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Kurzfassung

Windlasten wirken auf verschiedene Bauwerkstypen, u.a. Wohnhäuser, Hochhäuser, Türme, Hochspan-
nungsleitungen, Windturbinen zu Land und zur See, Kräne und Industrieschornsteine. Die Ursachen für
Windschäden können unterschiedlicher Natur sein, etwa erhöhte Windlasten bei Stürmen (z.B. Orkane,
Taifune), aeroelastische Instabilität, Gebäudeschäden durch plötzliche Änderung des Winddruckgradien-
ten oder kumulative Ermüdungsschäden in Bauteilen. Aus diesem Grund wurde zur Windbeanspruchun-
gen von Bauwerken in den letzten Jahrzehnten viel geforscht. Daher liegt auch das Hauptaugenmerk
dieser Dissertation, neben anderen Arten der Anregung, bei winderregten Schwingungen.

Das Hauptziel der Dissertation ist die inverse Identifikation der Windlast, welche die Ursache
winderregter Schwingungen ist. Die Bezeichnung invers deutet darauf hin, dass die Windlast nicht einfach
gemessen werden kann, sondern durch ihre Auswirkungen auf die Struktur, nämlich die Strukturantwort,
bestimmt wird. Dazu wird eine neue Impulsantwort-Matrix hergeleitet, welche dann zur Identifizierung
der Lasten verwendet wird. Die schlechte Kondition der Impulsantwort-Matrix macht es notwendig, ein
Regularisierungsschema anzuwenden, um die Last aus dem verrauschten gemessenen Antwortsignal
zu identifizieren. Zur Lösung des inversen Problems wurde die Tikhonov-regularisierte Lösung in
Verbindung mit dem generalisierten Kreuzvalidierungsverfahren (GCV) und der L-Kurven-Methode
verwendet. Das Identifikationsverfahren wurde für ein einfaches Simulationsbeispiel sowie für das
entsprechende Experiment implementiert. Es wird gezeigt, dass die Genauigkeit der experimentell
bestimmten Lasten von der Sensibilität der Messgeräte in verschiedenen Frequenzbereichen abhängt.
Im nächsten Schritt wird ein Verfahren zur inversen Windlastbestimmung präsentiert, welches auf
Mehrfreiheitsgrad-Systeme angewendet werden kann und für praktische Zwecke besonders geeignet ist.
Zur Steigerung von Genauigkeit und Recheneffizienz erfolgt die Lastbestimmung im modalen Unterraum.
Dafür sind nur die modalen Parameter eines Systems, nämlich Eigenfrequenzen und -vektoren sowie
die Dämpfungskoeffizienten, notwendig. Es wird untersucht, welcher Antworttyp geeigneter für das
vorgeschlagene Verfahren zur Windlastbestimmung ist. Die Ergebnisse der Simulation für eine reale
Struktur zeigen, dass die modalen Windlasten mit höherer Genauigkeit aus der Verschiebungs- als aus
der Beschleunigungsantwort bestimmt werden können, selbst bei starkem Rauschen. Danach wurde
das präsentierte Verfahren zur Windlastbestimmung im Feldversuch erprobt. Die Messungen erfolgten
an einem 9,1 m hohen abgespannten Mast. Die modalen Windlasten werden im modalen Unterraum
des Mastes identifiziert. Die experimentell ermittelten modalen Lasten wurden durch Vergleich mit den
Simulationsergebnissen validiert.

Da das Wiener Doktoratskolleg (DK) Water resource systems ein interdisziplinäres Programm ist, wird
viel Wert auf Forschungszusammenarbeit zwischen und innerhalb der Fachgruppen des DKs gelegt. Der
Beitrag des Dissertanten zur gemeinsamen Forschungsarbeit besteht aus zwei Teilen. Der erste Teil ver-
folgt das zweite Ziel der Dissertation, nämlich stochastische Antwortuntersuchung einer Struktur mithilfe
Daten zur mittleren Windgeschwindigkeit, wenn nur unstetige/spärliche Antwortdaten der Struktur zumin-
dest innerhalb eines Jahres verfügbar sind. Das Ergebnis einer solchen Studie ist besonders hilfreich für
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die Schwingungsdämpfung bei Windanregung. Die Daten zur Windgeschwindigkeit wurden von der Wet-
terstation des Hydrological Open Air Laboratory (HOAL) des DKs geliefert. Daraus wurden Histogramme
und die zugehörigen Wahrscheinlichkeitsverteilungen der mittleren Wind-geschwindigkeit verschiedener
Windrichtungen erhalten. Simultan zur Strukturantwort wurde auch die mittlere Windgeschwindigkeit
gemessen. Die Beschleunigung des Mastes wurde mittels eines automatischen 18-Stunden Auslösers
gemessen. Nach jeder Auslösung erfolgte eine zehnminütige Aufzeichnung der Beschleunigungen.
Dann wurde der mathematische Zusammenhang zwischen den Daten der mittleren Windgeschwindigkeit
und der Standardabweichung der Antwort, Schwellenüberschreitungen der Verschiebungsantwort und
Flächenmomenten der Leistungsspektraldichte der Spannungen ermittelt.

Der zweite Teil der Gemeinschaftsarbeit des Dissertanten trägt nicht unmittelbar zu den Zielen der
Dissertation bei, dennoch sind die angewandten Theorien für den Inhalt der Dissertation recht relevant.
In dieser Arbeit werden die methodologischen Entwicklungen einer neuen Modellordnungsreduktions-
(MOR) Strategie basierend auf “proper orthogonal decomposition” (POD) für nichtlineare dynamische
Probleme präsentiert. Eine Beispielstruktur mit linearelastischem Materialverhalten sowie ein realer
Krankenhausbau mit Basisisolierung aus einzelnen Reibungslagern wurden zur Bewertung der Methode
herangezogen. Die Ergebnisse zeigen genaue Annäherungen der physikalischen (vollen) Antworten
mittels dieser neuen MOR-Strategie, falls das wahrscheinliche Verhalten der Struktur bereits durch
POD-Schnappschüsse erfasst wurde.

Die Dissertation versuchte die Effizienz der Impulsantwortmatrix von Strukturen zu verbessern und
entwickelte eine praktische Vorgangsweise zur inversen Ermittlung der Windlasten auf eine Struktur
- nur mittels Daten, die in der Wirklichkeit gemessen werden können. Die Dissertation liefert eine
effektive Methode zur Untersuchung der langzeitigen stochastischen Antwort winderregter Strukturen,
wobei das ständige Messen der Strukturantwort nicht mehr nötig ist. Diese Methode kann auch bei
numerischen Simulationen eingesetzt werden, um realistischere Untersuchungen zur langzeitigen Antwort
von Strukturen bei Wind zu erhalten.
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Abstract

Wind can affect a wide range of structures including ordinary buildings, high-rise buildings and towers,
overhead power lines, on/offshore wind turbines, cranes and industrial chimneys etc. In this sense the
wind loading accounts for the destructive effects on the structures, which — depending on the particular
case — can be due to wind overloads in storm event (e.g. hurricanes, typhoons), aeroelastic stability
issues, architectural damages due to sudden change in wind pressure gradients or cumulative fatigue
damage in structural elements. As a result wind loading of the structures has received substantial research
works in the past decades. Due to this reason, the main attention in this dissertation was drawn to the
wind-induced vibration of structures among other excitation sources.

The primary goal of the dissertation is inverse identification of the wind load, which is the source
of wind-induced vibrations. By “inversely” it is pointed out that wind load cannot be easily measured
directly and it is recovered from its effect on the structure, i.e. from the structural response. To this end
new formulations to derive the impulse response matrix is provided, which is then used in the problem of
load identification. The ill-conditioning of the impulse response matrix made it necessary to deploy a
regularization scheme to recover the applied force from noise polluted measured response. The Tikhonov
regularized solution in conjunction with generalized cross validation (GCV) and L-curve method were
used to solve the inverse problem. The identification procedure was implemented for a simple simulation
example as well as its corresponding experimental laboratory case. It is shown that the accuracy of
experimentally identified load depends on the sensitivity of measurement instruments over the different
frequency range. In the next step, a procedure for inverse wind load reconstruction is presented, which is
applicable to multiple degrees of freedom system and is especially suitable for practical purposes. For the
sake of higher accuracy and computational efficiency the load identification is performed in the modal
subspace. In this way just the modal parameters of a system namely eigenfrequencies and -vectors as well
as the damping ratios should be known. It is investigated, which response type is more appropriate for
the proposed wind load reconstruction procedure. The results of problem simulations for a real structure
demonstrate that the modal wind loads can be successfully identified more accurately from displacement
than acceleration response even at relatively high noise levels. Afterwards the field application of the
introduced procedure for the wind load identification was carried out. The structure under measurement
is a 9.1 m (30 ft) tall guyed mast. The modal wind loads are identified in modal subspace of the mast for
several single degree of freedom systems, whose characteristic parameters are obtained by an operational
modal analysis procedure. The experimentally reconstructed modal loads were verified by inspecting the
analogy between field and simulation results.

Since Vienna doctoral program on water resource systems (DK) is a multidisciplinary program,
collaborative research works between and within research clusters of the DK is one of the main focuses
of the doctoral program. The author’s contribution to the collaborative research work consists of two
parts. The first part pursues the second goal of the dissertation, which is stochastic response analysis
of a structure assisted by mean wind speed data, when just the structure discontinuous/sparse response
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data at least within one year is available. The outcome of such study is remarkably helpful to the
structural vibration control under wind excitations. The wind speed data was provided by the weather
station, belonging to the Hydrological Open Air Laboratory (HOAL) of the DK. Thereby histogram
and accordingly the mean wind speed probability distribution function of different blowing directions
were obtained. Every triggered structural data was tagged by its associated mean wind speed data.
The structural acceleration of the mast was measured according to an 18-hour automatic trigger. The
ten-minutes acceleration data was recorded after each triggering. Then the mathematical relationship
between mean wind speed data and response standard deviation, displacement response threshold passage
counts and moments of area of the stress power spectral density was established.

The author’s second collaboration may not directly contribute to attain the objectives of the disserta-
tion, but the applied theories are pretty relevant to the content of the dissertation. In this collaboration, the
methodical developments of a new model order reduction (MOR) strategy based on the proper orthogonal
decomposition (POD) method, which applies to the nonlinear dynamic problems, are presented. An
academic example structure with bilinear elastoplastic material behavior as well as a realistic hospital
complex with single frictional base isolators were used to assess the introduced method. The results
demonstrate accurate approximations of the physical (full) responses by means of this new MOR strategy
if the probable behavior of the structure has already been captured in the POD snapshots.

The dissertation tried to improve the efficiency of the impulse response matrices of structural systems
and developed a practical procedure for inverse reconstruction of wind loads on the structure, only based
on the data that can be achieved via measurement in reality. The dissertation provided an effective method
for long-term stochastic response analysis of structures under wind excitation, while continuous response
measurement is no longer needed. This method can also be deployed in numerical simulations to achieve
more realistic long-term response analysis of structures under wind.
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Chapter 1

Introduction

1.1 Motiviation

Nowadays due to developments in technology and advancements of computers, data acquisition and
measurement devices, the experimental analysis of structures plays a supplementary and important role
in assessment of structures behavior. In light of this point, the main goal of the dissertation is to develop
methods in structural dynamics that are applicable in field and experimental purposes especially under
wind excitations. Those required data for this purpose could be obtained from measurement of structural
responses or for instance mean wind speed data.

