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Abstract

Nowadays structured products have become an important component on capital markets
worldwide. This thesis is about a new designed structured product which is called traffic
light option. First, there will be a short introduction about structured products and some
historical developments. Then, in accordance with previous works of Thomas Kokholm
and Peter Lgchte Jgrgensen, it is a more detailed approach to pricing of and hedging with
traffic light options in the LIBOR market model. At the end, a simulation regarding the
pricing and an example for hedging will be run.
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Chapter 1

Introduction

Derivatives, options and structured products are financial vocabularies and there are no
simple definitions. Economists, accountants, lawyers, and government regulators have
all struggled to develop a precise definition for derivatived] Imprecision in the use of
the term, moreover, is more than just a semantic problem. It is also a real problem for
firms that must operate in a regulatory environment where the meaning of the term often
depends on which regulator is using it.

Although there are several competing definitions, we define a derivative as a contract
that derives most of its value from some underlying asset, reference rate or index. As our
definition implies, a derivative must be based on at least one underlying. An underlying
is the asset, reference rate or index from which a derivative inherits its principal source
of value. Falling within our definition, there are several different types of derivatives,
including commodity derivatives and financial derivatives.

A commodity derivative is a derivative contract specifying a commodity or commodity
index as the underlying. For example, a crude oil forward contract specifies the price,
quantity, and date of a future exchange of the grade of crude oil that underlies the
forward contract. Because crude oil is a commodity, a crude oil forward contract would
be a commodity derivative.

A financial derivative is a derivative contract specifying a financial instrument, interest
rate, foreign exchange rate, or financial index as the underlying. For example, a call
option on IBM stock gives its owner the right to buy the IBM shares that underlie the
option at a predetermined price. In this sense, an IBM call option derives its value
from the value of the underlying shares of IBM stock. Because IBM stock is a financial
instrument, the IBM call option is a financial derivative.

In practice, financial derivatives cover a diverse spectrum of underlyings, including stocks,
bonds, exchange rates, interest rates, credit characteristics, or stock market indexes.
Practically nothing limits the financial instruments, reference rates, or indices that can
serve as the underlying for a financial derivative contract. Some derivatives, moreover,
can be based on more than one underlying, a definition for structured products. For
example, the value of a financial derivative may depend on the difference between a
domestic interest rate and a foreign interest rate (i.e. two separate reference rates) or as
seen in the master thesis on an interest rate and a stock portfolio.

lsee [KO14]



Chapter 2

Structured products

2.1 Definition

Structured products are designed to facilitate highly customized risk-return objectivesf_-]
This is accomplished by taking a traditional security, such as a conventional investment-
grade bond and replacing the usual payment features e.g. periodic coupons and final
principal with non-traditional payoffs derived not from the issuer’s own cash flow but
from the performance of one or more underlying assets.

The payoffs from these performance outcomes are contingent in the sense that if the
underlying assets return value ”"x”, then the structured product pays out "y”. Hence,
structured products closely relate to traditional models of option pricing; Though they
may also contain other derivative types such as swaps, forwards and futures as well as
embedded features such as leveraged upside participation or downside buffers.
Structured products originally became popular in Europe and have gained currency in the
U.S., where they are frequently offered as SEC-registered products, which means they are
accessible to retail investors in the same way as stocks, bonds, ETFs (Exchange Traded
Funds) and mutual funds. Their ability to offer customized exposure, including hard-to-
reach asset classes and subclasses, make structured products useful as a complement to
these other traditional components of diversified portfolios.

There are three main types of structured productsE]:

1. the privately placed and individually negotiated transactions that are done for a
single investor or a very small number of investors.

2. those that are sold to the public through retail networks, such as bank branches of
financial advisers.

3. products listed and traded on public exchanges or otherwise widely available to
retail investors and institutional clients alike.

For further information, I highly recommend the book ”Structured Products-Evolution
and Analysis” by Clarke Pitts, who gives a deeper insight to the evolution of structured
products.

see [Lam16]
Zsee [Pit13]



2.2 History of Options

The very first options and futures were traded in ancient Greece, when olives were sold
before they had reached ripeness. Thereafter, the market evolved in the following way.

16th centuryf} Ever since the 15th century tulips, which were liked for their exotic
appearance, were grown in Turkey. The head of the royal medical gardens in Vienna,
Austria, was the first to cultivate those Turkish tulips successfully in Europe. When he
fled to Holland because of religious persecution, he took the bulbs along. As the new
head of the botanical gardens of Leiden, Netherlands, he cultivated several new strains.
It was from these gardens that avaricious traders stole the bulbs to commercialize them
because tulips were a great status symbol.

17th century: The first futures on tulips were traded in 1630. As of 1634, people
could buy special tulip strains by the weight of their bulbs; For the bulbs, the same value
was chosen as for gold. Along with the regular trading, speculators entered the market
and the prices skyrocketed. A bulb of the strain “Semper Octavian” was worth two wag-
onloads of wheat, four loads of rye, four fat oxen, eight fat swine, twelve fat sheep, two
hogsheads of wine, four barrels of beer, two barrels of butter, 1,000 pounds of cheese,
one marriage bed with linen and one sizable wagon. People left their families, sold all
their belongings, and even borrowed money to become tulip traders. When in 1637, this
supposedly risk-free market crashed, traders as well as private individuals went bankrupt.
The government prohibited speculative trading; the period became famous as Tulipmania.

18th century: In 1728, the Royal West-Indian and Guinea Company, the monopo-
list in trading with the Caribbean Islands and the African coast issued the first stock
options. Those were options on the purchase of the French Island of Ste. Croix where
sugar plantings were planned. The project was realized in 1733, and paper stocks were
issued in 1734. Along with the stock, people purchased a relative share of the island and
the valuables as well as the privileges and the rights of the company.

19th century: In 1848, 82 businessmen founded the Chicago Board of Trade (CBOT).
Today it is the biggest and oldest futures market in the entire world. Most written doc-
uments were lost in the great fire of 1871, however, it is commonly believed that the
first standardized futures were traded as of 1860. CBOT now trades several futures and
forwards. Not only T-bonds and treasury bonds are traded there but also options and
gold. In 1870, the New York Cotton Exchange was founded. In 1880, the gold standard
was introduced.

20th century: In 1914, the gold standard was abandoned because of the war.

In 1919, the Chicago Produce Exchange which was in charge of trading agricultural
products was renamed to Chicago Mercantile Exchange. Today, it is the most important
futures market for Eurodollar, foreign exchange and livestock.

Most developments in terms of option markets and products were done from the 1970s
to 2000.

3see [Wys07, Ch.1]




21th century: Now, structured products are frequently used in financial markets. There
are hardly boundaries in variety and combinations. As we can see in the following Fig.
the peak of sold structured products was in 2007, right before the housing bubble
and credit crisis in 2008. Driven by cost pressure and new regulations, the amount of
structured products, which were bought, descended very dramatically from almost $250bn
in 2007 to about $100bn nowadays. Despite that fact, the number of structured products
issued is almost constantly increasing.
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Figure 2.1: Structured products sales and issuance 2005-2014

4Source:Research Report for OIC (The Options Industry Council)-Analysis on Structured Products
and Listed Equity Options in Europe 2015. For more details: http://www.optionseducation.org/
content/dam/oic/documents/literature/files/srp-part1-2015.pdf


http://www.optionseducation.org/content/dam/oic/documents/literature/files/srp-part1-2015.pdf
http://www.optionseducation.org/content/dam/oic/documents/literature/files/srp-part1-2015.pdf

2.3 Goals and purposes

The main goals and purposes of structured products areﬂ

1. Arbitrage: Both investors and issuers can carry out arbitrage trades with derivatives
and underlying assets by means of structured products.

2. Investment restrictions: Such groups of investors as pension and mutual funds and
insurance companies can access derivatives transaction via structured products.

3. Taxation and accounting: Structured products are easy from the perspective of
accounting and taxation as they are considered as a separate security and the value
of derivatives is already included in the product price.

4. Creation of products ”a la carte”: The freedom of products’ creation is pretty
unbounded. They are customised to fit the unique requirements of investors.

5. Hedging: They can be used not only for investments but also as hedge of positions
against market risks.

6. Access to new markets: Investors can access exotic instruments and new markets
with the help of structured products. For instance the assets and instrument of
developing markets that would otherwise be difficult for investors to access directly.

7. Cheap funding source: Part of funds, intended for fixed income investment, can be
used by the issuer for its own financing more cheaply than the market rates.

2.4 Classification

In this section, I determine the classification of structured products which I have to
consider while talking in terms of structured products:

1. By levels of principal protection:
On degree of protection of the capital, the following products can be divided:

e Pricipal-protected products: Those products provide full protection of the
initial capital, not depending on the underlying asset’s price move.

e Partially protected products: In this case the return of initial capital is guar-
anteed only at certain level in the form of percent against originally invested
sum.

2. By quantity (periodicity) of payments:
e Coupon products: Throughout the whole period of a product’s life, those

instruments provide more than one payment like usual bonds.

e Non-coupon products: Those products provide only one payment at the matu-
rity date, which includes both the return of initial capital and profit-and-loss
amount.

Sfor a more detailed insight see [OmeQ9)



. By type of underlying asset:
Among underlying assets to which the product can be linked to, the following assets
can be mentioned:

e Security, interest rate, currency, index, commodity, basket of assets (curren-
cies, securities, commodities), credit quality, volatility, spread, consumer price
index and other macroeconomic indicators, property price index.

. By the form of a structured product:
Structured products can be issued in the following forms:
Security, Deposit and Fund.

. By the type of investor:
Each structured product is prepared for its own predetermined group of investors
and customers. It is possible to outline three basic groups of investors:

e Retail group: group of mass consumer.

e Group of institutional investors: among them are large investment banks,
mutual and pension funds and state funds.

e Individual investors: group of wealthy consumers.

. By behaviour of the underlying asset:
Structured products’ payoffs depend on dynamics of the underlying asset they are
linked to. The following behaviour models can be defined:

e Growth/falling
e Lateral movements
e Occurrence/non-occurrence of an event

e High/low volatility

. By degree the payoff depends on the price path of the underlying asset:
Payoffs of structured products can be either defined by the value of a variable at the
maturity date or the value of a variable throughout all the life time of a product.
Thus, the payoff can be independent and dependent upon the price path of the
underlying.

. By the payoff functions:

The basic peculiarity of structured products is their core element: derivative fi-
nancial instruments. Almost all derivatives can be used for creation of structured
products. The type of derivatives and their combinations do certainly define the
payoffs’ functions that differ one product from another. The given criterion is the
most complex for definition. Having investigated the products offered on the mar-
ket, the following types or payoff functions can be detached:

e Tracking functions: Their payoffs are fully defined by the movement of the
underlying asset and its change of 1 percent provides 1 percent change in price
of the product. Example: Protected Tracker



e Leveraged functions: Financial leverage is used. Those products bear a risk
of a partial loss of the initial capital. Example: Leverage long with stop loss
note.

e Basket functions: Payoffs are defined here by dynamics of one asset versus a
basket of underlying assets. Example: Altiplano note

e Functions with floating parameters: Here the main parameters can be changed,
for example, a strike, when the underlying asset has overcome a certain level.
Example: Cliquet note.

e Fixed payoff functions: Payments in this case are fixed. Example: Reverse
convertible.

e Swap functions: Within those functions the payoffs are defined by spreads
between prices (values) of certain underlying assets or by their volatility. FEx-
ample: Dispersion note.

The disclosure of mentioned indicators and their detailed description will allow all market
participants to outline the borders and possibilities of market’s functioning and further
development more accurately. It is worth mentioning at least three fields where the
disclosure of information mentioned above is highly necessary:

e Creation of investment memorandum at the stage of product launching.

e Placement of restrictions and limits on structured products by the regulating au-
thorities. This thresholding can be used in relation to institutional investors, mutual
and pension funds. Market members need similar thresholding criteria as well.

e Ranking of structured products by independent associations and organisations in-
cluding rating of products.

In Fig. all different parameters are depicted in terms of structured products.
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Chapter 3

Pricing of Traffic Light Options

3.1 Introduction of Correlation Options

The main part of this master thesis is about an innovative structured product which was
independently developed by several London-based investment banks, such as Dresdner
Kleinwort Wasserstein and Goldman Sachs International[]

The sharp decline in the stock market that occurred in early 2000 and the subsequent
drop in interest rates weakened companies’ financial strength. Many companies saw a
substantial decrease in their margin for risk taking when their risk-bearing capital was
eroded.

In 2001 the Danish Supervisory Authorities developed a new supervising tool which
includes a traffic light scenario in order to measure companies’ state of solvency. This
tool consists of different scenarios where both the interest rate level and stock prices fall
simultaneously. Shocks of real estate values are usually ignored since it is not practical,
and real estate investments constitute an insignificant part of total portfolios. Especially,
the Danish Life and Pension (L&P) sector is exposed in these scenarios.

There are two main reasons for L&P companies:

1. The duration is typically much longer on the liability side than on the asset side
making the company exposed to negative shocks to interest rate levels.

2. Many L&P companies have issued guarantees on policy holder contributions which,
with the low interest rate levels today, forces the companies to invest in the stock
market in order to capture the higher return here.

This investment behaviour exposes the companies to negative shocks of the stock
market.

Companies which ignored to take adjustments in their risk exposure in accordance with
the new rules introduced in mid-2001 had to report the red light statug? after the equity
markets collapse after 79/11”.

see [Kok09]

2see Def.

11



After more than a decade of falling interest rates, L&P companies finally initiated

hedging strategies involving the purchase of protection against further interest rate drops
in the form of derivatives. The reported market value of Danish L&P companies holdings
of financial derivatives increased from 0 in the first half of 2000 to USD 14.5bn in the late
of 2005 F]
The fundamental idea behind these instruments has been to construct derivatives which
pay off in the traffic light scenarios in such a way, that however over-hedging is avoided.
Over-hedging may result if the L&P company buys protection against downside interest
rate and stock market risk separately. Thus the challenge is to structure products which
pay off more when interest rates and stock prices fall simultaneously and less when only
one of the variables moves adversely.

3Source: Danmarks Nationalbank, https://www.nationalbanken.dk. For comparison the 2005-
position in derivatives corresponds to about 5% of the total market value of Danish L& P companies’
liabilities which were estimated at DKK 1842bn in the same quarter.

12
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Definition 1 (Traffic light scenarios).

There are 2 stress-test scenarios on the base capital of companies to point out the solvency
state:

1. Red light scenario involves:

° 70bpsﬁ| decrease in interest rates,
o 12% decline in general stock prices and

o 8% decrease in real estate investment values.

If an L& P company’s base capital falls below a given critical level in this scenario,
then the company s categorised with red light status.

Consequences: In practical, this implies strict monitoring by the DFSA, and the
company will be required to submit more frequent (monthly) solvency reports.

2. Yellow light scenario involves:

e 100bps decrease in interest rates,
e 30% decline in general stock prices and

o 12% decrease in real estate investment values.

If an L& P company’s base capital falls below a given critical level in this scenario,
then the company is categorised with yellow light status.

Consequences: The company will be required to submit quarterly solvency reports.

3. Green light scenario:
A company which can withstand the yellow light scenario without experiencing sol-
vency problems will operate in the green light status.

There are no additional consequences on the reporting side for green light com-
panies.

Definition 2 (Correlation options).
In general, correlation options are represented as the following payoff:
(ST — g)+]1RT>R or (S - ST)+1R>RTa
with given strike levels S and R. Sy and Rp are the values of the assets at maturity T.

In this framework we model European style correlation options.

40ne basis point is equivalent to 0.01% (1/100th of a percent) or 0.0001 in decimal form.

13



Another variation leads us to:

Definition 3 (Payoff structure of correlation options).

(S—Sr)*-(R—Ry)*,
_J(S=Sp)t - (Rr — R)*,

C(Sr,Rr) = (Sr— 3)" - (R - Rp)*. (3.1)
(Sr—S)* - (Rr — R)Y,

with given strike levels S and R.

Remark. The question of alternative definitions for the traffic light option payoff arises.
In [Jor07, Ch.2] is a short discussion of other possibilities, i.e. Joergensen stated, that

aS(t) — bL(t),

with suitable chosen constants a and b and a put option on that variable would be an
alternative. Another piecewise linear payoff function could be obtained by specifying

C(Sr, Rr) = a[g - ST]+1R>RT + b[R - RT]+ILS'>ST>

but to the best of Joergensen’s knowledge, none of these linear structures are seen in
practice and therefore not further analysed.

This discussion came up through comments from referees and by discussions with members
of the Structured Products group at Goldman Sachs International.

Investment bankers offering these structured products stated that the multiplicative payoff,
given by , fits the needs for clients best since over-hedging is avoided.

3.2 Model Framework

In this section, a framework of the basic traffic light option will be introduced with
dependence on both an underlying stock portfolio and an underlying benchmark interest
rate. Due to the fact that the most common and important benchmark interest rates in
the financial industry are the London Inter-Bank Offered Rates (with different maturities)
or LIBOR, we will use these rates for pricing.

Basic assumptions:

e The existence of a filtered probability space (€2, F,F,P) with the physical probabil-
ity measure P.

e Efficient and perfect market conditions are assumed.

e The settlement dates are given by 0 < Ty < T} < --- < T,, which is called the tenor
structure.

e Length between two tenor dates: 7, =T; — T;_;.

14



Definition 4 (Zero-coupon bond).

A T-maturity zero-coupon bond (ZCB) is a contract that guarantees its holder the payment
of one unit of currency at time T with no intermediate payments. B(t,T) is defined as
the contract value at time t < T and B(T,T) =1 for all T € R, is also known as the
face value of the ZCB.

For all tenor dates T; from 0 < j < n we denote B(0,7}) as the ZCB maturing at time
T.

g

Definition 5 (Forward LIBOR rates).

1 ( B(tT)
B<t7T%+1

Li(t) := 7 1) Vi=1,---,n, (3.2)

Ti+1
is the simply compounded forward interest rate from T; to T;11, as seen at time t < T;.

Proposition 1 (Forward measure Q7+ =: Q*!).

If the market is arbitrage-free, then for every i = 1,--- ,n, there exists an equivalent
martingale measure denoted by QT+ with given numeraire B(t,T;y1), under which the
LIBOR rate process L;(t) is a martingale.

Definition 6 (Terminal measure Q7+ =: Q"1).

For i = n follows that Q™" is the last equivalent martingale measure and it is called
the Terminal measure. As we obtained, under this measure, the last forward LIBOR rate
process L, (t) is a martingale.

Definition 7 (Numeraire). [

A numeraire is a price process or asset N(t)o<i<r, which is strictly positive for all t €
[0,T]. Numeraires are used to express all prices in a market. In this work we consider
mostly T;-bonds or discrete bank accounts as numeraires.
Definition 8 (Equivalent martingale measure (EMM)).
Let (2, F,P) denote the probability space as before. The set of EMM s the set of proba-

bility measures Q1 with the following properties:

1. Q! is equivalent to P, i.e. both measures have the same nullsets, for all i =
1,---,n.

2. the forward LIBOR rates L;(t) are martingales under Q1 for alli =1,--- n, i.e.
EQi+1[ Li®) ]-"S} — L) for all s < t.

B(t,Ti+1) B(S,Ti+1)

The definition of the EMM implies the need for a theorem that connects non-existence
of arbitrage opportunities and completeness with equivalent martingale measures.

Ssee [Kajo4]
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Theorem 1 (Unique EMM).

A market is free of arbitrage opportunities and every claim is attainable if for every choice
of numeraire there exists a unique EMDM.

