
A Human Architecture
Implementation Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Sofware Engineering & Internet Computing

eingereicht von

Xiaolin Zhang, BSc
Matrikelnummer 0825548

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ. Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Mitwirkung: Univ. Ass. Mag.rer.soc.oec. Dr.techn. Christoph Mayr-Dorn

Wien, 13. Juli 2016
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Human Architecture
Implementation Framework

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Xiaolin Zhang, BSc
Registration Number 0825548

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ. Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Assistance: Univ. Ass. Mag.rer.soc.oec. Dr.techn. Christoph Mayr-Dorn

Vienna, 13. Juli 2016
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Xiaolin Zhang, BSc
Zwinzstrasse 4-6/1/12, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

With increasing level of interconnections between software users due to the ubiquity of the
web, software systems are forced to include and support emergent interaction patterns to enable
effective and efficient collaboration between participants, that are humans and software agents.
Numerous tools exist today to simplify collaborative undertakings and integrating them into
software systems imposes a challenge to software architects and developers. Further more,
collaborative tools are subject to fast changes thus human-intensive software systems have to
be highly adaptable.

To this end, the human architecture implementation framework is proposed. It offers struc-
tural architectural documentation via hADL and can be combined with behavioural meta-models
such as process description languages to provide composite means to prescribe and describe
software architectures. The framework includes a runtime which offers process engine inte-
gration based on a resource model and manages architectural elements prescribed via hADL
using surrogates (proxies). Additionally an architecture-driven software development approach
is inherently enforced.

The evaluation of the framework includes a prototype implementation of an interest-based
bargaining process. A prosaic assessment of the framework is conducted and experiences during
development are shared.

iii

Kurzfassung

Die stetige Steigerung des digitalen Vernetzungsgrades in der Gesellschaft führt unweigerlich
zur Emergenz von innovativen gemeinschaftlichen Arbeitsweisen zwischen Mensch und Ma-
schine. Softwaresysteme müssen diese neuen Strukturen und Verbindungen unterstützen damit
die Sinnhaftigkeit der Systeme nicht in Frage gestellt wird und neue Unternehmungen effektiv
und effizient durchgeführt werden können.

Unzählige digitale Werkzeuge existieren bereits um die Kooperation von Mensch zu Mensch,
Mensch zu Maschine und Maschine zu Maschine zu vereinfachen. Diese sind jedoch ständigen
Veränderungen ausgesetzt, weshalb Integrationslösungen einen gewissen Grad an Anpassungs-
vermögen mitbringen müssen. Dadurch ist die Entwicklung von Software in diesem Zusammen-
hang kompliziert und komplex.

Die vorliegende Arbeit schlägt eine organisatorische und technische Herangehensweise für
die Entwicklung von Softwaresystemen, welche unter Anderem eine Vielzahl von menschlichen
Akteuren verbindet, vor. Dazu wird hADL zur Beschreibung der Struktur eingesetzt, welche
zusätzlich in Kombination mit einer Prozessbeschreibungssprache die architektonische Doku-
mentation des Systems darstellt. Ferner wird eine Laufzeitumgebung für die Verwaltung von
Ressourcen, die mittels hADL deklariert werden, vorgestellt.

Zuerst wird das Design der Lösung beschrieben, anschließend wird sie anhand der Ent-
wicklung eines beispielhaften Geschäftsprozesses ausgewertet. Die Evaluierung und kritische
Würdigung erfolgen zuletzt als textuelle Argumentation.

v

Contents

List of Figures viii

List of Tables x

Listings x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Motivating Scenario . 3
1.4 Contribution . 4
1.5 Structure of the Work . 5

2 State of the Art 7
2.1 General Background . 7
2.2 Designing Human Intensive Software Systems 9
2.3 Collaboration Tool Integration . 12
2.4 Background . 13

3 Methodology 21
3.1 Requirements . 21
3.2 Design and Implementation . 25
3.3 Evaluation . 25

4 Design 27
4.1 Referencing collaboration patterns in process descriptions 30
4.2 Handle requests for collaboration patterns . 31
4.3 Instantiate collaboration patterns . 32
4.4 Framework Architecture . 32
4.5 Runtime Architecture . 34

5 Implementation 45
5.1 hADL Runtime . 46
5.2 Marshaller . 47

vii

5.3 Surrogate Factory . 49
5.4 Service Registry . 49
5.5 Scope Manager . 50
5.6 Operation Manager . 53
5.7 Deployment and Execution . 56

6 Evaluation 57
6.1 REQ-01: Supporting Architecture Driven Development 57
6.2 REQ-02: Modelling the Architecture . 58
6.3 REQ-03: Change in Collaboration Structure 65
6.4 REQ-04: Change in Collaboration Tool . 67
6.5 REQ-05: Handling Human Faults . 68
6.6 REQ-06: Process Engine Integration . 68
6.7 Test Scenarios . 68

7 Critical Reflection 69

8 Conclusion 71

Bibliography 73

A Codelistings 81
A.1 hADL . 81
A.2 Surrogates . 84

List of Figures

2.1 Relationship between communication, coordination and collaboration 8
2.2 LittleJIL icon to define a step obtained from [16] 16
2.3 LittleJIL notation to define substeps. The example has been obtained from [16] . . 16
2.4 LittleJIL states of steps based on [16] . 18
2.5 Graphical representation of a hADL model of a chatroom 20

3.1 Interest-based bargaining process with its roles. Each step shows the involved actors
and each party might consist of several individuals. 22

3.2 Overview of architecture driven development processes 24

viii

4.1 Relationship between process description/engine and collaboration pattern/resource
manager of the solution approach . 29

4.2 Input/Output of process steps when referencing hADL collaboration patterns as re-
source. The tuple of hADL file and hADL elements identifies the pattern. A scope
ID is assigned to the instantiated pattern. 30

4.3 The basic sequence of messages for using collaboration patterns as resources. The
data of the messages are described in the arrow brackets. 31

4.4 Relationship and cardinality between hADL elements, their surrogates and the in-
stances of each. 32

4.5 Overview of the human architecture implementation framework. 33
4.6 Overview of the components of the hADL runtime. The links between elements

specify the cardinality between instances. 34
4.7 UML class diagram of the interfaces of surrogates. 36
4.8 The interface of operation managers. 37
4.9 The operation manager encapsulates incoming method calls into requests which are

put into a queue, thus executing parallel calls consecutively. 38
4.10 Lifecycle states of surrogates which are facilitated by the operation manager. . . . 39
4.11 Interface of scope managers. 40
4.12 Interface of the hADL runtime. 41
4.13 Interface of the surrogate factory. 42
4.14 Interface of the service registry. 42
4.15 Interface of the marshaller. 43

5.1 Data model of resource descriptors. 46
5.2 UML sequence diagram for obtaining an scope instance from the hADL runtime. . 47
5.3 UML sequence diagram for obtaining an surrogate instance from the hADL runtime. 48
5.4 Process of converting hADL model instances into scope instances. 48
5.5 Step by step construction of a collaboration pattern instance. Coloured links indicate

connections which have been added at the new step. 52
5.6 UML class diagram of the state pattern tracking surrogate states at the operation

manager. 53
5.7 UML class diagram of the strategy and decorator pattern for executing surrogate

requests at the operation manager. 54

6.1 Process model of the IBB process. 59
6.2 Publish/Subscribe collaboration pattern for IBB. 59
6.3 Shared artefact collaboration pattern for IBB. 61
6.4 Shared artefact collaboration pattern for IBB where all components may edit. . . . 63
6.5 Voting collaboration pattern for IBB. 65
6.6 IBB publish/subscribe pattern with an addtional party. 66
6.7 IBB publish/subscribe pattern where the moderator has been removed. 66

ix

List of Tables

2.1 Time/Space taxonomy of groupware . 9

4.1 Surrogate methods and the possible states after method execution. 37

5.1 Programming language, technologies and common libraries employed during im-
plementation of the hADL runtime. 45

Listings

5.1 RxJava example for implementing ConnectRequest. 55
6.1 Input resources when starting the IBB process 60
6.2 Output resources of the IBB start step. 60
6.3 Input resources issue statements. 62
6.4 Output resources after consolidating issue statements. 62
6.5 Input resources when collecting interest items. 63
6.6 Output resources after collecting interest items. 64
6.7 Input resources when voting for options. 64
6.8 Output resources after voting for options. 65
6.9 Input resource of the IBB start step after adding an element to the collaboration

pattern. 67
6.10 Output resource of the IBB start step after adding an element to the collaboration

pattern. 67
A.1 hADL model instance of a shared artefact collaboration pattern. 81
A.2 Base class for asynchronous surrogates. 84

x

CHAPTER 1
Introduction

The advent of online collaboration has been observed in recent years. The web has enabled col-
laboration across geographical and to some extend temporal boundaries. Even though current
collaborative activities focus on content generation and sharing, industries and scientific commu-
nities have already recognized the untapped potential of large scale collaborative undertakings.
Nevertheless, software systems have not fully adopted yet to support human collaboration effi-
ciently and effectively. This thesis tries to narrow the gap between the desire of individuals for
collaboration and the software systems enabling it.

1.1 Motivation

The high level of interconnection between people through the web have shaped the way how
they work and interact with each other. Emergent web based tools where many users can work
together on tasks or products, even anonymously, indicate the advent of a shift from classical
cooperation paradigms towards complex interaction patterns. Such changes can be observed
in many problem domains, including the creation knowledge at Wikipedia1, the distribution of
information with Twitter2 and social networking with LinkedIn3. Even writing articles can be
done in real-time with multiple authors concurrently within a single document.

The relevance of modern collaboration and the social technologies enabling it, have also
been emphasized in a survey published in 2013 by the McKinsey Global Institute. [18] They
claim that social technologies have reached the main population and are being adopted by in-
dustries actively. Integrating collaboration tools into value chains can increase the performance
of high-skill knowledge workers by up to 25 percent. A majority of surveyed companies in 2011
have already been using social technologies and nearly 90 percent have reported benefits. The
institute postulated an untapped potential value of up to 1.3 trillion USD, which can be activated
by fully implementing and integrating social technologies.

1wikipedia.org
2twitter.com
3linkedin.com

1

Positive effects of introducing collaboration tools have also been confirmed by the study of
Evans et al. [31] in 2014 in the manufacturing domain. Team managers and members welcomed
the new technologies and the authors concluded that modern groupwares offer the potential to
deliver more effective collaborative environments and additional communication channels. In-
creasing impact of web-based collaboration tools also affects the domain of software engineer-
ing, which has already been conjectured by Whitehead in 2007. [76] The availability of novel
communication channels and collaborative tools enables higher participation of stakeholders in
the software development process and improves the documentation of rationale argumentations
of design decisions.

A shift towards cross-institutional collaborations can also be observed in science. Jones et
al. asserted the positive impact of collaboration on research quality. [41] Scientific research
therefore profits from adequate tool support for collaboration. Research teams emerge in an ad-
hoc fashion [37] and their average size is expected to increase monotonously. [9] Hence tools
for coordination are gaining importance as well.

As human collaboration becomes increasingly normative and mandatory, software systems
have to engage individuals, integrate means of collaboration and coordinate their interactions.

1.2 Problem Statement

Human intensive software systems (HISS) have gained momentum and their design and imple-
mentation is of major concern. [19] Nowadays collaboration of human participants is required
in software systems and the integration of collaboration tools has become a necessity. Fully in-
tegrating collaboration tools also entails a change of view of traditional user roles. Regardless of
the problem domain the collaboration tools are aiming at, they all have in common that humans
are essential parts of the system. Traditional views of users only as consumers are no longer
valid, instead humans have become both producer and consumer of services and content. They
even gained importance as source of computational power. As Northrop et al. have predicted,
the boundary between humans and computers are eroding. [60] Software designs have to incor-
porate the new role of users and developer teams have to model the interactions with and within
the systems as well as communication between participants explicitly.

Humans as integral part of software systems have their own idiosyncrasies which has to be
taken into account. Software system has no authority over their human participants, thus no
behaviour can be enforced. The performance of tasks cannot be guaranteed and the networks
responsible for delivering notifications of the systems which indicate state transitions are highly
unreliable. Most software systems including human participation have to face similar challenges.

HISS which enable collaboration are confronted with a vast number of collaboration tools in
heterogeneous problem domains. Tools differ in the number of participants and their interaction
patterns as well as the tools’ behaviour. The style of collaboration might emerge ad-hoc and
does not always have a predefined structure. This stresses the flexibility of the means of system
specification.

The number of collaboration tools might be considerably high, even in a single problem
domain. Their underlying technologies often differ even though their behaviour or structure are
similar. Actual programming interfaces and frameworks might vary substantially and could thus

2

be incompatible. Substituting collaboration tools is probably inevitable due to the volatile nature
of web-based applications where the success of tools is determined by their popularity.

The aforementioned challenges have already been addressed in literature and industries, nev-
ertheless no standardized approach exists to define and construct human intensive systems, in
particular systems with innate collaboration of human participants. Current solutions are often
incompatible or focus on particular problem domains, thus have limited general purpose. This
thesis suggests a standardized framework for designing and developing collaboration-enabling
software systems. In particular general solution approaches for reoccurring challenges are pro-
posed.

A motivating scenario will be introduced in the next section to illustrate the challenging
aspects mentioned above.

1.3 Motivating Scenario

In negotiation communities, interest-based approaches for resolving differences are highly ac-
claimed to be effective strategies. [72] In classical negotiations, two parties try to defend their
position thus ultimately resulting in the loss of one party. By focusing on the underlying inter-
ests that are the cause of the position, solutions satisfying both parties might be found. [33] The
process of interest-based bargaining (IBB) is an example of such approaches. IBB defines three
actors: the mediator, party A and party B where the parties might consist of several individuals.
The actors go through the following steps:

1. Begin mediation session: The mediator explains the process to both parties and gathers
their contact information.

2. Compose issue statements: Both parties formulate a set of relevant issue statements inde-
pendently usually in the form of open ended questions .

3. Consolidate issue statements: The mediator then tries to consolidate the issue statements
from both parties. Results are new synthesized combined statements.

4. Add interest items: The parties have to identify interest items together, which have to be
satisfied at the end of negotiation.

5. Add options: The process focuses on working towards a solution after the issue statements
and interest items are identified. Both parties propose options which address the issues and
satisfy some interests.

6. Add options and questions: Afterwards an immediate step to allow the parties to ask
questions regarding the options and propose additional solutions follows.

7. Identify acceptable options: Then both parties determine acceptable options separately.

8. Draft solution agreement: Finally the mediator drafts a solution agreement based on the
acceptable options of both parties.

3

Designing the System

A team of developers is assigned to implement a software system to support the IBB process.
Process engines are already utilised by the company, thus the developers model the system with
their process description language of choice. The sequence of IBB steps is straightforward but
they struggle with the representation of the steps’ internal architectures. Both negotiation parties
have multiple members which have to collaborate internally in several steps.

Specifying the collaboration as sub process is tedious and results in a rigid design. Suppose
synthesizing new issue statements in the IBB process involves the agreement of all parties. The
combined statements can then be created iteratively with a shared document where issues are
noted and a chatroom where issues are discussed. Describing the model with tasks and steps
only requires considerable effort. Leaving it unspecified impedes the detection of architectural
changes. If the participants, the shared document and the chatroom are passed as static resources
to the step, their status cannot be monitored easily. Hence the need for adaptation is difficult to
detect and events can only be communicated via exceptions.

1.4 Contribution

State of the art software systems nowadays have shift their focus towards user participation and
collaboration. Process languages currently provide insufficient means to model collaboration
efficiently and effectively. Inadequate models impede the development of adaptable systems. To
this end, this thesis will make the following contributions to simplify the development of human
intensive software systems:

1. This thesis introduces a framework for documenting, describing and prescribing the soft-
ware architecture of human intensive software systems, which have innate collaboration
of participants.

2. Standardized facilities to integrate and access collaboration tools.

3. Adaptability by abstracting concrete tools, thus enabling efficient exchange of implemen-
tations.

4. The framework offers a basic human fault handling model.

4

1.5 Structure of the Work

The remainder of the thesis is structured as follows:

Chapter 2 describes the state of the art of specifying human intensive software systems with re-
spect to process modelling languages. Current literature and related work will be reviewed
and discussed and background information will be provided.