The main attention in this dissertation was drawn to the wind-induced vibration. This is due to the fact
that wind affects a large variety of the man-made structures on earth. The wind effects especially wind
loading on the structures, depending on the particular case, could be destructive and impose considerable
costs for maintenance or enormous expenses in case of structural failures. The good knowledge on the
features of wind loading turns out to a better design and analysis of the structures. However getting such
knowledge is pretty difficult, since wind loads (pressure) can not be measured in real scales easily and
either simulations or reduced-scale experiments must be conducted. In either case some simplifications
or assumptions needs be made, that those are later translated in terms of uncertainties. Moreover wind
features the long-term action, of order of decades, on the structures and it is a loading source which is
almost alway present. As a result, for studying the structural response or gradual damage under wind
loading, long and continuous observation is demanded, which might not be always or in every case
possible.

With respect to the mentioned complications in studying of wind loading effects on the structures, two
main goals are pursued in this dissertation. Those are firstly and primarily reconstruction of acting wind
loads on a structure from the measured structural responses and secondly long-term structural response
analysis under wind according to available sparse structural response data, assisted by the corresponding
continuous record of wind speed data.

1.2 Research questions corresponding to dissertation goals

In order to develop any analysis procedure, some theoretical development is always needed beforehand
and since the dissertation deals with the experimental methods, additional practical consideration should
be made too. Following, the research questions with their associated chapters in the dissertation are
addressed, which will come up in every stage of work to attain the mentioned goals:
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1. Introduction

• How can an efficient and accurate impulse response matrix be generated, which only requires the
modal properties of the structure? (Chapter 2)

• Is it possible to reconstruct wind loads acting on a multiple degrees of freedom structures solely
from measured responses? In this Chapter a procedure for this purpose is introduced and evaluated
by the simulation of the problem. (Chapter 3)

• Does the field application of the introduced procedure in Chapter 3 identifies the wind loads with
the quality as observed in the problem simulation? (Chapter 4)

Chapter 5 includes two sections and provides the results of collaborative research projects with two
other PhD candidates, as the fulfillment of the requirements of the doctoral program. The first section of
Chapter 5 concerns the second goal of this dissertation, while the second section of this Chapter may not
directly correspond to the dissertation goals, however its applied methods and theories are quite relevant
to the course of research in this dissertation. This Chapter answers the following research questions:

• How can wind speed data assist to analyze the stochastic response of structures under wind
vibration over one year, when just the discontinuous/sparse response data is available? (Chapter 5,
section 5.1)

• How could be an efficient order reduction strategy be developed, that applies to nonlinear dynamic
problems? (Chapter 5, section 5.2)

The dissertation was written in the cumulative paper-based format and organized by chapters. The
chapters are made of scientific manuscripts, which are either published in a scientific peer-reviewed
journal, or were already submitted and consequently is in process. The content of chapters is given as
follows:

Chapter 2 describes the details for deriving an augmented impulse response matrix. The applicability
of the introduced impulse response matrix in wind load identification for a simple structure was success-
fully examined in the dynamics modeling laboratory. Chapter 2 was published in the journal of Sound
and Vibrations (Kazemi-Amiri and Bucher (2015)).

In Chapter 3, the development of a practical procedure for wind load identification of real structures
is, based on the findings of Chapter 2, reported. This chapter was submitted to Mechanical systems and
Signal Processing. The accuracy of the load identification procedure was evaluated by simulation of the
problem through modeling of correlated mean wind speeds. In this chapter an import issue, which is
finding the proper response quantity (displacement or acceleration) for wind load identification, is also
investigated.

In Chapter 4, the results of filed application to a real structure, according to the introduced method
in Chapter 3, are presented. This chapter comprehensively deals with the operational modal analysis
of the structure, experimental details in wind load identification and then describes the validation of
reconstructed wind loads in modal subspace . Chapter 4 was submitted to the journal of Wind Engineering
& Industrial Aerodynamics. The short version of this chapter, which only reports the experimental results
briefly, was presented in a peer-review-based conference (Movic&Rasd 2016). This work was accepted
for publication in Journal of Physics: Conference series.

Chapter 5, section 5.1 describes the suggested methods for stochastic response analysis of a structure
under wind-induced excitations from the sparse measured response data. The one year standard deviation
of structural response at an arbitrary point, a certain threshold passage probability and application to
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1. Introduction

fatigue analysis were discussed in the mentioned chapter. The measurement was carried out on the same
structures as in Chapter 4. This section is in preparation for submission to a journal.

Chapter 5, section 5.2 was recently accepted for publication in Earthquake Engineering and Structural
Dynamics (Bamer et al. (2016)). This section provides a methodical development for model order
reduction in treatment of nonlinear dynamic problems with application to earthquake engineering.
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Chapter 2

Derivation of a new parametric impulse
response matrix utilized for nodal wind
load identification by response
measurement

This paper provides new formulations to derive the impulse response matrix, which is then used in the
problem of load identification with application to wind induced vibration. The applied loads are inversely
identified based on the measured structural responses by solving the associated discrete ill-posed problem.
To this end — either based on the parametric structural model or modal characteristics — the impulse
response functions of acceleration, velocity and displacement have been computed. Time discretization
of convolution integral has been implemented according to an existing and a newly proposed procedure,
which differ in the numerical integration methods. The former was evaluated based on a constant
rectangular approximation of the sampled data and impulse response function in a number of steps
corresponding to the sampling rate, while the latter interpolates the sampled data in an arbitrary number of
sub-steps and then integrates over the sub-steps and steps respectively. The identification procedure was
implemented for a simulation example as well as an experimental laboratory case. The ill-conditioning
of the impulse response matrix made it necessary to use Tikhonov regularization to recover the applied
force from noise polluted measured response. The optimal regularization parameter has been obtained
by L-curve and GCV method. The results of simulation represent good agreement between identified
and measured force. In the experiments the identification results based on the measured displacement as
well as acceleration are provided. Further it is shown that the accuracy of experimentally identified load
depends on the sensitivity of measurement instruments over the different frequency range.

2.1 Introduction

The load identification in engineering problems becomes more important if the excitations are caused
by the actions which cannot be measured directly. A good knowledge on applied loads is necessary for
extraction of their characteristics or their reproduction via simulation for other purposes. The idea of
direct measurement of the applied loads generally becomes more infeasible if the structure as well as the
load action become more complex. For example, wind loading is one of the dominant design parameter
for structures having low natural frequencies such as tall buildings or long bridges. The presence of the
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2. Augmented Impulse Response Matrix

fluctuating wind components due to turbulence makes the wind force measurement even tougher, because
more sensitive force or pressure measurement devices in huge numbers are necessary, which might not be
practically realistic. On the other hand measurement of the response to the excitation is more common
and better developed due to its extensive use in the other application areas such as system identification.
Consequently an indirect procedure that gives the ability to identify the load from measured response —
a so called inverse problem — seems to be attractive.

Load identification can be done in time or frequency domain, the best choice depends on the type of
loading or the identification purposes. The authors interest is to apply the solution of this inverse problem,
i.e. the inverse wind load identification, in wind fatigue analysis of a full-scale guyed-mast. Therefore it
is required to prepare and evaluate a load identification procedure in the time domain, which is consistent
with the methodology in the subsequent application.

For the sake of load identification we initially need to set up a complete input-output relation for
the direct problem (based on already known, e.g. previously identified parameters of the structure) for
two reasons. Firstly having an updated finite element model for fatigue analysis is needed. Secondly
utilization of an experimental input-output model such as quasi impulse response matrix (Jankowski
(2013)) due to its limitations is not appropriate.
Once the input-output model is generated the load identification can formally be treated in the discrete
manner as a linear system of equations that is, u = H̄p. Unfortunately, it is an ill-posed problem since
the impulse response matrix H̄ is usually ill-conditioned and the deconvolution by means of pseudo-
inverse multiplication may lead to unbounded solutions in the presence of noise in measured data u.
Consequently we need to call upon alternative methods which are designed to solve discrete ill-posed
problems. From a general aspect these methods are classified into direct or iterative procedures. However,
neither regularization by means of projection of the problem nor the iterative regularization plus projection
(c.f. Klimer and O’Lary (2001)) falls within the scope of this paper. Thus the solution of a discrete
ill-posed problem just based on a direct scheme is dealt with. In this scheme, there are several different
ways such as Tikhonov regularization (Tikhonov and Arsenin (1997)) and family of truncated singular
value decomposition (TSVD) methods (Varah (1973); Hansen (1987)). These methods aim at filtering
out the contribution of noise in the response or improving the conditioning of H̄.

It must be noted that the regularization methods need a regularization parameter as a stop criterion to
tune the amplitude of smoothening of the response. The parameter selection methods are categorized into
two general classes. The first class includes the methods working based on a priori knowledge about the
measurement noise and the second, which is applicable independently of any knowledge about noise. The
methods of generalized cross validation (GCV) (Wahba et al. (1979)) and L-curve (Lawson and Hanson
(1974); Hansen and O’Lary (1993)) are two examples of the second class. Also it has been recommended
to evaluate which parameter selection method is more efficient according to the nature of the certain
problem.

In this paper the regularization method of Tikhonov for the regularization together with two procedures
of GCV and L-curve for finding the regularization parameter, were selected. We provide the results
of load identification via simulation and laboratory experiments for a rigidly clamped cantilever beam.
The applied loads are realized by white noise limited to 25 Hz and wind excitation, which are identified
separately from measured displacement and acceleration response by means of the derived ordinary and
augmented impulse response matrices.
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2.2 Dynamic response analysis of discrete-time systems

In this section an input-output relation in a discretized time domain is constructed. In other words we are
going to build the impulse response matrix, which when it is multiplied by the input signal (i.e. force
record), renders the output as time history of displacement. In this chapter this aim was reached by means
of modal analysis since its closely consistent with modal testing methods of system identification in
practical cases. It is mentioned here that the input-output relation might be alternatively also derived via
testing, mathematical system identification (Juang (1994)) or simulation of application of impulsive loads
on degrees of freedom when the finite element model of the structure exists.

2.2.1 Impulse response matrix

The linear equations of motion for an MDOF system with classical damping are given in the following
system of differential equations:

mü+ cu̇+ku = p(t) (2.1)

while u, m, c, k denote the displacement, mass, damping and stiffness of the system as well as the
dynamic force p, which applies on the system’s degrees of freedom.
Projecting Eq. (3.1) onto modal coordinates by means of substitution u(t) = ΦΦΦq(t) together with premul-
tiplying each term in the equation by ΦΦΦ

T renders the set of uncoupled modal equations of motion (Ziegler
(1998))

q̈+2 diag[ζiωi] q̇+diag[ω2
i ] q = P(t) (2.2)

Each single equation in the system of Eq. (5.10) may be solved by means of a convolution integral
(Duhamel’s integral) and the response in all modal coordinates in a compact form is




q1
...

qn


=

∫ t

0




h1(τ) 0
. . .

0 hn(τ)








P1(t− τ)
...

