
Embedded Security Analysis with
Emphasis on Critical

Infrastructures
DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Dipl. Ing. Markus Kammerstetter, BSc.
Matrikelnummer 0226196

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr. Wolfgang Kastner

Diese Dissertation haben begutachtet:

(Ao. Univ. Prof. Dr. Wolfgang
Kastner)

(Prof. Dr.-Ing. Tim Güneysu)

Wien, 26.07.2016
(Dipl. Ing. Markus

Kammerstetter, BSc.)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Embedded Security Analysis with
Emphasis on Critical

Infrastructures
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Dipl. Ing. Markus Kammerstetter, BSc.
Registration Number 0226196

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner

The dissertation has been reviewed by:

(Ao. Univ. Prof. Dr. Wolfgang
Kastner)

(Prof. Dr.-Ing. Tim Güneysu)

Wien, 26.07.2016
(Dipl. Ing. Markus

Kammerstetter, BSc.)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dipl. Ing. Markus Kammerstetter, BSc.
Rienoesslgasse 14/17, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Wien, am 26.07.2016) (Unterschrift Verfasser)

i

Acknowledgements

I am deeply grateful to my advisor Wolfgang Kastner for making this thesis and the involved
work behind it possible. I would like to thank the entire Automation Systems Group for providing
me with the freedom and support in establishing and maintaining a Hardware Security Lab
including many of its challenges such as the need for more room or the inherent challenges when
trying to set up a 1 ton instrument in an old building with limited ceiling load capacity. In that
regard, my thanks go especially to Ruth Fochtner and Wolfgang Kastner who have always been
there for me over the last several years. A great acknowledgement is dedicated to my former
Secure Systems Lab colleagues including Christopher Kruegel, Engin Kirda, Gilbert Wondracek,
Christian Platzer, Thorsten Holz, Clemens Kolbitsch, Matthias Neugschwandtner, Paolo Milani
Comparetti, Martina Lindorfer and Adrian Dabrowski. I want to show my appreciation to my
colleagues at SBA Research including Edgar Weippl, Martin Schmiedecker, Georg Merzdovnik
and Markus Huber for the ongoing collaboration and teaching activities. I had the pleasure to
work together with other researchers including many of the AIT Safety and Security Department
such as Lucie Langer, Florian Skopik, Paul Smith, Friederich Kupzog and Thomas Bleier.
Several bachelor- and master students supported and helped me during my experiments and the
necessary implementations. I would like to express my gratitude to my current hardware security
team including Markus Muellner, Daniel Burian, Stefan Riegler, Viktor Ullmann and Christian
Kudera. I would further like to thank the longtime customers of my security consulting company
Trustworks KG for indirectly providing we with funding for many of my research activities.
Special thanks go to my friends and my family including my grand parents Berta and Herbert
as well as my uncle Heribert who has been an inspiration to me from childhood on. I would
like to express my deepest gratitude to Gerda for supporting me, tolerating my sometimes odd
research activities at home including having a lab fume hood in the living room and the long
working hours I have been in the lab instead of spending the time with her. I would like to express
my appreciation to Markus Kuhn, Sergei Skorobogatov and Christopher Tarnovsky for getting
me started in the field of IC reverse engineering in the first place. Lastly, I would like to thank
the people I forgot to mention, the discovery of C8H10N4O2, HNO3, H2SO4, C3H6O and the
invention of nanotechnology, Integrated Circuits (ICs), the Scanning Electron Microscope (SEM)
and the Focused Ion Beam (FIB).

iii

Abstract

Embedded systems are ubiquitously used today. From everyday electronic consumer products
to critical domains such as medical devices, Electronic Control Units (ECUs) in cars or critical
infrastructure field components, their possible fields of application are manifold. While some of
these systems are highly security critical and successful attacks could lead to disastrous effects,
in the past their exposure to potential attackers was limited due to a lack of widely accessible
communication interfaces. For instance, the ECUs in cars used to be interconnected but there
were no wireless uplink connections to connect the car to the Internet, to the user’s smart phone or
to other cars via vehicle-to-vehicle communication. Many of today’s embedded systems were thus
designed with a focus on functionality and safety. Security was not a major concern. However,
today there is an ongoing paradigm shift from considered dumb devices to highly interconnected
smart devices. With Industry 4.0, there is another ongoing industrial revolution that transforms
traditional production systems to ICT enabled smart factories. On the Internet of Things (IoT),
an increasing number of everyday embedded devices gets connected to the Internet. Cars often
include multiple Internet uplink connections, medical devices such as pacemakers can be adjusted
over wireless interfaces and networked devices within the consumer’s premises and the power
grid pave the way for green energy consumption and the smart grid. Considering that many
potentially insecure systems now become internetworked and accessible to potential attackers,
this leaves many critical systems such as smart critical infrastructures at stake.
While a secure system can only be achieved if security is of major concern from the very beginning
and a secure life-cycle involving processes such as secure design, secure implementation and
continuous security assessments is followed, recent publications have shown that embedded
systems do not cope well with this security demand. Ultimately, not only the system manufacturers
but also the system owners and operators need ways to assess, manage and test the security of
networked embedded systems. This thesis focuses on embedded system security within the smart
grid critical infrastructure.
The problem of smart grid security assessment and management is addressed by presenting an
architecture driven approach allowing operators such as utilities to identify high-risk smart grid
components in their grid instances, to select those components for detailed technical security
audits and to subsequently mitigate security threats. Testing the security of high-risk embedded
smart grid field components is still considered to be challenging and more time consuming in
comparison to off-the-shelf PC based systems. A major cause is that prevalent vulnerability
discovery techniques on embedded systems are still largely based on static analysis.
To address some of these shortcomings, the use of emulators with proprietary peripheral device
communication forwarding is investigated to enable dynamic security analysis approaches such as

v

fuzz testing. The thesis introduces PROSPECT, a proxy capable of tunneling arbitrary peripheral
hardware accesses from within a virtual analysis environment to the embedded system under test.
Our system thus enables the analysts to leverage any powerful dynamic analysis techniques of
their choice to discover vulnerabilities on embedded devices with minimal effort. In addition, the
use of firmware program state approximation is explored to allow caching device responses within
the PROSPECT system. Our case study shows that during security testing, future implementations
of peripheral device caching could pave the way for powerful functions such as snapshotting, test
parallelization or testing without physical access to the embedded system.
Since security testing of embedded firmware is only feasible if the firmware can be extracted
from the embedded device in the first place, physical attacks are described that can be applied to
embedded smart grid devices. From these physical attacks, the use of limited Integrated Circuit
(IC) reverse engineering techniques is explored to discover proprietary test modes in silicon.
Once the test mode is known to the analysts, it is often possible to extract the firmware from the
device and subsequently perform firmware security tests.
Finally, besides embedded firmware extraction and analysis, future smart grid protocols will
involve cryptographic authentication mechanisms that need to be tested and practically evaluated
as well. Since no established cryptographic smart grid authentication protocols exist yet, the
thesis presents a highly efficient FPGA cluster architecture and implementation of a brute-force
attack on the well known WPA2-Personal authentication protocol instead. Our results indicate
that a very high attack performance can be achieved and our approach would be suitable to test
the practical security of future smart grid authentication protocols.
The work presented in this thesis thus provides a holistic embedded security analysis approach for
critical smart grid components ranging from architecture modeling, risk assessment and security
management over firmware extraction and firmware security analysis to the practical analysis of
cryptographic authentication protocols.

Kurzfassung

Eingebettete Systeme werden heute allgegenwärtig eingesetzt. Ihre vielfältigen Einsatzgebiete
reichen von tagtäglicher Unterhaltungs- und Haushaltselektronik, bis hin zu kritischen Anwen-
dungsbereichen, wie medizinischen Geräten, Steuergeräten in Fahrzeugen oder den Feldkompo-
nenten von kritischen Infrastrukturen. Besonders bei sicherheitskritischen Geräten können jedoch
erfolgreiche Angriffe desaströse Auswirkungen mit sich bringen. In der Vergangenheit waren
derartige Geräte oft kaum vernetzt, sodass deren Exponiertheit gegenüber Angreifern aufgrund
der fehlenden physischen Zugriffsmöglichkeit beschränkt war. So waren etwa die Steuergeräte in
Fahrzeugen auch schon in der Vergangenheit miteinander verbunden, jedoch gab es keine externe
Schnittstellen, die das System etwa zum Internet, zum Smartphone oder drahtlos zu anderen
Fahrzeugen vernetzten. Viele der heute im Einsatz befindlichen eingebetteten Systeme wurden
somit mit einem Fokus auf Funktionalität und Betriebssicherheit entwickelt und deren Sicherheit
gegenüber böswilligen Angriffen wurde nur nebensächlich oder gar nicht berücksichtigt. Aktuell
ist jedoch ein Paradigmenwechsel im Gange, sodass Geräte zunehmend vernetzt und dadurch
intelligenter werden. Man spricht von sogenannten Smart Devices. Im Bereich Industrie 4.0 findet
aktuell eine weitere industrielle Revolution statt, die traditionelle Produktions-Systeme zu IKT
gestützten Smart Factories transformiert. Im Internet der Dinge werden zunehmend tagtägliche
Geräte mit dem Internet verbunden. Viele Fahrzeuge haben bereits mehrfache Verbindungen zum
Internet, medizinische Geräte, wie Herzschrittmacher, lassen sich drahtlos parametrieren und
intelligente Geräte im Haushalt und im Stromnetz ebnen den Weg zum grünen Energieverbrauch.
Auf der Kehrseite heißt dies jedoch auch, dass viele kritische sowie potenziell unsichere Systeme,
wie etwa im Bereich der Smart Grids, nun stark miteinander vernetzt und damit leichter von
außen angreifbar werden.
Ein sicheres Gesamtsystem kann nur dann erreicht werden, wenn die Sicherheit des Systems von
Beginn an ein wichtiger Gesichtspunkt war und ein sicherer Entwicklungs- und Lebenszyklus ein-
gehalten wird. Dieser beinhaltet etwa ein sicheres Systemdesign, eine sichere Implementierung
dieses Designs und regelmäßige Sicherheitsüberprüfungen (Audits) der im Einsatz befindli-
chen Systeme. Aktuelle Publikationen haben jedoch gezeigt, dass eingebettete Systeme diesen
Sicherheitsanforderungen nur schlecht nachkommen. Sowohl die Hersteller wie auch die System-
besitzer und Betreiber benötigen Möglichkeiten, um vernetzte eingebettete Systeme nicht nur auf
Sicherheit hin zu testen, sondern deren Sicherheitsniveau im Einsatz auch hoch halten zu können.
Der Fokus dieser Arbeit liegt auf Sicherheitsuntersuchungen von eingebetteten Systemen im
Umfeld der intelligenten Stromnetzinfrastrukturen. Die Problematik der Risikobewertung und
des Risikomanagements wird mittels eines architekturgestützten Ansatzes behandelt, der es etwa
Netzbetreibern ermöglicht, besonders risikobehaftete Komponenten in intelligenten Stromnetzen

vii

zu identifizieren, für weitergehende technische Sicherheitsaudits auszuwählen und folglich deren
Sicherheitsrisiken zu senken. Im Vergleich zu handelsüblichen Computersystemen gilt die Durch-
führung von technischen Sicherheitsaudits auf eingebetteten Systemen heute noch als äußerst
anspruchsvoll und zeitaufwändig. Einer der Hauptgründe ist die Schwierigkeit dynamische Ana-
lyseverfahren einzusetzen, sodass Sicherheitsanalysen auf diesen Systemen noch weitestgehend
auf statischen Analyseverfahren aufbauen.
Die vorliegende Arbeit behandelt diese Herausforderung, indem der Einsatz von Emulations-
techniken in Zusammenhang mit der Weiterleitung der Kommunikation zu peripheren Hard-
warebausteinen untersucht wird. Durch unseren Ansatz werden etwa bestehende dynamische
Analyseverfahren, wie Fuzz Testing, maßgeblich erleichtert. Die vorliegende Arbeit stellt PRO-
SPECT vor, ein System, das als transparenter Proxy für beliebige Peripheriekommunikation
aus einer virtuellen Analyseumgebung heraus zu dem im Test befindlichen eingebetteten Sys-
tem agiert. PROSPECT ermöglicht es, auf eingebetteten Systemen Sicherheitsanalysen mit
starken dynamischen Analyseverfahren durchzuführen und mit geringem Aufwand Schwach-
stellen zu identifizieren. Zusätzlich wird der Einsatz eines Cache Speichers in Kombination
mit einer Approximierung des Programmzustands betrachtet, um die Peripheriekommunikation
zwischenzuspeichern. Die Fallstudie zeigt, dass die vorgestellte Technik einen zukünftigen Weg
in Richtung sehr mächtiger Verfahren wie Snapshotting, Test-Parallelisierung oder dem Testen
ohne physischen Zugriff auf das eingebettete System ermöglichen könnte.
Um vorgestellte Sicherheitsanalyse-Techniken überhaupt erst auf der Firmware von eingebetteten
Systemen nutzen zu können, ist es ebenso notwendig, die Firmware aus den Geräten zu extrahieren.
Zu diesem Zweck wird den Einsatz von physischen Hardware-Angriffen auf die eingebetteten
Systeme in intelligenten Stromnetzen behandelt. Insbesondere wird der Einsatz von Mikrochip
Reverse Engineering Techniken betrachtet, um versteckte Testmodi im Chip auffinden zu können.
Identifizierte Testmodi können im weiteren oft dazu verwendet werden, um die Firmware aus
dem Chip zu extrahieren und folglich auf ihre Sicherheit hin zu analysieren.
Neben der Firmware Extraktion und deren Sicherheitsanalyse wird es in zukünftigen intelligenten
Stromnetzen auch erforderlich sein, kryptografische Authentifikationsmechanismen auf ihre
praktische Sicherheit hin überprüfen zu können. Wenngleich aktuell keine weit verbreiteten
entsprechenden Verfahren für intelligente Stromnetze existieren, wird in dieser Arbeit der Einsatz
einer hoch-effizienten FPGA Architektur und deren Implementierung erprobt, um am Beispiel des
weit verbreiteten kryptografischen WPA2-Personal Authentifikationsverfahrens entsprechende
praktische Sicherheitstests durchführen zu können. Die Ergebnisse zeigen, dass sich mit dem
System hohe Angriffsgeschwindigkeiten realisieren lassen, die sich etwa auch für praktische
Sicherheitstests von zukünftigen Smart Grid Authentifikationsverfahren eignen würden.
Die in dieser Dissertation vorgestellten Arbeiten beschreiben somit einen gesamtheitlichen Ansatz
zur Sicherheitsanalyse von eingebetteten Systeme in intelligenten Stromnetzen und reichen von
der Architektur-Modellierung, Risikobewertung und dem Security Management über Firmware
Extraktion und Firmware Sicherheitsanalyse, bis hin zur praktischen Analyse von eingesetzten
kryptografischen Authentifikationsprotokollen.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of this Work . 5
1.3 State-of-the-Art and Related Work . 6
1.4 Methodological Approach . 9
1.5 Structure of this Work . 10
1.6 Summary of this Work . 12
1.7 Scientific Contribution . 53
1.8 Conclusion and Future Work . 54

2 Practical Risk Assessment Using a Cumulative Smart Grid Model 55
2.1 State-of-the-Art and Related Work . 56
2.2 Cumulative Smart Grid Modeling using SGAM 57
2.3 Smart Grid Risk Assessment . 61
2.4 Evaluation and Results . 64
2.5 Conclusion and Future Work . 66
2.6 Acknowledgements . 67

3 Architecture-Driven Smart Grid Security Management 71
3.1 State-of-the-Art and Related Work . 72
3.2 Smart Grid Risk Management Approach . 73
3.3 Evaluation and Discussion . 79
3.4 Conclusion and Future Work . 81
3.5 Acknowledgements . 81

4 Physical Attacks on Smart Grid Devices 83
4.1 Goals of Physical Attacks in the Context of Smart Grid Devices 83
4.2 Overview of Physical Attacks . 86
4.3 Basic Protection Mechanisms . 103
4.4 Conclusion . 104

ix

5 Breaking Integrated Circuit Device Security through Test Mode Silicon Reverse
Engineering 105
5.1 State-of-the-Art and Related Work . 106
5.2 IC Design and Test Modes . 107
5.3 Reverse Engineering of IC Test Modes: A Case Study of a Game Authentication

Chip . 111
5.4 Evaluation and Discussion . 119
5.5 Conclusion and Future Work . 122
5.6 Acknowledgements . 122

6 PROSPECT - Peripheral Proxying Supported Embedded Code Testing 123
6.1 State-of-the-Art and Related Work . 124
6.2 Challenges in Embedded Security Analysis 125
6.3 Peripheral Device Forwarding . 128
6.4 Implementation . 132
6.5 Evaluation . 136
6.6 Results and Discussion . 139
6.7 Limitations and Future Work . 140
6.8 Conclusion . 141
6.9 Acknowledgements . 141

7 Embedded Security Testing with Peripheral Device Caching and Runtime Pro-
gram State Approximation 143
7.1 State-of-the-Art and Related Work . 144
7.2 Peripheral Device Access . 145
7.3 Caching Peripheral Device Communication 147
7.4 Runtime Program State Approximation . 150
7.5 Results . 152
7.6 Conclusion and Future Work . 153
7.7 Acknowledgements . 153

8 Efficient High-Speed WPA2 Brute Force Attacks using Scalable Low-Cost FPGA
Clustering 155
8.1 State-of-the-Art and Related Work . 156
8.2 WPA2-Personal Handshake . 157
8.3 FPGA Implementation . 163
8.4 Evaluation . 171
8.5 Results and Discussion . 174
8.6 Conclusion and Future Work . 180

Bibliography 183

x

CHAPTER 1
Introduction

“We need to be able to verify the software that controls our lives”

Bruce Schneier on ’Volkswagen and Cheating Software’

1.1 Problem Statement

Embedded systems are an integral part of almost every electronic product today. From consumer
electronics, the Internet of Things (IoT) and ICT enabled production systems (i.e., Industrial
Internet) over automotive systems such as Electronic Control Units (ECUs) to payment systems
and critical infrastructure devices, their possible fields of application are manifold. Embedded
systems in their different forms and sizes are so widespread that hundreds of those devices
can be found in our living environments today [4]. While especially in industrial production
systems, medical appliances and critical infrastructures the security requirements are high,
recent publications have shown that embedded systems do not cope well with this demand
[58, 65, 88, 119]. One of the key reasons is that embedded systems are being less scrutinized
as embedded security analysis is considered to be much more time consuming and challenging
in comparison to off-the-shelf PC based systems. At the same time, an ongoing trend towards
interconnected embedded systems can be observed. While just a few years ago your coffee
machine, car, electricity meter and boiler at home were all considered to be dumb devices with
embedded systems in them, today many of those devices get smart by interconnecting them. The
coffee machine gets just another Internet of Things (IoT) device that can now be controlled via
an Internet cloud service from anywhere in the world with a smart phone. A car has multiple
uplink connections for the media center, the navigation system, to locate and control some of its
devices with your smart phone or to call for help in case of an accident. The electricity meter and
boiler become smart devices by exchanging information with each other and renewable energy
sources such as the photovoltaic (PV) modules on the roof of your house. This paves the way
for ecologically green energy consumption, for instance, by scheduling the water heating in the

1

boiler in a way that solar energy or reserves at the energy supplier are used more efficiently. If
you have a weak heart, chances are good that you already have a state-of-the-art pacemaker that
supports wireless communication. Over the wireless link it can be connected to the Internet
so that a medical cloud service can monitor your heart condition and automatically alarm your
physician in case of an emergency [41]. However, from a security perspective, it means that
a high number of embedded systems that have never been designed with security in mind can
now be accessed remotely by attackers over a network. Considering the broad attack surface of
the embedded systems in cars [20], it has only recently been demonstrated how attackers can
take remote control of an unaltered driving car over the Internet by exploiting a flaw in the car’s
media center [10,73,76]. The wireless interface in typical pacemakers is not well protected either
and attackers can leverage replay attacks with a low-cost Software Defined Radio (SDRs) to
deliver life threatening electric shocks to the heart muscle [41]. Similarly, an attacker being able
to remotely turn off the power supply of an entire house via an insecure smart meter might be
considered as a tremendous nuisance to the home owner at first. However, if the attacker manages
to switch off a large number of homes within a city at the same time (i.e., a mass attack) the
security impact becomes disastrous. The sudden large scale energy consumption drop would
result in a rise of the power grid voltage beyond safe limits. To protect the power grid from even
further damages, the overvoltage would trigger emergency shutdown switches within network
segments of the power grid. However, since these emergency shutdowns would cause an even
larger energy consumption drop it is likely that a cascade effect is caused leading to a full scale
blackout. The longer the blackout remains (and possibly even prolonged by repeated attacks on
the embedded infrastructure), the more life threatening the situation becomes as many of our
other critical infrastructures such as the water or gas supplies depend on electrical power and
their related actors. Typical scenarios that often lead to insecure networked embedded devices
within critical systems are described in the following:

System Manufacturer
The system manufacturer is well established in its domain and the currently rolled out
smart products (i.e., interconnected embedded systems) are only a small part of their
entire product range. The product was developed over a long time period and is largely
based on soft- and hardware components that can be found in the manufacturer’s other
products as well to decrease the time-to-market (code reuse). Even though the manufacturer
has extensive experience in his domain, the product development focus lies primarily on
functionality and safety. Adding ICT technologies to the products is not entirely new to the
system manufacturer, but so far those communication interfaces have never been exposed
to the general public and potential adversaries. As a result, most products have no intrinsic
security design, the use of insecure proprietary communication protocols is common, the
developers have only marginal experience in secure design and security has not been a
major concern for the manufacturer so far. Since secure design, development and security
in general is a new field to the manufacturer, it is likely that the new smart product range
is relatively easy to exploit by attackers. At the same time, it is common that there is no
budget for security testing as those security tests are considered to be unnecessary expenses
that do not directly generate revenue for the manufacturer.

2

End-users and System Operators
Depending on the smart product type, the potential insecure networked embedded systems
are either used directly or indirectly by end-users or system operators. While a car with
all its smart devices is directly used by a person, a pacemaker is merely indirectly used by
the patient as even though it is physically located in the patient’s body, it is still the doctor
who communicates and interacts with the device. In contrast, critical infrastructures are
operated by system operators (i.e., the Distribution System Operator (DSO) in the case of
the power grid) and even though some of the infrastructure’s networked embedded devices
such as smart meters may be located within their premises, the end-users typically neither
own nor can they communicate with them. In general, especially for critical systems, users
will have a strong interest that the devices are secure. However, they might not know which
components are especially exposed to security risks and the financial means to conduct
independent in-depth security tests could be low or even non existent. A private car owner
will thus need to trust the manufacturer that the embedded devices are secure but if the car
manufacturer failed to secure them, they will remain insecure and prone to attacks. Even if
a system owner such as a DSO has the financial means to conduct independent security
audits and tests, the extent of those tests will typically be strongly limited by costs resulting
in time and effort constraints for the security analyst.

Security Analyst
The security analyst needs to overcome many challenges to conduct an in-depth technical
security audit on a networked embedded system. The aim of the analysis is to gain deep
technical insights into the implementation of the security critical functions so that the
resulting security audit report is based on a well founded accurate technical analysis. The
analyst is under the pressure to deliver the security analysis within the limited time and
effort that was indirectly agreed upon with the client through the cost of the security audit.
However, in contrast to the security tests of PC based software, embedded security tests
bring many additional challenges the analyst needs to overcome first. For instance, the
firmware might not be available to the analyst in the first place since it may be locked
into a readout protected chip inside the embedded system. If the analyst is able to extract
the firmware, it is often infeasible to utilize powerful state-of-the-art dynamic analysis
techniques ranging from fuzz testing to advanced dynamic taint analysis and symbolic
or concolic execution [17, 94]. Instead, prevalent vulnerability discovery techniques on
embedded systems are still largely based on static analysis [13, 59, 118]. Considering the
typical time constraints and the many hurdles that need to be overcome, it is thus likely that
the security analyst will spend most of the analysis effort not analyzing the actual security
critical implementation but rather working on ways to overcome the prerequisites for the
security tests. Given that the time and effort requirements for embedded security tests
are much higher in comparison to security tests on PC based systems and the necessary
analysis time is often not available due to its costs, the outcome of conducted embedded
security tests may not be based on a well founded technical analysis. As a result, major
vulnerabilities might not be discovered at all. Although attackers would need to overcome
similar hurdles to discover exploitable vulnerabilities, in contrast to security analysts the
difference is that they are not limited in analysis time.

3

In this work, we focus on security analysis of networked embedded systems within the critical
smart grid infrastructure with the aim to overcome some of these shortcomings. Smart grids
adhere to a hierarchical model. At the top, there are typically large scale classical IT systems and
SCADA systems employing standard IT components. As a result, standard security management
and assessment procedures can be applied to those systems. However, towards the field level,
the smart grid heavily relies on embedded systems where the traditional security management
processes described above are not applicable due do their highly specific nature and functionalities
(Figure 1.1).

Figure 1.1: Attacks on the Smart Grid Hierarchy

To increase the overall security of those critical infrastructure embedded systems as well, a
security assessment approach needs to be developed that follows respected security management
procedures, but focuses on the (technical) architectures of these embedded systems-of-systems
just the same. This approach paves the way to identify systems with high attack potentials
that can be analyzed for security vulnerabilities. To conduct these embedded security audits,
state-of-the-art procedures need to be extended and new techniques need to be explored in order
to minimize the gap between the technical analysis techniques available for embedded systems
and the existing ones available for off-the-shelf PC systems. Some of the major problem fields
that need to be addressed are dynamic analysis approaches on embedded systems as well as the
analysis of systems that adhere to a security-by-obscurity model, for instance, by hiding security
critical information in silicon to avoid independent security analysis. This includes the common
problem that the firmware is locked into a silicon chip and can not be read out by analysts to
conduct independent in-depth security tests.

4

1.2 Aim of this Work

The aim of this thesis is to enable a holistic embedded system security analysis with special
emphasis on today’s most critical infrastructure: the electrical power grid that currently is under
continuous transformation to the smart grid. Specifically, we aim to address persistent problems
in the architecture driven smart grid risk assessment, firmware extraction, dynamic firmware
analysis and high-speed cryptographic attack domains. The expected result of this thesis is a
solid and practically usable architecture driven smart grid security assessment approach with a
current and near future time perspective to reflect the smart grid systems in the field right now or
systems that will be in the field in near future. Based on this approach, critical devices can be
identified that have a high-risk potential for attacks. At this point, the embedded security analysis
techniques developed within this thesis can be applied to those smart grid components in order to
assess their technical risks and to identify potential security vulnerabilities that would be a threat
to national critical infrastructure security. If the firmware can not be obtained from the device
through conventional means (i.e., over programming or debug interfaces), we provide an outlook
on how on-chip test modes can be utilized to extract the firmware.

Architecture Driven Smart Grid Risk Assessment and Security Management

In the first step, starting at classical security management processes, an architecture driven smart
grid security assessment approach is developed that can be practically used by utilities. In contrast
to existing methods, this approach will focus on the architectures and technologies in smart grids
that are already in use or that will be used in near future. Based on this smart grid model, a
practical architecture driven risk assessment approach is developed, allowing utilities to identify
high-risk smart grid components that need to undergo further security analysis.

Firmware Extraction

On embedded devices, a trend in the “security-by-obscurity” direction can be observed. Security
critical functions as well as the overall firmware can be either locked or hidden in the silicon
implementation of integrated circuits such as microcontrollers. To enable embedded security
analysis on these devices, in this thesis we explore the use of physical attacks to leverage test
modes hidden on the chip for firmware extraction and subsequent security analysis.

Dynamic Firmware Analysis

While for software components running on off-the-shelf PC systems there is a wide range of
existing security analysis and vulnerability discovery techniques, typical field components in
the smart grid hierarchy are embedded components that cannot be analyzed with these tools
[13,59,118]. Ultimately, independent deep-level embedded software security analysis can only be
done if the firmware is available to the analyst. While for source code audits existing approaches
are available, they also require the system manufacturer to disclose all of the implementation’s
firmware to the analyst. Unfortunately, in the typical case, the source code is not available
to analysts and hence this thesis will focus on binary embedded code analysis. As one of

5

the prevalent shortcomings of embedded code analysis is the difficulty of dynamic analysis
techniques on proprietary embedded firmware, in this thesis we explore emulation technologies
and hardware communication forwarding methods to enable dynamic firmware analysis for
vulnerability discovery.

High-Speed Cryptographic Attacks

Besides vulnerabilities in the embedded firmware itself, many network protocols are secured
with cryptographic authentication protocols so that only authorized users can interact with the
embedded device. Considering embedded system security with respect to outside attackers
without knowledge of authentication credentials, the attack surface on the firmware is thus limited
to the code fragments that implement the network message handling prior to and including the
authentication routines. While authentication significantly improves overall system security,
authentication protocols including cryptographic protocols are often either not properly imple-
mented or the utilized credentials such as passwords are too weak. An attacker could thus leverage
brute-force or time/memory tradeoff attacks to obtain system credentials within a reasonable
time frame. In this work, we aim to explore FPGA cluster supported high-speed attacks on
cryptographic systems to analyze the practical security of systems in the field.

1.3 State-of-the-Art and Related Work

Smart grids and smart grid technologies have been an ongoing research topic in the recent years.
While these technologies can significantly boost the efficiency and use of green energy, the
strong integration of ICT technologies raises the concern of potential security vulnerabilities
and attacks. Various works discuss the structure, building blocks, applications and potential
impact of smart grids [3, 111]. Others provide an overview of the currently developed technical
standards [25]. Even though the European Union aims for the transformation of traditional power
grids into smart grids within the near future, major security and privacy aspects still have not
been sufficiently addressed [60, 98]. For instance, both the U.S. NIST and the European ENISA
have released numerous guidelines on how to secure smart grid architectures [33, 81]. The Smart
Grid Coordination Group formed by the European standards organizations CEN, CENELEC
and ETSI has provided a comprehensive framework on smart grids in response to the EU Smart
Grid Mandate M/490 [102]. Within the “Smart Grid Information Security (SGIS)” report five
SGIS Security Levels to assess the criticality of smart grid components have been defined even
though the assessment is carried out under the unrealistic assumption that no security controls
whatsoever are in place. For smart metering, the German Federal Office for Information Security
(BSI) has come up with Common Criteria Protection Profiles [15, 16]. While these documents
are an important step in the right directions, they do not offer a holistic approach. NIST, for
instance, only focuses on technologies and regulatory security requirements for U.S. smart grids.
In contrast, the ENISA security measures focus on European smart grids, but just like NIST the
guidelines are mostly high-level only and the actual technical smart grid implementation is not
considered. Similarly, the BSI protection profiles do not provide a holistic approach either and
the focus of these profiles lies on smart metering only which is just one of the building blocks

6

of a smart grid. Even worse, their Target of Evaluation (TOE) focuses on a very specific smart
metering implementation that neither reflects the currently deployed smart metering systems
nor is it legally binding for European countries other than Germany. In contrast to the existing
approaches, we leverage smart grid modeling to obtain a holistic model of the system components
in European smart grids with a current and near future perspective. Subsequent risk assessment
is thus no longer on a high level but it rather focuses on the actual smart grid implementation.
Regarding risk assessment, Lu et al. present persistent security threats in the smart grid [72],
while Ray et al. provide a more formal approach to smart grid risk management in general [92].
The differences between the risk modeling of traditional power grids and the smart grid is outlined
by Varaiya et al. [44]. In contrast to their work, our focus is to leverage SGAM modeling [39] to
develop a practical risk assessment approach usable for utilities on top of a holistic smart grid
implementation model with a current to near future perspective. Smart grid risk assessment is
only one step in the cyclic smart grid security management process. We extended the state-of-the-
art with our architecture model driven risk assessment (Chapter 2) and management approach
(Chapter 3). A more detailed overview of the state-of-the-art within these topics is provided in
the corresponding Sections 2.1 and 3.1 of these chapters.

With architecture model driven smart grid risk assessment, high risk components can be identified
and selected for embedded security analysis. However, the firmware of these devices is often not
available to independent security analysts as the firmware is locked in microchips and can not
be read out in the first place. In Chapter 4, we explore physical attacks on smart grid devices in
general and describe several attacks that can also be used to dump the firmware of smart grid
embedded devices for subsequent security analysis. Weingart et al. [123] provide a survey of
physical attacks and defenses. Skorobogatov [101] outlines active fault injection and glitching
attacks while Kocher first introduced passive side channel [63] and power analysis attacks [64].
The idea of using different side channels to carry out attacks has been extended to EM emission
attacks by researchers such as Agrawal et al. [1]. The concept of using side channel information
for template attacks has been further explored by Chari et al. [19]. While previous work describes
many of these practical attacks, we describe the use of these attacks specifically for critical
infrastructure and smart grid devices. Some of the described attacks can not only be used to attack
the embedded devices themselves, but they are also usable for independent security analysts to
obtain the firmware for subsequent security testing.

In Chapter 5, we explored the idea of leveraging physical attacks for firmware extraction further
and show that limited IC reverse engineering can be utilized to discover manufacturing test modes
allowing to dump the device firmware. Several approaches to investigate IC test modes have
been explored by researchers, but most of them are non-invasive in nature. For instance, Sergei
Skorobogatov and Christopher Woods explore undocumented JTAG features using side-channel
measurements [100]. In [24], Jean Da Rolt et al. demonstrate an attack on single and multiple
scan chain structures to obtain secret AES encryption keys hidden within the chip. In [42], David
Hély et al. suggest scan chain scrambling against these non-invasive attacks. In contrast to the
described work, our approach is based on an invasive attack and not impeded by the suggested
countermeasures. Invasive IC reverse engineering was demonstrated by researchers such as
Karsten Nohl et al. as well [82]. Although we use a similar method, we specifically explore
limited effort IC reverse engineering to target IC testing logic for firmware extraction.

7

Once the firmware is available to the analyst, it can be analyzed to identify security vulnerabilities.
For embedded firmware security analysis, current research approaches mostly focus on static
analysis to achieve their goal. Khare et al. highlight key problems when using static analysis
techniques on a large embedded code base [59]. In contrast to our work, they perform the
analysis techniques on source code which is frequently not available to the analyst. Instead,
our approach is applied to the binary firmware image and access to source code is not required.
Ramakrishnan and Gopal do not require access to the source code as well as their static program
analysis techniques run on embedded binaries [118]. However, their focus is not on embedded
firmware security analysis or vulnerability discovery. Zili Shao et al. describe a framework for
embedded systems to check for and protect from buffer overflow attacks [96]. Their system
is more focused on vulnerability protection than on vulnerability discovery. In [108], Sumpf
and Brakensiek introduce device driver isolation within virtualized embedded platforms. Their
approach is somehow related to our dynamic firmware security testing approach although their
application is vastly different. In Chapter 6, we present PROSPECT, a system enabling dynamic
security testing on embedded system firmware. Our work on PROSPECT was published in
2014 [56]. In the same year, Zaddach et al. presented the Avatar framework [134] that also
addresses the dynamic firmware security testing problem. While our work relies on an embedded
operating system kernel, Avatar works on a lower level by cleverly instrumenting existing tools
such as the QEMU emulator.

Considering systems such as Avatar [134] or PROSPECT, we explored the use of peripheral
device communication caching in combination with program state approximation. Although to
the best of our knowledge we are the first to use this approach to support embedded firmware
security testing, the concept underlying our caching heuristic is related to the well known problem
of program slicing. Program slicing typically works on source code and has been broadly covered
by Weiser et al. [124], Korel et al. [66], Frank Tip [110] and Binkley et al. [8]. The problem of
binary program slicing with no access to source code has been covered more recently by Kiss et
al. [61] and Cifuentes et al. [21]. In contrast to exact program slicing, our caching approach relies
on weak program state approximation instead and is presented in Chapter 7.

To cover the practical analysis of cryptographic authentication mechanisms and protocols as well,
we explore FPGA clustering supported high speed attacks in Chapter 8 and present a high-speed
attack on the well known WPA2 Personal cryptographic authentication protocol. Researchers
such as Johnson et al. [48] have presented similar attacks. In comparison to their mostly sequential
design, we use a full pipelined approach that leads to significantly higher performance. Güneysu
et al. present the RIVYERA and COPACOBANA high-performance FPGA cluster systems
for cryptanalysis [40]. They cover a wide range practical attacks on algorithms such as DES,
Hitag2 or Keeloq and have a larger cluster configuration than we had available for our tests.
In contrast, our work relies on repurposed cryptocurrency mining FPGA systems and on the
well known WPA2-Personal cryptographic protocol instead. We also compare our system to
existing commercial FPGA cluster systems [32, 89] and claim that on the same hardware our
implementation is significantly faster than the world’s currently fastest commercial FPGA-based
password cracking solution [31].

8

1.4 Methodological Approach

Figure 1.2: Holistic Smart Grid Risk Management Process

Our overall methodological approach is visible in Figure 1.2. In the first step, we use SGAM
modeling [39] on top of both national and international smart grid projects that cover either
currently rolled out or near future technologies. The aim of this approach is to create a cumulative
model that reflects current and near future smart grid technologies in European smart grids.
We ensure that this model is realistic through feedback rounds with utilities and manufacturers.
In the second step, we evaluate well respected classical [35] and smart grid centric security
management processes [34, 36, 37, 84, 85] in feedback rounds with leading national utilities and
manufacturers. The aim is to determine their practical usability, how well those standards cover
the actual architectures in the field and the reasons why they are not utilized by utilities. Based on
threat sources such as [35–37] and [84], we develop a threat catalog by evaluating a large number
of threats from a smart grid perspective. By applying the threat catalog to the cumulative SGAM
model, we create a threat matrix that allows users (such as utilities) to assess the risk potential for
smart grid components on an architectural level. At this point, smart grid components with the
highest risk potentials are identified using the threat matrix and selected for a practical embedded
security analysis in a laboratory setup. In the third step, we explore physical attacks on smart

9

grid devices and show that some of these attacks can be utilized to extract the firmware from
embedded smart grid devices. If common firmware extraction approaches such as the use of debug
and programming interfaces fail (e.g., either due to not being available or due to security fuse
configuration preventing firmware readout), we amend the problem with limited effort test mode
silicon reverse engineering. We present a case study showing that even proprietary chip test modes
can be reverse engineered with limited effort and utilized to extract the device firmware. Once the
firmware is available to the analyst, in the fourth step, we address the shortcomings of prevalent
static analysis approaches in embedded security analysis [13, 59, 118]. We investigate the use
of emulators with proprietary peripheral device communication forwarding to enable dynamic
security analysis approaches such as fuzz testing [6, 70] and introduce PROSPECT, a proxy
capable of tunneling arbitrary peripheral hardware accesses from within a virtual machine to the
embedded system under test. The result is a virtualized execution environment for embedded
software implementations with a completely transparent connection to the actual peripheral
hardware components of the system under test. PROSPECT thus enables the analysts to leverage
any powerful dynamic analysis techniques of their choice [6,17,70,94] to discover vulnerabilities
on embedded devices with minimal effort. Based on PROSPECT, we also explore the use of
peripheral device caching and utilize firmware program state approximation to determine whether
a device is already in the cache and, if so, which of the cached device responses need to be
returned to the firmware under test. Our program state approximation heuristic is related to
program slicing [21, 61] and, similar to symbolic execution, suffers from the well known state
explosion problem [94]. Finally, to outline highly efficient attacks on future cryptographic smart
grid authentication protocols, we present the design and implementation of an FPGA (Field
Programmable Gate Array) cluster based high-speed brute-force attack on the well known WPA-2
Personal authentication protocol. In the last step, based on the obtained results, we finally close
the cyclic smart grid security management process and show existing security problems and risk
mitigation strategies for current and near future smart grids.
Throughout the research conducted during this thesis, it has been highly challenging to publish or
otherwise publicly disclose results concerning smart grid security. There were non-disclosure
agreements in place and results we obtained were often considered to impact national security.
To create scientific publications in spite of these challenges, we chose to evaluate some of the
approaches presented in this thesis on less critical embedded devices and protocols outside of the
smart grid domain instead.

1.5 Structure of this Work

This thesis is organized as follows: Chapter 2 presents a practical smart grid risk assessment
approach that utilizes a smart grid model based on the European Smart Grid Reference Architec-
ture [103]. The approach allows smart grid operators such as utilities to better identify high risk
smart grid systems that should undergo further security analysis. This work has been published
under the same title at the 3rd International Conference on Smart Grids and Green IT Systems
(SMARTGREENS) in 2014 [52] and was carried out in collaboration with Lucie Langer, Florian
Skopik, Friederich Kupzog and Wolfgang Kastner. Chapter 3 extends the approach of utilizing
a cumulative smart grid model and presents a holistic architecture-driven security management

10

approach for smart grids. The approach is realized in a cyclic process including a modeling step,
risk identification, risk assessment through security testing on embedded smart grid field compo-
nents as well as risk mitigation and compliance checking steps. The approach has been published
under the title “Architecture-driven smart grid security management” at the 2nd ACM Workshop
on Information Hiding and Multimedia Security in 2014 [51] conducted in collaboration with
Lucie Langer, Florian Skopik and Wolfgang Kastner. Chapter 4 presents an overview of physical
attacks on embedded smart grid devices. While the described physical attacks have a broader
scope than just firmware extraction, many of them can support independent security analysts to
extract and subsequently analyze device firmware. At the same time, manufacturers can increase
smart grid device security by considering these physical attacks in their design. The chapter
presented in this thesis is a subset of the chapter “Resilience against physical attacks” that has
been published in collaboration with Martin Hutle in the book Smart Grid Security: Innovative
Solutions for a Modernized Grid in 2015 [99]. From these physical attacks, Chapter 5 explores
the use of invasive limited-effort semiconductor reverse engineering to uncover the chip-internal
secrets of commonly utilized silicon test modes. Once the included test modes are understood,
it is often possible to extract deeply hidden firmware from the chip and subsequently analyze it
with respect to its security properties. Since smart grid microchips were unavailable for this kind
of analysis and the results would have been under strict non-disclosure agreements, we conducted
a case study on a cryptographic game console authentication chip instead. This work has been
published under the title “Breaking Integrated Circuit Device Security through Test Mode Silicon
Reverse Engineering” at the 21st ACM Conference on Computer and Communications Security
(ACM CCS) in 2014 [54] in collaboration with with my colleagues Markus Muellner, Daniel
Burian, Christian Platzer and Wolfgang Kastner. Chapter 6 introduces PROSPECT, a system
that addresses the problem of peripheral device communication during the dynamic firmware
analysis inside a virtualized analysis environment. PROSPECT (Peripheral Proxying Supported
Embedded Code Testing) leverages peripheral device communication forwarding so that the
firmware under analysis can be executed inside a virtualized environment even though the actual
peripheral devices are located on the real embedded platform instead. PROSPECT has been
published under the title “PROSPECT: peripheral proxying supported embedded code testing” at
the 9th ACM Symposium on Information, Computer and Communications Security (ASIACCS) in
2014 [56] in collaboration with my colleagues Christian Platzer and Wolfgang Kastner. Chapter
7 takes the idea of PROSPECT further and introduces a peripheral device communication cache.
During security testing techniques such as fuzz testing it is common that the same firmware code
regions are executed over and over again. Since peripheral device communication triggered by
these code regions will be highly identical, the approach would allow the caching system to be
trained so that subsequent test cases can be conducted with device responses from the cache.
As a result, existing dynamic firmware analysis techniques could become more powerful by
enabling functions such as snapshotting, test parallelization or testing without physical access
to the embedded system. The feasibility study has been conducted in collaboration with Daniel
Burian and Wolfgang Kastner and was published under the title “Embedded Security Testing with
Peripheral Device Caching and Runtime Program State Approximation” at the 10th International
Conference on Emerging Security Information, Systems and Technologies (SECURWARE) in
2016 [50]. While our work in the smart grid security domain has shown that many smart grid

11

devices still communicate over insecure unencrypted protocols, more secure communication and
authentication mechanisms leveraging cryptographic primitives will be on the rise in the smart
grid domain as well. To provide an outlook in efficient testing of those protocols, in Chapter
8 we explore the use of special purpose cryptographic hardware based on FPGA devices to
attack cryptographic authentication protocols. Due to a general lack of strong cryptographic
authentication protocols in current smart grid systems, in this work we present a very powerful
hardware assisted brute-force attack implementation on the widely established WPA-2 Personal
authentication protocol instead. Our work shows that FPGAs and FPGA clusters can be very
effectively used to attack cryptographic authentication mechanisms and, as a result, future smart
grid authentication protocols need to consider these attacks just the same. This work has been
published without the conducted case study under the title “Efficient High-Speed WPA2 Brute
Force Attacks using Scalable Low-Cost FPGA Clustering” at the Workshop on Cryptographic
Hardware and Embedded Systems (CHES) in 2016 [55] in collaboration with my colleagues
Markus Muellner, Christian Kudera and Wolfgang Kastner.

1.6 Summary of this Work

Smart Grid Modeling

In Chapters 2 and 3, we present a practical smart grid architecture model driven risk assessment
and security management approach that has been published under the title “Practical Risk
Assessment Using a Cumulative Smart Grid Model” at the 3rd International Conference on Smart
Grids and Green IT Systems (SMARTGREENS) in 2014 [52] and under the title “Architecture-
driven smart grid security management” at the 2nd ACM Workshop on Information Hiding and
Multimedia Security in 2014 [51]. In our joint approach to identify security risks in current and
near future smart grids, it turned out that smart grid experts, utilities and even manufacturers
have a very different view of what the smart grid is. Without a common view it is however
infeasible to leverage the combined knowledge for risk assessment. Consequently in the first
step, we asked utilities to compare their deployed smart grid systems with the existing European
Smart Grid Reference Architecture [103]. Specifically, we used the Smart Grid Architecture
Model (SGAM) [103] to allow for a well-structured comparison of 45 different smart grid
projects prioritized according to project size, project relevance, and both amount and quality of
available information. SGAM modeling initially originated from the need to identify gaps in
standardization, but today it serves three major purposes: It is a means to visualize and compare
different smart grid architectures, is allows to identify gaps in all layers and, finally, SGAM can
serve as a useful model to support model-driven architecture development. An overview of the
model is visible in Figure 1.3.
The model comprises zones, domains and interoperability layers. The zones are derived from the
typical layers of a hierarchical automation system [93], while the domains reflect power-system
specific fields of different actors. In the third dimension, the SGAM interoperability layers
covering the different aspects of networked smart grid systems are aligned. The study showed
that the reference model is only applicable on a high level and it lacks the detailed technological
information that would be required as a basis for qualified risk modeling. To close this gap,

12

Process
Field

Station
Operation

Enterprise

Market

Figure 1.3: Smart Grid Architecture Model (SGAM) Framework

together with utilities and manufacturers, we combined six national and four international projects
within the SGAM framework to form a cumulative architecture model that represents current
and future smart grid installations in Europe. For SGAM modeling in addition to the project
significance, detailed availability of information about the technical implementations was an
additional selection criterion for the selected projects. The following significant national smart
grid research projects were selected for modeling:

• IEM: Intelligent Energy Management

• Smart Web Grids [105]

• DG DemoNetz Smart LV Grids [62]

• ZUQDE: Zentrale Spannungs- und Blindleistungsregelung mit dezentralen Einspeisungen
in der Demoregion Salzburg [104]

• EMPORA: E-Mobile Power Austria [29]

• AMIS Smart Metering Rollout

13

A similar approach was applied to international projects. The selected significant projects were:

• The European FP7 Project OpenNode [87]

• The European FP7 Project EcoGrid EU [30]

• The US Demand Response Automation Server (DRAS) [26]

• The German ICT Gateway Approach OGEMA [86]

The resulting architecture model (Fig. 1.4) includes a harmonized cumulative view of the compo-
nents found in all analyzed projects and shows the component and communication layer of the
SGAM framework. We evaluated the architecture model in a number of feedback rounds with
utilities and manufacturers leading to the integration of subsequent improvements and additional
technical information. The feedback rounds thus also ensured that the model realistically reflects
the utilities’ existing smart grid installations as well. On the bottom, the field devices (such as
smart meters or dedicated sensors and actuators) can be found while on the station level, both
primary and secondary substation including their respective automation components are located.
The model also includes the customer side with residential customers, commercial buildings, and
electric mobility. At the top, the enterprise level and the marked components are visible.
While this model specifically represents current and near future smart grids in Europe, the major
difference to existing models is the inclusion of detailed communication technologies allowing
a more in-depth risk assessment approach. The underlined communication protocols and tech-
nologies are the ones that are predominantly used in the projects we analyzed. Regarding the
subsequent risk assessment approach, for instance, an insecure directional wireless communica-
tion link is much more likely to be targeted by attackers in comparison to a cryptographically
secured wired fiber link. Since the architecture model includes the necessary information on
employed communication protocols and technologies as well, model driven smart grid risk assess-
ment becomes feasible. The cumulative smart grid architecture model thus serves as an anchor
point for further analysis and as a common document of energy, IT and security experts. Since the
release and publication of the model at the 3rd International Conference on Smart Grids and Green
IT Systems (SMARTGREENS) (Chapter 2) and the 2nd ACM Workshop on Information Hiding
and Multimedia Security (IHMMSEC) (Chapter 3), the model and the subsequent risk assessment
approach have been utilized by national utilities and the Austrian regulator E-Control [28].

