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Kurzfassung

In gewissen Arbeitsbereichen, wie etwa in der Flugverkehrskontrolle oder bei Fließ-
bandarbeit, ist ein hohes Maß an Konzentration erforderlich. In solchen Bereichen sind
regelmäßige Pausen verpflichtend um fatale Fehler zu vermeiden. Pausen sind streng
geregelt durch etwa Sicherheitsregeln oder rechtlichen Forderungen. Das Break Scheduling
Problem (Bsp) befasst sich mit diesen Regelungen. Das Bsp hat zum Ziel Pausen in
einem gegebenen Schichtplan einzuplanen, sodass alle Pausenregeln erfüllt sind während
Abweichungen vom Personalbedarf minimiert werden.

In dieser Arbeit stellen wir eine Mixed Integer Programming Formulierung für das generelle
Bsp vor. Um das Bsp zu lösen schlagen wir einen Large Neighborhood Suchalgorithmus
(LNS) vor. Er besteht aus einer Initialisierungsphase und zwei Unteralgorithmen: ein
Local Search Algorithmus und ein Mixed Integer Programming (MIP) Algorithmus.
Um die MIP-Formulierung zu lösen kommt der Constraintlöser CPLEX zum Einsatz.
Der Local Search Algorithmus verwendet zwei Nachbarschaftsoperationen: Swap und
Assignment. Zusätzlich wird eine Random-Walk Methode genutzt um lokalen Optima
zu entkommen. Local Search fokussiert sich auf einzelne Pausen. Der MIP Algorithmus
entfernt alle Pausen einer gesamten Schicht um sie dann optimal wieder einzuplanen.

Die Unteralgorithmen werden abwechselnd eingesetzt und bei jeder Iteration durch einen
Selector gewählt. Wir testeten drei Auswahlverfahren: Random-Selector, Timebound-
Selector und Probability-Selector. Der Probability-Selector, welcher die Wahrscheinlichkeit
mittels einer Funktion regelt, erwies sich als überlegen. Zudem wurden Parameter, welche
einen Einfluss auf die Leistung des Algorithmus haben, evaluiert. Insgesamt wurden 56
Experimente durchgeführt, welche in Summe eine Laufzeit von 2.736 Stunden hatten.
Wir berechneten Endergebnisse zu 30 Fallbeispielen, 20 von einem realen Szenario und
10 zufällig generierte. Der LNS Algorithmus übertrifft in den meisten Fällen unsere
Implementierung von Local Search. Jedoch konnte er noch nicht an die besten bislang
bekannten Resultate herankommen.
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Abstract

A high a level of concentration is essential in certain working areas such as in air traffic
control, assembly line works or supervision. In such areas breaks are mandatory to
avoid fatal errors. Breaks are regulated due to safety rules or legal demands. The break
scheduling problem (Bsp) deals with these kind of regulations. The aim of the Bsp is to
assign breaks to a given shift plan so that all regulations regarding breaks are fulfilled
while violations of staff requirements are minimized.

We give a mixed integer programming formulation for the general Bsp. To solve the
Bsp we propose a large neighborhood search (LNS) algorithm. It is made up of an
initialisation phase and two sub-algorithms: a local search algorithm and a mixed integer
programming (MIP) algorithm. To solve the MIP formulation the solver CPLEX is
used. The local search sub-algorithm uses two moves to optimize the solution: swap
and assignment. In addition, a random-walk procedure is used to escape local optima.
Local search focuses only on single breaks. The MIP sub-algorithm removes the break
assignment of an entire shift and reassigns the breaks optimally.

Sub-algorithms are applied alternately and are chosen by a selector at each iteration.
We tested three different selection procedures: random-selector, timebound-selector and
probability-selector. The probability-selector, using a function to regulate the probability,
has shown to be superior. Further, different parameter settings, which influence the
performance of the algorithm, are evaluated. In total 56 experiments were performed
taking a total runtime of 2,736 hours. We computed final results for 30 instances, 20
obtained from a real-life scenario and 10 randomly generated. The LNS algorithm
outperforms our local search implementation in most of the cases. However, it did not
yet reach the upper bounds of the best known results so far.
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CHAPTER 1
Introduction

There are many working areas where relief and rest breaks are mandatory to maintain
a high level of concentration. In security areas such as air traffic control or security
checking, a loss in concentration can lead to dangerous situations. Assembly line workers
performing monotonous, yet demanding work need to have breaks regularly in order to
avoid fatal errors. Other factors that are relevant are health and safety regulations or
legal obligations. Usually each area has their own rules on how to schedule breaks. The
break scheduling problem (Bsp) deals with these kind of regulations when scheduling
breaks into shift plans. Besides the strict rules and regulations on when, how many
and how long breaks need to be, varying staff requirements need to be considered. Call
centers for example face different customer demands during the day. The challenge of
break scheduling is to satisfy break regulations while the optimum number of staff is
present.

Compared to shift scheduling, break scheduling is a rather young topic. It was formaly first
introduced by Beer et al. [BGM+10] in 2010. Designing shift plans is a well established
task and managers recognize the benefits of automated scheduling. Break scheduling on
the other hand was not addressed as a separate problem until recently. According to
Thompson and Pullman [TP07] managers tend to schedule breaks roughly in advance
and adjust them during the day in accordance with changing demands. However, this can
lead to non-optimal or even illegal shift plans according to staff requirements and break
regulations. Thompson and Pullman [TP07] showed that scheduling relief or rest breaks
in advance is preferable over assigning or adjusting those breaks in real-time. Break
scheduling is especially crucial for shift plans where many breaks need to be assigned.

The aim of the Bsp is to assign breaks to a given shift plan so that violations of staff
requirements are minimized and all regulations - given as hard constraints - are fulfilled.
The particular problem addressed in this thesis comes from a real-world scenario in the
area of supervisory personnel. It comprises rules regarding the length of breaks and
working periods, the time window breaks need to be taken in, or the positioning of breaks.
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1. Introduction

These rules are formulated as so called temporal constraints. Working periods are the
time periods between breaks in which an employee is considered working. The inputs
of the Bsp are a shift plan, the staff requirements and the constraints. Each shift is
assigned to an employee indicating that the employee is on duty. For each shift the start,
end and length are given, which are varying from shift to shift. The total number of
breaktime an employee needs to take during a shift is based on the duration of the shift.
The feasibility of a solution is given under certain conditions such as that breaks of the
same shift do not overlap in time.

The first work solving the Bsp proposed a local search algorithm combined with a
minimum-conflicts-based heuristic and a tabu search for call centers [BGM+08]. And
extended version of this algorithm was presented for supervisory personnel in [BGM+10].
Beer et al. [BGM+10] further introduced benchmark instances for the Bsp - randomly
generated and real-life instances . A memetic algorithm was presented in [MSW09],
[Wid10] and [WM14]. Di Gaspero [GGM+10] performed shift and break scheduling
within a single task using a hybrid local search-constraint programming (LS-CP) method.
Recently Kocabas [Koc15] presented an exact method using mixed integer programming
for a special case of the break scheduling problem. He limited the number of breaks per
shift combinations to confine the search space.

The optimum for the randomly generated instances is known and not reached so far by
previous works. For the real-life instances the optimum is unknown, yet we believe there
is still room for improvements. In this thesis we investigate new methods for solving
the Bsp. We are the first to present a mixed integer programming formulation for the
general Bsp. Further, we present a large neighborhood search algorithm based on local
search and a mixed integer programming procedure.

1.1 Objectives
The objectives of this thesis are:

• Definition of a mixed integer programming formulation for the general Bsp.

• Design and implementation of a large neighborhood search algorithm to optimize
the Bsp. It is based on an existing local search algorithm and a mixed integer
programming procedure.

• Conduction of experiments to evaluate parameters and procedures influencing the
outcome of the proposed algorithm.

• Comparison of our results to results of past publications on the Bsp.

1.2 Results
The main contributions of this thesis are as follows:
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1.2. Results

• We give a mixed integer programming formulation for the Bsp without restrictions.

• A large neighborhood search algorithm to solve the Bsp is proposed. It is made up
of an initialisation phase and two sub-algorithms: a local search algorithm based
on [BGM+10] and a mixed integer programming algorithm. To solve the MIP
formulation the solver IBM ILOG CPLEX Optimization Studio (CPLEX) [IBM16]
is used.

• Different selection procedures for the choice of sub-algorithms at each iteration are
tested. An elaborated procedure using a function to regulate the probability has
shown to be superior.

• We evaluate different parameter settings which have a significant influence on the
performance of the LNS algorithm. In total 56 experiments were performed taking
a total runtime of 2,736 hours.

• The final results are discussed and compared to previously published results. The
LNS algorithm outperforms our implementation of local search in most of the cases.
However, it did not yet reach the upper bounds of the best known results so far.

This thesis is organized as follows: In chapter 2 we give the formal problem description
of the Bsp (section 2.1) followed by a literature review on related work (section 2.2). In
chapter 3 the mixed integer programming formulation for the Bsp is provided. Following
this, the implementation of the large neighborhood search algorithm to solve the Bsp
is presented. We give the details on our computational experiments and final results in
chapter 5. Finally, we conclude and show an outline in chapter 6.
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CHAPTER 2
The Break Scheduling Problem

The Break Scheduling Problem (Bsp) deals with the problem of strict regulations and
complex rules regarding break times during a shift. Those regulations are of different
nature and determined by legal demands, ergonomic criteria and staffing requirements.
They can, as for instance, refer to the duration of breaks, the time window breaks need be
taken in, or the amount of break time there is per shift. Depending on the area applied
to, some regulations are mandatory and considered to be hard constraints, others are
mere preferences and thus soft constraints. For example security personnel working at
an airport need to maintain a high level of concentration while in charge of the baggage
screening monitoring. Thus it is obligatory for them to take a break after a certain
period of time. In other areas on the other hand, it might be of greater importance that
the number of required employees working is met optimally. There might be no security
criteria affecting the break scheduling, hence breaks can be scheduled with more relaxed
regulations. No matter the type of regulations, when scheduling breaks the aim is to
minimise violations in staff requirements (soft constraint) whereas all hard constraints
are fulfilled.

2.1 Problem Description
The original problem definition for the break scheduling problem investigated in this
thesis was introduced by Beer et al. [BGM+10]. Later on Widl [Wid10], and Widl and
Musliu [WM14] presented a more formal problem statement. The problem description of
this work is based on these three references.

