
D I P L O M A R B E I T

Implementation of a Lévy driven
electricity forward model

unter Anleitug von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Friedrich Hubalek
Institut für Stochastik und Wirtschaftsmathematik

Technische Universität Wien

Prof. Dr. Martin Larsson
Department of Mathematics

ETH Zürich

durch

Srećko Mihaljević
Schelleingasse 36

1040 Wien

Wien, September 2016 xxx

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Acknowledgements

Firstly, I would like to thank Professor Martin Larsson for accepting my proposal and supervising my
master thesis during my exchange semester at ETH Zürich, as well as for putting me on the master
project in collaboration with Axpo Trading AG. All of this meant a great deal to me, and I consider
myself very lucky for getting this opportunity. His advice was always helpful and to the point, making
the work on the thesis a very pleasant experience. I am also thankful to Professor Friedrich Hubalek,
whose many lectures I’ve attended, for his suggestions and corrections that gave a final touch to this
thesis, as well as for coordinating things on the side of TU Wien.

Furthermore I am very grateful to Vlatka Komarić and Markus Regez of Axpo Trading AG for entrusting
me with the master project within their company, for their guidance and cooperation. This thesis was
carried out in collaboration with Axpo Trading AG and the all of the market data was provided by them.
I would especially like to thank Vlatka for organizing the whole thing, as well as Markus for his support
and readiness to help at any time, even on his days off, and for taking the time to prepare the data
and explain the technicalities of the electricity market that he knows so well. I was delighted to get this
opportunity and am very thankful for it.

I would also like to thank professors Uwe Schmock and Thorsten Rheinländer for nominating me for
an exchange semester at ETH Zürich, which meant a great deal to me and without which none of this
would have been possible. I would also like to express my gratitude to all lecturers and staff of TU Wien,
especially FAM, for the great five years I have spent there as a student. Everyone has always been very
helpful and made me feel more than welcome.

Finally, I would like to thank my family for granting me the opportunity to study abroad, as well as for
supporting me throughout. I have always tried to make the most out of this opportunity. Moreover, I
would also like to thank my girlfriend for her love and support during these years. Last but not least, I
would like to thank my friends for all of their support.

I am sincerely grateful for all of it.

1

Contents

1 Basic mathematical tools 5
1.1 Random variables and probability spaces . 5
1.2 Characteristic and generating functions . 7
1.3 Convergence of random variables . 9

1.3.1 Pointwise convergence . 9
1.3.2 Almost-sure convergence . 9
1.3.3 Convergence in probability . 9
1.3.4 Convergence in distribution . 9

1.4 Stochastic processes, filtrations, random times, martingales 10
1.4.1 Stochastic processes . 10
1.4.2 Filtrations and history . 10
1.4.3 Random times . 11

1.5 Martingales and local martingales . 12
1.6 Brownian Motion . 12
1.7 Poisson process . 12

1.7.1 Compensated Poisson process . 13
1.7.2 Poisson random measure . 14
1.7.3 Compensated Poisson random measure . 15

1.8 Lévy processes . 15
1.8.1 Characteristic function . 16
1.8.2 Compound Poisson process . 16
1.8.3 Jump and Lévy measure . 17
1.8.4 Lévy-Ito decomposition . 17
1.8.5 Lévy-Khinchin representation . 19
1.8.6 Exponential moments . 19
1.8.7 Lévy processes and martingales . 20

1.9 Additive processes . 20
1.10 Stochastic calculus . 21

2 Electricity markets 25
2.1 Electricity trading . 27

2.1.1 Day-ahead market . 29
2.1.2 Futures and forward market . 30
2.1.3 Balancing and reserve market . 31
2.1.4 Market coupling . 32

2.2 Electricity Exchanges . 32

3 An overview of price models 36
3.1 Black 76 model . 37
3.2 Relation of the spot and forward price . 37

3.2.1 Cost of carry formula . 38
3.2.2 Convergence relation . 38
3.2.3 Spot-forward risk neutral relation . 38
3.2.4 Risk premium . 39

2

3.3 HJM-style models . 39
3.3.1 Single-factor model . 40
3.3.2 Modeling multiple granularities . 41
3.3.3 Two-factor model . 41
3.3.4 Joint modelling . 42
3.3.5 Conclusion . 42

3.4 Spot models . 42
3.4.1 Mean-reverting diffusion model . 42
3.4.2 Mean-reverting jump-diffusion model . 45
3.4.3 Multi-factor models . 48

3.5 Conclusion . 49
3.6 Structural models . 50

3.6.1 Barlow’s model as a basic structural model . 50
3.6.2 Cartea and Villaplana’s two factor structural model 51
3.6.3 Conclusion . 53

3.7 Limitations of Brownian motion driven financial modelling 54

4 COS pricing method 56
4.1 Inverse Fourier Integral via Cosine Expansion . 56
4.2 Pricing European options . 57
4.3 Coefficients Vk for plain vanilla options . 59
4.4 Simplified formula . 59
4.5 Error analysis . 60
4.6 Choice of the truncation range . 63

5 Parallel computing with CUDA 64
5.1 Serial and parallel computing . 64
5.2 The move towards general purpose GPU computing . 65
5.3 CPU and GPU comparison . 67
5.4 Parallel programming with CUDA . 68

5.4.1 A scalable programming model . 68
5.4.2 Kernels, thread blocks and memory hierarchy . 69

5.5 Parallel reduction sum algorithm . 72
5.6 Speeding up pricing and calibration . 74

6 Our model 75
6.1 Motivation . 76
6.2 The Lévy driven model . 77
6.3 Option pricing . 79
6.4 Calibration . 80

6.4.1 Differential evolution optimization . 80
6.5 Results . 81
6.6 Conclusion . 85
6.7 Further steps . 85

6.7.1 Two-market model proposal . 86

A Implementation and source code 88

3

Introduction

The main aim of this thesis is to provide an overview of current developments in the world of electricity
modelling and to develop a Lévy driven electricity forward model, with a strong emphasis on tractability
and performance. To achieve this, the possibilities of parallel computing using graphic cards are explored.
The outline of this thesis is as follows.

In chapter 1, we briefly recall some of the fundamental mathematical tools used in stochastic modelling of
financial markets. General properties of electricity as a commodity and the different products traded on
electricity exchanges are discussed in chapter 2. An overview of the electricity modelling approaches with
some examples is given in chapter 3. In the next two chapters we study the building blocks of our pricing
method to be. In chapter 4, the COS pricing method originally developed in [1] is presented. Chapter 5
provides the reader with a crash course in the CUDA technology. Finally, in chapter 6, our Lévy driven
model is presented together with calibration results. Some further steps are also suggested.

In appendix A, the source code of the core functionality of our implementation is available, with a quick
description of how to use it.

During one’s studies of mathematical finance, one is commonly exposed to stock and interest rate mod-
elling. Energy markets, on the other hand, are usually covered only by elective courses or or seminars,
which is somewhat unfair. The modelling of energy markets is often just as, if not even more, excit-
ing, due to the physical nature of the traded products. Electricity, as a hardly storable commodity, is
especially challenging.

4

Chapter 1

Basic mathematical tools

In this introductory chapter, we outline the mathematical tools used in modelling of financial markets and
throughout this thesis, with an emphasis on interpretation. Countless discussions of stochastic models
start with the magical sentence “Let (Ω,F ,P) be a probability space”, so this is where we begin our
review. First we recall definitions of probability spaces, random variables and probabilistic convergence
concepts. We then move on to recalling basic facts about stochastic processes and how information flow
is modelled through filtrations. The concept of a martingale and its importance is shortly discussed
afterwards. Next we introduce Lévy processes and their slight generalization in the form of additive
processes. Finally we discuss some results from stochastic calculus. This section is heavily based on the
results from [2, 3, 4].

1.1 Random variables and probability spaces

At the foundation of modern probabilistic theory and at the core of every stochastic model is the prob-
ability space. Here we recall its definition, some of its properties, and its interpretation in financial
modelling.

Definition 1.1. A probability space (Ω,F ,P) consists of three parts:

1. A set of all possible scenarios (outcomes) Ω.

2. A set of events, a σ-algebra F on Ω. Each event is a set containing zero or more scenarios.

3. A probability measure P, that assigns a probability between 0 and 1 to each event:

P : F → [0, 1]

A 7→ P(A).

An event A ∈ F with P(A) = 1 is said to occur P-almost surely, whereas an event with P(A) = 0 is said
to be impossible under P. A subset of an impossible event is called a P-null set. A property is said to
hold P-almost surely (P-a.s.) if the set of ω ∈ Ω for which it does not is a P-null set. It is always possible
to complete F to include all null sets, meaning we consider and assign probability zero to all subsets
of impossible events in our probability space, which is intuitively reasonable. In the following, we will
always consider the complete version of all σ-algebras, unless stated otherwise.

The notion of comparable probability measures is introduced through equivalent probability measures.

Definition 1.2 (Absolutely continuous and equivalent probability measures). Let P,Q be two proba-
bility measures on (Ω,F). The measure Q is absolutely continuous w.r.t. P, denoted by Q � P , if all
P-null sets are also Q-null sets.

5

Probability measures P and Q are equivalent on (Ω,F) if Q� P and P � Q, i.e., they define the same
impossible events:

P ∼ Q ⇐⇒ [∀A ∈ F ,P(A) = 0 ⇐⇒ Q(A) = 0] .

In mathematical finance, one distinguishes between the physical, sometimes also called statistical, and
the risk-neutral probability measure. The two measures are comparable, but not the same. The physical
measure is supposed to reflect real-world dynamics of financial assets. On the other hand, the risk-neutral
measure is the measure of choice for the valuation of derivatives. Traded instruments are supposed to
be (local) Q-martingales, hence their behaviour under Q typically differs from their behaviour under
P.

Definition 1.3 (Random variable). Let (Ω,F ,P) be a probability space. A random variable X taking
values in (E, E) is a measurable function X : Ω→ E. An element ω ∈ Ω is called a scenario of randomness
and X(ω) is called the realization of X in scenario ω.

Two random variables X and Y are said to be P-almost surely equal if:

X = Y P-a.s. ⇐⇒ P (ω ∈ Ω, X(ω) = Y (ω)) = 1.

The distribution (or law) of X is the probability measure on (E, E) defined by:

µX(A) = P(X ∈ A) for A ⊂ E.

For µX = µY we write X
d
= Y (equality in distribution).

For an R-valued random variable X : Ω→ E ⊆ R, we define the expectation:

EP[X] =

∫
Ω

X(ω)dP(ω) =

∫
E

ydµX(y).

Let us now say a few words about random variables, underlying probability spaces and their intuitive
interpretation. Although there is a probability space (Ω,F ,P) behind every stochastic financial model,
one easily loses track of what Ω actually represents and who lives inside. Indeed, in many applications
of probability and statistics, a random variable X in synonymous with its distribution µX . Calculations
such as sums, convolutions, Fourier transformations can all be carried out relying only on the distribution
of the random variable without regard of the underlying probability space.

From a modelling perspective, the key observation to make is the distinction between the source of ran-
domness and the random variable itself. For example, let us look at the case of modelling the price of
some stock S1 at some future date T . We may assume that the stock price is driven by many factors
such as external news, market supply and demand, economic indicators etc., summed up in some ab-
stract variable ω (scenario of a future evolution of the market), which may not even have a numerical
representation! If there is only one stock with price S1, we can label the scenario ω with S1(ω), resulting
in a one to one relationship and making the current observation of the stock price synonymous with
the scenario ω. In this case, the full probabilistic description of a random variable S1 can indeed be
reduced to the distribution of S1. However, if there are also other stocks {S2, S3, . . . } present in the
model, it is natural distinguish the scenario ω from random variables {S1(ω), S2(ω), . . . } whose values
are observed in this scenario. Since the distribution of S1 is in fact only the marginal distribution, and
dependence across different stocks may exist, knowing solely the distribution of S1 does not provide a full
probabilistic description of S1. This information is stored in P, that models the probability distribution
of the scenarios ω ∈ Ω. However, these scenarios may be abstract variables which we never have to deal
with directly. We simply model the dependence between the observable factors which translates into
joint distributions of (observable) random variables.

6

To sum it up, the probabilistic description of a random variable X can be reduced to the knowledge
of its (marginal) distribution µX only if the random variable X is the only source of randomness. As
soon as we are concerned with a second random variable which is not a deterministic function of X, the
underlying probability measure P contains more information on X than just its (marginal) distribution.
It contains all of the information about the dependence of X w.r.t. all other random variables in the
model. Specifying P is equal to specifying the joint distribution of all random variables constructed on
Ω. P contains full information about all sources of randomness.

1.2 Characteristic and generating functions

When dealing with random variables, the most advanced analytical tool at our disposal is, without a
doubt, the characteristic function. In this section we recall its definition and some of its properties, as
well as related concepts of the moment and the cumulant generating function.

Definition 1.4. The characteristic function of an Rd-valued random variable X is defined by:

ΦX(w) := E
[
eiw

TX
]

=

∫
Rd

eiz
T xdµX(x) for w ∈ Rd.

The characteristic function of a random variable completely characterizes its distribution. It is always
continuous with ΦX(0) = 1. Any additional smoothness of ΦX depends on the existence of moments of
the random variable X.

Definition 1.5 (Moments of a random variable). The n-th moment of a random variable is defined by

mn(X) = E [Xn] ,

the n-th absolute moment by

mn(|X|) = E [|Xn|] ,

and the n-th centred moment by

µn(X) = E [(X − E [X])n] .

The existence of moments of a random variable depends on how fast the distribution µX decays at
infinity.

Result 1.6 (Characteristic function and moments [2]). There is a relationship between the characteristic
function and the moments of a random variable.

1. If E [|X|n] <∞ then ΦX has n continuous derivatives at z = 0 and:

∀k ∈ {1 . . . n} mk = E
[
Xk
]

=
1

ik
∂kΦX
∂zk

(0).

2. If ΦX has 2n continuous derivatives at z = 0 then E
[
|X|2n

]
<∞ and:

∀k ∈ {1 . . . 2n} mk = E
[
Xk
]

=
1

ik
∂kΦX
∂zk

(0).

3. X possesses finite moments of all orders if and only if z 7→ ΦX(z) is C∞ at z = 0. Then the
moments of X are related to the derivatives of ΦX by:

mn = E [Xn] =
1

in
∂nΦX
∂zn

(0).

7

Result 1.7 ([2]). Let {Xi, i = 1 . . . n} be independent random variables. The characteristic function of

Sn =
n∑
i=1

Xi is given by:

ΦSn(z) =

n∏
i=1

ΦXi(z). (1.1)

Definition 1.8 (Moment generating function). The moment generating function a Rd valued random
variable X is defined by:

MX(u) := E
[
eu

TX
]
,∀u ∈ Rd. (1.2)

Unlike the characteristic function, which always exists (as the Fourier transform of a probability measure,
therefore integrable), the integral in the definition of the moment generating function may not always
converge. In case MX is well defined, it can be formally related to ΦX through MX(u) = ΦX(−iu).

If MX of an R-valued random variable X exists on a neighbourhood of zero [−ε, ε], then all (polynomial)
moments of X exist and can be calculated using:

mn =
∂nMX

∂un
(0).

Definition 1.9 (Cumulant generating function). Let X be a random variable and ΦX its characteristic
function. Since ΦX(0) = 1 and ΦX is continuous at z = 0 it follows that ΦX 6= 0 in a neighbourhood of
z = 0. One can then define a continuous version of the logarithm of ΦX . In a neighbourhood of z = 0,
a unique continuous function ΨX , called cumulant generating function exists, such that:

ΦX(w) = eΨX(w) with ΨX(0) = 0.

If ΦX(w) 6= 0 for all w, the cumulant generating function can be extended to all w ∈ Rd.

The cumulants of X, sometimes also called semi-invariants, are defined by:

cn(X) =
1

in
∂nΨX

∂un
(0).

Expanding the exponential function at z = 0 and using (1.2), we derive the relationship between moments
and cumulants of X:

c1(X) = m1(X) = E [X]

c2(X) = µ2(X) = m2(X)−m1(X) = V ar(X)

c3(X) = µ3(X) = m3(X)− 3m2(X)m1(X) + 2m1(X)3

c4(X) = µ4(X)− 3µ2(X)

Furthermore, one can now define skewness and kurtosis:

s(X) =
c3(X)

c2(X)
3
2

, κ(X) =
c4(X)

c2(X)2
.

If X follows a normal distribution, ΨX is a second degree polynomial and therefore ∀n ≥ 3, cn(X) = 0.
Therefore, both s(X) = 0 and κ(X) = 0 for a normally distributed random variable. In this context,
s(X), κ(X) and higher cumulants can be seen as measures of deviation from normality. A distribution
of a random variable X is called skewed, if s(X) 6= 0. Similarly, a distribution is said to be is said to be
leptokurtic, more commonly heavy-tailed, if κ(X) > 0.

Finally, for (Xi)i=1...n independent random variables one can easily deduce from (1.1) that:

ΨX1+···+Xn(w) =

n∑
i=1

ΨXi(w). (1.3)

8

1.3 Convergence of random variables

We now recall the different definitions of convergence in the world of random variables, starting from
the “strictest”.

1.3.1 Pointwise convergence

The most straightforward concept of convergence is the pointwise convergence.

Definition 1.10 (Pointwise convergence). A sequence of random variables (Xn)n≥1 taking values in
some normed vector space E is said to converge pointwise towards a random variable X, if for all ω ∈ Ω,
the sequence (Xn(ω))n≥1 converges to X(ω) in E.

However, this definition turns out to be too strong in many cases, since we are asking for convergence in
each and every scenario, whereas some of them may be negligible from a probabilistic point of view.

1.3.2 Almost-sure convergence

The concept of almost-sure convergence takes above fact into account and requires pointwise convergence
only for realizations with positive probability.

Definition 1.11 (Almost-sure convergence). Let (Xn)n≥1 and X be random variables on the same
probability space (Ω,F ,P). Then the sequence (Xn)n≥1 is said to converge P-almost surely to X if

P
(

lim
n→∞

Xn = X
)

= 1.

Almost sure convergence does not imply convergence of moments. If Xn → X P-almost surely, E
[
Xk
n

]
may be defined for all n ≥ 1 but have not a limit as n→∞.

1.3.3 Convergence in probability

While the almost-sure convergence of (Xn)n≥1 deals with the behaviour of typical samples (Xn(ω))n≥1,
convergence in probability only puts a condition on the probability of events as n→∞.

Definition 1.12 (Convergence in probability). A sequence (Xn) of random variables on (Ω,F ,P) is said
to converge in probability to a random variable X if:

∀ε > 0 lim
n→∞

P (|Xn −X| > ε) = 0.

We denote convergence in probability by Xn
P−−−−→

n→∞
X.

1.3.4 Convergence in distribution

Note that for above definitions of convergence, it is required for the random variables to be defined on the
same probability space. Convergence in distribution does not require this, in fact, it only has to do with
the distributions of the random variables and not the values of the random variables themselves.

Definition 1.13 (Convergence in distribution). Let (Xn) be a sequence of random variables with cor-
responding cumulative distribution functions FXn . Then, (Xn) converges in distribution to a random
variable X if

lim
n→∞

FXn(x) = FX(x),

9

at all points where FX(x) is continuous. Hereby FX denotes the cumulative distribution function of X.

Convergence in distribution is sometimes also called weak convergence of the measures on E. We write

Xn
d→ X or µn → µ.

Result 1.14 (Alternative characterization of convergence in distribution). A sequence (Xn)n≥1 of ran-
dom variables with values in E converges in distribution to a random variable X if and only if, for any
bounded continuous function f : E → R

E [f(Xn)]
n→∞−−−−→ E [f(X)] ,

which is equivalent to:

∀f ∈ Cb(E,R), lim
n→∞

∫
E

f(x)dµn =

∫
E

f(x)dµ(x).

Result 1.15 (Characteristic function and convergence in distribution [2]). (Xn)n≥1 converges in distri-
bution to X, if and only if

∀w ∈ Rd ΦXn(w)→ ΦX(w).

On the other hand, pointwise convergence of (ΦXn), since the limit is not necessarily a characteristic
function, does not imply existence of a weak limit of (Xn), hence convergence in distribution. In addition,
convergence in distribution does not necessarily mean convergence of moments. The moments of Xn, X
may not even exist to begin with.

If (Xn) and X are defined on the same probability space, convergence in distribution is the weakest
form of convergence among the above. Almost sure convergence implies convergence in probability, and
convergence in probability implies convergence in distribution.

1.4 Stochastic processes, filtrations, random times, martingales

In this section we recall some basic definitions concerning stochastic processes. We also review how
information is modelled using filtrations.

1.4.1 Stochastic processes

Stochastic processes are one of the central objects in mathematical finance. Evolution of stock, energy
prices etc., are represented by a stochastic process whose dynamic is then modelled.

Definition 1.16 (Stochastic process). A stochastic process is a family (Xt)t∈[0,T] of random variables
indexed by time. For each scenario ω, the trajectory X(ω) is called the sample path of the process.

Definition 1.17 (Càdlàg). A stochastic process is called càdlàg, if for each ω ∈ Ω, Xt(ω) is a right-
continuous function with left limits for each t.

1.4.2 Filtrations and history

As time goes on, more information is progressively revealed to the observer. Quantities that are viewed
at random at some time t1 may change status and become known with the information available at some
later time t2 > t1. Therefore, it is natural to add some time-dependent ingredient to the structure of
our probability space (Ω,F ,P). This is usually done by introducing the concept of a filtration.

10

Definition 1.18 (Filtration). A filtration on (Ω,F ,P) is an increasing family of σ-algebras (Ft)t∈[0,T]

such that for all s, t with 0 ≤ s ≤ t ≤ T holds Fs ⊆ Ft ⊆ FT = F . A probability space equipped with a
filtration is called a filtered probability space.

We interpret Ft as information known at time t, which increases with time. Although intuitively it
might seem reasonable to adjust the probability measure to account for the change in probability of
occurrence of a random event as more information becomes available, we keep the probability measure
P fixed. Instead, we will model the impact of information flow by conditioning on Ft.

After introducing filtrations, we are now able to distinguish events and quantities which are known from
those which are still considered random given the information at some time t. For an event A ∈ Ft with
the information Ft at time t the observer can decide whether it has happened or not. An Ft-measurable
random variable is a random variable whose value will be revealed at time t. Of special interest to us
are stochastic processes whose value at time t is revealed by the information Ft.

Definition 1.19 (Adapted stochastic process). A stochastic process (Xt)t∈[0,T] is said to be adapted to
the filtration (Ft)t∈[0,T] (Ft-adapted) if, for each t ∈ [0, T], Xt is Ft-measurable.

Whereas Ft represents the information and history up to time t of the whole probability space, the
history of a single stochastic process is represented by its natural filtration.

Definition 1.20 (Natural filtration of a stochastic process). The natural filtration of a stochastic process
(Xt)t∈[0,T] is given by (FXt)t∈[0,T] where FXt is the σ-algebra generated by the past values of the process,
completed by the null sets:

FXt = σ (Xs, s ∈ [0, t])
∨
N

One may interpret FXt as containing all information one can get from having observed the path of X on
[0, t].

1.4.3 Random times

A random time as a positive random variable τ ≥ 0 representing a time at which some (random) event
takes place. If at time t, given the available information, contained in (Ft), we can determine whether
the event has happened (τ ≤ t) or not (τ > t), then the random time τ is called a stopping time.

Definition 1.21 (Stopping time). A random variable τ , taking values in [0,∞] is an (Ft)-stopping time,
if it verifies

∀t ≥ 0, {τ ≤ t} ∈ Ft.

Given two stopping times τ1 and τ2, inf{τ1, τ2} is also a stopping time. For a stochastic process (Xt)
and a stopping time τ , the stopped process Xτ∧t is defined by:

Xτ∧t = Xt for t < τ Xτ∧t = Xτ for t ≥ τ.

A common example of a stopping time is the first hitting time. For an (Ft)-adapted càdlàg stochastic
process X, the hitting time of an open set A is defined by the first time when X reaches A:

τA = inf{t ≥ 0, Xt ∈ A}.

An example of a random time that is typically not a stopping time is:

τmax = inf{t ∈ [0, T], Xt = sup
s∈[0,T]

Xs}.

Obviously one does not know the maximum of some processes on the whole interval [0, T] before observing
the whole path.

11

1.5 Martingales and local martingales

Another one of the basic definitions is that of a martingale.

Definition 1.22 (Martingale). Let (Ω,F , (Ft),P) be a filtered probability space. A stochastic process
(Xt)t∈[0,T] is a martingale if:

1. X is Ft-adapted.

2. E [|Xt|] <∞ for any t ∈ [0, T].

3. ∀s > t E [Xs | Ft] = Xt.

Simply put, the present value of a martingale is also the best prediction of its future value. Martin-
gales play a special role in mathematical finance, modelling the price process under the risk-neutral
measure.

A generalization of the concept of a martingale through localization with stopping times gives rise to
local martingales.

Definition 1.23 (Local martingale). A stochastic process (Xt)t∈[0,T] is called a local martingale if there
exists a sequence of stopping times (τn) with τn →∞ such that (Xt∧τn)t∈[0,T] is a true martingale.

Definition 1.24 (Properties that hold locally). We say that a property holds locally, if there exists a
sequence of stopping times (τn) with τn →∞ such that the property holds for (Xt∧τn)

1.6 Brownian Motion

The most studied stochastic processes, with countless applications in mathematical finance and beyond
and with unique continuity properties is Brownian motion, also called Wiener process.

Definition 1.25 (Brownian motion, Wiener process). An R-valued stochastic process Bt on (Ω,F ,P)
is called a Brownian motion if:

1. B0 = 0.

2. Bt is P-almost-surely continuous.

3. Bt has independent increments.

4. Bt −Bs
P∼ N (0, t− s) for 0 ≤ s ≤ t.

A d-dimensional Brownian motion is constructed by Bt :=
(
B1
t , . . . , B

d
t

)T
where (Bit) are independent

copies of the R-valued Brownian motion defined as above. Given a covariance matrix A with decompo-
sition A = ΣΣT one can we can define Wt := ΣBt. Then Wt is a correlated d-dimensional Brownian
motion.

For Brownian motion we will usually write either Wt or Bt.

1.7 Poisson process

The Poisson process is a fundamental example of a stochastic process with discontinuous paths. Together
with the Brownian motion, it plays an important role as a building block of more complicated jump
processes. We now quickly review some of the underlying theory.

12

Definition 1.26 (Poisson process). Let (τi)i≥1 be a sequence of independent exponential random vari-

ables with parameter λ and Tn :=
n∑
i=1

τi. A Poisson process with intensity λ is defined by:

Nt =
∑
n≥1

1t≥Tn .

The Poisson process is a counting process: it counts the number of random times (Tn) which occur in
[0, t], where (Tn − Tn−1)n≥1 is an i.i.d. sequence of exponential variables.

Result 1.27 (Properties of a Poisson process). Let (Nt)t≥0 be a Poisson process on (Ω,F ,P). Then the
following assertions hold:

1. For any t > 0, Nt is P-almost surely finite.

2. For any ω, the sample path t 7→ Nt(ω) is a piecewise constant function which increases by jumps
of size 1.

3. The sample paths t 7→ Nt(ω),∀ω ∈ Ω are right continuous with left limits (càdlàg).

4. For any t > 0, Nt− = Nt with probability 1.

5. (Nt) is continuous in probability: ∀t > 0, Ns
P−−−→
s→t

Nt.

6. For any t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N P(Nt = n) = e−λt
(λt)n

n!
.

7. The characteristic function of Nt is given by

E
[
eiwNt

]
= exp

(
λt
(
eiw − 1

))
,∀w ∈ R.

8. (Nt) has independent increments: for any t1 < . . . tn, Ntn −Ntn−1
, . . . , Nt2 −Nt1 , Nt1 are indepen-

dent random variables.

9. The increments of Nt are homogeneous for any t > s, Nt −Ns has the same distribution as Nt−s.

10. (Nt) has the Markov property:

∀t > s : E [f(Nt) | Nu, u ≤ s] = E [f(Nt) | Ns] .

Result 1.28 (Sum of independent Poisson processes [2]). Let (N1
t)t≥0, (N2

t)t≥0 be independent Poisson
processes with intensities λ1, λ2. Then (N1

t +N2
t)t≥0 is a Poisson process with intensity λ1 + λ2.

1.7.1 Compensated Poisson process

Definition 1.29 (Compensated Poisson process). Let (Nt)t≥0 be a Poisson process. The compensated
Poisson process is defined as:

Ñt = Nt − λt,

where the deterministic part λt, called the compensator, makes the process a martingale. Unlike the
Poisson process, it is neither a counting process nor N-valued. Its characteristic function is given by:

ΦÑt(w) = exp
(
λt
(
eiw − 1− iw

))
.

