease can be
given as examples. A zero value can also report an absence of a part rather than a data
irregularity, which is known by the term counting zero problem (Pawlowsky-Glahn et al.,
2015). Such cases usually occur when the composition is deduced from count data. This
type of zeros can strongly associate with the considered sample size of the data. For
example, considering the number of deaths caused by diseases in a rural area compared
to an urban area: The counts of the diseases in a rural area will not be fully equivalent
to the counts of the same disease in an urban area, as the number of the population may
be higher in the urban area than in the rural area.

Different strategies have been developed to overcome the zero problem in compositional
data. One popular and practical approach is to replace the zero values with a convenient
value, for example a smaller positive value less than the detection limit (Martín-Fernández
et al., 2003). The replacement can be a fixed value or a random value. The latter case
is more appropriate when the amount of the values to be replaced is high in order
to retain the variability. For a small number of zeros the former case can be more
expedient (Pawlowsky-Glahn et al., 2015). Some important replacement procedures are
additive replacement (Aitchison, 1986), multiplicative replacement (Martín-Fernández
et al., 2003), parametric models (Palarea-Albaladejo et al., 2007; Palarea-Albaladejo and
Martín-Fernández, 2008), Box-Cox-based replacement (Greenacre, 2010, 2011a,b) and
robust procedures (Hron et al., 2010).

Next, we illustrate an imputation example using the childbirth dataset. We mimic the
count zero problem by artificially defining zero values for five randomly selected countries
(Germany, Ireland, United Kingdom, Portugal, Romania) of the last age group age>45.
To impute the zero values we use the k-means imputation method proposed in Hron
et al. (2010). This method is implemented in the R-package ’robCompositions’ (Templ
et al., 2016) and can be carried out to the childbirth dataset, birth, with the following
R-function.

1 birthImp <− impKNNa( b i r t h ) $xImp

12



1.7. Irregularities in Compositional Data

The function uses the Aitchison distances to identify the k-nearest neighbors to an
observation with missing parts or zero values. For robustness aspects, the median is used
for the estimation of the k-nearest neighbors.

The output object birthImp includes the following information, which can be viewed
easily:

1 names ( birthImp )
2 ## [ 1 ] " xOrig " "xImp" " c r i t e r i a " " i t e r " "w"
3 ## " wind " " metr ic "

The original data is stored in xOrig, the imputed data in xImp, w includes the number
of missing values, and indices of the imputed values are listed in the element wind.
Based on this information, one can create summaries and diagnostic plots to validate the
imputation.

The first ilr coordinate of the imputed data birthImp is illustrated in Figure 1.2. The
imputed observations are marked by green color, while the original values that were
artificially defined as ”zero values” are marked by red color.
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Figure 1.2: First ilr-coordinate of birth data. The observations marked by red color were
defined as zero values. Observations after imputation are marked by green color.
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1.8 Exploring the Compositional Data

Exploratory data analysis is usually the first step to get an initial overview about the
data that will be subjected to further analysis. It helps data analysts to understand
the data and to look for specific problems and structures in the data. Exploratory data
analysis also includes descriptive statistics defining the center and dispersion of the data,
and visualization tools such as scatter plots and biplots, which can be used in univariate
and multivariate manner to discover patterns and data irregularities, such as errors and
outliers.

1.8.1 Center and Dispersion

For data defined in the Euclidean space, calculating standard descriptive statistics such
as arithmetic mean and variance or standard deviation is straightforward. However,
when analyzing compositional data the nature of the Aitchison geometry needs to be
taken into account. Consider a compositional data set with n observations and D parts,
represented in the n×D data matrix X, with the matrix elements xij . The center of X
can be estimated by the closed geometric mean of the individual compositional parts as

cen(X) = C (g1, . . . , gD) , (1.12)

where gj = (
∏n
i=1 xij)

1/n for j = 1, . . . , D. In the simplex, the center of a composition
can be interpreted as the multivariate mean of the composition (Pawlowsky-Glahn
and Buccianti, 2011). Alternatively, the center can be estimated by expressing the
compositions in ilr coordinates, see Equation (1.10),

zij =
√

D − j
D − j + 1 ln

 xij

D−j

√
D∏

k=j+1
xik

 , (1.13)

for j = 1, . . . , D − 1 and i = 1, . . . , n. Now the arithmetic mean can be used to estimate
the center,

z = (z1, . . . , zD−1)′ , with zj = 1
n

n∑
i=1

zij , for j = 1, . . . , D − 1.
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1.8. Exploring the Compositional Data

Finally, z needs to be back-transformed to the simplex by the inverse ilr transformation.
The inverse ilr transformation x = ilr−1(z) is given as

x1 = exp

√D − 1
D

z1

 ,
xj = exp

− j−1∑
k=1

1√
(D − k + 1)(D − k)

zk +
√

D − j
D − j + 1zj

 , j = 2, . . . , D − 1

xD = exp

−D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

 .
The dispersion between two parts in a compositional data set can be expressed by the
variance of log-ratios of those parts. The matrix form of log-ratios of all compositional
parts is known as the variation matrix (Aitchison, 1986) and is denoted by T.

T =


t11 x12 t13 . . . t1D
t21 x22 t23 . . . t2D
...

...
... . . . ...

tD1 tD2 tD3 . . . tDD


where tjk = Var

[
ln xj

xk

]
for j ∈ {1, . . . , D} and k ∈ {1, . . . , D}. ”Var” stands for the

variance, and for a concrete compositional sample, the empirical variance can be used
as an estimator. Using the variation matrix, a total variance which defines the global
dispersion of a compositional data set can be expressed as the sum of variances of all
pairwise log-ratios,

totalvar[X] = 1
D

D−1∑
j=1

D∑
k=j+1

tjk. (1.14)

Alternatively, the total variance can be decomposed into the variance of the ilr coordinates
of the composition as follows,

totalvar[X] =
D−1∑
j=1

V ar[z1j , . . . , znj ]. (1.15)

This expression reveals, which coordinates have a high contribution to the variance,
in other words which coordinates carry more information, as the ilr coordinates are
orthogonal to each other. Typically, the variability and center of a composition can be
presented by a variation array (Aitchison, 1986).

Table 1.5 shows these descriptive statistics for the childbirth data introduced previously.
The sample mean of the pairwise log-ratios (numerator by column, denominator by row) is
given in the lower triangle of Table 1.5. Positive values refer to the dominance of the part
in the numerator. For instance, the number of births in the age group age30−34 is clearly
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numerator
age10−19 age20−24 age25−29 age30−34 age35−39 age40−44 age>45

de
no

m
in
at
or

age10−19 0.21 0.39 0.53 0.59 0.70 1.06
age20−24 -1.59 0.04 0.16 0.25 0.32 0.63
age25−29 -2.41 -0.82 0.06 0.16 0.22 0.48
age30−34 -2.54 -0.94 -0.12 0.03 0.08 0.27
age35−39 -1.89 -0.30 0.52 0.64 0.03 0.19
age40−44 -0.29 1.30 2.12 2.24 1.60 0.14
age>45 2.52 4.11 4.93 5.06 4.41 2.81

Table 1.5: Variation array of childbirth data. The upper triangle shows the variance of
the log-ratios, while the lower triangle includes the log-ratio means.

dominating the other age categories on average, especially the groups age10−19and age>45.
On the other hand, the age group age10−19 is dominated by all other groups on average,
except by age>45. The variability of the pairwise log-ratios across the countries can be
observed in the upper triangle of Table 1.5. Higher values indicate higher variability of
the log-ratios. For instance, the variability of the births of age group age>45 is clearly
higher compared to the other age groups. On the other hand the small variance of the
log-ratio of age group age30−34 over age35−39 (0.03) indicates proportional birth rates of
both age groups across the countries.

1.8.2 Visualization of Compositional Data

Ternary Diagram

A popular visualization tool for a composition is the ternary diagram, presenting a three
part (sub-)composition in a two-dimensional scatter plot. It is an equilateral triangle
with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). A composition with three parts located in
the neighborhood of a vertex indicates a high proportion of the part represented by that
vertex. The center of the ternary diagram is called the barycenter, with equal proportions
to all vertices. Such a representation of compositional data is often used by geoscientists
and petrologists.

An example of a ternary diagram is shown in Figure 1.3 for the childbirth data. Here,
an amalgamated version of the data is considered by summarizing the age groups into
three main groups: age10−19, age20−24 as early, age25−29, age30−34, age35−39 as normal,
age40−44, age>45 as late.

Almost all European countries yield a high proportion of birth in the normal age phase of
the mother. Romania (RO) and Bulgaria (BG) deviate from other countries with higher
rate of births at early age. When a composition is dominated by one part (in our case the
composition is dominated by the age group ”normal”), it is not straightforward to have a
detailed idea about the proportions of the other groups. One possibility is rescaling the
observations of the data before visualization. This can be done by shifting the center of
the composition to the barycenter of the simplex. The idea is to apply the perturbation
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1.8. Exploring the Compositional Data

operator on each observation by the inverse of its geometric center. The centered version
of the ternary diagram is shown on the right panel of Figure 1.3. Now the two countries
Italy (IT) and Spain (ES) in the direction of age group ”late” are more visible.
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Figure 1.3: Childbirth data before (a) and after (b) centering.

The ternary diagram can be constructed by using the ternaryDiag() function of the
R-package robCompositions, where x represents the amalgamated 3-part composition.

1 ternaryDiag ( x )
2 ## Centered Ternary Diagramm
3 d . amg . c ent e r <− acomp(d . amg) + acomp(1 / apply (d . amg , 2 , gm) )
4 ternaryDiag (d . amg . c ent e r )

Absolute Versus Relative Information

The usage of ternary diagrams can be restrictive, depending on which compositional
information needs to be visualized. The focus of the visualization can be a multivariate
task or even plotting an individual part of the composition. In such cases, special attention
should be devoted to choose the form of the information to be visualized. Working with
the absolute values, instead of the ratios of the components, would not incorporate
the rest of the information in the composition. For instance, the composition could be
dominated by a specific part. In such a case, considering the absolute information of a
part with small values may lead the practitioner to a conclusion that the analyzed part
is of less importance in the data, which must not be the case unconditionally.

The above discussed aspects are now demonstrated by analyzing the spatial distribution
of amalgamated childbirth data with the groups early, normal and late age phase of the
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mother, as used in the example for the ternary diagrams. Figure 1.4 shows the regional
distribution of the proportion of childbirths at normal age of mother expressed as absolute
information (left) and as relative information (right), given by the corresponding clr
coordinate for the variable normal age phase, on the European map. In both maps, a
scale according to the quantiles 0.05, 0.25, 0.50, 0.75 and 0.95 of the distribution is used.
The absolute and relative information reveal different regional patterns. Considering the
absolute information, the countries Netherlands, Denmark, Slovenia followed by Spain,
Greece, and Ireland reveal the highest proportion of childbirths at normal age phase. A
different picture is provided by taking the clr coordinate, where the dominance of normal
age phase is shifted more to central European countries. Here, the dominance refers to a
higher relative contribution of the normal age group.
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Figure 1.4: The proportion of childbirths at normal age of mother expressed as absolute
information (left) and relative information in form of the clr coordinate (right). The
breaks of the color scale are defined by the quantiles 0.05, 0.25, 0.50, 0.75 and 0.95,
yielding six classes.

1.9 Robustness in Compositional Data Analysis

One of the important tasks of exploratory data analysis is to investigate the irregularities
in the data. The irregular observations can act as outliers yielding distorted results and
biased models, especially in the context of multivariate data analysis. In such cases,
robust methods are more appropriate to analyze the data. This also holds for the case of
compositional data.
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In order to apply the robust procedures on compositional data, the sample space must
be a proper one. For that purpose, the compositional data should be represented in the
usual Euclidean space. Among the known log-ratio methods, the alr transformation is not
isometric and the clr transformation results in singularity. The proposal of an isometric
transformation from the simplex to the Euclidean space allows to use robust methods
and avoids numerical problems (Filzmoser and Hron, 2008; Filzmoser et al., 2009b; Hron
et al., 2010; Filzmoser et al., 2012). The Mahalanobis distance is commonly used to
investigate the outlyingness of an observation in a multivariate data set. A compositional
data matrix X with D parts and n observations can be represented in ilr coordinates
by using the Equation (1.13), resulting in a matrix Z with D − 1 coordinates and n
observations. Now the Mahalanobis distance for each observation zi, for i = 1, . . . , n,
can be given as follows

MD(zi) =
√

(zi − T (Z))′C(Z)−1 (zi − T (Z)), (1.16)

where T stands for the location estimator and C for the covariance estimator, respectively.
The usual, non-robust, way of estimating location and covariance of a data matrix is
to use the arithmetic mean and sample covariance matrix. In order to downweight the
effects of outliers on those sensible estimators, robust counterparts, such as Minimum
Covariance Determinant (MCD) (Rousseeuw and Van Driessen, 1999) or MM-estimator
(Yohai, 1987) can be used. The MCD estimator seeks h observations whose empirical
covariance matrix has the smallest possible determinant. The location and covariance
are then estimated from those observations. The MCD estimator reaches the maximum
breakdown point, namely 50%, when h ≈ n

2 observations are chosen. Besides having the
maximum breakdown point, MCD is an affine equivariant estimator which is an important
property for robust multivariate methods for compositional data (Pawlowsky-Glahn and
Buccianti, 2011). The estimators T and C are affine equivariant if they satisfy the
conditions

T (Az1 + b, . . . ,Azn + b) = AT (z1, . . . ,zn) + b

C(Az1 + b, . . . ,Azn + b) = AC(z1, . . . ,zn)A′,

where A is a (D − 1) × (D − 1) non-singular matrix and b ∈ RD−1 is a shift vector.
In case of multivariate normal distribution, the squared Mahalanobis distances follow
approximately a χ2-distribution. Based on that, a cutoff value can be determined to
identify the outliers. Usually, the 0.975 quantile of the χ2-distribution with D − 1
degrees of freedom is used. Observations with squared Mahalanobis distances larger than
χ2

0.975,D−1 are identified as outliers.

An example is shown by using the childbirth data. Figures 1.1 and 1.3 have already
revealed some certain structures in the data. The focus is on a comparision of the robust
Mahalanobis distances, calculated from the raw data given in proportions as absolute
information, and the ilr coordinates as relative information. For this purpose, the robust
covariance and location estimators of both datasets are calculated by using the covMcd
function implemented in R-package robustbase (version 0.92-5). Since each row in the
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1. Introduction

raw data matrix sums up to 1, the robust covariance matrix and location estimations of
the raw data encounter singularity problems. Therefore, the estimations are given as a
numerical approximation by the function. In contrast, the ilr coordinates do not suffer
from the singularity problem.

