

Diplomarbeit

Pricing of and Hedging with Traffic Light Options

Ausgeführt am

Institut für Stochastik und Wirtschaftsmathematik

unter der Leitung von

Ao. Univ.Prof. Dr. Friedrich Hubalek

durch

Maximilian Strummer, BSc

Dr. Ferschitzstrasse 12, 3160 Traisen

20. Oktober 2016

Acknowledgement

At this point, I want to thank all people who assisted me with the development of this work, in particular Ao. Univ.Prof. Dr. Friedrich Hubalek for his time and patience. He gave me the chance to work on an interesting topic.

Special thanks to my family, my mother, my father and my grandmothers for not to abandon hope for my final degree. Last but not least I want to mention my friends and my colleagues who supported me mentally, gave me encouragement in times of deadlock and happiness in my leisure time.

Abstract

Nowadays structured products have become an important component on capital markets worldwide. This thesis is about a new designed structured product which is called traffic light option. First, there will be a short introduction about structured products and some historical developments. Then, in accordance with previous works of Thomas Kokholm and Peter Løchte Jørgensen, it is a more detailed approach to pricing of and hedging with traffic light options in the LIBOR market model. At the end, a simulation regarding the pricing and an example for hedging will be run.

Contents

1	Intr	oduction	3
2	2.1 2.2 2.3 2.4	Definition	4 4 5 7
3		ing of Traffic Light Options	11
	3.1	Introduction of Correlation Options	11
	3.2	Model Framework	14
		3.2.1 Pricing of the traffic light option under the forward measure	18
		3.2.2 Valuation under the spot measure	27
		3.2.3 Discretisation for the spot measure	27
	3.3	Instantaneous volatilities and correlation	28
		3.3.1 For simulation	28
	3.4	Numerical Implementation	31
		3.4.1 Volatility structure of the LIBOR rates	32
		3.4.2 Correlation structure of the LIBOR rates	34
		3.4.3 Correlation between the stock portfolio and the LIBOR rates	36
		3.4.4 Pricing of the TLO with Theorem 4	37
		3.4.5 TLO price in dependence of correlation	37
		3.4.6 Pricing with Monte Carlo simulation	38
4	Hed	ging with Traffic Light Options	44
	4.1	The traffic light option as a hedging instrument	44
		4.1.1 Theoretical Approach	45
	4.2	Numerical Example of a publicly-listed Insurance Company	48
	4.3	Hedged balance sheet	51
		4.3.1 Conclusion	53
\mathbf{A}	Basi	ics	54
В	R-co	odes	56
	B.1		56
		Volatility structure of LIBOR rates	59
		Correlation between the LIBOR rates	61

B.4	Correlation between LIBOR rates and the stock portfolio	63
B.5	Analytical formula for pricing TLOs	65
B.6	Pricing TLO in dependence of the correlation	71
B.7	Monte Carlo Simulation of the LIBOR rates and Stock portfolio	74
B.8	Unhedged balance sheet in the Vasicek-model	91
B.9	Unhedged balance sheet in the BMG-model	98
B.10	Hedged balance sheet in the BMG-model	104

Chapter 1

Introduction

Derivatives, options and structured products are financial vocabularies and there are no simple definitions. Economists, accountants, lawyers, and government regulators have all struggled to develop a precise definition for derivatives¹. Imprecision in the use of the term, moreover, is more than just a semantic problem. It is also a real problem for firms that must operate in a regulatory environment where the meaning of the term often depends on which regulator is using it.

Although there are several competing definitions, we define a derivative as a contract that derives most of its value from some underlying asset, reference rate or index. As our definition implies, a derivative must be based on at least one underlying. An underlying is the asset, reference rate or index from which a derivative inherits its principal source of value. Falling within our definition, there are several different types of derivatives, including commodity derivatives and financial derivatives.

A commodity derivative is a derivative contract specifying a commodity or commodity index as the underlying. For example, a crude oil forward contract specifies the price, quantity, and date of a future exchange of the grade of crude oil that underlies the forward contract. Because crude oil is a commodity, a crude oil forward contract would be a commodity derivative.

A financial derivative is a derivative contract specifying a financial instrument, interest rate, foreign exchange rate, or financial index as the underlying. For example, a call option on IBM stock gives its owner the right to buy the IBM shares that underlie the option at a predetermined price. In this sense, an IBM call option derives its value from the value of the underlying shares of IBM stock. Because IBM stock is a financial instrument, the IBM call option is a financial derivative.

In practice, financial derivatives cover a diverse spectrum of underlyings, including stocks, bonds, exchange rates, interest rates, credit characteristics, or stock market indexes. Practically nothing limits the financial instruments, reference rates, or indices that can serve as the underlying for a financial derivative contract. Some derivatives, moreover, can be based on more than one underlying, a definition for structured products. For example, the value of a financial derivative may depend on the difference between a domestic interest rate and a foreign interest rate (i.e. two separate reference rates) or as seen in the master thesis on an interest rate and a stock portfolio.

¹see [KO14]

Chapter 2

Structured products

2.1 Definition

Structured products are designed to facilitate highly customized risk-return objectives.¹ This is accomplished by taking a traditional security, such as a conventional investment-grade bond and replacing the usual payment features e.g. periodic coupons and final principal with non-traditional payoffs derived not from the issuer's own cash flow but from the performance of one or more underlying assets.

The payoffs from these performance outcomes are contingent in the sense that if the underlying assets return value "x", then the structured product pays out "y". Hence, structured products closely relate to traditional models of option pricing; Though they may also contain other derivative types such as swaps, forwards and futures as well as embedded features such as leveraged upside participation or downside buffers.

Structured products originally became popular in Europe and have gained currency in the U.S., where they are frequently offered as SEC-registered products, which means they are accessible to retail investors in the same way as stocks, bonds, ETFs (Exchange Traded Funds) and mutual funds. Their ability to offer customized exposure, including hard-to-reach asset classes and subclasses, make structured products useful as a complement to these other traditional components of diversified portfolios.

There are three main types of structured products²:

- 1. the privately placed and individually negotiated transactions that are done for a single investor or a very small number of investors.
- 2. those that are sold to the public through retail networks, such as bank branches of financial advisers.
- 3. products listed and traded on public exchanges or otherwise widely available to retail investors and institutional clients alike.

For further information, I highly recommend the book "Structured Products-Evolution and Analysis" by Clarke Pitts, who gives a deeper insight to the evolution of structured products.

¹see [Lam16]

 $^{^2}$ see [Pit13]

2.2 History of Options

The very first options and futures were traded in ancient Greece, when olives were sold before they had reached ripeness. Thereafter, the market evolved in the following way.

16th century³: Ever since the 15th century tulips, which were liked for their exotic appearance, were grown in Turkey. The head of the royal medical gardens in Vienna, Austria, was the first to cultivate those Turkish tulips successfully in Europe. When he fled to Holland because of religious persecution, he took the bulbs along. As the new head of the botanical gardens of Leiden, Netherlands, he cultivated several new strains. It was from these gardens that avaricious traders stole the bulbs to commercialize them because tulips were a great status symbol.

17th century: The first futures on tulips were traded in 1630. As of 1634, people could buy special tulip strains by the weight of their bulbs; For the bulbs, the same value was chosen as for gold. Along with the regular trading, speculators entered the market and the prices skyrocketed. A bulb of the strain "Semper Octavian" was worth two wag-onloads of wheat, four loads of rye, four fat oxen, eight fat swine, twelve fat sheep, two hogsheads of wine, four barrels of beer, two barrels of butter, 1,000 pounds of cheese, one marriage bed with linen and one sizable wagon. People left their families, sold all their belongings, and even borrowed money to become tulip traders. When in 1637, this supposedly risk-free market crashed, traders as well as private individuals went bankrupt. The government prohibited speculative trading; the period became famous as Tulipmania.

18th century: In 1728, the Royal West-Indian and Guinea Company, the monopolist in trading with the Caribbean Islands and the African coast issued the first stock options. Those were options on the purchase of the French Island of Ste. Croix where sugar plantings were planned. The project was realized in 1733, and paper stocks were issued in 1734. Along with the stock, people purchased a relative share of the island and the valuables as well as the privileges and the rights of the company.

19th century: In 1848, 82 businessmen founded the Chicago Board of Trade (CBOT). Today it is the biggest and oldest futures market in the entire world. Most written documents were lost in the great fire of 1871, however, it is commonly believed that the first standardized futures were traded as of 1860. CBOT now trades several futures and forwards. Not only T-bonds and treasury bonds are traded there but also options and gold. In 1870, the New York Cotton Exchange was founded. In 1880, the gold standard was introduced.

20th century: In 1914, the gold standard was abandoned because of the war.

In 1919, the Chicago Produce Exchange which was in charge of trading agricultural products was renamed to Chicago Mercantile Exchange. Today, it is the most important futures market for Eurodollar, foreign exchange and livestock.

Most developments in terms of option markets and products were done from the 1970s to 2000.

³see [Wys07, Ch.1]

21th century: Now, structured products are frequently used in financial markets. There are hardly boundaries in variety and combinations. As we can see in the following Fig. 2.1^4 , the peak of sold structured products was in 2007, right before the housing bubble and credit crisis in 2008. Driven by cost pressure and new regulations, the amount of structured products, which were bought, descended very dramatically from almost \$250bn in 2007 to about \$100bn nowadays. Despite that fact, the number of structured products issued is almost constantly increasing.

Figure 2.1: Structured products sales and issuance 2005-2014

⁴Source:Research Report for OIC (The Options Industry Council)—Analysis on Structured Products and Listed Equity Options in Europe 2015. For more details: http://www.optionseducation.org/content/dam/oic/documents/literature/files/srp-part1-2015.pdf

2.3 Goals and purposes

The main goals and purposes of structured products are⁵:

- 1. Arbitrage: Both investors and issuers can carry out arbitrage trades with derivatives and underlying assets by means of structured products.
- 2. Investment restrictions: Such groups of investors as pension and mutual funds and insurance companies can access derivatives transaction via structured products.
- 3. Taxation and accounting: Structured products are easy from the perspective of accounting and taxation as they are considered as a separate security and the value of derivatives is already included in the product price.
- 4. Creation of products "à la carte": The freedom of products' creation is pretty unbounded. They are customised to fit the unique requirements of investors.
- 5. Hedging: They can be used not only for investments but also as hedge of positions against market risks.
- 6. Access to new markets: Investors can access exotic instruments and new markets with the help of structured products. For instance the assets and instrument of developing markets that would otherwise be difficult for investors to access directly.
- 7. Cheap funding source: Part of funds, intended for fixed income investment, can be used by the issuer for its own financing more cheaply than the market rates.

2.4 Classification

In this section, I determine the classification of structured products which I have to consider while talking in terms of structured products:

1. By levels of principal protection:

On degree of protection of the capital, the following products can be divided:

- Pricipal-protected products: Those products provide full protection of the initial capital, not depending on the underlying asset's price move.
- Partially protected products: In this case the return of initial capital is guaranteed only at certain level in the form of percent against originally invested sum.

2. By quantity (periodicity) of payments:

- Coupon products: Throughout the whole period of a product's life, those instruments provide more than one payment like usual bonds.
- Non-coupon products: Those products provide only one payment at the maturity date, which includes both the return of initial capital and profit-and-loss amount.

⁵for a more detailed insight see [Ome09]

3. By type of underlying asset:

Among underlying assets to which the product can be linked to, the following assets can be mentioned:

• Security, interest rate, currency, index, commodity, basket of assets (currencies, securities, commodities), credit quality, volatility, spread, consumer price index and other macroeconomic indicators, property price index.

4. By the form of a structured product:

Structured products can be issued in the following forms: Security, Deposit and Fund.

5. By the type of investor:

Each structured product is prepared for its own predetermined group of investors and customers. It is possible to outline three basic groups of investors:

- Retail group: group of mass consumer.
- Group of institutional investors: among them are large investment banks, mutual and pension funds and state funds.
- Individual investors: group of wealthy consumers.

6. By behaviour of the underlying asset:

Structured products' payoffs depend on dynamics of the underlying asset they are linked to. The following behaviour models can be defined:

- Growth/falling
- Lateral movements
- Occurrence/non-occurrence of an event
- High/low volatility

7. By degree the payoff depends on the price path of the underlying asset:

Payoffs of structured products can be either defined by the value of a variable at the maturity date or the value of a variable throughout all the life time of a product. Thus, the payoff can be independent and dependent upon the price path of the underlying.

8. By the payoff functions:

The basic peculiarity of structured products is their core element: derivative financial instruments. Almost all derivatives can be used for creation of structured products. The type of derivatives and their combinations do certainly define the payoffs' functions that differ one product from another. The given criterion is the most complex for definition. Having investigated the products offered on the market, the following types or payoff functions can be detached:

• Tracking functions: Their payoffs are fully defined by the movement of the underlying asset and its change of 1 percent provides 1 percent change in price of the product. Example: Protected Tracker

- Leveraged functions: Financial leverage is used. Those products bear a risk of a partial loss of the initial capital. Example: Leverage long with stop loss note.
- Basket functions: Payoffs are defined here by dynamics of one asset versus a basket of underlying assets. Example: Altiplano note
- Functions with floating parameters: Here the main parameters can be changed, for example, a strike, when the underlying asset has overcome a certain level. Example: Cliquet note.
- Fixed payoff functions: Payments in this case are fixed. Example: Reverse convertible.
- Swap functions: Within those functions the payoffs are defined by spreads between prices (values) of certain underlying assets or by their volatility. Example: Dispersion note.

The disclosure of mentioned indicators and their detailed description will allow all market participants to outline the borders and possibilities of market's functioning and further development more accurately. It is worth mentioning at least three fields where the disclosure of information mentioned above is highly necessary:

- Creation of investment memorandum at the stage of product launching.
- Placement of restrictions and limits on structured products by the regulating authorities. This thresholding can be used in relation to institutional investors, mutual and pension funds. Market members need similar thresholding criteria as well.
- Ranking of structured products by independent associations and organisations including rating of products.

In Fig. 2.2 all different parameters are depicted in terms of structured products.

Figure 2.2: Classification of structured products according to [Ome09]

Chapter 3

Pricing of Traffic Light Options

3.1 Introduction of Correlation Options

The main part of this master thesis is about an innovative structured product which was independently developed by several London-based investment banks, such as Dresdner Kleinwort Wasserstein and Goldman Sachs International.¹

The sharp decline in the stock market that occurred in early 2000 and the subsequent drop in interest rates weakened companies' financial strength. Many companies saw a substantial decrease in their margin for risk taking when their risk-bearing capital was eroded.

In 2001 the Danish Supervisory Authorities developed a new supervising tool which includes a traffic light scenario in order to measure companies' state of solvency. This tool consists of different scenarios where both the interest rate level and stock prices fall simultaneously. Shocks of real estate values are usually ignored since it is not practical, and real estate investments constitute an insignificant part of total portfolios. Especially, the Danish Life and Pension (L&P) sector is exposed in these scenarios.

There are two main reasons for L&P companies:

- 1. The duration is typically much longer on the liability side than on the asset side making the company exposed to negative shocks to interest rate levels.
- 2. Many L&P companies have issued guarantees on policy holder contributions which, with the low interest rate levels today, forces the companies to invest in the stock market in order to capture the higher return here.
 - This investment behaviour exposes the companies to negative shocks of the stock market.

Companies which ignored to take adjustments in their risk exposure in accordance with the new rules introduced in mid-2001 had to report the red light status² after the equity markets collapse after "9/11".

 $^{^{1}}$ see [Kok09]

 $^{^2}$ see Def. 3.1.

After more than a decade of falling interest rates, L&P companies finally initiated hedging strategies involving the purchase of protection against further interest rate drops in the form of derivatives. The reported market value of Danish L&P companies holdings of financial derivatives increased from 0 in the first half of 2000 to USD 14.5bn in the late of 2005.3

The fundamental idea behind these instruments has been to construct derivatives which pay off in the traffic light scenarios in such a way, that however over-hedging is avoided. Over-hedging may result if the L&P company buys protection against downside interest rate and stock market risk separately. Thus the challenge is to structure products which pay off more when interest rates and stock prices fall simultaneously and less when only one of the variables moves adversely.

³Source: Danmarks Nationalbank, https://www.nationalbanken.dk. For comparison the 2005-position in derivatives corresponds to about 5% of the total market value of Danish L&P companies' liabilities which were estimated at DKK 1842bn in the same quarter.

Definition 1 (Traffic light scenarios).

There are 2 stress-test scenarios on the base capital of companies to point out the solvency state:

- 1. Red light scenario involves:
 - 70bps⁴ decrease in interest rates,
 - 12% decline in general stock prices and
 - 8% decrease in real estate investment values.

If an L&P company's base capital falls below a given critical level in this scenario, then the company is categorised with red light status.

Consequences: In practical, this implies strict monitoring by the DFSA, and the company will be required to submit more frequent (monthly) solvency reports.

- 2. Yellow light scenario involves:
 - 100bps decrease in interest rates,
 - 30% decline in general stock prices and
 - 12% decrease in real estate investment values.

If an L&P company's base capital falls below a given critical level in this scenario, then the company is categorised with yellow light status.

Consequences: The company will be required to submit quarterly solvency reports.

3. Green light scenario:

A company which can withstand the yellow light scenario without experiencing solvency problems will operate in the green light status.

There are no additional consequences on the reporting side for green light companies.

Definition 2 (Correlation options).

In general, correlation options are represented as the following payoff:

$$(S_T - \bar{S})^+ \mathbb{1}_{R_T > \bar{R}}$$
 or $(\bar{S} - S_T)^+ \mathbb{1}_{\bar{R} > R_T}$,

with given strike levels \bar{S} and \bar{R} . S_T and R_T are the values of the assets at maturity T. In this framework we model European style correlation options.

⁴One basis point is equivalent to 0.01% (1/100th of a percent) or 0.0001 in decimal form.

Another variation leads us to:

Definition 3 (Payoff structure of correlation options).

$$C(S_T, R_T) = \begin{cases} (\bar{S} - S_T)^+ \cdot (\bar{R} - R_T)^+, \\ (\bar{S} - S_T)^+ \cdot (R_T - \bar{R})^+, \\ (S_T - \bar{S})^+ \cdot (\bar{R} - R_T)^+, \\ (S_T - \bar{S})^+ \cdot (R_T - \bar{R})^+, \end{cases}$$
(3.1)

with given strike levels \bar{S} and \bar{R} .

Remark. The question of alternative definitions for the traffic light option payoff arises. In [Jør07, Ch.2] is a short discussion of other possibilities, i.e. Jøergensen stated, that

$$aS(t) - bL(t),$$

with suitable chosen constants a and b and a put option on that variable would be an alternative. Another piecewise linear payoff function could be obtained by specifying

$$C(S_T, R_T) = a[\bar{S} - S_T]^+ \mathbb{1}_{\bar{R} > R_T} + b[\bar{R} - R_T]^+ \mathbb{1}_{\bar{S} > S_T},$$

but to the best of Jøergensen's knowledge, none of these linear structures are seen in practice and therefore not further analysed.

This discussion came up through comments from referees and by discussions with members of the Structured Products group at Goldman Sachs International.

Investment bankers offering these structured products stated that the multiplicative payoff, given by (3.1), fits the needs for clients best since over-hedging is avoided.

3.2 Model Framework

In this section, a framework of the basic traffic light option will be introduced with dependence on both an underlying stock portfolio and an underlying benchmark interest rate. Due to the fact that the most common and important benchmark interest rates in the financial industry are the London Inter-Bank Offered Rates (with different maturities) or LIBOR, we will use these rates for pricing.

Basic assumptions:

- The existence of a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with the physical probability measure \mathbb{P} .
- Efficient and perfect market conditions are assumed.
- The settlement dates are given by $0 \le T_0 < T_1 < \cdots < T_n$ which is called the tenor structure.
- Length between two tenor dates: $\tau_i = T_i T_{i-1}$.

Definition 4 (Zero-coupon bond).

A T-maturity zero-coupon bond (ZCB) is a contract that guarantees its holder the payment of one unit of currency at time T with no intermediate payments. B(t,T) is defined as the contract value at time t < T and B(T,T) = 1 for all $T \in \mathbb{R}_+$ is also known as the face value of the ZCB.

For all tenor dates T_j from $0 \le j \le n$ we denote $B(0, T_j)$ as the ZCB maturing at time T_j .

Definition 5 (Forward LIBOR rates).

$$L_i(t) := \frac{1}{\tau_{i+1}} \left(\frac{B(t, T_i)}{B(t, T_{i+1})} - 1 \right) \quad \forall i = 1, \dots, n,$$
(3.2)

is the simply compounded forward interest rate from T_i to T_{i+1} , as seen at time $t < T_i$.

Proposition 1 (Forward measure $\mathbb{Q}^{T_{i+1}} =: \mathbb{Q}^{i+1}$).

If the market is arbitrage-free, then for every $i = 1, \dots, n$, there exists an equivalent martingale measure denoted by $\mathbb{Q}^{T_{i+1}}$ with given numeraire $B(t, T_{i+1})$, under which the LIBOR rate process $L_i(t)$ is a martingale.

Definition 6 (Terminal measure $\mathbb{Q}^{T_{n+1}} =: \mathbb{Q}^{n+1}$).

For i = n follows that \mathbb{Q}^{n+1} is the last equivalent martingale measure and it is called the Terminal measure. As we obtained, under this measure, the last forward LIBOR rate process $L_n(t)$ is a martingale.

Definition 7 (Numeraire). ⁵

A numeraire is a price process or asset $N(t)_{0 \le t \le T}$, which is strictly positive for all $t \in [0,T]$. Numeraires are used to express all prices in a market. In this work we consider mostly T_i -bonds or discrete bank accounts as numeraires.

Definition 8 (Equivalent martingale measure (EMM)).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote the probability space as before. The set of EMM is the set of probability measures \mathbb{Q}^{i+1} with the following properties:

- 1. \mathbb{Q}^{i+1} is equivalent to \mathbb{P} , i.e. both measures have the same nullsets, for all $i = 1, \dots, n$.
- 2. the forward LIBOR rates $L_i(t)$ are martingales under \mathbb{Q}^{i+1} for all $i = 1, \dots, n$, i.e. $\mathbb{E}^{Q^{i+1}} \left[\frac{L_i(t)}{B(t,T_{i+1})} \middle| \mathcal{F}_s \right] = \frac{L_i(s)}{B(s,T_{i+1})} \text{ for all } s \leq t.$

The definition of the EMM implies the need for a theorem that connects non-existence of arbitrage opportunities and completeness with equivalent martingale measures.

⁵see [Kaj04]

Theorem 1 (Unique EMM).

A market is free of arbitrage opportunities and every claim is attainable if for every choice of numeraire there exists a unique EMM.

Other representation of the forward LIBOR rates leads to⁶

$$B(t, T_{i+1})L_i(t) = \left(B(t, T_i) - B(t, T_{i+1})\right) \frac{1}{\tau_{i+1}},$$

this represents the price of a tradeable asset (difference between two discount bonds with notional amounts $\frac{1}{\tau_{i+1}}$). As such, when its price is expressed with respect to the numeraire $B(t, T_{i+1})$, it has to be a martingale under the corresponding measure $\mathbb{O}^{T_{i+1}} =: \mathbb{O}^{i+1}$ (Forward measure).

Hence, L_i is modeled according to a diffusion process under the forward measure \mathbb{Q}^{i+1} :

$$dL_i(t) = L_i(t)\lambda_i(t)dW^{i+1}(t), \quad \text{for all } i = 1, \dots, n,$$
(3.3)

where W^{i+1} is a Brownian motion under \mathbb{Q}^{i+1} and since we are in the log-normal LIBOR market model, the diffusion term $L_i(t)\lambda_i(t)$ is given by some deterministic function $\lambda_i(t)$.⁷ Each of these stochastic differential equations is called the LIBOR Market Model for the forward LIBOR rate process $L_i(t)$ under the equivalent martingale measure \mathbb{Q}^{i+1} .