Chapter 3 defines the method of evaluation for the resulting framework. Currently established
methods for evaluating software architecture are introduced and utilized. In particular, a
scenario based software architecture evaluation method is applied.

Chapter 4 details the architecture of the framework. Underlying design principles are elabo-
rated and multiple views are employed to document the design decisions.

Chapter 5 summarizes used technologies, frameworks and tools while implementing the frame-
work prototype.

Chapter 6 provides an qualitative evaluation of the framework prototype. The evaluation is
based on the scenarios defined in Chapter 3.

Chapter 7 interprets the results of the evaluation and discusses the limitations and shortcomings
of the prototype.

Chapter 8 summarizes the findings of the thesis and discusses opportunities for further research.

5

CHAPTER 2
State of the Art

This chapter provides theoretical background for collaboration in the context of computer sys-
tems. First, a brief introduction to collaboration in general will be given. Then tool support for
collaboration will be discussed and current approaches for constructing collaboration-enabling
software systems, rather human intensive software systems in general will be elaborated. Finally,
concepts for documenting, prescribing and describing such systems will be reviewed.

2.1 General Background

Cooperation between humans is one major corner stone society is build upon. Fundamental
achievements of and for humanity are hardly ever the result of actions and efforts of a single
individual, but groups of people instead. Many projects are simply impossible to be managed
by one person alone and the technological progress of society inevitably increases the number
of such undertakings. The cooperation of many people is required to succeed in developing
modern systems. Hence the role of efficient and effective cooperation is gaining momentum and
importance. Cooperation can be seen as an agglomeration of three concepts which are commu-
nication, coordination and collaboration. Cooperative activities therefore can be divided into
these categories. Individuals engaged in cooperative activities are participants. Communication
represents the exchange of information between participants. Collaboration is the manipulation
of information by the participants with focus on creating an outcome and coordination man-
ages and relates communication and collaboration of participants. [46] These three concepts
can also be viewed as subsets of each other (see Figure 2.1). Collaboration requires at least a
minimum level of coordination between participants, thus collaborative activities are a subset of
coordinated activities. Coordination on the other hand has (implicit) underlying communication,
coordinated activities are therefore a subset of communicational activities.

The emergence of computers and networks influenced, and in some cases revolutionized,
the way how work is done. Today it is almost a fact that modern technology supported by
computers and communication networks has drastically improved efficiency and effectiveness

7

Communication

Coordination

Communication

Coordination

Collaboration

Figure 2.1: Relationship between communication, coordination and collaboration

of individuals working at a variety of tasks. [58] Numerous software intensive systems have been
designed to support humans at their activities and to provide facilities to enable cooperation, but
the resulting tools also had influence on the nature of cooperation itself.

The research domain of computer-supported cooperative work (CSCW) is trying to discover
and utilize the interrelationships of users and their tools to further improve the quality of coop-
eration for humans with humans and also for humans with computers. CSCW applications are
often referred to as groupware, although the exact boundaries of the definition is highly blurred
in literature and depends on the level of abstraction. Researchers might categorize network file
servers as groupware, while others might mention email as example. [36] Myriads of groupware
applications exist nowadays and their classification imposes a challenge due to the variety of
features and functionality. No single schema captures all aspects, although a few schemata are
commonly used in literature. One of the earlier taxonomies to classify cooperation, and thus by
extension also the supporting tools, defines a two by two matrix where member proximity and
group size are used as dimensions. [21] This model has been refined later on and the dimensions
were replaced by space and time. [36] Time determines the progression of interactions and space
the location of the actors. The resulting taxonomy introduced a three by three model. Table 2.1
provides the schema and an example for each cell based on Borghoff et. al. [11] Activities can
be carried out at the same place, at several different but predictable places, e.g. the locations are
known to the participants, or different and unpredictable places, e.g. there might be unknown
locations. Activities might also be performed at the same time, e.g. in real-time, at different
but predictable times, e.g. with known deadlines or durations, or at different and unpredictable
times, e.g. with unknown temporal boundaries. Nevertheless, the model is coarsely grained and
some activities do not fit exactly into one category. Ellis et al. proposed a categorization based on
application level functionality. [30] Their model classifies groupware as message systems, multi-

8

Space/Time same time different time
predictable unpredictable

same place face-to-face meeting shift-work blackboard
different place

video conference email shared document
predictable
different place

mobile phone conference computer conference workflow management
unpredictable

Table 2.1: Time/Space taxonomy of groupware

user editors, group decision support systems, meeting rooms, computer conferencing, intelligent
agents and coordination systems. These classes however can also be interpreted as points on a
triangular area defined through the vertices communication, coordination and collaboration.

Software systems have become ubiquitous in the past decades and have changed the way,
how humans interact with each other. Communication was traditionally based on one-to-one
channels and reaching larger numbers of people could only be achieved through broadcast,
which exclusively provided unidirectional information flow. Bidirectional communication of
groups of individuals demanded high effort if possible at all. Today vast peer groups can be
contacted with relative ease through social software and social networks such as Twitter and
Facebook. People can even reply to broadcast equivalent messages at any time and location,
as long as internet connectivity is available. Coordination of cooperating humans traditionally
could not surpass the boundaries of organizations and enterprises easily. Only humans within
geographically limited areas could be coordinated effectively. These limitations also weakened
with changing communication patterns and availability of supporting tools. Crowdsourcing for
example, breaks down organizational boundaries and enables the coordination of large numbers
of users to work at small tasks, which might be combined to an aggregated result. [42] It is
also an example for harnessing collective intelligence. [61] The constraints of traditional co-
ordination activities and the degradation of them also hold for collaboration due to the subset
relationship. Modern collaboration tools allow geographically distributed participants to engage
in joint activities. Even anonymous participation is supported. The advent of modern web ap-
plications transformed traditional groupware into current web-based collaboration tools. Their
characteristics include the focus on user-generated content, sharing data and creating social net-
works. [50]

2.2 Designing Human Intensive Software Systems

Specifying and designing of human intensive software systems, in particular integrating human
individuals and supporting collaboration are currently under active research. The following
sections will elaborate common approaches to integrate humans in software systems and to
facilitate collaboration. First, state of the art concepts will be discussed, then a brief overview
of trends for collaboration tool integration will be covered.

9

Crowdsourcing

Crowdsourcing applications are currently prevalent software systems with large scale human
participation. They aim at harnessing collective intelligence, which describes a group of indi-
viduals performing tasks collectively that seem intelligent in total. [55] Collective intelligence
is commonly employed to solve predefined problems which are hard or currently impossible to
automate, such as text translation and creative work. [22] Crowdsourcing is inherently task cen-
tric as the problems are split into smaller parts which are then solved by human workers. The
coordination is commonly handled by workflows. [5, 43]

Bozzon et al. introduced Reactive Control as another model for coordination. [12] The
authors describe crowdsourcing tasks as compositions of elementary task types such as labelling,
liking or sorting, each with a predefined behavioural and data model. Descriptions are then
transformed into features of a reactive execution environment. Their environment supports task
planning, assignment and completion. Information about the runtime and the contexts are stored
in a Control Mart. Instantiating workflows according to the data models yields the runtime
model consisting of objects, performers and tasks, each with a corresponding control. The
Object Control decides when and how responses are generated for each object. Determining
the selection and rejection of performers is the responsibility of the Performer Control . Task
execution, completion and replanning is overseen by the Task Control. Behaviour of controls
are specified via rules expressed according to the event-condition-action paradigm. Most rules
are automatically generated although custom rules can be developed and added on demand.
Performers can be reached through multiple social platforms but direct interactions between
performers are not foreseen.

Crowdsourcing systems can also be coordinated through models based on MapReduce. [44]
Traditional crowdsourcing assumes solutions to problems to be simple aggregates of tasks. Nev-
ertheless, real-life problems require more complex coordination. The authors claim that coor-
dination needs can be classified as either shared resource, producer/consumer relationship and
task/subtask relationship. All three dependency categories can be modelled with MapReduce.
Ahmad et al. proposed a programming environment also based on MapReduce. [4] Their sys-
tem provides a Process Queue where arbitrary processes based on MapReduce can be deployed.
Each process consists of a given number of tasks which are submitted to a Task Pool. The
submission information declares a specific Service Adapter to be used, which acts as a bridge
to existing crowdsourcing platforms. Human participants can interact with the system via the
crowdsourcing platform’s user interface.

A variety of problems can be solved with crowdsourcing approaches, nevertheless the model
is inherently limited as the problems are required to be decomposable into (independent) tasks.
Problems which require intensive collaboration are thus hard to model.

Humans in Process Models

The most commonly employed software architectures in business environments are service ori-
ented. In service oriented architectures (SOAs) process languages and their executing engines
are often used to coordinate loosely coupled (web) services. SOAs include human individuals
also as services, but treating them equally to software components could not satisfy industrial

10

requirements. A few solutions emerged to solve the issue and two approaches will be discussed
in the following.

In industries the XML based Web Service Business Process Execution Language (WS-
BPEL) is the most prominent process description language. WS-BPEL processes are essen-
tially compositions of web-services with additional control structures. The main elements are
Activities which can be Basic Activities and Structured Activities. Basic activities provide sim-
ple operations such as assigning values to variables or invoking a webservice asynchronously,
whereas structured ones define flow control elements such as sequential, parallel and conditional
execution. [39] The WS-BPEL’s lack of support for human participation has been addressed in
two complementary extensions, WS-BPEL4People and WS-HumanTask. [66] WS-BPEL4People
adds a HumanActivity to the language which elevates human participants to first-class citizens.
Human activities are implemented via HumanTasks introduced by the WS-HumanTask standard.
The standard provides a state model for tasks, a coordination protocol for interactions and a role
concept. Connecting process engines and humans requires the definition of two interfaces, one
for exposing the services and another for managing and executing tasks by humans. Nevertheless
the support for collaboration between humans is limited due to the low level of abstraction.

Shall et al. [67–70] proposed a novel approach for service oriented architectures. They intro-
duced the concept of Human-Provided Services (HPS) to model human participation similar to
software- or web-services. Their framework also includes an HPS interaction model consisting
of an activity model, a task model and a task execution model. Collaboration can be defined
through a series of hierarchical composed activities and their associated tasks which can be sub-
mitted to and executed by HPS. Although humans are integral parts of the system, arbitrary
collaboration patterns are still tedious to specify. A Master/Worker pattern is incorporated in the
frameworks design but intensive communication between workers is still unresolved. The level
of details of the framework also does not support architecture driven development very well.

Lei et al. introduced a collaboration framework based on BPEL and also implemented a
middleware prototype. [51] They extended BPEL activities with additional elements to allow
the specification of human participants, in particular their role and admission policies. In ad-
dition, the interaction between participants can be described through a series of one-way and
two-way communications. The extended elements were translated into conventional BPEL au-
tomatically. A middleware provides contextual sensitivity to determine the actual communica-
tion tools depending on the environment. This solution suffers from identical limitations as the
aforementioned approaches, as BPEL’s descriptiveness is limited in respect to integration of hu-
mans. All participants of activities must be known a priori and collaboration artefacts such as
shared documents are omitted in the process definition.

Brambilla et al. proposed an approach to extend the business process model and notation
(BPMN) to support social software. [13] Their extended notation allows the specification of
pools of participants which can perform Social Tasks of Social Activities. Their solution of-
fers a set of predefined task types, such as Social broadcast and Voting, and combines them
to formulate common social design patterns for reuse purposes. This approach also supports
code generation to accelerate application development. The solution does not support arbitrary
collaboration types and is limited to social networks in particular.

11

2.3 Collaboration Tool Integration

The integration of tools into software systems is classically a subject of the domain of enter-
prise application integration (EAI). [54] Middlewares are traditionally used in order to integrate
systems across organizational boundaries. Enterprise service buses (ESBs) in particular are
employed in SOA environments. [38] ESBs provide an intermediate layer between proprietary
technologies and systems requiring particular functionalities. They usually offer abstractions
for messaging, protocol transformations and service containers. [17] Custom middleware im-
plementations as integration solution for collaboration tools have also been evaluated in recent
time. The next sections will discuss contemporary approaches.

Buford et al. introduced a middleware based on collaboration spaces. [15] A (collaboration)
space defines a shared persistent container where users can conduct collaboration activities. It
requires a set of resources which can be provided through third party collaboration platforms.
Three layers are defined by the system. In the bottom layer collaboration platforms are integrated
and consolidated models of the collaboration tools are provided as shareable views. It further
provides resource management components for devices and a semantic storage for data mining.
The mid-layer manages an unified representation of collaboration artefacts and offers user and
session handling as well as eventing mechanisms and data stores. Collaborative applications
which can coordinate and manipulate the objects in the mid-layer are contained in the top layer.

Buford et al. also designed an integration solution for connecting cloud-based and intra-
organizational collaboration tools. [14] They proposed a three-tiered architecture where the first
tier consists of the clients in the organisation’s internal network. External tools and cloud-
servers are in the third tier. In-between lies the second tier where mediation servers are located
. Tools in the first and third tier are developed to match the interfaces of the mediators, thus
no direct communication between internal and external collaboration tools exists. The authors
implemented extensions for internal tools to realize the link to the mediator. Extensions were
directly integrated into the graphical user interface, as most of tools were desktop applications.
Thus users did not have to change their preferred tools. The cloud-based tools offered web-
service interfaces which simplified their integration.

Similarly, the efforts of Wu et al. [81] and Mohit et al. [59] to integrate communication
tools also offer concrete technical guidance. Both works introduce an abstraction layer to inte-
grate communication tools. Another layer on top then coordinates and composes their abstract
representation into larger systems.

Mashups

Providers of collaboration tools and platforms often offer publicly accessible application pro-
gramming interfaces (APIs) to allow developers to integrate their services. Mashups are a recent
trend to compose public APIs into individual workflows. [80,83] Due to the availability of graph-
ical development environments even end-users are potentially capable of creating them. [35,82]
Integrating data is especially challenging for mashup developers. Their data-sources are of-
ten incomplete, inconsistent and heterogeneous and the developers are often no experts in the
particular domain. [57] This challenge is usually addressed in five steps [74]:

12

1. Data Retrieval: Data are extracted from sources which might be unstructured, especially
when they stem from HTML pages.

2. Source Modelling: The data are then structured to be distinguishable from other sources.

3. Data Cleaning: The extracted data have to be normalized and corrected if possible.

4. Data Integration: Penultimately the data sets from different sources have to be combined.

5. Data Visualization: Finally the preprocessed data is visualized in a graphical user inter-
face.

The concept of mashups can also be applied to the coordination and integration of web-
based collaboration tools, although the approaches are still unstructured and lack of appropriate
standards. Nevertheless mashups can offer ad-hoc web-based collaboration.

2.4 Background

The remainder of the thesis requires in depth understanding of two architecture description lan-
guages, LittleJIL and hADL respectively. LitteJIL provides an integration context for evaluating
the solution and is a graphical programming language which also follows the trend of devel-
opment environments for mashups. In contrast, hADL is an integral part of the solution. Both
languages will be exemplified in the following sections after a brief introduction to software
architecture and their documentation in general.

Software Architecture

Software design can be documented in software architectures which are a set of principal de-
sign decisions about the system [73]. They describe software elements and relations among
them. [8,10,34] Documentations of the software architecture can be descriptive, i.e. it reflects the
architectural choices been made, or prescriptive, i.e. it limits the design choices. [62] The design
decisions are made to meet external requirements, which can be functional or non-functional.
Conformance to requirements is often seen as proxy for software quality. Software architectures
can be classified into architectural styles based on their pattern of structural organisation. A
pattern consists of components, which are loci of computation and state, and connectors, which
are loci of communication. [2, 71]

Earlier attempts to document software architectures within a single model failed due to the
innate complexity. The concept of views and viewpoints emerged instead, which focus on par-
ticular aspects of the system. A view represents the system under discourse from the perspective
of a set of related concerns whereas a viewpoint establishes the purpose and audience of views
and governs their construction and analysis. [1]

Kruchten introduced a framework based on multiple concurrent views on the systems de-
sign to achieve a more holistic description. [48] He defined 4+1 views, each targeting different
concerns of the overall system.