The calculated Mahalanobis distances are illustrated in Figure 1.5. The horizontal axis
represents the robust Mahalanobis distance of the raw data given in proportions. The
Mahalanobis distances of the ilr coordinates are shown on the vertical axis. The horizontal
and vertical lines represent the cutoff values for both datasets, 0.975 quantiles of the
χ2-distributions with corresponding degrees of freedom. None of the observations are
detected as outliers based on the Mahalanobis distances of the raw data. On the other
hand, some potential outliers are identified by considering the ilr coordinates. Those are
the countries Bulgaria (BG), Malta (MT), Greece (GR), Romania (RO), Czech Republic
(CZ), Slovenia (SI), Cyprus (CY), and Finland (FI).
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Figure 1.5: Multivariate outlier detection of childbirth data given in proportions. The
horizontal axis represents the robust Mahalanobis distances of the raw data. The vertical
axis represents the robust Mahalanobis distances based on the ilr coordinates.
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1.10 Robust PCA and Biplots of Compositional Data

Principal component analysis (PCA) is a statistical procedure developed by Hotelling
(1933) that aims at dimension reduction. This is achieved by representing the data as
linear combinations of the usually correlated original variables. These linear combina-
tions are called principal components (PCs) and they define a projection into a lower
dimensional space. It uses an orthonogonal transformation with an objective function of
minimum information loss (Jolliffe, 2014). The minimum information loss is guaranteed
by extracting a first component with maximum variance among all linear combinations
of variables, then a second component with the maximum of the remaining variation,
and so on. The different components are supposed to be orthogonal to each other. The
resulting PCs can be used for visualization, or to detect outliers or clusters. PCA is one
of the most important methods in multivariate statistics and applied almost in every
field.

PCA is also a useful tool for compositional data since in fields of chemometrics, proteomics
or genomics, the data occur in high dimensions with hundreds or even thousands of
variables. In such cases, PCA can be applied to achieve a reduction of dimension.
However, as mentioned earlier, the geometry of the compositional data is not appropriate
for PCA, as PCA is defined for the Euclidean geometry. The ilr transformation can be
applied to represent the data in coordinates.

Consider a n×D compositional data matrix X with n compositions and D parts, and
Z is the matrix of the corresponding ilr coordinates of X calculated by Equation (1.13).
The PCs can be obtained by eigenvalue decomposition of the covariance matrix C(Z)
of ilr-transformed data or singular value decomposition of Z. The decomposition of
C(Z) in terms of eigenvectors and eigenvalues can be expressed as C(Z) = ΓAΓ>. The
eigenvectors of C(Z) are represented by the orthogonal (D − 1)× (D − 1) matrix Γ and
the eigenvalues of C(Z) by the diagonal elements of A. The PCA transformation can be
defined as follows,

Z∗ = (Z − 1T (Z)>)Γ. (1.17)

as stated in Filzmoser et al. (2009b). Here, 1 is a vector with n ones and Z∗ is called
the score matrix with colums i = 1, . . . , D − 1 denoting the scores of the i-th PC. In
classical PCA, T (Z) and C(Z) are the sample mean and sample covariance matrix of Z,
which are sensitive to outliers. The existence of outliers can cause a distortion of the
covariance structure and consequently distorted directions of principal components. In
such a case, a robust estimation of T (Z) and C(Z) should be preferred, like the MCD
or MM-estimator (Maronna et al., 2006). However, the resulting robust scores of the
PCs and loadings are not interpretable in terms of the original compositional parts, as
they are based on the ilr coordinates. That can be circumvented by back-transformation
of the results to the clr coordinates where all parts are symmetrically divided by the
geometric mean. The back-transformation is given as

Y ∗ = Z∗V >. (1.18)
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The matrix V = (v1, . . . ,vD−1) is defined in Equation (1.8). The robust loading matrix
of the clr variables can be obtained using the same relation as above.

C(Y ) = C(ZV >) = V C(Z)V > = V Γ∗AΓ∗>V >

Due to the affine equivariance property of the robust estimators the new eigenvectors
Γ∗of C(Y ) are equal to V Γ and the eigenvalues of C(Y ) remain the same as for C(Z).

Consequently, the transformed loadings and scores lead to a compositional biplot providing
a two-dimensional visualization of a rank two approximation of the observations and
variables of the composition. In the biplot representation, the variables (clr coefficients)
are represented by rays and the observations by points. The distances between vertices
of the rays (links) describe the variability of the log-ratios of the involved parts. The
more the vertices lay apart from each other, the higher is the variability of the log-ratio
of those parts. The variability of a clr coefficient is represented by the length of its
ray. Nevertheless, a large ray does not indicate a large variability of the corresponding
original part unconditionally as the variability of that log-ratio also depends on the full
composition due to the geometric mean.

In the following, an example is given by using the childbirth data. A compositional
biplot is constructed by applying a robust PCA on ilr-transformed data. For comparative
purposes, also a standard biplot is constructed by considering the childbirth data as
raw data. The resulting biplots are shown in Figure 1.6. The compositional (left) and
standard (right) biplots yield at first sight similar results. On the standard biplot,
Bulgaria (BG) and Romania (RO) are placed in direction of part age10−19, indicating
childbirths at very early age. Central European countries are located between age25−29
and age30−34. Slovakia (SK) is located with respect to part age20−24, referring to a high
proportion of that part in the raw data.

Considering the compositional biplot, Slovakia (SK) is now dominated by the correspond-
ing clr variable of part age10−19, indicating a high log-ratio of that part to all other parts.
This holds also for the countries Bulgaria (BG), Romania (RO), and Hungary (HU).
The northern European countries Denmark (DK), Sweden (SE) and Netherlands (NL)
are located close to the ray of the age group age30−34, indicating a dominance of part
age30−34. The compositional biplot shows more heterogeneous groups of countries than
the standard biplot. The southern countries are located on the upper-right side of the
biplot, the northern countries on the lower side and the eastern countries on the left side
of the biplot. The central European countries are located in the center of the biplot.

1.11 Outline

This thesis treats topics that provide insight into theoretical and practical concepts of
compositional data analysis. Specific issues related to compositional data are analyzed
and methods are developed. With practical examples using real data and simulation
data, the advantages and benefits of the proposed methods are shown. The first chapter
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Figure 1.6: Compositional (left) and standard (right) biplot of the first two robust PCs
based on the childbirth data.

introduces the historical background and the theoretical developments of compositional
data analysis, followed by univariate and multivariate practical applications emphasizing
the advantageous properties over standard statistical methods. The second chapter
introduces a new approach related to constructing principal balances for high-dimensional
compositional data including the concept of sparsity for dimension reduction. The third
chapter is devoted to the problem of how the representation of compositional data in
Euclidean space is affected by measurement errors and detection limit problems. The
last chapter concludes with a discussion of differences in approaches of compositional
data analysis and standard statistical methods in epidemiology. It is shown that the
compositional data analysis approach leads to new and interesting insights.

Chapter 2 proposes a new method for constructing balances for high dimensional com-
positional data where the new balances allow for interpretability of the new coordinates.
Pawlowsky-Glahn and Buccianti (2011) proposed an approach called principal balances
that works for compositional data with low dimensions. The method uses the concept of
sparsity to perform a dimension reduction and increase interpretability with involving
only the relevant parts. The resulting directions, sparse principal balances, build an
orthonormal basis in simplex and are easy to interpret.

Mert, C.M., Filzmoser, P., Hron, K. (2014). Sparse principal balances. Statistical
Modeling, pp. 173–176.

Chapter 3 investigates the effect of measurement errors or detection limit problems on
the representation of the compositions in terms of ilr coordinates in Euclidean space.
The concept of error propagation is used to analyze the problem theoretically. Through
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1. Introduction

simulation experiments, certain types of contamination is applied to real data sets and
the behavior of the errors after the ilr transformation is analyzed. Recommendations
on the amount of the error and the expected distortion of the results are provided for
practitioners dealing with such problems.

Mert, C.M., Filzmoser, P., Hron, K. (2016). Error propagation in isometric
log-ratio coordinates for compositional data: theoretical and practical considerations.
Mathematical Geosciences, pp. 1–21.

Chapter 4 discusses the role of compositional data analysis in epidemiology. The
differences of compositional data analysis, representing the relative information in terms of
coordinates, and the standard case, analyzing the absolute information, for epidemiological
data are outlined. Compositional data analysis considers the multivariate information by
incorporating other available information than the analyzed variable. In contrast, the
data from epidemiology are usually considered as absolute information and therefore
the variables are isolated from each other. Univariate and multivariate analyses are
applied on real health care data sets considering relative and absolute information. It
is demonstrated that compositional data analysis leads to new and interesting insights
when used for epidemiological data.

Mert, C.M., Filzmoser, P., Endel, G., Wilbacher, I. (2016). Compositional data
analysis in epidemiology. Statistical Methods in Medical Research, Accepted.
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CHAPTER 2
Sparse Principal Balances

Abstract: Compositional data analysis deals with situations where the relevant infor-
mation is contained only in the ratios between the measured variables, and not in the
reported values. This paper focuses on high-dimensional compositional data (in sense of
hundreds or even thousands of variables), as they appear in chemometrics (e.g. mass
spectral data), proteomics, or genomics. The goal of this contribution is to perform a
dimension reduction of such data, where the new directions should allow for interpretabil-
ity. An approach named principal balances turned out to be successful for low dimensions.
Here, the concept of sparse principal component analysis is proposed for constructing
principal directions, so-called sparse principal balances. They are sparse (contain many
zeros), build an orthonormal basis in the sample space of the compositional data, are
efficient for dimension reduction, and are applicable to high-dimensional data.

Key words: principal component analysis; compositional data; isometric log-ratio
transformation; sparseness

2.1 Introduction

Dimension reduction is often a first step for analyzing multivariate data. The repre-
sentation of the data in a lower-dimensional space can be used in an exploratory way,
e.g. to get an impression of the data structure, also as a precursor to other statistical
methods, like regression or discriminant analysis. The latter is important in particular
for high-dimensional data, where the number of variables is higher than the number of
observations. The most meaningful method in terms of dimension reduction is principal
component analysis (PCA), since it is the goal of PCA to maximize the explained variance.
However, PCA cannot directly be applied to compositional data, because they live in a
different geometry.
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2. Sparse Principal Balances

A composition x = (x1, . . . , xD)t consists of D > 1 strictly positive components, the
so-called compositional parts, and it is represented in the D-part simplex

SD = {x = (x1, . . . , xD)t, xj > 0,
D∑
j=1

xj = κ}.

The constant κ can be chosen arbitrarily (e.g., 100 in case of percentages), without
changing the multivariate information (Aitchison, 1986; Egozcue, 2009; Pawlowsky-Glahn
and Buccianti, 2011). The simplex sample space is a (D − 1)-dimensional subset of
the D-dimensional real Euclidean space. Typical examples for compositional data are
income components, chemical element concentrations in some material, or spectral data
where only the intensity is informative and not the absolute number of the intensity
(e.g. data from mass spectrometry). The latter example is a case for a high-dimensional
composition, i.e. where D is in the order of hundreds.

PCA for compositional data has been studied in many papers, starting with AITCHISON
(1983); Aitchison (1984). The main idea is to transform the compositional data appropri-
ately to the real Euclidean space RD, before PCA is carried out. For this purpose, the
centered log-ratio (clr) transformation turned out to be useful (Aitchison and Greenacre,
2002). The clr transformation is a transformation from SD to RD, and the results for a
composition x ∈ SD are the transformed data y ∈ RD with

y = (y1, . . . , yD)t =

log x1
D

√∏D
j=1 xj

, . . . , log xD
D

√∏D
j=1 xj

t . (2.1)

This transformation results, however, in singularity, because
∑D
j=1 yj = 0. Thus, PCA

applied to the clr-transformed data will result in D − 1 principal components (PCs)
that express the complete data information. A further option is to use the isometric
log-ratio (ilr) transformation (Egozcue et al., 2003b), which is based on the choice of an
orthonormal basis on the hyperplane H : y1 + · · ·+ yD = 0 in RD that is formed by the
clr transformation. The resulting ilr-transformed data are expressed in RD−1, and the
collinearity problem is avoided. Note that the first D − 1 PCs from the clr-transformed
data are a special case of an ilr basis.

The coordinates of ilr-transformed data, or, equivalently, the PCA scores of clr-transformed
data are in general difficult to interpret. PCs are linear combinations of ilr- (or clr-)
variables, but in general the information of the original compositional parts is contained in
not one, but several of the transformed variables. For example, each clr-variable contains
information of all compositional parts due to the geometric mean in the denominator (see
Equation (2.1)). This problem also remains when using the ilr transformation proposed
in Egozcue et al. (2003b). It can be circumvented by the approach of Egozcue and
Pawlowsky-Glahn (2005), where so-called balances are constructed, representing coordi-
nates of an orthonormal basis in the simplex, which describe all the relative information
of groups of compositional parts. If prior knowledge is available, balances can summarize
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2.2. Existing algorithms for constructing principal balances

the information of groups of meaningfully related components. Otherwise, orthonormal
balances can be easily constructed by a procedure called sequential binary partitioning
(Egozcue and Pawlowsky-Glahn, 2005).

Unlike PCs, balances are not constructed in order to maximize the explained variance.
The idea of principal balances (PBs) (Pawlowsky-Glahn et al., 2011) is an attempt to
satisfy both needs: to form an orthonormal basis on the simplex, and to maximize the
explained variance with the constraint of allowing for a simpler interpretability. In other
words, PBs are balances, describing all the relative information of groups of parts, but
they should be close to the PCs of clr-transformed data in order to express much of the
data information.

Pawlowsky-Glahn et al. (2011) suggested three algorithms to construct PBs. Two of
them are computationally intensive and are thus limited to low dimension. The third is
based on hierarchical clustering; it is fast to compute also for high-dimensional data, but
the explained variance of the first few PBs can be quite low. In this paper, we propose a
fourth algorithm based on sparse PCA (Witten et al., 2009) for computing interpretable
orthonormal directions with high explained variance. The resulting balances are called
sparse principal balances (SPB).

The paper is organized as follows: Section 2 reviews the algorithms of Pawlowsky-Glahn
et al. (2011) to construct PBs. Section 3 introduces an algorithm for constructing sparse
principal balances. Simulation studies in Section 4 compare the performance of the four
different algorithms, and Section 5 presents an application with metabolomics data. The
final Section 6 concludes with a discussion about the main features of the proposed
algorithm and an outlook for future work.