Remark. The solution of these stochastic differential equations (SDE) is given by

$$L_i(t) = L_i(0) \exp\left(-\frac{1}{2} \int_0^t \lambda_i(s)^2 ds + \int_0^t \lambda_i(s) dW_s^{i+1}\right) , i = 1, \dots, n.$$

We get this explicit solution of each SDE by applying Itô's Formula to the process $L_i(t)$ using the function $f(t,x) = \log(x)$ or $f(t,L_i(t)) = \log(L_i(t))$. Apply Itô:

$$f(t,x) = \log(x) \Rightarrow \frac{\partial f}{\partial t}(t,x) = 0, \quad \frac{\partial f}{\partial x}(t,x) = \frac{1}{x}, \quad \frac{\partial^2 f}{\partial x^2}(t,x) = -\frac{1}{x^2}.$$

$$df(t,x) = \frac{\partial f}{\partial t}(t,x)dt + \frac{\partial f}{\partial x}(t,x)dx + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t,x)d[x,x]$$

Now inserting $L_i(t)$ leads to:

$$d\log(L_i(t)) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial L_i}dL_i(t) + \frac{1}{2}\frac{\partial^2 f}{\partial L_i^2}d[L_i, L_i]$$

$$= 0dt + \frac{1}{L_i}(L_i(t)\lambda_i(t)dW^{i+1}(t)) + \frac{1}{2}\left(-\frac{1}{L_i(t)^2}\right)(L_i(t)^2\lambda_i(t)^2dt)$$

$$= \lambda_i(t)dW^{i+1}(t) - \frac{1}{2}\lambda_i(t)dt. \quad \Box$$

⁶see [BM06], p. 208

⁷will be discussed later in Section 3.3

Theorem 2 (Martingale pricing).

Suppose the equivalent martingale measure \mathbb{Q}^N connected with the numeraire N(t) is chosen. The price process $\pi(t)$ of any attainable claim C(.) is given by the martingale pricing formula:

$$\pi(t) = N(t)\mathbb{E}^{\mathbb{Q}^N} \left[\frac{C(.)}{N(T)} \middle| \mathcal{F}_t \right]$$
(3.4)

In our setup, the pricing of a T_i -claim $C(S(T_1), \ldots, S(T_{i+1}), L_0(T_0), \ldots, L_n(T_i))$ is considered where S denotes some stock portfolio with $i \leq n$. Now we can use the martingale pricing theorem formula (3.4) to get:

$$\pi(t) = N(t) \mathbb{E}^{\mathbb{Q}^N} \left[\frac{1}{N(T_i)} C(S(T_0), \dots, S(T_i), L_0(T_0), \dots, L_n(T_i)) | \mathcal{F}_t \right], \tag{3.5}$$

where $N = N(t)_{0 \le t \le T_i}$ is a strictly positive price process, for the change of measure as a numeraire.

Now the question of what numeraire N (or equally what EMM \mathbb{Q}^N) naturally arises. The fact, that L_n is a martingale under $\mathbb{Q}^{T_n+1} =: \mathbb{Q}^{n+1}$ with given dynamics (3.3) leads us to the obvious choice of the ZCB maturing at time T_{n+1} as the intuitive numeraire. The remaining problem is to find the dynamics for S and all other LIBOR rates under this measure, which will be discussed in section 3.2.1.

3.2.1 Pricing of the traffic light option under the forward measure

Let us consider the valuation of the traffic light option with T_{n+1} - payoff given by the following theorem:

Theorem 3 (Traffic light option T_{n+1} -payoff).

$$C(S(T_{n+1}), L_n(T_n)) = [\bar{S} - S(T_{n+1})]^+ \cdot [\bar{L} - L_n(T_n)]^+,$$
 (3.6)

where \bar{S} and \bar{L} are given strike levels and $S(T_{n+1})$ is the stock portfolio price at time T_{n+1} and $L_n(T_n)$ is the value of the LIBOR rate at time T_n for the next period T_n to T_{n+1} .

Remark. The payoff function is a product of the payoffs as seen in (3.1) of a standard interest rate floorlet and a plain vanilla equity put option with a European-style payoff structure.

Due to the previous section, we will now choose the ZCB maturing at time T_{n+1} as numeraire. Now inserting the T_{n+1} -claim from (3.6) in (3.4) leads us to:

$$\pi(t) = B(t, T_{n+1}) \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\frac{[\bar{S} - S(T_{n+1})]^+ \cdot [\bar{L} - L_n(T_n)]^+}{B(T_{n+1}, T_{n+1})} \middle| \mathcal{F}_t \right]$$
(3.7)

$$= B(t, T_{n+1}) \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\left[\bar{S} - \frac{S(T_{n+1})}{B(T_{n+1}, T_{n+1})} \right]^{+} \cdot [\bar{L} - L_n(T_n)]^{+} \middle| \mathcal{F}_t \right].$$
 (3.8)

Note that in the framework of the log-normal forward model, the LIBOR rate $L_n(t)$ is log-normal under its own measure. Due to the dependence of the instantaneous development in the ZCB maturing at T_{n+1} for the stock portfolio price dynamics, we use the fact from the FTAP⁸ that the discounted stock portfolio process $\frac{S(t)}{B(t,T_{n+1})}$ is a martingale. Hence, it is actually the forward stock price by the no-arbitrage assumption in this framework. Assuming lognormality of the forward stock price process⁹ $\frac{S(t)}{B(t,T_{n+1})}$ leads us to the following two stochastic differential equations:

$$d\left(\frac{S(t)}{B(t,T_{n+1})}\right) = \left(\frac{S(t)}{B(t,T_{n+1})}\right)\sigma_t dW_{\frac{S}{B}}^{n+1},\tag{3.9}$$

$$dL_n(t) = L_n(t)\lambda_n(t)dW_L^{n+1}(t), (3.10)$$

with

$$d\langle W_{\frac{S}{B}}^{n+1}, W_L^{n+1} \rangle (t) = \rho_t dt, \tag{3.11}$$

where ρ_t and σ_t are deterministic functions of time. W_L^{n+1} and $W_{\frac{S}{B}}^{n+1}$ are defined as the Brownian motion generated from the LIBOR rates respectively the discounted asset price process with respect to the terminal measure \mathbb{Q}^{n+1} .

⁸see Appendix A

⁹ is the future stock price, which is discounted by a ZCB

From our assumptions above we can derive the volatility σ_t of the discounted asset price process from market prices on plain vanilla European call options since a closed form solution is given by a Black 1976 formula¹⁰.

$$\Pi^{Call}(t) = B(t, T) \mathbb{E}^{\mathbb{Q}^T} \left[\frac{[S(T) - K]^+}{B(T, T)} \middle| \mathcal{F}_t \right]$$

$$= S(t) N(d_1) - B(t, T) N(d_2), \tag{3.12}$$

where

$$d_1 = \frac{\ln\left(\frac{S_t}{B(t,T)K}\right) + \frac{1}{2}\sigma_S^2}{\sigma_S},$$
$$d_2 = \frac{\ln\left(\frac{S_t}{B(t,T)K}\right) - \frac{1}{2}\sigma_S^2}{\sigma_S},$$

and

$$\sigma_S^2 = \int_t^T \sigma_u^2 du.$$

Due to the fact of lognormality of the forward stock price process, the volatility of this process can be derived from quoted prices by inversion of (3.12). ¹¹

The following theorem represents the main result in this paper:

Theorem 4 (Analytical formula for the value of a traffic light option at time t).

The T_{n+1} -payoff at time t is given by:

$$\pi(S(t), L_n(t), t; \rho_{SL}) = S(t)L_n(t) \left[\tilde{S} \cdot \tilde{L} \cdot M \left(\frac{\ln \tilde{S} - \mu_x}{\sigma_x}, \frac{\ln \tilde{L} - \mu_y}{\sigma_y}; \rho_{SL} \right) \right.$$

$$\left. - \tilde{L} \cdot M \left(\frac{\ln \tilde{S} - \mu_x}{\sigma_x} - \sigma_x, \frac{\ln \tilde{L} - \mu_y}{\sigma_y} - \rho_{SL} \sigma_x; \rho_{SL} \right) \right.$$

$$\left. - \tilde{S} \cdot M \left(\frac{\ln \tilde{S} - \mu_x}{\sigma_x} - \rho_{SL} \sigma_y, \frac{\ln \tilde{L} - \mu_y}{\sigma_y} - \sigma_y; \rho_{SL} \right) \right.$$

$$\left. + e^{\sigma_{xy}} \cdot M \left(\frac{\ln \tilde{S} - \mu_x}{\sigma_x} - \rho_{SL} \sigma_y, \frac{\ln \tilde{L} - \mu_y}{\sigma_y} - \rho_{SL} \sigma_x; \rho_{SL} \right) \right],$$

where

$$\begin{split} \tilde{S} &= \frac{\bar{S}B(t,T_{n+1})}{S(t)}, & \sigma_x^2 &= \int_t^{T_{n+1}} \sigma_s^2 ds, \\ \tilde{L} &= \frac{\bar{L}}{L_n(t)}, & \sigma_y^2 &= \int_t^{T_n} \lambda_n^2(s) ds, \\ \mu_x &= -\frac{1}{2} \int_t^{T_{n+1}} \sigma_s^2 ds, & \sigma_{xy} &= \int_t^{T_n} \sigma_s \lambda_n(s) \rho_s ds, \\ \mu_y &= -\frac{1}{2} \int_t^{T_n} \lambda_n(s)^2 ds, & \rho_{SL} &= \frac{\sigma_{xy}}{\sigma_x \sigma_y}, \end{split}$$

¹⁰for more detailed information see [BM06].

 $^{^{11}}$ since the price function is monoton and increasing => existence of a inverse function => implicit volatility.

and $M(.,.,;\rho)$ is the cumulative probability of the standardized bivariate normal distribution with correlation coefficient ρ .

Remark. Before we can start with the proof, we need some essential properties of the standardised bivariate normal distribution: Suppose:

$$\vec{v} := \begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \end{pmatrix}, \tag{3.14}$$

with $\mu_x, \mu_y, \sigma_x^2, \sigma_y^2$ and σ_{xy} are the constant mean, variance and covariance coefficients. The coefficient of correlation is given as:

$$\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$

Density of a bivariate normal distribution is given by:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left(-\frac{z}{2(1-\rho^2)}\right),$$

with
$$z = \left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2$$
.

The standardised bivariate density can be factorized as:

$$f(x,y) = f(x)f(x|y), \tag{3.15}$$

where

$$f(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{(x - \mu_x)^2}{2\sigma_x^2}},$$
 (3.16)

and

$$f(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{(y - \mu_y)^2}{2\sigma_y^2}},$$

are the marginal density of x and y.

The conditional density f(y|x) is the density of y conditional on x:

$$f(y|x) = \frac{1}{\sqrt{2\pi}\sigma_y \sqrt{1-\rho^2}} \exp\left(-\frac{1}{2\sigma_y^2 (1-\rho^2)} (y - \mu_y - \frac{\rho\sigma_y}{\sigma_x} (x - \mu_x))^2\right).$$

Now we have all properties for the proof:

Proof. It is essential that

$$L_n(t)e^Y = \mathbb{E}^{\mathbb{Q}^{n+1}}[L_n(T_n)|\mathcal{F}_t],$$
$$\frac{S(t)}{B(t, T_{n+1})}e^X = \mathbb{E}^{\mathbb{Q}^{n+1}}\left[\frac{S(T_{n+1})}{B(T_{n+1}, T_{n+1})}\middle|\mathcal{F}_t\right],$$

holds with $\begin{pmatrix} X \\ Y \end{pmatrix}$ are bivariate normally distributed, independent of \mathcal{F}_t and

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \end{pmatrix},$$

with

$$\mu_x = -\frac{1}{2} \int_t^{T_{n+1}} \sigma_s^2 ds, \quad \mu_y = -\frac{1}{2} \int_t^{T_n} \lambda_n(s)^2 ds, \quad \sigma_x^2 = \int_t^{T_{n+1}} \sigma_s^2 ds,$$

$$\sigma_y = \int_t^{T_n} \lambda_n(s)^2 ds \text{ and } \sigma_{xy} = \int_t^{T_n} \sigma_s \lambda_n(s) \rho_s ds.$$

Now we can use the formula (3.8) and calculate this expression more in detail:

$$\pi(t) = B(t, T_{n+1}) \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\left[\bar{S} - \frac{S(T_{n+1})}{B(T_{n+1}, T_{n+1})} \right]^{+} \cdot \left[\bar{L} - L_{n}(T_{n}) \right]^{+} \middle| \mathcal{F}_{t} \right]$$

$$= B(t, T_{n+1}) \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\left[\bar{S} - \frac{S(t)}{B(t, T_{n+1})} e^{X} \right]^{+} \cdot \left[\bar{L} - L_{n}(t) e^{Y} \right]^{+} \middle| \mathcal{F}_{t} \right]$$

$$= S(t) L_{n}(t) \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\left[\tilde{S} - e^{X} \right]^{+} \cdot \left[\tilde{L} - e^{Y} \right]^{+} \middle| \mathcal{F}_{t} \right]$$

$$= S(t) L_{n}(t) \cdot \left[\tilde{S} \tilde{L} \mathbb{E}^{\mathbb{Q}^{n+1}} \left[\mathbb{1}_{\{e^{X} < \tilde{S}\}} \mathbb{1}_{\{e^{Y} < \tilde{L}\}} \right] \right]$$

$$- \tilde{L} \cdot \mathbb{E}^{\mathbb{Q}^{n+1}} \left[e^{X} \mathbb{1}_{\{e^{X} < \tilde{S}\}} \mathbb{1}_{\{e^{Y} < \tilde{L}\}} \right]$$

$$- \tilde{S} \cdot \mathbb{E}^{\mathbb{Q}^{n+1}} \left[e^{Y} \mathbb{1}_{\{e^{X} < \tilde{S}\}} \mathbb{1}_{\{e^{Y} < \tilde{L}\}} \right]$$

$$+ \mathbb{E}^{\mathbb{Q}^{n+1}} \left[e^{X} e^{Y} \mathbb{1}_{\{e^{X} < \tilde{S}\}} \mathbb{1}_{\{e^{Y} < \tilde{L}\}} \right].$$

Inserting the argument of lognormality shows the second equality. Redefining $\tilde{S} := \frac{\bar{S}B(t,T_{n+1})}{S(t)}$, $\tilde{L} = \frac{\bar{L}}{L_n(t)}$ and the independence between the variables and the σ -algebra lead to the last equation.

Now, we evaluate the four expectations in order to find a price of the traffic light option. Since we are in the framework of standard bivariate normal distribution, we can now use the basics from the remark above.

First, we compute the first expectation:

$$\begin{split} \mathbb{E}^{\mathbb{Q}^{n+1}} [\mathbbm{1}_{\{e^X < \tilde{S}\}} \mathbbm{1}_{\{e^Y < \tilde{L}\}}] &= \mathbb{Q}^{n+1}(x < \ln \tilde{S}, y < \ln \tilde{L}) \\ &= \int_{-\infty}^{\ln \tilde{S}} \int_{-\infty}^{\ln \tilde{L}} f(x, y) dy dx \\ &= \int_{-\infty}^{\ln \tilde{S}} \int_{-\infty}^{\ln \tilde{L}} \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2(1 - \rho^2)} \cdot z\right) dy dx, \end{split}$$

with

$$z = \left(\frac{x - \mu_x}{\sigma_x}\right)^2 - 2\rho \left(\frac{x - \mu_x}{\sigma_x}\right) \left(\frac{y - \mu_y}{\sigma_y}\right) + \left(\frac{y - \mu_y}{\sigma_y}\right)^2,$$

leads with an appropriate substitution $u = \frac{x - \mu_x}{\sigma_x}$ and $v = \frac{y - \mu_y}{\sigma_y}$ to the following result:

$$M\left(\frac{\ln \tilde{S} - \mu_x}{\sigma_x}, \frac{\ln \tilde{L} - \mu_y}{\sigma_y}; \rho_{SL}\right).$$

Second expectation term leads to:

$$\mathbb{E}^{\mathbb{Q}^{n+1}}[e^X \mathbb{1}_{\{e^X < \tilde{S}\}} \mathbb{1}_{\{e^Y < \tilde{L}\}}] = \int_{-\infty}^{\ln \tilde{S}} \int_{-\infty}^{\ln \tilde{L}} e^x f(y) f(x|y) dx dy.$$

Now, the exponent is given by:

$$x - \frac{1}{2} \left(\frac{y - \mu_y}{\sigma_y} \right)^2 - \frac{1}{2\sigma_x^2 (1 - \rho^2)} \left(x - \mu_x - \frac{\rho \sigma_x}{\sigma_y} (y - \mu_y) \right)^2 = \mu_x + \frac{1}{2} \sigma_x^2 - \frac{1}{2(1 - \rho^2)} (u^2 - 2\rho uv + v^2)$$

with the substitution: $u = \frac{x-\mu_x}{\sigma_x} - \sigma_x$ and $v = \frac{y-\mu_y}{\sigma_y} - \rho\sigma_x$ Then, we get:

$$\mathbb{E}^{\mathbb{Q}^{n+1}}[e^{X}\mathbb{1}_{\{e^{X}<\tilde{S}\}}\mathbb{1}_{\{e^{Y}<\tilde{L}\}}] = e^{\mu_{x} + \frac{1}{2}\sigma_{x}^{2}} \cdot M\left(\frac{\ln \tilde{S} - \mu_{x}}{\sigma_{x}} - \sigma_{x}, \frac{\ln \tilde{L} - \mu_{y}}{\sigma_{y}} - \rho_{SL}\sigma_{x}; \rho_{SL}\right).$$

With the argument of the symmetry of the bivariate normal distribution, we can write the third expectation:

$$\mathbb{E}^{\mathbb{Q}^{n+1}}[e^{Y}\mathbb{1}_{\{e^{X}<\tilde{S}\}}\mathbb{1}_{\{e^{Y}<\tilde{L}\}}] = e^{\mu_{y} + \frac{1}{2}\sigma_{y}^{2}} \cdot M\left(\frac{\ln\tilde{S} - \mu_{x}}{\sigma_{x}} - \rho_{SL}\sigma_{y}, \frac{\ln\tilde{L} - \mu_{y}}{\sigma_{y}} - \sigma_{y}; \rho_{SL}\right).$$

The last expectation term can be calculated:

$$\mathbb{E}^{\mathbb{Q}^{n+1}}[e^X e^Y \mathbb{1}_{\{e^X < \tilde{S}\}} \mathbb{1}_{\{e^Y < \tilde{L}\}}] = \int_{-\infty}^{\ln \tilde{S}} \int_{-\infty}^{\ln \tilde{L}} e^x e^y f(y) f(y|x) dy dx.$$

Then we get again for the exponent:

$$x + y - \frac{1}{2} \left(\frac{x - \mu_x}{\sigma_x} \right)^2 - \frac{1}{2\sigma_y^2 (1 - \rho^2)} \left(y - \mu_y - \frac{\rho \sigma_y}{\sigma_x} (x - \mu_x) \right)^2 =$$

$$= \mu_x + \mu_y + \frac{1}{2} \sigma_x^2 + \frac{1}{2} \sigma_y^2 + \rho \sigma_x \sigma_y - \frac{1}{2(1 - \rho^2)} (u^2 - 2\rho uv + v^2)$$

with the substitution $u = \frac{x - \mu_x}{\sigma_x} - \rho \sigma_y - \sigma_x$ and $v = \frac{y - \mu_y}{\sigma_y} - \rho \sigma_x - \sigma_y$. Putting everything together leads to:

$$\begin{split} & \mathbb{E}^{\mathbb{Q}^{n+1}} [e^X e^Y \mathbb{1}_{\{e^X < \tilde{S}\}} \mathbb{1}_{\{e^Y < \tilde{L}\}}] \\ &= e^{\mu_x + \mu_y + \frac{1}{2}\sigma_x^2 + \frac{1}{2}\sigma_y^2 + \rho\sigma_x\sigma_y} \cdot M \bigg(\frac{\ln \tilde{S} - \mu_x}{\sigma_x} - \rho_{SL}\sigma_y - \sigma_x, \frac{\ln \tilde{L} - \mu_y}{\sigma_y} - \rho_{SL}\sigma_x - \sigma_y; \rho_{SL} \bigg). \end{split}$$

Inserting the four expectations gives us the following result:

$$\pi(t) = S(t)L_n(t) \left[\tilde{S}\tilde{L} \cdot M(., .; .) - \tilde{L}e^{\mu_x + \frac{1}{2}\sigma_x^2} \cdot M(., .; .) - \tilde{S}e^{\mu_y + \frac{1}{2}\sigma_y^2} \cdot M(., .; .) + e^{\mu_x + \mu_y + \frac{1}{2}\sigma_x^2 + \frac{1}{2}\sigma_y^2 + \rho\sigma_x\sigma_y} \cdot M(., .; .) \right].$$

Now using the fact that $\mu_x = -\frac{1}{2}\sigma_x$ and $\mu_y = -\frac{1}{2}\sigma_y$ leads us to the final result:

$$\pi(t) = S(t)L_n(t) \left[\tilde{S}\tilde{L} \cdot M(., .; .) - \tilde{L} \cdot M(., .; .) + e^{\sigma_{xy}} \cdot M(., .; .) \right]$$

Remark. We want to compute the integrals used in Theorem (4):

$$\sigma_y^2 = \int_t^{T_n} \lambda_n^2(s) ds \text{ with } \lambda_n(t) = (a + (T_n - t)b) \cdot e^{-c(T_n - t)} + d.$$

First we want to compute all single integrals and then put everything together.

$$\sigma_y^2 = \int_t^{T_n} \left(a^2 \cdot e^{-2c(T_n - s)} + b^2 \cdot T_n^2 \cdot e^{-2c(T_n - s)} + b^2 \cdot s^2 \cdot e^{-2c(T_n - s)} + d^2 + 2 \cdot a \cdot b \cdot T_n \cdot e^{-2c(T_n - s)} - 2 \cdot a \cdot b \cdot s \cdot e^{-2c(T_n - s)} + 2 \cdot a \cdot d \cdot e^{-c(T_n - s)} - 2 \cdot b^2 \cdot s \cdot T_n \cdot e^{-2c(T_n - s)} + 2 \cdot b \cdot d \cdot T_n \cdot e^{-c(T_n - s)} - 2 \cdot b \cdot d \cdot s \cdot e^{-c(T_n - s)} \right) ds.$$