Other representation of the forward LIBOR rates leads td|

B Ty Li(t) — (B(t,m—B@,mn) L

Ti+1

this represents the price of a tradeable asset (difference between two discount bonds with
notional amounts i) As such, when its price is expressed with respect to the numeraire
B(t,T;11), it has to be a martingale under the corresponding measure

QT+t =: Q! (Forward measure).

Hence, L; is modeled according to a diffusion process under the forward measure Q**:
dLi(t) = Li(t)\i(t)dW™ 1 (t), foralli=1,--- n, (3.3)

where Wit is a Brownian motion under Q! and since we are in the log-normal LIBOR
market model, the diffusion term L;(t)\;(t) is given by some deterministic function \;(¢)[]
Each of these stochastic differential equations is called the LIBOR Market Model for the
forward LIBOR rate process L;(t) under the equivalent martingale measure Q'

Remark. The solution of these stochastic differential equations(SDE) is given by

1 [t ¢ .
Li(t) = L;(0) exp (—5/ \i(s)2ds +/ /\i(S)dW;“) =1 n.
0 0

We get this explicit solution of each SDE by applying Itd's Formula to the process L;(t)
using the function f(t,z) =log(x) or f(t, L;(t)) = log(L;(t)).

Apply Tto:
F(t.0) = tow(r) = 0y =0, Pty = %(t,x) -
df(t, ) = 58—{@, 2)dt + g—iu, 2)de + %%@, 2)d[, 2]
Now inserting Li(t) leads to:
d1og(Li(1)) :g—];dt 4 g g dL(1) + %gz;d[@, L
—0dt + L%(Li(t)/\i(t)dwi“(t)) + %( - L,»(lt)Q) (L(6)2A()2d8)

(AW (E) — %)\i(t)dt. 0

bsee [BMO6], p. 208
“will be discussed later in Section

16



Theorem 2 (Martingale pricing).

Suppose the equivalent martingale measure QN connected with the numeraire N(t) is
chosen. The price process w(t) of any attainable claim C(.) is given by the martingale
pricing formula:

m(t) = N(t)EY" [%‘]—}} (3.4)

In our setup, the pricing of a T;-claim C'(S(T1),...,S(Ti41), Lo(To), - .., Ln(T3)) is
considered where S denotes some stock portfolio with ¢ < n. Now we can use the
martingale pricing theorem formula (3.4) to get:

1

m(t) = N(t)E®" T

C(S(To), - .-, S(T3), Lo(To), - - -, Lu(T3))| F2 |, (3.5)

where N = N(t)o<i<7, is a strictly positive price process, for the change of measure as a
numeraire.

Now the question of what numeraire N (or equally what EMM Q) naturally arises.
The fact, that L, is a martingale under Q7»*! =: Q"*! with given dynamics leads
us to the obvious choice of the ZCB maturing at time 7,,,; as the intuitive numeraire.
The remaining problem is to find the dynamics for S and all other LIBOR rates under
this measure, which will be discussed in section |3.2.1}]

17



3.2.1 Pricing of the traffic light option under the forward mea-
sure

Let us consider the valuation of the traffic light option with 7,,.;- payoff given by the
following theorem:

Theorem 3 (Traffic light option 7}, ;-payoff).
C(S(Tpi1), Ln(Ty)) = [S = S(Tps1)] " - [L = Lu(T)] ™, (3.6)

where S and L are given strike levels and S(T,.1) is the stock portfolio price at time T,
and L,(T,,) is the value of the LIBOR rate at time T,, for the next period T, to T, 1.

Remark. The payoff function is a product of the payoffs as seen in (3.1) of a standard
interest rate floorlet and a plain vanilla equity put option with a European-style payoff
structure.

Due to the previous section, we will now choose the ZCB maturing at time 7, as
numeraire. Now inserting the 7},,-claim from (3.6 in (3.4]) leads us to:

[S’ — S(Tn—i-l)]Jr ) [[_/ B Ln(Tn)]+
B(Tn+1’ Tn+1>

— B(t,Tp.1)EQ"" Hs - %} AL — Lo(T)]*

7(t) = B(t, Ty JEO [

ft} (3.7)

E] . (3.8)

Note that in the framework of the log-normal forward model, the LIBOR rate L, (t) is log-
normal under its own measure. Due to the dependence of the instantaneous development
in the ZCB maturing at T},.; for the stock portfolio price dynamics, we use the fact from

the FTA that the discounted stock portfolio process % is a martingale. Hence,
it is actually the forward stock price by the no-arbitrage assumption in this framework.
S(t)

BOTorD) leads us to the fol-

Assuming lognormality of the forward stock price procesﬂ
lowing two stochastic differential equations:

S\ _ [ S®) et
(grr) = (Fizem) 75" 39
dLn(t) = Ly(tH)\, () dW (1), (3.10)
with
AW Wit (t) = pidt, (3.11)

where p; and o are deterministic functions of time. W' and W4 are defined as the

B
Brownian motion generated from the LIBOR rates respectively the discounted asset price
process with respect to the terminal measure Q"+,

8see Appendix
%s the future stock price, which is discounted by a ZCB
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From our assumptions above we can derive the volatility o; of the discounted asset
price process from market prices on plain vanilla European call options since a closed
form solution is given by a Black 1976 formulalﬂ

_ I+
=S(t)N(dy) — B(t,T)N(ds), (3.12)
where
d ln(B(tS:tr)K) + %0?9
1 — O'S 9
d 1n<B(t%‘)K) - %‘7?9
2 — O'S 9
and

T
2 _ 2
US—/ o, du.
t

Due to the fact of lognormality of the forward stock price process, the volatility of this
process can be derived from quoted prices by inversion of (3.12)). B

The following theorem represents the main result in this paper:
Theorem 4 (Analytical formula for the value of a traffic light option at time ¢).
The T, 1-payoff at time t is given by:

7(S(1), Lu(), psr) =S La(?) {S L M(IHS e Dy, pSL)

o oy

. InS — g InL —
i M(u g Ly pSL) (3.13)
Oy oy
~ InS " InL —
-5 M( e _ PSLOy, = oy; PSL)
Oy Oy
InS — 1y InL—
+ e - M( o _ PSLOy, = PSLOz; PSLH ;
Oy y
where
-~ SB(t,T, Tnt1
S = (7 -|—1)7 0_9262/ O'des,
S(t) ¢
I T,
L= 2 — A2 (s)d
LD’ RTARCC
1 Tn+1 Tn
g = ——/ o2ds, Oy = / TsAn(8)psds,
2 t t
1 [T o
- — = ATL 2d = Yy
Hy 5 /t (5) S, PSL dey’

0for more detailed information see [BMO06].

11

since the price function is monoton and increasing => existence of a inverse function => implicit
volatility.
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and M(.,.,; p) is the cumulative probability of the standardized bivariate normal distribu-
tion with correlation coefficient p.
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Remark. Before we can start with the proof, we need some essential properties of the
standardised bivariate normal distribution:

Suppose:
. X L ol o ))
U= ~ N S I A O I N 3.14
<Y> ((N?) (me oy (3.14)
2

with fig, ,uy,af:,ay and o4y, are the constant mean, variance and covariance coefficients.
The coefficient of correlation is given as:

O-JJ

_ Oay
p=—".
020y

Density of a bivariate normal distribution is given by:

flz,y) = ! ex (—;)
Y _27T0m0'y\/1—7p2 P 2(1—p%) )"

2 2
with z = (M) — 2/)(@) (y—uy> + (y—uy) ‘
Ox Oy oy oy

The standardised bivariate density can be factorized as:

[z, y) = f(x)f(z]y), (3.15)
where
+oo 1 —up?
fz) = - [z, y)dy = i 2 (3.16)
and
+00 1 _ (y—ny)?
fly) = fla,y)de = e

NS OV 2T ’

are the marginal density of x and y.
The conditional density f(y|z) is the density of y conditional on z:

! ex (—;( _ —pay(x— ))2>
Vamo /12 T\ 22— )Y T T, el )

Now we have all properties for the proof:

fylz) =

Proof. 1t is essential that

Ly(t)e" =B (Lo (T,)| 7],

S x _ o { S(Toi1)
e o S A—
B(taTn—H) B(Tn+17Tn+1)

-
. X . o .
holds with <Y> are bivariate normally distributed, independent of F; and
2
() ~(()- (7 %)
Y Hy Oy Uy

21



with

1 [Tr+r 1 (Tn Tr1
pe=y [ s w= g [Cards ot= [ ot
2t 2t t

T, T,
oy = / An(s)%ds and Opy = / TsAn(8)psds.
t t

Now we can use the formula (3.8)) and calculate this expression more in detail:

S(To1) 17 5 +
B(Th1, Tn-l—l)} = L)

— B(t, T, )EY" Hs - %J] L L

w(t) = B(t, Ty )BT HS -

;

.

= S(t)L,(H)EC"" HS _ eX} ’ L -

ft]
= S(t)L(t) - [S’DE@"“H X<y Lier <]

~ n+1 X

_L'EQ [6 1{6X<S}1{6Y<i}]
=~ n—+1

_SEQ [€Y1{6X<§}1{6Y<£}]

+E? [€X6Y1{6X<5}1{6Y<i}]] :

Inserting the argument of lognormality shows the second equality. Redefining S :

SB(t Tn+1) E _ L
Sty T T La(t)

to the last equation.

Now, we evaluate the four expectations in order to find a price of the traffic light option.
Since we are in the framework of standard bivariate normal distribution, we can now use
the basics from the remark above.

First, we compute the first expectation:

and the independence between the variables and the o-algebra lead

EQnH[ﬂ{e&S}ﬂ{eY@}] =Ql(z < S,y <n E)
InS InL
[ sty

InS 1
exp| ———— - z |dydx,
/ /oo 27m$ay V1—p? p( 2(1—p?) ) ’
x— 2 x— — — 2
y— < Nm) —20( ,u:r) (y ,uy) i (y ,uy) ’
Oy O oy oy

T—lg
Ox

with

leads with an appropriate substitution u =

nS—pu, InL—
M( M: o MyapS'L)

Oy Yy

and v = £ to the following result:
Oy
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Second expectation term leads to:

InS InL
EQn+1[€X1{ex<§}ﬂ{ey<i}] = / / e’ f(y) f(zly)dzdy.

Now, the exponent is given by:

Ly —py ’ 1 POg ? L, 1 2 2
- 3 T S 571 oN — Mg — - = Mg = N -2
3 (552 g (e e ) = et g g 2
with the substitution: u = *#* — o, and v = % — pO,.
Then, we get:
nt1 1,2 InS — InL —p
x y

With the argument of the symmetry of the bivariate normal distribution, we can write
the third expectation:

N

n InS — " Inl —
EO _ enthod M(_u ~ pspor, M, ,,SL)

Y
€ ﬂ{eX<§}]l{eY<i}] pn
z y

The last expectation term can be calculated:

InS InL
n+1 T
R [6X6Y1{6X<5*}1{6Y<E}] :/ / ee’ f(y) f(ylr)dydz.

Then we get again for the exponent:

1/x—p 2 1 po 2

TP B !
= [y —o,+ -0 Op0y — ———+
Ho T Hy T 50 T 50y TP = 5 2y

(u? — 2puv + v?)

with the substitution u = * k= b — po, — oy

L — poy, — Oy andv:y;—y
Putting everything together leads to:
n+1
E¥ [eXe" Liox gy Loy 21y

_ Hatpytio2+icltpoo InS — Haz InL— Hy .
= el TITROETR oy TRy M| ———— — P50y — Oy, ————— — PSLOz — Oy} PSL |-
Oy Oy

Inserting the four expectations gives us the following result:
m(t) =S(t)Ln(t) [Si SM(., ;)

— Le 3% M, )
— SemvtaTi M. )

+uy+ 302 +202+pogo .
+ eHeTHYT 02Ty TPy V(L) |
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Now using the fact that p, = 1% and p1, = —i0, leads us to the final result:

7(t) =S(t)Ln(t) {Si M)
—L-M(,.;.)
M., )
+ e - M(., .)]

CQz

Remark. We want to compute the integrals used in Theorem .'
Ty
2 2 . o . . o—c(Tn—t)
- /t N2(s)ds with Mu(t) = (a+ (Tu — £)b) - ¢ +d
First we want to compute all single integrals and then put everything together.
Tn
0_5 — / <CL2 . e*QC(Tn*S) + b2 . Tr2L —2¢(Th—s) + b2 72C(Tn s) + d2
t

+2-a- b- Tn . G_QC(T”_S) —2.a-b-s- 6_20(Tn—5)
+ 2 - a - d * G_C(Tn_s) —_ 2 . b2 -5 - Tn . G_QC(Tn_S)

+2:b-d-Tp-e ) —2.p.d-s- e_c(T"_S)>ds.

The first terms, containing only the exponential function, will be now calculated:

—2¢(Tn—s) | Tn 672C(Tn7Tn) —2¢(Tn—t) 2

T
/ a2 . €—2C(Tn_3)d8 — a2 . 6— — a2 S — a2 . 6— — a_ . (1 —_
¢ 2c t 2c 2c 2c

Ty
/ 2.a-b-T, - e 2e(Tn=5) Jg — a-b-T, ' (1 _ 6—2c(Tn—t))‘
t c

Tn
/ b2 . T2 . e~ 2e(Tn=5) jg — b -T,f . (1 _ e—2cTn+2ct).
' " 2c

T,
n 2.a-d
/ 2.a-d-eTn=5) s — a ) (1 B e—c(Tn—t))‘
t

Tn 2.b-d-T,
/ 2.b-d- Tn . e—c(Tn—s)dS — . (1 _ G_C(Tn_t))'
t

Next, we calculate the terms given by ftT" e~ 2Tn=9) ds with integration by parts:

Tn T,
/ 2'(1’[?‘8-6720(71”75)(15:2-a-b / 720Tn s)ds
t

72c(Tn s) | Tn Th 672C(Tn78)
R e e Ay
t ¢ 2c

1 Ty e—QC(Tn—S)
=2-a-b-(—(T,, —t-e 2D / ——ds .
“ (20 ‘ ) ¢ 2c i
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Now, we calculate the intermediate result:

/Tn 6—2C(Tn—s) 6—26(Tn—8)
ds =

The results are given by:

Th 1
= (1= —2¢(Tn—t) .
oy 4 < c

T,
" 1 1
2-a-b-s-e I 8gs=2.q-b- [ —(T, —t-e 2TV} _ (1 — ¢ 2Tn=1) )
/t a-bos-e s=2-a-b (o c )~ 11 )
/Tn 2.p2. T .g.e2Tn=98)ds —92.p2. T . i(T —t. e*ZC(Tnft)) — L(l — efQC(Trt)) .

C C

Tn
/ 2:-b-d-s-e T ds=2.b-d- (E(Tn —t- e*C(T"*t)) — %(1 — eC(T"t)))
¢

The last term has to be evaluated with two times integration by parts:

T —2¢(Tp—s) | Tn Tn —2¢(Tp—5)
/ b 52 e 29 dg = p? <32 N — [/ 2-s- e—ds]) =
t 2 - C s=t t 2 - C

1 e—QC(Tn—s) Tn Tn e—QC(Tn—s)
:b2 —T2—t2' —QC(Tn—t) . 2 - _ / 2—d
(20( " c ) STy ot . 4.2 @
With the intermediate results:
6720(Tn75) Tn 1 )
. 5. - . . e 2eTu—t)
2-s 12 S:t—QCQ (Tn t-e ),
and
n —2¢(Ty,—s —2¢(Th—s Ty
/T z.ﬂdszzﬂ _ 1 (1 — e 2T=)
' 4. c? 83 |, 4 ’
follows:
Th
/ b2 . 82 . 6—2C(Tn—s)d8
t
o b2 1 T2 t2 —2¢(Tn—t) 1 T t —2¢(Tn—t) 1 1 —2¢(Ty,—t)
= 2_c(”_ "€ )—@'(n— ‘e )+@'(—€ ) |-

Qverall, we get the following result:

2-a-d 2-b-d-T,
a§=(1—ec<Tnt>>.( ad )
c c

2 2 2
+(1 . 6720(Tn7t)) (% + a- bc‘ Tn + b 23—'71)

1 (T, — 1 9T, —
+2.b.(2_c(Tn._t_€ 2¢(T, t))_@(l_e 2¢(T, t))>(—a—b-Tn)
1 (T 1 (T
—Q-b'd'(E(Tn—t-e (T, t))—g(l—e (T, t)))
1 9T, — 1 (T, — 1 9T, —
+b2(2—C(T§—t2-e2(T t>)—2—62-(Tn—t-e2(T t>)+4—c3-(1—e2(T ”))
+(T, —t) - &*.
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Tt
o, = / agds = (Tnﬂ — t) . af, with oy deterministic.
t

e\
-
DO | =

An(s)?ds = —

o,
The last equation for o, will be evaluated:
Tn
Ty :/ TsAn(8)psds, with os and ps deterministic.
t
Tn
Ouy = Ps - O'S/ <(a + (T, — 5)b) - e Tn=%) 4 d) ds
t

Ty
e ps . 0'5/ (a . e_c(Tn_S) + TTL . b . e_C(T”_S) — S - b . 6_C(Tn_s) + d) dS
t

:]_ Tn —c(Th—s)
=b-|=(T, —t-e T D) - / ¢ ds]
L€ t ¢
1 e—c(Tn—s) Tn

=b-|=(T,, —t-e Tn=0e
R’ e Jm—=|
1 1

=b- |=(T, —t-e ) _ — (1 —¢eTnb
Lo em) L1

All together we get for ogy:

Oay = s - O {(1 ettty | <g N T, - b>

C C

1 1
—b- (— (Tn —t- e_C(T"_t)) - = <1 - e_C(T”_t)) + (T — t) - d>} .
c c
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3.2.2 Valuation under the spot measure

In theory, it is often common to use the stochastic differential equation of any asset (5)
under the risk neutral measure(Q):

dS; = Sy(rydt + o, dW2), (3.17)

By applying Ito's-Formula we get:

t 1 t
Sy =Sy exp/ (rs — 505)0[5 +/ odeSQ. (3.18)
0 0

Since the involvement of instantaneous rates, it is more practical to stick to the LIBOR
rates. The aim is to use a discrete rate version of the dynamics (3.17). We will now
introduce the discretely compounded bank account as the numeraire with common used
strategy.

3.2.3 Discretisation for the spot measure

The spot LIBOR portfolio invests in the ZCB using the following strategy:
Definition 9 (Rolling strategy in ZCB).

The self-financing strategy follows:

1. At time 0, start with 1 euro, buy BOT) Ty-bonds.

2. At time Ty, receive euro, buy %/B(TO,TQ T, -bonds.

1
B(0,T0)

3. At time T, receive g7 /B(To,Tl) euro, buy zq /B(To,Tl)/B(Tl,TQ) T5-bonds.
The value of this self—ﬁnancing strateqy at any time t is given by:

i(t

(-1
[1a+maL@m),  (319)

z(t)—l
B(t,T; B(T, B(t,T;
Bd(t) — (t H _ ( (t))
B(0,Ty) ol B(T; ) B(0,Tp)
with index function: i(t) = inf{k|Tj_1 <t < T}}.