2.2 Existing algorithms for constructing principal
balances

Denote by x+ and x− subcompositions of two disjoint groups of parts from a D-part
composition x = (x1, . . . , xD), where the number of parts in x+ and x− is r and s,
respectively, with r + s ≤ D. Further, denote by gm(·) the geometric mean of the
arguments. Then a balance is defined as

b =
√

rs

r + s
ln gm(x+)
gm(x−) (2.2)

(Egozcue and Pawlowsky-Glahn, 2005), and represents a coordinate of the composition
with respect to a (compositional) basis vector e of unit length, formed in the clr-
space. This basis vector e, also called balancing element, is defined in the clr-space as
clr(e) = (a1, . . . , aD), with components

aj =


0 if xj /∈ x+ and xj /∈ x−√
s

r(r+s) if xj ∈ x+

−
√

r
s(r+s) if xj ∈ x−

(2.3)
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2. Sparse Principal Balances

for j = 1, . . . , D. The possibility of including just disjoint subgroups of compositional
parts into the construction of balances will be useful later on for achieving sparsity.

Orthonormal balances can be defined using a sequential binary partition (Egozcue and
Pawlowsky-Glahn, 2005). The basic idea is to recursively partition each of the groups x+
and x− in two further disjoint groups and to compute the balance and the corresponding
balancing element according to (2.2) and (2.3), until a complete set of D− 1 orthonormal
basis vectors has been formed. In each step of the procedure, there are many possible
disjoint partitions: with increasing dimension D the number of binary partitions grows
exponentially (Pawlowsky-Glahn et al., 2011). The resulting orthonormal bases are just
rotations of each other.

With PBs one wants to identify a set of D − 1 orthonormal balances which successively
maximize the explained variance. An exhaustive search for PBs is only feasible if D is very
small. Pawlowsky-Glahn et al. (2011) thus introduced the following three approximate
algorithms to compute PBs. Some of these algorithms use the resulting PCs of the
clr-transformed data; these PCs will be called CoDa-PCs (CoDa stands for Compositional
Data):

AP (angular proximity to principal components): In the first step of this recursive
algorithm, all possible binary partitions of the full D-part composition are created.
The balancing element with the smallest geometric angle with one of the CoDa-PCs
is stored and removed from the set of possible directions. The procedure is then
applied to each group of the previously identified balance separately, where the
geometric angle to one of the remaining CoDa-PCs is minimized. This is repeated
step-by-step, until D − 1 balances are extracted, i.e., until a complete sequential
binary partition is achieved.

HC (hierarchical clustering of components): The set of orthonormal balances is con-
structed by hierarchical cluster analysis. The variance of the balance between
two groups (2.2) is used as a criterion to link two clusters. It turns out that this
corresponds to a Ward clustering (Everitt, 1993) based on the variation matrix
tjk = Var[log(xj/xk)], j, k = 1, . . . , D, where “Var” denotes the variance (Aitchison,
1986).

MV (maximum explained variance hierarchical balances): This sequential algorithm
starts with the first CoDa-PC, and uses two groups with the signs of the loadings
for constructing a balance. Let r denote the number of positive signs and s the
number of negative signs. Then it is checked whether a change of one positive sign
to the other group increases the explained variance. This check is also carried out
for all combinations of 2, . . . , r − 1 positive signs. The balance with the maximum
explained variance is stored, a new CoDa-PCA is performed with the larger group,
and so on.

For more details on the algorithms we refer readers to Pawlowsky-Glahn et al. (2011).
The computation time of AP and MV explodes quickly with increasing dimension because
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2.3. A new algorithm for constructing sparse principal balances

of the exponentially growing number of possible combinations that are used as candidates.
Creating all possible combinations also leads to memory allocation problems for larger
D. The HC algorithm is just based on a D ×D distance matrix, which is unproblematic
even for larger dimension.

2.3 A new algorithm for constructing sparse principal
balances

Sparse principal balances (SPBs) can be defined as balances according to Equation (2.2),
that make a tradeoff between maximizing explained variance and the number of involved
components r + s� D. The latter condition simplifies the interpretation, particularly
for large D. A SPB should describe the information of only a few compositional parts
with zero contribution from the other (majority of) parts. This is similar to the aim of
sparse PCA, where many of the entries of the loading matrix are forced to be zero (Zou
et al., 2006). Here we use an algorithm proposed by Witten et al. (2009), implemented
as function SPC in the R package PMA (Witten D and B, 2011). The idea is to perform
a penalized matrix decomposition to obtain a rank-K approximation of the original data
matrix.

Suppose we have given n compositions collected into the data matrix X of dimension
n×D. The clr-transformed matrix is denoted by Y , and it has the same dimension. The
rank-K approximation of Y is

Ŷ =
K∑
l=1

dlulv
t
l , (2.4)

where dl (scalar), ul (vector of length n) and vl (vector of length D) minimize the squared
Frobenius norm of Y − Ŷ , subject to penalties on ul and vl. In this paper, L1 penalties
are considered which lead to sparse solutions for ul and vl. For K = 1, the problem can
be formulated as

max
u1,v1

ut1Y v1 subject to ‖u1‖22 ≤ 1, ‖v1‖22 ≤ 1, ‖u1‖1 ≤ c1, ‖v1‖1 ≤ c2, (2.5)

where ‖ · ‖2 is the Euclidean norm, ‖ · ‖1 is the L1 norm (Witten et al., 2009), and c1
and c2 are tuning parameters.

For K > 1, Witten et al. (2009) propose the following approximation procedure:

1. Let Y 1 ← Y .

2. For l ∈ 1, . . . ,K:

(a) Find ul, vl, and dl by applying the above rank-1 approximation to the data
Y l.

(b) Y l+1 ← Y l − dlulvtl .
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2. Sparse Principal Balances

Without the L1 constraints, this procedure leads to a rank-K singular value decomposition
of Y with orthogonal vectors, i.e. utlum = 0 and vtlvm = 0, for l 6= m and l,m ∈
{1, . . . ,K}. In particular, vl corresponds to the l-th principal component direction
of Y . Orthogonality is also desired in the case with L1 constraints, because we are
interested that few PCs, explaining as much of the total variance as possible, are also
easily interpretable. Witten et al. (2009) outline a procedure that allows for orthogonality
also for the L1 case.

SPBs can now be constructed as follows. As with the algorithms in Section 2, we start
with a sparse PCA of the clr-transformed data matrix Y , by extracting a fixed number
K (1 ≤ K < D) of components. The resulting sparse loadings matrix is denoted by
the D ×K matrix V = [vjk]. Usually, K will be small (e.g., K ≤ 5), since we are only
interested in a few balances that explain an essential part of the variability. The resulting
loadings, however, need to be modified for SPBs, because for a simplification of the
interpretation we want to ensure that different balances relate to different parts. In other
words, we want to force a disjoint pattern of non-zero entries in different balances. The
proposed algorithm is as follows:

1) Force a disjoint non-zero pattern:
For j ∈ {1, . . . , D}:

Find the smallest k for which vjk 6= 0, and set all entries vjl to zero, for l > k
(if they are non-zero). If vjk = 0 for all k, store the index j in the index set
J0.

J0 contains the indices of all zero-lines in V . The number of elements in J0 is
denoted by |J0|.

2) Denote by Kp and Kn the index sets containing the column numbers k ∈ {1, . . . ,K}
of V , where the k-th column has no positive or negative entry, respectively. For
example, if vjk ≤ 0 for all j, the index k will be stored in Kp. The sizes of these
sets are |Kp| and |Kn|.

3) While |J0| < |Kp|+ |Kn|:

– Identify the entry (j, k) of V with the smallest positive absolute value, and
set this vjk to zero.

– Update J0, Kp and Kn.

As a result we have at least as many zero-lines in V as “problematic” columns, i.e.
columns without positive and negative sign.

4) Guarantee positive and negative sign in each column of V :

– Repeat for all kp ∈ Kp:
For any j0 ∈ J0: set vj0kp to any positive value and update J0 := J0\{j0}.
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2.4. Simulations

– Repeat for all kn ∈ Kn:
For any j0 ∈ J0: set vj0kn to any negative value and update J0 := J0\{j0}.

5) The resulting columns of the (modified) matrix V are in general not formed by
vectors in the clr space, i.e. their elements do not sum up to zero. In order not to
change the zero elements of V , we project the dl ≤ D non-zero elements of each
column vl, denoted as v∗l , to w∗l = Glv

∗
l , l = 1, . . . ,K, using the dl × dl matrix

Gl = I − (1/dl)J from Aitchison (1986). Here I and J stand for the identity
matrix and matrix of ones, respectively (both of order dl). The resulting vector wl

with non-zero elements corresponding to w∗l thus form a “suboptimal projection”
(resulting from the sparsity constraint) of vl to the clr hyperplane. This projection
is necessary to retain sparse PCA loadings in the clr space as it is the case for
classical PCA.

6) As a final modification of V , the nearest balances (with respect to the Euclidean
distance) to the resulting clr vectors are constructed (Egozcue and Pawlowsky-
Glahn, 2005). For this purpose, we simply compute the arithmetic mean from
the positive/negative entries of wl, and by rescaling to unit norm the balancing
element is obtained, see Equation (2.2). The set of extracted balances is orthogonal
by construction.

Execution time comparisons on a standard computer show immediately, which of the four
algorithms is feasible for the computation with high-dimensional data. Figure 2.1 shows
the average computation time (average over 10 trials) for computing the first balance with
the different algorithms. The number of observations is always n = 100, but the number
of parts D varies from 4 to 50 (left plot). The computation times for the algorithms AP
and MV explodes for quite moderate values of D, and thus these algorithms will not be
considered later on for the simulations in high-dimensional settings. On the other hand,
the time for HC and SPB is still very low. In the right plot, the same setting is used,
but D is taken much higher (100, 500, 1000, 2000). Here we only compare HC and SPB
which are still feasible to compute. Although the computation time for HC is still quite
moderate, the one for SPB is far below in all runs.

2.4 Simulations

In this section we compare the methods HC and SPB which are still feasible to compute
for high-dimensional compositional data. By simulating data of varying dimension, we
focus on the explained variance of the resulting balances, and compare with the explained
variance achieved by CoDa-PCA. Also the resulting sparseness will be of interest in the
evaluation.

The simulation setting is as follows:
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Figure 2.1: Time comparison to compute the first balance according to the algorithms
AP, HC, MV, and SPB. Shown are average computation times for compositional data
with n = 100 observations and varying number D of parts. The right plot compares only
the algorithms HC and SPB in high-dimensional settings.

1. A matrix Lilr of size (D−1)×(D−1) is generated with uniformly distributed values
in [−1, 1]. The columns are then standardized to unit length vectors (loadings
matrix in ilr-space).

2. A matrix Zilr of size n× (D − 1) is generated according to a (D − 1)-dimensional
normal distribution with mean vector (0, . . . , 0)t and a diagonal covariance matrix
CZ = diag(0.91, 0.92, . . . , 0.9k, 0.01, . . . , 0.01). So, the PCA scores are uncorrelated
and their variances are decreasing exponentially.

3. The data matrix is reconstructed in the ilr-space by Xilr = ZilrL
t
ilr.

4. Xilr is transformed to the simplex by the inverse ilr transformation

x1
s = exp

(√
D − 1√
D

x1
ilr

)
,

xjs = exp

− j−1∑
k=1

1√
(D − k + 1)(D − k)

xkilr +
√
D − j√

D − j + 1
xjilr

 ,
for i = 2, . . . , D − 1,

xDs = exp

−D−1∑
j=1

1√
(D − j + 1)(D − j)

xjilr

 .
Here, x1

ilr, . . . ,x
D−1
ilr are the columns of Xilr, and the matrix in the simplex, Xs,

is formed by the columns x1
s, . . . ,x

D
s (see Martín-Fernández et al., 2012).
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2.4. Simulations

5. The clr transformation (Equation (2.1)) is applied to Xs, resulting in Xclr.

CoDa-PCA is applied to Xclr. Note that the total variance corresponds to the sum of
the diagonal elements of CZ . HC is applied to Xs, and SPB is applied to Xclr. In
all simulation runs we fix the number of observations with n = 100 and the number of
replications with 1000.

2.4.1 Experiments with K = 5

The number of extracted PCs is K = 5, and the data dimension is taken as D ∈
{50, 100, 500, 1000}. For the SPB method, the tuning parameters c1 and c2 need to be
specified, see (2.5). This is done for each considered D separately, at the basis of one
simulated data set. The tuning parameters that lead to the highest cumulative explained
variance in SPB for K = 5 are selected.

Figure 2.2 compares the results for the cumulative explained variances of the three
methods. Each boxplot summarizes the results of the 1000 simulations. In lower
dimension (D = 50 and D = 100) the methods SPB and HC result in a quite similar
explained variance, but with increasing dimension, SPB clearly gets better. There is still
a clear gap to the explained variance of CoDa-PCA, but remember that SPBs are based
on sparse PCA which forms a compromise between explained variance and sparsity of
the loadings matrix.

The method SPB results in balances which involve non-overlapping groups of variables.
The balances thus have a certain number of non-zeros, and Figure 2.3 displays for the
above simulation results the proportion of non-zeros in each balance, cumulated by
subsequent balances. This information is useful for evaluating the level of sparseness of
the algorithm. For example, for D = 50 (upper left plot), about 30% of the entries of
the first balance are non-zero, for the second balance we obtain slightly less than 30%
non-zeros, which gives in total somewhat less than 60% of non-zeros for the first two
balances. With the first 5 balances, about 95% of the variables have entered the sparse
principal balances. Also in higher dimension, these percentages are comparable. Note
that the data are not simulated with inherent sparseness structure.

2.4.2 Experiments with K = 2

Here we are only interested in the first K = 2 components. Similar as before, the tuning
parameters for SPB are selected according to maximize the explained variance for K = 2.
Now we divide the cumulative explained variances for K = 2 obtained from SPB by
those from HC after each simulation run. The results are shown by boxplots in Figure
2.4. It turns out that only for D = 10, HC leads to a higher median value, for D = 50
and D = 100 the method SPB achieves higher values in the vast majority of runs, and
for even higher values of D, SPB is clearly improving over HC.
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Figure 2.2: Cumulative explained variance of the first 5 components for CoDa-PCA, SPB,
and HC for simulated data with different dimension D. With increasing dimension, SBP
results in higher explained variance compared to HC.