13

1.7.2 Poisson random measure

The Poisson process is a counting process. Let (Nt)t≥0 be a Poisson process and {T1, T2, . . . } a sequence
of jump times. Then, for t > s, Nt −Ns is the number of jumps in the interval (s, t]:

Nt −Ns = #{i ≥ 1, Ti ∈ (s, t]}.

The jump times {T1, T2, . . . } form a random configuration of points on [0,∞) and the Poisson process
counts the number of such points in the interval [0, t]. This counting procedure can be used to define a
random jump measure M on [0,∞) associated to the Poisson process (Nt)t≥0. For any measurable set
A ∈ R+ we set

M(ω,A) := #{i ≥ 1, Ti(ω) ∈ A}. (1.4)

Then M(ω, .) is an N-valued random measure and P(M(A) < ∞) = 1 holds for any bounded set A.
It is a random measure because it depends on the scenario ω. From E [M(A)] = λ |A|, where |A| is
the Lebesgue measure, it follows that the average value of M is determined by the intensity λ of the
corresponding Poisson process.

The Poisson process (Nt)t≥0 may be expressed in terms of the random measure M :

Nt(ω) = M (ω, [0, t]) =

∫
[0,t]

M(ω, ds).

The random jump measure associated to the Poisson process inherits some similar properties:

1. M ([t1, t2]) is the number of jumps of the associated Poisson process in [t1, t2]. More precisely,
M ([t1, t2]) ∼ Poisson (λ(t2 − t1)).

2. For two disjoint intervals [ta1 , t
a
2] and [tb1, t

b
2], M([ta1 , t

a
2]) and M([tb1, t

b
2]) are independent random

variables.

3. For any measurable set A with 0 < |A| < ∞ it holds M(A) ∼ Poisson(λ|A|), where |A| is the
Lebesgue measure.

Analogously one can associate a random measure to the compensated Poisson process Ñt giving rise to
the compensated random measure.

M̃(ω,A) = M(ω,A)−
∫
A

λdt = M(ω,A)− λ|A|. (1.5)

However, M̃ is a signed measure. It is neither integer valued nor necessarily positive.

The measure M defined in (1.4) is a random counting measure on R+, such that for any measurable
A ⊂ R+ it holds E [M(A)] = λ|A|. This construction can be generalized, replacing R+ by E ⊂ Rd and
the Lebesgue measure by a Radon measure µ on E.

Definition 1.30 (Poisson random measure). Let (Ω,F ,P) be a probability space, E ⊂ Rd and µ a
(positive) Radon measure µ on (E, E). A Poisson random measure on E with intensity measure µ is an
integer valued random measure:

M : Ω× E → N
(ω,A) 7→M(ω,A),

such that

1. For almost all ω ∈ Ω, M(ω, .) is an integer-valued Radon measure on E. For any bounded measur-
able A ⊂ E,M(A) <∞ is an integer valued random variable.

2. For each measurable set A ⊂ E, M(., A) ∼ Poisson(µ(A)).

14

3. For all disjoint measurable sets A1, . . . , An ∈ E , the variables M(A1), . . . ,M(An) are independent.

Result 1.31 (Construction of Poisson random measures [2]). For any Radon measure µ on E ∈ Rd,
there exists a Poisson random measure M on E with intensity µ.

1.7.3 Compensated Poisson random measure

Definition 1.32 (Compensated Poisson random measure). Similar to the definition of the compensated
Poisson process, we define the compensated Poisson random measure M̃ :

M̃(A) := M(A)− µ(A).

For disjoint compact sets A1, . . . , An ∈ E , the variables M̃(A1), . . . , M̃(An) are independent with:

E
[
M̃(Ai)

]
= 0 V ar

[
M̃(Ai)

]
= µ(Ai).

1.8 Lévy processes

Lévy processes can be seen as the continuous time equivalent of discrete time random walks.

Definition 1.33 (Lévy process). A cadlag stochastic process (Xt)t≥0 is said to be a Lévy process on
(Ω,F ,P) if it possesses the following properties:

1. X0 = 0 P-almost surely.

2. Independent increments: for every increasing sequence of times {t0, ..., tn}, the random variables
{Xt0 , Xt1 −Xt0 , Xtn −Xtn−1} are independent.

3. Stationary increments: the distribution of Xt+h −Xt does not depend on t.

4. Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0.

Note that the last condition does not imply in any way that the sample paths are continuous! It merely
serves to exclude processes with jumps at fixed nonrandom times, which in the world of finance might
be interpreted as “calendar effects”. It means that for a given time t, the probability of seeing a jump
at t is zero: discontinuities occur exclusively at random times.

In fact, sampling a Lévy process at regular time intervals {0, δ, 2δ...} and setting:

Sn(δ) :=

n−1∑
k=0

Yk with Yk = X(k+1)δ −Xkδ,

gives a random walk. Yk are i.i.d random variables with Yk
d
= Xδ. This can be done for any sampling

interval δ, giving rise to a whole family of random walks Sn(δ) associated with a given Lévy process
Xt.

For any t > 0, choosing n, δ such that nδ = t, we can see that Xt = Sn(δ) can be represented as a sum
of n i.i.d. random variables whose distribution is the same as that of X t

n
. We can “divide” Xt into n

i.i.d parts. This motivates the following definition.

Definition 1.34 (Infinite divisibility). A probability distribution F on Rd is said to be infinitely divisible

if for any integer n ≥ 2, there exist n i.i.d random variables Y1, ..., Yn such that
n∑
k=1

Yk has distribution

F .

An infinitely divisible distribution can also be defined as a distribution F for which the n-th convolution
root is again a probability distribution, for any n ≥ 2. The distribution of i.i.d. sums is given by

15

convolution of the distribution of the summands. If Yk ∼ µ then F = µ ∗ · · · ∗ µ is the n-th convolution
of µ.

It follows, for a Lévy process Xt and any t > 0 the distribution of Xt is infinitely divisible. Unlike in the
case of the discrete time random walk, where we are free to choose the distribution of the increments,
the distribution of increments of a Lévy process has to be infinitely divisible.

Some common examples of infinitely divisible distribution are: the Gaussian distribution, the gamma
distribution, α-stable distributions and the Poisson distribution. A random variable having any of
these distributions can be decomposed into a sum of n i.i.d. parts having the same distribution but
with modified parameters. Less trivial examples are the log-normal, Pareto, Student distributions. An
example of a distribution which is not infinitely divisible is the uniform distribution on an interval.

It also works the other way around. By chopping an infinitely divisible distribution F into n ≥ 1 i.i.d
components, we can construct a random walk model on a time grid with step size 1

n , such that the law of
the position at time t = 1 is given by F . In the limit, a Lévy process Xt with X1 ∼ F can be constructed.
The close relationship between Lévy processes and infinitely divisible distributions is summarized in the
following proposition.

Result 1.35 (Infinite divisibility and Lévy processes). Let Xt be a Lévy process. Then for every t, Xt

has an infinitely divisible distribution. Conversely, if F is an infinitely divisible distribution then there
exists a Lévy process (Xt) such that the distribution of X1 is given by F .

1.8.1 Characteristic function

The characteristic function of a Lévy process Xt is a time-dependent function given by:

Φt(w) = ΦXt(w) = E
[
eiw

TXt
]
, w ∈ Rd.

For t, s ∈ R+ we can write Xt+s = Xs + (Xt+s −Xs). Because of the independent increments property
of Lévy processes, Xt+s − Xs is independent of Xs. We obtain that t 7→ Φt(z) is a multiplicative
function:

Φt+s(z) = ΦXt+s(z) = ΦXs(z)ΦXt+s−Xs(z) = ΦXs(z)ΦXt(z) = Φs(z)Φt(z).

The stochastic continuity of t 7→ Xt implies convergence in distribution of Xs
d−−−→

s→t
Xt. Therefore,

ΦXs(z)→ ΦXt(z) for s→ t so t 7→ Φt(z) is a continuous function of t. Together with the multiplicative
property this implies that it is an exponential function.

Definition 1.36 (Characteristic exponent of a Lévy process). Let (Xt)t≥0 be a Lévy process on Rd.
The characteristic exponent of X is a continuous function ψ : Rd 7→ R such that:

E
[
eiz

TXt
]

= etψ(z), z ∈ Rd.

In fact, ψ is the cumulant generating function of X1, and the cumulant generating function of Xt varies
linearly in t. The distribution of Xt is determined by the knowledge of the distribution of X1. We now
see that the only degree of freedom we have in specifying a Lévy process is specifying the distribution of
Xt for a single time (usually t = 1)!

1.8.2 Compound Poisson process

A well known example of a Lévy process is the compound Poisson process.

16

Definition 1.37 (Compound Poisson process). A compound Poisson process with intensity λ > 0 and
jump size distribution F is a stochastic process Xt defined as

Xt =

Nt∑
i=1

Yi,

where jumps sizes Yi are i.i.d with Yi ∼ F and (Nt)t≥0 is a Poisson process with intensity λ, independent
from the sequence (Yi)i≥1.

Its characteristic function has the following form:

E
[
eiw

TXt
]

= exp

(
tλ

∫
Rd

(
eiw

T x − 1
)
f(dx)

)
,∀w ∈ Rd.

The sample paths of a compound Poisson process are piecewise constant functions. In fact, it can be
proven that it is the only Lévy process with this property.

Result 1.38 ([2]). (Xt)t≥0 is a compound Poisson process if and only if it is a Lévy process and its
sample paths are piecewise constant functions.

1.8.3 Jump and Lévy measure

We now review the concept of a jump measure.

Definition 1.39 (Jump measure). Let Xt be a càdlàg stochastic process. For any measurable set
B ⊂ Rd × [0,∞) the jump measure of X is defined as:

JX(B) = # {t,Xt −Xt− ∈ B} .

For every measurable set A ∈ Rd, JX(A × [t1, t2]) counts the number of jumps of X occurring in the
interval [t1, t2] whose amplitude belongs to A.

Result 1.40 (Jump measure of a compound Poisson process [2]). Let (Xt)t≥0 be a compound Poisson
process with intensity λ and jump size distribution F . The jump distribution of X is a Poisson random
measure on Rd × [0,∞) with intensity measure µ(dx× dt) = ν(dx)dt = λF (dx)dt.

Definition 1.41 (Lévy measure). Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on Rd. The
Lévy measure of X is defined by:

ν(A) = E [#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}] , A ∈ B(Rd)

ν(A) is the expected number, per unit time, of jumps whose size belongs to A.

1.8.4 Lévy-Ito decomposition

Let (X0
t) be a piecewise constant Lévy process. From result 1.38 it follows, that X0

t is a compound
Poisson process with some jump intensity λ and jump size distribution F . By introducing a Brownian
motion with drift γt+Wt, independent from X0, we can define a new Lévy process:

Xt = X0
t + γt+Wt,

which admits the following decomposition:

Xt = γt+Wt +
∑
s∈[0,t]

∆Xs = γt+Wt +

∫
[0,t]×Rd

xJx(ds× dx)

= γt+Wt + λ

∫ t

0

∫
Rd

xF (dx)ds.

17

Does every Lévy process admit such a decomposition? Given an arbitrary Lévy process (Xt), we can still
define its Lévy measure ν as above. Lévy measure ν(A) of any compact subset A with 0 /∈ A is finite,
otherwise the process would have an infinite number of finite jumps on [0, T], contradicting its càdlàg
property. Therefore, ν is a Radon measure on Rd \ {0}. However, ν is not necessarily finite, it can still
blow up at zero. X may exhibit an infinite number of small jumps on [0, T], that add up to an infinite
series that converges only if we impose additional conditions on the measure ν.

Result 1.42 (Lévy-Ito decomposition [2]). Let (Xt)t≥0 be a Lévy process on Rd and ν its Lévy measure.

• ν is a Radon measure on Rd \ 0 and verifies:∫
|x|≤1

|x|2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞

• The jump measure of X, indicated denoted by JX , is a Poisson random measure on [0,∞) × Rd
with intensity measure ν(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion (Wt)t≥0 with covariance matrix A
such that:

Xt = γt+Wt +X l
t + lim

ε→0
X̃ε
t ,where

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx)

X̃ε
t =

∫
ε≤|x|≤1,s∈[0,t]

x (JX(ds× dx)− ν(dx))

=

∫
ε≤|x|≤1,s∈[0,t]

xJ̃X(ds× dx).

(1.6)

The terms in (1.6) are independent and the convergence in the last term is almost sure and uniform
in t on [0, T].

The first term, γt+Wt, is a continuous Gaussian Lévy process. Every Gaussian Lévy process is continuous
and can be written in this form. In fact, the only continuous Lévy process is the Brownian motion with
drift, so the continuous part of any Lévy process can be represented in this form.

The other two terms, X l
t and X̃ε

t are discontinuous processes incorporating the jumps of Xt, described
by the Lévy measure ν. The condition

∫
|y|≥1

ν(dy) < ∞ ensures that the number of jumps of X with

absolute value larger than 1 is finite. Then the sum:

X l
t =

|∆Xs|≥1∑
0≤s≤t

∆Xs

has an almost surely finite number of terms and X l
t is a compound Poisson process. Note that the

threshold ∆X = 1 is completely arbitrary. For any ε > 0, the sum of jumps with amplitude in [ε, 1):

Xε
t =

1>|∆Xs|≥ε∑
0≤s≤t

∆Xs =

∫
ε≤|x|<1,s∈[0,t]

xJX(ds× dx)

is a well-defined compound Poisson process. However, ν can still have a singularity at zero due to
infinitely many small jumps. In order to obtain convergence when ε → 0, we replace the integral by its
compensated version:

Xε
t =

∫
ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx)

18

which is a martingale.

From the Lévy-Ito decomposition it follows that for every Lévy process (Xt) there exist a vector γ, a
positive definite matrix A and a positive measure ν that uniquely determine its distribution. The triplet
(A, ν, γ) is called the Lévy triplet or characteristic triplet of the process (Xt).

1.8.5 Lévy-Khinchin representation

The knowledge of the Lévy-Ito decomposition process allows us to derive another fundamental result of
the theory, an expression for the characteristic function in terms of its Lévy triplet (A, ν, γ).

Result 1.43 (Lévy-Khinchin representation [2]). Let (Xt)t≥0 be a Lévy process on Rd with characteristic
triplet (A, ν, γ). Then the characteristic function is of the following form:

E
[
eiz

TXt
]

= etψ(z), z ∈ Rd

ψ(z) = −1

2
zTAz + iγT z +

∫
Rd

(
eiz

T x − 1− izTx1|x|≤1

)
ν(dx).

If the Lévy measure satisfies the additional condition
∫
|x|>1

|x| ν(dx) <∞ then one can use the simpler

form, since there is no need to truncate large jumps:

ψ(z) = −1

2
zTAz + iγTc z +

∫
Rd

(
eiz

T x − 1− izTx
)
ν(dx), with

γc = γ +

∫
|x|>1

xν(dx).

More generally, one can replace 1|x|<1 by any bounded measurable function g : Rd → R satisfying

g(x) = 1 + o(|x|) as x→ 0 and g(x) = O(1
|x|) as x→∞.

ψ(z) = −1

2
zTAz + iγTg z +

∫
Rd

(
eiz

T x − 1− izTxg(x)
)
ν(dx),where

The function g is called a truncation function and the characteristic triplet (A, ν, γg) is called the char-
acteristic triplet of X w.r.t. the truncation function g. It is important to remember that A and ν are
independent of the choice of g, but γ is not. For this reason one should avoid calling it the “drift” of the
process.

1.8.6 Exponential moments

Result 1.44 (Exponential moments of a Lévy process [2]). Let (Xt)t≥0 be a Lévy process on R with
characteristic triplet (A, ν, γ) and ψ its characteristic exponent. Then it holds:

E
[
euXt

]
<∞ ⇐⇒

∫
|x|≥1

euxν(dx) <∞,

in this case: E
[
euXt

]
= etψ(−iu).

Definition 1.45 (Total variation). Total variation of a function f : [a, b]→ Rd is defined by:

TV (f) = sup
a=t0<t1<···<tn=b

n∑
i=1

|f(ti)− f(ti−1)| (1.7)

In one dimension every increasing or decreasing function is of finite variation and every function of finite
variation is a difference of two increasing functions.

19

1.8.7 Lévy processes and martingales

Martingales play a crucial role in mathematical finance. The independent increment property allows us
to construct different martingales from Lévy processes.

Result 1.46 (Martingale construction using Lévy processes [2]). Let (Xt)t≥0 be an R-valued process
with independent increments. Then it holds:

1.
(

eiwXt

E[eiwXt]

)
t≥0

is a martingale ∀w ∈ R.

2. If for some u ∈ R, ∀t > 0 E
[
euXt

]
<∞ then

(
euXt

E[euXt]

)
t≥0

is a martingale.

3. If ∀t ≥ 0 E [|Xt|] <∞ then Mt := Xt − E [Xt] is a martingale with independent increments.

4. If ∀t ≥ 0 V ar [Xt] <∞ then (Mt)
2 − E

[
(Mt)

2
]

is a martingale.

When X is a Lévy process, it suffices that the corresponding moments be finite for one value of t for the
above processes to be martingales.

The following proposition gives us a way to check if a given Lévy process X is a martingale.

Result 1.47 (When is a Lévy process a martingale? [2]). Let (Xt)t≥0 be an R-valued Lévy process with
characteristic triplet (A, ν, γ).

1. (Xt) is a martingale ⇐⇒
∫
|x|≥1

|x| ν(dx) <∞ and γ +
∫
|x|≥1

xν(dx) = 0.

2. (eXt) is a martingale ⇐⇒
∫
|x|≥1

exν(dx) <∞ and A
2 + γ +

∞∫
−∞

(
ex − 1− x1|x|≤1

)
ν(dx) = 0.

1.9 Additive processes

Additive processes are obtained from Lévy processes by relaxing the condition of stationarity of incre-
ments.

Definition 1.48 (Additive process). A stochastic process (Xt)t≥0 on Rd is called an additive process, if
it is càdlàg , satisfies X0 = 0 and has the following properties:

1. Independent increments: for every increasing sequence of times t0 . . . tn, the random variables
Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent.

2. Stochastic continuity: ∀ε > 0,P [|Xt+h −Xt|]→ 0 for h→ 0.

Result 1.49 (Lévy processes with deterministic volatility [2]). Consider a continuous function σ(t) :
R+ → R+. Let (Lt)t≥0 be a Lévy process on R. Then

Xt =

t∫
0

σ(s)dLs

is an additive process. The independent increments property is straightforward. One way to show the
stochastic continuity is to decompsose L into a sum of a compound Poisson process incorporating big
jumps and the residual process having only jumps of size smaller than one. Then the integral with respect
to the Poisson part can be easily shown to be stochastically continuous and the rest can be shown to be
L2-continuous hence also stochastically continuous.

Result 1.50 (Properties of additive processes, theorems 9.1-9.8 in [5]). Let (Xt)t≥0 be a an additive
process in Rd. Then, for all t, Xt has an infinitely divisible distribution. The distribution of (Xt)t≥0 is
uniquely determined by its spot characteristics (At, µt,Γt)t≥0:

20

E
[
eiu

TXt
]

= eΨt(u)

Ψt = −1

2
uTAtu+ iuΓt +

∫
Rd

(
eiu

T x − 1− iuTx1|x|≤1

)
νt(dx).

The spot characteristics (At, µt,Γt)t≥0 satisfy the following conditions:

1. For all t, At is a positive definite d × d matrix and µt is a positive measure on Rd satisfying
µt({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)µt(dx) <∞.

2. Positiveness: A0 = 0, ν0 = 0, γ0 = 0 and for all s, t sucht that s ≤ t, At − As is a positive definite
matrix and µt(B) ≥ µs(B) for all measurable sets B ∈ B(Rd).

3. Continuity: if s → t then As → At, Γs → Γt and µs(B) → µt(B) for all B ∈ B(Rd) such that
B ⊂ {x : |x| ≥ ε} for some ε > 0.

Conversely, for a family of triplets (At, µt,Γt)t≥0 satisfying the above conditions, there exists and additive
process (Xt)t≥0 with (At, µt,Γt)t≥0 as spot characteristics.

Examples of spot characteristics (At, µt,Γt)t∈[0,T] satisfying these conditions can be constructed us-
ing:

• A continous, matrix valued function σ : [0, T] → Md×n(R) such that σ(t) is symmetric and
T∫
0

σ2(t)dt <∞.

• A family (νt)t∈[0,T] of Lévy measures verifying

T∫
0

∫
(1 ∧ |x|2)νt(dx)dt <∞.

• A deterministic function with finite variation γ : [0, T]→ R (e.g. a piecewise continuous function).

Then the spot characteristic (At, µt,Γt)t∈[0,T] defined by

At =

t∫
0

σ2(s)ds

µt(B) =

t∫
0

νs(B)ds∀B ∈ B(Rd)

Γ(t) =

t∫
0

γ(s)ds,

satisfy the conditions and therefore define a unique additive process (Xt)t∈[0,T] with spot characteristics.
(σ2(t), νt, γ(t))t∈[0,T] are called local characteristics of the additive process.

1.10 Stochastic calculus

We now recall some fundamental results from stochastic calculus.

21

Definition 1.51. A semi-martingale X is an adapted stochastic process that admits the following
decomposition

X = X0 +M +A (1.8)

where M is a local martingale and A a process of finite (total) variation. If M0 = A0 = 0, (1.8) is called
a semi-martingale decomposition of X.

In general this decomposition in not unique. For instance, consider the compensated Poisson process
N − λt, where N is a Possion process with intensity λ. This process is of finite variation and also a
martingale, hence it is a matter of discretion as to wheter M or A is identically zero.

Definition 1.52 (Predictable σ-algebra, predictable process). The predictable σ-algebra P on R+ × Ω
is the σ-algebra generated by the adapted, left-continuous processes. A P-measurable process is called
predictable.

For instance, every continuous-time adapted process that is left continuous is a predictable process

Definition 1.53. A special semi-martingale is a semi-martingale X with decomposition X = X0+M+A
such that the finite variation part A is predictable. This canonical decomposition is unique.

Back to our example of the compensated Poisson process, it is now clear that, since N − λt is not
predictable, it forms the martingale part of the canonical decomposition and the finite variation part is
identically zero.

Definition 1.54 (Quadratic variation). Let X be a semi-martingale and (Πn) a sequence of random
partitions. Each random partition is a finite sequence of finite stopping times 0 = Tn0 ≤ Tn1 ≤ . . . Tnkn = T .
The grid size ‖Πn‖ = supi |Tni+1 − Tni | of the sequence (Πn) is assumed to converge a.s. to zero. The
quadratic variation process [X] is the increasing, adapted process defined by

[X] = lim
n

∑
i

(
XTni+1 −XTni

)2

in ucp.

The new notion of convergence for stochastic processes used here is ucp, that is, uniformly on compacts
in probability. A sequence (Xn) of processes converges to a process X in this sense if sup0≤t≤T |Xn

t −Xt|
converges to 0 in probability.

Definition 1.55 (Quadratic covariation). The quadratic co-variation or square bracket process

[X,Y] =
1

2
([X + Y]− [X]− [Y])

for two semi-martingales X and Y , can be defined by polarisation.

The quadratic co-variation process is a bilinear form which is invariant under equivalent probability
measure changes. This follows since a sequence converges in probability if and only if one can extract
from every subsequence an almost surely convergent subsequence, and the null sets are the same for
equivalent measures.

Examples of the quadratic variation of some common processes include:

1. Brownian motion B: [B]t = t.

2. Pure jump process X: [X]t =
∑
s≤t(∆Xs)

2.

3. Poisson process N : [N] = N since the jump sizes equal one.

4. Continuous processes X of finite variation: [X] = 0.

Definition 1.56 (L2-martingale). A martingale M is called square-integrable (in short: L2-martingale)
if E[[M]T] < ∞. A semi-martingale X is called square-integrable if it is special with canonical decom-
position X = M +A where M is an L2-martingale and A has square-integrable variation.

22

Result 1.57 (Conditional quadratic variation [4]). LetX,Y be locally square integrable semi-martingales.
Then there exists a unique predictable process 〈X,Y 〉, called angle bracket process, such that

[X,Y]− 〈X,Y 〉

is a local martingale.

We set 〈X〉 = 〈X,X〉. More generally, 〈X,Y 〉 exists if [X,Y] is of locally integrable variation.

Note that since the martingale property is not preserved by a change of measure, the angle bracket
process is not invariant under measure changes and may even not exist under an equivalent measure.
Despite this, it inherits many properties from the square bracket:

1. 〈X〉 is increasing

2. 〈X,Y 〉 is a bilinear form

3. When X,Y are both continuous, 〈X,Y 〉 = [X,Y]. More generally:

[X]t = 〈X〉t +
∑
s≤t

(∆Xs)

Some examples:

1. Brownian motion: 〈B〉t = [B]t = t.

2. Poisson process N with intensity λ: 〈N〉t = λt.

This second example is a bit tricky, since the equality is not due to the fact that N − λt is a martingale;
but rather that [N]− λt is a martingale because [N] = N .

We now turn our attention to stochastic integration. The definition of a stochastic integral with respect
to semi-martingale integrators is well beyond the scope of this thesis. We refer to [3] for that matter.
We simply focus on recalling some main properties of stochastic integrals that will be used.

Let X be a semi-martingale. In the case when
∫
ϑdX is well-defined, we call ϑ integrable with re-

spect to X, consult [3] for details. The set of X-integrable processes, which we will not characterise
here, is denoted by L(X). It is important to note that the only reasonable integrands are predictable
processes.

Result 1.58 (Quadratic co-variation of stochastic integrals [4]). Let X, Y be two semi-martingales, and
ϑ ∈ L(X), η ∈ L(Y). Then [∫

ϑdX,

∫
ηdY

]
=

∫
ϑηd[X,Y].

In particular, the quadratic variation of the stochastic integral process
∫
ϑdX is given by[∫

ϑdX

]
=

∫
ϑ2d[X].

We now recall the fundamental rules of calculus for stochastic integrals.

Result 1.59 (Integration by parts [4]). Let X, Y be two semi-martingales. Then XY is a semi-
martingale and

XY −X0Y0 =

∫
X−dY +

∫
Y−dX + [X,Y].

The following result is a generalisation of the chain rule.

23

Result 1.60 (Itô’s formula [4]). Let X be a semi-martingale, and f : R+×R→ R a C1,2-function. Then
f(t,Xt) is a semi-martingale, and we have, with [Xc]t = [X]t −

∑
s≤t(∆Xs)

2,

f(t,Xt)− f(0, X0) =

∫ t

0

∂

∂t
f(s,Xs)ds+

∫ t

0

f ′(s,Xs−)dXs

+
1

2

∫ t

0

f ′′(s,Xs)d[Xc]s

+
∑

0<s≤t

{f(s,Xs)− f(s,Xs−)− f ′(s,Xs−)∆Xs}.

Result 1.61 (Martingale property of stochastic integrals [4]). For a local martingale integrator M , and
a locally bounded predictable ϑ, the stochastic integral process

∫
ϑdM is a local martingale. The same

conclusion holds in case ϑ is adapted and left-continuous with right-limits.

24

Chapter 2

Electricity markets

In 1981, Chile was the first country to deregulate its electricity market and quote an electricity spot
price, laying the foundation of modern electricity trading. Twelve years later, in 1993, the first future
contracts on electricity were quoted on the Scandinavian market 1993. Ever since, quantitative finance
literature has followed the liberalisation of the electricity industry all over the world.

Electricity as a form of energy is used in a very wide range of applications. It has the advantage of being
relatively easily controllable, portable and non-polluting at the location of its usage. Since every electron
is the same, quality is not a question in that sense. As a secondary energy source electricity is generated
by conversion of other energy sources, like coal, natural gas, oil, nuclear power, hydropower and other
renewable sources.

Figure 2.1: Percentage of total net electricity generation per source in EU-28 for year 2014. Percentages
do not sum to 100% due to rounding. Source: Eurostat (online data coda: nrg_105a).

This entails that electricity markets and electricity prices are fundamentally linked to markets for primary
fuels and environmental conditions. A understanding of the electricity generation process and fuel
markets is a prerequisite for a sound grasp of electricity markets and price mechanisms.