The first terms, containing only the exponential function, will be now calculated:

$$\int_{t}^{T_{n}} a^{2} \cdot e^{-2c(T_{n}-s)} ds = a^{2} \cdot \frac{e^{-2c(T_{n}-s)}}{2c} \Big|_{s=t}^{T_{n}} = a^{2} \cdot \frac{e^{-2c(T_{n}-T_{n})}}{2c} - a^{2} \cdot \frac{e^{-2c(T_{n}-t)}}{2c} = \frac{a^{2}}{2c} \cdot \left(1 - e^{-2c(T_{n}-t)}\right).$$

$$\int_{t}^{T_{n}} 2 \cdot a \cdot b \cdot T_{n} \cdot e^{-2c(T_{n}-s)} ds = \frac{a \cdot b \cdot T_{n}}{c} \cdot \left(1 - e^{-2c(T_{n}-t)}\right).$$

$$\int_{t}^{T_{n}} b^{2} \cdot T_{n}^{2} \cdot e^{-2c(T_{n}-s)} ds = \frac{b^{2} \cdot T_{n}^{2}}{2c} \cdot \left(1 - e^{-2cT_{n}+2ct}\right).$$

$$\int_{t}^{T_{n}} 2 \cdot a \cdot d \cdot e^{-c(T_{n}-s)} ds = \frac{2 \cdot a \cdot d}{c} \cdot \left(1 - e^{-c(T_{n}-t)}\right).$$

$$\int_{t}^{T_{n}} 2 \cdot b \cdot d \cdot T_{n} \cdot e^{-c(T_{n}-s)} ds = \frac{2 \cdot b \cdot d \cdot T_{n}}{c} \cdot \left(1 - e^{-c(T_{n}-t)}\right).$$

$$\int_{t}^{T_{n}} d^{2} ds = (T_{n}-t) \cdot d^{2}.$$

Next, we calculate the terms given by $\int_t^{T_n} s \cdot e^{-2c(T_n-s)} ds$ with integration by parts:

$$\int_{t}^{T_{n}} 2 \cdot a \cdot b \cdot s \cdot e^{-2c(T_{n}-s)} ds = 2 \cdot a \cdot b \cdot \int_{t}^{T_{n}} s \cdot e^{-2c(T_{n}-s)} ds
= 2 \cdot a \cdot b \cdot \left(s \cdot \frac{e^{-2c(T_{n}-s)}}{2c} \Big|_{s=t}^{T_{n}} - \int_{t}^{T_{n}} \frac{e^{-2c(T_{n}-s)}}{2c} ds \right)
= 2 \cdot a \cdot b \cdot \left(\frac{1}{2c} \left(T_{n} - t \cdot e^{-2c(T_{n}-t)} \right) - \int_{t}^{T_{n}} \frac{e^{-2c(T_{n}-s)}}{2c} ds \right).$$

Now, we calculate the intermediate result:

$$\int_{t}^{T_{n}} \frac{e^{-2c(T_{n}-s)}}{2c} ds = \frac{e^{-2c(T_{n}-s)}}{4 \cdot c^{2}} \bigg|_{s=t}^{T_{n}} = \frac{1}{4c^{2}} \left(1 - e^{-2c(T_{n}-t)}\right).$$

The results are given by:

$$\int_{t}^{T_{n}} 2 \cdot a \cdot b \cdot s \cdot e^{-2c(T_{n}-s)} ds = 2 \cdot a \cdot b \cdot \left(\frac{1}{2c} \left(T_{n} - t \cdot e^{-2c(T_{n}-t)}\right) - \frac{1}{4c^{2}} \left(1 - e^{-2c(T_{n}-t)}\right)\right).$$

$$\int_{t}^{T_{n}} 2 \cdot b^{2} \cdot T_{n} \cdot s \cdot e^{-2c(T_{n}-s)} ds = 2 \cdot b^{2} \cdot T_{n} \cdot \left(\frac{1}{2c} \left(T_{n} - t \cdot e^{-2c(T_{n}-t)}\right) - \frac{1}{4c^{2}} \left(1 - e^{-2c(T_{n}-t)}\right)\right).$$

$$\int_{t}^{T_{n}} 2 \cdot b \cdot d \cdot s \cdot e^{-c(T_{n}-s)} ds = 2 \cdot b \cdot d \cdot \left(\frac{1}{c} \left(T_{n} - t \cdot e^{-c(T_{n}-t)}\right) - \frac{1}{c^{2}} \left(1 - e^{-c(T_{n}-t)}\right)\right).$$

The last term has to be evaluated with two times integration by parts:

$$\int_{t}^{T_{n}} b^{2} \cdot s^{2} \cdot e^{-2c(T_{n}-s)} ds = b^{2} \left(s^{2} \cdot \frac{e^{-2c(T_{n}-s)}}{2 \cdot c} \Big|_{s=t}^{T_{n}} - \left[\int_{t}^{T_{n}} 2 \cdot s \cdot \frac{e^{-2c(T_{n}-s)}}{2 \cdot c} ds \right] \right) =$$

$$= b^{2} \left(\frac{1}{2c} \left(T_{n}^{2} - t^{2} \cdot e^{-2c(T_{n}-t)} \right) - \left[2 \cdot s \cdot \frac{e^{-2c(T_{n}-s)}}{4 \cdot c^{2}} \Big|_{s=t}^{T_{n}} - \left[\int_{t}^{T_{n}} 2 \cdot \frac{e^{-2c(T_{n}-s)}}{4 \cdot c^{2}} ds \right] \right] \right)$$

With the intermediate results:

$$2 \cdot s \cdot \frac{e^{-2c(T_n - s)}}{4 \cdot c^2} \bigg|_{s = t}^{T_n} = \frac{1}{2c^2} \cdot (T_n - t \cdot e^{-2c(T_n - t)}),$$

and

$$\int_{t}^{T_{n}} 2 \cdot \frac{e^{-2c(T_{n}-s)}}{4 \cdot c^{2}} ds = 2 \cdot \frac{e^{-2c(T_{n}-s)}}{8c^{3}} \bigg|_{s=t}^{T_{n}} = \frac{1}{4c^{3}} \cdot \left(1 - e^{-2c(T_{n}-t)}\right),$$

follows:

$$\int_{t}^{T_{n}} b^{2} \cdot s^{2} \cdot e^{-2c(T_{n}-s)} ds$$

$$= b^{2} \left(\frac{1}{2c} \left(T_{n}^{2} - t^{2} \cdot e^{-2c(T_{n}-t)} \right) - \frac{1}{2c^{2}} \cdot \left(T_{n} - t \cdot e^{-2c(T_{n}-t)} \right) + \frac{1}{4c^{3}} \cdot \left(1 - e^{-2c(T_{n}-t)} \right) \right).$$

Overall, we get the following result:

$$\begin{split} \sigma_y^2 &= \left(1 - e^{-c(T_n - t)}\right) \cdot \left(\frac{2 \cdot a \cdot d}{c} + \frac{2 \cdot b \cdot d \cdot T_n}{c}\right) \\ &+ \left(1 - e^{-2c(T_n - t)}\right) \left(\frac{a^2}{2c} + \frac{a \cdot b \cdot T_n}{c} + \frac{b^2 \cdot T_n^2}{2c}\right) \\ &+ 2 \cdot b \cdot \left(\frac{1}{2c} \left(T_n \cdot -t \cdot e^{-2c(T_n - t)}\right) - \frac{1}{4c^2} \left(1 - e^{-2c(T_n - t)}\right)\right) (-a - b \cdot T_n) \\ &- 2 \cdot b \cdot d \cdot \left(\frac{1}{c} \left(T_n - t \cdot e^{-c(T_n - t)}\right) - \frac{1}{c^2} \left(1 - e^{-c(T_n - t)}\right)\right) \\ &+ b^2 \left(\frac{1}{2c} \left(T_n^2 - t^2 \cdot e^{-2c(T_n - t)}\right) - \frac{1}{2c^2} \cdot \left(T_n - t \cdot e^{-2c(T_n - t)}\right) + \frac{1}{4c^3} \cdot \left(1 - e^{-2c(T_n - t)}\right)\right) \\ &+ \left(T_n - t\right) \cdot d^2. \end{split}$$

$$\sigma_x^2 = \int_t^{T_{n+1}} \sigma_s^2 ds = (T_{n+1} - t) \cdot \sigma_s^2, \quad \text{with } \sigma_s \text{ deterministic.}$$

$$\mu_x = -\frac{1}{2} \int_t^{T_{n+1}} \sigma_s^2 ds = -\frac{1}{2} \sigma_x^2.$$

$$\mu_y = -\frac{1}{2} \int_t^{T_n} \lambda_n(s)^2 ds = -\frac{1}{2} \sigma_y^2.$$

The last equation for σ_{xy} will be evaluated:

$$\sigma_{xy} = \int_{t}^{T_{n}} \sigma_{s} \lambda_{n}(s) \rho_{s} ds, \quad \text{with } \sigma_{s} \text{ and } \rho_{s} \text{ deterministic.}$$

$$\sigma_{xy} = \rho_{s} \cdot \sigma_{s} \int_{t}^{T_{n}} \left((a + (T_{n} - s)b) \cdot e^{-c(T_{n} - s)} + d \right) ds$$

$$= \rho_{s} \cdot \sigma_{s} \int_{t}^{T_{n}} \left(a \cdot e^{-c(T_{n} - s)} + T_{n} \cdot b \cdot e^{-c(T_{n} - s)} - s \cdot b \cdot e^{-c(T_{n} - s)} + d \right) ds$$

$$\int_{t}^{T_{n}} a \cdot e^{-c(T_{n} - s)} ds = a \cdot \frac{e^{-c(T_{n} - s)}}{c} \Big|_{s=t}^{T_{n}} = \frac{a}{c} \left(1 - e^{-c(T_{n} - t)} \right).$$

$$\int_{t}^{T_{n}} T_{n} \cdot b \cdot e^{-c(T_{n} - s)} ds = \frac{T_{n} \cdot b}{c} \left(1 - e^{-c(T_{n} - t)} \right).$$

$$\int_{t}^{T_{n}} b \cdot s \cdot e^{-c(T_{n}-s)} ds = b \cdot \left[s \cdot \frac{e^{-c(T_{n}-s)}}{c} \Big|_{s=t}^{T_{n}} - \int_{t}^{T_{n}} \frac{e^{-c(T_{n}-s)}}{c} ds \right]$$

$$= b \cdot \left[\frac{1}{c} \left(T_{n} - t \cdot e^{-c(T_{n}-t)} \right) - \int_{t}^{T_{n}} \frac{e^{-c(T_{n}-s)}}{c} ds \right]$$

$$= b \cdot \left[\frac{1}{c} \left(T_{n} - t \cdot e^{-(T_{n}-t)c} \right) - \frac{e^{-c(T_{n}-s)}}{c^{2}} \Big|_{s=t}^{T_{n}} \right]$$

$$= b \cdot \left[\frac{1}{c} \left(T_{n} - t \cdot e^{-c(T_{n}-t)} \right) - \frac{1}{c^{2}} \left(1 - e^{-c(T_{n}-t)} \right) \right].$$

All together we get for σ_{xy} :

$$\sigma_{xy} = \rho_s \cdot \sigma_s \left[\left(1 - e^{-c(T_n - t)} \right) \cdot \left(\frac{a}{c} + \frac{T_n \cdot b}{c} \right) - b \cdot \left(\frac{1}{c} \left(T_n - t \cdot e^{-c(T_n - t)} \right) - \frac{1}{c^2} \left(1 - e^{-c(T_n - t)} \right) + (T_n - t) \cdot d \right) \right].$$

3.2.2 Valuation under the spot measure

In theory, it is often common to use the stochastic differential equation of any asset (S) under the risk neutral measure (\mathbb{Q}) :

$$dS_t = S_t(r_t dt + \sigma_t dW_t^{\mathbb{Q}}), \tag{3.17}$$

By applying $It\hat{o}'s$ -Formula we get:

$$S_{t} = S_{0} \exp \int_{0}^{t} (r_{s} - \frac{1}{2}\sigma_{s}^{2})ds + \int_{0}^{t} \sigma_{s} dW_{s}^{\mathbb{Q}}.$$
 (3.18)

Since the involvement of instantaneous rates, it is more practical to stick to the LIBOR rates. The aim is to use a discrete rate version of the dynamics (3.17). We will now introduce the discretely compounded bank account as the numeraire with common used strategy.

3.2.3 Discretisation for the spot measure

The spot LIBOR portfolio invests in the ZCB using the following strategy:

Definition 9 (Rolling strategy in ZCB).

The self-financing strategy follows:

- 1. At time 0, start with 1 euro, buy $\frac{1}{B(0,T_0)}$ T_0 -bonds.
- 2. At time T_0 , receive $\frac{1}{B(0,T_0)}$ euro, buy $\frac{1}{B(0,T_0)}/B(T_0,T_1)$ T_1 -bonds.
- 3. At time T_1 , receive $\frac{1}{B(0,T_0)}/B(T_0,T_1)$ euro, buy $\frac{1}{B(0,T_0)}/B(T_0,T_1)/B(T_1,T_2)$ T_2 -bonds.

The value of this self-financing strategy at any time t is given by:

$$B^{d}(t) := \frac{B(t, T_{i(t)})}{B(0, T_{0})} \prod_{i=0}^{i(t)-1} \frac{B(T_{j}, T_{j})}{B(T_{j}, T_{j+1})} = \frac{B(t, T_{i(t)})}{B(0, T_{0})} \prod_{i=0}^{i(t)-1} (1 + \tau_{j+1} L_{j}(T_{j})), \tag{3.19}$$

with index function: $i(t) = \inf\{k | T_{k-1} \le t < T_k\}$.

Remark. For $T_0 = 0$ and $t = T_k$ for some k, the discrete bank account reduces to:

$$B^{d}(T_{k}) = \prod_{j=0}^{k-1} (1 + \tau_{j+1} L_{j}(T_{j})).$$
(3.20)

Assuming that the bond prices have dynamics:

$$dB(t,T_j) = B(t,T_j)(\alpha(t,T_j)dt + \beta(t,T_j)dW(t)),$$

under some underlying probability measure, then using $It\hat{o}'s$ lemma on $B^d(t)$ gives:

$$dB^{d}(t) = B^{d}(t)(\alpha(t, T_{i(t)})dt + \beta(t, T_{i(t)})dW(t)).$$

Due to the fact that the dynamics involve instantaneous drift and diffusion terms from the bond dynamics, it is easier to let the future claims to be priced tied to the settlement dates of the LIBOR rates¹² while modeling.

Determining the discretely compounded analog of the asset price process directly reveals

$$S_{t} = S_{0} \frac{B(t, T_{i(t)})}{B(0, T_{0})} \prod_{j=0}^{i(t)-1} (1 + \tau_{j+1} L_{j}(T_{j})) \exp\left(\int_{0}^{t} -\frac{1}{2} \sigma_{s}^{2} ds + \int_{0}^{t} \sigma_{s} dW_{S}^{d}(s)\right).$$
(3.21)

The equivalent martingale measure $\mathbb{Q}^{B^d} =: \mathbb{Q}^d$ corresponding to the discrete bank account B^d as numeraire is denoted as the spot LIBOR measure. The discounted asset price process $\frac{S(t)}{B^d(t)}$ is then a martingale under \mathbb{Q}^d :

$$\frac{S(t)}{B^d(t)} = \mathbb{E}^d \left[\frac{S(T)}{B^d(T)} \middle| \mathcal{F}_t \right], \quad \text{for all } t \le T.$$
 (3.22)

The discounted asset price process $\frac{S(t)}{B^d(t)}$ obviously satisfies the martingale property. Pricing under the spot LIBOR measure requires that the dynamics of the LIBOR rates L_i for i=1,...,n have to be found in order to calculate the expectation:

$$\pi(t) = B^{d}(t)\mathbb{E}^{d} \left[\frac{1}{B^{d}(T_{i})} C(S(T_{0}), \dots, S(T_{i}), L_{0}(T_{0}), \dots, L_{n}(T_{i})) \right].$$
 (3.23)

These dynamics are derived in the lognormal LIBOR market model in [Jam97] and given by:

$$dL_{i} = L_{i}(t) \sum_{j=i(t)}^{i} \frac{\tau_{j+1} L_{j}(t) \rho_{i,j} \lambda_{j}(t)}{1 + \tau_{j+1} L_{j}(t)} \lambda_{i}(t) dt + L_{i}(t) \lambda_{i}(t) dW_{i}^{d}(t),$$
(3.24)

where W_i^d is a Wiener process under the spot LIBOR measure \mathbb{Q}^d and $\rho_{i,j}$ is the correlation coefficient between the Wiener processes W_i^d and W_j^d .

It is important that the model is only completely determined at the tenor dates of the LIBOR rates. This can be deduced from the equation (3.23) where the time t price depends on the discrete bank account at time t. As also noted in [Jam97], a simple linear interpolation between the two nearest tenor dates is suggested to get $B^d(t)$ if the time t price of the derivative is needed.

3.3 Instantaneous volatilities and correlation

3.3.1 For simulation

In general, it is not possible to find the simultaneous distribution of the various stochastic variables under the expectation (3.23) which is required analytically. Hence, the evolution in the corresponding processes has to be implemented by simulation.

¹²that is not a strict assumption

The main issue here, is to get appropriate instantaneous correlations between the different LIBOR rates and the stock portfolio.

$$\begin{bmatrix} dW_1^d(t) \\ dW_2^d(t) \\ \vdots \\ dW_n^d(t) \\ dW_S^d(t) \end{bmatrix} \cdot [dW_1^d(t), dW_2^d(t), \cdots, dW_n^d(t), dW_S^d(t)] = \begin{bmatrix} 1 & \rho_{1,2} & \cdots & \rho_{1,n} & \rho_{1,S} \\ \rho_{2,1} & 1 & \cdot & \cdot & \rho_{2,S} \\ \vdots & \cdot & 1 & \cdot & \vdots \\ \rho_{n,1} & \cdot & \cdot & 1 & \rho_{n,S} \\ \rho_{S,1} & \cdot & \cdot & \rho_{S,n} & 1 \end{bmatrix} dt.$$

In this implementation, correlation between the LIBOR rates are described by deterministic functions depending on the length between the corresponding tenor dates, T_i and T_j . With the correlations involving the stock portfolio, the dependence is on the length between the time t and the corresponding tenor date of the LIBOR rate T_i . For our purpose, it is sufficient to specify the instantaneous volatility of the LIBOR rates following as:

Definition 10 (Instantaneous volatility of LIBOR rates).

The structure with a hump shaped functional equation is defined as

$$\lambda_i(t) = g(T)f(T_i - t), \tag{3.25}$$

in [Kok09], it argued that the functional form of f

$$f(T_i - t) = (a + (T_i - t)b) \cdot e^{-c(T_i - t)} + d,$$
(3.26)

is flexible enough to capture desirable criteria such as being hump shaped. And g(T) is set to 1.

In the next chapter, we will analyse the hump shaped form.

Now, we want to model the correlations between the LIBOR rates:

The instantaneous correlation matrix between the LIBOR rates should fulfil four criteria:

- 1. Symmetry: $\rho_{i,j} = \rho_{j,i}$ for all i, j.
- 2. Positive semidefinite: $x^T \rho x \ge 0$ for all $x \in \mathbb{R}^{\mathbb{N}}$.
- 3. Only 1 on the diagonal: $\rho_{i,i} = 1$ for all i.
- 4. All entries are in the interval [-1, 1].

Further we will model the matrix as a time homogeneous function for $T_i, T_j > t$ and $i \neq j$.

Definition 11 (Instantaneous correlation between the LIBOR rates).

For our purpose, we introduce a simple correlation function that satisfies the requirements as mentioned above:

$$\rho_{i,j}(t) = \exp(-\beta |T_i - T_j|), \tag{3.27}$$

with $\beta > 0$ and $i, j, t \geq 0$.

Last question is how to specify the volatility of the stock portfolio, and how it correlates with the LIBOR rates.

For simplicity, we will let the volatility be constant $\sigma_S = \sigma$. It is reasonable to let the Wiener process for the stock portfolio $W_S^d(t)$ be correlated most with the LIBOR rates with the shortest distance to maturity $T_i - t$.

Definition 12 (Instantaneous correlation between LIBOR rates and stock portfolio).

A convenient form for the instantaneous correlation is given by:

$$\rho_{S,i}(t) = \frac{1 - \exp(-\frac{\alpha}{(t - T_i - \gamma)})}{1 + \exp(-\frac{\alpha}{(t - T_i - \gamma)})} = \tanh\left(\frac{\alpha}{2(t - T_i - \gamma)}\right),\tag{3.28}$$

where $\gamma > 0$.

Remark. Positive values of α give rise to negative correlations and vice versa. This specific choice of function ensures correlation between -1 and 1, and if more flexibility is needed, additional parameters can be included inside the brackets in (3.28). Of course, for $T_i < t$ the LIBOR rate has matured and the correlation is set to zero.

3.4 Numerical Implementation

In this section, different approaches for the valuation of traffic light options will be done. First, we want to analyse several assumptions from the previous sections:

Payoff function of T_{n+1} - claim

The graphic characterisation of the payoff function (3.6) is given by:

Figure 3.1: The payoff profile of the traffic light option with $\bar{S}=100$ and $\bar{L}=0.04$.

The illustration in Fig.3.1 represents the payoff profile of a traffic light option with a benchmark stock portfolio and the LIBOR rate. This can also be plotted with some benchmark interest rate¹³.

 $^{^{13}}$ see [Jør07]

3.4.1 Volatility structure of the LIBOR rates

According to the previous section, the LIBOR rates are assumed to have the form (3.26) with parameters taken from ([BM06],p.320):

$$a = 0$$
, $b = 0.29342753$, $c = 1.25080230$, $d = 0.13145869$,

which is illustrated in the following plot:

Figure 3.2: The instantaneous LIBOR rate volatility as a function of distance to maturity $T_i - t$.

In Fig.3.2 it is seen that the instantaneous LIBOR rate volatility as a function of distance to maturity $T_i - t$ is decreasing with the particular choice of the correlation function. This is also a reasonable property. It is the rate, maturing nearest from now, that reacts the most to the market information and also drives the stock market.

Interpretation

This form is clearly time-homogenous and displays, for suitable choices of the parameter set, a nicely humped term structure of volatility. However, g(T) allows a possibility for a perfect calibration in some cases and is therefore very useful. In order to preserve time-homogenousity it is, however, important to assure that g(T) are as close as possible to 1. In order to preserve the short and long time behavior and the humped form of the term structure of volatilities one may not choose the parameters a, b, c and d completely free. For the interpretation of the function as a well behaved instantaneous volatility, the following conditions must be satisfied:

- a + d > 0
- c, d > 0

Furthermore, when $\hat{\delta} := T_i - t$ tends to zero, instantaneous and average volatilities tend to coincide and therefore the quantity a + d should at least approximately assume values given by the shortest maturities implied volatilities. On the other hand, when $\hat{\delta}$ tends to large values d has to be connected with the very-long-maturity volatilities.

- $a + d \longrightarrow$ short maturities implied volatilities
- $d \longrightarrow \text{very long maturities implied volatilities}$

Considering the first derivative of the time-homogeneous part of equation for the instantaneous volatility function with respect to $\hat{\delta}$: $f'(\hat{\delta}) = e^{-c\hat{\delta}} \left(b - ca - cb\hat{\delta} \right)$ gives some final information:

- $\frac{b-ca}{cb}$: The location of the extremum (the top of the hump) should be greater 0 and not too large.
- b > 0: Constraint for the extremum to be a maximum.

Interpretation about the characteristics is in BRIgo Mercurio, Brigo and Mercurio (2001), Rebonato (2002, 2005) and White and Rebonato (2009) for a justification of the choice and description of the properties of this function.

3.4.2 Correlation structure of the LIBOR rates

Let the coefficient in (3.27) be given by $\beta = 0.1$ as illustrated in Fig.3.3:

Figure 3.3: Correlation between LIBOR rates with $\beta = 0.1$

Interpretation

This one-parameter parametrisation always produces a valid correlation matrix in the sense that it produces a real, symmetric, positive-definite matrix. However, correlation is only dependent on the distance between maturities and is constant with regard to t. Under the assumption of constant volatilities, instantaneous and terminal correlation are equal. β is called the de-correlation factor or rate of de-correlation as it controls the decrease in correlation with increasing maturity interval. Setting $\beta := 0$ results in a model with perfect instantaneous correlation, thereby reducing the number of driving factors of the model to 1. ¹⁴ In general, this correlation function can be assigned a functional dependence on calendar times and on the maturities of the two forward LIBOR rates:

$$\rho_{ij} = \rho(t, T_i, T_j)$$

 $^{^{14}}$ see [Pac05]

For simplicity of modelling, we assume that the correlation function is time-homogenous and only depends on the relative distance between the two forward LIBOR rates with different tenor dates.