2.5 Application to metabolomics data

The data set considered here contains NMR metabolomic spectra from urine samples
of 18 mice, each belonging to one of two treatment groups. Each spectrum has 189
spectral bins, and they are measured in parts per million (ppm). This already clearly
emphasizes the compositional nature of the data. The data set is described in detail in
Nyamundanda et al. (2010), and it is available in the R package MetabolAnalyze as data
set UrineSpectra (Gift et al., 2010).

Our goal is a two-dimensional representation of the spectral information. We compare
the CoDa-PCA method with the hierarchical clustering (HC) and the sparse principal
balances (SPB) approaches. Table 2.1 shows the explained variances for the three methods
when using two components (balances). There is of course an information loss compared
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Figure 2.3: Cumulative proportions of non-zero entries in the balances of SPB.

to the clr-based CoDa-PCA approach. The explained variance of the first SPB component
is much more than that of HC, and the cumulative explained variance of HC and SPB for
two components is comparable, although SPB aims at a simpler interpretation than HC.

Figure 2.5 shows the original spectral data, overlaid with the information of the signs of
the first two balances from HC. Specifically, the vertical lines refer to the information of
the sign: if the sign of the balance for a part is positive, we see a light gray vertical line
(red, in the online-version) at the corresponding position in the plot, and if the sign is
negative, the vertical line is shown in dark gray (blue). It can be seen that for the first
balance, there are few negative signs, and all remaining signs are positive. For the second
balance we have the reverse behavior, but here we also get zeros at positions where the
signs of the first balance are negative (no vertical lines). Overall, an interpretation of the
balances is not obvious.

In comparison to Figure 2.5 for HC, Figure 2.6 shows the information of the first two
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Figure 2.4: Cumulative explained variance for K = 2 components. Displayed is the ratio
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HC with increasing dimension.
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Figure 2.5: First two balances of HC applied to the urine data. Shown are the original
data (black), and the position of the positive (light gray vertical line, or red in the
online-version) and negative (dark gray vertical lines, or blue) signs of the balances.
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2.5. Application to metabolomics data

Table 2.1: Cumulative explained variances for CoDa-PCA, hierarchical clustering (HC)
and sparse principal balances (SPB) for the urine data set.

Cumulative explained variance [%]
Method one component two components
CoDa-PCA 28.1 38.5
HC 8.9 16.7
SPB 13.9 15.6

balances from SPB. One can see that only few non-zero entries exist (light and dark gray
lines), allowing for a severe simplification of the interpretation. The upper plot for the
first balance shows non-zero entries essentially at the peaks of the signal. Non-zeros in
the second balance are at smaller peaks or in ranges of larger variability of the signals.
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Figure 2.6: First two balances of SPB applied to the urine data. Shown are the original
data (black), and the position of the positive (light gray vertical line, or red in the
online-version) and negative (dark gray vertical lines, or blue) signs of the balances.
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2. Sparse Principal Balances

Finally, Figure 2.7 shows the projection of the data in the space of the first two PCs
(balances). More specifically, the left plot shows the first two PCA scores of CoDa-PCA,
the middle plot shows the first two coordinates derived from HC, and the right plot
presents the first two coordinates from SPB. The plot symbols are according to the
grouping information (control and treatment group). The groups show a clear pattern in
all three plots, which means that the between-group variability is reasonably high in order
to be visible in the first two main directions. For CoDa-PCA, the group separation is
visible only along the first PC, while for HC and SPB both components are informative for
distinguishing the groups. In particular for SPB, the groups have an easier interpretation,
since only very few variables contribute to the resulting components, see Figure 2.6.
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Figure 2.7: First two components of CoDa-PCA, HC and SPB for the urine data.

2.6 Conclusions

In many applied fields like analytical chemistry, metabolomics, or genomics, the exper-
imental measurement processes yield high-dimensional data where the reported data
values are not of direct interest, but rather the ratios between the variables. This type of
data is called compositional data, and the log-ratio approach for their analysis allows for
a more reliable insight into the real data structure. The main aim of this paper is to show
that the compositional data analysis method of principal balances leads to reasonable
and easily interpretable results, if sparse principal component analysis is employed for
dimensionality reduction. Hereat, the necessity of working in the clr-space, leading
to keep the zero-sum constraint and thus to limited possibilities of data manipulation,
affected also the resulting algorithm. Despite that, both simulations and the real data
example suggest that sparsity provides a good trade-off between maximization of the
explained total variance and interpretability.

Especially for spectral data, where the order of the variables has a meaning, this work
could be extended in the direction of sparse fused PCA (Guo et al., 2010). This method
yields non-zero loadings for neighboring spectra, resulting in an even clearer interpretation.
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2.6. Conclusions

Also in the context of compositional data, non-zero loadings for neighboring spectra
would lead to the interpretation that a whole range of spectra, related to an inherent
property of the measurement, is relevant for a sparse principal balance.

Another possible extension is to use a robust sparse PCA method for the clr-transformed
data as a starting point for the SPB algorithm. Robust sparse principal components are
less sensitive to data outliers (Croux et al., 2013).

In conclusion, we feel that sparsity constraints on compositional data analysis methods
offer a practical way to gain insight into high-dimensional compositions.
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CHAPTER 3
Error Propagation in Isometric

Log-ratio Coordinates for
Compositional Data: Theoretical

and Practical Considerations

Abstract: Compositional data, as they typically appear in geochemistry in terms of
concentrations of chemical elements in soil samples, need to be expressed in log-ratio
coordinates before applying the traditional statistical tools if the relative structure of the
data is of primary interest. There are different possibilities for this purpose, like centered
log-ratio coefficients, or isometric log-ratio coordinates. In both approaches, geometric
means of the compositional parts are involved, and it is unclear how measurement errors
or detection limit problems affect their presentation in coordinates. This problem is
investigated theoretically by making use of the theory of error propagation. Due to
certain limitations of this approach, the effect of error propagation is also studied by
means of simulations. This allows to provide recommendations for practitioners on the
amount of error and on the expected distortion of the results, depending on the purpose
of the analysis.

Key words: Aitchison geometry; Orthonormal coordinates; Taylor approximation;
Compositional differential calculus; Detection limit

3.1 Introduction

Compositional data analysis is concerned with analyzing the relative information between
the variables, the so-called compositional parts, of a multivariate data set. Here, relative
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information refers to the log-ratio methodology (Aitchison, 1986), so in fact to an analysis
of logarithms of ratios between the compositional parts. It has been demonstrated that
the sample space of compositions is not the usual Euclidean space, but the simplex with
the so-called Aitchison geometry (Pawlowsky-Glahn et al., 2015). For a composition
x = (x1, · · · , xD) with D parts, the simplex sample space is defined as

SD = {x = (x1, . . . , xD) such that xj > 0 ∀j,
D∑
j=1

xj = κ}

for an arbitrary constant κ. Nevertheless, according to recent developments, the sample
space of compositional data is even more general (Pawlowsky-Glahn et al., 2015): A vector
x is a D-part composition when all its components are strictly positive real numbers and
carry only relative information. Note that the term relative information is equivalent to
information lies in the ratios between the components, not in the absolute values. As
a consequence, the actual sample space of compositional data is formed by equivalence
classes of proportional positive vectors. Therefore, any constant sum constraint is just
a proper representation of compositions that honors the scale invariance principle of
compositions: the information in a composition does not depend on the particular units in
which the composition is expressed (Egozcue, 2009). In practical terms, the choice of the
constant κ is irrelevant, since it does not alter the results from a log-ratio based analysis.
In that sense, a discussion on whether the values of an observation sum up to the same
constant is needless, this would not make any difference for the analysis considered in
this paper. Though, for the purpose of better interpretability or visualization, one could
also express compositions with the closure operator

C(x) =
(

κx1∑D
j=1 xj

, · · · , κxD∑D
j=1 xj

)
,

which then sum up to the constant κ.

The Aitchison geometry defines a vector space structure of the simplex by the basic
operations of perturbation and powering. Given two compositions x = (x1, · · · , xD) and
y = (y1, · · · , yD) in SD, perturbation refers to vector addition, and is defined as

x⊕ y = C(x1y1, · · · , xDyD).

Powering refers to a multiplication of a composition x = (x1, · · · , xD) ∈ SD by a scalar
α ∈ R, and is defined as

α� x = C(xα1 , xα2 , . . . , xαD).
Further, the Aitchison inner product, the Aitchison norm, and the Aitchison distance
have been defined, and they lead to a Euclidean vector space structure (Pawlowsky-Glahn
et al., 2015). All these definitions employ log-ratios between the compositional parts; for
instance, the Aitchison inner product between the compositions x and y is given as

〈x,y〉A = 1
2D

D∑
j=1

D∑
k=1

ln xj
xk

ln yj
yk
,
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that leads to the Aitchison norm and distance

||x||A =
√
〈x,x〉A, dA(x,y) = ||x⊕ (−1)� y||A

respectively. Working directly in the simplex sample space is not straightforward.
Rather, it is common to express compositional data in the usual Euclidean geometry.
In the literature, one frequently refers to transformations; here it is prefered to use the
terminology of expressing the compositions in appropriate coordinates with respect to
the Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001) that allows to analyze
compositions in the usual Euclidean geometry.

The focus in this paper is on isometric log-ratio (ilr) coordinates (Egozcue et al., 2003b),
which allow to express a composition x ∈ SD in the real space RD−1. A particular choice
for ilr coordinates is

zj = ilrj(x) =
√

D − j
D − j + 1 ln xj

D−j

√∏D
k=j+1 xk

, j = 1, . . . , D − 1, (3.1)

and the coordinates z = (z1, . . . , zD−1) indeed correspond to an orthonormal basis in
RD−1 (Egozcue et al., 2003b). The particular choice of the ilr coordinates in (4.4)
allows for an interpretation of the first coordinate z1 as that one expressing all relative
information about part x1, since x1 is not included in any other ilr coordinate.

The definition of ilr coordinates (4.4) reveals that geometric means of (subsets of) the
parts are involved. Note that the geometric mean of x can also be expressed as

gm(x) =

 D∏
j=1

xj

1/D

= exp

 1
D

D∑
j=1

ln xj


involving the arithmetic mean of the log-transformed values. It is well known that
the arithmetic mean is sensitive to data outliers (Maronna et al., 2006). Consequently,
also data imprecision in one or some compositional parts (that are usually measured
without respecting the relative nature of compositional data), or detection limit problems,
may act like outliers and lead to a distortion of the geometric mean. The resulting ilr
coordinates will suffer from data quality problems, and subsequent analyses based on
these coordinates can be biased.

This unwanted effect is investigated here under the terminology of error propagation,
where the effect of the errors on the output of a function is analyzed. Propagation
of error can be performed by a calculus-based approach, or by simulation studies. A
calculus-based approach makes use of the Taylor series expansion and calculates the
first two statistical moments of the error of output, the mean and the variance, under
the assumption that the errors are statistically independent (Ku, 1966). With few
exceptions, almost all analyses of error propagation with the calculus-based approach use
the first-order Taylor approximation, and neglect the higher order terms (Birge, 1939).
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Figure 3.1: Composition of sand, silt, and clay in agricultural soils of Europe. Ternary
diagram (a), representation in ilr coordinates (b)

This approach is briefly reviewed in Section 3.2. Section 3.3 starts with a motivating
example about the effect of the errors on ilr coordinates and applies the concept of Taylor
approximation to error propagation in the simplex. While this is done in a general form
for any function (transformation), particular emphasis is given to error propagation for
ilr coordinates that causes one source of distortion of outputs in practical geochemical
problems (Filzmoser et al., 2009c).

Determining error propagation only for the first two moments is unsatisfactory, because it
would also be interesting how the data structure is changed in case of data problems like
detection limits or imprecision of the measurements. Thus, simulation-based methods for
error propagation are considered as well. The Monte Carlo method is adaptable and simple
for the propagation of errors (Feller and Blaich, 2001; Cox and Siebert, 2006), and various
applications of this method can be found (Liu, 2008). The simulation-based approach
in Section 3.4 makes use of a practical data set and shows the effect of imprecision
and detection limit effects on the ilr coordinates. The interest lies particularly in error
propagation on the first ilr coordinate, because this contains all relative information
about the first compositional part, and on error propagation on all ilr coordinated jointly,
because they contain the full multivariate information. The final Section 3.5 discusses
the findings and concludes.
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3.2 Error Propagation in the Standard Euclidean
Geometry

Consider a p-dimensional random variable x = (x1, . . . , xp), and a function f : Rp → R
that gives the output y as a result of y = f(x). The propagation of the errors of
each variable through the function f on the output can be derived by using Taylor
approximation (Ku, 1966). This yields a linear approximation of the function f by the
tangent plane where the slopes in x1, . . . , xp are described by the partial derivatives
∂y
∂x1

, . . . , ∂y∂xp
at a single point. One can express the random variables (x1, . . . , xp) as the

sum of their expected values µ = (µ1, . . . , µp) and random deviations from the expected
value ε = (ε1, . . . , εp), so that x = µ + ε, assuming that the errors have mean zero.
Taking the first-order Taylor approximation of f(x) results in

y = f(x1, · · · , xp) = f(µ1 + ε1, · · · , µp + εp)

≈ f(µ1, · · · , µp) +
[
∂f

∂x1
(µ1)

]
ε1 + · · ·+

[
∂f

∂xp
(µp)

]
εp.

(3.2)

In the framework of error propagation it is common to assume that (x1, . . . , xp) follow a
known distribution, in most cases a multivariate normal distribution (Ku, 1966). If the
distribution is known, the partial derivatives are evaluated at the true means, if not, the
sample averages are used for the estimation. The approximation in Equation (3.2) can
now be used to calculate mean and variance of y, which both depend on the function
f . The second central moment, the variance Var(y), describes the uncertainty, which is
mainly used to investigate the effect of error propagation and is given as

Var(y) ≈
p∑
j=1

(
∂f

∂xj
(µj)

)2

E(εj2) +
∑∑
j 6=k

(
∂f

∂xj
(µj)

)(
∂f

∂xk
(µk)

)
E(εjεk). (3.3)

Equation (3.3) reveals how the variability of the output y depends on the errors and on
the function f .