Pn(t− τ)





dτ =
∫ t

0
h(τ)ΦΦΦ

T p(t− τ)dτ (2.3)

where n denotes the number of degrees of freedom. The impulse response function h(τ) can be calculated
mathematically by solving the SDOF equation of motion. Then we move backward and incorporate the
responses to all vibration modes i.e. computing the superimposed response in the global coordinates.
Hence Eq. (3.13) is premultiplied by ΦΦΦ which yields the response in the global coordinates

u =
∫ t

0
ΦΦΦh(τ)ΦΦΦ

T
︸ ︷︷ ︸

h̄

p(t− τ)dτ (2.4)

For numerical evaluation of the convolution integral, h̄(τ) and p(t − τ) might be assumed to be
constant within the time step. Then the discrete-time-domain response becomes (Meirovitch (1980))

u(k ∆t)≈ dt
k−1

∑
j=0

h̄ j pk− j−1 (2.5)

while k and dt stand for the total number of time steps and the length of which, respectively. At each
time step the matrix of impulse response functions is computed as h̄ j = h̄( j dt) and pk− j−1 refers to the
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discretized force at the time step k− j−1. The final task in creating the displacement impulse response
matrix namely H̄ is rearranging the previous equation in the matrix form. The resulting impulse response
matrix due to its ordinary integral scheme is called H̄Ord .








u1
...

un





1
...




u1
...

un





k




= dt




h̄0 0
h̄1 h̄0
...

...
. . .

h̄k−1 h̄k−2 · · · h̄0




︸ ︷︷ ︸
H̄Ord








p1
...

pn





0
...




p1
...

pn





k−1




(2.6)

The above approximation becomes very inaccurate especially when the loading record includes high
frequency components.

2.2.1.1 Augmented impulse response matrix

For a better accuracy of numerical methods for approximating the dynamic response a small time step is
necessary. Unfortunately, selection of a smaller time step leads to a larger H̄ and accordingly larger size
of problem in load identification. In parallel with growth of size of problem the regularization becomes
computationally more demanding. Therefore another way of improving the efficiency of H̄ was sought
in which the size of problem is kept constant. In this regard we introduce augmented impulse response
matrix, which is generated by means of linearly interpolating the forces (sampled discrete values) between
consecutive steps in an arbitrary number of sub-steps. The discretization pertaining to the augmented
impulse response matrix is depicted in Fig. 2.1.

h
_
(τ ) p(t −τ )

p0

p1

pk−1

h
_
0

h
_
1

h
_
k−1

τ

dt
dt /m

kdt kdt

Figure 2.1: Evaluation of convolution integral considering the force interpolation

After applying the trapezoidal rule, the discretized displacement response is computed by means of
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augmented impulse response in the following form:
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0 · · · 0
H̄1,1 H̄1,2

H̄2,1 H̄2,2 H̄1,2
...

...
...

. . . . . .
H̄k−1,1 H̄k−1,2 · · · H̄2,2 H̄1,2




︸ ︷︷ ︸
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(2.7)

The augmented impulse response matrix, H̄Aug, consists of the following components:

H̄u,v = ΦΦΦdiag
[
hu,v1 · · · hu,vn

]
ΦΦΦ

T (2.8)

while hu,v denotes the element of the following matrix at n-th mode

hn =




a1,1 b1,2 · · · 0
a2,1 c2,2 b2,3

...
...

. . . . . .
...

ak−1,1 ck−1,2 · · · ck−1,k−1 bk−1,k


 (2.9)

Then the components of hn are obtained as:

a j,1 =
m−1

∑
p=0

(2p+1)h j+ 2p−1
2m −1 (2.10a)

b j, j+1 =
m−1

∑
p=0

(2(m− p)−1)h 2p−1
2m

(2.10b)

c j,k+1 =
j−1

∑
k=0

(
m−1

∑
p=0

(2p+1)h j+ 2p−1
2m −2 +

2m−1

∑
p=m

(4m−2p−1)h j−k+ 2p−1
2m −2

)
(2.10c)

2.2.2 Complete set of discrete dynamic response

For a full formulation of input-out setup, the impulse response functions of displacement, velocity and
acceleration should be known. Afterwards depending on the type of the response sensor attached to any
degrees of freedom, the applied force may be inversely identified.
The impulse response function of the displacement is a well-known function and available in a couple of
publications Meirovitch (1980); Chopra (1995); Clough and Penzien (1995). Thus the impulse response
functions of velocity and acceleration for a single mode need to be determined. These functions were
calculated by solving the equation of motion of an SDOF system under impulsive force and are given
through Eqs. (2.11) for t ≥ 0.
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h(t) =
e−ζ ωn t

mωd
sinωd t (2.11a)

˙h(t) =
e−ζ ωn t

mωd
[ωd cosωd t−ζ ωn sinωd t] (2.11b)

¨h(t) =
1
m

[
δ (t)− e−ζ ωn t

ωd
(2ζ ωnωd cosωd t +ω

2
n sinωd t)

]
(2.11c)

where δ (t) denotes the Dirac delta function.
With the similar reasoning to reach Eq. (2.4) and using the corresponding function from Eqs. (2.11),

the dynamic response of velocity and acceleration can be calculated. Consequently the complete set of
responses of an n degrees of freedom system for an excitation interval discretized in k time steps are
available by using any discretization scheme, as below:

{u}k∗n =
[
H̄d
]
(k∗n)(k∗n) {p}k∗n (2.12a)

{u̇}k∗n =
[
H̄v
]
(k∗n)(k∗n) {p}k∗n (2.12b)

{ü}k∗n =
[
H̄a
]
(k∗n)(k∗n) {p}k∗n (2.12c)

These relations might be reduced in the absence of either any response sensors or excitations in a
single node.

2.3 Load identification using regularization method

There is a couple of methods dealing with providing a good solution for the system of linear equations
upoll = H̄p when the matrix H̄ is ill-conditioned and the vector upoll is polluted by noise. Here we use
Tikhonov regularization method (Tikhonov and Arsenin (1997)), which has the following form

min
{∣∣∣∣upoll− H̄p

∣∣∣∣2 +α
2 ||p||2

}
(2.13)

The norm sign here as well as in the subsequent equations denotes the Euclidean norm. The difficulty
with solving the optimization problem Eq. (2.13) is how to choose the appropriate parameter α (referred
to as regularization parameter) because the solution is sensitive to its choice.

2.3.1 Selection of regularization parameter

2.3.1.1 L-curve

L-curve is the log-log plot of the smoothened solution versus the residual norm, corresponding to different
values of regularization parameter. Depending on the selection of regularization parameter, there is a
trade-off between residual norm and the size of solution. Hence L-curve aims at finding the balancing
regularization parameter, which should lie on the corner of L-curve. This corner can be approximately
recognized as the point on which the curvature of L-curve is maximal. As a result, the problem of
parameter selection changes to finding such an α , which is the minimizer of negative value of L-curve’s
curvature (Hansen and O’Lary (1993)).
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2.3.1.2 GCV

This method suggests to solve the following constrained optimization problem for load identification to
restrict the norm of load response

min
{

1
n

∣∣∣∣upoll− H̄p
∣∣∣∣2 +λ ||(p)||2

}
(2.14)

while n is the number of rows of H̄. It could be interpreted as Tikhonov regularization in which α is
chosen as

√
nλ .

This method approximates the regularization parameter as the minimizer of the function (Wahba et al.
(1979))

V (λ ) =
1
n

∣∣∣
∣∣∣
(

I− H̄ ˆ̄H(λ )
)

upoll

∣∣∣
∣∣∣
2
/[

1
n

Trace
(

I− H̄ ˆ̄H(λ )
)]2

(2.15)

while ˆ̄H(λ ) =
(
H̄T H̄+nλ I

)−1 H̄T is the matrix, which maps upoll onto the solution p. In other words p
is the solution of minimization expression in Eq. (2.14) i.e. p = ˆ̄Hupoll

2.4 Numerical results

In the first step the solutions of direct problem, i.e. dynamic response analysis, by means of ordinary and
augmented response matrices are compared. These results, provided in Section 2.4.1, aim at justifying
the introduction of augmented impulse response matrix.
Secondly we provide the numerical results of inverse problem in terms of simulation and experimental
laboratory-scale load identification, respectively in Sections 4.4.1 and 2.4.3. The inverse problem has
been solved by means of regularization methods.

The case study is a rigidly clamped aluminum alloy cantilever, which has been modelled as a single
degree of freedom system. As a result there is always one unknown force versus a single measured
structural response. The system parameters of the equivalent mass-spring-dashpot model corresponding
to the cantilever has been identified, which are given in Section 2.4.3.1. The identified system parameters
were utilized to construct the parametric impulse response matrices for numerical and experimental load
identification in Sections 4.4.1 and 2.4.3.

The codes needed for the procedure of load identification have been implemented in slangTNG
(Bucher and Wolff (2013)). The results gained from slangTNG were cross-checked with those achieved
from Regularization toolbox (Hansen (2007)), which showed good agreement with each other.
The accuracy of the identified load, pident., with respect to the actual force i.e. pact. is evaluated by the
following definition:

Error(%) = ||pident.−pact.||/ ||pact.|| ∗100 (2.16)

2.4.1 Response comparison of ordinary and augmented schemes

It was already stated in Section 2.2.1.1 that the computed structural response by augmented scheme
has more accuracy over the ordinary scheme. Our investigations show that by increasing the number
of sub-steps in augmented scheme its corresponding response is improved. This leads to the faster
convergence of augmented scheme compared to the ordinary one in computing the dynamic response,
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thus consequently leads to a smaller size of problem in the load identification. In Fig. 2.2 we demonstrate
the displacement response under wind loading computed by ordinary and augmented impulse response
matrix in comparison with the Newmark method response as the benchmark method. In this example
the structure is a single degree of freedom system with the same specifications as those of the laboratory
case study given in section 2.4.3.1. In wind load simulation the data time step was taken to be 0.1 sec.
The time step to calculate the displacement response was set to 0.034 sec. Therefore the wind force data
was linearly interpolated to obtain the same time step length. The number of sub-steps in computing the
displacement response based on augmented scheme is 1 and 5 respectively. The comparison between
the computed response of augmented scheme in Fig. 2.2a and Fig. 2.2b indicate that in a given time step
length with increasing the number of sub-steps an accurate response by augmented scheme is obtained.
On the other hand the response from ordinary impulse matrix given in Fig. 2.2a has not still converged,
which means the length of time step for ordinary scheme has yet to be shortened. It has been observed
that the response by augmented scheme changes very slightly for sub-steps m > 5.

2.4.2 Simulation of load identification

In order to simulate the measured structural response, white noise was added to the computed ”displace-
ment responses” of the structure under the actual force. Then this noise-polluted displacement response
was used for the load identification purpose. The magnitude of the additional noise was scaled with
respect to the standard deviation of the actual response and adjusted by defining a noise level multiplier.
In the numerical simulation of load identification, the number of sub-steps for construction of augmented
impulse response matrix i.e. m considered to be 5.