Remark. For Ty =0 and t = Ty for some k, the discrete bank account reduces to:

k—1

BYT) =[] (1 + 71 Li(Ty)). (3.20)
§=0
Assuming that the bond prices have dynamics:
dB(t7 TJ) = B(t’ Tj)(a(t? Tj)dt + B(t’ Tj)dW(t))a

under some underlying probability measure, then using It6’s lemma on B%(t) gives:

dB%(t) = B (t)(au(t, Tiy)dt + B(t, Ty )dW (1)).
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Due to the fact that the dynamics involve instantaneous drift and diffusion terms from
the bond dynamics, it is easier to let the future claims to be priced tied to the settlement

dates of the LIBOR rateq' while modeling.
Determining the discretely compounded analog of the asset price process directly reveals

B(t, Tip) "t to t
St = Som jl:[o (1 + Tj+1L]~(Tj)) exXp (/0 —§U§d8 +/0 O'SdWSd(S)> . (321)
The equivalent martingale measure Q” T = Qf corresponding to the discrete bank account
B? as numeraire is denoted as the spot LIBOR measure. The discounted asset price

process gd(g) is then a martingale under Q%:
S(t) _ el ST
=E| ———|Fi forall t <T. 3.22
BA(t) BT TS (3.22)
The discounted asset price process gd(tz) obviously satisfies the martingale property.

Pricing under the spot LIBOR measure requires that the dynamics of the LIBOR rates
L; for i = 1, ...,n have to be found in order to calculate the expectation:

m(t) = B(t)E {%C(S(TO), o S(T), Lo(Ty), . . ., L (T)) | - (3.23)

These dynamics are derived in the lognormal LIBOR market model in [Jam97] and given

by:

7115 (t)pi A (t)

1+ 7y Ly (t) Xi(t)dt + Li(t) A (t)dW(t), (3.24)

dL; = Li(t) Z

J=i(t)

where W¢ is a Wiener process under the spot LIBOR measure Q% and pi.j is the correlation
coefficient between the Wiener processes W¢ and Wf.

It is important that the model is only completely determined at the tenor dates of the
LIBOR rates. This can be deduced from the equation (3.23) where the time ¢ price
depends on the discrete bank account at time ¢. As also noted in [Jam97], a simple linear
interpolation between the two nearest tenor dates is suggested to get B4(t) if the time t
price of the derivative is needed.

3.3 Instantaneous volatilities and correlation

3.3.1 For simulation

In general, it is not possible to find the simultaneous distribution of the various stochastic
variables under the expectation ({3.23)) which is required analytically. Hence, the evolution
in the corresponding processes has to be implemented by simulation.

2that is not a strict assumption
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The main issue here, is to get appropriate instantaneous correlations between the different
LIBOR rates and the stock portfolio.

(AW d(t)] (1 pi2 o pia pus]
dWE(t) p21 1 pag
dWA(t) pna = - 1 ppg

| dWE(t) ] psq - o psm 1]

In this implementation, correlation between the LIBOR rates are described by determin-
istic functions depending on the length between the corresponding tenor dates, T; and
T;. With the correlations involving the stock portfolio, the dependence is on the length
between the time ¢ and the corresponding tenor date of the LIBOR rate T;. For our pur-
pose, it is sufficient to specify the instantaneous volatility of the LIBOR rates following
as:

Definition 10 (Instantaneous volatility of LIBOR rates).

The structure with a hump shaped functional equation is defined as
Ai(t) = g(T)f(Ti = 1), (3.25)
in [Kok09], it argued that the functional form of f
F(T, =) = (a+ (T; = t)b) - e g, (3.26)

is flexible enough to capture desirable criteria such as being hump shaped. And g(T) is
set to 1.

In the next chapter, we will analyse the hump shaped form.
Now, we want to model the correlations between the LIBOR rates:
The instantaneous correlation matrix between the LIBOR rates should fulfil four criteria:

1. Symmetry: p;; = p;, for all ¢, j.
2. Positive semidefinite: 27 pz > 0 for all z € RY.
3. Only 1 on the diagonal: p;; = 1 for all .
4. All entries are in the interval [—1, 1].
Further we will model the matrix as a time homogeneous function for 7;,7; > t and 7 # j.

Definition 11 (Instantaneous correlation between the LIBOR rates).

For our purpose, we introduce a simple correlation function that satisfies the requirements
as mentioned above:

pij(t) = exp(=f|T; = Tj]), (3.27)

with >0 and i,j5,t > 0.
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Last question is how to specify the volatility of the stock portfolio, and how it correlates
with the LIBOR rates.

For simplicity, we will let the volatility be constant og = . It is reasonable to let the
Wiener process for the stock portfolio Wg(t) be correlated most with the LIBOR rates
with the shortest distance to maturity 7; — ¢.

Definition 12 (Instantaneous correlation between LIBOR rates and stock portfolio).

A convenient form for the instantaneous correlation is given by:

1 —exp(—7——)
(t=Ti—) o
psilt) = ) _ tanh (—) 3.98
O s —— =T ) (3.2

where v > 0.

Remark. Positive values of o give rise to megative correlations and vice versa. This
specific choice of function ensures correlation between -1 and 1, and if more flexibility is
needed, additional parameters can be included inside the brackets in . Of course,
for T; <t the LIBOR rate has matured and the correlation is set to zero.
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In this section, different approaches for the valuation of traffic light options will be done.
First, we want to analyse several assumptions from the previous sections:

3.4 Numerical Implementation

120 4 o6

The graphic characterisation of the payoff function (3.6 is given by:

Payoff function of 7, ,;— claim

Figure 3.1: The payoff profile of the traffic light option with S = 100 and L = 0.04.

the payoff profile of a traffic light option with

a benchmark stock portfolio and the LIBOR rate. This can also be plotted with some

The illustration in Fig represents
benchmark interest ratd™|

Bsee [Jor07]
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3.4.1 Volatility structure of the LIBOR rates

According to the previous section, the LIBOR rates are assumed to have the form (3.26|)
with parameters taken from ([BMO06],p.320):

a=0, b=0.29342753, c=1.25080230, d = 0.13145869,

which is illustrated in the following plot:

0.22

0.20

0.18

Volatility

0.16

0.14 —

T T T T T T
0 2 4 6 8 10

Distance to maturity (T_i—t)

Figure 3.2: The instantaneous LIBOR rate volatility as a function of distance to maturity
T, —t.

In Fig3.2)it is seen that the instantaneous LIBOR rate volatility as a function of distance
to maturity T; —t is decreasing with the particular choice of the correlation function. This
is also a reasonable property. It is the rate, maturing nearest from now, that reacts the
most to the market information and also drives the stock market.

Interpretation

This form is clearly time-homogenous and displays, for suitable choices of the parameter
set, a nicely humped term structure of volatility. However, g(7) allows a possibility for
a perfect calibration in some cases and is therefore very useful. In order to preserve
time-homogenousity it is, however, important to assure that g(7") are as close as possible
to 1. In order to preserve the short and long time behavior and the humped form of the
term structure of volatilities one may not choose the parameters a, b, ¢ and d completely
free. For the interpretation of the function as a well behaved instantaneous volatility, the
following conditions must be satisfied:

ea+d>0

e c,d>0
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Furthermore, when 5= T; — t tends to zero, instantaneous and average volatilities tend
to coincide and therefore the quantity a + d should at least approximately assume values
given by the shortest maturities implied volatilities. On the other hand, when § tends to
large values d has to be connected with the very-long-maturity volatilities.

e a + d — short maturities implied volatilities
e d — very long maturities implied volatilities

Considering the first derivative of the time-homogeneous part of equation for the instan-
taneous volatility function with respect to 6: f(9) = e~ b—ca— cbg) gives some final
information:
b;lf“: The location of the extremum (the top of the hump) should be greater 0 and
not too large.

e b > (: Constraint for the extremum to be a maximum.

Interpretation about the characteristics is in BRIgo Mercurio, Brigo and Mercurio (2001),
Rebonato (2002, 2005) and White and Rebonato (2009) for a justification of the choice
and description of the properties of this function.
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3.4.2 Correlation structure of the LIBOR rates
Let the coefficient in (3.27) be given by 8 = 0.1 as illustrated in Fig[3.3}
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Figure 3.3: Correlation between LIBOR rates with g = 0.1

Interpretation

This one-parameter parametrisation always produces a valid correlation matrix in the
sense that it produces a real, symmetric, positive-definite matrix. However, correlation
is only dependent on the distance between maturities and is constant with regard to
t. Under the assumption of constant volatilities, instantaneous and terminal correlation
are equal. 3 is called the de-correlation factor or rate of de-correlation as it controls the
decrease in correlation with increasing maturity interval. Setting 3 := 0 results in a model
with perfect instantaneous correlation, thereby reducing the number of driving factors
of the model to 1. E] In general, this correlation function can be assigned a functional
dependence on calendar times and on the maturities of the two forward LIBOR rates:

Pij = p(t, 1;, TJ)

Hgee [Pac05]
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For simplicity of modelling, we assume that the correlation function is time-homogenous
and only depends on the relative distance between the two forward LIBOR rates with
different tenor dates.

The following form of the correlation function is:

pij(t) = p(IT; — T})
with the characteristics:
p(|Ts — Thl) = p(|T3 — Ta|) - p(|T2 — T1]).

In other terms, the logarithm of p must be a linear function. Hence, in general, there
must exist some 5 > 0 such that:

pi;(t) = p(|T, = Ty|) = e~ #1T:Til

For our purpose we restrict the condition from 5 > 0 to 5 > 0.
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3.4.3 Correlation between the stock portfolio and the LIBOR
rates

The instantaneous correlation is represented by . Now we want to choose appropri-
ate parameters o and v to measure the correlation. It is not clear to find correct values for
the parameters. Therefore a more detailed table of the instantaneous correlation values
a,v and the distance to maturity 7; — t of the corresponding LIBOR rate is illustrated
in [Kok09).

Correlation
-0.3 -0.2 -0.1 0.0
Il Il Il

-0.4
1

-05
L

T T T T T
0 5 10 15 20

Distance to maturity

Figure 3.4: Correlation between LIBOR rates and stock portfolio with o = v = 1.

The « parameter controls the level of the correlation and higher absolute values of this
parameter increases the absolute correlation across maturities, though not in a parallel
way.

The ~ parameter controls the curvature of the function. This is also clear from looking
at the table, where it is seen that the absolute decrease in correlation as distance to
maturity increases is highest for small values of v. Or loosely stated, the staring point of
the function in Fig 4. shifts closer to zero for higher ~ values.
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3.4.4 Pricing of the TLO with Theorem

In comparison to the payoff function the price of the traffic light option is found with
Theorem and depicted as a function of the stock portfolio price and the LIBOR rate
at time t = 0:

Figure 3.5: Here the parameter values are S = 100, L = 0.04, T,11 = 3, p = —0.5,
0, = 0 = 0.2 and the term structure is assumed flat equal to the initial LIBOR rate.

In Fig. we can see that in the critical areas, which are (100,0.00) x (120,0.04) and
(60,0.04) x (100,0.06), the values are above zero in comparison to the payoff function in
3.6 The price for a traffic light option slightly converges to zero, if we take the values to
(120,0.06). The x-and y-axis are symmetric, if we take the 45 degree line between stock
portfolio and LIBOR rate for reflection.

3.4.5 TLO price in dependence of correlation

Interpretation

With increasing correlation between LIBOR rate and stock portfolio the price of the
traffic light option rises as well, with fixed tenor date, bond value and the initial values
of the stock portfolio resp. the LIBOR are set at their strike levels.
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Option price
0.06 0.08 0.10
Il Il 1
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-1.0 -0.5 0.0 05 1.0

Correlation between LIBOR and Stock portfolio

Figure 3.6: The traffic light option as a function of correlation with Sy = 100, L,(0) =
0.04, S =100, L =0.04, T,,41 = 3 and B(0,7,,+1) = 0.8890.

3.4.6 Pricing with Monte Carlo simulation

In practice it is possible to price any European type T;-payoff given by
C(S(Ty),...,S(Ty),...,Lo(Ty), ..., L,(T;)) via simulation techniques. In this section the
payoff function of a traffic light option will be implemented and run with a Monte Carlo
simulation.

Payments similar to this form is being increasingly used in the construction of structured
products. The pricing is performed under the spot LIBOR measure.

In a simulation of the LIBOR rates, the first choice is to fix the time grid of the future
time points over which to simulate 0 =ty < t; < --- < t,, < t;1. In this time grid, it is
convenient to let the tenor dates Ty < 17 < --- < T}, be a subset.

Further by letting the time difference between two simulation points be constant (¢4 —
t; = 0), the notation is reduced.

LIBOR Simulation with Euler-scheme
Simulating the LIBOR rates with an Euler-scheme on log (EZ) results in(see |Gla04]):

ity = L) xp { (1t = 500 )3-+ VON() Zy .

with
~ maLit) pigh(t)
palty) = Yy | —m IR (1), (3.29)
S L Li(t)
and Zy, -+, Zms1 are independent N (0, 1) random variables. In the equation above, the

hats have been added to clarify that the continuous LIBOR rates have been discretized.
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The simulation is initialized with (3.2)) by settinﬁ:

N 1 [ B(0,T;) ) .
Li(0) = 1), i=1,---.n.
©) Titl <B(07T¢+1)

For instance, the simulated path of the LIBOR rate IA/G(t) with maturity date T = 3
years is seen in Fig[3.7 After simulating 1000 possible paths for Lg(¢) via Monte Carlo
simulation the mean can be observed in Fig[3.8

0.040

0.035

L_6(t)

0.030
1

0.025
1

Figure 3.7: Simulated LIBOR rate Lg(t)

Mean of L_6(t)
| | | |

0.0399 0.0400 0.0401  0.0402 0.0403  0.0404

Figure 3.8: Mean of 1000 simulated LIBOR rates Lg(t)

15in the implementation the initial forward LIBOR rates are flat with 3%.
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The distribution of the LIBOR rate Lg at time ¢t = 1 year is noticed in Fig[3.9]

0.04 0.05 0.06
1

Distribution of 1000 simulations of L_6(1)

0.03

0 200 400 600 800 1000

Simulations

Figure 3.9: Distribution of 1000 simulated LIBOR rates Lg evaluated at time t = 1 year

The value of the bank account at maturity 7,, can be derived from the simulation of
the LIBOR rates using ([3.20):

k—1
BYT}) = H(1 + 7 Li(Ty) forallk=2,--- n,

J=0

with BY(T},) = 1 for k =0, 1.
In order to simulate the stock price which is given by:

Tn Th
S(T,) = BY(T,)Soexp ( / o.dWE(s) — / agds).
0 0

We will split the simulation in two discretisation schemes, where we define:

Tn 1 Tn
X(T,) := Spexp </ o dWi(s) — 5/ 0?ds>,
0 0

which can be simulated with the discretisation scheme:
~ ~ 1
X(Tj+1) = X(T}) - exp { — 50?7’ + \/FO'SZj+1}.

Now we can get the simulated stock portfolio with:

)

(Tj1) = X(Tj11) - BY(Ty0). (3.30)

40



After running the simulation with the Euler-scheme for 1000 possible paths of stock
portfolio prices with initial value 100, we get the significant plot in Figl3.10;

Stock portfolio S(T_i)

0 5 10 15 20 25 30

Tenors (T_i)

Figure 3.10: Simulation of 1000 possible paths of the discounted stock portfolio prices
S(T)

We can see through building the mean over this 1000 simulations, that the stock portfolio
is strictly increasing:

140 160 180
Il Il Il

Stock portfolio values

120
Il

100
L

o
o

10 15 20 25 30

Figure 3.11: Mean over 1000 simulations of possible paths of the discounted stock portfolio
prices S(T')
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In the following example our payoff is described by:

C(S(TN+1): Ln(Tn>) - [S - S(Tn+1)]+ ’ [[_’ B Ln(Tn)r—»

=[S = S(T)]" - [L—L.(T)] "

For each linear combination of the strike levels S and L, the simulation will be evalu-
ated and then averaged. By use of the discretisations above, the time zero price of the
derivative:

1
0) = E*| ——<C(S(Tns1), Lu(T2)) |,
can then be approximated with the Monte Carlo simulation. Now implementing the
Monte Carlo simulation for the analytical formula of the traffic light option in Theorem
leads to the option prices in the following plot:

Figure 3.12: Monte Carlo simulation of the analytical traffic light option formula

We can see the characteristics as mention before. The plot is symmetric, if we take the
45 degree line for reflection. Moreover the unique shape, as in Theorem , is preserved.
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(a) Theoretical formula (b) Simulation

Figure 3.13: Theoretical formula versus simulation of a TLO

If we compare the simulation to the analytical formula, we can easily state, that our
implemented simulation needs more optimisation. We evaluated the standard deviation
and mean of 1000 simulated payoff scenarios. After that we built a confidence interval
with mean +/— 3 times the standard deviation. The lower bound is negative and therefore
the lower bound is set to 0 and the upper bound of the confidence interval is always 350%
above the mean. This is a large simulation error. Here an optimised implementation
would be wise [

Back to the previous example with 1000 simulations of the stock portfolio and the
LIBOR rate, the conditional distribution of the option price scenarios have the following
plots:

Option
Option
ol

LLLLL

(a) Computed claim (b) Analytical formula

Figure 3.14: Conditional distribution of 1000 simulations compared between claim versus
analytical formula

Now we have finished the simulation chapter. In the next chapter there will be more
insights regarding traffic light options in terms of their most practical use: Hedging
the balance sheet of a typical Danish L&P company to stay solvent in the yellow light
scenario.

1610t part of this thesis
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Chapter 4

Hedging with Traffic Light Options

4.1 The traffic light option as a hedging instrument

The goal of this section is, with the help of the traffic light option, to hedge a typical
balance sheet of an L&P company.

First, we will do this from the theoretical point of view, and then by way of an illustrative
numerical example.

Definition 13 (Solvency ratio). []

Solvency ratio (=:SR) is a key metric used to measure an enterprise’s ability to meet its
debt and other obligations. The solvency ratio indicates whether a company’s cash flow
1s sufficient to meet its liabilities. The lower a company’s solvency ratio, the higher the
probability that it will default on its debt obligations. The exact definition is given by:

Sp— Net income + Deprecatz’on' (@1)

Liabilities

For simplification, our balance sheet, which will be explained in the next section, we
only need the following definition for the solvency ratio:

Net income

SR = T abitities (4.2)
Who needs the solvency ratio?
Solvency ratio is of interest to long-term creditors and shareholders. These groups are
interested in the long-term health and survival of business firms. In other words, solvency
ratio has to prove that business firms can service their debt or pay the interest on their
debt as well as pay the principal, when the debt matures. It also helps business owner
keep an eye on downtrends that could eventuate in a possible bankruptcy.

!see http://www.investopedia.com/terms/s/solvencyratio.asp
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4.1.1 Theoretical Approach
The simplified balance sheetE| of an L&P company at time ¢:

Assets ‘ Liabilities & Free equity
S(t) O(L;;t,T;)
B(L;,t,T;) FE(t)

The asset side of the balance sheet consists of the market value of the well-diversified
stock portfolio at time ¢, represented by S(¢), and the bond investments at time ¢ with
LIBOR rate L; and maturity 7}, represented by B(L;,t,T;).

The liability side of the balance sheet consists of ©(L;,t,T;), which denotes the market
value of the company’s fixed pension obligations at time ¢ with LIBOR rate L; and
maturity 7. For simplicity, we consider that the fixed pension obligations behave like
bonds, with a longer duration. F'E(t) is the market value of the free equity at time t.
In order to ensure a balanced sheet, we fix:

FE=S+B-6, (4.3)

residually.
Using It0's lemma on the above expression, we can now deduce the following dynamics
under the EMM Q@ for the free equity:

dFE(L,S,t) =L;(t)FE(t)dt + 055 (t)dW(t)
L P

00(L;,t,Ty) o

k3

For our purpose it is more simple to set all LIBOR rates flat (L; = L;) fori,j € {1,...,n},
resulting in the following dynamics:

dFE(L,S,t) =L;(t)FE(t)dt + 05S(t)dW(t)

OB(L,t,T; 00(L,t,T;
+0—L< (8L ) _ (8L J)>dw;?(t).