3.3 Error Propagation on the Simplex
As a motivating example the composition of sand, silt, and clay in agricultural soils in
Europe is considered. The data are reported in Reimann et al. (2014). From the ternary
diagram (Figure 3.1(a)) it can be seen that the clay concentrations can be very small,
but data artifacts are not immediately visible. The resulting ilr coordinates z1 and z2
are shown in Figure 3.1(b). Here the small clay values are visible in form of a band
that deviates clearly from the joint data structure. In fact, small values of clay have
been rounded in the laboratory, which causes already a distortion of the multivariate
data structure. Thus, the imprecision here is visible as a rounding effect in the part
clay. Variables with values below a detection limit can result in similar artifacts, since
usually the values below detection are set to some constant, like 2/3 times the values of
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the detection limit (Martín-Fernández et al., 2003). This is still the usual practice in
geosciences rather than employing more sophisticated algorithms for their imputation
(Martín-Fernández et al., 2012).

Similar as in Section 3.2, error propagation is derived for a general function using first-
order Taylor approximation. However, since this is directly done on the simplex, also
the Taylor approximation needs to be done on the simplex. The theoretical background
for the differential calculus on the simplex can be found in Barceló-Vidal and Martín-
Fernández (2002) and Barceló-Vidal et al. (2011). Here the tools necessary to carry out
the Taylor approximation are recalled.

Let f : U → Rm be a vector-valued function defined on a subset U ⊂ RD+ . Let
U = {C(w),w ∈ U}, the compositional closure of U , be a subset of SD. If f is scale
invariant, that is f(w) = f(kw) for any k > 0, it induces a vector-valued function
f : U → Rm. It suffices to define

f(x) = f(w) ,∀w ∈ U ,

where C(w) = x (Barceló-Vidal et al., 2011). The function f is C-differentiable at x ∈ U ,
if there exists an m × D matrix A = (aij), satisfying A1D = 0m (defining a linear
transformation from RD to Rm), such that

lim
u
C−→n

‖f(x⊕ u)− f(x)−A lnu‖
‖u‖A

= 0

for u ∈ U , where 1D = (1, · · · , 1) with length D, and 0m = (0, · · · , 0) with length m.
Note that n = C(1, · · · , 1) is the neutral element of (SD,⊕) and u C−→ n denotes that
u converges to n on the simplex. From the definitions above, the first-order Taylor
approximation of a real-valued function f can be written as

f(x⊕ u) ≈ f(x) +
D∑
j=1

ln(uj)
[
∂Cf

∂xj
(x)
]
, (3.4)

where the C-derivative of f exists and is equal to

∂Cf

∂xj
(x) = xj

(
∂f

∂xj
(x)−

D∑
i=1

xi
∂f

∂xi
(x)
)

for j = 1, . . . , D. (3.5)

Given a D-part composition x = (x1, · · · , xD) ∈ SD, which can be expressed as a
perturbation of its center µ = (µ1, . . . , µD) (Pawlowsky-Glahn and Egozcue, 2002) and
random deviations ε = (ε1, . . . , εD) from the center, so that x = µ⊕ ε, then (3.4) can be
rewritten as

f(µ⊕ ε) ≈ f(µ) +
D∑
j=1

ln(εj)
[
∂Cf

∂µj
(µ)

]
. (3.6)
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One can proceed as in Section 3.2 to derive the variance of the components of f(µ⊕ ε).
Similar as for the Taylor expansion (3.2) from Section 3.2, also here the approximation
is valid just for small perturbations. Moreover, in contrast to the previous case, the
error is now multiplicative. Although this fits well with the nature of compositional data,
particularly with their scale invariance, in practice error terms are often additive (van den
Boogaart et al., 2015). This fact should be taken into account for an error propagation
analysis of compositional data.

In case of ilr coordinates, however, the investigation of the error propagation simplifies.
By considering (3.6) with ilr coordinate ilri(x) as i-th component of f

∂cilri
∂µj

=


0 if j < i,√
D−i
D−i+1 if j = i,

−
√

D−i
D−i+1

1
D−i if j > i,

(3.7)

where i = 1, . . . , D − 1. This corresponds exactly to a logcontrast (Aitchison, 1986) of
the the i-th ilr coordinate of the compositional error ε, and consequently

ilri(x) = ilri(µ⊕ ε) = ilri(µ) + ilri(ε), i = 1, . . . , D − 1.

In the context of error propagation this shows that the ilr coordinates are additive with
respect to multiplicative errors. On the other hand, for other forms of errors a non-linear
behavior can be expected. This issue is further investigated within the simulation study
in Section 3.4.

In addition, this leads to an alternative verification of the linearity of ilr coordinates

z = ilr(x) = ilr(µ⊕ ε) = ilr(µ) + ilr(ε),

that is commonly shown directly with the definitions from Section 4.1. Even more, ilr
coordinates represent an isometry, which means that all metric concepts in the simplex
are maintained after taking the ilr coordinates (Pawlowsky-Glahn et al., 2015). The
variance can now be considered component-wise, for example for the j-th component zj
of z one obtains

Var(zj) = Var(ilrj(x)) = Var(ilrj(ε)).

This variance can be expressed by log-ratios of the compositional parts as shown in
Fišerová and Hron (2011) as

Var(zj) = A−B with (3.8)

A = 1
D − j + 1

D∑
k=j+1

Var
(

ln εj
εk

)
,

B = 1
2(D − j)(D − j + 1)

D∑
k=j+1

D∑
l=j+1

Var
(

ln εk
εl

)
.
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The contributions of log-ratio variances in this linear combination are clearly higher
for terms in A that include εj , and lower for terms in B where εj is not involved, and
their magnitude depends on the number of parts D. In particular, if D is large and
contamination (imprecision, detection limit problem) is expected only in one compositional
part, the effect on the variance of zj will be small. Note, however, that for a multivariate
analysis the focus is in all coordinates z1, . . . , zD−1 simultaneously, and thus it is not so
straightforward to investigate the effect, since there may also be dependencies among the
error terms. There is a simple exception: suppose that an error is to be expected only
in log-ratios with one compositional part. From a practical perspective, it would then
appear that only one compositional part is erroneous. If this part is taken as the first
one, the ilr coordinates from Equation (4.4) will allow to assign this error exclusively to
z1, but not to the other coordinates.

Besides investigating the variance of the coordinates, it is also important to know how
the errors affect distances between different compositions, that is between observations of
a compositional data set, and how the multivariate data structure is affected. All these
aspects will be investigated in more detail by simulations in the next section.

3.4 Simulation-Based Investigations of Error Propagation

For a simulation-based analysis of error propagation a real data set is used, namely the
GEMAS data mentioned in Section 4.1, described in Reimann et al. (2014). More than
2,000 samples of agricultural soils have been analyzed in an area covering 5.6 million
km2 of Europe across 33 countries, and for the simulations the concentrations of the
elements Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Nb, P, Pb, Rb, Si, Sr, Ti, V, Y, Zn and Zr
are considered. Precision or detection limit problems of these elements are rather small
or even not existing (Reimann et al., 2014), and thus these elements form a good base
for carrying out simulations where contamination is artificially introduced in the form of
imprecision and detection limit problems.

Denote the resulting compositional data matrix byX, where the observations are forming
the rows and the above mentioned compositional parts the columns. The number of
observations is n = 2107, and the number of parts is D = 20. The cells of the matrix X
are denoted as xij , for i = 1, . . . , n and j = 1, . . . , D.

In the simulations problems with detection limit and imprecision are reproduced as
follows:

• Detection limit (DL): Set all observations xij of the j-th part to the value

x∗ij =
{

2
3DLj if xij ≤ DLj
xij otherwise , (3.9)

where i = 1, . . . , n, and DLj is taken as some quantile of that part.
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• Imprecision rate (IR): A noise term εij is added to each observation xij , where
the noise depends on the magnitude of the observation and follows a uniform
distribution. Thus, the values xij , i = 1, . . . , n, are set to

x∗ij = xij + εij , εij ∼ U(−αjxij , αjxij), (3.10)

where αj > 0 defines the imprecision rate of the j-th part, and the resulting
simulated value x∗ij must be positive. Note that this contamination is not additive
but multiplicative, since

x∗ij = xij(1 + γj), γj ∼ U(−αj , αj).

Thus, this contamination scheme corresponds to the error model of the previous
section, while contamination by a detection limit introduces a non-linear effect.

As mentioned previously, the main interest is the investigation of error propagation for ilr
coordinates. If the i-th row of X is denoted by xi, then the ilr coordinates are obtained
by Equation (4.4), leading to the values zi = (zi1, . . . , zi,D−1). The complete n× (D− 1)
matrix of coordinates is denoted by Z, with cells zij .

As an illustrative example the last 10 parts of the composition are picked, and con-
taminated with errors. A detection limit problem is imitated, by choosing DLj as the
0.25-quantile in each of these components, and setting the values in these parts according
to Equation (3.9). The results are shown in the left panels of Figure 3.2: the upper
panel shows the first ilr coordinate of the original versus the contaminated data. One can
see clear distortions in form of deviations from the main structure, but also in form of
nonlinearities. For a clearer picture of the multivariate data structure the Mahalanobis
distances of all ilr coordinates for the original and contaminated data are presented in
the lower panel of Figure 3.2. The Mahalanobis distance (MD) for the i-th composition
expressed in coordinates is

MD(zi) =
√

(zi − tz)′C−1
z (zi − tz), for i = 1, . . . , n, (3.11)

where tz and Cz are robust estimators of location and covariance of the ilr coordinates Z,
respectively. For reasons of comparability the Mahalanobis distances for the contaminated
data are computed with the estimators tz and Cz based on the uncontaminated data.
Plugging in robust estimators is essential since they guarantee that the Mahalanobis
distance estimation is not spoiled by single outliers but based on the data majority. For
this purpose the minimum covariance determinant (MCD) estimator is used (Rousseeuw
and Van Driessen, 1999) .

The right panel of Figure 3.2 shows the results of a simulated precision problem. Again,
the last ten parts are contaminated, αj is set to 0.25 for these parts, and Equation
(3.10) is applied. The upper panel compares the first ilr coordinates for the original and
distorted data. Since the contamination is symmetric in each part, the outcome is also
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Figure 3.2: Effect of the DL and IR contamination on the first ilr coordinate ((a) and
(b)), and on all ilr coordinates jointly ((c) and (d))
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relatively symmetric around the line of 45 degrees. The comparison of the Mahalanobis
distance shows that those distances for the contaminated data increase in general.

The above example already provides an idea about possible choices of measures for
quantifying the resulting error. The focus is on the first ilr coordinate as well as on
all coordinates jointly in terms of Mahalanobis distances, and the original data will be
compared with the contaminated data.

Denote the values of the first ilr coordinate by z.1 = (z11, . . . , zn1), and the corresponding
contaminated version by z∗.1 = (z∗11, . . . , z

∗
n1). The two vectors are compared by:

• Spearman rank correlation, expressed as

CorS(z.1, z∗.1) = Cov(R(z.1), R(z∗.1))√
Var(R(z.1))

√
Var(R(z∗.1))

, (3.12)

where R(·) gives the ranks of its argument vector.

• Mean absolute scaled deviation (MASD), defined as

MASD(z.1, z∗.1) = 1
n

n∑
i=1

|zi1 − z∗i1|√
Var(z.1)

. (3.13)

The Spearman rank correlation coefficient measures the monotone relation between the
uncontaminated and contaminated coordinates; a value of one would refer to the same
ordering of the values of the coordinates. On the other hand, MASD is more strict and
evaluates the error in reproducing the values of the coordinate. Note that the scaling in
MASD by the variance is used to allow for a comparison of the corresponding first ilr
coordinates if the parts in the data matrix are permuted.

Similar measures for comparison are proposed in the multivariate case. Denote by MD(Z)
the vector of the Mahalanobis distances MD(zi), for i = 1, . . . , n, see Equation (3.11),
and by MD(Z∗) the corresponding contaminated version, with entries MD(z∗i ). Then the
Spearman rank correlation coefficient CorS(MD(Z),MD(Z∗)) investigates if the overall
ordering in the multivariate data structure, represented in coordinates, is maintained. A
mean absolute scaled deviation (MASD) measure relates to the Mahalanobis distances

MASD(MD(Z),MD(Z∗)) = 1
n

n∑
i=1

|MD(zi)−MD(z∗i )|
Q0.5(MD(Z)) . (3.14)

The scaling is done by the 0.5-quantile (median) of the Mahalanobis distances of Z in
order to allow for comparability of subcompositions with different numbers of parts. This
measure thus indicates the error in reproducing the multivariate data structure. As
mentioned previously, the Mahalanobis distances MD(Z∗) are based on the estimates of
location tz and covariance Cz of the matrix Z, see Equation (3.11), leading to a MASD
value of zero for observations which have not been changed.
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These measures have been computed for the example shown in Figure 3.2 in order to
get an idea about the meaning of the magnitude of these values. The Spearman rank
correlation is in all cases clearly above 0.9, in spite of the deviations of some points. The
scaled distances MASD for the first ilr coordinates are lower that those for all coordinates
jointly (Mahalanobis distances).

3.4.1 Simulation 1: One Uncontaminated, 1 to 19 Contaminated
Parts

Start with the first column x.1 of the compositionX, and add step-by-step another column.
After the (k − 1)-st step one ends up with the subcomposition Xk = (x.1,x.2, . . . ,x.k),
where k = 2, . . . , 20. A contaminated version is generated by contaminating all parts
except the first one; this yields X∗k = (x.1,x∗.2, . . . ,x∗.k). Then the ilr coordinates are
computed from Xk and X∗k, and the measures CorS and MASD are calculated for the
first coordinates and for all coordinates jointly in terms of Mahalanobis distances.

The number of simulation replications is 100. In each replication, the parts of the original
composition are permuted. In that way, the first (uncontaminated) part changes, but
also the sequence of the parts that are added changes. All simulations are done for the
contamination in form of detection limit (DL) and for imprecision (IR). In the first case,
the value DLj of the detection limit is taken as the 0.25-quantile, see Equation (3.9),
while in the latter case the imprecision rate is taken as αj = 0.25, see Equation (3.10).

The results are presented by boxplots in Figure 3.3. The left panels show the outcome
for the detection limit simulations, the right panels show the results of the imprecision
simulations. The upper figures show the comparison of original versus contaminated
versions in terms of Spearman correlations, while the lower figures compare in terms of
MASD. The grey boxplots compare the first ilr coordinates, while the white boxplots
summarize the Mahalanobis distances of all joint coordinates. The plots allow to compare
the impact of an increasing number of contaminated parts (horizontal axes). Although
the amount of contamination is quite high, the correlations reveal that the covariance
structure of the multivariate data is basically preserved. In particular, the comparison of
the first ilr coordinates leads to a remarkably high correlation, which is quite stable with
an increasing number of parts (for DL), and even improving in case of IR. This means
that additional parts coupled with a symmetric contamination scheme, as in case of IR,
still provide important and useful information that stabilizes the first ilr coordinate. The
MASD results for the first ilr coordinate are quite stable in case of DL, while in the IR
case with increasing number of parts an improvement is observed.