Firstly the recovering of a white noise excitation limited to 25 Hz is simulated. The duration of
excitation, noise level and sampling rate are 5 sec, 2.5% and 120 sec-1 respectively. The simulation of
identification was run several times and it was observed that both identification methods are stable in
recovering the force based on the noisy displacement response. Use of the word ”stable” means that the
optimal regularization parameter can be found based on the criteria of L-curve or GCV as many as times
the load identification was repeated. Moreover the identified forces obtained by using the augmented
impulse response matrix were recovered more accurately than those obtained by using the ordinary
impulse response matrix (c.f. Table 2.1). Fig. 2.3 represents the comparison of the identified white noise
with the actual force.

In order to evaluate the consistency of identification methods for wind load, the fluctuating parts
of wind velocity and correspondingly wind loads were generated. This was done by simulating a one
dimensional single variable stationary random process, thus just the wind velocity auto spectrum is
needed. For digital simulation of wind speed, amongst existing power spectral density (PSD) functions
(Simiu and Scanlan (1978)), Davenport’s auto spectrum (Davenport (1961a)) was (arbitrarily) selected.
The spectrum was widened and the upper frequency was extended to 30 Hz in order to cover the relatively
high resonance frequency region of the structure. The wind force PSD is plotted in Fig. 2.8.
For simulation of wind load identification, the actual displacement response of the structure was polluted
at 2.5% noise level. The response sampling rate and duration of excitations were respectively 180 sec-1

and 5 sec.
The error analysis of the identified wind loads is given in Table 2.1. The results demonstrate that the

recovered wind force by use of augmented impulse response matrix via L-curve is unacceptable. This
problem occurs due to the difficulty in finding the location of the L-curve corner, since many points on
the L-curve have the properties to be the optimal regularization parameter based on L-curve criterion.
The recovered wind forces via GCV using both impulse response matrices have the same quality and are
better identified than their counterpart by means of L-curve and ordinary impulse response matrix.

24



2. Augmented Impulse Response Matrix

0 2.5 5 7.5 10
-10

-5

0

5

10

Time [s]

D
is
p
la
ce
m
en
t
[1
0−

5
m
]

Newmark

Augmented

Ordinary

(a) Number of augmented scheme sub-steps m=1

0 2.5 5 7.5 10
-7.5

-3.75

0

3.75

7.5

Time [s]

D
is
p
la
ce
m
en
t
[1
0−

5
m
]

Newmark

Augmented

(b) Number of augmented scheme sub-steps m=5

Figure 2.2: Effect of increasing number of sub-steps in augmented scheme response of structure to wind
load excitation
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In Fig. 2.4 the time history of recovered wind forces based on the noisy displacement response is shown.

Table 2.1: Error (%) associated with the identified loads via simulation

Impulse response matrix
White Wind force

L-curve GCV L-curve GCV
Ordinary 34 35 38 29
Augmented 23 21 -* 29
* has not resulted to an acceptable response

2.4.3 Laboratory-scale load identification

2.4.3.1 Case study

As mentioned earlier the case study investigates the load identification for a vertically erected aluminum
alloy cantilever whose one end is rigidly clamped. The cantilever is a rectangular beam with cross
sectional dimensions 0.03 and 0.01 m as well as 0.68 m height, which is bending over its weak axis.
Three sensors have been mounted on the tip of the beam. Two of them are piezoelectric accelerometers,
which are used to derive the acceleration and displacement responses at the same time. The displacement
response was obtained from the measured acceleration via the signal conditioner. The third sensor
measures the applied force directly from the shaker. Shaker applies one point-force at the tip of the beam
as well. The specifications of measurement equipments, which are the products of Brüel & Kjær, are
given in Table 2.2. The picture of the whole setup is also shown in Fig. 2.5.

Table 2.2: Laboratory equipments specifications

Type Sensitivity
Frequency range Measurement

[kHz] utility
Accelerometer 4383 3.217 [pC/ms-2] 0.1-8.4 Displacement
Accelerometer 4383 3.190 [pC/ms-2] 0.1-8.4 Acceleration
Force transducer 8230 3.915 [pC/N] -* Force
Nexus 2692 - 0.1-100 Signal conditioner
* has not been provided by the manufacturer

The configuration of loading stimulates the structure such that the first mode is the governing mode
of vibration. As a result the structure has been modeled directly as a single degree of freedom system
and the dynamic response of the cantilever is truncated to its first mode. Then we readily determined the
first mode eigenfrequency, mass, stiffness and damping ratio. Firstly the eigenfrequency was determined
by an impulse test and compared with those gained via incremental-frequency and variable-frequency
harmonic excitation that was estimated nearly the same as 13.8 Hz. In order to determine the equivalent
values of mast and stiffness of the cantilever (in the first mode), different lumped masses were attached
on the cantilever’s tip successively. Every time by observing the changes in the eigenfrequencies and
from the definition of the natural frequency in term of mass and stiffness, one can setup a least squares
problem and solve for the equivalent values of mast and stiffness. The damping ratio was obtained via the
so-called “harmonic decay” test. The modal system parameters including mass, stiffness and damping
ratio are respectively 0.2196 kg, 1666.4 Nm-1 and 0.07%.
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Figure 2.3: Simulation of load identification based on noisy displacement for white noise excitation
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Figure 2.5: Picture of laboratory-scale setup

2.4.3.2 Experimental load identification

For the sake of experimental load identification the identification procedure was repeated for the white
noise and fluctuating wind force based on measured displacement. Moreover in this section the results
of the experimental wind load identification based on measured acceleration will be also provided. The
acceleration responses have been used just when we initially speculated that the reason of inaccuracy in
the identified wind load is related to the measured displacement response. However the main focus is
on using the measured displacement response, since the L-curve or GCV function corresponding to the
measured displacements were much more likely to have the standard shape, as expected in their theories,
than those of the acceleration response. This will be shown later. The investigation on application of the
acceleration-based wind load identification will be dealt with more in details in the forthcoming lines.

The first part of the experimental analysis again consists of identification of the white noise excitation
with the same features as previously explained in Section 4.4.1. The results of experimentally recovered
white noise show nearly the same accuracy with which were obtained in the corresponding numerical
simulation. The identification results of white noise are provided in Table 2.3. Since the identification of
white noise excitation has the satisfactory exactness alike the simulations, we end with it here and resume
with the wind load identification.

The experimental wind load identification was repeated based on the measured displacement response
as have been already simulated in Secion 4.4.1 for wind-type excitation. The identification results of
wind load demonstrate that the recovered forces based on GCV or L-curve criteria do not have acceptable
accuracy. For instance in Fig. 2.6 the comparison of identified fluctuating wind load with the actual one by
means of GCV in augmented scheme has been depicted. Table 2.3 provides the wind load identification
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results based on different methods in both schemes. According to this table the errors corresponding to
the augmented scheme are slightly smaller than the ordinary one but nevertheless not good enough.

Table 2.3: Error (%) associated with the experimental identified loads

Impulse response matrix
White Wind force

L-curve GCV L-curve GCV
Ordinary 31 32 61 61
Augmented 21 21 60 57

With repeating the procedure of the experimental wind force recovering under different simulated
wind excitations, it was perceived that the regularization methods are stable while the recovered force
is not in agreement with the measured force. It means that the optimal regularization parameters found
based on the GCV and L-curve criteria do not render the identified loads of good quality.
first of all it was supposed that this problem occurs due to the high-pass filtering within double integration
of acceleration response, since we have obtained the displacement from acceleration response via the
signal conditioner device. Thus in order to circumvent such problem, the wind load was identified directly
based on the acceleration response by selecting the third of Eqs. (2.11). Several runs of this procedure
shows that slightly better or worse results may be achieved. Therefore the utilization of acceleration
response does not significantly improve the identified wind load.

More inspection revealed that the displacement-based identified load divided by structure’s stiffness,
k, is very close to the measured displacement response. This comparison was illustrated in Fig. 2.7a.
But rather as shown in Fig. 2.7b, this analogy does not exist for the white noise excitation case. Hence
according to this observation, it can be concluded that the use of this kind of measured displacement
response led to recovering a sort of quasi-static force. In other words the measured displacements due
to the wind excitation, which has dominant low frequency components, do not sufficiently contain the
portion of high frequency components of the displacement response. As a result, those parts of loading
concerning the inertia and damping force are not identified.

According to this finding it was assumed that the inadequate sensitivity of the measurement sensors
and not other issues regarding the identification methods, gave rise to the inaccurate identified wind
loads. It was because the applied wind excitation has the characteristics that stimulated the stiffness of
the structure (which belongs to lower frequency components of response) much more than its inertia
(which conversely belongs to higher frequency components of response). In addition, the portion of the
damping force due to the small damping ratio of structure as well as the low velocity of loading is not
considerable.

One way to resolve the problem in measurement when the sensors do not have sufficient sensitivity
is to amplify the amplitude of the quantity of interest, which in our case is the acceleration response.
This amplification must occur before the sensor level so that the sensor be able to sense it. Therefore
the excitation input must be modified. Since the acceleration response is proportional to the excitation
frequency, consequently by raising the lower band of excitation frequency we can increase the amplitude
of acceleration response.
To this end we filtered out different frequency ranges in the lower band of the wind power spectral density
by definition of three cut off frequency ranges i.e. νcut o f f for [0 2.5], [0 5] and [0 7.5] Hz. For example
the corresponding wind spectrum to νcut o f f = [0 2.5] is depicted in Fig. 2.8

The identification results associated with the newly simulated wind forces not only prove our second
assumption but also shows that the major problem was resolved when the very low frequency excitation
components i.e. between [0 2.5] Hz were filtered out. Because the accuracy of the identified newly-
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Figure 2.6: Experimentally identified fluctuating wind load based on measured displacement response
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Figure 2.7: Comparison between measured and quasi-static displacements

generated wind loads was considerably improved by elimination of this range. It was observed that for the
other two cut off ranges the improvement is insignificant. The recovered wind load with νcut o f f = [0 2.5]
Hz by means of GCV is illustrated in Fig. 2.9. The results of identified wind loads based on measured
displacement for wind loads with full frequency range as well as those with νcut o f f are provided in
Table 2.4.

The problem of identification in low level vibrations could be also resolved either by use of acceler-
ation transducer, which are appropriate for such vibrations, laser displacement sensors or by means of
strain gauge instead of accelerometer as reported in Hillary and Ewins (1984).

The same sets of newly-generated wind excitations has been also used for force recovery by means of
measured accelerations. Several times within wind load identification by means of measured accelerations,
some irregularities in the shape of the curvature of L-curve or GCV minimizer have been observed that
violated the L-curve and/or GCV criteria in finding the optimal regularization parameter. For instance, in
Fig. 2.10 the GCV minimizer of the wind load with νcut o f f = [0 2.5] Hz corresponding to the ordinary
impulse matrix is demonstrated. This figure reveals despite GCV’s criterion, the proper identified solution
is associated with the GCV parameter, which is located at the local minimum rather than the global
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Figure 2.8: Wind force auto spectral densities for full frequency range and one with νcut o f f = [0 2.5] Hz

minimum. The associated error of identified wind loads based on measured acceleration responses are
presented in Table 2.4. In this table the superscript-marked values correspond to the cases that the optimal
regularisation parameters located at the local minimum. The trouble in these cases justifies to use the
displacement response in load identification since the L-curve or GCV function corresponding to the
measured displacements were nearly always well-shaped.