In theory the asset liability mismatch can easily be repaired by selling all stocks and
investing in bonds such that ‘g—f = g—(z. For various reasons, however, this is rarely done
in practiceﬂ Typically the pension obligations have a much longer duration (between 15
to 25 years (seen in |[Jor07])), in comparison to the bonds duration with a typical duration
of 6 years. Hence, in practice a typical L&P portfolio manager more often attempts to
control the risk to the free equity via rearrangement of the asset side. They include an
appropriate amount of structured products such as traffic light options. Such an asset

reallocation from a portfolio manager could include the following new arrangements:

2unhedged
3according to [Jor07]
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Hedged Portfolio with Traffic Light Options

Assets ‘ Liabilities & Free equity
Sre(t) O(Lg,t, Tx)
B (L, t,T;) FE()
H(L;, S,t)

The liability and free equity side is unaffected by the reallocation in the new composition.
On the asset side, to keep the example simple, we only sell bonds and buy instead traffic
light option for hedging the balance sheet. Hence, we have the new allocation on the
asset side: S™* := S and B"®" := B — H. Through the reallocation our Q-dynamics for
free equity changed as well:

dFE(t) =L(t)FE(t)dt + 04S™"(t) (1 + %) AW E(t)

OH(L;, St OB™™(L;, t,T;
+or, (—(aL- ))dwg(t) +O'Lj( ((gL] ]))dwg(t)
7 J

<8@(Lk,t,Tk)
—op | — =

0Ly

It is necessary for calculations that 7; < T; < T}, for all 4,5,k € N. In case of hedging

with traffic light options H, we have to consider the strike levels L and S as well as

maturities 7" and the time of evaluation ¢. From the dynamics above we can see the

perfect instantaneous hedge of the free equity fulfils the following conditions:
OH(L,S,t)

]_ _— =
+ 99 0,

OH(L;, S, 1)
IL,
oB"(L;,t,T))

aL;
90(Ly,t, Ty)
Oy

) dWE (t).

:0’

=0,
=0,

and
H(Li, S t) = (S(t) = S""(t)) + (B(L;, 1, Tj) — B""(L;,t,T5)).

As we can see from the conditions above, we have an under-determined system of equa-
tions. Hence it is not possible to find one true solution. Despite that fact, we can find
values to hedge the yellow light scenario.

Remark. For simplicity, as mentioned in the non-hedged case, we consider all LIBOR
rates as flat, resulting in the following dynamics:

AFE(t) =L(t) FE(t)dt + 05S™" (1) (1 + %) AW, (1)
OH(L,S,t) OB™(L,t,T) 0O(LTY)Y . o
oL < )T A KU 0
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Now it is possible to solve the following equations for a perfect instantaneous hedge:

OH(L, S, t)
1o 22\ )
+ 93 0,
aH(L,S,t) N aBnew(L,t7j—“j> . a@(L,t,Tk) . 0
oL oL oL -

and

H(La S’ t) = (S(t) - Sn6w<t)) + (B(L7thj) - Bnew(L’t>TJ'>)'
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4.2 Numerical Example of a publicly-listed Insur-
ance Company

In this section a typical balance sheet of a publicly-listed insurance company will be
shocked in two scenarios: firstly without traffic light options and then with TLOs included
as a hedging instrument.

The asset side includes a well-diversified stock portfolio to the extent of 30 units and
70 units of zero-coupon bonds with duration of 6 years with the LIBOR rate as the
benchmark interest rate. On the liability & equity side, we find pension obligations,
which will be handled for simplicity like zero-coupon bonds with a longer duration of 15
yearsEl and the resulting free equityﬂ of 8 units.

Unhedged balance sheet at time ¢t =0

Assets Liabilities & Free equity

Stocks 30.00 92.00 Pension obligations (D= 15 years)
Bonds (D=6 years) 70.00 8.00 Free equity (SR: 8.70%)

Total 100.00 100.00 Total

Now the unhedged balance sheet will be shocked by the yellow light scenario in Def.
The LIBOR rate drops from 4% to 3% and the stock portfolio loses 30% of its initial
value at t = 0. The shock will be modelled in the Vasicek-model and BMG-model.

Asset Allocation Liabilities & Free equity

m Stocks  w Bonds (Duration: 6 years) m Pension cblgations (Duration: 15 years) u Free equity

Figure 4.1: Unhedged balance sheeet at time t =0

“4the actual pension fund liability durations vary between 15 and 25 years depending on the exact age
distribution of the policy holders. See
5Free equity = Total of the asset side - Pension obligations
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Unhedged balance sheet shocked in the yellow light scenario right
after t = 0 in the Vasicek-model

Assets Liabilities & Free equity

Stocks 21.00 95.66 Pension obligations (D= 15 years)
Bonds (D=6 years) 72.21 —2.45 Free equity (SR: —2.56%)

Total 93.21 93.21 Total

After the yellow light scenario in the Vasicek-model, the insurance company is techni-
cally insolvent with a solvency ratio of —2.56%. In comparison to the unprotected balance
sheet at time t = 0 we can see that the long-term bonds on the liabilities and free equity
side do not react significant in the short-term framework.

0.025

Figure 4.2: Unhedged balance sheet shocked in the Vasicek-model
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Unhedged balance sheet shocked in the yellow light scenario right
after t = 0 in the BM G-model

Assets Liabilities & Free equity

Stocks 21.00 106.61 Pension obligations (D= 15 years)
Bonds (D=6 years) 74.25 -11.36 Free equity (SR: -11.36%)

Total 95.25 95.25 Total

After the yellow light scenario in the BMG-model, the insurance company is technically
insolvent with an solvency ratio of —11.36%. This dramatic difference in solvency’s state,
in the Vasicek-model "only” —3% and in the BMG-model —12%, arises because of the
different calculations in the bond formula. In the Vasicek-model long-term bonds do not
react that sensitive as in the BMG-model, as we can see in the plots and tables.

In order to avoid insolvency, we will now sell some bonds and buy instead traffic light
options. This will act as an protection against insolvency.

0.025

Figure 4.3: Unhedged balance sheet shocked in the BMG-model
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4.3 Hedged balance sheet

Now we will buy 250 units of traffic light options to protect against the yellow light
scenario. The parameters for the ’Erafﬁc light options are:
T,i1=51t=0,p=0.0,0,=0.2,5 =30 and L = 0.04.

Hedged balance sheet at time t = 0

Assets Liabilities & Free equity
Stocks 30.00 92.00 Pension obligations (D= 15 years)
Bonds (D=6 years)  66.19
Traffic Light Options ~ 3.81 8.00 Free equity (SR: 8.70%)
Total 100.00 100.00 Total
Asset Allocation Liabilities & Free equity
3.81%

® Stocks  w Bonds (Duration:6 years) = TLOs m Persion oblgations (Duration: 15 years)  w Free equity

Figure 4.4: Unhedged balance sheet at time t = 0

For the hedging part, we only sell bonds and buy TLOs instead. In Figlf.4] the asset
allocation has changed to the new split.
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Hedged balance sheet shocked in the yellow light scenario right
after t = 0 in the BM G-model

Assets Liabilities & Free equity
Stocks 21.00 106.61 Pension obligations (D= 15 years)
Bonds (D=6 years)  70.21
Traffic Light Options  20.28 4.88 Free equity (SR: 4.58%)
Total 111.49 111.49 Total

0.025

Figure 4.5: Hedged balance sheet shocked in the BMG-model

In comparison to [Jor07, Ch.4], where the Vasicek-model is used, the BMG-model is also
a good framework for stress-testing. As mentioned above, long durations in the BMG-
model react more sensitive, than in the Vasicek-model, since in the short rate model, long
durations in pension obligations do not react significantly.

The aim in this thesis, was to find an appropriate hedge with TLOs in the framework
of the BMG-model, to stay solvent in the yellow-light scenario, which we successfully
achieved.

52



4.3.1 Conclusion

The thesis has introduced an exotic financial derivative as a potential hedging instrument
to meet regulatory requirements. In the 215 century requirements regarding financial in-
stitutions, for instance in terms of base capital, have become very strict. And there will
be even more requirements for companies to cope with. As mentioned in [Jor07, Ch.5],
there is a potential risk that companies will focus too narrowly on passing just the regula-
tor’s stress tests. Companies could easily hedge away the equity part and/or the interest
rate of the regulatory risk regarding the yellow light scenario by purchasing a digital-type
option paying a suitable fixed amount if the market goes down between 29% and 31%,
and zero otherwise. This scenario would cost the companies very little and enable them
to preserve a green light status.

Summarising all facts and simulations, we can state, that this innovative structured
product is easy to simulate, but the problem is to find an optimisation, which can fit
the theoretical approach best. The goal of this thesis, is to give a snapshot about struc-
tured products with a deeper insight on pricing traffic light options in order to hedge
the introduced stress-tests from the Danish Supervisory Authorities for Danish Life &
Pension companies. The results in the first part of the work are a more detailed version
of Thomas Kokholm’s paper [Kok09] and the second part is based on the work of Peter
Lochte Jorgensen [Jer07] with an introduction to the LIBOR Market Model.
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Appendix A

Basics

This chapter will provide some basic knowledge regarding financial mathematics.

Definition 14 (Martingale measure and equivalent martingale measure).

A probability measure Q absolutely continuous with respect to P is a martingale measure
for S if and only if S is a Q—martingale. It is called an equivalent martingale measure if
it is equivalent to P, i.e. Q € ME€.

Definition 15 (Strategy).

A strategy v is an S-integrable process. The value process V associated to an initial capital
¢ and a strategy v in the risky asset S is given as a stochastic integral process

V:c+/ud5.

Definition 16 (Admissible strategy).

A strategy v is called an admissible strategy if the gain process [vdS is a Q—martingale
for every martingale measure Q € M¢.

Definition 17 (Arbitrage opportunity).

A strategy v is called an arbitrage opportunity if we have for the associated value process
V that

e 1, <0
o Vp >0 P—a.s.
o P(V;r>0)>0.

Definition 18 (1.Fundamental Theorem of Asset Pricing (FTAP)).

If there exists an equivalent martingale measure Q for S then there are no arbitrage
opportunities with admaissible stmtegz'es.E]

lsee [RS11]. ”Easy direction”
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Definition 19 (Claim).

A Claim C'is an Fr-measurable random variable. The claim C'is attainable if there ezists
a constant ¢ and an admissible strateqy v such that

T
C =C ‘l— / Vg dSt
0
The quintuple (2, F,F, P, S) is called a market.

A market is complete if all bounded claims are attainable.

Definition 20 (Predictable representation property).

The process M € M3, has the (PRP) if S(M) = M?. That is, every N € M?* can be
written as N = No + [ v dM where v € L*(M)

Definition 21 (2.FTAP).

The following assertions are equivalent:
e The market is complete.
o (Mfl=1. (3Qe M)*
o There exists Q € M€ such that S has the PRP with respect to (Q, F).

Definition 22 (Numeraire). [

A numeraire is an asset B with strictly positive B(t) at any time t in [0, T].

The role of a numeraire is to discount other asset prices processes By, --- , B, by express-
ing the relative price process B; = %, t=1,---,n. In this work, the numeraires that we

consider will mostly be T'—bonds or bank accounts.
An equivalent martingale measure (associated to a numeraire B) is a probability measure
Q on the same filtered probabilisable space (2, F,F) such that

e Q and P have the same null sets,

. . ’ . .
o the discounted price processes B;, i =1,---  n, are martingales under Q.

2see Swap Market Models for pricing Interest rate derivates Monte Carlo Simulations by Mbele Bidima
Martin Le Doux 2004
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Appendix B
R-codes

For the numerical implementation, we use two additional R-packages:

e "pbivnorm”, which will be used for the computing of the standardized bivariate
normal distribution.

e "scatterplot3d”, which is required for graphic illustrations.

B.1 Payoff—profile of a traffic light option

The following code includes: Figf3.1
1 # Payout—profile of a traffic light option

3 Payout <— function (x, Sstrike, Lstrike){
v if (Sstrike>=x[1] & Lstrike>=x[2]) {

5 (Sstrike—x[1])*(Lstrike—x[2])

.

7 else 0

o }

10 # x—axis stock portfolio prices

12 S <— seq(60,120,length.out = 61)

15 # y—axis LIBOR rates from 0.1 % to 6%
16 # with 61 data points

s L <— seq(0.0001,0.06,length.out = 61)
11;# Strike for the stock portfolio

: Sstrike <— 100

:: # Strike for LIBOR

5

¢ Lstrike <— 0.04

2
2
2
2
o
2
2
28 # Create all linear combinations between
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20 # stock portfolio prices and LIBOR rates

30

31 grid <— expand.grid (S, L)

32

33 # Create a vector z with all payoff—profile calculations
34

35 z <— apply(grid, 1, Payout, Sstrike = Sstrike, Lstrike = Lstrike)
36

37 # In order for the numerical illstrations we need
38 # z to be a 6lx6l—-matrix

39

10 z <— matrix(z, ncol = 61, nrow = 61)

41

12 # Colour Plot

43

14 # Colour surface parameters

45

16 par(bg = ”white”)

a7 x <— L

18y <— S

19 7z <— Z

50 nrz <— nrow(z)

51 ncz <— ncol(z)

53 # Create a function interpolating colors in the range of specified colors

”

55 jet.colors <— colorRampPalette( c¢("red” ,”yellow3” ,”yellow2” " yellowl” ,
greenl” | 7green”) )

57 # Generate the desired number of colors from this palette

50 nbcol <— 1000000
60 color <— jet.colors(nbcol)

62 # Compute the z—value at the facet centres

o1 zfacet <— z[—1, —1] + z[-1, —ncz| + z[—nrz, —1] + z[—nrz, —ncz]
66 # Recode facet z—values into color indices

oz facetcol <— cut(zfacet, nbcol)

70 # Colour Plot
71 persp(x, y, z, col = color[facetcol],ylab="Stock portfolio”, xlab = "LIBOR

rate” ,

72 zlab = "Payoff at maturity” ,#main="Traffic light option payoff at
maturity”

3 expand = 0.75,ticktype = ”"detailed”,

nticks =8, phi = 30, theta = 150)

- - -~ =~
[SIE N

o

# Saving the graphic

I

pdf(file= ”Payout_of TLO. pdf”)

e} ~

SN

o # Plot

o]
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81
82
83
84
85
86
87
88

89

persp(x, y, z, col = color[facetcol],

ylab="Stock portfolio”,

xlab = ”"LIBOR rate”

zlab = "Payoff at maturity”,

expand = 0.75,ticktype = ”"detailed”,

nticks =8, phi = 30, theta = 150)
dev. off ()
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B.2 Volatility structure of LIBOR rates

The following code includes: Fig[3.2]
1 # Volatiliy Structure of the LIBOR rates

2

3 # Formula for the lambda—function

4

5 # Be careful in the paper we have T_i—t,
6 # but for the plotting it is only dependend
7 # on the lag between T_i—t

8

o lambda <— function(t) {

10

11 # Parameters are set as in [BMO06]
12

13 a <— 0

1 b <— 0.29342753

5 ¢ <— 1.25080230

16 d<— 0.13145969

17

18 # Note that t is the lag of T_i—t, hence Time to maturity
19

20 return ((a+(t)*b)xexp(—(t)*c)+d)

21 }

22

23 # x—axis as time to maturity

24

25 x_axis <— seq(0,12,length.out = 100)
26

27 # Volatility values

28

20 w <— lambda(x_axis)

30

31 # Plot area for x—axis and y—axis

32

33 xlim <— ¢ (0,10)

32 ylim <— ¢(0.13, 0.225)

35

37 # Plot function of the volatility structure

30 plot(x = x_axis, y =w , type = "1”7, xlab = ”Distance to maturity (T_i—t)”,
40 ylab = 7 Volatility”

a1 #main = ” Volatility structure of LIBOR rates”,

42 col = "steelblue”,

43 lwd = 2, xlim = xlim, ylim = ylim, las = 1)

45 # Saving the graphic

a7 pdf(file= 7 Volatility _structure _of _the LIBOR_rates.pdf”)

48

19 # Plot

50

51 plot(x = x_axis, y =w , type = "17,

52 xlab = ?Distance to maturity (T-i—t)”,

29



53 ylab = 7 Volatility”,
54 col = 7steelblue”
55 lwd = 2, xlim = xlim, ylim = ylim, las = 1)

6

57 dev. off ()
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B.3 Correlation between the LIBOR rates

The following code includes: Fig[3.3]
# Correlation between the LIBOR rates (between the different maturities)

1
2
3 # Correlation function formula
4

w

corrfunc <— function(b = 0.1 ,T1,T2){

~

exp(—bxabs (T1-T2))

o}

10

11 # For the plot

12 # Create 20 maturity dates = T_1 to T_20
13

i Toi <= Toj <= 0:20

15

16 a <— corrfunc(0.1,0 j
17 b <— corrfunc(0.1,T_1,0)
18

19 # Surface colours corresponding to z—values

20

21 par(bg = ”white”)

22 x <— seq (0, 12, length = 30)

23y <— seq (0, 12, length = 35)

21 z <— outer(x, y, function(a, b) corrfunc(0.1,a,b))
25 nrz <— nrow(z)

26 ncz <— ncol(z)

27
28 # Create a function interpolating colors in the range of specified colors
29

30 jet.colors <— colorRampPalette( c(”red”,”yellow”, 7green”) )
32 # Generate the desired number of colors from this palette

32 nbcol <— 100000
35 color <— jet.colors(nbcol)

37 # Compute the z—value at the facet centres

so zfacet <— z[—1, —1] + z[—1, —ncz] + z[—nrz, —1] 4+ z[—nrz, —ncz]
40

11 # Recode facet z—values into color indices

42

4:

w

facetcol <— cut(zfacet, nbcol)
15 # 3D Plot of Correlation between LIBOR rates with different maturities
46

a7 persp(x, y, z, col = color[facetcol],expand=0.75,

48 #main = ” Correlation between LIBOR rates with different maturities”,
49 ylab="T_j” ;xlab = "T_i” ;zlab = " Correlation” ,ticktype = 7 detailed”,
50 phi = 30, theta = —40)

52 # Saving the graphic

61



1 pdf(file= ”Correlation _between_the LIBOR_rates.pdf”)

6 # Plot

ss persp(x, y, z, col = color[facetcol],expand=0.75,

59 #main = ” Correlation between LIBOR rates with different maturities”,
60 ylab="T_j” ,xlab = "T_i” ;zlab = 7 Correlation” ,ticktype = 7 detailed”,
61 phi = 30, theta = —40)

62

63 dev.off ()
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B.4 Correlation between LIBOR rates and the stock
portfolio
The following code includes: Fig[3.4]

# Correlation between Stock and Interest rate

1
2
3 # The parameters a and g stand for alpha and gamma
4

5 # Correlation function

6

7 corr _SL <— function(a,g,t,Ti){

8

o return ((I1—exp(—a/(t—Ti—g)))/ (14+exp(—a/(t—Ti—g))))

10

11 }

12

13 # For the plotting it is the same ”problem”! We need to switch the order
14 # of the distance to maturity

16 a<—rev(seq(0,20,by=0.05))

15 # Fix alpha and gamm with value = 1

20 y<—corr _SL(a=1,g=1, a,20)

2

21

22 # Plot area for x—axis and y—axis
23

21 xlim <— ¢(0,21)
5 ylim <— ¢(—0.5,0)

7 b<—seq (0,20,by=0.05)

20 # Plot—Funktion

s1 plot(x = b, y =y , type = 71”7, xlab = ”Distance to maturity”,

32 ylab = 7 Correlation”