The picture is somewhat different when comparing all ilr coordinates jointly. The
Spearman correlation is clearly lower, and it gets more stable with an increasing number
of parts. In case of DL, the MASD measure is nearly constant with an increasing number
of parts, while for IR first a decline is observed, but then a clear increase. It is, however,
surprising that the Mahalanobis distances do not change more drastically, given that the
amount of contamination is relatively high.
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Figure 3.3: One uncontaminated part, and 1 to 19 contaminated parts added. Univariate
and multivariate structural changes between the original and contaminated ilr coordinates
with increasing number of contaminated parts in case of DL ((a) and (c)) and IR ((b)
and (d))
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3.4.2 Simulation 2: 10 Uncontaminated, 1 to 10 Contaminated Parts

In a further simulation experiment a block of 10 compositional parts is fixed and left
uncontaminated. Step by step a contaminated part is added, until all 10 remaining
(contaminated) parts have been included. The comparison is done in the same way as
before. The simulation is repeated 100 times, and the parts are randomly permuted for
each replication. Thus, the uncontaminated block changes, but also the contaminated
parts differ from simulation to simulation. The results are shown in Figure 3.4.
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Figure 3.4: Ten uncontaminated parts, and 1 to 10 contaminated parts added. Univariate
and multivariate structural changes between the original and contaminated ilr coordinates
with increasing number of contaminated parts in case of DL ((a) and (c)) and IR ((b)
and (d))

Basically, a similar impression can be observed as in Figure 3.3. For the first ilr coordinates,
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the correlations are now very close to one, and the values of MASD, although increasing
slightly with increasing number of contaminated parts, are close to zero. So, having
good data quality for a major part of the data set is a good protection against poor
data quality in additional parts - at least for the first ilr coordinate. The multivariate
data structure is well maintained in terms of ordering, expressed by the Spearman rank
correlations, which are still clearly above 0.9. The MASD values for the Mahalanobis
distances now increase for DL as well as for IR, with an increasing number of parts, but
they are lower than in the previous simulation.

3.4.3 Simulation 3: Changing the Amount of Contamination

In the previous simulations the amount of contamination is fixed. Here the effect of
changing the amount of contamination is investigated. For that purpose, 10 parts are
selected randomly to leave them uncontaminated, while the remaining 10 parts are
contaminated by the same amount: in case of DL contamination, the value DLj is varied
from the 0.05-quantile to the 0.95-quantile; for IR contamination, the imprecision rate αj
is varied from 0.05 to 0.95. Note that the imprecision in real studies can be much higher,
in particular for small concentrations (Reimann et al., 2014). Figure 3.5 summarizes the
outcome of the simulations, where again 100 replications were performed.

The resistance against contamination of the first ilr coordinate is remarkable. Both, the
correlation and the MASD report relatively small deviations, even for very high amounts
of contamination. Contamination according to DL has more effect than that based on
imprecision. This is different when looking at the multivariate data structure, expressed
by the joint coordinates. The correlations get severely low, and also the MASD increases
rapidly. The effect for IR contamination is more severe than that for DL. A MASD
value of one means that the average change of the Mahalanobis distances before and
after contamination is as large as the median Mahalanobis distance, and thus this would
correspond to a substantial change in the multivariate data structure.

3.4.4 Simulation 4: Changing the Number of Observations

In a final simulation the effect of the number of observations in the data set, which has
been fixed before with all available observations (i.e., more than 2,000) is analyzed. As
before, 10 parts are randomly selected and not modified, and the remaining 10 parts
are contaminated at a level of 25%, that is for DL contamination 25% of values below
detection limit in each of these parts, and for IR contamination αj = 0.25 for these parts.
The results in Figure 3.6 for the 100 simulations show that there is no visible effect for
the first ilr coordinate. However, the multivariate structure suffers severely if the number
of observations is smaller than 100.
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Figure 3.5: Ten uncontaminated parts, and 10 contaminated parts added. Univariate and
multivariate structural changes between the original and contaminated ilr coordinates
with increasing amount of contamination in case of DL ((a) and (c)) and IR ((b) and (d))
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Figure 3.6: Ten uncontaminated parts, and 10 contaminated parts added. Univariate and
multivariate structural changes between the original and contaminated ilr coordinates
with varying number of observations in the data set; the contamination level is fixed with
25%; DL ((a) and (c)) and IR ((b) and (d))
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3.5 Discussion and Conclusions
To many practitioners it looks almost obvious that geometric means, as they are used in
log-ratio approaches, may cause instabilities due to the involved products of the data
values. Even worse, measurement errors could be propagated by the use of geometric
means. This problem is investigated in more detail, by focusing on the most important
log-ratio approach based on ilr coordinates (Pawlowsky-Glahn and Buccianti, 2011;
Pawlowsky-Glahn et al., 2015).

In a first attempt, the classical theory of error propagation has been formulated on
the simplex, the sample space of compositional data. While this gets complex if any
transformation function would be considered, the results are straightforward when using
ilr coordinates because of their linearity. It has been shown that the variance of an ilr
coordinate is just the variance of the same ilr coordinate of the random deviations from the
center. Using Equation (3.8) it can be seen which terms contribute by which magnitude
to this variance. For non-linear contamination schemes, these variance contributions
cannot be computed from the random errors, but they have to be computed directly
from the ilr coordinate. This has been done for the simulation scheme outlined in Section
3.4.1 for the first ilr coordinates z1 of the uncontaminated data, the data contaminated
by a detection limit, and contaminated by the imprecision rate. The resulting variance
contributions are shown in Figure 3.7 in the form of ratios A/B according to Equation
(3.8) as non-colored boxplots. With increasing number of parts, the term B (which does
not involve variance contributions with log-ratios to x1) gets more dominant. This can be
seen in the uncontaminated case, as well as in the contaminated cases due to the inherent
variability contained within the log-ratios of the remaining parts. Interestingly, detection
limit contamination has almost no effect on the variance contributions A and B when
compared to the uncontaminated case. This is also shown by the dark boxplots which
represent the ratios of A-contaminated to A-uncontaminated. Only for contamination
by the imprecision rate, the variance contributions are clearly higher compared to the
uncontaminated case if the number of contaminated parts is low. For higher numbers of
contaminated parts, the variance contributions are about the same.

Further investigations have been carried out through simulation experiments. The
contamination is studied in terms of mimicking a detection limit problem, and in terms
of imprecision in form of a multiplicative factor. In all experiments it turned out that
the structure of the first ilr coordinate can almost not be destroyed with poor data
quality, except in case of extremely high amounts of contamination. This is an interesting
outcome, since due to the proposed formula (4.4) to derive the ilr coordinates, the first
coordinates describes all relative information about the first compositional part (Fišerová
and Hron, 2011). Clearly, if the main interest is not in the first but in another part, then
this part is simply put to the first position. Note that the first coordinate is proportional
to the corresponding centered log-ratio (clr) coefficient (Aitchison, 1986) for this part
(Fišerová and Hron, 2011). Practitioners often explore just the structure of the resulting
clr coefficients. For example, one can study the clr coefficients for the different chemical
elements in maps, which is the compositional alternative to the traditional maps based
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Figure 3.7: Variance decomposition results: The light boxplots show the ratios A/B
according to Equation (3.8) for the simulation scheme in Section 3.4.1. The dark boxplots
compare the ratio of A-contaminated (either DL or IR) to A-uncontaminated. No
contamination (a), detection limit (b), imprecision rate (c)

on the absolute concentrations. Examples are shown in Reimann et al. (2014).

It is not studied, how the contamination of the first part effects the first ilr coordinate
(z1), because it is clear that the contamination would be immediately reflected in the
first ilr coordinate, and any additional contamination in other parts would make things
worse. Hence, variations of z1 are only due to variations of (x2, ..., xD). It is therefore
quite logical that the impact of DL or IR on z1 remains limited, and that its growth
decreases as D increases, due to compensation effects when computing gm(x2, ...xD).

Especially when applying multivariate statistical methods, like principal component
analysis or discriminant analysis, all ilr coordinates have to be analyzed jointly. Therefore,
the effect of errors on the multivariate data structure are also investigated in the
simulations. It depends very much on the setting if the multivariate data structure
is destroyed by the contamination or not. If dimension increases, the effects of the
contamination generally increase. It depends a lot on the contamination level if the
multivariate data structure after contamination is still closely related to that before, but
this also depends on the sample size of the data: higher numbers of observation (e.g., at
least 100 in the data set used here) stabilize the results.

Consider again the example shown in Figure 3.2, where 10 parts out of 20 have been
contaminated at a level of 25%. Here the DL contamination scheme is considered. Figure
3.8 shows the biplot for the first two principal components (PCs): left panels for the
uncontaminated data, right panels for the contaminated data. A comparison is also
done with robust PCs (Filzmoser et al., 2009b), which are shown at the lower panels.
While there is almost no difference visible between the uncontaminated and contaminated
versions, there is a clear difference in the outcome of classical and robust principal
component analysis. This shows that, although the MASD is around 0.18 (Figure 3.2(c)),
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the outliers that are present in the data have a much stronger effect than the artificial
contamination used here.
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Figure 3.8: Biplots of the first two PCs based on the data shown in Figure 3.2. Classical
PCs of uncontaminated data (a), classical PCs of contaminated data (b), robust PCs of
uncontaminated data (c), robust PCs of contaminated data (d)

The overall conclusion of this paper is not that one does not have to care anymore about
data quality issues. In contrary, good data quality is the basis of any sound statistical
analysis. Rather, it should provide an answer to researchers who have a data set available,
and who carefully think about which compositional parts to include in the analysis.
Often it is known which parts have precision problems, and sometimes even the level of
imprecision is known. Also, the amount of values below detection is known. Including
such parts with moderate quality in the analysis will in general not have a major effect
on a single (the first) ilr variable, and the effects will also be limited in general for the
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3.5. Discussion and Conclusions

multivariate data structure.

The point why one should consider including as much information as possible in the
analysis is because the reliable values of such parts with moderate data quality also
contribute to the log-ratio analysis and they might contain important and relevant
information.
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CHAPTER 4
Compositional Data Analysis in

Epidemiology

Abstract: Compositional data analysis refers to analyzing relative information, based
on ratios between the variables in a data set. Data from epidemiology are usually treated
as absolute information in an analysis. We outline the differences in both approaches
for univariate and multivariate statistical analyses, using illustrative data sets from
Austrian districts. Not only the results of the analyses can differ, but in particular the
interpretation differs. It is demonstrated that the compositional data analysis approach
leads to new and interesting insights.

Key words: Log-ratio approach; multivariate statistics; Euclidean geometry; composi-
tional data; isometric log-ratio coordinates

4.1 Introduction
Health care research is one of the most important research fields in epidemiology with
high benefits to the society. This research covers a variety of topics, such as disease trends,
risk factors, or structural and regional changes in public health. Health care data are
generally perceived as being ”information rich” but still ”knowledge poor”. (Lincoln and
Builder, 1999) Nevertheless, statistical methods are used more and more often to discover
patterns and trends of such data and to support decision makers. In most cases, health
care data are measured as count data, for example the numbers of deaths caused by a
disease, or the numbers of patients affected by a disease. Often epidemiologic information
is represented in form of incidence, prevalence, morbidity, or analyzed as raw data.

Let us consider a data matrixX with n rows and D columns, where n denotes the number
of observations (e.g. the number of districts), and D stands for the number of variables
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being investigated. The variables could refer to specific causes of death or to certain
diseases. The i-th row of the matrix is represented by xi and the cells of the matrix are
denoted as xij , where i = 1, . . . , n and j = 1, . . . , D. Here we expect that the data are
already standardized with regard to geographic and sociodemographic (e.g. age, popula-
tion size) attributes, in order to allow for a comparison of data subgroups.(Hennekens
and Buring, 1987)

Depending on the focus of the analysis, the raw data X can be used, or this information
needs to be preprocessed or aggregated. However, the raw data are not always expedient
to analyze when the focus is on comparing observations or groups of observations based
on different scales. For example, the number of diseases could be generally higher in one
region than in another region, and thus a specific disease is not comparable across the
regions, e.g. due to different population size. In this case, the data can be normalized
by dividing each observation by the corresponding row sum. More formally, for a given
observation xi the proportion of the j-th variable to the sum of all variables is denoted
by pij and defined as

pij = xij∑D
j=1 xij

. (4.1)

Clearly, pi1+. . .+piD = 1, for i = 1, . . . , n, which allows for a numerical comparison of the
observations. For a fixed j, the multivariate information is thus expressed as a univariate
quantity. However, the denominator might suppress and hide relevant information. For
instance, the data can be dominated by one or more variables with high values, which
leads to small proportions for all observations and to a loss of possible patterns and data
structures.

There are yet other problems with proportional data. It is often not so clear in a study,
which variables can and should be included in a data set. For example, the set of diseases
to be considered in an epidemiological study is usually not clearly defined. If one is
interested in investigating the relation between two variables, expressed as proportions,
this relation can be driven by the total sum, which is just depending on the considered
variables in the study. This has been noted already by Pearson Pearson (1897), who
talked about “spurious” correlations in this context, i.e., correlations which are depending
on the choice of the variables in the analysis.

An alternative to working with proportional data is to consider ratios of variable pairs,
or even better, logarithms of ratios (log-ratios), ln xij

xik
, i = 1, . . . , n and j, k ∈ {1, . . . , D}.

A positive value of the log-ratio between the j-th and the k-th variable refers to the
dominance of the j-th variable (nominator) over the k-th variable (denominator). By
taking pairwise log-ratios, the variance of the resulting new variable does not depend on
which variable is used for the nominator (denominator). The result does also not depend
on which variables are included in the whole data set – this would just lead to a different
number of possible pairwise log-ratios. A further advantage is that the pairwise log-ratio
does not depend on the units in which the variables are expressed: the multiplication
of a row of the original data matrix by an arbitrary positive number does not alter the

64



4.2. The log-ratio approach

pairwise log-ratios. This principle is called scale invariance, and the approach of working
with log-ratios has been introduced in detail in Aitchison’s work.Aitchison (1986)

The goal of this paper is to analyze the possibilities of the log-ratio approach in the
context of epidemiology. We will make use of the original ideas introduced in the book of
AitchisonAitchison (1986), but focus more on the recent research in this field.(Pawlowsky-
Glahn et al., 2015) Generally, the log-ratio approach turned out to be suitable for analyzing
so-called compositional data, which are representing parts of some “whole”. This definition
frequently leads to the wrong assumption that the “whole” must refer to a constant sum
of the data, such as the sum of the individual causes of deaths needs to sum up to the
total number of deaths. However, as mentioned above, the log-ratio approach is scale
invariant, and by considering only a subset of the variables (subcomposition), one will get
coherent results compared to those from the full composition. (Pawlowsky-Glahn et al.,
2015) The log-ratio approach in the context of epidemiology is rarely used. Exceptions
are the articles by Leite(Leite, 2014), where its usefulness in the area of nutritional
epidemiology has been demonstrated, and by Tsilimigras and Fodor(Tsilimigras and
Fodor, 2016), where the advantages and challenges of using the log-ratio approach in
microbiome studies has been represented.