The break scheduling problem takes as input a shift schedule containing multiple shifts
of varying length, each with a given start and end. Those shifts may overlap in time and
are assigned to one employee on duty. The time frame (e.g. a week) for which the breaks
are scheduled is called planning period. It consists of consecutive timeslots, which are
time sequences of a fixed length (here five minutes). A timeslot paired with a specific
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2. The Break Scheduling Problem

shift is denoted slot. One of three states can be assigned to a slot: working, on break
or reacquainting (meaning adapting to a modified work situation after returning from
a break). The time periods an employee is considered working (segmented by breaks)
are referred to as working periods. The breaktime is a depended variable and computed
based on the length of the related shift. It states the amount of slots per shift which
need to be of type ’on break’.

Besides the shift schedule the staff requirements and temporal constraints are given as
input. The staff requirements define the required number of working employees at each
timeslot. Temporal constraints comprise regulations regarding the arrangement of breaks
within a shift. In particular the duration of breaks and working periods, break positions,
and the need for a lunch break are specified. A feasible solution is obtained when all
temporal constraints are satisfied and the necessary amount of breaks is assigned to each
shift, whereas breaks associated with the same shift are distinct from one another and
not overlapping in time.

The objective is to find a feasible solution which minimizes the violation degree of the staff
requirements. The violation degree is derived from the over- and undercover resulting
from more, or less employees working then required.

In the following, a formal definition of the Bsp is given. Most of the definitions are based
on Beer et al. [BGM+10], Widl [Wid10], and Widl and Musliu [WM14].

Definition 2.1. (Planning Period T ). A set T formed by consecutive time slots
{[a1, a2), [a2, a3), ..., [aT , aT+1)}, all having the same length. The time points a1 and aT+1
refer to the beginning and end of the planning period, respectively. In case the problem
is of cyclic nature, the first time point a1 and the last aT+1 are equal.

Definition 2.2. (Timeslot t). An element of the planning period T . t is a time period
of fixed length (typically 5 minutes).

Definition 2.3. (Shift S). A set S = {ti, ti+1, ..., ti+m}, S ⊆ T , of consecutive timeslots,
i.e. tj+1− tj = 1 for i ≤ j ≤ i+m. The first timeslot ti corresponds to the shift start Ss,
and the last timeslot ti+m to the shift end Se. Shifts can overlap in time.

Definition 2.4. (Shifts S). A set S = {S1, S2, ..., Sn} of n shifts. Each shift represents
an employee on duty within the planning period.

Definition 2.5. (Staff Requirements ρ(t)). Function ρ : T → N0 assigns a non-negative
integer number indicating the required number of working employees to each timeslot in
the planning period.

Definition 2.6. (Slot). A slot denotes a timeslot in a particular shift. A slot can be set
to one of three different states:

• working (w-slot): an employee is working in this slot

• on break (b-slot): an employee is on break

6



2.1. Problem Description

• reacquainting (r-slot): an employee is taking a reacquaintance pause

A reacquaintance pause or r-slot is assigned exclusively to a slot directly following a
break (sequence of b-slots). It is necessary to give the employee one timeslot to become
reacquainted with the current situation at the workplace after a break. The employee is
neither considered working regarding staff requirements nor being on break.

Definition 2.7. (Break B). A set B of consecutive b-slots corresponding to a particular
shift. Each break has a start Bs and end Be. There are two different types of breaks:
monitor and lunch breaks.

Definition 2.8. (Breaks B). A set B = {B1, B2, ..., Bm} of m breaks. Each particular
shift Si a set BSi is assigned.

Definition 2.9. (Working Period W ). A set W of one r-slot and consecutive w-slots in
a particular shift. Each working period has a start Ws and end We.

Definition 2.10. (Working Periods W). A set W = {W1,W2, ...,Wk} of k working
periods. Each particular shift Si a set WSi is assigned.

Definition 2.11. (Duration). The duration of a shift |S|, break |B| or working period
|W | in timeslots can be calculated by counting the number of timeslots within the interval
from start to end [start, end], endpoints included.

Definition 2.12. (Breaktime τ(|S|)). A function τ :{|S1|, ..., |Sn|} → N specifying the
required amount of break time in timeslots (b-slots) for each shift Si according to its
duration |Si|.

Definition 2.13. (Temporal Constraint):

C1 Break Positions (p1,p2). In each shift Si a break may start earliest p1 timeslots
from the shift start Sis and end latest p2 timeslots to the shift end Sie. See figure
2.1 for a graphical example.

∀Bj ∈ BSi
(
Sis + (p1 − 1) ≤ B ∧ Bje ≤ Sie − (p2 − 1)

)
or ∀Bj ∈ BSi

(
Sis + (p1 − 1) ≤ Bjs ≤ Sie − (p2 − 1)− (|Bj | − 1)

) (2.1)

C2 Lunch Break (h,g,l1,l2). Each shift Si with a minimum duration h must contain
at least one lunch break. A lunch break has a minimum length g and is located
within a certain time window (earliest possible start: l1 timeslots from the shift

7



2. The Break Scheduling Problem

S
s

S
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

p
1

p
1
 = 5

p
2

p
2
 = 5

min. break start max. break end

Figure 2.1: A graphical example of the temporal constraint C1 (Break Positions). A
break may start earliest at slot 5 and end latest at slot 36 where the shift length is 40
slots, and p1 and p2 are each 5 slots.

start Sis; latest possible end: l2 timeslots from the shift start Sis). See figure 2.2
for a graphical example.

∀Si (|Si| ≥ h)∃Bj ∈ BSi(
|Bj | ≥ g ∧ Sis + (l1 − 1) ≤ Bjs ∧ Bje ≤ Sis + (l2 − 1)

)
or ∀Si (|Si| ≥ h)∃Bj ∈ BSi

Big(|Bj | ≥ g ∧ Sis + (l1 − 1) ≤ Bjs ≤ Sis + (l2 − 1)− (|Bj | − 1)
) (2.2)

S
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

≥ h

min. lunch start max. lunch start

≥ g

h = 37 g = 6 l
2
 = 36l

1
 = 21

Figure 2.2: A graphical example of the temporal constraint C2 (Lunch Break). A shift
with the length greater or equal 37 slots (h) must have a lunch break, which may start
earliest at slot 21 (l1) and latest at slot 36 (l2), and has a length of greater or equal 6
slots (g).

C3 Duration of Working Periods (w1,w2). The duration of each working period
|Wj | must range between w1 and w2.

∀Wj ∈ WSi (w1 ≤ |W | ≤ w2) (2.3)

C4 Minimum Break Durations (w,b). In case a working period Wj has a duration
greater or equal w, the following break BWj must last at least b timeslots. See
figure 2.3 for a graphical example.

∀Wj ∈ WSi (|Wj | ≥ w) =⇒ ∃BWj (|BWj | ≥ b) (2.4)
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2.1. Problem Description

W
j

B
Wj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

≥ w

w = 7

≥ b

b = 4

Figure 2.3: A graphical example of the temporal constraint C4 (Minimum Break Dura-
tions). If the length of a working period exceeds 7 slots (w), the following break (BWj )
must last at least 4 slots (b).

C5 Duration of Breaks (b1,b2). The duration of a break |Bj | must range between b1
and b2.

∀Bj ∈ BSi (b1 ≤ |Bj | ≤ b2) (2.5)

Feasibility of Solution:

A solution is feasible when C1 to C5 are fulfilled and the following three conditions are
met:

F1 Break Boundaries. Each break Bj associated with one shift Si lies entirely within
the shift.

∀Bj ∈ BSi (Sis ≤ Bjs ≤ Bje ≤ Sie) (2.6)

F2 Break Succession. Two distinct breaks (Bj , Bk) associated with the same shift Si
are successive and not overlapping in time.

∀Bj , Bk(j 6= k) ∈ BSi
(
(Bjs ≤ Bje ≤ Bks ≤ Bke ∨ Bks ≤ Bke ≤ Bjs ≤ Bje)

)
(2.7)

F3 Breaktime. In each shift Si the sum of lengths of its associated breaks (sum of
b-slots) is equal to the required amount of breaktime τ(|Si|).

∀Si
( ∑
Bj∈Si

|Bj | = τ(|Si|)
)

(2.8)

Objective:

The objective is to find an assignment of b- and r-slots for each shift such that the
solution is feasible as stated above and the following objective function F is minimised:

F =
∑
t∈T

(wo ∗ overcovert + wu ∗ undercovert) (2.9)

where

9



2. The Break Scheduling Problem

• overcovert is the calculated overcover at timeslot t; overcover = if (staff requirement
at t - number of b-slots at t - number of r-slots at t) is greater than 0

• undercovert is the calculated undercover at timeslot t; undercover = if (staff
requirement at t - number of b-slots at t - number of r-slots at t) is less than 0

• wo is the weight for overcover

• wu is the weight for undercover

2.2 Related Work
Previously the break scheduling problem was covered by the related shift scheduling
problem and only a small number of breaks were considered. The break assignment
is carried out in the course of the shift scheduling. Break scheduling as autonomously
problem distinguishes itself hereof by the larger number of breaks and that scheduled
shifts are given as input in the majority of cases.

So far no indications were given whether breaks scheduled along side with shifts or
scheduled in a subsequent phase is the better practise. The decision to combine both
tasks into one is based on many factors such as the complexity of scheduling rules or the
trade-off between computation time and memory needed. Considering both problems at
once deals with a considerably larger search space. Still this procedure might result in
more optimal solutions. In the following, a literature overview of shift scheduling with
breaks and break scheduling is given.

Shift Scheduling with Breaks

Dantzig presented the original set-covering formulation [Dan54] for the shift scheduling
problem. He considered shift planning for toll booth staff with up to three breaks. This
formulation requires an integer variable for each shift, shift start, duration, break and
time window for breaks, which makes it impractical for large numbers of shifts. Bechtold
and Jacobs [BJ90] proposed an implicit integer linear programming formulation with
flexible break assignment. It is meant to be superior to Dantzig’s formulation in terms of
execution time, memory requirements and being able to generate optimal solutions for
larger problems. Based on Bechtold and Jacobs’ model, Thompson [Tho95] developed
an integer programming model handling breaks and shifts implicitly, which was able
achieve improvements. Thompson further applied his approach to the special case of
scheduling shifts and breaks where employees have limited time availability [Tho96].
Aykin proposed another implicit integer programming model for shift scheduling [Ayk96],
which uses variables for every shift-break combination to represent break placement
in a certain shift. It requires a much smaller number of variables then the previously
presented set-covering formulations and has shown to be useful in solving large shift
scheduling problems optimally. Aykin [Ayk00] compared Bechtold and Jacobs’ model to
his concluding Bechtold and Jacobs’ formulation requires a smaller number of variables
although contains more constraints and needs more time to compute an optimal solution.