Smart Grid Risk Assessment

Smart grid risk assessment has been addressed in several several standards, guidelines and
recommendations. We analyzed the existing approaches to define a practical risk assessment
approach on top of the cumulative smart grid model (Figure 1.4). The U.S. National Institute
of Standards and Technology (NIST) has issued a report on “Guidelines for Smart Grid Cyber
Security (NIST-IR 7628)” [81]. It primarily focuses on customer privacy related risks and high-
level risk mitigation strategies but no general approach for assessing security risks in the smart
grid is provided. Based on existing work such as NIST-IR 7628 and ISO 27002, the European
Network and Information Security Agency (ENISA) has issued a report on smart grid security

14

Figure 1.4: Cumulative Smart Grid Model

15

to establish a minimum set of security in European smart grids [33]. It defines several security
measures categorized into three different “sophistication levels” ranging from early-stage to
advanced ones. The report specifically mentions that proper risk assessment needs to be carried
out to determine the required sophistication levels, but no actual risk assessment methodology is
identified within the report. Besides NIST and ENISA, the German Federal Office for Information
Security (BSI) has come up with Common Criteria Protection Profiles [15, 16]. The protection
profiles are focused on smart meters only (as visible in Figure 1.4, smart metering is just one of
the many components in a smart grid) and define the minimum security requirements for these
devices based on a threat analysis. However, due to the smart metering focus of the Common
Criteria approach, it cannot provide a holistic view on cyber security threats in future smart grids.
Another drawback is that the protection profiles focus on the German market whereas many smart
metering systems currently being rolled out in European countries are vastly different from the
BSI concept and do not correspond to the defined gateway and security module design concept.
Among other reports, the CEN-CENELEC-ETSI Smart Grid Coordination Group released the
“Smart Grid Information Security (SGIS)” report as a response to the EU Smart Grid Mandate
M/490 [102]. The report defines five SGIS Security Levels which are used to assess the criticality
of smart grid components based on power loss and ICT system failures. However, since the risk
assessment is based on the assumption that no security controls are in place, it is not suitable
for current installations or foreseeable implementations that already include at least some level
security. The FP7 project EURACOM considered protection and resilience of energy supply
in Europe with the similar aim to identify a holistic approach for risk assessment within the
energy sector. Their methodology is however asset-driven while our approach is required to be
architecture-driven based on our architecture model. We developed our architecture-driven risk
assessment approach with a focus on smart grids in Europe from a Distribution System Operator’s
perspective through the following steps:

1. Compile a threat catalog for smart grids focusing on ICT-related threats and vulnerabilities

2. Develop a threat matrix by applying the threat catalog to the ICT architecture model, i.e.,
identify which threats apply to which components of the model

3. Assess the potential risk for each element within the threat matrix by estimating the
probability and the impact of an according attack, thus eventually producing a risk catalog

Since our threat catalog should not be developed from scratch but instead builds upon well-
established sources of ICT-related security threats, we focused on the IT Baseline Protection
Catalogs developed by the Federal Office for Information Security [14] as our main source. In
addition, we included the threats specified in the smart-grid-specific Protection Profiles [15, 16].
Altogether we collected a set of initially 500 threats accumulated from the identified sources
which we carefully analyzed for their relevance for the smart grid and the ICT components it
relies on by adapting the threats to the smart grid scenario (i.e., they were interpreted in the smart
grid context). This step resulted in roughly half of the initial threats for further consideration.
Since some of these threats were highly specific while others were on a rather high level, we
performed a “weeding” step to obtain an equal threat granularity.

16

The result is a list of 31 threats grouped into the following clusters for practical threat modeling:

• Authentification / Authorization

• Cryptography / Confidentiality

• Integrity / Availability

• Missing / Inadequate Security Controls

• Internal / External Interfaces

• Maintenance / System Status

The next step was to apply the threat catalog to the cumulative smart grid model by analyzing
which threats are relevant for which of the modeled components and why. We assessed the
functionality and the characteristics of the individual architecture components at the granularity
level of the domains depicted in dark gray in Figure 1.4:

• Functional Buildings

• E-Mobility & Charge Infrastructure

• Household

• Generation Low Voltage

• Generation Medium Voltage

• Testpoints

• Transmission (High/Medium Voltage)

• Transmission (Medium/Low Voltage)

• Grid Operation

• Metering

We did not consider the Energy Markets domain due to the lack of current ICT utilization and
the lack of information on future functionalities. For each element in our threat matrix, we
developed potential attack scenarios and analyzed whether the specific threat could be relevant.
We documented the decision process and verified it through multiple feedback rounds with
manufacturers and utilities.
In the third step, we assessed the risk potential on the components in the cumulative smart grid
model with a semi-quantitative approach based on the probability and the impact of each of the
threats. On a five-level scale ranging from very low (level 1) to very high (level 5), the probability
level was determined by the number of successful attacks per year (less than 0.1 incidents (level
1) to multiple incidents (level 5) per year). Similarly, the impact of a successful attack was

17

determined by the level of the local, regional and global impact such as monetary loss, customer
impact or geographic range. The outcome of this step is our risk catalog, a comprehensive catalog
of cyber security risks on smart grids in Europe. To ensure practical usability and realistic results,
we evaluated our approach utilizing a three step evaluation methodology:

• Step 1: Evaluation of Threat Catalog. We set up end user workshops with experts from
utility providers, device manufacturers and academic institutions to evaluate both the
relevance and completeness of the identified threats.

• Step 2: Threat Relevance. In similar workshops, experts surveyed the applicability of
identified threats to the various domains in the SGAM framework. The result was again
discussed and refined with major utility providers in Austria in end-user centric workshops.

• Step 3: Probability and Impact Assessment. In a last step, we had experts independently
rate the probability of occurrence of identified threats to include the opinions of different
utility providers. The individual results were again discussed and consolidated to ensure
the broad use of the resulting threat and risk catalog.

In addition to the development of the practical architecture model driven risk assessment approach,
we identified the following four major findings:

Unbalanced Risk Distribution The risk distribution in smart grids is unbalanced. Although
attacks on the lower levels of the cumulative smart grid model are more likely due to easier access,
the impact is significantly less severe. On the other hand, attacks on the upper levels are much
harder to carry out, but if successful, their impact can be disastrous.

Evolution of the Grid Today, both legacy systems without ICT technologies as well as modern
systems need to be interoperable. As a result we need to face many security challenges including:
(i) the mix of legacy protocols and new protocols; (ii) the usage of wrappers, data converters,
and gateways to make devices interoperable, and (iii) short innovation cycles where technologies
advance in a clash with the traditional views of grid investments with components designed to
last for decades.

Technological Diversity Our analysis of smart grid projects shows that there is a high grade of
technological diversity due to the different employed technologies [98]. The diversity and the
need for seamless interoperability mostly avoids rigid designs and the setup of a uniform and
secure architecture, but at the same time it can also prevent cascading effects as the potential
vulnerabilities in the system of one device and/or system manufacturer are typically different
from another manufacturer.

Risk Assessment Complexity In contrast to traditional components in power grids, smart grids
heavily rely on the introduction of ICT components that significantly raise the complexity of risk
assessment. Even across geographical borders, systems become more and more interdependent on
each other leading to the advent of potential large scale and complex vulnerabilities. Estimating

18

risks for such cases is extremely difficult, since numerous mostly unknown variables need to be
considered across many communication links and systems. We argue that with our architecture
model driven risk assessment approach, the existing communication links as well as utilized
protocols are clearly documented and their interdependencies are clearly visible. As a result, we
believe that our approach can be of significant help to address the risk assessment complexity.

Physical Attacks and Firmware Extraction

Once high risk components have been identified through smart grid risk assessment, the next
step is to conduct an embedded security audit on these components. In Chapter 4, we explore
physical attacks on embedded smart grid components that have been published in the book chapter
“Resilience against physical attacks” in the book Smart Grid Security: Innovative Solutions for
a Modernized Grid in 2015 by Elsevier Science Publishing [99]. On a high level, physical
attacks can serve two purposes: First, security critical smart grid devices like smart meters are
often physically located in areas such as private households that are easy to access by potential
attackers. Due to their accessibility, an attacker could thus mount physical attacks to manipulate
a device such as a smart meter to gain an advantage (e.g., lower energy costs) or to extract secret
cryptographic key material for subsequent attacks on the utility’s ICT network infrastructure.
However second, physical attacks can also aid independent security researchers to conduct
security audits. For instance, the majority of the security critical device implementations such as
authentication or protocol handling resides in the device’s firmware. As a result, the firmware
needs to be analyzed for security vulnerabilities, but it might not be available to the independent
security researcher in the first place. For instance, the firmware could be stored in a non-volatile
memory chip or within a microcontroller with a security fuse to prevent firmware readout. In
these cases, security researchers can turn to physical attacks to dump the firmware or to analyze
security critical functions in the hardware itself. In Chapter 4, we initially present the goals of
physical attacks on smart grid devices. These goals are either passive information gathering or
active device manipulation. As physical attacks typically require lab testing equipment to carry
them out, we provide an overview of the typically required equipment, the equipment costs and
the resulting attack potential in Table 1.1.
While many attacks such as accessing or probing open interfaces are possible with equipment
available for less than EUR 1,000, more advanced attacks also require more expensive lab
equipment with an increasing level of sophistication. One of the major reasons is the ongoing
high integration depth of electronic components. While in the past, components such as memories,
CPUs and peripheral devices were all distributed across Printed Circuit Boards (PCBs) and thus
easily accessible, modern devices such as microcontrollers have these components integrated
within the silicon chip. As result, an attacker can no longer easily probe the interconnections of
the electronic components located on the PCB, but depending on the type of attack it might be
necessary to remove the package of an integrated circuit and probe nanometer-wide traces instead.
In general, we thus categorize physical attacks in non-invasive, semi-invasive and invasive attacks.
A taxonomic overview of these attack classes is provided in Figure 1.5. Non-invasive attacks
are attacks that can be carried out without having to open the package of integrated circuits. For
instance, an attacker could try to access a local bus to read and/or modify signals exchanged
between digital electronic components on the PCB. With semi-invasive attacks, the package of

19

Attack potential Techniques Typical equipment Typical equipment
costs (EUR)

Low

Access to local storage
Accessing open interfaces
Probing on buses
Simple faults

memory chip reader,
logic analyzer,
microcontroller/FPGA
boards

less than 1,000

Medium
Simple side channel attacks
Glitching Attacks

digital oscilloscope,
signal generator,
FPGA boards

2,000 - 10,000

Elevated

Enhanced side channel attacks
EMA
DPA
Template attacks
Semi-invasive attacks

high-resolution digital
oscilloscope,
FPGA boards,
chemical depackaging

10,000 - 50,000

High
Invasive attacks
Fault Attacks

(laser) probing station,
chemical depackaging,
focused ion beam (FIB)

more than 50,000

Table 1.1: Overview of the Physical Attack Potential

the integrated circuit is opened typically with wet chemical etching processes, but the silicon die
within the package is not modified in any way. Since the die is clearly visible now, the attacker
can use semi-invasive attacks such as optical attacks to either passively analyze or to actively
change functions on the chip during runtime. Invasive attacks go even further by modifying the
silicon die itself to enable attacks such as probing on internal buses or reverse engineering of
logic blocks implemented in silicon.
For each of those attack classes, we describe practical physical attacks on smart grid devices in
Section 4.2. The non-invasive attacks include access to local storage, accessing open interfaces,
bus probing, fault and signal injection as well as side-channel attacks. For instance, access to
local storage is an attack that can be carried out at low costs if the embedded device utilizes
external non-voltage memory chips such as NAND or NOR flash. In this case, the attacker or
the analyst can unsolder the memory chip and connect it to a low-cost microcontroller or FPGA
board to read out the firmware. An example of this approach is visible in Figure 1.6 that shows
how the firmware has been extracted from a smart meter device.
Embedded smart grid devices typically include numerous interfaces to communicate with the
outside world. In addition, the circuit boards of these devices often include debug and program-
ming ports such as JTAG (Joint Test Action Group) or serial debug consoles as well. Especially
programming ports such as JTAG are extremely powerful as they can not only be used for pro-
gramming, but they can often be utilized for firmware readout or dynamic firmware debugging
just the same. Attackers or analysts can thus utilize these open interfaces to read out and/or debug
the firmware or to change firmware behavior.

20

Figure 1.5: Taxonomy of Physical Attacks

Figure 1.6: Flash Memory Chip in a Smart Meter (left), Smart Meter Memory Chip Soldered to
Breakout Board for Readout (right)

Figure 1.7 shows identified programming ports in a smart grid substation automation system and
a smart meter. At the example of the smart meter it is visible how a simple breakout board has
been soldered to access the programming port and connect it to a JTAG debug dongle. With this
setup, we were able to read out and subsequently debug the smart meter firmware.
Local bus probing is another easy to carry out physical attack to gather information on inter-device
communication on the circuit board. For instance, a microcontroller chip within an embedded
system could utilize a standard serial bus such as SPI or I2C to communicate with a communi-
cation module such as a GSM modem. By utilizing standard measurement equipment such as
an oscilloscope or a logic analyzer, an attacker could probe the bus between those components
and analyze any information exchanged between them. As a result, the attacker could learn the
commands that are exchanged over the bus and use them for subsequent attacks. For instance,

21

Figure 1.7: JTAG and In-Circuit Emulation (ICE) Ports Inside a Substation Automation System
(left), Connected JTAG Interface on a Smart Meter (right)

the attacker could disconnect the communication module and instead connect a microcontroller
board with his own firmware. The firmware would subsequently pose as communication module
and could potentially return commands or data that would trigger unwanted behavior. However,
an attack targeted towards the communication module could probably have a high impact. In
that case, the attacker would disconnect the original microcontroller and connect his own one
to the communication module. This would allow him to send arbitrary commands over the
communication module to the utility on the other side.
If the firmware residing within an external non-volatile memory chip is encrypted or it is inac-
cessible (e.g., due to the integration of the non-volatile memory in the controller chip itself), an
attacker can resort to side channel and fault injection attacks. Considering a typical controller
chip, the general idea of a side channel attack is to passively measure variations in the operating
environment such as current draw, electromagnetic emanation or response time during operation.
Depending on the operations and the data the chip processes, these parameters change significantly
if observed on a small enough time scale. An attacker can thus leverage side channel information
to gather information on the internally processed instructions and data if the implementation
is not protected against these kinds of attacks. For instance, considering the above example of
an encrypted external memory chip, the attacker could attempt to measure the current draw of
the controller during decryption to obtain the secret decryption key or the secret password to
the chip’s bootloader (power analysis attack). In Section 4.2, we describe timing attacks, power
analysis attacks including Simple Power Analysis (SPA), Differential Power Analysis (DPA) and
template attacks as well as attacks utilizing electromagnetic emanation (EM).

22

Figure 1.8: Exemplary Power Trace of a Microcontroller During the Execution of a Simple
Algorithm

With SPA the attacker directly analyzes the taken measurements to get clues on executed in-
structions and data (Figure 1.8). Since this approach is somewhat limited and often tedious,
DPA uses a different approach. The general idea of DPA attacks is to use a power model. The
attacker creates hypotheses about the processed data (i.e., one byte of the encryption key) and
computes the theoretic power trace for each of the hypotheses. These theoretic power traces are
then compared to the actual measured power traces by computing the statistical correlation. Due
to the use of statistical correlation, DPA is also known as Correlation Power Analysis (CPA).
The higher the correlation, the higher is the match between the measured power trace and the
power trace hypothesis. This way the attacker can remove implausible candidates and ultimately
determine the correct guess.
An exemplary setup to carry out a DPA attack is visible in Figure 1.9. Template attacks and other
profiling attacks assume that the attacker has full control over an identical device. The device
under control of the attacker is used to create a power model of interesting operations such as
symmetric or asymmetric cryptographic routines. The model is then applied on the other device
to identify these operations and the processed data. EM attacks use electromagnetic emanation
instead of power analysis. While the same types of attacks as with traditional power analysis
can be applied (i.e., SPA, DPA and template attacks), the advantage of EM attacks is that in
comparison much faster signals can be observed.
In contrast to passive side channel attacks, fault injection attacks actively influence the operating
environment such as the voltage or the system clock of the chip. In Section 4.2, we describe clock
and voltage glitching attacks. The idea of these attacks is to induce momentary faults during

23

Figure 1.9: FPGA Based DPA Measurement Setup

security critical operations of the chip allowing the attacker to circumvent typical protection
mechanisms. For instance, an embedded smart grid device might contain a microcontroller
with security critical firmware residing in the chip. The analyst would like to read out the
firmware over the microcontroller’s programming port but as a countermeasure the device
manufacturer has configured the controller’s security fuse to prevent firmware readout. If the
internal implementation of the microcontroller chip checks the state of the security fuse setting
in software, the analyst could resort to a clock glitching attack. During clock glitching one or
more very short clock pulses are inserted at the time of the security fuse check. Since the clock
speed of these momentary pulses is too high for the controller, some of its more complex internal
combinatoric logic blocks will not be finished when the next clock signal arrives whereas lower
complexity logic blocks such as the program counter will work as expected. From the context
of the software security fuse check, a successful attack would thus cause the program counter
to increase while the security fuse comparison operations (i.e., typically a branch instruction)
would not finish. As a result, the attacker could thus practically skip the security fuse check and
read out the firmware even though the security fuse would normally prevent this action. Voltage
glitching attacks can lead to a similar result but they utilize a different approach. Depending on
the employed memory technologies, the chip’s internal memory cells often work by comparing a
stored charge (i.e., the state of a stored bit) with a threshold reference voltage. If the attacker can
momentarily change the supply voltage of the chip, the threshold reference voltage is changed
as well and the read out bit state of the memory cell might no longer represent the stored bit
state. Depending on the voltage glitch, an attacker could thus force the chip’s internal logic
implementation to read out the state of the security fuse in a wrong way allowing him to dump
the device’s firmware even though this function has been originally disabled through the security
fuse setting.

24

If the chip is not susceptible to non-invasive attacks, an attacker or analyst can resort to semi-
invasive and invasive attacks that require the decapsulation of the chip package so that the die is
exposed. In Section 4.2, we present our decapsulation process that is based on milling a small
cavity into the chip package followed by wet chemical etching with fuming nitric acid, rinsing in
acetone and ultrasonic cleaning (Figure 1.10).

Figure 1.10: Chip Decapsulation with Fuming Nitric Acid (left), Rinsing with Acetone (right)

Depending on the level of invasiveness, significantly more powerful attacks become available. For
instance, depending on the utilized memory technology, the content of ROMs might be optically
read out. Localized fault injection attacks become feasible by utilizing lasers on active chip
regions to cause transistors to switch through even though there is no voltage supplied to their
gate. Utilizing a localized laser fault injection attack, an attack could thus circumvent the readout
logic of the security fuse to enable firmware readout despite the security fuse setting. To discover
the physical location of the security fuse and its readout and buffering logic, the use of IC reverse
engineering techniques is common. For IC reverse engineering, the IC is imaged under an optical
microscope or a Scanning Electron Microscope (SEM). The reverse engineer analyzes the taken
images to gather information on the internal chip structure and functions such as the security
fuse or hidden test modes that could be utilized to carry out attacks (Figure 1.11). To obtain the
information of all chip layers, it is necessary to carefully remove and image all chip layers. As
a result, the attack is no longer semi-invasive but fully invasive. Considering invasive attacks,
once again significantly more powerful attacks become feasible essentially bringing PCB level
attacks such as probing or signal injection down to the chip level. We present basic protection
mechanisms against these kinds of attacks and conclude that critical smart grid devices should
rely on secure hardware components instead so that the presented attacks can be mitigated or
even prevented in the future.

25

Figure 1.11: Microchip Image Analysis (left), Scanning Electron Microscope (right)

In Chapter 5, we further explore the use of IC silicon reverse engineering techniques to analyze
proprietary chip test modes for firmware extraction which has been published under the title
“Breaking Integrated Circuit Device Security through Test Mode Silicon Reverse Engineering” at
the 21st ACM Conference on Computer and Communications Security (ACM CCS) in 2014 [54].
During the manufacturing process of Integrated Circuits, a wide range of techniques such as
lithography, deposition and etching processes are used to transfer the design to the silicon substrate
wafer [125]. Each of those processes can lead to subtle manufacturing defects that would render
individual dies on the wafer unusable. As a result, designers typically use “design for testability”
approaches by adding test modes to the silicon design. During the manufacturing process these
test modes can be utilized to detect and remove faulty dies. In the finished product, more advanced
test modes like JTAG can also be utilized for additional purposes such as programming and
debugging. In Section 5.2, we describe test modes commonly found in modern IC devices.
Common test modes are scan chains, JTAG test functions, Built-In Self-Test (BIST) or proprietary
test modes [90]. Scan chains are typically inserted by dedicated scan chain insertion tools. The
basic idea of a scan chain is visible in Figure 1.12. Synchronous logic can be described at the
Register Transfer Level (RTL) comprising clock driven registers and combinational logic blocks.
Considering a single input bit, a combinational logic block is thus sourced from a flip-flop and
after some combinational logic delay the result will be available at an output flip-flop. If a scan
chain is inserted, relevant flip-flops are extended with an additional multiplexer and a test mode
enable input (shift_en). If the test mode is not enabled, the flip-flops will behave like ordinary
flip-flops. However, if enabled, all scan flip flops are chained together so that the output of one
scan flip-flop is used as the input of the next scan flip-flop and a very large shift register is formed.
This way during testing, a test vector can be written into the large shift register. Afterwards the
device is clocked a few times with the test mode disabled and once re-enabled, the state of all
scan flip-flops can be read out and compared with the expected result. This way errors can be
efficiently detected and localized. In the finalized IC, the scan chains are typically still available
but kept secret. If an attacker manages to uncover the secret mode of operation, arbitrary states
can be injected and security critical internal device states could be read out.

26

Figure 1.12: Simplified Scan Chain

JTAG test modes are another common way to test ICs during manufacturing. The general idea of
JTAG is to implement a state machine (Figure 1.13) that can be utilized over dedicated device
pins to specify the test mode, its parameters and to read out the result of the test. In addition
to documented test modes that can be utilized by device users, device manufacturers often
implement their own secret test modes to verify the function of the die during the manufacturing
process. If discovered by attackers, it is often possible to circumvent device security leading to
the full disclosure of internal device states. For instance, Skorobogatov et al. recently applied
side channel attacks to identify a test mode usable as backdoor inside a high-security chip [100].

Figure 1.13: JTAG State Machine [5]

Built-In-Self-Test (BIST) is another common method enabling the IC to test itself during startup.
The general idea is to generate a pseudo-random test input from a known static seed value. The
test input is supplied to the on-chip components and the output is compared with a table containing
known good results. Depending on the implementation of these tests, an attacker might be able to
abuse the BIST logic to obtain security critical internal device information. Although scan chains,
JTAG and BIST are de-facto industry standards, manufacturers can still choose to implement

27

their very own proprietary test modes. From an attacker’s view, utilizing non-invasive techniques
such as sniffing, signal injection or side-channel attacks is not promising to determine how these
proprietary test modes work and deep silicon analysis is clearly the better choice. In Section
5.3, we present a case study showing how limited effort silicon reverse engineering can be used
to uncover the secrets of hidden test modes to extract device firmware. After an initial PCB
and signal analysis using conventional non-invasive physical attack techniques such as probing
(see Chapter 4 on physical attacks), we decapsulate the chip in concentrated sulphuric acid at a
temperature of 170 ◦C in multiple wet chemical etch rounds (Figure 1.14). After that the chip is
cleaned in acetone and isopropanol in an ultrasonic cleaner. To get an overview of the blocks on
the die, we took 19x27 (i.e. 513) images on a motorized optical microscope and stitched them
together to obtain a detailed 87 Megapixel image. The image analysis shows that the chip has two
ROM memories (blocks marked in red with letters B and E), a RAM (letter C), a CPU (letter D)
as well as an unknown logic block (A). In addition, we added the pinout information to the image
so that both unknown and known or measured pin functions such as power supply, clock and data
pins are visible. The pin functionality is also roughly visible by analyzing the silicon layout. For
instance, power supply pins do not have I/O buffers and can be clearly distinguished from data
I/O pins. Good clues to identify test pins are thus I/O pins that are unconnected or driven with
static voltage levels on the PCB. Since the major building blocks on the IC have been identified,
probably locations of test modes are the unknown logic block as well as the CPU block.

15 10

1

5

7

8

11

9

1214 13

643

2

A

B C

E

D

Figure 1.14: Decapsulation in Concentrated H2SO4 (left), Commented CIC Die with Manufac-
turer Chip Label CECRN8 (right)

For detailed test mode reverse engineering, we imaged interesting IC areas with a Scanning
Electron Microscope and stitched the images together. In the detailed analysis, interesting I/O
pins that could potentially lead to test mode functionality are used as starting point. From these
pins, we followed the signal traces to get clues on the connected logic implementation. Figure
1.15 shows exemplary logic blocks connected to the suspected test mode pins 6 and 7. The
analysis shows that the pins control test mode multiplexers. Further silicon analysis showed
that signals from these multiplexers end up in flip-flops (i.e., registers) and logic blocks next to

28

the ROM. Our investigation finally revealed that there are multiple test modes and that data can
be loaded into the instruction register over the external test pins. Within our proof of concept
implementation, we were thus able to achieve arbitrary code execution.

I
N
V

I
N
V

A
N
D

A
N
D

A
N
D

A
N
D

6 7

!6&7

MUX

A3!6&7

15

Figure 1.15: Proprietary Test Mode Logic (left), Test Mode Multiplexer (right)

Whenever necessary, we had to delayer the die so that deeper microchip layers become visible
during the analysis. For that process, we utilized a lab polishing machine with a 0.1µ hard
polishing disc and water as a lubricant (Figure 1.16). The more unwanted material we removed,
the shorter our polishing runs followed by optical microscopic analysis became until we finally
achieved a satisfying result.

Figure 1.16: Polishing Machine with 0.1µ Polishing Disc and Water as Lubricant (left), Poly
Layers below M1 Metal Layer of CPU Instruction Decoder Unit (right)

With the obtained information gained through limited effort silicon reverse engineering, we were
now able to fully understand the proprietary test mode in the chip. Through the test mode and the
achieved arbitrary code execution we were able to inject our own code and to successfully read
out the secret code in both of the ROMs. The details of our attack are described in Section 5.3.
We disassembled and fully reverse engineered the code from the ROMs in a disassembler. To
verify that our findings were indeed correct, we implemented the reverse engineered algorithm on
an FPGA and exchanged the real chip on the PCB with our programmed FPGA. Our evaluation
shows that the system works as expected and the results we were able to obtain from the extracted
code are indeed correct. Our work effectively demonstrates that limited effort silicon analysis is a
viable option to discover and reverse engineer secret IC test modes even if they are proprietary

29

and do no follow de-facto standards. By utilizing these test modes, device security can often be
broken and the firmware can be extracted and analyzed as presented.

Embedded Security Audit

As soon as the firmware is available to the analyst, a firmware security audit can be conducted
by utilizing vulnerability discovery techniques typically based on static analysis or more pow-
erful dynamic analysis approaches. Unfortunately, mainly due to custom proprietary hardware,
undocumented peripherals and strict system limitations, recent publications have shown that in
comparison to PC based commodity systems the prevalent vulnerability discovery techniques
on embedded systems are still mostly based on static analysis [13, 59, 118]. In Chapter 6, which
has been published under the title “PROSPECT: peripheral proxying supported embedded code
testing” at the 9th ACM Symposium on Information, Computer and Communications Security
(ASIACCS) in 2014 [56], we describe the typical dynamic analysis challenges on embedded
systems and present PROSPECT, a system that enables dynamic firmware analysis by forwarding
peripheral device communication from a virtualized analysis environment to the embedded system
under test. We outline common vulnerability discovery techniques for binary code on PC based
systems and point out that for widely established approaches such as fuzz testing (Section 6.2),
dynamic taint analysis or symbolic and concolic execution [17, 94], dynamic analysis is often
a key requirement. Considering that a PC system comprises of hardware, an operating system
and software applications, a security analyst can dynamically instrument any of these layers
by leveraging tools such as state-of-the-art-debuggers, OS centric analysis frameworks such as
CWSandbox [127] or Virtual Machine Introspection (VMI) [38]. Although a typical embedded
system (Figure 1.17) has an apparent resemblance to a PC system, dynamic analysis is much
more challenging.

CPU

ROM SRAM

I/O ControllerI/O ControllerI/O Controller

DRAM

Flash

SoC Memory Peripherals

Figure 1.17: A Typical Medium to Large Scale Embedded System

30

Driven by small size, low power consumption and low prices, embedded systems are often highly
resource constrained, access to the file system is limited, and the OS kernel and tools available on
the device include just a minimal set of functions to fulfill the necessary tasks of the embedded
device product [88]. Under this perspective, many common vulnerability discovery techniques
on PC based systems are hard to apply to their embedded systems:

1. Utilizing a debugger to instrument a program is only feasible if the embedded OS kernel
includes support for the necessary system calls (i.e., ptrace()). However, even with
basic kernel support, running a state-of-the-art debugger on the system itself might not be
an option to its resource constraints.

2. Instrumenting the operating system typically requires the modification of the kernel or the
loading of driver modules. However, since embedded systems typically run customized
operating kernels tailored to their specific hardware devices, instrumenting the operating
systems might not be feasible as well.

3. Instrumenting the hardware would require virtualization of the entire embedded system
including its often proprietary peripheral devices. These proprietary devices are accessed
by the firmware. In case a required peripheral device is not available or does not behave
like expected, the firmware can no longer by analyzed. With tremendous effort propri-
etary peripheral devices and their communication interface would thus need to be reverse
engineered and implemented as emulation code before the actual security audit could
commence. As a result, the full hardware virtualization approach might not be feasible for
security testing just the same.

Figure 1.18: A Typical Graybox System Example

Figure 1.18 shows a typical graybox system from the security analysts point of view. For instance,
the analyst’s goal could be to test the security of a networked userspace application with fuzz
testing and dynamic analysis for monitoring. However, for the reasons mentioned above, the
analyst needs to face the challenges portrayed above and it is likely that dynamic analysis
approaches won’t be available. The system thus lacks the support and resources to run security
analysis tools on the embedded device itself and the userspace application can not be analyzed in
a virtualized analysis environment since the system’s peripheral devices won’t be available in

31

the virtual machine. However, one key observation is that the userspace applications within the
firmware typically use standardized interfaces such as character devices to communicate with
the device driver which in turn interacts with the peripheral hardware. At the system call level,
the basic idea of PROSPECT is to transparently forward peripheral device communication from
within the virtualized analysis environment to the embedded system hardware. The firmware
can thus be executed from within a virtual machine, any device accesses to selected peripheral
devices will be forwarded and the firmware can interact with the real hardware. PROSPECT thus
allows to overcome many of the dynamic security testing challenges that typically need to be
faced on embedded systems, today.
Targeting the Linux platform, we analyzed the source code of the character device drivers in three
different Linux kernel versions (Linux-2.4.20, Linux-2.6.38.1, Linux-3.4.4) to identify common
system calls that are used to interact with the drivers. Due to the required structure of Linux device
drivers, each driver needs to define a file_operations field that includes the supported
system calls and the handling functions in the driver implementation. Table 1.2 provides an
overview of the analyzed number of device driver files and the percentage of files that actually
define file_operations. We believe that on newer kernels a higher level of device driver
abstraction is utilized which is why the amount of files that directly define file_operations
is lower in comparison to older kernel versions.

Linux-2.4.20 Linux-2.6.38.1 Linux-3.4.4
files fops fops % files fops fops % files fops fops %
264 77 29.17 143 62 43.36 107 54 50.47

Table 1.2: Analyzed Device Drivers on Different Linux Kernel Versions

For those files that contained a file_operations field, we analyzed their supported system
calls. The result is visible in Table 1.3. For instance, it can be seen that in Linux-2.4.20, 83.12%
of the device drivers support the open system call while the percentage is a bit lower (74.19%
and 77.78%) for Linux-2.6.38.1 and Linux-3.4.4.
Although PROSPECT could forward any of these system calls to the remote system, it is necessary
to execute some of them locally while other ones need to be forwarded. For instance, system
calls such as flush, sync, fasync or aio_fsync can be executed locally if the access to
the remote devices is kept synchronized. Other system calls that directly exchange data with
the device (e.g., ioctl, read, splice_read, write and splice_write) need to be
executed remotely. The open system call is special since both the file descriptors on the local
system and on the remote system need to be considered. PROSPECT can handle the listed
basic file operations (i.e., system calls) visible in Table 1.4. The table shows the supported
system calls and whether they are executed locally or remotely. Our system thus supports all
operations that are frequently used for character devices with the exception of mmap which has
not been implemented due to lacking support in the underlying FUSE (Filesystem in Userspace)
framework.

32

Syscall Linux-2.4.20 Linux-2.6.38.1 Linux-3.4.4
aio_fsync - 0.00 0.00
aio_read - 1.61 1.85
aio_write - 1.61 1.85
check_flags - 0.00 0.00
compat_ioctl - 6.45 7.41
fallocate - 0.00 0.00
fasync 28.57 11.29 12.96
flock - 0.00 0.00
flush 14.29 - -
fsync 0.00 3.23 3.70
get_unmapped_area 2.60 1.61 1.85
ioctl 84.42 - -
llseek 6.49 32.26 29.63
lock 0.00 0.00 0.00
mmap 18.18 12.90 14.81
open 83.12 74.19 77.78
poll 32.47 20.97 25.93
read 68.83 82.26 85.19
readdir 0.00 0.00 0.00
readv 0.00 - -
release 77.92 62.90 66.67
sendpage 0.00 0.00 0.00
setlease - 0.00 0.00
splice_read - 0.00 0.00
splice_write - 0.00 0.00
unlocked_ioctl - 51.61 50.00
write 62.34 50.00 55.56
writev 0.00 - -

Table 1.3: Usage of Linux file_operations in Character Device Drivers (Percentage)

d e f i n e _IOC (d i r , type , nr , s i z e) \
((d i r << _IOC_DIRSHIFT) | (t y p e << _IOC_TYPESHIFT) | \

(n r << _IOC_NRSHIFT) | (s i z e << _IOC_SIZESHIFT))

Listing 1.1: Encoding for well-formed IOCTLs

The IOCTL (I/O control) mechanism supports two types of IOCTLs: Well-formed and unre-
strictive IOCTLs. Well-formed IOCTLs use the encoding visible in Listing 1.1 so PROSPECT
can determine whether the call is supposed to read from or write to the remote process space.
However, unrestrictive IOCTLs do not have encodings and, as a result, PROSPECT can not
determine the direction of the transfer, how much data is supposed to be transferred and whether
provided parameters are supposed to be pointers. We addressed this challenge by introducing a
technique, we denote as dynamic memory tunneling which is described in detail in Section 6.4.
The general idea of the concept is to use a heuristic to determine whether a parameter could be

33

Syscall supported implemented local/
through remote

aio_fsync yes fsync local
aio_read yes read remote
aio_write yes write remote
check_flags no - -
compat_ioctl yes ioctl remote
fallocate no - -
fasync yes fsync local
flock no - -
flush yes fsync local
fsync yes fsync local
get_unmapped_area no - -
ioctl yes ioctl -
llseek yes llseek remote
lock no - -
mmap no - -
open yes open remote
poll yes poll remote
read yes read remote
readdir no - -
readv no - -
release yes release remote
sendpage no - -
setlease no - -
splice_read yes read remote
splice_write yes write remote
unlocked_ioctl yes ioctl remote
write yes write remote
writev no - -

Table 1.4: Basic file_operations supported by PROSPECT

a pointer within a mapped memory region (pointer detection). If the parameter is a potential
pointer, the memory region is accessed and a multiple of the kernel’s page size is transferred to
the target device. Here, the ioctl call is executed and the resulting buffer is compared with the
transferred buffer. At this point, the difference between those buffers as well as the return value
of the ioctl call is returned to the originating system.
Figure 1.19 provides an overview of the PROSPECT implementation. On the left side, the
virtualized analysis environment based on QEMU is visible. Within the system, parts of the
firmware under analysis (i.e., userspace applications) can be instrumented with a debugger
or more advanced dynamic analysis techniques. Since the analysis environment has its own
kernel and the emulator uses the resources of the PC based host system, the security analyst is
typically neither tool nor resource constrained. Whenever the application under analysis needs
to access peripheral hardware devices, it will utilize character devices to communicate with the

34

Figure 1.19: Peripheral Character Device Forwarding

driver. The driver would it turn use hardware interfaces to interact with the peripheral hardware
device. However, under the analysis environment neither the potentially proprietary driver nor
the embedded system peripheral hardware are available and the application would typically fail
to execute. PROSPECT addresses this challenge with virtual character devices and transparent
forwarding to the target embedded system visible on the right side of Figure 1.19. Within the
analysis environment, our system comprises a PROSPECT client and userspace driver. With the
help of the userspace driver, each client instance will create a unique virtual character device that
can be accessed by the application under analysis. Depending on whether system calls should
be executed locally or on the remote side (Table 1.4), the calls are forwarded to the PROSPECT
server stub on the target embedded system. At this point, the system call can be executed on the
real character device to interact with the attached peripheral hardware. The results are returned
to the PROSPECT client and are finally returned to the application under analysis through the
virtual character device. Since the server stub needs to be executed on the resource constrained
target system, it comprises a lightweight implementation with minimal system and software
requirements. The full description of our implementation is available in Section 6.4 including
details on how we addressed concurrent device accesses, file descriptor tracking or IOCTLs
with our dynamic memory tunneling technique. In Section 6.5, we evaluated PROSPECT in
two ways by measuring its performance impact based on system call timing and by conducting
a full-scale security audit on a real-world embedded firmware alarm system over a period of
more than 6 months as a case study. For the performance evaluation, we selected system calls
typically used for character device accesses (Table 1.5) and executed them within the analysis
environment with PROSPECT as well as on a native 324 MHz embedded Linux MIPS system
with 16MiB RAM. We utilized the strace tool to collect timing information on 196, 075
system calls on the analysis environment and on 166, 972 system calls on the native embedded
system. Our results are visible in Table 1.6 and show that especially the open and ioctl system
calls cause a significant slowdown. The open performance impact is caused by the connection
establishment between the PROSPECT client and server on the remote system while the ioctl
slowdown stems from the dynamic memory tunneling mechanism described in Section 6.4. At
the same time, our results indicate for typically heavily used system calls such as lseek(),

35

Figure 1.20: Security Analysis Environment

read(), write() and _newselect()), the performance impact is practically insignificant
considering that the main use of PROSPECT is enabling dynamic analysis techniques such as
program debugging (i.e. single stepping) and code analysis. A full description of our performance
evaluation is available in Section 6.6.
In our case study in Section 6.5 involving a practical security audit of a commercial embedded fire
alarm system, we utilized PROSPECT in the security audit setup visible in Figure 1.20 to forward
more than 500, 000 system calls per analysis run. Overall, the firmware under analysis used 29
multi-threaded processes that concurrently access 5 different peripheral devices which have all
been forwarded from our analysis environment to the embedded target system. Within our setup,
we performed extensive fuzz testing with dynamic analysis for monitoring as well as dynamic
code analysis such as debugging and manual single-stepping through the code. Our security tests
revealed a previously unknown zero-day vulnerability in the system and showed that PROSPECT
can be utilized for practical real-world application. Nonetheless, PROSPECT has limitations
on its own including the slowdown potentially preventing the analysis of time-critical real-time
systems, the current lack of mmap support due to FUSE limitations or the server’s requirement of
pthread support on the target system (Section 6.7).

Operation Function
close() Close device
ioctl() I/O Control mechanism
lseek() Seek to a given position
_newselect() System call used for poll()
open() Open device
read() Read data from device
write() Write data to device

Table 1.5: System Calls used for Character Device Access

36

Syscall Native [%] Native [ms] Fwd. [%] Fwd. [ms] Diff. [ms] Slowdown [x]
write() 21.27 6.07 22.79 25.39 19.32 3.18
lseek() 28.14 0.12 18.88 2.31 2.2 18.65
ioctl() 1.6 0.89 4.27 117.15 116.26 130.37
_newselect() 14.8 43.27 17.14 40.85 -2.41 -0.06
read() 34.16 1.03 36.9 3.29 2.26 2.19
close() 0.01 0.1 0.0 N/A N/A N/A
poll() 0.0 N/A 0.0 N/A N/A N/A
open() 0.02 0.9 0.02 684.62 683.72 757.37

Table 1.6: PROSPECT Slowdown

In Chapter 7, which has been published under the title “Embedded Security Testing with Peripheral
Device Caching and Runtime Program State Approximation” at the 10th International Conference
on Emerging Security Information, Systems and Technologies (SECURWARE) in 2016 [50],
we extend the idea of PROSPECT by introducing an intermediary cache. The basic idea is
that many vulnerability discovery techniques such as fuzz testing are highly repetitive. For
instance, a security analyst might specifically focus on a small security critical firmware code
region (e.g., communication handling routines executed prior to user authentication) to discover
vulnerabilities exploitable by unauthenticated attackers. If techniques such as fuzz testing are
applied, many highly similar test cases will be handled by the firmware under analysis. Since
mostly the same code fragments will get executed over and over again during these tests, also the
peripheral device interaction within those code fragments will be highly similar. Considering a
transparent peripheral device communication proxy such as Avatar [134] or PROSPECT [56]
(Chapter 6), adding a caching mechanism (Figure 1.21) could render existing dynamic analysis
approaches more powerful by allowing techniques such as snapshotting, test parallelization or
testing without physical access to the embedded system. The challenge is not the cache itself,
but the caching strategy to decide whether a specific device response is already in the cache and
which response should be returned to the firmware at which time. Whenever the cache receives a
device request from the proxying framework, it needs to decide whether it is a cache hit or miss.
In case of a cache hit, the device response is already in the cache and it can be returned to the
framework without interaction with the real embedded hardware. Otherwise, in case of a cache
miss, depending on the expected device state it might be necessary to bring the hardware into the
necessary state as well before the actual request can be executed. This can be done by resetting the
hardware and replaying prior device interactions the program under analysis performed until this
point. The cache thus needs to retain the device request and response history as well. In Section
7.3, we implement and practically evaluate three different peripheral device communication
caching strategies: (1) choosing responses by command, (2) choosing responses by command
and command history as well as (3) choosing responses by program state approximation.

37

Figure 1.21: Embedded System Testing Utilizing PROSPECT with an Intermediate Cache.

Choosing Responses by Command In case of stateless or very simple stateful peripheral
devices such as a controllable switch, the cache does not need any additional information than
the device request command itself. For instance, in case of a switch, the open and close
commands are sufficient for the cache. In case of an open command, it would just return that the
device has been turned on while for the close command it would confirm that the device has
been turned off. Since the firmware typically depends on successful device operations, it would
continue its normal execution in presence of the cache. However, as soon as a device command
can have multiple return values, the approach can no longer be utilized. An example would be a
realtime clock (RTC) module that would return a new timestamp each time the device is read.

Choosing Responses by Command and Command History An improved strategy is to con-
sider the communication history with the peripheral device as well. For instance, in case of a
toggle_switch command, the command would either turn on or turn off the switch depend-
ing on its current state. If the command is supposed to return the current state of the switch, the
cache needs to consider previously issued commands to know the current state of the peripheral
hardware device to return the expected response to the firmware. Another example would be a
counter peripheral that returns a new counter value each time the device is read. The example of
the realtime clock (RTC) module can be seen as a special case of a hardware counter. During a
first training execution the cache could thus learn from the previous interaction with a device so
that the expected replies can be replayed during later firmware executions. However, even if the
peripheral device interaction during similar firmware execution runs remains deterministic, the
approach fails as soon as the same device is accessed by multiple executions threads at the same
time. In this case, even for the same program input the thread scheduler will cause a different
execution order of the threads. From the perspective of the cache, the program will thus no longer
be deterministic and it becomes unclear which device response is expected by the firmware. In
Section 7.3, we provide an example program that illustrates the problem.

Choosing Responses by Program State Approximation A more advanced strategy is to make
the cache aware of firmware program state. Whenever a program is executed, it will make use of
resources such as the CPU and stack memory. The CPU state is determined through its registers
(i.e., registers such as the instruction register, the stack pointer or the CPU’s general purpose
registers). However, considering typical program constructs such as loops of function calls, it is

38

Figure 1.22: State Approximation Heuristic.

likely that content of the register set will be highly identical for different loop iterations. Since the
stack memory is used to store the local function frames it needs to be considered by the cache as
well. Determining the exact state of a program is a known to be hard problem related to program
slicing [21, 61]. In contrast, for the cache it would be sufficient to determine an approximation of
the program state. The approximation heuristic thus needs to be coarse enough to be practically
feasible and, at the same time, it should be precise enough for the cache to determine which
device response should be returned to the firmware. In the following, we explore the use of
program state approximation as peripheral device caching strategy. A more detailed description
is available in Section 7.4.

Figure 1.22 shows an overview of our program state approximation heuristic. In the first step and
similar to PROSPECT, we hook the system call executed on the peripheral device. Depending on
the system call, the peripheral cache can determine the type of device operation that the firmware
requested to perform. In the second step, during system call execution, we retrieve the CPU
register state and the last fragment of the stack memory from the suspended process. However, not
the entire register set and stack memory region will be relevant for program state approximation.
If the state approximation level is too fine, many different states will be determined for the
same peripheral device interaction and the cache will not be able to return already stored device
responses. On the other hand, if the approximation level is too low, different device interaction
states would be combined into a single state and the cache would return wrong device responses.
To address these issues, in the third step, we perform a manually optimized weeding step to
remove irrelevant data. In the fourth step, we use the remaining information to compute a hash
digest denoted State-ID that is used for peripheral device response lookups in the cache. To
conduct our feasibility study, we created two implementations based on (1) Virtual Machine
Introspection (VMI) and (2) a kernel module.

Virtual Machine Introspection For VMI, we extended the QEMU emulator to hook system
calls in the kernel to obtain low-level state information from physical memory under consideration
of relevant kernel internals. While the VMI approach is very powerful due to having access to
all system resources below the operating system kernel, the disadvantages are that the functions
necessary for parsing internal memory structures are kernel-dependent and the disabling of
QEMU’s Translation Block Chaining (TBC) required for reliable system call hooking sufficiently
reduces the overall system performance.

39

Kernel Module Our second implementation utilized a loadable kernel module that performs
system call hooking from within the kernel. Compared to the VMI approach, the kernel module
significantly simplifies the access to swapped out memory regions and kernel structures. However,
in contrast to VMI, the program state approximation logic is executed from within the system
emulated by QEMU and thus suffers from a performance impact on its own.

While we suggest to address these performance issues with a hybrid approach in future work
(Section 7.6), the main goal of our feasibility study was to determine whether peripheral device
caching with program state approximation is a viable approach. We evaluated our approach on
programs from the well known GNU core utilities and divided them into low, medium and higher
complexity programs. Low complexity programs such as cat, head, sum and wc do not use
dynamic memory management and only a small subset of the registers was sufficient to correctly
approximate the program state for peripheral caching. Medium complexity programs such as
expand strongly rely on dynamic memory management functions and, as a result, our current
lack of heap consideration led to duplicate program states. While multiple training executions
and minor manual adaptations of the weeding step rules solved the issues, without improvements
such as stack unwinding and heap analysis, medium complexity programs currently represent
the limit of our approach. Higher complexity programs such as sort not only heavily rely on
dynamic memory management, but information highly relevant to the program state are stored on
the heap as well. As a result, our approach returns a large number of duplicate states and, similar
to symbolic execution, suffers from the well known state explosion problem. Although we believe
that our approach can be significantly improved with stack unwinding and dynamic memory
allocation/pointer tracking, we expect higher complexity programs to remain challenging.

In addition to embedded software security analysis, the security analyst needs efficient methods
to test the practical security of the cryptographic implementation and setups on these systems.
For instance, a networked embedded system might employ a cryptographic authentication routine
to deny unauthorized users the access to its core functions. The practical security of the authenti-
cation scheme thus not only relies on the security of the cryptographic design and algorithms,
but it also depends on properties such as the security of the implementations of this design, the
choice and strength of the key material or the quality of the random numbers. In Chapter 8, we
show at the example of the widely utilized WPA2-Personal cryptographic authentication protocol
how low-cost FPGA clustering can be used for high-speed brute force attacks. WPA2-Personal
is a strong cryptographic authentication protocol relying on established primitives. Without
the discovery of cryptographic vulnerabilities in the scheme, the practical security of many
(embedded) systems in the field thus relies on the choice of the password. If the attacker can
break the password within a reasonable time, the security of the system can be broken even
though the utilized cryptographic authentication primitives are secure by design. While in a
secure cryptographic system especially random passwords can only be found if all password
candidates are tested one by one, the practical feasibility of those brute force attacks is limited
by the speed the attacker can test the password candidates. To achieve significantly higher
speeds in comparison to CPU or GPU based systems, we present a highly optimized scalable
and fully pipelined FPGA based system. Our system uses 36 low-cost FPGAs combined into
a cluster to bring the performance of today’s highly expensive professional brute-force attack
systems to amateurs with a small budget. In comparison to the currently fastest FPGA based

40

commercial system, we claim that on the same Kintex-7 based hardware our implementation is
more than 5 times as fast. To achieve high brute-force attack speeds, it is necessary to analyze the
cryptographic WPA2-Personal authentication protocol (i.e., the WPA2-Personal handshake) in
full detail.

Figure 1.23: WPA2-Personal 4-Way Handshake

The 4-way handshake is visible in Figure 1.23. Initially, both Access Point (AP) and Station
generate a 32 byte random nonce value. After the Station has notified the AP to initiate the
authentication protocol, the AP starts the 4-way handshake by transmitting its ANonce value
to the Station. At this point the Station starts to derive the Pairwise Transient Key PTK through
the WPA2-Personal key derivation function visible in Figure 1.24. During the computation
of the PTK, the first step involves the computation of the Pairwise Master Key PMK with the
well known PBKDF2 [49] salted key derivation function. The Wi-Fi password is used as key
while the network’s SSID (Service Set Identifier) is used as cryptographic salt. At the core of
WPA2-Personal’s PBKDF2 key derivation scheme is the SHA1 cryptographic hash function in
HMAC construction (Figure 1.25). Since SHA1 outputs a 160 bit hash digest, the HMAC output
as well as the output of the PBKDF2 function will be 160 bits long as well. Nonetheless, the
length of the PMK needs to be 265 bits long which is the why two consecutive PBKDF2 rounds
need to be performed. Their output is concatenated and truncated to obtain the 256 bit PMK from
the two 160 bit outputs. Internally, PBKDF2 uses the salt combined with a 32-bit round counter
to perturb the key computation so that for the same salt and key inputs the PBKDF2 output will
be different for each round.
After the Station has obtained the PMK, it computes the PTK and its truncated variant KCK through
the pseudorandom function PRF-128. Internally, the function relies on HMAC-SHA1 as well.
The PMK is used as key input while network parameters such as the physical addresses of the

41

PBKDF2SSID

Passphrase

PMK

PRF-128
Amac, ANonce
Smac, SNonce

KCK

MIC

HMAC-SHA1Packet Data

Figure 1.24: WPA2-Personal Key Derivation Function

Access Point (Amac) and the Station (Smac) as well as their nonce values ANonce and SNonce
are used as salt. At this point in the 4-way handshake, the Station can send its SNonce to the
Access Point. However, in contrast to the first message in the handshake, the message is digitally
signed with a Message Integrity Code (MIC) that is computed from the message and the KCK
with the help of HMAC-SHA1. The Access Point can thus verify that the Station has knowledge
of the secret password and it can compute the key material including the PTK just the same. Since
the Station has not verified whether the Access Point knows the network password as well, the
Access Point returns a signed message with its ANonce to the station. If the message signature
was authentic, the Station knows that the Access Point has the network password as well. In this
case, the 4-way handshake is completed by sending a usually empty but signed message back to
the Access Point to confirm successful network authentication. A more detailed description of
the WPA2-Personal 4-way handshake and the key derivation can be found in Section 8.2.