Electricity as a commodity, due to its unique properties, differs significantly not only from stocks, bonds
and other frequently studied financial instruments, but from other commodities as well. These funda-

25

mental properties impact both the constitution of the electricity market as well as price behaviour. Some
of characteristic properties of electricity and electricity markets include:

1. Electricity cannot be stored at a reasonable cost. Since electricity consumption is a continuous
phenomenon, this raises an energy and a capacity problem (the rate at which energy can be
released). Perhaps somewhat surprisingly, the most economical way of storing a large amount of
electricity are still hydroelectric reservoirs. However, this is far from a universal solution because
it relies on the hydroelectric potential of a country. The hydroelectric capacity of most countries is
small compared with their total consumption. Also, enough capacity has to be available in order
to satisfy the power demand at any point in time. For instance, the total installed capacity of
France is around 110GW while the annual maximum power demand has reached 100GW in the
last several decades. One possible solution of the capacity problem would be installing enough
capacity to satisfy demand in any conceivable scenario. However, this would require too many
power plants that would be used for only a few hours in their lifetime, making it expensive and
impractical.

2. The transport of electricity adheres to specific laws. The transport of electricity follows Kirchhoff’s
laws. Basically, the laws state that the intensity at each node should be zero and the tension in
each loop should also be zero. It then follows that, in a meshed electricity network, power goes from
one point to another through all available paths. Because of this, the transfer capacities require
some electricity generation hypothesis before they can be computed.

3. Electricity price evolution process is unique. A quick look at the empirical data suffices to reveal
the truly unusual characteristics of electricity prices. What first captures the eye is the extraordi-
narily high volatility. Indeed, the volatility of electricity is an order of magnitude higher than the
volatility of foreign exchange rates, interest rates, or equity prices. It is even higher than all other
energy markets. Just compare the typical volatility of USDE/JPY or USD/EUR exchange rates
(10%–20%), LIBOR rates (10%–20%), SP500 index (20%–30%), NASDAQ (30%–50%), natural
gas prices (50%–100%) and electricity (100%–500% and higher). Electricity prices also exhibit
pervasive spikes of extraordinary magnitude, mean reversion, regime switching, stochastic volatil-
ity, volatility smiles, and the host of other interesting properties that make processes describing
the evolution of energy prices very different from their more standard financial counterparts. Cor-
relation across electricity markets is another distinguishing feature and the importance of joint
distributions is impossible to underestimate.

4. Electricity derivatives are unique. Standard products like futures, forwards, and options still have
unique features due to their physical nature. They are settled and defined differently compared
to their counterparts in the financial markets. Power delivered at any particular hour, block of
hours, day, week, month, and so on, represents a different commodity due to the non-storability
property. In addition, specific sorts of derivatives, such as swing options, power plant and tolling
agreements, which have been developed to manage risks associated with meeting the demand, have
no parallel in financial markets. These more complex derivatives in the electricity markets are often
path dependent, making their valuation much harder.

Since electricity requires a grid infrastructure, electricity markets are more regional than other energy
markets. However, over the past decades significant effort has been put towards integrating neighbouring
market zones (e.g., Europe) with the goal of fostering competition and optimising usage of the grid and
generation infrastructure.

Traditionally, electricity markets of many countries were dominated by vertically integrated “incumbent”
utility companies that owned generation assets, grid infrastructure and the retail business. Grid own-
ership has put those incumbents in a natural monopoly position with high entry barriers for potential
competitors. Very often, incumbent utilities were either state owned or at least regulated. Since the
1990s some form of liberalisation of electricity markets has taken place in many countries. The de-
tails of market design and regulation still differ substantially between countries, but share some main
elements:

1. A distinction between natural monopoly areas (e.g., grid operation) and areas where competition
shall be established. A clear separation of monopoly areas from competition areas is necessary, as

26

to make access to grid and other infrastructure non-discriminatory for all market participants.

2. Wholesale markets should be designed in a way that incentivises optimal economic usage of infras-
tructure, such as power plants and interconnections between market areas. In addition, sufficient
incentives should be provided for building new generation capacity if required.

3. Established regulation ensuring security of supply and preventing market abuse.

4. Incorporated mechanisms for environmental protection (e.g., carbon emissions).

We distinguish between the transport and the distribution level of electricity. That is, the level at
which the wholesale markets operate and the level at which the electricity is delivered to the consumer.
The object of our study will be models of the prices in the the wholesale market, i.e., at the transport
level. However, it is important to emphasize that, although the distribution network was designed to
transfer power from the transport level to the consumer, with the introduction and increased presence of
renewable energy sources at the distribution level, now power sometimes flows “upward” to the transport
network. In future, this may require an adaptation in the way distribution networks are monitored and
operated (e.g., smart grids).

Liberalisation of the electricity market on the EU territory started in the UK at the beginning of the
1990s, soon followed by Scandinavia. In 1996 and 2003 the Electricity Market Directives were issued
by the European Commission defining steps for deregulation of electricity markets on an EU-wide scale,
which were subsequently to be implemented by the EU member states. The goal of these measures
was to foster competition and improve integration of national electricity wholesale markets. Since the
introduction of the European Trading System (EU ETS) for carbon emissions in 2005, the European
electricity markets are closely connected to European environmental policy, since emission certificates
(EUAs) have become an important driver for wholesale electricity prices. More recently, a new important
driver has arisen in the form of increasing solar and wind generation fostered by national subsidy schemes,
with ambitious growth targets (e.g., in Germany).

2.1 Electricity trading

In case of electricity, contrary to other commodities, it is not as obvious what the actual trading product
is. For instance, unlike in the case of oil, an individual cannot simply buy electricity at 10am in the
morning and sell it at 2pm when the price is higher. In contrast to other commodities electricity is
hardly storable.

Non-storability of electricity, in case of of a tight or excessive supply situation, can result in spiky
behaviour and high volatility of power prices in the spot market. In the forward market the price
exhibits much smaller movements, because the availability of power plants and the weather-dependent
demand are still unknown at the time. Another main property of electricity preventing a global market
is the necessity for a transmission network.

The lack of storability requires an exact matching of supply and demand at any point in time. Since
it is impossible for the merchant to forecast the demand of his customers exactly, an entity responsible
for keeping the system balanced was introduced. This is the duty of the transmission system operator
(TSO), who charges the merchant directly or the retail customers via transmission fees for this service.
A balancing period, defined by the TSO, is the granularity of the measured electric energy supply. The
continuously varying power requirements of retail customers are integrated over the balancing period
(e.g., 15 minutes in Germany, 30 minutes in the UK) and the average power is the size that is forecast
and should be delivered by the supplying merchant. This results in the merchant delivering energy on a
discrete time series with time steps according to the balancing period and constant power during these
time periods. Figure 2.2 illustrates this.

27

Figure 2.2: Balancing period.

The principal products traded in the electricity markets are delivery schedules in a granularity not finer
than the balancing period. The usual granularity is one hour. The power balancing during the balancing
period itself is the task of the TSO. Usually the TSO has no own-generation capacities and has to
buy products which allow the increase or decrease of production (including import and export) in its
transmission system at short notice.

We now take a look at the different products traded in the electricity markets. Note that the products
in regional markets may vary, since there is no global electricity market. Nevertheless, the electricity
market can generally be divided into the following categories:

1. Day-ahead market : The products traded in the day-ahead market products are delivered on the
next trading day. Day-ahead products are common spot products and can be traded either on a
power exchange or as bilateral agreement.

2. Futures and forward market : The products traded in this market play an important role in risk
management by enabling the participants to hedge their positions. On the end, traders actively
take positions in this market providing liquidity for the hedgers. The agreed delivery period of
the products traded in this market usually refers to specific calendar weeks, calendar months or
calendar years.

3. Intra-day market : The products traded in the intra-day market are delivered within the same day.
This market is typically not a market for pure trading purposes, but instead enables the electricity
producers a short-term load-dependent optimisation of their generation. Intra-day products are
traded either on a power exchange or bilaterally. The intra-day market enables the participants to
submit buy or sell bids up to an hour prior to delivery.

4. Balancing and reserve market : These markets are country and regulator specific, resulting in
multiple definitions. The reserve market is the market that allows the TSO the purchase of products
needed for the compensation of imbalances between supply and demand in the electricity system
at short notice. The balancing market (also known as real-time market) is the market that allows
the merchant to buy or sell additional additional energy in order to balance his accounting grid.
The balancing service is provided by the TSO and the TSO usually charges or pays the merchant
for additional energy. Only in some national markets it is possible for the merchant to buy or sell
this balancing energy from or to someone other than the TSO. Therefore, the balancing market is
a market only in a broader sense.

The balancing and reserve market aside, products traded in the electricity market are characterized by
a discrete time series describing the delivery schedule of the product. Usually the granularity of the
time series is one hour. Each value of the associated time series specifies the constant power delivered
in the corresponding hour. Furthermore, we distinguish between baseload and peakload constracts. In
a baseload contract the delivered power is constant over some delivery period [T1, T2]. If the delivered
power is constant in the predefined delivery when the consumption is usually high, know as peakload

28

hours, we are talking about a peakload contract. Peakload hours vary across markets. Common peakload
hours are from 8:00 am to 8:00 pm on peakload days, which are usually Monday-Friday, including public
holidays.

2.1.1 Day-ahead market

The day-ahead market is generally based on a fixed trading auction. Each day, up to a certain deadline
(usually around 10:00 a.m.), the market participants submit bids (sales or purchases) for a particular
hour of the next day or for a set of hours (order block). The bids of the market participants for a
particular hour are combined into sales and purchases curves. Then, at a latter time, usually around
12:00 p.m., the market organiser performs a clearing of the market, determining the electricity price for
each hour of delivery and matching the sellers with the buyers. This gives the market players enough
time to send generation orders to their power plants and their schedule to the TSO.

0 2000 4000 6000 8000 10000 12000
−500

−400

−300

−200

−100

0

100

200
Hour 6

Volume (MWh)

P
ric

e
(e

ur
o/

M
W

h)

Figure 2.3: Day-ahead market volume of sales and purchases on 2013-06-16. Source: EpexSpot.

Figure 2.3 illustrates the bid and ask curves and reveals an interesting property of electricity prices – they
can get negative! It is completely valid and possible to submit negative prices for buying and selling. A
negative sale price means that the seller is willing to pay to sell, and a negative purchase price indicates
that the buyer is willing to be paid to buy. This phenomenon, unique to the electricity market, is caused
by the lack of flexibility and restart costs of some thermal power plants. Sometimes it may be less
expensive to let a coal-fired plant run during hours of the day when the spot price is below its fuel cost
than shutting it down and starting it up again later. On the demand side, for some buyers it might make
economical sense to increase their consumption if they get compensated for the cost of changing their
production schedule.

29

Figure 2.4: Phelix Day Base from 2005-02-08 to 2016-08-10. Source: EEX.

Figure 2.4 shows the evolution of the Physical Electricity Index (Phelix). Extreme spikes, characteristic
of electricity prices, are observable, which are a consequence of the non-storability property. Further-
more, electricity day ahead prices exhibit seasonal patterns corresponding to the economic activity of a
country. Daily, weekly, and annual seasonality in demand are all present, as well as intra-day seasonal-
ities (intensive use of home appliances, sleep, closing hours of offices etc.). Electricity day-ahead prices
are also characterized by fat tails, long memory and correlations with the temperatures in countries with
electric heating or air conditioning.

Within the European Union, each country has its own electricity day-ahead market cleared by its own
market operator. Since the day-ahead prices quoted by the market operator have a transparency function,
a mechanism has been developed to ensure a consistent relation between cross-border transactions and
local day-ahead prices. This mechanism consists in a market coupling process, which is further discussed
in section 2.1.4.

We refer to the day-ahead market as the electricity spot market. In a sense where the spot price refers
to a price for instantaneous delivery, the intraday market may appear as the real spot market. However,
the reference price for delivery in the forward market is the day-ahead market. Therefore, since the
relation between the spot and forward price is one of the most important relations in pricing theory, the
day-ahead price is the natural choice for the spot price.

2.1.2 Futures and forward market

Similar to other futures contracts, electricity futures are usually settled daily until the end of the contract.
Since electricity futures contracts do not have a single delivery date but a delivery period, the variation
margin must also be calculated during the delivery period. Contracts with a long delivery period (e.g., a
year or a quarter) are split into futures contracts with a shorter delivery period (e.g., a quarter or a month)
through a procedure called cascading, as illustrated in fig. 2.5. On the other hand, electricity forwards are
usually not settled prior to the due date. They are usually traded OTC, but some exchanges offer them
as well. Organised markets even report the prices and quantities of the traded OTC contracts.

The futures market in many aspects similar to those of storable commodities such as oil, coal, or metals.
Standardised contracts for future delivery of electricity specify the currency, the underlying volume, the

30

Yearly
future

Jan Feb Mar Quarter 2

Apr May Jun

Quarter 3

Jul Aug Sep

Quarter 4

Oct Nov Dec

Figure 2.5: An illustration of the cascading procedure.

location of delivery, the trading period, and the tick size. Although physical delivery is often preferred,
financial settlement is becoming more frequent as the markets mature.

Electricity futures are settled against the average day-ahead price of the delivery period. This fulfils
the hedging needs of markets participants, but simultaneously raises the question of convergence of the
futures to spot the spot price, discussed later in section 3.2.

Term structure of electricity futures prices sets them apart from those of storable commodities. Since
electricity is not storable and the spot market is the day-ahead market with an hourly time grid, a power
operator who wants to hedge its generation for the next year needs to obtain contracts for all of the
hours in the year.

For a non-leap year, this amounts to a whopping number of 8,760 hourly contracts. Because this would
result in a huge dispersion with the market participants spreading their needs across all of those contracts,
it is much more convenient to aggregate hours during pre-defined delivery periods. The delivery period
specifies all of the hours during which the electricity should be delivered and it refers to a month, a
quarter, a year, or even a week or a day. The contract also precisely specifies the schedule of the
delivery: base-load if the electricity is to be delivered during all of the hours of the period and, peak-load
or off-peak hours if the electricity is to be delivered only during a special period which reflects large or
low demand.

The result of this aggregation mechanism is the sparse structure of the electricity forward curve. The
further the maturity, the longer the delivery period.

Some organised electricity markets such as EEX and NordPool also quote prices of vanilla options on
futures contracts.

2.1.3 Balancing and reserve market

While forwards and futures market share many similarities across different regions, the balancing and
reserve markets are much more dependent on national regulation which defines the exact function of the
TSO.

In Europe, the European Network of Transmission System Operators for Electricity (ENTSO-E) is an
association of 41 TSOs from 34 countries coordinating overarching grid topics. One of the key functions
of a TSO is to ensure a constant power frequency in the transmission system. A change in frequency
indicates to the TSO a shortage or a surplus of energy in the system. In physical terms, this means
that there is a deceleration or acceleration of turbines since it is their kinetic energy that balances
consumption and generation. For such a case, a clear set of rules and measures for system stabilization
have to exist.

Since even 15 minutes of disequilibrium may result in a dramatic blackout, a strict minute by minute con-
trol of the equilibrium between consumption and generation is necessary. In order to cope with possible
instabilities in the electricity system, the responsible TSO must have at its disposal operating reserves,
generation capacities that can be mobilised within a short time-frame. The Operation Handook of the

31

ENTSO-E specifies control actions in the case of a disturbance. The frequency control actions are per-
formed in different successive steps, each with different characteristics and qualities, and all depending
on each other.

The products traded in the reserve market are constructed to support these control actions. Compared
with the products in the forward, futures or spot market, the reserve market products are more much
technical and may refer to specified power plants. These power plants must be capable of reducing or
increasing production at short notice. Unlike most other electricity products, in which one only pays for
the only delivered energy, reserve energy products often involve an additional payment for the availability
of the reserved capacity.

The prices for balancing power are usually include the price for the delivered energy only. These often
represent additional costs for the merchant. Prices for balancing power differ widely and are only
sometimes related to spot or futures market prices.

2.1.4 Market coupling

Neighbouring local electricity markets are usually not completely disconnected but coupled via trans-
mission capacities owned by the TSOs. An optimal usage of transmission capacities in the economical
sense entails that in case of price differences between two local markets, one would transmit electricity
from the higher-priced market A to the lower-priced market B. As a result, the generation demand in B
would fall and generation demand in A would rise, pushing prices towards an equilibrium. Therefore, a
price difference between connected markets should only be possible in case of congestions in transmission
capacities. One possibility of fostering optimal usage of transmission capacities is through creation of a
dedicated market for such capacities (e.g., via auctioning). Another, more convenient way is to integrate
allocation of transmission capacities in a price-finding algorithm of two or more collaborating spot ex-
changes via an implicit auctioning. This is generally regarded as more efficient since optimal allocation is
ensured by the exchanges and a separate auctioning of transmission capacities is no longer required. This
results in a single price in all participating markets provided there is no congestion of capacities.

2.2 Electricity Exchanges

Energy exchanges are major marketplaces for electricity. In recent years more and more countries have
founded exchanges for electricity, most of which are located in Europe and North America. While some
of them are only a basic marketplace for spot products, the major exchanges feature a derivatives market
with a high trading volume. The landscape of power exchanges in Europe has been changing rapidly
over recent years.

In the following, we provide a brief overview of some of the biggest markets.

Nord Pool Spot

Nord Pool Spot is a multinational electricity exchange of Northern Europe. It started in 1993 under
the name Nord Pool ASA (then Statnett Marked AS) as a Norwegian market for physical contracts
following the deregulation of the Norwegian electricity market in 1991. Three years later, in 1996,
together with Sweden the world’s first multinational exchange for trade in power contracts, the joint
Norwegian–Swedish power was started. Some time after, Finland and Denmark decided to join Nord
Pool. A separate company focusing on short term trading, Nord Pool Spot, was established in 2002.
In 2008 the derivatives trading business was bought by NASDAQ OMX Commodities. In 2010, a joint
venture of Nord Pool Spot and NASDAQ OMX Commodities, a market for UK energy contracts known
as N2EX was launched.

Today, Nord Pool Spot comprises the Nordic countries of Denmark, Finland, Norway and Sweden and the
Baltic countries of Estonia, Latvia and Lithuania. More than 80% of the total consumption of electrical

32

energy in the Nordic market is traded through Nord Pool Spot. It operates a day-ahead market Elspot
and an intra-day market Elbas.

Elspot is based on an auction trade system, where the bids for purchase and sale of power contracts
of one-hour duration cover all 24 hours of the next day. There is a noon deadline for participants to
submit bids, right after which all buy and sell orders are gathered into an aggregate demand curve and an
aggregate supply curve, respectively, for each power-delivery hour. Then one determines the spot price
for each hour by the intersection of the aggregate supply and demand curves. This price is also known
as the system price. Nord Pool is a multinational exchange, therefore possible grid congestions require a
partition into separate bidding areas. Separate price areas can only occur if the contractual flow between
bidding areas exceeds the capacity for spot contracts allocated by TSOs. In case of no such capacity
constraints, the system price equals the spot price throughout the different bidding areas.

After the Elspot results get published, trading continues in the physical intra-day market Elbas. The
Elbas market is based on hourly contracts and provides continuous power trading 24 hours a day, up to
one hour prior to delivery.

NASDAQ OMX Commodities Europe

NASDAQ OMX Commodities Europe started in 1993, as the former Nord Pool AS established a forward
market in Norway with physical delivery. In 2008, NASDAQ OMX Commodities Europe bought Nord
Pool’s financial derivatives business. This market consists of futures, forwards, options and contracts for
differences (CfDs).

Futures contracts traded are standardised day and week contracts, where weeks are listed in a continuous
rolling cycle of 6 weeks. The settlement of futures contracts involves a daily mark-to-market settlement
and a final spot (system price) reference cash settlement after the contract reaches its due date.

Forward contracts are offered for the delivery periods of month, quarter and year. Months are listed in
a continuous rolling cycle of 6 months. Years cascade into quarters, and quarters cascade into months.
In this context the term forward contract also refers to an exchange-traded product. Unlike futures,
the forward products offered do not have get settled prior to the due date. The mark-to-market value
is accumulated as daily loss or profit but not realised throughout the trading period. Only during the
delivery period the difference between the price when the contract was entered into and the spot reference
price gets settled.

NASDAQ OMX Commodities Europe also offers CfDs that settle on the difference between the system
price and the area price, to provide service for the market participants who rely on financial market
derivatives to hedge spot market prices and thus remain exposed to the risk that the system price will
differ from the actual area price of their spot purchases or sales. This way it is possible to obtain a
perfect hedge using a combination of a forward contract and a CfD.

Options contracts on standard forwards as the underlying contract are also traded. Only European-style
to be precise, meaning they can only be exercised at the exercise date. As the price of the underlying
forward instrument moves, options with new strike prices are automatically generated.

In addition to products for the Nordic market, products for the German and Dutch market including
CfDs to neighbouring countries are also offered. Further, UK power futures are which are settled against
the N2EX day-ahead index are traded.

The NASDAQ OMX Commodities Clearinghouse provides a clearing service for contracts traded through
the NASDAQ OMX Commodities Europe exchange and those traded OTC and registered for clearing.
To be accepted for clearing, a bilateral market electricity contract must conform to the standardised
products traded at the exchange. This clearinghouse guarantees the settlement of all cleared financial
and physical derivative contracts.

33

N2EX

N2EX was established in 2010 as a joint venture of Nord Pool Spot and NASDAQ OMX Commodities
Europe. It offers a day-ahead auction market for the UK and a continuously traded spot and prompt
market. The prompt market covers the period 48 hours out up to 7 days out, afterwards the products
are transferred to the spot market. The day-ahead prices are used as underlying for UK futures contracts
offered by NASDAQ OMX Commodities Europe.

European Energy Exchange (EEX)

The EEX is one of the leading exchanges for electricity and gas in Central Europe. It operates market
platforms for trading in electric energy, natural gas, CO2 emission allowances and coal. In 2013, the
trading volume of electricity on the EEX Power Derivatives Market amounted to 1,263.9 TWh (terawatt
hours) compared with 931.4 TWh in 2012. It is situated in Leipzig, Germany. The current EEX emerged
as a result of a merger between LPX Leipzig Power Exchange and the Frankfurt-based EEX in 2002.
In 2008, the spot market operated by EEX was transferred into EPEX, a joint venture with the French
exchange Powernext.

The EEX Power Derivatives GmbH offers futures for German and French power with weekly, monthly,
quarterly and yearly delivery periods. Additional products are traded for Germany: single days and
weekends are available. The day-ahead auction results from the EPEX spot market serves as the un-
derlying of the financially settled futures. Futures are settled using a daily mark-to-market approach.
Yearly and quarterly futures are cascaded. At the end of a month the last payment for monthly futures
is established on the basis of the difference between the final settlement price and the settlement price
of the previous exchange trading day. The final settlement price is established from the average of the
associated EPEX spot market prices.

European-style options for German electricity, where the financially settled futures serve as the under-
lying, are also traded.

Its subsidiary European Commodity Clearing AG (ECC) offers a well regarded clearing service for OTC
trades. OTC transactions corresponding to available products at the EEX or other partner exchanges can
be registered by means of a so-called EFP trade (exchange futures for physical) for OTC clearing.

EPEX

EEX was founded as a joint venture of EEX and the French energy exchange Powernext. It is based
in Paris and operates the electricity spot market for Germany, Austria, France, Switzerland and Lux-
embourg. In 2014 the volume of traded electricity on the markets of EPEX SPOT amounted to 382
terawatt hours (TWh), an increase of 10% over the previous year.

EPEX offers an auction based day-ahead and a continuous intra-day market. Products are individual
hours, baseload, peakload and other blocks of hours. Market coupling contracts for deliveries between
two market areas are also traded in the day-ahead market. The intra-day market is open 24 hours a
day, 7 days a week and products can be traded until 45 minutes before delivery. For Germany, short
15-minute periods are offered in addition to hourly periods. EPEX publishes the European Electricity
Index PHELIX, which represents a price level that would result in a physically unconstrained market
environment on the territory of Germany, Austria and Luxembourg.

APX

The roots of APX go back to 1999, when Amsterdam Power Exchange was founded. In the following
years, APX expanded into the UK market under the name APX-UK (now APX Power UK). Then in
2008, APX bought the strongly positioned Dutch and Belgian derivatives exchange for power and gas
called ENDEX. The joint company, renamed APXENDEX, split again in 2013 into a power spot exchange

34

APX covering the Netherlands, Belgium and the UK and a derivatives exchange ICE ENDEX covering
gas spot and power/gas derivatives.

APX has comprises several segments. APX Power NL is the day-ahead auction based and continuous
intra-day market for Dutch electricity. APX Power UK is the Day-ahead market (hourly), continuous
spot market (half-hourly) and prompt market (block products up to 4 weeks out). Finally, Belpex is the
day-ahead auction market and continuous intraday market for hourly periods.

Figure 2.6: Historical daily spot price in NordPool market. Source:NordPool.

35

Chapter 3

An overview of price models

In this chapter we aim to provide an brief overview of the different approaches to electricity pricing and
the models they lead to. The chapter is heavily based on the work of the French electricity expert Réne
Aı̈d [6], whose book is an excellent reference on the current developments in electricity modelling. Many
of the methods and approaches used in modelling of other financial markets have found their way into
the modelling of electricity.

In the case of electricity, there are three different common approaches to modelling that give rise to
different model classes.

1. The first class of models follows the Heath-Jarrow-Morton (HJM) [7] approach and attempts to
model the observed forward prices. If needed, the spot price is derived as a future with zero
maturity limit. This method is inherited from the modelling of interest rate yield curves. Therefore,
many related results are not particular to electricity forward curve modelling and some additional
constraints have to be considered since they were initially developed without a delivery period in
mind.

2. The second class of models takes the opposite approach and starts by modelling the electricity spot
price. The futures prices can then be deduced as an expectation under a convenient probability
measure.

3. The third class comprises structural models. These models deduce the spot price using an over-
simplified version of an economical equilibrium model between the production cost curve and
electricity demand. The methodology here is somewhat electricity specific and differs from the
usual approaches used in mathematical finance. However, since for electricity, in contrast to other
commodities and financial instruments, a lot of helpful data is publicly available, these models are
especially interesting.

For each of the above model classes, after discussing some preliminaries in section 3.2, in sections 3.3,
3.4 and 3.6 we will briefly discuss the underlying principles and some examples in order to illustrate
their where they succeed and where they fail. A (detailed) comparison of different electricity models is
a research topic on its own that exceeds the scope of this thesis, and the aforementioned work by Aı̈d
does a great job of presenting a whole variety of models. Finally, in section 3.7 we discuss the limitations
of financial models driven solely by Brownian motion components, and how these disadvantages are
accentuated in the case of electricity. But first of all, in section 3.1, we start by recalling the Black 76
model, mainly due to its importance as an option quoting tool.

Note that on the modelling level and in the following, we do not distinguish between forwards and futures,
and often use the two terms synonymously and interchangeably. Also, in all of the model examples, we
try to stick to the notation used in the original papers, since it allows for easier cross-comparison in case
of further reading.

36

3.1 Black 76 model

Ever since the publication of the original Black-Scholes model that focused on stock options, simple
variations on this concept have found their way into other applications, and pricing futures is no excep-
tion.

The risk-neutral dynamic of the price of a future at time t with delivery at some time T ′ > t in Black’s
model is given by a simple diffusion

dFt = σdWt, (3.1)

where σ > 0 is a constant volatility parameter and Wt a standard Brownian motion under the risk-neutral
measure.

In Black’s model, the value of a European call option with maturity T at time t on a future Ft with
delivery date T ′ > T equals:

C(F,K, τ, σ) = e−rτ [FN(d1)−KN(d2)] (3.2)

where F is the price of the future at time t, N the cdf of the standard normal distribution, τ = T − t
and

d1 =
ln(FK) + σ2

2 τ

σ
√
τ

, d2 = d1 − σ
√
τ =

ln(FK)− σ2

2 τ

σ
√
τ

. (3.3)

The value of a corresponding European put is

P (F,K, τ, σ) = e−rτ [KN(−d2)− FN(−d1)]. (3.4)

Since the value of a call option is a strictly increasing function of the volatility parameter

C : (0,∞)→
(
(e−rτ [F −K])+, e−rτF

)
, (3.5)

for any observed market price within this range, one can invert the function and find the volatility
parameter s.t. the observed price of the option matches the market price, i.e.

∃! Σt(T,K) > 0, C(Ft,K, τ,Σt(T,K)) = C∗t (T,K). (3.6)

This number is called the implied volatility. It is sometimes referred to as “the wrong number which,
plugged into the wrong formula, gives the right answer”.

For a fixed date t, the function

Σt : (T,K)→ Σt(T,K) (3.7)

is called the implied volatility surface at date t.

Today, options are usually quoted in terms of their implied volatilities and not their actual prices. This
method has several advantages, for instance, the quote becomes a dimensionless quantity independent
of the type of the underlying plus it allows for simpler comparisons of different models.