10



2.2. Related Work

More recently Gärtner et al. [GMS05] introduced a heuristic algorithm for solving shift
scheduling with breaks. Experiences with a real-life problem - a large European airport -
are given. Breaks are scheduled separately from shifts, which makes the problem related
to Bsp. Tellier and White [TW06] proposed a tabu search algorithm for a shift scheduling
problem which occurs in contact centres. Thompson and Pullman [TP07] address the
significance of scheduling breaks. They compare three different approaches to schedule
relief breaks: scheduling relief breaks alongside with shifts, no relief break scheduling at
all and scheduling breaks subsequent to shifts. Their investigation showed that scheduling
relief or rest breaks in advance is preferable over assigning those breaks in real-time.

Rekik et al. [RCS10] presented another implicit model, however with a similar problem
formulation to Bsp. Breaks can be fractioned and distributed under some conditions
within the shift, comparable to the break time and placing of breaks with variable
lengths in Bsp. Restrictions in work stretch duration - similar to working periods in
Bsp - controls the positioning of breaks. This approach has produced solutions with
reduced numbers of employees for several instances. Quimper and Rousseau [QR10]
proposed a large neighborhood search approach for a multi-activity shift scheduling
problem. The scheduling rules are modelled with formal languages such as regular
languages and context-free grammars. Côté et al. presented another grammar-based
model for multi-activity shift scheduling [CGQR11] [CGR11]. They generated a mixed
integer programming model with an implicit problem formulation and using context-free
grammars.

Break Scheduling

As the need arose (e.g. from call centres or airports) to perform break scheduling with a
much higher number of breaks and more complex requirements, break scheduling was
considered detached from shift scheduling by researchers. Break scheduling was formally
first introduced by Beer et al. [BGM+10] and considered as a constraint-satisfaction
optimization problem. They present a scheduling tool named Operating Hours Assistant
which performs shift and break scheduling in two different phases. The break scheduling
system uses local search combined with a minimum-conflicts-based heuristic, a tabu
search and a simulated-annealing algorithm. For the generation of the initial solution
a formulation for a simple temporal problem is given, which is solved by a randomized
version of the Floyd-Warshall shortest-path algorithm [PS82]. To escape local optima
they apply the random walk strategy. Beer et al. further introduced real-life benchmark
instances and randomly generated datasets. A similar break scheduling problem which
occurs in call centres was presented by Beer et al. [BGM+08] and Schafhauser [Sch10].

A first memetic algorithm was presented in 2009 [MSW09]. An improved version of it
was proposed in 2010 [Wid10] and most recently in 2014 including a proof of complexity
[WM14]. For initialisation a set of feasible break patterns is created making use of the
same simple temporal problem as Beer at al. [BGM+10]. Then a simple local search is
executed on the initial solution. Two variations of a memetic algorithm are proposed,
both combining a genetic algorithm and a local search procedure based on three different
neighborhoods. For the selection of memes a penalty system is used to avoid local optima.
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Widl and Musliu reached new upper bounds for almost all instances. Further, they
showed that Bsp - under the condition that all possible break patterns for each shift are
given explicitly as part of the input - is NP-complete. A proof of NP-completeness is
given by re-formulating Bsp as a decision problem.

At about the same time in 2010 Di Gaspero et al. [GGM+10] proposed a hybrid local
search-constraint programming (LS-CP) method for performing shift design and break
scheduling together within a single task. Local search is used to schedule shifts and
a constraint programming model is applied to assign breaks. This approach did not
result in improvements. A literatur survey of break and shift scheduling, two approaches
based on local search techniques and a real-life case study are given in Di Gaspero et al.
[DGGM+13].

Recently Kocabas [Koc15] presented an exact method using mixed integer programming
for a special case of the break scheduling problem with a limited number of break
combinations. To confine the search space the number of possible break patterns is
reduced. His approach outperforms Widl and Musliu [WM14] for most of the random
generated datasets, but his model could not be used for the real-life instances introduced
by Beer et al. [BGM+10].
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CHAPTER 3
Mixed Integer Programming

Formulation for Break Scheduling

The nature of the break scheduling problem (Bsp) makes it well suited for being formulated
as a mixed integer programming problem. Start and end of shifts and breaks as well
as durations measured in timeslots can be easily expressed as integer variables. Binary
decision variables can indicate whether a slot is assigned a break or not. In the past
integer programming was applied successfully to shift scheduling problems, such as [BJ90],
[Tho95], [Ayk96], [CGQR11] and [CGR11]. To the best of our knowledge an integer
programming fomulation for the break scheduling problem (Bsp) was only given by
Kocabas [Koc15]. However, in order to narrow down the search space he modelled a
restricted version of the Bsp. He proposed an explicit formulation of the problem, but
with a reduced number of possible break combinations. Two assumptions are made in the
course of the restrictions: 1. Every monitor break has a duration of exactly 2 timeslots;
2. Three monitor breaks are to be positioned before the lunch break and the remaining
monitor breaks are after the lunch break.

In the following sections, our mixed integer programming formulation for Bsp without
restrictions is given. First we discuss our implementation. Second we introduce important
variables and constants, then the constraints are given in the form of expressions. Finally
we specify the fitness function and the objective.

3.1 Mixed Integer Programming Implementation

In contrast to previous work, in our formulation breaks are not restricted, but free to be
positioned anywhere as long as all constraints are fulfilled. Single monitor breaks can be
merged into one larger break. Thus, additionally to the duration of breaks the number
of breaks within a shift is variable, although the total breaktime is fixed. This results in

13



3. Mixed Integer Programming Formulation for Break Scheduling

a much higher flexibility in generating solutions but also in a considerably larger search
space.

For the actual implementation the planning period T is set to be one week and is of cyclic
nature. Each timeslot t has a length of 5 minutes. Shifts S are given as input including
the breaktime. Further input are the staff requirements and all temporal constraints. A
solution of the problem is represented by a set of break starts and break durations for each
shift (see Definition 3.1 and 3.2). The fitness is calculated using the auxiliary variables
BreaksPerT imeslot and rSlotsPerT imeslot (see Definition 3.3 and 3.4), which indicate
whether a employee is on break or reacquainting at a certain timeslot. To compute the
fitness first the coverage at each timeslot is calculated, then the overcover and undercover
is determined (Definition 3.4). This model was written for the solver IBM ILOG CPLEX
Optimization Studio (CPLEX) [IBM16].

3.2 Variables and Constants
For each shift Si the following variables and constants are declared:

Definition 3.1. (Breaks). An integer array storing the timeslot of each break start.
Values are restricted to possible timeslots within the shift leaving out timeslots before
the earliest break start and after the latest break end. The length of the array is derived
from the maximum possible number of breaks for the given breaktime.

Definition 3.2. (Lengths). An integer array storing the duration (in number of times-
lots) of each break. The location in the array corresponds to the break in the same
location in Breaks. Combining the break start in Breaks and the break duration the
timeslot of the break end can be computed. The maximum allowed value is the maximum
break length according to the Bsp formulation. A break of length 0 would indicate the
non-existence of a break, no matter which value is stored in Breaks.

Definition 3.3. (BreaksPerT imeslot). A boolean array storing 1 if there is a break or
0 if there is no break for each timeslot in the shift. BreaksPerT imeslot is an auxiliary
variable for the fitness calculation. Only timeslots for possible break positioning are
considered.

Definition 3.4. (rSlotsPerT imeslot). A boolean array storing 1 if a slot is assigned
the state reacquainting (r-slot), or 0 in all other cases. rSlotsPerT imeslot is an auxiliary
variable for the fitness calculation. Only timeslots for possible break positioning (plus
one for the succeeding r-slot) are considered.

Definition 3.5. (LunchBreak). A boolean array storing 1 if a break is considered a
lunch break, or 0 otherwise. The location in the array corresponds to the break in the
same location in Breaks. If a shift requires a lunch break is depending on the duration
of the shift as stated in the constraint C2 (Lunch Break).

14
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Definition 3.6. (lunchMinStart). A constant holding the earliest possible timeslot at
which the lunch break of a shift is allowed to start. Its value is depending on the shift
start.

Definition 3.7. (lunchMaxStart). A constant holding the latest possible timeslot at
which the lunch break of a shift is allowed to start. Its value is depending on the shift
start.

Definition 3.8. (breakMaxEnd). A constant holding the latest possible timeslot at
which a break of a shift is allowed to end. Its value is depending on the shift end.

A graphical illustration of Definitions 3.1 to 3.5 is given in figure 3.1.
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Breaks type: integer, lower bound: 0, upper bound: 35, length: 4
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Figure 3.1: Two examples (A) and (B) showing the mixed integer programming variables
and their settings for a given break assignment of a shift with length 40 and a possible
break positioning from slot 5 to 35. (A) shows four breaks. (B) shows three breaks. Note
that in (B) the first position of Breaks and Lengths is set to 0 indicating a non-existing
break.
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3.3 Expressions

Break Succession. In each shift Si breaks need to be succeeding and not overlapping
in time. Let x be a position in an array (e.g. BreaksSi) ranging from 1 to the
length of the array, denoted as length(). And let BreaksSi [x] be the value stored
at the position x.

∀x ∈ {1, .., length(BreaksSi)}
(
BreaksSi [x] + LengthsSi [x] ≤ Breaksi+1

)
(3.1)

Break Position. A break is allowed to start earliest p1 timeslots after the shift start
and ends latest p2 timeslots before the shift ends. The restriction of the earliest
possible break start is already considered in Breaks due to value restrictions. The
latest possible break end is covered by expression 3.2. Only breaks with a minimum
length of 2 (else they are non-existing) are considered.

∀x ∈ {1, .., length(BreaksSi)}
(
LengthsSi [x] ≥ 2

=⇒ BreaksSi [x] + LengthsSi [x] ≤ breakMaxEndSi

)
(3.2)

Lunch Break. Each shift Si exceeding a specific duration must contain at least one
lunch break. This lunch break must be positioned within a specified time window
based on the shift start. In expression 3.3 a reference in LunchBreak is made
whether a break is a lunch break or not. A break is a lunch break if it is positioned
within a certain time window and has a length equal to or greater g. Expression
3.4 is needed to ensure that at least one lunch break exists.