Figure 1.25: PBKDF2 Core with SHA1 Rounds in HMAC Construction

42

An attacker can capture the 4-way handshake and obtain knowledge of the nonce values ANonce
and SNonce as well as of network data relevant for the key derivation such as the physical
addresses of the Access Point and the Station or the SSID. For any of the three signed messages
in the handshake, the attacker knows the message content and the message integrity code (MIC).
During a password guessing attack, for each password candidate the KCK needs to be derived.
With the KCK, the attacker can compute the MIC over one of the known-plaintext messages and
compare the computed MIC code with the MIC code from the message. If the code matches, the
correct password has been found.
To protect users from password guessing attacks, the passwords needs to be at least 8 characters
long and the described WPA2-Personal key derivation scheme relies on a high number of SHA1
iterations. Each PBKDF2 round has 4, 096 HMAC-SHA1 iterations where each of those requires
at least 2 SHA1 iterations. In total, to derive the KCK and compute a MIC, there are at least
16, 396 SHA1 iterations necessary for each password candidate (see Section 8.2 for details). To
mount a successful attack within a reasonable time, the attacker thus needs to be able to achieve
a very high SHA1 computation performance and the Wi-Fi password itself needs to be weak.
The higher the computation performance, the more stronger passwords can be attacked within
a reasonable time frame. We analyzed the SHA1 internals and found it to be ideally suited
for efficient FPGA implementation due to its low memory requirements, the realization of its
rotate and shift operations through FPGA interconnects, the low implementation complexity
of algebraic functions in FPGA Look Up Tables (LUTs) and the possibility to create a fully
pipelined implementation for its internal 80 compression rounds. The most expensive operations
within an FPGA implementation are SHA1’s additions due to the long carry chain between the
adders.

In
iti

at
e

S
ta

ge

S
ta

ge

B
uf

fe
r

A
dd

80VRounds

FIFO

SHA-1VPipeline

WPA2VPasswordVVerifier

StateVMachine

P
as

sw
or

dV
G

en
er

a
to

r

Figure 1.26: FPGA Design Overview

For efficient high-speed brute force attacks on WPA2-Personal, we explore the use of low-cost
FPGA boards that have been previously used for cryptocurrency mining. An overview of our
design is visible in Figure 1.26. The system consists of a global password (candidate) generator
and a global state machine to orchestrate the brute force attack. At the heart of our design are

43

multiple WPA2 password verifier cores where each one is utilizing a highly optimized 83 stage
SHA1 pipeline. As a result, each of the cores computes 83 different password candidates in
parallel at maximum FPGA clock speed due to our optimizations. Once the pipeline is filled, we
obtain a full SHA1 computation per clock cycle.

Figure 1.27: WPA2-Personal FPGA States

Figure 1.27 provides an overview of the states of a password verifier core. Initially for each
password candidate, the PMK needs to be derived with two PBKDF2 key derivation function
rounds. Once the PMK is available, the PTK and its truncated variant KCK can be computed. In
the last step, we compute the MIC code for a known message to determine whether the password
candidate is the correct Wi-Fi network password. Since all three derivation phases (i.e., PBKDF2,
PRF-128 and the final MIC computation) rely on HMAC-SHA1, the computation steps of the
HMAC construction such as outer and inner state computation, internal iterations for salting and
hash finalization are similar to each other. A detailed description of the state machine is available
in Section 8.3.
To start a brute force attack round, the global state machine uses the password generator (Figure
1.28) to generate password candidates. As long as the enable signal is asserted, the password
generator will output a new password candidate per clock cycle. Each password verifier core
is fed with 83 password candidates until all cores have filled up their pipelines and can start
computation. During the computation, the password generator is disabled. Since the cores of the
password verifier are filled up sequentially, they will complete their work in the same order. As
soon as the first verifier core is finished, the core and the subsequent ones will be checked by
the global state machine whether they were able to identify the correct password. If it is found,
the password can be read out from the FPGA. Otherwise, the global state machine restarts the
password generator and the next brute force attack cycle begins.
The key to high performance significantly lies in the highly optimized design of our SHA1
pipeline. While SHA1 has 80 rounds and a fully pipelined implementation would thus have 80
pipeline stages as well, not all pipeline stages perform the same operations. For instance, in
the last round of SHA1 an expensive addition operation needs to be performed. Considering
the critical path in FPGA design, the last round computation as well as the finalizing addition
would need to be performed in the same clock cycle. As a result of the additional adder logic,

44

Figure 1.28: Password Generator Block

the maximum clock frequency of the entire design would decrease leading to a lower system
performance. Similarly, the logic required to feed the first pipeline instance with data from the
global state machine would also have a negative impact on the maximum clock speed. Our
SHA1 pipeline thus makes use of 3 additional pipeline stages. The first one is a buffer stage
to remove the negative performance impact of the feeding logic. Our analysis of the SHA1
algorithm’s structure also showed that the 4 expensive finalization additions can be split up.
The initiate and the finalizing add stages perform the finalizing SHA1 additions where the first
addition stage is located at the beginning of the pipeline and uses a Block-RAM based delay
line to reduce the number of signals that need to be forwarded (and physically routed on the
FPGA) throughout the pipeline. Besides the optimizations in our SHA1 pipeline stage structure,
we extensively conducted other optimizations such as the improvement of the SHA1 message
expansion steps, boosting of FPGA shift register inferences, minimizing the number of necessary
FPGA interconnects and bus sizes as well as making use of FPGA floor planning to reduce
routing delays. Our optimizations are covered in detail in Section 8.3.
To evaluate the performance of our design, we created implementations for newer model Xilinx
Artix-7 FPGAs (Figure 1.29) as well as for older model Xilinx Sparten-6 devices in a cluster
(Figure 1.30). The overall system design overview is visible in Figure 1.31. We created a software
tool on a host PC that is responsible to continuously send password brute force work packages
to the FPGA boards. Depending on the FPGA board, each board includes a EZ-USB FX2
controller and either one (Artix-7) or four (Spartan-6) FPGAs. The firmware on the EZ-USB FX2
controller can be controlled by the software running on the PC via USB. The controller selects the
requested FPGA and communicates with it via a bus. The software on the PC also continuously
checks for computation errors on the FPGAs caused by too high operating temperatures. If errors
are detected, the FPGAs are automatically clocked at a lower clock speed and the erroneous
brute force work packages are resubmitted. With the newer Artix-7 devices, we use the internal
temperature sensors so that depending on device cooling, the FPGA individually scale the
operating frequency to achieve optimum system performance. A more detailed description is
available in Section 8.3.

45

Figure 1.29: Ztex 1.15y Board (left), Ztex 2.16 Board (right)

Figure 1.30: Spartan-6 XC6SLX150T Cluster

46

µ
C
o
n
t
r
o
l
l
e
r

E
Z
-
U
S
B
.
F
X
2 FPGA.1

XC6SLX150

FPGA.3
XC6SLX150

FPGA.2
XC6SLX150

FPGA.4
XC6SLX150

USB-FPGA.Module.1.15y

Host-PC

U
S
B
-
H
u
b

Figure 1.31: System Overview (Spartan 6 System)

We evaluated the performance and power requirements of our system and compared it to GPU
based systems as well. The results are visible in Table 1.7 and show that our solution not only
brings the performance of highly expensive profession systems to amateurs, but in comparison to
GPUs our FPGA implementation also allows significantly higher brute force speeds at a lower
power consumption and comparable prices. The details of our FPGA evaluation and the achieved
results can be found in Section 8.5.

System FPGAs Type Cost Cores Tool W Tool MHz Meas. W Act. MHz calc pwd/s pwd/s pwd/s W
Ztex 1.15y 1 XC6SLX150T-3 175 2 4.281 187 6.99* 180 21,956 21,871 3,128*
Ztex 1.15y 4 XC6SLX150T-3 700 8 17.124 187 27.96 180 87,826 87,461 3,128
9x Ztex 1.15y 36 XC6SLX150T-3 2,400 72 154.116 187 254 180 790,436 741,200 2,918
Ztex 2.16 1 XC7A200T-2 213 8 10.458 180 11.04 180 87,826 87,737 7,947
N/A 1 XC7K410T-3 2,248 16 25.634 216 N/A N/A 210,783 N/A N/A
N/A 48 XC7K410T-3 107,904 768 1,230.432 216 N/A N/A 10,117,584 N/A N/A

Table 1.7: Performance and Power Results of our Implementations for Different FPGA Devices
and Systems/Boards

In addition to the performance evaluation, we also evaluated the impact on practical systems in
the field. We conducted a real-world case study involving more than 166, 000 Wi-Fi networks
in Austria and its border regions (Figure 1.33). The Wi-Fi networks we analyzed are set up
on the customer’s cable modems by the largest ISP in our country. Our analysis showed that
these modems utilize random default passwords comprising only 8 uppercase character Wi-Fi
passwords (Figure 1.32). Our practical evaluation using Wi-Fi test vectors showed that with our
Xilinx Spartan-6 based FPGA cluster we can recover the password for each of those networks
within no more than 3 days per network. More details on the real-world evaluation and the
obtained results can be found in Sections 8.4 and 8.5. Our results thus indicate that embedded
systems leveraging cryptographic authentication protocols can not only be tested at high-speeds
with low-cost FPGA based clusters, but our real-world case study also highlights the practical
impact and the necessity of such security tests.

47

Figure 1.32: Bottom Side of a Cable Modem

Figure 1.33: Density of UPC<n> Networks with Potentially weak WPA2-Personal Passwords

Risk Mitigation

Considering security critical embedded systems such as the ones employed in critical smart
grid infrastructures, the last step is to mitigate the identified risks with a subsequent compliance
checking step (Figure 1.34). In Section 3.2, we define a methodology to assess the risk potential
based on the expected probability and severity of an attack. Identified risks need to be mitigated
on an individual basis and under strong consideration of the identified vulnerabilities during
the technical risk assessment and security auditing steps. The goal of risk mitigation is thus to
either decrease the probability of successful attacks, or to alleviate the potential severity of those
attacks to an acceptable level. In the (SG)2 KIRAS project under national FFG grant number
836276, we defined a catalog that provides generic smart grid risk mitigation measures. The
catalog builds up upon the architecture model and the risk assessment approach presented in
Chapters 2 and 3. For each of the 32 threat clusters, we provide generic measures including best
practice examples that can be taken to mitigate the risks. The mitigation strategies have been
discussed and evaluated with smart grid experts including utilities and manufacturers. In addition,
we considered the following stakeholders to define roles and responsibilities when implementing,
testing and verifying the security measures:

• Administrators

• Application Developers

• Customers

• Device Manufacturers

• Utilities

48

• Regulation Authorities

• API Designers

• Security Researchers

• Standardization Bodies

• Energy Suppliers

• Software Developers and Providers

• Independent Test Institutions

• Maintenance Personnel

To increase practical applicability, the following best practice risk mitigation strategies have been
defined under consideration of the stakeholder roles and common risks in today’s and near future
smart grid infrastructures:

Authenticity and Integrity
Device manufacturers and software providers need to cryptographically sign their soft-
ware so that customers can verify the authenticity and integrity of the software product.
Customers need an established verification process for cryptographic software verification.
Application developers have to ensure that any communication within the application
and the smart grid infrastructure is encrypted, authenticated and integrity protected. API
designers need to employ cryptographic authentication protocols such as certificate based
authentication schemes to ensure at any time that the communication occurs only between
authorized senders and receivers. Administrators and maintenance personnel need estab-
lished methods to verify the authenticity and integrity of communication channels and
employed software products.

Security Evaluation, Penetration Testing and Interoperability
Device manufacturers need to follow a secure development life-cycle from early design
phase to product rollout and maintenance. The life-cycle needs to include external security
audits prior to product rollout. Security researchers and independent test institutions need
to carry out penetration tests. Identified vulnerabilities need to be communicated to the
device manufacturer and disclosed to the public by following a responsible disclosure
process. Utilities need to carry out interoperability tests in a realistic lab environment.
Both, utilities and energy suppliers need to consider the results of security audits in their
product choice and need to carry our independent security audits in their own environments
as well.

49

Minimum Attack Surface
Device manufacturers need to minimize the attack surface on their interfaces. Communi-
cation should be only established if really necessary. If so, any communication needs to
be encrypted, authenticated and integrity protected per default configuration (i.e., secure-
by-default). Unnecessary functions and functions not suitable for production use (e.g.,
testing functions) need to be removed or disabled. Utilities need to configure their systems
in a way that only necessary functions and interfaces are enabled and no unnecessary
data is generated. Security critical data needs to be cryptographically protected accord-
ing to the current state-of-the-art and should be accessible by authorized personnel only
(need-to-know basis). Energy suppliers and utilities need to be careful in their product
choice and configuration that disabled functions can not be re-enabled through minimal
manipulations, new firmware can not be easily uploaded and data is only stored locally and
cryptographically protected whenever possible. Application developers need to be careful
to keep data local whenever possible. If data needs to be transferred over communication
links, communication protocols and subsequent data storage have to rely on established
and practically proven protections mechanisms with proper data encapsulation, encryption,
authentication and integrity protection.

Network Segmentation and Compartmentalization
Device manufacturers ensure in their product design that their products are only connected
to the Internet when absolutely necessary. Devices should be shipped with up-to-date
security patches, regular users should not be able to use administrative accounts, devices
should be located behind firewalls and security critical actions should be logged and
comprehensible. In addition, the device implementation should follow a layered security
model including techniques such as virtualization or jailing so that in case of a breach
of one security layer, the other security layers still prevent the security breach of the
overall system. Utilities and energy suppliers need to establish the same principles in their
own systems. Administrators need to ensure that these security measures are rolled out,
documented and continuously maintained. Maintenance personnel has to continuously
verify that the security measures are in place and working as expected. Any irregularities
or incidents need to be reported so that appropriate action can be taken.

Remote Access and Compulsory Manufacturer Transparency
Device manufacturers ensure that remote access and management functions rely on open,
established and secure communication protocols. The communication channel and the
data need to be cryptographically protected to guarantee confidentiality, authenticity and
integrity. Any remote access activities need to be logged. Utilities and energy suppliers
choose products with open, established and secure remote access and management func-
tions. Administrators need to ensure that remote accesses are handed in a secure way
and performed remote management actions are monitored. Maintenance personnel must
conduct remote accesses from within a secure maintenance environment and have to report
irregularities or incidents.

50

Security Requirements for Manufacturers
Security researchers and independent test institutions support in the definition of smart grid
security requirements through the publication of research results and joint activities within
standardization and regulatory bodies. Standardization bodies and regulation authorities
define and enforce security requirements that need to be implemented by device manufac-
turers. Utilities and energy suppliers need to acquire products that fulfill these security
requirements.

Change, Patch and Configuration Management
Device manufacturers and software developers and providers continuously release security
patches for discovered vulnerabilities. Utilities and energy suppliers install the security
patches and keep them up to date. Depending on the security patches, additional security
audits by independent test institutions might be necessary to account for the incurring
system changes. Patches and configuration changes are managed and tested in realistic lab
environments before roll-out in the field.

Physical Security
Device manufacturers need to consider physical and implementation attacks on their
devices. Devices should be implemented tamper-resistant so that unauthorized physical
access to the device and its interfaces is impeded. If applicable, countermeasures such as
the partial disabling of security critical functions should be implemented. Tamper attempts
should be logged in a secure non-volatile way and alarms should be communicated to the
system operator such as the utility or the energy supplier. Utilities and energy suppliers
monitor their devices in the field accordingly. Administrators need to handle detected
incidents.

Incident Management
Device manufacturers include mechanisms in their implementations to detect security
incidents on the device. Incidents are communicated to the system operators and local
countermeasures can be taken. Utilities and energy suppliers have intrusion detection
systems (IDS) or intrusion prevention systems (IPS) in place. If security incidents are
detected, there need to be established incident handling procedures in place so that security
incidents can be handled and mitigated in a timely manner.

51

In the subsequent compliance checking step, it needs to be ensured that an overall high level of
security is continuously maintained. Previously identified and already mitigated threats thus need
to be tracked and system components must be checked automatically on a regular basis. This
way, if a components is added to the system that contains a known vulnerability (i.e. due to an
old firmware version), the automated approach ensures that the components are identified early
and the already established measures such as firmware upgrades can be taken to mitigate known
risks. Although risks needs to be covered on an individual basis, a description of our generic
smart grid risk mitigation approach is provided in Section 3.2. The (individual) risk mitigation
step thus closes the security management cycle visible in Figure 1.34.

I. Architecture
Modeling

II. Risk
Identification

III. Risk
Assessment

IV. Risk
Mitigation

V. Compliance
Checking

Figure 1.34: Architecture-Driven Smart Grid Risk Management Approach

52

1.7 Scientific Contribution

Architecture Driven Smart Grid Risk Management
We contribute a cumulative architecture driven smart grid risk management approach based
on the Smart Grid Architecture Model (SGAM) [103] that represents both current and near-
future European smart grids. On top of our smart grid modeling approach, we designed
a threat catalog and an accompanying practical risk management approach that has been
refined and evaluated through expert interviews with utility providers and manufacturers.
Our smart grid risk management approach has been published and presented at the 3rd

International Conference on Smart Grids and Green IT Systems (SMARTGREENS) in
2014 [52] and at the 2nd ACM Workshop on Information Hiding and Multimedia Security
in 2014 [51].

Physical Attacks on Embedded Smart Grid Devices
We contribute an evaluation of physical attacks against embedded smart grid devices
and present practically usable silicon reverse engineering techniques to extract the secret
firmware from proprietary devices through silicon test modes. Our evaluation and the
silicon reverse engineering approach have been published in the book Smart Grid Security:
Innovative Solutions for a Modernized Grid in 2015 [99] and at the 21st ACM Conference
on Computer and Communications Security (ACM CCS) in 2014 [54].

Peripheral Proxying to Enable Dynamic Firmware Security Analysis
To address the challenge of dynamic firmware security analysis, we contribute PROSPECT,
a transparent proxy for tunneling peripheral hardware accesses from the embedded system
under test to a virtual analysis environment. In addition to PROSPECT, we evaluated the use
of peripheral device communication caching with firmware program state approximation as
potential solution to enable powerful firmware analysis techniques such as snapshotting, test
parallelization or testing without physical access to the embedded system under test. Our
contributions have been presented and published at the 9th ACM Symposium on Information,
Computer and Communications Security (ASIACCS) in 2014 [56] and the 10th International
Conference on Emerging Security Information, Systems and Technologies (SECURWARE)
in 2016 [50].

Efficient High Speed Attacks Using FPGA Clustering
To assess the practical security of cryptographic authentication mechanisms, we analyzed
the well known WPA2-Personal authentication protocol and contribute a highly optimized
design and architecture of a scalable FPGA-cluster based system for brute force attacks.
On the same hardware, our implementation is 5 times as fast as the currently marketed
world’s fastest FPGA-based WPA2 password recovery system and has been published at
the Workshop on Cryptographic Hardware and Embedded Systems (CHES) in 2016 [55].

53

1.8 Conclusion and Future Work

In the following sections, we present a holistic embedded system security analysis approach
under special consideration of critical infrastructures such as the smart grid. In Chapter 2, we
address the problem of smart grid risk assessment with an architecture driven approach that uses
Smart Grid Architecture Model (SGAM) modeling [103] to identify high risk components in
both current and near-future European smart grids. Utilities utilizing our architecture driven
smart grid risk assessment approach can thus identify high risk components and select them for
embedded security audits. In Chapter 3, we extend the idea of architecture driven smart grid
security assessment towards a holistic smart grid security management approach allowing utilities
to increase and maintain the security of their smart grid installations. In Chapter 4, we evaluate
the use of physical attacks on smart grid components. However, while those physical attacks
can be used by malicious attackers, some of these attack can also aid security analysts to extract
firmware from smart grid components. Having access to the firmware is thus one of the basic
requirements to conduct independent embedded security audits and to subsequently discover
critical vulnerabilities deeply hidden in the firmware of today’s embedded critical infrastructure
devices. In Chapter 5, we explore the use of silicon reverse engineering techniques in case more
traditional firmware extraction techniques such as the use of common debug and programming
ports fail. We show that limited silicon reverse engineering is a viable way to discover test modes
hidden in silicon that often allow the extraction of the firmware. Once the firmware is accessible
to the security analyst, in Chapter 6, we present how peripheral device proxying can be utilized to
overcome many of the current dynamic analysis challenged for embedded devices. Our system
PROSPECT allows analysts to execute the device firmware in a virtualized analysis environment
while the peripheral devices on the target device can still be accessed by the firmware under
analysis. In Chapter 7, we extend the idea of PROSPECT and explore the use of a peripheral
device communication cache with the help of program state approximation as a potential solution
to enable more powerful firmware analysis techniques such as snapshotting, test parallelization
or testing without physical access to the embedded system under test. In addition to firmware
extraction and subsequently firmware security testing, security analysts need effective methods to
test the practical security of cryptographic authentication mechanisms employed on embedded
systems in the field. In Chapter 8, we thus present the design, architecture and implementation
of a low-cost FPGA cluster based system that can perform high speed brute-force attacks on
systems such as the well known WPA2-personal cryptographic authentication protocol that was
the target of our implementation. In the future, we plan to extend our research in the field of
implementation attacks with special focus on powerful invasive attacks such as IC deprocessing,
computer aided IC reverse engineering, IC modification utilizing a Focused Ion Beam (FIB) and
probing attacks.

54

CHAPTER 2
Practical Risk Assessment Using a

Cumulative Smart Grid Model

Over the last years, the electrical power grid has undergone a tremendous change. The traditional
power grid could be described as a producer-consumer model. The producers generate electricity
and the electricity is transferred by utilities to the consumers. As a result, the amount of employed
ICT technologies was limited. Today, there is a strong trend in the direction of sustainable
green energy, energy saving and higher efficiency. Energy is no longer only produced at the
top and delivered to the bottom; instead, everyone can become an energy producer. Consumers
change to “prosumers” by running their own solar or wind power stations. Businesses and
communities specializing on independent energy production through wind turbines, heating, or
biogas plants emerge and grow. The boundaries in the traditional power grid model start to fade.
On the other hand, large-scale energy producers and utilities can save energy and achieve higher
energy efficiency by having the ability to influence or control devices in the user domain. To
make this possible, energy grids are heavily expanded with ICT technologies – the traditional
power grid is being transformed into the smart grid. On the downside, these technologies bear
unforeseen risks for critical infrastructures. Smart grid ICT technology providers and utilities
have limited experience with these new technologies and market pressure may force them to throw
new products on the market before they have undergone quality assurance processes suitable
for critical infrastructures. While traditionally access to smart grid ICT networks was limited
to energy producers and utilities, new smart grid ICT technologies allow the massive amount
of consumers to participate in these networks. Communication infrastructures in energy grids
and especially in power grids are thus also exposed to a wide range of potential adversaries. To
mitigate the security risks involved, there have been significant international efforts in terms of
smart grid cyber security standards, risk assessment and security mechanisms (see Section 2.1).
However, focusing on smart grids in the European Union and especially in Austria, it quickly
turned out that many architectural or technological assumptions do not hold for the smart grid
systems currently being rolled out in large quantities. For instance, within the European Union,
the Smart Metering Protection Profiles [15, 16] are widely known for their security requirements

55

and definitions. Yet, smart metering is only one of many areas within the smart grid, and today’s
advanced metering infrastructure (AMI) typically does not correspond to the gateway and security
module design concept suggested in those Protection Profiles.
As a result, in the Smart Grid Security Guidance (SG)2 joint project [2] with leading smart grid
component manufacturers and utilities, we set out to create a cumulative smart grid landscape
model representing both current and future European smart grids. Based on established industry
security standards and in close cooperation with manufacturers and utilities, we identified a
comprehensive set of threats that are applicable within our cumulative smart grid model. To
foster practical usability, we clustered both identified threats and smart grid systems to form the
two dimensions of a threat matrix. This threat matrix allows practical threat assessment for both
current and future European smart grids, and forms the basis for an according risk assessment
determined by probability and impact. In summary, the main contributions of our work are:

• A cumulative smart grid model representing both current and near-future European smart
grids as a basis for sound risk assessment

• A thoroughly designed threat catalog for modern smart grid architectures

• An accompanying practical risk assessment approach evaluated and refined in course of
expert interviews with utility providers and manufacturers

The remainder of this paper is organized as follows. Section 2.1 provides an overview of related
work. In Section 2.2 we explain how we developed the cumulative smart grid model. In Section
2.3 we describe our risk assessment approach, while Section 2.4 covers the evaluation and our
results. The conclusions and suggestions on further work can be found in Section 2.5.

2.1 State-of-the-Art and Related Work

Mainly focusing on U.S. smart grids and technology, NIST has developed Guidelines for Smart
Grid Cybersecurity [81]. In Europe, the German Federal Office for Information Security (BSI) has
come up with a Common Criteria Protection Profile for the Gateway of a Smart Metering System
and its Security Module [15, 16]. In contrast to our approach, the NIST guidelines do not allow
an integrated approach. They are based on technologies employed in U.S. smart grids and give
high-level recommendations only. Similarly, the BSI protection profiles do not provide a holistic
approach either. Instead, they focus on smart metering only (which is only one building block of
a smart grid), and their Target of Evaluation is a very specific smart metering implementation that
does not reflect deployed smart metering systems.
Regarding risk assessment, Lu et al. outline security threats in the smart grid [72]. In comparison,
our approach is targeted on the broad range of system components in European smart grids. Ray
et al. provide a more formal approach to smart grid risk management [92] while one of our
goals was to develop a practical risk assessment approach usable for utilities. Varaiya et al. show
various ways to manage security critical energy systems [117]. However, they rather focus on
formal methods, and their smart grid model does not reflect current European smart grids. Finally,
Hou et al. outline the differences in risk modeling between traditional grids and smart grids [44],

56

while we focus on the smart grid landscape that is currently deployed or will be deployed in the
near future. In addition, existing risk assessment approaches are covered in more detail in Section
2.3. Regarding smart grid security mechanisms, Yan et al., Mohan et al. and Vigo et al. provide
an overview of security mechanisms for smart grids and smart meters [77, 120, 130]. While their
work provides an overview of how security mechanisms should be realized, in our approach, we
focus on the security mechanisms that are either implemented in current implementations or will
be part of near-future implementations. Finally, Wang et al. [133] present smart grid standards
covering security, but rather target U.S. standards like those published by NIST.

2.2 Cumulative Smart Grid Modeling using SGAM

In our joint approach to identify technological risks in current and future European smart grids, it
turned out that leading experts, utilities and even manufacturers have a very different view and
definition of what the smart grid is. Focusing on European smart grids and the Austrian power
grid in particular, on a high-level view, the smart grid domains and actors within those domains are
comparable to existing standards such as the NIST Smart Grid Framework [80] or the European
Smart Grid Reference Architecture [103]. In a first task, we asked utilities to compare their
deployed smart grid systems, model regions, pilot projects and concepts with existing reference
models. Since, unlike the NIST framework, the European smart grid reference architecture
focuses on European smart grid technologies, it was chosen as a basis for the comparison.
Specifically, we used the Smart Grid Architecture Model (SGAM) [103] to allow for a well-
structured comparison. Overall, 45 different projects could be identified and prioritized according
to project size, project relevance, and both amount and quality of available information. The
study showed that, in general, the SGAM model is usable with some limitations, but the reference
model is only applicable on a high level. While it sketches the general structure of European
smart grids, it does not contain detailed information on the technologies implementing smart
grid components in this structure. For that matter, it is not adequate for qualified risk modeling
suitable for utilities. To close this gap, we combined seven national and four international projects
within the SGAM model to form a cumulative architecture model allowing us to deduce threats
and risks for both current and future smart grid installations in Europe. The following sections
describe our approach in more detail.

The Smart Grid Architecture Model (SGAM) Framework

The SGAM model had its original motivation in identifying gaps in standardization and locating
these gaps in the SGAM model space. The model is structured in zones and domains (see Fig. 2.1).
While the zones are derived from the typical layers of a hierarchical automation system (from field
via process, station towards operation and enterprise level [93]), the domains reflect power-system
specific fields of different actors such as transmission system operators, distribution system
operators, and customers. In contrast to the NIST model, the European approach has a dedicated
DER (Distributed Energy Resources) domain, which captures small distributed generators with
their special infrastructure. Finally, in the third dimension, SGAM features interoperability layers.
With these layers, the different aspects of networked smart grid systems are aligned. The base

57

layer is the component layer, where physical and software components are situated. On top of that,
communication links and protocols between these components can be placed. The information
layer holds the data models of the information exchanged. On top of that, the function layer holds
the actual functionalities, and the uppermost layer describes the business goals of the system.
Today, SGAM serves three major purposes: first of all, it is a means to visualize and compare
different smart grid automation architectures. This also allows the identification of gaps in
all layers. Finally, SGAM can serve as a useful model to support model-driven architecture
development. In this work, SGAM was applied for the first two purposes: comparison and
identification of gaps.

Process
Field

Station
Operation

Enterprise

Market

Figure 2.1: Smart Grid Architecture Model (SGAM) Framework

Current and Future Smart Grid Technologies within SGAM

Within the project, a holistic architecture was derived, which reflects the short- to mid-term
extension of today’s power grid IT technology towards future smart grid functionalities. The
methodology used to achieve this architecture is based on individual SGAM modeling of national
and international smart grid projects that significantly build on the use of ICT systems. From
45 project candidates, seven significant national smart grid research projects were selected for
modeling:

• IEM: Intelligent Energy Management

• Smart Web Grids [105]

• DG DemoNetz Smart LV Grids [62]

58

• ZUQDE: Zentrale Spannungs- und Blindleistungsregelung mit dezentralen Einspeisungen
in der Demoregion Salzburg [104]

• EMPORA: E-Mobile Power Austria [29]

• AMIS Smart Metering Rollout

A similar approach was applied to international projects. The selected significant projects were:

• The European FP7 Project OpenNode [87]

• The European FP7 Project EcoGrid EU [30]

• The US Demand Response Automation Server (DRAS) [26]

• The German ICT Gateway Approach OGEMA [86]

For SGAM modeling, detailed information about the technical implementations had to be re-
quested from the projects under analysis. The availability of information (or contacts to the
projects) was an additional selection criterion for the international projects.

European Smart Grid View according to the Cumulative SG Model

The derived architecture (Fig. 2.2) includes a harmonized cumulative view of the components
found in all analyzed projects. The SGAM domains transmission and bulk generation were
not covered by the selected projects since in the Austrian or, respectively, European view, the
smart grid is primarily related to distribution systems. The architecture shows the component
and communication layer of the SGAM model. On the bottom, the field devices can be found
(such as smart meters or dedicated sensors and actuators). On the station level, both primary and
secondary substation are situated with their current and prospective automation components. On
the customer side, mainly residential customers, commercial buildings, and electric mobility can
be found. On the top of the architecture, the enterprise level and market components are located.
However, one of the main differences to existing models is the addition of detailed communication
technology descriptions allowing a more in-depth risk assessment approach. The communication
protocols and technologies underlined are the ones that are predominantly used in the projects
we analyzed. For instance, in future smart grids the broad use of Web Services is anticipated
for communicating with the energy market. Nevertheless, as depicted in our architecture, the
predominant way to achieve this in current smart grids is to use personal communication via
email or phone calls. From a risk assessment perspective, this results in a significant difference
as Web Services can potentially be more easily compromised than a phone call made between a
group of persons who probably know each other well from their daily work routine.

59

Figure 2.2: Cumulative Smart Grid Model

Evaluation of the Model

After a first draft of the architecture model had been developed, it was subject to a number of
feedback rounds with members of the consortium (utilities and manufacturers). Improvements

60

and additional information were integrated into the architecture. The (SG)2 architecture model
serves as an anchor point for further analysis and as a common document of energy, IT and
security experts. The main benefit of the model is that questions between the different expert
domains can clearly be formulated and therefore easily be answered by referring to individual
elements of the architecture.

2.3 Smart Grid Risk Assessment

Existing Approaches

Smart grid cyber security and risk assessment in particular has been addressed in several standards,
guidelines and recommendations. The U.S. National Institute of Standards and Technology (NIST)
has developed a three-volume report on “Guidelines for Smart Grid Cyber Security (NIST-IR
7628)” [81]: Volume two focuses on risks related to customer privacy in the smart grid, and gives
high-level recommendations on how to mitigate these risks. However, no general approach for
assessing security risks in the smart grid is provided. The European Network and Information
Security Agency (ENISA) has issued a report on smart grid security. It builds on existing work
like NIST-IR 7628 or ISO 27002 and provides a set of specific security measures for smart grid
service providers, aimed at establishing a minimum level of cyber security [33]. Each security
measure can be implemented at three different “sophistication levels”, ranging from early-stage
to advanced. The importance of a risk assessment to be performed before deciding the required
sophistication levels is pointed out, but no specific risk assessment methodology is identified
within the report.
The German Federal Office for Information Security has come up with a Common Criteria
Protection Profile for the Gateway of a Smart Metering System and its Security Module [15, 16].
Both define minimum security requirements for the corresponding smart grid components based
on a threat analysis. However, the Common Criteria approach, which focuses on a specific,
well-defined Target of Evaluation, cannot provide a holistic view on cyber security threats in
future smart grids. Another drawback is that the implementation of many smart metering systems
currently being rolled out does not correspond to the defined gateway and security module design
concept.
The CEN-CENELEC-ETSI Smart Grid Coordination Group has provided a comprehensive
framework on smart grids in response to the EU Smart Grid Mandate M/490 [102]. As part of
that framework, the “Smart Grid Information Security (SGIS)” report defines five SGIS Security
Levels to assess the criticality of smart grid components by focusing on power loss caused by
ICT systems failures.
Moreover, five SGIS Risk Impact Levels are defined that can be used to classify inherent risks
in order to assess the importance of every asset of the smart grid provider. This means that the
assessment is carried out under the assumption that no security controls whatsoever are in place.
While this is a valuable approach, it is not suitable for a more practical scenario that focuses on
actual, currently deployed or foreseeable implementations.
Risk assessment methodologies have also been addressed by the FP7 project EURACOM, which
considered protection and resilience of energy supply in Europe and aimed at identifying a

61

common and holistic approach for risk assessment in the energy sector. As part of a project
deliverable1, existing risk assessment methodologies and good practices have been analyzed in
order to identify a generic risk assessment method which could be customized to suit the specific
needs of the energy sector. While most of the existing risk assessment methods are asset-driven,
the (SG)2 project required an architecture-driven approach for developing a risk catalog. This
approach is described more closely in the following.

Our Approach: Threat Matrix and Risk Catalog

The risk assessment approach taken in (SG)2 focused on the ICT architecture model initially
developed within the project (see Section 2.2). The goal was to come up with a comprehensive
catalog of ICT-related risks for smart grids in Europe from a Distribution System Operator’s
perspective. The following steps were taken to achieve that goal:

1. Compile a threat catalog for smart grids focusing on ICT-related threats and vulnerabilities

2. Develop a threat matrix by applying the threat catalog to the ICT architecture model, i.e.,
identify which threats apply to which components of the model

3. Assess the potential risk for each element within the threat matrix by estimating the
probability and the impact of an according attack, thus eventually producing a risk catalog

These steps are explained in more detail in the following paragraphs.

Compiling the Threat Catalog

The (SG)2 threat catalog was not to be developed from scratch, but should build upon a well-
established source of ICT-related security threats. To that end, the IT Baseline Protection Catalogs
developed by the Federal Office for Information Security [14] were chosen to form the main
source of input as they provide a comprehensive list of security threats that could possibly
apply to an ICT-supported system. Additionally, the threats specified in the smart-grid-specific
Protection Profiles [15, 16] were taken into account. Non-technical threats, i.e., threats related
to organizational issues or force majeure, were not considered due to the scope and focus of the
(SG)2 project. Thus, out of a list of initially 500 threats accumulated from the identified sources,
the ones without any relevance to smart grids or without any relation to ICT were eliminated at
first, yielding roughly half of the initial threats for further consideration. While certain threats
listed in the BSI Catalogs are very generic, others apply to very specific settings only; therefore,
it was necessary to merge some of the threats that remained in our list after the “weeding” step.

1The EURACOM project deliverables can be downloaded at http://www.eos-eu.com/?Page=euracom.

62

http://www.eos-eu.com/?Page=euracom

This resulted in a list of 31 threats, which were grouped into the following clusters:

• Authentification / Authorization

• Cryptography / Confidentiality

• Integrity / Availability

• Missing / Inadequate Security Controls

• Internal / External Interfaces

• Maintenance / System Status

Since the BSI Baseline Protection Catalogs are not tailored for any specific use case, the relevant
threats had to be adapted to the smart grid scenario, i.e., they were interpreted in the smart grid
context.

Developing the Threat Matrix

The next step on the path to the (SG)2 risk catalog was to apply the threats identified in the
first step to the components of the (SG)2 architecture model (see Section 2.2), i.e., to state
which threats are relevant for which of the components and why. To answer that question, the
functionality and the characteristics of the individual architecture components had to be assessed
first. For feasibility reasons, the granularity of the components to be considered was set to the
level of the boxes depicted in dark grey in Fig. 2.2:

• Functional Buildings

• E-Mobility & Charge Infrastructure

• Household

• Generation Low Voltage

• Generation Medium Voltage

• Testpoints

• Transmission (High/Medium Voltage)

• Transmission (Medium/Low Voltage)

• Grid Operation

• Metering

63

The Energy Markets domain was not considered due to lack of current ICT utilization and lack of
information on future functionalities.
For each element of the threat matrix, it was first decided whether the threat could be relevant
to that particular component or not. If potential relevance was assessed, the reason for that
decision was noted, and possible attack scenarios were developed. Since the architecture model
considered also smart grid developments for the near future, reasonable assumptions regarding
the implementation had to be made in certain cases. These assumptions were discussed and
verified by the involved manufacturers and utilities.

Assessing the Risk Potential

The final step of the (SG)2 risk assessment involved estimating the risk potential for each element
of the threat matrix, thus providing a comprehensive risk catalog. To that end, the probability
and the impact of each of the threats occuring was rated for each of the components of the
architecture model. A semi-quantitative approach was chosen for the risk assessment, which
had previously been applied and practically assessed by one of the member organizations of the
project consortium: both probability and impact were measured on a five-level scale ranging from
very low (level 1) to very high (level 5). The probability level was determined by the number of
successful attacks per year, ranging from less than 0.1 incidents (level 1) to multiple incidents
(level 5) per year. The impact of a successful attack was determined by monetary loss, customer
impact, and geographic range of the effects (e.g., local, regional, global). The outcome of this
step is a comprehensive catalog of cyber security risks on smart grids in Europe. The steps taken
to evaluate the catalog as well as the main findings are described in the following section.

2.4 Evaluation and Results

A good threat and risk assessment model delivers useful results, i.e., captures specific threats
appropriately, is easy to use, and well applicable in reality. With these targets in mind, we
evaluated and revised the model in a series of workshops, where domain experts from both areas
of information technology and energy rated the proposed risk assessment approach.

Evaluation Methodology

The evaluation, partly integrated in the overall creation of our cumulative smart grid model for
risk assessment, included in the following three steps:

• Step 1: Evaluation of Threat Catalog. In order to evaluate our threat catalog, we set up end
user workshops with experts from utility providers, device manufacturers, and academic
institutions to evaluate both the relevance and completeness of the identified threats. During
that evaluation, additional threats were added that are unique to the smart grid domain.

• Step 2: Threat Relevance. Experts surveyed the applicability of identified threats to the
various domains in the SGAM model. This step enabled the identification of the most
important threats per domain as well as their interdependencies, and further allowed to

64

focus on most relevant threats. The result was again discussed and refined with major
utility providers in Austria in end user centric workshops.

• Step 3: Probability and Impact Assessment. In a last step, we had experts independently
rate the probability of occurrence of identified threats and the impact from their point of
view. These experts represent the opinions of different utility providers, ranging from small
and locally operating organizations, to larger ones. In a joint workshop, the individual
results were again discussed and consolidated to ensure the broad use of the resulting threat
and risk catalog.

Main Findings

Dealing with proper risk assessment in the smart grid domain is indeed challenging, mainly
because of the novelty, complexity, and multidisciplinarity of this topic. Here, we present some
of the main findings, derived from the application of our approach in a real user context. We
foresee these qualitative statements as a major contribution for future improvements of our smart
grid risk assessment approach.

Unbalanced Risk Distribution

Essentially, the probability of a security breach is comparatively low on the upper levels of the
cumulative smart grid model, because components are small in numbers and easy to protect.
An attacker typically has no physical access to components, and well-trained experts acting
under rigid policies maintain the grid’s backend. Furthermore, protection mechanisms on the
upper levels do not suffer from cost pressure on this level; for instance, redundant systems and
hot stand-by sites are state-of-the-art here. However, once an attacker manages to get access
to critical systems, the negative impact will eventually be high; for instance, shutting down a
primary substation node could affect whole city districts. This makes the security of higher level
smart grid components a first priority for utility providers. On the other hand, the probability of a
security incident on the bottom level of the cumulative smart grid model is much higher. The
reason is that attackers can easily get hold of components (e.g., a concentrator or a secondary
substation node) or have them installed on their own premises (e.g., a smart meter). The impact
of an attack towards these components is expected to be (geographically) limited at a first glance.
The situation may however change tremendously if someone publishes a successful smart meter
mass attack on the Internet. This could lead to unanticipated cascading effects in the power grid.
Hence, smart grid security on the lower levels of the smart grid is of major importance for utility
providers as well.

Evolution of the Grid

Security challenges arise from the fact that the current power grid architecture is just step-wise
transformed to a smart grid. While neither a pure legacy system nor a completely new system
designed from scratch is too hard to be properly secured, while a mixture of both is. We identified
that during the transmission of the current power grid into a smart grid, we are facing many
security challenges: (i) the mix of legacy protocols and new protocols; (ii) the usage of wrappers,

65

data converters, and gateways to make devices interoperable; (iii) short innovation cycles and
rapid pace with which technologies advance clash with the traditional views of grid investments,
where components have been designed to last for decades.

Technological Diversity

Not only the transformation phase, but also the final smart grid architecture foresees the appli-
cation of a wide variety of different technologies [98]. Many security specialists argue that this
diversity leads to a large attack surface, meaning that in hundreds of different protocols and
implementations, a security relevant flaw is much more likely compared to only a small set of
well-tested standardized technologies. This technological diversity and the need for seamless
interoperability mostly avoids rigid designs and the setup of a uniform and secure architecture.
On the other side, systems may be designed with different goals in mind so that the intermediary
interfaces between them may lead to security vulnerabilities. Although standardization bodies,
such as the NIST and BSI, have published (vendor-independent) viable technology recommenda-
tions and guidelines, there are no obligations for device vendors and utility providers to stick to
them. However, we must not negate the positive aspects of technological diversity. Combining
different technologies and products can help to prevent cascading effects caused by a specific
vulnerability prevalent in a single technology or series of devices. As a consequence, an attack
that has been successful at one utility provider is not necessarily successful at another one, if
different technologies are deployed.

Risk Assessment Complexity

The complexity of risk assessment in the energy domain increases rapidly with the introduction
of ICT components. This situation will become even worse, once smart grid technology is
rolled out on a large scale, because systems become more and more coupled, even across
geographical borders, resulting in strong interdependencies among components. The utility
providers’ concerns are therefore mainly centered around the understanding, detection, and
mitigation of complex attack scenarios, where similarly to highly distributed computer systems, a
multitude of vulnerabilities may be exploited in course of a complex attack. Estimating risks for
such cases is extremely difficult, since numerous mostly unknown variables need to be considered.
An example for such a complex attack case is the potential intrusion of malicious users into the
metering backend through an exploitation of the smart meter communication network. Here, we
argue that our architecture model, which clearly documents existing communication links as well
as utilized protocols, is of significant help.

2.5 Conclusion and Future Work

In this work we analyzed existing smart grid standards with respect to smart grid security and risk
assessment together with leading manufacturers and utilities. Our study indicated that standards
like NIST-IR 7628 [81] or the Protection Profiles published by the The German Federal Office
for Information Security [15, 16] are only of limited practical use to utilities. As a consequence,
in a joint approach with leading manufacturers and utilities, we analyzed seven national and four

66

international smart grid projects to form a cumulative smart grid model representing both current
and future European smart grids. In comparison to existing models like the U.S. NIST Smart
Grid Framework [80] or the European Smart Grid Reference Architecture [103], our model is
technically more detailed and includes a description of predominant communication technologies.
In the second part of our work, we developed an extensive methodology to assess the risks
involved within our cumulative smart grid model. While our threat catalog initially comprised
a list of more than 500 threats, we were able to create a clustered catalog of no more than 31
threats that can be practically handled on top of the smart grid areas in our model. Due to the
close cooperation with leading manufacturers and utilities, we believe that our work has a high
practical impact on European utilities, as it can support them to conduct a risk analysis of their
specific infrastructure.
In near future, we also plan to extend our risk catalog with respect to risk mitigation approaches
and security controls, so that utilities can effectively mitigate identified risks with the help of our
framework.

2.6 Acknowledgements

This work has been made possible through the joint SG2 KIRAS project under national FFG
grant number 836276.

67

T
hreatC

ategory
T

hreat
FunctionalB

uildings
E

-M
obility

incl.Infrastruct.
H

ousehold
G

eneration
(L

ow
Volt.)

G
eneration

(H
igh

Volt.)
Authentication

/
Au-

thorisation
D

efective
or

m
iss-

ing
authentication

or
inappropri-

ate
handling

of
authentication

data

R
elevant

for
all

interfaces
to

the
Sm

art
G

rid
G

atew
ay

(B
uilding

A
utom

ation,
M

ar-
ket/Internet

und
Secondary

Substation)(P:2;I:2)

A
n

attacker
could

im
person-

ate
the

E
M

S
and

take
control

over
all

charge
stations

in
an

affected
area

(e.g.,
a

street),
w

hich
could

lead
to

instabili-
ties

in
the

grid
(P:2;I:3)

R
elevantfor

Sm
artG

rid
G

ate-
w

ay
and

Sm
art

M
eter

and
all

interfaces
(configuration

inter-
face,M

arket,PL
C

to
data

con-
centrator

and
Secondary

Sub-
station)(P:2;I:2)

E
xact

scope
and

functional-
ity

of
Sm

art
G

rid
G

atew
ay

is
not

clear
to

date
-

how
w

ill
the

authentication
tow

ards
the

A
utom

ation
Front-end

and
the

Sm
art

G
rid

G
atew

ay
be

han-
dled?

(P:1-3;I:2-3)

E
xact

scope
and

functional-
ity

of
Sm

art
G

rid
G

atew
ay

is
not

clear
to

date
-

how
w

ill
the

authentication
tow

ards
the

A
utom

ation
Front-end

and
the

Sm
art

G
rid

G
atew

ay
be

han-
dled?