Although the Black’s model predicts a constant implied volatility surface Σt(T,K) = σ, it is a well
known empirical fact that Σt(T,K) is not constant as a function of strike nor time. Of course that none
of the market participants actually believe in the hypotheses of the Black’s model, they just agree to use
it as a tool for translating the market price into a representation in terms of the implied volatility.

3.2 Relation of the spot and forward price

Before we continue with the study of the different model classes, we discuss some important preliminaries.
One of the most important relations in modern pricing theory is the relation between the spot and the
forward price. There are multiple ways to establish a relation between the two, and we study them in
the following subsections.

37

3.2.1 Cost of carry formula

For freely storable assets, it is well known that the cost of carry formula holds:

F (t, T) = er(T−t)St, (3.8)

where St is the spot price at time t, F (t, T) is the price of a forward at time t with delivery at time T ,
and r a constant interest rate. This relation is easily derived using a no-arbitrage argument. However,
the cost of storage for commodities is not negligible (e.g. cereals, copper, oil), and the formula has been
modified to account for storage cost:

F (t, T) = er(T−t)+c(T−t)St, (3.9)

where c(T − t) is the cost of storage as a function of time to maturity. Even with this correction, the
relation still did not hold in some cases. Sometimes the forward price could be lower than the spot. An
attempt at a further improvement of the formula was made with the introduction of the convenience
yield, a function representing the extra return that the actors would gain from holding the commodity
instead of a forward contract:

F (t, T) = er(T−t)+c(T−t)−y(t,T)St, (3.10)

with y(t, T) as the convenience yield. However, since the convenience yield is not observable, the formula
is also not an ideal representation.

In the case of electricity, the cost of carry formula breaks. Due to its non-storability, any storage or
convenience yield argument in explaining the relation between the current spot and forward price does
not hold. All of the relations above are discussed in more detail in [8].

3.2.2 Convergence relation

Another important hypothesis in pricing theory is the convergence of forward prices towards spot
prices:

lim
t→T

F (t, T) = ST . (3.11)

In other words, this relation entails that the basis risk between the forward contract and the spot market
is negligible. Provided that this relation holds, a market participant can easily reverse his position on
the forward market by buying or selling on the spot market, while remaining sure that the losses and
gains from the different markets will even out.

It is not immediately clear whether relation (3.11) holds in case of electricity. Recall from chapter 2 that
forward contracts involve a delivery period that leads the operators to implement a cascading mechanism
of switching to contracts with shorter delivery periods as soon as they become available. However, it is
possible to test if this convergence relation holds for electricity futures, e.g. day-ahead futures contracts.
The underlying of day-ahead futures is the average spot price on the day of delivery. The testing of
this point was undertaken in [9]. The author shows that even for weekend days the difference between
the last quoted day-ahead future and the realised spot is statistically not different from zero. For some
particular hours (e.g. peak hours) the difference gets close to 5%. Therefore, one can assume that there
is convergence up to a small premium.

3.2.3 Spot-forward risk neutral relation

A third important spot-forward relation assumes that the forward price at time t is equal to the expec-
tation w.r.t. the risk neutral measure of the spot price given available information at time t:

F (t, T) = EQ [St | Ft] , (3.12)

where Q is the risk neutral measure and Ft the information at time t. For pricing purposes, it helps if
the risk-neutral measure is unique. If not, the main criterion for the choice of Q is the ability to fit the
observed market prices.

38

3.2.4 Risk premium

Finally, an often discussed quantity in the literature is the risk premium, defined as:

R(t, T) = F (t, T)− EP [St | Ft] , (3.13)

where P is the physical measure. The risk premium is then given an economical interpretation as an
indicator of relative market power or the relative risk aversions of the electricity producers and consumers.
However, despite being an interesting economic indicator, it is not of great relevance in the scope of
derivatives pricing.

3.3 HJM-style models

Within the HJM framework the dynamic of the forward price F (t, T) at time t with delivery date T > t
in SDE form is given by:

dF

F
(t, T) =

n∑
i=1

σi(t, T)dW i
t , (3.14)

which admits the following solution:

F (t, T) = F (0, T) exp

−1

2

t∫
0

n∑
i=1

σ2
i (s, T)ds+

t∫
0

n∑
i=1

σ2
i (s, T)dW i

s

 , (3.15)

where σi(t, T) are n volatility functions, and the W i are n Brownian motions, possibly correlated. The
initial condition F (0, T) is given by the observed forward prices.

First of all, one needs to pin down what the delivery date T actually represents. Since electricity is
delivered during a period of time, in this form one can only model one set of futures, e.g. monthly,
quarterly, yearly etc.. T would then denote the starting day of delivery. For instance, when modelling
monthly futures, T would represent the first day of the delivery month and F (t, T) the forward price of
a monthly future with delivery over the month beginning at date T .

We are free to choose the number n of Brownian motions to our liking. The optimal choice of n in
order to capture the dynamics of electricity forwards has been a subject of multiple studies based on
the principal component analysis (PCA). The analyses by Frestad et al. [10, 11, 12] and Koekebakker
et al. [13] suggest that the electricity forward curve is much more volatile than any other market. In
[13], the authors use a modelling approach close to the standard HJM, PCA is performed on NordPool
electricity data (September 1995 - March 2001). The results suggest that more than seven factors are
needed in order to get capture more than 90% of the variance, which is much higher compared to other
markets. One factor accounts for 68% of the variance, two factors for 75%, three factors for 80% and
four factors for 83%. For the sake of comparison, the PCA done in [10] shows that three factors were
enough to capture over 90% of variance in the copper, crude oil and bond market.

There are a few drivers resulting in the increased complexity of the electricity forward curve compared
to other markets. First of all, electricity forward prices exhibit a strong seasonality pattern. However,
this seasonality does not pose a big modelling issue, since it is caused by the well known seasonality in
consumption. Another argument trying to explain the need for an increased number of factors are the
unrelated dynamics of the short term (e.g. weekly) contracts with the longer maturity contracts (e.g.
yearly). For example, next week’s electricity prices have little to do with the next year’s electricity prices,
and therefore require separate factors. Finally, note that it has been shown that returns of contracts
with even very long maturities may not follow a normal distribution.

Exploiting the relation 3.12 and setting St = F (t, t) for the spot price at time t and applying the Ito

39

formula reveals the following dynamics of the spot price:

dSt
St

=

∂2 lnF (0, T)−
n∑
i=1

 t∫
0

σi(s, t)∂2σi(s, t)ds+

t∫
0

∂2σi(s, t)dW
i
s

 dt+

n∑
i=1

σi(t, t)dW
i
t . (3.16)

Proof. We quickly outline the steps that lead to the (3.16).

Let

Xt =

∫ t

0

σ(s, t)dWs

St = g(t,Xt) = exp

[
ln f(0, t)− 1

2

∫ t

0

σ2(s, t)ds+Xt

]
.

Thus

dS = ∂1g · dt+ ∂2g · dX +
1

2
∂2

2g · 〈dXt, dXt〉 .

Moreover,

∂1g = g ×
[
∂2 ln f(0, t)−

∫ t

0

σ(s, t)∂2σ(s, t)dt− 1

2
σ2(t, t)

]
It holds that ∂2g = ∂2

2 = g. And, one has

dXt =

[∫ t

0

∂2σ(s, t)dWs

]
dt+ σ(t, t)dWt

and

〈dXt, dXt〉 = σ2(t, t)dt.

Thus, the term 1
2gσ

2(t, t) from ∂1g cancels out with the term + 1
2gσ

2(t, t) coming from 1
2∂

2
2g · 〈dXt, dXt〉.

3.3.1 Single-factor model

The simplest example of a HJM-style model is the single factor model with σ(t, T) = σ0e
−a(T−t). By

using the fact that:

t∫
0

σ(s, t)dWs = lnF (t, t)− lnF (t, 0) +
1

2

t∫
0

σ2(s, t)ds (3.17)

in combination with (3.16) we can see that this particular choice of the volatility function results in a
mean-reverting dynamic of the spot price:

dSt
St

= (µ(t)− a ln(St)) dt+ σ0dWt, (3.18)

with

µ(t) = ∂2 lnF (0, t) + a ln f(0, t) +
σ2

0

4
(1− e−2at). (3.19)

Note that, in case we wish to preserve the Markov property of the spot price, not all volatility functions
are admissible. In particular, if we assume that the volatility is only dependent of the time to maturity
T − t, the only possible volatility functions preserving the Markov property are of the form σ0e

−a(T−t)

with σ0 and a constant. These are also the most commonly used in literature and in practice. Without
the Markov property, computation of price derivatives becomes significantly more complicated since the
whole past of the Brownian motions has to be remembered.

40

3.3.2 Modeling multiple granularities

If we wish to simultaneously model forward prices for any delivery period [T1, T2], we can specify the
dynamics of F (t, T1, T2) by:

dF (t, T1, T2) = Σ(t, T1, T2)F (t, T1, T2)dWt. (3.20)

A slight variation on the HJM approach that allows for simultaneous modelling of forwards with different
lengths of the delivery period starts with the introduction of the unobserved instantaneous forward rate,
that is, the price at time t for delivery at the instant T , denoted by f(t, T). Then the (observable)
price of a futures contract F (t, T1, T2) at time t involving the delivery continuously between T1 and T2

equals:

F (t, T1, T2) =
1

T2 − T1

T2∫
T1

f(t, s)ds. (3.21)

Now, the idea is to model the non-observable instantaneous delivery forward price f(t, T), analogously
to the instantaneous forward rate in the HJM framework [7], whereas the initial conditions are given by
f(0, T):

df(t, T) = σf (t, T)dWt. (3.22)

However, in both approaches the choice of the volatility function is limited if we wish to preserve the
Markov property of the spot. This is studied in [14]. The authors show that, for (3.20), the only
suitable volatility functions depend only on time t, Σ(t, T1, T2) = Σ(t). Consequently, the only log-
normal volatility structure for the quoted forward contracts that satisfies the no-arbitrage condition that
all overlapping contracts must satisfy is Black’s model. On the other hand, for (3.22), the authors show
that the volatility functions has to be independent of the maturity T , σ(t, T) = σ(t), amongst which is
the most popular choice is constant volatility, once again resulting in Black’s model.

In essence, one is faced with the choice between the realism of the volatility term structure and the
relation with the spot price.

3.3.3 Two-factor model

In [15], Kiesel at al. develop an HJM two-factor model that is often used in practice. The authors model
the price of the monthly futures F (t, T), where t is the current date and T is starting date of the delivery
period (first day of the month). They focus on monthly contracts and treat all other contracts as a
portfolio of monthly contracts. The forward prices are then modelled directly under the risk-neutral
measure, and the initial conditions are given by the observed forward curve. For the sake of simplicity,
they use the matching moments approximation to approximate the density of the yearly contract by a
log-normal distribution. Finally, the following two-factor model gets calibrated:

dF (t, T) = e−κ(T−t)σ1F (t, T)dW 1
t + σ2F (t, T)dW 2

t , (3.23)

where W 1, W 2 are uncorrelated Brownian mottions. The variance for a given month then equals:

Var [lnF (t, T)] =
σ1

2κ

(
e−2κ(T−t) − e−2κT

)
+ σ2

2t. (3.24)

The parameters of the model are then estimated by finding a least squares fit to the observed at-the
money (ATM) option prices.

41

3.3.4 Joint modelling

Electricity markets exhibit significant correlation with other fuel markets. Therefore, it is natural to
consider a joint model of electricity forward prices and fuel prices. For example, a basic joint coal-power
model of this kind takes the following form:

dF e

F e
(t, T) = σe(t, T)dW e

t (3.25)

dF c

F c
(t, T) = σc(t, T)dW c

t (3.26)

where F e(t, T), F c(t, T) are forward prices of power and coal. The dependence is then introduced by
correlating the Brownian motions W e and W c.

However, since it is highly unlikely for a shock in the electricity price to transfer to the forward prices
of coal (it is usually the other way around), the symmetric model is a little unrealistic. To alleviate this
problem, models relying on co-integration of variables have been developed, that attempt to capture the
phenomenon of the levels of prices of different commodities moving together. More on this topic can be
found in [16, 17, 18].

3.3.5 Conclusion

The main advantage of HJM-style forward models is their tractability and the fact that many results
carry over from interest rate theory. Furthermore, options prices, for vanilla and other instruments,
admit closed form solutions and can be computed analytically, which is very efficient. We’ve also seen
that cross-market correlations can also be introduced in relatively simple way, although not without
its drawbacks. However, HJM-style models model the forward price as a continuous process with log-
normal returns, which is unrealistic. The log-normality assumption also results in the inability to fit
the observed volatility curve. Also worth noting is that the HJM approach usually remains within the
complete market setting.

3.4 Spot models

An ideal spot model captures the dynamic of the spot price while simultaneously preserving the Markov
property of the spot which simplifies the calculation of the forward curve as an expectation of the spot
under a suitable risk-neutral measure, according to (3.12). In this section we present a few spot-models
and how they fare in representing the true behaviour of spot and forward prices.

3.4.1 Mean-reverting diffusion model

The one-factor model by Lucia and Schwartz, presented in [19], models the logarithm of the daily average
spot price Pt under the physical measure P as:

lnPt = f(t) + Yt, (3.27)

by decomposing it into a deterministic function representing the seasonal part and a stochastic process
Yt with the following dynamics:

dYt = −κYtdt+ σdW P
t and Y0 = y0, (3.28)

where W P is a standard Brownian motion under P. So, Yt is a mean-reverting stochastic process with a
null long-run mean, constant reverting speed κ and starting value y0. The distribution of Pt under P is

42

well known to be normal with the following parameters:

EP [Pt] = exp

(
f(t) + (lnP0 − f(0))e−κt +

σ2

4κ
(1− e−2κt)

)
, (3.29)

VarP [Pt] = EP [Pt]
2

[
exp

(
σ2

2κ
(1− e−2κt)

)
− 1

]
. (3.30)

Moreover, in order to establish a relation between the spot and forward prices, the authors assume that
there is a unique risk-neutral measure Q under which the property (3.12) holds, i.e. we can express the
futures price as the expectation of the spot:

F (t, T) = EQ [PT | Ft] . (3.31)

They further assume that the mean-reverting dynamics of Y are preserved under the risk-neutral measure
Q, and the difference is captured by the difference in the long-run mean:

dYt = κ(α∗ − Yt)dt+ σdWQ
t with α∗ = −λσ

κ
. (3.32)

The constant λ is known as the market price of risk.

In this setting, the price F (0, T) of the future quoted at time 0 for delivery at the time T admits an
analytical solution:

F (t, T) = exp

(
f(T) + e−κ(T−t)(lnPt − f(t)) + α∗(1− e−κ(T−t)) +

σ2

4κ
(1− e−2κ(T−t))

)
. (3.33)

Relying on these result the authors estimate and calibrate the model. The deterministic component of
the spot, f(t), is modelled as:

f(t) = a+ bDt + c cos

(
(t+ τ)

2π

365

)
,

with Dt =

{
1, if t is a holiday or a weekend,

0, else.

(3.34)

The estimation of the parameters κ, σ, a, b, c, τ is performed in a single non-linear least squares procedure.
The authors perform an estimation of the model on the NordPool data ranging from January 1993 to
December 1999 (seven years of daily data). This estimation leads to a significant non-zero mean-reversion
coefficient κ = 0.016 × 365 = 5.84 per year with a time step equal to one day ∆t = 1

365 , and volatility
σ = 1.64. The absolute percentage error, that measures the goodness of fit, is lower than 1%. However,
although the model estimation matches the observations, the dynamic of simulated prices, illustrated
in fig. 3.1 lacks the spicky behaviour of the observed NordPool daily spot price, depicted in fig. 2.6.

43

0 100 200 300 400

100

200

300

400

500

Days

S
po

t p
ric

e

Figure 3.1: Sample daily spot path using Lucia and Schwartz’s model. Realistic parameters according
to the original paper were used: κ = 5.84, σ = 1.64, a = 4.86, b = −0.09, c = 0.306, τ = 0.836.

Therefore, the calibration is performed using the observed forward prices instead. The theoretical forward
price of a contract with delivery period [T1, T2] is calculated by:

F (0, T1, T2) =
1

T2 − T1

∑
T1≤T≤T2

F (0, T). (3.35)

The authors perform the calibration on the observed forward prices over a year (NordPool data, end 1998
to end 1999). Using the above model with an out-of-sample parameter estimation and a null market
price of risk (λ = 0), the authors arrive at a root mean square error (RMSE) over all of the sample
contracts of around 9%, which is equivalent to about 11 NOK. So, the model does not allow for a perfect
fit of the forward curve, possibly due to an insufficient number of factors.

The mean-reverting dynamic of the spot results in a dampening effect of the current-time dependent fac-
tors in the forward price dynamic, so that the prices of forwards (3.33) with long time to maturity quickly
converge towards the deterministic seasonal component of the forward price, as visible in fig. 3.2.

44

Figure 3.2: Simulation of the forward curve using Lucia and Schwartz”s model and same parameters as
in fig. 3.1.

In conclusion, although it is possible to achieve a good fit of the historical spot prices using the model by
Lucia and Schwartz [19], this model is limited in its ability to capture real price dynamics. The simulated
spot prices lack some of the features of the observed spot, such as spikes. A perfect fit of the observed
forward curve is also not achievable. This is partially due to the assumption of the constant price of
risk, which can be improved with introduction of a seasonal market price. Finally, A one-factor model
is simply not enough to efficiently model the forward curve, as already noted in section 3.3.

3.4.2 Mean-reverting jump-diffusion model

One of the simplest ways to improve the spot price dynamic of the previous model described in 3.4.1 is
through addition of a jump component. In this subsection will discuss the model presented by Cartea
and Figureoa in [20] that follows this approach.

The log spot price St dynamic under the physical measure is modelled as:

lnSt = g(t) + Yt (3.36)

where g(t) ∈ C1 is a deterministic differentiable function modelling the seasonality of the log-price, and
Yt a stochastic process with the following dynamic:

dYt = −αYt dt+ σ(t) dWt + J · dqt (3.37)

Here, α is the mean-reversion coefficient, σ(t) the time dependent volatility, qt a Poisson process
with intensity l and J a random variable representing the size of the random jumps with ln(J) ∼
N (µJ , σ

2
J).

The dynamic of the spot price under the physical measure P is then given by:

dSt = α(ρ(t)− ln St)St dt+ σ(t)St dWt + St(J − 1) dqt (3.38)

45

with ρ(t) equal to:

ρ(t) =
1

α

(
g′(t) +

1

2
σ2(t)

)
+ g(t). (3.39)

The new jump-related term St(J−1)dqt in (3.38) comes from the fact that after a price jump, St− jumps
to JSt−, which makes ∆St = (J − 1)St−. Arguing that jumps should not lead to an extra return, the
authors further assume that the expectation of J is equal to 1, i.e. E [J] = 1, so the additional constraint

µJ = −σ
2
J

2 follows.

Figure 3.3 illustrates a simulation of the daily average spot price based on this model. The spiky
behaviour is now clearly present due to the jumps and the strong per annum mean reversion value
α = 102, equivalent to a half-life of two days. Although quick, this rate of return to normal price level
is still too slow to capture an price change within an hour.

0 100 200 300 400

100

200

300

400

500

Days

S
po

t p
ric

e

Figure 3.3: Sample daily spot path using Cartea and Figueroa’s model. Realistic parameters according
to the original paper were used: α = 102, σJ = 0.67, l = 8.5, σ = 1.64. For the seasonal part, (3.34) was
used.

Once again, in order to establish relation (3.12) which would enable the calculation of the futures prices,
the authors turn to the assumption of the constant market price of risk λ, analogous to Lucia and
Schwartz in [19]. The log spot dynamic xt = ln(St) under the risk-neutral measure Q is then given
by:

dxt = α (µ∗(t)− xt) dt+ σtdW
Q
t + ln J dqt, (3.40)

46

with µ∗(t) = 1
αg
′(t) + g(t)− λσ(t)

α This setting allows for a closed form analytical solution of the futures
prices. The price of a future at time t for delivery at the instant T is equals:

F (t, T) = G(T)

(
St
G(t)

)e−α(T−t)

D(t, T)J (t, T) (3.41)

where G(t) = eg(t) represents the deterministic seasonal part, D(t, T) is a term coming from the diffusion
part

D(t, T) = exp

(∫ T

t

[
1

2
σ2(s)e−2α(T−s) − λσ(s)e−α(T−s)

]
ds

)
, (3.42)

and J (t, T) is the term coming from the jump part

J (t, T) = exp

(
l

∫ T

t

(ξ(T, s)− 1)ds

)
, (3.43)

where

ξ(T, s) = exp

(
−σ

2
J

2

(
e−α(T−s) − e−2α(T−s)

))
. (3.44)

Let us comment shortly on the forward prices. First of all, a perfect fit of the observed forward curve is
not very likely due to the constant market price of risk. As already mentioned in the previous section, a
possible improvement would include a seasonal market price of risk. Secondly, both the jump frequency
represented by the jump intensity l and the jump size driven by σJ have a negative impact on the
forward price. Since those two parameters are intertwined, estimation of one of them may have an
impact on the estimation of the other, therefore it is hard to assess a change in only one of them. A
blind comparative static leads to a decrease in F (t, T) that causes an increase in l because the term∫ T
t

(ξ(T, s) − 1)ds is negative. Furthermore, a jump of S at time t impacts the whole term structure.
However, this is dampened extremely quickly due to the strong mean-reversion value of α. This same
strong mean-reversion, although useful for erasing jump effects in the price, is also a disadvantage since it
results in a flat dynamic of the futures prices with long maturities, so the forward curve basically equals
the seasonal component. The authors therefore suggest far-lower values of the mean-reversion coefficient
in order to achieve a realistic dynamic of long-term futures.

Figure 3.4: Simulation of the forward curve using Cartea and Figueroa’s model and same parameters as
in fig. 3.3

.

47

3.4.3 Multi-factor models

Although one-factor spot price models that we discussed succeed in reproducing the main features of the
spot price such as seasonality, mean-reversion and spikes, they fail to reproduce the proper dynamic of the
forward curve. We could try to improve the dynamic of those models by introducing volatility functions
that depend not only on time but on the current spot price as well, leading to local volatility spot models.
However, since the changes in the forward curve are, amongst others, driven by the information that has
little to do with the spot price (e.g. planned outages of power plants, prices of fuel futures), it is unlikely
that this would result in an improvement.

To overcome this, multi-factor spot models offer virtually limitless modelling possibilities. However as a
trade-off, by having more than one factor we give up the Markov property of the spot. In this subsection
we present as illustration the toy example discussed in [6].

The author models the spot price St at time t as:

St = Λ(t)eXt+Yt , (3.45)

where Λ(t) is a deterministic function modelling the seasonal component of the price, Xt a mean-reverting
process

dXt = λX(µX −Xt)dt+ σXdWt, (3.46)

and Yt a mean-reverting jump process

dYt = −λY Ytdt+ hdNt. (3.47)

with ln(h) ∼ N(µJ , σJ) and Nt a Poisson process with intensity l.

Having two price components in 3.45 allows for a separation of short term spikes given by Y and the
trend given by X. The different mean-reversion speeds allow a separate quick dampening of the spikes
caused by Y , without affecting the long end of the forward curve. This way, we get both the spikes in
the spot price as well as the fluctuations in the forward curve dynamic due to the diffusion factor, as
illustrated in [6].

Note that this toy example does not discuss the estimation of the different price components, i.e. the
parameters of Xt and Yt. The only observable quantity is the spot price process St whereas the estimation
procedure should reconstruct the two processes Xt and Yt that act as building blocks. The parameter
estimation of a multi-factor spot model usually involves using some sort of filtering methods.

48

0 100 200 300 400

0

50

100

150

200

Days

S
po

t p
ric

e

Figure 3.5: A sample path of the daily spot price using the model (3.45). Spikes are clearly observable.
.

3.5 Conclusion

Spot price models do a decent job at their purpose, that is, reproducing the spot price dynamic. For
this, even single-factor jump models suffice. Generally, models with jumps are superior to continuous
models for electricity spot modelling, due to its spiky nature.

We have seen that in the case of the single-factor mean-reverting model, even if we manage to capture
the (spiky) spot dynamic, we do it at the expense of a flat forward curve due to high values of the mean-
reversion factor. More than one factor is needed in order to reproduce the spot and forward dynamic
correctly, possibly with the presence of jumps in the driving factors. The estimation of these multi-factor
spot models usually involves filtering procedures.

Furthermore, for pricing forwards, one always first has to find a way to establish a relation between
the physical and the risk-neutral measure. This is often done by assuming dynamics of the stochastic
driving factors directly under the risk-neutral measure, adjusted by a market price of risk, which adds an
additional layer of complexity. Spot models also lack the natural ability of forward models to perfectly
fit the observed forward prices. These are all disadvantages making pricing options on forwards more
difficult.

49

3.6 Structural models

We’ve already established that more than one factor is needed in order to properly capture spot and
forward price dynamics. Structural models get their factors from the information available on the electric
system. Large amounts of publicly accessible data are characteristic for electricity markets. For instance,
a quick look at the NordPool website offers the access to: hourly historical consumption per geographic
area, detailed production and planned outages, exchanges, levels of reservoirs and much more.

Structural models focus on the price formulation mechanism and dependencies between the observable
factors. They attempt to deduce the spot price using a mathematical model of an economic equilibrium
with stochastic driving factors. In this section we take a look at two models, the model from Barlow [21]
as an example of a basic structural model, and the model by Cartea and Villaplana [22] as an example
of a more advanced multi-factor structural model.

3.6.1 Barlow’s model as a basic structural model

In the model presented in Barlow [21] the spot price St is determined by the equilibrium between an
increasing supply function ut(x) and a decreasing demand function dt(x). More precisely, the spot price
St at time t verifies

ut(St) = dt(St). (3.48)

The author than assumes a constant supply function ut = g and an inelastic demand dt(x) = Dt, where
Dt denotes a stochastic process modelling representing the current electricity consumption. The spot
price is then given by St = g−1(Dt). He further uses a basic non-linear form for g(x) = a0 − b0xα with
α < 0. If the demand exceeds the maximum capacity a0, the spot price gets capped at A0. Therefore,
the spot price equals:

St =

(
a0−Dt
b0

) 1
α

Dt ≤ a0 − ε0b0
ε

1
α
0 Dt ≥ a0 − ε0b0

(3.49)

where ε0 is determined by the level of the price cap A0 = ε
1
α
0 .

Note that the inverse demand function can be rewritten as g−1(Dt) ≈ C
a0−Dt by considering that α ≈ 1

(check the paper [21]). From this form it follows that the price is inversely proportional to a quantity that
can be interpreted as a residual capacity if a0 is the maximum available capacity in the system.

The author then uses an Ornstein-Uhlenbeck process to model the demand Dt:

dDt = −λ(Dt − a1)dt+ σ1dWt, (3.50)

which is the only source of randomness in the model.

After a row of transformation and algebraic simplifications the author expresses the spot price in the
following form:

St =

{
(1 + αXt)

1
α 1 + αXt ≤ ε0

ε
1
α
0 1 + αXt ≥ ε0

(3.51)

where ε
1
α
0 = A0 and Xt is another Ornstein-Uhlenbeck process

dXt = −λ(Xt − a)dt+ σdWt. (3.52)

The parameters λ, α, a, σ then have to be estimated based on market data.

Figure 3.6 shows a sample path of the model. What instantly catches the eye is the striking spiky
behaviour of the price, in spite of the continuity of the single driving stochastic process.

50

However, there are still problems left in this model. As pointed out in the litearure [23], the estimation
leads to a negative value of α = −1.08, which makes the supply curve a steep function near the breaking
point given by a0− ε0b0. Because of this, the model hits the price cap fairly often. When a spike occurs,
it is more likely to reach the cap. Improvements of the model were suggested in [24, 25], by addressing
the shape of the supply curve.

Finally, this model, Xt being the only stochastic driver, is still just a one-factor model and therefore
limited in its ability to capture real price dynamics effectively. We can easily predict that the forward
curve would suffer from the typical drawbacks discussed earlier. This is confirmed by the forward curve
analysis done in Aid [6], the result is expectedly flat.

0 100 200 300 400

0

200

400

600

800

1000

Days

S
po

t p
ric

e

Figure 3.6: A sample daily spot path using Barlow’s model. Realistic parameters according to the
original paper were used: α = −1.08, λ = 172, a = 0.91, σ = 0.12. The price is capped at 1000.

3.6.2 Cartea and Villaplana’s two factor structural model

A more advanced multi-factor structural model is presented in Cartea and Villaplana [22]. In this model,
an equilibrium function φ defines the spot price Pt at time t:

Pt = φ(Dt, Ct), (3.53)

where Dt are Ct stochastic processes modelling the electricity demand and the available capacity, respec-
tively. The equilibrium function φ is increasing in the demand argument and decreasing in the capacity
argument.