∀x ∈ {1, .., length(BreaksSi)}LunchBreakSi =


0 if LengthsSi [x] < g

0 if BreaksSi [x] < lunchMinStartSi
0 if BreaksSi [x] > lunchMaxStartSi
1 otherwise (by default)

 (3.3)

length(BreaksSi )∑
x=1

LunchBreakSi [x] ≥ 1 (3.4)

Duration of Working Periods. The duration of each working period must range be-
tween a lower bound w1 and upper bound w2. Only breaks with a minimum length
of 2 (else they are non-existing) are considered for deriving the working periods. A
working period lies within the break end of the previous break and the break start
of the following one. Expression 3.5 deals with working periods between breaks.
The first (from shift start to first break) and last working period (from last break to
shift end) are addressed separately. Expression 3.6 ensures the maximum duration
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of the first working period and expression 3.7 the maximum duration of the last
working period. The minimum duration of the first working period is implicitly
guaranteed by restricting the possible values for Breaks so a break can start earliest
after the minimum first working period. The minimum duration of the last working
period is ensured by expression 3.2 so that the last break ends latest before the
minimum last working period. Let BreaksSi [first] be the first break in BreaksSi
which is not 0 and BreaksSi [last] be the last break in BreaksSi .

∀x ∈ {1, .., length(BreaksSi)}
(
LengthsSi [x] ≥ 2 =⇒

BreaksSi [x+ 1]− (BreaksSi [x] + LengthsSi [x]) ≤ w2
)

(3.5)

BreaksSi [first]− shiftStartSi ≤ w2 (3.6)

shiftEnd− (BreaksSi [last] + LengthsSi [last]− 1) ≤ w2 (3.7)

Minimum Break Durations. If a working period is equal to or greater a certain length
w, the following break must have a duration of at least b timeslots. Expression 3.8
deals with working periods between breaks. The minimum break duration for the
first working period is addressed separately. Expression 3.9 ensures that the first
break has the required minimum break duration according to the duration of the
preceding working period.

∀x ∈ {1, .., length(BreaksSi)}
(
LengthsSi [x] ≥ 2 ∧

BreaksSi [x+ 1]− (BreaksSi [x] + LengthsSi [x]) ≥ w =⇒

LengthsSi [x+ 1] ≥ b
)

(3.8)

BreaksSi [first]− shiftStartSi ≥ w =⇒ Lengthsfirst ≥ b (3.9)

Duration of Breaks. The duration of each break must be within the range from a
minimum b1 to a maximum b2. Additionally, a break duration of length 0 is allowed
in our formulation. In case there are breaks with longer duration, there are less
breaks than maximum possible number of breaks. Thus, some positions in the
array Breaks and Lengths are not assigned any breaks. This is indicated by a
break duration of length 0.

∀x ∈ {1, .., length(BreaksSi)}
(
LengthsSi [x] = 0∨

(LengthsSi [x] ≥ b1 ∧ LengthsSi [x] ≤ b2)
)

(3.10)
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Non-Existing Breaks In case there are less than the maximum possible number of
breaks, some positions in the array Breaks and Lengths are not assigned any
breaks. Besides the break duration being set to 0, the break start is enforced to
be 0 as well. This is necessary so that all non-existing breaks are positioned and
grouped together in the beginning of the array.

∀x ∈ {1, .., length(BreaksSi)}
(
LengthsSi [x] = 0 =⇒ BreaksSi [x] = 0

)
(3.11)

Breaktime. A number of required breaktime is assigned to each shift Si. It is based
on the duration of the shift. The sum of break lengths of breaks associated with a
shift (sum of b-slots) must be equal to the required amount of breaktime.

length(BreaksSi )∑
x=1

LengthsSi [x] = breaktimeSi (3.12)

B-Slots. For each shift Si a reference in BreaksPerT imeslot is made if there is a break
(b-slot) at this timeslot. The timeslot is marked as b-slot with the value 1 in case
the timeslot lies within a break. Let ts be a position in an array representing a set
of timeslots (e.g. BreaksPerT imeslot) ranging from 1 to the length of the array,
denoted as length(). And let BreaksPerT imeslotSi [ts] be the value stored at the
position ts.

∀x ∈ {1, .., length(BreaksSi)} ∀ts ∈ {1, .., length(BreaksPerT imeslotSi)}LengthsSi [x] ≥ 2 =⇒

BreaksPerT imeslotSi [ts] =


1 if BreaksSi [x] ≤ (ts+ shiftStartSi − 1)

< BreaksSi [x] + LengthsSi [x]
0 otherwise (by default)


(3.13)

R-Slots. For each shift Si a reference in rSlotsPerT imeslot is made if there is a
reacquaintance pause (r-slot) at this timeslot. There are four different cases. The
timeslot is an r-slot, if the current timeslot is not marked a b-slot and the preceding
timeslot is. The timeslot is not an r-slot in case the timeslot is marked a b-slot, the

18



3.4. Fitness Function and Objective

preceding timeslot is not marked a b-slot or if it is the first timeslot of the shift.

∀ts ∈ {1, .., length(BreaksPerT imeslotSi)}
rSlotsPerT imeslotSi [ts] =



1 if BreaksPerT imeslotSi [ts− 1] = 1
∧BreaksPerT imeslotSi [ts] = 0

0 if BreaksPerT imeslotSi [ts] = 1
0 if BreaksPerT imeslotSi [ts− 1] = 0
0 if i = 0


(3.14)

3.4 Fitness Function and Objective

Definition 3.9. (Overcover). An integer array storing the overcover for each timeslot
of the planning period. Overcover is reached when there are more employees working
than required.

Definition 3.10. (Undercover). An integer array storing the undercover for each
timeslot of the planning period. Undercover is reached when there are less employees
working than required.

Definition 3.11. (nrB/Rslots). An integer array storing the sum of b- and r-slots for
each timeslot of the planning period.

Definition 3.12. (requiredStaff). An integer array storing the number of required
staff at each timeslot of the planning period. Values are given as input of the problem
instance.

Definition 3.13. (nrShifts). An integer array storing the number of shifts at each
timeslot of the planning period. Values are given as input of the problem instance.

Coverage Calculation. First for each timeslot the sum of all b- and r-slots of all
shifts needs to be established (nrB/Rslots). count(shifts) denotes the number of
shifts. Then it is determined if there is an under- or overcover. The Coverage is
calculated by subtracting the required number of employees requiredStaff and
the number of b- and r-slots nrB/Rslots from the number of shifts nrShifts
(equal to the available number of employees) (expression 3.16). The absolute value
of the resulting Coverage is written to Overcover and Undercover, respectively
(expression 3.17, 3.18).

∀ts ∈ {1, .., length(nrB/Rslots)}
(
nrB/Rslots[ts] =

count(shifts)∑
i=1

(BreaksPerT imeslotSi [ts] + rSlotsPerT imeslotSi [ts])
)

(3.15)
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∀ts ∈ {1, .., length(Coverage)}
(
Coverage[ts] =

nrShifts[ts]− nrB/Rslots[ts]− requiredStaff [ts]
)

(3.16)

∀ts ∈ {1, .., length(Overcover)}(
Overcover[ts] =

{∣∣ Coverage[ts] ∣∣ if Coverage[ts] > 0
0 otherwise (by default)

)
(3.17)

∀ts ∈ {1, .., length(Undercover)}(
Undercover[ts] =

{∣∣ Coverage[ts] ∣∣ if Coverage[ts] < 0
0 otherwise (by default)

)
(3.18)

Fitness. The Fitness is computed as weighted sum of Undercover and Overcover over
all timeslots. The weights wo and wu are given as input of a problem instance.

Fitness =
length(Coverage)∑

ts=1
wo ∗Overcover[ts] + wu ∗ Undercover[ts] (3.19)

Objective. The objective is to minimize the Fitness.

Figure 3.2 shows an example with five shifts and the calculation of Coverage, Overcover,
Undercover and Fitness with given total number of shifts and required staff per timeslot
of the planning period.
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Figure 3.2: A graphical example of the calculation of Coverage, Overcover, Undercover
and Fitness of five shifts. First nrB/Rslots needs to be determined by accumulating
all b- and r-slots for each timeslot. Then the coverage is calculated by subtracting
nrB/Rslots and requiredStaff from nrShifts. Finally the over- and undercover is
derived. Setting the weights wo to 2 and wu to 10, the resulting fitness amounts 216.
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CHAPTER 4
Solving the Break Scheduling

Problem

To solve the break scheduling problem, we propose a large neighborhood search algorithm.
It is made up of an initialisation phase and two sub-algorithms: the local search and a
mixed integer programming (MIP) algorithm. To solve the MIP formulation the solver
CPLEX is used.

In the following, we first explain the large neighborhood search algorithm. Then the
description of the initialisation and its sub-algorithms local search and mixed integer
programming is given.

4.1 Large Neighborhood Search
Large neighborhood search (LNS) was first introduced by Shaw in 1998 [Sha98]. Neigh-
borhoods are generated implicitly by a destroy and repair method. First the destroy
method destructs a part of the current solution, leaving the solution to be infeasible.
Then the repair method rebuilds the solution to be feasible again. The destroy method is
usually designed in a way such that different parts of the solution are destroyed in each
iteration. The degree of destruction determines the size of the resulting neighborhood.
Choosing the repair method one can decide upon using an optimal repair operation or a
heuristic one. A good overview on LNS is given by Pisinger and Ropke [PR10].

For solving the Bsp we suggest a combination of local search and mixed integer program-
ming called in separate sub-algorithms. The first sub-algorithm local search (see chapter
4.3) is based on Beer et al. [BGM+10] and uses two moves to optimize the solution: swap
and assignment. Additionally, a random-walk procedure is used to escape local optima.
Both moves focus only on a single break, which results in rather smaller neighborhoods,
but speeds up the time needed in each iteration. The second sub-algorithm generates a

23



4. Solving the Break Scheduling Problem

larger neighborhood by removing the break assignment of an entire shift (see chapter 4.4).
The solution is reconstructed with an optimal repair method using the solver CPLEX.