(P:1-3;I:3-4)
C

ryptography
/C

on-
fidentiality

D
isclosure

of
sensi-

tive
data

B
uilding

autom
ation

data
are

sensitive
since

they
m

ay
give

aw
ay

inform
ation

about
pro-

ductivity
or

w
orking

hours
(P:

2;I:2)

C
onfidential

load
data

could
be

eavesdropped
on

through
the

connection
to

the
E

-
M

obility
M

anagem
entSystem

or
Sm

art
G

rid
G

atew
ay

(P:
2-3;I:2)

M
etering

data
is

confidential
since

it
affects

privacy
and

habits
of

the
custom

ers;
im

-
pact

of
accidental

disclosure
depends

on
the

scope
of

data
and

the
num

ber
of

households
affected

(P:2;I:3)

O
utput

data
of

sm
all

produc-
ers

is
confidential

since
they

m
ay

allow
conclusions

to
be

draw
n

on
consum

er
behavior;

high
probability

since
no

pro-
tection

m
easures

currently
in

place
(P:4;I:3)

H
ardly

relevant
since

outout
data

are
not

confidential;
low

m
otivation

(P:1;I:1)

Integrity
/

Availabil-
ity

Tam
pering

w
ith

de-
vices

H
ardly

relevant
due

to
physi-

calaccess
control;Sm

artG
rid

G
atew

ay
could

be
physically

part
of

the
B

uilding
A

utom
a-

tion
system

;
building

opera-
tor

has
no

m
otivation

to
com

-
prom

ise
his

ow
n

load
m

anage-
m

ent(P:1;I:1)

Tam
pering

w
ith

E
V,

charge
station

or
E

-M
obility

M
an-

agem
ent

System
;

a
m

alicious
user

can
easily

access
relevant

com
ponents;

im
pact

depends
on

w
hether

private
or

public
charge

station
is

targeted
(P:3;

I:2-3)

C
ustom

ers
have

direct
access

to
the

com
ponents;

m
ain

m
o-

tivation
is

fraud,
but

m
ore

se-
vere

attacks
m

ight
as

w
ell

be
possible

(e.g.
issuing

control
com

m
ands)(P:4;I:3)

R
elatively

exposed
(in

a
house-

hold);
the

am
ount

of
energy

supplied
m

ay
be

a
subject

to
fraud;

depends
on

the
use

of
anom

aly
detection

techniques
and

plausibility
checks

(P:4;I:
2)

B
asic

levelof
physicalprotec-

tion;
low

probability
due

to
professional

operator
(P:

1;
I:

4)

M
issing

/
Inad-

equate
Security

C
ontrols

D
efective

orm
issing

security
controls

in
netw

orks

C
om

m
unication

via
the

net-
w

ork
in

the
building;

Sm
art

G
rid

G
atew

ay
com

m
unicates

via
insecure

netw
orks

(Inter-
net),w

hich
opens

up
the

possi-
bility

of
distributed

attacks
on

the
Sm

artG
rid

G
atew

ay
(P:1;

I:4)

U
se

ofprotocolsthatlack
secu-

rity
features

(e.g.
IE

C
61334

via
PL

C
)could

lead
to

eaves-
dropping

on
confidential

load
data;

negative
consequences

for
m

anufacturer
/operator

of
the

charge
station,

although
the

utility
m

ay
also

be
affected

(P:2;I:2)

C
om

m
unication

over
insecure

netw
orks(Internet,PL

C
)(P:3;

I:3)

E
specially

relevantforInternet
connection

to
Secondary

Sub-
station

N
ode

(P:2;I:2)

E
specially

relevant
for

com
m

unication
over

the
telecontrol

W
A

N
,

currently
IE

C
60870-5-104

w
ithout

encryption
(P:2;I:3)

Internal
/

E
xternal

Interfaces
Illegal

logical
inter-

faces
Illegal

com
m

unication
chan-

nels
betw

een
the

G
atew

ay
and

interfaces
(M

arket/Internet,
Secondary

Substation,
B

uild-
ing

A
utom

ation)
could

be
established

and
exploited

in
an

attack
(P:2;I:3)

Illegal
com

m
unicating

w
ith

E
V,

charge
station

or
E

-
M

obility
M

anagem
entSystem

could
lead

to
disclosure

of
confidential

load
data

(P:
2;

I:
3)

Illegal
com

m
unication

chan-
nels

betw
een

the
Sm

art
G

rid
G

atew
ay

and
ist

interfaces
(M

arket/Internet,
Secondary

Substation,
Sm

art
M

eter)
could

be
establish

and
ex-

ploited
in

an
attack

(P:
2;

I:
3)

D
ue

to
physicalexponation

an
attackercould

interactw
ith

the
system

directly,thus
revealing

new
interfaces

that
could

be
exploited

(P:3;I:2)

B
asic

level
of

physical
pro-

tection;
access

to
telecontrol

W
A

N
m

ay
be

feasible
through

faulty
operation

or
targeted

at-
tacks

(P:2;I:3)

M
aintenance

/
Sys-

tem
Status

O
peration

of
unreg-

istered
or

insecure
com

ponents
or

com
-

ponents
w

ith
overly

broad
range

offunc-
tions

T
he

G
atew

ay
could

have
a

w
ide

range
of

capabilities
and

functions,
thus

increasing
the

attack
surface

via
the

inter-
faces

(B
uilding

A
utom

ation,
M

arket/Internet,
Secondary

Substation)(P:2;I:2)

Possible
disruption

of
the

E
-

M
obility

M
anagem

entSystem
or

Sm
artG

rid
G

atew
ay

if
con-

nected
to

a
non-standard

or
m

anipulated
charge

station
;

localim
pactonly

(P:1;I:1)

Sm
artG

rid
G

atew
ay

or
Sm

art
M

eter
could

have
a

too
w

ide
range

of
capabilities

and
func-

tions,
thus

increasing
the

at-
tack

surface
via

the
interfaces

(Sm
artM

etering,M
arket,Sec-

ondary
Substation)(P:2;I:2)

R
ather

low
probability

since
the

com
ponents

are
dedicated

to
a

very
specific

use;how
ever,

backdoors
constitute

a
realis-

tic
threatscenario

especially
in

replicated
devices

(P:3;I:2)

R
ather

low
probability

since
the

com
ponents

are
dedicated

to
a

very
specific

use;how
ever,

backdoorsconstitute
a

realistic
threatscenario

(P:2;I:3)

Table
2.1:ThreatA

ssessm
ent(Part1).N

otice,the
threatcategory

and
an

exem
plary

threatare
given

in
the

firsttw
o

colum
ns.Subsequent

colum
ns

contain
the

quantitative
and

qualitative
assessm

ents
results

for(P)robability
and

(I)m
pacton

a
scale

from
1

to
5

foreach
threat

and
perdom

ain.

68

T
hr

ea
tC

at
eg

or
y

T
hr

ea
t

Te
st

po
in

ts
Tr

an
sm

is
si

on
(H

ig
h/

M
ed

.
Vo

lta
ge

)
Tr

an
sm

is
si

on
(M

ed
./L

ow
Vo

lta
ge

)
G

ri
d

O
pe

ra
tio

n
M

et
er

in
g

Au
th

en
tic

at
io

n
/

au
-

th
or

is
at

io
n

D
ef

ec
tiv

e
or

m
is

s-
in

g
au

th
en

tic
at

io
n

or
in

ap
pr

op
ri

-
at

e
ha

nd
lin

g
of

au
th

en
tic

at
io

n
da

ta

N
o

au
th

en
tic

at
io

n
be

tw
ee

n
A

u-
to

m
at

io
n

Fr
on

t-
en

d
an

d
Te

st
-

po
in

t,
al

th
ou

gh
th

e
Fr

on
t-

en
d

au
th

en
tic

at
es

to
w

ar
ds

th
e

Pr
i-

m
ar

y
Su

bs
t.

N
od

e
(P

SN
);

a
sp

oo
fin

g
at

ta
ck

co
ul

d
le

ad
to

fa
ls

e
da

ta
be

in
g

se
nt

to
th

e
PS

N
;

lo
w

im
pa

ct
(s

ub
op

tim
al

su
pp

ly
)(

P:
2-

3,
I:

1)

D
ue

to
th

e
re

la
tiv

el
y

lo
w

nu
m

be
r

of
Pr

im
ar

y
Su

bs
ta

tio
n

N
od

es
ac

co
un

ts
or

pa
ra

m
et

er
s

ca
n

be
co

nfi
gu

re
d

an
d

te
st

ed
m

an
ua

lly
,

th
er

ef
or

e
th

e
pr

ob
-

ab
ili

ty
is

lo
w

er
th

an
in

lo
w

er
pa

rt
s

of
th

e
ar

ch
ite

ct
ur

e
m

od
el

(P
:1

-2
,I

:4
)

E
sp

ec
ia

lly
re

le
va

nt
fo

r
re

m
ot

e
m

ai
nt

en
an

ce
ac

ce
ss

po
in

ts
;

Se
co

nd
ar

y
Su

bs
ta

tio
n

N
od

e
an

d
C

on
ce

nt
ra

to
rc

an
be

ea
si

ly
ac

ce
ss

ed
m

os
tly

,
w

hi
ch

gi
ve

s
a

hi
gh

pr
ob

ab
ili

ty
;

po
ss

ib
ly

re
gi

on
al

im
pa

ct
s

in
ca

se
of

un
au

th
or

iz
ed

ac
ce

ss
(P

:
4;

I:
3)

A
cc

es
s

ri
gh

ts
m

an
ag

em
en

t
on

SC
A

D
A

sy
st

em
s

im
pl

em
en

te
d

on
an

in
di

vi
du

al
ba

si
s

at
ut

il-
iti

es
,s

ta
nd

ar
d

IT
te

ch
no

lo
gi

es
ar

e
em

pl
oy

ed
;ï

de
nt

ity
sp

oo
fin

-
gö

f
ca

lls
to

E
M

S;
m

ai
n

th
re

at
is

ex
pl

oi
ta

tio
n

of
in

se
cu

re
re

-
m

ot
e

ac
ce

ss
so

lu
tio

ns
(P

:2
,I

:
4)

T
he

co
nn

ec
tio

n
be

tw
ee

n
A

M
I

he
ad

en
d

an
d

Sm
ar

t
M

et
er

s
is

en
cr

yp
te

d
by

ut
ili

zi
ng

st
ro

ng
cr

yp
to

gr
ap

hi
c

pr
im

iti
ve

s
(E

C
D

SA
,

A
E

S)
;

au
th

en
ti-

ca
tio

n
an

d
au

th
or

iz
at

io
n

is
re

al
iz

ed
th

ro
ug

h
ce

rt
ifi

ca
te

s;
th

us
,

a
hi

gh
se

cu
ri

ty
st

an
da

rd
is

ex
pe

ct
ed

(P
:1

,I
:2

)
C

ry
pt

og
ra

ph
y

/C
on

-
fid

en
tia

lit
y

D
is

cl
os

ur
e

of
se

ns
i-

tiv
e

da
ta

D
oe

s
no

ta
pp

ly
si

nc
e

te
st

da
ta

(v
ol

ta
ge

,f
re

qu
en

cy
)i

sn
ot

co
n-

fid
en

tia
l

C
ur

re
nt

su
pp

ly
da

ta
an

d
co

n-
tr

ol
co

m
m

an
ds

ar
e

pr
ob

ab
ly

no
t

co
nfi

de
nt

ia
l;

co
ns

um
pt

io
n

da
ta

ar
e

ag
gr

eg
at

ed
,

th
er

ef
or

e
lo

w
im

pa
ct

(P
:2

,I
:1

)

Pr
oc

es
si

ng
of

co
nfi

de
nt

ia
ls

up
-

pl
y/

co
ns

um
pt

.d
at

a
in

C
on

ce
n-

tr
at

or
an

d
Se

co
nd

ar
y

Su
bs

ta
-

tio
n

N
od

e;
m

ed
iu

m
pr

ob
ab

il-
ity

du
e

to
lit

tle
(p

hy
si

ca
l)

pr
o-

te
ct

io
n

(P
:3

,I
:3

)

Fo
r

lo
ad

es
tim

at
io

n,
co

ns
um

p-
tio

n
an

d
en

er
gy

pr
od

uc
tio

n
da

ta
is

an
on

ym
iz

ed
;

po
w

er
gr

id
pl

an
s

an
d

co
nt

ro
l

da
ta

is
re

qu
ir

ed
to

be
pr

ot
ec

te
d

ac
-

co
rd

in
gl

y
(P

:1
-2

,I
:4

)

R
el

ev
an

t
si

nc
e

co
nfi

de
nt

ia
l

po
w

er
co

ns
um

pt
io

n
da

ta
is

pr
oc

es
se

d
an

d
st

or
ed

(P
:

1,
I:

3)

In
te

gr
ity

/
Av

ai
la

bi
l-

ity
Ta

m
pe

ri
ng

w
ith

de
-

vi
ce

s
H

ar
dl

y
re

le
va

nt
du

e
to

ph
ys

i-
ca

la
cc

es
s

co
nt

ro
lm

ec
ha

ni
sm

s
in

pl
ac

e;
m

an
ip

ul
at

io
n

vi
a

th
e

co
m

m
un

ic
at

io
n

in
te

rf
ac

e
co

ul
d

be
fe

as
ib

le
(e

.g
.

ch
an

g-
in

g
th

e
co

nfi
gu

ra
tio

n
on

SD
ca

rd
);

lo
w

im
pa

ct
(P

:2
,I

:1
)

Ta
m

pe
ri

ng
ha

rd
ly

re
le

va
nt

du
e

to
hi

gh
vo

lta
ge

,
bu

t
th

is
m

ay
no

th
ol

d
fo

rm
al

ic
io

us
in

si
de

rs
;

cu
rr

en
tly

st
ro

ng
im

pa
ct

(o
ut

-
ag

e)
,b

ut
tim

el
y

m
iti

ga
tio

n
ca

n
be

ex
pe

ct
ed

(P
:2

,I
:3

)

Ta
m

pe
ri

ng
po

ss
ib

le
es

pe
ci

al
ly

w
ith

C
on

ce
nt

ra
to

r;
ra

th
er

hi
gh

pr
ob

ab
ili

ty
du

e
to

lit
tle

(p
hy

s-
ic

al
)

pr
ot

ec
tio

n
m

ea
su

re
s;

re
-

gi
on

al
im

pa
ct

(P
:3

-4
,I

:3
)

R
el

ev
an

t
if

di
re

ct
m

an
ip

ul
a-

tio
n

by
in

si
de

rs
;r

em
ot

e
m

an
ip

-
ul

at
io

n
ov

er
te

le
co

nt
ro

l
W

A
N

po
ss

ib
le

;
fo

rg
ed

pr
oc

es
s

da
ta

m
ay

ca
us

e
m

al
fu

nc
tio

n
of

D
M

S
an

d
su

bs
eq

ue
nt

ly
le

ad
to

gr
id

in
st

ab
ili

ty
(P

:2
,I

:4
)

L
ow

re
le

va
nc

e
du

e
to

ph
ys

ic
al

pr
ot

ec
tio

n
m

ea
su

re
s(

P:
1,

I:
3)

M
is

si
ng

/
In

ad
-

eq
ua

te
Se

cu
ri

ty
C

on
tr

ol
s

D
ef

ec
tiv

e
or

m
is

si
ng

se
cu

ri
ty

co
nt

ro
ls

in
ne

tw
or

ks

C
on

ne
ct

ed
to

Pr
im

ar
y

Su
b-

st
at

io
n

N
od

e
vi

a
te

le
co

nt
ro

l
W

A
N

w
ith

IE
C

60
87

0-
5-

10
4

(u
ne

nc
ry

pt
ed

);
lo

w
im

pa
ct

(s
ub

op
tim

al
su

pp
ly

)
(P

:2
-3

,I
:

1)

E
sp

ec
ia

lly
re

le
va

nt
fo

r
th

e
co

m
m

un
ic

at
io

n
vi

a
th

e
te

le
-

co
nt

ro
l

W
A

N
;

pr
ob

ab
ili

ty
is

lo
w

si
nc

e
se

cu
ri

ty
co

nt
ro

ls
in

pl
ac

e
ar

e
m

or
e

ef
fic

ie
nt

th
an

fo
r

th
e

co
m

po
ne

nt
s

in
th

e
lo

w
er

pa
rt

s
of

th
e

ar
ch

ite
ct

ur
e

m
od

el
(P

:1
,I

:1
-2

)

E
sp

ec
ia

lly
re

le
va

nt
fo

r
In

te
r-

ne
t/P

L
C

co
nn

ec
tio

n
to

M
id

dl
e-

w
ar

e
an

d
Sm

ar
tG

ri
d

G
at

ew
ay

(P
:2

-3
,I

:3
)

R
el

ev
an

t
fo

r
so

m
e

in
te

rf
ac

es
(t

el
ec

on
tr

ol
W

A
N

,E
M

S
lin

k)
;

lin
k

to
PS

N
se

cu
re

d
w

ith
IP

Se
c;

te
le

co
nt

ro
l

W
A

N
lin

k
to

Se
co

nd
ar

y
Su

bs
t.

N
od

e
co

ul
d

in
cl

ud
e

fo
rg

ed
da

ta
ca

us
-

in
g

gr
id

in
st

ab
ili

ty
;(

P:
2,

I:
4)

E
sp

ec
ia

lly
re

le
va

nt
fo

r
th

e
in

-
te

rf
ac

es
to

th
e

ou
ts

id
e

w
or

ld
(i

.e
.

co
nn

ec
tio

n
to

co
nc

en
tr

a-
to

rs
)(

P:
1,

I:
2)

In
te

rn
al

/
E

xt
er

na
l

In
te

rf
ac

es
Il

le
ga

l
lo

gi
ca

l
in

te
r-

fa
ce

s
R

el
ev

an
t

fo
r

un
au

th
or

iz
ed

ac
-

ce
ss

vi
a

te
le

co
nt

ro
l

W
A

N
;

a
D

oS
-a

tta
ck

on
th

e
Pr

im
ar

y
Su

bs
ta

tio
n

N
od

e
co

ul
d

le
ad

to
ge

ne
ra

tio
n

pl
an

ts
go

in
g

of
fli

ne
,

re
su

lti
ng

in
vo

lta
ge

dr
op

s(
P:

2,
I:

2-
3)

R
el

ev
an

t
fo

r
ac

ce
ss

vi
a

te
le

-
co

nt
ro

lW
A

N
(P

:2
,I

:4
)

R
el

ev
an

t
fo

r
ac

ce
ss

vi
a

te
le

-
co

nt
ro

lW
A

N
(P

:2
,I

:4
)

R
el

ev
an

t
du

e
to

un
au

th
or

iz
ed

ac
ce

ss
ov

er
ex

te
rn

al
in

te
rf

ac
es

:
te

le
co

nt
ro

l-
W

A
N

(A
ut

om
at

io
n

H
ea

de
nd

),
W

eb
se

rv
ic

e
(E

M
S)

,
R

em
ot

e
A

cc
es

s
(S

C
A

D
A

)
de

-
pe

nd
in

g
on

de
pl

oy
ed

te
ch

no
lo

-
gi

es
(P

:2
,I

:4
)

D
ue

to
ill

ic
it

lo
gi

ca
l

in
te

rf
ac

e
(e

.g
.

du
e

to
a

su
cc

es
sf

ul
at

-
ta

ck
)

a
co

nn
ec

tio
n

fr
om

th
e

m
et

er
in

g
sy

st
em

ov
er

th
e

m
id

-
dl

ew
ar

e
to

th
e

gr
id

op
er

at
io

n
sy

st
em

is
fe

as
ib

le
(P

:1
,I

:3
)

M
ai

nt
en

an
ce

/
Sy

s-
te

m
St

at
us

O
pe

ra
tio

n
of

un
re

g-
is

te
re

d
or

in
se

cu
re

co
m

po
ne

nt
s

or
co

m
-

po
ne

nt
s

w
ith

ov
er

ly
br

oa
d

ra
ng

e
of

fu
nc

-
tio

ns

U
nr

eg
is

te
re

d
co

m
po

ne
nt

s
ha

rd
ly

re
le

va
nt

(p
hy

si
ca

l
ac

-
ce

ss
co

nt
ro

l)
;

an
ov

er
ly

br
oa

d
ra

ng
e

of
fu

nc
tio

ns
po

ss
ib

le
de

sp
ite

on
-s

ite
m

ai
nt

en
an

ce
(m

os
tly

no
re

m
ot

e
m

ai
nt

e-
na

nc
e)

;
lo

w
im

pa
ct

(P
:

1-
2,

I:
1)

U
nr

eg
is

te
re

d
co

m
po

ne
nt

s
ha

rd
ly

re
le

va
nt

du
e

to
ph

ys
ic

al
ac

ce
ss

co
nt

ro
l;

an
ov

er
ly

br
oa

d
ra

ng
e

of
fu

nc
tio

ns
po

ss
ib

le
;

lo
w

pr
ob

ab
ili

ty
du

e
to

hi
gh

ly
sp

ec
ia

liz
ed

co
m

po
-

ne
nt

s
(c

om
pa

re
d

to
ho

m
e

ar
ea

)
(P

:1
,I

:2
-3

)

D
ue

to
ea

sy
ac

ce
ss

ib
ili

ty
of

th
e

su
bs

ta
tio

ns
un

re
gi

st
er

ed
co

m
-

po
ne

nt
s

co
ul

d
be

in
st

al
le

d;
re

-
gi

on
al

im
pa

ct
s

(P
:3

-4
,I

:3
-4

)

U
nr

eg
is

te
re

d
co

m
po

ne
nt

s
ar

e
of

lo
w

re
le

va
nc

e
du

e
to

ph
ys

-
ic

al
ac

ce
ss

pr
ot

ec
tio

n;
un

us
ed

bu
t

ac
tiv

e
sy

st
em

fu
nc

tio
na

l-
iti

es
ar

e
re

le
va

nt
,

es
pe

ci
al

ly
co

ns
id

er
in

g
re

m
ot

e
ac

ce
ss

or
su

pp
or

t
in

te
rf

ac
es

fo
r

m
an

u-
fa

ct
ur

er
s

(P
:2

-3
,I

:4
)

U
nu

se
d

bu
ta

ct
iv

e
sy

st
em

fu
nc

-
tio

na
lit

ie
s

in
th

e
A

M
Ih

ea
de

nd
le

ad
to

an
in

cr
ea

se
d

at
ta

ck
su

r-
fa

ce
(P

:2
,I

:2
)

Ta
bl

e
2.

2:
Th

re
at

A
ss

es
sm

en
t(

Pa
rt

2)
.N

ot
ic

e,
th

e
th

re
at

ca
te

go
ry

an
d

an
ex

em
pl

ar
y

th
re

at
ar

e
gi

ve
n

in
th

e
fir

st
tw

o
co

lu
m

ns
.S

ub
se

qu
en

t
co

lu
m

ns
co

nt
ai

n
th

e
qu

an
tit

at
iv

e
an

d
qu

al
ita

tiv
e

as
se

ss
m

en
ts

re
su

lts
fo

r(
P)

ro
ba

bi
lit

y
an

d
(I

)m
pa

ct
on

a
sc

al
e

fr
om

1
to

5
fo

re
ac

h
th

re
at

an
d

pe
rd

om
ai

n.

69

CHAPTER 3
Architecture-Driven Smart Grid

Security Management

While traditionally electrical power grids adhered to the producer-consumer model, in modern
smart grids everyone can become an energy producer – by leveraging green energy produced
through solar panels, wind turbines or heating and biogas plants, consumers turn into “prosumers”.
For traditional large-scale utilities and energy producers, this has introduced a massive drawback:
due to decentralized energy production, energy networks can no longer be centrally controlled.
The solution is to upgrade existing power grids to smart grids by establishing an ICT network
in parallel to the electrical power grid. While this brings advantages with respect to energy
efficiency, green energy harvesting and consumer freedom, it also introduces ICT security risks
in critical infrastructures that may cause disastrous effects.
As manufacturers of smart grid components move from pure electrical systems to the development
of complex ICT systems, and though security may be an important target for them, market
pressure and a lack of security experience may force them to roll out insecure products. Utilities,
on the other hand, need to rely on manufacturers that their smart grid devices are secure in
order to run this critical infrastructure. To lower the risks involved, proper risk management
needs to be put in place. However, existing ICT-related risk management processes are not
directly applicable to the smart grid domain as the technology and the security requirements are
significantly different. On the other hand, readily available smart grid security guidelines such as
the Protection Profiles [15, 16] developed by the German Federal Office for Information Security
(BSI) merely focus on smart metering and thus do not map to the entire smart grid architectures
deployed.
We decided to take a different approach. Instead of focusing on a single technological compo-
nent, we model European smart grid architectures by using the Smart Grid Architecture Model
(SGAM) [103]. Based on well-established sources of ICT-related security threats, we created
a catalog for ICT security threats to the smart grid, which can be applied to components in the
SGAM model. In this work, we show how our approach can be practically used for smart grid risk
management, including risk assessment, mitigation and compliance checking. As our approach

71

has been developed in conjunction with leading smart grid manufacturers and utilities, we believe
that it has a strong practical impact.
In summary, the main contributions of our work are:

• an SGAM-based smart grid model representing both current and near-future European
smart grid architectures,

• a comprehensive catalog of cyber security threats for smart grids, and

• a practical risk assessment approach able to bridge the gap between a high-level architec-
tural view and specific technical security measures.

The remainder of this paper is organized as follows. Section 3.1 outlines existing work on smart
grid security and risk assessment. Section 3.2 describes the five steps of our smart grid risk
management approach, which is subsequently evaluated in Section 3.3. Section 3.4 concludes the
paper and identifies potential areas for future work.

3.1 State-of-the-Art and Related Work

Smart grid technologies have received major attention in both academia and industry in recent
years. Various works discuss the basics of the smart grid, such as its structure, application, and
potential impact [3,111]. Others cover established and recently developed technical standards [25].
The European Union plans to replace traditional electricity meters with smart meters to a large
extent until 2020, which draws major attention to various security and privacy aspects of this
technology [60, 98]. Therefore, the U.S. NIST and European ENISA have released numerous
guidelines on how to secure smart grid architectures [33, 81]. Although these documents build a
solid basis, they do not show the complete picture. NIST, for instance, focuses on technologies
employed in U.S. smart grids, and both guidelines give quite high-level recommendations only.
Similarly, the BSI Protection Profiles [15, 16] do not provide a holistic approach either. Instead,
they focus on smart metering only (which is only one building block of a smart grid), and their
target of evaluation is a very specific smart metering implementation that does not reflect deployed
smart metering systems.
The electric grid is perhaps the most critical infrastructure today, and thus safety, i.e., reliability
and availability, is a top priority. Potential vulnerabilities of smart metering systems – and the
grid in general – are widely discussed topics [60, 75, 122]. As a consequence, many research
works focus on quite small (technical) parts of the overall smart grid architecture. For instance,
data communication security controls (e.g., cryptographic functions such as encryption, message
authentication codes, and digital signatures) provide standard security services in terms of
confidentiality, integrity, and accountability of messages and their origin [25]. Others deal with
effective key distribution [121] and management for devices with very limited computational
power [75] to enable efficient encryption of meter readings and access control (similar to Pay-TV
access control systems [121]). Yan et al., Mohan et al. and Vigo et al. provide an overview of
security mechanisms for smart grids and smart meters [77, 120, 130]. While their work provides
an overview of how security mechanisms should be realized, in our approach, we focus on

72

the security mechanisms that are either implemented currently or will be part of near-future
implementations.
The Smart Grid Coordination Group formed by the European standards organizations CEN,
CENELEC and ETSI has provided a comprehensive framework on smart grids in response to the
EU Smart Grid Mandate M/490 [102]. As part of that framework, the “Smart Grid Information
Security (SGIS)” report defines five SGIS Security Levels to assess the criticality of smart grid
components. Additionally, five SGIS Risk Impact Levels are defined that can be used to classify
inherent risks in order to assess the importance of every asset of the smart grid provider. The
assessment is carried out under the assumption that no security controls whatsoever are in place.
Compared to the work carried out by the SGIS group within M/490, our main goal was to develop
a practical risk assessment approach for smart grid systems that are currently deployed or will be
deployed in the near future. Our approach should be readily applicable by utilities in contrast to
more formal approaches as suggested for example in [92, 117].

3.2 Smart Grid Risk Management Approach

Most efforts on smart grid security either deal with threats and vulnerabilities on an abstract, high
architectural level, or focus on very specific technical aspects, e.g., encryption or authentication,
without considering the overall picture.

I. Architecture
Modeling

II. Risk
Identification

III. Risk
Assessment

IV. Risk
Mitigation

V. Compliance
Checking

Figure 3.1: Architecture-driven Smart Grid Risk Management Approach

73

Our proposed smart grid risk management approach therefore aims at bridging the gap between
a high-level architectural view and specific technical security measures. For that purpose, it
employs a five-step cyclic process model depicted in Fig. 3.1, which consists of the following
phases:

I. Architecture Modeling

II. Risk Identification

III. Risk Assessment

IV. Risk Mitigation

V. Compliance Checking

First, it allows DSOs (distribution systems operators) to map their deployed components to the
standard architecture model SGAM. This phase is crucial to get a holistic view on the deployed
components and their underlying technologies in a standardized and structured manner. The
second phase subsequently enables a sophisticated risk identification and a later risk assessment.
Based on the concrete technologies employed, specific technical controls (in addition to organiza-
tional measures) can be applied to mitigate the identified risk. If, for instance, the architectural
model reveals insufficiently secured communication lines, potential technical mitigation measures
are to use stronger authentication and encryption methods. Eventually, in the fifth phase, compli-
ance to technological guidelines, regulations and corporate strategy needs to be ensured in order
to avoid undesired secondary effects of mitigation measures. The whole model, from phase I to V,
is cyclic since every mitigation action will eventually cause adaptations of the architecture, which
need to be reflected in the model maintained in phase I. Following these phases, our approach is
able to provide concrete technical solutions without losing a connection to the overall picture. In
the following paragraphs, we explain each phase more closely.

Architecture Modeling using SGAM

In order to model smart grid architectures, we employ the Smart Grid Architecture Model
(SGAM) [103]. The SGAM model was originally intended to identify standardization gaps
in smart grid standardization processes. The model is structured in zones and domains. The
zones are derived from hierarchical automation system models that classify systems into Field,
Process and Station towards Operation, Enterprise and Market level [93]. The domains reflect
power-grid-specific domains ranging from the Customer, Distributed Energy Resources (DER),
Distribution and Transmission to the Generation domain. In contrast to the NIST Smart Grid
Framework [80], SGAM features a dedicated DER domain, in which small distributed generators
with their special infrastructure find their place. Finally, in the third dimension, SGAM has
interoperability layers that highlight different aspects of networked smart grid systems from hard-
and software components over communication links and protocols up to functional and business
layers. We used SGAM as a means for visualizing and comparing different smart grid automation
architectures and depicting existing and near-future smart grid architectures (see Fig. 3.2). A
more detailed description of our architecture model can be found in [53].

74

Figure 3.2: Simplified Proposed Architecture Model

75

Risk Identification

In order to identify risks that can occur within smart grid environments, we compiled a threat
catalog focusing on technical threats. Since the threat catalog should build upon a well-established
source of ICT-related security threats, we used the IT Baseline Protection Catalogs [14] as our
main source. Threats quoted in the smart-grid-specific Protection Profiles [15, 16] were also
taken into account. We focused on technical threats and thus omitted organizational threats
or force majeure. All remaining threats were checked for their generic applicability in smart
grid environments and filtered accordingly. As some of the threats in the BSI Catalogs are very
specific while others are more generic, we adapted the threats to the smart grid scenario and
merged them into a practically usable threat catalog comprising 31 threats (see Table 3.1).
These threats were subsequently interpreted in the smart grid context and grouped into the
following clusters:

• Authentication / Authorization

• Confidentiality

• Integrity / Availability

• Internal / External Interfaces

• Maintenance / System Status

• Missing / Inadequate Security Controls

Since the threats in the threat catalog are kept in a generic form, there is no need to adapt the
threat catalog in case the smart grid architecture model (see Section 3.2) changes.

Risk Assessment

In the next phase, the threats identified in phase II are applied to the architecture components
which have been defined in phase I. For each component and threat, we evaluated both the
likelihood as well as the impact of a threat to occur. Both probability and impact were measured
on a five-level scale ranging from very low (level 1) to very high (level 5), depending on the
frequency and range of successful attacks. However, while this could be exercised on all smart
grid components in the SGAM model, it would quickly become impractical due to the high
number of elements in the threat matrix. For this reason, we decided to cluster smart grid
components into the following building blocks (cf. Figure 3.2):

• Functional Buildings

• E-Mobility & Charge Infrastructure

• Customer Premises

• Generation Low Voltage

76

Threat Category Threat
Authentication /
Authorization

Defective or missing authentication or inappropriate handling
of authentication data
Defective authorization

Confidentiality
Defective key management
Disclosure of sensitive data
Insecure encryption methods or parameters

Integrity / Availability

Outage or disruption of IT systems
Outage or disruption of networks or network components
Outage or disruption of supply networks
Tampering with devices
Tampering with data
Loss or corruption of data due to physical factors
Loss or corruption of data due to misuse or negligence
Fee fraud

Internal / External Interfaces
Illegal physical interfaces
Illegal logical interfaces
Incompatibilities between systems or (network) components

Maintenance / System Status

Operation of unregistered or insecure components or compo-
nents which provide unnecessary services
Missing or inadequate maintenance
Insufficient anomaly detection
Insufficient dimensioning
Security issues during software migration
Insufficient monitoring and controlling capabilities
Faulty use or administration of IT systems
Faulty time synchronization
Faulty data synchronization
Uncontrolled cascading effects

Missing / Inadequate
Security Controls

Defective or missing security controls in networks
Defective or missing security controls in software products
Software vulnerabilities or bugs
Use of insecure protocols
Failure or disruption of safety controls

Table 3.1: Threat Catalog

77

• Generation Medium Voltage

• Test Points

• Transmission (High/Medium Voltage)

• Transmission (Medium/Low Voltage)

• Grid Operation

• Metering

In case of considerably different smart grid architectures and models, these building blocks might
differ and would need to be adapted accordingly. However, in the common case there is no need
for adaptation due to the generic form of the threats and building blocks.

Figure 3.3: Assessing the Risk Potential

The result is a risk matrix showing the risk potential for all building blocks in the modeled smart
grid environment. Depending on its value (i.e., probability level multiplied by impact level), the
risk potential has been defined as low (green), medium (yellow) and high (red), see Fig. 3.3. This
approach allowed us to identify potentially high risks in European smart grids. For high-risk
domains it is advisable to identify the individual smart grid components causing the high risk
potential, therefore, we are currently performing technical security audits (see Section 3.3).

78

Risk Mitigation

Based on the risks identified in phase II and assessed in phase III of our smart grid risk manage-
ment approach, mitigation strategies are subsequently developed in phase IV. The goal of the
mitigation strategies is to either decrease the probability of a successful attack, or to alleviate
its impact, possibly also both at the same time. We are currently identifying suitable mitigation
actions for the individual risks by addressing each of the 31 threats individually. For each threat,
generic measures are first defined (such as introducing a Public Key Infrastructure to counter
risks that emerge from insecure handling of cryptographic keys). Subsequently, specific measures
for the individual architecture building blocks (see Section 3.2) are identified. We are focusing on
mitigation actions suitable for establishing a basic level of protection in order to ensure a broad
application among the utilities. Additionally, advanced controls for a higher security level are
defined, which can be implemented by utilities with more mature security management processes.

Compliance Check

In order to maintain a high level of the overall smart grid system security, it is important to include
automated security compliance checks. These checks should be run against all infrastructure
components. Depending on the component type, the tool should check whether the device
configuration (such as the firmware version or the currently deployed configuration file) adheres
to the latest protection and mitigation strategies. If not, the tool can identify specific components
that need to be updated accordingly. Since a single vulnerable component in the smart grid can
compromise overall system security, it is highly important that all deployed system components
are known to the automated checking tool. We thus advise utilities to include the tool setup into
the regular deployment processes.

3.3 Evaluation and Discussion

The following section describes the findings we came up with when applying our five-step
risk management approach together with distribution systems operators, and comments on the
necessity of complementing the theoretical approach with practical security audits.

Risk Landscape

The risk management approach outined in Section 3.2 allowed us to identify areas (i.e. architecture
components) in European smart grids which show high risk potential in terms of cyber attacks.
Specifically, our analysis showed that there are significant risks in the Functional Buildings,
Customer Premises and Grid Operation domains. Regarding centralized components such as
the Grid Operation and SCADA system, the probability of a security breach is relatively low as
an outside attacker typically has no physical access to these components. Moreover, protection
mechanisms are not prone to cost pressure on this level. However, once an attacker manages to
get access to these systems, the negative impact will eventually be high; for instance, shutting
down a primary substation node could affect whole city districts.

79

In contrast, security breaches targeted on decentralized components, which are deployed typically
in the Functional Buildings and Customer Premises domain, are much more likely as attackers
can easily get hold of these components. Attacks on these components are facilitated by the fact
that the Smart Grid Gateways are accessible via Internet, and a lack of software security or a
misconfiguration may be easily exploited. While the probability of an attack is high, the impact
is expected to be limited at first. This may however turn out wrong as soon as a successful smart
meter mass attack is published on the Internet, potentially leading to unanticipated cascading
effects in the power grid. Thus, not only the probability, but also the impact of a successful
attack occurring within the so-called “last mile” are possibly high, which explains the high risk
potential.
Our analysis showed that a general risk affecting most of the architecture domains is a lack
of secure authentication methods. A potential consequence is that system components accept
malicious data or control commands from unauthorized sources, which could have strong negative
impacts on grid stability. We therefore recommend broad use of standardized authentication
mechanisms such as digital certificates, role-based access control, and two-way authentication
for remote maintenance access points.

Security Audits

For high risk domains, it is advisable to identify the individual smart grid components causing
the high risk potential. For these components, individual technical security audits should be
performed by independent auditors in order to assess the technical risks and their reasons.
According to the risk potential, we suggest two types of security audits.
The first type of security audit is a typical network and lightweight software security audit. For
the chosen smart grid component (i.e. a smart meter), it focuses on network and communica-
tion security. Similarly, the lightweight software security audit analyzes how the component’s
software implementation reacts on security test inputs such as maliciously modified network
communication or test input generated through fuzz testing. However, the monitoring of the
component’s software is limited to the communication with the device. For instance, if a test case
leads to an unexpected device response or a crash, a potential vulnerability is identified, but it
is not further investigated due to the limited technical access on the device hard- and software
internals. The audit is thus feasible with limited resources such as limited time or device access.
The second type of security audit is an in-depth hard- and software security audit starting at
the point where the first audit type ends. The audit includes a low level hard- and software
security analysis including hardware disassembly, physical port accesses as well as both static
and dynamic software analysis. In comparison to the lightweight audit, this type of analysis is
extremely powerful and can uncover a wide range of vulnerabilities. Besides, it is also possible to
demonstrate proof-of-concept attacks and estimate the severity of these attacks on a larger scale.
The drawback of the analysis type is the high effort with respect to analysis time and costs as
well as the requirement of a dedicated test system that can be physically dissembled and possibly
damaged in course of the analysis.
For instance, our analysis showed that smart meters have a high risk potential, mainly due to the
easy physical accessibility by attackers as well as the severity of potential large-scale attacks.
Due to the requirement of a testbed, we set out to create a security test system comprising a

80

smart meter, a PLC Data Concentrator as well as a Headend system. On this test system, we are
currently performing light-weight analyses on the components. Due to the high risk potential, the
smart meter is also subject to an in-depth hardware and software security audit. This allows us to
get a spot sample of how secure these systems are currently, and to develop tailored mitigation
strategies.

3.4 Conclusion and Future Work

We have presented an architecture-driven approach for smart grid risk management capable of
bridging the gap between a high-level architectural view and specific technical security measures.
Our approach cannot replace a risk analysis per se, as technical smart grid implementations and
employed products differ significantly between users such as utilities or energy providers. It is,
however, the first step in a utility-centric smart grid risk analysis that needs to include low-level
technical implementation specifics as well, and may help users to identify areas with high risk
potential, and to focus the mitigation actions on them.
Future smart grids will integrate a wide variety of different technologies. Therefore, the crucial
challenges are to make sure that cybersecurity and interoperability requirements are satisfied. We
argue that these issues can only be solved by a national smart grid reference architecture. Such
a reference architecture would specify the minimum security requirements for the individual
components and make sure that devices are carefully designed in accordance with them. At
the same time, seamless interoperability would be ensured by defining appropriate interfaces.
Individual implementations could still be derived from the reference architecture by instantiating
specific domains.
Currently, there are no obligations for device vendors and utility providers to stick to the recom-
mendations and guidelines published by existing standardization bodies. Therefore, a correspond-
ing legal and regulatory framework should ensure that the minimum requirements defined by
the reference architecture are followed. On the other hand, it must be ensured that the reference
architecture is not only followed due to legal obligation, but rather broadly accepted by the
different stakeholders. Therefore, all relevant stakeholders must be adequately involved in the
process of establishing the reference architecture from the very beginning.

3.5 Acknowledgements

This work has been partly funded by the project (SG)2 under national FFG grant number 836276
through the KIRAS security research program run by FFG and BMVIT.

81

CHAPTER 4
Physical Attacks on Smart Grid

Devices

Devices for the smart grid are - compared to classic IT systems - special in the sense that they are
often located in an area that is physically accessible to attackers even though they are considered
to be highly security-critical. Examples are smart meters that are located in private households,
or intelligent devices that are placed outside the trusted environment of the network operator’s
premises. Such devices are therefore prone to physical attacks, where the attacker is able to make
use of more potent methods to compromise a device in comparison to the techniques that are
applicable remotely (i.e. over a network connection). The current chapter describes extensively
and provides examples of the different types of physical attacks that can be utilized to attack the
networked embedded systems typically located in critical smart grid field components.

Having physical access to devices opens a completely new dimension of attack vectors. Target of
such physical attacks can be e.g. smart meters, PLCs, local distribution network transformers,
actuators, sensors, PV devices, gateways, and data concentrators. The embedded nature of such
devices often gives a false impression of security: while for a mobile device, like a laptop, it is
obvious that an unencrypted hard disc can be read out easily when an attacker gets his hands on
the device, it is less obvious that this applies to many other forms of storage that appears in such
equipment.

4.1 Goals of Physical Attacks in the Context of Smart Grid Devices

The goal of an attacker of a smart grid device can be classified into the two categories Information
Gathering and Manipulating the Device Under Attack which are described in the following.

83

Information Gathering

Here the attacker gets illegitimate access to information. This attack scenario refers to the
violation of the generic security objective confidentiality. Although much of the data in the
smart grid is machine generated (such as sensor values), the impact on privacy of the users
may still be high. The most prominent example is here the potential access to smart metering
data, which led to significant public concerns against the application of smart metering devices.
However, when it comes to physical attacks, the primary impact on privacy is usually limited.
This is because the attacker can potentially access only information that is stored in the device,
a device he was already able to get physical access to, either because it was in his premises or
because he was able to illegally get access to it. The more significant target for an attacker is the
acquisition of information that can be used in further steps for additional attacks: these can be
network-based attacks and for manipulating the device under attack (see below). One important
type of information here is key material: if a symmetric master key is stored on the device, that
is common to a certain class of devices, this key can be used to compromise a huge number of
devices remotely. Individual symmetric keys, and private keys of asymmetric cryptography are
usually less problematic, but they still allow an attacker to impersonate the device and use e.g.
a trusted connection to bypass firewalls, and perform further attacks on the other endpoint of
the connection. But not only passwords and keys are interesting for an attacker, by extracting
and analyzing the firmware and software that is running on a device, an attacker can identify
vulnerabilities or hidden device features in the code that can be used for standard attacks such as
buffer overflows.

Example 4.1

During a local attack on a smart metering device, an attacker discovers a proprietary
engineering command in the firmware allowing the power switch to be controlled. The
attacker transmits this command to other smart meters on the network in order to blackout
surrounding households.

Finally, the extraction of software or firmware is relevant with respect to intellectual property (IP)
protection. Intelligent field devices in the smart grid often rely on algorithms, parameters, and
other form of intellectual property. While these attacks do not impair the stability of the smart
grid, they may introduce severe financial harm to those producers that had large development
costs for their products.

84

Example 4.2

During a local attack on a smart metering device, the attacker gets access to a master
password, which allows him to access a restricted part of the smart meter’s web-interface
where metering parameters can be configured. With that information, any smart meter can
be manipulated to record less consumption without breaking any seal.

Manipulating the Device Under Attack

Here the attacker manipulates the functionality of the embedded device in an unauthorized
fashion. This refers to the violation of the generic security objectives integrity and authenticity.
Manipulation of the mechanical and electrical parts of a smart grid device is always feasible
if an attacker gets physical access to the device, and is not a matter of IT security. However,
being able to manipulate the programmed functionality of a smart grid device can be a critical
threat to the smart grid, since such an attack can be simultaneously applied to a large number of
devices by a single attacker. A manipulated device can also be used by an attacker as a platform
to compromise other parts of the system, since network-based security measures usually prevent
attacks from outside. A device that is compromised by a physical attack might have privileged
access to other components in its network segment, and therefore act as a beachhead to attacking
further devices.

Example 4.3

An intelligent device that is used to control a circuit breaker is part of a control system of
the substation it belongs to. The substation is together with other substations connected
to a central SCADA system, which is usually a PC-based platform. If an attacker can
successfully compromise a single circuit breaker’s control system, it could use the field
bus system interconnecting the sensors and actuators in the substation to send commands
to these sensors. In current technology, there is are usually no authentication and integrity
measures implemented at that level, such that doing so does not involve any further
weaknesses of the system. In addition, the attacker can use the uplink connection to
compromise the SCADA system. Chances are much better here, since the attacker does
not have to overcome any firewall and other isolation measures, and the system is probably
more vulnerable on this interface, as attacks on this side are mostly not expected.

85

Attack potential Techniques Typical equipment Typical equipment
costs (EUR)

Low

Access to local storage
Accessing open interfaces
Probing on buses
Simple faults

memory chip reader,
logic analyzer,
microcontroller/FPGA
boards

less than 1,000

Medium
Simple side channel attacks
Glitching Attacks

digital oscilloscope,
signal generator,
FPGA boards

2,000 - 10,000

Elevated

Enhanced side channel attacks
EMA
DPA
Template attacks
Semi-invasive attacks

high-resolution digital
oscilloscope,
FPGA boards,
chemical depackaging

10,000 - 50,000

High
Invasive attacks
Fault Attacks

(laser) probing station,
chemical depackaging,
focused ion beam (FIB)

more than 50,000

4.2 Overview of Physical Attacks

Physical attacks [123] are very powerful in general, but sophisticated attacks require not only
expert knowledge but also increasing resources in terms of time and money. The following table
gives a classification of different techniques with respect to their attack potential. It is important
to note that especially the classes of attacks with low and medium attack potential are relevant
candidates in the context of smart grid security.
The techniques with low attack potential in this table are different from the others in the sense that
they typically target systems without security functions like encryption and integrity checks. The
attacks of the other three classes on the other hand can target weaknesses in already established
cryptographic routines as well.
Figure 4.1 shows a typical taxonomy of physical attacks. In general, there are three categories
depending on how invasive (i.e. non-invasive, semi-invasive and fully invasive) the attacks are
with respect to opening up integrated circuit (IC) microchips inside an embedded system. With
non-invasive attacks, the ICs are not opened at all. The attacks are thus mostly limited to the
electrical signals accessible from the printed circuit board (PCB) within the system as well as
possible device emanations that can be used for performing side channel attacks. Non-invasive
attacks can be very powerful already as the attacker has full control over the system environment
(such as electrical signals, temperature, system clock, etc.). Semi-invasive attacks go further
by opening up ICs so that the die within is visible (either from the front or from the backside).
The IC stays fully functional as the isolating and protecting passivation layer is not removed.
This allows the attacker to see what is inside the microchip and thus also perform optical attacks
such optical fault injection or optical emanation analysis. With invasive attacks, the protecting

86

Figure 4.1: Taxonomy of physical attacks

passivation layer is removed as well. If the IC is kept functional, this allows the attacker to
observe communication on internal buses or even inject own signals for the attackers advantage.
On the other side, invasive attacks also allow full reverse engineering of microchip internals. In
the following sections, different attacks within this taxonomy are described in more detail.

Access to Local Storage (Non-Invasive)

Accessing the information stored on an embedded device is often very easy, if information on
these devices is not encrypted. Some devices are equipped even with removable and/or highly
standardized storage such as SD cards, memory cards, hard discs, etc. But also any other form
of non-volatile memory is not protected by its embedded nature. Memory chips such as flash
or ROM can be unsoldered and read out by memory chip readers. For more complex settings,
e.g. when no standard modules are used, the unsoldered memory chip can be integrated on a
microcontroller board together with a self-written read-out routine. Bus probing (see below) is
hereby helpful to reverse-engineer the protocol between the memory module and the processor.
Figure 4.2 shows how this low-cost attack can be conducted on a typical smart meter device.
The flash memory was removed from the smart meter (left) and then re-soldered to a breakout
board (right). As the breakout board makes all flash memory chip device pins available through
its connectors, a microcontroller board can be easily connected to read out the full memory
content (i.e. the firmware) of the smart meter by utilizing a self-written routine. If required by the
attack, data and code on the memory modules can be also altered, or the memory module may be
replaced at all by the attacker’s own memory module in the original device.

87

Figure 4.2: Flash memory chip in a smart meter (left), smart meter memory chip soldered to
breakout board for readout

Accessing Open Interfaces (Non-Invasive)

Embedded devices come with plenty of interfaces. Network interfaces are always good attack
targets. Smart grid devices, such as PLCs or PV control systems are usually not supposed to be
connected directly to the Internet. Therefore one might find weaknesses in the network stack of
wired network interfaces that are already patched for most standard IT systems. Ethernet with
TCP/IP is used for those network connections, but there are other standards such as power-line
communication or serial protocols, including MBUS. Power-line suffers also from the fact that
many consider the physical nature of the interface, i.e., being modulated on the power line, as
a sufficient barrier for an attacker. In fact, even with simple equipment it is not. In addition,
the local attacker can also access wireless network interfaces. Beside communication based on
IEEE 802.11, and the well-known weaknesses in WEP and WPA [128], a smart grid device
might support other protocols such as GPRS, Wireless M-Bus, or even protocols from the home
automation field (ZigBee, 6LoWPAN, etc.). A very important class of interfaces for local attacks
comprises debugging ports, such as JTAG or serial consoles. These debugging interfaces allow
an attacker to get intra-chip information during runtime with little effort and without depackaging
the chip.

Figure 4.3: JTAG and In-Circuit Emulation (ICE) ports inside a substation automation system
(left), connected JTAG interface on a smart meter (right)

88

Example 4.4

The JTAG debugging port can be used to read out any register in a chip in operation.
Depending on the chip, the Test Mode Select Input pin has to be activated, and then the
registers can be read out bitwise. Any key that is stored at some time in a register - and
this is the case if any cryptographic operation is performed by the IC - can be read out by
this method. Similarly, the full firmware can be read out from non-volatile memories just
the same way.

Bus Probing (Non-invasive)

An alternative approach to gather information from embedded devices is to listen to the informa-
tion that is exchanged on the platforms bus systems. A simple logic analyzer is hereby sufficient.
Logic analyzers that can be connected with USB to any computer are available already for a few
Euros.

Figure 4.4: Bus probing on the internal bus of a microSD card

Figure 4.4 shows that bus probing attacks are even feasible in case microscopic circuit board
traces. On the left side a very thin wire has been soldered to the exposed circuit traces on a
microSD card that interconnect the internal card controller with the flash memory chip. To
connect the logic probes to those wires, a simple breakout board was used. On the right side the
intercepted signals are visible on the logic analyzer.

Fault/Signal Injection (Non-Invasive)

In contrast to non-invasive bus probing attacks where the attacker passively intercepts the signals
on a bus, it is also possible to take an active role by purposely modifying or even injecting own
signals. This can be done rather easily by utilizing readily available microcontroller or FPGA
development boards. Assuming the simple case that inside an embedded system two devices
communicate with each other, there is usually a sender and a receiver. Unless more advanced
techniques such as bus arbitration are used, these roles between the devices are typically fixed.