The following form of the correlation function is:

$$\rho_{ij}(t) = \rho(|T_i - T_j|)$$

with the characteristics:

$$\rho(|T_3 - T_1|) = \rho(|T_3 - T_2|) \cdot \rho(|T_2 - T_1|).$$

In other terms, the logarithm of ρ must be a linear function. Hence, in general, there must exist some $\beta \geq 0$ such that:

$$\rho_{ij}(t) = \rho(|T_i - T_j|) = e^{-\beta|T_i - T_j|}$$

For our purpose we restrict the condition from $\beta \geq 0$ to $\beta > 0$.

3.4.3 Correlation between the stock portfolio and the LIBOR rates

The instantaneous correlation is represented by (3.28). Now we want to choose appropriate parameters α and γ to measure the correlation. It is not clear to find correct values for the parameters. Therefore a more detailed table of the instantaneous correlation values α, γ and the distance to maturity $T_i - t$ of the corresponding LIBOR rate is illustrated in [Kok09].

Figure 3.4: Correlation between LIBOR rates and stock portfolio with $\alpha = \gamma = 1$.

The α parameter controls the level of the correlation and higher absolute values of this parameter increases the absolute correlation across maturities, though not in a parallel way.

The γ parameter controls the curvature of the function. This is also clear from looking at the table, where it is seen that the absolute decrease in correlation as distance to maturity increases is highest for small values of γ . Or loosely stated, the staring point of the function in Fig 4. shifts closer to zero for higher γ values.

3.4.4 Pricing of the TLO with Theorem 4

In comparison to the payoff function the price of the traffic light option is found with Theorem (4) and depicted as a function of the stock portfolio price and the LIBOR rate at time t=0:

Figure 3.5: Here the parameter values are $\bar{S}=100, \bar{L}=0.04, T_{n+1}=3, \rho=-0.5, \sigma_s=\sigma=0.2$ and the term structure is assumed flat equal to the initial LIBOR rate.

In Fig. 3.5 we can see that in the critical areas, which are $(100, 0.00) \times (120, 0.04)$ and $(60, 0.04) \times (100, 0.06)$, the values are above zero in comparison to the payoff function in 3.6. The price for a traffic light option slightly converges to zero, if we take the values to (120, 0.06). The x-and y-axis are symmetric, if we take the 45 degree line between stock portfolio and LIBOR rate for reflection.

3.4.5 TLO price in dependence of correlation

Interpretation

With increasing correlation between LIBOR rate and stock portfolio the price of the traffic light option rises as well, with fixed tenor date, bond value and the initial values of the stock portfolio resp. the LIBOR are set at their strike levels.

Figure 3.6: The traffic light option as a function of correlation with $S_0 = 100$, $L_n(0) = 0.04$, $\bar{S} = 100$, $\bar{L} = 0.04$, $T_{n+1} = 3$ and $B(0, T_{n+1}) = 0.8890$.

3.4.6 Pricing with Monte Carlo simulation

In practice it is possible to price any European type T_i -payoff given by $C(S(T_0), \ldots, S(T_i), \ldots, L_0(T_0), \ldots, L_n(T_i))$ via simulation techniques. In this section the payoff function of a traffic light option will be implemented and run with a Monte Carlo simulation.

Payments similar to this form is being increasingly used in the construction of structured products. The pricing is performed under the spot LIBOR measure.

In a simulation of the LIBOR rates, the first choice is to fix the time grid of the future time points over which to simulate $0 = t_0 < t_1 < \cdots < t_m < t_{m+1}$. In this time grid, it is convenient to let the tenor dates $T_0 < T_1 < \cdots < T_n$ be a subset.

Further by letting the time difference between two simulation points be constant $(t_{j+1} - t_j = \delta)$, the notation is reduced.

LIBOR Simulation with Euler-scheme

Simulating the LIBOR rates with an Euler-scheme on $\log(\widehat{L}_i)$ results in(see [Gla04]):

$$\widehat{L}_i(t_{j+1}) = \widehat{L}_i(t_j) \cdot \exp\left\{ \left(\mu_i(t_j) - \frac{1}{2} \lambda_i(t_j)^2 \right) \delta + \sqrt{\delta} \lambda_i(t_j) Z_{j+1} \right\},\,$$

with

$$\mu_i(t_j) = \sum_{l=i(t)}^{i} \frac{\tau_{l+1} \widehat{L}_i(t_j) \rho_{i,j} \lambda_l(t_j)}{1 + \tau_{l+1} \widehat{L}_i(t_j)} \lambda_i(t_j),$$
(3.29)

and Z_1, \dots, Z_{m+1} are independent N(0,1) random variables. In the equation above, the hats have been added to clarify that the continuous LIBOR rates have been discretized.

The simulation is initialized with (3.2) by setting 15 :

$$\widehat{L}_i(0) = \frac{1}{\tau_{i+1}} \left(\frac{B(0, T_i)}{B(0, T_{i+1})} - 1 \right), \quad i = 1, \dots, n.$$

For instance, the simulated path of the LIBOR rate $\hat{L}_6(t)$ with maturity date $T_6=3$ years is seen in Fig.3.7. After simulating 1000 possible paths for $L_6(t)$ via Monte Carlo simulation the mean can be observed in Fig.3.8.

Figure 3.7: Simulated LIBOR rate $L_6(t)$

Figure 3.8: Mean of 1000 simulated LIBOR rates $L_6(t)$

 $^{^{15}}$ in the implementation the initial forward LIBOR rates are flat with 3%.

The distribution of the LIBOR rate L_6 at time t=1 year is noticed in Fig.3.9.

Figure 3.9: Distribution of 1000 simulated LIBOR rates L_6 evaluated at time t=1 year

The value of the bank account at maturity T_n can be derived from the simulation of the LIBOR rates using (3.20):

$$\widehat{B}^d(T_k) = \prod_{j=0}^{k-1} (1 + \tau_{j+1} \widehat{L}_j(T_j))$$
 for all $k = 2, \dots, n$,

with $\widehat{B}^d(T_k) = 1$ for k = 0, 1.

In order to simulate the stock price which is given by:

$$S(T_n) = B^d(T_n)S_0 \exp\bigg(\int_0^{T_n} \sigma_s dW_S^d(s) - \frac{1}{2} \int_0^{T_n} \sigma_s^2 ds\bigg).$$

We will split the simulation in two discretisation schemes, where we define:

$$X(T_n) := S_0 \exp\bigg(\int_0^{T_n} \sigma_s dW_S^d(s) - \frac{1}{2} \int_0^{T_n} \sigma_s^2 ds\bigg),$$

which can be simulated with the discretisation scheme:

$$\widehat{X}(T_{j+1}) = \widehat{X}(T_j) \cdot \exp\left\{-\frac{1}{2}\sigma_s^2\tau + \sqrt{\tau}\sigma_s Z_{j+1}\right\}.$$

Now we can get the simulated stock portfolio with:

$$\widehat{S}(T_{j+1}) = \widehat{X}(T_{j+1}) \cdot \widehat{B}^d(T_{j+1}). \tag{3.30}$$

After running the simulation with the Euler-scheme for 1000 possible paths of stock portfolio prices with initial value 100, we get the significant plot in Fig.3.10:

Figure 3.10: Simulation of 1000 possible paths of the discounted stock portfolio prices $\hat{S}(T)$

We can see through building the mean over this 1000 simulations, that the stock portfolio is strictly increasing:

Figure 3.11: Mean over 1000 simulations of possible paths of the discounted stock portfolio prices $\hat{S}(T)$

In the following example our payoff is described by:

$$C(S(T_{n+1}), L_n(T_n)) = \left[\bar{S} - S(T_{n+1})\right]^+ \cdot \left[\bar{L} - L_n(T_n)\right]^+,$$

$$= \left[\bar{S} - \hat{S}(T_{n+1})\right]^+ \cdot \left[\bar{L} - \hat{L}_n(T_n)\right]^+.$$

For each linear combination of the strike levels \bar{S} and \bar{L} , the simulation will be evaluated and then averaged. By use of the discretisations above, the time zero price of the derivative:

$$\pi(0) = \mathbb{E}^d \left[\frac{1}{B^d(T_i)} C(S(T_{n+1}), L_n(T_n)) \right],$$

can then be approximated with the Monte Carlo simulation. Now implementing the Monte Carlo simulation for the analytical formula of the traffic light option in Theorem (4) leads to the option prices in the following plot:

Figure 3.12: Monte Carlo simulation of the analytical traffic light option formula

We can see the characteristics as mention before. The plot is symmetric, if we take the 45 degree line for reflection. Moreover the unique shape, as in Theorem (4), is preserved.

Figure 3.13: Theoretical formula versus simulation of a TLO

If we compare the simulation to the analytical formula, we can easily state, that our implemented simulation needs more optimisation. We evaluated the standard deviation and mean of 1000 simulated payoff scenarios. After that we built a confidence interval with mean +/- 3 times the standard deviation. The lower bound is negative and therefore the lower bound is set to 0 and the upper bound of the confidence interval is always 350% above the mean. This is a large simulation error. Here an optimised implementation would be wise. ¹⁶

Back to the previous example with 1000 simulations of the stock portfolio and the LIBOR rate, the conditional distribution of the option price scenarios have the following plots:

Figure 3.14: Conditional distribution of 1000 simulations compared between claim versus analytical formula

Now we have finished the simulation chapter. In the next chapter there will be more insights regarding traffic light options in terms of their most practical use: Hedging the balance sheet of a typical Danish L&P company to stay solvent in the yellow light scenario.

¹⁶not part of this thesis

Chapter 4

Hedging with Traffic Light Options

4.1 The traffic light option as a hedging instrument

The goal of this section is, with the help of the traffic light option, to hedge a typical balance sheet of an L&P company.

First, we will do this from the theoretical point of view, and then by way of an illustrative numerical example.

Definition 13 (Solvency ratio). ¹

Solvency ratio (=:SR) is a key metric used to measure an enterprise's ability to meet its debt and other obligations. The solvency ratio indicates whether a company's cash flow is sufficient to meet its liabilities. The lower a company's solvency ratio, the higher the probability that it will default on its debt obligations. The exact definition is given by:

$$SR = \frac{Net\ income + Deprecation}{Liabilities}. (4.1)$$

For simplification, our balance sheet, which will be explained in the next section, we only need the following definition for the solvency ratio:

$$SR = \frac{Net \ income}{Liabilities}. (4.2)$$

Who needs the solvency ratio?

Solvency ratio is of interest to long-term creditors and shareholders. These groups are interested in the long-term health and survival of business firms. In other words, solvency ratio has to prove that business firms can service their debt or pay the interest on their debt as well as pay the principal, when the debt matures. It also helps business owner keep an eye on downtrends that could eventuate in a possible bankruptcy.

¹see http://www.investopedia.com/terms/s/solvencyratio.asp

4.1.1 Theoretical Approach

The simplified balance sheet² of an L&P company at time t:

Assets Liabilities & Free equity
$$S(t) \qquad \Theta(L_j, t, T_j) \\ B(L_i, t, T_i) \qquad FE(t)$$

The asset side of the balance sheet consists of the market value of the well-diversified stock portfolio at time t, represented by S(t), and the bond investments at time t with LIBOR rate L_i and maturity T_i , represented by $B(L_i, t, T_i)$.

The liability side of the balance sheet consists of $\Theta(L_j, t, T_j)$, which denotes the market value of the company's fixed pension obligations at time t with LIBOR rate L_j and maturity T_j . For simplicity, we consider that the fixed pension obligations behave like bonds, with a longer duration. FE(t) is the market value of the free equity at time t. In order to ensure a balanced sheet, we fix:

$$FE = S + B - \Theta, (4.3)$$

residually.

Using $It\hat{o}'s$ lemma on the above expression, we can now deduce the following dynamics under the EMM \mathbb{Q} for the free equity:

$$dFE(L, S, t) = L_{i}(t)FE(t)dt + \sigma_{S}S(t)dW_{S}^{\mathbb{Q}}(t)$$

$$+ \sigma_{L_{i}}\left(\frac{\partial B(L_{i}, t, T_{i})}{\partial L_{i}}\right)dW_{L_{i}}^{\mathbb{Q}}(t)$$

$$- \sigma_{L_{j}}\frac{\partial \Theta(L_{j}, t, T_{j})}{\partial L_{j}}dW_{L_{j}}^{\mathbb{Q}}(t)$$

For our purpose it is more simple to set all LIBOR rates flat $(L_i = L_j)$ for $i, j \in \{1, ..., n\}$, resulting in the following dynamics:

$$dFE(L, S, t) = L_i(t)FE(t)dt + \sigma_S S(t)dW_S^{\mathbb{Q}}(t) + \sigma_L \left(\frac{\partial B(L, t, T_i)}{\partial L} - \frac{\partial \Theta(L, t, T_j)}{\partial L}\right)dW_L^{\mathbb{Q}}(t).$$

In theory the asset liability mismatch can easily be repaired by selling all stocks and investing in bonds such that $\frac{\partial B}{\partial L} = \frac{\partial \Theta}{\partial L}$. For various reasons, however, this is rarely done in practice³. Typically the pension obligations have a much longer duration (between 15 to 25 years (seen in [Jør07])), in comparison to the bonds duration with a typical duration of 6 years. Hence, in practice a typical L&P portfolio manager more often attempts to control the risk to the free equity via rearrangement of the asset side. They include an appropriate amount of structured products such as traffic light options. Such an asset reallocation from a portfolio manager could include the following new arrangements:

²unhedged

³according to [Jør07]

Hedged Portfolio with Traffic Light Options

Assets Liabilities & Free equity
$$\begin{array}{c|c}
S^{new}(t) & \Theta(L_k, t, T_k) \\
B^{new}(L_j, t, T_j) & FE(t) \\
H(L_i, S, t) & & & \end{array}$$

The liability and free equity side is unaffected by the reallocation in the new composition. On the asset side, to keep the example simple, we only sell bonds and buy instead traffic light option for hedging the balance sheet. Hence, we have the new allocation on the asset side: $S^{new} := S$ and $B^{new} := B - H$. Through the reallocation our \mathbb{Q} -dynamics for free equity changed as well:

$$dFE(t) = L(t)FE(t)dt + \sigma_{S}S^{new}(t)\left(1 + \frac{\partial H(L_{i}, S, t)}{\partial S}\right)dW_{S}^{\mathbb{Q}}(t)$$

$$+ \sigma_{L_{i}}\left(\frac{\partial H(L_{i}, S, t)}{\partial L_{i}}\right)dW_{L_{i}}^{\mathbb{Q}}(t) + \sigma_{L_{j}}\left(\frac{\partial B^{new}(L_{j}, t, T_{j})}{\partial L_{j}}\right)dW_{L_{j}}^{\mathbb{Q}}(t)$$

$$- \sigma_{L_{k}}\left(\frac{\partial \Theta(L_{k}, t, T_{k})}{\partial L_{k}}\right)dW_{L_{k}}^{\mathbb{Q}}(t).$$

It is necessary for calculations that $T_i < T_j < T_k$ for all $i, j, k \in \mathbb{N}$. In case of hedging with traffic light options H, we have to consider the strike levels \bar{L} and \bar{S} as well as maturities T and the time of evaluation t. From the dynamics above we can see the perfect instantaneous hedge of the free equity fulfils the following conditions:

$$1 + \frac{\partial H(L, S, t)}{\partial S} = 0,$$

$$\frac{\partial H(L_i, S, t)}{\partial L_i} = 0,$$

$$\frac{\partial B^{new}(L_j, t, T_j)}{\partial L_j} = 0,$$

$$\frac{\partial \Theta(L_k, t, T_k)}{\partial L_k} = 0,$$

and

$$H(L_i, S, t) = (S(t) - S^{new}(t)) + (B(L_j, t, T_j) - B^{new}(L_j, t, T_j)).$$

As we can see from the conditions above, we have an under-determined system of equations. Hence it is not possible to find one true solution. Despite that fact, we can find values to hedge the yellow light scenario.

Remark. For simplicity, as mentioned in the non-hedged case, we consider all LIBOR rates as flat, resulting in the following dynamics:

$$\begin{split} dFE(t) = & L(t)FE(t)dt + \sigma_S S^{new}(t) \left(1 + \frac{\partial H(L,S,t)}{\partial S}\right) dW_{S^{new}}^{\mathbb{Q}}(t) \\ & + \sigma_L \left(\frac{\partial H(L,S,t)}{\partial L} + \frac{\partial B^{new}(L,t,T_j)}{\partial L} - \frac{\partial \Theta(L,t,T_k)}{\partial L}\right) dW_L^{\mathbb{Q}}(t). \end{split}$$

Now it is possible to solve the following equations for a perfect instantaneous hedge:

$$\begin{split} 1 + \frac{\partial H(L, S, t)}{\partial S} &= 0, \\ \frac{\partial H(L, S, t)}{\partial L} + \frac{\partial B^{new}(L, t, T_j)}{\partial L} - \frac{\partial \Theta(L, t, T_k)}{\partial L} &= 0 \end{split}$$

and

$$H(L, S, t) = (S(t) - S^{new}(t)) + (B(L, t, T_j) - B^{new}(L, t, T_j)).$$

4.2 Numerical Example of a publicly-listed Insurance Company

In this section a typical balance sheet of a publicly-listed insurance company will be shocked in two scenarios: firstly without traffic light options and then with TLOs included as a hedging instrument.

The asset side includes a well-diversified stock portfolio to the extent of 30 units and 70 units of zero-coupon bonds with duration of 6 years with the LIBOR rate as the benchmark interest rate. On the liability & equity side, we find pension obligations, which will be handled for simplicity like zero-coupon bonds with a longer duration of 15 years⁴ and the resulting free equity⁵ of 8 units.

Unhedged balance sheet at time t = 0

Assets		Liabilities & Free equity	
Stocks	30.00	92.00	Pension obligations (D= 15 years)
Bonds (D=6 years)	70.00	8.00	Free equity (SR: 8.70%)
Total	100.00	100.00	Total

Now the unhedged balance sheet will be shocked by the yellow light scenario in Def. 1. The LIBOR rate drops from 4% to 3% and the stock portfolio loses 30% of its initial value at t=0. The shock will be modelled in the Vasicek-model and BMG-model.

Figure 4.1: Unhedged balance sheet at time t = 0

 $^{^4}$ the actual pension fund liability durations vary between 15 and 25 years depending on the exact age distribution of the policy holders. See [Jør07]

⁵Free equity = Total of the asset side - Pension obligations

Unhedged balance sheet shocked in the yellow light scenario right after t=0 in the Vasicek-model

Assets		Liabilities & Free equity	
Stocks	21.00	95.66	Pension obligations (D= 15 years)
Bonds (D=6 years)	72.21	-2.45	Free equity (SR: -2.56%)
Total	93.21	93.21	Total

After the yellow light scenario in the Vasicek-model, the insurance company is technically insolvent with a solvency ratio of -2.56%. In comparison to the unprotected balance sheet at time t=0 we can see that the long-term bonds on the liabilities and free equity side do not react significant in the short-term framework.

Figure 4.2: Unhedged balance sheet shocked in the Vasicek-model

Unhedged balance sheet shocked in the yellow light scenario right after t = 0 in the BMG-model

Assets		Liabilities & Free equity	
Stocks	21.00	106.61	Pension obligations (D= 15 years)
Bonds (D=6 years)	74.25	-11.36	Free equity (SR: -11.36%)
Total	95.25	95.25	Total

After the yellow light scenario in the BMG-model, the insurance company is technically insolvent with an solvency ratio of -11.36%. This dramatic difference in solvency's state, in the Vasicek-model "only" -3% and in the BMG-model -12%, arises because of the different calculations in the bond formula. In the Vasicek-model long-term bonds do not react that sensitive as in the BMG-model, as we can see in the plots and tables.

In order to avoid insolvency, we will now sell some bonds and buy instead traffic light options. This will act as an protection against insolvency.

Figure 4.3: Unhedged balance sheet shocked in the BMG-model

4.3 Hedged balance sheet

Now we will buy 250 units of traffic light options to protect against the yellow light scenario. The parameters for the traffic light options are:

$$T_{n+1} = 5, t = 0, \rho = 0.0, \sigma_s = 0.2, \bar{S} = 30 \text{ and } \bar{L} = 0.04.$$

Hedged balance sheet at time t = 0

Assets		Liabilities & Free equity	
Stocks	30.00	92.00	Pension obligations (D= 15 years)
Bonds (D=6 years)	66.19		
Traffic Light Options	3.81	8.00	Free equity (SR: 8.70%)
Total	100.00	100.00	Total

Figure 4.4: Unhedged balance sheet at time t = 0

For the hedging part, we only sell bonds and buy TLOs instead. In Fig.4.4 the asset allocation has changed to the new split.

Hedged balance sheet shocked in the yellow light scenario right after t=0 in the BMG-model

Assets		Liabilities & Free equity	
Stocks	21.00	106.61	Pension obligations (D= 15 years)
Bonds ($D=6$ years)	70.21		
Traffic Light Options	20.28	4.88	Free equity (SR: 4.58%)
Total	111.49	111.49	Total

Figure 4.5: Hedged balance sheet shocked in the BMG-model

In comparison to [Jør07, Ch.4], where the Vasicek-model is used, the BMG-model is also a good framework for stress-testing. As mentioned above, long durations in the BMG-model react more sensitive, than in the Vasicek-model, since in the short rate model, long durations in pension obligations do not react significantly.

The aim in this thesis, was to find an appropriate hedge with TLOs in the framework of the BMG-model, to stay solvent in the yellow-light scenario, which we successfully achieved.

4.3.1 Conclusion

The thesis has introduced an exotic financial derivative as a potential hedging instrument to meet regulatory requirements. In the 21^{st} century requirements regarding financial institutions, for instance in terms of base capital, have become very strict. And there will be even more requirements for companies to cope with. As mentioned in [Jør07, Ch.5], there is a potential risk that companies will focus too narrowly on passing just the regulator's stress tests. Companies could easily hedge away the equity part and/or the interest rate of the regulatory risk regarding the yellow light scenario by purchasing a digital-type option paying a suitable fixed amount if the market goes down between 29% and 31%, and zero otherwise. This scenario would cost the companies very little and enable them to preserve a green light status.

Summarising all facts and simulations, we can state, that this innovative structured product is easy to simulate, but the problem is to find an optimisation, which can fit the theoretical approach best. The goal of this thesis, is to give a snapshot about structured products with a deeper insight on pricing traffic light options in order to hedge the introduced stress-tests from the Danish Supervisory Authorities for Danish Life & Pension companies. The results in the first part of the work are a more detailed version of Thomas Kokholm's paper [Kok09] and the second part is based on the work of Peter Løchte Jørgensen [Jør07] with an introduction to the LIBOR Market Model.

Appendix A

Basics

This chapter will provide some basic knowledge regarding financial mathematics.

Definition 14 (Martingale measure and equivalent martingale measure).

A probability measure \mathbb{Q} absolutely continuous with respect to \mathbb{P} is a martingale measure for S if and only if S is a \mathbb{Q} -martingale. It is called an equivalent martingale measure if it is equivalent to \mathbb{P} , i.e. $\mathbb{Q} \in \mathcal{M}^e$.

Definition 15 (Strategy).

A strategy ν is an S-integrable process. The value process V associated to an initial capital c and a strategy ν in the risky asset S is given as a stochastic integral process

$$V = c + \int \nu \ dS.$$

Definition 16 (Admissible strategy).

A strategy ν is called an admissible strategy if the gain process $\int vdS$ is a \mathbb{Q} -martingale for every martingale measure $\mathbb{Q} \in \mathcal{M}^e$.