33 #main = 7 Correlation structure between LIBOR rates and the stock index
34 col = 7steelblue”,

35 lwd = 2, xlim = xlim, ylim = ylim, las = 0.01)
37 # Saving the graphic

30 pdf(file= ” Correlation _between_Stock _index _and LIBOR_rates.pdf”)

40

21 # Plot

42

13 plot(x = b, y =y , type = 717, xlab = ”Distance to maturity”,

44 ylab = 7 Correlation”

45 #main = ” Correlation structure between LIBOR rates and the stock index
16 col = 7steelblue”

a7 lwd = 2, xlim = xlim, ylim = ylim, las = 0.01)
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19 dev. off ()
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B.5 Analytical formula for pricing TLOs

The following code includes: Fig[3.5

1 # Pricing Traffic Light Option

2 # with analytical formula

3

+ # Remark: r is equally flat to LIBOR rates

6 # Need the package pbivnorm for the standardized

7 # bivariate normal distribution

8

9 require (pbivnorm)

10

11 # Formula for TLO

12

15 priceTLO<—function (L,S,t=0,Tnl=3,SStrike=100,LStrike=0.04,sigma _s=0.2,rho
=-0.5) {

15 # Difference between two tenor dates
17 tau <— 0.5
19 # Tn

21 Tn <— Tnl — tau

22

23 # Need tenor for the semi—annual calculations

24 # Starting with T_0=0, T_1=0.5,

25

26 tenor <— seq( 0 , Tnl , by = tau )

27

2s  # Bond with maturity at T_(n+1)

20 # Due to the fact of semi—annual tenor dates

so  # we need all tenor evaluation points = length(tenor)

32 bTnl <— 1/(1+tauxL) " (length (tenor)—t—1) # Bond with r = LIBOR r = x
s SSchlange <—(SStrikexbTnl) /S

36 LSchlange <— LStrike /L

35 sigma_xq <—(Tnl—t)=+sigma _s "2

10  sigma_x <— sqrt(sigma_xq)

12 # We need lambda for the sigma._y

43

11 lambda <— function (t,Tn) {

45

46 a <— 0

a7 b <— 0.29342753

48 ¢ <— 1.25080230

49 d <— 0.13145969

50

51 result <— (a+(Tn—t)x*b)xexp(—(Tn—t)x*c)+d
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) return (result)

4 }

56 integrandl <— function (x) {lambda(t = x, Tn = Tn) "2}

57 sigma_yql <—integrate (integrandl , lower = t, upper = Tn )
59 # Returns only the value without abs error

61 sigma_yg<—sigma_yql [[1]]

63  # sigma_y 2=sigma_yq

64

65 sigma_y <— sqrt(sigma_yq)
66

67  # sigma _xy

6o integrand2 <— function (x) {sigma_s * rho * lambda(t=x,Tn = Tn)}
70 sigma_xyl <— integrate (integrand2 ,lower = t, upper= Tn)

71 sigma_xy <— sigma_xyl[[1]]

73 # mu_x

75 mu_x <— sigma_xq*(—0.5)

77 F# mu_y

7o mu.y <— sigma_yqx(—0.5)

s2  # rho_SL
s rho_SL <— sigma _xy/(sigma_xxsigma y)
s¢ # For a better reading of the formula

ss al <— as.numeric((log(SSchlange)—mu_x)/sigma _x)
so bl <— as.numeric((log(LSchlange)—mu_y)/sigma _y)
9 a2 <— as.numeric(al—sigma_x)

91 b2 <— as.numeric(bl—rho_SLxsigma _x)

92 a3 <— as.numeric(al—rho_SLx*sigma_y)

93 b3 <— as.numeric(bl—sigma_y)

92 a4 <— as.numeric(al—rho _SLxsigma y—sigma x)

(

95 b4 <— as.numeric(bl—rho_SLksigma _x—sigma _y)
96

97 pl <— pbivnorm(x = al, y = bl, rho = rho_SL)
9s  p2 <— pbivnorm(x = a2, y = b2, rho = rho_SL)
99  p3 <— pbivnorm(x = a3, y = b3, rho = rho_SL)
10 pd <— pbivnorm(x = a4, y = b4, rho = rho _SL)

101

102

103 # Print section

104 # Comment for the 3D plot
105  # For a test run

106
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bTnl” ;bTnl))
”SSchlange” ,SSchlange))

107 print
108 print

109 print K LSchlange ,LSchlange))
110 print "sigma _ Xq mgma,xq))
111 print 7sigma _x” s1gma,x))

»

112 print sigma _ yq ' sigma _yq))
113 print sigma _y” 51gma,y))

(c(”
(c(
(c(
(c(
(c(
(c(
(c(
114 print (c( 51gma xy” ,sigma _xy) )
(c(
(c(
(c(
(c(
(c(
(c(
(c(”

»

115 print "mu_x”, mu_x))

116 print "mu_y” ;mu_y))

117 print "rho _SL” ,rho _SL))

118 print 7al,bl pl”,al bl,pl))

119 print 7a2,b2,p2” ,a2 b2,p2))

120 print 7a3,b3,p3” ,a3,b3,p3))

121 print ad,bd,pd” a4 ,bd,p4d))

122

123 result <— as.numeric ((L*S*(SSchlangexLSchlangexpl
124 — LSchlange*p2

125 — SSchlange=*p3

126 + exp(sigma _xy)*p4)))
127

128 print (c(” Result” ,result))

130 return (result)

135

136 ## TLO price plot

137

138 # x—axis = stock portfolio prices

139

110 S <— seq(60,120,length.out=100)

141

142 # y—axis = LIBOR rates from 0.01% to 6%
143 # with 100 evaluation points

144

145 L <— seq(0,0.06,length.out = 100)

146 L[1] <— 0.00001 # To avoid L = 0.00000
147

1us # Strike for stock portfolio prices
149

150 SStrike <— 100

151

152 # Strike for LIBOR rates

153

154 LStrike <— 0.04

155

156 # Volatility of the stock prices

157

158 sigma_s <— 0.2

159

160 # Correlation between stocks and LIBOR rates

161
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162 tho _SL <f(—0.5)

163

164 # Create all linear combinations between stocks
165 # and LIBOR rates in a list

166

167 grid <— expand.grid (L, S)

168

169 S ) ) ) ) L ) L) ]
69 T T e eIyl

170

171 # For the example just uncomment the print
172 # area in the formula above

173 # Test run

174

175 priceTLO (grid [6965,1],grid [6965,2], t=0,Tnl=3)
176

177 bTnl<—1/(14+0.5%grid [6965,1]) "7

178 bTnl

179

150 SSchlange<—100/grid [6965 ,2] «xbTnl

181

152 LSchlange <— 0.04/grid [6965,1]

153 LSchlange

155 sigma _xq <— 0.27°2%(3-0)
186 sigma _xq

187 sigma _x <— sqrt(sigma_xq)
188 sigma _x

191 lambda <— function (t,Tn) {

193 a<—0

194 b<— 0.29342753
195 c <— 1.25080230
196 d <— 0.13145969

108 (a+(Tn—t)*b)xexp(—(Tn—t)xc)+d

200 }

202 integrandl <— function(x) {lambda(t = x, Tn = 2.5) "2}

203 sigma _yql <—integrate (integrandl ,lower = 0, upper= 3 — 0.5)
204 sigma _yq <—sigma_yql[[1]]

205 sigma _yq

206 sigma _y <—sqrt (sigma_yq)

207 sigma _y

20s mu_y<——1/2%sigma _yq

200 MU_Y

210 Mu_X <— —1/2xsigma _xq

211 Mu_X

212 al <— (log(SSchlange)—mu_x)/sigma_x

213 bl <— (log (LSchlange)—mu_y) /sigma _y

214 al

215 bl

216 pl <— pbivnorm(x = al, y = bl, rho = —-0.5)
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217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245

261
262
263
264
265
266
267

268

269

pl

LYy gy gy gy gy gy gy gy g gy gy g gy gy gy g gy g gy gy g gy gy g gy g gy gy gy gyl g

# TLO price plot (colour surface)

# LIBOR rates = x—axis

x <— L

# Stock portfolio = y—axis

y <— S

# Outer creats all linear combinations
# between L (=x) and S (=y) and then

# computes the price formula for the TLO
# TLO-prices = z—axis

z <— outer(x,y,priceTLO)

# Check if all values are greater than 0
length (which (z<0))

# Some pars

par(bg = ?white”)

nrz <— nrow(z)

ncz <— ncol(z)

# Create a function interpolating colors in the range of specified colors

2

jet.colors <— colorRampPalette( c(”redl”,”yellow3” ,”yellow2” ,”yellowl”
greenl” , 7green”) )

3 # Generate the desired number of colors from this palette

nbcol <— 1000000

; color <— jet.colors(nbcol)

# Compute the z—value at the facet centres

zfacet <— z[—-1, —1] + z[-1, —ncz] + z[—nrz, —1] + z[—nrz, —ncz]

# Recode facet z—values into color indices

facetcol <— cut(zfacet, nbcol)

# 3D-Plot

persp(x, y, z, col = color[facetcol],xlab="LIBOR rate”, ylab = ”Stock

portfolio”,
zlab = 7 Option value”,
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270 #main="Traffic light option price at maturity”,

271 ticktype = "detailed” ,zlim = ¢(0,1.7) ,nticks = 8,
272 expand = 0.75,

273 phi = 30, theta = 150)

274

275

276 # Saving the graphic

ors pdf (file= "TLO_price _with_analytical _formula.pdf”)

279

280 # Plot

281

252 persp(x, y, z, col = color[facetcol],xlab="LIBOR rate”, ylab = ”Stock
portfolio”

283 zlab = 7 Option value”

284 #main="Traffic light option price at maturity”,

285 ticktype = 7detailed” ;zlim = ¢(0,1.7) ,nticks = 8,

286 expand = 0.75,

287 phi = 30, theta = 150)

288

280 dev . off ()
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B.6 Pricing TLO in dependence of the correlation

The following code includes: Fig3.6]

# Correlation function of the TLO price
# with dependence of correlation

# Need the package pbivnorm for the standardized
# bivariate normal distribution

require (pbivnorm)

# Formula for the TLO price with dependence
# of correlation

priceTLO _rho SIL<—function (rhos _SL,S0=100,L0=0.04,t=0,SStrike=100,LStrike
=0.04,Tnl=3,sigma_s=0.2,bTnl1=0.889) {

# Time at evaluation = t = 0

t <—0

# Difference between two tenor dates
tau <— 0.5

# T_n

Tn <— Tnl — tau

# Need tenor for the semi—annual calculations
# Starting with T_0=0, T_1=0.5,

tenor <— seq( 0 , Tnl , by = tau )
# Bond with maturity at T_(n+1)
# Due to the fact of semi—annual tenor dates
# we need all tenor evaluation points = length (tenor)
SSchlange <—(SStrikexbTnl) /S0
LSchlange <— LStrike /L0
sigma _xq <—(Tnl—t)x*sigma _s"2
sigma_x <— sqrt (sigma_xq)
# We need lambda for the sigma_y
lambda <— function(t,Tn) {
a <— 0
b <— 0.29342753

¢ <— 1.25080230
d <— 0.13145969
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52 result <— (a+(Tn—t)x*b)xexp(—(Tn—t)x*c)+d

54 return (result)

55 }

57 integrandl <— function (x) {lambda(t = x, Tn = Tn) "2}
58 sigma _yql <—integrate (integrandl , lower = t, upper = Tn )

60 # Returns only the value without abs error

62 sigma_yg<—sigma_yql [[1]]

64  # sigma_y 2=sigma_yq

66 sigma_y <— sqrt(sigma _yq)

:1; # sigma _xy

(:: integrand2 <— function (x) {lambda(t=x,Tn = Tn)}

71 sigma_xyl <— integrate (integrand2 ,lower = t, upper= Tn)
72 sigma_xy <— sigma_xyl[[1l]] # sigma_s * rho_SL

74 # mu_x

76 mu_x <— sigma _xqx(—0.5)

78 # mu_y

so0  mu.y <— sigma _yq*(—0.5)

82 # sigma _xy

83

sa  sigma_xy <— rho _SLx(sigma_xxsigma y)
85

s¢ # For a better reading of the formula

ss al <— as.numeric((log(SSchlange)—mu_x)/sigma _x)
so bl <— as.numeric((log(LSchlange)—mu_y)/sigma _y)
9 a2 <— as.numeric(al—sigma_x)

91 b2 <— as.numeric(bl—rho_SLxsigma _x)

92 a3 <— as.numeric(al—rho _SLxsigma y)

93 b3 <— as.numeric(bl—sigma_y)

92 a4 <— as.numeric(al—rho _SLxsigma y—sigma x)

(

95 b4 <— as.numeric(bl—rho_SLksigma _x—sigma _y)
96

97 pl <— pbivnorm(x = al, y = bl, rho = rho_SL)
9s  p2 <— pbivnorm(x = a2, y = b2, rho = rho_SL)
99  p3 <— pbivnorm(x = a3, y = b3, rho = rho_SL)
10 pd <— pbivnorm(x = a4, y = b4, rho = rho _SL)

101

102 result <— as.numeric ((L0O*xS0x*(SSchlange+LSchlangexpl

103 — LSchlangex*p2
104 — SSchlangexp3
105 + exp(sigma _xy)*p4)))

106
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107 return (result)
108
109 }

110

111 # Values for rho_SL are in [—1,1]

112 # Declaration for the x—axis and y—axis
113

114 tho SL <— seq(—1,1,by=0.01)

115

116 y<—priceTLO _rho SL(rho _SL)

117

11s # Plot

119

120 plot (rtho_SL, y ,type = 71”7, ylim = ¢(0,0.11), xlim = ¢(-1,1),

121 xlab = ” Correlation between LIBOR and Stock portfolio”,

122 ylab = 7 Option price”

123 col="blue” ,

124 #main="Traffic light option price as function of correlation”,
125 lwd=2)

126

127 # Saving the graphic

128

120 pdf(file= "TLO_price_in _dependence _of _rho_SL.pdf”)

130

131 # Plot

132

133 plot (rho_SL, y ,type = 71”7, ylim = ¢(0,0.11), xlim = ¢(—-1,1),
134 xlab = 7 Correlation between LIBOR and Stock portfolio”
135 ylab = 7 Option price”

136 col="blue” ,

137 l\V(1::2)

138

130 dev. off ()
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B.7 Monte Carlo Simulation of the LIBOR rates and
Stock portfolio

The following code includes: Figl3.7 Figl3.8| Fig[3.9] Fig[3.10] Fig[3.11], Fig[3.12] Fig[3.13]
Figl3.14]

1 # LIBOR rates and Stock portfolio Monte Carlo Simulation

3
1+ # Discretitzation points (Evaluation points for Euler Scheme)
5 # from t_0=0 to t_61=15 years by 0.25 steps

6 # quaterly evaluated

s t <— seq(0, 15, by = 0.25)

9

10 # Tenor dates with T_1=0 to T_30=15 years by 0.5 steps

11 # semi—annually evaluated

12

13 tenor <— seq (0.5, 15, 0.5)

14

15 # Generate a matrix for all discrete LIBOR rates for the EULER scheme
16 # Matrix with coloumn length t and row length tenor

17

s m.L <— matrix (0, ncol = length(t), nrow = length (tenor))

19

20 # Write all initial LIBOR rates L_i(0) for all

21 # 1 from 1 to length of tenor in the first coloumn

22

23 # Initial Term structure is flat due to the definition of the BOND
24 # Due to the assumption that the initial term structure is flat

25 # We will write for all initial LIBOR rates L_i(0) =4 %

26

o»m.L[, 1] <— 0.04

28

20 # Function for correlations of LIBOR rates between different tenors
s0 # It is a tenorxtenor matrix with 1 as diagonal entries

31 # Compare to the definition in the paper

32

33 thoil <— function (tenor){

34

35 beta <—0.1

36 m.rho <— matrix (0, ncol = length(tenor) , nrow = length (tenor))
37 p <— length (tenor)

30 for (i in 1:p){

40 for (j in 1:p){

1 m.rho[i, j] <— exp(—betaxabs(tenor[i]—tenor[j]))

42 }

43 }

44

45 return (m.rho)

4(i}

47

as # Valuation of the correlation matrix

49
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96

m.rho <— rhoil (tenor)

# as matrix

lambda <— function (t, tenor) {

52 # Function for the volatility —structure of the LIBORs

# Parameters are chosen as discussed in the paper

a<—0

b<— 0.29342753
¢ <— 1.25080230
d <— 0.13145969

m.lambda <— matrix (0, ncol = length
for (j in 1l:length(t)){
for (i in 1:(length (tenor))){
if (t[j] >= tenor[i]){
m.lambdafi, j] <— 0

} else {

m.lambda[i, j] <— (a+(tenor[i
}
}
}
return (m.lambda)

}

# Write the volatility structure in a

m.lambda <— lambda(t, tenor)

# FEuler scheme for LIBOR rate

euler LIBOR <— function(t, tenor, tau
# Generate the random variables
# set.seed generate always the same
# set.seed (2)
Z <— rnorm (length (t)+1)

# Calculate the entries for the dis
# in a matrix

for (j in 1:(length(t)—1)){
for (i in 1:(length (tenor))){
mu <— 0

(t), nrow = length (tenor))

]=t[j])*b)*exp(—(tenor[i]-t[j])+c)+d

matrix

1+ # Now we have all data for the Euler— scheme of the Libor rates

= 0.5, delta = 0.25){

random variables

crete LIBOR rates
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105 for (1 in 1:1){

106 mu <— mu + (tausm.L[l, j]*m.rho[i, l]#m.lambda[l, j])/(1+tausm.L[],
j])#m.lambdali, j]

107 }

108 m.L[i, j+1] < m.L[i, j] =

109 exp ((mu — 0.5%m.lambdafi, j]"2)xdelta + sqrt(delta)sm.
lambda[i, j]*Z[j+1])

110 }

111 }

112

113 # In order to circumvent the complex index sum for mu

114

115 for (i in Il:nrow(m.L)){

116 i.tmp <— which(diff(m.L[i, ], lag = 1) = 0)[2]
117 if (!is.na(i.tmp)){
118 m.L[i, i.tmp:ncol(m.L)] <— 0

119 }

120 }

121

122 # Declaration for the matrix

124 m.L <— as.data.frame(m.L)

125 colnames (m.L) <— paste0("t_", t)

126  rownames(m.L) <— paste0(”T.”, tenor)

127

128 return (m.L)

129 }

130

131

132 # Euler scheme on a Matrix to get all simulated LIBOR rate entries
133

134 m. Libor <— euler LIBOR(t, tenor)

135

136 # Now we have our discrete LIBOR rates via Euler Scheme in a matrix
137 # T_15 means T for 15 years and in our defintion we actually have
138 # T_30 for T=15 years (appears due to semi—annually tenors)

139

140

RN i A A A A A A A R A A A A i
142

143 # We want to evaluate the TLO (Libor with maturity at 3 years)

14a # at time 1 year (that means tenor[2]=T_2=1 or t[5])

145 # is important for S and L

146

a7 # LIBOR rates with maturity T_6= 3 years(in the matrix declared as T_6)
148 # and 13 time steps for the discretisation

o # L_6(t) with t from 0.00 to 3 years with 0.25 interval steps

150

151 # Evaluationpoint: t=1 years = t[5]

153 [5]
155 # Last calculation point for T_6= 3 years and t[13]=3.00

156

157 m. Libor [6 ,13]
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159 # m. Libor is data.frame, hence set as numeric

160

161 m. Libor6 <— as.numeric (m.Libor [6,1:13])