89

However, as signal injection is done by a second sender (i.e. an FPGA board) this could lead to
issues as both senders would drive the bus in different directions. The solution is to perform a
man-in-the-middle (MITM) attack where the connection between the two original devices is cut
and the FPGA board is inserted in between. This allows the attacker to selectively forward and
arbitrarily modify any communication between the two original devices.

Example 4.5

A PV smart grid device communicating over an unencrypted but proprietary PLC (power
line communication) protocol has a SoC controller chip and a modem chip on its circuit
board. By probing the bus between the controller and the modem chip, the attacker was
able to identify the messages that report how much power is fed into the utility grid.
As the PLC protocol behind the modem is unknown to the attacker, he uses a cheap
microcontroller board to modify the power measurement value transmitted on the bus to
the modem chip. The modem chip accepts the modified message and sends it over to PLC
network to the utility. Ultimately, this allows the attacker to report an arbitrary amount of
generated power.

Glitching Attacks

Most common CPUs, FPGAs or microcontrollers are based on synchronous logic meaning that
they require a system clock signal. Each time the clock signal occurs, the internal logic of the
device advances to the next state. For instance with a CPU, this could be an instruction that is
executed. Besides, the device needs to be powered by supplying a voltage to its power pins.

Figure 4.5: Synchronous Register-Transfer-Logic (RTL)

Figure 4.5 shows a greatly simplified version of how a synchronous system typically works. On
the left side, the current computation result is stored inside a register (i.e. a set of Flip-Flops).
If the clock signals the system to continue, the register makes its internal state available on the
output. Consequently, the data is transferred through the combinational logic block and, after

90

enough time has passed, the result of the computation is available at the input of the subsequent
register on the right. The time it takes for all signals to go entirely through the combinational
logic block typically accounts for the major part of the required delay between two adjacent clock
events (i.e. the maximum possible clock frequency of the system). Real-world systems comprise
a huge number of such Register Transfer Logic (RTL) blocks ultimately triggered by the system
clock. With glitching attacks [101], several of the physical properties of a system can be exploited
to perturb the operation of the system to the attacker’s advantage. The two predominant types of
glitching are clock glitching and voltage glitching.

Clock Glitching

With clock glitching, the attacker supplies the clock signal to the system just as within a usual
system. However, at a time of the attacker’s choosing (for instance when a security critical
instruction is executed), one or more intentionally too fast clock pulses are supplied. If the
delay between those clock cycles is less than the time required for the data to pass through the
combinational logic block, the input to the next register does not contain the finished computation
result. Instead, some of the signals are still in their previous or in an intermediate state while
others might be finished already. Besides, not all RTL blocks have the same time requirements.
Considering a CPU logic implementation, the combinational logic within a complex CPU
instruction might have a significantly higher logic delay in comparison to comparably simple
implementations such as the CPUs program counter. As a result, clock glitching is especially
effective against security critical conditional jumps or cryptographic computations in the firmware.

Figure 4.6: Glitch in the clock signal

Figure 4.6 provides an example of how an idealized clock glitch signal could look like. While
clock glitching attacks can be conducted with lab equipment such as signal or pattern generators,
the low-cost approach typically uses FPGA boards for clock and glitch generation. In addition to
finding the right glitch parameters (i.e. number of glitches or glitch duration), the key question is
when to start the glitch attack. While more advanced techniques are available, brute force (i.e.
trial and error) based approaches often work well if the test setup is automated. For instance, this
can be achieved by automating the FPGA glitch generation and system interaction with custom
software or scripts running on a PC.

91

Figure 4.7: FPGA development board used for clock glitching (left), generated clock glitch
measured at the target device (right)

Example 4.6

A charging station for electric vehicles at the customer’s premises is connected to a secure
communication network. The attacker discovers that the device can be switched into
a service mode if the utilities service password is entered. Since the attacker doesn’t
know the service password, clock glitching is applied to transform the execution of the
conditional password checking branch instruction in the system’s CPU into a non-branch
instruction. The result is that although an invalid password was entered, the attacker
can “jump over” the password check and enter the service mode. The attacker discovers
that through the service mode, the credentials and encryption keys of the utility’s secure
communication network can be read out.

Voltage Glitching

A change of the supply voltage impacts the device operation in multiple ways. If a lower voltage
is used, the overall logic delays increase. Within an integrated circuit, signal traces have a
capacitance that is for instance impacted by the length of the trace. Each time the state of the
signal changes (i.e. from a logic 1 to a 0 or vice-versa), the driving transistors need to transfer
current until the desired new state has been achieved. The less voltage is available for this task,
the longer it takes. Hence the maximum operating frequency of the IC is decreased as well
which can render the IC more susceptible to clock glitching attacks. Besides combinational logic,
different types of memory such as flip-flops, registers and various types of RAM and non-volatile
memories are affected through the voltage change as well. Memories often work by comparing
a stored charge with a threshold reference voltage. Depending on the memory technology, the
memory content could be interpreted as logic 1 if the stored charge is higher than the provided
threshold. Otherwise, the state is considered to be a logic 0. However, if an attacker changes the
threshold voltage far enough, the stored charge in a memory cell could be interpreted the wrong
way. Since the overall device operation is impacted by the voltage change, attackers typically

92

either increase or drop the supply voltage to a device only for a short period of time. The result is
a sudden voltage glitch causing memories such as the registers in between combination logic to
output an invalid state. Similar to clock glitching attacks, this can be effectively used to bypass
security checks or perturb cryptographic computations. Figure 4.6 shows an exemplary voltage
glitching setup. The FPGA board on the left as well as the target system under attack is controlled
by custom software on a PC. A resulting voltage glitch waveform is depicted on the right.

Figure 4.8: FPGA based voltage glitching setup (left), voltage glitch waveform and supply voltage
measurement (right)

Side-Channel Attacks

Side-channel attacks, first introduced by Kocher [63], exploit the implementations of cryp-
tographic algorithms or software. When performing a side-channel attack, some observable
behavior of the (cryptographic) routine implementation is used to obtain additional information
that allows the attacker to decode some cipher text, calculate the cryptographic keys or obtain
details of the executed instructions and data within the system. This is in contrast to classic
cryptanalysis, where weaknesses of the cryptographic primitive itself are exploited. Side-channel
attacks can be classified along two axes (Fan et al. 2010):

1. Invasive vs. non-invasive: Invasive attacks require opening the device under attack. This
usually refers to the chip level, where depackaging of the chip might be needed. Invasive
attacks can be further divided into semi-invasive and fully-invasive attacks. The difference
is that with semi-invasive attacks the passivation layer of the chip stays intact whereas with
fully invasive attacks, the chip is further deprocessed depending on the requirements of the
particular attack. In the context of the smart grid, also another abstraction level is relevant,
namely whether the embedded device needs to be opened (and therefore seals are broken).
However, for most side-channel attacks this is case.

2. Active vs. passive: While passive attacks restrict themselves to only observe the device’s
behavior, an active attack also manipulates the device’s operation e.g. by injecting various
types of faults (electrical, optical, etc.) or by employing glitching attacks.

93

Since side-channel attacks base on physical phenomena and not (only) on mathematics, there
are numerous attacks and one can be sure that for the future there will be even more. The most
common attacks are, in increasing order of complexity:

• Timing attacks

• Power analysis attacks (SPA, DPA, Template attacks)

• EM-attacks

Side-channel attacks can be very sophisticated, and, as shown in Table 1, also very expensive.
Except for smart metering, where e.g. by the German BSI the usage of secure processors is
enforced [36, 37], field devices in the smart grid usually come with little security functionality.
Therefore, side-channel attacks might be considered less relevant compared to the simple attack
methods presented above.

Timing Attacks

Timing attacks [63] exploit data-dependent execution time differences. Consider the password
check illustrated in Listing 4.1. The password check uses the user-supplied password passwd
and compares it against a stored one. At the first glance the password checking routine seems
to be secure if a long enough password is used to thwart password guessing attacks. However,
a close look into the code reveals that the password immediately returns “false” as soon as the
first character in the supplied password is different from the stored one. Instead of a conventional
brute force password guessing attack, an attacker can thus measure the time between sending the
password guess to the system and the response that the supplied password was wrong. However,
if the first character was correct, this response will come back to the attacker a short period of time
later since the loop in the password check is executed once again. Due to this timing information,
the correct password can be easily guessed in comparison to a conventional brute force attack.
However, as the approach needs reliable timing measurements averaging steps are often necessary
so that over a higher number of measurements potential non-data-dependent timing differences
can be filtered. In fact, this approach works so well that vulnerable cache-timing software
implementations can be even attacked over multiple hops on the Internet [12].

1 bool check_password(char *passwd)
2 {
3 for (int i=0; i<pass_len; i++)
4 {
5 if (passwd[i] != stored_passwd[i])
6 return false;
7 }
8 return true;
9 }

Listing 4.1: Password check implementation that is prone to a timing attack.

94

Figure 4.9: Optical interface connected to a smart meter for optical timing analysis testing

Example 4.7

Smart meters typically have an optical port allowing service and configuration settings
to be changed. Since many values can neither be read nor written without the utility
password, an attacker uses a low-cost optical interface and measures the response timing
for password guesses. Using these attacks, s/he discovers that the password check is
vulnerable to timing attacks and the password can thus be easily guessed by the attacker.

Power Analysis Attacks

Whenever synchronous logic receives a clock signal, the output of a register is sent through
combinational logic and finally reaches the next register (register transfer logic). During that
time, the transistors in between need to switch so that single signals or a whole bus get switched
from one state into the other. This does not only take time, but it also draws current because
of the switching and the capacitances of the various structures within the chip. If the power
consumption is measured over time, the resulting power trace is different and thus characteristic
for each logic block. If for instance the power consumption of a CPU is observed between clock
cycles, each executed individual instruction will have a different power trace. The reason is that
within the microchip implementation, the logic that implements the CPU instruction is different
as well.

Simple Power Analysis (SPA): The main idea of simple power analysis [64] is to directly
analyze the power trace of a microchip during security relevant tasks. As each operation has its
individual power signature, it is possible to determine which operations are performed within the
chip by solely looking at its power consumption between clock cycles. In fact, the power trace of
the execution of the same operation looks slightly different if the data supplied to that operation
is different as well. The reason is that the more internal states need to be switched, the higher is

95

the power consumption at a specific time. For systems which are not especially hardened against
these kinds of attacks, an attacker might thus be able to determine which operations are performed
within a microchip by solely looking at the power trace. Even more, the attacker might be able
to determine the data that is processed by these operations as well. The impact of these attacks
can be especially severe if security critical information such as key material or credentials can be
extracted this way.

Figure 4.10: Exemplary power trace of a microcontroller during the execution of a simple
algorithm

Figure 4.10 gives an example for a simple power analysis (SPA) attack. In the top of the picture
the system clock signal is visible while at the bottom, a custom trigger signal for the measurement
has been inserted. The power trace is visible in the center of the picture (yellow). As visible, the
two multiplication instructions executed have a different power trace as the first two addition
instructions. With filtering setups and the use of averaging over a high number of equal test runs,
the attacker can get a better signal to noise ratio by canceling out measurement noise. The more
precise the power measurements are the better the executed operations and the processed data can
be identified. Mainly depending on the clock frequency the attacker requires a reasonable priced
digital oscilloscope to measure power traces and conduct a simple power analysis attack. The
power is usually measured over a small shunt resistor between the power supply and the device
power pin.

Differential Power Analysis (DPA): Simple power analysis attacks usually involve significant
manual analysis effort and are easy to protect against if the power consumption is internally filtered
or randomized (i.e. through the insertion of dummy cycles). Differential power analysis attacks

96

are much more powerful. Here, an attacker takes a high number of power trace measurements first.
In the next step, a power model (i.e. hamming weight) is used to compute the theoretic power
consumption of a (cryptographic) algorithm with a small number of guessed bits. For instance,
in the case of the AES encryption algorithm this could be the first key byte that is used in the
first AES round during AES computation. For this first computation, the attacker thus has a high
number of measured power traces from the target device as well as the idealized and theoretic
power consumption for the key guess using the power model. In order to determine whether the
guess was correct, the attacker uses statistical means (i.e. the statistical correlation) to determine
“how good” the match between the theoretic power consumption and the real measurements is.
This is done for all key guesses (i.e. for 255 key guesses when the first byte of the AES key is
targeted). If enough good measurements have been acquired, only one of them will show a strong
statistic match. This is continued for the other key bytes as well until the full AES encryption key
is recovered.

Figure 4.11: FPGA based DPA measurement setup

Due to the high number of measurements and the strong statistical methods, this approach can
still lead to results if power analysis attack counter measures have been implemented. To take
a high number of measurements with considerable sample length, once again an FPGA board
based approach can be utilized (cf. Figure 4.11).

Template and Other Profiling Attacks: Similar to SPA and DPA, template attacks [19] use the
side-channel information that is leaked through power consumption of cryptographic algorithm
implementations. In contrast to the previous two approaches, it assumes that the adversary has
access to an identical device, which is used to build a multivariate stochastical model of the
signal and noise of the power trace. This model is the used to iteratively perform a maximum
likelihood classification of a prefix of the power sample. Originally shown to be very effective for

97

symmetric cryptographic operations, also asymmetric cryptography has been shown vulnerable
to template attacks [74]. The approach can be generalized to any other model-building technique.
For instance, machine learning can be used to build a profile of the cryptographic algorithm which
is then applied to solve the classification problem in the foresaid iteration [43].

EM Attacks

A very powerful method for side-channel attacks makes use of the EM emissions that arise
from the data-dependent current flows inside a device [1]. To obtain sufficient information for
a successful side-channel attack, a single probe can be sufficient. With multiple probes, more
sophisticated attacks can be performed.

Figure 4.12: Setup for an EM attack (Image: Fraunhofer AISEC / Andreas Heddergott)

With EM attacks it is possible to observe much faster signals than with e.g. power measurements,
since a larger frequency band can be recorded. For power measurements, the signal is often
lowpass-filtered. The higher-frequency parts of the signal allows in particular capturing the
effects of the combinatorial logic that is between the latches of the circuit. The results of EM
attacks can be improved by opening the packaging of the device (see below). In analogy to
power side-channel attacks, simple attacks with a single sample (SEMA), differential attacks with
multiple samples (DEMA), and template-based attacks are possible.

IC Decapsulation

For semi-invasive and invasive attacks on Integrated Circuits (ICs) it is necessary to open up the
IC device and expose the contained silicon die. Depending on the type of attack, the microchip
should still be functional after the decapsulation procedure. As a preparation for these kinds

98

of attacks, a common approach is presented. However, other decapsulation and preparation
techniques exist as well.

Figure 4.13: Milling a cavity into the desoldered chip

Initially, the microchip to be decapsulated is usually desoldered from the circuit board for easier
handling. In the next step a cavity is carefully milled into the center of the IC package with a
Dremel tool (Figure 4.13). The cavity needs to be deep enough to hold a drop of acid in place,
but the die below has to stay undamaged from the milling process.

Figure 4.14: Chip decapsulation with nitric acid (left), rinsing with acetone (right)

In the next step, the chip is heated up and a drop of acid is carefully applied onto the milled cavity.
Usually, nitric acid or sulphuric acid is used for this process (Figure 4.14). After the reaction of
the acid with the epoxy package is finished, the chip is rinsed in acetone. The etch steps and rinse
steps are repeated until the die is exposed. Depending on the type of attack, it is also possible
to completely remove the package this way. For semi-invasive attacks the chip needs to stay
functional and just the top epoxy cover of the chip is removed. As soon as enough material from
the IC epoxy package has been removed, the chip needs to be cleaned for microscopic analysis
(Figure 4.15). This is usually done in an acetone bath inside an ultrasonic cleaner. The result of
the decapsulated and cleaned chip is visible on the right side of Figure 4.15. In this state the chip
is still functional and the bonding wires are intact.

99

Figure 4.15: Chip cleaning in an ultrasonic cleaner (left), still functional chip prepared for
semi-invasive attacks

Limited Optical Access to Internal Storage

Depending on the non-volatile memory type in a chip (i.e. mask ROM) it is possible that the
content of the memory can be optically read either from the front or from the backside without
having to deprocess the chip. However, the approach is limited to memory types that can be
optically read without preprocessing the chip.

Figure 4.16: Lower part of a via-ROM memory and its column driver

Figure 4.16 shows a Scanning Electron Microscope (SEM) picture of a via-ROM memory. The
memory content is set with tiny via plugs that can be seen optically. An attacker could thus gain
access to the internal ROM storage content through a semi-invasive attack.

100

Example 4.8

An internetworked smart grid device in a secondary substation uses a proprietary en-
cryption algorithm to secure the protocol exchanged over a wireless transmission link.
The attacker was able to intercept the wireless traffic with a low-cost Software Defined
Radio (SDR), but is unable to decrypt the traffic. He manages to acquire an outdated
similar device through an Internet auction and decapsulates the encryption chip in it. He
discovers that the chip uses a known CPU architecture and the firmware is stored in an
optically readable mask-ROM memory. Using a microscope from a nearby university
lab, he manages to dump the memory and reverse engineer the proprietary encryption
algorithm. It turns out that the algorithm is weak and, therefore, the attacker manages to
wirelessly control the secondary substation devices in his vicinity.

Semi-Invasive Fault Injection

Introducing faults into cryptographic routines can lead to leakage of information that allows
computing secret key material [11]. Faults can be injected e.g. with a laser probing station,
as shown in Figure 4.17. For this, the package has to be opened, as described in the previous
sections. The wavelength of the laser is a limiting factor for the spot size, and therefore the area
where the laser energy leads to bit-flips. On the other hand, the optical properties of the silicon
have to be taken into consideration. This can be used to attack the chip from the backside with a
laser that emanates in the IR range - for these wavelengths, the silicon die is transparent, and the
gates are not covered with the metal layer, as it is the case when attacking the chip from the front
side.

Figure 4.17: Fault attack with an optical laser (Image: Fraunhofer AISEC / Andreas Heddergott)

101

IC Reverse Engineering

Similar to the semi-invasive limited access to local storage, it is also possible to perform limited
IC reverse engineering with semi-invasive attacks. If through the front- or backside of the IC
enough interesting details about the implementation are visible, an attacker might be able to
obtain security critical information. Figure 4.18 shows an example about how relevant parts of a
logic implementation can be obtained from a cryptographic chip through semi-invasive reverse
engineering.

Figure 4.18: Obtained logic information from a semi-invasive attack on a cryptographic chip
(SEM image)

If device secrets are deeply hidden in the silicon, fully invasive IC reverse engineering utilizes IC
deprocessing and microscopy techniques to take apart the microchip implementation layer by
layer. A typical CMOS IC has a poly-silicon logic layer at the bottom and several metal layers (Cu,
Al) at the top which are interconnected with via layers (W) and insulation layers (mostly SiO2) in
between. The logic layer at the bottom contains the actual circuit implementation with common
design elements such as different types of memory, cryptographic cores, a CPU, peripherals
or glue logic. A major challenge for deep silicon security analysis is the deprocessing of ICs
with results that are suitable for image analysis. Typical approaches use chemical-mechanical
polishing (CMP), wet chemical etching or plasma etching (Figure 4.19).

Figure 4.19: Polishing machine (left), chemical deprocessing (middle), plasma etcher (right)

102

By using these deprocessing techniques, the attacker can obtain internal information deeply
hidden in the chip such as the implementation of proprietary encryption algorithms, the firmware
contained within ROM memory (similar to the limited semi-invasive optical access to internal
storage but more powerful) or potential counter measures in the chip.

Figure 4.20: Microchip image analysis (left), scanning electron microscope (right)

4.3 Basic Protection Mechanisms

The simplest threats of local attackers can be countered by being aware of the possibilities a local
attacker has, and choosing a system design that mitigates these threats. The first step is to be aware
of all open local interfaces, and restrict the access to the system by these interfaces in the same way
as one would do for a network interface that is potentially accessible to an attacker. The interfaces
should obviously not allow any unauthorized access, state-of-art authentication mechanisms
should be used, and the authentication credentials should be hard to guess. Functionality that
is needs not be accessed on those interfaces should not be exposed. The possibility of standard
attacks, like buffer overflows should be considered also for those interfaces. Vulnerabilities
should be patched by updates. This might be a difficult task for embedded devices once they have
been rolled-out. Not needed interfaces should be removed ideally not only from the casing but
also from the circuit board. Probing on buses and signals can be impeded by obfuscating the
data that is transmitted over them. Already simple methods, that are not cryptographically secure,
can be very effective here, like scrambling the data according to a schema that is given by some
shared pseudo-random generator. Of course, using strong cryptography would be even better here,
but maybe not feasible e.g. on the lines between a processor and the system’s RAM. Key material
should be stored in secure places. Removable storage is the easiest to read out for an attacker,
but from any kind of non-volatile memory it is possible to extract data. Secure memory is the
preferred choice here. If it is not possible to integrate a secure memory or security processor
in the device, sometimes Physically Unclonable Functions (PUFs) might be a possibility to
securely store a key with which the key material is encrypted before being stored in NV memory.

103

Furthermore, also non-IT solutions to protect a device are feasible. Sealed cases are effective if
breaking the seal can be related to a single person and legally prosecuted. However, one needs to
think about potential goals of an attacker: somebody planning a terrorist attack is probably not be
scared off by seals.

4.4 Conclusion

In this chapter, we provided an overview of physical attacks including example of how these
could be used by attackers to attack the embedded systems in smart grid field components. While
these attacks can be applied to unprotected embedded systems in general, it is important that
critical smart grid devices need to consider these attacks in their design and they should rely
on state-of-the-art secure hardware components that already include countermeasures against
these attacks. We presented a taxonomy for physical attacks and showed that many of those
powerful attacks can be carried practically and easily carried out by attackers once they have
physical access to the embedded devices. By raising the awareness for these attacks and choosing
mitigation strategies in the system design, we believe that critical infrastructure systems can be
better protected in the future.

104

CHAPTER 5
Breaking Integrated Circuit Device
Security through Test Mode Silicon

Reverse Engineering

Integrated circuits serve a wide range of purposes ranging from simple tasks in everyday products
to high performance or security critical applications. Despite their abundant occurrences, the
involved manufacturing processes are still considered challenging. Increasing design sizes and a
constantly decreasing feature size have raised the probability of producing defective or faulty dies.
To avoid additional costs for further processing defective dies, it is important that IC test modes
such as scan tests [90] are inserted into the design (Design for Testability - DFT). In multiple
stages of the manufacturing process, the chip can thus be tested and eventually discarded in case
of production defects. However, from a security perspective, these testing modes can lead to a
number of threats [24] and jeopardize the overall system security. For instance, only recently a
backdoor has been discovered in the high security ProASIC3 chip family that can be exploited
using the JTAG Test Access Port (TAP) [100]. While at least some hardware test interfaces such
as JTAG Boundary-Scan Test (BST) are standardized [47], their internal test data structures and
test functionalities are strictly proprietary, as they depend on the actual design that has been
implemented in the integrated circuit. Especially with JTAG in micro-controllers or FPGAs, it is
common that generic functions are made available to the user (i.e. for programming purposes),
while the proprietary manufacturer extensions are well hidden and kept secret [24, 45, 100]. State-
of-the-art attacks typically utilize side-channel information such as power consumption or EM
emission [100,131,132] to find hidden commands. Similarly, scan-chain attacks extract data from
the scan based test modes and use search or brute force algorithms to extract valuable information
such as key material from the stream [24]. To thwart these attacks, protection mechanisms such
as scan chain scrambling [42] or encryption with hard-coded keys [69, 131] have been proposed.
In this paper, we show that limited effort deep silicon analysis can be utilized for proprietary test
mode reverse engineering. We demonstrate our approach on a cryptographic authentication chip

105

in a well known game console. Our approach leads to the full disclosure of the implemented
test modes, allowing us to bypass security restrictions and reveal previously kept device secrets
such as the firmware, the implemented cryptographic algorithm or encryption keys. In addition,
our approach allows us to circumvent proposed test-mode protection mechanisms depending on
hard-coded key material or secret scrambling mechanisms [42, 45, 69, 131], since the necessary
information can be gathered through silicon reverse engineering as well. Summing up, the
contributions presented in this paper are as follows:

• By means of an exemplary authentication chip part of a well known game console, we
show how limited effort deep silicon analysis can be used to reverse engineer proprietary
test modes, leading to a complete security breach of the chip.

• We present a previously secret cryptographic algorithm we obtained by reverse engineering
the extracted firmware from the device’s ROM.

• We evaluate our findings by creating a full proof-of-concept implementation of the disclosed
algorithm on an FPGA development board. Exchanging the proprietary chip in the game
console with our FPGA implementation shows that both the retrieved algorithm and the
secret keys are correct.

5.1 State-of-the-Art and Related Work

Several approaches already recognized the possibility to reverse engineer a chip’s functionality
by investigating test modes. However, most of them are non-invasive in nature. In [100], for
example, Sergei Skorobogatov and Christopher Woods explore undocumented JTAG features
using sophisticated side channel attacks. To reverse engineer these JTAG features, they use
differential power analysis and pipeline emission analysis in combination with varying the
content of data fields for the instructions. They propose a mitigation technique that adds noise
and better protective shielding. Since our approach uses silicon reverse engineering of the scan
chain logic instead of side channel attacks, it is not affected by these countermeasures.
In [24], Jean Da Rolt et al. demonstrate an attack on single and multiple scan chain structures
with or without response compaction on an AES crypto-core. This includes the AES-specific
limitation that only flip-flops that belong to the round register are supposed to flip between two
plaintexts. The general principle of the used attack consists in observing the data stored in the
round-register after the execution of the first round for several known plaintexts by means of
scan-out operations, and then, from these observations, to derive the secret key. This approach
requires read access to (optionally compacted) internal registers via the scan chain which might
be hidden or cryptographically secured. In contrast, our approach does not share the requirement
that the only changing flip-flops would be those of the round register and also evaluates restricted
access to internal registers.
In [42], David Hély et al. suggest the use of scan chain scrambling in combination with a random
number generator to secure the scan chain. This approach depends on the attacker not being able
to predict the random numbers for the scrambling algorithm. The security of these concepts can
be described as “security-by-obscurity” approach. As such, this method can easily be reverted

106

by reverse engineering and/or influencing the random number generator. Such approaches are
not sufficient to effectively protect a chip against reverse engineering but merely raise the bar in
terms of required time and effort.
Invasive reverse engineering was demonstrated in [82] by Karsten Nohl et al. In this work, the
authors discuss automated reverse engineering of Mifare Classic RFID tags. They suggest that
obfuscation of the implementation could increase the complexity of circuit detection, but did
not investigate this type of mitigation in detail. Although we use a similar method of reverse
engineering, we specifically target the testing logic and not the implementation of the whole chip.

5.2 IC Design and Test Modes

When considering digital integrated circuits, their design process typically starts on the logic level,
for instance by using a hardware description language such as VHDL or Verilog. The design then
undergoes a number of behavioral and timing related functional simulations to ensure that the
implementation is working according to its specification. In the next step, the design is mapped
to an actual process technology and manufacturing process. This may involve using existing
libraries that contain typical design elements such as memory cells, logic gates or bonding pads.
Once the design is complete, the manufacturing process can start. Using a silicon substrate wafer,
layers involving different materials (such as polysilicon, tungsten, aluminium or insulation oxides)
are deposited and selectively removed using lithographic processes to transfer the fabrication
patterns onto the surface, followed by different types of wet and dry etching techniques [125].
Each of these manufacturing processes can potentially lead to subtle defects that render individual
dies on the wafer unusable. To avoid additional costs (i.e. packaging, bonding, etc.) from further
processing these defective dies, it is important that prior to the IC manufacturing process, IC test
modes such as scan chains are inserted into the design. ASIC designers can leverage dedicated
scan chain insertion tools for this task. Common test modes are scan chains, JTAG test functions,
Built-In Self-Test (BIST) or proprietary test modes, for instance [90]. After fabrication during the
wafer test, this allows the manufacturer to use probe cards in order to connect to bonding or test
pads of the individual dies on the wafer. By supplying test vectors and observing the responses, it
can be determined if the chip is working properly. Since chip packaging and bonding might cause
failures on their own, manufacturers tend to make these test pads available on the outside of the
IC package as well. In the IC datasheets, these pins are then often labeled as “do not connect”,
“test” or “reserved”. If the test mode is enabled, testing functions such as scan tests [90] can be
performed, while otherwise, the device functions in its normal intended behavior. Focusing on
the security implications, the following sections provide an overview of typical test modes for
digital integrated circuits.

Scan Chain

Any synchronous digital logic can be described on the Register Transfer Level (RTL). Based
on the input data of a certain register (i.e. a set of flip-flops), the logic circuitry produces a
well-defined output and stores it in subsequent registers. The less combinational logic is between
these registers, the faster the overall system can be clocked. In order to test the overall system for

107

manufacturing defects, a common technique is called scan chain insertion [18]. The basic idea is
to exchange the flip-flops in registers between combinational logic with scan flip-flops. These
flip-flops are connected to each other in a chain to form a single large shift register.

Figure 5.1: Simplified Scan Chain

Figure 5.1 shows a simplified scan chain design. During normal operation, data is supplied at
din and processed through the combinational logic. The result goes through the multiplexer and
is stored in the subsequent flip-flop. In the following clock cycle (clk), the data can be processed
by the next logic block and eventually the computation result will be available at dout. When
the scan chain testing mode is enabled (shift_en), the flip-flops form a large shift register
instead. Test data can be supplied on scan_in and shifted into the scan chain. If the test mode
is temporarily disabled and the system is clocked, it will process the test data. In the next step,
the test mode can be re-enabled and the internal computation results can be shifted out of the
scan chain (scan_out). Comparing the expected test data with the actual test results allows the
manufacturer to verify the system and to precisely identify possible manufacturing defects. On
the downside, the approach also allows attackers to insert arbitrary data into or extract sensitive
information from the design. In [24] for instance, Da Rolt et al. demonstrate that even with
counter measures such as response compaction in place, scan chains can be abused to extract
sensitive encryption key material. However, without knowledge of the internal scan chain design
structure, attackers can merely guess the purpose and meaning of the scan chain data they observe.
Especially with protection mechanisms such as scan pattern watermarking, spy flip-flops, output
obfuscation [24] or scan flip-flop randomization [42] in place, practical attacks based on statistical
or brute-force based approaches get significantly harder.

108

JTAG Test Functions

JTAG (Joint Test Action Group) is an often used synonym for the IEEE Standard for Test Access
Port and Boundary-Scan Architecture [5]. The basic idea is to have a common Test Access
Port (TAP) accessible from the outside of the device. Typically, the TAP interface comprises
the following signals: Test Data Input (TDI), Test Data Output (TDO), Test Clock (TCK) and
Test Mode Select (TMS). Similar to the previously explained scan chains, data can be shifted in
and out of the device using the clock TCK as well as the TDI and TDO pins, respectively. By
connecting the TDO output of one device to the TDI input of the next device, JTAG also allows
multiple devices to be chained together. At the heart of JTAG within the TAP-controller, there
is a state machine (Figure 5.2) that can be controlled with the TMS pin. In general, a user can
supply commands to the Instruction Register (IR) and exchange data with the test mode using the
Data Register (DR). While the Test Access Port (TAP) and some essential commands (such as
the device identification using the IDCODE command) are standardized, manufacturers typically
implement their own JTAG instruction extensions. Naturally, these proprietary extensions are
kept secret and can again lead to the full disclosure of internal device states. For instance,
Skorobogatov et al. recently used advanced Side Channel Attacks (SCAs) to find hidden JTAG
commands that led to the disclosure of a potential backdoor inside a high-security chip [100].
On the other hand, finding undocumented JTAG instructions might not be sufficient, as a single
manufacturer testing command might comprise multiple JTAG instructions and data transfers.
While using side channel information to uncover secret JTAG testing commands is promising, it
is still likely that possible commands and command interdependencies are missed during analysis,
for instance due to a high amount of noise in the measurements.

Built-In Self-Test (BIST)

Built-In-Self-Test (BIST) is another common test mode in modern IC designs [78]. The basic
idea is to have a Test Pattern Generator (TPG), typically producing pseudorandom test data from
a static seed value. The computed results based on the test data are then compared with a look-up
table of known good values. If the produced patterns do not match, the device knows that an error
has occured. Similar to the scan chain architecture, the results of the tests can be stored in shift
registers and multiple BIST tests at different locations in the device can be combined by chaining
their shift registers together. While these self tests can be implemented with proprietary interfaces,
manufacturers often implement the tests as undocumented JTAG extensions [5]. Depending on
the actual implementation of the self-test, the test results can leak sensitive information such as
key material as well. However, attackers can only use this information if they can determine how
the BIST can be enabled, how it works and what kind of data it includes.

109

Figure 5.2: JTAG State Machine [5]

Proprietary Test Modes

Although other test modes such as JTAG or scan chains are a de-facto standard supported in a
wide range of IC design tools, manufacturers can still choose to implement their own proprietary
test modes. Possible reasons to choose this option are smaller sizes, less design overhead, reduced
costs or certain requirements that can not easily be met by prevalent testing modes. Compared
to standardized test modes like JTAG or scan chains, proprietary test modes are much harder to
reverse engineer with non-invasive methods. Moreover, for more complicated and complex test
modes, non-invasive techniques like sniffing, signal injection or side-channel attacks are even
less promising. In these cases, deep silicon analysis is clearly the better choice.

110

5.3 Reverse Engineering of IC Test Modes: A Case Study of a
Game Authentication Chip

In this section, we show how to identify and reverse engineer a proprietary test mode. To this end,
we use a stock Nintendo 64 game authentication chip (referred to as CIC - Checking Integrated
Circuit) and describe how it is possible to obtain device secrets like the software implementation
and the key material stored in the device’s ROM. The same methodology can of course be used
to investigate all of the previously introduced test modes.

Hardware System Analysis and Pin Identification

As a first step of every reverse engineering attempt, it is important to determine the pin-out and
the functionality of the chip within the system. At the example of the Nintendo 64 system, we
opened up a game cartridge as shown in Figure 5.3.

CIC

EEPROM

Mask ROM

Figure 5.3: Nintendo 64 Game Cartridge PCB

On the left upper side of the picture, the CIC chip is visible. Since the chip is strictly proprietary,
no official information such as a chip data sheet or information about the pinout is available.
Judging from the printed labels, it can be determined that the chip on the lower left side is a
serial EEPROM with 4kbit memory capacity originally manufactured by Rohm while the large
chip on the right is a 4Mx16 mask ROM memory manufactured by Macronix holding the game
code. Tracing the circuit lines allows us to identify the potential IC supply pins, the pins used
for communication between the game console and the cartridge as well as unused pins (either
floating or tied to the power rails) which are good candidates for testing mode pins. Without
further analysis (such as measuring the current consumption), unused logic pins tied to the Vdd
or GND power rails can not be distinguished from power supply pins. Since we intended to
decapsulate the chip, we did not perform such measurements.
To gain more insight into the behavior of the chip during run time, we used a logic analyzer to
capture the signals (Figure 5.4). The results show that the pin attached to D0 is apparently the
reset pin, while D2 is the clock signal coming from the console. D1 is one of the unconnected
pins of the CIC chip and outputs a clock signal at half the frequency of the clock signal supplied
from the console (D2). Its correlation with data transfers revealed D3 as a strobe signal for serial
data communication, while the actual data is on D4.

111

Figure 5.4: Logic Capture on the CIC Chip Signals During Initialization

IC Decapsulation

In the next step, we desoldered 5 CIC chips from game cartridge PCBs and prepared them for the
decapsulation process by mechanically removing as much material from the package as possible.
Since the die is usually in the middle of the IC package, we used a Dremel tool to mill a flat
cavity into the top of the DIP (Dual In-line Package) packages and cut off the left- and rightmost
parts of the packages as well. Moreover, we removed all pins from the packages.

Prepared this way, we performed two etching rounds in concentrated sulphuric acid at a tempera-
ture of 170 ◦C. Although decapsulation methods for epoxy IC packages typically involve the use
of fuming nitric acid (e.g. WFNA - white fuming nitric acid), we opted for concentrated sulphuric
acid as it can be obtained easily and at low cost even by hobbyists. Our decapsulation efforts thus
focus on practical low-cost approaches that can be done with equipment available for less than
100 US$. The purpose of the first etching round is to fully remove the epoxy package. With the
packages we had, the acid started to visibly attack the epoxy at roughly 140 ◦C. Since the acid in
the beaker quickly turns black because of the dissolved epoxy, it is hard to visually judge how
much of the package has been dissolved already. After an etch time of 10 minutes, we removed
the die from the beaker and rinsed it in demineralized water. At that point, the die was already
fully exposed, but still contained partial epoxy residues hindering optical analysis. The purpose
of the second etch round (i.e. the clean etch) is to remove the epoxy remainders without causing
new ones from the already dissolved epoxy in the acid bath. After an etch time of 5 minutes, we
removed the die from the beaker and cleaned it in an acetone bath in an ultrasonic cleaner. The
result was a clean die with some of the bonding wires still attached. Using ultra-fine tweezers
and a razor blade, we removed them as well.

112

Figure 5.5: Decapsulation in Concentrated H2SO4

Imaging

In a reflected light microscope with motorized stage and digital camera, we took 19x27 (i.e. 513)
tiled pictures and stitched them together using a custom script and the well-known Hugin software
to obtain a detailed 87 Megapixel image. Although a microscope with motorized stage is highly
convenient to take tiled pictures, the motorized stage is not a requirement. Usable reflected light
microscopes without motorized stage are now well in the price range for many hobbyists (i.e.
for less than 1,000 US$ on eBay). In our image analysis, we carefully traced the signals from
the bonding pads to associated logic blocks within the die. This also allowed us to determine
whether the pins that were previously tied to the power rails are supply or potential test-mode
pins. In addition to the optical microscope, we used our lab’s Scanning Electron Microscope
(SEM) whenever greater detail pictures were helpful. For SEM application, we did not prepare
the dies in any special way other than cleaning. Similar to reflected light microscopes and with
second hand price tags below 5,000 US$, SEMs are now becoming affordable for hobbyists or
hackerspaces as well.

A heavily scaled down and commented version of the CIC chip is shown in Figure 5.6. The
numbers on the side represent the pin numbers of the CIC DIP Package. The image allowed us to
spot typical logic design blocks such as ROM memories (marked red with letters B and E), SRAM
(marked black with letter C) as well as a CPU (marked green with the letter D). Combining the
information we obtained earlier with regard to potential test mode pins, we could now exclude
the power supply pins as well as the clock output pin from the list of test-mode candidates. This

113

15 10

1

5

7

8

11

9

1214 13

643

2

A

B C

E

D

Figure 5.6: Commented CIC Die with Manufacturer Chip Label CECRN8

left us with the potential test-mode pin candidates 2 to 7. However, while the signals from pins 2
to 5 all led to a register, we could trace pins 6 and 7 to corresponding logic blocks (marked in
blue with letter A). Those pins are thus likely to be test-mode control pins.

Detailed Test Mode Reverse Engineering

Within logic block A, we traced the test mode signals from pins 6 and 7 to the logic block shown
in Figure 5.7.

I
N
V

I
N
V

A
N
D

A
N
D

A
N
D

A
N
D

6 7

!6&7

Figure 5.7: Proprietary Test Mode Logic

Both signals first go through an inverter. After that, both the inverted as well as the non-inverted
signals are available and used by four AND gates to obtain all possible bit combinations from the
two testing pins. Since both pins were tied to ground on the game cartridge PCB, this leaves 3

114

possible testing modes. Tracing these outputs further, we could see that they control multiplexers
as shown in Fig. 5.8.

MUX

A3!6&7

15

Figure 5.8: Test Mode Multiplexer

However, the source data entering these 4 multiplexers always comes from one of 3 different
registers spread across the chip and, even more interestingly, the output of each multiplexer is
connected to the output pins, that are otherwise used to communicate with the console. The
registers are relatively easy to spot, as they are made up of equally looking CMOS flip-flops
right next to each other. Figure 5.9 shows a typical CMOS flip-flop, comprising two latches and
control logic.

Figure 5.9: CMOS Flip-Flop comprising two Latches and Control Logic

Since not all possible test mode combinations were covered by the analyzed multiplexers, we
traced the test mode signals further across the die and found similar control logic that controls
the input register containing the data from the previously identified pins 2 to 5. However, the
identified logic was right next to the ROM (Fig. 5.10). Further analysis showed that the control
logic allows the instruction code to be either fetched from the ROM or from the input register. In
other words, selecting a testing mode always allows arbitrary code execution.

115

ROM Logic

to ID
from IR

Figure 5.10: Implanted 1024x8 Bit Mask ROM with Control Logic

De-Layering

In some cases the chip’s top metal layer obstructed the view to significant parts in the lower layers.
For this case, we used a polishing machine with a 0.1µ polishing disc (Fig. 5.11) to remove the
die’s insulating layer and the metal layer below.

Figure 5.11: Polishing Machine with 0.1µ Polishing Disc and Water as Lubricant

One of the main challenges employing polishing techniques is to get a planarized result. Other-
wise, it can easily happen that on one side of the die all layers were already removed while on

116

the other side the insulation layer is still intact. Although there is much room for improvement,
in our approach we used an Aluminium holding piece with a glass rod attached to it that can be
clamped onto the polishing machine (see Fig. 5.11). We polished the tip of the glass rod until it
was even and then used heated Allied wax (i.e. a wax that can be dissolved in Acetone) to glue
the die onto the glass rod with the help of a toothpick. Under an optical microscope, we used the
lens focus to check whether the die surface is parallel to the surface of the glass rod. If not, we
heated up the holding piece and repeated the adjustment step. Using a total of 2 decapsulated
dies for de-layering, we finally obtained usable results. In the subsequent process of test mode
reverse engineering, we resorted to manual image analysis as we only had a strongly limited
number of dies and our polishing results would have been problematic for automated pattern
recognition approaches. Figure 5.12 shows a part of the CPU’s Instruction Decoder (ID) unit
with the insulation and top metal layer removed. The signals coming from the left of the picture
originate from the ROM Logic (Fig. 5.10) while each of the signals leaving the ID unit at the
bottom represents one CPU instruction. The partial reverse engineering of the CPU’s ID unit
allowed us to verify some publicly available bits of information. The CIC chip, for instance, is
supposed to use the Sharp SM5 4-bit CPU core. By comparing the instruction opcodes used in the
ID unit with the opcodes found in the SM5 data sheet, we found this information to be accurate.
Due to die markings and the fact that manufacturers tend to re-use existing CPU cores (such as
the Sharp SM5 core in this case), we believe that architectural information for proprietary ICs is
often available to attackers. If this information is not available, the CPU architecture could still be
determined through reverse engineering approaches similar to our initial approach that targeted
the CPU’s instruction decoder (ID) unit. The necessary effort would be considerable though.

Figure 5.12: Poly Layers below M1 Metal Layer of CPU Instruction Decoder Unit

117

ROM Firmware Extraction

Combining the information we obtained on the proprietary test modes in the CIC chip so far,
allowed us to produce the complete chip pinout (Fig. 5.13) as well as a deeper knowledge of how
the test modes can be utilized.
The test mode allows us to either output the content of the SM5 AREG accumulator or the PC
program counter register. If enabled, the corresponding output can be made available on SM5
Port 2 (i.e. on pins 12 to 15). Similarly, the enabled test mode allows arbitrary code execution
by supplying CPU opcodes on SM5 Port 5 (i.e. on pins 2 to 5). In that case, the CPU fetches its
instruction from the input register of Port 5 instead of the ROM (Fig. 5.10). Since an instruction
has a size of 8 bit while the input register is just 4 bit wide, it takes 2 clock cycles to load a
full instruction. Utilizing these powerful discovered test modes, we could finally start to extract
the content of the whole ROM firmware and reverse engineer the hitherto secret authentication
algorithm and key material. During normal chip operation, we could observe the system clock on
the TIO pin. We hooked the CIC chip to an FPGA board and performed several tests that finally
led to a full ROM dump. First, we enabled the test mode to test arbitrary code execution. We
observed the continuous clock output on the TIO pin and supplied the SM5 HALT instruction
(0x77) on Port 5. Subsequently, the CPU executed the HALT instruction and the observed clock
output on the TIO pin was halted. Similarly, we used the STOP instruction (0x76) to determine
the correct ordering of the input nibbles. With the correct ordering, the instruction executed as
intended and halted the clock output on the TIO pin just the same.
In the next step, we wanted to observe the output of the AREG accumulator register on Port 2.
Utilizing the LDX (load constant into accumulator) instruction, we loaded a constant into the
AREG accumulator register. However, at that point we could not see the output on Port 2 as
the port is configured as input port after reset. By setting the corresponding bits in the SM5
directional register, we configured Port 2 as output port and, subsequently, the test mode worked
as expected.
To extract the full content of the ROM, we exploited another implementation detail of the test
mode. A JUMP instruction comprises two bytes. The first nibble is the instruction while the
subsequent bits represent the 12-bit destination address of the jump. By toggling the test mode
accordingly, this allowed us to supply the first byte (i.e. the JUMP instruction followed by a zero
nibble) to the CPU, while the second byte was loaded from the ROM.
Executing the instruction thus led to a jump to an address that corresponds to the opcode byte of
the according instruction in the ROM. Using the test mode, we can also observe the PC program
counter register and thus determine what this jump target was, and thus, what the ROM contained
at this position. Furthermore, by executing ordinary manual jumps via the test mode, we could
target arbitrary regions in the ROM. In other words, we used the internal program counter to read
the complete ROM content in a byte-by-byte fashion. Ultimately, this technique allowed us to
create a simple implementation on our FPGA board that dumps the full ROM content (including
the cryptographic algorithm and the key material) and outputs it to the UART port. An attached
PC with a serial port was used to finally write the ROM dump to a file for later analysis.
In contrast to our approach, we would like to note that there are other ROM extraction techniques
such as optical readout as well. However, the usable extraction techniques strongly depend on the
ROM implementation type. For instance, so called mask-ROMs have their memory configuration

118

Figure 5.13: Pin-Out of the CIC Chip

in the physical layout of the ROM and can thus be read out optically. In contrast, other ICs (like
the CIC chip in our case) utilize ROM implementations such as ion or laser implanted ROMs
which are programmed after fabrication through careful alteration of the transistor threshold
voltages (for instance, by means of an ion or laser beam). As in implanted ROM memory cells
the 0 and 1 bits can not be optically distinguished from each other, optical readout is not feasible
without further deprocessing and analysis steps (such as performing a so called dash etch process
that changes the color of the active chip areas based on their doping).

5.4 Evaluation and Discussion

In this section, we show how we evaluated our approach by reconstructing the previously secret
CIC algorithm from the obtained ROM firmware, creating our own implementation of the
algorithm on an FPGA board and testing it with the unmodified gaming console.

CIC Algorithm

Taking the full ROM dump we obtained in Section 5.3, we manually disassembled the firmware
and extracted the CIC game authentication algorithm shown in Listing 5.1.
On startup, the CIC IC initializes the RAM. The first 2 nibbles for RAM initialization are supplied
from the console while the rest is a static key1.
It then reaches an infinite loop, mutating the RAM and sending hashes of it to the console. The
console verifies the incoming endless bit stream and freezes if the stream is different from the
internally generated one.

1As we do not endorse nor support software piracy, we’re only disclosing the algorithm, but not the static key
material.

119

1 void cic_round(uint4_t m[16])
2 {
3 uint4_t a, b, x;
4
5 x = m[15];
6 do
7 {
8 m[1] += x + 1;
9

10 b = 6;
11 if (15 - m[3] > m[2])
12 b += 1;
13
14 m[b - 3] += m[3];
15 m[3] += m[2] + 1;
16 m[2] = ~(m[2] + m[1] + 1);
17
18 a = m[b - 1];
19
20 if (m[b - 2] > 7)
21 m[b - 1] = 0;
22 m[b - 1] += m[b - 2] + 8;
23 m[b - 2] += m[b - 3];
24
25 do
26 {
27 a += m[b] + 1;
28 m[b] = a;
29 b += 1;
30 } while (b != 0);
31
32 x -= 1;
33 } while (x != 15);
34 }

Listing 5.1: Secret Reverse Engineered CIC Algorithm

The cic_round function presented in Listing 5.1 is responsible for mutating the RAM m (16 *
4 bit). The CIC implementation calls the cic_round 3 times in a row on the same RAM block
m to garble the bits. After that, it uses the 7th nibble to determine how many bits (N) should be
sent to the console. Starting at nibble 0, it transfers the Least Significant Bit (LSB) to the console,
followed by the LSB of nibble 1, the LSB of nibble 2 and so forth until all N bits have been sent.
The cic_round uses a loop in line 6 to 33 to run for a given number of rounds (1 - 16)
depending on the current state. In each round, most elements in RAM are modified by adding
them to each other in the presented way.

FPGA Implementation

We evaluated the reverse engineered CIC algorithm by creating a full FPGA implementation on a
Digilent Nexys 4 Artix-7 FPGA board. On the Artix-7 XC7A100T FPGA, our implementation
takes 300 Slice LUTs and 155 Slice registers. We do not utilize any BlockRAM or DSP resources.
Our testing setup is visible in Figure 5.14. On the left of the picture, we used a PC with the Xilinx
Vivado FPGA design tools to program the FPGA board. In the middle of the picture, the FPGA
board and the opened up game console with a game cartridge is visible. We used one of the game

120

cartridge PCBs where we had previously removed the CIC chip and connected the FPGA board
containing our CIC implementation and the secret key instead. On the right side of the picture,
we used a logic analyzer to analyze the communication between our CIC implementation on the
FPGA board and the game console. As visible on the TV screen, inserting the game cartridge
PCBs into the console correctly started and executed the game contained in the cartridge’s ROM
chip. Stopping the execution of the algorithm within our FPGA board immediately froze the
game. To test whether our implementation still worked after multiple hours of game play, we
invited some friends and enjoyed Mario 64 all together.