13

As software systems are becoming more complex, the focus of software engineering shifted
from lines of code to more coarse grained structures such as components and connectors. The
change leads to new requirements on (formal) models and tools to encompass architecture-based
development approaches. Hence many architecture description languages (ADLs), domain spe-
cific as well as general purpose architecture modelling languages, emerged. [56] ADLs can
focus on any arbitrary aspect with any suitable notation, thus a single accurate definition is hard
to formulate. An early study conducted by Vestal tried to identify common elements or features
of ADLs. [75] The results of his analysis of the samples can be partially summarised in the
following reoccurring concepts:

1. Components, rather their type are defined by interfaces which have an implementation
aspect. Multiple instances of a component might occur. Component interfaces consist of
entities where connections can be drawn from or to. The implementation of components
can be defined though hierarchical composition. Leaf-level elements have to be developed
in traditional programming languages. Features might exist to model the behaviour of
components.

2. Connections between elements have no homogeneous semantic. Their meaning can be
specified in the language to some degree.

3. Tool support is preferred to compose traditionally implemented components into larger
executable systems.

4. Means for automated analysis, evaluation or verification of particular aspects might be
offered.

A more detailed survey based on feature analysis by Clement classified reoccurring ele-
ments of ADLs into three categories: system-oriented, process-oriented and language-oriented
features. [20] In his opinion, an ADL must support the creation, refinement and validation of
architectures. They should be fit to represent common architectural styles and provide consis-
tent views that express architectural information. In a recent study by Lago et al., the authors
formulated concrete requirements for next generation ADLs. [49] They introduced a framework
which clusters the requirements into the groups language definition, language features and tool
support. Their demands on future ADLs shall help in establishing them in industrial environ-
ments.

LittleJIL

LittleJIL is a high level process language for representing and implementing processes in soft-
ware systems. [79] The notion of process is not clearly defined, it is dependent on viewpoints
of the system under discourse. Rolland utilized the four worlds framework, originating from the
systems engineering discipline, to clarify the perception of processes. [65]. Therein the subjects
world is the world of processes, usage world investigates rationales, systems world concerns
their representation as process models and the development world focuses on the construction
of process models.

14

The subjects world defines the system under discourse and its elements, which are processes
in this context. A process is performed to produce a product and is seen as a route to be followed
to reach a product in information systems contexts. The start and end position of the route can
be described as points in a space with the three dimensions: specification, representation and
agreement. [63] From an activity-oriented perspective, a process is a partially ordered set of
steps intended to reach a goal. [32] Product oriented viewpoints define processes as a series of
transformations to reach the desired product and decision oriented viewpoints define them as a
set of related decisions conducted for product definition. [65]

The usage world determines the goals of processes. It defines the environment, where the
processes are performed and the actors performing them. Further more the nature of evolution
and change is also determined. Strong requirements on processes are imposed by the usage
world.

The systems world defines the representation of the process, the representation’s level of
abstraction, its means and properties. Processes are classified as process models, which are
type level abstractions. Thus a processes are instantiations of the corresponding process models,
which on the other hand are instances of process meta models. [47] The systems world also
determine the notation and organisation of process models.

The development world governs the construction of process models, i.e. the process of
creating process models and the enactment of processes, i.e. the tool support needed for the
execution of processes. It defines construction approaches and techniques as well as tool support
for enactment and change. [65]

LittleJIL provides a process meta model and support for process enactment, thus it relates
to the systems and development world. The following sections describe the characteristics of
LittleJIL in respect to process meta models and their semantics.

LittleJIL Meta Model

Process models in LittleJIL have the goal to be understandable for non-programmers, thus they
are specified graphically. The language’s primary focus lies in the coordination of tasks, which
are executed by agents. [16] A LittleJIL process model represents a process as a hierarchical
composition of step types, i.e. a tree of step types, where each step type can be instantiated
multiple times. The leaves of the tree are the smallest units of work and intermediate nodes
are coordination structures. Thus the shape of the tree specifies the coordination and the leaves
define the work to be done. [79]

Due to the graphical notation, a step is defined through a step icon (see Figure 2.2). A
step can be annotated with badges which might have several variations with different icons and
semantics [77–79]:

Prerequisite Badge: Prerequisites are preconditions of the step which are checked before exe-
cution. They can be specified through predicates.

Postrequisite Badge: Postrequisites are a set predicates which are checked after execution.

15

Figure 2.2: LittleJIL icon to define a step obtained from [16]

Figure 2.3: LittleJIL notation to define substeps. The example has been obtained from [16]

16

Interface Badge: The interface defines Resources used by the step, the Parameters, any de-
clared Channels for communication, Exceptions that can be thrown and Messages that
can be emitted. Agents can be passed to a step as a resource.

Sequencing Badge: The actual sequencing badge defines the executional semantics of the step.
It can be of the kinds None: the step is a leave step and is executed by an agent, Sequential:
substeps are executed sequentially from left to right, Parallel: substeps might be executed
concurrently, Choice: one substep is selected by an agent and executed and Try: substeps
are executed from left to right until one succeeds.

Handlers Badge: Handlers are callbacks which are executed when a specified exception is
thrown.

Reactions Badge: Reactions define callbacks for emitted messages. Messages can signal the
state of the step.

In LittleJIL, hierarchical composition can be achieved through definition of substeps (see
Figure 2.3). The import and export capabilities of steps ease the management and reuse of
process models.

Any runtime requires a set of additional components to be present to be able to execute pro-
cesses as LittelJIL focuses only on the coordination of steps. [53] The problem domain specific
behaviour have to be implemented separately. The following components are necessary:

Execution Agents: Agents perform the actual work and can be software or humans.

LittleJIL Interpreter: This component implements the runtime semantics of the process model.

Agenda Manager: The agenda manager governs the communication between interpreter and
agents, such as notifying agents, when new steps are assigned.

Resource Manager: The resource manager is primarily responsible for resource acquisition
and release. It handles resource requests of the process components.

Artefact Manager: Artefacts, such as type models for type verification, are managed by this
component.

A step goes through several states of execution during runtime (see Figure 2.4). It is Posted
when the unit of work is in the agenda (work queue) of the agent and required resources are
available. The state transits to Started when the agent begins the task and to Completed when
the task is finished successfully. Any unrecoverable faults lead to Terminated. The consequence
of the runtime removing tasks before agents start them, is the state Retracted. If the agent denies
the task before starting it, Opted Out is reached. Further language details of LittleJIL can be
obtained from. [77]

17

Posted

Started

Completed

Terminated

Retracted

Opted-Out

Figure 2.4: LittleJIL states of steps based on [16]

hADL

Current ADLs, process languages in particular, minimize human involvement in architectural
descriptions to achieve reproducibility and reliable process outcomes. In contrast, the advent
of large scale human intensive software systems demands adequate means of representation to
promote flexibility and adaptability. Dorn et al. introduced the human architecture description
language (hADL) to close this gap. [28] They extended the notion of architectural components
into human components and connectors into collaboration connectors in order to emphasize the
essential role of humans in such systems. By unifying communication and interaction of soft-
ware with software, humans with software and humans with humans into collaboration patterns,
higher flexibility and runtime adaptability can be achieved. [24, 29] Well known architectural
styles can also be translated into collaboration patterns as done by Dorn and Taylor. [26] Each
pattern has its scope of applicability, benefits and limitations dependent on the problem instance.
Seven collaboration patterns have been exemplified:

Shared Artefact: Shared artefacts represent generic objects through which participants indi-
rectly communicate, such as shared documents. Common operations are Create, Read,
Update and Delete.

Publish/Subscribe: Participants communicate through events where publishers emit and sub-
scribers receive them, such as mailing lists. Participants can have both roles and might

18

stay anonymous.

Master/Worker: A client provides and submits units of work called tasks and masters dis-
tribute them to a pool of workers which perform them. Crowdsourcing is considered an
incarnation of this pattern.

Social Network: Large number of participants can form sparse networks, where multiple com-
munication paths between nodes exist. Individuals can collaborate ad-hoc and in self-
organized groups.

Workflow: A workflow consists of a queue where workers pick items of work and forward them
to the next step after execution. Communication between participants might be reduced
to the items of work only.

Secretary/Principal: This pattern introduces layering to collaboration. Direct communication
with principals might not be possible. Instead a number of secretaries act as proxies.

Organizational Control: Organizational control describes strict hierarchical systems where su-
pervisors apply proactive control to subordinates, which report reactively.

Models of hADL can also be used to generate configuration through model-to-model trans-
formations. [27] The details of the hADL meta model will be described in the section to follow.

hADL Meta Model

The XML based specification of hADL is split into three modules: hADLcore, hADLexecutable
and hADLruntime. The simplified corner stones of hADL are:

HumanComponent: The HumanComponent is the locus of computation and data. It can be a
fully autonomous software component, an individual human or anything in between. A
HumanComponent defines a set of actions.

CollaborationConnector: A CollaborationConnector manages interaction between Human-
Components and is responsible for efficiency and effectiveness. The possible levels of
automation is equal to HumanComponents. It also defines a set of actions.

CollaborationObject: The CollaborationObject abstracts the means of interaction, such as
messages or shared artifacts. Concrete semantics is captured through subtyping. They
offer a set of actions.

Actions: Actions define capabilities a HumanComponent or CollaborationConnector requires
to fulfil their role. In the case of CollaborationObject, actions determine the provided
capabilities.

Meta model elements also include additional attributes, which are omitted for clarity and
brevity reasons. The hADLexecutable extension defines supplementary properties to specify

19

Invitation

Invite

Receive

Notification WriteRead

MessageWrite Read

Invitation

Invite

Receive

Chatroom
Read

Write

Manage

Participant

Read

Write

Receive

Moderator

Invite

Manage

Read

Write

Messenger

Receive

Invite

HumanComponent

CollaborationObject
Collaboration Link

Action CollaborationConnector

Legend

Figure 2.5: Graphical representation of a hADL model of a chatroom

mappings to implementations, whereas hADLruntime defines elements to capture the runtime
environments and configurations.

A simple collaboration pattern might be a chatroom (see Figure 2.5). Both participants and
moderators can connect to the chatroom and write to and read messages from it. The collab-
oration composition fits into the description of the Publish/Subscribe pattern where both com-
ponents have two roles. Moderators can invite participants to a chat through the messenger
connector, hence participants can receive invitations. Additionally moderators can manage the
entire chatroom. In a runtime incarnation of the pattern, participants could be humans and mod-
erators software components. The messenger could be build on e-mails and the chatroom could
be a conference call over the web.

20

CHAPTER 3
Methodology

This chapter describes the process of designing a solution to the problem statements mentioned
in the introductory section. The first step of the process is to identify the overall requirements
for the framework which are presented as fictional scenarios in this thesis. Then an architectural
design is developed and implemented later on, hence yielding the framework prototype. The
prototype is evaluated in the last step based on the requirements.

3.1 Requirements

The requirements for business software systems are derived from the goals of the collaborative
undertaking. Use cases are a popular modelling technique to capture requirements in the context
of software engineering. [3, 40] They are formally defined and focus on actions and actors.
Although this thesis employs this method, no formal definition will be provided. Instead the
requirements will be encoded in an informal fashion as prosaic text which will be referred to as
scenarios.

Scenarios

The scenarios are based on a fictional company, which uses the interest based-bargaining ap-
proach (see Figure 3.1) introduced in Chapter 1.3 in their business processes. Their research and
development department is assigned to implement a workflow to support IBB. Developers have
interviewed some stakeholders and identified the following scenarios.

REQ-01 Supporting Architecture Driven Development

The company has adopted an architecture driven development approach (ADD), which re-
flects current development trends, to implement their systems. Their development process
is depicted in Figure 3.2 at an abstract level. First, architectural requirements have to be
collected to define the overall goal of the system. Then a preliminary design of the system
is drafted. The design has to be documented which yields a set of artefacts describing

21

Compose Issue
Statements

Compose Issue
Statements

Add Interest Items

Add Options

Identify acceptable
Options

Identify acceptable
Options

Mediator Party BParty A

Draft Resolution
Agreement

Add Options or
Questions

Start Session
Consolidate Issue

Statements

Actors

Figure 3.1: Interest-based bargaining process with its roles. Each step shows the involved actors
and each party might consist of several individuals.

22

the system’s behaviour, internal structures and interfaces. The design is evaluated against
the requirements and refined according to the analysis’ outcome. An adequate solution
is thereby approached iteratively. The realization of the actual system starts when the
architectural design has stabilized and the requirements have been met at an acceptable
level. Finally the architecture of the implemented system has to be matched against the
prescribed design to maintain the consistency and validity of the architectural design arte-
facts. Any deviation from the original design leads to a change of either the implemented
system or the prescribed architecture. Whenever a new requirement emerges, the entire
process is executed again. This cycle reflects the system’s evolution over time. The frame-
work shall support the intermediate steps of this development approach and the transitions
between them.

REQ-02 Modelling the Architecture

The ADD approach requires adequate means to prescribe and describe the system. This
includes in particular the artefacts created while designing the system. The means of
documentation of the system under development (SUD) has to be suitable to represent
the system’s behaviour and structure. It has to reflect the system’s agents, which can be
individuals as well as software components, and their interactions.

REQ-03 Change in Collaboration Structure

The characteristics of human collaboration is innately spontaneous and therefore inher-
ently difficult to predict. A prescribed collaboration structure might not fit the real inter-
action patterns of participants and might be rejected by them. Hence participants might
resort to undocumented and unofficial communication channels thus leaving the sphere
of influence of the SUD. The structure of interactions might also be not known a priori,
emerge in an ad-hoc fashion or change drastically over time. In the context of IBB for
example, adding interest items might be realized through a shared document which all
participants of both parties might edit. At any point, the organisation might switch to a
master/worker pattern where the master collects items from the workers and submits a
complete list at once to be able to filter spam messages. The framework has to support
architectural changes and facilitate simple adaptation mechanisms.

REQ-04 Change in Collaboration Tool

Software tools, especially web-based ones, are subjected to regular changes and updates.
The preference of collaboration tools might also change rapidly depending on popularity
of the tools. Effective collaboration requires user acceptance and adaptability, therefore
simple exchange mechanisms for underlying tools are required. In the IBB process for
example, the provider for shared documents which does not support real-time editing of
multiple users, might be replaced by a modern one when introduced. A change to another
tool might also be triggered by a shift of preference for specific user interfaces or by
usability issues. The framework must provide adequate abstraction mechanisms to hide
implementation details and to enable flexibility regarding the choice of collaboration tool.

23

Collect Architectural
Requirements

Design the
Architecture

Document the
Architecture

Analyze the
Architecture

Realize the
Architecture

Maintain the
Architecture

Figure 3.2: Overview of architecture driven development processes

24

REQ-05 Handling Human Fault

Humans are integral elements of the SUD but the system has no authority over them.
Participants cannot be forced to execute tasks, especially not in a timely fashion. Their
behaviour cannot be predicted and policies cannot be enforced. Definitions of acceptable
behaviour depends on the sociological and corporal culture. The framework has to provide
at least basic means to handle human faults and mechanisms to implement customized
policies.

REQ-06 Process Engine Integration

Many companies heavily rely on process engines to execute their business workflows, so
does the fictional company of this scenario. Using process engines implicates the pres-
ence of process models which already are essential parts of the architectural documenta-
tion. The acceptance or success of the framework is tied to it’s ability to reuse existing
architectural artefacts and to incorporate efforts already invested.

3.2 Design and Implementation

An architectural design addressing the aforementioned requirements is proposed. The software
architecture is based on common architectural patterns at macroscopic and software design pat-
terns at mesoscopic level. Details are described in Chapter 4.

Details of the implementation are located in Chapter 5. This chapter lists concrete technolo-
gies, tools and frameworks employed while implementing the framework.

3.3 Evaluation

Software architectures have high impact on the system’s quality and therefore have to be eval-
uated to verify the capability of the system to fulfil the requirements and to detect design er-
rors. [7] There is a plethora of evaluation methods, nevertheless no single method can assess the
quality of architectures as a whole. They focus on specific aspects or quality attributes instead.
Most approaches are scenario-based architecture evaluation methods (SAAMs), which encode
requirements or quality attributes into textual scenarios. [23] Scenarios are then discussed with
software architects to identify risks, tradeoffs and sensitivity points. [45] SAAMs are considered
to have a high level of maturity which fosters the acceptance and confidence for these meth-
ods. [6] Nevertheless a fully fledged SAAM is out of the scope of this thesis. Instead the human
architecture implementation framework is evaluated for compliance to the scenarios, or rather
the requirements enlisted in Section 3.1. First, the IBB process is designed on the basis of the
prototype. Afterwards the level of conformance to the requirements are argued in prosaic form,
in particular in respect to REQ-01, REQ-02, REQ-03 and REQ-04. Further more experiences
gained from the application of the framework are also shared in Chapter 7.