162

163 # Plot for L_6(t)....T_6= tenor[6]=3 years

164

165 plot (y=m. Libor6 ,x=t [1:13],xlab = "t”,

166 #main ="LIBOR rate (L_6(t)) with Maturity 3 years”,
167 ylab = "L_6(t)”, type = "1, col="blue”)
168

160 # Saving the graphic

170

171 pdf(file= ?LIBOR_rate _simulation _with _maturity -3y.pdf”)
173 # Plot
175 # Figure 7.7

177 plot (y=m. Libor6 ,x=t [1:13] ,xlab = "t”,
178 #main ="LIBOR rate (L_6(t)) with Maturity 3 years”,
179 ylab = "L_6(t)”, type = "1”7, col="blue”)

151 dev. off ()

LU ) f ) ) L ) g g g g g g ) g g ) g ) g g ) ) g g ) ) ) g ) ) g ) g g ) ) ) ) )]

183 FHH T I T T T T i i i i i i i i i i i i i i i i1t
184

1s5 # Simulation of 1000 paths of LIBOR rates L_6
186

157 m. sim <— NULL

188

1o for (j in 1:1000){

190

191 test <— euler _.LIBOR(t, tenor)

192 m.sim <— rbind (m.sim, test[6, 1:13])

193 print (j)

194

195 }

196

197 # Declaration of the entries of m.sim

198 # First m.sim is data.frame

199 # hence we declare it as a matrix

200

200 M. sim <—as.matrix (m.sim)

202
203 # Dimension of m.sim: 1000x13—matrix

204

205 # Declaration of m.sim

206

207 colnames (m.sim) <— paste(”?L6(t)”, l:ncol(m.sim), sep = 7_.7")

208 rownames (m.sim) <— paste(” Simulation”, l:nrow(m.sim), sep = 7_.")
209

210 # For evaluation at time 1 year we need t[5]=1
211 # hence m.sim|[,5]
212
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213

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
244

245
246
247
248
249
250
251
252
253
254
255
256

257

259
260
261

262

263
264
265

# Compute the mean of all 1000 simulations
214 # of L_6(t) for t=0.00 to 3.00 in 0.25 steps
# Need m.sim[,5] for the evaluation date 1 year

mean _sim <— colMeans (m.sim)

# Plot of the mean of 1000 simulations of L_6(t)

plot (mean_sim, x=t[1:13],xlab = 7t”,col="blue”,
#main = "Mean of 1000 Simulations of L_6(t)”,
ylab = "Mean of L_6(t)”, type = "17)

# Saving the graphic

pdf(file= ?"Mean_of _LIBOR_3y_of _1000_simulations.pdf”)

# Plot

plot (mean_sim, x=t[1:13],xlab = "t”,col="blue”,
#main = "Mean from 1000 Simulations of L_6(t)”,
ylab = "Mean of L_6(t)”, type = "17)

dev. off ()

# All 1000 Simulations of L_6(t) with evaluation point at t[5]=1 year

matplot (m.sim [order (m.sim [,5]) ,5],xlab="Simulations” ,
#main = ” Distribution of 1000 Simulations of L_6(t_5=1 year)”
ylab="Distribution of 1000 simulations of L_6(1)” ,type = ”h”  col

”blue”)
# Mean of the simulation
mean (m. sim [ ,5])
# Median of the simulation
median (m.sim [ ,5])

# Saving the graphic

pdf(file= ?Distribution _of 1000 _sim _of _L_6_at_1ly.pdf”)

# Plot

matplot (m.sim [order (m.sim[,5]) ,5],xlab="Simulations” ,

)

#main = 7 Distribution of 1000 Simulations of L_6(t_5=1 year)”,

ylab="Distribution of 1000 simulations of L_6(1)” ,type = "h” col

”blue”)

dev. off ()
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267

268 # Euler for Stock—Simulation

269

270 # Euler for L_N(T_N)

271

272 # Function for the last entries of the LIBOR matrix m.sim
273

274 lastentries <— function (m.Libor){

275

276 # Generate a vector with length of tenor
277

278 B <— rep (0, length (tenor))

279

280 # Generate a vector v.Libor with length of the row of m.Libor
281

252 v.Libor <— rep (0, nrow(m.Libor))

283

284 # Want the last entries L_n(t_n)

285 # which is the last entry before 0

286

257 for (i in l:nrow(m. Libor)){

288

289 i.tmp <— which(m.Libor[i, | = 0)[1] — 1
290

291 if (is.na(i.tmp)){

292

203 i.tmp <— ncol (m. Libor)

294

295 }

296

207 v.Libor[i] <— m.Libor[i, i.tmp]
298 }

299

300 return(v.Libor)

301

302 }

303

304 v.Libor<—lastentries (m. Libor)

305

306 # v.Libor is a vector with L_N(T_N) for N=1,..,30
307 # where T_1=0.5 year ,..., T_30= 15.00 years

308

309 # 1000 simulations of L_N(T_N) in order to

310 # discount the stock portfolio simulations

311 # Create v.sim as a 1000 x 30 — matrix
312

313 v.sim <— NULL

314

315 for (j in 1:1000){

316

317 test <— euler LIBOR(t,tenor)

318

310 testl <— lastentries (test)

320
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321 v.sim <— rbind(v.sim, testl)
322
323 print (j)

324 }

325

326 # Declaration of the entries of v.sim

327

328 colnames(v.sim) <— paste(?L_T(T)”, l:ncol(v.sim), sep = "_.7)

320 rownames (v.sim) <— paste(” Simulation”, l:nrow(v.sim), sep = ”7_")
330

331 # The finished simulation of v.sim contains 1000 simulations

332 # of L.N(T_-N). (dim(v.sim)=1000 x 30)

333
/I/I/I/I/IIII/I/I/IlI/I/I/II/I/I/I/I/I/I/IIIIII/I/I/I/I/I/I/II/I/I/I/I/I/I/IIII/I/I/I/I/I/I/II/I/I/I/I/I/I/IIII/I/I/I/I/I/I/I/

334 T i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 11t 1 17

335

336 # Generate a matrix Bdis for discounting with LIBOR rates

33s # We need a (ncol(v.sim)+1) x (nrow(v.sim))—matrix for Bdis
330 # since we need B.d(T-31) for discounting S(T-31)
310 # for L_30(T_30)

341

312 Bdis <— matrix (0, ncol = (ncol(v.sim)+1), nrow = nrow(v.sim))
343

314 # Set L_0(T-0)=

345

316 Bdis[,1]<—1

347

318 # Formula for the Bdis matrix
349

350 Bd <— function (v.sim ,tau=0.5){
351

352 for (i in l:nrow(v.sim)){
354 for (j in 2:(ncol(v.sim)+1)){

356 Bdis[i,j] <—(1+tauxv.sim[i,]—1])*«Bdis[i,]j—1]

362 colnames(Bdis) <— paste(”BdT”, 1:(ncol(v.sim)+1), sep = "_7")
363 rownames(Bdis) <— paste(”Sim”, 1:(nrow(v.sim)), sep = "_")
364

365 return (Bdis)

366

367 }

368

369

370 # Now we have all Bdis for 1000 Simulations

372 Bdis <—Bd(V . Sim)
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376 # Stock Simulation with Euler

s77 # start with S(T_-0) and need a length of tenor + 2
s7s # for the last calculation S(T-31)

379

350 S <— numeric(length (tenor)+2)

3s1 S[1]<—100

382

383 # Euler—scheme for Stockprices 1 dimensional

384

355 euler _stock <— function (tenor, delta = 0.25,sigmas=0.2){
386

37 #Generate the random variables

388

3s9  Z <— rnorm(length (tenor)+2)

390

301 # Calculate the entries for the discrete Stockprices
392 # in a vector

393

304 for (i in 1:(length (tenor)+1)){

395

396 S[i+1] <— S[i] = exp((— 0.5=xsigmas”2)xdelta + sqrt(delta)ssigmas=+Z[i
1))

397 }

398

3099  # Declaration for the vector entries

400

w01 S <— as.vector(S)

402

103 names(S)<— paste(”S_T”, 0:(length(tenor)+1), sep = 7_")
404

405 return (S)

406 }

407

a8 # 1 Simulation of a stock portfolio with initial value
100 # of 100 and from 0 to 31 Tenor dates

410

111 Stockprice<—euler _stock (tenor)

412

413 # Create v.stock as the matrix with 1000 rows and in each coloumn S(T_i)
a14 # from T_0=0 until T_31= 15.50 with different random variables
415

116 v.stock <— NULL

417

a1z for (j in 1:1000){

419

120 testl2 <— euler _stock(tenor)

421

122 v.stock <— rbind(v.stock, testl2)

423

124 print (j)

425 }

426

127 # v.stock is a 1000 x 32— matrix

428

129 # Finally to get the simulated discounted stock portfolio

81



430 # prices with respect to the simulated LIBOR rates

i; Stockpricediscounted <— function (Bdis, Stockprice){
j: # Generate a matrix

41;; a <— matrix (0, nrow = nrow(Bdis), ncol = ncol(Bdis))
i: for (i in 1:(nrow(Bdis))){

j:z for (j in 1:(ncol(Bdis))){

1111; ; al[i,j]<— Bdis[i,j]*Stockprice[i,]j+1]

443

147 colnames(a) <— paste(”S_T”, l:ncol(Bdis), sep = 7_7)

449 return (a)

450 }
a52 # The final simulated stock portfolio prices
151 Stocknew<—Stockpricediscounted (Bdis,v.stock)

156 # need Stocknew [,2] for evaluation at 1 year=T_2

457

458 # Simulation of 1000 simulated discounted stock portfolio values
459

160 matplot (t(Stocknew [1:1000,]) ,

461 xlab="Tenors (T_-i)” ,ylab = ”Stock portfolio S(T_-i)” ,
462 #main= 71000 Simulated discounted stock portfolio”
463 type = 717)

464

165 # Saving the graphic

466

167 pdf(file= ”Discounted _stock _portfolio _1000_sim _start _at _ST1.pdf”)

468

169 # Plot

470

a7t matplot (t (Stocknew [1:1000,]) ,

472 xlab="Tenors (T_i)” ,ylab = ”Stock portfolio S(T_-i)” ,

473 #main= " Discounted _stock _portfolio_1000_sim_start _at_ST1”
474 type = 717)

475

a6 dev. off ()

477

a7s # Short insertion

479

as0 # Add in first entry 100 the initial Stockprice

481 # Just for S Simulation plot with initial value 100

482

153 Stocknewl <— cbind (S_T_0 = rep (100, nrow(Stocknew)), Stocknew)

484
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as5 # Simulation of 1000 simulated discounted stock portfolio values
as6 # with added initial value S_(T-0)=100

487

1ss matplot (t (Stocknewl) ,xlab="Tenors (T_i1)”,ylab = ”Stock portfolio S(T_-i)”
489 #main= ” Discounted _stock _portfolio_1000_sim_start _at_S_T_0",

490 type = 717)

491

192 # Saving the graphic

493

191 pdf(file= ”"Discounted _stock_portfolio_1000_sim_start_at_S_T_0.pdf”)

495

196 # Plot

497

108 matplot (t (Stocknewl) ,xlab="Tenors (T_i)” ,ylab = ”Stock portfolio S(T_i)”
199 #main= ” Discounted _stock _portfolio_1000_sim_start _at_S_T_0",

500 type = 717)

502 dev. off ()

505 # Mean of 1000 simulations of the discounted stock portfolio

507 Stockmean <— colMeans (Stocknew)

2 177

500 plot (Stockmean, type = , ylab = 7 Stock portfolio values”,

510 xlab = 7T7 |

511 #main="Stock portfolio mean value”,
512 col="blue”)

513

514 # Saving the graphic
s16 pdf(file= ”Stock _portfolio _mean_of _1000_simulations.pdf”)
518 # Plot

520 plot (Stockmean, type = 717, ylab = ”Stock portfolio values”,
521 xlab = 7T" |

522 #main="Stock portfolio mean value”,
523 col="blue”)
524

525 dev. off ()

527 # Now the simulation is finished

529 FHAFHHH T T i i i i i i i i i i i i i i i1t

531 # Create a data.frame with 2 coloumns and 30 rows

532 # first coloumn is defined as the LIBOR rates (m.sim)

533 # and second coloumn is defined as the corresponding

534 # stock portfolio (Stocknew)

535 # at time 1 year with maturity 3 years

536

s37 SL <— data.frame (LIBOR = m.sim[,5], Stock_portfolio = Stocknew[,2])
538

530 # hence we have a data.frame we need as.matrix
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540

511 SL1 <— as.matrix (SL)

542

543 rownames (SL1)<— paste (”Sim”, 1l:nrow(SL1), sep = "_.7)
544

545
546
sa7 # Monte Carlo Simulation

sas # With 1000 simulations of LIBOR rates and stock prices
540 # Here we insert the simulations into the payoff function
550

# Function for the payoff profile

1
2

(SIS, B

553 # Pricing scenarios for payoff function of a traffic light option
554 # Calculates all combination in this special scenario
555 # with strike for Stock portfolio and LIBOR rate

55
55

5
55
55

6

-

[}
-~

s PayoffSL <— function (x, Sstrike=100, Lstrike=0.04){
559
560 7z <— rep(O, nrow(x))
561
562 for (i in l:nrow(x)){

563

5

SIS

564 if (Lstrike >= x[i,1] & Sstrike >= x[i,2]){
565

566 z[i] <— (Lstrike—x[i, 1])=(Sstrike—=x[i, 2])
567

568 }

569 else

570 O

4+ return(z)

576 }

578 # Valuation points for the monte carlo simulation

:o liborseq <—seq(0.01,0.07, by=0.0005)

ss2 stockseq <— seq (60,120, length.out = length(liborseq))

ssa # Function for the computation of all strike
585 # combinations between LIBOR and Stock portfolio

ss7 pay <— function (SL1, liborseq, stockseq){

559 g <— matrix (0, ncol = length(liborseq), nrow = length (stockseq))
590

591 7z <— NULL

592

593 for (i in 1l:length(liborseq)){

594
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600
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602
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607
608
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620
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634
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640
641
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643
644
645
646
647
648

for (j in 1l:length (stockseq)){
z<— PayoffSL(SL1, stockseq[j] , liborseq[i])
gli,j] <— mean(z)
}
print (i)
}
rownames (g)<— paste(” Stockvalues”, 1l:nrow(g), sep = "_")
colnames(g) <—paste (”LIBORvalues” , 1l:ncol(g), sep = 7_7)
return (g)

}

# Evaluation of the Monte Carlo simulation

# for each strike level combination, the mean will be computed
# and then be plotted

g <—pay(SL1,liborseq ,stockseq)

# g contains payout values for all linear combinations
# of all strikes from LIBOR rates and stock indices

# Colour plot (colour surface)

# Some pars

par(bg = ”?white”)

x <— liborseq

y <— stockseq

z <— g

nrz <— nrow(z)

ncz <— ncol(z)

# Create a function interpolating colors in the range of specified colors

7

jet.colors <— colorRampPalette( c(”red” ,”yellow3” ,”yellow2” ,”yellowl” ,
greenl” , 7green”) )

# Generate the desired number of colors from this palette

nbcol <— 10000
color <— jet.colors(nbcol)

# Compute the z—value at the facet centres

zfacet <— z[—-1, —1] + z[—1, —ncz] + z[—-nrz, —1] + z[—nrz, —ncz]
# Recode facet z—values into color indices

facetcol <— cut(zfacet, nbcol)

# Plot
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649
650
651
652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683

684

685

686

687
688
689
690
691
692
693
694
695

696

697
698
699

700

persp(x’ Y’ Z7

col

color [facetcol],

xlab="LIBOR rate strike level”,
ylab = 7 Stock portfolio strike
zlab = ”Option value” ,

#main="Traffic _light _option _Monte_Carlo_Simulation”,

ticktype = ”"detailed”,
#zlim = ¢(0,1.7),

nticks = 8,
expand = 0.75,
phi = 30,
theta = —30)

# Saving the graphic

pdf(file= ” Traffic _light _option_Monte_Carlo_Simulation.pdf”)

color [facetcol],

xlab="LIBOR rate strike level”,
ylab = 7 Stock portfolio strike

#main="Traffic _light _option _Monte_Carlo_Simulation”,

# Plot

persp(x, y, z, col =
zlab = 7 Option value”
ticktype = 7 detailed”,
#zlim = ¢(0,1.7)
nticks = 8,
expand = 0.75,
phi = 30,
theta = —30)

dev. off ()

level”

level”,

# Plot in relation to the analytical formula

persp(x, y, z,

xlab="LIBOR rate strike

col

color [facetcol],

zlab = ”Option value”,
#main="Traffic _light _option _Monte_Carlo_Simulation_in—rel _to _

analytical _formula”
ticktype = " detailed”,
zlim = ¢(0,1.7),

nticks = 8,
expand = 0.75,
phi = 30,
theta = —30)

# Saving the graphic

level” | ylab = ”Stock portfolio

strike

level”

pdf(file= ? Traffic _light _option _Monte_Carlo_Simulation _in_rel _to_analytical
_formula.pdf”)

# Plot

persp(x7 y’ Z?

col

color [facetcol],
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701

716
717
718
719
720
721

734
735
736
737
738
739

740

743
744
745
746
747
748

xlab="LIBOR rate strike level”, ylab = ”Stock portfolio strike

zlab = 7 Option value” ,

#main="Traffic _light _option _Monte_Carlo_Simulation _in_rel _to_
analytical _formula”,

ticktype = ”"detailed”,

zlim = ¢(0,1.7),

nticks = 8,

expand = 0.75,

phi = 30,

theta = —30)
dev. off ()

# Detailed describtion with one example

# 1000 simulations with Sstrike=120 and Lstrike=0.05
p<—PayoffSL(SL1, Sstrike = 120,Lstrike = 0.05)

# Evaluate the standard deviation of p

sd_p <— sd(p)

# Generate the mean over all values

p-mean <— mean(p)

# build a confidence interval with
# mean +/— 3 times the standard deviation

p-low <— p_mean—3xsd_p
p-high <— p_mean+3%sd_p
p_high /p_mean

# p_low is negative and therfore the lower bound

# is set to O

# p_high is more than 370 percent above the mean of
# D

# this results in a large simulation error

# —> more optimisation is needed

# not part of this thesis

# Distribution of the 1000 simulations with the
# payout function

w<—PayoffSL (SL1)
order (w)

wnew <— w[order (w) ]
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# Plot for the option price in this special scenario

755

756 plot (wnew, col="blue” ,

757 #main = ” Distribution of the option price with 1000 sim”,
758 xlab = ”Simulations” , ylab = ” Option price”,

759 type = "h”)

760

61 # Saving the graphic

763 pdf (file= " Distribution _of _the_option_price _with_1000_sim.pdf”)

765 # Plot

766

767 plot (wnew, col="blue” ,

768 #main = ” Distribution of the option price with 1000 sim”,
769 xlab = ”Simulations” , ylab = ” Option value” ,
770 type = "h”)

771

772 dev. off ()

773

774 # Pricing Traffic Light Option with Prop 2.1

775

776 # 1000 Simulations TLO values

o Optionvalue <— function (SL1){

st TLO <— rep(0,1000)

782
73 for (i in 1:1000){
rs4 TLO[ i ]<—priceTLO (SL1[i,1],SL1[i,2] , t=1)

785 }

786 return (TLO)

787

788

789 }

790

701 # TLO contains all option values

792

793 TLO<— Optionvalue (SL1)

794

795 # Check if all TLO options are greater than 0

796

797 length (which (TLO>0))