This paper is structured as follows. In Section 4.2 we will introduce some basic concepts
of the log-ratio approach. Section 4.3 illustrates for a specific data set how the log-ratio
approach can be used for analyzing single quantities of interest. Section 4.4 uses another
data set to show how a joint analysis of the variables can be made, following the log-ratio
approach. Section 4.5 demonstrates another approach from compositional data analysis,
namely regression modeling. For illustrating this approach, both data sets from the
previous sections are used. In all our analyses we put emphasis on the use of robust
statistical methods, since data from epidemiological practice frequently do not meet
classical requirements such as normal distribution, or may contain outliers. The final
Section 4.6 summarizes and concludes.

4.2 The log-ratio approach

The basic sources of information for the log-ratio approach are pairwise log-ratios, as
introduced in the previous section. If the interest of the analysis is in one particular
variable, one could think of computing all pairwise log-ratios of this variable to each of
the remaining variables, and to analyze each of the resulting quantities separately. For
small datasets that might be an intuitive approach, however, with an increasing number
of variables the effort increases linearly and the general view of the data structure can get
lost. For the purpose of simplicity one can consider the arithmetic mean of all pairwise
log-ratios for the j-th variable of observation xi,

1
D

(
ln xij
xi1

+ . . .+ ln xij
xij

+ . . .+ ln xij
xiD

)
= ln xij

D

√∏D
k=1 xik

, (4.2)
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where i = 1, . . . , n and j ∈ {1, . . . , D}. Clearly, the term ln xij

xij
is zero. The right-hand

side of Equation (4.2) is found in the usual definition of the so-called centered log-ratio
(clr) transformation (Aitchison, 1986), defined as

yi = clr(xi) = (yi1, yi2, . . . , yiD)′ =

ln xi1
D

√∏D
k=1 xik

, . . . , ln xiD
D

√∏D
k=1 xik

′ . (4.3)

The clr transformation is an isometric mapping between the D-part simplex sample space
SD, the sample space of compositional data with D compositional parts (variables), and
the D-dimensional real space RD. From Equation (4.2) it can be seen that the j-th clr
coefficient yij , for j ∈ {1, . . . , D}, contains all relative information of the j-th variable
to the remaining variables, in terms of averaged log-ratios. This allows the analyst to
consider a different viewpoint of the problem: The question might not be whether the
data at hand “are compositional data”, where an appropriate transformation needs to
be performed before the statistical analysis is carried out, but rather if it is desirable to
analyze “relative information”. As mentioned in Section 4.1, pairwise log-ratios as the
key ingredients of the clr coefficients have more attractive properties (depending on the
application) than simple proportions, and thus they can avoid undesirable effects like
spurious correlations (Pearson, 1897) or dependence on scale.

The interpretation of the clr coefficients is straightforward, since they represent all relative
information of one compositional part to the others. However, the sum of those coefficients
is zero, yi1 + yi2 + · · · + yiD = 0, for i = 1, . . . , n, resulting in data collinearity due to
the constant sum constraint. For some statistical methods and estimators, especially
with robust procedures (Maronna et al., 2006), this data collinearity leads to numerical
and sometimes conceptual problems. Robust statistical methods give reliable results
even in presence of outliers or deviations from strict model assumptions such as normal
distribution, and thus they are considered as very useful for health care data and studies
in epidemiology.(Beaumont et al., 2006)

The collinearity problem of clr coefficients can be avoided by the isometric log-ratio
(ilr) transformation, an isometric mapping from SD to the real space RD−1.(Egozcue
et al., 2003a) The idea is to construct an orthonormal basis, so-called ilr coordinates, in
the D − 1-dimensional hyperplane formed by the clr coefficients. Clearly, only D − 1
coordinates are necessary, and there are infinitely many possibilities to construct this
coordinate system. A specific choice is (Fišerová and Hron, 2011)

zij = ilrj(xi) =
√

D − j
D − j + 1 ln

 xij
D−j

√∏D
k=j+1 xik

 , j = 1, . . . , D − 1, (4.4)

which is the j-th ilr coordinate of observation xi. Then zi = (zi1, zi2, . . . , zi,D−1)′ is the
representation of xi in this orthonormal basis.

There is a reason why Equation (4.4) has been proposed to construct the ilr coordinates:
It can be shown that

yi1 = D − 1
D

zi1, (4.5)
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for i = 1, . . . , n (Fišerová and Hron, 2011), and thus the first ilr coordinate is proportional
to the first clr coefficient. Therefore, yi1 and zi1 have the same interpretation. However,
different to the clr case, none of zi2, . . . , zi,D−1 contains any information about the
first part. Thus, this choice of ilr coordinates makes it possible to fully isolate all the
relative information in the composition or subcomposition considered about the first part
into the first ilr coordinate. If one is interested in relative information about another
compositional part, one simply needs to put this part on the first position and construct
the ilr coordinates from Equation (4.4).(Fišerová and Hron, 2011)

For epidemiological data it may be possible to use expert knowledge for defining groups
of compositional parts that relate to certain diseases, for instance. In this case one
can use so-called balances. This alternative approach to construct coordinates of an
orthonormal basis, expresses the relative information between the groups of parts in
a composition. Balances can be constructed by a procedure called sequential binary
partition (SBP).(Egozcue and Pawlowsky-Glahn, 2005; Pawlowsky-Glahn and Buccianti,
2011)

4.3 Analyzing single epidemiological variables

In this section, the concepts of compositional data analysis are illustrated with a data
set from Austria, describing six causes of death, see Table 4.1. The data were recorded
in 2007, obtained in terms of absolute frequencies from Statistics Austria, the Austrian
institution for official statistics, and aggregated (summed up) to the 99 Austrian districts.
Note that the districts of Vienna are considered together as one main district. Since
the data depend mainly on the regional age structure of the population, and on the
high variation of the regional population size, they were standardized by the overall age
distribution of the world standard population given by the World Health Organization
(WHO) as underlying distribution(Hennekens and Buring, 1987), and by dividing by the
number of residents in the corresponding district. Following this, the rates are calculated
per 10.000 population, resulting in an absolute risk rate per 10.000. This is our data
matrix X with n = 99 rows and D = 6 columns. It should be noted that the data are
collected from reports of medical doctors and hospitals, and that the cause of death of a
person can not always be assigned uniquely to one of the codes reported in Table 4.1, or
that the assignment procedure might not be unique among all hospitals. Thus, a certain
degree of robustness of the analysis will be appreciated.

We are interested in analyzing the spatial distribution of single death causes. The
main purpose is not to provide deep reasonings and rigorous interpretations of regional
differences, but rather to compare different methods, including compositional approaches,
in an explanatory way. We focus here on the risk of deaths caused by circulatory
systems, see Table 4.1. Figure 4.1 shows the regional distribution of the preprocessed raw
data information xij (upper plot) and proportional information pij , see Equation (4.1)
(lower plot). In all these map presentations we use a scaling according to the quantiles
0.05, 0.25, 0.50, 0.75 and 0.95 of the distribution. The upper figure shows a clear east-west
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ICD10 Group

C00-C97 Neoplasms
I00-I99 Circulatory systems
J00-J99 Respiratory systems
K00-K93 Digestive systems
V01-Y89 Injuries
A00-B99, D01-H95,L00-R99 Other diseases

Table 4.1: Causes of deaths by aggregated disease groups.

trend, with higher risk rate caused by circulatory systems diseases in the east and lower
rate in the west of Austria. This can be valuable information for decision makers, with a
possible consequence of trying to improve the situation of circulatory diseases in eastern
Austria. A different picture is provided by the proportional information in the lower
figure, where the east-west gradient has disappeared. We observe some districts such as
Bludenz (BZ) in the west, and Waidhofen an der Thaya (WT) in the north, with a high
proportion of the death rate caused by circulatory systems, despite their low absolute risk
rate. Obviously, the differences in both presentations are caused by the sum of all death
rates, which also varies across the regions. So, even if the risk is small for circulatory
systems, it can be relatively high as proportion on all risk rates, if the sum is also small.
The latter happens if all risk rates are small compared to the other districts. This gives a
different view, and it now seems to make sense to invest in regions with high proportional
risk rate, rather than with high absolute risk rate.

Figure 4.2 shows analyses based on the log-ratio approach. The upper plot presents the
pairwise log-ratio of the risk rates regarding circulatory systems to respiratory systems.
Since a value of zero would correspond to equal risk, we conclude that the risk rate for
circulatory systems is generally higher and thus dominating. Some regional patterns are
visible, such as the cluster of high values in the north-east of Austria. This analysis is
not yet very informative, since the log-ratios to the other causes of death need to be
analyzed in order to get a complete picture of the risk rates for circulatory systems. The
lower plot of Figure 4.2 shows this information in terms of the ilr coordinate for the
variable circulatory systems. For this purpose, the variable circulatory systems has to be
put to the first position before Equation (4.4) is applied. So, this plot summarizes all
relative information of cause of death by circulatory systems to the remaining causes of
death considered here. Since the values are mostly positive, cause of death by circulatory
systems is dominating, but varying in the area. Some regional patterns appear, such as
low values in all districts of Tyrol (with the exception of Reutte (RE)). Since all pairwise
log-ratios to the variable circulatory systems are taken into account in this analysis, the
source of information is of high granularity, and the resulting picture should be most
informative. Although the interest is basically in just one variable, the whole multivariate
information by considering all remaining variables has been used and analyzed. One can
thus claim that this information should be most relevant for decision makers. It should,
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Figure 4.1: The upper figure shows the absolute risk rate of death per 10.000 population
(age standardized and divided by number of residents) caused by circulatory systems.
The lower figure shows the proportional risk rate, proportion of absolute risk rate of
deaths caused by circulatory systems to the total absolute risk rate of deaths. The breaks
of the gray scale are defined by the quantiles 0.05, 0.25, 0.50, 0.75 and 0.95, yielding six
classes.

69



4. Compositional Data Analysis in Epidemiology

however, be noted that the scale of the new ilr coordinate is not interpretable in terms
of a risk rate. It can just be interpreted in terms of different levels of dominance of the
variable under investigation, and the resulting pattern in the geographical map can serve
as a guidance for setting local activities.

Log (Circulatory / Respiratory) − Risk Rate
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Figure 4.2: The upper figure shows the log-ratio of the absolute risk rate of circulatory
systems to respiratory systems. The lower figure represents the regional distribution
of the first ilr coordinate of absolute risk rate of deaths caused by circulatory systems.
The breaks of the gray scale are defined by the quantiles 0.05, 0.25, 0.50, 0.75 and 0.95,
yielding six classes.

4.4 Joint analysis of epidemiological variables

While in the previous section we were interested in presenting information about just
one variable, we will analyze now the information of all variables jointly. A variety of
statistical methods for multivariate data analysis is available, and here we focus just on
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two procedures: principal component analysis to investigate the main data structure,
and multivariate outlier detection to discover atypical observations.

The methods are illustrated by hospital discharge data. The data have been provided by
the Austrian social insurance institutions. The number of hospital discharges in Austria
has been recorded for the year 2007. We use the data for the disease groups shown in
Table 4.2. The data were aggregated to the 99 Austrian districts, standardized for age,
and divided by the population size of the districts, as mentioned in Section 4.3. The
disease groups form our compositional parts, and here we are interested in a joint analysis
of all parts.

ICD10 Plot symbol Group

A00-B99 AB Certain infectious and parasitic diseases
C00-C99 C Neoplasms
E10-E15 E10 Diabetes mellitus
E66 E66 Overweight and obesity
E78 E78 Lipid and lipoprotein abnormalities
I05-I59 I05 Circulatory Systems
I60-I69 I60 Cerebrovascular disease
I70-I72 I70 Atherosclerosis
I73-I74 I73 Peripheral vascular diseases
Others others All other diseases

Table 4.2: Selected disease groups for hospital discharge data.

4.4.1 Principal component analysis

Principal component analysis (PCA) is a popular multivariate method for reducing the
dimensionality of the data while aiming at minimal loss of information. (Jolliffe, 2014)
The data are projected into a lower dimensional space with orthogonal directions, called
principal components (PC), which are linear combinations of the original variables. The
coefficients defining the linear combinations are called loadings, and they allow for an
interpretation of the PCs. Loadings and scores from a PCA can be used to construct
a biplot, which provides a joint interpretation of variables and observations. (Gabriel,
1971)

Standard PCA is defined in the Euclidean geometry and can lead to biased results when
the relevant information is contained in the ratios between the compositional parts.
(Filzmoser et al., 2009a) Since the D−1 ilr coordinates capture all relative information of
the D compositional parts, the space spanned by these coordinates is appropriate for PCA.
Using ilr coordinates also avoids the mentioned collinearity problem of clr coefficients,
and it is thus possible to perform robust PCA which downweights the effect of outlying
observations. (Filzmoser et al., 2009a) For the interpretation of the results it is common
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to transform loadings and scores to the clr space, which leads to the compositional biplot.
(Aitchison and Greenacre, 2002) In the biplot representation, the information related
to the variables (disease groups) is shown by rays, and the information related to the
observations by the abbreviations of the districts at the appropriate positions. The most
important properties are:Kynčlová et al. (2016)

• The lengths of the rays are proportional to the standard deviation of the corre-
sponding variables expressed as clr coefficients.

• The links between the vertices of the rays represent the standard deviation of the
log-ratios between the involved compositional parts.

• The orthogonal projections of the observations on the rays represent the clr coeffi-
cients.