To optimize the solution the sub-algorithms are applied alternately. In each iteration a
sub-algorithm is chosen by a selection procedure. We propose a selection procedure which
is based on a probability function. It is dependent on several parameters and gradually
increases with the time elapsed e. e is normalized by the time limit for the runtime of
LNS µ. λ regulates the rate of increase of the probability. The maximum probability is
set by the probability factor η. A graphical illustration of the sub-algorithm probability
is shown in figure 4.1. In the following, a description of the parameters as well as the
probability function is given.

Probability Curve Gradient λ. A parameter which determines the gradient of the
probability curve.

LNS Time Limit µ. A parameter which determines a time limit for the overall runtime
of LNS.

Probability Factor η. A parameter which regulates the probability for a sub-algorithm
to be selected.

Sub-Algorithm Probability A function determining the probability for a sub-algorithm
to be chosen. The probability is dependent on the time elapsed e, which is normal-
ized to be within 0 and 1.

λ
e
µ − 1
λ− 1 η (4.1)

Algorithm 4.1 shows the framework of our LNS algorithm. After the initialization of all
relevant variables an initial solution is produced using an initialization procedure (see
chapter 4.2). Then the optimization procedure (algorithm 4.1: line 9-19) is executed until
the runtime exceeds the predefined LNS time limit µ, optimizing the current solution.
Sub-algorithms are chosen by the sub-algorithm probability function (function 4.1). The
further the time elapsed the higher the probability for the mixed integer programming
(MIP) sub-algorithm to be chosen. The maximum probability is given by the probability
factor η. The returned solution is kept as current solution Kcurrent and accepted as best
solution Kbest in case it is better or equal to the best known solution so far.

For the implementation the following additional variables are used:

Definition 4.1. (Solution K). A mapping of a set breaks B to each shift S in S:
(S,{BS1,BS2,...,BSn}).

Definition 4.2. (Coverage C). Function α : T → N assigns an integer number indicating
the coverage at each timeslot in the planning period. The coverage at a timeslot is
determined by the number of employees on duty (equivalent to number of shifts) minus
the number of employees on break minus the required number of employees. A negative
coverage results in an undercover whereas a positive results in an overcover.
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Figure 4.1: Probability function for a sub-algorithm to be chosen. It is dependent on the
time elapsed e, which is normalized by the LNS time limit for the overall runtime µ. The
further advanced the time the higher the probability.

In total three procedures for choosing a sub-algorithm were tested (see chapter 5):
random-selector (RS), timebound-selector (TS) and probability-selector (PS). RS decides
randomly at each iteration which sub-algorithm to choose. It leads to rather poor results
as the MIP sub-algorithm, which is very time consuming, gets chosen too often. As a
consequence the number of overall iterations is much lower as well as the number of
improvements. TS switches between the sub-algorithms each time no improvements
were made for a specified amount of time. Those time limits are set differently for
local search and MIP in accordance with their general time consumption. TS reached
better solutions but still not performing as desired. Experience showed that using local
search the greatest improvement steps happen in the beginning of the runtime and
become less and less over time. TS does not adapt to those changes. In contrast to
RS and TS choosing sub-algorithms by using a probability function (PS) regulates the
usage of the sub-algorithms throughout the runtime. Due to the characteristics of the
sub-algorithms a function was selected, which uses the MIP sub-algorithm very rarely in
the beginning and increases the usage over time, limiting it to a maximum probability to
prevent it from being to dominant. The sub-algorithm probability function is meant to
countermeasure the stagnation of improvements experienced in local search by allowing
the MIP sub-algorithm gradually to be chosen more often but giving local search still
the opportunity to reach improvements. In general this procedure is meant to cause a
vast exploration of the search space throughout the runtime. As such it is the superior
procedure and was used for experiments in this work.
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Algorithm 4.1: BreakScheduler
1 load problem instance;
2 initialize S, C;
3 for each S in S do
4 determine the need for a lunch break;
5 calculate breaktime;
6 end
7 Kcurrent ← Initialisation(C, S);
8 Kbest ← Kcurrent;
9 repeat

10 probability ← random number between 0 and 100;

11 if λ
e
µ−1
λ−1 ∗ η <= probability then
// e: time elapsed; µ : time limit for overall runtime

12 Kcurrent ← LocalSearch(Kcurrent, S);
13 else
14 Kcurrent ← MixedIntegerProgramming(Kcurrent, S);
15 end
16 if Kcurrent.fitness <= Kbest.fitness then
17 Kbest ← Kcurrent;
18 end
19 until runtime exceeds µ;
20 output Kbest;

4.2 Initialisation

For the initialisation a simple heuristics using a list of allowed break positions is applied.
The break assignment for each shift is performed sequentially. As a first step the position
of the lunch break is set. Then the list of allowed break positions is generated by applying
the constraints C1 (Break Positions) and the minimum duration of working periods
(part of C3), i.e. removing the positions before the minimum break start and after the
maximum break end, etc. The position of the lunch break as well as the minimum
duration of adjacent working periods are removed from the list. Positions for monitor
breaks are chosen randomly out of the list of allowed break positions. Each time a break
is added the list is reduced by the break position and the minimum duration of adjacent
working periods. In case the attained solution is not legal in regard to the constraints C3
(Duration of Working Periods), C4 (Minimum Break Durations) and F3 (Breaktime) the
list is reverted to the point it only contained the lunch break. Monitor break positions
are chosen anew. Compared to a solely randomly selected break pattern this method is
significantly faster due to ruling out solutions which are illegal in terms of the constraints
C1 (Break Positions), C2 (Lunch Break), C5 (Duration of Breaks) and the minimum
duration of working periods (part of C3).
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4.3. Local Search

The pseudo-code for the heuristics is shown in algorithm 4.2. It takes as input the initial
coverage C (containing only the number of employees on duty minus the required number
of employees) and a list of all shifts S. The generation of a break pattern for each shift
is separated into two phases: 1) insertion of the lunch break and 2) insertion of monitor
breaks. The list of allowed break positions (freeSlots) is initially set to all timeslots
of the shift within the positions p1 (earliest timeslot a break may start) and p2 (latest
timeslot a break may end). In the first phase it is determined if the shift needs a lunch
break according to its duration. In case the shift duration exceeds a certain length a
lunch break is needed, which is set to the middle of the shift (see algorithm 4.2: line
4). Should this position violate the constraint C2 the lunch break is either set to the
earliest or latest possible point (algorithm 4.2: lines 5-9). Then the freeSlots list is
reduced by the timeslots of the lunch break and the minimum working period before
and after (to ensure minimum working period durations). In the second phase a monitor
break is added repeatedly until no breaktime remains to be assigned or there are no
longer any allowed break positions. The position of the break is chosen randomly out
of the freeSlots list. In case the monitor break - which is 2 slots long - fits into the
position, the freeSlots list is reduced as before. Otherwise, the slot is removed from
the freeSlots list, as no legal break assignment at this slot is possible. This procedure
(algorithm 4.2: lines 14-22) is repeated until a break pattern satisfying all constraints is
found. Afterwards the coverage C is updated accordingly and the newly created initial
solution is returned.

4.3 Local Search

As part of the large neighborhood search algorithm a local search procedure is used,
which is based on Beer et al. [BGM+10]. It comprises two local neighborhoods produced
by two different moves: assignment and swap. The assignment assigns a break a new
start within its related shift. This may result in appending the break to a preceding
or succeeding break forming one longer break. Figure 4.2 shows two examples of the
assignment of a break to a new position. The move swap exchanges a break with a
predecessor or successor break of the same shift but with a different duration. An
illustration of two break swaps is given in figure 4.3. Each neighborhood is a set of
all solutions reached by applying the move assignment and swap to a single break,
respectively. A minimum-conflicts-based heuristics is used to determine the break on
which the move is applied on. The idea is to focus on parts of the current solution which
are deviating from the required optimum. Thus the heuristic only considers timeslots
which have a shortage or excess of employees. To ensure only an increase in quality of
the solution, in general only solutions with a better fitness are accepted. Equal or worse
solutions are accepted only with a varying probability, which decreases rapidly each
time a worse solution is found and is reset when a better solution is reached. To avoid
local optima a random-walk strategy is applied. Again a break is selected through the
minimum-conflicts heuristic. The break is then moved to the next free random position
found, which is reached by computing a random position within the shift and move one
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4. Solving the Break Scheduling Problem

Algorithm 4.2: Initialisation
Input: C, S
Output: K

1 for each S in S do
2 freeSlots ← list of all possible slots where a break can be;
3 if Si has lunch break then
4 set Blunch to the middle of the shift;
5 if lunch start does violate lunchTimeConstraints then
6 set Blunch at earliest possible point;
7 else if lunch end does violate lunchTimeConstraints then
8 set Blunch at latest possible point;
9 end

10 store Blunch in B;
11 reduce freeSlots;
12 end
13 repeat
14 revert B and freeSlots to only contain the Blunch;
15 while breaktime remains AND freeSlots is not empty do
16 randomSlot ← select timeslot randomly out of freeSlots;
17 if previous or following timeslot of randomSlot is in freeSlots then
18 store Bmonitor in B;
19 reduce freeSlots;
20 else
21 remove the randomSlot from freeSlots;
22 end
23 end
24 until all TemporalConstraints are satisfies;
25 for each B in B do
26 for each timeslot in Bi do
27 update C at timeslot;
28 end
29 if Bi has no contiguous successor then
30 consider reacquaintance timeslot in C;
31 end
32 end
33 Kinitial ← create initial solution;
34 return Kinitial;
35 end
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4.3. Local Search

timeslot forward until a legal position is found. At the shift end it proceeds from the
shift start until all possible slots have been tried. In case no legal position can be found
no rearrangement is made. Otherwise the break is moved to the new position. The
solution is accepted regardless its quality, and thus the resulting fitness could be worse
than the previous one. Such a move is necessary to lead the algorithm into new areas in
the solution space and as a consequence escape local optima. The higher the probability
of the random-walk procedure, the greater the diversification of the search. Hence, a
small probability which is enough to escape local optima but not broaden the search too
much is needed. The random-walk procedure is used with the small probability of 2.5%.

assignment

selected break

selected break after move

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(B)

(A)

assignment

selected break

new break after move

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 4.2: Two examples (A) and (B) for the move assignment. In both examples the
selected break is assigned a new start position. In the case of example (B) the selected
break is moved next to another break and thus forming one longer break.

swap

selected break

selected break after move

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(B)

(A)

swap

selected break

selected break after move

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 4.3: Two examples (A) and (B) for the move swap. The selected break can be
swapped with any break of different length provided that all constraints are fulfilled.