798

799 #Create a data.frame for TLO

800

sor AfTLO <— data.frame (LIBOR = SL[,1] , Stock_portfolio = SL[,2], Option_
Values = TLO)

802

s03 # hence we have a data.frame we need as.matrix

804

sos SL1 <— as.matrix (SL)

806

sor rownames (SL1)<— paste (”Sim” , 1l:nrow(SL1l), sep = 7_")
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808

soo # Plot Payoff simulation of TLO with formula
810

sit library (scatterplot3d)

812

s13 # Simulation of the conditional payout scenario
814

s15 with (dfTLO, {

816 scatterplot3d (LIBOR, # x axis

817 Stock _portfolio , # y axis

818 Option _Values , # 7z axis

819 angle =24,

820 zlab="0Option value”

821 #box = FALSE,

822 type = "h”,

823 highlight .3 d=TRUE,

824 #main="Simulation _of “TLO_conditional _payout_distribution _at
_ly_with_maturity _3y”)

825 col.grid = ”black”)})

826

s27 # Saving the graphic

828

s20 pdf(file= ”Simulation_of TLO_conditional _payoff_distribution_at_ly_with_
maturity -3y.pdf”)

830

1 # Plot

832

s33 with (AfTLO, {

834 scatterplot3d (LIBOR, # x axis

8

w

835 Stock _portfolio , # y axis

836 Option _Values , # 7z axis

837 angle =24,

838 zlab="Option value”

839 #box = FALSE,

840 type = "h”,

841 highlight .3 d=TRUE,

842 #main="Simulation _of "TLO_conditional _payoff_distribution _at
_ly _with_maturity _3y”)

843 col.grid = ?black”)})

844
sa5 dev. off ()

846

sar # Plot of Payout profile

848

s19 with (AfTLO, {

sso scatterplot3d (LIBOR, # x axis

851 Stock _portfolio , # y axis

852 W, # z axis

853 angle =24,

854 #box = FALSE,

855 type = "h” |

856 zlab="Option value”,

857 highlight .3 d=TRUE,

858 #main="Simulation _of TLO_conditional payoff_distribution _at

_ly_with _maturity _3y_theoretical”,
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859 col.grid = ”black”)})

860

861

s62 # Saving the graphic

863

ssa pdf(file= ”Simulation _of TLO_conditional payoff_distribution _at_ly_with_
maturity -3y_theoretical .pdf”)

865

s66 # Plot

867

ses with (dfTLO, {

869 scatterplot3d (LIBOR, # x axis

870 Stock _portfolio # y axis

871 w, # 7 axis

872 angle =24,

873 #box = FALSE,

874 type = "h”

875 zlab="Option value”

876 highlight .3 d=TRUE,

877 #main="Simulation _of "TLO_conditional _payoff_distribution _at
_ly_with _maturity _3y_theoretical”,

878 col.grid = ”black”)})

879

sso dev. off ()
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B.8 Unhedged balance sheet in the Vasicek-model

The following code includes: Figfd.2|
# Hedging with TLO

Unhedged balance sheet
Yellow Light Scenario

#
#
6 # Bonds are priced in the
# Vasicek model

9 # Stock prices
10 # generate vector of length 11
11 # Stockprices from —30% to 20%

13 # Names in percentage

5 Spercharl <— seq(—0.3,0.2,length.out = 11)
16 Spercharl

18 # Function for percentage

20 percent <— function (x, digits = 2, format = 77, ...) {

21 paste0 (formatC (100 * x, format = format, digits = digits, ...), "% )}
ji Sperchar<—percent (Spercharl)

::I Sperchar

j: Spercentage<—seq (0.7,1.2, length.out = 11)

N
3

IS

names (Spercentage )<—Sperchar
Spercentage

31
# Initial value

S <— 30
36 # Stockprice Vector

38 Stockprices<— SxSpercentage

30 Stockprices

40

41

12 # LIBOR Rates vector of length 11

13 # ranges from —1.5 % to +1.5 %

14 # compare to [Jor07] with —3% to +3%

45

16 liborchange <— seq(—0.015,0.015,length.out = 11)
47

15 Liborchar <— percent (liborchange)
50 Liborvalues<— seq(0.025,0.055, length.out =11)

52 names (Liborvalues)<—Liborchar
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53 Liborvalues
4

[S;

5 # 100% =[6]....unchanged scenario

6

57 Liborvalues [6]

58

50 # Bonds with duration tnn = 6 years
60 # Here bonds are priced in the vasicek
61 # model

62

63 PSI <— function (x,k=0.25){

[

65 e<—NULL

o7 e <— (l—exp(=kxx))/k
6s return (e)

69 }

72 Bond <— function (L =0.04, k=0.25, theta=0.012, sigma_1=0.02, t=0, tnn=3){

3
1 b <= rep(0,1)

ot

PRI B B |

o

integrand <—function (s) thetaxPSI(tnn—s, k)

77 a <—integrate (integrand ,lower = t, upper=tnn)

78

70 anew <— a[[l]]

80

51 gamm <— —anew-+sigma _1"2/(2xk"2)«(tnn—t)—sigma _1"2/(2+k"2)«PSI(tnn—t ,k)—
sigma 172/ (4xk)*PSI(tnn—t ,k) "2

82

s5 b <— exp(gamm—PSI(tnn—t)=L)

ss  return (b)
86 }

ss # Bond face value = 70%1/Bond(L=0.04,tnn=6)=90.58077
so # Duration (y) = tnn

90 # LIBOR rate = 0.04

91

92 temp<—70x*1/Bond (L=0.04,tnn=6)

95 Bondvalues<—temp=*Bond (L= Liborvalues ,tnn=6)

94

95 # Pension obligations like bonds

96 # Face value = 177.88 = 92/Bond(L=0.04,tnn=15)

97

os templ <— 92/Bond(L=0.04,tnn=15)

99 templ

100 PO <—templ+Bond (L=Liborvalues ,tnn=15)

101

102 names (PO) <— Liborchar

103

104 # All changes in

105 # stockprices , Bonds, Pensionobligation (PO)

106
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107 Stockprices
10s Bondvalues
100 PO

110

111
112 # generate data.frame for Bonds and PO

113

111 Tablel <— data.frame(Bonds = Bondvalues, Pension = PO)
115

116 # hence we have a data.frame we need as.matrix

117

s m. Tablel <— as.matrix(Tablel)

119

120 # Function for the linearcombination between the

121 # stockprices and m.Tablel

122

125 lincom <— function (Stockprices ,m.Tablel){

124

125z <— matrix(0,nrow = 11%11,ncol = 3)
126

127 for (1 in 1:11){

128

129 for (j in 1:11){

130

131 k <—11*(i—1)—|—j

132 z|k,1] <— Stockprices|[i]

133 Z [k,Q] <— m. Tablel [J ,1]

134 z[k,3] <— m.Tablel[j,2]

135 }

136 }

137 return (z)

138 }

139

140

141 f<—lincom (Stockprices ,m. Tablel)

142

113 m. Table <— data.frame(Stockprices=f[,1],Bonds=f[,2] ,PO=f[,3])
144

115 m. Table _-new <— as.matrix (m. Table)

146

147 # f contains all linearcombinations between stockprices
148 # and BONDS with PO

149

150 freeequity <— function (m.Table_new){

151

152 u <— rep(0,nrow (m. Table new))

153

154 for (i in 1:nrow(m.Table _new)){

155

156 u[i]<— m.Table_new[i,1]+m. Table_new[i,2] —m. Table_new|i ,3]
157

158 }

159 return (u)

160

161 }
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162
163
164
165

166

fequity <— freeequity (m. Table _new)

fequity

167 # Function for the solvency ratio
16s # which is defined as:

169
170
171

172

"
-~ -~ ~ ~ -~
g4 o oo W

[
-3
[

179
180
181
182
183
184
185
186
187
188

189

# Solv Ratio = Free Equity / Pension Obligations
solvencyratio <— function (fequity ,f){
o <— rep(0,length (fequity))
for (i in 1:length(fequity)){
o[i]<—fequity[i]/f[i,3]

}

return (o)

}

solvperc <— solvencyratio (fequity ,m.Table _new)
sp <— matrix(solvperc ,ncol=11)
# Full table of the balance sheet

spnew <— as.vector(solvperc)

190 m. Table2 <— data.frame (m. Table _new, Solv_perc=spnew)

191
192

193

# Initial balance sheet at time t=0

104 m. Table2 [72 ]

195
196
197

198

# Worst case solvency ratio

sp [which . min(sp) ]

190 m. Table _new [which . min(sp) ,]

200
201
202

203

# Best case solvency ratio

sp [which . max(sp) ]

204+ m. Table _new [which .max(sp) ,]

205
206
207
208
209
210
211

212

# persp PLOT

par(bg = ”?white”)

x <— Liborvalues

y <— Stockprices

7z <—Sp

nrz <— nrow(z)

ncz <— ncol(z)

# Create a function interpolating colors in the range of specified colors

jet.colors <— colorRampPalette( c(”red” ,”yellow3” ,” yellow2” ,”yellowl” ,”
greenl” | 7green”) )
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216 # Generate the desired number of colors from this palette

217 nbcol <— 1000

215 color <— jet.colors(nbcol)

219 # Compute the z—value at the facet centres

20 zfacet <— z[—-1, —1] + z[-1, —ncz] + z[—nrz, —1] + z[—-nrz, —ncz|
221 # Recode facet z—values into color indices

222 facetcol <— cut(zfacet , nbcol)

223

224 # Plot

225

226 persp (x,

227 vy,

228 z,

229 col = color[facetcol],

230 xlab="Short rate”,

231 ylab = 7Stock portfolio”,

232 zlab = ”Solvency ratio”,

233 #main="Unhedged balance sheet in the Vasicek model”,
234 ticktype = 7detailed” ,nticks = 8§,
235 expand = 0.75,

236 phi = 20, theta =-40)

237

238 # Saving the graphic

239

2120 pdf (file= ”Unhedged _balance _sheet _in_the_Vasicek _model.pdf”)
241

212 # Plot

243

214 # Figure 7.7

245

216 persp (x,

247 vy,

248 Z,

249 col = color[facetcol],

250 xlab="Short rate”,

251 ylab = 7 Stock portfolio”,

252 zlab = ”Solvency ratio”,

253 #main="Unhedged balance sheet in the Vasicek model”,
254 ticktype = "detailed” ,nticks = 8,

255 expand = 0.75,

256 phi = 20, theta =-40)

257

258 dev. off ()

259

260 # Yellow light scenario
261

262 # Stock portfolio drops 30%
263 # LIBOR drops 100bps=1%
264

265 # S=30 —> S=21

266

267 S_shocked <— 21

268

260 # Bonds before shocked

270
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1 Bonds <— 70
3 # PO before shocked
1

PO <— 92

NN NN N NN
N
-3

PSEES TN BN |

# Bond face value = 70%1/Bond(L=0.04,tnn=6)=90.58077
279 # Duration (y) = tnn

280 # LIBOR rate = 0.04

281

282

283 temp<—Bondsx*1/Bond (L=0.04,tnn=6)

284 temp

255 Bonds _shocked<—temp*Bond (L= 0.03,tnn=6)

286

2s7 Bonds _shocked

288

280 # Pension obligations like bonds

200 # Face value = 177.88 = 92/Bond(L=0.04,tnn=15)
291

202 templ <— PO/Bond(L=0.04,tnn=15)

203 PO_shocked <—templ*Bond(L=0.03,tnn=15)

294

295 PO_shocked

296

207 totalassetside<—S_shocked+Bonds_shocked

20s freeequityshocked<—totalassetside — PO_shocked
299

300 freeequityshocked

301

302 # Solvency percentage in the yellow light scenario
303

304 freeequityshocked /PO_shocked

305

s06 # Initial balance sheet before getting shocked
307

s30s Initial balance _sheet <—data.frame(Stock_portfolio=S,

309 Bonds=Bonds,

310 PO:PO,

311 Free Equity=S+Bonds—PO,
312 Solvency ratio=

313 (S+Bonds—PO) /PO)

314

315 Initial _balance _sheet

316

317 # Yellow light scenario with all entries

319 Yellowlightscenario _balance_sheet<—data.frame(Stock _portfolio=S_shocked,

320 Bonds=Bonds _shocked ,

321 PO=PO _shocked ,

322 Free _Equity=freeequityshocked
323 Solvency ratio=
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324 freeequityshocked /PO_
shocked)

325

326 Yellowlightscenario _balance _sheet

327

328

320 # Double check if the balance sheet is complete

330 # total asset side = total liabilities and free equity side

331

352 Yellowlightscenario _balance_sheet[1,1]4 Yellowlightscenario _balance_sheet
[1,2]

3 Yellowlightscenario _balance _sheet[1,3]+ Yellowlightscenario _balance _sheet
[1,4]

3:

334

335 2.45/95.66
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B.9 Unhedged balance sheet in the BM G-model

The following code includes: Figfd.3|
# Hedging with TLO

1
2
3 # Unhedged balance sheet

+ # Yellow Light Scenario

6 # BMG- Model framework!

7 # Bonds are priced with the product

s # formula

9

10

11 # Stock prices

12 # generate vector of length 11

13 # Stockprices from —30% to 20%

14

15 # Names in percentage

16

17 Spercharl <— seq(—0.3,0.2,length.out = 11)
15 Spercharl

20 # Function for percentage

percent <— function(x, digits = 2, format = 77, ...) {

22 ’

23 paste0 (formatC (100 * x, format = format, digits = digits, ...), "% )}
24

25 Sperchar<—percent ( Spercharl)

26

27 Sperchar

28

20 Spercentage<—seq (0.7,1.2, length.out = 11)

31 names ( Spercentage )<—Sperchar
Spercentage

# initial value
36 5 <— 30
38 # Stockprice Vector

10 Stockprices<— SxSpercentage
11 Stockprices

13 # LIBOR Rates vector of length 11

14 # ranges from —1.5 % to +1.5 %

45

16 liborchange <— seq(—0.015,0.015,length.out = 11)
17 liborchange

15 Liborchar <— percent (liborchange)

50 Liborvalues<— seq(0.025,0.055, length.out =11)

52 names (Liborvalues)<—Liborchar
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53 Liborvalues

jl # 100% =[6]....unchanged scenario
:7 Liborvalues [6]

50 # BOND Value in BMG-model

61 BondBMG <— function (L=0.04, t = 0, tnn = 3)
62 {

63 delta <— 0.5 # Difference between the tenor dates

65 tenor <— seq(0,tnn, by =0.5)

66

67 btnn <— 1/(1+deltaxL) " (length (tenor)—t—1)

68

6o return (btnn)

70 }

71

> BondBMG (¢ (0.01,0.02,0.03,0.04) ,tnn=6)

73

71 # Bond face value = 70%1/BondBMG(L=0.04,tnn=6)=90.55246 for 6 years

6 temp<—70%1/BondBMG(L=0.04,tnn=6)

7z Bondvalues<—temp*BondBMG (L= Liborvalues ,tnn=6)
79

so # Pension obligations like bonds

s1 # Face value = 166.65 = 92/BondBMG(L=0.04,tnn=15)
82

53 templ <— 92 /BondBMG(L=0.04,tnn=15)

s4 templ

s5 PO <—templ+BondBMG (L=Liborvalues , tnn=15)

s7 names (PO) <— Liborchar

88

so # All changes in

90 # stockprices , Bonds, Pensionobligation (PO)

91

92 Stockprices

93 Bondvalues

92 PO

95

06 FEHHHH L
97 # generate data.frame for Bonds and PO

98

99 Tablel <— data.frame(Bonds = Bondvalues, Pension = PO)
100

101 # hence we have a data.frame we need as.matrix

102

103 m. Tablel <— as.matrix(Tablel)

104

105 # Function for the linearcombination between the

106 # stockprices and m. Tablel

107
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108 lincom <— function (Stockprices ,m.Tablel){
109

110z <— matrix(0,nrow = 11%11,ncol = 3)

111

nz for (1 in 1:11){

113

114 for (j in 1:11){

115

116 k <—11>$<(i—1)—|—j

117 zk,1] <— Stockprices[i]
118 z[k,2] <— m.Tablel[j,1]
119 z[k,3] <— m.Tablel[j,2]

120 }

121 }

122 return (z)

123 }

124

125 f<—lincom ( Stockprices ,m. Tablel)

126

127 m. Table <— data.frame(Stockprices=f[,1],Bonds=f[,2] ,PO=f[,3])
128

120 m. Table _new <— as.matrix (m. Table)

130

131 # f contains all linearcombinations between stockprices
132 # and BONDS with PO

133

1314 freeequity <— function (m.Table _new){
135

136 u <— rep(0,nrow(m. Table_new))

137

135 for (i in 1:nrow(m.Table _new)){

139

140 u[i]<— m.Table _new[i,1]4+m.Table _new][i,2] —m.Table new[i,3]
141

142 }

143 return (u)

144

145 }

146

117 fequity <— freeequity (m. Table new)

148

119 fequity

150

151 # Function for the solvency ratio
152 # which is defined as:

153 # Solv Ratio = Free Equity / Pension Obligations
154

155 solvencyratio <— function (fequity ,f){
156

157 0 <— rep(0,length(fequity))

158

159 for (i in 1:length(fequity)){

160

161 o[i]<—fequity[i]/f[1i,3]

162 }
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163 return (o)

164 }

165

166 solvperc <— solvencyratio (fequity ,m.Table _new)
167

168 sp <— matrix(solvperc ,ncol=11)

169

170 ## Full table of the balance sheet

172 spnew <— as.vector (solvperc)

172 m. Table2 <— data.frame (m. Table _new, Solv_perc=spnew)
176 # Initial balance sheet at time t=0

175 m. Table2 [72,]

150 # Worst case solvency ratio

152 sp [which . min(sp) ]
153 m. Table _new[which.min(sp) ,]

185 # Best case solvency ratio

186

187 sp [ which .max(sp) ]

1ss m. Table _new [ which .max(sp) ,]

189

190 # Some pars

191

192 par (bg = 7 white”)

193 X <— Liborvalues

194y <— Stockprices

195 Z <—SPp

196 nrz <— nrow(z)

197 ncz <— ncol(z)

198

199 # Create a function interpolating colors in the range of specified colors

200

201 jet.colors <— colorRampPalette( c("red” ,”yellow3” ,”yellow2” ;”yellowl” |
greenl” , 7green”) )

7

202

203 # Generate the desired number of colors from this palette
204

205 nbcol <— 1000

206 color <— jet.colors(nbcol)

207

208 # Compute the z—value at the facet centres

209

210 zfacet <— z[—1, —1] + z[-1, —ncz] + z[—nrz, —1] + z[—nrz, —ncz|
211

212 # Recode facet z—values into color indices

213

211 facetcol <— cut(zfacet , nbcol)

215

216 # 3D Plot
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217
218 persp (x,

219 vy,

220 Z,

221 col = color[facetcol],

222 xlab="LIBOR rate” ,

223 ylab = ”Stock portfolio”,

224 zlab = 7" Solvency ratio”,

225 #main="Unhedged Balance Sheet shocked in the BGM Model”
226 ticktype = 7detailed” ,nticks = 8,

227 expand = 0.75,

228 phi = 20, theta =-40)

229

230 # Saving the graphic

231

2320 pdf( file= ”Unhedged _balance _sheet _shocked _in _the BGM_Model. pdf”)
233

231 # Plot

235

236 persp (x,

237 v,

238 Z,

239 col = color[facetcol],

240 xlab="LIBOR rate”

241 ylab = 7 Stock portfolio”,

242 zlab = ”Solvency ratio”,

243 #main="Unhedged Balance Sheet shocked in the BGM Model”
244 ticktype = "detailed” ,nticks = 8,
245 expand = 0.75,