25

CHAPTER 4
Design

Current human intensive software systems are often described through process languages which
are then executed by process engines. Process languages such as LittleJIL model behavioural
views of software systems with focus on coordination, underlying structural composition of the
system are underspecified. The integration of collaboration tools on the other hand requires
those to be explicitly modelled, which is hard to achieve with process languages only. This is
mostly due to their innate structural and behavioural complexity. Structure-centric ADLs such
as hADL on the other hand, are fit to create structural views but lack the ability to specify global
or internal behaviour. A combination of structural and behavioural ADLs would create a more
complete documentation of software architectures without tedious effort. [25] This thesis uses
LittleJIL as process language as it focuses on coordination, is freely available and has a clear
documentation of the language and its runtime. Nevertheless LittleJIL can be replaced with
any process language as it serves only as conceptual point of reference. The structure-centric
language of choice is hADL as it is a perfect fit for describing collaboration structures.

At a high level of abstraction, two solution approaches have been identified. The languages
can either be integrated at language level or runtime level.

The integration of ADLs at language level had already been attempted in the past. An early
work of Robbins et al. tried to integrate UML and various ADLs, although their intention was
very different from this thesis’. [64] The authors promoted the use of standardized languages in
order to benefit from their widespread application, which would also improve the overall quality
of tools and thus the architectural views created. They examined the expressive equivalence of
the ADLs by modelling specific aspects of the given languages in UML. Their results suggested
that considerable effort was required for the integration, in particular modifications and exten-
sions of UML were necessary. Thus a direct integration requires an adaptation of both LittleJIL’s
and hADL’s meta-model. This approach also implies additional changes in language interpreters
which may cause compatibility issues with existing applications.

The runtime integration approach does not require any changes in the languages’ meta-
model. Instead points for integration in their respective runtime environments have to be identi-
fied and exploited. This results in a looser coupling of both languages. Only existing interpreters

27

have to be modified or extended. No changes at language level also entails reusability of exist-
ing model instances and backward compatibility. Both approaches require interpreters for both
languages which hADL does not provide yet. Thus a hADL runtime has to be developed in both
cases. This thesis evaluates the runtime approach due to the simplicity and novelty as language
level integration has already been attempted.

The human architecture implementation framework’s means of architecture prescription and
description requires two ADLs to work together and their respective roles have to be clarified and
defined first. Dorn et al. have already identified three strategies to exploit the complementary
nature of LittleJIL and hADL. A combined solution approach can either be based on a (1) task-
driven, (2) interaction-driven or (3) artefact-driven strategy respectively [25]:

Strategy 1: The task-driven strategy uses LittleJIL to specify basic tasks and their dependencies
as well as process artefacts and their data flows. Thus the macroscopic behaviour of the
system is defined through LittleJIL. The primary purpose of hADL is to define the logical
structure of leaf steps.

Strategy 2: The interaction-driven approach puts human participants in the foreground, thus
hADL defines the overall system’s architecture. LittleJIL specifies the internal logic of
hADL elements.

Strategy 3: The artefact-driven strategy models the system as set of major artefacts with arte-
fact manipulation capabilities. Coordination mechanisms are defined through hADL and
LittleJIL specifies the internal logic of connectors or active collaboration objects.

Dorn et al. concluded that no single strategy dominates, thus all three strategies are viable.
With Strategy 1 a primary (composite) process model is developed and any collaboration struc-
tures required in leaf steps are defined through hADL. This strategy eases the migration from
existing process models as the models can be simplified step by step to incorporate hADL but
can generally be reused. The Strategy 2 requires existing process models to be split into multi-
ples which specify hADL elements’ internal behaviour respectively. Strategy 3 requires the split
analogously to the second. All strategies require the creation of new hADL model instances.
Based on the widespread application of process engines, Strategy 1 seems to be the most prag-
matic approach. The strategy requires only minimal changes of process engines and does not
disrupt current approaches of process designers.

Employing Strategy 1 limits the options of integration points. Process engines are focussing
on assigning activities to agents and the dataflow required to carry them out. [52] Most process
meta-models include mechanisms for resource handling thus integrating collaboration structures
via a resource model becomes evident. The solution approach transforms collaboration patterns
defined through hADL into resources usable by LittleJIL leaf steps. Figure 4.1 depicts the essen-
tial elements of the solution and the relationship between them. The system under development
is described through a process description and a collaboration pattern description, which are cre-
ated by the software developers. Then the process description can be instantiated and executed
by a process engine. It requests instances of collaboration patterns from the framework during
runtime which in turn has to load the pattern description to identify required elements. Links

28

executed by instantiated by

references

request resource

Process Description Collaboration Pattern

Process Engine Framework

Figure 4.1: Relationship between process description/engine and collaboration pattern/resource
manager of the solution approach

between elements in Figure 4.1 represent four sub-problems which have to be tackled in the
solution approach:

1. Referencing collaboration patterns in process descriptions

The framework must provide means to reference collaboration patterns and its elements
from the process description.

2. Executing process descriptions

The process engine is responsible for the execution of process descriptions. This sub-
problem is implicitly solved by LittleJIL and thus does not have to be described explicitly
by the framework.

3. Handle requests for collaboration patterns

Any process engine, especially LittleJIL, has a defined resource model which determines
the lifecycle of resources. The framework therefore must define a compatible model itself
which can simulate the states and transitions of the process engine’s resource model. It

29

Process StepInput Output

Input Resources

...

hADL File

hADL Elements

...

Output Resources

...

Scope ID

Element Instance IDs

...

Figure 4.2: Input/Output of process steps when referencing hADL collaboration patterns as
resource. The tuple of hADL file and hADL elements identifies the pattern. A scope ID is
assigned to the instantiated pattern.

also has to provide resources such that they can be shared between steps. Thus instances
of collaboration patterns and elements must be identifiable.

4. Instantiate collaboration patterns

Instantiation of collaboration patterns is strongly tied to the resource model or rather the
lifecycle. The actual logic required to realize patterns on specific platforms are very dis-
tinctive, thus capabilities for using individual implementations have to provided.

The following sections detail the solutions to the sub-problems previously mentioned. Only
the execution of process descriptions is omitted, since it is the core functionality of process
engines and as such it is already given.

4.1 Referencing collaboration patterns in process descriptions

Collaboration patterns can be seen as a named collection of (human) components, (collabora-
tion) connectors and (collaboration) artefacts, thus each element of the collection can be ref-
erenced via an identifier unique only within each pattern. Collaboration pattern references in
process descriptions have to at least specify an identifier for the pattern and a set of identifiers
representing the elements of the pattern. Figure 4.2 depicts the input and output of process
steps when a collaboration pattern is referenced. The step’s input and output are sets of key/-
value entries where the input has to specify the file which contains the hADL collaboration
pattern. Additionally a list of hADL elements which should be initialized, can be provided. The
outcome of the step then contains identifiers which are unique strings associated with the instan-
tiated collaboration pattern and its elements. Hence the tuple of file path and element represents
a reference from the process description to the hADL collaboration pattern.

30

Process Engine Framework

ACQUIRE <Pattern, Elements, Data>

ACQUIRE <Status>

USE <Scope, Elements>

USE <Status>

RELEASE <Status>
. . .

RELEASE <Scope, Elements>

Figure 4.3: The basic sequence of messages for using collaboration patterns as resources. The
data of the messages are described in the arrow brackets.

4.2 Handle requests for collaboration patterns

LittleJIL defines a simple lifecycle for resources where each resource can be acquired, used and
released. The order of resource management operations is not enforced by LittleJIL and has to
be modelled explicitly using individual steps. For that purpose additional symbols for defining
resource acquisition and resource usage are provided. Releasing resource is requested implicitly
when all steps using the resource are terminated. [77] Thus the framework has to support at least
these three operations. Figure 4.3 illustrates the sequence of messages passed, when using a
collaboration pattern in a process. The entire communication occurs in an asynchronous fashion
to provide flexibility.

First an ACQUIRE message is sent, which contains the pattern description, the elements to
be initialized and the data of the elements. The response contains the status, which indicates if
the operation succeeded or failed. Statuses also contain IDs referencing the acquired pattern and
element instances. References are usually memorized by the step’s executing agent.

Then a number of USE messages are submitted which link element instances to scopes. The
response contains a status indicating success or failure.

31

hADL Element Surrogate

hADL Element
Instance

Surrogate
Instance

1:1

1:N 1:N

1:1

Figure 4.4: Relationship and cardinality between hADL elements, their surrogates and the in-
stances of each.

Finally the resources are freed by issuing a RELEASE request containing the target scope
and its elements. The response informs if the resources could be released.

4.3 Instantiate collaboration patterns

The actual logic to instantiate hADL elements depends on the problem domain and no general
implementation can be provided by the framework. For example acquiring an individual human
is fundamentally different to establishing a video conference for collaboration. Hence the logic
has to be encapsulated in an extra element. The hADL executable extension augments hADL
elements with an additional field to specify such an element called surrogate. Surrogates act as
proxies between the runtime and the actual collaboration element. The behaviour of surrogates
has to be provided by the developers which are using the framework to implement their target
system. Figure 4.4 depicts the relationship between elements, surrogates and instances. Each
hADL element has exactly one surrogate and each element instance has exactly one surrogate
instance. Elements and surrogates can of course have arbitrary many instances.

4.4 Framework Architecture

In the previous sections, three major issues have been identified which have to be addressed by
the framework. Figure 4.5 illustrates its basic components. The process engine executes the
process description and interfaces with the hADL runtime to allocate, use or release resources.
A runtime enforces asynchrony and responds with status messages which encapsulate the out-
come. While handling a resource request, the runtime has to either obtain the resource via an
existing surrogate or create a new one and query the instance according to the request. Creating
a new surrogate requires the processing of the hADL specification which contains the collabo-
ration pattern with its elements. Based on the specification, surrogate instances are created and

32

hADL runtime

Process Engine

Request Resource

Load Specification

Parameters

Element References
Status

Collaboration
Tool

Execute

Surrogate
Registry

Publish Surrogate

Retrieve Surrogate

hADL Specification

Pattern

Pattern Elements

hADL Elements Surrogate

Execute

Status

Scope
Elements

Data

Figure 4.5: Overview of the human architecture implementation framework.

published to the surrogate registry. The registry enables the runtime to share existing instances
between process steps and process instances. Then surrogates for managing operations, such
as acquiring resources or releasing them, are requested by the runtime. Requests are handled
asynchronously, thus status messages inform the runtime about the outcome. Finally surrogates
are tied to the actual collaboration tools and use their specific interface to conduct the managing
operations. The design of the runtime is introduced in the next section.

33

Marshaller

Service
Registry

hADL
Runtime

Surrogate
Factory

Surrogate

Scope
Manager

1:N

Operation
Manager

1:N

1:1

1:1

1:1

1:1

Figure 4.6: Overview of the components of the hADL runtime. The links between elements
specify the cardinality between instances.

4.5 Runtime Architecture

The runtime described in Figure 4.5 has to provide access to the following functionalities:

1. Manage the lifecycle of resources of collaboration elements according to hADL model
instances.

2. Manage the membership of collaboration element instances to process instances and their
steps.

An architectural view of the runtime’s components is illustrated in Figure 4.6. The hADL
Runtime component acts as the single point of access to functionalities required by process en-
gines. Collaboration pattern element instances which have been acquired are held in a Service
Registry. A Surrogate Factory creates runtime instances of surrogates according to
the specification of third parties. Marshallers transform hADL descriptions into runtime

34

objects. The Scope Manager determines the membership of allocated resources to process
instances and their steps. Operation Managers wrap any requests to surrogates and pro-
vide basic error handling mechanisms. Finally the Surrogates facilitate the actual communi-
cation with collaboration tools. The next sections detail the interfaces, structure and behaviour
of the runtime architecture components.

Surrogates

According to the resource model of LittleJIL, surrogates have to at least support three basic oper-
ations which are acquiring the resources, using them in process steps and releasing the resource
allocations. Acquiring and releasing resources can be directly included into the surrogate’s in-
terface. Modelling resource usage on the other hand requires the operation to be split into two
separate operations. First acquired resources can be used in different pattern instances (scopes)
thus the framework must support linking element instances to any given scope. Second it also
has to support the disconnection from arbitrary scopes and their elements. All operations em-
ploy the observer pattern as all communication have to be asynchronous. Figure 4.7 depicts
the classes and interfaces defining surrogates. Any call to a Surrogate method results in
an Observable which represents a stream of SurrogateEvents. The caller can regis-
ter an Observer to the Observable which is notified when a new event has been raised.
A SurrogateEvent contains the current SurrogateStatus indicating the state of the
Surrogate and any SurrogateExceptions that have occurred. Table 4.1 contains the
surrogate’s methods and its corresponding statuses. Each method results in a success- or failed-
message. The surrogate’s behaviour has to be implemented by third party application developers
and its methods require predefined and stable contracts which are given below:

acquire: This method allocates and initializes resources required by the collaboration com-
ponent for a given scope. The resource descriptor contains the resources specified in the
process step. This operation is called for each scope separately. Surrogate implementa-
tions have to relate resources to scopes.

connectTo: Connection of collaboration components in possibly different scopes is imple-
mented in this method. The passed surrogate’s resources have to be already acquired.
Surrogate implementations have to track established connections.

disconnectFrom: The complementary method to connectTo disconnects two collabora-
tion components. A corresponding connection has to be already established.

release: The counterpart to acquire releases all allocated resources for the given scope.

Operation Manager

Operation managers introduce an additional abstraction layer which provides basic error han-
dling, rudimentary transactions and tracking of the surrogate’s states. The surrogate’s connect
and disconnect methods only allow the specification of a single endpoint whereas the operation

35

<<Interface>>

Surrogate

+ connectTo(Scope, Surrogate) : Observable
+ disconnectFrom(Scope, Surrogate) : Observable

+ acquire(Scope, ResourceDescriptor) : Observable

+ release(Scope) : Observable

<<Interface>>

Observable

+ register(Observer) : Void
+ unregister(Observer) : Void
+ notifyObservers(SurrogateEvent) : Void

<<Interface>>

SurrogateEvent

+ getSource() : Surrogate
+ getStatus() : SurrogateStatus
+ getOptionalException() : SurrogateException

<<Interface>>

Observer

+ notify(Surrogate Event) : Void

SurrogateStatus

SurrogateException

Figure 4.7: UML class diagram of the interfaces of surrogates.

36

Method Message

acquire
ACQUIRING_SUCCESS
ACQUIRING_FAILED

connectTo
WIRING_SUCCESS
WIRING_FAILED

disconnectFrom
UNWIRING_SUCCESS
UNWIRING_FAILED

release
RELEASE_SUCCESS
RELEASE_FAILED

Table 4.1: Surrogate methods and the possible states after method execution.

<<Interface>>

OperationManager

+ connectTo(Scope, ListOfSurrogates) : Observable

+ disconnectFrom(Scope, ListOfSurrogates) : Observable

+ acquire(Scope, ResourceDescriptor) : Observable

+ release(Scope) : Observable

Figure 4.8: The interface of operation managers.

manager supports an arbitrary number (see Figure 4.8). Results of these methods are equal to
the messages of surrogates (see Table 4.1), although the semantics differ slightly. The status
messages indicate the success or failure of connecting and disconnecting from all endpoints at
once. Thus the entire operation fails whenever a single endpoint fails.

Due to the fact that surrogates or rather the operation managers are shared between multiple
processes or process steps, concurrency issues must be handled explicitly. Surrogate methods
require a specific order of call to fulfil their duty and each call has to be atomic and thread-safe.
Thus the operation manager wraps each call to its methods into a message and organizes them
into a sequence of consecutive requests.

Figure 4.9 illustrates the mechanism. Any operation manager has two threads running con-
currently which share a common queue. Thread A (which is the executing thread of the caller)
handles incoming calls by creating a runtime object which encapsulates the called method and
all parameters. The object is then put into the shared queue. Thread B takes objects from the
queue one after another and calls the surrogate method according to the data of the object. After
receiving a success or failure message from the surrogate, the next request is processed.