Table 2.4: Error (%) associated with the experimental identified loads based on measured displacement
and acceleration

Cut off range [Hz] Impulse matrix
Measurement

Displacement Accelertion
L-curve GCV L-curve GCV

–
Aug. 60 57 36* 44
Ord. 61 61 50 48

[0 2.5]
Aug. 34 31 31 34
Ord. 36 37 35 36*

[0 5]
Aug. 33 29 31 29
Ord. 35 36 35 31*

[0 7.5]
Aug. 31 27 31* 31
Ord. 34 34 34 33*

* corresponding to the regularization parameter at local minima

2.5 Conclusions

In this paper the formulations for derivation of impulse response matrices, which are used in the de-
convolution problem of load identification, were presented. The dynamic loads were identified based on
structural response measurement and by means of solving the corresponding inverse problem.
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Construction of two different types of impulse response matrices (ordinary and augmented), which
are different in their integration schemes, were also presented. According to Section 2.4.1 the response
via the augmented scheme converges faster than the response of the ordinary one. This is because the
ordinary impulse response matrix is constructed based on the constant approximation of force within a
time step. This assumption demands such a small time step in order that the approximated force resembles
the real one.

Consequently in order to be able to select the time step longer than that of the ordinary scheme the
augmented impulse response matrix, which interpolates the force in a number of sub-steps was introduced.
However in the context of accuracy comparison, the sampling rates were selected relatively high so that
the response of the ordinary scheme can converge too. Nonetheless the forces recovered by means of the
augmented impulse matrix were more accurate than by the ordinary one even for such small time step
lengths (c.f. Tables 2.1 and 2.4).

The identification results illustrate that the high accuracy of load identification drastically depends
on the use of appropriate response sensors for different types of excitation in the sense of the contained
frequency range. Otherwise the recovered force accuracy would be poor such as it occurred for the
recovered wind load as was for instance shown in Fig. 2.6.

Last but not least the load identification based on the measured displacement response was observed
to be more robust than acceleration based when L-curve or GCV methods are used. This is due to the fact
that the L-curve and GCV criteria corresponding to the acceleration response were observed to fail way
more often than when the displacement response was utilized. As a result there is the lack of robustness
in the placement of the optimal regularization parameter according to those criteria (e.g. Fig. 2.10) when
the acceleration response is used.
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Chapter 3

A practical procedure for inverse wind
load reconstruction of large degrees of
freedom structures

The methodological development of a procedure for inverse wind load reconstruction from response
measurement data is presented, which is especially suitable for practical purposes. To this end, according
to a previous study of the authors, an “augmented impulse response matrix” (IRM) of the structure can be
generated for different response types i.e displacement, velocity and acceleration. In this way just the
modal parameters of a system namely eigenfrequencies and -vectors as well as the damping ratios should
be known. The inverse wind load identification problem, due to its ill-posedness, is solved by means
of the Tikhonov regularization scheme. For the sake of higher accuracy and computational efficiency
the load identification is performed in the modal subspace, which requires to decompose the measured
responses into the modal responses again by means of the modal parameters. In this contribution the
acceleration and displacement responses are used to identify the applied wind load through the numerical
simulation of the problem for an instrumented guyed mast. Moreover it is investigated, which response
type is more appropriate for the proposed wind load reconstruction procedure. The results demonstrate
that the modal wind loads can be successfully identified by the developed method more accurately from
displacement than acceleration response even at relatively high noise levels, based on the comparison to
the actual wind loads in time and frequency domain.

3.1 Introduction

The “cause or input identification” inversely from “effect or measured output data” is a well-known
problem in different disciplines of applied mathematics and physics. There is a wide range of inverse
problems (Neto et al. (2013)) from astronomy (Brown and Craig (1986)) to structural vibrations (Gladwell
(2005)) and further to medical imaging (Nashed and Scherzer (2001)), image restoration (Gunturk and Li
(2013)) and so on. The common principle in all those examples is that the direct observation of the causal
factors is too difficult, while their effects can readily be recorded by the measurement apparatus.

There are many cases in structural dynamics and vibrations, in which the applied loads, e.g. wind exci-
tation, cannot be measured directly. The knowledge on the dynamic loads properties can be considerably
useful in different ways including in the pre- or post-analysis, for instance in structural health monitoring
or failure analysis (Jankowski (2013)). Hence the recovery of the dynamic loads or the so-called “load

36



3. MDOF Wind Load Identification

identification” inversely from the response measurement (an inverse problem) becomes important. If it is
to reconstruct the applied load in time domain where usually an impulse response matrix (IRM), as the
discrete form of convolution integral, is used then the deconvolution problem is usually ill-posed due to
the ill-conditioning of the IRM and noise presence in measured responses. There are several techniques
for solving the force reconstruction problem, thus the reader is referred to the literature e.g. Sanchez and
Benaroya (2014) for more information. However it is well-known that regularization methods, especially
Tikhonov regularization (Groetsch (1984); Tikhonov and Arsenin (1997)), are the techniques, which
generally aim at providing a stable solution, no matter how much the IRM is ill-conditioned (Jacquelin
et al. (2003)), but indeed the optimal regularization parameter must be properly determined. In this
regard there exists two methods of generalized cross validation (GCV) (Wahba et al. (1979)) and L-curve
Lawson and Hanson (1974); Hansen and O’Lary (1993) for finding the optimal regularization parameter,
while no additional information about the measurement noise is required.

Although the input identification problem has been dealt with from different aspects in the literature
over the last decades (e.g. Zhu and Law (2002); Azam et al. (2015a)) however only few of those studies
specialize the wind load identification problem (Law et al. (2005); Hwang et al. (2009)). The inverse
wind load identification problem has some additional difficulties, which will be discussed subsequently in
section 3.2.2.

In this paper the methodological development of a practical procedure for the inverse wind load
identification is presented. The input-output relation is established in terms of an augmented impulse
response matrix (IRM) for each mode according to a previous study of the authors (Kazemi-Amiri and
Bucher (2015)). The measured responses will be decomposed into modal responses, that is, the problem
is transformed to the load identification for a number of single degree of freedom systems. The Tikhonov
regularization scheme, for resolving the ill-posedness, is utilized in combination with both L-curve and
GCV for the sake of cross-check. The identified loads can be transferred from one structure’s modal
subspace to that of another structure provided that, strictly speaking, they have identical geometry and
number of degrees of freedom. The number of modal coordinates, whose modal wind loads can be
identified accurately depends on the number of the properly decomposed modal responses. This will be
discussed later in sections 3.2.1 and 3.2.2.

One important focus is directed to the influence of the measured response quantity on the quality
of the identified load, in a mathematical point of view. Thus the procedure has been examined for both
displacement and acceleration responses as the two common types of responses in the experimental and
field measurement purposes. The procedure is verified through the numerical analysis for a 9.1 m (30 f t)
meter tall instrumented guyed mast, which serves as a weather station tower in the Hydrological Open
Air Laboratory Petzenkirchen (Blöschl et al. (2016)). The wind load along the mast has been generated
numerically by simulation of the linear fluctuating part of the wind speed. The measured responses
were obtained from the finite element model of the mast structure under wind excitations. The results
represent the capability of the developed procedure for wind load identification of the real structures with
significant number of degrees of freedoms.

3.2 Development of the modal wind load identification

3.2.1 Basic equations

The aim is to set up an augmented version of the impulse response matrix for dynamic response analysis
of the systems in an input-output scheme. For this purpose, the classically damped equation of motion for
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a multiple degrees of freedom linear system is considered (Ziegler (1998)).

mü+ cu̇+ku = p(t) (3.1)

In the above relation u, m, c, k denote the displacement, mass, damping and stiffness matrices of the
system as well as the dynamic force p, which acts on the system’s degrees of freedom. An uncoupled set
of single degree of freedom systems can be obtained in modal coordinates through these substitutions
u(t) = ΦΦΦq(t) and P = ΦΦΦ

T p:

q̈+2 diag[ζiωi] q̇+diag[ω2
i ] q = P(t) (3.2)

where ζi, ωi stand for the damping ratio and natural circular frequency at ith mode respectively.
Each single equation in the system of Eq. (5.10) may be solved by means of convolution (Duhamel’s
integral) and the response in all modal coordinates in a compact form is




q1 (t)
...

qn (t)


=

∫ t

0




h1(τ) 0
. . .

0 hn(τ)








P1(t− τ)
...

Pn(t− τ)





dτ =
∫ t

0
h(τ)ΦΦΦT p(t− τ)dτ (3.3)

where n denotes the number of degrees of freedom. The impulse response function h(τ) can be derived
mathematically by solving the SDOF equation of motion.

In order to obtain the modal responses, the preceding integral can be numerically evaluated for each
mode independently. For the sake of a higher accuracy, the modal response is approximated by the
trapezoidal rule, which produces the input-output relation in terms of matrix multiplication through a so-
called augmented impulse response matrix for different response types (acceleration and displacements)
(Kazemi-Amiri and Bucher (2015)):

{qi}=
[
h̄di

]
{Pi} (3.4a)

{q̈i}=
[
h̄ai

]
{Pi} (3.4b)

While l is equal to the total number of time steps, then {
[
h̄di

]
,
[
h̄ai

]
} ∈ Rl∗l stand for the aug-

mented modal displacement and acceleration impulse response matrices (IRM) at the ith mode, whose
corresponding impulse response functions can be computed from the following equations.

hi(t) =
e−ζi ωi t

Mi ωdi

sinωdi t (3.5a)

ḧi(t) =
1

Mi

[
δ (t)− e−ζiωi t

ωdi

(2ζiωiωdi cosωdi t +ω
2
i sinωdi t)

]
(3.5b)

In the above relations δ (t) and ωdi are Dirac delta f unction and the damped natural circular fre-
quency, respectively. Note that the modal shapes are usually scaled so that the modal masses become
equal to unity (Mi = 1). For more details on the calculation of augmented response matrices, the readers
are referred to (Kazemi-Amiri and Bucher (2015)).

One needs to decompose the measured response in order to solve the Eqs. 3.4 for the applied modal
loads. For the case of fully measured degrees of freedom q(t) = ΦΦΦ

−1u(t) gives the modal responses.
However in reality just a limited number of measurement points on the structure are available. Hence
one needs to exploit another available approximate solution like the least square by means of ΦΦΦ

† =[
ΦΦΦ

T
r ΦΦΦr

]−1
ΦΦΦ

T
r , which is the pseudo inverse of the incomplete mode shapes matrix ΦΦΦr. Consequently:

q̃(t) = ΦΦΦ
†
r ur(t) (3.6)
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where q̃(t), ΦΦΦr and ur(t) denote respectively the approximated modal response, reduced identified mode
shapes and measured response vector at sensor locations, all for a number of identified modes. The study
on the optimal number/configuration of the sensor stays out of the scope of this contribution. But in
order to make q̃(t) closer to its exact value there should exist more sensors than the desired number of
the decomposed modal responses. Moreover all the modal responses in a certain frequency range of
measurement must be decomposed. This is due to the incompleteness of mode shapes data, namely their
availability just at sensor locations, and in order to assure the separation of the existing modal responses
within the excitation frequency band. As a result a numerical simulation before the sensor installation can
be useful to get an insight into the smallest possible number of sensors and their configuration.