Definition 17 (Arbitrage opportunity).

A strategy ν is called an arbitrage opportunity if we have for the associated value process V that

- $V_0 < 0$
- $V_T > 0$ $\mathbb{P} a.s.$
- $\mathbb{P}(V_T > 0) > 0$.

Definition 18 (1.Fundamental Theorem of Asset Pricing (FTAP)).

If there exists an equivalent martingale measure \mathbb{Q} for S then there are no arbitrage opportunities with admissible strategies.¹

¹see [RS11]. "Easy direction"

Definition 19 (Claim).

A Claim C is an \mathcal{F}_T -measurable random variable. The claim C is attainable if there exists a constant c and an admissible strategy ν such that

$$C = c + \int_0^T \nu_t \ dS_t.$$

The quintuple $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}, S)$ is called a market.

A market is complete if all bounded claims are attainable.

Definition 20 (Predictable representation property).

The process $M \in \mathcal{M}^2_{loc}$ has the (PRP) if $\mathcal{S}(\mathcal{M}) = \mathcal{M}^2$. That is, every $N \in \mathcal{M}^2$ can be written as $N = N_0 + \int \nu \ dM$ where $\nu \in L^2(M)$

Definition 21 (2.FTAP).

The following assertions are equivalent:

- The market is complete.
- $|\mathcal{M}^e| = 1$. $(\exists! \mathbb{Q} \in \mathcal{M})^e$
- There exists $\mathbb{Q} \in \mathcal{M}^e$ such that S has the PRP with respect to $(\mathbb{Q}, \mathcal{F})$.

Definition 22 (Numeraire). ²

A numeraire is an asset B with strictly positive B(t) at any time t in [0,T].

The role of a numeraire is to discount other asset prices processes B_1, \dots, B_n by expressing the relative price process $B'_i := \frac{B_i}{B}$, $i = 1, \dots, n$. In this work, the numeraires that we consider will mostly be T-bonds or bank accounts.

An equivalent martingale measure (associated to a numeraire B) is a probability measure \mathbb{Q} on the same filtered probabilisable space $(\Omega, \mathcal{F}, \mathbb{F})$ such that

- \mathbb{Q} and \mathbb{P} have the same null sets,
- the discounted price processes B'_i , $i = 1, \dots, n$, are martingales under \mathbb{Q} .

²see Swap Market Models for pricing Interest rate derivates Monte Carlo Simulations by Mbele Bidima Martin Le Doux 2004

Appendix B

R-codes

For the numerical implementation, we use two additional R-packages:

- "pbivnorm", which will be used for the computing of the standardized bivariate normal distribution.
- "scatterplot3d", which is required for graphic illustrations.

B.1 Payoff–profile of a traffic light option

```
# Payout-profile of a traffic light option
3 Payout <- function (x, Sstrike, Lstrike) {
    if (Sstrike>=x[1] & Lstrike>=x[2]) {
      (Sstrike - x[1]) * (Lstrike - x[2])
    else 0
8 }
10 # x-axis stock portfolio prices
_{12} S \leftarrow _{seq}(60,120, length.out = 61)
14
15 # y-axis LIBOR rates from 0.1 % to 6%
16 # with 61 data points
_{18} L \leftarrow seq(0.0001, 0.06, length.out = 61)
20 # Strike for the stock portfolio
21
22 Sstrike <- 100
24 # Strike for LIBOR
26 Lstrike <- 0.04
28 # Create all linear combinations between
```

```
29 # stock portfolio prices and LIBOR rates
31 grid <- expand.grid(S, L)
33 # Create a vector z with all payoff-profile calculations
34
z <- apply(grid, 1, Payout, Sstrike = Sstrike, Lstrike = Lstrike)
37 # In order for the numerical illstrations we need
_{38} \# z to be a 61x61-matrix
z \leftarrow matrix(z, ncol = 61, nrow = 61)
41
42 # Colour Plot
44 # Colour surface parameters
par(bg = "white")
47 x <- L
48 y <- S
49 Z <- Z
nrz \leftarrow nrow(z)
ncz \leftarrow ncol(z)
53 # Create a function interpolating colors in the range of specified colors
  jet.colors <- colorRampPalette( c("red", "yellow3", "yellow2", "yellow1", "
      green1", "green") )
56
57 # Generate the desired number of colors from this palette
59 nbcol <- 1000000
60 color <- jet.colors(nbcol)
62 # Compute the z-value at the facet centres
63
zfacet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
66 # Recode facet z-values into color indices
67
68 facetcol <- cut(zfacet, nbcol)
70 # Colour Plot
71 persp(x, y, z, col = color[facetcol], ylab="Stock portfolio", xlab = "LIBOR
     rate"
        zlab = "Payoff at maturity", #main="Traffic light option payoff at
      maturity",
        expand = 0.75, ticktype = "detailed",
73
        nticks =8, phi =30, theta =150)
74
76 # Saving the graphic
78 pdf(file= "Payout_of_TLO.pdf")
80 # Plot
```

B.2 Volatility structure of LIBOR rates

```
1 # Volatiliy Structure of the LIBOR rates
3 # Formula for the lambda-function
5 # Be careful in the paper we have T_i-t,
6 # but for the plotting it is only dependend
7 # on the lag between T_i-t
  lambda <- function(t) {
    # Parameters are set as in [BM06]
12
    a < - 0
    b < -0.29342753
14
    c <- 1.25080230
    d <- 0.13145969
17
    # Note that t is the lag of T_i-t, hence Time to maturity
18
19
    return((a+(t)*b)*exp(-(t)*c)+d)
20
21
22
23 # x-axis as time to maturity
x_axis < -seq(0,12, length.out = 100)
27 # Volatility values
  w \leftarrow lambda(x_axis)
31 # Plot area for x-axis and y-axis
^{33} xlim < c(0,10)
^{34} ylim \leftarrow ^{c}(0.13, 0.225)
37 # Plot function of the volatility structure
  plot(x = x_axis, y = w, type = "l", xlab = "Distance to maturity (T_i-t)",
       ylab = "Volatility",
       #main = "Volatility structure of LIBOR rates",
41
       col = "steelblue".
       lwd = 2, xlim = xlim, ylim = ylim, las = 1)
45 # Saving the graphic
47 pdf(file= "Volatility_structure_of_the_LIBOR_rates.pdf")
49 # Plot
plot (x = x_axis, y = w, type = "l",
xlab = "Distance to maturity (T_i-t)",
```

```
ylab = "Volatility",

col = "steelblue",

lwd = 2, xlim = xlim, ylim = ylim, las = 1)

dev.off()

ylab = "Volatility",
col = "steelblue",
lwd = 2, xlim = xlim, ylim = ylim, las = 1)
```

B.3 Correlation between the LIBOR rates

```
# Correlation between the LIBOR rates (between the different maturities)
3 # Correlation function formula
  corrfunc \leftarrow function(b = 0.1, T1, T2)
      \exp(-b*abs(T1-T2))
10
11 # For the plot
_{12}\;\# Create 20 maturity dates = T_{-}1 to T_{-}20
_{14} T_{-i} \leftarrow T_{-j} \leftarrow 0:20
a \leftarrow corrfunc(0.1, 0, T_{-j})
17 b \leftarrow corrfunc(0.1, T_i, 0)
19 # Surface colours corresponding to z-values
par(bg = "white")
22 \times - \text{seq}(0, 12, \text{length} = 30)
y \leftarrow seq(0, 12, length = 35)
z \leftarrow outer(x, y, function(a, b) corrfunc(0.1, a, b))
nrz \leftarrow nrow(z)
ncz \leftarrow ncol(z)
  # Create a function interpolating colors in the range of specified colors
  jet.colors <- colorRampPalette( c("red", "yellow", "green") )
32 # Generate the desired number of colors from this palette
34 nbcol <- 100000
  color <- jet.colors(nbcol)
 # Compute the z-value at the facet centres
37
  zfacet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
41 # Recode facet z-values into color indices
  facetcol <- cut (zfacet, nbcol)
44
45 # 3D Plot of Correlation between LIBOR rates with different maturities
  persp(x, y, z, col = color[facetcol], expand = 0.75,
         #main = "Correlation between LIBOR rates with different maturities",
48
         ylab="T_j", xlab = "T_i", zlab = "Correlation", ticktype = "detailed",
49
         phi = 30, theta = -40
52 # Saving the graphic
```

B.4 Correlation between LIBOR rates and the stock portfolio

```
1 # Correlation between Stock and Interest rate
3 # The parameters a and g stand for alpha and gamma
5 # Correlation function
  corr_SL <- function(a,g,t,Ti){
    return ((1-\exp(-a/(t-Ti-g)))/(1+\exp(-a/(t-Ti-g))))
10
11 }
13 # For the plotting it is the same "problem"! We need to switch the order
14 # of the distance to maturity
a < -rev(seq(0,20,by=0.05))
_{18} \# Fix alpha and gamm with value = 1
y < -corr_SL(a=1,g=1, a, 20)
22 # Plot area for x-axis and y-axis
^{24} xlim < c (0,21)
^{25} ylim < ^{\circ} ( -0.5,0)
^{27} b<-seq (0,20,by=0.05)
 # Plot-Funktion
30
  plot(x = b, y = y , type = "l", xlab = "Distance to maturity",
       ylab = "Correlation",
       #main = "Correlation structure between LIBOR rates and the stock index
33
       col = "steelblue",
       lwd = 2, xlim = xlim, ylim = ylim, las = 0.01)
37 # Saving the graphic
39 pdf(file= "Correlation_between_Stock_index_and_LIBOR_rates.pdf")
40
41 # Plot
  plot(x = b, y = y , type = "l", xlab = "Distance to maturity",
       ylab = "Correlation",
44
       #main = "Correlation structure between LIBOR rates and the stock index
45
       col = "steelblue",
       lwd = 2, xlim = xlim, ylim = ylim, las = 0.01)
47
48
```

49 dev. off ()

B.5 Analytical formula for pricing TLOs

```
1 # Pricing Traffic Light Option
2 # with analytical formula
4 # Remark: r is equally flat to LIBOR rates
6 # Need the package phivnorm for the standardized
7 # bivariate normal distribution
  require (pbivnorm)
10
11 # Formula for TLO
  priceTLO < -function(L, S, t=0, Tn1=3, SStrike=100, LStrike=0.04, sigma_s=0.2, rho)
      =-0.5) {
14
    # Difference between two tenor dates
15
    tau <- 0.5
17
18
    # Tn
19
20
    Tn \leftarrow Tn1 - tau
21
22
    # Need tenor for the semi-annual calculations
23
    # Starting with T_0=0, T_1=0.5, ...
24
25
    tenor \leftarrow seq(0, Tn1, by = tau)
26
    # Bond with maturity at T_{-}(n+1)
28
    # Due to the fact of semi-annual tenor dates
29
    # we need all tenor evaluation points = length(tenor)
30
31
    bTn1 \leftarrow 1/(1+tau*L)^(length(tenor)-t-1) \# Bond with r = LIBOR r = x
33
    SSchlange <-(SStrike*bTn1)/S
34
    LSchlange <- LStrike/L
36
37
    sigma_xq < (Tn1-t) * sigma_s^2
38
39
    sigma_x <- sqrt (sigma_xq)
40
41
    # We need lambda for the sigma_y
42
43
    lambda <- function(t,Tn) {
44
45
      a < -0
      b \leftarrow 0.29342753
47
      c < -1.25080230
48
      d <- 0.13145969
49
      result \leftarrow (a+(Tn-t)*b)*exp(-(Tn-t)*c)+d
```

```
52
       return (result)
54
     integrand1 <- function(x) {lambda(t = x, Tn = Tn)^2}
56
     sigma_yq1 <-integrate(integrand1, lower = t, upper = Tn)
57
58
     # Returns only the value without abs error
59
60
     sigma_yq<-sigma_yq1[[1]]
61
62
     # sigma_y^2=sigma_yq
63
64
     sigma_y <- sqrt (sigma_yq)
65
     # sigma_xy
67
68
     integrand2 <- function(x) {sigma_s * rho * lambda(t=x,Tn = Tn)}
69
     sigma_xy1 <- integrate(integrand2, lower = t, upper= Tn)
70
     sigma_xy <- sigma_xy1[[1]]
71
72
     # mu_x
73
74
     mu_x \leftarrow sigma_xq*(-0.5)
75
76
    # mu_y
77
79
     mu_y \leftarrow sigma_yq*(-0.5)
80
81
     # rho_SL
82
83
     rho_SL <- sigma_xy/(sigma_x*sigma_y)
84
85
     # For a better reading of the formula
86
87
     a1 <- as.numeric((log(SSchlange)-mu_x)/sigma_x)
88
     b1 <- as.numeric((log(LSchlange)-mu_y)/sigma_y)
89
     a2 <- as.numeric(a1-sigma_x)
90
     b2 <- as.numeric(b1-rho_SL*sigma_x)
91
     a3 <- as.numeric(a1-rho_SL*sigma_y)
92
     b3 <- as.numeric(b1-sigma_y)
     a4 <- as.numeric(a1-rho_SL*sigma_y-sigma_x)
94
     b4 <- as.numeric(b1-rho_SL*sigma_x-sigma_y)
95
96
     p1 \leftarrow pbivnorm(x = a1, y = b1, rho = rho\_SL)
97
     p2 \leftarrow pbivnorm(x = a2, y = b2, rho = rho\_SL)
98
     p3 \leftarrow pbivnorm(x = a3, y = b3, rho = rho\_SL)
99
     p4 \leftarrow pbivnorm(x = a4, y = b4, rho = rho\_SL)
100
     # Print section
     # Comment for the 3D plot
104
     # For a test run
105
106
```

```
print (c("bTn1",bTn1))
107
     print(c("SSchlange", SSchlange))
108
     print (c("LSchlange", LSchlange))
109
     print(c("sigma_xq", sigma_xq))
     print(c("sigma_x", sigma_x))
111
     print(c("sigma_yq",sigma_yq))
     print(c("sigma_y", sigma_y))
113
     print(c("sigma_xy", sigma_xy))
114
     print(c("mu_x", mu_x))
     print(c("mu_y",mu_y))
     print(c("rho_SL", rho_SL))
117
     print (c("a1,b1,p1",a1,b1,p1))
118
     print (c("a2,b2,p2",a2,b2,p2))
119
     print(c("a3,b3,p3",a3,b3,p3))
120
     print(c("a4,b4,p4",a4,b4,p4))
     result <- as.numeric((L*S*(SSchlange*LSchlange*p1
123
                           - LSchlange*p2
124
                           - SSchlange*p3
125
                           + \exp(\operatorname{sigma}_{-xy}) * p4)))
126
127
     print(c("Result", result))
128
129
     return (result)
130
132
   # TLO price plot
136
137
138 # x-axis = stock portfolio prices
139
_{140} S \leftarrow seq(60, 120, length.out=100)
_{142} \# \text{y-axis} = \text{LIBOR rates from } 0.01\% \text{ to } 6\%
143 # with 100 evaluation points
144
_{145} L \leftarrow seq(0,0.06, length.out = 100)
_{146} L[1] \leftarrow 0.00001 \# To avoid L = 0.00000
147
   # Strike for stock portfolio prices
149
   SStrike <- 100
150
152 # Strike for LIBOR rates
153
   LStrike <- 0.04
154
   # Volatility of the stock prices
156
157
   sigma_s <- 0.2
158
159
160 # Correlation between stocks and LIBOR rates
```

```
^{162} rho_SL <-(-0.5)
163
# Create all linear combinations between stocks
  # and LIBOR rates in a list
   grid <- expand.grid(L, S)
167
168
  171 # For the example just uncomment the print
172 # area in the formula above
173 # Test run
174
   priceTLO(grid [6965,1], grid [6965,2], t=0,Tn1=3)
175
  bTn1 < -1/(1+0.5*grid[6965,1])^7
  bTn1
178
179
   SSchlange<-100/grid [6965,2]*bTn1
LSchlange < 0.04/grid[6965,1]
  LSchlange
183
184
sigma_xq \leftarrow 0.2^2*(3-0)
186 sigma_xq
  sigma_x <- sqrt (sigma_xq)
   sigma_x
189
190
   lambda <- function (t,Tn) {
191
192
     a<-0
193
     b<- 0.29342753
194
     c < -1.25080230
195
     d <- 0.13145969
197
     (a+(Tn-t)*b)*exp(-(Tn-t)*c)+d
198
199
200
201
integrand1 \leftarrow function(x) {lambda(t = x, Tn = 2.5)^2}
sigma_yq1 \leftarrow integrate(integrand1, lower = 0, upper = 3 - 0.5)
204 sigma_yq <-sigma_yq1[[1]]
205 sigma_yq
sigma_y <-sqrt (sigma_yq)
207 sigma_y
208 \text{ mu_y} \leftarrow -1/2 * \text{sigma_y} \text{q}
209 mu_y
210 \text{ mu_x} < -1/2 * \text{sigma_xq}
211 mu_x
a1 \leftarrow (\log(SSchlange)-mu_x)/sigma_x
b1 \leftarrow (\log(LSchlange)-mu_y)/sigma_y
214 a1
215 b1
p1 \leftarrow pbivnorm(x = a1, y = b1, rho = -0.5)
```

```
217 p1
218
219
221 # TLO price plot (colour surface)
222
223 # LIBOR rates = x-axis
225 x <- L
226
227 # Stock portfolio = y-axis
229 y <- S
230
231 # Outer creats all linear combinations
_{232} # between L (=x) and S (=y) and then
233 # computes the price formula for the TLO
_{235} # TLO-prices = z-axis
z \leftarrow outer(x, y, priceTLO)
238
239 # Check if all values are greater than 0
240
length (which (z<0))
242
243 # Some pars
244
245 par (bg = "white")
246 \text{ nrz} \leftarrow \text{nrow}(z)
ncz \leftarrow ncol(z)
248
249 # Create a function interpolating colors in the range of specified colors
250
  jet.colors <- colorRampPalette( c("red1","yellow3","yellow2","yellow1","
      green1", "green") )
252
253 # Generate the desired number of colors from this palette
255 nbcol <- 1000000
  color <- jet.colors(nbcol)
  # Compute the z-value at the facet centres
258
259
  zfacet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
260
262 # Recode facet z-values into color indices
263
  facetcol <- cut (zfacet, nbcol)
264
266 # 3D-Plot
267
persp(x, y, z, col = color[facetcol], xlab="LIBOR rate", ylab = "Stock")
      portfolio"
        zlab = "Option value",
```

```
#main="Traffic light option price at maturity",
270
                                             ticktype = "detailed", zlim = c(0,1.7), nticks = 8,
271
                                            expand = 0.75,
272
                                            phi = 30, theta = 150
274
275
276 # Saving the graphic
             pdf(file= "TLO_price_with_analytical_formula.pdf")
278
279
280 # Plot
281
              persp(x, y, z, col = color[facetcol], xlab="LIBOR rate", ylab = "Stock
282
                                portfolio"
                                            zlab = "Option value",
283
                                            #main="Traffic light option price at maturity",
                                            \label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
285
                                            expand = 0.75,
286
                                            phi = 30, theta = 150
287
289 dev. off()
```

B.6 Pricing TLO in dependence of the correlation

The following code includes: Fig.3.6

```
# Correlation function of the TLO price
2 # with dependence of correlation
4 # Need the package pbivnorm for the standardized
5 # bivariate normal distribution
 require (pbivnorm)
9 # Formula for the TLO price with dependence
10 # of correlation
  priceTLO_rho_SL<-function(rhos_SL,S0=100,L0=0.04,t=0,SStrike=100,LStrike
      =0.04, Tn1=3, sigma_s=0.2, bTn1=0.889) {
13
    \# Time at evaluation = t = 0
14
    t < -0
17
    # Difference between two tenor dates
18
20
    tau \leftarrow 0.5
21
    # T_n
22
23
    Tn \leftarrow Tn1 - tau
24
25
    # Need tenor for the semi-annual calculations
26
    # Starting with T_0=0, T_1=0.5, ...
28
    tenor \leftarrow seq(0, Tn1, by = tau)
29
30
    # Bond with maturity at T_{-}(n+1)
31
    # Due to the fact of semi-annual tenor dates
32
    # we need all tenor evaluation points = length(tenor)
33
34
    SSchlange <- (SStrike*bTn1)/S0
36
    LSchlange <- LStrike/L0
37
38
    sigma_xq < (Tn1-t) * sigma_s^2
39
40
    sigma_x <- sqrt (sigma_xq)
41
42
    # We need lambda for the sigma_y
43
44
    lambda <- function(t,Tn) {
45
46
      a < -0
47
      b \leftarrow 0.29342753
48
      c <- 1.25080230
49
      d <- 0.13145969
```

```
result \leftarrow (a+(Tn-t)*b)*exp(-(Tn-t)*c)+d
52
53
       return (result)
54
56
     integrand1 <- function(x) {lambda(t = x, Tn = Tn)^2}
57
     sigma_yq1 <-integrate(integrand1, lower = t, upper = Tn)
58
59
     # Returns only the value without abs error
60
61
     sigma_yq<-sigma_yq1[[1]]
62
63
     # sigma_y^2=sigma_yq
64
65
     sigma_y <- sqrt (sigma_yq)
67
     # sigma_xy
68
69
     integrand2 \leftarrow function(x) \{lambda(t=x,Tn = Tn)\}
70
     sigma_xy1 <- integrate(integrand2, lower = t, upper= Tn)
71
     sigma_xy <- sigma_xy1[[1]] * sigma_s * rho_SL
72
73
74
     # mu_x
75
     mu_x \leftarrow sigma_xq*(-0.5)
76
77
     \# mu_y
79
     mu_y \leftarrow sigma_yq*(-0.5)
80
81
     # sigma_xy
82
83
     sigma_xy <- rho_SL*(sigma_x*sigma_y)
84
85
     # For a better reading of the formula
86
87
     a1 <- as.numeric((log(SSchlange)-mu_x)/sigma_x)
88
     b1 <- as.numeric((log(LSchlange)-mu_y)/sigma_y)
89
     a2 <- as.numeric(a1-sigma_x)
90
     b2 <- as.numeric(b1-rho_SL*sigma_x)
91
     a3 <- as.numeric(a1-rho_SL*sigma_y)
92
     b3 <- as.numeric(b1-sigma_y)
     a4 <- as.numeric(a1-rho_SL*sigma_y-sigma_x)
94
     b4 <- as.numeric(b1-rho_SL*sigma_x-sigma_y)
95
96
     p1 \leftarrow pbivnorm(x = a1, y = b1, rho = rho\_SL)
97
     p2 \leftarrow pbivnorm(x = a2, y = b2, rho = rho\_SL)
98
     p3 \leftarrow pbivnorm(x = a3, y = b3, rho = rho\_SL)
99
     p4 \leftarrow pbivnorm(x = a4, y = b4, rho = rho\_SL)
100
     result \leftarrow as.numeric((L0*S0*(SSchlange*LSchlange*p1)))
                                    - LSchlange*p2
103
                                    - SSchlange*p3
104
                                    + \exp(\operatorname{sigma}_{-xy}) * p4)))
105
106
```

```
return (result)
108
109
111 # Values for rho_SL are in [-1,1]
_{112} \ \# \ Declaration for the x-axis and y-axis
113
114 rho_SL < seq (-1,1,by=0.01)
115
116 y<-priceTLO_rho_SL(rho_SL)
117
118 # Plot
119
   plot(rho_SL, y, type = "l", ylim = c(0,0.11), xlim = c(-1,1),
120
        {\tt xlab} = "Correlation" between LIBOR and Stock portfolio",
121
        ylab = "Option price",
        col="blue",
123
        #main="Traffic light option price as function of correlation",
124
        lwd=2
125
126
127 # Saving the graphic
128
  pdf(file= "TLO_price_in_dependence_of_rho_SL.pdf")
130
131 # Plot
   plot(rho_SL, y, type = "l", ylim = c(0,0.11), xlim = c(-1,1),
133
        xlab = "Correlation between LIBOR and Stock portfolio",
134
        ylab = "Option price",
        col="blue",
136
        lwd=2
137
138
139 dev. off()
```