A operation manager also has to track the state of the surrogate to determine valid operations

37

Incom
in

g C
all

Incom
in

g C
all

Connect

Connect

Operation Manager

Disconnect

put
put

take

A
cq

u
ire

C
o

n
n

e
ct

D
isco

n
n

e
ct

R
e

le
ase

A
cq

u
ire

C
o

n
n

e
ct

D
isco

n
n

e
ct

R
e

le
ase

serialize serialize

Queue

execute

ConnectDisconnect

Th
re

ad
 A

Th
re

ad
 B

Surrogate

Figure 4.9: The operation manager encapsulates incoming method calls into requests which are
put into a queue, thus executing parallel calls consecutively.

38

Initial

Acquired

WiredExecuting

acquire

wired
unwire_failed

wire, release

unwire

released
acquire_failed

acquired
unwired

wire_failed
release_failed

Figure 4.10: Lifecycle states of surrogates which are facilitated by the operation manager.

and to enable status queries by the runtime. States are modelled as a state machine where the
transitions are based on the interface’s operations and their results (see Table 4.1). Figure 4.10
depicts the state machine representing the lifecycle of surrogates. The following states are de-
fined:

Initial-State: The initial state is reached whenever a surrogate is created or all acquired
resources are released. This state is also the result of failing resource acquisitions due to
any errors.

Executing-State: The execution of any requests leads to this state. It indicates an active
operation and is left when a result is available regardless of success or failure.

Acquired-State: This state represents a successful acquisition of resources by the surrogate.
The surrogate is not yet used in any scopes and thus is not connected to any other re-
sources.

Wired-State: The surrogate is connected to at least one element in at least one scope when this
state is reached. This state can only be left when all connections are terminated.

39

<<Interface>>

ScopeManager

- acquire(ListOfOperationManagers, ResourceDescriptor) : Observable
- wire(ListOfOperationManagers) : Observable
- unwire(ListOfOperationManagers) : Observable
- release(ListOfOperationManagers) : Observable

Figure 4.11: Interface of scope managers.

Scope Manager

At the next higher level of granularity in contrast to operation managers, the scope manager
encapsulates an instance of a collaboration pattern, whereas an operation manager wraps a single
element of the pattern. The scope manager has to keep track of element instances currently
connected to it. Figure 4.11 illustrates the available operations on scope managers. All methods
also return observables to support asynchronism. The following operations are defined:

acquire: Scope managers forward calls to the acquire method of the surrogates which are
invoked via an operation manager. The results are returned through the observable along
with any potential exceptions.

wire: This method connects the given surrogates or rather their operation managers to compo-
nents of this scope. First all incoming and outgoing links of the element in the underlying
hADL model instance have to be determined. Then elements at the opposite side of the
links have to be collected resulting in a set of target elements. The operation manager has
to connect to all instances of any of the target elements in the scope.

unwire: This operation is the counterpart to wire. Analogously all links of the corresponding
hADL elements in the hADL model instance are collected first. The passed operation
managers then have to disconnect from every available instances of those elements.

release: The scope manager releases the resources acquired by the surrogates for this scope
by calling their corresponding method.

hADL Runtime

At the highest level of abstraction, the hADLRuntime interfaces with the process engine. The
runtime has to parse hADL descriptions via the marshaller, create surrogate factory instances

40

<<Interface>>

hADLRuntime

- acquire(PatternId, ResourceDescriptor) : Observable
- wire(ScopeId, ListOfElementInstanceIds) : Observable
- unwire(ScopeId, ListOfElementInstanceIds) : Observable
- release(ScopeId, ListOfElementInstanceIds) : Observable

Figure 4.12: Interface of the hADL runtime.

and retrieve element instances based on identifiers. It also has to assign unique identifiers to new
scopes and surrogate instances. The interface depicted in Figure 4.12 has been derived from the
sequence of operation illustrated in Figure 4.3. Releasing resources has been split into unwire
and release to provide finer granularity, although LittleJIL’s resource model does not require
it. The runtime defines the following operations:

acquire: This method has to either create a scope and a scope manager based on the PatternId
or retrieve an existing scope from the service repository when a scope identifier is provided
in the ResourceDescriptor. Analogously element instances are created or retrieved
in the same fashion. The surrogate factory is employed whenever new elements need to
be created. Each element instance is then wrapped into an operation manager and finally
the acquire method of the scope manager is called.

wire: Handling the wiring request first requires the retrieval of instances from the service
registry according to the identifiers passed. Then the wiring method of the scope manager
is called and its result are returned.

unwire: Complementary to wire, the element instances and the scope manager are retrieved
first. Then all operation managers are unwired from the scope.

release: After obtaining the object instances, the release method of the scope manager is
called with the operation managers as parameter.

Surrogate Factory

Surrogate factories create surrogate instances based on the hADL specification. They basically
map hADL elements to runtime surrogate objects. The surrogate implementations are provided
by application developers, thus a mechanism to add new implementations during runtime has
to be provided. In order to do that, developers have to supply an isolated binary library file

41

<<Interface>>

SurrogateFactory

- create(PatternId, ElementId) : Surrogate

Figure 4.13: Interface of the surrogate factory.

<<Interface>>

ServiceRegistry

- register(Id, Object) : Void
- retrieve(Id) : Object
- unregister(Id) : void

Figure 4.14: Interface of the service registry.

containing the surrogate implementations. The hADL model instances then have to reference
the binary objects in the library. Figure 4.13 contains the simple surrogate factory interface
definition which has only one method:

create: This method creates a surrogate instance based on the PatternId, which identi-
fies the hADL description and ElementId, which determines the hADL element whose
surrogate has to be instantiated. The factory has to keep track of available patterns au-
tonomously.

Service Registry

The service registry is a facility to store and retrieve object instances. Multiple process instances
might access the registry which requires it to be run in a separate process context. The registry
enables sharing of scopes and surrogates between process instances and steps. Figure 4.14
defines the interface which has the following methods:

42

<<Interface>>

Marshaller

- unmarshall(File) : Scope

Figure 4.15: Interface of the marshaller.

register: The given object is published in the registry under the given Id. This method fails
when the identifier has already been registered. The object on the other hand is allowed to
be registered under arbitrary many identifiers.

retrieve: A published object is retrieved based on the passed Id. An exception is raised
when no object is registered under the given ID.

unregister: A published object is removed from the registry based on the Id provided. If
the ID has not been registered, an exception is raised instead of failing silently.

Marshaller

The last component of the framework is the marshaller which simply parses hADL descriptions
and turns them into their runtime representation. Figure 4.15 describes its interface which has
only one method:

unmarshall: This method parses the provided File and returns a scope object representing
the hADL description if the file contains a valid hADL model instance.

43

CHAPTER 5
Implementation

This chapter elaborates and enlists the technologies employed to implement the components
according to the design described in the last chapter. Similar to the structure of Section 4.5, each
component defined in Figure 4.6, except of surrogates which are implemented by application
developers, will be described in a separate section. Each section contains the structural and
behavioural description of the implementation as well as the concrete technologies in use. The
general programming environment and libraries along with their version can be obtained from
Table 5.1. Microsoft Windows as operating system has been run on the development computer
and the programming language of choice was Java along with Eclipse as IDE. Apache Maven
has been used to manage dependencies and the build process. The RxJava library has been
used to implement asynchrony of operations and the observer design pattern. Google Guice was
employed as dependency injection framework and Apache Camel as service registry provider.

Category Technology Version
Platform Microsoft Windows 7
Development Environment Eclipse 4.4.1
Build Management Apache Maven 3.2.3
Programming Language Java 1.8

Libraries
Apache Camel 2.14.0
Google Guice 4.0
RxJava 1.0.2

hADL
hADL core 1.1.1
hADL executable 1.2.0
hADL runtime 1.0.2

Table 5.1: Programming language, technologies and common libraries employed during imple-
mentation of the hADL runtime.

45

ResourceDescriptor

- resources

Resource

- ID
- valueMap

1:N

ScopeResource

ElementResource

- elementName

Figure 5.1: Data model of resource descriptors.

5.1 hADL Runtime

As described in Section 4.5, the functionality of the runtime can be reduced to two basic tasks.
First, the runtime has to map instance identifiers to instances. Second, the requests from the
process engine has to be forwarded to the scope managers. Retrieving or creating instances of
scopes or surrogates requires the resource descriptors to contain identifiers for both. Multiple
instances of each element might be used in a single scope and each instance of the elements has
to be retrieved or created. The distinction between a new or an existing instance is determined
by the absence or presence of an identifier for the element or scope under discussion.

Figure 5.1 depicts the data model of resource descriptors. A ResourceDescriptor
consists of a set of Resourceswhich have an ID attribute and a key/value data structure named
valueMap for arbitrary string values. The resources are either ScopeResource holding
data for a scope (hADL collaboration pattern) or an ElementResource containing data for a
hADL element.

Figure 5.2 and Figure 5.3 illustrate the sequence of actions executed and the participat-
ing components when mapping identifiers to runtime objects for scopes and surrogates re-
spectively. When a scope instance is required, the resource descriptor has to either contain a
ScopeResource with a non-empty ID which directly references an existing instance, or a
ScopeId referring to the hADL description of the collaboration pattern. If both identifiers
are supplied, the scope ID takes precedence. Passing multiple ScopeResources leads to an
exception. Each non-empty identifier triggers a query to the service registry to obtain the corre-
spondent object instance. The marshaller is used to create new scope instances when an empty

46

Process
Engine

hADL
Runtime

Service
Registry

Marshaller

getScopeInstance(ID)

getInstance(ID)

ScopeInstance

createInstance(ScopeId)

ScopeInstance

ScopeInstance

alt

[ID absent]

[ID present]

Figure 5.2: UML sequence diagram for obtaining an scope instance from the hADL runtime.

ID or no ScopeResource is supplied. Surrogate instances are obtained analogously, although
the surrogate factory is used instead of the marshaller. New scope and surrogate instances are
wrapped into scope manager and operation manager instances respectively, which in turn are
registered in the service registry.

5.2 Marshaller

The marshaller is the component responsible for converting hADL descriptions which are pro-
vided as XML files into their runtime representation. Transforming runtime objects into a store-
able format and vice versa is often called marshalling and unmarshalling respectively. Only the
latter feature is required by the hADL runtime prototype.

The implementation of the marshaller employs the Java Architecture for XML Binding (JAXB)
to handle XML processing. JAXB requires multiple steps to enable parsing hADL descriptions
at runtime. Figure 5.4 describes the overall process which yields a scope instance. First the
XML schemata of hADL has to be processed by JAXB which generates Java classes suitable to
represent the XML equivalent. The classes are packaged along with the runtime which can then
be started. During execution of the runtime, hADL model instances are submitted by clients
which are then transformed into instances of the classes obtained from the schemata transforma-

47

Process
Engine

hADL
Runtime

Service
Registry

Surrogate
Factory

getSurrogateInstance(ID)

getInstance(ID)

SurrogateInstance

createInstance(ScopeId, ElementId)

SurrogateInstance

SurrogateInstance

alt

[ID absent]

[ID present]

Figure 5.3: UML sequence diagram for obtaining an surrogate instance from the hADL runtime.

JAXB

Runtime

Scope
instance

hADL model
instances

hADL
schemata

JAXB

Java classes

Binary

package

package

execution

Figure 5.4: Process of converting hADL model instances into scope instances.

48

tion on demand. The ScopeId represents the filename of the hADL model instance. The class
instances are finally composed into a scope instance by the marshaller.

5.3 Surrogate Factory

The surrogate factory creates surrogate instances according to scope instances. A scope instance
has to define surrogate classes for each hADL element according to the hADL executable exten-
sion. The surrogate classes are instantiated by the factory on client requests. Thus third party
developers have to specify the surrogate mappings and supply the implementations. In order to
support that, the surrogate factory has to offer the following mechanisms:

Loading third party classes: Third party developers have to supply their classes as standard
Java JAR archives. The surrogate factory defines a folder where all third party archives
have to be located. This directory is monitored by a watcher service which notifies the
surrogate factory when archives have been supplied, changed or removed. Then the fac-
tory adapts its classloaders according to the changes. The name of the archive defines the
relationship to the collaboration pattern, i.e. the name of the hADL file and the archive
have to match (excluding the file extension).

Manage multiple patterns: Each collaboration pattern has its own surrogate classes, thus each
pattern has a separate classloader to minimize conflicts. The classloaders are held in a
key/value store where the pattern name represents the key.

Instantiate third party classes: With the class definitions obtained from the classloaders, class
instances can be constructed via the Java Reflections API. The surrogate factory requires
the availability of parameterless class constructors or a constructor which takes a resource
descriptor as argument.

5.4 Service Registry

The service registry provides access to scope manager and surrogate manager instances, to re-
trieve, share and reuse resources. This component is implemented via Apache Camel which
is a routing and transport conversion framework for enterprise application integration contexts.
It comes with a pluggable service registry 1 amongst other features. The hADL runtime ser-
vice registry is based on the SimpleRegistry of Apache Camel which is basically a key/-
value store. It is started along with the runtime. Further more, the hADL runtime publishes
all instances to the registry where the instance’s ID also serves as service identifier. Registry
operations (see Figure 4.14) are simply implemented as follows:

register: Put the object into the map with the ID as key.

retrieve: Get the object with the given key from the map.

unregister: Remove the given ID from the map.
1http://camel.apache.org/registry.html

49

Algorithm 5.1: Algorithm for wiring surrogates within a scope manager.
name: wire
input: operation manager om

1 targetElements← extractEndpoints(om);
2 for target in targetElements do
3 instances← all wired instances of element target in scope;
4 om .connectTo(scope, instances);
5 end

Algorithm 5.2: Algorithm for unwiring surrogates within a scope manager.
name: unwire
input: operation manager om

1 targetElements← extractEndpoints(om);
2 for target in targetElements do
3 instances← all wired instances of element target in scope;
4 om .disconnectFrom(scope, instances);
5 end

5.5 Scope Manager

Scope managers represent instantiated collaboration patterns with their resources. They contain
scope instances which describe pattern structures and keep track of instances of the pattern’s el-
ements. The implementation of operations defined in Section 4.5 are described in the following:

acquire: Each of the operation managers passed to this method is acquired for this scope in
parallel and whenever the acquisition is successful, the instance is put into a key/value
store where the key is the element’s name and the value is a set of instances of operation
managers for the underlying element’s surrogate. Instances where the acquisition failed,
are not registered in the store. The resulting observable emits a single event indicating if
all instances have been successfully acquired for this scope.

wire: This operation connects the passed operation managers to element instances already
wired in the scope. Algorithm 5.1 describes the behaviour of the method with the addi-
tional functions defined in Algorithm 5.3. Wired instances are put into a separate map.

unwire: As the counterpart to wire, the method disconnects the surrogates from the given
scope (see Algorithm 5.2 and Algorithm 5.3).

release: The behaviour of this method is equal to acquire although the release method
of the operation manager is called instead.

50

Algorithm 5.3: This algorithm generates a list of target elements for the input element
according to the collaboration pattern structure represented by the scope instance.

name : extractEndpoints
input : hADL collaboration element element, collaboration pattern scope
output: Set of collaboration elements endpoints

1 for link in scope .collaborationLinks do
2 sourceElement← mapToElement(link.objActionEndpoint, scope);
3 targetElement← mapToElement(link.objActionEndpoint, scope);
4 if names of sourceElement and element are equal then
5 add sourceElement to endpoints;
6 end
7 if names of targetElement and element are equal then
8 add targetElement to endpoints;
9 end

10 end

name : mapToElement
input : hADL action endpoint endpoint, collaboration pattern scope
output: hADL collaboration element result

11 for ce in scope .collaborationElement do
12 for action in ce.actions do
13 if names of action and endpoint are equal then
14 return ce as result;
15 end
16 end
17 end

The implementation of the wiring and unwiring features allows a step by step construction
of the collaboration patterns, hence the instantiation of subgraphs of patterns is supported. It
also allows an arbitrary number of instances per element to be wired at any given moment under
the assumption that the resources have already been acquired for the particular scope. Figure 5.5
illustrates the wiring of a simplified chatroom pattern based on Figure 2.5. Collaboration objects
have been omitted for clarity purposes. Coloured links between components instances indicate
new links which are established when a surrogate instance is wired.