The pseudo-code for the local search is given in algorithm 4.3, 4.4, 4.5, 4.6 and 4.7. In
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4. Solving the Break Scheduling Problem

algorithm 4.3 a break is selected out of a conflict list. For the selection a timeslot which
has over- or undercover is determined. Then a shift containing the timeslot is picked at
random and one break within is shift is picked randomly. After the selection of a break a
move is chosen with a particular likelihood. The move assignment (algorithm 4.4) first
removes the selected break from B and then creates the neighborhood of solutions reached
by reinserting the break at any other possible timeslot. Each solution is evaluated by an
acceptance procedure (algorithm 4.7) and the best solution is kept in memory. Finally, if
the best solution was set, it is returned. In case there was none, changes are reverted and
the input solution is returned. Swap (algorithm 4.5) works in a similar way except the
neighborhood is composed of all solutions achieved by swapping the selected break with
other breaks within the shift. randomWalk (algorithm 4.6) simply chooses a position to
place the selected break by random. The break is moved one slot further until a valid
solution is found. The solution is accepted and returned.

Algorithm 4.3: LocalSearch
Input: Kcurrent, S
Output: K

1 Bselected ← choose B randomly out of conflict list;
2 Sselected ← S associated with Bselected;
3 probability ← random number between 0 and 100;
4 if probability <= 2.5 then
5 Knew ← randomWalk(Kcurrent, Sselected, Bselected);
6 else if probability <= 50 then
7 Knew ← moveAssignment(Kcurrent, S, Bselected);
8 else
9 Knew ← moveSwap(Kcurrent, S, Bselected);

10 end
11 return Knew;

4.4 Mixed Integer Programming
In the second part of the large neighborhood search a larger neighborhood is created
and the solution is rebuilt using an exact method - mixed integer programming. In
contrast to the local search procedure, which focuses on one break, this neighborhood is
created by removing the break assignment of an entire shift. As shown in figure 4.4 the
resulting neighborhood is much larger then those of the moves assignment and swap
and it compasses both of them. To solve the subproblem of scheduling breaks for the
designated shift, the MIP sub-algorithm hands the subproblem over to the solver CPLEX.
CPLEX is instructed to favour optimality over feasibility meaning the primary aim is to
find optimal solutions and less effort may be applied to finding feasible solutions early.
Further a time limit ν for each CPLEX instance is set. When ν is exceeded CPLEX halts
and returns the best solution found so far. The status of the returned solution needs to
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4.4. Mixed Integer Programming

Algorithm 4.4: moveAssignment
Input: Kcurrent, Sselected, Bselected
Output: K

1 remove Bselected from B;
2 update C;
3 for all possible breakslots in Sselected do
4 if breakslot is free for break AND breakslot != Bselected then
5 move Bselected to new position;
6 if all TemporalConstraints are satisfied then
7 Ktemp ← create temporary solution;
8 if acceptSolution(Ktemp) then
9 Kbest ← Ktemp;

10 end
11 end
12 end
13 end
14 if Kbest exists then
15 update C;
16 return Kbest;
17 else
18 revert changes;
19 return Kcurrent;
20 end

be checked for being either feasible or even optimal. Below the definition for the CPLEX
time limit is stated:

CPLEX Time Limit ν. A parameter which determines a time limit for each instance
of CPLEX.

In algorithm 4.8 the pseudo-code for the MIP sub-algorithm is given. At first a shift is
selected out of a conflicts list. It is a similar approach as applied for the local search
sub-algorithm. A timeslot which has over- or undercover is determined. Then a shift
containing the timeslot is picked at random. After the selection of a shift the model for
CPLEX is declared, including all necessary variables, constants and expressions. The
objective is stated and the model is handed over to the CPLEX solver. When finished
(either because an optimal solution is found or the time limit is reached) the solution
status is examined. The solution is accepted in case it is optimal or feasible and of better
quality. Otherwise it is discarded and the input solution is returned.
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4. Solving the Break Scheduling Problem

Algorithm 4.5: moveSwap
Input: Kcurrent, Sselected, Bselected
Output: K

1 for all B in Sselected do
2 if Bselected.length != Bi.length AND positions are free for break swap then
3 swap Bselected and Bi;
4 if all TemporalConstraints are satisfied then
5 Ktemp ← create temporary solution;
6 if acceptSolution(Ktemp) then
7 Kbest ← Ktemp;
8 end
9 end

10 end
11 end
12 if Kbest exists then
13 update C;
14 return Kbest;
15 else
16 return Kcurrent;
17 end

N
swap

N
assignment

N
shiftAssignment

Figure 4.4: Neighborhoods of one iteration step derived by the different sub-algorithms.
NshiftAssignment is reached by reassigning all breaks of a shift, Nassignment by the move
assignment and Nswap by the move swap. The neighborhood NshiftAssignment is much
larger and it comprises both neighborhoods Nassignment and Nswap.
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Algorithm 4.6: randomWalk
Input: Kcurrent, Sselected, Bselected
Output: K

1 remove Bselected from B;
2 update C;
3 randomPosition ← choose random timeslot out of possible breakslots in Sselected;
4 repeat
5 repeat
6 move randomPosition further by one timeslot;
7 until randomPosition is free for break;
8 until all TemporalConstraints are satisfied AND not all possible breakslots have
been tried;

9 if all possible breakslots have been unsuccessfully tried then
10 revert changes;
11 return Kcurrent;
12 end
13 set Bnew to randomPosition;
14 store Bnew in B;
15 Knew ← create new solution;
16 update C;
17 return Knew;

Algorithm 4.7: acceptSolution
Input: Ktemp
Output: boolean

1 recalculate Ktemp.fitness;
2 if Ktemp.fitness is better then Kbest.fitness then
3 probabilityCount ← 0;
4 return true;
5 else if fitness is equal or worse then
6 increment probabilityCount by one;
7 if 100/probabilityCount >= random integer between 0 and 100 then
8 return true;
9 end

10 else
11 return false;
12 end
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Algorithm 4.8: MixedIntegerProgramming
Input: Kcurrent, S
Output: K

1 Sselected ← choose S randomly out of conflict list;
2 cplexModel ← initialize cplex instance;
3 Define all variables, expressions and the objective for cplex;
4 Solve cplexModel with the cplex solver;
5 if cplexModel is solved then
6 if cplexModel.status equals optimal OR (cplexModel.status equals feasible AND

fitness is better or equal) then
7 Knew ← create new solution;
8 merge result for Sselected in Knew;
9 update C;

10 return Knew;
11 end
12 else

/* Cplex could not produce a better or optimal solution. */

13 return Kcurrent;
14 end
15 end
16 else

/* Cplex could not solve the problem. */

17 return Kcurrent;
18 end

34



CHAPTER 5
Computational Experiments

Several experiments have been conducted in order to further develop the final algorithm
designed in this thesis as well as for evaluation of the final outcome. Throughout this
work various parameter emerge, which influence the results of the algorithm. For instance,
CPLEX Time Limit ν determines, if CPLEX has enough time to produce an optimal
solution, a feasible one or maybe not one at all. Furthermore, different procedures for
the choice of sub-algorithm were tested. The choice made at each iteration has a great
influence on leading the search towards diversification or intensification.

In the following, we first state the experimental settings. Then a detailed description
and discussion on the evaluation of parameters and the sub-algorithm selectors is given.
Finally we present the final results and make a comparison to previous publications.

5.1 Experimental Settings
The algorithm is programmed in Java integrating the solver CPLEX. Tests were performed
on a Dell Latitude E6420 with four Intel Core i7-2640M @2.80 GHz and 8 GB RAM using
up to four cores. For each experiment ten runs were executed. For reasons of comparison
with previous works the overall runtime is set to one hour (if not stated otherwise). As
the MIP sub-algorithm is very time-consuming, higher time limits for the overall runtime
have been tested as well.

For the evaluation 30 instances have been used, the same as presented by Beer et al.
[BGM+10]. 10 are randomly generated and 20 were obtained from a real-life scenario.
The former are described and publicly available in [ben08]. [ben08] further provides a
validator to verify the feasibility of generated solutions. The real-life instances and the
settings for all instances were obtained from a real-life use case for supervisory personnel.
The settings, which are the same for all instances, are given below:

• T : length = 2016
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5. Computational Experiments

• C1: p1 = 7, p2 = 7

• C2: h = 73, g = 6, l1 = 43, l2 = 72

• C3: w1 = 6, w2 = 20

• C4: w = 11, b = 4

• C5: b1 = 2, b2 = 12

All values are given in timeslots and one timeslot lasts five minutes. Thus a planning
period of 2016 timeslots corresponds to exactly one week. It is of cyclic nature, which
means the schedule is repeating itself on a weekly basis. Real-life instances differ from
randomly generated in terms of shift length. On average randomly generated instances
show more shifts (146 compared to 128 shifts), but real-life instances have a higher
average shift length. Shifts lengths for random instances range from 7 to 9 hours and
score an average length of 7.9 hours. Real-life instances have shift lengths ranging from
5 to 12.6 hours and the average shift length is 9.8 hours, about 2 hours compared to
random instances. Table 5.1 gives an overview on all instances, their number of shifts
and the average shift length. In general it can be said, the greater the shift length, the
larger the search space. Thus, for solving a subproblem with an exact method more time
is spent on finding an optimal solution.

For the parameter testing two instances were selected, one out of each set of instances, ran-
dom and real-life. If not stated otherwise, one single shift was considered for optimization
in the MIP sub-algorithm.