51

The authors model the demand and capacity dynamics are using a deterministic seasonal component
and an Ornstein-Uhlenbeck process for the noise component under the physical measure P:

Dt = gDt +XD
t dXD

t = −κDXD
t dt+ σDt dW

P,D
t (3.54)

Ct = gCt +XC
t dXC

t = −κCXC
t Ct+ σCt dW

P,C
t (3.55)

where W P,D
t and W P,C

t are independent standard P-Brownian motions.

The authors choose the function φ to be of the form:

φ(Dt, Ct) = β exp(γCt + αDt) = Pt, (3.56)

with α, β > 0 but γ < 0.

0 100 200 300 400

40

45

50

Days

S
po

t p
ric

e

Figure 3.7: A sample path of the daily spot price using Cartea and Villaplana’s model. Realistic
parameters according to the original paper were used: κD = 0.33, σD = 1580, κC = 0.37, σC = 2056, gDt =

3.5 · 104 + 103 cos
(

2π(t+7)
364

)
, gCt = 3.7 · 104 + 103 cos

(
2π(t+7)

364

)
.

In order to compute prices of futures contracts using relation (3.12), it is necessary to know the dynamics
of spot price under the risk-neutral measure Q. The authors incorporate the transition to the risk-neutral
dynamic of XD

t and XC
t through the introduction of two time-dependent market prices of risk φD(t) and

φC(t) for each unhedgeable factor D and C. The dynamics of XD
t and XC

t under Q then verify:

dXD
t = −κD(XD

t + θD(t))dt+ σD(t)dWQ,D
t , (3.57)

dXC
t = −κC(XC

t + θC(t))dt+ σC(t)dWQ,C
t , (3.58)

52

with

θD(t) =
σD(t)φD(t)

κD
, θC(t) =

σC(t)φC(t)

κC
.

Here WQ,D
t and WQ,C

t are independent standard Q-Brownian motions. This setting allows for analytical
computation of the conditional expectations of the spot price EQ [PT | Ft] = F (t, T), i.e. the futures
price:

F (t, T) = β exp

[
γgC(t) + αgD(t)+

+ γ

e−κC(T−t)XC
t + κC

T∫
t

e−κ
C(T−s)θC(s)ds+

1

2

T∫
t

e−2κC(T−s)σ2
C(s)ds

+ α

e−κD(T−t)XD
t + κD

T∫
t

e−κ
D(T−s)θD(s)ds+

1

2

T∫
t

e−2κD(T−s)σ2
D(s)ds

].
(3.59)

Figures 3.7 and 3.8 illustrate the performance of this model. This time, due to the smoothness properties
of the equilibrium function, there are no spikes present in the spot price. However, the forward curve
dynamic does exhibit a floating behaviour for longer maturities.

Figure 3.8: Simulation of the forward curve using Cartea and Villaplana’s model and same parameters
as in fig. 3.7

.

3.6.3 Conclusion

Structural models are still considered to be in their prime. The idea of modelling the economical equi-
librium between the production cost curve and electricity demand leads to a very interesting class of
models.

One-factor structural models suffer from same problems as one-factor models due to the insufficient
number of factors: correct reproduction of both spot and forward dynamics. A statistical explanation of
this phenomenon is partially offered by PCAs performed on electricity data. However, in case Barlow’s

53

model described in section 3.6.1, we are also able to offer a structural explanation: the assumption of
constant demand is unrealistic. Another interesting result is the ability of Barlow’s model to obtain
spikes in spite of the continuity of the only underlying stochastic driver. On the other hand, multi-factor
structural models are a powerful tools capable of reproducing both spot and forward behaviour fairly
well. Forward pricing again requires an assumption on the relationship between the physical and the
risk-neutral measure.

The main advantage of structural models is their ability to capture information and dependencies that
spot and forward models may simply be oblivious of, in their hope of modelling it implicitly through one
of their parameters.

3.7 Limitations of Brownian motion driven financial modelling

Since the beginning of mathematical finance, when Louis Bachelier attempted to model the prices of
assets at the Paris Bourse in [26], Brownian motion has played a central role in financial modelling. It is
the most studied and best understood stochastic processes in mathematics. Brownian motion was also
the main stochastic driver in the Black-Scholes model that revolutionized option trading. It is also the
building block of more general diffusion models. In this section, we take the opportunity to point out
some disadvantages of pricing models that are driven solely by Brownian motions. We then argue how
all of these disadvantages are easily addressed by using simple jump processes instead.

Two important properties of Brownian motion are its continuity and scale invariance, i.e., the sample
paths of Brownian motion are continuous functions of time and the statistical properties of Brownian
motion are the same at all time resolutions. In contrast, prices in financial markets often involve jumps
(or even spikes in case of electricity) and exhibit significantly different behaviour across time scales (again
especially true for electricity).

Geometric Brownian motion, given by

dXt

Xt
= σ dWt +

(
µ+

σ2

2

)
dt, (3.60)

and used in the Black-Scholes framework is not the only continuous time model built on Brownian
motion.

Local volatility models proposed by Dupire, Derman and Kani are non-linear Markov diffusions where
instantaneous volatility is dependent on both time and price:

dXt

Xt
= σ(t,Xt) dWt + µdt. (3.61)

Stochastic volatility models model the price Xt as a component of a bivariate diffusion (Xt, σt) driven
by a two-dimensional Brownian motion (W 1

t ,W
2
t).

dXt

Xt
= σt dW

1
t + µdt

σt = f(Yt) dYt = αt dt+ γt dW
2
t .

(3.62)

These models have much more flexible statistical properties, but still share with Brownian motion the
continuity property.

It is a well known empirical fact that log returns of financial time series (especially electricity) follow a
heavy-tailed distribution. This is mainly due to presence of jumps in the price. Although it is impossible
to capture this behaviour with a geometric Brownian motion, local volatility and stochastic volatility
models are perfectly capable of reproducing heavy tails. However, in case of local volatility models, heavy
tails are obtained at the price of highly varying (nonstationary) diffusion coefficients, whereas in the case
of diffusion-based stochastic volatility models, unrealistically high values of “volatility of volatility” are
needed.

54

Further issues with diffusion models arise in an attempt to fit the model to the observed market option
prices, or rather their implied volatilities. Geometric Brownian motion’s inability to do so was one of
the main drivers in development of more general diffusion models.

Local volatility models, on the other hand, are able to fit practically any cross section of prices. How-
ever, they give rise to non-intuitive profiles of local volatility which, to this day, have not received an
interpretation in terms of market dynamics. So, although local volatility models manage to provide a
solution to the “calibration” problem, they fail to explain the structure of the volatility surface.

Diffusion-based stochastic volatility models are able to reproduce the implied volatility curve for a given
maturity fairly well. But, they do not perform as well across different maturities, that is, they cannot
yield a realistic term-structure of implied volatilities. Furthermore, in order to reproduce a skew in
the volatility curve, a negative correlation between movements in price and movements in volatility is
required. The is sometimes attributed to the so-called “leverage” effect, but that explanation is not
exactly structural either.

A final piece of evidence highlighting the shortcomings discussed above comes from the short-term option
market. The very existence of a market for short-term options proves that the market participants
acknowledge the presence of jumps in the price. How else could the price move 10% up or down in
a matter of days? Moreover, short-term options are traded at significant prices and may exhibit a
significant skew. This feature is unattainable in diffusion-based stochastic volatility models, one would
require ridiculously high values of “volatility of volatility”. Local volatility models are able reproduce
this behaviour, but only with a very high variability in the local volatility surface, which is difficult to
use and interpret.

Regarding hedging, one-dimensional diffusion models (local volatility models) give rise to complete mar-
kets, whereas in diffusion-based stochastic models completeness can restored by adding a single option
to the set of the available hedging instruments.

On the contrary, simple jump processes such as Lévy processes generically lead to highly variable returns
with realistic tail behaviour without the need for extreme parameter values or introduction of additional
unobservable random factors. They are also able to reproduce and explain a variety of volatility curve
patterns. For instance, fear of negative jumps leads to a negative skew, fear of positive jumps to a
positive skew, and fear of symmetric jumps to a smile in the volatility curve. Short-term option prices
are fitted just as well, since jumps are an integral part of the model. The strongest argument for using
discontinuous models is not a statistical one: it is the presence of jumps in the price! This qualitative
difference has a huge positive impact. The continuity property simply neglects abrupt market movements
and one has to think of various “workarounds” in order to make it work (e.g., high values of “volatility
of volatility”). In case of jump models, the above addressed properties are generic to the model.

55

Chapter 4

COS pricing method

In this chapter we present the cosine-series expansion method that we use for efficient option pricing
within our model. The method was originally developed by Fang and Oosterlee in [1].

The starting point for pricing European options using numerical integration techniques is the risk-neutral
valuation formula:

v(x, t) = e−rτEQ [v(y, T) | x] = e−rτ
∫
R

v(y, T)f(y | x)dy, (4.1)

where v denotes the option price, t0 the initial date, T the maturity, τ = T − t0 the time to maturity
and x the underlying price at time t0.

For a random variable X, its density f and its characteristic function φ are Fourier transforms of each
other:

φ(ω) =

∫
R

eixωf(x)dx, (4.2)

f(x) =
1

2π

∫
R

e−iωxφ(ω)dω. (4.3)

4.1 Inverse Fourier Integral via Cosine Expansion

To start with, we look at a different method of solving the inverse Fourier integral in (4.3). Instead of
reconstructing the integrand using its Fourier-cosine expansion, we approach the problem differently by
reconstructing the whole integral from its Fourier-cosine expansion. For functions with finite support, it
is known that the cosine series expansion usually results in an optimal approximation [27].

The cosine expansion of a function f supported on [0, π] equals to:

f(θ) =

∞∑′

k=0

Ak · cos(kθ) with Ak =
2

π

π∫
0

f(θ)cos(kθ)dθ,

where
∑′

stands for a sum with the first term weighted by 1
2 . For a function with finite support on any

other interval [a, b] ∈ R, one can use a simple transformation of variables to bring it in above form:

θ :=
x− a
b− a

π, x :=
b− a
π

θ + a.

56

The Fourier-cosine expansion of a function f supported on an arbitrary interval [a, b] ∈ R then equals:

f(x) =

∞∑′

k=0

Ak · cos

(
kπ
x− a
b− a

)
, (4.4)

with

Ak =
2

b− a

b∫
a

f(x) cos

(
kπ
x− a
b− a

)
dx. (4.5)

Any R-valued finitely supported functions admits a cosine expansion. We start our derivation by trun-
cating the infinite range of integration in (4.3), making the function finitely supported. This truncation
of the integration range does not lead to a large loss of accuracy, since in order for the Fourier transform
to exist, the integrands in (4.3) have to decay to zero at ±∞.

Suppose [a, b] ⊂ R is such that the truncated integral approximates its infinite counterpart very well:

φ1(ω) :=

b∫
a

eiωxf(x)dx ≈
∫
R

eiωxf(x)dx = φ(ω). (4.6)

Note that, throughout the derivation, subsequent numerical approximations are denoted by a subscript,
like i in φi. This is not to be confused with the subscripted series coefficients, e.g., Ak and Fk.

Comparing the definition of φ1 in (4.6) with the cosine series coefficients of f(x) on [a, b] in (4.5) we
establish the relation:

Ak =
2

b− a
Re

[
φ1

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)]
. (4.7)

It follows that Ak ≈ Fk for an Fk defined as

Fk =
2

b− a
Re

[
φ

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)]
.

Replacing Ak by Fk in the cosine series expansion of f(x) on [a, b] yields an infinite series

f1(x) =

∞∑′

k=0

Fk cos

(
kπ
x− a
b− a

)
, (4.8)

which we truncate to the first N summands and arrive at the final approximation of f on [a, b]

f2(x) =

N−1∑′

k=0

Fk cos

(
kπ
x− a
b− a

)
. (4.9)

The resulting error in f2(x) is composed of two parts: an error from approximating Ak by Fk and a
series truncation error in the step from (4.8) to (4.9).

Note that because the cosine series expansion of entire functions (functions without any singularities
anywhere in the complex plane except at ∞) converges exponentially, we can expect highly accurate
approximations of functions that have no singularities on [a, b], with a small N .

4.2 Pricing European options

We now study the COS formula for pricing European-style options whose value is given by (4.1). We
derive the approximation in three steps: v1, v2 and v3 will denote the subsequent approximations.

57

In the first step, we truncate the infinite integration range of (4.1) to [a, b] ⊂ R. Since the density
function rapidly decays to zero with y → ±∞ in (4.1), the truncation does not lead to a significant loss
in accuracy.

v1(x, t0) := e−rτ
b∫
a

v(y, T)f(y | x)dy (4.10)

In the second step, since the density function f(y | x) is rarely known in contrast to the characteristic
function, we replace the density in (4.10) by its cosine series expansion in y

f(y | x) =

∞∑′

k=0

Ak(x) cos

(
kπ
y − a
b− a

)
,

with

Ak(x) =
2

b− a

b∫
a

f(y | x) cos

(
kπ
y − a
b− a

)
dy,

Then v1 has the following representation:

v1(x, t0) = e−rτ
b∫
a

v(y, T)

∞∑′

k=0

Ak(x) cos

(
kπ
y − a
b− a

)
dy. (4.11)

Interchanging the summation and integration in (4.11) and introducing the definition

Vk :=
2

b− a

b∫
a

v(y, T) cos

(
kπ
y − a
b− a

)
dy, (4.12)

gives us

v1(x, t0) =
1

2
(b− a)e−rτ ·

∞∑′

k=0

Ak(x)Vk.

Here Vk are the cosine series coefficients of v(y, T) in y. Hence, the product of two real functions, f(y | x)
and v(y, T) has been transformed to a product of their Fourier-cosine series coefficients.

Since these coefficients decay rapidly, we further truncate the series and arrive at the approximation
v2:

v2(x, t0) =
1

2
(b− a)e−rτ ·

N−1∑′

k=0

Ak(x)Vk.

As in previous section, we approximate Ak(x) by Fk(x) and obtain:

v(x, t0) ≈ v3(x, t0) = e−rτ
N−1∑′

k=0

Re

[
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

]
Vk (4.13)

which is known as the COS formula for a general underlying process. In the next section we will show
that Vk can be obtained analytically for plain vanilla options and that (4.13) can be simplified for certain
forms of the characteristic function φ.

58

4.3 Coefficients Vk for plain vanilla options

In order to use the COS formula (4.13) for pricing options, one first has to recover the payoff series
coefficients Vk. In this section we derive Vk for plain vanilla calls and puts.

Assume that the characteristic function of the log-asset price is known and represent the payoff as a
function of the log-asset price. The log-asset prices are denoted by:

x := ln

(
S0

K

)
and y := ln

(
ST
K

)
where St is the price of the underlying at time t and K the strike price.

The payoff of a European vanilla option, in log-asset price, equals:

v(y, T) = [α ·K(ey − 1)]
+

with α =

{
+1 for a call,

−1 for a put.

In order to derive Vk for vanilla call and put options, we need two mathematical results.

The Fourier-cosine series coefficients χk of g(y) = ey on [c, d] ⊂ [a, b], and the cosine series coefficients
ψk of g(y) = 1 on [c, d] ⊂ [a, b], are known analytically and given by:

χk(c, d) =

d∫
c

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
cos

(
kπ
d− a
b− a

)
ed − kπ

b− a
cos

(
kπ
c− a
b− a

)
ec
]
,

(4.14)

ψk(c, d) =

d∫
c

cos

(
kπ
y − a
b− a

)
dy

=

{[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ k 6= 0,

(d− c) k = 0.

(4.15)

Now, for a vanilla call option we get:

V callk =
2

b− a

b∫
a

K(ey − 1)+ cos

(
kπ
y − a
b− a

)
dy (4.16)

=
2

b− a

b∫
0

K(ey − 1)s cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K(χk(0, b)− ψk(0, b)), (4.17)

with χk and ψk given by (4.14) and (4.15), respectively. Similarly, for a vanilla put, we obtain:

V putk =
2

b− a
K (−χk(a, 0) + ψk(a, 0)) . (4.18)

4.4 Simplified formula

Formula (4.13) can be greatly simplified for models whose characteristic function admits the following
decomposition:

φ(ω;x) = ϕ · eiωx with ϕ := φ(ω, 0).

59

For instance, this holds for additive processes, Lévy processes and the Heston model. This property
enables many option prices for different strikes to be computed simultaneously. Note that boldfaced
values represent vectors.

The pricing formula from (4.13) now simplifies to:

v(x, t0) ≈ e−rτ
N−1∑′

k=0

Re

[
ϕ

(
kπ

b− a

)
eikπ

x−a
b−a

]
Vk

The coefficients of vanilla options Vk in (4.16) and (4.18) can now be represented as a vector multiplied
by a scalar:

Vk = UkK

with

Uk =

{
2
b−a (χk(0, b)− ψk(0, b)) for a call,

2
b−a (−χk(0, b) + ψk(0, b)) for a put.

Finally, the simplified pricing formula equals:

v(x, t0) ≈Ke−rτ Re

N−1∑′

k=0

ϕ

(
kπ

b− a

)
Uk · eikπ

x−a
b−a

 , (4.19)

where the sum can be written as a matrix-vector product if K and x are vectors.

4.5 Error analysis

The overall error in the derivation of the COS formula consists of three parts:

1. The truncation of the integration range in the risk-neutral valuation formula (4.1):

ε1 = v(x, t0)− v1(x, t0) =

∫
R\[a,b]

v(y, T)f(y | x)dy (4.20)

2. The substition of the density f(x) by its Fourier-cosine series expansion on the truncated range:

ε2 = v1(x, t0)− v2(x, t0) =
1

2
(b− a)e−rτ

∞∑
k=N

Ak(x) · Vk (4.21)

3. The substitution of the Fourier-cosine series coefficients by the approximation relying on the char-
acteristic function:

ε3 = v2(x, t0)− v3(x, t0) (4.22)

= e−rτ
N−1∑′

k=0

Re

 ∫
R\[a,b]

eikπ
y−a
b−a f(y | x)dy

Vk (4.23)

Since the coefficients Vk of vanilla options are known Vk are known analytically, we do not need to
account for any error in the coefficients Vk.

The decay rate of the Fourier-cosine series coefficients is the key to finding an upper bound of the errors.
The convergence rate of the Fourier-cosine series is dependent on the properties of the function on the
expansion interval. The authors then use the following mathematical definitions and results to obtain
an upper bound for the error.

60

Definition 4.1 (Algebraic index of convergence). The algebraic index of convergence n ≥ 0 is the largest
number for which

lim
k→∞

|Ak| kn <∞, k >> 1,

where Ak are the coefficients of the series. An alternative definition is that if the coefficients Ak of a
series decay asymptotically as

Ak ∼ O(
1

kn
), k >> 1,

then n is the algebraic index of convergence.

Definition 4.2 (Exponential index of convergence). In case when the algebraic index of convergence
n ≥ 0 is unbounded, meaning the Ak decrease faster than 1

kn for any finite n, the series is said to exhibit
exponential convergence.

Alternatively, if for some constant γ, called the asymptotic rate of convergence, and some r > 0, called
the index of convergence,

Ak ∼ O(exp(−γkr)), k >> 1,

then the series shows exponential convergence. For r < 1, the convergence is called subgeometric. For
r = 1, the convergence is either called supergeometric (for some j > 0) with

Ak ∼ O(k−n exp(−k
j

ln(k))).

or geometric with

Ak ∼ O(k−n exp(−γk)). (4.24)

Result 4.3 (Convergence of Fourier-cosine series [27] p.70-71). If g(x) ∈ C∞([a, b] ⊂ R), then its Fourier-
cosine series expansion on [a, b] has geometric convergence. The constant γ in (4.24) is determined by
the location in the complex plane of the singularities nearest to the expansion interval. Exponent n is
determined by the type and strength of the singularity.

If a function g(x), or any of its derivatives, is discontinuous, its Fourier-cosine series coefficients show
algebraic convergence. Integration-by-parts show that the algebraic index of convergence n, is at least
as large as n′, with the n′ − th derivative of g(x) integrable.

Result 4.4 (Series truncation of algebraically converging series). It can be shown that the series trun-
cation error of an algebraically converging series behaves like

∞∑
k=N+1

1

kn
∼ 1

(n− 1)Nn−1
. (4.25)

The proof can be found in [28].

We are now able to prove the following.

Result 4.5. Error ε3 given by (4.22) can be bounded by:

|ε3| < |ε1|+Q |ε4| (4.26)

where Q is a constant independent of N from (4.22) and

ε4 :=

∫
R\[a,b]

f(y | x)dy. (4.27)

61

Proof. Assuming f(y | x) is a real function, we can rewrite (4.22) as

ε3 = e−rτ
N−1∑′

k=0

Vk

∫
R\[a,b]

cos

(
kπ
y − a
b− a

)
f(y | x)dy. (4.28)

Interchanging the summation and integration, rewriting

N−1∑′

k=0

as (

∞∑′

k=0

−
∞∑′

k=N

) and replacing the Fourier-

cosine expansion of v(y, T) in y by v(y, T):

ε3 = e−rτ
∫

R\[a,b]

[
v(y, T)−

∞∑
k=N

cos

(
kπ
y − a
b− a

)
· Vk

]
f(y | x)dy (4.29)

= ε1 − e−rτ
∫

R\[a,b]

[
N−1∑
k=0

cos

(
kπ
y − a
b− a

)
· Vk

]
f(y | x)dy. (4.30)

According to results 4.3 and 4.4 the Vk exhibit at least algebraic convergence and therefore admit an
upper bound as follows,∣∣∣∣∣

∞∑
k=N

cos

(
kπ
y − a
b− a

· Vk
)∣∣∣∣∣ ≤

∞∑
k=N

|Vk| ≤
Q∗

(N − 1)n−1
≤ Q∗, for N >> 1, n ≥ 1.

where Q∗ > 0 is a positive constant. Combining this with (4.29) we get:

|ε3| < |ε1|+Q |ε4|

with

Q := e−rτ , and ε4 :=

∫
R\[a,b]

f(x | y)dy.

As it turns out, two of the three error components, ε1 and ε3, are related to the choice of the truncation
range. When the truncation range is sufficiently large, the overall error is dominated by ε2.

It is clear from (4.21) that ε2 depends on both the Fourier-cosine series coefficients of the density, Ak,
and those of the payoff functions, Vk. We now introduce the reasonable assumption that the density
function f is usually smoother than the typical payoff functions in finance and therefore Ak decay faster
than Vk. Accordingly, the product of Ak and Vk converges faster than either Ak or Vk and admits the
following bound: ∣∣∣∣∣

∞∑
k=N

Ak(x) · Vk

∣∣∣∣∣ ≤
∞∑
k=N

|Ak(x)| . (4.31)

Hence, error ε2 is dominated by the series truncation error of the density function.

Result 4.6 (Series truncation error of geometrically converging series [27] p.48). If a series exhibits
geometrical convergence, then the error after truncation of the expansion after (N + 1) terms, ET (N),
equals

ET (N) ∼ P ∗e−Nν . (4.32)

The constant ν > 0 is called the asymptotic rate of convergence of the series, and it satisfies

ν = lim
n→∞

(
− log |ET (n)|

n

)
, (4.33)

and P ∗ is a factor which varies less than exponentially with N .

62

Result 4.7. Error ε2 converges exponentially in the case of density functions g(x) ∈ C∞([a, b]).

|ε2| < exp(−(N − 1)ν) (4.34)

Proof. Simply apply Proposition 4.6 to (4.31).

Result 4.8. Error ε2 for densities having discontinuous derivatives admits the following bound:

|ε2| <
P̄

(N − 1)β−1
, (4.35)

where P̄ is a constant, β ≥ n ≥ 1 and n is the algebraic index of convergence of Vk.

Proof. Given a proper choice of the truncation of the infinite integration range, it follows from (4.20),
(4.26), (4.34) and (4.35) that the overall error converges either exponentially for density functions from
C∞([a, b] ⊂ R), i.e.

|ε| < 2 |ε1|+Q |ε4|+ Pe−(N−1)ν , (4.36)

or algebraically for density functions with a discontinuity in one of its derivatives, i.e.

|ε| < 2 |ε1|+Q |ε4|+
P̄

(N − 1)β−1
. (4.37)

4.6 Choice of the truncation range

The authors in [1] suggest the following truncation interval for maturities ranging from T = 0.1 to
T = 10:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
with L = 10,

where cn denotes the n-th cumulant of ln
(
ST
K

)
. The cumulant c4 captures fat tails and sharp peaks that

are characteristic of densities of many Lévy processes. Note that larger values of L require larger N for
the same level of accuracy.

For extremely short maturities, like T = 0.001, a truncation range taking cumulant c6 into account is
more accurate:

[a, b] :=

[
c1 − L

√
c2 +

√
c4 +

√
c6, c1 + L

√
c2 +

√
c4 +

√
c6

]

However, c6 is usually relatively difficult to derive.

Another important point concerns the numerical stability of call option value calculations. Since the call
payoff grows exponentially with the log-price, this introduces a significant cancellation error for larger
values of L in (4.16). On the other hand, the payoff of a put option is bounded by K and therefore they
do not suffer from this. For pricing call options it is thus recommended to compute the put option value
and apply the well known put-call parity.

vcall(x, t0) = vput(x, t0) + S0 −Ke−rT (4.38)

63

Chapter 5

Parallel computing with CUDA

In this chapter we take the opportunity to briefly describe the CUDA technology and provide the reader
with a crash course in CUDA parallel programming, just enough for them to understand the implemen-
tation of the underlying algorithm that we use for pricing. Sections 5.1 to 5.3 provide an introduction
and cover the difference between serial and parallel computing, some historical developments and the
high-level architectural differences between standard and graphics processors. Then, in section 5.4 we
cover the basic CUDA syntax in order to understand the implementation behind the algorithm described
in section 5.5. Finally, in section 5.6 we explain how parallel computing speeds up pricing in our model,
together with some results. This chapter is based on [29, 30, 31].

5.1 Serial and parallel computing

Traditionally, software has been written for serial computation, where a problem is broken into a discrete
series of instructions, which get executed sequentially one after another on a single processor unit, and
only one instruction may execute at any moment in time.

Parallel computing, on the other hand, makes use of multiple compute resources simultaneously in or-
der to solve a computational problem. A problem gets broken into discrete parts that can be solved
concurrently and independently, each part is then further broken down to a series of instructions that
execute simultaneously on different processors, and an overall control mechanism takes care of coordinat-
ing them. A prerequisite for parallel computing, apart from the obvious requirement for hardware that
enables simultaneous execution of multiple program instructions, is the underlying problem’s aptitude
to being broken down into discrete pieces that can be solved simultaneously. Not all problems can be
decomposed in such a way, but for those that do, it might result in a significant speed up.

In recent years, a lot has been done towards the computing industry’s widespread shift to parallel com-
puting. Pretty much every consumer computer today ships with a multicore central processor. Starting
with the introduction of dual-core, low-end netbook machines to 8- and 16-core workstation computers,
parallel computing is no longer reserved exclusively for exotic supercomputers or mainframes. Moreover,
smartphones and other electronic devices have begun incorporating parallel computing capabilities in an
effort to provide functionality well beyond those of their predecessors. Parallel computing has become
mainstream and offers great potential to those willing to try it.

For many years, one of the key ways of improving performance of processors has been to increase the
speed at which the processor’s clock operated. The first personal computers of the early 1980s, consumer
central processing units (CPUs) ran with internal clocks operating around 1MHz. Fast forward 30-35
years, most desktop processors have clock speeds ranging from 1GHz to 4GHz, nearly a thousand times
faster than the clock of the original personal computer. Although increasing the CPU clock speed is far
from the only method of improving computing performance has been improved, it has always been a
reliable source of performance gains.

64

More recently, because of fundamental and physical limitations in the fabrication of integrated circuits,
arose the need for an alternative to the upward-spiraling clock speeds as a means of extracting increased
computational power.

In recent years, however, consumer CPU manufacturers have been forced to look for alternatives to
this traditional source of increased computational power. Because of various fundamental limitations
in the fabrication of integrated circuits, it is no longer feasible to rely on upward-spiraling processor
clock speeds as a means for extracting additional power from existing architectures. Because of power
and heat restrictions as well as a rapidly approaching physical limit to transistor size, researchers and
manufacturers have begun to look elsewhere. Outside the world of consumer computing, supercomputers
have for decades extracted massive performance gains by relying on the same principles, resulting in an
astronomical performance gain of supercomputers. However, in addition to dramatic improvements
in the performance of a single processor, supercomputer manufacturers have also made great leaps
in performance by steadily increasing the number of processors. It is not uncommon for the fastest
supercomputers to have tens or hundreds of thousands of processor cores working in tandem.