Having created the modal IRMs and calculated the modal responses, P̃i i.e. the estimated applied
wind load at each vibration mode of the structure can be identified by means of different regularization
methods. Here Tikhonov regularization method, which has received much attention and investigations in
the literature has been used:

min
{∣∣∣∣q̃i− h̄i P̃i

∣∣∣∣2 +λ
2
i

∣∣∣∣P̃i
∣∣∣∣2
}

(3.7)

wherein ||.|| represents the Euclidean norm. In order to solve the above problem for the applied modal
wind load, the regularization parameter, namely λi, must be determined in advance. The methods of
L-curve and GCV were both utilized for finding the optimal regularization parameter. In this way, there is
an advantage that the Tikhonov solutions corresponding to each method can be cross-checked too.

Assume that the modal wind loads were identified from field measurement response data by means
of modal IRMs, which were constructed by use of the results of an operational modal analysis. At this
point the reconstructed modal wind load can be applied for instance to an updated finite element model of
the actual structure (primary structure), but of course the field identified and FEM mode shapes must
have been already scaled consistently. By this the response field of the structure (i.e. of all DOFs) to the
wind excitation can be generated for a number of modes. Furthermore, if the identified load is to be used
for further analyses on a modified version of the initial structure (secondary structure) for generating its
totally unknown response field under the same wind loading, then it is necessary to be able to transfer
the identified modal wind loads of the primary structure P̃St1 to the modal subspace of the modified one
to determine the modal wind loads of the secondary structure P̃St2 . Therefore it is looked for a transfer
matrix T, so that the modal subspaces can be exchanged. Consider P = ΦΦΦ

T p and the fact that the wind
load p in the physical subspace is identical for both structures, therefore:

TP̃St1 = P̃St2 ⇒ TΦΦΦ
T
St1 = ΦΦΦ

T
St2 (3.8)

Right multiplication by mSt1ΦΦΦSt1 , while ΦΦΦ
T
St1mSt1ΦΦΦSt1 = I, then it renders:

T = ΦΦΦ
T
St2mSt1ΦΦΦSt1 (3.9)

However, in practical point of view there might exist just the modal characteristics of the primary
structure, which are obtained through the operational modal analysis, while its updated finite element
model and accordingly the mass matrix is not available. On the other hand it is inevitable to create the
model of the secondary structure, since its model is required for the post-analysis procedure. Consequently
the mass matrix of the secondary structure is available. As a result it seems quite reasonable to derive the
above transfer matrix in terms of the secondary structure’s mass matrix. Therefore the same scheme as
above is followed such that:

P̃St1 = T
′
P̃St2 (3.10a)
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T′ = ΦΦΦ
T
St1mSt2ΦΦΦSt2 (3.10b)

Hence it yields T = T′−1
.

If the dynamic behavior of vibration prone structure is going to be improved by means of mechanical
dampers e.g. TMD (Hartog (1956)) or TLCGD (Ziegler (2008); Ziegler and Kazemi-Amiri (2013)), the
above modal subspace transferring may be unnecessary. This is due to the fact that the damper’s effect
can be represented in terms of an external load and consequently does not change the mode shapes of
the primary structure as long as the additional damper mass compared to the structural modal mass is
negligible.

It is important note that if it is to identify the modal wind loads directly from the ambient response
vibration data, the mode shapes must have been already scaled correctly, as the mode shapes, which are
derived by an output-only system identification methods, are not normalized with respect to the mass
matrix. The mode shape scaling factors can be determined either by use of an updated finite element
model (if available), or experimentally by means of other efficient methods, that work basically when just
the ambient vibration data exists (Parloo et al. (2002); Lopez-Aenlle et al. (2010); Khatibi et al. (2012)).

In this contribution the modal subspace transferring corresponding to Step 6 was not implemented,
since this work does not include post analysis on the secondary structure. However the required theory
for this purpose was given as the complementary information.

3.2.2 Issues and considerations

In addition to the inherent difficulties in solving any inverse problem, the identification of wind load
has its own particular complications too. Those complications, including the wind field randomness
and continuousness (infinite number of unknowns), arise from the wind load nature. Consequently
identification procedure should incorporate solving the corresponding inverse problem and coping with
those complications. To this end the following consideration must be also mentioned: a) In order to
keep the procedure sufficiently practical, it should merely need the structural modal characteristics as
model parameters for establishing the IRM. In practice those parameters can be achieved by means of
different system identification methods directly from the field measurement data. b) Structural response
just on a limited number of points can be measured. c) The method for solving the inverse problem must
be applicable to the random vibrations. Fortunately Tikhonov regularization has this capability as was
demonstrated by a laboratory test in Kazemi-Amiri and Bucher (2015).

There are also other practical issues: Firstly the time length of the wind-induced response mea-
surement is relatively long and of order of couple of ten minutes. Thus the IRM’s size for the full or
even a reduced order model of the structure will be too large, which makes the computations way too
time-demanding and decreases the accuracy of the regularization method. Secondly a low number of
measurement sensors are usually used. Consequently by means of a subspace transformation (e.g. modal
truncation) not only the IRM’s size remains computationally economic but also the underdetermined
problem of wind load reconstruction will be transformed into a number of single unknown modal wind
loads. The correctness of the identified load directly depends on the validity of the decomposed modal
responses. The fundamental criterion to check the validity of the decomposed modal responses is: Each
modal response must only have one dominant vibration frequency corresponding to the natural frequency
of the system at that mode.
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3.2.3 Procedure steps

Herein the steps of the wind load identification procedure is presented, as follows:

1. Identify the modal characteristics of the structural system through a system identification method
in conjunction with the modal anlysis.

2. Establish the impulse response matrix of the system for a number of first modes of vibration
(seeEq. (3.4)), dependent to the number of modes that can be identified well.

3. Decompose the measured responses acquired from different sensor channels mounted on the
structure with respect to those modes by means of Eq. (4.2).

4. Check the validity of the decomposed modal responses by means of its power spectrum or simply
its Fourier transform (see section 3.2.2).

5. Find the optimal regularization parameter for each mode by L-curve or GCV method.
6. Solve Eq. (4.4) for modal wind loads.
7. If necessary, normalize the operational mode shapes as explained in the end of section 3.2.1.
8. Transfer the identified modal wind load to another structure’s modal subspace if required, through

Eqs. (4.5) or Eqs. (4.7)

It is important note that steps 1 to 2 have to be carried out for each set of measurements, because in
practice two reasons might lead to different identified modal characteristics:

• Change in material properties of the structures due to the temperature changes especially through
different seasons or structural damage in case of relatively long-term monitoring (Salcher et al.
(2016)).

• In case of operational modal analysis through ambient vibration testing, the identification results
depend on the features of the ambient excitation. Consequently for a complex structure under a
particular excitation sometimes some modes might not be excited/identified well, or in case of a
system with closely located natural frequencies the order of the identified modes can be swapped
from one excitation to another.

3.3 Evaluation of the wind load identification procedure

The introduced procedure will be numerically evaluated through simulation of the wind load identification
problem for a guyed mast, serving as a weather station tower. The structural details of the mast side
view are represented in Fig. 3.1a. The mast structure consists of three parts, each of which is made up of
three main legs with the horizontal and diagonal braces. The guys connected to the third part of the mast
also provide lateral support for the structure from three sides. The full-scale finite element model of the
structure that was created in slangTNG (Bucher and Wolff (2013)) is schematically depicted in Fig. 3.1b.
The structural damping was set up according to Rayleigh damping, such that the damping ratio of the
first two modes was set equal to 1%. The first eight eigenfrequencies of the structure together with the
damping ratios are given in Table 4.2.

3.3.1 Calculation of the noisy measured response

The displacement and acceleration responses of the mast to the wind excitations has been calculated
by means of Newmark method. The wind loads were generated from digital simulation of the linear
fluctuating part of the wind pressure and applied in two in-plane perpendicular directions along the
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(a) Side view of the mast structure and response sensor
locations

(b) Picture of the FE model of the instrumented guyed
mast

Figure 3.1: The representation of the mast structure and the sensor configuration details

Table 3.1: The first eight natural frequencies and damping ratios of the structure

Mode 1 2 3 4 5 6 7 8
Eigenfrequency (Hz) 3.031 3.227 3.337 5.5240 5.685 6.065 8.246 8.816
Damping ratio (%) 1.00 1.00 1.00 1.16 1.18 1.22 1.51 1.63
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mast. In order to generate the fluctuating wind pressure, the fluctuating wind speed along the mast was
simulated as an 18-variate single dimensional stationary random process, independently in each direction.
By this, the attack angle can also randomly change, since just the fluctuating part of wind load is going to
be identified. According to Davenport concept (Davenport (1961b)), the quadratic fluctuating part of
wind load can be neglected (Simiu and Scanlan (1978); Holmes (2007)), then the linear fluctuating wind
load can be generated as a function of time t and height z, as follows:

fw(t,z)x,y = ρ A(z)Cd V̄10

( z
10

)α

V (t)x,y (3.11)

where ρ , A(z), Cd and V̄10 denote respectively the air density, the mast element exposed area, drag
coefficient and the mean wind speed at 10 m height as well as the fluctuating wind speed, V (t)x,y, which
is to be simulated according to section 3.3.2. The law exponent, α , depends on the roughness length.

The resulted wind load is applied as tributary nodal forces along the structure, which correspond to
the elements area of each mast panel. The 10 m height mean wind speed was taken equal to 10 m/s−1

and frequency upper-bound of the wind speed spectrum was set to 7 Hz that covers the first six vibration
modes, thus the sampling rate for fluctuating wind speed simulation was taken equal to 14 s−1. The
displacement and acceleration responses were obtained from an almost evenly distributed configuration
of the virtual sensors along the mast at seven sensor locations as marked by [S1 : S7] in Fig 3.1a. While at
locations [S1 S3 S5 S7] the response in two horizontal directions was measured, at the rest of the locations
the response was additionally obtained just in one direction.
The noise-polluted response is then computed according the following definition at location i:

USinoisy =USi +nlev ∗σi ∗Wn (3.12)

where USi denotes the measured response, whose standard deviation is σi. The artificial noise, Wn, is
generated by means of white noise Gaussian signal rescaled to have values between [−1 : 1], while the
noise magnitude is controlled by the noise level nlev.

3.3.2 Correlated fluctuating wind speeds simulation

The fluctuating wind speeds are digitally simulated in two perpendicular horizontal x-y directions (see
Fig. 3.1a). The fluctuating wind speeds in each horizontal direction are correlated with respect to the
height of the location on the structure. It is assumed that the correlated wind speeds in each horizontal
direction belong to an independent zero mean stationary processes. The correlated fluctuating wind
speeds were digitally simulated in each horizontal direction at 18 different heights, which pertain to 18
panels of the guyed mast as depicted in Fig. 3.1a . To begin the wind speeds simulation the power spectral
density (PSD) matrix, Sv(ω), with regard to the wind speeds at different locations is firstly required:

SV =




SV1V1 SV1V2 . . . SV1Vm

SV2V1 SV2V2 . . . SV2Vm
...

... . . .
...