Figure 5.14: Evaluation Test Setup - Nexys 4 FPGA Board and Gaming Console

Security Tradeoff

Mitigation techniques against test-mode attacks conservatively follow a security-by-obscurity
approach. Commonly proposed methods found in the literature include scan chain scrambling [42],
encryption with hard-coded keys [69, 131], scan pattern watermarking, spy flip-flops, output
obfuscation [24] or scan flip-flop randomization [42]. While we acknowledge their effectiveness
to raise the bar for non-invasive attack scenarios, we show that they offer next to no protection
against deep silicon analysis. On the other hand, there are more secure ways to protect a chip,
like cryptographically signing manufacturer test mode commands and only execute them within
the chip for instance. Other methods rely more on Built-In Self-Test (BIST) modes that do not
leak sensitive information. These defense strategies, however, have a common drawback. Since
they always cause additional costs both in design and production, they ultimately create the need
to trade security/functionality for cost. Simple obfuscation techniques are easy to implement and
can be used with powerful testing modes such as scan chains, but do not provide high security.
On the other hand, Built-In Self-Test (BIST) modes might not provide the necessary testing

121

granularity while secure testing modes employing cryptographic signature checks also need
potentially large cryptographic cores on the dies that increase the production costs. In fact, the
logic required for signature checking (i.e. RSA, DSA, ECDSA, etc.) can be huge (i.e. cost
intensive) and, depending on the chip design, it can be even bigger than the rest of the chip design
on its own. How to choose in this typical tradeoff situation depends on the application domain.
A hacked gaming console might be more tolerable than a reverse-engineered chip for wireless
payment. Still, we recommend to include secure protection mechanisms whenever the projected
costs permit. Less sophisticated countermeasures against non-invasive reverse engineering might
provide a certain level of security but are completely ineffective against a motivated effort with
deep silicon analysis.

5.5 Conclusion and Future Work

In this paper, we demonstrated that limited effort silicon analysis can be effectively used to
reverse engineer secret test modes and break device security. Our example application of the
developed techniques revealed previously secret content of a cryptographic game authentication
chip. Specifically, the discovered testing mode allowed us to execute arbitrary code on the
chip and subsequently dump the secret firmware and key material. While the authentication
chip in a game console is not a highly critical or especially security-sensitive application, we
believe that our example effectively illustrates how undocumented and proprietary testing modes
can easily be discovered through silicon reverse engineering. Furthermore, we prove that most
widely proposed obfuscation-based countermeasures can be circumvented without modifying the
analysis approach.
As our technological reverse engineering procedure proved feasible, we plan to extend our efforts
with regard to test mode silicon reverse engineering for analyzing security critical applications.
The major challenge will be to overcome more sophisticated anti-reverse engineering techniques
that specifically aim to protect against deep silicon analysis.

5.6 Acknowledgements

This work has been partly funded by the (SG)2 project under national FFG grant number 836276
through the KIRAS security research program run by FFG and BMWFW. In addition, we would
like to thank USTEM [115] at Vienna University of Technology and Trustworks KG for providing
valuable tips and letting us their lab equipment. Without their support, this work would not have
been possible.

122

CHAPTER 6
PROSPECT - Peripheral Proxying

Supported Embedded Code Testing

Embedded systems are omnipresent in today’s world. From small digital clocks over home appli-
ances such as washing machines and multimedia devices to medical appliances or smart phones,
embedded technology provides tremendous advantages compared to general purpose systems.
One key aspect is the possibility to create tailored hardware devices to fulfill a very specific task.
With exactly the right amount of memory, processing power and interfaces, embedded devices
are cheaper, smaller and faster than their general-purpose computing counterparts. However, a
good amount of embedded devices are aimed at functionality rather than security. In fact, recent
publications have shown that the security of embedded devices is especially bad [58, 65, 88, 119].
One reason is, that security audits on embedded devices are considered to be far more challenging
and time consuming than on general purpose PC systems. Considering the common case in
which the security analyst has no access to the source code of the system under test, there is
a broad gap between state-of-the-art security analysis techniques for PCs and for embedded
systems. Liu et al. [70] and Austin et al. [6] give an overview of the wide area of vulnerability
discovery techniques that are available for PC systems. The techniques range from sophisticated
static analysis techniques over dynamic analysis and fuzz testing to advanced dynamic taint
analysis and symbolic or concolic execution [17, 94]. However, for embedded systems, the
situation is different. Mainly due to custom proprietary hardware, undocumented peripherals and
strict system limitations, the prevalent vulnerability discovery techniques are still based on static
analysis [13, 59, 118].
At the same time, using the wide range of dynamic analysis or taint analysis and symbolic
execution tools is in general not possible due to the limitations of the embedded system under
test. One solution would be to take the investigated application from its original context and
run it in a virtual machine that provides the necessary resources and facilities for a full dynamic
evaluation. To emulate the embedded device, however, the connected peripheral hardware needs
to be available from within the virtual machine as well. The usual way is to emulate the peripheral
hardware. Yet, for proprietary hardware this is not possible due to the following reasons. First,

123

the analyst would need comprehensive information on how all peripheral hardware devices work
in order to emulate the hardware behavior in software. Since peripheral hardware is likely to be
proprietary, this information is not available and, subsequently, the analyst can not emulate the
hardware. Second, even if the information is available to the analyst, adding full support for new
peripheral hardware components to a virtual machine implementation is not an easy task. It is
likely that the implementation would take the analyst a tremendous amount of time that renders
the whole dynamic security analysis infeasible.
To amend this problem, we take a different approach and introduce PROSPECT, a proxy capable
of tunneling arbitrary peripheral hardware accesses from within a virtual machine to the embedded
system under test. The result is a virtualized execution environment for embedded software
implementations with a completely transparent connection to the actual peripheral hardware
components of the system under test. PROSPECT thus enables the analyst to leverage any
powerful dynamic analysis techniques of her choice to discover vulnerabilities on embedded
devices with minimal effort. We developed and continuously improved PROSPECT over a
duration of more than 10 months during which our system evolved. In addition, we conducted
a case study to prove the effectiveness of PROSPECT and used the system to undertake a full
scale security analysis of a widely used proprietary fire alarm system in the building automation
domain. Summing up, the contributions presented in this paper are as follows:

• We introduce PROSPECT, a transparent proxy for tunneling peripheral hardware accesses
from within a virtual analysis environment to the embedded system under test. Our system
can overcome prevalent analysis limitations by enabling dynamic instrumentation inside
arbitrary analysis environments.

• We provide a MIPS based proof-of-concept implementation that has continuously evolved
over a duration of more than 10 months.

• We evaluate and discuss our approach with a detailed analysis of the system’s performance
and usability.

• We utilized PROSPECT to conduct a case study by running a full-scale security audit of a
widely used commercial fire alarm system in the building automation domain showing that
PROSPECT is both practical and usable for real-world application.

6.1 State-of-the-Art and Related Work

When dealing with security analysis on embedded systems, most research approaches use static
analysis to achieve their goal. For instance, Khare et al. presented some of the key problems
that need to be faced when using static analysis techniques on a large embedded code base [59].
In their work they focus on the static analysis of source code to improve the overall security of
embedded systems.
In contrast, Ramakrishnan and Gopal do not require access to source code as their static program
analysis techniques run on embedded binaries [118]. However, they do not focus on embedded
security or vulnerability discovery.

124

In [96], Zili Shao et al. introduce a mixed hardware/software system to check for and protect
embedded systems from buffer overflow attacks. Their system works during program execution,
but is more focused on vulnerability protection than on vulnerability discovery.
In [108], Sumpf and Brakensiek introduced device driver isolation within virtualized embedded
platforms. The approach presented here can be considered the most closely related system
compared to PROSPECT. The authors created device drivers with a generalized interface to
provide homogeneous access for virtual machines. In contrast to PROSPECT, however, the imple-
mentation of the driver must be known. Furthermore their system is limited to L4 microkernels
and not suitable for unknown peripheral devices.

6.2 Challenges in Embedded Security Analysis

Assuming that the reader is familiar with the general field of information security, in this chapter,
we briefly outline binary code analysis and highlight fuzz testing as exemplary, widely established
techniques to discover software vulnerabilities. We point out, that dynamic analysis is one of the
key requirements for efficient fuzz testing as well as for manual in-depth analysis approaches
usually done as soon as fuzz testing discovers a potential security vulnerability. After presenting
dynamic analysis techniques for PC systems, we continue by providing a general overview
of how typical medium to large scale embedded systems are made up and why the presented
dynamic analysis approaches are frequently not applicable to embedded systems. Besides, the
chapter shows why the approach PROSPECT takes is promising as it can overcome the described
challenges and enable dynamic analysis in general, regardless of the analysis limitations on the
system under test.

Binary Code Analysis

Vendors are typically profit-driven and try to push their newest software products to market
as soon as possible. Depending on their efforts to avoid software vulnerabilities, a released
software implementation may contain numerous security flaws such as stack smashing or use-
after-free vulnerabilities [95]. At that point, an arms race between attackers and the vendor
begins. Attackers try to exploit the vulnerabilities for their own ill-gotten gain such as industrial
espionage, spreading malware or setting up botnets [57, 107] while vendors try to patch newly
discovered bugs.
For proprietary software implementations, the source code is usually not available. Thus, in order
to discover vulnerabilities in these implementations, security analysts need to rely on techniques
that can be applied to binary code. In a recent survey [70], Liu et al. describe a number of
common techniques to discover software vulnerabilities. While analysts can resort to static
analysis that does not require the execution of the program under test, static analysis suffers from
a number of drawbacks hindering penetration tests. For instance, object orientated code makes
frequent use of function pointers that are hard to resolve, if the program is not being executed.
With dynamic analysis, the program is being executed and the analyst can trace and instrument
the current execution path of the program under test. However, unless advanced techniques such

125

as multipath exploration [79] are employed, the analyst needs to generate different program inputs
to analyze different execution paths.

Fuzz Testing: A Common Technique to discover Software Vulnerabilities

Generating different program inputs to reach different execution paths is also one of the key ideas
of fuzz testing, a widely established technique to discover software vulnerabilities [7, 27, 70].
With fuzz testing, input data to the program are generated automatically either at random or by
mutating previously obtained program input. At the same time, the analyst can employ dynamic
analysis to monitor the program execution and detect program anomalies such as crashes, illicit
memory accesses or endless loops causing high CPU utilization. If an anomaly is detected, the
generated input data are likely to have caused the abnormal behavior. This is a starting point for a
more thorough manual program analysis, usually also within a dynamic analysis environment.
Practical results [7, 27, 70, 95] have shown that fuzzing is both a viable and established technique
to discover software vulnerabilities. However, since fuzzers can be highly application specific, it
might be necessary to implement new fuzzing tools for each penetration test. Also, we would like
to stress that although fuzz testing is widely used, it is not the only technique to discovery software
vulnerabilities efficiently. One key observation at this point is that dynamic instrumentation is
required for both efficient fuzz testing and the manual analysis that is usually done after the fuzzer
discovers a potential security vulnerability.

Dynamic Code Analysis on PC Systems

In general, a PC system can be divided into hardware, an operating system (including kernel
and drivers) and software applications. The analyst has the freedom to dynamically instrument
any of these layers. The easiest way to instrument a program is to debug it with a state-of-the-
art-debugger such as gdb or Ida Pro. The drawback here is that the program can easily detect
that it is being instrumented and behave differently. For instance, the program might just exit
instead of performing its usual functionality. On the next level, the analyst can instrument the
operating system to analyze the program’s behavior. For instance, CWSandbox [127] uses this
approach by hooking the operating system libraries. This allows the analyst to trace the behavior
of the application, but at the same time hinders typical techniques for debugging (e.g. single
stepping through code). On the lowest level, the analyst can instrument the hardware using Virtual
Machine Introspection (VMI) [38], which makes it hard for the investigated software to detect
that it is being analyzed. Although the target of the analysis is the application itself, the downside
of this approach is the need to analyze the surrounding operating system as well. Therefore, the
necessary effort is higher than applying a regular debugging technique.

A typical Embedded System

Embedded systems can be divided into small, medium and large scale embedded systems
[88, 97]. Depending on their size, their system configuration can differ tremendously. Small
scale embedded systems such as electronic toys, digital clocks or pocket calculators are built
around strongly resource constrained microcontrollers. Typically, there is no operating system

126

and the firmware of these systems comprises a single program that is contained in an on-chip
Flash memory. In contrast, medium and large scale embedded systems such as smart phones,
wireless routers or field level components of SCADA systems are based on more powerful
controllers. Typically, they run a customized operating system (e.g. Linux) and the product-
specific implementation of an embedded product often comprises custom kernel code, drivers and
several applications. At the heart of these systems commonly lies a powerful System-On-Chip
(SoC) controller that includes a CPU, ROM, SRAM and a number of internal peripherals and I/O
controllers.

CPU

ROM SRAM

I/O ControllerI/O ControllerI/O Controller

DRAM

Flash

SoC Memory Peripherals

Figure 6.1: A Typical Medium to Large Scale Embedded System

A typical separation of components is shown in Figure 6.1. Upon power-up, the CPU in the SoC
controller will execute the first-stage bootloader code contained in internal ROM and perform
low-level initializations. After that, the SoC can access external memories (such as Flash and
SDRAM) to boot into a second-stage bootloader and, consequently, into the operating system
(OS) kernel. At that point, the OS can load a number of additional drivers to support external
peripherals and then start the product specific processes. While the general operation of embedded
systems is similar to PC systems, it is the external peripherals that make embedded systems so
special. External peripherals are typically customly designed by the system manufacturers ranging
from product specific sensors and actuators to custom communication interfaces. Taking modern
smart phones as an example, such external peripherals could be charging controls, wireless radios,
GPS receivers, magnetic or accelerations sensors, driving circuits for the vibrating alert, speech
compression DSPs and many more. These external peripherals are what actually transforms an
off-the-shelf SoC system into a valuable everyday product.

Challenges of Dynamic Code Analysis on Embedded Systems

In contrast to PC systems, employing dynamic analysis techniques on embedded systems can be
more challenging. Typically, embedded devices are resource constrained, access to the file system
is limited and the kernel’s functionality and tools available on the device are just a minimal
set of functions necessary for the product to operate properly [88]. The main reason for these
constraints is that including additional functionality on the embedded systems would result in
increased embedded resource requirements and ultimately in higher manufacturing costs. From
this perspective, the presented analysis approaches for PC systems are hard to apply to their
embedded counterparts:

127

1. Using a debugger to instrument the program is only feasible if the OS kernel includes
debugging support (e.g. through ptrace() in the case of Linux). Running a state-of-the-
art debugger on the system might not be possible due to resource constraints (e.g. in terms
of memory consumption) or due to missing support (e.g on legacy systems or on systems
where ptrace() support was not compiled into the kernel to save memory space).

2. Instrumenting the operating system would require kernel modifications or loading custom
kernel modules. Embedded systems often run customized minimal kernel configurations
to keep resource consumption and boot-up delays low. As a result, instrumenting the
operating system might not be feasible.

3. Instrumenting the hardware would require not only virtualization of the system architecture,
but also of all the necessary peripheral devices. However, as peripheral devices and their
drivers are often proprietary, the information required to emulate them might not be publicly
available. Besides, writing emulation code for all peripheral hardware devices would cause
a tremendous overhead, considering that the analyst’s goal is dynamic code analysis of
only a small set of programs.

These challenges show that while on PC systems there is a wide range of established and well
working vulnerability discovery techniques, the situation is different on embedded systems.
In theory, all of those techniques could be applied to embedded systems as well. However,
practically, embedded systems frequently lack support for these techniques and thus make it
much harder to discover software vulnerabilities. We believe that this is also the reason, why
static analysis techniques are still so prevalent for those systems.

6.3 Peripheral Device Forwarding

Figure 6.2: A typical Greybox System Example

Figure 6.2 shows a typical greybox embedded system example from a security analyst’s point of
view. The analyst’s goal is to test one or more userspace applications on the embedded system
for security vulnerabilities. This could, for instance, be a network daemon that is exposed to
external attackers over a network connection. Yet, due to the challenges portrayed in Section 6.2,
the analyst is unable to perform dynamic code analysis on the target system.

128

That is, the system lacks system resources, analysis tools are not available or can not be run and
the userspace application, the analyst is interested in, can not be executed in a virtual environment
as the peripheral hardware is missing there. However, one key observation is that userspace
applications commonly communicate through character devices with potentially proprietary
drivers and, consequently, with the peripheral hardware. Also, the communication interfaces to
exchange data with the driver, and therefore with the kernel, are limited and can be considered
standardized.
This is where PROSPECT comes into play. The basic idea of the system is to create virtual
character devices inside another physical or virtual analysis environment. PROSPECT must
intercept system calls used for communication with the character device from within the operating
system kernel, forward them to the appropriate device on the embedded system and execute them
there. Any responses need to be fed back to the analysis environment so that the intercepted
system calls can return the data from the embedded remote system. Block devices, on the other
hand, are generally used to access storage media which are emulated by the analysis virtual
machine (i.e. qemu) anyways. To the analyst, PROSPECT constitutes a transparent forwarding
solution for character device communication and thus allows her to conduct dynamic analysis
techniques that were previously infeasible. Even software running on legacy systems lacking
support for state-of-the-art analysis tools can be analyzed this way. As a result, PROSPECT
allows to overcome typical challenges an embedded security analyst typically needs to face today.

Character Device Access

In order to forward peripheral hardware accesses, we need to know which system calls are gener-
ally used to interact with character devices. Targeting Linux systems, we gathered information
on the supported file_operations of all included character device drivers in three different
Linux kernel versions (Linux-2.4.20, Linux-2.6.38.1 and Linux-3.4.4) by analyzing the source
code of all available drivers (514 files in total). We chose these specific kernel versions to get an
idea which system calls are used to access character devices on legacy systems (i.e. Linux-2.4
and Linux-2.6) as well as on current kernel versions (i.e. Linux-3.4). Table 6.1 shows how many
of the character device driver source code files actually define file_operations. It can be
seen that the number of files decreases with newer kernels. We believe that this is due to increased
abstraction in the Linux kernel requiring driver authors to write less supporting code.

Linux-2.4.20 Linux-2.6.38.1 Linux-3.4.4
files fops fops % files fops fops % files fops fops %
264 77 29.17 143 62 43.36 107 54 50.47

Table 6.1: Analyzed Device Drivers on different Linux Kernel Versions

Table 6.2 shows which file_operations (i.e. which system calls) are used to interact
with character device drivers in the different Linux kernel versions in relation to the number
character device source code files. For instance, on Linux-2.4.20, there are 77 files that define
file_operations and, out of these, 83.12% define a custom handler for the open system
call. Some of the system calls in older kernel versions have been superseded by newer ones.

129

For instance, the ioctl call in Linux-2.4.20 has been replaced by unlocked_ioctl and
compat_ioctl for performance reasons in newer kernel versions.

Syscall Linux-2.4.20 Linux-2.6.38.1 Linux-3.4.4
aio_fsync - 0.00 0.00
aio_read - 1.61 1.85
aio_write - 1.61 1.85
check_flags - 0.00 0.00
compat_ioctl - 6.45 7.41
fallocate - 0.00 0.00
fasync 28.57 11.29 12.96
flock - 0.00 0.00
flush 14.29 - -
fsync 0.00 3.23 3.70
get_unmapped_area 2.60 1.61 1.85
ioctl 84.42 - -
llseek 6.49 32.26 29.63
lock 0.00 0.00 0.00
mmap 18.18 12.90 14.81
open 83.12 74.19 77.78
poll 32.47 20.97 25.93
read 68.83 82.26 85.19
readdir 0.00 0.00 0.00
readv 0.00 - -
release 77.92 62.90 66.67
sendpage 0.00 0.00 0.00
setlease - 0.00 0.00
splice_read - 0.00 0.00
splice_write - 0.00 0.00
unlocked_ioctl - 51.61 50.00
write 62.34 50.00 55.56
writev 0.00 - -

Table 6.2: Usage of Linux file_operations in Character Device Drivers (Percentage)

In theory, PROSPECT could forward any of the system calls visible in Table 6.2. However, for
performance reasons, it is beneficial to handle some of those calls locally. In fact, PROSPECT
could execute system calls such as flush, sync, fasync or aio_fsync locally, if device
access on the remote device is kept synchronized. Due to the delay imposed by the connection to
the remote system, however, this would have a negligible effect. On the other side, system calls
such as splice_read, that have been introduced for performance reasons, can use their regular
counterparts (i.e. read) without breaking their basic functionality. With PROSPECT, we thus
focus on basic character device operations that are broadly used by the majority of the character
device drivers we analyzed. Specifically, PROSPECT can handle the file_operations
listed in Table 6.3. The first column shows the name of the system call. For each system call, we
specify if the system call is supported by PROSPECT, which system call is used to implement it
and whether the call is handled locally or forwarded to the remote system.
With the exception of mmap, all operations that are frequently used for character device com-
munication are supported. This is due to the fact that FUSE (Filesystem in Userspace) does not

130

Syscall supported implemented local/
through remote

aio_fsync yes fsync local
aio_read yes read remote
aio_write yes write remote
check_flags no - -
compat_ioctl yes ioctl remote
fallocate no - -
fasync yes fsync local
flock no - -
flush yes fsync local
fsync yes fsync local
get_unmapped_area no - -
ioctl yes ioctl -
llseek yes llseek remote
lock no - -
mmap no - -
open yes open remote
poll yes poll remote
read yes read remote
readdir no - -
readv no - -
release yes release remote
sendpage no - -
setlease no - -
splice_read yes read remote
splice_write yes write remote
unlocked_ioctl yes ioctl remote
write yes write remote
writev no - -

Table 6.3: Basic file_operations supported by PROSPECT

support direct mmap calls for character devices at the moment (see Section 6.7). However, special
consideration was necessary for the ioctl system call, as its exact behavior can frequently not
be inferred prior to the actual execution.

IOCTL Mechanism and its Shortcomings

The IOCTL (I/O control) mechanism allows more flexibility in the communication with under-
lying device files. In general, there are two types of IOCTLs: Well-formed and unrestrictive
IOCTLs. The difference is that well-formed IOCTLs have information about the type of the
call encoded in the request number, whereas unrestricted IOCTLs do not provide this kind of
information.

131

1 # d e f i n e _IOC (d i r , type , nr , s i z e) \
2 ((d i r << _IOC_DIRSHIFT) | (t y p e << _IOC_TYPESHIFT) | \
3 (n r << _IOC_NRSHIFT) | (s i z e << _IOC_SIZESHIFT))

Listing 6.1: Encoding for well-formed IOCTLs

Listing 6.1 shows how information such as the direction (e.g. read, write or none/execute), the
request number or the amount of data (size) are encoded in the ioctl request parameter. By
decoding this parameter prior to the actual ioctl call, it is possible to determine the direction
of the data transfer and whether the provided parameter is a constant or a pointer to memory. In
this case, PROSPECT could forward the request to the target system.
However, for unrestricted IOCTLs and prior to the actual ioctl execution, PROSPECT would
have no way to determine the direction of the data, how much data should be transferred and
whether a provided parameter is supposed to be a pointer or not. Since unrestricted IOCTLs are
commonly used for device driver communication, we had to address this issue in the design of
PROSPECT. We solved the challenge by introducing a concept we denote Dynamic Memory
Tunneling which is described in Section 6.4.

6.4 Implementation

Figure 6.3: Peripheral Character Device Forwarding

As sketched in Sections 6.2 and 6.2, we assume that the analyst would like to dynamically instru-
ment a binary on an embedded system that heavily accesses peripheral devices. While infeasible
without PROSPECT, the application can now be executed inside an arbitrary analysis environment.
Figure 6.3 provides a schematic overview of PROSPECT. On the left side, the application that
should be analyzed is being executed within an arbitrary state-of-the-art debugger. However,
instead of directly accessing the peripheral hardware through a character device, the application
actually interacts with the virtual character devices that were generated through PROSPECT. At
this point, PROSPECT intercepts the system calls defined in file_operations and forwards
them to the userspace PROSPECT client. The client decides whether the system call should

132

be executed locally or on the remote system. If remote execution is required, it communicates
with the lightweight PROSPECT server on the target system. The server has very low system
requirements and can thus be executed on a wide range of embedded systems. Once the system
call has been executed on the target system, any results are fed back into the software application
under analysis.
In order to generate virtual character devices and intercept system calls, parts of PROSPECT need
to run in kernel context. While we could have realized all parts of PROSPECT in kernel space, we
decided that the major part of our implementation should be in user space. In comparison to a full
kernel space implementation, a user space centric implementation has the advantage of increased
system stability, security and, most of all, more flexibility. We implemented PROSPECT from
scratch and our overall implementation consists of roughly 7, 500 lines of C code. In summary,
PROSPECT comprises:

• A lightweight kernel driver utilizing the FUSE [91] kernel framework.

• A userspace driver combined with the PROSPECT client

• A lightweight server component running on the target system.

The PROSPECT lightweight server needs to be executed on the target system. Assuming that the
security analyst typically has full physical access to the embedded device under test, we believe
that this is a viable option. For instance, the analyst could use the bootloader console to get root
level access to the operating system and then simply copy the PROSPECT statically linked binary
to the device by using an attached storage medium or a networked remote machine as source.
Since our lightweight kernel driver utilizes the FUSE kernel framework, PROSPECT has the
advantage that it is applicable to a wide range of operating systems, including Linux, FreeBSD,
NetBSD, OpenSolaris, Android and OS X.

Concurrent Device Accesses

On typical embedded systems, a character device might be accessed by multiple threads or
processes concurrently. Likewise, a single process or thread might interact with multiple devices
at the same time. PROSPECT can handle these scenarios by using a client/server architecture
(Figure 6.3) with multiple synchronization mechanisms. On the target system, there is a single
PROSPECT server that can handle multiple incoming connections. Each client represents a
character device that is forwarded to the target system, whereas each client can handle concurrent
devices accesses by multiple threads and/or processes (Figure 6.4). PROSPECT relies on POSIX
thread synchronization mechanisms (i.e. mutexes) to sustain the order of all accesses throughout
the system.

File Descriptor Tracking

PROSPECT needs to keep track of file descriptors. Essentially, there are three cases we need to
consider: (1) single processes, (2) child processes (i.e. created with fork()) and (3) threads. As
file descriptors work on a per-process basis, they are only unique within the context of a process.

133

/dev/chardev [virtual]

PROSPECT
Server

PROSPECT
Client Instance

Process Process
Process

Thread Thread

/dev/chardev [real]

VM Target

PROSPECT
Driver

Figure 6.4: Concurrent Device Access

Whenever a new process is spawned, new file descriptors returned by open() typically start at 3
(as 0,1 and 2 are already used for stdin, stdout and stderr, respectively). Considering two different
processes, both processes may receive the same file descriptor (i.e. 3), but it may correspond to
completely different files with different properties (e.g. file offsets or permissions). If a process
uses fork() to spawn a child process, it will inherit all open file descriptors from its parent, but
any new file descriptors it receives at a later point will be unique to the child process. In contrast,
threads behave much like a single process, as all file descriptors they receive are shared between
them. As a result, both the PROSPECT client as well as the server would need to be aware of the
type of process or thread in order to emulate normal operating system behavior.
PROSPECT tackles this challenge by taking a different approach. Instead of emulating the
behavior of a real system, it uses globally unique file descriptors on the server side and supplies
them in a synchronized way to all clients. More specifically, we implemented the PROSPECT
server as a single process but with multiple threads to handle different connections. For that
reason, all file descriptors it receives from the target’s OS kernel are unique within the server
and, ultimately, within all PROSPECT clients and all processes and/or threads accessing virtual
character devices as well.

Dynamic Memory Tunneling

In Section 6.3, we explained how the IOCTL mechanism is used for more flexible device driver
communication. However, unlike well-formed IOCTLs, their unrestricted counterparts do not
provide any data exchange information (i.e. information on direction and the amount of data that
should be exchanged with the driver). As unrestricted IOCTLs are frequently used, we considered
different approaches to address this challenge in PROSPECT.
Both, the userspace application(s) accessing a character device as well as the character device
driver are aware of the parameters for unrestricted IOCTLs. A userspace application may not use
all unrestricted IOCTLs the driver supports. However, the driver implementation always includes

134

all supported unrestricted IOCTLs as well as the information on how data can be exchanged with
them. Even better, device driver code is typically structured in a known way so that it can be
loaded by the operating system. For that reason, we could extract the kernel image and device
drivers from the target system and employ static (or even dynamic) code analysis techniques
on the binaries to extract a data exchange rule-set for all available unrestricted IOCTLs. The
drawback of this approach is that PROSPECT would need to be aware of operating system
specifics (such as architecture, kernel version, kernel configuration, etc.). Thus, it would be hard
to use PROSPECT on a wide range of different systems without major modifications. On the
other side, extracting a rule-set from the userspace application, the analyst wants to work with,
might be a challenge on its own (i.e. due to code size, program obfuscation or required manual
code analysis).
Another approach we considered is that instead of extracting a rule set, PROSPECT could
dynamically observe any unrestricted IOCTLs during program execution and learn from them.
However, this is not always feasible, as the analysis would need to take place on the target system
that does not necessarily support dynamic analysis in the first place. In fact, one of the goals of
PROSPECT is to enable dynamic analysis on embedded systems, that might not support it for the
reasons mentioned in Section 6.2.
Since any analysis required to gain information on unrestricted IOCTL parameters should not
depend on the capabilities of the target system, we implemented dynamic memory tunneling.
The key idea of dynamic memory tunneling is to always transfer a memory buffer to the target
system if the IOCTL parameter is a possible pointer to a memory location. Accordingly, for each
unrestricted IOCTL call, we need to answer the following questions:

• Is the parameter a valid pointer?

• How much data should be transferred to/from the target?

To determine whether the IOCTL parameter is a valid pointer, we use a heuristic. For each
unrestricted IOCTL call, our system retrieves the PID (process ID) of the program that currently
accesses the character device. For that PID it retrieves all mapped memory regions from the OS
kernel (i.e. through /proc/PID/maps) and filters out any regions that are not suitable for a
buffer (i.e. memory regions that are not read- and writable at the same time). If the parameter
value is in one of the remaining memory regions, PROSPECT assumes that the parameter is a
pointer and a data transfer with the target is initiated.
The question remains how much memory should be transferred to and from the target system.
During our experiments we observed that the amount of data exchanged with unrestricted IOCTLs
was below the page size (typically 4096 bytes on Linux) in all cases. To allow exceptions with
larger buffer sizes, we experimentally limited the maximum size to 3∗PAGESIZE = 12KiB.
However, PROSPECT can be easily reconfigured with increased limits. Besides the configured
limit, the amount of memory that is actually transferred, can be limited through the mapped
memory region boundaries as well.
During execution, for any unrestricted IOCTL call with a valid pointer as parameter, PROSPECT
takes the following steps:

135

1. Given the pointer address ADDR and the PID of the calling process, use the kernel driver
to read up to 3∗PAGESIZE bytes from the mapped memory region of the corresponding
userspace process.

2. Transfer the buffer to the PROSPECT server on the target system and execute the unre-
stricted IOCTL call on a local copy of the transferred buffer.

3. Once ioctl() returns, compare the transferred buffer with the potentially modified local
copy of the buffer to determine how many bytes were changed in the local copy.

4. In addition to the ioctl() return and errno values, send back the content of the local
copy buffer to the corresponding client. The size of the transfer is limited through the last
byte in the buffer that has actually changed (see Step 3).

5. Given the pointer address ADDR and the PID of the calling process, use the kernel driver
to overwrite the corresponding memory region of the userspace process (i.e. starting at
ADDR) with the content of the response buffer.

6. Return the ioctl() return and errno values to the calling process.

Through dynamic memory tunneling, PROSPECT can forward unrestricted IOCTLs with arbitrary
read, write and execute operations.

6.5 Evaluation

To provide a well-founded discussion of our system, we evaluated PROSPECT in two ways. First,
we collected system call timing information to determine the performance impact PROSPECT
causes in comparison with the native system. Second, we conducted a case study over more than
6 months by running a full-scale security audit of a widely used commercial fire alarm system in
the building automation domain.

Evaluation of Performance Impact

On a 324 MHz embedded Linux MIPS system with 16MiB RAM, we used the strace tool to
collect timing information for the system calls that are used for basic character device access (see
Table 6.3 in Section 6.3 for details). Table 6.4 shows the userspace system calls we monitored.
To collect timing information, we ran a userspace application that makes heavy use of all of the
system calls in Table 6.4. In order to determine how much longer the forwarded system calls take,
we ran the application with PROSPECT in our analysis environment (qemu-system-mips) as well
as natively on the embedded MIPS system. For both executions we used strace to create system
call logs with timing information. For our measurements we collected timing information for
196, 075 system calls on the analysis environment and for 166, 972 system calls on the embedded
MIPS system. To compare the execution time of the system calls, we created custom analysis
scripts to keep track of the file descriptors. This way, we were able to consider only timing
information for calls made on character devices that are forwarded when PROSPECT is used.
The results are visible in Table 6.5 in Section 6.6.

136

Operation Function
close() Close device
ioctl() I/O Control mechanism
lseek() Seek to a given position
_newselect() System call used for poll()
open() Open device
read() Read data from device
write() Write data to device

Table 6.4: System Calls used for Character Device Access

Figure 6.5: Proprietary Fire Alarm System

Case Study: Security Audit of a Proprietary Fire Alarm System

Under a legally binding non-disclosure agreement, we were able to employ PROSPECT to
conduct a full-scale security audit of a widely used fire alarm system over a time frame of more
than 6 months. A schematic overview of the overall fire alarm system is visible in Figure 6.5. On
the lower side of the picture there is the fire alarm system that has a field level bus with a number
of sensors (such as smoke detectors) and actuators (such as alarm lights or sirens) attached to it.
Typically, there is one fire alarm system in a building and the sensors/actuators are situated in the
rooms or on the outside of each building. Each fire alarm system is connected over a network
connection (i.e. via TCP/IP) to one central building management server that is responsible for
all fire alarm systems in multiple buildings. Thus, the server can manage the fire alarm systems
and necessary steps can be taken in case there is a fire alarm. From the security perspective,
the TCP/IP connection between the fire alarm systems and the building management server is

137

Figure 6.6: Security Analysis Environment

interesting. After all, if an attacker could get access to the fire alarm systems over the building
network or even the Internet, it might be possible to trigger false alarms or to disable fire alarms
which would lead to a dangerous situation for the persons in the building.
On a technical level, the fire alarm system we analyzed is a customized embedded Linux system
with custom drivers, custom peripheral hardware components and several proprietary userspace
programs that make up the overall fire alarm system implementation. The userspace programs
make heavy use of multi-threading (pthreads) and the fork mechanism. In the running state,
there is a total of 29 multi-threaded fire-alarm system specific processes, spawning multiple
threads depending on the handled networking communication. In total, there are 5 different
hardware peripherals that are accessed concurrently by the different processes and threads. As
soon as the whole system is up and running, any network communication is processed. The
system resources are very limited and the fire alarm implementation consumes nearly all available
resources.
Due to the resource constraints, it is not possible to run a debugger on the system. Thus, dynamic
analysis on the device is not possible either and the code that handles the network communication
cannot be analyzed in another environment, as the device specific peripheral hardware would be
missing there. As a result, the software application(s) would not start up in the first place. In this
case, the analyst would be limited to static analysis and/or very basic security testing techniques.
To conduct a security audit of the fire alarm system implementation that handles the network
communication, we employed PROSPECT to run the fire alarm system software implementation
inside a virtual analysis environment. In this case, we utilized qemu, an open source virtualization
environment that also supports the MIPS architecture. The center of Figure 6.6 shows the
multi threaded userspace application with all connected installations for a complete analysis.
It concurrently interacts with 5 different peripheral devices which are handled by multiple
PROSPECT client instances, each handling exactly one character device. For automated fuzz
testing of the network protocol implementation, we set up three different machines. On the left,
there is the Fire Alarm Control VM that runs the manufacturer’s software to communicate with
the fire alarm system over a network connection. We used this machine to generate network traffic
and capture it (Packet Capture) to obtain packets that can be used as input data for our fuzzer.
Accordingly, the fuzzer can generate randomized traffic that looks very similar to the original

138

Syscall Native [%] Native [ms] Fwd. [%] Fwd. [ms] Diff. [ms] Slowdown [x]
write() 21.27 6.07 22.79 25.39 19.32 3.18
lseek() 28.14 0.12 18.88 2.31 2.2 18.65
ioctl() 1.6 0.89 4.27 117.15 116.26 130.37
_newselect() 14.8 43.27 17.14 40.85 -2.41 -0.06
read() 34.16 1.03 36.9 3.29 2.26 2.19
close() 0.01 0.1 0.0 N/A N/A N/A
poll() 0.0 N/A 0.0 N/A N/A N/A
open() 0.02 0.9 0.02 684.62 683.72 757.37

Table 6.5: PROSPECT Slowdown

communication protocol by taking packets from the captured network traffic, randomizing a
single byte at a random position within the packet each test run and replaying the communication
towards the userspace application under test. This allows us to use a single fuzzer implementation
for a broad range of proprietary network protocols without the need to know protocol specifics
or the requirement to develop a new fuzzer for each protocol. The downside of this approach
is the limitation of the test cases to the captured network communication: If feasible protocol
states are not captured during the capture phase, our fuzzer will not be able to test them. At the
same time, we used a debug server to run the userspace applications we want to analyze. Through
the Debugger VM (with a state-of-the-art debugger), the fuzzer can thus monitor the state of the
software application and whether the test packets it sent, caused an exception such as a memory
access violation. In this case, the fuzzer stores the network packets that led to the exception for
later (manual) analysis.

6.6 Results and Discussion

Performance Impact

Table 6.5 shows the average performance impact of our system (Section 6.5). The values
are arithmetic means over all recorded system calls. More specifically, the average number
of read() accesses is the average of all read accesses from 166, 972 native and 196, 075
forwarded system calls, respectively. It clearly shows that for system calls that can be forwarded
without further consideration (i.e. lseek(), read(), write() and _newselect()), the
slowdown is practically insignificant as the main use of PROSPECT is program debugging
(i.e. single stepping) and dynamic code analysis. Our results show that with PROSPECT the
_newselect() call was slightly faster than on the native system. This is due to the nature of
the system call. It blocks as long as either the given timeout is reached or one of the monitored
file descriptors is ready. As this is closely related to the behavior of peripheral hardware (e.g.
sleep modes), small variances in the recorded values are unavoidable.
In contrast, the ioctl() and open() calls cause a significant slowdown. The ioctl()
slowdown is caused by the dynamic memory tunneling mechanism described in Section 6.4
whereas the open() slowdown is due to the connection establishment between the PROSPECT
client and server. On the virtual analysis environment, we were unable to capture close() calls

139

on virtual character devices which is why we can not provide a performance comparison. However,
as close() also works on an existing PROSPECT connection and no special considerations are
necessary for the call, we believe that the performance impact is comparable to the lseek(),
read(), write() and _newselect() calls. Furthermore, Table 6.5 also lists the frequency
of each specific system call. It shows that the most frequently used calls are also the fastest.
For instance, write(), read(), seek() and _newselect() account for 95,71% of all
forwarded system calls. The distribution between system calls for native and forwarded execution
slightly varied between analysis runs due to the internal state of the peripheral hardware.

Proprietary Fire Alarm System Security Audit

During our fire alarm security analysis (Section 6.5), we conducted extensive fuzz testing with
the setup shown in Figure 6.6. During analysis, PROSPECT successfully forwarded more than
500, 000 system calls per analysis run to the target system without issues. Likewise, we were able
to manually debug and single-step through the fire alarm application code. Our fuzz tests revealed
a previously unknown zero-day vulnerability that was reported to the manufacturer. Our case
study shows that even under demanding real-life requirements (29 multi-threaded processes that
concurrently access 5 different hardware peripherals), our system performed well and enabled us
to conduct both dynamic analysis and extensive fuzz testing to discover vulnerabilities.

6.7 Limitations and Future Work

Due to the nature of PROSPECT, it has a number of limitations that need to be considered. At the
moment, our system uses TCP/IP over a network connection between the virtual analysis system
and the embedded target system. However, if the userspace application under analysis changes
the network configuration, this would also bring down the PROSPECT connection. Similarly, if
the target system has no network interface, PROSPECT can not be used. We plan to add support
for different communication interfaces (such as serial links) to PROSPECT so that it is usable in
these cases as well. Another limitation is that PROSPECT requires pthreads on the target system
and only runs on Linux right now. Another limitation is the missing mmap support for character
devices due to the missing support in FUSE. Since mmap calls can be forwarded just the same
(i.e. by using a similar approach as described in Section 6.4), we plan to implement full mmap
support in future versions.
As PROSPECT requires only very little supported functionality on the target system and FUSE
has been ported to a number of operating systems (Section 6.3), our system could be easily ported
to different architectures and operating systems as well. At least for some implementations, the
considerable slowdown caused by PROSPECT might lead to issues. However, this situation also
occurs when single-stepping through programs and solutions, such as altering the information
returned by timing related system calls, exist. Also, our system does not provide any security
features at the moment.
Another consideration was briefly discussed in Section 6.3. When accessing devices on UNIX
systems, their access rights are determined by the device’s permissions. The client implementation
needs to create virtual character devices and therefore requires root privileges.

140

In contrast, the PROSPECT server can be run as any user on the target system. It is however
recommended to run it as root, simply to ensure that all devices are accessible. Through
PROSPECT, the investigated process inherits the device access permissions from the server. As a
result, it could be possible for an investigated process to access devices even though that would
not be possible under normal circumstances. This property is not necessarily a limitation per se,
as it constitutes an additional possibility to influence system behavior during analysis.
With regard to the high slowdown for unrestricted ioctl() calls, our implementation still
provides room for improvement. For instance in future implementations, instead of querying the
/proc file system, we could implement a more efficient mechanism to minimize execution time.

6.8 Conclusion

PROSPECT turned out to be a valuable tool that enabled us to conduct a full-scale dynamic
security analysis of a widely used fire alarm system. Without PROSPECT, dynamic analysis
would have been infeasible due to the limitations of the fire alarm embedded system. We believe
that PROSPECT’s approach has a high practical impact. It allows to overcome the limitations of
static analysis that are common for embedded vulnerability discovery. The general concept is
applicable to a wide range of embedded systems, including smart phones or field level SCADA
components.

6.9 Acknowledgements

The research leading to these results has received funding from the Austrian Research Promotion
Agency (FFG) under grants 836276 (SG2), 834005 (Fire-IP) and the European Union Seventh
Framework Programme under grant agreement n. 257007 (SysSec). We would like to thank the
anonymous reviewers for their helpful feedback and improvement suggestions. We would like to
thank Trustworks KG for providing valuable insights and tools that made this research possible.

141

CHAPTER 7
Embedded Security Testing with

Peripheral Device Caching and
Runtime Program State

Approximation

The widespread use of embedded systems in security critical environments calls for better security
testing techniques. However, testing embedded system firmware in its native environment imposes
severe restrictions. Embedded systems can often be interfaced over debugging interfaces such
as JTAG (Joint Test Action Group) or serial communication, but they typically only provide
very basic debugging functionalities insufficient for more powerful security analysis techniques
based on dynamic instrumentation. A possible solution to these problems is to create a VM
(Virtual Machine) that emulates the entire embedded system. Since only the most common
hardware is emulated by existing emulators, such as QEMU, real world embedded devices
may require implementing additional peripheral device emulators. Yet, extending a VM with
peripheral devices can not only be too time consuming for a resource constrained embedded
security audit, but the information on the internals of these peripherals might not be available in
the first place. Ultimately, this renders the emulation based approach infeasible in many cases.
Previous work [56, 134] showed how peripheral devices can be transparently connected to a VM.
This allows the embedded system firmware to run inside an emulator as if it were running on the
original hardware with the peripheral devices directly attached. The extracted system firmware
can thus be inspected outside its original system environment. The drawback of the peripheral
device forwarding approach is the typically significant slowdown of device communication and
the lack of possibilities to parallelize slow analysis runs or to leverage snapshots in presence of
external peripheral device states. Since typical security testing techniques such as fuzz testing are
highly repetitive in nature, in this work, we evaluate an approach utilizing caching of peripheral
device communication in combination with runtime program state approximation. Our approach

143

could ultimately render existing dynamic firmware security analysis techniques more powerful
by enabling functions such as snapshotting, test parallelization or testing without physical access
to the embedded system. We show that the challenge is not the caching itself but the sufficiently
accurate approximation of the embedded program state to decide which peripheral device response
in the cache needs to be returned to the firmware under test. We address this problem with runtime
program state approximation and show that, similar to symbolic execution, the approach suffers
from state explosion. Specifically, the contributions presented in this paper are as follows:

• We present a peripheral device caching approach for embedded security testing.

• We present a state variable detection heuristic allowing runtime program state approxima-
tion as key to peripheral device communication caching.

• We evaluate the feasibility of our approach with programs from the GNU core utilities
and show that it might be usable to address persistent drawbacks in embedded firmware
security analysis in the future.

The remainder of this paper is organized as follows. Section 7.1 provides an overview of related
work. In Section 7.2, we explain how peripheral devices are typically accessed from within an
embedded operating system and describe why these devices are a challenge for current embedded
system security testing methods. In Section 7.3, we present our peripheral caching approach
leveraging runtime program state approximation which is described in Section 7.4. The results of
our feasibility study are presented in Section 7.5. The conclusions and suggestions on further
work can be found in Section 7.6.

7.1 State-of-the-Art and Related Work

In previous work, at least two different peripheral device forwarding approaches have been
implemented. In [134], Zaddach et al. presented the Avatar framework allowing existing tools
such as the QEMU emulator or symbolic execution tools to be connected to embedded target
systems. Based on memory mappings, their system can forward peripheral device access from
the emulator to the corresponding memory region of the peripheral device on the target embedded
system. Similarly, Kammerstetter et al. presented the PROSPECT framework [56], an operating
system centric approach that forwards peripheral device accesses from within the kernel in the
VM to a stub on the embedded target device via a network connection. In addition to peripheral
device communication forwarding, Koscher et al. presented SURROGATES [67], a system
that uses Field Programmable Gate Arrays (FPGAs) to speed up the connection between the
forwarding system (i.e., Avatar or PROSPECT) and the embedded hardware itself. In contrast,
our work does not focus on the peripheral device forwarding techniques themselves, but instead
adds a peripheral device communication caching layer in between the VM and the target device.
We thus aim to simplify embedded security testing by enabling powerful mechanisms such as
snapshotting, parallelization or testing without the analysis environment being connected to the
real embedded system. The concept underlying our caching heuristic is related to the problem of
program slicing where our peripheral caching system identifies states of the program slice that

144

deal with peripheral hardware access. In general, program slicing typically focuses on source
code and has been broadly covered by Weiser et al. [124], Korel et al. [66], Frank Tip [110]
and Binkley et al. [8]. More recently, Kiss et al. [61] and Cifuentes et al. [21] also covered the
problem of slicing binary executables. Considering the work on binary slicing, our cache heuristic
is loosely related as the cache needs to identify states in a program slice based on the runtime
environment of the process. We thus aim at identifying individual states in a program slice of the
running process without extracting the whole program slice.

7.2 Peripheral Device Access

By leveraging peripheral device forwarding, medium to large scale embedded systems can be
analyzed for security vulnerabilities. Within this work, we exemplary focus on embedded systems
that utilize Linux on a MIPS architecture such as routers or Cyber Physical System (CPS)
components. These systems are typically composed of a System-on-Chip (SoC) containing a
processor, ROM, SRAM and I/O Controllers. The I/O Controllers are used to connect the SoC
to external components such as DRAM, flash memory or peripheral devices (see Figure 7.1).
Depending on the embedded system use cases, connected external peripheral devices are often
customly designed by system manufacturers and can range from simple sensors and actuators to
complex modules such as communication interfaces or security modules.

Figure 7.1: Typical Embedded System Hardware.

Challenges in Embedded System Security Testing

The security of embedded systems can be tested in several ways. The manufacturer of an
embedded system typically has very detailed information about all components within the system
and can thus resort to techniques such as whitebox security auditing and source code security
analysis. Embedded systems often provide JTAG or serial console access allowing developers
to access the running system. Depending on the specific implementation, these interfaces can
provide a varying range of device access ranging from simple status readout to full dynamic
system analysis. If the embedded system does not already provide tools for dynamic system
analysis, the tester may be able to install necessary tools via an exposed debugging interface.
However, embedded systems are typically resource constrained and tailored to a specific task.

145

Without the resources to run additional software like debuggers on the system, dynamic analysis
on the device itself is often infeasible. In addition, the operating system kernel may be tailored
to the specific use case of the system with debugging or system analysis features stripped to
reduce hardware requirements and thus production costs. Whenever dynamic security analysis on
the embedded system is not feasible, analysts typically aim at extracting the firmware from the
device for further investigation. This can either involve static analysis techniques on the firmware
with its well known limitations [71], as well as dynamic analysis approaches utilizing debugging
interfaces such as JTAG or VM emulation. At this point, the challenge arises that embedded
systems typically make extensive use of peripheral devices that are typically not available from
within the VM. The analyst thus needs to resort to peripheral device forwarding frameworks such
as Avatar or PROSPECT that have limitations on their own. Specifically, forwarding peripheral
device communication is typically impeded by a significant slowdown and a lack of possibilities to
parallelize slow analysis runs as each testing instance would require its own connected embedded
target system.

Communication with Peripheral Devices

On UNIX systems such as Linux, peripheral devices are accessible via system calls that are
handled by the kernel which in turn uses device specific hardware drivers for the actual device
communication (Figure 7.2). In our test environment, the peripheral devices are represented
as character devices. Depending on which commands the device driver supports, a user space
program with the right permissions can thus access these devices with system calls such as open,
read, write or close. To enable dynamic analysis on an otherwise resource constrained
system, we utilize the PROSPECT framework [56]. The Linux kernel and all encompassing
software running on the system are extracted from the embedded system and moved into an
emulator such as QEMU.

Figure 7.2: Typical Embedded System Software Stack.

To allow programs in the VM to communicate with the peripheral devices in a way similar
to the original embedded system, PROSPECT replaces the embedded system software on the
original hardware with a server stub that forwards all device communication over a network
connection to the peripheral devices. We thus tunnel all device communication from the VM to
the peripheral devices via a network connection such as TCP/IP over Ethernet. This allows us
to run the embedded system software inside the analysis environment and thus enables the use

146

Figure 7.3: Embedded System Testing Utilizing PROSPECT with an Intermediate Cache.

of resource intense analysis techniques. Although the analysis environment typically provides
significantly more system resources such as file system space, CPU speed or RAM, previous
research showed that due to the peripheral device forwarding [56] most device communication
will be significantly slowed down. Besides, another drawback is that each VM will require a
dedicated set of embedded system hardware.