Following this approach, in 2005, faced with an increasingly competitive marketplace and few alternatives,
leading consumer CPU manufacturers began offering processors with two computing cores in place of
one. Over the following years, they followed this development with the release of three-, four-, six-,
and eight-core central processor units. Sometimes referred to as the multicore revolution, this trend has
marked a huge shift in the evolution of the consumer computing market. Today, it is virtually impossible
to buy a desktop CPU containing a single computing core. Even low-end, low-power CPUs ship with
two or more cores. Releases of CPUs with an even larger number of cores have already been announced,
further confirming that parallel computing has arrived for good.

There was a time not so long ago when parallel computing was looked upon as an “exotic” pursuit and
even regarded as a specialty within the computer science field. With the increased presence of multi-core
hardware and parallel computing in recent years, this perception has changed profoundly. The computing
world has shifted to the point where parallel programming and the ability to solve problems using it
have become standard practice. Parallel computing plays a large role in the computing world today and
is only becoming more important as the time goes by.

5.2 The move towards general purpose GPU computing

Compared to the CPU’s traditional data processing pipeline, performing general-purpose computations
on a graphics processing unit (GPU) is a new concept. In fact, the GPU itself is relatively new compared
to the computing field at large. However, the idea of computing on graphics processors is older than it
seems. Let us quickly review the historical development of graphic cards.

In the late 1980s and early 1990s, the popularity of graphically driven operating systems such as Microsoft
Windows helped create the need for a new type of processor, one that would handle the calculations
associated with the graphical elements of the operating system. This resulted in a dramatic revolution of
the state of graphics processing. In the early 1990s, some of the first 2D display accelerators for personal
computers were sold. These display accelerators provided hardware-assisted bitmap operations to assist
in the display and usability of graphical operating systems.

Meanwhile, in the world of professional computing, a company called Silicon Graphics spent the 1980s
popularizing the use of three-dimensional graphics. Initially the focus was on government and defense
applications, scientific and technical visualization, as well as tools for creating grand cinematic effects.
Then in 1992, Silicon Graphics opened the programming interface to its hardware by releasing the
OpenGL library, which was meant to be used as a standardized, platform-independent method for
writing 3D graphics applications. As it is always the case with technology, it was only a matter of time
before OpenGL found its way into consumer applications.

By the mid-1990s, the demand for consumer applications employing 3D graphics had escalated rapidly.
Interestingly enough, one of the main drivers of 3D development were computer games, which accelerated
the adoption od 3D graphics in consumer computing. At the same time, companies such as NVIDIA, ATI

65

Technologies, and 3dfx Interactive began releasing graphics accelerators that were affordable enough to
the average consumer. These developments set a foundation for 3D graphics as an upcoming technology.
With the release of NVIDIA’s GeForce 256, for the first time, transform and lighting computations
could be performed directly on the graphics processor, thereby enabling creation of even more visually
interesting applications. Since transform and lighting were already integral parts of the OpenGL graphics
pipeline, the GeForce 256 marked the beginning of a natural progression where more and more of the
graphics pipeline would be implemented directly on the graphics processor.

Arguably the most important breakthrough in GPU technology from a parallel-computing point of view
is the release of the GeForce 3 series graphics card in 2001. The GeForce 3 series was the first graphics
chip to implement Microsoft’s then-new DirectX 8.0 standard. What was so special about this standard is
the requirement for the hardware to contain both programmable vertex and programmable pixel shading
stages. For the first time in history, developers had some control over the exact computations that would
be performed on their GPUs.

The release of GPUs that possessed programmable pipelines attracted many researchers to the possibil-
ity of using graphics hardware for more than simply OpenGL- or DirectX-based rendering. However,
performing arbitrary calculations on the GPU was an extremely convoluted procedure. Because the only
means of interaction with the GPU were still the standard graphics APIs such as OpenGL and DirectX,
one had to be creative and use a lot of workarounds in order to present a general-purpose computation
as a rendering procedure to the GPU.

Simply put, the GPUs of the early 2000s were designed to produce a color for every pixel on the screen
using programmable arithmetic units known as pixel shaders. A pixel shader uses its (x, y) position on
the screen as well as some additional information to combine various inputs in computing a final color.
The additional information includes input colors, texture coordinates, or other attributes that would be
passed to the shader when it ran. Since the arithmetic performed on the input colors and textures was
completely controlled by the programmer, researchers observed that these input “colors” could actually
represent any data.

By treating the inputs that were actually numerical data as colors, programmers could then program the
pixel shaders to perform arbitrary computations on this data. The results would be handed back to the
GPU as the final pixel “color”, although the colors would simply be the result of whatever computations
the programmer had instructed the GPU to perform on their inputs. This result would then be read
by the programmer, and the GPU would never be the wiser. In essence, the whole procedure was a big
workaround “tricking” the GPU into performing nonrendering tasks by making those tasks appear as if
they were a standard rendering. Although very clever, this approach was also too restrictive in resource
management and complicated to achieve a critical mass of developers. Plus, it meant that anyone
interested in using a GPU to perform general-purpose computations still had to master a graphics
API and special shading languages, either OpenGL or DirectX, and the corresponding workarounds.
Understandably, this was too much of a hurdle for the programming model to gain wide acceptance.
But, it also indicated a demand for general-purpose GPU computing.

In November 2006, NVIDIA unveiled the industry’s first DirectX 10 GPU, the GeForce 8800 GTX, which
marks the beginning of general-purpose GPU computing of today. The GeForce 8800 GTX was the
first GPU to be built with NVIDIA’s Compute Unified Device Architecture (CUDA). This architecture
introduced new components designed strictly for GPU computing and aimed to get rid of limitations of
previous graphics processors concerning general-purpose computation.

In contrast to previous generations of GPUs that partitioned computing resources into vertex and pixel
shaders, the CUDA architecture introduced a unified shader pipeline, which allowed each and every
arithmetic logic unit (ALU) on the chip to be mobilized for performing general-purpose computations.
These ALUs were built to comply with IEEE requirements for single-precision floating-point arithmetic
and were designed to use an instruction set tailored for general computation rather than specifically for
graphics. Moreover, the execution units on the GPU had arbitrary read and write access to memory as
well as access to a software-managed cache known as shared memory. All of these features were added
in order to create a GPU that would excel at computation as well as perform well at traditional graphics
tasks.

66

Along the innovation on the hardware level in form of CUDA, NVIDIA also developed a programming
language for interacting with the new capabilities. The time of complicated workarounds was over.
NVIDIA took industry standard C and added a relatively small number of keywords in order to harness
some of the special features of the CUDA Architecture, giving birth to CUDA C. A public compiler
for this language was released shortly after the GeForce 8800 GTX. And with that, CUDA C became
the first language specifically designed by a GPU company to facilitate general-purpose computing on
GPUs.

5.3 CPU and GPU comparison

The insatiability of the market demand for real-time, high-definition 3D graphics, has driven the evolution
of the programmable graphic processor unit (GPU) into a highly parallel, multithreaded, many core
processor with massive horsepower and very high memory bandwidth.

Figure 5.1: Comparison of the floating-point operations per second and memory bandwidth for the CPU
and GPU

The GPU is specialized for computations characteristic of graphics rendering, meaning it excels in
compute-intensive, highly parallel computations. It is designed in a way such that more transistors
are devoted to data processing rather than data caching and flow control, as illustrated in fig. 5.2. This
is the reason behind the superior floating-point capability between of the GPU over the CPU.

The GPU is especially well-suited for programs including many data-parallel computations, where the
same program is executed on many data elements in parallel with high arithmetic intensity (the ratio of
arithmetic operations to memory operations). The fact that the same program is executed for each data
element entails that there is no need for sophisticated flow control. In addition, since the execution of the
program includes many data elements and has a high arithmetic intensity, the memory access latency
can be hidden with calculations instead of big data caches. But, problems other than 3D rendering
can make use of this hardware. For example, image processing, pattern recognition, signal processing,
physics simulation, computational biology and, in our case, computational finance.

67

Chapter 1. Introduction

CUDA C Programming Guide Version 4.2 3

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA™: a General-Purpose Parallel
Computing Architecture
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel
computing architecture – with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 5.2: Comparison of CPU and GPU architecture: the GPU devotes more transistors to data
processing.

5.4 Parallel programming with CUDA

In this section we take a look at just how simple parallel computing with CUDA really is. We explain the
basic methodology, the syntax and provide sample codes. Basic C knowledge is an asset in understanding
the sample codes and some of the terms.

5.4.1 A scalable programming model

At the core of the CUDA parallel programming model are three key abstractions, which are exposed to
the programmer as a minimal set of C language extensions:

1. A hierarchy of thread groups.

2. A hierarchy of shared memories.

3. Barrier synchronization.

These abstractions allow for fine-grained data parallelism and thread parallelism, nested within coarse-
grained data parallelism and task parallelism. This allows partitioning of a given problem into coarse
sub-problems that can be solved independently in parallel by blocks of threads, whereas each sub-problem
gets partitioned further into finer pieces that can be solved cooperatively in parallel by all threads within
the block.

This way of decomposing problems enables automatic scalability. Each block of threads can be scheduled
on any of the available streaming multiprocessors (SM) within a GPU, in any order, concurrently or
sequentially. Therefore, a compiled CUDA program can execute on any number of multiprocessors,
whose exact count is handled by the runtime system. This scalable programming model allows the
CUDA architecture to span a wide market range by simply scaling the number of multiprocessors and
memory partitions.

68

Chapter 1. Introduction

CUDA C Programming Guide Version 4.2 5

This decomposition preserves language expressivity by allowing threads to
cooperate when solving each sub-problem, and at the same time enables automatic
scalability. Indeed, each block of threads can be scheduled on any of the available
multiprocessors within a GPU, in any order, concurrently or sequentially, so that a
compiled CUDA program can execute on any number of multiprocessors as
illustrated by Figure 1-4, and only the runtime system needs to know the physical
multiprocessor count.

This scalable programming model allows the CUDA architecture to span a wide
market range by simply scaling the number of multiprocessors and memory
partitions: from the high-performance enthusiast GeForce GPUs and professional
Quadro and Tesla computing products to a variety of inexpensive, mainstream
GeForce GPUs (see Appendix A for a list of all CUDA-enabled GPUs).

A GPU is built around an array of Streaming Multiprocessors (SMs) (see Chapter 4 for more details).
A multithreaded program is partitioned into blocks of threads that execute independently from each
other, so that a GPU with more multiprocessors will automatically execute the program in less time
than a GPU with fewer multiprocessors.

Figure 1-4. Automatic Scalability

GPU with 2 SMs

 SM 1 SM 0

GPU with 4 SMs

 SM 1 SM 0 SM 3 SM 2

Block 5 Block 6

Multithreaded CUDA Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

 Block 1 Block 0

 Block 3 Block 2

 Block 5 Block 4

 Block 7 Block 6

 Block 0 Block 1 Block 2 Block 3

 Block 4 Block 5 Block 6 Block 7

Figure 5.3: Automatic scaling: a CUDA GPU is built around an array of streaming multiprocessors
(SMs). A multithreaded program is then partitioned into blocks of threads that execute independently
from each other. A GPU with more multiprocessors will automatically execute the program in less time
than a GPU with fewer multiprocessors.

5.4.2 Kernels, thread blocks and memory hierarchy

The CUDA programming model enables efficient and relatively simple interaction of the (serial) code
executing on the CPU and the (parallel) code executing on the GPU. The approach that uses a system
with more than one kind of processor to complete a task at hand is known as heterogenous computing.
We will use the terms host to refer to the CPU and its memory, and device to refer to the GPU and its
memory.

A kernel is a function that is executed in parallel on the CUDA device. In CUDA C, kernels are defined
as a C void function using the additional global declaration specifier __global__. A kernel invocation,
however, differs from a standard function call. Since kernels get executed in blocks of threads, which we
will discuss promptly, an execution configuration with the number of blocks and threads, as well as the
size of shared memory per block, is a crucial ingredient of a kernel call.

Let us look at the following code snippet as an example of a kernel definition and invocation:

// Kernel definition

__global__ void my_kernel ()

{

...

}

int main()

{

...

// Kernel invocation with M blocks of N threads

my_kernel <<<M, N>>>();

...

}

This launches M blocks of N threads totalling to M · N instances of the kernel my_kernel on the GPU
running in parallel. So, what exactly is the difference between thread blocks and threads within a
block? Whereas thread blocks are required to execute independently, threads within a block are aware
of each other. They can cooperate by sharing data through shared memory and by synchronizing their
execution.

Each thread executing the kernel is given a unique thread and block ID that are accessible within the

69

kernel through the built-in threadIdx and blockIdx variables, respectively. Consider the following sample
code that adds two vectors A and B of size N and stores the result into vector C:

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

...

// Kernel invocation with N threads

VecAdd <<<1, N>>>(A, B, C);

...

}

Here, the kernel is launched in one block of N threads. Each of the N threads of the block that execute
VecAdd() performs one pair-wise addition and stores the result in the array C.

For convenience, threadIdx is a 3-component vector, so that threads can be identified using a 1-dimensional,
2-dimensional, or 3-dimensional thread index, forming a 1-dimensional, 2-dimensional, or 3-dimensional
thread block. This was done in order to simplify the code and avoid common index transformations. It
also provides a natural way to invoke computation across the elements in a domain such as a vector,
matrix, or volume.

The relationship between the thread index and its thread ID is straightforward. For a 1-dimensional
block, they are the same; for a 2-dimensional block of size (Dx, Dy), the thread ID of a thread of index
(x, y) is (x + yDx); for a 3-dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index
(x, y, z) is (x+ yDx + zDxDy).

As an illustration of multidimensional thread indices, the following code adds two matrices A and B of
size N ×N and stores the result into matrix C:

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);

...

}

The number of threads per block is limited, since all threads of a block are expected to reside on the
same processor core and must share the limited memory resources of that core. On current GPUs, a
thread block may contain up to 1024 threads.

However, to work around this limitation, given that all thread executions are independent of each other,
we can execute the kernel in multiple equally-shaped thread blocks, so that the total number of threads
is equal to the number of threads per block times the number of blocks.

Just like threads, blocks can be organized into a one-dimensional, two-dimensional, or three-dimensional
grid of thread blocks. In applications, the number of thread blocks in a grid is usually dictated by the size
of the data being processed or the number of processors in the system, which it can greatly exceed.

The number of threads per block and the number of blocks per grid specified in the execution config-
uration syntax <<< , >>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be

70

specified as in the above code snippet. Like threads, each block within the grid can be identified by a
one-dimensional, two-dimensional, or three-dimensional index accessible within the kernel through the
built-in blockIdx variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

Modifying the previous MatAdd() example to handle multiple blocks, the code now reads:

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N) C[i][j] = A[i][j] + B[i][j];

}

int main()

{

...

// Kernel invocation

dim3 threadsPerBlock (16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);

...

}

Note that this example, for the sake of simplicity, assumes even divisibility of the number of threads per
grid in each dimension by the number of threads per block in that dimension. The grid is then created
with enough blocks to have one thread per matrix element as before. A common (arbitrary) choice of a
thread block size is 16x16 (256 threads).

Thread blocks are required to execute independently, so that they can be executed in any order, no
matter if serially or in parallel. This independence requirement allows thread blocks to be scheduled in
any order across any number of cores, as in fig. 5.3, enabling programmers to write code that scales with
the number of cores.

As already mentioned, threads within a block can cooperate by sharing data through shared memory
whose size has to be determined at the time of the kernel invocation and by synchronizing their execution
to coordinate memory accesses. More precisely, one can specify synchronization points in the kernel by
calling the __syncthreads() intrinsic function; __syncthreads() acts as a barrier at which all threads in
the block must wait before any is allowed to proceed. For efficient cooperation, the shared memory
is expected to be a low-latency memory near each processor core and syncthreads() is expected to be
lightweight.

CUDA threads are able to access data from multiple memory spaces during their execution. Each thread
has private local memory. Each thread block has its own shared memory with the same lifetime as the
block that is accessible to all threads of the block. All threads have access to the same global memory.
On top of that, all threads can access two additional read-only memory spaces: the constant and texture
memory spaces. These two memory spaces are irrelevant for our purposes.

71

Chapter 2: Programming Model

CUDA C Programming Guide Version 4.2 11

Figure 2-2. Memory Hierarchy

2.4 Heterogeneous Programming
As illustrated by Figure 2-3, the CUDA programming model assumes that the CUDA threads execute on a physically separate device that operates as a coprocessorto the host running the C program. This is the case, for example, when the kernels execute on a GPU and the rest of the C program executes on a CPU.

 Global memory

Grid 0

Block (2, 1)Block (1, 1) Block (0, 1)

Block (2, 0)Block (1, 0) Block (0, 0)

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Thread Block Per-block sharedmemory

Thread
Per-thread localmemory

Figure 5.4: Memory access hierarchy

5.5 Parallel reduction sum algorithm

We now discuss how a calculation of a sum of an array can be done in parallel on the GPU, resulting in
a significant speed up, using the parallel reduction approach.

Summing up an arrray of n elements using a single thread is pretty straightforward:

int sum = 0;

for(int i=0; i < N; ++i)

sum += x[i];

At this stage, assume that n = 2k is smaller than the maximum number of threads per block. So how do
we go about calculating the sum using multiple threads? Intuitively, one might assume that in a parallel
calculation of the sum each thread of a thread block would then just add its corresponding element to
some sum variable that is shared between the threads. However, this is not possible, since it would just
introduce a data race in which different threads would try updating the same variable in shared memory
simultaneously and end up rewriting it.

To avoid this, we introduce the parallel reduction sum algorithm. The idea is to compute the sum using
multiple threads in such a way that two different threads never attempt to modify the same variable
simultaneously.

We introduce an array S of size n shared between the threads that is going to store the partial sums.
We set Si = xi and thread with ID i handles the i-th partial sum Si. We compute the stepwise partial

72

sums the following way. In step m, a thread with thread ID i ∈ {0, . . . , n
2m = 2k−m} adds the value of

Si+2k−m to Si, the others simply idle. Then the threads synchronize, ensuring the memory write is over,
and go over to the next step m+ 1 until m > k. In the end, S0 contains the total sum. For an array of
length n = 2k this takes log2(n) = k steps in each thread. Since all n threads are running in parallel,
we managed to reduce the complexity from O(n) to O(log2(n)). Because a picture is worth a thousand
words, fig. 5.5 illustrates the reduction procedure.

Figure 5.5: Parallel reduction summation tree

The following code snippet implements the parallel reduction sum algorithm:

__global__ void ArraySum(float *x, double* sum)

{

// shared data of the thread block , contains the partial sums

extern __shared__ double S[];

int i = threadIdx.x;

S[i] = x[i];

__syncthreads ();

for (int offset = blockDim.x / 2; offset > 0; offset /= 2)

{

if (i < offset) sdata[i] += sdata[i + offset];

__syncthreads ();

}

*sum = S[0];

}

int main()

{

...

// Kernel invocation with n threads and the size of shared memory

// needed for the partial sum array

VecAdd <<<1, n, n*sizeof(float) >>>(x, sum);

...

}

If the size of the array is not a power of two, we just fill it up with zeroes until it is. For longer arrays
we can use multiple thread blocks. There are two ways to go about this: either we divide it in m thread
blocks and sum the results up sequentially at the end, or we use the approach of recursively invoking the
kernel on the GPU. For the latter, devices with Compute Capability 3.5 are required.

73

5.6 Speeding up pricing and calibration

The COS formula (4.19) basically reduces to a sum where the summands are independent of each other,
making it ideal for parallel processing.

Here is the basic outline of our implementation of option pricing:

1. Copy the option data of n options from the host to the device memory.

2. Copy the model parameter data from the host to the device memory.

3. Run n blocks of k threads with enough shared memory which equals to an array of size k per block.
Each block handles one option. Each of the threads in the block handles one summand of the COS
formula:

3.1. Compute the k-th summand of the COS formula.

3.2. Synchronize all threads within the block.

3.3. Run their portion of the parallel reduction sum algorithm, as described in section 5.5. In the
end, the total sum has been calculated in thread with ID 0 and stored in position 0 of the
array.

4. Copy the results from device memory to host memory.

5. Deallocate the model parameter data from the device memory.

6. Deallocate the option data from the device memory.

For the purpose of calibration, when many prices have to be computed using the same option data but
different parameters in order to calculate the target function that gets minimised, we only copy the
option data once at the beginning of the calibration:

1. Copy the option data of n options from the host to the device memory.

2. The parameter estimation loop:

2.1. “Guess” the model parameters.

2.2. Copy these model parameter data from the host to the device memory.

2.3. Calculate option prices using these parameters.

2.4. Calculate the target function.

2.5. Deallocate the model parameter data from the device memory.

3. Deallocate the option data from the device memory.

This is much more efficient, since it avoids redundant repeated data copying of option data from the
host to the device.

The actual implementation can be found in appendix A. A similar setup to ours but for different models
was used in [32].

74

Chapter 6

Our model

The main driving force behind the introduction of continuous-time stochastic models in finance has
been the development of option pricing models. An option pricing model serves as an arbitrage-free
interpolation and extrapolation tool, it captures the features of option prices quoted on the market and
is able to extrapolate the concept of value to instruments not priced on the market. Stochastic models
in mathematical finance are also used for hedging and quantifying risk associated with a given position.
That is, a stochastic model is calibrated to match the observed market prices, and can then be used to
price more complex derivative products not quoted on the market or, compute hedging strategies and
assess risks.

So, what exactly constitutes a good stochastic model? Some of the wanted properties of a good model
include:

⇒ A realistic reproduction of statistical properties of the time series of the price. For instance,
diffusion models, although they are able to capture heavy tail behaviour of the price time series,
still model the price as a continuous process, although it is a well-known fact that prices exhibit
jumps. This is especially true in the case of electricity, which is known for its highly volatile jumpy
dynamic. Neglecting jumps in this case is unrealistic to say the least. Models driven by jump
processes, e.g., Lévy processes, do a much better job.

⇒ Ability to fit the market data. A good model should be able to fit the observed market data fairly
well at the time of calibration. It does not make much sense to base our future decisions on a
model that is unable to even reproduce the current dynamics.

⇒ Efficiency. A good model should allow for computations and calibration within a reasonable time-
frame.

⇒ Robustness. Neither a small modification in the data used for calibration nor a small modification
of the model parameters should lead to a significant change in behaviour of the model.

For our model, we choose to take an approach similar to the HJM framework and directly model the
risk-neutral dynamic of futures prices. Futures prices are the basic brick for hedging and pricing more
complex products. A model that is able to perfectly fit the observed forward curve and replicate the
market prices of options is a good starting point for valuation of more complex derivatives.

75

6.1 Motivation

Recall from (3.21) how the instantaneous forward enables us to model futures prices of any granularity
simultaneously. If f(t, T) denotes the instantaneous forward rate, i.e., the price at time t for delivery at
the instant T , the price of a future at time t with delivery period [T1, T2] is given by

FT1,T2

t =
1

T2 − T1

T2∫
T1

f(t, s) ds. (6.1)

Consider now a model with the following dynamic of the instantaneous forward rate

df(t, T)

f(t, T)
= σf1 (t) dW 1

t + σf2 (t) dW 2
t , (6.2)

where (W1,W2) is a two-dimensional Brownian motion with correlation coefficient ρf . Setting

σf1 (t) = e−bt, σf2 (t) = c, (6.3)

gives an interpretation to the underlying Brownian motion: W 1
t models the short-term fluctuations in

the instantaneous forward rate that fade away with time, whereas W 2
t models the long-term fluctua-

tions.

Following the approach of Bjerksund et al. [2008][XXX] for their one factor model, we approximate the
futures price dynamic by

dFT1,T2

t

FT1,T2

t

≈ 1

T2 − T1

T2∫
T1

df(t, s)

f(t, s)
ds =

 1

T2 − T1

T2∫
T1

σf1 (t) dt

 dW 1
t +

 1

T2 − T1

T2∫
T1

σf2 (t) dt

 dW 2
t . (6.4)

This motivates a model where the price of a future at time t with delivery period [T1, T2] is modelled
as

dFT1,T2

t

FT1,T2

t

= σT1,T2

1 (t) dW 1
t + σT1,T2

2 (t) dW 2
t (6.5)

with

σT1,T2

1 (t) =
1

T2 − T1

T2∫
T1

σf1 (t) dt =
a

T2 − T1

(
e−b(T1−t) − e−b(T2−t)

)

σT1,T2

2 (t) =
1

T2 − T1

T2∫
T1

σf2 (t) dt = c,

(6.6)

and where (W1,W2) is a two-dimensional Brownian motion with correlation coefficient ρ. The SDE then
admits the following solution:

FT1,T2

t = FT1,T2

0 exp

 t∫
0

σT1,T2

1 (s) dW 1
s +

t∫
0

σT1,T2

2 (s) dW 2
s

− 1

2

t∫
0

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)
ds

 .

(6.7)

76

For some point in time t and a delivery period [T1, T2], this model can be reduced to a case of the Black’s
model, by setting

F̃t = F̃0 exp

(
σ̃W̃t −

1

2
σ̃2

)
, which verifies

dF̃t

F̃t
= σ̃dW̃t

σ̃2 =

t∫
0

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)
ds

F̃0 = FT1,T2

0 exp

−1

2

t∫
0

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)
ds

 ,

(6.8)

with a Brownian motion W̃ independent of anything else. Therefore, vanilla option prices, just like any
other whose closed form is known for Black’s model, can be computed analytically. This also implies
that the implied volatility is constant across strikes for a combination of time t and a delivery period
[T1, T2].

The goal of our model is to generalize this expression by replacing the two-dimensional Brownian motion
by a suitable two-dimensional Lévy martingale.

6.2 The Lévy driven model

We start by replacing the two-dimensional Brownian motion in (6.5) by a two-dimensional Lévy process
and keeping the volatility functions from (6.6):

dFT1,T2

t

FT1,T2

t

= σT1,T2

1 (t) dL1
t + σT1,T2

2 (t) dL2
t . (6.9)

with a Lévy process Lt of the following form

 Lt =

(
L1
t

L2
t

)
=

b1t+W 1

t +
N1
t∑

n=0
Y 1
t

b2t+W 2
t +

N2
t∑

n=0
Y 2
t

 , (6.10)

where b1, b2 ∈ R, (W 1
t ,W

2
t) is a two-dimensional standard Brownian motion with correlation coefficient

ρ, and
Nit∑
n=0

Y it for i = 1, 2 are independent compound Poisson processes with jump intensities λi, and the

cumulative distribution functions of jump sizes Y i are given by Fi, respectively.

Note that Lt is a martingale with respect to its natural filtration Ft = σ(Ls : s ≤ t) if and only if
bi = −λiEQ [Y i] for i ∈ {1, 2}. Note also that for the price process in our model (6.17) the choice of bi
is irrelevant since it cancels out anyway.

Proof. Lt is integrable by definition. By looking at:

E [Lt | Ft] = E
[(
L1
t

L2
t

)
| Ft

]
= E

b1t+W 1

t +
N1
t∑

n=0
Y 1
t

b2t+W 2
t +

N2
t∑

n=0
Y 2
t

 | Ft
 =

(
b1t+ λ1E

[
Y 1
]

b2t+ λ2E
[
Y 2
]) , (6.11)

we see that equality holds if and only if bi = −λiEQ [Y i].

77

Therefore, in our model, we set bi = −λiEQ [Y i] for i ∈ {1, 2}.

Denote by Xt the stochastic process

XT1,T2

t =

t∫
0

σT1,T2

1 (s)dL1
s +

t∫
0

σT1,T2

2 (s)dL2
s, (6.12)

which is not a Lévy process but a member of the more general class of additive processes, as noted
in result 1.49.