SVmV1 SVmV2 . . . SVmVm


 (3.13)

where m = 18 denotes the number of random process variates and SVpVp and SVpVq (i.e. the diagonal and
off-diagonal components of PSD matrix) are calculated from auto- and cross spectral density functions
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respectively. Several different spectral density functions are available from literature (Davenport (1961a);
Kaimal et al. (1998)), among which Solari’s spectrum (Solari (1993)) has been chosen in this study:

SVV =
6.868σ2

v f Lv/zp

(ω/2π) [1+10.302 f Lv/zp]
5/3 (3.14)

where σ2
v , Lv and zp denote the variance of fluctuating longitudinal component of the wind speed, the

integral length scale of turbulence and the vertical distance from the ground. Moreover the Monin
coordinate f (zp,ω) = ω zp/2πV̄ (zp) is dependent on V̄ (zp), i.e. the mean wind speed at a certain height.
Then the off-diagonal components of PSD matrix can be obtained from the cross spectral density function
according to (Vickery (1971); Davenport (1967)) at different heights zp and zq

SVpVq =
√

SVpVpSVqVq exp

[
−Cz

ω

π

∣∣zp− zq
∣∣

V̄p +V̄q

]
(3.15)

in which the real-valued exponential term, so-called vertical coherence f unction, which depends on the
wind speed component frequency, accounts for the correlation of the wind speeds at heights zp and zq.
According to Simiu and Scanlan (1978); Kristensen and Jansen (1979), Cz can be set equal to 10 for
structural design purposes and V̄p and V̄q are mean wind speeds at given heights.

Afterwards the samples of a stationary random process with a given PSD can be generated according
to (Papoulis (1984)):

V(t) =
∫

∞

−∞

√
SVV (ω)eiω t dB(ω) (3.16)

where B(ω) collects m rows of complex random processes. The above integral is usually evaluated
numerically, then dB(ω) is replaced by its discretized form b(ω) =

√
∆ω (a+ id), which is the function

of m-row zero mean Gaussian random matrices i.e. a and d with unit variance.
At this stage one has to decompose the PSD matrix in order to apply the correlation between

components of the wind speed at different heights. One method is using Cholesky decomposition of the
PSD matrix (Deodatis (1996)). Another option that also brings a physical insight, is taking advantage of
the analogy between representation of the wind velocity stochastic process and the random fields (Bucher
(2009a)) by means of spectral decomposition of the PSD matrix (Di Paola and Gullo (2001); Di Paola
(1998)):

SV =
n

∑
k=1

ψk(ω)ψk(ω)T
Λk(ω) (3.17)

provided that these orthogonality condition exists:

ψψψ(ω)T ψψψ(ω) = I
ψψψ(ω)T SV ψψψ(ω) = diag(Λk (ω))

(3.18)

where k is the number of the frequency-dependent eigenvectors/values of the PSD matrix and ψψψk(ω) is
the matrix collecting the eigenvectors. The diagonal matrix Λk(ω) includes the eigenvalues belonging to
the PSD matrix SV (ω) at each frequency.

As a result by virtue of Eqs.3.17 and 3.18 the integral in Eq. 3.16 can be numerically evaluated by
means of a two sided inverse discrete Fourier transform of size N, in order to generate the fluctuating
wind speed at different hights:

V(t) =
N

∑
j=−N

(
m

∑
k=1

ψk(ω j)
√

Λk(ω)bk j

)
eiω j t =

m

∑
k=1

(
N

∑
j=−N

ψk(ω j)
√

Λk(ω)b jk eiω j t

)
(3.19)
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Given the substitution H(ω j) = ∑
m
k=1 ψk(ω j)ck(ω) with ck(ω) =

√
Λk(ω)bk j, it implies that H(ω),

which is the Fourier transform of the correlated wind speeds with power spectral density matrix SV , is
analogous to a random filed. It can be deduced from the equality in Eq. 3.19, that the correlated random
wind speed components may be simulated in two equivalent ways. According to left-hand side of Eq.
3.19, one way is to generate N pairs of m random variable corresponding to each height, while the other
possibility is the generation of m-pair random variables along the frequency band.

Figs. 3.2a and 3.2c represent the time history of a simulated fluctuating wind speed at the lowest and
highest panels of the mast, respectively. The validity of the generated wind speed was investigated by the
comparison between the simulated wind speed and Solari’s power spectrum at those heights in Fig. 3.2b
and 3.2c, which shows good agreement between analytical and simulation power spectrum.
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Figure 3.2: The samples of simulated wind speeds: Wind speed time history and the corresponding
power spectra
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3.3.3 Decomposed modal responses

The modal responses were derived according to the mode shape data and the responses at the sensor
locations. For this purpose the measured responses were decomposed by Eq. 4.2 for the first six modes,
which are contained in the excitation frequency range.

The validity of the decomposed modal responses can be examined by the modal response spectrum
plot, in which there must exist only one dominant vibration frequency pertaining to the natural frequency
of system in that mode. As such the Welch spectra of the decomposed modal responses of excited modes
were plotted to check this criterion. In Figs. 3.3 the power spectrum of the displacement and acceleration
response is represented respectively. The power spectra in Figs. 3.3a and 3.3c shows that firstly the
spectrum plot at each mode has just one dominant peak. If for instance the displacement and acceleration
responses were decomposed just into the first three modes, a spurious peak belonging to higher modes
(4th or 5th) appears in the power spectrum of the first three modes (see Figs. 3.3b and 3.3d). This is
why as mentioned earlier the contribution of all modes within the existing frequency range must be
decomposed.

Overall the signal power of the displacement-based modal responses is much stronger in lower
than in higher frequencies compared to the acceleration-based modal responses (proportional to the
square of the circular frequencies). As a result one can anticipate, the recovery of the lower frequency
components of the load signal can be accomplished from the modal displacement responses better than
that of acceleration.

3.3.4 Results of the reconstructed modal wind loads

In order to evaluate the introduced method’s capability, the wind load identification was performed based
on the decomposed measured displacement and acceleration responses. The results pertaining to the first
five modes were provided in terms of the comparison between the time histories of the identified and
actual modal wind loads as well as their corresponding power spectra. The corresponding results of the
sixth mode was discarded, because that mode was not sufficiently excited.

In Figs. 3.4 and 3.5 respectively the reconstructed wind load time history from displacement and
acceleration response with nlev = {5%,10%,15%} for the first vibration mode were plotted together with
their power spectra.

The detailed results analysis pertaining to the measured displacement and acceleration responses are
presented in Tables 3.2 and 3.3. For observing the effect of the noise magnitude on the reconstructed
loads, the modal wind loads were reconstructed from responses with different noise levels, nlev. In those
tables the coe f f icient o f correlation, 0≤ ρc ≤ 1, represents the degree of trend similarity between the
identified and actual wind loads at each mode, where the closer values of ρc to one yields the more linear
correlation between the actual and identification results and vice versa (Clough and Penzien (1995)).
On the other hand by means of the relative error index i.e. Re defined in Eq. 3.20, it is possible to find
out that the identified load of which measured response type, i.e. displacement or acceleration, is more
sensitive to the rise in noise magnitude contained in the measurement data.

Re(%) =
∣∣∣∣P̃i−Pi

∣∣∣∣/ ||Pi|| ∗100 (3.20)

In Eq. 3.20, P̃i and Pi stand for identified and actual modal wind loads. As illustrated in Figs. 3.4 and
3.5, first of all the displacement-based reconstructed modal wind loads have higher accuracy at the same
noise level compared to their acceleration-based counterparts. However the increase of the noise level
reduces the quality of the load identification of both of them, which can be also perceived from the Re

values in Tables 3.2 and 3.3. Furthermore the GCV method, especially based on the acceleration response,
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Figure 3.3: The decomposed modal responses corresponding to the first vibration mode
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Figure 3.4: Time history and power spectrum of the reconstructed first mode wind load from
displacement response
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Figure 3.5: Time history and power spectrum of the reconstructed first mode wind load from acceleration
response
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Table 3.2: Result analysis associated with the reconstructed modal wind loads from displacement
response

ρc: Coefficient of correlation and Re: Relative error (%)

Mode
nlev = 5% nlev = 10% nlev = 15%

L-curve GCV L-curve GCV L-curve GCV

1st
ρc 0.9999 0.9990 0.9973 0.9974 0.9945 0.9949
Re 4.5 4.4 7.0 6.9 9.8 9.4

2nd
ρc 0.9993 0.9993 0.9988 0.9986 0.9976 0.9977
Re 3.6 3.6 4.8 4.8 6.8 6.8

3rd
ρc 0.9996 0.9997 0.9994 0.994 0.9988 0.9986
Re 2.5 2.5 3.1 61 4.4 4.4

4rth
ρc 0.9884 −∗ 0.9810 −∗ 0.9696 −∗
Re 18 −∗ 20.1 −∗ 24.1 −∗

5th
ρc 0.9831 0.9831 0.9799 0.9799 0.9776 0.9776
Re 27.6 27.6 29.5 29.5 29.7 29.7

* GCV failure in finding the optimal regularizion parameter

is indeed likely to fail in providing a proper regularization parameter, which is demanded for solving the
Tikhonov inverse problem. Several runs of the load identification procedure confirm this statement, that is
also observable as an example in Fig. 3.5 with with nlev = {10%,15%}. Consequently those results were
not given in Table 3.3. The same occurred in some cases when the displacement response was utilized,
which are marked by (∗) in Table 3.2. Contrarily, L-curve usually located the the Tikhonov parameter
correctly although the quality of its corresponding solution, depending on the measured response type or
noise level, can vary.

Table 3.3: Result analysis associated with the reconstructed modal wind loads from acceleration response
ρc: Coefficient of correlation and Re: Relative error (%)

Mode
nlev = 5% nlev = 10% nlev = 15%
L-curve L-curve L-curve

1st
ρc 0.94 0.91 0.79
Re 31 47 58

2nd
ρc 0.97 0.95 0.87
Re 23 35 53

3rd
ρc 0.99 0.97 0.93
Re 16 26 35

4rth
ρc 0.94 0.81 0.68
Re 33 62 99

5th
ρc 0.98 0.91 0.8
Re 19 41 61

A great importance is attached to the point that the quality of displacement-based identified modal
wind loads are less sensitive to the noise levels magnitude at different modes, that makes it more attractive
and superior over acceleration-based wind load reconstruction. A closer attention was drawn to the
comparison between the properties of the impulse response matrices (IRM) of the displacement and
acceleration responses. Above all, the condition number (Cheney and Kincaid (2008); Trefethen and
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Bau III (1997)), which is the ratio between the largest to the smallest singular values of a matrix, implies
that how much the inverse solutions of the system of linear equations like in Eqs. 3.4 are sensitive to the
perturbation or in other words to the non-system-generated components (noise).

In Fig. 3.6 the singular values of the displacement and acceleration augmented IRMs for the first
vibration mode were demonstrated, which represent a gradual decay of the singular values due to the
ill-conditioning of IRM. The smallest singular value of displacement IRM is approximately zero due
to the zero initial conditions assumption. This assumption was also considered in derivation of the
acceleration IRM, because usually during the data acquisition of the ambient vibration measurements, the
initial conditions can not be readily determined, which is due to the fact that it would require to mount
different types of response sensors (velocity, displacement) on the structure simultaneously, that is not
normally of high interest in field measurement. Moreover the transient response, namely the contribution
of the initial conditions in the vibration response of the civil engineering structures is insignificant as a
result of damping. This contribution is negligible especially for the wind-induced vibrations, where the
measurement time-length is relatively long of the order of minutes. Consequently for the sake of a clearer
comparison, the condition numbers of the modal displacement and acceleration IRMs are presented in
Table 3.4, ommiting the smallest singular value, which is less than the computer precision. This table
also shows the condition number of the IRMs with 8400 time steps corresponding to 10 min response, in
addition to the IRMs used in this study with 840 time steps (1 min response).