B.7 Monte Carlo Simulation of the LIBOR rates and Stock portfolio

The following code includes: Fig.3.7, Fig.3.8, Fig.3.9, Fig.3.10, Fig.3.11, Fig.3.12, Fig.3.13, Fig.3.14

```
1 # LIBOR rates and Stock portfolio Monte Carlo Simulation
3
4 # Discretitzation points (Evaluation points for Euler Scheme)
5 # from t_0=0 to t_61=15 years by 0.25 steps
6 # quaterly evaluated
  t < - seq(0, 15, by = 0.25)
<sub>10</sub> # Tenor dates with T_{-}1=0 to T_{-}30=15 years by 0.5 steps
11 # semi-annually evaluated
13 tenor \leftarrow seq (0.5, 15, 0.5)
15 # Generate a matrix for all discrete LIBOR rates for the EULER scheme
16 # Matrix with coloumn length t and row length tenor
18 \text{ m.L} \leftarrow \text{matrix}(0, \text{ncol} = \text{length}(t), \text{nrow} = \text{length}(\text{tenor}))
20 # Write all initial LIBOR rates L_i(0) for all
21 # i from 1 to length of tenor in the first coloumn
23 # Initial Term structure is flat due to the definition of the BOND
24 # Due to the assumption that the initial term structure is flat
25 # We will write for all initial LIBOR rates L_i(0) = 4 \%
_{27} \text{ m.L}[, 1] \leftarrow 0.04
29 # Function for correlations of LIBOR rates between different tenors
30 # It is a tenor*tenor matrix with 1 as diagonal entries
31 # Compare to the definition in the paper
  rhoil <- function (tenor) {
33
34
    beta <-0.1
35
    m.rho <- matrix(0, ncol = length(tenor), nrow = length(tenor))
    p <- length (tenor)
37
38
    for (i in 1:p) {
39
      for (j in 1:p) {
40
         m.rho[i, j] \leftarrow exp(-beta*abs(tenor[i]-tenor[j]))
41
42
43
    return (m. rho)
45
46 }
47
48 # Valuation of the correlation matrix
49
```

```
50 m. rho <- rhoil (tenor)
52 # Function for the volatility-structure of the LIBORs
53 # as matrix
54
   lambda <- function(t, tenor) {
55
56
      # Parameters are chosen as discussed in the paper
57
58
      a < -0
59
      b < -0.29342753
60
61
      c \leftarrow 1.25080230
      d <- 0.13145969
62
63
     m. lambda <- matrix(0, ncol = length(t), nrow = length(tenor))
64
65
      for (j in 1:length(t)){
66
         for (i in 1:(length(tenor))){
67
            if (t[j] >= tenor[i]) {
              m. lambda[i, j] \leftarrow 0
69
           } else {
70
               \text{m.} \, \text{lambda} \, [\, \mathbf{i} \, , \, \, \mathbf{j} \, ] \, \longleftarrow \, (\, \mathbf{a} + (\, \mathbf{tenor} \, [\, \mathbf{i} \, ] - \mathbf{t} \, [\, \mathbf{j} \, ] \,) \, * \mathbf{e}) \, * \exp (\, - (\, \mathbf{tenor} \, [\, \mathbf{i} \, ] - \mathbf{t} \, [\, \mathbf{j} \, ] \,) \, * \mathbf{c}) \, + \mathbf{d} \, 
71
72
         }
73
      }
74
      return (m. lambda)
75
76
77
   # Write the volatility structure in a matrix
80 m. lambda <- lambda (t, tenor)
81
   82
83
   # Now we have all data for the Euler- scheme of the Libor rates
85
86
   # Euler scheme for LIBOR rate
88
   euler_LIBOR \leftarrow function(t, tenor, tau = 0.5, delta = 0.25)
89
90
      # Generate the random variables
91
92
      # set.seed generate always the same random variables
93
94
      \# set. seed (2)
95
96
      Z \leftarrow rnorm(length(t)+1)
97
98
      # Calculate the entries for the discrete LIBOR rates
99
      # in a matrix
100
      for (j \text{ in } 1:(length(t)-1)){
102
         for (i in 1:(length(tenor))){
103
           mu <- 0
104
```

```
for (1 in 1:i) {
105
                            mu \leftarrow mu + (tau*m.L[1, j]*m.rho[i, l]*m.lambda[l, j])/(1+tau*m.L[l, l]) + (tau*m.L[l, l])/(1+tau*m.L[l, l]) + (tau*m.L[l, l])/(1+tau*m.L[l, l])/(1+tau*m.L[
106
                   j])*m.lambda[i, j]
107
                      m.L[i, j+1] \leftarrow m.L[i, j] *
108
                                                               \exp \left( \left( \left( \mathbf{mu} - \ 0.5 * \mathbf{m}. \, \mathbf{lambda} \left[ \, \mathbf{i} \, , \  \, \mathbf{j} \, \right] \, \hat{}^{\, 2} \right) * \, \mathbf{delta} \, + \, \mathbf{sqrt} \left( \, \mathbf{delta} \right) * \mathbf{m}. \right. 
                lambda[i, j]*Z[j+1]
112
            # In order to circumvent the complex index sum for mu
113
114
             for (i in 1: nrow (m. L)) {
                 i.tmp \leftarrow which(diff(m.L[i, ], lag = 1) == 0)[2]
116
                  if (!is.na(i.tmp)){
117
                      m.L[i, i.tmp: ncol(m.L)] \leftarrow 0
118
119
120
121
            # Declaration for the matrix
122
           m.L \leftarrow as.data.frame(m.L)
124
            colnames(m.L) \leftarrow paste0("t", t)
125
            rownames (m.L) <- paste0 ("T_", tenor)
126
127
       return (m.L)
128
129
130
132 # Euler scheme on a Matrix to get all simulated LIBOR rate entries
134 m. Libor <- euler LIBOR(t, tenor)
136 # Now we have our discrete LIBOR rates via Euler Scheme in a matrix
      #T_15 means T for 15 years and in our defintion we actually have
138 # T_30 for T=15 years (appears due to semi-annually tenors)
139
140
      141
142
143 # We want to evaluate the TLO (Libor with maturity at 3 years)
144 \# at time 1 year (that means tenor[2]=T_2=1 or t[5])
145 # is important for S and L
146
147 # LIBOR rates with maturity T_{-}6=3 years (in the matrix declared as T_{-}6)
148 # and 13 time steps for the discretisation
\mu_{149} \# L_{-}6(t) with t from 0.00 to 3 years with 0.25 interval steps
150
151 # Evaluationpoint: t=1 years = t[5]
153 t [5]
154
155 # Last calculation point for T_6=3 years and t[13]=3.00
157 m. Libor [6, 13]
```

```
159 # m. Libor is data. frame, hence set as numeric
161 m. Libor6 <- as. numeric (m. Libor [6, 1:13])
162
163 # Plot for L_6(t)....T_6= tenor[6]=3 years
164
   plot (y=m. Libor6, x=t [1:13], xlab = "t",
        \#main = "LIBOR rate (L_6(t)) with Maturity 3 years",
166
        ylab = "L_6(t)", type = "l", col="blue")
167
169 # Saving the graphic
   pdf(file= "LIBOR_rate_simulation_with_maturity_3y.pdf")
171
172
173 # Plot
174
175 # Figure ?.?
   plot(y=m. Libor6, x=t[1:13], xlab = "t",
177
        \#main = "LIBOR rate (L_6(t)) with Maturity 3 years",
178
        ylab = "L_6(t)", type = "l", col="blue")
179
   dev. off()
181
182
   183
  # Simulation of 1000 paths of LIBOR rates L_6
185
186
187 m. sim <- NULL
188
   for (j in 1:1000) {
189
190
     test <- euler_LIBOR(t, tenor)
191
     m. sim \leftarrow rbind (m. sim, test [6, 1:13])
     print(j)
193
194
195
197 # Declaration of the entries of m.sim
198 # First m.sim is data.frame
199 # hence we declare it as a matrix
200
201 \text{ m. sim } \leftarrow \text{as. matrix} (\text{m. sim})
202
203 # Dimension of m. sim: 1000x13-matrix
205 # Declaration of m. sim
206
   colnames(m.sim) \leftarrow paste("L6(t)", 1:ncol(m.sim), sep = "-")
  rownames (m. sim) <- paste ("Simulation", 1:nrow (m. sim), sep = "_")
208
210 # For evaluation at time 1 year we need t[5]=1
_{211} # hence m. sim [,5]
212
```

```
213 # Compute the mean of all 1000 simulations
_{214} \ \# \ of \ L_{-}6(t) \ for \ t{=}0.00 \ to \ 3.00 \ in \ 0.25 \ steps
215 # Need m. sim [,5] for the evaluation date 1 year
   mean_sim <- colMeans (m. sim)
217
218
219 # Plot of the mean of 1000 simulations of L_6(t)
   plot(mean\_sim, x=t[1:13], xlab = "t", col="blue"
221
        #main = "Mean of 1000 Simulations of L_{-}6(t)",
222
         ylab = "Mean of L_6(t)", type = "l")
224
225 # Saving the graphic
226
   pdf(file= "Mean_of_LIBOR_3y_of_1000_simulations.pdf")
227
229 # Plot
230
   plot(mean\_sim, x=t[1:13], xlab = "t", col="blue",
         #main = "Mean from 1000 Simulations of L_6(t)",
232
         ylab = "Mean of L_6(t)", type = "l")
233
234
235
   dev. off()
236
237
   # All 1000 Simulations of L_{-}6(t) with evaluation point at t[5]=1 year
240
241
   matplot (m. sim [order (m. sim [, 5]), 5], xlab="Simulations",
            #main = "Distribution of 1000 Simulations of L_6(t_5=1 year)",
243
            ylab="Distribution of 1000 simulations of L<sub>6</sub>(1)", type = "h", col =
244
       "blue")
245
246 # Mean of the simulation
247
   \operatorname{mean}(\operatorname{m.sim}[,5])
248
249
250 # Median of the simulation
251
   median(m.sim[,5])
252
  # Saving the graphic
254
255
   pdf(file= "Distribution_of_1000_sim_of_L_6_at_1y.pdf")
256
257
258 # Plot
259
   matplot (m. sim [order (m. sim [, 5]), 5], xlab="Simulations",
            #main = "Distribution of 1000 Simulations of L_6(t_5=1 year)",
            ylab="Distribution of 1000 simulations of L<sub>6</sub>(1)", type = "h", col =
262
       "blue")
263
264 dev. off ()
265
```

```
267
268 # Euler for Stock-Simulation
270 # Euler for L_N(T_N)
271
272 # Function for the last entries of the LIBOR matrix m.sim
273
   lastentries <- function (m. Libor) {
274
275
     # Generate a vector with length of tenor
276
277
     B \leftarrow rep(0, length(tenor))
278
279
     # Generate a vector v. Libor with length of the row of m. Libor
280
281
     v. Libor \leftarrow \text{rep}(0, \text{nrow}(\text{m. Libor}))
282
283
     # Want the last entries L_n(t_n)
284
     # which is the last entry before 0
285
286
     for (i in 1:nrow(m. Libor)) {
287
288
       i.tmp \leftarrow which (m. Libor [i, ] == 0) [1] - 1
289
290
       if (is.na(i.tmp)){
291
          i.tmp <- ncol (m. Libor)
293
294
       }
295
296
       v. Libor [i] <- m. Libor [i, i.tmp]
297
298
299
     return (v. Libor)
300
301
302
303
   v. Libor <- lastentries (m. Libor)
304
305
306 \# v. Libor is a vector with L_N(T_N) for N=1,...,30
_{307} \# \text{ where } T_{-}1=0.5 \text{ year}, \dots, T_{-}30=15.00 \text{ years}
308
309 # 1000 simulations of L_N(T_N) in order to
310 # discount the stock portfolio simulations
311 # Create v.sim as a 1000 x 30 - matrix
312
   v.sim <- NULL
313
314
   for (j in 1:1000) {
315
316
     test <- euler_LIBOR(t, tenor)
317
318
     test1 <- lastentries (test)
319
320
```

```
v.sim \leftarrow rbind(v.sim, test1)
321
322
     print(j)
323
324
325
326 # Declaration of the entries of v.sim
327
   colnames(v.sim) \leftarrow paste("L_T(T)", 1:ncol(v.sim), sep = "_")
   rownames(v.sim) \leftarrow paste("Simulation", 1:nrow(v.sim), sep = "_")
330
  # The finished simulation of v.sim contains 1000 simulations
332
  # of L_N(T_N). (\dim(v.\sin)=1000 \times 30)
333
  334
335
336 # Generate a matrix Bdis for discounting with LIBOR rates
337
338 # We need a (ncol(v.sim)+1) x (nrow(v.sim))-matrix for Bdis
339 # since we need B.d(T_31) for discounting S(T_31)
_{340} \# \text{ for } L_{-}30(T_{-}30)
341
  Bdis \leftarrow matrix(0, ncol = (ncol(v.sim)+1), nrow = nrow(v.sim))
342
344 \# \text{Set L}_{-}0(T_{-}0)=1
345
  Bdis [,1]<-1
346
  # Formula for the Bdis matrix
348
349
  Bd \leftarrow function(v.sim, tau=0.5)
350
351
     for (i in 1: nrow(v.sim))
352
353
       for (j \text{ in } 2: (ncol(v.sim)+1)) {
354
         Bdis[i,j] < (1+tau*v.sim[i,j-1])*Bdis[i,j-1]
356
357
       }
358
359
     }
360
361
     colnames(Bdis) \leftarrow paste("BdT", 1:(ncol(v.sim)+1), sep = "-")
     rownames(Bdis) <- paste("Sim", 1:(nrow(v.sim)), sep = "-")
363
364
     return (Bdis)
365
366
367
368
369
  # Now we have all Bdis for 1000 Simulations
370
371
  Bdis \leftarrow Bd(v.sim)
372
373
```

```
376 # Stock Simulation with Euler
377 \# start with S(T_0) and need a length of tenor + 2
_{378} # for the last calculation S(T_31)
   S \leftarrow numeric(length(tenor)+2)
380
381 S[1]<-100
382
   # Euler-scheme for Stockprices 1 dimensional
384
   euler_stock <- function(tenor, delta = 0.25, sigmas=0.2){
385
386
     #Generate the random variables
387
388
     Z \leftarrow rnorm(length(tenor)+2)
389
390
     # Calculate the entries for the discrete Stockprices
391
     # in a vector
392
393
     for (i in 1:(length(tenor)+1)){
394
395
       S[i+1] \leftarrow S[i] * exp((-0.5*sigmas^2)*delta + sqrt(delta)*sigmas*Z[i]
396
       +1])
     }
397
398
     # Declaration for the vector entries
399
400
     S \leftarrow as.vector(S)
401
402
     names(S) \leftarrow paste("S_T", 0:(length(tenor)+1), sep = "_")
403
404
     return (S)
405
406
407
408 # 1 Simulation of a stock portfolio with initial value
409 # of 100 and from 0 to 31 Tenor dates
410
411 Stockprice - euler_stock (tenor)
412
413 # Create v.stock as the matrix with 1000 rows and in each coloumn S(T_i)
_{414} # from T<sub>-</sub>0=0 until T<sub>-</sub>31= 15.50 with different random variables
415
   v.stock <- NULL
417
   for (j in 1:1000) {
418
419
     test12 <- euler_stock(tenor)
420
421
     v.stock <- rbind (v.stock, test12)
422
423
     print(j)
424
425
426
427 # v.stock is a 1000 x 32- matrix
429 # Finally to get the simulated discounted stock portfolio
```

```
430 # prices with respect to the simulated LIBOR rates
431
   Stockpricediscounted <- function (Bdis, Stockprice) {
432
     # Generate a matrix
434
435
     a <- matrix (0, nrow = nrow (Bdis), ncol = ncol (Bdis))
436
437
     for (i in 1:(nrow(Bdis))){
438
439
       for (j in 1:(ncol(Bdis))){
440
441
         a[i,j] <- Bdis[i,j] * Stockprice[i,j+1]
442
443
444
     }
446
     colnames(a) <- paste("S_T", 1:ncol(Bdis), sep = "_")
447
     return (a)
449
450
451
452 # The final simulated stock portfolio prices
453
   Stocknew - Stockpricediscounted (Bdis, v. stock)
454
455
  # need Stocknew[,2] for evaluation at 1 year=T_2
456
457
  # Simulation of 1000 simulated discounted stock portfolio values
458
459
   matplot (t (Stocknew [1:1000,]),
460
            xlab = "Tenors (T_i)", ylab = "Stock portfolio S(T_i)",
461
           #main= "1000 Simulated discounted stock portfolio"
462
            type = "l")
463
465 # Saving the graphic
466
  pdf(file= "Discounted_stock_portfolio_1000_sim_start_at_ST1.pdf")
468
469 # Plot
470
   matplot (t (Stocknew [1:1000,]),
471
            xlab="Tenors (T_i)", ylab = "Stock portfolio S(T_i)"
472
           #main= "Discounted_stock_portfolio_1000_sim_start_at_ST1"
473
            type = "l")
474
475
476 dev. off ()
477
478 # Short insertion
480 # Add in first entry 100 the initial Stockprice
481 # Just for S Simulation plot with initial value 100
482
483 Stocknew1 \leftarrow cbind (S<sub>T</sub>0 = rep(100, nrow(Stocknew)), Stocknew)
```

```
485 # Simulation of 1000 simulated discounted stock portfolio values
486 # with added initial value S_{-}(T_{-}0)=100
487
   matplot(t(Stocknew1), xlab="Tenors (T_i)", ylab = "Stock portfolio S(T_i)",
           #main= "Discounted_stock_portfolio_1000_sim_start_at_S_T_0",
489
           type = "l")
490
491
492 # Saving the graphic
493
   pdf(file= "Discounted_stock_portfolio_1000_sim_start_at_S_T_0.pdf")
494
495
  # Plot
496
497
   matplot(t(Stocknew1), xlab="Tenors (T_i)", ylab = "Stock portfolio S(T_i)",
498
           #main= "Discounted_stock_portfolio_1000_sim_start_at_S_T_0",
499
           type = "1")
501
  dev. off()
502
503
504
505 # Mean of 1000 simulations of the discounted stock portfolio
506
   Stockmean <- colMeans (Stocknew)
508
   plot (Stockmean, type = "l", ylab = "Stock portfolio values",
509
        xlab = T,
        #main="Stock portfolio mean value",
        col="blue")
512
513
514 # Saving the graphic
  pdf(file= "Stock_portfolio_mean_of_1000_simulations.pdf")
516
517
518 # Plot
   plot (Stockmean, type = "1", ylab = "Stock portfolio values",
        xlab = "T",
        #main="Stock portfolio mean value",
        col="blue")
524
  dev.off()
  # Now the simulation is finished
527
528
529
531 # Create a data.frame with 2 coloumns and 30 rows
532 # first coloumn is defined as the LIBOR rates (m.sim)
533 # and second coloumn is defined as the corresponding
534 # stock portfolio (Stocknew)
535 # at time 1 year with maturity 3 years
536
_{537} SL \leftarrow data. frame (LIBOR = m. sim [,5], Stock_portfolio = Stocknew [,2])
539 # hence we have a data.frame we need as.matrix
```

```
541 SL1 <- as.matrix(SL)
  rownames(SL1)<- paste("Sim", 1:nrow(SL1), sep = "_")
543
544
546
547 # Monte Carlo Simulation
548 # With 1000 simulations of LIBOR rates and stock prices
549 # Here we insert the simulations into the payoff function
  # Function for the payoff profile
551
553 # Pricing scenarios for payoff function of a traffic light option
554 # Calculates all combination in this special scenario
555 # with strike for Stock portfolio and LIBOR rate
557
  PayoffSL <- function (x, Sstrike=100, Lstrike=0.04) {
559
     z \leftarrow rep(0, nrow(x))
560
561
     for (i in 1:nrow(x)){
562
563
       if (Lstrike >= x[i,1] \& Sstrike >= x[i,2])
564
565
         z[i] \leftarrow (Lstrike - x[i, 1]) * (Sstrike - x[i, 2])
567
       }
568
       else
569
         0
570
571
572
573
     return(z)
574
575
576
577
  # Valuation points for the monte carlo simulation
578
579
   liborseq <-seq (0.01, 0.07, by=0.0005)
580
   stockseq <- seq (60,120, length.out = length (liborseq))
582
583
584 # Function for the computation of all strike
585 # combinations between LIBOR and Stock portfolio
586
  pay <- function (SL1, liborseq, stockseq) {
587
588
     g <- matrix(0, ncol = length(liborseq), nrow = length(stockseq))
589
590
     z <- NULL
591
592
     for (i in 1:length(liborseq)){
594
```

```
for (j in 1:length(stockseq)){
595
596
          z<- PayoffSL(SL1, stockseq[j], liborseq[i])
597
          g[i,j] \leftarrow mean(z)
600
      print(i)
601
603
604
    \begin{array}{lll} rownames(g) \!\! < \!\! - paste("Stockvalues", 1:nrow(g), sep = "\_") \\ colnames(g) & < \!\! -paste("LIBORvalues", 1:ncol(g), sep = "\_") \end{array}
605
606
607
   return (g)
608
609
611 # Evaluation of the Monte Carlo simulation
612 # for each strike level combination, the mean will be computed
613 # and then be plotted
614
615 g <-pay(SL1, liborseq, stockseq)
616
617 # g contains payout values for all linear combinations
618 # of all strikes from LIBOR rates and stock indices
619
620 # Colour plot (colour surface)
622 # Some pars
623
624 par (bg = "white")
625 x <- liborseq
626 y <- stockseq
627 z <- g
nrz \leftarrow nrow(z)
ncz \leftarrow ncol(z)
630
631 # Create a function interpolating colors in the range of specified colors
   jet.colors <- colorRampPalette( c("red", "yellow3", "yellow2", "yellow1", "
       green1", "green"))
634
   # Generate the desired number of colors from this palette
636
637 nbcol <- 10000
   color <- jet.colors(nbcol)
638
640 # Compute the z-value at the facet centres
641
   z facet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
644 # Recode facet z-values into color indices
645
facetcol <- cut (zfacet, nbcol)
648 # Plot
```

```
649
   persp(x, y, z, col = color[facetcol],
650
         xlab="LIBOR rate strike level",
651
         ylab = "Stock portfolio strike level",
         zlab = "Option value",
653
         #main="Traffic_light_option_Monte_Carlo_Simulation",
654
         ticktype = "detailed",
655
         \#zlim = c (0,1.7),
         nticks = 8,
657
         expand = 0.75,
658
         phi = 30,
659
660
         theta = -30)
661
662 # Saving the graphic
   pdf(file= "Traffic_light_option_Monte_Carlo_Simulation.pdf")
664
665
666 # Plot
   persp(x, y, z, col = color[facetcol],
668
         xlab="LIBOR rate strike level",
669
         ylab = "Stock portfolio strike level",
670
         zlab = "Option value",
         #main="Traffic_light_option_Monte_Carlo_Simulation",
672
         ticktype = "detailed",
673
         \#zlim = c(0,1.7),
         nticks = 8,
         expand = 0.75,
676
         phi = 30,
677
         theta = -30)
678
   dev. off()
679
680
  # Plot in relation to the analytical formula
681
682
   persp(x, y, z, col = color[facetcol],
         xlab="LIBOR rate strike level", ylab = "Stock portfolio strike level"
684
         zlab = "Option value",
685
         #main="Traffic_light_option_Monte_Carlo_Simulation_in-rel_to_
686
       analytical_formula",
         ticktype = "detailed",
687
         zlim = c(0, 1.7),
         nticks = 8,
689
         expand = 0.75,
690
         phi = 30,
691
         theta = -30)
692
693
694 # Saving the graphic
695
   pdf(file= "Traffic_light_option_Monte_Carlo_Simulation_in_rel_to_analytical
       formula.pdf")
697
698 # Plot
persp(x, y, z, col = color[facetcol],
```

```
xlab="LIBOR rate strike level", ylab = "Stock portfolio strike level"
701
         zlab = "Option value",
702
         #main="Traffic_light_option_Monte_Carlo_Simulation_in_rel_to_
      analytical_formula",
         ticktype = "detailed",
704
         zlim = c(0, 1.7),
705
         nticks = 8,
         expand = 0.75,
707
         phi = 30,
708
         theta = -30)
709
710
  dev. off()
711
712
713
715 # Detailed describtion with one example
716
717 # 1000 simulations with Sstrike=120 and Lstrike=0.05
718
719 p PayoffSL (SL1, Sstrike = 120, Lstrike = 0.05)
720
_{721} # Evaluate the standard deviation of p
722
sd_p < sd_p
724
725 # Generate the mean over all values
726
p_{mean} \leftarrow mean(p)
729 # build a confidence interval with
730 \# \text{mean} +/- 3 \text{ times the standard deviation}
p_{\text{low}} < p_{\text{mean}} - 3*sd_p
p_high <- p_mean + 3*sd_p
p_high/p_mean
735
736 # p_low is negative and therfore the lower bound
737 # is set to 0
738 # p_high is more than 370 percent above the mean of
739 # p
740 # this results in a large simulation error
741 # --> more optimisation is needed
742 # not part of this thesis
743
746 # Distribution of the 1000 simulations with the
747 # payout function
749 w—PayoffSL (SL1)
order (w)
751
^{752} wnew \leftarrow w[order(w)]
```

```
754 # Plot for the option price in this special scenario
755
   plot (wnew, col="blue",
756
        #main = "Distribution of the option price with 1000 sim",
        xlab = "Simulations", ylab = "Option price",
758
        type = "h")
759
760
761 # Saving the graphic
   pdf(file= "Distribution_of_the_option_price_with_1000_sim.pdf")
764
765 # Plot
766
   plot (wnew, col="blue",
767
        #main = "Distribution of the option price with 1000 sim",
        xlab = "Simulations", ylab = "Option value",
        type = "h"
770
772 dev. off ()
773
774 # Pricing Traffic Light Option with Prop 2.1
775
776 # 1000 Simulations TLO values
  # priceTLO formula from TLO-Price-with-analytical-formula.R
777
778
   Optionvalue <- function (SL1) {
779
780
     TLO \leftarrow rep(0,1000)
781
782
     for (i in 1:1000) {
783
       TLO[i] \leftarrow priceTLO(SL1[i,1], SL1[i,2], t=1)
784
785
     return (TLO)
786
787
788
789
790
791 # TLO contains all option values
793 TLO Optionvalue (SL1)
794
  # Check if all TLO options are greater than 0
796
   length (which (TLO>0))
797
798
799 #Create a data.frame for TLO
  dfTLO \leftarrow data.frame(LIBOR = SL[,1]), Stock_portfolio = SL[,2], Option_
801
      Values = TLO
803 # hence we have a data.frame we need as.matrix
804
SL1 \leftarrow as.matrix(SL)
rownames(SL1)<- paste("Sim", 1:nrow(SL1), sep = "_")
```

```
809 # Plot Payoff simulation of TLO with formula
810
   library (scatterplot3d)
812
813 # Simulation of the conditional payout scenario
814
   with (dfTLO, {
815
     scatterplot3d (LIBOR,
                              # x axis
816
                     Stock_portfolio,
                                           # y axis
817
                     Option_Values,
                                        # z axis
819
                     angle =24,
                     zlab="Option value",
820
                    \#box = FALSE,
821
                     type = "h"
822
                     highlight.3d=TRUE,
823
                    #main="Simulation_of_TLO_conditional_payout_distribution_at
824
       _1y_with_maturity_3y")
                     col.grid = "black")})
825
826
827 # Saving the graphic
828
   pdf(file= "Simulation_of_TLO_conditional_payoff_distribution_at_1y_with_
      maturity_3y.pdf")
830
  # Plot
831
832
   with (dfTLO, {
833
                              # x axis
     scatterplot3d (LIBOR,
834
                     Stock_portfolio,
                                            # y axis
835
                                        # z axis
                     Option_Values,
836
                     angle =24,
837
                     zlab="Option value",
838
                    \#box = FALSE,
839
                     type = "h",
                     highlight.3d=TRUE,
841
                    #main="Simulation_of_TLO_conditional_payoff_distribution_at
842
       _1y_with_maturity_3y")
                     col.grid = "black") })
843
844
   dev. off()
845
  # Plot of Payout profile
847
848
   with (dfTLO, {
849
     scatterplot3d (LIBOR,
                              # x axis
850
                     Stock_portfolio,
                                            # y axis
851
                          # z axis
                    w,
852
                     angle =24,
853
                    \#box = FALSE,
                     type = "h",
855
                     zlab="Option value",
856
                     highlight.3d=TRUE,
857
                    #main="Simulation_of_TLO_conditional_payoff_distribution_at
       _1y_with_maturity_3y_theoretical",
```

```
col.grid = "black")})
859
860
861
862 # Saving the graphic
863
  pdf(file= "Simulation_of_TLO_conditional_payoff_distribution_at_1y_with_
864
      maturity_3y_theoretical.pdf")
866 # Plot
867
   with (dfTLO, {
868
     scatterplot3d (LIBOR,
                             # x axis
869
                    Stock_portfolio,
                                           # y axis
870
                         # z axis
871
                    angle = 24,
872
                    \#box = FALSE,
873
                    type = "h",
874
                    zlab="Option value",
                    highlight.3d=TRUE,
                    #main="Simulation_of_TLO_conditional_payoff_distribution_at
877
      _1y_with_maturity_3y_theoretical",
                    col.grid = "black")})
878
879
880 dev. off()
```