In the example, a client to the hADL runtime has already acquired the pattern elements and
wants to wire them. The wire method of the scope manager (SM) is called with all element
instances. First the Moderator has to be wired and since no other wired instances are available
yet, no new connection is established and the moderator is put into the map. Then a Messenger
needs to wired. A SM checks the hADL model instance and identifies a link between moderator
and messenger which leads to a new connection between them. Then the messenger is put into
the map. This process is repeated until all instances are wired.

51

Chatroom

Moderator

Messenger

Chatroom

Moderator

Connection GraphElement to wire

tim
e

Messenger Moderator

Chatroom

MessengerModerator

Participant A

Participant A

MessengerModerator

Chatroom

Participant B

Participant A

MessengerModerator

Participant B

Figure 5.5: Step by step construction of a collaboration pattern instance. Coloured links indicate
connections which have been added at the new step.

52

SurrogateState

- handle(SurrogateEvent) : SurrogateState
- execute(SurrogateRequest) : Void

InitialState

WiredState

AcquiredState

FailedState

ExecutingState

OperationManager

- requests : Queue
- currentState: SurrogateState
- surrogate : Surrogate

Figure 5.6: UML class diagram of the state pattern tracking surrogate states at the operation
manager.

5.6 Operation Manager

As described in Section 4.5, the operation manager has to serialize incoming calls into requests,
put them into a thread-safe queue and manage the state of the surrogates.

The state-machine is implemented via the state-design pattern (see Figure 5.6). Serialized
requests are taken from the queue and executed by the current internal state. State transitions are
triggered by events emitted by the underlying surrogate.

The requests are implemented with the strategy-design pattern (see Figure 5.7). Each sur-
rogate method is encoded as separate request class and the parameters of the call are stored
internally. The state’s execute method calls the executeFor method of the request which
in turn calls the surrogate implementation of third party developers.

The operation manager also provides basic facilities for error handling. By employing the
decorator-design pattern (see Figure 5.7), the execution of the request can be wrapped into
arbitrary means of error handling, such as retrying the requests and timeouts.

53

<<Interface>>

SurrogateRequest

- executeFor(OperationManager) : Observable

AcquireRequest

ReleaeRequest

ConnectRequest

DisconnectRequest

AbstractReqeuest

Scope

OperationManager

RequestDecorator

ResourceDescrptor TimeoutDecorator

RetryDecorator

Figure 5.7: UML class diagram of the strategy and decorator pattern for executing surrogate
requests at the operation manager.

Surrogates

The operation managers act as façades for the underlying surrogates, which only define an inter-
face with asynchronous operations. A designated base class for third party surrogate implemen-
tations have been provided (see Appendix A.2). A base class enforces asynchrony via the RxJava
framework which is ”... a library for composing asynchronous and event-based programs by us-
ing observable sequences.”2 The core components of the framework are Observables which can
be seen as a realisation of the publish/subscribe pattern. Observables also represent streams of
objects of a given type, which are for example SurrogateEvents in the context of the human ar-
chitecture implementation framework. RxJava advocates the application of the reactive pattern
where the components react to events, such as property changes and user input to execute the
business logic. Additionally convenience and utility functions are provided to simplify the coor-
dination of multi-threaded tasks. Listing 5.1 showcases the synchronisation mechanism for mul-
tiple concurrent asynchronous method invocations. In Line 8, the connectTo method of the

2https://github.com/ReactiveX/RxJava/wiki

54

AsyncSurrogate (see Appendix A.2) is called which immediately returns an Observable.
This line is executed for each target endpoint. The observables are collected in a list and passed
to combineLatest which blocks until all observables have emitted at least one value. In Line
19 a callback is specified which is invoked whenever a SurrogateEvent is raised by the ob-
servables. It simply counts failures which determines the overall result of the method (see Line
24 and Line 29). The main advantage of RxJava in comparison to the Java Concurrent API are
the Observable Operators. They offer stream manipulation behaviour such as merging multiple
streams and transforming the objects and can be chained together. A plethora of operators is
predefined and an exhaustive list can be obtained from the documentation.3

1 @Override
2 p u b l i c Obse rvab le < S u r r o g a t e E v e n t > e x e c u t e F o r (S u r r o g a t e s u r r o g a t e) {
3 f i n a l Set < S u r r o g a t e E v e n t > f a i l e d C o n n e c t i o n s = C o l l e c t i o n s
4 . s y n c h r o n i z e d S e t (new HashSet < >()) ;
5

6 L i s t < Obse rvab le < S u r r o g a t e E v e n t >> o b s e r v a b l e s = new A r r a y L i s t < >() ;
7 f o r (f i n a l Opera t ionManager man : e n d p o i n t s) {
8 Obse rvab le < S u r r o g a t e E v e n t > obs = s u r r o g a t e . connec tTo (
9 scope , man . g e t S u r r o g a t e ()) ;

10 obs . s u b s c r i b e (e v e n t −> {
11 i f (! S u r r o g a t e S t a t u s . WIRING_SUCCESS . e q u a l s (e v e n t . g e t S t a t u s ())) {
12 f a i l e d C o n n e c t i o n s . add (e v e n t) ;
13 }
14 }) ;
15 o b s e r v a b l e s . add (obs) ;
16 }
17

18 O b s e r v a b l e . c o m b i n e L a t e s t (o b s e r v a b l e s , os −> os) ;
19

20 i f (f a i l e d C o n n e c t i o n s . s i z e () > 0) {
21 Set <Throwable > c a u s e s = f a i l e d C o n n e c t i o n s . s t r e a m ()
22 . map (e v e n t −> e v e n t . g e t O p t i o n a l E x ())
23 . c o l l e c t (C o l l e c t o r s . t o S e t ()) ;
24 r e t u r n O b s e r v a b l e . j u s t (new S u r r o g a t e E v e n t (s u r r o g a t e ,
25 S u r r o g a t e S t a t u s . WIRING_FAILED ,
26 new M u l t i S u r r o g a t e E x c e p t i o n (s u r r o g a t e ,
27 " c o n n e c t i o n f a i l e d " , c a u s e s))) ;
28 } e l s e {
29 r e t u r n O b s e r v a b l e . j u s t (new S u r r o g a t e E v e n t (s u r r o g a t e ,
30 S u r r o g a t e S t a t u s . WIRING_SUCCESS)) ;
31 }
32 }

Listing 5.1: RxJava example for implementing ConnectRequest.

3http://reactivex.io/documentation/operators.html

55

5.7 Deployment and Execution

The human implementation framework has been developed using JAVA 1.8 and can easily be
build using Apache Maven 3. Build-artefacts can be generated using: mvn clean install
executed in the top folder of the source code. This command generates a JAR which can be
added to any third party projects as required. The source code of the framework can be found at
https://bitbucket.org/x_zhang/hadlruntime.git.

56

CHAPTER 6
Evaluation

In the last chapters, the design (see Chapter 4) and implementation (see Chapter 5) of the frame-
work have been proposed which have to be evaluated according to the methods defined in Chap-
ter 3. This chapter is structured similar to the scenario descriptions at Section 3.1. Each scenario
is described in a separate section where each section contains a solution addressing the require-
ment and a textual argumentation as evaluation.

6.1 REQ-01: Supporting Architecture Driven Development

The ADD approach has been introduced and illustrated in Figure 3.2. It is a macroscopic iterative
approach to software engineering where the software architecture is developed, evaluated and
changed along the lifespan of the system under development. Each of the steps will be evaluated
against the framework in the following:

Collect Architectural Requirements: Collecting architectural requirements is essential to any
system. It can be supported with established methods and software tools to document the
findings, nevertheless it is ultimately an organizational issue which has to be solved via
structured communication. A technical framework such as the proposed human architec-
ture implementation framework cannot determine the requirements.

Design the Architecture: By enforcing the use of process descriptions and hADL, a structural
and behavioural decomposition of the system can be guaranteed. Experiences in practice
suggest the usefulness of process descriptions and its weakness regarding the system’s
structure. The shortcoming is addressed by hADL which employs the classical concept of
components and connectors and extends them with aspects related to human collaboration.
Thus additionally to the software structure, the structure of collaboration between human
and software can also be designed at macroscopic level.

Document the Architecture: The design step yields at least a behavioural documentation based
on the process language in use and a structural documentation based on hADL. Thus

57

higher level of completeness can be assured compared to an approach solely based on
one of the languages. Mesoscopic and microscopic design decisions at process steps and
within components, connectors and collaboration objects still have to be documented ad-
ditionally and cannot be enforced.

Analyse the Architecture: The higher level of completeness regarding the architecture docu-
mentation favours the analysis as well. Traditional architecture analysis methods such as
SAAMs (see Section 3.3) can still be applied to both models. The models can also be
augmented with quality attributes to enable automated reasoning or verification.

Realize the Architecture: The implementation of the architecture can directly be derived from
the process description and the hADL description. The process model and its engine
are already essential parts of the implementation at top level. This holds equally for the
hADL model instance and its runtime. Thus creating the documentation innately realizes
the architecture as well.

Maintain the Architecture: The system’s evolution over time is always synchronized with the
architectural views at macroscopic level due to the direct mapping of architecture elements
to their implementation by the runtime. Its architecture can thus always be reconstructed.
Deviations of the descriptive view from the prescriptive view should only occur within
hADL elements.

The argumentation above suggests that the human architecture implementation framework
supports architecture driven software development and even enforces higher level of complete-
ness in respect to software architecture documentation. The framework also simplifies the syn-
chronization between prescriptive and descriptive view which represent the design as intended
and the design as implemented respectively due to the direct mapping.

6.2 REQ-02: Modelling the Architecture

To evaluate the framework’s capability to adequately model software systems with human par-
ticipation, a interest based bargaining process is designed. The IBB process is illustrated in
Figure 6.1. In process model, IBB is reduced to a sequence of phases (steps) each defining input
and output resources. Any data defined in the following uses a format similar to JSON 1. Each
process step requires an executing agent which signals the success or failure of the step to the
process engine. The exact internal architecture of the agent is not relevant as it depends on the
process engine’s API. Each subsequent section contains exemplified input and output data as
well as behavioural (prosaic) and structural (hADL) descriptions of the elements. In particular
the acquire and wire method of the surrogates will be elaborated.

The process and hADL model instances are kept simple for clarity and brevity reasons as
the expressiveness of both ADLs for their respective domains have already been established in
literature. Collaboration patterns introduced in Section 2.4 will be employed by the architecture.

1http://www.json.org/

58

Identify Options

Start Sesion
Consolidate Issue

Statements

Add Interest ItemsAdd Options

Draft Resolution

Figure 6.1: Process model of the IBB process.

Moderator
(Publisher

Component)
publish

Distributor
(Connector)

publish receive

PartyA
(Subscriber

Component)
receive

PartyB
(Subscriber

Component)
receive

Figure 6.2: Publish/Subscribe collaboration pattern for IBB.

Start Session

The mediator of the IBB has to inform the parties about the process and gather their contact de-
tails, assuming that some contact information is available a priori (e.g. obtained from a different
process). Informations about IBB could not be delivered otherwise.

Required resource for the first step is described in Listing 6.1. One instance of each ele-
ment (see Figure 6.2) is requested. The runtime acquires and then wires all elements. Instance
identifiers are in the step’s outcome (see Listing 6.2).

Moderator : The surrogate acquires the moderator simply by sending an email indicating the
start of a new IBB process instance along with the parties’s information. After the moder-
ator has been wired to the distributor, the parties can be informed about IBB via a mailing
list.

59

PartyA/PartyB : Acquiring the party is also implemented as delivering an email notification.
The functionality for wiring is equal to subscribing to the mailing list.

Distributor : The surrogate creates a new mailing list for the process when the distributor is
acquired. When wiring, publishers and subscribers are registered for the list.

After the wiring is complete, the mediator component has to inform the participants and
afterwards has to signal the end of the step to the step’s executing agent. This holds analogously
for all subsequent steps.

1 {
2 Scope : {
3 ScopeID : " ibb−s t a r t . xml " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { e m a i l : " mod@example . com" } } ,
6 Par tyA : { Bob : { e m a i l : " bob@partyA . com" } } ,
7 Par tyB : { A l i c e : { e m a i l : " a l i c e @ p a r t y B . com" } } ,
8 D i s t r i b u t o r : {}
9 }

10 }
11 }

Listing 6.1: Input resources when starting the IBB process

1 {
2 Scope : {
3 I n s t a n c e I D : " s1 " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 D i s t r i b u t o r : { I n s t a n c e I D : " d1 " }
9 }

10 }
11 }

Listing 6.2: Output resources of the IBB start step.

60

Moderator
(Component)

Issues
(Object)

Edit

Read

IssuesB
(Object)

Edit

Read

IssuesA
(Object)

Edit

Read

R
e
ad

Edit

PartyB
(Component)

Edit

Read

PartyA
(Component)

Edit

Read

Figure 6.3: Shared artefact collaboration pattern for IBB.

Consolidate Issue Statements

In this step, the moderator collects the issue statements from the parties and consolidates them
into a single document. The collaboration pattern is depicted in Figure 6.3. Each party has a
separate artefact (IssuesA and IssuesB) shared with the moderator to collect their respective
issue statements. Moderators consolidate the statements into Issue artefacts which both parties
are allowed to read. Resource definitions can be obtained from Listing 6.3 and Listing 6.4.
Moderator and both parties from the last step are reused.

The surrogates have to acquire the shared artefacts which are documents on GoogleDocs in
this case. Thus a document has to be created on the platform according to the platform’s API.
When the components are wired, the surrogates have to give the relevant users read or write
permissions as defined in the collaboration pattern.

61

1 {
2 Scope : {
3 ScopeID : " ibb−i s s u e s . xml " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 I s sueA : { doc : {} } ,
9 I s su eB : { doc : {} } ,

10 I s s u e s : { doc : {} }
11 }
12 }
13 }

Listing 6.3: Input resources issue statements.

1 {
2 Scope : {
3 I n s t a n c e I D : " s2 " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 I s sueA : { doc : { I n s t a n c e I D : " docA " } } ,
9 I s su eB : { doc : { I n s t a n c e I D : " docB " } } ,

10 I s s u e s : { doc : { I n s t a n c e I D : " docC " } }
11 }
12 }
13 }

Listing 6.4: Output resources after consolidating issue statements.

62

Artefact
(Object)

Edit

ParticipantA
(Component)

Edit

ParticipantB
(Component)

Edit

Moderator
(Component)

Edit

Issues
(Object)

Read

Read

Figure 6.4: Shared artefact collaboration pattern for IBB where all components may edit.

Add Interest Items

After the consolidation of the issue statements, parties are allowed to add interest items to the
newly created shared artefact. The collaboration pattern is illustrated in Figure 6.4. Shared arte-
facts grant every stakeholder edit permissions, i.e. read and write. Surrogates of the Artefact
create new documents based on the data extracted from the collaboration objects of the last step
(Issues). Input and output of this step are exemplified in Listing 6.5 and Listing 6.6 respec-
tively.

1 {
2 Scope : {
3 ScopeID : " ibb−s h a r e d . xml " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 I s s u e s : { doc : { I n s t a n c e I D : " docC " } } ,
9 A r t e f a c t : { doc : {} }

10 }
11 }
12 }

Listing 6.5: Input resources when collecting interest items.

63

1 {
2 Scope : {
3 ScopeID : " s3 " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 I s s u e s : { doc : { I n s t a n c e I D : " docC " } } ,
9 A r t e f a c t : { doc : { I n s t a n c e I D : " docD " } }

10 }
11 }
12 }

Listing 6.6: Output resources after collecting interest items.

Add Options

When the interest items have been identified and fixated, the parties add options to the items
which represent acceptable solutions for the issue and interest. The scope from the last step is
reused as the collaboration pattern is very similar. Input and output are thus analogous to the
previous step.

Identify Options

After all parties have added their options, a voting with the options is created to let the parties
choose acceptable solutions. Figure 6.5 depicts the pattern. The Survey collaboration object
reads the options from Artefact obtained at the previous step and creates a survey. When
wiring the Survey, the location is transmitted to the participants. In this example, Google
Forms is used as voting framework and a link to the form is send to the user. The resources are
described in Listing 6.7 and Listing 6.8.

1 {
2 Scope : {
3 ScopeID : " ibb−v o t e . xml " ,
4 Elemen t s : {
5 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
6 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
7 Survey : { form : {} } ,
8 A r t e f a c t : { doc : { I n s t a n c e I D . " docD " } }
9 }

10 }
11 }

Listing 6.7: Input resources when voting for options.