5.2 Evaluation of Parameters and Sub-Algorithm
Selectors

For the testing two instances were chosen: Random1-5 and 2fc04a. Experiments were
conducted in the same way as the final results were computed (see section 5.1). Before
parameters were tested the selector for the sub-algorithms was evaluated. In total three
procedures for choosing a sub-algorithm were tested: random-selector (RS), timebound-
selector (TS) and probabilty-selector (PS). The first selector RS is a simple procedure
choosing the sub-algorithm randomly at each iteration. TS is a more elaborated procedure
making use of two parameters: time since the last improvement by local search and
time since the last improvement by MIP. Using TS the frequency of switches between
sub-algorithms correlates with the time elapsed since the last improvement. For each
sub-algorithm a separate time limit is defined. The time counter is reset each time
an improvement is made. In case the time limit is exceeded there is a switch in sub-
algorithm. The test results for both, RS and TS, can be found in Table 5.2. Neither RS
nor TS performed satisfactory. Results for RS are almost as high as those using MIP
only (initialisation + repeatedly MIP sub-algorithm). This is due to MIP being chosen
too frequently. As it is very time-consuming the numbers of iterations are decreased
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Random Real-Life
name no. shifts avg. shift length name no. shifts avg. shift length
Random1-1 137 8.0 h 2fc04a 135 9.7 h
Random1-2 164 7.7 h 2fc04a03 134 9.8 h
Random1-5 141 7.7 h 2fc04a04 137 9.7 h
Random1-7 157 8.0 h 2fc04b 126 9.8 h
Random1-9 151 7.8 h 3fc04a 124 9.9 h
Random1-13 124 8.3 h 3fc04a03 123 10.0 h
Random1-24 137 7.8 h 3fc04a04 128 9.8 h
Random1-28 124 7.7 h 3si2ji2 151 9.0 h
Random2-1 179 8.0 h 4fc04a 124 9.9 h
Random2-4 162 7.9 h 4fc04a03 123 10.0 h

4fc04a04 127 9.8 h
4fc04b 125 9.7 h
50fc04a 130 9.8 h
50fc04a03 130 9.9 h
50fc04a04 131 9.8 h
50fc04b 126 9.9 h
51fc04a 129 9.8 h
51fc04a03 129 9.8 h
51fc04a04 130 9.8 h
51fc04b 126 9.8 h

Table 5.1: List of all instances used for evaluation: 10 randomly generated and 20
obtained from a real-life scenario. For each instance the number of shifts and the average
shift length in hours is given. Real-life instances show a higher average shift length by
about 2 hours.

significantly as well as the number of improvements. TS achieved far better results yet not
as good as desired. Experience showed that local search achieves the most improvements
in the beginning of the runtime and the number of improvements decreases over time,
meaning that the time interval between improvements is getting longer. Setting the
time limits to fixed numbers does not deal with these kind of circumstances. From
a very early stage onwards the local search sub-algorithm is hardly able to achieve
improvements as the time limit is reached beforehand in most of the cases. With regard
to the characteristics of the sub-algorithms a third selector PS was developed. PS chooses
a sub-algorithm using a probability function (4.1). The function is designed to use the
MIP sub-algorithm very rarely in the beginning and increases the usage over time, yet
give the local search sub-algorithm still the opportunity to find improvements. To prevent
the MIP sub-algorithm from being used too frequently the probability is limited by a
maximum value. Figure 5.1 illustrates the improvements made throughout the runtime
by the different selectors for two example runs using TS or PS respectively. Using TS
(Figure 5.1, left) improvements made through local search stop abruptly already in a
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very early stage (coloured in blue). This is due to a small time limit of 1 minute for
local search. The time limit was chosen so small in order to enable switches from local
search to MIP (coloured in red) already in the early stage. Experiments with slightly
longer time limits (5 minutes; see Table 5.2) have also shown no significant increases
in solution quality. As the parameter is set to a fixed value it does not correspond to
the increasing time interval between improvements. Local search usually makes rapid
improvements in the very beginning of the runtime, which are essential for the further
progress of the algorithm. Thus stopping it after a certain time limit does affect the
quality of the solution. In contrast using PS (Figure 5.1, right) local search continues to
improve the solution for further several minutes resulting in a much lower fitness from
the start. Additionally, local search still makes improvements within the first 40 minutes
and MIP is able to make improvements to the end of the runtime. PS was able to reach
a fitness of 721 in contrast to 850 reached with TS. PS was identified as the superior
selector and parameter tests and final results were computed using PS.
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Figure 5.1: Improvements made during runtime using TS (left) and PS (right) on the
instance Random1-5. All improvement steps from a fitness of about 13,500 (initial fitness)
to 1,800 are made within the first 30 seconds by local search. Thus, the data range on
the y-axis was set to a maximum of 1,800, to give a better focus on the fitness at a later
time. In these two examples TS reached a final fitness of 850 and PS of 712. It can be
seen that PS is able to achieve better results already from an early stage on onwards.
Settings TS: time limit local search = 1 min, time limit MIP = 2 min, ν = 5; settings
PS: λ = 5, η = 20, ν = 5

For the evaluation of parameters different settings of each parameter were tested one by
one. A total number of 56 experiments were performed taking a total runtime of 2,736
hours. The following parameter were considered in the evaluation:

• LNS Time Limit µ: A parameter which determines a time limit for the overall
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µ = 1 hours Random1-5 2fc04a
selector ν best mean best mean

RS 2 min 3,722 4,986 10,674 11,498
TS1 2 min 752 841 3,110 3,169
TS2 5 min 774 892 3,126 3,179
TS3 2 min 716 825 2,976 3,099

Table 5.2: Results for the testing of the selectors RS and TS. In TS1 and TS2 the time
limit until a sub-algorithm is switched was 1 minute for local search and 3 minutes for
MIP, in TS3 both were set to 5 minutes.

runtime of LNS in hours.

• Probability Curve Gradient λ: A parameter which determines the gradient of the
probability curve.

• Probability Factor η: A parameter which regulates the probability for a sub-
algorithm to be selected given in percent.

• CPLEX Time Limit ν: A parameter which determines a time limit in minutes for
each instance of CPLEX.

λ is responsible for the increase in probability for the MIP sub-algorithm to be chosen.
The smaller λ the more linear is the function. The higher λ the flatter is the function in
the first 80% of the runtime followed by a steep rise. The idea is to set λ to a value so it
counters the stagnation of improvements made by local search. Values of 5 and 15 have
been tested for λ.

η gives the maximum possible probability that can be reached. Values range from 0
and 100. If it is set to 0 only local search would be used. 100 means that at the end of
the runtime the MIP sub-algorithm has a 100% probability to be chosen. η is meant to
balance the usage of both sub-algorithms. When choosing a value one should consider
the time needed for an iteration. The MIP sub-algorithm needs several minutes for one
iteration whereas local search is able to run up to 12 million iterations per minute. Yet,
local search needs more iterations in order to achieve an improvement. Thus, η should
be big enough to allow MIP to be used already in the first half of runtime, yet be small
enough to give local search sufficient time for improvements. Values of 10, 20 and 30
have been tested.

ν is the time limit set for CPLEX. As a full shift is considered for optimization this step
is more time consuming, so ν should be set to several minutes in order to allow CPLEX
to return a solution. But the overall runtime is in general limited to one hour. At one
iterations step of MIP only one out of about 140 shifts is being optimized. Thus, the
step should not take more then approximately 5 minutes. Experiments with 2, 5 and 10
minutes were conducted.

39



5. Computational Experiments

For the instance Random1-5 PS achieved the best results with the settings λ = 5, η = 20
and ν = 5 in both best and mean (see Table 5.3). As can be seen from Table 5.4 results
for PS on the instance 2fc04a do not differ greatly from results with only local search
(LS; initialisation + repeatedly local search sub-algorithm). This is because in many
cases CPLEX can not produce a better solution or any at all within the time limit. Most
of the shifts for real-life instances are longer (beyond 9 hours) making the subproblem
too complex to analyse for CPLEX. One reason could be that time limits for CPLEX
were too tight. Therefore higher values for ν and µ were tested as well. Results for a
runtime of two and three hours are given in 5.5 and 5.6. Still only little improvements
were made on the 2fc04a instance. A larger time limit for CPLEX (e.g. 10 minutes)
does not lead to a better performance. Figure 5.2 compares the mean results of different
time limits and parameter settings to each other. In general a tendency towards the
longer the overall runtime the greater the positive effect of MIP on the performance can
be observed. Whereas results for LS stay almost the same with different µ, LNS is still
able to improve greatly with higher µ. For the computation of final results the following
parameter settings were chosen:

• LNS1: selector = PS, µ = 1, λ = 5, η = 5, ν = 5

• LNS2: selector = PS, µ = 1, λ = 5, η = 5, ν = 2
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5.2. Evaluation of Parameters and Sub-Algorithm Selectors

Random1-5 2fc04a
µ = 1 week µ = 1 week

λ/η 5/20 - all shifts 5/20 - all shifts
ν single run single run

1 week 1,012 2,996

Table 5.7: Results for the parameter testing on the instances Random1-5 and 2fc04a
with an overall runtime of 1 week. All shifts were given as input to CPLEX. Results are
the same as for using LS, due to CPLEX not being able to process all shifts at once.
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Figure 5.2: Comparison of the mean values of the test results using PS with different
parameter settings and LS on the instance Random1-5 (left) and 2fc04a (right). A longer
runtime leads to a slighly better fitness compared relatively to using LS. Yet a higher
CPLEX time limit does not improve the solution quality.

In [Koc15] Kocabas presented a mixed integer model, which optimizes all shifts at once,
but for a special case of Bsp. We conducted a similar experiment for the general Bsp
giving all shifts at once to CPLEX. The overall runtime as well as CPLEX time limit was
set to one week. CPLEX was not able to cope with the complexity and did not return
a solution. Results (Table 5.7) are the same as results using LS for several hours. One
reason could be that the number of expressions is too high. Due to the implementation
of this model the constraints are expressed for each shift separately. The fitness is then
computed for all shifts together. Processing each shifts separately leads to a great number
of expressions. For example the instance Random1-5 has 141 shifts with an average length
of 90 timeslots. This results in 6 breaks per shift and about 900 expressions per shift.
In total CPLEX has to handle about 127,000 expression for the instance Random1-5.
Future work could be to rewrite the model so it is better suited for the optimization of a
large number of shifts.
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5. Computational Experiments

5.3 Results and Comparison
Final results for all instances were computed with the following parameter settings:

• LNS1: selector = PS, µ = 1, λ = 5, η = 5, ν = 5

• LNS2: selector = PS, µ = 1, λ = 5, η = 5, ν = 2

For comparison also results of using only local search (LS) were computed. LS is our
implementation of the local search algorithm based on Beer et al. [BGM+10] made up of
the initialisation and the repeated use of the local search sub-algorithm. The results can
be seen in Table 5.8, giving the best, mean and standard deviation σ of each instance.
For most of the instances LNS2 achieved better results then LNS1. Especially for the
real-life instances it performed better in best and mean for almost all the instances. For
the random instances both LNS versions clearly outperform LS. Although the difference
in results of LS, LNS1 and LNS2 is not significant for the real-life instances, still LNS1
and LNS2 outperform LS in most instance.