It follows from result 1.43 and result 1.50 that the characteristic function of Xt is given by:

Φ
X
T1,T2
t

(w) = EQ [eiwXt] = exp

 t∫
0

ψT1,T2
s (w) ds

 (6.13)

with ψs(w) equal to:

ψT1,T2
s (w) = exp

(
− w2

2

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)

+ λ1

∫
R

(
eiwσ

T1,T2
1 (s)y1 − 1− iwσT1,T2

1 (s)y1

)
F1(dy1)

+ λ2

∫
R

(
eiwσ

T1,T2
2 (s)y2 − 1− iwσT1,T2

2 (s)y2

)
F1(dy2)

)

= exp

(
− w2

2

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)

+ λ1

(
E
[
eiwσ

T1,T2
1 (s)Y 1

]
− 1− iwσT1,T2

1 (s)E
[
Y 1
])

+ λ2

(
E
[
eiwσ

T1,T2
2 (s)Y 2

]
− 1− iwσT1,T2

2 (s)E
[
Y 2
]))

= exp

(
− w2

2

(
σT1,T2

1 (s)2 + 2ρσT1,T2

1 (s)σT1,T2

2 (s) + σT1,T2

2 (s)2
)

+ λ1

(
ΦY 1

(
wσT1,T2

1 (s)
)
− 1− iwσT1,T2

1 (s)E
[
Y 1
])

+ λ2

(
ΦY 2

(
wσT1,T2

2 (s)
)
− 1− iwσT1,T2

2 (s)E
[
Y 2
]))

(6.14)

where ΦY 1 and ΦY 2 are characteristic functions of Y 1 and Y 2, respectively.

In case the moment generating function of XT1,T2

t exists for some u ∈ R, it is given by the following
relation:

M
X
T1,T2
t

(u) = E
[
euX

T1,T2
t

]
= Φ

X
T1,T2
t

(−iu). (6.15)

Provided that E
[
eX

T1,T2
t

]
= M

X
T1,T2
t

(1) <∞ for all t > 0, and since XT1,T2

t is a process with independent

increments, it follows from result 1.46 that:

eX
T1,T2
t

E
[
eX

T1,T2
t

] = exp

XT1,T2

t −
t∫

0

ψT1,T2
s (−iw) ds

 (6.16)

is a true martingale.

78

Moreover, a simple application of the Ito-lemma shows that the process

FT1,T2

t = FT1,T2

0 exp

XT1,T2

t −
t∫

0

ψT1,T2
s (−iw) ds

 (6.17)

solves the initial SDE (6.9) of our model with starting value FT1,T2

0 .

Finally, the characteristic function of the log price process ln(Ft) is given by:

Φ
ln(F

T1,T2
t)

(w) = exp

iw
X0 −

t∫
0

ψT1,T2
s (−i) ds

+

t∫
0

ψT1,T2
s (w) ds

 , (6.18)

with X0 = ln(F0).

For the distribution of the jump sizes, we choose:

Y 1 ∼ N (µ, σ)

−Y 2 ∼ Exp(α),
(6.19)

that is, in (6.14) we use

ΦY 1(w) = exp

(
iµw − 1

2
σ2w2

)
,

ΦY 2(w) =
α

α+ iw
.

(6.20)

Similary to the case from (6.5), in our model L1
t is responsible for the short-term and L2

t for the long-term
fluctuations in the forward curve. It is a little peculiar that we choose L2

t to only exhibit negative jumps,
but, as we will see in the section with results, this configuration seems to work really well.

The new model is a significant improvement over the model (6.5) from the introductory section, and as
a matter of fact an improvement over any other HJM-style model. First, from a qualitative point of
view, the forward price is righteously modelled as a discontinuous process which is much more realistic.
Secondly, we get rid of the false log-normality property of returns. Thirdly, we expect a better fit of the
implied volatility curve, since it is no longer constant across a range of strikes. Our setting also allows for
relatively simple option pricing, as discussed in the following section. Finally, the fact that we are using
an additive process as the stochastic our log-price gets rid of the time-homogeneity we would encounter
had we simply only used an exponential Lévy process, therefore limiting our ability to fit the volatility
curve of different maturities simultaneously.

6.3 Option pricing

For option pricing within our model, we rely on the COS method described in chapter 4, which we further
speed up by doing the computations on the graphics processing card with the help of CUDA technology,
as described in chapter 5.

Prerequisites for using the COS pricing method is the knowledge of the characteristic function of the
log-price and the payoff series coefficients of the derivative one is trying to price, which are given in (4.12).
For vanilla calls and puts, the payoff series coefficients are known analytically. The characteristic function
of the log-price in our setting is also known and given by (6.18).

For pricing of more complex derivatives, one can always compute the payoff series coefficients numerically.
However for some analytical expressions exist, e.g., the payoff series coefficients for gap and digital options
are discussed and closed form solutions are stated in [1].

79

6.4 Calibration

For a given date, we calibrate our model to the set of all European vanilla options quoted on that date.
These include options on forwards with different maturities and delivery periods, so that our model
captures the dynamic across different maturities and delivery periods.

We attempt to minimize the sum of the weighted quadratic differences between the implied volatilities
predicted by the model and those observed in the market:∑

i

(
wi
(
σobservedi − σmodeli

))2
(6.21)

In order to find this least-squares fit, we rely on the differential evolution algorithm described be-
low.

6.4.1 Differential evolution optimization

Differential evolution (DE), originally developed by Storn and Price in [33], is an optimization method
that attempts to find an optimal solution to a problem by iteratively trying to improve a candidate
solution with respect to a given measure of fit. It allows for optimization of multidimensional real-
valued functions. In contrast to classic optimization methods such as gradient descent and quasi-newton
methods, it does not require the gradient of the function to be known. Thus, the differential evolution
method can be used to optimize problems that are not even continuous, are noisy, etc.

A basic variant of the differential evolution algorithm works by having a population of candidate solutions
(called agents) in the search-space. New candidates agents are then created by a combination of the
positions of existing agents from the population using simple mathematical formulae. If the new position
of an agent is an improvement it is accepted and kept as a part of the population, otherwise it is simply
discarded. This process is repeated for a number of steps in the hope, but without any guarantees, that
a satisfactory solution will eventually be found. Essentially, the function that is getting optimized is
treated as a black box that measures the quality of a candidate solution.

Let f : Rd → R be the function that we are trying to minimize (or maximize). The function takes a
candidate solution as argument in the form of a vector of real numbers and outputs a real number that
measures the fit of the given candidate solution. The gradient of f is unknown. The goal is to find a
solution m for which f(m) ≤ f(p) for all p in the search-space, meaning that m is the global minimum.
Maximization is performed by considering the function −f instead.

Denote by x ∈ Rd a candidate solution (agent) in the population. The basic DE algorithm has the
following outline:

1. Initialize all agents x with random positions in the search-space.

2. Repeat the following until a until a termination criterion is met, for instance, maximum number
of iterations or wanted level of fit have been reached. For each agent x in the population:

2.1. Select three agents a, b and c that are distinct from each other and x from the population at
random.

2.2. Select a random index R ∈ {1, . . . , d}.

2.3. Compute the new potential position of the agent y = (y1, . . . , yd):

i. For each i ∈ {1, . . . , d}, generate a uniformly distributed number ri ∼ U(0, 1).

ii. If ri < CR or i = R then set yi = ai + F × (bi − ci), else set yi = xi

iii. If f(y) < f(x) then replace x with y in the population, i.e., replace the existing agent in
the population with the improved candidate solution.

3. Select agent x with lowest f(x) from the population, i.e., the best candidate solution.

80

The parameter F ∈ [0, 2] is called the differential weight and CR ∈ [0, 1] is called the crossover probability.
The choice of these parameters is a research topic on its own. For instance, some rules of thumb can be
found in [34].

In the implementation, we used the R package DEoptim (https://cran.r-project.org/web/packages/
DEoptim/index.html).

6.5 Results

To illustrate what the model is capable of, we present the calibration results for German Power for two
different dates: 2016-04-01 and 2015-09-25. Whereas the forward prices are available on EEX, the option
data was provided by Axpo Trading AG. Since the exact option data is confidential, only plots of the
volatility curve fit are provided instead of the full data used for the calibration.

2016-04-01 2015-09-25

𝒂 0,3314650 0.49956363
𝒃 0,1112192 0.32277525
𝒄 0,2231404 0.36629823
𝝆 -0,8871685 -0.97815862
𝝀𝟏 0,4680769 0.35046356
𝝁 0,2157817 0.04918823
𝝈 0,5132891 0.42787168
𝝀𝟐 2,3448109 1.78733243
𝜶 154.18 184.55

RMSE 0,01518 0,01073
Avg. rel. error 5,02 % 3,98 %

Table 6.1: Calibrated parameters and error measures for the two calibration dates 2016-04-01 and
2015-09-25.

As we can see from the volatility curves below, the model is able to fit the observed implied volatilities
fairly well. In both cases, it reaches an average relative error of under 5.1%. Estimated parameters can
be found in table 6.1.

We also examine the performance of our pricing approach. We compare our pricing approach, a serial
implementation of the COS formula in R, and a closed-formula that calculates the option price in the
setting given by (6.5) (without any jumps). The third one is used merely as a reference value for an
“instant” result that one would have if a closed form solution was available. We measure how long it takes
the different approaches to calculate the prices for around 70 options (data from 2016-04-01), five times
in a row. As we can see in table 6.2, our model is around 24 times faster than its serial counterpart, and
around 27 times slower than the theoretical analytical reference value. This is a significant improvement!
Note however, that we ran this on a relatively old GPU, the Nvidia GT540M, that has 96 CUDA cores.
The difference would have been much larger had we used a newer GPU. For the sake of comparison,
current-generation GPUs commonly have over a thousand CUDA cores.

Replications Elapsed Average time
Relative
time

Analytical formula (BS style) 5 0,028 0,0056 1,000 0,036223

COS formula in R (serial) 5 18,760 3,752 670,000 1

COS formula using the GPU 5 0,773 0,1546 27,607 24,26921

Replications Elapsed Average time Relative time

Analytical formula (BS style) 5 0,028 0,0056 1,000 0,0362

COS formula in R (serial) 5 18,760 3,752 670,000 1,000

COS formula using the GPU 5 0,773 0,1546 27,607 24,269

Table 6.2: Speed comparison of different pricing methods. Configuration used: i7 2630QM 2.0 GHz with
an Nvidia GT540M. Option pricing of options on 2016-04-01 was performed.

81

https://cran.r-project.org/web/packages/DEoptim/index.html
https://cran.r-project.org/web/packages/DEoptim/index.html

82

83

84

6.6 Conclusion

We have shown that a generalization of (6.5) that uses a two-dimensional Lévy martingale instead of a
two-dimensional Brownian motion leads to an interesting forward price model that inherits some of the
good properties from its “predecessor” and improves in other regards. The model allows for simultaneous
modelling of arbitrary delivery period granularities. As an HJM-style model, it is able to perfectly fit the
observed forward prices. Unfortunately, due to the introduction of the jump component we lose the closed
form solutions for vanilla and other option prices. However, the COS method offers a great alternative,
and in combination with parallel computing using the GPU we significantly reduce the performance hit
that one would take from employing a numerical procedure the traditional way. Qualitatively the presence
of jumps increases the credibility of the model and enables easier interpretation of the parameters that
lead to heavy tails of log-returns in the forward price. Perhaps most importantly, the model is also able
to fit the observed implied volatilities fairly well, meaning that it reflects the expectations in the market,
which encourages us in using it as an option valuation and risk quantification tool.

We have also seen how parallel computing using GPUs can lead to a significant performance boost
and improvement of the usability of these kinds of models. For situations where efficiency is of special
importance, an investment into a CUDA capable GPU may very well be worth it.

Finally, in this setting even more complex derivatives could be priced relatively efficiently, provided that
we derive the needed payoff series coefficients (4.12).

6.7 Further steps

In this last section of the thesis, we briefly mention further topics that naturally arise from our described
setting. The foundation for some of them has already been laid in the implementation, but unfortunately
due to time constraints they have not had the chance to become a part of this thesis.

One could reconsider the choice of the volatility functions, perhaps some other choice would do a better
job? Maybe one should also consider a three- or an even four-dimensional underlying Lévy process
instead? Would this lead to better results? Regarding calibration, maybe it would make sense to fit
the model to correlations between log-returns of the different delivery periods to better capture the ρ
parameter dynamic? Another thing one could do is vary the distributions of the jump sizes. Possibly
there is a jump size configuration that works even better.

Another interesting point would be to find other fields in electricity pricing where parallel processing
might result in a significant increase in performance. Pricing of path-dependent options might be a good
candidate.

85

Finally, motivated by the joint-model described in section 3.3.4, in the next subsection we briefly discuss
how one could extend our model to jointly model two markets.

6.7.1 Two-market model proposal

Extending our framework to cover two different markets (commodities) A and B, the forward prices
would then admit the following dynamics:

FA;T1,T2

t = FA;T1,T2
0 exp

XA;T1,T2

t −
t∫

0

ψA;T1,T2(s)ds

FB;T1,T2

t = FB;T1,T2
0 exp

XB;T1,T2

t −
t∫

0

ψB;T1,T2(s)ds

 ,

(6.22)

with

XA;T1,T2

t =

t∫
0

σA;T1,T2

1 (s)dLA;2
s +

t∫
0

σA;T1,T2

2 (s)dLA;2
s

XB;T1,T2

t =

t∫
0

σB;T1,T2

1 (s)dLB;2
s +

t∫
0

σB;T1,T2

2 (s)dLB;2
s

(6.23)

and

 LAt =

(
LA,1t

LA,2t

)
=

bA1 t+WA,1

t +
NA,1t∑
n=0

Y A,1t

bA2 t+WA,2
t +

NA,2t∑
n=0

Y A,2t

 LBt =

(
LB,1t

LB,2t

)
=

bB1 t+WB,1

t +
NB,1t∑
n=0

Y B,1t

bB2 t+WB,2
t +

NB,2t∑
n=0

Y B,2t

 .

(6.24)

Now, the simplest way to introduce dependence between the two is by correlating the Brownian motions.
This results in a 4× 4 correlation matrix.

WA,1 WA,2 WB,1 WB,2

WA,1 1 ρA ρA1,B1 ρA1,B2

WA,2 ρA 1 ρA2,B1 ρA2,B2

WB,1 ρA1,B1 ρA2,B1 1 ρB
WB,2 ρA1,B2 ρA2,B2 ρB 1

. (6.25)

However, since commodities commonly jump at around the same time, we would like to extend the model
by making it possible for both commodities to jump at the same time. For instance, it is easy to imagine
that a jump in gas prices would have an effect on electricity prices due to increased production costs.
One possibility is to extend the underlying Lévy processes by adding a compound Poisson process that

86

jumps at the same time:

 LAt =

(
LA,1t

LA,2t

)
=

bA1 t+WA,1

t +
NA,1t∑
n=0

Y A,1t +
NC,3t∑
n=0

Y A,3t

bA2 t+WA,2
t +

NA,2t∑
n=0

Y A,2t +
NC,4t∑
n=0

Y A,4t

 LBt =

(
LB,1t

LB,2t

)
=

bB1 t+WB,1

t +
NB,1t∑
n=0

Y B,1t +
NC,3t∑
n=0

Y B,3t

bB2 t+WB,2
t +

NB,2t∑
n=0

Y B,2t +
NC,4t∑
n=0

Y B,4t

 ,

(6.26)

where Poisson processes NC,3
t , NC,4

t model the occurrence of common price shocks that affect both

commodities. Then Y A,3t , Y A,4t , Y B,3t and Y B,4t are the sizes of these shocks. In other words, these
compound pairs of Poisson processes NC,3t∑

n=0

Y A,3t ,

NC,4t∑
n=0

Y A,4t

 (6.27)

NC,3t∑
n=0

Y B,3t ,

NC,4t∑
n=0

Y A,4t

 (6.28)

jump together at the same time but have different jump sizes.

The next thing one could discuss is the dependence between the sizes of the simultaneous common jumps.
Some of the possibilities include:

1. Independence. Although the jumps happen at the same time, assume no dependence between
their sizes. However, this seems a little naive. It is easy to imagine a scenario where, because of
the assumption of independence one gets positive jumps in commodity A and negative jumps in
commodity B, whereas they both should have moved the same way.

2. Same jump size for both commodities, Y A,3t = Y B,3t , Y B,4t = Y B,4t . Is this realistic? Although
the Xt process is ”normalized”, it may be unrealistic to expect the exact same amount of relative
shock size in both commodities.

3. A deterministic transformation of the jump size, preferably linear. The simplest example would be
Y A,3t = kY B,3t , Y B,4t = kY B,4t . Then a price shock in commodity A would transfer to commodity
B in some percentage.

4. Multivariate normal distribution. Then the margins are normal and one can easily tweak the linear
correlation between the two. This way we could of our choice and different magnitudes of jumps
across commodities.

5. Copulas. Then jump sizes of commodities A and B can have their respective marginal distributions
and we are free to choose a copula for the sake of modelling their dependence. However, this makes
the matter unnecessarily much more complicated and we suggest against it. Using a copula means
dealing with rank correlations, and this would lead to various filtering procedures.

In contrast to the single market model, it no longer suffices to calibrate each market simply to the quoted
option data. We need a product or a way that captures the dependence dynamic. Perhaps a spread or
the correlation of the log-returns of the forward prices should be used? A lot of interesting new questions
arise.

87

Appendix A

Implementation and source code

A development of an efficient pricing library for our model has been a central goal of this thesis. Here we
provide the source code and a short description of the implementation. The core functions are developed
in (CUDA) C and then compiled into a library meant for use with the programming language R. A
starting point that gave us a package skeleton was [32].

The implementation supports pricing of processes with the following dynamic:

F̃T1,T2

t = F̃T1,T2

0 exp

X̃T1,T2

t −
t∫

0

ψ̃T1,T2
s (−iw) ds

with

X̃T1,T2

t =

t∫
0

σT1,T2

1 (s)dL̃1
s +

t∫
0

σT1,T2

2 (s)dL̃2
s,

and

L̃t =

(
L̃1
t

L̃2
t

)
=

b1t+W 1

t +
N1
t∑

n=0
Y 1
t +

N3
t∑

n=0
Y 3
t

b2t+W 2
t +

N2
t∑

n=0
Y 2
t +

N4
t∑

n=0
Y 4
t

 .

where ψ̃T1,T2
s is defined analogously to (6.14) in relation to the characteristic function of X̃T1,T2

t . The
bi are once again chosen to make the Lévy process L̃t a martingale. Each of the Poisson processes is
characterized by its intensity λi.

For the jump sizes Y nt one is free to choose one of these distributions:

1. Y nt ∼ N (µ, σ).

2. Y nt ∼ Uniform (a, b).

3. Y nt ∼ Exp (α).

4. −Y nt ∼ Exp (α).

For pricing, a vector of parameters is passed as an argument to the function. The form of this vector
of parameters is shown in table A.1 (in the order from top-left to bottom right). The argument distr1
selects the distribution of Y 1 as a number from {1, 2, 3, 4} according to the list above. The parameters
of this distribution are then passed with distr1 p1 and distr1 p2. If the distribution only requires one
argument, one should set distr1 p1=distr1 p2. Analogously for distr2, distr3, distr4. The rest of
the parameters are self-explanatory.

88

a lambda1 lambda2 lambda3 lambda4
b distr1 distr2 distr3 distr4
c distr1_p1 distr2_p1 distr3_p1 distr4_p1
rho distr1_p2 distr2_p2 distr3_p2 distr4_p2

Table A.1: Parameter vector members passed to the implementation.

The implementation already lays the foundation for option pricing in the proposed two-market setting
described in section 6.7.1.

For pricing within our model, we simply set λ3 = λ4 = 0 and use the appropriate parameters for the
jump distributions, i.e., distr1=1 and distr2=4.

After loading the library in R, the functions listed in table A.2 are available.

Copy_Data Copies the option data to the GPU memory.
Dealloc_Data Removes the copied option data from the GPU memory.

Error_Function Calculates the RMSE or average relative error for some parameters.
Set_Block_Size Sets the block size, i.e., the number of summands in the COS formula.

Compute_Option_Prices Computes option prices (IVs) for given option data and parameters.

Table A.2: Functions at user’s disposal.

When calibrating the model, Error_Function is meant to be used in combination with Copy_Data and
Dealloc_Data. Since the option data does not change during the calibration, we load it at the beginning
and then unload it after we are done. This avoids redundant memory copying that we would have had
we used the more general function Compute_Option_Prices.

The following external libraries are used in the implementation:

⇒ Let’s be rational: a library for efficient calculations of the Black-Scholes implied volatility,
based on the paper by Peter Jäckel [35]. Available at: https://pypi.python.org/pypi/lets_

be_rational/.

⇒ cuda complex: an implementation of std::complex for use on CUDA devices. Allows us to
write cleaner code using overloaded operators. Available at: https://github.com/jtravs/cuda_
complex/blob/master/cuda_complex.hpp.

Table A.3 contains the source code structure description.

cuda pricing.cu the core file where all the core functions and GPU kernels are defined
cuda pricing.h simply the header file of cuda pricing.cu

gpuCalib.c a higher-level file that defines R-friendly functions
gpuCalib.r the .R file providing an interface with the compiled library

Table A.3: Source code structure

Listing A.1: cuda pricing.cu

#define _USE_MATH_DEFINES

#include <stdio.h>

#include <stdlib.h>

#include <cuda_runtime_api.h>

#include <cuda.h>

#include "cuda_pricing.h"

#include "lets_be_rational.h"

#include "cuda_complex.hpp"

89

https://pypi.python.org/pypi/lets_be_rational/
https://pypi.python.org/pypi/lets_be_rational/
https://github.com/jtravs/cuda_complex/blob/master/cuda_complex.hpp
https://github.com/jtravs/cuda_complex/blob/master/cuda_complex.hpp

// number of blocks = number of options

int num_blocks = 0;

// number of threads per block , i.e., number of terms in the COS formula

int block_size = 128;

int num_bytes = 0;

// bool variable keep track of whether the data has been loaded

bool bLoad = false;

// variables stored in the host memory

int *h_option_type;

double *h_F0 , *h_K , *h_tau , *h_T1 , *h_T2 , *h_W , *h_observed;

// variables stored on the device memory

int *d_option_type;

double *d_F0 , *d_K , *d_tau , *d_T1 , *d_T2 , *d_results;

// parameter array

double *d_p0;

// pi

#define pi 3.1415926535897932384626433832795

// positions of parameters in the paramater array

#define N_PARAMETERS 20

#define a_ 0

#define b_ 1

#define c_ 2

#define rho_ 3

#define lambda1_ 4

#define distr1_ 5

#define distr1_p1_ 6

#define distr1_p2_ 7

#define lambda2_ 8

#define distr2_ 9

#define distr2_p1_ 10

#define distr2_p2_ 11

#define lambda3_ 12

#define distr3_ 13

#define distr3_p1_ 14

#define distr3_p2_ 15

#define lambda4_ 16

#define distr4_ 17

#define distr4_p1_ 18

#define distr4_p2_ 19

/* ********************************* COS method related fu

********************************** */

// ************ Characteristic functions of the possible jump size distros ************

//

__device__ complex <double > CF_Normal(complex <double > w, int D, double mu, double sigma)

{

complex <double > I(0., 1.);

complex <double > ret;

if (D == 0) {

ret = exp(I*w*mu - 0.5* sigma*sigma*w*w);

}

else if (D == 1) {

ret = I*mu;

}

else if (D == 2) {

ret = -mu*mu - sigma*sigma;

}

else if (D == 4) {

ret = pow(mu , 4.) + 6.*mu*mu*sigma*sigma + 3.*pow(sigma , 4.);

}

else if (D == 6) {

ret = -pow(mu , 6.) - 15.* pow(mu , 4.)*pow(sigma , 2.) - 45.* pow(mu, 2.)*

90

pow(sigma , 4.) - 15.* pow(sigma , 6.);

}

return (ret);

}

__device__ complex <double > CF_Exp(complex <double > w, int D, double alpha)

{

complex <double > I(0., 1.);

complex <double > ret;

if (D == 0) {

ret = alpha / (alpha - I*w);

}

else if (D == 1) {

ret = I / alpha;

}

else if (D == 2) {

ret = -2. / (alpha*alpha);

}

else if (D == 4) {

ret = 24. / pow(alpha , 4.);

}

else if (D == 6) {

ret = -720. / pow(alpha , 6.);

}

return (ret);

}

__device__ complex <double > CF_NegExp(complex <double > w, int D, double alpha)

{

complex <double > I(0., 1.);

complex <double > ret;

if (D == 0) {

ret = alpha / (alpha + I*w);

}

else if (D == 1) {

ret = -I / alpha;

}

else if (D == 2) {

ret = -2. / (alpha*alpha);

}

else if (D == 4) {

ret = 24. / pow(alpha , 4.);

}

else if (D == 6) {

ret = -720. / pow(alpha , 6.);

}

return (ret);

}

__device__ complex <double > CF_Unif(complex <double > w, int D, double a, double b)

{

complex <double > I(0., 1.);

complex <double > ret;

if (D == 0) {

ret = (exp(-I*w*b) - exp(-I*w*a)) / (I*w*(b - a));

}

else if (D == 1) {

ret = 0.5 * I * (a + b);

}

else if (D == 2) {

ret = 1 / 3. * (a*a + a*b + b*b);

}

else if (D == 4) {

ret = (-pow(a, 5.) + pow(b, 5.)) / (5 * (a - b));

91

}

else if (D == 6) {

ret = (-pow(a, 7.) + pow(b, 7.)) / (7 * (a - b));

}

return (ret);

}

#define NORMAL_DISTR 1

#define UNIFORM_DISTR 2

#define EXP_DISTR 3

#define NEGEXP_DISTR 4

__device__ complex <double > CF_JumpSize(complex <double > w, int D, double distr_d , double

p1, double p2)

{

int distr = (int)distr_d;

complex <double > ret;

if (distr == NORMAL_DISTR) {

ret = CF_Normal(w, D, p1 , p2);

}

else if (distr == UNIFORM_DISTR) {

ret = CF_Unif(w, D, p1, p2);

}

else if (distr == EXP_DISTR) {

ret = CF_Exp(w, D, p1);

}

else if (distr == NEGEXP_DISTR) {

ret = CF_NegExp(w, D, p1);

} else {

ret = 0.;

printf("Error: Unknown Jump Size Distribution .\n");

}

return (ret);

}

// ************ Volatility functions ************ //

__device__ double sigma1(double t, double T1, double T2, double *p0)

{

// return p0[a_] / (p0[b_] * (T2 - T1))*(exp(-p0[b_] * (T1)) - exp(-p0[b_] * (T2

)));

return p0[a_] / (p0[b_] * (T2 - T1))*(exp(-p0[b_] * (T1 -t)) - exp(-p0[b_] * (T2-

t)));

}

__device__ double sigma2(double t, double T1, double T2, double *p0)

{

return p0[c_];

}

// ************ psi function used in the CF of the log -price ************ //

__device__ complex <double > CF_psi(complex <double > w, double s, double T1 , double T2 ,

double *p0)

{

complex <double > I(0., 1.);

complex <double > ret;

complex <double > J1 , J2 , J3, J4;

double s1 = sigma1(s, T1, T2 , p0), s2 = sigma2(s, T1, T2, p0);

J1 = CF_JumpSize(w*s1, 0, p0[distr1_], p0[distr1_p1_], p0[distr1_p2_]) - 1. - w*

s1*CF_JumpSize (0, 1, p0[distr1_], p0[distr1_p1_], p0[distr1_p2_]);

J2 = CF_JumpSize(w*s2, 0, p0[distr2_], p0[distr2_p1_], p0[distr2_p2_]) - 1. - w*

s2*CF_JumpSize (0, 1, p0[distr2_], p0[distr2_p1_], p0[distr2_p2_]);

J3 = CF_JumpSize(w*s1, 0, p0[distr3_], p0[distr3_p1_], p0[distr3_p2_]) - 1. - w*

s1*CF_JumpSize (0, 1, p0[distr3_], p0[distr3_p1_], p0[distr3_p2_]);

92

J4 = CF_JumpSize(w*s2, 0, p0[distr4_], p0[distr4_p1_], p0[distr4_p2_]) - 1. - w*

s2*CF_JumpSize (0, 1, p0[distr4_], p0[distr4_p1_], p0[distr4_p2_]);

ret = -0.5 * w*w * (s1*s1 + 2.*p0[rho_]*s1*s2 + s2*s2) + p0[lambda1_] * J1 + p0[

lambda2_] * J2 + p0[lambda3_] * J3 + p0[lambda4_] * J4;

return ret;

}

// ************ simple numerical integral of psi over [0,t] ************ //

__device__ complex <double > CF_psi_int(complex <double > w, double t, double T1, double T2,

double *p0)

{

const int n = 100;

double step_size = t / n;

complex <double > integral = 0.0;

for (double s = 0; s <= t; s += step_size)

integral += step_size * CF_psi(w, s, T1 , T2, p0);

return integral;

}

// ************ CF of the log -price ************ //

__device__ complex <double > CF(double w, double X0 , double t, double T1, double T2,

double *p0)

{

complex <double > I(0., 1.);

complex <double > ret;