64

ParticipantA
(Component)

Vote

Artefact
(Object)

Read

Survey
(Object)

Vote

Read ParticipantB
(Component)

Vote

Figure 6.5: Voting collaboration pattern for IBB.

1 {
2 Scope : {
3 ScopeID : " s4 " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 Survey : { form : { I n s t a n c e I D : " form1 " } } ,
9 A r t e f a c t : { doc : { I n s t a n c e I D : " docD " } }

10 }
11 }
12 }

Listing 6.8: Output resources after voting for options.

Draft Resolution

In the last step a resolution is finally created from the chosen options. The moderator drafts a
solution agreement for both parties and informs them using the mailing list acquired in the first
step (see Figure 6.2).

6.3 REQ-03: Change in Collaboration Structure

The implementation of the IBB process introduced in the previous sections provides the basis
for architectural change and evolution which is inevitable for long-lived software systems. This

65

Moderator
(Publisher

Component)
publish

Distributor
(Connector)

publish receive

PartyA
(Subscriber

Component)
receive

PartyB
(Subscriber

Component)
receive

PartyC
(Subscriber

Component)
receive

Figure 6.6: IBB publish/subscribe pattern with an addtional party.

Distributor
(Connector)

publish

receive

PartyA
(Component)

receive

PartyB
(Component)

receive

publish

publish

Figure 6.7: IBB publish/subscribe pattern where the moderator has been removed.

evaluation considers a change in the collaboration structure in the process’s first step which is
an incarnation of the publish/subscribe pattern (see Figure 6.2). In this context, at least two
modifications might occur. First, a new element can be added (see Figure 6.6). Second, an
existing element might be deleted from the model (see Figure 6.7).

When adding a component, regardless of leaf or non-leaf, the interface in respect to resource
outputs stays compatible to subsequent steps. In Figure 6.6 the PartyC component is added to
the model. Thus a new entry has to be added to the resource declaration in Listing 6.1 resulting
in Listing 6.9. The output declaration does not have to be changed, if PartyC is not required
afterwards. Otherwise the output would be similar to Listing 6.2. This also holds analogously
for new connectors, collaboration objects, links and actions.

Removing elements from the hADL model triggers changes in all steps containing references
to the deleted elements. The adaptation of the resource declarations clearly cannot be avoided.

66

1 {
2 Scope : {
3 ScopeID : " ibb−s t a r t . xml " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { e m a i l : " mod@example . com" } } ,
6 Par tyA : { Bob : { e m a i l : " bob@partyA . com" } } ,
7 Par tyB : { A l i c e : { e m a i l : " a l i c e @ p a r t y B . com" } } ,
8 Par tyC : { A l i c e : { e m a i l : " mike@partyC . com" } } ,
9 D i s t r i b u t o r : {}

10 }
11 }
12 }

Listing 6.9: Input resource of the IBB start step after adding an element to the collaboration
pattern.

1 {
2 Scope : {
3 I n s t a n c e I D : " s1 " ,
4 Elemen t s : {
5 Modera to r : { ModeratorA : { I n s t a n c e I D : "m1" } } ,
6 Par tyA : { Bob : { I n s t a n c e I D : " p1 " } } ,
7 Par tyB : { A l i c e : { I n s t a n c e I D : " p2 " } } ,
8 Par tyC : { A l i c e : { e m a i l : " mike@partyC . com" } } ,
9 D i s t r i b u t o r : { I n s t a n c e I D : " d1 " }

10 }
11 }
12 }

Listing 6.10: Output resource of the IBB start step after adding an element to the collaboration
pattern.

6.4 REQ-04: Change in Collaboration Tool

Whenever underlying tools of the collaboration pattern change in respect to their interfaces, the
frameworks models have to be updated too, although only minor adaptations are necessary. For
example, the publish/subscribe pattern described in previous sections is implemented via emails
at first. The company then decides to use an instant messaging system instead, such as SMS via
a dedicated gateway.

Two adaptations are required to switch the underlying implementations. First, the hADL
model instance has to be modified. In particular, the new surrogate has to be registered in
the XML tag executableViaSurrogate of the Distributor component. Second, the
surrogate implementations have to be updated. In order to do that, the binaries in the surrogate
factory’s watch folder have to be updated. No changes in the process and hADL model are
required otherwise.

67

6.5 REQ-05: Handling Human Faults

The runtime provides two fault handling mechanisms. First, whenever a request is submitted to
surrogate, a timer is automatically started. If the timer has finished and no responses have been
received, an exception indicating a timeout and failure is raised. Whenever a request fails, a retry
strategy is applied. Three retries, i.e. new submissions of the original request, are attempted at
default.

6.6 REQ-06: Process Engine Integration

The human architecture implementation framework is designed to be integrable into process
engines by a resource model. Nevertheless during evaluation, no adapter for a real process
engine has been implemented due to the considerable effort required. The process has been
simulated by the scenario code instead.

6.7 Test Scenarios

The overall test cases can be found as JUnit tests in the repository of the hADL implementa-
tion framework.2 The IBB process has not been developed entirely, as the logic of the steps are
highly repetitive. Instead the allocation of hADL collaboration pattern and their lifecycle man-
agement have been simulated. A few surrogates have been implemented although no real-world
collaboration platform or tool has been integrated.

2https://bitbucket.org/x_zhang/hadlruntime.git

68

CHAPTER 7
Critical Reflection

Based on the evaluation results from the previous chapter, the benefits of combining structural
and behavioural ADLs in a single framework become more evident. It has been argued that
architecture driven development is adequately supported due to the nature of the framework. The
architectural models are essential parts of the developed systems. Consequently, the integration
of process engines is also a non-optional aspect of the framework as well.

Changes in collaboration pattern structures are nearly limited only to adaptations in the
hADL model instance. Minimal changes are propagated to the process model. The human
architecture framework provides a clear approach for developing human intensive software ap-
plications and also offers a runtime to reduce developing repetitive components. Changes in
implementations can easily be realised in the hADL model alone. Nevertheless a few open
issues are still unresolved and are subject to further research.

First, hADL is not fully supported. The hADL executable extension contains the capabilities
to assign a collaboration platform to each surrogate. Thus a platform is a subset of all available
surrogates which share a common implementation platform such as Google Documents. The
runtime could allow the specification of the platform during execution. This offers developers
means to switch the implementation of multiple surrogates at once.

At core level, hADL does not allow direct connections between collaboration pattern ele-
ments. Only links between actions of elements are possible. The runtime on the other hand
interprets the links as relationships between their parent elements and uses that fact as shortcut
to wire the surrogates. It requires a finer granularity regarding connections and adequate means
to oversee actions of surrogates.

Monitoring allocated resources and reconstructing the architecture at runtime are important
features for real world applications. The framework does not support queries for runtime statuses
explicitly although the internal representation of the structure can be mapped to a suitable rep-
resentation such as hADL runtime for monitoring purposes. This extension assigns operational
states to elements and summarizes their scope membership and active links.

Elements of each collaboration pattern are currently independent. Thus element instances
within scopes cannot be reused in other scopes. By allowing the definition of mappings between

69

elements in different patterns, equivalence relations can be established. This approach is similar
to creating aliases and enables the splitting of large hADL models.

The fault handling mechanisms are statically integrated into the runtime and cannot be easily
extended by third party developers. Additional capabilities to allow specification and injection
of fault handlers are still necessary.

Code generation as a feature has been entirely absent in the framework. Evaluating the
generation of high level service interfaces based on actions of hADL elements is subject to
future research. The generated code could be automatically enriched with authentication and
authorization mechanisms to provide access control for surrogates.

Binaries, i.e. the implementations of the surrogates supplied by third party developers, can-
not be updated during runtime. The system has to reboot and reset the Java classloaders to avoid
class version conflicts which imposes an inconvenience.

The framework could come with predefined collaboration patterns and their implementations
on top of common collaboration platforms. In particular the patterns introduced in Section 2.4
are reasonable candidates.

70

CHAPTER 8
Conclusion

This thesis has evaluated the synergy effects of combining structural and behavioural architec-
ture description languages, especially hADL in the context of describing and prescribing soft-
ware architectures for human intensive software systems. The expressiveness of a combined
approach has been incorporated into a software development framework, the Human Architec-
ture Implementation Framework (HAIF) which contains aspects of a development process and a
technical framework. This thesis concludes that:

1. HAIF supports architecture driven development as architecture definitions are essential
elements of the approach (see REQ-01).

2. The combination of behavioural and structural ADLs yields a more complete architectural
documentation (see REQ-02).

3. A system based on HAIF embraces architectural evolution over time and thus eases the
maintenance of the overall architecture (see REQ-03).

4. Systems based on HAIF have integrated adaptation mechanisms as implementations can
easily be exchanged due to the standardised Surrogate interface (see REQ-04).

Human intensive software applications require systems to be adaptable and tolerant to human
idiosyncrasies. To this end, the framework offers flexibility in architecture implementation and
evolution as well as a simple extensible fault handling strategies.

The HAIF prototype can be seen as a proof of concept and the set of features provided
are still very limited. The current implementation is thus not ready for production yet (see
Chapter 7). Nevertheless a small step towards a standardised approach for implementing human
intensive software applications has been made.

71

Bibliography

[1] IEEE recommended practice for architectural description of software-intensive systems.
pages i–23.

[2] Gregory Abowd, Robert Allen, and David Garlan. Using style to understand descriptions
of software architecture. 18(5):9–20.

[3] Steve Adolph, Alistair Cockburn, and Paul Bramble. Patterns for Effective Use Cases.
Addison-Wesley Longman Publishing Co., Inc.

[4] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The jabberwocky
programming environment for structured social computing. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages
53–64. ACM.

[5] Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Collaborative workflow for crowd-
sourcing translation. In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1191–1194. ACM.

[6] Muhammad Ali Babar and Ian Gorton. Comparison of scenario-based software architec-
ture evaluation methods. In Software Engineering Conference, 2004. 11th Asia-Pacific,
pages 600–607. IEEE.

[7] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for classifying and
comparing software architecture evaluation methods. In Software Engineering Conference,
2004. Proceedings. 2004 Australian, pages 309–318. IEEE.

[8] Felix Bachmann, Len Bass, Jeromy Carriere, Paul C Clements, David Garlan, James Ivers,
Robert Nord, and Reed Little. Software architecture documentation in practice: Docu-
menting architectural layers.

[9] Albert-László Barabási. Network theory–the emergence of the creative enterprise.
308(5722):639–641.

[10] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series in
Software Engineering. Pearson Education.

73

[11] U.M. Borghoff and J.H. Schlichter. Computer-Supported Cooperative Work: Introduction
to Distributed Applications. Springer Berlin Heidelberg.

[12] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and Andrea Mauri. Reactive crowd-
sourcing. In Proceedings of the 22Nd International Conference on World Wide Web, WWW
’13, pages 153–164. International World Wide Web Conferences Steering Committee.

[13] Marco Brambilla, Piero Fraternali, and Carmen Vaca. BPMN and design patterns for engi-
neering social BPM solutions. In Florian Daniel, Kamel Barkaoui, and Schahram Dustdar,
editors, Business Process Management Workshops (1), volume 99 of Lecture Notes in Busi-
ness Information Processing, pages 219–230. Springer.

[14] J. Buford, K. Mahajan, and V. Krishnaswamy. Federated enterprise and cloud-based col-
laboration services. In Internet Multimedia Systems Architecture and Application (IMSAA),
2011 IEEE 5th International Conference on, pages 1–6.

[15] John Buford, Kishore Dhara, Venky Krishnaswamy, Xiaotao Wu, and Mario Kolberg.
Work in progress: A CommunicationsEnabled collaboration platform. page 161.

[16] AG. Cass, AS. Lerner, E.K. McCall, L.J. Osterweil, S.M. Sutton, and A Wise. Little-
JIL/juliette: a process definition language and interpreter. In Software Engineering, 2000.
Proceedings of the 2000 International Conference on, pages 754–757.

[17] David Chappell. Enterprise service bus. O’Reilly Media, Inc.

[18] Michael Chui. The social economy: Unlocking value and productivity through social tech-
nologies. McKinsey.

[19] Lori A. Clarke, Leon J. Osterweil, and George S. Avrunin. Supporting human-intensive
systems. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, FoSER ’10, pages 87–92. ACM.

[20] Paul C. Clements. A survey of architecture description languages. In Proceedings of the
8th International Workshop on Software Specification and Design, IWSSD ’96, pages 16–.
IEEE Computer Society.

[21] Gerardine Desanctis and R Brent Gallupe. A foundation for the study of group decision
support systems. 33(5):589–609.

[22] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems on the
world-wide web. 54(4):86–96.

[23] Liliana Dobrica and Eila Niemelä. A survey on software architecture analysis methods.
28(7):638–653.

[24] C. Dorn and R.N. Taylor. Coupling software architecture and human architecture for
collaboration-aware system adaptation. In Software Engineering (ICSE), 2013 35th In-
ternational Conference on, pages 53–62.

74

[25] Christoph Dorn, Schahram Dustdar, and LeonJ. Osterweil. Specifying flexible human
behavior in interaction-intensive process environments. In Shazia Sadiq, Pnina Soffer, and
Hagen Völzer, editors, Business Process Management, volume 8659 of Lecture Notes in
Computer Science, pages 366–373. Springer International Publishing.

[26] Christoph Dorn and Richard N. Taylor. Analyzing runtime adaptability of collaboration
patterns. In International Conference on Collaboration Technologies and Systems (CTS
2012).

[27] Christoph Dorn and Richard N. Taylor. Architecture-driven modeling of adaptive collab-
oration structures in large-scale social web applications. In 13th International Conference
on Web Information System Engineering (WISE 2012).

[28] Christoph Dorn, Richard N. Taylor, and Schahram Dustdar. Flexible social workflows:
Collaborations as human architecture. 16(2):72–77.

[29] Christoph Dorn and R.N. Taylor. Co-adapting human collaborations and software archi-
tectures. In Software Engineering (ICSE), 2012 34th International Conference on, pages
1277–1280.

[30] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: Some issues and experi-
ences. 34(1):39–58.

[31] R.D. Evans, J.X. Gao, N. Martin, and C. Simmonds. Using web 2.0-based groupware
to facilitate collaborative design in engineering education scheme projects. In Interactive
Collaborative Learning (ICL), 2014 International Conference on, pages 397–402.

[32] P.H. Feiler and W.S. Humphrey. Software process development and enactment: concepts
and definitions. In Software Process, 1993. Continuous Software Process Improvement,
Second International Conference on the, pages 28–40.

[33] Roger Fisher, William L Ury, and Bruce Patton. Getting to yes: Negotiating agreement
without giving in. Penguin.

[34] David Garlan and Dewayne E Perry. Introduction to the special issue on software architec-
ture. 21(4):269–274.

[35] Lars Grammel and Margaret-Anne Storey. A survey of mashup development environments.
In Mark Chignell, James Cordy, Joanna Ng, and Yelena Yesha, editors, The Smart Inter-
net, volume 6400 of Lecture Notes in Computer Science, pages 137–151. Springer Berlin
Heidelberg.

[36] Jonathan Grudin. Computer-supported cooperative work: History and focus. (5):19–26.

[37] Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team as-
sembly mechanisms determine collaboration network structure and team performance.
308(5722):697–702.

75

[38] Wu He and Li Da Xu. Integration of distributed enterprise applications: A survey.
10(1):35–42.

[39] Dave Ings, Luc Clement, Dieter Koenig, Vinkesh Mehta, Ralf Mueller, Ravi Rangaswamy,
Michael Rowley, and Ivana Trickovic. WS-BPEL Extension for People (BPEL4People)
Specification Version 1.1. OASIS. Published: OASIS Committee Specification.

[40] Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and Grady Booch. The
unified software development process, volume 1. Addison-wesley Reading.

[41] Benjamin F Jones, Stefan Wuchty, and Brian Uzzi. Multi-university research teams: shift-
ing impact, geography, and stratification in science. 322(5905):1259–1262.

[42] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’08, pages 453–456. ACM.

[43] Aniket Kittur, Susheel Khamkar, Paul André, and Robert Kraut. CrowdWeaver: Visually
managing complex crowd work. In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, CSCW ’12, pages 1033–1036. ACM.

[44] Aniket Kittur, Boris Smus, and Robert Kraut. CrowdForge: Crowdsourcing complex work.
In CHI ’11 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’11,
pages 1801–1806. ACM.