B.8 Unhedged balance sheet in the Vasicek-model

The following code includes: Fig.4.2

```
1 # Hedging with TLO
3 # Unhedged balance sheet
4 # Yellow Light Scenario
6 # Bonds are priced in the
7 # Vasicek model
9 # Stock prices
10 # generate vector of length 11
_{11} # Stockprices from -30\% to 20\%
13 # Names in percentage
14
15 Sperchar1 \leftarrow seq (-0.3, 0.2, length.out = 11)
16 Sperchar1
18 # Function for percentage
  percent \leftarrow function (x, digits = 2, format = "f", ...) {
21
    paste0(formatC(100 * x, format = format, digits = digits, ...), "%")}
23 Sperchar<-percent (Sperchar1)
  Sperchar
25
26
  Spercentage < seq (0.7, 1.2, length.out = 11)
  names (Spercentage) <- Sperchar
  Spercentage
32 # Initial value
33
34 S <- 30
36 # Stockprice Vector
38 Stockprices <- S*Spercentage
  Stockprices
42 # LIBOR Rates vector of length 11
_{43} # ranges from -1.5 % to +1.5 %
_{44} \# compare to [Jor 07] with -3\% to +3\%
  liborchange \langle -\sec(-0.015, 0.015, length.out = 11)
  Liborchar <- percent (liborchange)
  Liborvalues \leftarrow seq (0.025, 0.055, length.out = 11)
names (Liborvalues) <- Liborchar
```

```
53 Liborvalues
 54
 55 \# 100\% = [6] \dots unchanged scenario
       Liborvalues [6]
 57
 58
 59 # Bonds with duration tnn = 6 years
 60 # Here bonds are priced in the vasicek
 61 # model
 62
        PSI \leftarrow function (x, k=0.25) 
 63
 64
              e<-NULL
 65
 66
              e < (1 - \exp(-k * x))/k
 67
              return (e)
 68
 69
 70
        Bond \leftarrow function (L = 0.04, k=0.25, theta=0.012, sigma_l=0.02, t=0, tnn=3)
 72
 73
              b \leftarrow rep(0,1)
 74
 75
              integrand <-function(s) theta*PSI(tnn-s,k)
 76
              a <-integrate(integrand, lower = t, upper=tnn)
 77
              anew \leftarrow a [[1]]
 80
              gamm < -anew + sigma_1^2/(2*k^2)*(tnn-t) - sigma_1^2/(2*k^2)*PSI(tnn-t,k) - sigma_1^2/(2*k^2)*PSI
 81
                  sigma_1^2/(4*k)*PSI(tnn-t,k)^2
 82
              b \leftarrow \exp(\text{gamm-PSI}(tnn-t)*L)
 83
 84
              return (b)
 85
 86
 87
 88 # Bond face value = 70*1/Bond(L=0.04,tnn=6)=90.58077
 89 \# Duration (y) = tnn
 90 \# LIBOR rate = 0.04
 91
       temp < -70*1/Bond(L=0.04, tnn=6)
        Bondvalues <- temp *Bond (L= Liborvalues, tnn=6)
 95 # Pension obligations like bonds
 96 # Face value = 177.88 = 92/Bond(L=0.04,tnn=15)
 98 temp1 < 92/Bond(L=0.04,tnn=15)
 99 temp1
100 PO <-temp1*Bond(L=Liborvalues,tnn=15)
       names (PO) <- Liborchar
102
# All changes in
# stockprices, Bonds, Pensionobligation (PO)
```

```
107 Stockprices
108 Bondvalues
109 PO
  111
# generate data.frame for Bonds and PO
113
   Table1 <- data.frame (Bonds = Bondvalues, Pension = PO)
114
  # hence we have a data.frame we need as.matrix
116
m. Table1 <- as. matrix (Table1)
119
   # Function for the linearcombination between the
120
  # stockprices and m. Table1
121
   lincom <- function (Stockprices, m. Table 1) {
124
     z \leftarrow matrix(0, nrow = 11*11, ncol = 3)
125
126
     for ( i in 1:11) {
127
128
        for (j in 1:11) {
129
130
          k < -11*(i-1)+j
          z[k,1] <- Stockprices[i]
          z[k,2] \leftarrow m. Table1[j,1]
          z[k,3] \leftarrow m. Table1[j,2]
134
136
     return (z)
137
138
139
140
   f<-lincom (Stockprices, m. Table1)
142
143 m. Table \leftarrow data. frame (Stockprices=f[,1], Bonds=f[,2], PO=f[,3])
144
145 m. Table <u>new <- as. matrix (m. Table)</u>
146
147 # f contains all linearcombinations between stockprices
   # and BONDS with PO
149
   freeequity <- function (m. Table_new) {
     u \leftarrow rep(0, nrow(m. Table_new))
153
     for (i in 1: nrow (m. Table_new)) {
154
        u[i] \leftarrow m. Table \underline{-new}[i,1] + m. Table \underline{-new}[i,2] - m. Table \underline{-new}[i,3]
156
157
158
     return (u)
159
161
```

```
fequity <- free equity (m. Table _new)
163
164
   fequity
165
167 # Function for the solvency ratio
168 # which is defined as:
169 # Solv Ratio = Free Equity / Pension Obligations
170
   solvencyratio <- function(fequity,f){</pre>
172
     o <- rep(0, length(fequity))
173
174
     for (i in 1:length(fequity)){
176
       o[i] <- fequity[i] / f[i,3]
177
178
     return (o)
179
180
181
   solvperc <- solvencyratio (fequity, m. Table_new)
182
183
   sp <- matrix (solvperc, ncol=11)
185
186 # Full table of the balance sheet
187
   spnew <- as.vector(solvperc)
189
m. Table 2 <- data . frame (m. Table _new, Solv _perc=spnew)
191
192 # Initial balance sheet at time t=0
193
194 m. Table2 [72,]
195
196 # Worst case solvency ratio
197
198 sp [ which . min (sp ) ]
m. Table new which min sp, ]
201 # Best case solvency ratio
202
sp[which.max(sp)]
204 m. Table _new [ which . max(sp) ,]
205
206 # persp PLOT
208 par (bg = "white")
209 x <- Liborvalues
210 y <- Stockprices
211 Z <-sp
212 nrz <- nrow(z)
ncz \leftarrow ncol(z)
214 # Create a function interpolating colors in the range of specified colors
215 jet.colors <- colorRampPalette( c("red", "yellow3", "yellow2", "yellow1", "
   green1", "green") )
```

```
216 # Generate the desired number of colors from this palette
217 nbcol <- 1000
218 color <- jet.colors(nbcol)
219 # Compute the z-value at the facet centres
z facet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
221 # Recode facet z-values into color indices
222 facetcol <- cut(zfacet, nbcol)
224 # Plot
225
226
   persp(x,
227
         у,
         Ζ,
228
         col = color [facetcol],
229
         xlab="Short rate",
230
         ylab = "Stock portfolio",
         zlab = "Solvency ratio",
232
         #main="Unhedged balance sheet in the Vasicek model",
         ticktype = "detailed", nticks = 8,
         expand = 0.75,
235
         phi = 20, theta = -40
236
237
238 # Saving the graphic
  pdf(file="Unhedged_balance_sheet_in_the_Vasicek_model.pdf")
241
242 # Plot
243
244 # Figure ?.?
245
persp(x,
247
         у,
248
         col = color[facetcol],
249
         xlab="Short rate",
         ylab = "Stock portfolio",
251
         zlab = "Solvency ratio",
252
         #main="Unhedged balance sheet in the Vasicek model",
253
         ticktype = "detailed", nticks = 8,
         expand = 0.75,
255
         phi = 20, theta = -40
256
   dev. off()
258
259
260 # Yellow light scenario
262 # Stock portfolio drops 30%
263 # LIBOR drops 100bps=1%
264
265 # S=30 -> S=21
266
267 S_shocked <- 21
268
269 # Bonds before shocked
```

```
271 Bonds <- 70
272
273 # PO before shocked
275 PO <- 92
277
_{278} \# \text{ Bond face value} = 70*1/\text{Bond}(L=0.04, tnn=6)=90.58077
_{279} \# Duration (y) = tnn
_{280} \# LIBOR rate = 0.04
281
282
temp<-Bonds*1/Bond(L=0.04,tnn=6)
Bonds_shocked<-temp*Bond(L= 0.03,tnn=6)
   Bonds_shocked
287
288
  # Pension obligations like bonds
_{290} \# \text{ Face value} = 177.88 = 92/\text{Bond}(L=0.04, tnn=15)
291
   temp1 \leftarrow PO/Bond(L=0.04, tnn=15)
_{293} PO_shocked \leftarrowtemp1*Bond(L=0.03,tnn=15)
294
295 PO_shocked
296
   totalassetside <- S_shocked + Bonds_shocked
   freeequityshocked <- total assetside - PO_shocked
298
299
   freeequityshocked
300
301
302 # Solvency percentage in the yellow light scenario
303
   freeequityshocked /PO_shocked
304
306 # Initial balance sheet before getting shocked
307
   Initial_balance_sheet <-data.frame(Stock_portfolio=S,
                                            Bonds=Bonds,
309
                                           PO=PO,
310
                                            Free_Equity=S+Bonds-PO,
311
                                            Solvency_ratio=
                                              (S+Bonds-PO)/PO)
313
314
   Initial_balance_sheet
315
316
   # Yellow light scenario with all entries
317
318
   Yellowlightscenario_balance_sheet<-data.frame(Stock_portfolio=S_shocked,
                                                        Bonds=Bonds_shocked,
320
                                                        PO=PO_shocked,
321
                                                        Free_Equity=freeequityshocked
322
                                                        Solvency_ratio=
```

```
shocked)

325
326
Yellowlightscenario_balance_sheet

327
328
329 # Double check if the balance sheet is complete
330 # total asset side = total liabilities and free equity side

331
332
Yellowlightscenario_balance_sheet[1,1]+Yellowlightscenario_balance_sheet
[1,2]
333
Yellowlightscenario_balance_sheet[1,3]+Yellowlightscenario_balance_sheet
[1,4]

334
335
2.45/95.66
```

B.9 Unhedged balance sheet in the BMG-model

The following code includes: Fig.4.3

```
1 # Hedging with TLO
3 # Unhedged balance sheet
4 # Yellow Light Scenario
6 # BMG- Model framework!
7 # Bonds are priced with the product
8 # formula
10
# Stock prices
12 # generate vector of length 11
^{13} # Stockprices from -30\% to 20\%
15 # Names in percentage
17 Sperchar1 \leftarrow seq (-0.3, 0.2, length.out = 11)
  Sperchar1
19
20 # Function for percentage
percent \leftarrow function (x, digits = 2, format = "f", ...) {
    paste0(formatC(100 * x, format = format, digits = digits, ...), "%")}
  Sperchar<-percent (Sperchar1)
26
  Sperchar
27
  Spercentage < seq (0.7, 1.2, length.out = 11)
29
names (Spercentage) <- Sperchar
32 Spercentage
34 # initial value
36 S <- 30
37
38 # Stockprice Vector
40 Stockprices <- S*Spercentage
  Stockprices
41
43 # LIBOR Rates vector of length 11
44 # ranges from -1.5 % to +1.5 %
46 liborchange
               \leftarrow seq (-0.015, 0.015, length.out = 11)
47 liborchange
  Liborchar <- percent (liborchange)
  Liborvalues \leftarrow seq (0.025, 0.055, length.out = 11)
names (Liborvalues) <- Liborchar
```

```
53 Liborvalues
55 \# 100\% = [6] \dots unchanged scenario
  Liborvalues [6]
57
58
  # BOND Value in BMC-model
  BondBMG \leftarrow function (L=0.04, t = 0, tnn = 3)
61
62
     delta <- 0.5 # Difference between the tenor dates
63
64
     tenor \leftarrow seq (0, tnn, by = 0.5)
65
66
     btnn \leftarrow 1/(1+delta*L) (length(tenor)-t-1)
67
68
     return (btnn)
69
70
  BondBMG(c(0.01, 0.02, 0.03, 0.04), tnn=6)
73
  # Bond face value = 70*1/BondBMG(L=0.04,tnn=6)=90.55246 for 6 years
  temp < -70*1/BondBMG(L=0.04, tnn=6)
76
77
  Bondvalues <- temp *BondBMG(L= Liborvalues, tnn=6)
80 # Pension obligations like bonds
81 # Face value = 166.65 = 92/BondBMG(L=0.04,tnn=15)
temp1 \leftarrow 92/BondBMG(L=0.04,tnn=15)
85 PO \leftarrow temp1*BondBMG(L=Liborvalues, tnn=15)
  names (PO) <- Liborchar
88
89 # All changes in
90 # stockprices, Bonds, Pensionobligation (PO)
92 Stockprices
  Bondvalues
93
94 PO
95
96
  # generate data.frame for Bonds and PO
  Table1 <- data.frame(Bonds = Bondvalues, Pension = PO)
99
100
  # hence we have a data.frame we need as.matrix
101
m. Table1 <- as. matrix (Table1)
104
105 # Function for the linearcombination between the
106 # stockprices and m. Table1
```

```
lincom <- function (Stockprices, m. Table 1) {
109
     z \leftarrow matrix(0, nrow = 11*11, ncol = 3)
      for ( i in 1:11) {
112
        for (j in 1:11) {
114
115
          k < -11*(i-1)+j
116
          z[k,1] <- Stockprices[i]
117
          z[k,2] \leftarrow m. Table1[j,1]
118
119
          z[k,3] \leftarrow m. Table1[j,2]
120
     return (z)
122
123
124
   f<-lincom (Stockprices, m. Table1)
125
m. Table <- data.frame(Stockprices=f[,1],Bonds=f[,2],PO=f[,3])
128
129 m. Table _new <- as . matrix (m. Table)
# f contains all linearcombinations between stockprices
132 # and BONDS with PO
133
   freeequity <- function (m. Table_new) {
134
135
     u \leftarrow rep(0, nrow(m. Table_new))
136
137
      for (i in 1: nrow (m. Table_new)) {
138
139
        u[i] \leftarrow m. Table \_new[i,1] + m. Table \_new[i,2] - m. Table \_new[i,3]
140
141
142
     return (u)
143
144
145
   fequity <- free equity (m. Table _new)
147
148
149
   fequity
150
151 # Function for the solvency ratio
152 # which is defined as:
153 # Solv Ratio = Free Equity / Pension Obligations
154
   solvencyratio <- function(fequity, f){</pre>
     o \leftarrow rep(0, length(fequity))
157
158
     for (i in 1:length(fequity)){
159
160
        o[i] <- fequity[i] / f[i,3]
162
```

```
return (o)
164 }
165
solvperc <- solvencyratio (fequity, m. Table_new)
167
sp <- matrix (solvperc, ncol=11)
169
170 # Full table of the balance sheet
spnew <- as.vector(solvperc)
m. Table 2 <- data . frame (m. Table _new, Solv _perc=spnew)
# Initial balance sheet at time t=0
177
178 m. Table2 [72,]
179
180 # Worst case solvency ratio
sp[which.min(sp)]
m. Table _new [ which . min(sp),]
184
185 # Best case solvency ratio
sp [ which . max(sp) ]
m. Table _new [ which . max(sp),]
190 # Some pars
191
192 par (bg = "white")
193 x <- Liborvalues
194 y <- Stockprices
195 z <-sp
196 nrz <- nrow(z)
  ncz \leftarrow ncol(z)
198
199 # Create a function interpolating colors in the range of specified colors
200
   jet.colors <- colorRampPalette( c("red", "yellow3", "yellow2", "yellow1", "
      green1", "green") )
202
  # Generate the desired number of colors from this palette
204
205 nbcol <- 1000
  color <- jet.colors(nbcol)
208 # Compute the z-value at the facet centres
209
  zfacet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
212 # Recode facet z-values into color indices
213
facetcol <- cut (zfacet, nbcol)
216 # 3D Plot
```

```
217
   persp(x,
218
219
         у,
         Ζ,
         col = color [facetcol],
221
         xlab="LIBOR rate",
         ylab = "Stock portfolio",
223
         zlab = "Solvency ratio",
         #main="Unhedged Balance Sheet shocked in the BGM Model",
225
          ticktype = "detailed", nticks = 8,
226
         expand = 0.75,
227
         phi = 20, theta = -40
228
229
230 # Saving the graphic
231
  pdf(file="Unhedged_balance_sheet_shocked_in_the_BGM_Model.pdf")
233
234 # Plot
235
  persp(x,
236
         у,
237
238
         Ζ,
         col = color [facetcol],
         xlab="LIBOR rate",
240
         ylab = "Stock portfolio",
241
         zlab = "Solvency ratio",
242
         #main="Unhedged Balance Sheet shocked in the BGM Model",
          ticktype = "detailed", nticks = 8,
244
         expand = 0.75,
245
         phi = 20, theta = -40
246
248 dev. off ()
249
250 # Yellow light scenario
252 # Stock portfolio drops 30%
253 # LIBOR drops 100bps=1%
254
_{255} \# S=30 -> S=21
256
_{257} S_shocked <- 21
259 # Bonds before shocked
260
261 Bonds <- 70
263 # PO before shocked
264
265 PO <- 92
267
\# Bond face value = 70*1/Bond(L=0.04,tnn=6)=90.58077
_{269} \# Duration (y) = tnn
_{270} \# LIBOR rate = 0.04
```

```
temp<-Bonds*1/BondBMG(L=0.04,tnn=6)
273 temp
Bonds_shocked<-temp*BondBMG(L= 0.03,tnn=6)
  Bonds_shocked
276
278 # Pension obligations like bonds
_{279} \# \text{ Face value} = 166.65 = 92/\text{BondBMG}(L=0.04, tnn=15)
   temp1 \leftarrow PO/BondBMG(L=0.04, tnn=15)
  PO\_shocked < -temp1*BondBMG(L=0.03, tnn=15)
  PO_shocked
284
285
   totalassetside<-S_shocked+Bonds_shocked
286
   freeequityshocked <- total assetside - PO_shocked
288
   freeequityshocked
289
  # Solvency percentage in the yellow light scenario
291
292
   freeequityshocked/PO_shocked
293
  # Initial balance sheet before getting shocked
295
296
   Initial_balance_sheet <-data.frame(Stock_portfolio=S,
297
                                          Bonds=Bonds,
                                         PO=PO,
299
                                          Free_Equity=S+Bonds-PO,
300
                                          Solvency_ratio=
301
                                            (S+Bonds-PO)/PO)
302
303
   Initial_balance_sheet
304
305
  # Yellow light scenario with all entries
306
307
   Yellowlightscenario_balance_sheet<-data.frame(Stock_portfolio=S_shocked,
308
                                                      Bonds-Bonds-shocked,
309
                                                      PO=PO_shocked,
310
                                                      Free_Equity=freeequityshocked
311
                                                      Solvency_ratio=
312
                                                        freeequityshocked/PO_
313
      shocked)
314
   Yellowlightscenario_balance_sheet
315
316
  # Double check if the balance sheet is complete
  # total asset side = total liabilities and free equity side
   Yellowlightscenario\_balance\_sheet[1,1] + Yellowlightscenario\_balance\_sheet
_{321} Yellowlightscenario_balance_sheet [1,3] + Yellowlightscenario_balance_sheet
      [1, 4]
```