246 phi = 20, theta =-40)

247

215 dev. off ()

249

250 # Yellow light scenario

251

252 # Stock portfolio drops 30%
253 # LIBOR drops 100bps=1%

255 # S=30 —> S=21

256

257 S_shocked <— 21

258

259 # Bonds before shocked

260

261 Bonds <— 70

262

263 # PO before shocked
264

265 PO <— 92

266

267

263 # Bond face value = 70%1/Bond(L=0.04,tnn=6)=90.58077
260 # Duration (y) = tnn

270 # LIBOR rate = 0.04

271
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temp<—Bondsx*1/BondBMG(L=0.04,tnn=06)
temp
Bonds _shocked<—temp*BondBMG (L= 0.03,tnn=6)

INEEEN N
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w

Bonds _shocked

NN NN NN
3
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~

s # Pension obligations like bonds
279 # Face value = 166.65 = 92/BondBMG(L=0.04,tnn=15)

2s1 templ <— PO/BondBMG(L=0.04,tnn=15)
252 PO_shocked <—templ+BondBMG(L=0.03,tnn=15)

281 PO_shocked

256 totalassetside<—S_shocked+Bonds_shocked

257 freeequityshocked<—totalassetside — PO_shocked
288

280 freeequityshocked

290

201 # Solvency percentage in the yellow light scenario
292

203 freeequityshocked /PO_shocked

294

205 # Initial balance sheet before getting shocked
296

207 Initial _balance _sheet <—data.frame(Stock_portfolio=S,

208 Bonds=Bonds,

299 PO=PO,

300 Free _Equity=S+Bonds—PO,
301 Solvency _ratio=

302 (S—I—BondS—PO) /PO)

303

300 Initial balance _sheet

305

s06 # Yellow light scenario with all entries

307

s0s Yellowlightscenario _balance sheet<—data.frame(Stock_portfolio=S_shocked ,
309 Bonds=Bonds _shocked ,

310 PO=PO_shocked ,

311 Free Equity=freeequityshocked

312 Solvency ratio=

313 freeequityshocked /PO_
shocked)

314

315 Yellowlightscenario balance _sheet

316

317 # Double check if the balance sheet is complete

# total asset side = total liabilities and free equity side

o0

319

320 Yellowlightscenario _balance _sheet[1,1]+ Yellowlightscenario _balance _sheet
[1,2]

321 Yellowlightscenario _balance_sheet[1,3]+ Yellowlightscenario_balance_sheet
[1,4]
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B.10 Hedged balance sheet in the BMG-model

The following code includes: Fig{d.5

1 # Pricing Traffic Light Option

2 # with analytical formula

3

+ # Remark: r is equally flat to LIBOR rates

6 # Need the package pbivnorm for the standardized

7 # bivariate normal distribution

8

9 require (pbivnorm)

10

11 # Formula for TLO

12

15 priceTLO<—function (L,S,t=0,Tnl=3,SStrike=100,LStrike=0.04,sigma_s =0.2,rho
=-0.5) {

15 # Difference between two tenor dates
17 tau <— 0.5

19  # T.n

21 Tn <— Tnl — tau

23 # Need tenor for the semi—annual calculations
24 # Starting with T_0=0, T_1=0.5,

25

26 tenor <— seq( 0 , Tnl , by = tau )

27

2s  # Bond with maturity at T_(n+1)

29 # Due to the fact of semi—annual tenor dates

s0  # we need all tenor evaluation points = length (tenor)

32 bTnl <— 1/(1+tauxL) " (length (tenor)—t—1) # Bond with r = LIBOR r = x
s SSchlange <—(SStrikexbTnl) /S

36 LSchlange <— LStrike /L

35 sigma_xq <—(Tnl—t)=+sigma _s "2

10  sigma_x <— sqrt(sigma_xq)

12 # We need lambda for the sigma._y

43

11 lambda <— function (t,Tn) {

45

46 a <— 0

a7 b <— 0.29342753

48 ¢ <— 1.25080230

49 d <— 0.13145969

50

51 result <— (a+(Tn—t)x*b)xexp(—(Tn—t)x*c)+d
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64

66

67

69

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106

return (result)

}

integrandl <— function (x) {lambda(t = x, Tn = Tn) "2}
sigma _yql <—integrate (integrandl , lower = t, upper = Tn )

# Returns only the value without abs error

sigma _yq<—sigma_yql [[1]]

# sigma _y 2=sigma _yq

sigma_y <— sqrt (sigma_yq)

# sigma _xy

integrand2 <— function (x) {sigma_s * rho * lambda(t=x,Tn = Tn)}
sigma_xyl <— integrate (integrand2 ,lower = t, upper= Tn)
sigma _xy <— sigma_xyl[[1]]

# mu_x

mu-x <— sigma_xqx*(—0.5)

# mu_y

mu_y <— sigma_yqx(—0.5)

# rho _SL

rho SL <— sigma _xy/(sigma _xx*sigma _y)

# For a better reading of the formula

al <— as.numeric ((log(SSchlange)—mu_x)/sigma x)
bl <— as.numeric ((log(LSchlange)-mu_y)/sigma y)
a2 <— as.numeric(al—sigma_x)

b2 <— as.numeric(bl—rho_SLxsigma _x)

a3 <— as.numeric(al—rho _SLxsigma _y)

b3 <— as.numeric(bl—sigma _y)

ad <— as.numeric(al-rho _SLksigma _y—sigma _x)

b4 <— as.numeric(bl—rho_SLksigma _x—sigma _y)

pl <— pbivnorm(x = al, y = bl, rho = rho_SL)
p2 <— pbivnorm(x = a2, y = b2, rho = rho_SL)
p3 <— pbivnorm(x = a3, y = b3, rho = rho_SL)
p4 <— pbivnorm(x = a4, y = b4, rho = rho_SL)

result <— as.numeric ((L*S*(SSchlangexLSchlangexpl
— LSchlangex*p2
— SSchlangex*p3
+ exp(sigma_xy)+*p4)))
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107

10s print (¢(”Result” ;result))

109

110 return (result)

111

112 }

113

114 # Hedging with TLO

115

116 # Hedged balance sheet

117 # Yellow Light Scenario

118

119 # BMG- Model framework!

120 # Bonds are priced within the BGM-Model

121

122 # Stock prices

123 # generate vector of length 11

124 # Stockprices from —30% to 20%

125

126 # Names in percentage

127

128 Spercharl <— seq(—0.3,0.2,length.out = 11)
120 Spercharl

130

131 # Function for percentage

132

133 percent <— function(x, digits = 2, format = "{”, ...) {
134 paste0 (formatC (100 * x, format = format, digits = digits, ...), %)}
135

136 Sperchar<—percent (Spercharl)

137

138 Sperchar

139

110 Spercentage<—seq (0.7 ,1.2, length.out = 11)
141

112 names ( Spercentage )<—Sperchar

143

144 # initial wvalue for the stock portfolio

145

146 S <— 30

147

148 # Stockprice Vector

149

150 Stockprices<— SxSpercentage

151 Stockprices

152

153 # In the BGM-model the problem arises

154 # with extrem LIBOR rate changes quite to
155 # the contrary as seen in the short rate
156 # model (Vasicek), where the long term rates
157 # resp. the long term bonds do not react as much
158 # as in the BGM-model

150 # Hence we put the range from —150bps

160 # to 150bps instead as in the Joergensen paper
161 # with the short rate from —300bps to 300bps
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162

163 # LIBOR Rates vector of length 11

164 # ranges from —1.5 % to +1.5 %

165

166 liborchange <— seq(—0.015,0.015,length.out = 11)

167

16s liborchange

169

170 Liborchar <— percent (liborchange)

171

172 Liborvalues<— seq(0.025,0.055, length.out =11)

173

174 names (Liborvalues)<—Liborchar

175 Liborvalues

176

177 # 100% =[6]....unchanged scenario

178

179 Liborvalues [6]

180

1851 # BOND Value in BMG-model

182

133 BondBMG <— function (L=0.04, t = 0, tnn = 3){

184

185 delta <— 0.5 # Difference between the tenor dates

186

157 tenor <— seq(0,tnn, by =0.5)

188

159 btnn <— 1/(14+delta*L) " (length (tenor)—t—1)

190

191 return (btnn)

192 }

193

194 BondBMG (¢ (0.01,0.02,0.03,0.04) ,tnn=06)

195

196 # Price for one TLO with

197 # maturity T_n+1=5 at time t=0 and LStrike=0.04

198 # SStrike=30, sigma_s=0.2, and rho=0.0

199

200 TLOl<—priceTLO (0.04,30,t=0,Tnl = 5,SStrike = 30,LStrike = 0.04, sigma_s =
0.2,rho= 0.0)

201

202 # Assumption sell bonds and buy 250 units of TLOs

203 # We need more units of TLOs, since in the BGM

204 # the longterm rates react more with the bonds

205 # as in the short rate model.

206 # But in the end the worst case solvency ratio will

208

200 amountofTLOs <— 250

210

211 TLO<—amountofTLOs*TLO1

212

213 # 70— TLO = new amount of Bonds
214

215 newbonds<—70—TLO
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216 newbonds

217

218 # On the asset side we have bonds with a 6 year duration
219 # Bond face value = 62.3887 /BondBMG(L=0.04,tnn=6)=79.12391
220

221 newbonds /BondBMG(L=0.04,tnn=6)

222

223 temp<—newbondsx1/BondBMG(L=0.04,tnn=6)

224 temp

225 Bondvalues<—temp+*BondBMG(L= Liborvalues ,tnn=6)
226

227 Bondvalues

228

220 # Due to the fact that longterm rates in the BGM
230 # react more than in the short rate model

231 # We take the Pension obligations on the

232 # lower end with a duration of 15 years

233

234 # Pension obligations like bonds

235 # Face value = 166.6453 = 92 /BondBMG(L=0.04,tnn=15)
236

237 templ <— 92/BondBMG(L=0.04,tnn=15)

238 templ

230 PO <—templ*BondBMG(L=Liborvalues ,tnn=15)

240

241 names (PO) <— Liborchar

212 PO

243

214 # All changes in

215 # stockprices , Bonds, Pensionobligation (PO)

246

247 Stockprices

225 Bondvalues

219 PO

250

- S L ) ) ) ) L) L) )L L
251 T i i i i it i i i i i i i i i i i it it 1 1 111 1 11 11

252 # generate data.frame for Bonds and PO

253

251 Table <— data.frame(Bonds = Bondvalues, Pension = PO)
255

256 # hence we have a data.frame we need as.matrix

257

255 m. Table <— as.matrix(Table)

250 m. Table

260

261 nrow (m. Table)

262

263 # Function for the linearcombination between the
264 # stockprices and m. Tablel

265 # due to the fact that if the LIBOR rates drops
266 # Bonds and PO (like bonds) drop equally and
267 # therefore a ”"fixed” pair

268

260 lincom <— function (Stockprices ,m. Table){

270
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z <— matrix (0,nrow = 11x11,ncol = 3)
for (i in 1:11){

for (j in 1:11){

NN NN N NN
-~
[N =~

PSRN TN RN

. k < 11%(i—1)+]

8 z[k,1] <— Stockprices[i]
279 z[k,2] <— m.Table[j,1]
280 z[k,3] <— m.Table[j,2]

281 }
282 }
283 return (z)

284 }

285

286 # Contains all linearcombinations
287

2ss f<—lincom (Stockprices ,m. Table)

289

200 m. Tablel <— data.frame(Stockprices=f[,1],Bonds=f[,2] ,PO=f[,3])
291

200 m. Tablel <— as.matrix (m. Tablel)
203 head (m. Tablel)

294

205 # z contains all TLO values
296

207 7z <— outer (Liborvalues ,Stockprices , priceTLO)
298

299 Z

300 # Initial point

301

302 2 [72]

303

301 m. Tablel [72 ]

305

306 nrow (m. Tablel)

307

30s # Now we have to normalize

300 # the TLO values to the inital
310 # value of 7.611335=TLO

311

312 znew <— z/z[72]

313

314 which . max(znew)

315 znewl <— znews (TLO)

316 znewl

317

315 length (znewl)

310 which . max(znewl)

320 head (znewl)

321 znew2 <— as.vector (znewl)

322
323 # Table with TLO, Stockprices, Bonds and PO
324

325 m. Tablel
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326

s27 m. Table2 <— data.frame( TLO=znew2, m.Tablel)
328

320 m. Table2 <— as.matrix (m. Table2 ,ncol=4,ncol=121)
330

331 m. Table2

332

333 # Initial valuation point

334

335 m. Table2 [72 ]

336

337 # m. Table _comp2 contains all linearcombinations between stockprices
338 # and BONDS with PO

339

310 freeequity <— function (m.Table2){

341

312 u <— rep(0,nrow (m. Table2))

343

324 for (i in l:nrow(m.Table2)){

345

346 u[i]<— m.Table2[i,1]4+m. Table2[i,2]4+m. Table2[i,3] —m. Table2 [i ,4]
347

348 }

310 return (u)

350

351 }

352

353 # fequity contains all entries

354 # of Free equity

355

356 fequity <— freeequity (m. Table2)

357

355 m. Table2

350 Table3 <— data.frame (m. Table2, Free_equity=fequity)
360

361 m. Table3 <— as.matrix(Table3 , ncol=5)

362 1s . matrix (m. Table3)

head (m. Table3)

dim (m. Table3)

365 nrow (m. Table3)

366 m. Table3 [72 ]

367

365 # Test if all values in the balance sheet fit
369

s70 m. Table3 [50,1]+m. Table3 [50,2]+m. Table3 [50 ,3]
371 m. Table3 [50,4]+m. Table3[50,5]

372

36:

364

373 # Function for the solvency ratio
374 # which is defined as:
375 # Solv Ratio = Free Equity / Pension Obligations

376

377 solvencyratio <— function (m.Table3){
378

379 0o <— rep (0,nrow (m. Table3))

380
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381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

414

416
417
418
419

420

433

434

for (i in 1l:nrow(m.Tabled)){
o[i]<— m.Table3[i,5]/m. Table3[i,4]

}

return (o)

}

solvperc <— solvencyratio (m.Table3)
solvperc

m. Table3
m. Table4 <— data.frame (m.Table3,Solvency Ratio=solvperc)

# Complete Table with all datas
head (m. Table4)

length (m. Table4 )

# The full table with all data
m. Table4 [72 ]

# Corresponding solvency ratios

z_values<— matrix (m. Table4[,6], ncol=11)

S )LL) L)
T T IriT

## 3D PLOT

par(bg = ”white”)
y <— Stockprices

5 x <— Liborvalues

7z <— z_values

nrz <— nrow(z)

ncz <— ncol(z)

# Create a function interpolating colors in the range of specified colors

jet.colors <— colorRampPalette( c(”red”,”yellow3” ,”yellow2” ,”yellow1l” ,”
greenl” , 7green”) )

1 # Generate the desired number of colors from this palette

nbcol <— 1000

color <— jet.colors(nbcol)

# Compute the z—value at the facet centres

zfacet <— z[—-1, —1] + z[-1, —ncz] + z[—nrz, —1] + z[—nrz, —ncz]
# Recode facet z—values into color indices

facetcol <— cut(zfacet, nbcol)

# Plot

persp (x,
Y
Z’
col = color[facetcol],
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435 xlab="LIBOR rate”

436 ylab = ”Stock portfolio”,

437 zlab = 7" Solvency ratio”,

438 zlim = ¢(—0.2112645,0.45865), # Scaling as in the unhedged
439 #main="Hedged _balance _sheet _shocked _in _the BGM_model” ,

440 ticktype = "detailed” ,nticks = 8,

441 expand = 0.75,

442 phi = 20,

443 theta = —40)

115 # In the worst case scenario
116 # with 250 TLOs we have a
147 # solvency ratio of

448

119 7z _values [which.min(z) ]

450 which . min(z)

451

152 # Saving the graphic

453

154 pdf(file= "Hedged_balance_sheet _shocked_in_the BGM_model.pdf”)
455

156 # Plot

457

158 # Figure 7.7

459

160 persp (x,

461 vy,

462 z,

163 col = color[facetcol],

164 xlab="LIBOR rate” ,

465 ylab = 7 Stock portfolio”,

466 zlab = ”Solvency ratio”,

467 zlim = ¢(—0.2112645,0.45865) ,

468 #main="Hedged _balance _sheet _shocked _in _the BGM_model” ,
469 ticktype = "detailed” ,nticks = 8,
470 expand = 0.75,

ar1 phi = 20,

472 theta = —40)

473

ara dev. off ()

475

476 ///I/I/'/ /I/'/ /I// ///I /'//I ///'I /I// /I/'/ /'I// //// /'//I ///'I ///'/ /I/'/ /'I// //// /'//I ///'I ///'/ /I/'/ /'I// //// /'//I ///'I ///'/ /I/'/ /'I// //// /'//I ///'I ///'/ /I/'/ /'I// //// /'//I ///'I
477

ars # Yellow light scenario

479

180 # Stock portfolio drops 30%
481 # LIBOR drops 100bps=1%

482

483 # S=30 —> S=21

484

as5 # Price of 1 TLO before shocking
486

187 TLO1

488

aso # Price of 250 TLOs
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190

491 ’IIJO

192

193 # Bonds before shocked

494

105 newbonds

496

w7 # temp = for the 6y bonds for discounting

498

199 newbondshocked <— temp+BondBMG(L=0.03,tnn=6)

500

s01 # templ = for the 15y PO bonds for discounting
502

503 newPOshocked <— templ+«BondBMG(L=0.03,tnn=15)

504

505 # Price for one TLO in the yellow light scenario
506

50 TLOshockedtemp<—priceTLO (0.03,21,t=0,Tnl = 5,SStrike = 30,LStrike = 0.04,
508 sigma_s = 0.2,rho= 0.0)
509

510 TLOshockedtemp

511 TLO1

512 TLOshocked <— TLOshockedtemp*amountofTLOs

513 TLOshocked

514

515 newPOshocked

516 newbondshocked

517 newstockshocked <—21

518 TLOshocked

519 TLO

520

521 totalassetside<—TLOshocked+newbondshocked+newstockshocked
522

523 freeequityshocked<—totalassetside — newPOshocked
524

525 freeequityshocked

526

527 # Solvency percentage in the yellow light scenario
528

520 percent (freeequityshocked /newPOshocked)

530

531 # Initial balance sheet before getting shocked

532

533 Imitial _balance _sheet <—data.frame(Stock_portfolio=S,

534 Bonds=Bondvalues [6] ,

535 TLO=TLO, PO=PO[6],

536 Free Equity=S+Bondvalues[6]+TLO-PO[6] ,
537 Solvency ratio=

538 percent ((S+Bondvalues [6]+TLO-PO[6]) /PO

[6]))

540 Initial _balance _sheet
541
sa2 # Yellow light scenario with all entries

543
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514 Yellowlightscenario_balance_sheet<—data.frame(Stock_portfolio=

newstockshocked ,
545 Bonds=newbondshocked ,
546 TLO=TLOshocked , PO=newPOshocked,
547 Free Equity=freeequityshocked ,
548 Solvency ratio=
549 percent (freeequityshocked /newPOshocked))

551 Yellowlightscenario _balance _sheet

553 # Double check if the balance sheet is complete
554 # total asset side = total liabilities and free equity side

556 Yellowlightscenario _balance _sheet[1,1]+ Yellowlightscenario _balance _sheet
[1,2]4 Yellowlightscenario -balance_sheet [1,3]

557 Yellowlightscenario _balance_sheet[1,4]+ Yellowlightscenario_balance_sheet
[1,5]
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