7.3 Caching Peripheral Device Communication

Considering security testing techniques such as fuzz testing, tests are typically highly repetitive
and focused on very specific (i.e., security critical) code regions in the firmware. Triggered by
each of those very similar test cases, the firmware of the embedded system performs the very same
communication actions with its peripheral devices over and over again. For instance, consider a
Real Time Clock (RTC) peripheral device that would be queried by the embedded firmware each
time a network packet is received. Although the security analyst might only target the network
packet handling code in the firmware with the fuzz tester, the peripheral device communication
to the RTC would still need to be carried out as otherwise the firmware would stop to function
and could not be tested. As long as the values returned from the RTC allow the firmware to
continue its normal execution, it is not necessary that the returned values are actually correct.
Although two subsequently read timestamps should represent an amount of time that has passed
between the successive reads, the functionality of the firmware during the focused fuzz tests will
in most cases not be impeded by the fact that the time itself is not correct. By adding a peripheral
device communication cache between the analysis environment and the embedded system, the
repetitive device communication actions could be stored so that during the highly similar test
cases valid device responses can be served from the cache. Ultimately, this would enable very
powerful supporting technologies such as snapshotting, parallel testing or even testing without
the embedded system attached.

147

Caching Strategies

In the first step, we implemented a cache between the PROSPECT driver and its stub on the
target device (Figure 7.3). For each peripheral device interaction, the cache receives the following
information:

• Process Id (PID) and Thread Group Id (TGID)

• Name of the peripheral device

• Command type and command data

When the cache receives a command, it has to decide between two options:

1. Cache hit - An appropriate device response is already in the cache. The cached response is
returned to the program without querying the actual device.

2. Cache miss - The cache has not stored a suitable device response. In this case, the cache
first needs to bring the hardware into the state it would normally be before this request.
This is done by resetting the hardware and replaying all communication that the requesting
program performed until this point. The approach can thus forward the new command to
the peripheral device, store the new reply and forward it to the VM. This means that the
cache needs to retain information not just about the commands and their replies, but also
about the previous command history for each VM.

The main challenge is to find a strategy that can be applied to decide whether for a specific
firmware program state a valid peripheral device response is already in the cache. We explored
several strategies and describe them in the following:

Choosing Responses by Command

Very simple devices may be cached by command. To do so, the device must either be stateless, or
the device’s state must be deducible from the command. For example, if the device is a simple
switch that is only controlled by an open and close command, the cache does not need any
information other than the command itself to react accordingly. For instance, whenever the cache
receives a control request to turn on the switch it could just return the cached response confirming
that the switch has been turned on. However, as soon as a single control command can return
different responses this approach is no longer applicable. An example where this approach would
not work is the above mentioned RTC module which would return a different timestamp value
for every read command.

148

Choosing Responses by Command and Command History

An improved strategy is to store information about the previously issued commands to a peripheral
device. Based on the command history, the cache can decide if a suitable device response is
already in the cache or not. A simplified deterministic example could be a program that reads
from a peripheral device representing an incrementing counter with an initial reset. After reset, the
program would read continuously increasing counter values (i.e., 1, 2, 3, etc.) on each execution.
The read command itself may look the same, but depending on which and how many commands
were issued to the peripheral device before, the replies to each command need to be different
for every call. If the cache can learn a sufficient amount of requests and replies from the first
training execution, it can replay the answers every subsequent time the program is executed. The
problem with this strategy is that even if the behavior of the peripheral device is deterministic, it
becomes insufficient as soon as multiple threads access the same device. In this case, the thread
scheduler will cause a different execution order of threads for the same input and the behavior
from the perspective of the cache will no longer be deterministic. Since the cache would need to
consider all possible thread execution orders to respond to future requests, the strategy quickly
becomes ineffective with an increasing amount of program indeterminism. Listing 7.1 shows an
example where two threads cause the mentioned problem by accessing a temperature sensor and
a communication interface at the same time.

1 def Thread1():
2 while(True):
3 temp = readTemperature()
4 if (temp > max):
5 sendMessage("High temperature")
6 sleep(0.1)
7
8 def Thread2():
9 while(True):

10 statusMsg = getStatusMessage()
11 statusMsg += readTemperature()
12 sendMessage(status)
13 sleep(2)

Listing 7.1: Threading Example with Read-Loop.

Choosing Responses by Program State Approximation

A more advanced strategy is to find a heuristic to identify abstract program states reflecting
the current position within the program flow. When program execution is started, the program
typically makes use of resources such as the CPU or stack memory. We could thus derive a set
of relevant CPU registers (i.e., the instruction register, the stack pointer, the general purpose
registers) and use this information to determine in which state the program currently resides in.
Whenever a peripheral device is accessed (e.g., with a read system call), we use the program
state to determine whether there is already a known peripheral device response in the cache. If this
is not the case, we forward the peripheral device communication from the analysis environment
to the real system and cache the response for later use. However, considering typical program
constructs such as a loop reading a temperature value (Listing 7.1), it is very likely that the

149

Figure 7.4: State Approximation Heuristic.

CPU registers will be identical within the readTemperature() function at the call site of
the read system call for different loop iterations. It is thus necessary to include the program
stack into the state computation so that the state of the outer function will be considered as
well. However taking the stack memory into account, determining the program states gets much
more challenging as it is no longer clear which memory regions are relevant with regard to
the peripheral device communication. If the state approximation granularity is too low, many
irrelevant memory regions will influence the program state approximation and different program
states will be derived for the same peripheral device communication action (state duplication).
As a result, most of the device accesses would be cache misses. In contrast, if the granularity is
too high, we would get wrong cache hits and the program would receive invalid peripheral device
responses. In the following, we present the runtime program state approximation approach we
took and the results we were able to obtain with it.

7.4 Runtime Program State Approximation

On an Operating System (OS), the program state can be determined through its allocated memory
(i.e., stack and heap), the CPU registers and handles received from the OS kernel (e.g., file
handles). However, especially considering binary executables where the source code is not
available, determining which variables need to be considered during the determination of the
program state is considered to be a hard problem related to program slicing [21, 61]. Since it
would not be feasible to deterministically detect exact program states, we implemented a heuristic
(Figure 7.4) that attempts to approximate sufficiently exact program states to use them for our
caching approach.

System Call Interception and Kernel/VM Hooking

In the first two steps of the heuristic (Figure 7.4), we need to intercept the systems calls used for
peripheral device communication. For each intercepted system call, we need to decide whether
the system call is utilized for communication with a device that is forwarded through PROSPECT.
Furthermore, for runtime program state approximation we need to have access to the internals
of the OS kernel and the program accessing the device as well. This includes the state of the
virtual memory at the time of a call, the CPU registers and open file handles. We implemented
and practically tested the following methods to obtain the required low-level information.

150

Virtual Machine Introspection (VMI)

The first method was implemented by extending QEMU with a Virtual Machine Introspection
(VMI) module. VMI has the advantage that any low-level state information from the machine
including physical memory or otherwise hard to access kernel internals can not only be accessed
and read, but can be modified just the same. An additional advantage is that any introspection
logic runs directly on the host machine and not inside the VM, leading to significantly higher
performance. Although the VMI approach is very powerful, our VMI module implementation
uncovered two major drawbacks. First, due to the low level VMI operates on, important functions
inside the kernel such as those providing paging information and memory mapping need to be
reimplemented. Even worse, important offsets to internal kernel structures can be configuration
dependent requiring frequent adaptations of the VMI analysis code. Second, to reliably hook
system calls, Translation Block Chaining (TBC) needs to be disabled. TBC is an optimization
technique the QEMU emulator uses to drastically speed up emulation. Translation blocks are
basic blocks of code from the guest system that are translated to the host system architecture.
With TBC, these blocks are chained together and cached so that they do not have to be translated
again each time the process counter arrives at that specific address. However, due to the caching,
the program addresses within these cached blocks are no longer processed by QEMU’s TBC
lookup logic which ultimately causes our hooks on those addresses to no longer get executed.
Disabling the TBC optimization allows reliable VMI hooking but at the same time significantly
slows down the emulator.

Kernel Module

The second state approximation method was implemented as a loadable Linux kernel module
running within the QEMU guest system. Since PROSPECT already performs system call hooking
from within the kernel, we extended it with functions to read registers and mapped virtual memory
regions of the calling process. Compared to the VMI approach, using a kernel module simplifies
access to swapped out pages and kernel structures.

File Handles

Each time an open system call is used to return a new file handle, the value of the file handle
is determined by the operating system kernel. Since the returned file handles frequently differ
between executions, we use a file descriptor tracking mechanism. The mechanism places a hook
on the open and close system calls. It can thus track the currently active file descriptors and
remove them from the stack region of interest by overwriting the descriptors with zero bytes.

Registers

The register content has a central role in our program state variable detection heuristic. While
the most important register to be utilized in this case is the instruction pointer, we found that the
subset of registers leading to the best results also included the return address, the stack pointer
and several general purpose registers.

151

Hash Computation and State-ID Matching

In the last two steps of the heuristic (Figure 7.4), we compute the SHA-256 digest and use it for
cache lookup. The digest is computed on the concatenated stack region of interest and the register
set. Using the previously described state variable detection heuristic, we ensure that hash digest
results in a granularity that is suitable for cache lookups. The cache lookup is implemented as a
large dictionary where the SHA-256 hash value is used as index to a device response data field of
arbitrary size.

7.5 Results

Our feasibility study shows that our approach works for less complex programs but suffers
from the well known state explosion problem for more complex programs. The low complexity
programs we tested required less information from stack and registers to correctly determine
the program state. However, with growing program complexity, it becomes more challenging to
accurately determine a unique state suitable for cache lookups resulting in state duplication and
cache misses. Since the number of these duplicates rises exponentially with increasing program
complexity, similar to symbolic execution, the approach leads to the state explosion problem.
In that regard, the MIPS architecture turned out to be especially challenging due to its standard
calling convention and the resulting difficulty of stack frame unwinding. To test our approach,
we used programs from the GNU core utilities and treated their file system accesses as peripheral
device accesses with our caching approach in between. We tested 3 program classes:

1. Low Complexity Programs:
For very simple programs such as cat, head, sum and wc, our caching approach hardly
depends on stack frame information, no heap information is required and only a small subset
of the registers is sufficient to correctly determine the program states for peripheral caching.
Within a single execution the cache could thus already learn all necessary responses and
use them correctly. At that point we were able to completely remove the program’s input
files and still obtain the identical program flow with our caching approach.

2. Medium Complexity Programs:
Medium complexity programs such as expand rely on dynamic heap memory manage-
ment. As a result, some of the relevant program states for device access may depend on
the information stored at those memory regions. Using peripheral caching for programs
like expand, the lack of information on heap content led to duplicate states. These could
be compensated for by utilizing several training executions until the cache had learned
all possible states including duplicates. It also required minor manual adaptations of the
considered stack parameters within the heuristic. We believe that this problem can be
addressed in future work and the heuristic could be greatly improved by adding proper
stack unwinding. Monitoring the heap state would be an advantage, but is not mandatory.
Without proper stack unwinding and manual adaptations, medium complexity programs
currently present the limit of our approach.

152

3. Higher Complexity Programs
Higher complexity programs such as sort not only heavily rely on dynamic heap memory
management, but they also store a large amount of relevant state information on the heap.
The problem and its possible solution are thus similar to medium complexity programs, but
in comparison the number of duplicate states is much higher and can no longer be handled
through manual adaptations. We believe that with stack unwinding and dynamic memory
allocation monitoring the problem can be improved, but higher complexity programs will
remain challenging.

7.6 Conclusion and Future Work

Our feasibility study showed that the presented peripheral caching concept could be an approach
for some of the major drawbacks in embedded firmware security analysis. When applying
typical embedded security testing techniques such as fuzz testing, sufficiently precise caching
of peripheral device communication could thus enable powerful features such as snapshotting
or test parallelization. After sufficient cache training the firmware can even be tested without
requiring physical access to the embedded system. We showed that the problem is related to
program slicing and may lead, similar to symbolic execution, to the well known state explosion
problem. We created a VMI-based as well as a kernel-module based implementation and tested
the feasibility of our approach with programs from the well known GNU core utilities package.
Our results show that the peripheral caching approach works for low and medium complexity
programs. However, depending on the architecture and the difficulty of stack frame unwinding,
the program state approximation can become increasingly difficult. In future work, we’re looking
forward to port our approach to embedded architectures such as ARM allowing more precise
stack unwinding. We believe that this will further increase the precision of the program state
approximation so that more complex programs can be addressed with our approach as well.
Furthermore, we aim to implement a kernel module/VMI hybrid implementation to benefit from
the speed improvements of running the program state approximation heuristic outside the VM
while still utilizing the OS kernel insight provided through a kernel module.

7.7 Acknowledgements

The research was funded by the Austrian Research Funding Agency’s (FFG) KIRAS security
research program through the (SG)2 project under national FFG grant number 836276, the
AnyPLACE project under EU H2020 grant number 646580, and IT security consulting company
Trustworks KG.

153

CHAPTER 8
Efficient High-Speed WPA2 Brute

Force Attacks using Scalable Low-Cost
FPGA Clustering

Security in wireless Wi-Fi networks has come a long way. In comparison to wired network
infrastructures, attackers are able to easily access Wi-Fi networks if they are in the vicinity.
To protect Wi-Fi networks and the data being transfered over them, from the very beginning
cryptographic protection mechanisms providing properties such as confidentiality, integrity or
authenticity have been specified in the Wi-Fi IEEE 802.11 standard documents [46]. At the
time WEP (Wired Equivalent Privacy) quickly turned out to be insecure allowing key recovery
within minutes [9, 109], manufacturers started to implement several non-standard fixes such as
WEP2 or WEPplus [68]. Ultimately, a switch-over to WPA (Wi-Fi Protected Access) employing
the RC4-based TKIP (Temporal Key Integrity Protocol) as interim solution and to the longterm
solution WPA2, in particular, has been suggested in the IEEE 802.11 standard documents [46].
Since 2012, WPA has been officially deprecated in the IEEE 802.11 standard and suffers from
security vulnerabilities on its own [116]. In contrast, WPA2 is FIPS 140-2 compliant [114], much
stronger and widely used to protect today’s Wi-Fi infrastructures. The WPA2-Personal variant
is designed for smaller networks and uses a pre-shared key (i.e., a Wi-Fi password) to derive
the necessary key material for authentication, encryption and integrity protection. The Wi-Fi
password needs to be at least 8 characters long and the key material is mainly derived through the
state-of-the-art salted key derivation function PBKDF2 (Password-Based Key Derivation Function
2) [49] in combination with the SHA1 hashing algorithm [22] in HMAC configuration [23]. As a
result, the security of a WPA2-Personal protected Wi-Fi network heavily relies on the quality
of the password. Due to the computational complexity of the key derivation function and the
use of the Wi-Fi’s SSID as cryptographic salt, brute force attacks are very hard to conduct in the
presence of random passwords with increasing length. Incurring significant costs well outside of
what amateurs can afford, professional attackers can turn to commercial high-end FPGA-based

155

cluster solutions achieving WPA-2 password guessing speeds of 1 million guesses per second
and more [89].
In this paper, we focus on the WPA2-Personal key derivation function and low-cost FPGA cluster
based attacks that are not only affordable by professionals but by amateurs as well. Especially
considering second-hand FPGA boards that have been used for cryptocurrency mining, those
boards are now available to amateurs at low cost and can be repurposed to mount attacks on
cryptographic systems. In the first part, we use a top-down approach to present WPA2-Personal
security at a high level and we subsequently break it down to low-level SHA1 computations in
high detail. In the second part, we use a bottom-up approach to show how these computations
can be especially well addressed in hardware with FPGAs and we present how our solution can
be integrated into a scalable low-cost system to conduct WPA-2 Personal brute force attacks. We
evaluate our system with respect to performance and power usage, we compare it to results we
obtained from GPUs and we conduct a real-world security evaluation case study showing the
practical security impact of our system. Specifically, the contributions presented in this paper are
as follows:

• We present a highly optimized design and architecture of a scalable and fully pipelined
FPGA implementation for efficient WPA2 brute force attacks that brings the performance
of today’s highly expensive professional systems to the low-cost FPGA boards affordable
by amateurs.

• Our implementation on Kintex-7 devices indicates that on the same hardware, our imple-
mentation is more than 5 times as fast in comparison to what is currently marketed to be
world’s fastest FPGA-based WPA2 password recovery system [32, 89].

• We implemented and evaluated our approach on three different low-cost FPGA architectures
including an actual FPGA cluster comprising 36 Spartan 6 LX150T devices [129] located
on a total of 9 second-hand repurposed cryptocurrency mining boards.

• We evaluate our system with respect to the power consumption and performance in compar-
ison to GPU clusters, showing that FPGAs can achieve comparable or higher performance
with considerably less power and space requirements, allowing attackers to create small
and easy to use clusters.

• To highlight the practical real-world implications, we used the Wigle WiFi network dataset
[126] to conduct a case study involving more than 166, 988 distinct Wi-Fi networks in 7
countries with potentially weak default passwords. Our results indicate that our system
could be used to break into each of those networks requiring 3 days per network on our
low-cost FPGA cluster in the worst case.

8.1 State-of-the-Art and Related Work

Since WPA2 is commonly used, there are several publications and projects dealing with WPA2
security and brute force attacks in particular. However, most of them rather focus on GPU
brute force approaches and do not cover special purpose FPGA hardware, especially considering

156

low-cost FPGA hardware that is available to amateurs as well. For instance in [106], Visan covers
typical CPU and GPU accelerated password recovery approaches with state-of-the-art tools like
aircrack-ng1 or Pyrit2. He considers a time-memory tradeoff usable for frequent Wi-Fi SSIDs
and provides a performance overview of common GPUs and GPU cluster configurations. In
that respect, oclHashcat3 and the commercial Wireless Security Auditor software4 need to be
mentioned as well which are both password recovery frameworks with GPU acceleration and
WPA2 support. Unlike these GPU-based approaches, our system comprises of a highly optimized
and scalable FPGA implementation allowing higher performance at lower costs and power
consumption in comparison. In [48], Johnson et al. present an FPGA architecture for the recovery
of WPA and WPA2 keys. Although WPA support is mentioned, their implementation seems to
support WPA2 only which is comparable to our system. However, while our implementation
features multiple fully pipelined and heavily optimized cores for maximum performance, Johnson
et al. only present a straight-forward sequential design leading to a significantly less performance
in comparison. In [40], Güneysu et al. present the RIVYERA and COPACOBANA high-
performance FPGA cluster systems for cryptanalysis. They provide details on exhaustive key
search attacks for cryptographic algorithms such as DES, Hitag2 or Keeloq and have a larger
cluster configuration than we had available for our tests. Yet, in contrast to our work, they do not
cover WPA2 or exhaustive key search attacks on WPA2 in their work. As a result, it would be
highly interesting to evaluate our FPGA implementation on their machines. Finally, Elcomsoft’s
commercial Distributed Password Recovery5 software needs to be mentioned due to its support
for WPA2 key recovery attacks on FPGA clusters [32, 89] and its claim to be world’s fastest
FPGA-based password cracking solution [31]. Although there is practically no publicly available
information on the internals of their WPA2 implementation, in [89] performance data are provided.
In contrast to their work, we do not only disclose our design, architecture and optimizations of
our FPGA implementation, but we also claim that on the same professional FPGA hardware our
implementation would be more than 5 times as fast. In comparison to the professional system, our
system can achieve similar speeds on the low-cost repurposed cryptocurrently mining hardware
that is available to many amateurs.

8.2 WPA2-Personal Handshake

Whenever a Wi-Fi client (Station) would like to connect to an Access Point, there are 802.11
management frames involved [46]. For instance in non-hidden Wi-Fi networks, the Access Point
typically transmits beacon frames to advertise the network. In order to connect, a Station sends
a probe request to determine network capabilities such as supported rates or vendor specific
information. After that, in WPA2-Personal protected networks, Station and Access Point mutually
authenticate against each other with the 4-way handshake depicted in Fig. 8.1.

1http://www.aircrack-ng.org
2https://code.google.com/p/pyrit
3http://hashcat.net/oclhashcat
4https://www.elcomsoft.com/ewsa.html
5https://www.elcomsoft.com/edpr.html

157

http://www.aircrack-ng.org
https://code.google.com/p/pyrit
http://hashcat.net/oclhashcat
https://www.elcomsoft.com/ewsa.html
https://www.elcomsoft.com/edpr.html

Figure 8.1: WPA2-Personal 4-Way Handshake

To start the mutual authentication process, the Access Point generates a 32 byte random ANonce
and sends it to the Station. Similarly, the Station generates a 32 byte random SNonce and uses
both nonces as well as the secret password to derive the PMK (Pairwise Master Key) and the
Pairwise Transient Key (PTK) with the help of the WPA2-Personal key derivation functions
described in the following Section 8.2. The nonces ensure that the handshake cannot by replayed
by an attacker at a later time. Afterwards, the Station sends the SNonce back to the Access Point
and utilizes the PTK truncated to the first 128 bits (denoted Key Confirmation Key - KCK) to
compute a Message Integrity Code (MIC) over the packet data. At this point, the Access Point
can already compare the received MIC with the computed one to validate that the Station is
authentic and has knowledge of the secret password. In order to prove to the Station that the
Access Point knows the secret password as well, the Station sends a message including ANonce
and the corresponding MIC code. Since the Station can only compute the correct MIC code if it
knows the necessary PTK, the Access Point can use this information for authentication. If the
authentication was successful, the Station completes the handshake by sending a usually empty,
but signed (MIC) message back to the Access Point. The Station can now associate to the Access
Point and take part in the Wi-Fi network.

Key Derivation

In order to compute the PTK and its truncated variant (denoted the KCK) required to compute the
MIC integrity code for provided packet data, the key derivation algorithm visible in Fig. 8.2 is
utilized in WPA2-Personal. It uses the pre-shared secret key (i.e., the Wi-Fi network passphrase)
and provided network information such as the SSID (i.e., the Wi-Fi network name), nonces and

158

the MAC addresses as inputs. To achieve a high level of security, at least two factors need to be
considered in the key derivation. First, the key derivation algorithm needs to be collision resistant
and computationally expensive. Collision resistant denotes the property that it is hard to find
two different inputs that result in the same hash output when the hash function is applied. If
the hash function is also computationally expensive, it will take an attacker longer to compute
hash outputs thereby slowing down the number of guesses he can make per second. The longer
and more complex the Wi-Fi password is, the more possible password combinations exist and
the more hash computations the attacker needs to make to find the correct password. Second,
the key derivation algorithm needs to be cryptographically salted so that, depending on the salt,
different keys are generated for the same password. The general idea of salting is to add a
random value to the message before the hash function is applied while the salt value is stored
for later use. As a result, the same password will lead to different hash outputs since the salt
value is different. Without the use of a salt, attackers could pre-compute lookup-tables for all
possible passwords and corresponding hashes. While the size requirements of this table would
grow tremendously with increasing password lengths, a practical time/memory tradeoff can be
achieved with a pre-computed rainbow table [83]. The general idea of a rainbow table is to only
store a small part of the possible hash value and password combinations. This is achieved by
choosing a random password candidate as starting point and applying the hash function on it.
However, instead of storing the hash value, the key idea is to define a reduction function that uses
the hash value as input to create another valid password candidate. This process is continued
to create entire chains where each chain ends either if the given length has been achieved or a
password candidate has been created that is already a starting point for one of the already created
chains. Since only the starting point and endpoint password candidates are stored, the storage
requirements can be lowered. Once all possible chains have been pre-computed, the attacker can
start to look up the password for a given hash value by computing the reduction function and
locating the resulting password candidate in the stored endpoints of the chains in the rainbow
table. As not all password candidates are stored in the table, it might very well be the case that
the candidate can not be found. The attacker thus computes the hash output for the password
candidate and applies the reduction function on the corresponding output to get another password
candidate. This computationally expensive step is repeated until the password candidate is found
among the endpoint password candidates of the chains in the table. Once found, the attacker
takes the starting point password candidate and recomputes the intermediary values in the chain.
At some point the computation will result in the hash value the attacker is looking for. The
password will be the previously computed input value prior to this hashing step or the starting
point password candidate itself (if it is the first hash value). Prior to computing a rainbow table,
an attacker can thus freely choose the time/memory tradeoff between the required lookup time
and the required storage space for the table. For more information, we would like to point to
Martin Hellman’s original paper [83].

To mitigate these threats, WPA2-Personal relies on the salted PBKDF2 [49] key derivation
function. In the following, we describe the key derivation process in detail and closely focus on
the required computational effort due to its impact on FPGA implementations and the achievable
password guessing speed.

159

PBKDF2SSID

Passphrase

PMK

PRF-128
Amac, ANonce
Smac, SNonce

KCK

MIC

HMAC-SHA1Packet Data

Figure 8.2: WPA2-Personal Key Derivation Function

Breaking it down to SHA1 Computations

Internally, the PBKDF2 key derivation function employed in WPA2-Personal utilizes 4, 096
iterations of the well known HMAC construction with the SHA1 cryptographic hash algorithm at
its core to obtain 160 bit hash outputs (Fig. 8.3). Since the WPA2 Pairwise Master Key PMK needs
to be 256 bits long, two PBKDF2 rounds are necessary. Their output is concatenated, but from
the second iteration the output is truncated to 96 bits to achieve a 256 bit result. In both PBKDF2
iterations the secret password is used as key while the SSID of the Wi-Fi network concatenated
with a 32 bit counter value serves as input. In the first iteration, the counter value is one while
in the second iteration it is two. Consequently within both PBKDF2 iterations, there are 8, 192
HMAC-SHA1 iterations required to compute the PMK from the secret password and the network’s
SSID. With regard to the HMAC internals, Fig. 8.3 shows that a number of SHA1 iterations are
necessary to obtain the MAC (Message Authentication Code). In general to compute the SHA1
hash digest of a message, the first SHA1 iteration is computed by using the initial SHA1 state
and hashing the first part of the message. Depending on the length of the message, additional
iterations might be necessary whereupon the previous SHA1 state output is used as state input for
the next iteration. Once the full message has been hashed, SHA1 finalization needs to be applied
by appending a ’1’ bit and the length of the message to the message itself and filling up the rest of
the 512 bit SHA1 input block with ’0’ padding bytes. For WPA2-Personal key derivation, in the
first PBKDF2 round the xor-transformation is applied on the password and the inner pad ipad.
The result is a 512 bit block serving as input to the SHA1 hash function in initial state. The output
is the HMAC inner state. Since the SSID may be no longer than 32 bytes, the hashing of the
SSID and the 32 bit PBKDF2 round counter can be done together with the SHA1 finalization so
that only one SHA1 iteration is necessary.
In the next step, the outer HMAC state is computed by hashing the xor of the password and the

160

Figure 8.3: PBKDF2 core with SHA1 rounds in HMAC construction

outer pad opad. Afterwards, the previously finalized 160 bit digest is hashed and finalized with
the outer state. At this point the MAC is ready. The second PBKDF2 iteration is computed in
the same way with the difference that the round counter value is set to two instead of one. Since
the password does not change during PBKDF2 iterations, the inner and outer HMAC states stay
the same allowing us to use cached states instead of having to compute the states again. With
that optimization in mind, it is required to compute at least 2 + 4, 096 ∗ 2 SHA1 iterations for
the first PBKDF2 round and 4, 096 ∗ 2 SHA1 iterations for the second round (i.e., 16, 386 SHA1
iterations in total) to obtain the PMK. This computational effort, the use of the SSID as salt for key
derivation and the security of the innermost SHA1 cryptographic hash function are three of the
main reasons why WPA2-Personal key derivation is considered to be very strong against typical
exhaustive key search attacks.
Once the PMK is available, the KCK is derived by applying a 128 bit Pseudo Random Function
(PRF). Internally, it just uses HMAC-SHA1 again with the PMK as key. The hashed message is
made up of the string “Pairwise key expansion”, a terminating zero byte, an arithmetically sorted
tuple of the Access Point and Station addresses as well as another sorted tuple of their nonces
(i.e., ANonce and SNonce) including a finalizing zero byte. The PTK is the resulting MAC and
it is truncated to the first 128 bits to obtain the KCK. If the PMK is available, the computation
of the KCK takes 5 SHA1 iterations as due to the length of the PMK the finalization of the inner
HMAC state can not be combined with the hashing of the PMK.
Whenever Access Point or Station would like to compute a MIC, they can do so by utilizing
HMAC-SHA1 on the message with KCK as key. The result of the computation truncated to the
first 128 bits is the MIC. The computational effort depends on the length of the message. However,
considering the messages from the 4-way WPA2-Personal handshake, a total of 5 SHA1 iterations
is required to compute the MIC since, similar to the KCK computation, the finalization of the
inner HMAC state requires one additional iteration.

SHA1 Internals

Due to the high number of required SHA1 computations, it is essential to increase their speed
as much as possible. To compute a SHA1 hash, a number of computational steps is necessary.
Due to the high impact on our FPGA implementation, we provide a detailed overview of SHA1

161

internals. SHA1 [113] works on 512 bit chunks and produces a 160 bit hash digest when finished.
If the message length is less than 512 bit, padding bits are used. For SHA1 finalization, a ’1’
bit, the padding bits (if necessary) and a 64 bit length field are appended. SHA1 has 80 internal
rounds (denoted t) and requires a separate message working schedule Wt as well as a constant
Kt for each of them. In the pre-processing step, the message working schedule Wt is computed
as follows:

Wt =

{
Mt 0 ≤ t ≤ 15
rol(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1) 16 ≤ t ≤ 79

The schedule W0 . . .W15 is the message broken up into 16 words with 32 bit length each. For
the remaining 64 words, message expansion is used by applying the xor-operation on previous
schedules and rotating the result one time to the left. The constants Kt for the rounds comprise
of a set of 4 words:

Kt =


5a827999 0 ≤ t ≤ 19
6ed9eba1 20 ≤ t ≤ 39
8f1bbcdc 40 ≤ t ≤ 59
ca62c1d6 60 ≤ t ≤ 79

After precomputation, the 80 SHA1 rounds are performed. Each round is based on the com-
pression round visible in Fig. 8.4 and works on five 32 bit words denoted A to E where rol
n denotes a rotate left by n operation and the � operator denotes an unsigned 32 bit addition.
In the initial iteration, a constant initialization vector H0 to H4 is used as input for A to E. The
difference between the rounds is the function ft defined as follows:

ft =


(x ∧ y)⊕ (¬x ∧ z) 0 ≤ t ≤ 19
x⊕ y ⊕ z 20 ≤ t ≤ 39
(x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) 40 ≤ t ≤ 59
x⊕ y ⊕ z 60 ≤ t ≤ 79

After each round, the resulting words A to E are fed back as input to the next round. Once all
80 rounds have been computed, the resulting words are added to the initialization vector H0 to
H4 and the concatenated result is the resulting hash digest. Subsequent SHA1 computations are
computed in the same way except that instead of the initialization vector the hash digest from the
previous block is used.

Attacking the 4-Way Handshake

If an attacker would like to determine the secret WPA2-Personal password, a 4-way WPA2-
Personal handshake between a Station and the Access Point needs to be obtained first. This
can either be done passively or with the help of an active de-authentication attack where the
attacker spoofs the source address of the Access Point and sends de-authentication frames to

162

Figure 8.4: SHA1 Compression Round

the Station. Since those frames are not authenticated, the Station will falsely believe that the de-
authentication request came from the genuine Access Point and will follow the request. However
at a later time, it will re-authentication and thus give the attacker the opportunity to intercept
the handshake. As soon as the attacker has the handshake, passwords can be guessed offline
by deriving the key material for the PMK and the KCK and computing the MIC for one of the
observed packets in the handshake. If the observed MIC is the same as the computed MIC for a
password candidate, the attacker has found the correct secret password for the network. However,
since a WPA2-Personal password needs to have a minimum length of 8 characters and for each
password candidate a total of at least 16, 386+ 5+ 5 = 16, 396 SHA1 iterations are necessary to
compute the corresponding MIC over a handshake packet, exhaustive password guessing attacks
are considered to be increasingly infeasible with higher password complexity and length. In the
subsequent chapters, we show that the high computational effort can be addressed with special
purpose FPGA hardware so that a high number of real-world WPA2-Personal protected networks
with random passwords can be broken into within days.

8.3 FPGA Implementation

Implementing an algorithm on FPGAs is significantly different from software implementations.
The FPGA comprises of different building blocks such as RAM or configurable logic blocks
containing LUTs (Look Up Tables), Flip-Flops, dedicated arithmetic logic or shift registers.
Initially, the inputs and outputs of all these building blocks are unconnected. During FPGA
configuration, a bit-stream is uploaded to the configuration memory of the FPGA that subsequently
sets up the interconnections using switch boxes.
Assuming at least some familiarity with the FPGA design, in the first step the designer utilizes
a hardware description language (HDL) such as VHDL to describe the design. Based on the
design, a synthesis tool creates a netlist that transfers the design to a set of interconnected high-
level logic components. The netlist can thus be seen as a high-level schematic comprising the
information which components are interconnected to each other through signals. In the next step,
the components in the netlist are mapped to the building blocks of the specific targeted FPGA
device such as LUTs, dedicated shift registers or memories. Afterwards, similar to the work

163

that needs to be done when designing a printed circuit board from a schematic, the components
within the implementation need to be placed within the FPGA and the interconnects between
those blocks need to be routed. The mapping, placing and routing steps are especially critical as
often millions of interconnects need to be made and the signal run time for each of them needs
to stay within specification. If only one signal requires a longer time from one register to the
next one, the maximum clock frequency of the whole FPGA implementation will decrease to
the clock frequency supported by the slowest path (i.e., the critical path). On the other hand the
placement of the components is of paramount importance as well. If two components are placed
non ideally and too far apart, their interconnects need not only be routed across a large area, but
the time it takes for a signal to be transferred will also increase significantly thereby lowering
the maximum clock speed of the entire implementation. Creating and especially optimizing
high-speed FPGA implementations is thus highly challenging as apart from the logic design
physical constraints such as the mapping, the signal routing or the electrical loads of signals need
to be addressed as well. Since for large designs these steps often require multiple hours of design
tool run time, performing optimizations can be hard as each design adaptation often requires
another full design tool run. Only after the entire design flow has completed, the designer can
get an impression whether the optimization was beneficial or not. However, the advantage is
that depending on the requirements of an algorithm such as memory usage or the number of
logic cells, it is often possible to achieve tremendous speedups, high scalability and lower power
usage by efficiently using the resources of the FPGA and carefully optimizing the outcomes
of the design steps from netlist generation to the final generation of the FPGA bit stream file.
Considering the SHA1 internals described in Section 8.2, the algorithm is especially well suited
for FPGA implementation due to the following reasons:

1. The algorithm has practically no memory requirements.

2. The rotate and shift operations utilized in SHA1 can be realized through FPGA intercon-
nects with minimal time delay

3. Algebraic logic functions (xor, and, or, not, etc.) require minimal effort and can efficiently
utilize the FPGAs LUTs

The most expensive operation are SHA1’s additions due to the long carry chain between the
adders. To implement the algorithm, a surrounding state machine is required to control which
inputs should be supplied to the logic in different rounds. Considering that SHA1 has 80 rounds
and we would like to achieve maximum performance, there are two design options: Either the
SHA1 algorithm is implemented sequentially or in a fully pipelined way.
The advantage of a sequential implementation is that the FPGA can be completely filled up
with relatively small SHA1 cores. However, the disadvantage is that each of those cores would
require its own state machine which takes up a significant amount of space. In comparison, a
fully pipelined implementation does not require an internal state machine as each of the SHA1
rounds is implemented in its own logic block. While this is a significant advantage enabling
parallel processing, the drawback is that a fully pipelined implementation has much higher space
and routing requirements. When using multiple cores (each containing a full pipeline), only an

164

integer number of cores can be placed so that a significant amount of unused space might be
left on the FPGA. In our implementation, we also experimented with filling up this space with
sequential cores but refrained from it due to the negative effect on the overall design complexity
and the lower achievable clock speeds.
Due to the typically higher performance that can be achieved through pipelining and the property
that we get one full SHA1 computation output per clock cycle per core, we targeted a heavily
optimized and fully-pipelined approach. However, while pipelining alone has a considerable
performance impact in comparison to a sequential approach, the key of obtaining maximum
design performance are the optimizations.

FPGA Design
In

iti
at

e

S
ta

ge

S
ta

ge

B
uf

fe
r

A
dd

80VRounds

FIFO

SHA-1VPipeline

WPA2VPasswordVVerifier

StateVMachine

P
as

sw
or

dV
G

en
er

a
to

r

Figure 8.5: FPGA Design Overview

Our overall FPGA design is illustrated in Fig. 8.5 and has the following components: A shared
password generator, a global brute force search state machine and an FPGA device specific
number of brute force cores, each comprising a WPA2-Personal state machine with password
verifier and a SHA1 pipeline.

Password Generator

The password generator (Fig. 8.6) is realized as a fast counter. Whenever the FPGA is idle,
it can accept a new working block comprising of all necessary data including the actual start
password (start_password) and how many passwords (n) should be tested. Initially starting
at the start password, whenever the password generator is enabled (enable) it will output a new
password (current_password) and the current password number (count) in each clock
cycle. In case no more passwords can be fed into the brute force cores, the generator can be
paused at any time by disabling the enable input. Ultimately, it will output new passwords until

165

n passwords have been reached and assert the done signal to indicate that all passwords within
the current working block have been generated.

Figure 8.6: Password Generator Block

During the optimizations of our cryptographic cores in the design, at some point the long carry
chain in the password counter became the clock speed limiting critical path. We were able to
address the issue by parallelizing the counter and implementing the password carry with static
multiplexers outside the sequential logic block. The sequential logic block can be seen as typical
register transfer logic (RTL). With the clock signal, the old counter value is fetched from the
source register, increased and finally output to the destination register. The path in between
accounts for the delay. Since we need to have a carry overflow at the last valid password character
(e.g., ’Z’) we need a set of multiplexers that eventually reset the characters at each position of the
password string. However, if this multiplexer based reset logic is within the sequential path it will
also increase the time delay. By statically implementing the reset logic outside this sequential
path we were able to balance the overall worst-case delays and achieved a password counter
implementation that no longer accounted for the critical path in our overall design. Another
password generator optimization approach we considered is utilizing multiple clock domains.
The general idea is that the overall design naturally spends most of its time computing SHA1
iterations. At that time the password generator is disabled. We could thus use a less critical slower
clock to generate the passwords and output them to clock synchronizing FIFO buffers directly
placed next to the input of the SHA1 pipelines. As soon as a SHA1 pipeline requires a new
password input, it can utilize its fast clock to drain the FIFO buffer which would in turn enable
the password generator to refill the corresponding buffer at its slower clock. The advantages of
this approach would be the following: First, the complexity of the password generator design
can be further increased without negatively impacting the critical path. However second, the
big advantage is the routing of the bus signals from the password generator to all the cores.
Considering that the password generator is located at the center of the design and the passwords
need to be distributed across the entire FPGA to all brute force cores, there is a significant impact
on the time-driven routing complexity and the interconnect delays that negatively impact the
maximum clock speed of the overall design. By leveraging a slower clock, the passwords would
be already located in the FIFO buffers next to the SHA1 pipelines of each core but they could
still be read with the fast clock the SHA1 pipelines are operating on. However, since with our
previously mentioned password generator optimization the critical path was no longer within the

166

password generator domain, we did not implemented the approach. It will be covered in future
work.

Global Brute Force State Machine

The task of the global brute force state machine is to constantly supply all brute force cores
with new password candidates and check whether one of them found the correct password. Due
to the insignificant speed impact and the advantage of lower design complexity we chose an
iterative approach. Since our SHA1 pipeline comprises of 83 stages, we can concurrently test 83
passwords per brute force core. With our iterative approach, we enable the password generator
and consecutively fill all brute force cores with passwords. Once all cores have been filled, the
password generator is paused and we iteratively wait until all cores have completed. At that point,
the password filling process is restarted. If a core finds the correct password or the password
generator has reached the last password, the state machine jumps into the idle state and can
accept the next working block. The penalty for this iterative approach is 83 clock cycles per core
since once a brute force core has completed, we could immediately fill it with a new password.
However, in comparison to the long run time of each core the impact is insignificant.

WPA2-Personal State Machine with Password Verifier

Each brute force core has a WPA-2 Personal state machine with a password verifier. It is the
most complex state machine in the overall design. Its task is to compute the MIC code for each
password candidate with the help of the SHA1 pipeline in its center. Each computed MIC is
compared with the MIC from the WPA2-Personal 4-way handshake to determine whether the
password candidate was correct or not. Figure 8.7 shows all necessary states and state transitions.

Figure 8.7: WPA2-Personal FPGA States

The state machine is divided into three WPA2-Personal key derivation phases: PMK computation
(1), PTK computation (2), and MIC computation (3). The computation of the PMK has the
highest computation effort due to the 2 PBKDF2 rounds with 4, 096 iterations requiring 16, 386
SHA1 iterations in total. Initially, 83 password candidates and the network’s SSID are fed
into the SHA1 pipeline to compute the corresponding HMAC outer and inner states (OState

167

and IState). Since these states do not change over the PBKDF2 iterations, the HMAC state
computation needs to be done only once. In the first PBKDF2 round, the SSID and the PBKDF2
round counter (1) are used as salt. After that, there are 4, 095 more iterations in which the digest
output is used as input. At that point, the second PBKDF2 round is computed by first computing
the salt with an increased round counter value (2) and subsequently performing 4, 095 iterations
to obtain the PMK.

SHA1 Pipeline

In each brute force core, the SHA1 pipeline occupies a large amount of space due to the high
number of pipeline stages. While SHA1 has 80 rounds and a fully pipelined implementation
would thus have an equal number of pipeline stages, we heavily optimized our pipeline to allow
higher clock frequencies and consequently achieve more performance. The SHA1 pipeline is the
key limiting factor of how fast our password guessing attacks can be conducted. Within the brute
force cores, each of our SHA1 pipelines has 83 stages due to the optimizations we performed.
Each core can thus compute 83 password candidates in parallel. The optimization approaches we
applied are described in the following:
The first stage of the SHA1 pipeline is a buffer stage so that the delays of the different input logic
blocks within the WPA-2 Personal state machine are not added to the pipeline’s input logic and
thereby does not increase the overall time delay of the critical path. The second stage denoted
’Initiate’ is an optimization of the 4 required (expensive) additions in the E word of each SHA1
round. Instead of having all 4 additions in one stage, the structure of the SHA1 algorithm allows
to pre-compute the output of the f function. The addition of the E word with the output of f
and the key Kt enabled us to split up the required 4 sequential additions into two rounds with 2
additions, thereby significantly improving the maximum clock speed. Since the expansion steps
for the message working schedule Wt require only a small amount of logic, another optimization
is to do multiple message expansion steps in a single pipeline stage so that it is not needed in
the following few stages. As a result, the source data is not accessed in each stage and shift
register inference is boosted causing lower flip-flop fan-out as well as less power usage and
lower area requirements. Another approach we took is the pipeline stage denoted ’Add’ after
the SHA1 rounds. After the last SHA1 round, the resulting digest is added either to the constant
initialization vector H0 (first iteration) or to the previous digest for subsequent iterations. Due
to these expensive additions, the design performance can be improved if they are carried out in
a separate pipeline stage. Instead of forwarding the initial digest through all stages to the final
addition stage, we leverage a FIFO-based delay line utilizing the FPGAs Block-RAM resources.
This avoids excessive interconnect routing through all stages and thus makes the design smaller,
reduces the number of critical paths and allows us to achieve higher clock frequencies more
easily.

Additional FPGA Design Optimizations

In the WPA2-Personal state machine, we directly use the output from the password generator
and compute the HMAC OState state first. At the same time, we store the password candidates
in a Block-RAM buffer for later IState computation. After that, we no longer work with the

168

passwords but use password offsets instead. The result is a lower design density as no more
additional interconnects are required for the password in later stages. A similar approach is used
to avoid excessive interconnects and design density. Instead of having large buses, we either use
Block-RAMs directly or form RAM-based delay lines to keep the IState and OState states
as well as the computed PMKs and PTKs in memory. Instead of one large WPA2-Personal state
multiplexer directly controlling all SHA1 pipeline inputs and outputs, we make use of several
smaller and less complex multiplexers. Once again, this reduces overall design complexity and
allows us to achieve higher clock speeds more easily. The top-level design needs to communicate
with the outside world. Each time a new working block is added, all necessary Wi-Fi and
WPA2-Personal data needs to be transferred and subsequently forwarded to all brute force cores.
The result is a very broad bus spreading all over the FPGA design and causing severe design
congestion. Since in our design only the password candidates and the SSID are required early
within the WPA2-Personal state machine, we transfer the rest of the data over a small 16 bit bus
leveraging inferred shift registers. This significantly reduces the complexity of the interconnects
between the shared global state machine and the brute force cores across the FPGA. To lower the
amount of input and output data exchanged with the outside world, we use a minimized Wi-Fi and
WPA2-Personal data set that only includes the variable data fields from the captured handshake.
All other data is not only fixed within the FPGA, but also kept locally in the cores. In addition,
the FPGA does not output the correct password, but a numeric offset from the start password
instead.
To avoid design congestion and to push the design to the highest clock speed possible, we make
use of custom parameters within the Xilinx design tools for synthesis, mapping and routing such
as the minimum inferred shift register size, register balancing or the number of cost tables. In
addition, we use floor planning to support the mapper, placer and router in achieving higher clock
rates. Floor planning is important to place critical components requiring a fast interconnect in
between next to each other. In general, we were able to obtain the highest speed improvements
by utilizing a star like topography: The password generator is distributed over the very center of
the FPGA and the brute force cores are surrounding it. In addition we also used floor planning to
avoid the placement of time critical components in FPGA areas that are hard to reach through
interconnects. Especially considering the low cost Xilinx Spartan-6 and Artix-7 FPGA devices,
we could identify major regions that can not be used to place components or interconnects.
Consequently, we carefully placed critical components like the SHA1 pipelines in a way that
those regions do not negatively impact the routing delay. In our FPGA implementations, we use a
slow clock for communication with the outside world and a fast clock for computation at the same
time. In our Spartan-6 implementation, the speed of the fast clock can be adjusted dynamically
during runtime by programming the clock multiplier. In contrast, our Artix-7 implementation
includes an automatic clock scaling mechanism to adjust the fast clock frequency with the device
core temperature. Both approaches allow the FPGA design to run at high speeds without the
danger of overheating.

169

Overall System Design

We implemented and practically evaluated our system on older model Xilinx Spartan-6 as well as
on newer model Xilinx Artix-7 FPGAs. The Spartan-6 FPGAs are located on low-cost repurposed
cryptocurrency mining boards. For comparison purposes, we created a full implementation for
the more expensive Xilinx Kintex-7 XC7K410T FPGA as well, but could not practically test it
since we did not have one of these FPGAs at hand. The overall system design for the Spartan-6
FPGAs is visible in Fig. 8.8 and based on ZTEX [135] FPGA boards. The Artix-7 design is
similar but has only one XC7A200T FPGA on the board.

µ
C
o
n
t
r
o
l
l
e
r

E
Z
-
U
S
B
.
F
X
2 FPGA.1

XC6SLX150

FPGA.3
XC6SLX150

FPGA.2
XC6SLX150

FPGA.4
XC6SLX150

USB-FPGA.Module.1.15y

Host-PC

U
S
B
-
H
u
b

Figure 8.8: System Overview (Spartan 6 System)

The system comprises of a PC with a host software and several FPGA boards connected via the
USB 2.0 high-speed interface. Each FPGA board has a fast EZ-USB FX2 micro-controller with
custom firmware to interface with the FPGAs.
Our custom host software comprises ∼2k lines of Java code and utilizes the ZTEX SDK to allow
easy communication with the micro-controller and the FPGAs. The host software accepts a
configuration file that includes all necessary Wi-Fi and WPA-2 Personal handshake data. At
startup, it enumerates all connected FPGA boards, uploads the micro-controller firmware if
necessary and configures the FPGAs with our bit stream. The software makes use of several
threads. Apart from the main program, there is a thread to generate password working blocks
for the FPGAs and additional threads for each FPGA board. The password working blocks are
kept in a pool with constant size. The device threads can supply working blocks to FPGAs and
mark them as being processed. If an FPGA has finished a block, it is removed from the pool and
the generator automatically creates a new working block. If for some reason an FPGA fails, the
block sent to the FPGA is still in the pool and just needs to be unmarked so that the next free
FPGA can process it instead.
The micro-controller firmware comprises ∼1k lines of C code and is responsible for USB
communication with the host and communication with the FPGAs. Each FPGA has an 8 bit write
and an 8 bit read bus in addition to read and write clocks, a write start control signal as well

170

Figure 8.9: Ztex 1.15y Board (left), Ztex 2.16 Board (right)

as FPGA select signals and several programming signals to program the dynamic FPGA fast
clock and the bit stream. Whenever the host software selects an FPGA on a board, the micro-
controller asserts the corresponding select line in order to conduct subsequent bus communication
or programming actions.

8.4 Evaluation

We performed multiple evaluations with regard to our design performance, the power usage and
performance in comparison to GPUs as well as a Wi-Fi network security evaluation in the form
of a case study.