Results from previous publications are shown in Table 5.9. Beer et al. [BGM+10]
introduced the first benchmark results for the break scheduling problem. The results
shown in Table 5.9 were computed by using a local search algorithm with a min-conflicts-
random-walk procedure and a randomly created initial solution (Random init) or an
initial solution created by solving the corresponding simple temporal problem (STP init).
MAPS was developed by Widl [Wid10] and is holding the current upper bounds for
18 out of 20 real-life instances. MAPS is a memetic algorithm using genetic operators
combined with local search and a penalty system. Kocabas [Koc15] gave an integer linear
programming formulation (ILP) to solve the Bsp as a whole. The overall time limit
was set to two hours, but in only two cases the time limit was reached. ILP achieved
new upper bounds for all except one of the randomly generated instances. However,
this approach could not be applied to the real-life instances. The large neighborhood
search algorithm presented in this thesis was able to outperform Beer et al. [BGM+10]
in all of the random instances, but not the real-life instances. Comparing the results of
Beer et al. and the implementation of local search of this thesis, one can see that the
latter performed slightly worse. Yet, due to being programmed in different programming
languages a direct comparison might be inaccurate. In contrast to Java, Comet [MVH05]
(used by Beer et al. and Widl) was specifically designed for constrained-bases local search
algorithms.

In contrast to our expectations, LNS was not able to surpass the best known results
[BGM+10] [Wid10] [Koc15]. One reason could be the complexity of the mixed integer
model as it comprises a hight number of expressions. This led to the problem that CPLEX
could not improve on the solution in a significant number of iterations. Still compared to
Kocabas [Koc15] we were able to apply our algorithm to the real-life instances.
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5.3. Results and Comparison

µ = 1 hours LNS1 LNS2 LS
Instance best mean σ best mean σ best mean σ

Random1-1 794 964 88 726 889 71 1,240 1,331 57
Random1-2 818 930 95 700 884 110 1,162 1,263 105
Random1-5 612 780 87 714 797 73 1,066 1,171 73
Random1-7 1,034 1,149 92 930 1,075 102 1,336 1,379 26
Random1-9 978 1,082 68 940 1,085 78 1,214 1,414 97

Random1-13 740 929 81 784 885 73 998 1,111 80
Random1-24 724 811 97 730 861 109 940 1,059 75
Random1-28 646 779 163 606 745 138 982 1,091 76
Random2-1 1,212 1,376 124 1,218 1,363 73 1,458 1,572 76
Random2-4 922 1,162 159 844 1,088 119 1,332 1,475 83

2fc04a 2,996 3,126 64 3,004 3,096 54 3,050 3,091 24
2fc04a03 2,984 3,103 47 3,022 3,077 31 3,018 3,065 30
2fc04a04 3,160 3,212 30 3,116 3,178 36 3,094 3,152 23
2fc04b 2,228 2,302 35 2,216 2,264 36 2,184 2,252 36
3fc04a 1,850 1,929 43 1,814 1,869 35 1,846 1,884 27

3fc04a03 1,790 1,888 46 1,790 1,873 47 1,834 1,893 26
3fc04a04 2,062 2,118 33 2,084 2,112 23 2,044 2,087 23
3si2ji2 3,518 3,537 13 3,484 3,525 24 3,512 3,538 15
4fc04a 1,774 1,923 55 1,786 1,888 50 1,846 1,887 25

4fc04a03 1,902 1,953 32 1,856 1,915 41 1,876 1,919 18
4fc04a04 2,042 2,145 49 2,032 2,100 60 2,030 2,095 28
4fc04b 1,668 1,758 42 1,644 1,739 39 1,728 1,759 15
50fc04a 1,920 2,019 50 1,848 1,970 79 1,942 1,998 36

50fc04a03 1,986 2,056 39 1,928 2,001 36 1,926 2,014 41
50fc04a04 2,054 2,133 47 2,036 2,125 40 2,082 2,123 27
50fc04b 2,122 2,213 53 2,106 2,198 58 2,144 2,202 37
51fc04a 2,270 2,334 44 2,226 2,338 53 2,218 2,314 46

51fc04a03 2,204 2,283 49 2,140 2,222 43 2,156 2,251 45
51fc04a04 2,340 2,433 45 2,292 2,371 52 2,296 2,377 43
51fc04b 2,668 2,728 34 2,576 2,621 27 2,600 2,653 39

Table 5.8: Final results computed with the parameter settings LNS1 and LNS2. σ is the
standard deviation. Results of using only local search (LS) are added for comparison.
Settings for LNS1 and LNS2 only differ in the CPLEX time limit, which is set to 5
minutes or 2 minutes respectively. Other parameters are set as follows: µ = 1, λ = 5,
η = 5. LNS2 achieves better results as LNS1 in most of the instances. Both outperform
LS in all of the instances.

45



5. Computational Experiments

Random init STP init MAPS ILP
[BGM+10] [BGM+10] [WM14] [Koc15]

Instance best mean σ best mean σ best mean σ

Random1-1 1,728 1,972 177 - - - 346 440 48 84
Random1-2 1,654 1,994 172 - - - 370 476 65 228
Random1-5 1,284 1,477 99 - - - 378 418 29 360
Random1-7 1,860 1,077 154 - - - 496 583 42 408
Random1-9 1,358 1,658 213 - - - 318 423 51 108
Random1-13 1,264 1,535 245 - - - 370 445 55 348
Random1-24 1,586 1,712 74 - - - 542 611 43 408
Random1-28 1,710 2,020 233 - - - 222 318 71 228
Random2-1 1,686 1,855 142 - - - 724 889 75 636
Random2-4 1,712 2,053 242 - - - 476 535 45 114

2fc04a 3,094 3,248 84 3,112 3,224 86 2,816 2,961 71 -
2fc04a03 3,100 3,229 61 3,138 3,200 39 2,834 2,934 54 -
2fc04a04 3,232 3,371 68 3,234 3,342 60 2,884 2,954 60 -
2fc04b 2,017 2,104 92 1,822 2,043 99 1,884 1,948 49 -
3fc04a 1,746 1,809 49 1,644 1,767 102 1,430 1,533 67 -

3fc04a03 1,632 1,804 87 1,670 1,759 53 1,440 1,514 40 -
3fc04a04 1,942 2,2032 51 1,932 1,980 40 1,614 1,718 48 -
3si2ji2 3,626 3,692 35 3,646 3,667 14 3,177 3,206 17 -
4fc04a 1,694 1,851 126 1,730 1,817 48 1,478 1,540 29 -

4fc04a03 1,666 1,795 87 1,748 1,834 55 1,430 1,502 42 -
4fc04a04 1,918 2,017 95 1,982 2,064 62 1,606 1,674 48 -
4fc04b 1,440 1,527 56 1,410 1,489 49 1,162 1,233 48 -
50fc04a 1,750 1,861 95 1,672 1,827 81 1,548 1,603 36 -

50fc04a03 1,718 1,847 96 1,686 1,813 84 1,402 1,514 67 -
50fc04a04 1,790 1,985 83 1,792 1,917 64 1,480 1,623 89 -
50fc04b 1,854 2,012 91 1,822 1,954 77 1,818 1,900 56 -
51fc04a 2,048 2,204 89 2,054 2,166 62 1,886 2,074 87 -

51fc04a03 2,004 2,096 60 1,950 2,050 86 1,886 1,949 46 -
51fc04a04 2,058 2,195 64 2,116 2,191 53 1,958 2,039 52 -
51fc04b 2,380 2,514 106 2,244 2,389 94 2,306 2,367 43 -

Table 5.9: Results from previous publications. σ is the standard deviation. STP init and
Random init are a local search algorithm introduced by Beer et al. [BGM+10], MAPS is
a memetic algorithm developed by [Wid10] and Kocabas [Koc15] presented an integer
linear programming formulation. MAPS and ILP hold the upper bounds for all instances,
except in the two 2fc04b and 51fc04b.
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CHAPTER 6
Conclusions

In this thesis a large neighborhood search was proposed to solve the break scheduling
problem. It comprises a local search algorithm and a mixed integer programming
procedure (MIP). For the MIP procedure we gave for the first time a formulation for
the Bsp without restrictions on the number of breaks per shift. The implementation
of the LNS algorithm is made up of two sub-algorithms: local search and MIP. The
local search sub-algorithm, which is based on [BGM+10], uses two moves - swap and
assignment - and a random-walk procedure to escape local optima. The sub-algorithm
focuses on the optimization of only a single break. The MIP sub-algorithm removes
the break assignment of an entire shift (destroy method) and reconstructs the solution
optimally (repair method) - shiftAssignment. To solve the MIP formulation the solver
IBM ILOG CPLEX Optimization Studio was used.

A set of experiments was conducted in order to test different sub-algorithm selectors and
parameter settings. In total 56 experiments were performed taking a total runtime of
2,736 hours. Three different selectors were designed and tested: random-selector (RS),
timebound-selector (TS) and probability-selector (PS). RS chooses the sub-algorithm
randomly at each iteration. TS makes the choice based on the time elapsed since the
last improvement. PS uses a function regulating the probability of a sub-algorithm to be
chosen. Further, four different parameters were tested: LNS time limit µ, probability
cure gradient λ, probability factor η and CPLEX time limit ν.

The main conclusions of the evaluation of parameters and sub-algorithm selectors are as
following:

• An elaborated procedure to select a sub-algorithm is superior to choosing sub-
programs randomly.

• Improvements made by local search in the very beginning of the runtime are
essential for the further progress of the algorithm.
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6. Conclusions

• PS was found to be the best selector and was used for the computation of the final
results.

• The algorithm performs best when the usage of the MIP sub-algorithm is limited.
The maximum probability of it to be choosen was set to 20% and the CPLEX time
limit was set to 2 to 5 minutes.

• There is a tendency towards the longer the overall runtime of the LNS algorithm
the greater the positive effect of MIP on the performance.

Final results showed that the LNS algorithm outperforms our implementation of local
search in most cases. However, it did not yet reach the upper bounds of the best known
results so far [BGM+10] [Wid10] [Koc15]. Still compared to Kocabas [Koc15] we were
able to apply our algorithm to the real-life instances.

Future work could be to redesign the mixed integer programming model in a more efficient
way. It would be interesting to consider other formulations for the Bsp without restrictions
to be able to solve the whole Bsp. A way to further optimize performance could be
the implementation of other destroy-and-repair methods for the MIP sub-algorithm, e.g.
single breaks of different shifts within the same time interval. Additionally, it would be
interesting to investigate the use of a tabu search.
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