// Phi_t(w) = exp(I * w * (X0 - integrate_0 ^t(CF_psi(-I, T1 , T2 , p0))) +

integrate_0 ^t(CF_psi(w, T1 , T2 , p0)))

ret = exp(I * w * (X0 - CF_psi_int(-I, t, T1, T2, p0)) + CF_psi_int(w, t, T1,

T2, p0));

return ret;

}

// ************ Calculation of the integral truncation limits for the COS formula

************ //

__device__ void calc_truncation_limits(double *a, double *b, double X0 , double t, double

T1, double T2, double *p0)

{

complex <double > I(0., 1.);

complex <double > Cf1d1 = CF_JumpSize (0., 1, p0[distr1_], p0[distr1_p1_], p0[

distr1_p2_]);

complex <double > Cf2d1 = CF_JumpSize (0., 1, p0[distr2_], p0[distr2_p1_], p0[

distr2_p2_]);

complex <double > Cf3d1 = CF_JumpSize (0., 1, p0[distr3_], p0[distr3_p1_], p0[

distr3_p2_]);

complex <double > Cf4d1 = CF_JumpSize (0., 1, p0[distr4_], p0[distr4_p1_], p0[

distr4_p2_]);

complex <double > Cf1d2 = CF_JumpSize (0., 2, p0[distr1_], p0[distr1_p1_], p0[

distr1_p2_]);

complex <double > Cf2d2 = CF_JumpSize (0., 2, p0[distr2_], p0[distr2_p1_], p0[

distr2_p2_]);

complex <double > Cf3d2 = CF_JumpSize (0., 2, p0[distr3_], p0[distr3_p1_], p0[

distr3_p2_]);

complex <double > Cf4d2 = CF_JumpSize (0., 2, p0[distr4_], p0[distr4_p1_], p0[

distr4_p2_]);

complex <double > Cf1d4 = CF_JumpSize (0., 4, p0[distr1_], p0[distr1_p1_], p0[

distr1_p2_]);

complex <double > Cf2d4 = CF_JumpSize (0., 4, p0[distr2_], p0[distr2_p1_], p0[

distr2_p2_]);

complex <double > Cf3d4 = CF_JumpSize (0., 4, p0[distr3_], p0[distr3_p1_], p0[

distr3_p2_]);

complex <double > Cf4d4 = CF_JumpSize (0., 4, p0[distr4_], p0[distr4_p1_], p0[

93

distr4_p2_]);

complex <double > Cf1d6 = CF_JumpSize (0., 6, p0[distr1_], p0[distr1_p1_], p0[

distr1_p2_]);

complex <double > Cf2d6 = CF_JumpSize (0., 6, p0[distr2_], p0[distr2_p1_], p0[

distr2_p2_]);

complex <double > Cf3d6 = CF_JumpSize (0., 6, p0[distr3_], p0[distr3_p1_], p0[

distr3_p2_]);

complex <double > Cf4d6 = CF_JumpSize (0., 6, p0[distr4_], p0[distr4_p1_], p0[

distr4_p2_]);

double lambda1 = p0[lambda1_], lambda2 = p0[lambda2_], lambda3 = p0[lambda3_],

lambda4 = p0[lambda4_];

// variables for simple trapezoid integration on [0,t]

const int n = 100;

double step_size = t/n;

complex <double > integral;

// ------------------------------- c1 -------------------------------

// c1 = Real(X0 - integrate (0.5*(s1*s1 + 2.* p0[rho_]*s1*s2 + s2*s2) + lambda1

* (-1. + Cf1 + I*s1*Cf1d1) + lambda2 * (-1. + Cf2 + I*s2*Cf2d1) + lambda3 *

(-1. + Cf3 + I*s1*Cf3d1) + lambda4 * (-1. + Cf4 + I*s2*Cf4d1))

integral = 0.0;

for (double s = 0; s <= t; s += step_size)

{

double s1 = sigma1(s, T1, T2 , p0), s2 = sigma2(s, T1, T2, p0);

complex <double > Cf1 = CF_JumpSize(-I*s1 , 0, p0[distr1_], p0[distr1_p1_],

p0[distr1_p2_]);

complex <double > Cf2 = CF_JumpSize(-I*s2 , 0, p0[distr2_], p0[distr2_p1_],

p0[distr2_p2_]);

complex <double > Cf3 = CF_JumpSize(-I*s1 , 0, p0[distr3_], p0[distr3_p1_],

p0[distr3_p2_]);

complex <double > Cf4 = CF_JumpSize(-I*s2 , 0, p0[distr4_], p0[distr4_p1_],

p0[distr4_p2_]);

integral += step_size * (0.5*(s1*s1 + 2.*p0[rho_]*s1*s2 + s2*s2) +

lambda1 * (-1. + Cf1 + I*s1*Cf1d1) + lambda2 * (-1. + Cf2 + I*s2*

Cf2d1) + lambda3 * (-1. + Cf3 + I*s1*Cf3d1) + lambda4 * (-1.

+ Cf4 + I*s2*Cf4d1)) ;

}

double c1 = real(X0 - integral);

// ------------------------------- c2 --------------------------------

// c2 = -integrate (-s1*s1 - 2.* p0[rho_]*s1*s2 - s2*s2 + lambda1 * s1*s1 * real(

Cf1d2) + lambda2 * s2*s2 * real(Cf2d2) + lambda3 * s1*s1 * real(Cf3d2) +

lambda4 * s2*s2 * real(Cf4d2));

integral = 0.0;

for (double s = 0; s <= t; s += step_size)

{

double s1 = sigma1(s, T1, T2 , p0), s2 = sigma2(s, T1, T2, p0);

integral += step_size * (-s1*s1 - 2.*p0[rho_]*s1*s2 - s2*s2 + lambda1 *

s1*s1 * real(Cf1d2) + lambda2 * s2*s2 * real(Cf2d2) + lambda3 * s1*

s1 * real(Cf3d2) + lambda4 * s2*s2 * real(Cf4d2));

}

double c2 = real(-integral);

// ------------------------------- c4 ---------------------------------

// c4 = integrate (lambda1 * pow(s1 , 4.) * real(Cf1d4) + lambda2 * pow(s2 , 4.)

* real(Cf2d4) + lambda3 * pow(s1 , 4.) * real(Cf3d4) + lambda4 * pow(s2 , 4.)

* real(Cf4d4));

integral = 0.0;

for (double s = 0; s <= t; s += step_size)

{

double s1 = sigma1(s, T1, T2 , p0), s2 = sigma2(s, T1, T2, p0);

94

integral += step_size * (lambda1 * pow(s1, 4.) * real(Cf1d4) + lambda2

* pow(s2, 4.) * real(Cf2d4) + lambda3 * pow(s1, 4.) * real(Cf3d4) +

lambda4 * pow(s2, 4.) * real(Cf4d4));

}

double c4 = real(integral);

// ------------------------------- c6 ---------------------------------

// c6 = -integrate(lambda1 * pow(s1 , 6.) * real(Cf1d6) + lambda2 * pow(s2 , 6.)

* real(Cf2d6) + lambda3 * pow(s1 , 6.) * real(Cf3d6) + lambda4 * pow(s2 , 6.)

* real(Cf4d6));

integral = 0.0;

for (double s = 0; s <= t; s += step_size)

{

double s1 = sigma1(s, T1, T2 , p0), s2 = sigma2(s, T1, T2, p0);

integral += step_size * (lambda1 * pow(s1 , 6.) * real(Cf1d6) + lambda2

* pow(s2, 6.) * real(Cf2d6) + lambda3 * pow(s1, 6.) * real(Cf3d6) +

lambda4 * pow(s2, 6.) * real(Cf4d6));

}

double c6 = real(-integral);

double L = 10.;

*a = c1 - L * sqrt(c2 + sqrt(c4 + sqrt(c6)));

*b = c1 + L * sqrt(c2 + sqrt(c4 + sqrt(c6)));

}

// xi function used in the COS method

__device__ double xi(double k, double a, double b, double c, double d

)

{

double ret = 1.0/(1.0+ pow(k*pi/(b-a) ,2))*(cos(k*pi*(d-a)/(b-a))*exp(d)-cos(k*pi*(c-a)

/(b-a))*exp(c)+k*pi/(b-a)*sin(k*pi*(d-a)/(b-a))*exp(d)-k*pi/(b-a)*sin(k*pi*(c-a)/(

b-a))*exp(c));

return (ret);

}

// psi function used in the COS method

__device__ double psi(double k, double a, double b, double c, double d)

{

double ret = 0.0;

if (k == 0)

ret = d-c;

else

ret = (sin(k*pi*(d-a)/(b-a))-sin(k*pi*(c-a)/(b-a)))*(b-a)/(k*pi);

return (ret);

}

// ************ Kernel for the calculation of option prices in parallel ************ //

__global__ void option_price(int *option_type , double *F0 , double *K, double *tau ,

double *T1 , double *T2 , double *p0 , double* results)

{

complex <double > I(0., 1.);

extern __shared__ double sdata []; // shared data of the block , contains the

summands , "extern" keyword tells the program it is the shared data

// thread tx handles the summand with index k=tx

int tx = threadIdx.x;

int bx = blockIdx.x;

// normalized log start value

double x = log(F0[bx] / K[bx]);

// calculate truncation limits and store them in a, b

double a, b;

calc_truncation_limits (&a, &b, x, tau[bx], T1[bx], T2[bx], p0);

95

double U = 2.0 / (b - a)*(-xi(tx, a, b, a, 0) + psi(tx , a, b, a, 0));

if (tx == 0) U *= 0.5; // 0th summand is weighted with 1/2

complex <double > phi = CF(double(tx)*pi/(b - a), 0, tau[bx], T1[bx], T2[bx], p0);

// calculate the (tx)-th summand

// phi * exp(i*k*pi*(x-a)/(b-a))*U_k

sdata[tx] = real(phi * exp(I*double(tx)*pi*(x-a)/(b-a)) * U); // as in (30) in

COS.pdf

// wait until all threads have filled in sdata []

__syncthreads ();

// reduction sum them up

for (int offset = blockDim.x / 2; offset > 0; offset >>= 1)

{

if (tx < offset) sdata[tx] += sdata[tx + offset];

__syncthreads ();

}

// 0th thread contains the whole sum and returns the result for the current

block

if (tx == 0) {

results[bx] = K[bx] * sdata [0];

// default output is the put price , in case of a call it needs to get

adjusted

if (option_type[bx] == 1) // use the put -call parity to get the call

price

results[bx] += F0[bx] - K[bx];

}

}

/* *************************** Copy Data , Error Function , Compute Option prices ...

********************* */

#ifdef __cplusplus

extern "C"

#endif

// copies data to the GPU global memory

void copy_data(int *option_type , double *F0 , double *K, double *tau , double *T1, double

*T2 , double *W, double *observed , int n)

{

h_option_type = option_type; h_F0 = F0; h_K = K; h_tau = tau; h_T1 = T1; h_T2 =

T2; h_W = W; h_observed = observed;

// allocate space on global GPU memory for the option data and the results array

cudaMalloc ((void **)&d_option_type , n*sizeof(int));

cudaMalloc ((void **)&d_F0 , n*sizeof(double));

cudaMalloc ((void **)&d_K , n*sizeof(double));

cudaMalloc ((void **)&d_tau , n*sizeof(double));

cudaMalloc ((void **)&d_T1 , n*sizeof(double));

cudaMalloc ((void **)&d_T2 , n*sizeof(double));

cudaMalloc ((void **)&d_results , n*sizeof(double));

cudaMemcpy(d_option_type , h_option_type , n*sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(d_F0 , h_F0 , n*sizeof(double), cudaMemcpyHostToDevice);

cudaMemcpy(d_K , h_K , n*sizeof(double), cudaMemcpyHostToDevice);

cudaMemcpy(d_tau , h_tau , n*sizeof(double), cudaMemcpyHostToDevice);

cudaMemcpy(d_T1 , h_T1 , n*sizeof(double), cudaMemcpyHostToDevice);

cudaMemcpy(d_T2 , h_T2 , n*sizeof(double), cudaMemcpyHostToDevice);

// set the number of blocks to n, each block handles pricing of one option!

num_blocks = n;

96

// inform the rest of the code that te data has been loaded

printf("Option data sucessfuly copied .\n");

bLoad = true;

}

#ifdef __cplusplus

extern "C"

#endif

void dealloc_data (void)

{

cudaFree(d_option_type);

cudaFree(d_F0);

cudaFree(d_K);

cudaFree(d_tau);

cudaFree(d_T1);

cudaFree(d_T2);

cudaFree(d_results);

// inform the rest of the code that te data has been removed

bLoad = false;

printf("Option data sucessfuly deallocated .\n");

}

#ifdef __cplusplus

extern "C"

#endif

void set_block_size(int block_size_)

{

block_size = block_size_;

}

#ifdef __cplusplus

extern "C"

#endif

// computes option prices for loaded data

void compute_option_prices(double *p0 , int use_IV , double *_out)

{

// check if data has been loaded

if (!bLoad)

{

printf("Error: call copy_data first to load option data\n");

return;

}

// copy the parameter array to the GPU memory

cudaMalloc ((void **)&d_p0 , N_PARAMETERS*sizeof(double));

cudaMemcpy(d_p0 , p0, N_PARAMETERS*sizeof(double), cudaMemcpyHostToDevice);

// calculate the option prices on the GPU

option_price <<<num_blocks , block_size , block_size*sizeof(double) >>>(

d_option_type , d_F0 , d_K , d_tau , d_T1 , d_T2 , d_p0 , d_results);

// copy the results back to _out

cudaMemcpy(_out , d_results , num_blocks*sizeof(double), cudaMemcpyDeviceToHost);

// is use_IV == 1, replace option values with their implied volatilities

if (use_IV)

for (int index = 0; index < num_blocks; ++index)

_out[index] =

implied_volatility_from_a_transformed_rational_guess(_out[

index], h_F0[index], h_K[index], h_tau[index], h_option_type

[index]);

// clean up

cudaFree(d_p0);

}

97

#ifdef __cplusplus

extern "C"

#endif

// computes the RMSE or Average Relative Error using option prices or IVs for

// a given a parameter array p0 and loaded option data

// use_RelErr = 1 -> relative error , use_RelErr = 0 -> RMSE

double error_func (double *p0 , int use_IV , int use_RelErr)

{

// check if data has been loaded

if (!bLoad)

{

printf("Error: call copy_data first to load option data\n");

return 0.0;

}

double error = 0.0;

// host variable to store the calculated option prices

double* h_results = new double[num_blocks];

compute_option_prices(p0 , use_IV , h_results);

// calculate the error

for(int index = 0 ; index < num_blocks ; ++ index)

{

// error += weight[i] * (model - observed)^2

// use the relative error or not

if (use_RelErr) {

error += h_W[index] * abs(h_results[index] - h_observed[index])

/ h_observed[index];

} else {

error += pow(h_W[index] * (h_results[index] - h_observed[index])

, 2);

}

}

error = error/num_blocks;

if(!use_RelErr) error = sqrt(error);

// clean up

delete [] h_results;

cudaFree(d_p0);

// return the error

return (error);

}

Listing A.2: cuda pricing.h

#ifndef cuda_pricing_H

#define cuda_pricing_H

#ifdef __cplusplus

extern "C" {

#endif

double error_func(double *p0 , int use_IV , int use_RelErr);

void compute_option_prices(double *p0 , int use_IV , double *_out);

void copy_data(int *option_type , double *F0 , double *K, double *tau , double *T1, double

*T2 , double *W, double *observed , int n);

void dealloc_data(void);

void set_block_size(int block_size_);

98

#ifdef __cplusplus

}

#endif

#endif

Listing A.3: gpuCalib.c

#ifdef __cplusplus

extern "C" {

#endif

#include <R.h>

#include <Rinternals.h>

#include <R_ext/Rdynload.h>

#include "cuda_pricing.h"

SEXP Error_Func(SEXP p0 , SEXP use_IV , SEXP use_RelErr)

{

// object for returning the result

SEXP out;

double *_p0 , _out;

int _use_IV , _use_RelErr;

_p0 = REAL(p0);

_use_IV = INTEGER(use_IV)[0];

_use_RelErr = INTEGER(use_RelErr)[0];

PROTECT(out = allocVector(REALSXP ,1));

_out = error_func (_p0 , _use_IV , _use_RelErr);

REAL(out)[0] = _out;

UNPROTECT (1);

return out;

}

SEXP Compute_Option_Prices(SEXP option_type , SEXP F0 , SEXP K, SEXP tau , SEXP T1, SEXP T2

, SEXP p0, SEXP use_IV)

{

// copy the data to GPU memory

int *_option_type;

double *_F0 , *_K, *_tau , *_T1 , *_T2;

_option_type = INTEGER(option_type);

_F0 = REAL(F0);

_K = REAL(K);

_tau = REAL(tau);

_T1 = REAL(T1);

_T2 = REAL(T2);

R_len_t n = length(F0);

// don ’t need {W, observed} since they are not used anywhere

copy_data(_option_type , _F0 , _K , _tau , _T1 , _T2 , NULL , NULL , n);

double *_p0;

int _use_IV;

_p0 = REAL(p0);

_use_IV = INTEGER(use_IV)[0];

// compute the options prices and store them in the array pointer *_out

double *_out = malloc(sizeof(double)*n);

compute_option_prices (_p0 , _use_IV , _out);

dealloc_data ();

99

// copy the data from _out to the R object , free _out and return out

SEXP out = PROTECT(allocVector(REALSXP , n)); // object for returning the result

for(int index =0; index <n; ++index)

REAL(out)[index] = _out[index];

free(_out); // free _out

UNPROTECT (1);

return out;

}

SEXP Copy_Data(SEXP option_type , SEXP F0, SEXP K, SEXP tau , SEXP T1 , SEXP T2, SEXP W,

SEXP observed)

{

int *_option_type;

double *_F0 , *_K, *_tau , *_T1 , *_T2 , *_W, *_observed;

_option_type = INTEGER(option_type);

_F0 = REAL(F0);

_K = REAL(K);

_tau = REAL(tau);

_T1 = REAL(T1);

_T2 = REAL(T2);

_W = REAL(W);

_observed = REAL(observed);

R_len_t n = length(F0);

copy_data(_option_type , _F0 , _K , _tau , _T1 , _T2 , _W, _observed , n);

return R_NilValue;

}

SEXP Dealloc_Data ()

{

dealloc_data ();

return R_NilValue;

}

SEXP Set_Block_Size(SEXP BLKSZ)

{

int _blk_size;

_blk_size = INTEGER(BLKSZ)[0];

set_block_size (_blk_size);

return R_NilValue;

}

// DLL scaffolding for R

R_CallMethodDef callMethods [] = {

{"Error_Func", (DL_FUNC)&Error_Func , 3},

{"Compute_Option_Prices", (DL_FUNC)&Compute_Option_Prices , 8},

{"Copy_Data", (DL_FUNC)&Copy_Data , 8},

{"Dealloc_Data", (DL_FUNC)&Dealloc_Data , 0},

{"Set_Block_Size", (DL_FUNC)&Set_Block_Size , 1},

{NULL , NULL , 0}

};

void R_init_myLib (DllInfo *info) {

R_registerRoutines (info , NULL , callMethods , NULL , NULL);

}

#ifdef __cplusplus

} // closing brace for extern "C"

#endif

100

Listing A.4: gpuCalib.R

Compute_Option_Prices <-function(option_type , F0 , K, tau , T1, T2, p, use_IV)

{

if (!is.loaded(’gpuCalib ’)) {

dyn.load(’gpuCalib.dll’)

}

ret <-.Call("Compute_Option_Prices", as.integer(option_type), as.numeric(F0), as.

numeric(K), as.numeric(tau), as.numeric(T1), as.numeric(T2), as.numeric(p), as.

integer(use_IV))

return (ret)

}

Error_Function <-function(p, use_IV, use_RelErr)

{

if (!is.loaded(’gpuCalib ’)) {

dyn.load(’gpuCalib.dll’)

}

RMSE <-.Call("Error_Func", as.numeric(p), as.integer(use_IV), as.integer(use_RelErr

))

return (RMSE)

}

Copy_Data <-function(option_type , F0, K, tau , T1, T2, W, observed)

{

if (!is.loaded(’gpuCalib ’)) {

dyn.load(’gpuCalib.dll’)

}

Null <- .Call("Copy_Data", as.integer(option_type), as.numeric(F0), as.numeric(K),

as.numeric(tau), as.numeric(T1), as.numeric(T2), as.numeric(W), as.numeric(

observed))

}

Dealloc_Data <-function ()

{

if (!is.loaded(’gpuCalib ’)) {

dyn.load(’gpuCalib.dll’)

}

Null <-.Call("Dealloc_Data")

}

Set_Block_Size <-function(block_size)

{

if (!is.loaded(’gpuCalib ’)) {

dyn.load(’gpuCalib.dll’)

}

Null <-.Call("Set_Block_Size", as.integer(block_size))

}

101

Bibliography

[1] F. Fang and C. W. Oosterlee, “A novel pricing method for european options based on fourier-cosine
series expansions,” SIAM J. Sci. Comput., vol. 31, pp. 826–848, Nov. 2008.

[2] R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC financial
mathematics series, Boca Raton (Fla.), London, New York: Chapman & Hall/CRC, 2004.

[3] P. E. Protter, Stochastic integration and differential equations. Applications of mathematics, Berlin,
Heidelberg, New York: Springer, 2004.

[4] T. Rheinländer and J. Sexton, Hedging Derivatives, vol. 15 of Advanced Series on Statistical Science
and Applied Probability. World Scientific, May 2011.

[5] K.-i. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge Studies in Advanced
Mathematics). Cambridge University Press, 1st ed., Nov. 1999.

[6] R. Aid, Electricity Derivatives. Springer Briefs in Quantitative Finance, Springer International
Publishing, 2015.

[7] D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest Rates: A
New Methodology for Contingent Claims Valuation,” Econometrica, vol. 60, pp. 77–105, January
1992.

[8] K. W. Alexander Eydeland, Energy and Power Risk Management: New Developments in Modeling,
Pricing, and Hedging. Springer Briefs in Quantitative Finance, Wiley Finance, Feb. 2003.

[9] J. Viehmann, “Risk premiums in the german day-ahead electricity market,” Energy Policy, vol. 39,
no. 1, pp. 386–394, 2011.

[10] D. Frestad, “Common and unique factors influencing daily swap returns in the Nordic electricity
market, 1997-2005,” Energy Economics, vol. 30, pp. 1081–1097, May 2008.

[11] D. Frestad, “Correlations among forward returns in the Nordic electricity market,” Int. J. Theor.
Appl. Financ, vol. 12, no. 5, pp. 589–603, 2009.

[12] S. K. Dennis Frestad, Fred Espen Benth, “Modeling term structure dynamics in the nordic electricity
swap market,” The Energy Journal, vol. 31, no. 2, pp. 53–86, 2010.

[13] S. Koekebakker and F. Ollmar, “Forward curve dynamics in the nordic electricity market,” Man-
agerial Finance, vol. 31, no. 6, pp. 73–94, 2005.

[14] F. E. Benth and S. Koekebakker, “Stochastic modeling of financial electricity contracts,” Energy
Economics, vol. 30, no. 3, pp. 1116 – 1157, 2008.

[15] R. Kiesel, G. Schindlmayr, and R. H. Börger, “A two-factor model for the electricity forward mar-
ket,” Quantitative Finance, vol. 9, no. 3, pp. 279–287, 2009.

[16] G. Benmenzer, E. Gobet, and C. Jérusalem, “Arbitrage free cointegrated models in gas and oil
future markets,” ArXiv e-prints, Dec. 2007.

102

[17] S. Ohana, “Modeling global and local dependence in a pair of commodity forward curves with an
application to the {US} natural gas and heating oil markets,” Energy Economics, vol. 32, no. 2,
pp. 373 – 388, 2010.

[18] R. F. Engle and C. W. J. Granger, “Co-integration and Error Correction: Representation, Estima-
tion, and Testing,” Econometrica, vol. 55, pp. 251–76, March 1987.

[19] J. J. Lucia and E. S. Schwartz, “Electricity prices and power derivatives: Evidence from the nordic
power exchange,” Review of Derivatives Research, vol. 5, no. 1, pp. 5–50, 2002.

[20] l. Cartea and M. Figueroa, “Pricing in electricity markets: a mean reverting jump diffusion model
with seasonality,” finance, EconWPA, 2005.

[21] M. T. Barlow, “A diffusion model for electricity prices,” Mathematical Finance, vol. 12, no. 4,
pp. 287–298, 2002.

[22] A. Cartea, M. G. Figueroa, and H. Geman, “Modelling Electricity Prices with Forward Looking
Capacity Constraints,” Birkbeck Working Papers in Economics and Finance 0802, Birkbeck, De-
partment of Economics, Mathematics & Statistics, Feb. 2008.

[23] R. Carmona and M. Coulon, A Survey of Commodity Markets and Structural Models for Electricity
Prices, pp. 41–83. New York, NY: Springer New York, 2014.

[24] T. Kanamura and K. Ōhashi, “A structural model for electricity prices with spikes: Measurement of
spike risk and optimal policies for hydropower plant operation,” Energy Economics, vol. 29, no. 5,
pp. 1010 – 1032, 2007.

[25] T. Kanamura, “A supply and demand based volatility model for energy prices,” Energy Economics,
vol. 31, no. 5, pp. 736–747, 2009.

[26] J.-M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, and A. Le Marchand, “Louis bachelier
on the centenary of théorie de la spéculation,” post-print, HAL, 2000.

[27] J. P. Boyd, “Chebyshev and fourier spectral methods,” 1999.

[28] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers texte
imprimé. International series in pure and applied mathematics, Auckland, Bogota, Paris: McGraw-
Hill Book Company, 1978.

[29] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Pro-
gramming. Addison-Wesley Professional, 1st ed., 2010.

[30] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2013.

[31] M. LLC, “Cuda c/c++ basics,” 2011.

[32] M. F. Dixon, S. Khan, and M. Zubair, “gpusvcalibration: A R Package for Fast Stochastic Volatility
Model Calibration Using GPUs,” Social Science Research Network Working Paper Series, Feb. 2014.

[33] R. Storn and K. Price, “Differential evolution; a simple and efficient heuristic for global optimization
over continuous spaces,” J. of Global Optimization, vol. 11, pp. 341–359, Dec. 1997.

[34] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,” Soft Computing, vol. 9,
no. 6, pp. 448–462, 2005.

[35] P. Jäckel, “Let’s be rational,” Wilmott, vol. 2015, no. 75, pp. 40–53, 2015.

103

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Implementation of a Lévy driven electricity forward model

Mihaljevi Sre ko

Zürich, 29.08.2016

	Basic mathematical tools
	Random variables and probability spaces
	Characteristic and generating functions
	Convergence of random variables
	Pointwise convergence
	Almost-sure convergence
	Convergence in probability
	Convergence in distribution

	Stochastic processes, filtrations, random times, martingales
	Stochastic processes
	Filtrations and history
	Random times

	Martingales and local martingales
	Brownian Motion
	Poisson process
	Compensated Poisson process
	Poisson random measure
	Compensated Poisson random measure

	Lévy processes
	Characteristic function
	Compound Poisson process
	Jump and Lévy measure
	Lévy-Ito decomposition
	Lévy-Khinchin representation
	Exponential moments
	Lévy processes and martingales

	Additive processes
	Stochastic calculus

	Electricity markets
	Electricity trading
	Day-ahead market
	Futures and forward market
	Balancing and reserve market
	Market coupling

	Electricity Exchanges

	An overview of price models
	Black 76 model
	Relation of the spot and forward price
	Cost of carry formula
	Convergence relation
	Spot-forward risk neutral relation
	Risk premium

	HJM-style models
	Single-factor model
	Modeling multiple granularities
	Two-factor model
	Joint modelling
	Conclusion

	Spot models
	Mean-reverting diffusion model
	Mean-reverting jump-diffusion model
	Multi-factor models

	Conclusion
	Structural models
	Barlow's model as a basic structural model
	Cartea and Villaplana's two factor structural model
	Conclusion

	Limitations of Brownian motion driven financial modelling

	COS pricing method
	Inverse Fourier Integral via Cosine Expansion
	Pricing European options
	Coefficients Vk for plain vanilla options
	Simplified formula
	Error analysis
	Choice of the truncation range

	Parallel computing with CUDA
	Serial and parallel computing
	The move towards general purpose GPU computing
	CPU and GPU comparison
	Parallel programming with CUDA
	A scalable programming model
	Kernels, thread blocks and memory hierarchy

	Parallel reduction sum algorithm
	Speeding up pricing and calibration

	Our model
	Motivation
	The Lévy driven model
	Option pricing
	Calibration
	Differential evolution optimization

	Results
	Conclusion
	Further steps
	Two-market model proposal

	Implementation and source code