FPGA Performance and Power Evaluation

We evaluated the performance and the power usage of our design on multiple FPGAs and FPGA
boards. The first FPGA we targeted was an older model Spartan-6 XC6SLX150T-3 device. Four
of these FPGAs can be found on the Ztex 1.15y board visible on the left side of Figure 8.9.
The second FPGA we used for our evaluation was an Artix-7 XC7A200T-2 device on the Ztex
2.16 board visible on the right side of the picture. For both FPGAs, we created an optimized
implementation and a configuration bit stream that can be uploaded to the device. The main
difference between the bit streams is the FPGA type, the maximum clock frequency and most
importantly the number of brute force cores we were able to fit onto the device.
To evaluate the performance and the power requirements, we used the obtained timing and power
reports by utilizing the Xilinx timing and power analysis tools. In addition to these results, we
also conducted practical measurements on the FPGA boards. At first, we measured the idle
wattage of each unconfigured board at the power supply to determine the idle power usage. In the
next step, we used a generated WPA2-Personal handshake with our software to mount a brute
force attack on each of our FPGA boards. We used large password working packages resulting in
a 30 seconds runtime per FPGA to avoid I/O bottlenecks. By measuring the wattage again during
operation, we were able to determine the overall power consumption. To reduce the influence

171

of the power consumption caused by losses in the power supplies or components other than the
FPGA, we obtained the power consumption of our FPGA implementation through the difference
between the overall idle consumption and the consumption during operation. In Section 8.4, we
use the same method to determine the power consumption of GPUs to get results that can be
compared to the FPGA power consumption.
To obtain brute force performance measurements as well, we let each system run for at least 1
hour and computed the performance by measuring the number of password guesses during that
time. The result is the average number of password guesses per second.
In addition to these evaluations, we executed the implementation on our FPGA cluster with
36 Spartan-6 XC6SLX150T FPGAs located on 9 Ztex 1.15y FPGA boards. The cluster setup
allowed us to perform measurements on a larger setup and to determine how well our design
scales with an increasing number of FPGAs. The setup is visible in Fig. 8.10 whereat two of
those boards are not inside of the cluster as we use them for development purposes. During the
tests, they were connected externally to the cluster. Using the power and performance measuring
methodology from above, we obtained measurement results for the cluster as well.
To allow comparison with the commercial Elcomsoft WPA2-Personal FPGA cluster password
recovery system [32, 89], we created an implementation and a configuration bitstream for the
more expensive Kintex-7 XC7K410T-3 devices as well. However, since we did not have a board
with this type of Kintex-7 FPGA, we can provide the Xilinx development tool’s timing and power
analysis results only.

GPU Comparison

To measure performance and power requirements of GPUs, we utilized cudaHashcat6 v1.36 to
mount brute force attacks on the same WPA2-Personal handshake we used previously to test our
FPGA implementations. We executed the tool on machines with different Nvidia GPUs (GeForce
GTX 750 Ti, GeForce GTX770 Windforce OC, GRID K520) and measured the performance in
passwords per second as well as the power consumption. We applied the same power measurement
methodology as during our FPGA evaluation. For the Amazon EC2 GPU cloud machines with
GRID K520 GPUs, we were unable to obtain power measurements. The specific machine
configurations and results are described in detail in Section 8.5.

Wi-Fi Security Evaluation - A Case Study

Driven by the high brute force speeds that can be achieved with FPGAs, we wanted to evaluate
whether there is a real-world security impact. While long random passwords with a significantly
large character set are practically infeasible to break within a reasonable time frame, the minimum
WPA2-Personal password length is only 8 characters [46]. If the character set is limited as well,
a random password can fall victim to brute force attacks within days or even hours if the brute
force speed is high enough. To our surprise, discussions within our group suggested that the
default WPA2-Personal passwords for many mobile Wi-Fi modems and even ISP provided
modems/routers not only have a limited character set such as uppercase letters only, but the length

6http://hashcat.net/oclhashcat

172

http://hashcat.net/oclhashcat

Figure 8.10: Spartan-6 XC6SLX150T Cluster

of the variable part of the password or the length of the password itself is also not more than 8
characters. Further investigation turned out that the largest ISP in our country uses weak default
passwords for many of its Wi-Fi cable modems with only 8 characters length and comprising
only uppercase letters. An example is provided in Fig. 8.11. The manual of the Wi-Fi enabled
cable modem further confirmed our finding [112].

Figure 8.11: Bottom Side of a Cable Modem

While users can change these settings, the default SSID is UPC<n> where n denotes a number
with either 6 or 7 digits. Under the assumption that most users also change the SSID of their
network to something easier to remember when changing their Wi-Fi password, any visible
UPC<n> Wi-Fi network would be an indication that the network is still using the weak default
password.

173

To evaluate the practical security impact of our implementation, we used the Wigle war driving
dataset [126] to get an approximation of how many of those likely to be insecure networks
exist and whether those networks are limited to our country. To do so, we created a rectangular
scanning grid across the country and queried the Wigle Web service [126]. Since the rectangular
scanning grid also included parts of neighboring countries as well, it allowed us to see whether
the same ISP is active in those countries and the potentially weak cable modems are used there as
well. The results of our case study are presented in Section 8.5.

8.5 Results and Discussion

In the following, we present the results of the performance and power evaluation of our FPGA
implementations, we present the obtained GPU WPA2-Personal brute force performance and
power measurements results and comparison as well as the outcome of the Wi-Fi security
evaluation case study.

FPGA Performance and Power Results

System FPGAs Type Cost Cores Tool W Tool MHz Meas. W Act. MHz calc pwd/s pwd/s pwd/s W
Ztex 1.15y 1 XC6SLX150T-3 175 2 4.281 187 6.99* 180 21,956 21,871 3,128*
Ztex 1.15y 4 XC6SLX150T-3 700 8 17.124 187 27.96 180 87,826 87,461 3,128
9x Ztex 1.15y 36 XC6SLX150T-3 2,400 72 154.116 187 254 180 790,436 741,200 2,918
Ztex 2.16 1 XC7A200T-2 213 8 10.458 180 11.04 180 87,826 87,737 7,947
N/A 1 XC7K410T-3 2,248 16 25.634 216 N/A N/A 210,783 N/A N/A
N/A 48 XC7K410T-3 107,904 768 1,230.432 216 N/A N/A 10,117,584 N/A N/A

Table 8.1: Performance and Power Results of our Implementations for different FPGA Devices
and Systems/Boards

The results for our FPGA performance and power evaluation are visible in Table 8.1. In the
System and FPGA column the table shows on which systems we conducted our tests and how
many FPGAs there are on the corresponding board and/or in the overall system. The FPGA
device types are visible in the Type column whereat the name before the hyphen is the Xilinx
device name and the number after the hyphen indicates the device speed grade (the higher
the better). The Cost column provides an approximate cost estimate per FPGA in US$ we
obtained by looking up the devices at common Xilinx distributors such as Digi-key7. However
while the cost for 9 new Ztex 1.15y would be appoximately 6, 300 US$, we considered our 9
second-hand Ztex 1.15y boards previously used for cryptocurrency mining instead. We were
able to obtain these boards for 2, 400 US$ which we believe is what amateurs could do as well,
depending on how much boards they would like to acquire and how much they are willing to
spend. The Cores column shows how many cores we were able to fit onto the device to achieve
maximum performance. While more cores per device generally increase the performance, it can
also cause the maximum clocking speed to drop significantly due to mapping, placement and
routing issues. The table presents the implementations allowing us to achieve the maximum

7http://www.digikey.com

174

http://www.digikey.com

performance per device. The Tool W and Tool MHz columns present the design tool’s power
and timing analysis results. For the Spartan-6 FPGAs, we used the Xilinx ISE Suite 14.7 whereas
for the newer 7-series devices Artix-7 and Kintex-7, we used Vivado Design Suite 2015.1. In
general, it appeared that the newer Vivado tools produced better results, but since it doesn’t
support older model 6-series devices, we were unable to use it for our Spartan-6 implementations.
The Meas. W and Act. MHz columns present the results for the power measurements we
conducted on the FPGA boards/systems and the actual clock speed we used to run the devices.
The calc pwd/s and pwd/s columns provide the WPA2-Personal performance in passwords
per second whereas the first one indicates the calculated and theoretic maximum performance of
our implementation whereas the latter one shows the actual measured average performance per
board and/or system. In the last column pwd/s W, we use our actual power and performance
measurements to determine how much brute force speed can be achieved per Watt which is
especially important when scaling up our implementation to larger FPGA cluster systems. In the
following, we discuss the results of our implementations on a per-device basis.

Spartan-6 Results

We used the Xilinx Spartan-6 XC6SLX150T-3 FPGA as the target for our initial implementation
due to the availability of a high-performance FPGA cluster with 36 of these devices at our lab.
The implementation on the Spartan-6 turned out to be especially challenging for multiple reasons.
We had to deal with long design tool runs (3 hours of more) each time we made modifications to
the design. Since the effects of many of our optimizations could not be tested through behavioral
simulations alone, the duration of the design tool runs significantly slowed down the development.
In addition, the internal switch boxes and types of slices in the Spartan-6 architecture are not well
suited for more complex and larger implementations in comparison to newer 7-series devices.
The result was that for many of our implementation attempts the device logic resources were
sufficient, but the implementation still turned out to be unroutable due to the number of required
interconnects. An important factor to achieve routable designs was our use of FPGA floor
planning.
In summary, we were able to generate two implementations for the XC6SLX150T-3. One with 3
cores and one with 2 cores. While the first one has an additional core in comparison, it resulted in
a much lower achievable clock speed (62.5 MHz) due to placing and routing issues effectively
reducing the performance to that of a single core at high speed (180 MHz). In contrast, our
optimized 2 core variant visible in Fig. 8.12 is able to run at up to 187 MHz leading to the highest
performance we were able to achieve on the device. The picture shows the ready-to-upload placed
and routed design. On the left and right the 2 brute force cores are clearly visible. In between the
password generator and the global state machine are located. Although the dark areas indicate
that there would be sufficient space for an additional core, our experiments showed that this
would lead to lower performance as explained above.
The first 3 rows in Table 8.1 present the results we obtained through this implementation. Due
to cooling requirements, we ran the design with a reduced clock speed of 180 MHz. Our
measurements indicate that in this configuration, our implementation requires a total of 27.96W
for all 4 FPGAs on the Ztex 1.15y board. The power measurements per Spartan-6 FPGA are
marked with an asterisk to indicate that we were unable to measure them directly, but rather

175

Figure 8.12: Placed and Routed XC6SLX150T

derived the measurement results from our power measurements for the entire Ztex 1.15y board
with its 4 FPGAs. Our results show that our approach scales well and can be easily run in a cluster
configuration producing a performance of 790, 436 password guesses per second on our cluster.
The difference between the calculated maximum performance and the measured performance is
mainly due to the I/O times between the PC, the microcontroller and the FPGAs. In addition, our
Spartan-6 implementation includes a dynamic frequency scaling mechanism slowing down the
FPGAs in case of device temperatures getting too high. With better cooling inside the cluster, we
believe that the gap between the theoretic performance and the measured performance could be
made smaller.

Artix-7 Results

In comparison to our Spartan-6 implementations, our implementations on the newer 7-series
Artix-7 XC7A200T-2 FPGA required less effort as we could not only start from our already
highly optimized Spartan-6 design, but the architecture and the newer Vivado design tool are
also better suited for larger designs with increasing design complexity. Since device internals
such as the clocks or PLLs are different from the Spartan-6 architecture, we had to adapt our
implementation accordingly. The ability to read the device’s core temperature from within the
FPGA implementation was especially interesting. It allowed us to implement frequency scaling
mechanisms directly on the FPGA not only preventing possible damage due to overheating,
but also ensuring that each device always runs at the maximum performance possible. While
we don’t have access to an Artix-7 FPGA cluster, this feature would be especially helpful for

176

Figure 8.13: Placed and Routed XC7A200T

high-performance cluster designs.
Our ready-to-upload placed and routed design is visible in Fig. 8.13. The black blocks on the
left and right are unusable areas. As routing around those areas makes it hard to meet timing
constraints, we utilized floor planning to provide approximate locations for all of the 8 cores we
managed to fit onto the device. All of the cores have a small path to the center where the small
block with the global state machine and the password generator are located. The implementation
can be run at up to 180 MHz to achieve a theoretic maximum of 87, 826 password guesses per
second.
We managed to create an implementation with 9 cores as well, but similar to our Spartan-6
implementations the overall performance would have dropped due to the lower maximum clock
frequency caused by placing and routing issues. With a measured performance of 87, 737
password guesses per second, our results show that a single XC7A200T-2 device achieves not
only more performance than 4 of the older model Spartan-6 XC6SLX150T-3 FPGAs altogether,
but it also requires just 11.04 Watt during operation.

Kintex-7 Results

In contrast to the low-cost Artix-7 FPGAs, Kintex-7 FPGAs are larger and allow higher perfor-
mance but are also significantly more expensive. Although we didn’t have any of those FPGAs at
hand, we created an implementation for the Kintex-7 XC7K410T FPGA for two reasons.
First, Elcomsoft’s marketed to be world’s fastest FPGA-based WPA2 password recovery system
relies on these FPGAs just the same and even provides performance figures for it [89]. Our target-

177

Figure 8.14: Placed and Routed XC7K410T

ing of the same FPGAs thus allows direct performance comparison between their implementation
and ours. Their document indicates that on the PicoComputing SC5/M505-48 cluster with 48
XC7K410T FPGAs their implementation is able to produce 1, 988, 360 passwords guesses per
second [89]. Assuming that their implementation targets WPA2 employing SHA1 instead of
WPA1 employing the much less complex MD5 algorithm, our implementation could achieve up
to 10, 117, 584 passwords per second on the same hardware and would thus be more than 5 times
as fast.
Second, we wanted to obtain performance data for larger FPGAs as well. Although expensive,
we believe that Kintex-7 FPGAs are well in the price range for professional attackers allowing
them to achieve significantly more brute force attack performance per FPGA in comparison to
low-cost FPGAs such as the Artix-7.
Our ready-to-upload placed and routed design is visible in Fig. 8.14. It comprises 16 cores
running at up to 216 MHz. Similar to our Artix-7 implementation, the password generator and
the global state machine are located in the center. However, due to the size and the thin layout
of those units, they are hardly visible in the picture. At the same time, the image also suggests
that with an increasing number of cores, the centralized state machine and password generator
becomes a bottleneck due to the long bus interconnects reaching to the outside cores. We believe
that this problem could be easily addressed by either using multiple shared state machines and
password generators or by including FIFOs for the password candidates in each of the brute force
cores. Due to the long runtime of each brute force core, the FIFO could be filled with a slow
clock that can be easily routed across long distances on the FPGA. At the same time, the brute
force cores would operate on the fast clock and drain the FIFOs. Due to their long run time, the

178

FIFOs could be easily re-filled through the slow clock before the next set of password candidates
would be required.

GPU Results and Comparison

Figure 8.15: Density of UPC<n> networks with potentially weak WPA2-Personal Passwords

System pwd/s W pwd/s W
GeForce GTX750 Ti 52,446 106 495
GeForce GTX770 OC 62,420 184 339
Amazon EC2 - GRID K520 30,370 N/A N/A
Amazon EC2 - GRID K520 x4 109,073 N/A N/A

Table 8.2: Performance and Power Results on GPUs

The results of our GPU evaluation (Section 8.4) are visible in Table 8.2. We performed the
performance measurements by running cudaHashcat v1.36 on different systems and measuring
the power consumption as the difference between idle and busy WPA2 computations to get
results independent from other components in the system. The table shows the different GPU
configurations (System) we used for our tests. The pwd/s column shows the performance
in passwords per second and the W column indicates the power consumed by the GPU during
runtime in Watt. The performance per Watt is visible in the pwd/s W column.
In addition to running GPU measurements on our own machines, we also conducted measurements
on dedicated Amazon Elastic Cloud (EC2) GPU machines as well. While we could measure
the performance on the machines just the same, we were unable to obtain power measurements.
Although using a high number of GPU cloud machines appears promising to achieve high brute
force attack performance, the limiting factor is the cost. Although our combined experiments
on the dedicated Amazon EC2 machines took no longer than an hour, the costs we accumulated
for our tests were already US$ 14.92. Since realistic brute force attacks might take considerably
longer, the costs for an attacker would be far lower for acquiring a powerful GPU system instead
of using the Amazon EC2 GPU nodes. In comparison to the results we obtained from our FPGA
implementation, it is visible that GPUs can achieve the performance of a state-of-the-art low-cost
FPGA (i.e., Artix-7), but their power consumption and performance per Watt is more than 10
times as high. At the same time, the performance achievable with a single larger FPGA such as

179

the Kintex-7 XC7K410T is no longer in the range of GPUs. Considering high-speed attacks with
clusters, we believe that the scalability for FPGA-based attacks is better as well due to the small
size of FPGAs, their lower power consumption and the high performance they can produce.

Wi-Fi Security Case Study

Area Networks
Vienna 120,380
Austria + Border region 166,988

Table 8.3: UPC Networks with likely weak WPA2-Personal Passwords

The results for our real-world security evaluation case study are visible in Table 8.3. Within the
city of Vienna, we found 120, 380 Wi-Fi networks with the SSID having the form UPC<n> in
the Wigle [126] dataset. We were astonished by the high density of these networks within the city
(Fig. 8.15 on the right), but assume that the real number of networks is even higher as not all
networks are covered in the Wigle dataset. In addition, we discovered that the security issue is
not only limited to the city of Vienna, but it is also persistent in the whole country and even in the
border regions to neighboring countries. The left picture of Fig. 8.15 provides an overview of the
network density. In total, we discovered 166, 988 of these networks within that area including
neighboring countries.
Due to weak default configuration (Section 8.4), our case study suggests that our FPGA cluster
implementation could be used to break into each of those networks in no more than 3 days
considering the rate of 790, 436 guesses per second and the small number of only 268 password
combinations for each vulnerable network. Running our implementation on the PicoComputing
SC5/M505-48 cluster [89] instead, the necessary worst-case time to break a network would be
further reduced down to 5.7 hours.
Due to the severe security implications and the high number of private networks involved, we
already reported the problem to the ISP and are currently in the process of reporting it to the
national CERT team as well.

8.6 Conclusion and Future Work

In this paper, we demonstrated that WPA2 passwords can be attacked at high speed rates not
only by expensive professional FPGA cluster solutions but similar speeds can be achieved by
amateurs on a budget as well, especially when considering second hand FPGA boards previously
used for cryptocurrently mining. We specifically targeted low-cost FPGA devices, conducted
implementations on 3 different FPGA architectures and evaluated our results with regard to
performance and power. Our GPU evaluation suggests that FPGAs can not only achieve higher
speeds at significantly less power, but they can also be used to easily create small and afforable
FPGA clusters in the reach of amateurs. We conducted a real-world security evaluation showing
that within the country and its border regions, there are more than 166, 000 Wi-Fi networks with

180

likely weak WPA2-Personal passwords that could be attacked through the implementation on our
FPGA cluster within no more than 3 days each. Considering commercially used FPGA cluster
systems, the time could be further reduced to no more than 5.7 hours depending on the cluster
configuration and device types. However, we believe that besides the speedup we achieved it
is more important to consider that the WPA2-Personal brute force performance achievable on
professional systems is now becoming feasible on the low-cost systems amateurs can afford as
well. We believe that these low-cost FPGA cluster based brute force attacks are thus a serious
threat to real-world systems and need to be especially considered by manufacturers when choosing
WPA2-Personal default passwords for hundred thousands of devices.
As counter measure, users need to increase the length of their passwords, the password should be
random and it should utilize a large character set to increase password entropy.
In future work, we are looking forward to evaluate the security of other cryptographic systems as
well. In that regard, we plan to design and implement a powerful low-cost FPGA cluster similar
to COPACOBANA [40] but with low-cost 7-series devices instead.

Acknowledgments

The research was funded by the Austrian Research Funding Agency’s (FFG) KIRAS security
research program through the (SG)2 project under national FFG grant number 836276, the
AnyPLACE project under EU H2020 grant number 646580, and the IT security consulting
company Trustworks KG who also provided the FPGA boards and the cluster.

181

Bibliography

[1] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. Cryptographic
Hardware and Embedded Systems - CHES 2002: 4th International Workshop Redwood
Shores, CA, USA, August 13–15, 2002 Revised Papers, chapter The EM Side—Channel(s),
pages 29–45. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[2] AIT. SmartGrid Security Guidance. http://www.ait.ac.at/research-
services/research-services-safety-security/ict-security/
reference-projects/sg2-smart-grid-security-guidance/, 2013.
[Online; accessed 14-October-2013].

[3] S. M. Amin and B. F. Wollenberg. Toward a smart grid: power delivery for the 21st century.
IEEE Power and Energy Magazine, 3(5):34–41, September 2005.

[4] R. Araujo, E. Anjos, and D. Rousy Silva. Trends in the use of design thinking for embedded
systems. In Computational Science and Its Applications (ICCSA), 2015 15th International
Conference on, pages 82–86, June 2015.

[5] The IEEE Standards Association. IEEE Standard for Test Access Port and Boundary-Scan
Architecture. IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages 1–444,
May 2013.

[6] A. Austin and L. Williams. One technique is not enough: A comparison of vulnerability
discovery techniques. In Empirical Software Engineering and Measurement (ESEM), 2011
International Symposium on, pages 97–106, 2011.

[7] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. Finding software vulnerabilities by
smart fuzzing. In Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on, pages 427–430, 2011.

[8] David W Binkley and Keith Brian Gallagher. Program slicing. Advances in Computers,
43:1–50, 1996.

[9] Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in wep’s coffin. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP ’06, pages 386–
400, Washington, DC, USA, 2006. IEEE Computer Society.

183

http://www.ait.ac.at/research-services/research-services-safety-security/ict-security/reference-projects/sg2-smart-grid-security-guidance/
http://www.ait.ac.at/research-services/research-services-safety-security/ict-security/reference-projects/sg2-smart-grid-security-guidance/
http://www.ait.ac.at/research-services/research-services-safety-security/ict-security/reference-projects/sg2-smart-grid-security-guidance/

[10] Kaspersky Blog. Black Hat USA 2015: The full story of how that Jeep was
hacked. https://blog.kaspersky.com/blackhat-jeep-cherokee-hack-
explained/9493, 2015. [Online; retrieved 2016-03-18].

[11] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Advances in Cryptology — EU-
ROCRYPT ’97: International Conference on the Theory and Application of Cryptographic
Techniques Konstanz, Germany, May 11–15, 1997 Proceedings, chapter On the Importance
of Checking Cryptographic Protocols for Faults, pages 37–51. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997.

[12] David Brumley and Dan Boneh. Remote timing attacks are practical. In Proceedings of
the 12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, pages 1–1,
Berkeley, CA, USA, 2003. USENIX Association.

[13] Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt-driven
software. In Proceedings of the 23rd International Conference on Software Engineering,
ICSE ’01, pages 47–56, Washington, DC, USA, 2001. IEEE Computer Society.

[14] BSI. IT Baseline Protection Catalogs. http://www.bsi.bund.de/gshb, 2013.

[15] BSI. Protection Profile for the Gateway of a Smart Metering System. BSI-CC-PP-0073,
2013.

[16] BSI. Protection Profile for the Security Module of a Smart Metering System (Security
Module PP). BSI-CC-PP-0077, 2013.

[17] Sang Kil Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary
code. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 380–394, 2012.

[18] D. Chang, M.T.-C. Lee, K. T Cheng, and M. Marek-Sadowska. Functional scan chain
testing. In Design, Automation and Test in Europe, 1998., Proceedings, pages 278–283,
Feb 1998.

[19] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Cryptographic Hardware and Em-
bedded Systems - CHES 2002: 4th International Workshop Redwood Shores, CA, USA,
August 13–15, 2002 Revised Papers, chapter Template Attacks, pages 13–28. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[20] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In USENIX Security
Symposium. San Francisco, 2011.

[21] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table case statements
from binary code. In Program Comprehension, 1999. Proceedings. Seventh International
Workshop on, pages 192–199. IEEE, 1999.

184

https://blog.kaspersky.com/blackhat-jeep-cherokee-hack-explained/9493
https://blog.kaspersky.com/blackhat-jeep-cherokee-hack-explained/9493
http://www.bsi.bund.de/gshb

[22] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174 (Informa-
tional), September 2001. Updated by RFCs 4634, 6234.

[23] D. Eastlake 3rd and T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF). RFC 6234 (Informational), May 2011.

[24] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre. New security threats against
chips containing scan chain structures. In Hardware-Oriented Security and Trust (HOST),
2011 IEEE International Symposium on, pages 110–110, June 2011.

[25] R. DeBlasio and C. Tom. Standards for the smart grid. In IEEE Energy 2030 Conference,
pages 1–7, 2008.

[26] DRAS. The US Demand Response Automation Server. http://drrc.lbl.gov/
projects/draserver, 2008. [Online; accessed 16-October-2013].

[27] Will Drewry and Tavis Ormandy. Flayer: Exposing application internals, 2007.

[28] E-Control. Risikoanalyse fuer die informationssysteme der elektrizitaetswirtschaft
unter besonderer berücksichtigung von smart-metern und des datenschutzes.
https://www.e-control.at/documents/20903/-/-/3f89d470-7d5e-
433c-b307-a6443692d8f7, 2014. Accessed: 2016-04-01.

[29] E-Mobile Power Austria. Empora. http://www.empora.eu/, 2010. [Online; accessed
16-October-2013].

[30] EcoGrid. European FP7 Project. http://www.opennode.eu, 2012. [Online; accessed
16-October-2013].

[31] Elcomsoft. ElcomSoft and Pico Computing Demonstrate World’s Fastest Password Crack-
ing Solution. https://www.elcomsoft.com/PR/Pico_120717_en.pdf. [On-
line; accessed 13-Nov-2015].

[32] Elcomsoft Blog. Accelerating Password Recovery: the Addition of FPGA.
http://blog.elcomsoft.com/2012/07/accelerating-password-
recovery-the-addition-of-fpga, 2012. [Online; accessed 13-Nov-2015].

[33] ENISA. Appropriate security measures for smart grids. http://
www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-
infrastructure-and-services/smart-grids-and-smart-
metering/appropriate-security-measures-for-smart-grids,
December 2012.

[34] European Union Agency for Network and Information Security. Appropri-
ate security measures for smart grids. https://www.enisa.europa.eu/
activities/Resilience-and-CIIP/critical-infrastructure-
and-services/smart-grids-and-smart-metering/appropriate-
security-measures-for-smart-grids, 2012. Accessed: 2015-12-02.

185

http://drrc.lbl.gov/projects/draserver
http://drrc.lbl.gov/projects/draserver
https://www.e-control.at/documents/20903/-/-/3f89d470-7d5e-433c-b307-a6443692d8f7
https://www.e-control.at/documents/20903/-/-/3f89d470-7d5e-433c-b307-a6443692d8f7
http://www.empora.eu/
http://www.opennode.eu
https://www.elcomsoft.com/PR/Pico_120717_en.pdf
http://blog.elcomsoft.com/2012/07/accelerating-password-recovery-the-addition-of-fpga
http://blog.elcomsoft.com/2012/07/accelerating-password-recovery-the-addition-of-fpga
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-infrastructure-and-services/smart-grids-and-smart-metering/appropriate-security-measures-for-smart-grids

[35] Federal Office for Security in Information Technology. It baseline protec-
tion catalogs. https://www.bsi.bund.de/DE/Themen/ITGrundschutz/
ITGrundschutzKataloge/itgrundschutzkataloge_node.html.

[36] Federal Office for Security in Information Technology. Protection profile for the gateway of
a smart metering system. https://www.commoncriteriaportal.org/files/
ppfiles/pp0073b_pdf.pdf, 2014. Accessed: 2015-12-02.

[37] Federal Office for Security in Information Technology. Protection profile for the security
module of a smart meter gateway. https://www.commoncriteriaportal.org/
files/ppfiles/pp0077b_pdf.pdf, 2014. Accessed: 2015-12-02.

[38] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture
for intrusion detection. In In Proc. Network and Distributed Systems Security Symposium,
pages 191–206, 2003.

[39] CEN-CENELEC-ETSI Smart Grid Coordination Group. Smart grid reference archi-
tecture. http://ec.europa.eu/energy/sites/ener/files/documents/
xpert_group1_reference_architecture.pdf, 2012. Accessed: 2015-12-02.

[40] Tim Güneysu, Timo Kasper, Martin Novotný, Christof Paar, Lars Wienbrandt, and Ralf
Zimmermann. High-Performance Cryptanalysis on RIVYERA and COPACOBANA Com-
puting Systems. In Wim Vanderbauwhede and Khaled Benkrid, editors, High-Performance
Computing Using FPGAs, pages 335–366. Springer New York, 2013.

[41] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac defibrillators:
Software radio attacks and zero-power defenses. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 129–142, May 2008.

[42] David Hely, Marie-Lise Flottes, Frederic Bancel, Bruno Rouzeyre, Nicolas Berard, and
Michel Renovell. Scan Design and Secure Chip. In Proceedings of the International
On-Line Testing Symposium, 10th IEEE, IOLTS ’04, pages 219–, Washington, DC, USA,
2004. IEEE Computer Society.

[43] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Van-
dewalle. Machine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering, 1(4):293–302, 2011.

[44] Hui Hou, Jianzhong Zhou, Yongchuan Zhang, and Xiongkai He. A brief analysis on
differences of risk assessment between smart grid and traditional power grid. In Knowledge
Acquisition and Modeling (KAM), 2011 Fourth International Symposium on, pages 188–
191, 2011.

[45] Andrew Huang. Keeping Secrets in Hardware: The Microsoft XboxTM; Case Study. In
Revised Papers from the 4th International Workshop on Cryptographic Hardware and
Embedded Systems, CHES ’02, pages 213–227, London, UK, UK, 2003. Springer-Verlag.

186

https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/itgrundschutzkataloge_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/itgrundschutzkataloge_node.html
https://www.commoncriteriaportal.org/files/ppfiles/pp0073b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0073b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0077b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0077b_pdf.pdf
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf

[46] IEEE-Inst. 802.11-2012 - IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropolitan area networks–Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Technical Report IEEE Std 802.11TM-2012, IEEE-Inst, 2012.

[47] IEEE Standards Association. 1149.1-2013 - IEEE Standard for Test Access Port and
Boundary-Scan Architecture, 2013.

[48] Tyler Johnson, Daniel Roggow, Phillip Jones, and Joseph Zambreno. An fpga architecture
for the recovery of wpa/wpa2 keys. Journal of Circuits, Systems, and Computers (JCSC),
24(7), 2015.

[49] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898
(Informational), September 2000.

[50] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner. Embedded security test-
ing with peripheral device caching and runtime program state approximation. In Tenth
International Conference on Emerging Security Information, Systems and Technologies
(SECUWARE). Nice, France, 2016.

[51] Markus Kammerstetter, Lucie Langer, Florian Skopik, and Wolfgang Kastner. Architecture-
driven smart grid security management. In Proceedings of the 2Nd ACM Workshop on
Information Hiding and Multimedia Security, IH&MMSec ’14, pages 153–158, New
York, NY, USA, 2014. ACM.

[52] Markus Kammerstetter, Lucie Langer, Florian Skopik, Friederich Kupzog, and Wolfgang
Kastner. Practical risk assessment using a cumulative smart grid model. In Proceedings
of the 3rd International Conference on Smart Grids and Green IT Systems, pages 31–42,
2014.

[53] Markus Kammerstetter, Lucie Langer, Florian Skopik, Friederich Kupzog, and Wolfgang
Kastner. Practical risk assessment using a cumulative smart grid model. In 3rd International
Conference on Smart Grids and Green IT Systems (SMARTGREENS), April 3-4 2014,
Barcelona, Spain, 2014. To appear.

[54] Markus Kammerstetter, Markus Muellner, Daniel Burian, Christian Platzer, and Wolfgang
Kastner. Breaking integrated circuit device security through test mode silicon reverse
engineering. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 549–557, New York, NY, USA, 2014. ACM.

[55] Markus Kammerstetter, Markus Muellner, Christian Kudera, Daniel Burian, and Wolfgang
Kastner. Efficient high-speed wpa2 brute force attacks using scalable low-cost fpga
clustering. In Conference on Cryptographic Hardware and Embedded Systems (CHES).
Santa Barabara, CA, USA, 2016.

187

[56] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. Prospect: Peripheral
proxying supported embedded code testing. In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’14, pages 329–340,
New York, NY, USA, 2014. ACM.

[57] S. Karnouskos. Stuxnet worm impact on industrial cyber-physical system security. In
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, pages
4490–4494, 2011.

[58] M.M. Kermani, Meng Zhang, A. Raghunathan, and N.K. Jha. Emerging frontiers in
embedded security. In VLSI Design and 2013 12th International Conference on Embedded
Systems (VLSID), 2013 26th International Conference on, pages 203–208, 2013.

[59] Shubhangi Khare, Sandeep Saraswat, and Shrawan Kumar. Static program analysis of
large embedded code base: An experience. In Proceedings of the 4th India Software
Engineering Conference, ISEC ’11, pages 99–102, New York, NY, USA, 2011. ACM.

[60] Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A. Frincke. Smart-grid security
issues. IEEE Security & Privacy, 8(1):81–85, 2010.

[61] Akos Kiss, Judit Jász, Gábor Lehotai, and Tibor Gyimóthy. Interprocedural static slicing
of binary executables. In Source Code Analysis and Manipulation, 2003. Proceedings.
Third IEEE International Workshop on, pages 118–127. IEEE, 2003.

[62] Klimafonds. DG DemoNet - Smart LV Grid. http://www.ait.ac.at/
departments/energy/research-areas/electric-energy-
infrastructure/smart-grids/dg-demonet-smart-lv-grid/, 2012.
[Online; accessed 16-October-2013].

[63] Paul C. Kocher. Advances in Cryptology — CRYPTO ’96: 16th Annual International
Cryptology Conference Santa Barbara, California, USA August 18–22, 1996 Proceedings,
chapter Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems, pages 104–113. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[64] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Proceed-
ings of the 19th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’99, pages 388–397, London, UK, UK, 1999. Springer-Verlag.

[65] Philip Koopman. Embedded system security. Computer, 37(7):95–97, July 2004.

[66] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing Letters,
29(3):155–163, 1988.

[67] Karl Koscher, Tadayoshi Kohno, and David Molnar. Surrogates: Enabling near-real-time
dynamic analyses of embedded systems. In Proceedings of the 9th USENIX Conference
on Offensive Technologies, WOOT’15, pages 7–7, Berkeley, CA, USA, 2015. USENIX
Association.

188

http://www.ait.ac.at/departments/energy/research-areas/electric-energy-infrastructure/smart-grids/dg-demonet-smart-lv-grid/
http://www.ait.ac.at/departments/energy/research-areas/electric-energy-infrastructure/smart-grids/dg-demonet-smart-lv-grid/
http://www.ait.ac.at/departments/energy/research-areas/electric-energy-infrastructure/smart-grids/dg-demonet-smart-lv-grid/

[68] A.H. Lashkari, M.M.S. Danesh, and B. Samadi. A survey on wireless security protocols
(wep, wpa and wpa2/802.11i). In Computer Science and Information Technology, 2009.
ICCSIT 2009. 2nd IEEE International Conference on, pages 48–52, Aug 2009.

[69] Jeremy Lee, Mohammad Tehranipoor, and Jim Plusquellic. A Low-Cost Solution for
Protecting IPs Against Scan-Based Side-Channel Attacks. In Proceedings of the 24th
IEEE VLSI Test Symposium, VTS ’06, pages 94–99, Washington, DC, USA, 2006. IEEE
Computer Society.

[70] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software vulnerability discovery
techniques: A survey. In Multimedia Information Networking and Security (MINES), 2012
Fourth International Conference on, pages 152–156, 2012.

[71] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software vulnerability discovery
techniques: A survey. In Multimedia Information Networking and Security (MINES), 2012
Fourth International Conference on, pages 152–156. IEEE, 2012.

[72] Zhuo Lu, Xiang Lu, Wenye Wang, and C. Wang. Review and evaluation of security threats
on the communication networks in the smart grid. In MILITARY COMMUNICATIONS
CONFERENCE, 2010 - MILCOM 2010, pages 1830–1835, 2010.

[73] Wired magazine. Hackers Remotely Kill a Jeep on the Highway - With Me
in It. http://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway, 2015. [Online; retrieved 2016-03-18].

[74] Marcel Medwed and Elisabeth Oswald. Information Security Applications: 9th Interna-
tional Workshop, WISA 2008, Jeju Island, Korea, September 23-25, 2008, Revised Selected
Papers, chapter Template Attacks on ECDSA, pages 14–27. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[75] Anthony R Metke and Randy L Ekl. Security technology for smart grid networks. IEEE
Transactions on Smart Grid, 1(1):99–107, 2010.

[76] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger Vehi-
cle. http://illmatics.com/Remote%20Car%20Hacking.pdf, 2015. [Online;
retrieved 2016-03-18].

[77] A. Mohan and H. Khurana. Towards addressing common security issues in smart grid
specifications. In Resilient Control Systems (ISRCS), 2012 5th International Symposium
on, pages 174–180, 2012.

[78] P. Moorthy and S.S. Bharathy. An efficient test pattern generator for high fault cover-
age in built-in-self-test applications. In Computing, Communications and Networking
Technologies (ICCCNT),2013 Fourth International Conference on, pages 1–4, July 2013.

[79] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution
paths for malware analysis. In Proceedings of the 2007 IEEE Symposium on Security and
Privacy, SP ’07, pages 231–245, Washington, DC, USA, 2007. IEEE Computer Society.

189

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
http://illmatics.com/Remote%20Car%20Hacking.pdf

[80] NIST. NIST Special Publication 1108R2 - NIST Framework and Roadmap for Smart Grid
Interoperability Standards, Release 2.0, 2013.

[81] NIST. NISTIR 7628 - Guidelines for Smart Grid Cybersecurity, 2013.

[82] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz. Reverse-Engineering a
Cryptographic RFID Tag. In USENIX Security Symposium, volume 28, 2008.

[83] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, chapter 36, pages 617–630. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2003.

[84] National Institute of Standards and Technology. Introduction to nistir 7628 guidelines for
smart grid cyber security. http://www.nist.gov/smartgrid/upload/nistir-
7628_total.pdf, 2010. Accessed: 2015-12-02.

[85] National Institute of Standards and Technology. Framework and roadmap for smart
grid interoperability standards, release 2.0. http://www.nist.gov/smartgrid/
upload/NIST_Framework_Release_2-0_corr.pdf, 2012. Accessed: 2015-12-
02.

[86] OGEMA. The German ICT Gateway Approach. http://www.ogema.org, 2012.
[Online; accessed 16-October-2013].

[87] OpenNode. European FP7 Project. http://www.opennode.eu, 2012. [Online;
accessed 16-October-2013].

[88] Sri Parameswaran and Tilman Wolf. Embedded systems security-an overview. Design
Automation for Embedded Systems, 12(3):173–183, 2008.

[89] PicoComputing Inc. SC5-4U Overview. http://picocomputing.com/
brochures/SC5-4U.pdf. [Online; accessed 13-Nov-2015].

[90] Ron Press. IC design-for-test and testability features. In AUTOTESTCON, 2008 IEEE,
pages 88–91, Sept 2008.

[91] FUSE Project. Filesystem in userspace. http://fuse.sourceforge.net/ (retrieved 2013-04-17),
2013.

[92] P.D. Ray, R. Harnoor, and M. Hentea. Smart power grid security: A unified risk man-
agement approach. In Security Technology (ICCST), 2010 IEEE International Carnahan
Conference on, pages 276–285, 2010.

[93] Thilo Sauter, Stefan Soucek, Wolfgang Kastner, and Dietmar Dietrich. The evolution
of factory and building automation. In IEEE Magazine on Industrial Electronics, pages
35–48, 2011.

190

http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://www.ogema.org
http://www.opennode.eu
http://picocomputing.com/brochures/SC5-4U.pdf
http://picocomputing.com/brochures/SC5-4U.pdf

[94] E.J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask). In
Security and Privacy (SP), 2010 IEEE Symposium on, pages 317–331, 2010.

[95] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
Addresssanitizer: a fast address sanity checker. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX ATC’12, pages 28–28, Berkeley,
CA, USA, 2012. USENIX Association.

[96] Zili Shao, Chun Xue, Qingfeng Zhuge, Meikang Qiu, Bin Xiao, and Edwin H.-M. Sha.
Security protection and checking for embedded system integration against buffer overflow
attacks via hardware/software. IEEE Transactions on Computers, 55(4):443–453, 2006.

[97] K V Shibu. Introduction To Embedded Systems. McGraw-Hill Education, 2009.

[98] Florian Skopik and Lucie Langer. Cyber security challenges in heterogeneous ict infras-
tructures of smart grids. Journal of Communications, 8(8):463–472, 2013.

[99] Florian Skopik and Paul Smith. Smart Grid Security: Innovative Solutions for a Modern-
ized Grid. Elsevier Science Publishing, USA, 1th edition, 2015.

[100] Sergei Skorobogatov and Christopher Woods. Breakthrough Silicon Scanning Discovers
Backdoor in Military Chip. In Proceedings of the 14th International Conference on Cryp-
tographic Hardware and Embedded Systems, CHES’12, pages 23–40, Berlin, Heidelberg,
2012. Springer-Verlag.

[101] Sergei P. Skorobogatov and Ross J. Anderson. Cryptographic Hardware and Embedded
Systems - CHES 2002: 4th International Workshop Redwood Shores, CA, USA, August
13–15, 2002 Revised Papers, chapter Optical Fault Induction Attacks, pages 2–12. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[102] Smart Grid Coordination Group, CEN-CENELEC-ETSI. Reports in response to smart
grid mandate m/490. http://www.cencenelec.eu/standards/sectors/
SmartGrids/Pages/default.aspx, 2012. [Online; accessed 16-October-2013].

[103] Smart Grid Coordination Group, CEN-CENELEC-ETSI. Smart grid reference archi-
tecture. http://ec.europa.eu/energy/gas_electricity/smartgrids/
doc/xpert_group1_reference_architecture.pdf, 2012. [Online; accessed
15-October-2013].

[104] Smart Grid Modellregion Salzburg. ZUQDE. http://
www.smartgridssalzburg.at/forschungsfelder/stromnetze/zuqde/,
2010. [Online; accessed 16-October-2013].

[105] Smart Grid Modellregion Salzburg. Smart Web Grid. http://
www.smartgridssalzburg.at/forschungsfelder/ikt/smart-web-
grid/, 2011. [Online; accessed 16-October-2013].

191

http://www.cencenelec.eu/standards/sectors/SmartGrids/Pages/default.aspx
http://www.cencenelec.eu/standards/sectors/SmartGrids/Pages/default.aspx
http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/xpert_group1_reference_architecture.pdf
http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/xpert_group1_reference_architecture.pdf
http://www.smartgridssalzburg.at/forschungsfelder/stromnetze/zuqde/
http://www.smartgridssalzburg.at/forschungsfelder/stromnetze/zuqde/
http://www.smartgridssalzburg.at/forschungsfelder/ikt/smart-web-grid/
http://www.smartgridssalzburg.at/forschungsfelder/ikt/smart-web-grid/
http://www.smartgridssalzburg.at/forschungsfelder/ikt/smart-web-grid/

[106] Sorin Visan. WPA/WPA2 Password Security Testing using Graphics Processing Units.
Journal of Mobile, Embedded and Distributed Systems, 5(4), 2013.

[107] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski,
Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your botnet is my botnet:
analysis of a botnet takeover. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 635–647, New York, NY, USA, 2009. ACM.

[108] S. Sumpf and J. Brakensiek. Device driver isolation within virtualized embedded platforms.
In Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,
pages 1–5, 2009.

[109] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104 bit wep in less
than 60 seconds. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors, Information
Security Applications, volume 4867 of Lecture Notes in Computer Science, pages 188–202.
Springer Berlin Heidelberg, 2007.

[110] Frank Tip. A survey of program slicing techniques. Journal of programming languages,
3(3):121–189, 1995.

[111] L. H. Tsoukalas and R. Gao. From smart grids to an energy internet: Assumptions,
architectures and requirements. In DRPT, pages 94–98, 2008.

[112] Ubee. Ubee EVW3226 Advanced Wireless Voice Gateway - Bedienungsanleitung.
http://www.unitymedia.de/content/dam/unitymedia-de/hilfe-
--service/doc/ubee-evw3226-installationsanleitung.pdf, 2011.
[Online; accessed 22-April-2015].

[113] U.S.Department of Commerce National Institute of Standards and Technology. FIPS
PUB 180-2, Secure Hash Standard (SHS), 2002. U.S.Department of Commerce/National
Institute of Standards and Technology.

[114] U.S.Department of Commerce/National Institute of Standards and Technology. FIPS
PUB 140-2, Security Requirements for Cryptographic Modules, 2002. U.S.Department of
Commerce/National Institute of Standards and Technology.

[115] USTEM. Universitaere Service-Einrichtung fuer Transmissionselektronenmikroskopie.
http://www.ustem.tuwien.ac.at/EN. [Online; accessed 19-August-2014].

[116] Mathy Vanhoef and Frank Piessens. Practical Verification of WPA-TKIP Vulnerabilities.
In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, pages 427–436, New York, NY, USA, 2013.
ACM.

[117] P.P. Varaiya, F.F. Wu, and J.W. Bialek. Smart operation of smart grid: Risk-limiting
dispatch. Proceedings of the IEEE, 99(1):40–57, 2011.

192

http://www.unitymedia.de/content/dam/unitymedia-de/hilfe---service/doc/ubee-evw3226-installationsanleitung.pdf
http://www.unitymedia.de/content/dam/unitymedia-de/hilfe---service/doc/ubee-evw3226-installationsanleitung.pdf
http://www.ustem.tuwien.ac.at/EN

[118] Ramakrishnan Venkitaraman and Gopal Gupta. Static program analysis of embedded
executable assembly code. In Proceedings of the 2004 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’04, pages 157–
166, New York, NY, USA, 2004. ACM.

[119] J. Viega and H. Thompson. The state of embedded-device security (spoiler alert: It’s bad).
Security Privacy, IEEE, 10(5):68–70, 2012.

[120] R. Vigo, E. Yuksel, and C.D.P.K. Ramli. Smart grid security a smart meter-centric
perspective. In Telecommunications Forum (TELFOR), 2012 20th, pages 127–130, 2012.

[121] Shyh-Yih Wang and Chi-Sung Laih. Efficient key distribution for access control in pay-tv
systems. IEEE Transactions on Multimedia, 10(3):480–492, 2008.

[122] Dong Wei, Yan Lu, Mohsen Jafari, Paul Skare, and Kenneth Rohde. An integrated security
system of protecting smart grid against cyber attacks. In Innovative Smart Grid Tech.,
pages 1–7, January 2010.

[123] Steve H. Weingart. Cryptographic Hardware and Embedded Systems — CHES 2000:
Second International Workshop Worcester, MA, USA, August 17–18, 2000 Proceedings,
chapter Physical Security Devices for Computer Subsystems: A Survey of Attacks and
Defenses, pages 302–317. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[124] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[125] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[126] Wigle.net Project. https://wigle.net. [Online; accessed 13-Nov-2015].

[127] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using
cwsandbox. Security Privacy, IEEE, 5(2):32–39, 2007.

[128] S. Wong. The evolution of wireless security in 802.11 networks: Wep, wpa and 802.11
standards. http://www.sans.org/rr/whitepapers/wireless/1109. php (retrieved 2016-03-24),
2003.

[129] Xilinx Inc. DS160, v2.0, Spartan-6 Family Overview. http://www.xilinx.com/
support/documentation/data_sheets/ds160.pdf, 2011. [Online; accessed
22-April-2015].

[130] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber security for smart
grid communications. Communications Surveys Tutorials, IEEE, 14(4):998–1010, 2012.

[131] Bo Yang. Secure Scan: A Design-for-Test Architecture for Crypto Chips. In in Proc. of
42nd Annual Conference on Design Automation, pages 135–140. ACM Press, 2005.

193

https://wigle.net
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

[132] Bo Yang, Kaijie Wu, and Ramesh Karri. Scan Based Side Channel Attack on Dedicated
Hardware Implementations of Data Encryption Standard. In in Proc. of the IEEE Int. Test
Conf. (ITC), 2004, pages 339–344, 2004.

[133] Wang Yufei, Zhang Bo, Lin WeiMin, and Zhang Tao. Smart grid information security -
a research on standards. In Advanced Power System Automation and Protection (APAP),
2011 International Conference on, volume 2, pages 1188–1194, 2011.

[134] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. Avatar: A
Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares. In
Network and Distributed System Security (NDSS) Symposium, NDSS 14, February 2014.

[135] ZTEX Gmbh. Products. http://www.ztex.de. [Online; accessed 22-April-2015].

194

http://www.ztex.de

	Introduction
	Problem Statement
	Aim of this Work
	State-of-the-Art and Related Work
	Methodological Approach
	Structure of this Work
	Summary of this Work
	Scientific Contribution
	Conclusion and Future Work

	Practical Risk Assessment Using a Cumulative Smart Grid Model
	State-of-the-Art and Related Work
	Cumulative Smart Grid Modeling using SGAM
	Smart Grid Risk Assessment
	Evaluation and Results
	Conclusion and Future Work
	Acknowledgements

	Architecture-Driven Smart Grid Security Management
	State-of-the-Art and Related Work
	Smart Grid Risk Management Approach
	Evaluation and Discussion
	Conclusion and Future Work
	Acknowledgements

	Physical Attacks on Smart Grid Devices
	Goals of Physical Attacks in the Context of Smart Grid Devices
	Overview of Physical Attacks
	Basic Protection Mechanisms
	Conclusion

	Breaking Integrated Circuit Device Security through Test Mode Silicon Reverse Engineering
	State-of-the-Art and Related Work
	IC Design and Test Modes
	Reverse Engineering of IC Test Modes: A Case Study of a Game Authentication Chip
	Evaluation and Discussion
	Conclusion and Future Work
	Acknowledgements

	PROSPECT - Peripheral Proxying Supported Embedded Code Testing
	State-of-the-Art and Related Work
	Challenges in Embedded Security Analysis
	Peripheral Device Forwarding
	Implementation
	Evaluation
	Results and Discussion
	Limitations and Future Work
	Conclusion
	Acknowledgements

	Embedded Security Testing with Peripheral Device Caching and Runtime Program State Approximation
	State-of-the-Art and Related Work
	Peripheral Device Access
	Caching Peripheral Device Communication
	Runtime Program State Approximation
	Results
	Conclusion and Future Work
	Acknowledgements

	Efficient High-Speed WPA2 Brute Force Attacks using Scalable Low-Cost FPGA Clustering
	State-of-the-Art and Related Work
	WPA2-Personal Handshake
	FPGA Implementation
	Evaluation
	Results and Discussion
	Conclusion and Future Work

	Bibliography