Figure 4.3 (left) shows the clr biplot resulting from a robust PCA on the hospital discharge
data. The presented first two PCs explain 75% of the variance. Along the first PC with
60% explained variance, a clear grouping of the districts is visible. This PC is mainly
determined by relative information of I70 and I73 (see Table 4.2 for the abbreviations). In
more detail, high scores on the first PC refer to a dominance of atherosclerosis (I70-I72),
and/or to an absence of peripheral vascular diseases (I73-I74). Figure 4.4 shows the
scores in a map, and the high scores in dark gray concentrate mainly in the districts
of Styria in the south-east of Austria. It may be difficult to interpret the reason for
this behavior; one of the possible explanations would be that in Styria the system for
coding this information is different to other regions – at least for the coding of I70-I72
and I73-I74.

The right plot of Figure 4.3 shows the results of robust PCA applied on the original
(robustly scaled) data, i.e. on the preprocessed raw data information. The explained
variance is somewhat lower (67%). Since the rays are arranged in just the left part of the
plot, one would conclude that the variables tend to be positively correlated. This is an
artifact of the geometry when it is assumed that the geometry of the sample space is the
standard Euclidean geometry in RD, and a consequence of the spurious correlation, and
it is a typical phenomenon for PCA applied to compositions. (Reimann et al., 2008) In
this biplot, low values on the first PC point at districts with high hospital discharges in
most considered disease groups. The second PC has similarities to the first PC from the
compositional approach, but referring to the raw data information. The relation between
I73 and C is rather weak according to the log-ratio approach, while it seems to be very
strong when analyzing raw data information.

4.4.2 Outlier Detection

The biplot in Figure 4.3 (left) reveals some districts such as RA (Bad Radkersburg)
that are deviating from the data majority. These districts could be denoted as outliers.
However, the biplots only show a two-dimensional projection of the data and may thus
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Figure 4.3: Biplots of first two robustly estimated principal components, expressed in clr
coefficients (left plot) and robust PCA for raw data information (right plot).
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Figure 4.4: The first robustly estimated principal component for clr coefficients. The
breaks of the gray scale are defined by the quantiles 0.05, 0.25, 0.50, 0.75 and 0.95,
yielding six classes.
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hide the position of other outliers in the remaining data structure. Moreover, there is no
threshold value available that allows to distinguish outliers from regular observations.

Multivariate outlier detection is usually based on Mahalanobis distances (MD), a distance
measure that accounts for the joint covariance structure of the data. (Mahalanobis, 1936)
For a given data matrix X, the MD of observation xi, for i = 1, . . . , n, to the data center
T (X) with respect to the covariance C(X) is defined as

MD(xi) =
√

(xi − T (X))′C(X)−1 (xi − T (X)), (4.6)

where T denotes the location estimator and C stands for the covariance estimator of X.
Note that if C(X) is equal to the identity matrix (uncorrelated variables with variance
one), the MD reduces to the Euclidean distance of an observation to the center. A
large MD indicates that the observation is far away from the center with respect to the
joint covariance structure, and thus the observation is a candidate for a univariate or a
multivariate outlier. It is essential that both T and C are robust estimators in order to
avoid the influence of the outliers on the estimation of location and covariance. Here, the
MM-estimator for location and covariance is used (Yohai, 1987), leading to highly robust
and efficient estimators.

A cut-off value for the identification of outliers can be determined by the distribution of
the squared MDs, which are approximately χ2 distributed with D degrees of freedom if
the data are multivariate normally distributed. (Rousseeuw and van Zomeren, 1990) It is
common to use the quantile 0.975 of that distribution as a cut-off value, i.e., observations
with larger squared MD than the 0.975 quantile of the χ2

D are declared as outliers.

The discussed methodology for outlier detection needs to be modified if the interest is in
relative rather than in absolute information. In this case, the data need to be expressed
in ilr coordinates, as it has been done for PCA. Equation (4.4) can be used for this
purpose, resulting in the observations zi, for i = 1, . . . , n, which form the rows of the
matrix Z. Equation (4.6) then modifies to

MD(zi) =
√

(zi − T (Z))′C(Z)−1 (zi − T (Z)), (4.7)

where T (Z) and C(Z) are robust estimators of location and covariance, respectively, for
the ilr coordinates. The outlier cut-off value is the 0.975 quantile of the χ2

D−1 distribution,
since the number of columns in Z is only D − 1. It has been shownFilzmoser and Hron
(2008) that the MDs from Equation (4.7) remain the same, independent of the choice
of the ilr coordinates, as long as T and C are affine equivariant estimators, such as
MM-estimators. Note that using clr coefficients rather than ilr coordinates would cause
numerical difficulties for MM-estimators due to their collinearity.

The discussed methodology for outlier detection is applied in the following to the hospital
discharge data described earlier in this section. Our aim is to compare the results for
outlier detection for the conventional approach based on the original data information,
and for the log-ratio approach. The former MDs are shown on the horizontal axis of
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Figure 4.5, while the latter MDs are presented on the vertical axis. The corresponding
outlier cut-off values are shown as solid lines, and they divide the plot into four quadrants:
(1) regular observations with respect to both methods in the lower left quadrant, (2)
outliers for both methods in the upper right quadrant, (3) outliers from the raw-data
point of view, but regular observations for the log-ratio approach in the lower right
quadrant, and (4) outliers for ilr coordinates but regular observations for the absolute
information in the upper left quadrant. These four cases are distinguished by different
gray scales in the regional presentation of the information in Figure 4.6. Overall, there are
no clear spatial patterns visible in the map. From Figure 4.5 one would also conclude that
both sources of information lead to a joint trend for the MDs, and differences concerning
outlyingness are only in few districts. However, the interpretation of outlyingness is
different.
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Figure 4.5: Multivariate outlier detection for the hospital discharge data based on
robust Mahalanobis distances using raw data information (horizontal axis) and relative
information expressed in ilr coordinates (vertical axis). Outlier cut-off values are shown
as solid lines.
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Regional Outliers
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Figure 4.6: Outlying districts in the hospital discharge data according to the results
shown in Figure 4.5 for absolute (raw) and relative (ilr) information.

This interpretation is supported by the plots in Figure 4.7 and 4.8. The single graphics
show univariate scatterplots (the horizontal axes are randomly generated values) of
the variables involved in the computation of the MDs. Accordingly, Figure 4.7 shows
univariate scatterplots of the columns of X for the raw data information, and Figure
4.8 represents the relative information in terms of ilr coordinates constructed for each
compositional part (see end of Section 4.2). In these presentations, dark gray symbols for
the district abbreviations refer to outliers according to the corresponding MDs. Figure
4.7 shows that for variable I70 the district TA (Tamsweg) is an upper outlier: TA has a
much higher number of hospital discharges for I70-I72 than all other districts (at least
twice as high). Figure 4.8 also reveals TA for I70 as extreme value, but the interpretation
is that for TA, the discharges for I70-I72 are dominating, relative to the other discharge
groups. Figure 4.7 reveals WL (Wels-Land) on the upper extreme for several discharge
groups, thus this district has exceptionally high discharges in those groups, compared to
the other districts. Compared to the other discharge groups, however, and thus looking at
relative information, WL is no longer extreme, see Figure 4.8. From the plots it can also
be seen that the multivariate outliers are not necessarily outliers in the single dimensions.

4.5 Regression modeling

While the previous sections focused more on exploratory tools to investigate differences in
the conventional and the log-ratio approach, this section shows differences for regression
modeling, since regression is a widely used tool in statistics. We make use of both data
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Figure 4.7: Univariate scatterplots of the hospital discharge data as raw data; outliers
are coded in dark gray.

sets introduced previously, and try to explain deaths caused by circulatory systems,
see Table 4.1, by the hospital discharge data, see Table 4.2. The response variable is
treated as absolute information, given in form of the (standardized) risk rate. In the
first case, the explanatory variables, contained in the matrix X, are (standardized)
frequencies of hospital discharges. In the log-ratio approach, the ilr variables contained
in the matrix Z are used as regressor variables. In both cases, robust regression based on
the MM-estimator is applied (Yohai, 1987), and robust inference as implemented in the R
package robustbase is carried out. (Rousseeuw et al., 2016) In the log-ratio approach,
robust inference is applied to the single ilr variablesHron et al. (2012), as implemented
in the R package robCompositions. (Templ et al., 2016) This means that specific ilr
coordinates are constructed, using Equation (4.4), by putting the variable of interest to
the first position (see end of Section 4.2). Thus, for D compositional parts, D ilr bases
are constructed, and for each basis, regression is applied. The regression inference (test
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Figure 4.8: Univariate scatterplots of ilr coordinates of the hospital discharge data;
outliers are coded in dark gray.

if the regression parameter is zero) is then just reported for this first ilr variable.

The results are shown in Table 4.3 (absolute information) and Table 4.4 (log-ratio
approach). In both cases, the model fit in terms of the multiple R-square is rather low.
On the other hand, it might have been surprising if death rates could be well explained
just by hospital discharges, and thus this example should rather be considered as an
illustration of differences between two approaches. Looking at the significance of the
variables (last column in the tables), for the approach based on absolute information, the
terms intercept, E78 and I05 are significant, based on a significance level of 5%. In
the log-ratio approach, the significant terms are E78, I05, and the remaining diseases
(others). E78 (lipid and lipoprotein abnormalities) are regarded as a modifiable risk factor
for cardiovascular disease due to their influence on atherosclerosis, and I05-I59 refer to
diseases of the circulatory systems. Both are thus logical candidates for being significant
in the regression. The essential difference in the outcome is thus in the variable “others”.
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4.6. Summary and conclusions

Estimate Std. Err. t value Pr(>|t|)
(Intercept) -0.8741096 0.0888319 -9.840 0.000
I60 0.0290419 0.0327317 0.887 0.377
C -0.0005565 0.0039548 -0.141 0.888
E10 0.0276863 0.0208307 1.329 0.187
I73 0.0247177 0.0538451 0.459 0.647
E66 0.0106079 0.0231088 0.459 0.647
E78 -0.0304454 0.0140143 -2.172 0.032
I70 -0.0185205 0.0191972 -0.965 0.337
I05 0.0133381 0.0045693 2.919 0.004
AB -0.0004597 0.0151218 -0.030 0.975
others -0.0012793 0.0008483 -1.508 0.135

Robust residual standard error: 0.1642
Multiple R-squared: 0.35, Adjusted R-squared: 0.28

Table 4.3: Results of the robust regression analysis for modeling the absolute death rate
caused by circulatory systems by raw hospital disease data.

The negative sign of the estimated coefficient means that the under-dominance of the
remaining diseases leads to higher death rates of circulatory systems, and dominance of
“others” causes lower circulatory system death rates. Note that “others” refers to the
corresponding ilr variable, expressing all relative information of “others” to the remaining
compositional parts, including E78 and I05, see Equation (4.4). Also E78 and I05 are ilr
variables in the log-ratio approach, thus expressing all relative information about these
compositional parts. Since the absolute frequencies in “others” are high, compared to
the remaining variables (see scale in the plots in Figure 4.7), it can be expected that
a change in this variable will have some consequence on the other variables, i.e. more
hospital discharges for other diseases will affect the number of discharges of the considered
disease groups. Therefore, considering (log-) ratios of the variables as regressors might
make more sense than using the variables in the model, isolated from each other. The
log-ratio approach accounts for the interplay between the variables in a natural way, and
the interpretation of the resulting model in terms of relative contributions rather than
absolute ones is more intuitive.

4.6 Summary and conclusions

We have demonstrated different possibilities for analyzing health care information, such
as frequencies of different diseases or death rates. There are big conceptual differences
if the reported (appropriately normalized) absolute numbers are analyzed, or if ratios
between the different variables (disease groups) form the source of information for the
analysis. The latter case leads to analyzing relative information, with consequences for
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Estimate Std. Err. t value Pr(>|t|)
(Intercept) 1.05114 0.63858 1.646 0.103
ilr(I60) 0.14114 0.09423 1.498 0.137
ilr(C) -0.10876 0.07717 -1.409 0.162
ilr(E10) 0.19479 0.13227 1.473 0.144
ilr(I73) 0.04556 0.05421 0.840 0.402
ilr(E66) 0.11214 0.08876 1.263 0.209
ilr(E78) -0.20675 0.07023 -2.944 0.004
ilr(I70) -0.02432 0.05849 -0.416 0.678
ilr(I05) 0.40531 0.12981 3.122 0.002
ilr(AB) 0.02246 0.12318 0.182 0.855
ilr(others) -0.58318 0.18265 -3.193 0.001

Robust residual standard error: 0.1642
Multiple R-squared: 0.36, Adjusted R-squared: 0.30

Table 4.4: Results of the robust regression analysis for modeling the absolute death rate
caused by circulatory systems by ilr coordinates of the hospital disease data.

the methodology and for the interpretation. The well-established log-ratio approach
not only leads to desirable properties such as scale invariance, it also allows to work
in the usual Euclidean geometry, where the standard statistical methods are designed
for. It is unpredictable if the numerical results of an analysis of absolute or relative
information differ, but it is clear that the interpretation of the results is different. When
absolute information is in focus, one can interpret the involved variables isolated from
each other, and think in terms of the measured unit. In contrast, variables involved
in a log-ratio analysis always need to be interpreted in a relative sense, typically in
terms of dominance of one variable with respect to the other variables. In this way, one
variable is never isolated from the rest, but always considered in a multivariate context by
incorporating other available information. In many cases, this might be more appropriate
for analyzing epidemiological data. For example, the log-ratio approach allows to analyze
and compare the whole “risk profile” of certain diseases among different regions even
if the total sum differs (different population sizes, different health conditions, different
health care systems, etc.). Normalization with respect to such effects is not necessary
with this approach since the resulting ratios would not change, but it would be crucial
for an analysis of the absolute information.

Summing up, the log-ratio approach is recommended in epidemiology if certain variables
need to be directly related to each other. Since all pairwise relationships are taken into
account, the analyzed information is of high granularity, leading to a more comprehensive
picture. In some cases even just one ratio of a part to another part can vary in neighboring
districts indicating regional differences. This information can be a promising indicator
for decision makers. However for a correct conclusion a detailed analysis of all log-ratios
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to that part, or the corresponding clr variable need to be considered. A “traditional”
approach which investigates the variables as proportions to a total, for instance, is not
wrong in a strict sense, but does not make use of the granularity of the multivariate
information. Using exclusively this proportional information for investing into the
infrastructure of a region with a high proportion on a certain disease thus ignores
information that might be relevant for developing more general strategies. Log-ratios, on
the other hand, ignore the absolute values (e.g. if a proportion on a disease is high in
a district), and thus a combination of both sources of information may be the optimal
support for decision makers.

All methods for compositional data analysis considered here can be carried out with the
R package robCompositions. (Templ et al., 2016)
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