B.10 Hedged balance sheet in the BMG-model

The following code includes: Fig.4.5

```
1 # Pricing Traffic Light Option
2 # with analytical formula
4 # Remark: r is equally flat to LIBOR rates
6 # Need the package phivnorm for the standardized
7 # bivariate normal distribution
  require (pbivnorm)
10
11 # Formula for TLO
  priceTLO<-function(L,S,t=0,Tn1=3,SStrike=100,LStrike=0.04,sigma_s=0.2,rho
      =-0.5) {
14
    # Difference between two tenor dates
15
    tau <- 0.5
17
18
    # T_n
19
20
    Tn \leftarrow Tn1 - tau
21
22
    # Need tenor for the semi-annual calculations
23
    # Starting with T_0=0, T_1=0.5, ...
24
25
    tenor \leftarrow seq(0, Tn1, by = tau)
26
    # Bond with maturity at T_{-}(n+1)
28
    # Due to the fact of semi-annual tenor dates
29
    # we need all tenor evaluation points = length(tenor)
30
31
    bTn1 \leftarrow 1/(1+tau*L)^{(length(tenor)-t-1)} \# Bond with r = LIBOR r = x
33
    SSchlange <-(SStrike*bTn1)/S
34
    LSchlange <- LStrike/L
36
37
    sigma_xq < (Tn1-t) * sigma_s^2
38
39
    sigma_x <- sqrt (sigma_xq)
40
41
    # We need lambda for the sigma_y
42
43
    lambda <- function(t,Tn) {
44
45
      a < -0
      b \leftarrow 0.29342753
47
      c < -1.25080230
48
      d <- 0.13145969
49
      result \leftarrow (a+(Tn-t)*b)*exp(-(Tn-t)*c)+d
```

```
return (result)
54
     integrand1 \leftarrow function(x) \{lambda(t = x, Tn = Tn)^2\}
56
     sigma_yq1 <-integrate(integrand1, lower = t, upper = Tn)
57
58
     # Returns only the value without abs error
59
60
     sigma_yq < -sigma_yq1[[1]]
61
62
     # sigma_y^2=sigma_yq
63
64
     sigma_y <- sqrt (sigma_yq)
65
     # sigma_xy
67
68
     integrand2 <- function(x) {sigma_s * rho * lambda(t=x,Tn = Tn)}
69
     sigma_xy1 <- integrate(integrand2, lower = t, upper= Tn)
70
     sigma_xy \leftarrow sigma_xy1[[1]]
71
72
     # mu_x
73
74
     mu_x \leftarrow sigma_xq*(-0.5)
75
76
     # mu_y
77
79
     mu_y \leftarrow sigma_yq*(-0.5)
80
     # rho_SL
81
82
     rho_SL <- sigma_xy/(sigma_x*sigma_y)
83
84
85
     # For a better reading of the formula
86
87
     a1 <- as.numeric((log(SSchlange)-mu_x)/sigma_x)
88
     b1 <- as.numeric((log(LSchlange)-mu_y)/sigma_y)
89
     a2 <- as.numeric(a1-sigma_x)
90
     b2 <- as.numeric(b1-rho_SL*sigma_x)
91
     a3 <- as.numeric(a1-rho_SL*sigma_y)
92
     b3 <- as.numeric(b1-sigma_y)
     a4 <- as.numeric(a1-rho_SL*sigma_y-sigma_x)
94
     b4 <- as.numeric(b1-rho_SL*sigma_x-sigma_y)
95
96
     p1 \leftarrow pbivnorm(x = a1, y = b1, rho = rho\_SL)
97
     p2 \leftarrow pbivnorm(x = a2, y = b2, rho = rho\_SL)
98
     p3 \leftarrow pbivnorm(x = a3, y = b3, rho = rho\_SL)
99
     p4 \leftarrow pbivnorm(x = a4, y = b4, rho = rho\_SL)
100
     result \leftarrow as.numeric((L*S*(SSchlange*LSchlange*p1
                                     - LSchlange*p2
104
                                    - SSchlange*p3
105
                                    + \exp(\operatorname{sigma}_{-xy}) * p4)))
106
```

```
107
     print(c("Result", result))
108
109
     return (result)
110
111
112
113
114 # Hedging with TLO
# Hedged balance sheet
117 # Yellow Light Scenario
# BMG- Model framework!
120 # Bonds are priced within the BGM-Model
122 # Stock prices
# generate vector of length 11
_{124} # Stockprices from -30\% to 20\%
125
126 # Names in percentage
127
128 Sperchar1 \leftarrow seq (-0.3, 0.2, length.out = 11)
129 Sperchar1
130
131 # Function for percentage
   percent <- function(x, digits = 2, format = "f", ...) {
134
     paste0(formatC(100 * x, format = format, digits = digits, ...), "%")}
  Sperchar<-percent (Sperchar1)
136
137
  Sperchar
138
139
  Spercentage < seq (0.7, 1.2, length.out = 11)
140
names (Spercentage) <- Sperchar
143
144 # initial value for the stock portfolio
146 S <- 30
147
148 # Stockprice Vector
149
150 Stockprices <- S*Spercentage
151 Stockprices
153 # In the BGM-model the problem arises
154 # with extrem LIBOR rate changes quite to
155 # the contrary as seen in the short rate
156 # model (Vasicek), where the long term rates
157 # resp. the long term bonds do not react as much
158 # as in the BGM-model
_{159} # Hence we put the range from -150 \mathrm{bps}
_{160} # to 150bps instead as in the Joergensen paper
_{161} # with the short rate from -300\,\mathrm{bps} to 300\,\mathrm{bps}
```

```
163 # LIBOR Rates vector of length 11
_{164} # ranges from -1.5 % to +1.5 %
liborchange <- seq (-0.015, 0.015, length.out = 11)
167
168 liborchange
169
   Liborchar <- percent (liborchange)
170
   Liborvalues \leftarrow seq (0.025, 0.055, length.out = 11)
173
   names (Liborvalues) <- Liborchar
174
   Liborvalues
175
176
177 \# 100\% = [6] \dots \text{unchanged scenario}
178
   Liborvalues [6]
179
  # BOND Value in BMG-model
181
182
183 BondBMG \leftarrow function (L=0.04, t = 0, tnn = 3) {
184
     delta <- 0.5 # Difference between the tenor dates
185
186
     tenor \leftarrow seq (0, tnn, by = 0.5)
187
     btnn \leftarrow 1/(1+delta*L)^(length(tenor)-t-1)
189
190
     return (btnn)
191
192
193
BondBMG(c(0.01,0.02,0.03,0.04),tnn=6)
195
196 # Price for one TLO with
197 # maturity T_n+1=5 at time t=0 and LStrike=0.04
_{198} \# SStrike=30, sigma_s=0.2, and rho=0.0
199
200 TLO1<-priceTLO (0.04,30, t=0,Tn1 = 5, SStrike = 30, LStrike = 0.04, sigma_s =
       0.2, \text{rho} = 0.0
201
202 # Assumption sell bonds and buy 250 units of TLOs
203 # We need more units of TLOs, since in the BGM
204 # the longterm rates react more with the bonds
205 # as in the short rate model.
206 # But in the end the worst case solvency ratio will
207 # be %!!!!!!
208
   amountofTLOs <- 250
209
211 TLO - amount of TLOs * TLO1
212
_{213} \# 70- TLO = new amount of Bonds
215 newbonds <- 70-TLO
```

```
216 newbonds
218 # On the asset side we have bonds with a 6 year duration
\mu Bond face value = 62.3887/BondBMG(L=0.04,tnn=6)=79.12391
220
newbonds/BondBMG(L=0.04, tnn=6)
222
temp<-newbonds * 1 / BondBMG(L=0.04, tnn=6)
  Bondvalues <- temp *BondBMG(L= Liborvalues, tnn=6)
227
  Bondvalues
228
229 # Due to the fact that longterm rates in the BGM
230 # react more than in the short rate model
231 # We take the Pension obligations on the
232 # lower end with a duration of 15 years
234 # Pension obligations like bonds
235 # Face value = 166.6453 = 92 / \text{BondBMG}(L=0.04, \text{tnn}=15)
236
_{237} \text{ temp1} \leftarrow 92/\text{BondBMG}(L=0.04, tnn=15)
238 temp1
239 PO <-temp1*BondBMG(L=Liborvalues,tnn=15)
names (PO) <- Liborchar
242 PO
243
244 # All changes in
245 # stockprices, Bonds, Pensionobligation (PO)
247 Stockprices
248 Bondvalues
249 PO
252 # generate data.frame for Bonds and PO
253
Table <- data.frame (Bonds = Bondvalues, Pension = PO)
256 # hence we have a data.frame we need as.matrix
258 m. Table <- as. matrix (Table)
259 m. Table
260
261 nrow (m. Table)
263 # Function for the linearcombination between the
264 # stockprices and m. Table1
265 # due to the fact that if the LIBOR rates drops
266 # Bonds and PO (like bonds) drop equally and
267 # therefore a "fixed" pair
269 lincom <- function (Stockprices, m. Table) {
```

```
z \leftarrow matrix(0, nrow = 11*11, ncol = 3)
272
      for ( i in 1:11) {
273
        for (j in 1:11) {
275
           k < -11*(i-1)+j
277
           z[k,1] <- Stockprices[i]
278
           z[k,2] \leftarrow m. Table[j,1]
279
           z[k,3] \leftarrow m. Table[j,2]
280
281
282
      return (z)
283
284
285
286 # Contains all linearcombinations
287
   f<-lincom (Stockprices, m. Table)
288
290 m. Table1 <- data . frame (Stockprices=f [ ,1 ] , Bonds=f [ ,2 ] , PO=f [ ,3 ] )
291
292 m. Table1 <- as. matrix (m. Table1)
293 head (m. Table1)
294
295 # z contains all TLO values
296
   z <- outer (Liborvalues, Stockprices, priceTLO)
298
299 Z
300 # Initial point
302 z [72]
303
304 m. Table1 [72,]
306 nrow (m. Table 1)
307
308 # Now we have to normalize
309 # the TLO values to the inital
310 # value of 7.611335=TLO
311
_{312} \text{ znew} \leftarrow _{\mathbf{z}/\mathbf{z}} [72]
313
which.max(znew)
znew1 <- znew*(TLO)
316 znew1
317
318 length (znew1)
which.max(znew1)
320 head (znew1)
_{321} \text{ znew2} \leftarrow \text{as.vector}(\text{znew1})
322
323 # Table with TLO, Stockprices, Bonds and PO
325 m. Table1
```

```
327 m. Table2 <- data.frame (TLO=znew2, m. Table1)
m. Table2 <- as. matrix (m. Table2, ncol=4, ncol=121)
330
ззі m. Table2
332
333 # Initial valuation point
334
335 m. Table2 [72,]
  # m. Table_comp2 contains all linearcombinations between stockprices
337
   # and BONDS with PO
338
339
   free equity <- function (m. Table 2) {
340
341
     u \leftarrow rep(0, nrow(m. Table 2))
342
343
     for (i in 1:nrow(m. Table2)) {
344
345
       u[i] <- m. Table2[i,1]+m. Table2[i,2]+m. Table2[i,3]-m. Table2[i,4]
346
347
     return (u)
349
350
351
353 # fequity contains all entries
354 # of Free equity
356 fequity <- free equity (m. Table 2)
357
358 m. Table2
Table3 <- data.frame (m. Table2, Free_equity=fequity)
361 m. Table3 <- as. matrix (Table3, ncol=5)
is . matrix (m. Table3)
363 head (m. Table3)
_{364} dim (m. Table 3)
365 nrow (m. Table 3)
366 m. Table3 [72,]
   # Test if all values in the balance sheet fit
368
369
370 m. Table3 [50,1]+m. Table3 [50,2]+m. Table3 [50,3]
371 m. Table3 [50,4]+m. Table3 [50,5]
372
373 # Function for the solvency ratio
374 # which is defined as:
375 # Solv Ratio = Free Equity / Pension Obligations
376
   solvencyratio <- function (m. Table 3) {
377
378
     o \leftarrow rep(0, nrow(m. Table 3))
379
380
```

```
for (i in 1:nrow (m. Table 3)) {
       o[i] <- m. Table3[i,5]/m. Table3[i,4]
382
383
384
     return (o)
385
386
387
   solvperc <- solvencyratio (m. Table 3)
389
   solvperc
390
391
з92 m. Table3
393 m. Table4 <- data.frame (m. Table3, Solvency_Ratio=solvperc)
   # Complete Table with all datas
   head (m. Table4)
397
398
   length (m. Table4)
400
401 # The full table with all data
402
403 m. Table4 [72,]
404
405 # Corresponding solvency ratios
406
   z_values \leftarrow matrix (m. Table 4 [, 6], ncol = 11)
407
408
410
411 ## 3D PLOT
412
_{413} par (bg = "white")
414 y <- Stockprices
415 x <- Liborvalues
416 z <- z values
417 nrz <- nrow(z)
a_{18} \operatorname{ncz} \leftarrow \operatorname{ncol}(z)
419 # Create a function interpolating colors in the range of specified colors
jet.colors <- colorRampPalette( c("red", "yellow3", "yellow2", "yellow1", "
       green1", "green") )
421 # Generate the desired number of colors from this palette
422 nbcol <- 1000
423 color <- jet.colors(nbcol)
424 # Compute the z-value at the facet centres
z facet \leftarrow z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
426 # Recode facet z-values into color indices
427 facetcol <- cut (zfacet, nbcol)
428
429 # Plot
430
   persp(x,
431
432
          у,
433
          col = color[facetcol],
434
```

```
xlab="LIBOR rate",
435
         ylab = "Stock portfolio",
436
         zlab = "Solvency ratio"
437
         zlim = c(-0.2112645, 0.45865), # Scaling as in the unhedged scenario
         #main="Hedged_balance_sheet_shocked_in_the_BGM_model",
439
         ticktype = "detailed", nticks = 8,
440
         expand = 0.75,
441
         phi = 20,
         theta = -40)
443
444
445 # In the worst case scenario
_{446} # with 250 TLOs we have a
447 # solvency ratio of
448
z_values[which.min(z)]
  which.min(z)
451
452 # Saving the graphic
  pdf(file= "Hedged_balance_sheet_shocked_in_the_BGM_model.pdf")
454
455
456 # Plot
457
458 # Figure ?.?
459
   persp(x,
460
461
         у,
         Ζ,
462
         col = color [facetcol],
463
         xlab="LIBOR rate",
464
         ylab = "Stock portfolio",
465
         zlab = "Solvency ratio",
466
         zlim = c(-0.2112645, 0.45865),
467
         #main="Hedged_balance_sheet_shocked_in_the_BGM_model",
468
         ticktype = "detailed", nticks = 8,
         expand = 0.75,
470
         phi = 20,
471
         theta = -40)
472
473
   dev. off()
474
475
   477
478
  # Yellow light scenario
479
480 # Stock portfolio drops 30%
481 # LIBOR drops 100 bps=1%
482
_{483} \# S=30 -> S=21
485 # Price of 1 TLO before shocking
486
487 TLO1
489 # Price of 250 TLOs
```

```
491 TLO
492
493 # Bonds before shocked
494
495 newbonds
496
  # temp = for the 6y bonds for discounting
498
   newbondshocked <- temp*BondBMG(L=0.03,tnn=6)
499
500
  # temp1 = for the 15y PO bonds for discounting
501
502
   newPOshocked <- temp1*BondBMG(L=0.03,tnn=15)
503
504
505 # Price for one TLO in the yellow light scenario
506
   TLOshockedtemp<-priceTLO(0.03,21,t=0,Tn1=5,SStrike=30,LStrike=0.04,
507
                              sigma_s = 0.2, rho = 0.0
508
509
510 TLOshockedtemp
511 TLO1
_{512} TLOshocked <- TLOshockedtemp*amountofTLOs
  TLOshocked
513
514
newPOshocked
newbondshocked
   newstockshocked <-21
  TLOshocked
519 TLO
   totalassetside<-TLOshocked+newbondshocked+newstockshocked
   free equity shocked <\!\!-total assets ide-new PO shocked
523
   freeequityshocked
  # Solvency percentage in the yellow light scenario
527
528
   percent (freeequityshocked/newPOshocked)
530
    Initial balance sheet before getting shocked
   Initial_balance_sheet <-data.frame(Stock_portfolio=S,
                                         Bonds=Bondvalues [6],
534
                                         TLO=TLO, PO=PO[6],
535
                                         Free_Equity=S+Bondvalues[6]+TLO-PO[6],
536
                                         Solvency_ratio=
537
                                         percent ((S+Bondvalues[6]+TLO-PO[6])/PO
538
      [6]))
540 Initial_balance_sheet
541
542 # Yellow light scenario with all entries
543
```

```
Yellowlightscenario_balance_sheet<-data.frame(Stock_portfolio=
      newstockshocked,
                                         Bonds=newbondshocked,
545
                                         TLO=TLOshocked, PO=newPOshocked,
                                         Free_Equity=freeequityshocked,
547
                                         Solvency_ratio=
548
                                         percent (freeequityshocked/newPOshocked))
549
550
   Yellowlightscenario_balance_sheet
551
553 # Double check if the balance sheet is complete
_{554} \ \# \ total \ asset \ side = total \ liabilities \ and \ free \ equity \ side
   Yellow light scenario\_balance\_sheet [1,1] + Yellow light scenario\_balance\_sheet
       [1,2] + Yellowlightscenario_balance_sheet [1,3]
557 Yellowlightscenario_balance_sheet [1,4]+Yellowlightscenario_balance_sheet
   [1, 5]
```

List of Figures

2.1 2.2	Structured products sales and issuance 2005-2014	6 10
3.1	The payoff profile of the traffic light option with $\bar{S}=100$ and $\bar{L}=0.04$	31
3.2	The instantaneous LIBOR rate volatility as a function of distance to maturity $T_i - t$	32
3.3	Correlation between LIBOR rates with $\beta = 0.1$	$\frac{32}{34}$
3.4	Correlation between LIBOR rates and stock portfolio with $\alpha = \gamma = 1$	36
3.5	Here the parameter values are $\bar{S} = 100$, $\bar{L} = 0.04$, $T_{n+1} = 3$, $\rho = -0.5$,	00
0.0	$\sigma_s = \sigma = 0.2$ and the term structure is assumed flat equal to the initial	
	LIBOR rate.	37
3.6	The traffic light option as a function of correlation with $S_0 = 100, L_n(0) =$	
	0.04, $\bar{S} = 100$, $\bar{L} = 0.04$, $T_{n+1} = 3$ and $B(0, T_{n+1}) = 0.8890$	38
3.7	Simulated LIBOR rate $L_6(t)$	39
3.8	Mean of 1000 simulated LIBOR rates $L_6(t)$	39
3.9	Distribution of 1000 simulated LIBOR rates L_6 evaluated at time $t=1$ year	40
3.10	Simulation of 1000 possible paths of the discounted stock portfolio prices	
	$\hat{S}(T)$	41
3.11	· · · · · · · · · · · · · · · · · · ·	
	folio prices $\hat{S}(T)$	41
	Monte Carlo simulation of the analytical traffic light option formula	42
	Theoretical formula versus simulation of a TLO	43
3.14	Conditional distribution of 1000 simulations compared between claim ver-	4.0
	sus analytical formula	43
4.1	Unhedged balance sheet at time $t = 0 \dots \dots \dots \dots$	48
4.2	Unhedged balance sheet shocked in the Vasicek-model	49
4.3	Unhedged balance sheet shocked in the BMG-model	50
4.4	Unhedged balance sheet at time $t = 0 \dots \dots \dots \dots$	51
4.5	Hedged balance sheet shocked in the BMG-model	52

Bibliography

- [BM06] Damiano Brigo and Fabio Mercurio. Interest Rate Models—Theory and Practice. Springer-Verlag, Berlin, second edition, 2006.
- [Gla04] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, 2004.
- [Iac08] Stefano M. Iacus. Simulation and Inference for Stochastic Differential Equations. Springer, New York, 2008.
- [Jam97] Farshid Jamshidian. Libor and swap market models and measures. Finance and Stochastics, 1(4):293–330, 1997.
- [Jør07] Peter Løchte Jørgensen. Traffic light options. Journal of Banking & Finance, 31(12):3698-3719, 2007.
- [Kaj04] Linus Kajsajuntti. Pricing of Interest Rate Derivatives with the LIBOR Market Model. Master thesis, KTH Royal Institute of Technology, Department of Numerical Analysis and Computer Science, 2004.
- [KO14] Robert W. Kolb and James A. Overdahl. *Financial Derivatives*. John Wiley & Sons, Inc, New Jersey, 2014.
- [Kok09] Thomas Kokholm. Pricing of traffic light options and other hybrid products. International Journal of Theoretical and Applied Finance, 12(5):687–707, 2009.
- [Lam16] Katrina Lamb. An Introduction to Structured Products, 2016. Available Online at http://www.investopedia.com/articles/optioninvestor/07/structured_products.asp
 Accessed: 2016-09-30.
- [Lee12] Seonmi Lee. LIBOR Market Model with Stochastic Volatility. Msc thesis, University of Amsterdam, 2012.
- [Ome09] V.V. Omelchenko. Defintion and classification of structured products. 2009.
- [Pac05] Natalie Packham. Correlation Parameterization and Calibration for the LI-BOR Market Model. Master thesis, Business School of Finance & Management, Frankfurt am Main, Germany, 2005.
- [Pit13] Clarke Pitts. Structured Products—Evolution and Analysis. Nick Carver, London, 2013.

- [Pri16] Nicolas Privault. Lecture notes for stochastic calculus 2, 2016.
- [RS11] Thorsten Rheinländer and Jenny Sexton. *Hedging Derivatives*. World Scientific Publishing, Hackensack, NJ, 2011.
- [SZ14] Michael Schmutz and Thomas Zürcher. Static hedging with traffic light options. Journal of Futures Markets, 34(7):690–702, 2014.
- [Wys07] Uwe Wystup. FX Options and Structured Products. John Wiley & Sons, Ltd, England, 2007.