[45] J. Knodel and M. Naab. Software architecture evaluation in practice: Retrospective on
more than 50 architecture evaluations in industry. In Software Architecture (WICSA), 2014
IEEE/IFIP Conference on, pages 115–124.

[46] N. Kock. Encyclopedia of E-Collaboration. ITPro collection. Information Science Refer-
ence.

[47] John Krogstie. Modelling languages: Perspectives and abstraction mechanisms. In Model-
Based Development and Evolution of Information Systems, pages 89–204. Springer Lon-
don.

[48] Philippe Kruchten. Architectural blueprints—the “4+ 1” view model of software architec-
ture.

[49] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang. The road ahead for archi-
tectural languages. 32(1):98–105.

[50] LindaS.L. Lai and Efraim Turban. Groups formation and operations in the web 2.0 envi-
ronment and social networks. 17(5):387–402.

[51] Hui Lei, D. Chakraborty, H. Chang, M.J. Dikun, T. Heath, J.S. Li, N. Nayak, and Yasodhar
Patnaik. Contextual collaboration: platform and applications. In Services Computing,
2004. (SCC 2004). Proceedings. 2004 IEEE International Conference on, pages 197–206.

76

[52] B. S. Lerner, A. G. Ninan, L. J. Osterweil, and R. M. Podorozhny. Modeling and managing
resource utilization for process, workflow and activity coordination TITLE2:.

[53] BarbaraStaudt Lerner, LeonJ. Osterweil, Jr. Sutton, StanleyM., and Alexander Wise. Pro-
gramming process coordination in little-JIL. In Volker Gruhn, editor, Software Process
Technology, volume 1487 of Lecture Notes in Computer Science, pages 127–131. Springer
Berlin Heidelberg.

[54] David S Linthicum. Enterprise application integration. Addison-Wesley Professional.

[55] Thomas W Malone, Robert Laubacher, and Chrysanthos Dellarocas. Harnessing crowds:
Mapping the genome of collective intelligence.

[56] Nenad Medvidovic and Richard N Taylor. A classification and comparison framework for
software architecture description languages. 26(1):70–93.

[57] Duane Merrill. Mashups: The new breed of web app. pages 1–13.

[58] Kevin L Mills. Computer-supported cooperative work. In ENCYCLOPEDIA OF LIBRARY
AND INFORMATION SCIENCES (2ND EDITION. Citeseer.

[59] C Mohit, Xiaotao Wu, and Venkatesh Krishnaswamy. Integrating enterprise communica-
tions into google wave. In Proceedings of the 7th IEEE conference on Consumer commu-
nications and networking conference, pages 1110–1111. IEEE Press.

[60] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman,
M. Klein, D. Schmidt, K. Sullivan, K. Wallnau, and W. Pollak. Ultra-large-scale systems -
the software challenge of the future.

[61] Tim O’really. Design patterns and business models for the next generation of software.

[62] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architec-
ture. 17(4):40–52.

[63] Klaus Pohl. The three dimensions of requirements engineering. In Janis Bubenko, John
Krogstie, Oscar Pastor, Barbara Pernici, Colette Rolland, and Arne Sølvberg, editors, Sem-
inal Contributions to Information Systems Engineering, pages 63–80. Springer Berlin Hei-
delberg.

[64] Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, and David S. Rosenblum. Inte-
grating architecture description languages with a standard design method. In Proceedings
of the 20th International Conference on Software Engineering, ICSE ’98, pages 209–218.
IEEE Computer Society.

[65] Colette Rolland. A comprehensive view of process engineering. In Barbara Pernici and
Costantino Thanos, editors, Advanced Information Systems Engineering, volume 1413 of
Lecture Notes in Computer Science, pages 1–24. Springer Berlin Heidelberg.

77

[66] Nick Russell and Wil MP van der Aalst. Evaluation of the BPEL4people and WS-
HumanTask extensions to WS-BPEL 2.0 using the workflow resource patterns. 513.

[67] D. Schall, S. Dustdar, and M.B. Blake. Programming human and software-based web
services. 43(7):82–85.

[68] D. Schall, Hong-Linh Truong, and S. Dustdar. Unifying human and software services in
web-scale collaborations. 12(3):62–68.

[69] Daniel Schall. A human-centric runtime framework for mixed service-oriented systems.
29(5):333–360.

[70] Daniel Schall, Hong-Linh Truong, and Schahram Dustdar. The human-provided services
framework. Springer.

[71] Mary Shaw and David Garlan. Software architecture: perspectives on an emerging disci-
pline, volume 1. Prentice Hall Englewood Cliffs.

[72] Borislava I Simidchieva, Lori A Clarke, and Leon J Osterweil. STORM2: Process-guided
online dispute resolution.

[73] R.N. Taylor, N. Medvidovic, and E.M. Dashofy. SOFTWARE ARCHITECTURE: FOUN-
DATIONS, THEORY, AND PRACTICE. Wiley India Pvt. Limited.

[74] Rattapoom Tuchinda, Pedro Szekely, and Craig A. Knoblock. Building mashups by exam-
ple. In Proceedings of the 13th International Conference on Intelligent User Interfaces,
IUI ’08, pages 139–148. ACM.

[75] Steve Vestal. A cursory overview and comparison of four architecture description lan-
guages.

[76] J. Whitehead. Collaboration in software engineering: A roadmap. In Future of Software
Engineering, 2007. FOSE ’07, pages 214–225.

[77] A Wise. Little-JIL 1.5 language report, lab. for advanced SW eng. research (LASER). dept.
of comp. sci., UMass.

[78] Alexander Wise, AaronG. Cass, BarbaraStaudt Lerner, EricK. McCall, LeonJ. Osterweil,
and Jr. Sutton, StanleyM. Using little-JIL to coordinate agents in software engineering.
In Peri L. Tarr and Alexander L. Wolf, editors, Engineering of Software, pages 383–397.
Springer Berlin Heidelberg.

[79] Alexander Wise, Barbara Staudt Lerner, Eric K McCall, Leon J Osterweil, and Stanley M
Sutton Jr. Specifying coordination in processes using little-JIL. pages 99–71.

[80] Jeffrey Wong and Jason Hong. What do we mashup when we make mashups? In Proceed-
ings of the 4th International Workshop on End-user Software Engineering, WEUSE ’08,
pages 35–39. ACM.

78

[81] Xiaotao Wu and V. Krishnaswamy. Widgetizing communication services. In Communica-
tions (ICC), 2010 IEEE International Conference on, pages 1–5.

[82] Nan Zang. Mashups on the web: end user programming opportunities and challenges. In
the proceedings of First Workshop on Evaluation and Usability of Programming Languages
and Tools, pages 25–29.

[83] Nan Zang, Mary Beth Rosson, and Vincent Nasser. Mashups: Who? what? why? In
CHI ’08 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08, pages
3171–3176. ACM.

79

APPENDIX A
Codelistings

A.1 hADL

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < !DOCTYPE xml>
3 <hADLmodel xmlns=" h t t p : / / a t . ac . t uw ie n . dsg / hADL / hADLcore "
4 x m l n s : e x e =" h t t p : / / a t . ac . t u wie n . dsg / hADL / hADLexecutable "

x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
5 x m l n s : x l i n k =" h t t p : / /www. w3 . org / 1 9 9 9 / x l i n k "
6 x s i : s c h e m a L o c a t i o n =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e

hADLexecutable . xsd ">
7 <name>hADL−s h a r e d a r t e f a c t < / name>
8 < d e s c r i p t i o n > Shared A r t e f a c t hADL example< / d e s c r i p t i o n >
9 < e x t e n s i o n >

10 < e x e : E x e c u t a b l e s >
11 < e x e : c o l l a b P l a t f o r m x l i n k : h r e f =" h t t p : / / t u wie n . ac . a t "
12 i d =" example ">
13 < e x e : a c c e p t a b l e R e s o u r c e D e s c r i p t o r >
14 e x a m p l e P l a t f o r m
15 < / e x e : a c c e p t a b l e R e s o u r c e D e s c r i p t o r >
16 < / e x e : c o l l a b P l a t f o r m >
17

18 < e x e : s u r r o g a t e i d =" p a r t i c i p a n t _ s u r r o g a t e ">
19 < e x e : s u r r o g a t e F Q N >
20 a t . ac . t uwi en . h a d l . P a r t i c i p a n t S u r r o g a t e
21 < / e x e : s u r r o g a t e F Q N >
22 < e x e : c o l l a b P l a t f o r m > e x a m p l e P l a t f o r m < / e x e : c o l l a b P l a t f o r m >
23 < / e x e : s u r r o g a t e >
24

25 < e x e : s u r r o g a t e i d =" m o d e r a t o r _ s u r r o g a t e ">
26 < e x e : s u r r o g a t e F Q N >
27 a t . ac . t uwi en . h a d l . M o d e r a t o r S u r r o g a t e
28 < / e x e : s u r r o g a t e F Q N >
29 < e x e : c o l l a b P l a t f o r m >

81

30 e x a m p l e P l a t f o r m
31 < / e x e : c o l l a b P l a t f o r m >
32 < / e x e : s u r r o g a t e >
33

34 < e x e : s u r r o g a t e i d =" a r t e f a c t _ s u r r o g a t e ">
35 < e x e : s u r r o g a t e F Q N >
36 a t . ac . t uwi en . h a d l . Documen tSur roga te
37 < / e x e : s u r r o g a t e F Q N >
38 < e x e : c o l l a b P l a t f o r m >
39 e x a m p l e P l a t f o r m
40 < / e x e : c o l l a b P l a t f o r m >
41 < / e x e : s u r r o g a t e >
42 < / e x e : E x e c u t a b l e s >
43 < / e x t e n s i o n >
44

45 < hADLs t ruc tu r e >
46 <component i d =" p a r t y " x s i : t y p e =" e x e : t E x e c u t a b l e C o m p o n e n t ">
47 <name> P a r t i c i p a n t < / name>
48 < a c t i o n i d =" p a r t y _ e d i t ">
49 <name> e d i t < / name>
50 < / a c t i o n >
51 < e x e : e x e c u t a b l e V i a S u r r o g a t e >
52 p a r t i c i p a n t _ s u r r o g a t e
53 < / e x e : e x e c u t a b l e V i a S u r r o g a t e >
54 < / component>
55 <component i d =" m o d e r a t o r " x s i : t y p e =" e x e : t E x e c u t a b l e C o m p o n e n t ">
56 <name> Modera to r < / name>
57 < a c t i o n i d =" m o d e r a t o r _ e d i t ">
58 <name> e d i t < / name>
59 < / a c t i o n >
60 < e x e : e x e c u t a b l e V i a S u r r o g a t e >
61 m o d e r a t o r _ s u r r o g a t e
62 < / e x e : e x e c u t a b l e V i a S u r r o g a t e >
63 < / component>
64 < o b j e c t i d =" a r t e f a c t " x s i : t y p e =" e x e : t E x e c u t a b l e O b j e c t ">
65 <name> A r t e f a c t < / name>
66 < a c t i o n i d =" a r t e f a c t _ e d i t ">
67 <name> r e a d < / name>
68 < / a c t i o n >
69 < e x e : e x e c u t a b l e V i a S u r r o g a t e >
70 a r t e f a c t _ s u r r o g a t e
71 < / e x e : e x e c u t a b l e V i a S u r r o g a t e >
72 < / o b j e c t >
73 < l i n k i d =" a r t e f a c t _ m o d _ e d i t ">
74 < o b j A c t i o n E n d p o i n t >
75 a r t e f a c t _ e d i t
76 < / o b j A c t i o n E n d p o i n t >
77 < c o l l a b A c t i o n E n d p o i n t >
78 m o d e r a t o r _ r e a d
79 < / c o l l a b A c t i o n E n d p o i n t >
80 < / l i n k >
81 < l i n k i d =" a r t e f a c t _ p a r t y _ e d i t ">
82 < o b j A c t i o n E n d p o i n t >

82

83 a r t e f a c t _ e d i t
84 < / o b j A c t i o n E n d p o i n t >
85 < c o l l a b A c t i o n E n d p o i n t >
86 p a r t y _ r e a d
87 < / c o l l a b A c t i o n E n d p o i n t >
88 < / l i n k >
89 < / hADLs t ruc tu r e >
90 < / hADLmodel>

Listing A.1: hADL model instance of a shared artefact collaboration pattern.

83

A.2 Surrogates

1 package a t . ac . t u wi en . h a d l . s u r r o g a t e s ;
2

3 i m p o r t a t . ac . t uw ien . h a d l . domain . R e s o u r c e D e s c r i p t o r ;
4 i m p o r t a t . ac . t uw ien . h a d l . domain . Scope ;
5 i m p o r t a t . ac . t uw ien . h a d l . domain . S u r r o g a t e ;
6 i m p o r t a t . ac . t uw ien . h a d l . domain . S u r r o g a t e E v e n t ;
7 i m p o r t rx . O b s e r v a b l e ;
8 i m p o r t rx . u t i l . a sync . Async ;
9

10 p u b l i c a b s t r a c t c l a s s A s y n c S u r r o g a t e implemen t s S u r r o g a t e {
11 @Override
12 p u b l i c Obse rvab le < S u r r o g a t e E v e n t > a c q u i r e (Scope fo rScope ,
13 R e s o u r c e D e s c r i p t o r s u r r o g a t e F o r) {
14 r e t u r n Async . s t a r t (() −> a c q u i r e S u r r o g a t e (fo rScope , s u r r o g a t e F o r)) ;
15 }
16

17 @Override
18 p u b l i c Obse rvab le < S u r r o g a t e E v e n t > r e l e a s e (Scope inScope) {
19 r e t u r n Async . s t a r t (() −> r e l e a s e S u r r o g a t e (inScope)) ;
20 }
21

22 @Override
23 p u b l i c Obse rvab le < S u r r o g a t e E v e n t > connec tTo (Scope inScope ,
24 S u r r o g a t e e n d p o i n t) {
25 r e t u r n Async . s t a r t (() −> c o n n e c t T o S u r r o g a t e (inScope , e n d p o i n t)) ;
26 }
27

28 @Override
29 p u b l i c Obse rvab le < S u r r o g a t e E v e n t > d i s c o n n e c t F r o m (Scope inScope ,
30 S u r r o g a t e e n d p o i n t) {
31 r e t u r n Async . s t a r t (() −> d i s c o n n e c t F r o m S u r r o g a t e (inScope , e n d p o i n t)) ;
32 }
33

34 p u b l i c a b s t r a c t S u r r o g a t e E v e n t a c q u i r e S u r r o g a t e (Scope fo rScope ,
35 R e s o u r c e D e s c r i p t o r s u r r o g a t e F o r) ;
36

37 p u b l i c a b s t r a c t S u r r o g a t e E v e n t r e l e a s e S u r r o g a t e (Scope inScope) ;
38

39 p u b l i c a b s t r a c t S u r r o g a t e E v e n t c o n n e c t T o S u r r o g a t e (Scope inScope ,
40 S u r r o g a t e e n d p o i n t) ;
41

42 p u b l i c a b s t r a c t S u r r o g a t e E v e n t d i s c o n n e c t F r o m S u r r o g a t e (Scope inScope ,
43 S u r r o g a t e e n d p o i n t) ;
44 }

Listing A.2: Base class for asynchronous surrogates.

84

	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Problem Statement
	Motivating Scenario
	Contribution
	Structure of the Work

	State of the Art
	General Background
	Designing Human Intensive Software Systems
	Collaboration Tool Integration
	Background

	Methodology
	Requirements
	Design and Implementation
	Evaluation

	Design
	Referencing collaboration patterns in process descriptions
	Handle requests for collaboration patterns
	Instantiate collaboration patterns
	Framework Architecture
	Runtime Architecture

	Implementation
	hADL Runtime
	Marshaller
	Surrogate Factory
	Service Registry
	Scope Manager
	Operation Manager
	Deployment and Execution

	Evaluation
	REQ-01: Supporting Architecture Driven Development
	REQ-02: Modelling the Architecture
	REQ-03: Change in Collaboration Structure
	REQ-04: Change in Collaboration Tool
	REQ-05: Handling Human Faults
	REQ-06: Process Engine Integration
	Test Scenarios

	Critical Reflection
	Conclusion
	Bibliography
	Codelistings
	hADL
	Surrogates