Given the condition numbers in Table 3.4, it was revealed that for the same structural system
the condition numbers of the modal acceleration IRMs are considerably greater than those of the
displacement IRMs. Moreover the condition number of acceleration IRM rises with a higher rate than that
of displacement with the growth of problem size. Hence it is expected that the wind load reconstruction
based on the measured acceleration response is more sensitive to noise and consequently less accurate.
According to Table 3.4, from the relatively small condition number of displacement IRM, it can be
also perceived that the introduced procedure is able to effectively relieve the existing ill-posedness, as
reported in the literature pertaining to load identification. This is accomplished by implementing the
wind load reconstruction in modal subspace through the modal displacement IRMs. Due to this fact, the
load reconstruction remains highly accurate in wind load applications even for longer time-length and
consequently this point is a remarkable strength of the introduced procedure in this study.

The displacement-based reconstructed modal wind loads have sufficient accuracy even for relatively
high noise levels. In the frequency domain this good quality remains intact up until the corresponding
mode’s vibration frequency and afterwards deviates with an intensity depending on the noise level. Thus,
unlike the acceleration-based case, this give rise to the identified loads with the correct background
signals, composed of the lower frequency components at each mode (see power spectra in Fig. 3.4),
what is indeed of high interest in wind induced vibration application.

Table 3.4: The condition numbers of the modal impulse response matrices

Mode 1 2 3 4 5 6

Displacement
1 min 226 190 172 24 23 20
10 min 233 195 176 24 23 21

Acceleration
1 min 12538 10938 10136 2316 2083 1620

10 min 12954 11259 10413 2334 2097 1629
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(b) Acceleration

Figure 3.6: Singular values of impulse responses matrices for the first mode

3.4 Conclusion

In this contribution a procedure for the inverse wind load reconstruction from measured structural re-
sponses of the large degrees of freedom structures was introduced. It was tried to keep the procedure
practically applicable and solely based on the data that can be obtained via vibration response measure-
ments, so that extra assumptions for unmeasured degrees of freedom responses or mass and stiffness
matrix setup are not required. But instead just the modal properties of the structural system, which can be
obtained directly from the vibration measurements are demanded, in order to generate the augmented
impulse response matrix of the system and decompose the measured responses into the modal responses.
The presented step-by-step procedure with a fairly comprehensive discussion explains different aspects of
the provided wind load identification method for the real applications.

An important goal of the study concerns revealing the more consistent response type, i.e. displacement
or acceleration, for the wind load recovery according to the provided procedure. It was found out that
the measured displacement response is more appropriate for this purpose, due to the higher power of
displacement signal in lower frequencies and the smaller condition numbers of the modal displacement
impulse response matrix compared to those of the modal acceleration, which consequently makes the
inverse problem less sensitive to the contained noise in the displacement data acquired from measurement
setup.

The quality of the reconstructed modal wind loads based on both response types reduces as the noise
level increases. But rather the modal wind load identification from the displacement response, especially
by means of the L-curve method, remains sufficiently accurate even at 15% noise level. The background
signal of wind load is correctly reconstructed from displacement response whereas the noise-related
discrepancy emerges in the high frequency components of the identified load signal above the natural
frequency of the corresponding mode.

Consequently according to the introduced procedure in this study, the modal wind loads can be
recovered from the measured displacement response properly, without bearing substantial accuracy
drop even in the presence of relatively high amount of noise in the measured signal for relatively long
time-lengths.
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Chapter 4

Identification of wind loads from
structural responses through full-scale
field measurements

This paper presents the field application of an introduced procedure for the wind load identification. The
wind loads are inversely reconstructed in time domain by means of an augmented impulse response
matrix from measured structural response. The inherent noise amplification arising from ill-posed inverse
problem is resolved through Tikhonov regularization scheme. In order to increase the accuracy in solving
the inverse problem along with the availability of the measured response just at a limited number of
sensor locations, the problem is projected onto the modal coordinates. Consequently the modal wind
loads are identified in modal subspace for several single degree of freedom systems, whose characteristic
parameters are obtained by an operational operational modal analysis procedure. The structure under
measurement is a 9.1 m (30 ft) tall guyed mast. Since the direct wind pressure/load measurements
on the structural members are almost impossible in full-scale testing, numerical simulation was also
implemented to verify the experimental results by analogy. The load identification results are provided
in time and frequency domain. Numerical simulations, where actual loads are available, confirm the
capability of the method in identification of modal wind loads. Then based on the existing analogy, the
identified loads from field measurements are validated.

4.1 Introduction

Inverse identification of dynamic loads is a common problem in different fields of engineering like in
engine-induced vibrations of vehicle chassis (Hebruggen et al. (2002); Leclèrea et al. (2005)), moving
loads on bridges (Zhu and Law (2002); Lee (2014); Law and Zhu (2011)) or in wind-induced vibration of
structures (Kazemi-Amiri and Bucher (2014); Chen and Lee (2008)). The load identification problem
is generally an example of the inverse problems with application to structural dynamics and vibrations.
Dynamic load identification becomes more appealing in the cases, where the excitation factor can not be
directly observed through measurements. This could be due to either the nature of excitement cause or
the restrictions of man-made apparatus. The dynamic wind load, as a consequence of the wind pressure
with the continuous distribution on the structural elements, is a good example in this regard. Engineers
can obtain plenty of advantages, if good knowledge on dynamic loads are available. Those advantages
can be outlined from the design phase e.g. improvement of the loading codes of practice up to the
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post-analysis phase for instance in structural performance improvement or health monitoring of the
in-service structures.

Design codes of practice for wind load provide useful information, most of which derived from wind
tunnel test data (Holmes (2007); Simiu and Scanlan (1978)). However laboratory assisted simulation of a
complex phenomenon like wind in wind tunnel, which is influenced by several parameters is prone to
uncertainties. Therefore the information obtained by wind load identification from the field measurement
data can be beneficial to verify the wind tunnel test data, as well. Identified wind load data can be also
utilized for a realistic reliability and risk assessment of in-service structures, whereas usually numerical
simulations are available for that purpose (Bucher (2009a); Augusti et al. (1984)).

A couple of studies in the area of load recovery from response measurements have recently dealt with
the problem of wind load identification. However yet the number of those studies is not significant in
comparison with the number of researches, generally conducted in structural dynamic load identification
area. Hence there is a tangible need for more researches particularly on the wind load related issues
from different aspects. The studies on the wind load reconstruction may be categorized with respect to
the way they treat the input identification problem. For example Law et al. (2005) solves the problem,
despite the insufficient number of measured point on the structure, in the physical domain in which
measurement has been carried out. According to Law et al. (2005), the iterative simulations of wind
speeds based on the identified wind characteristics of the structure’s site, play an important role in order
for wind load identification in physical subspace to provide structural response data for unmeasured
points. Another approach is to transform the problem into another subspace (e.g. modal subspace) to
truncate the unknowns to the number of equations, available from the measurement at sensor locations.
Hwang et al. (2011) is an example of the latter, where the modal wind loads were recovered within the
use of Kalman filtering scheme for state estimation of system. Nonetheless this approach does not directly
tackle the noise magnification problem and instead suggests to additionally apply low-pass filter on the
measurement data to remove noise in relatively higher frequencies. Here having a good knowledge on the
noise properties is inevitable in order to set the cutoff frequency and filter type, which is usually out of
reach due to different and variable noise sources. In Lourens et al. (2012) an augmented Kalman filter
was introduced, trying to identify the load as input signal, while simultaneously tries to relieve the noise
effect. However in that study it was demonstrated that still the Tikhonov type solutions are more robust
in different situations. Recently Azam et al. (2015b) stated that by an expert guess on the covariance
of the input and through a proposed dual Kalman filter, the drift effect in the estimated input load via
implementing the augmented Kalman filter can be avoided. However the two latter studies have not been
specialized for the inverse estimation of wind loads yet.

With respect to the above-mentioned points, in this contribution an approach for wind load identifi-
cation is adopted, when the following conditions hold: a) Additional data or information on the wind
characteristics of structure’s site, acting wind load or noise nature is unavailable. b) Structural response
just on a limited number of points can be measured. c) The noise effect within solving the inverse problem
should be resolved. d) Only structural modal characteristics (Natural frequencies, mode shapes and
damping ratios) through a system identification method and accordingly modal analysis are available.

Application of this procedure requires only the response data derived from the field measurement,
for the structure undergoing wind vibration. The impulse response matrix, necessary to construct the
input-output (dynamic load-response) relation, is generated based on a previous work of the authors
(Kazemi-Amiri and Bucher (2015)) and the strength of the introduced procedure was investigated for
inverse estimation of wind loads on large degrees of freedom structures based on numerical simulation
(Chapter 3). The structure under study in this contribution is a 9.1 m (30 ft) tall guyed mast with
tubular elements, which is serving as a weather station tower in the Hydrological Open Air Laboratory
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Petzenkirchen, Lower Austria (Blöschl et al. (2016)). The operational modal analysis results of the
structure is provided in section (4.3.2). The characteristics of the reconstructed modal wind loads have
been inspected in time and frequency domain. As a matter of fact it is not feasible to measure the actual
wind load in the field testing tasks. Consequently in order to verify the estimated experimental results,
the numerical simulation of the same problem was implemented, which is assisted by the finite element
model of the mast structure and digital simulation of the wind speed. The simulation results are studied in
section 4.4. The analogy between the numerical simulation and practical field application results provides
useful information on how to verify the correctly identified modal wind loads, which is discussed in
section 4.4.1. According to the existing analogy it is concluded that the in-situ modal wind loads can be
identified by applying the introduced procedure.

4.2 Wind load reconstruction procedure

It is briefly explained the wind load identification procedure within this section. Since this contribution is
intended to more focus on the practical application of the proposed method and its corresponding details,
thus the readers are referred to Chapter 3 for more information on the applied procedure itself.

Consider the equation of motion of a linear multiple degrees of freedom structure with mass m,
stiffness k and the classical damping c matrices. Those equations are decoupled into set of one degree
of freedom systems in modal coordinates by the substitutions u(t) = ΦΦΦq(t), in which ΦΦΦ is the matrices,
collecting the mode shapes. Then premultiplication by ΦΦΦ

T (Ziegler (1998); Chopra (1995)) renders:

mü+ cu̇+ku = p(t) (4.1a)

q̈+2 diag[ζiωi] q̇+diag[ω2
i ] q = P(t) (4.1b)

where P =ΦΦΦ
T p and ζi, ωi denote the damping ratio and natural circular frequency at ith mode respectively.

Then the steps of the introduced procedure for wind load reconstruction are as follows:

1. Identify the structural modal parameters i.e. ωi, ΦΦΦr and ζi.

For this study those parameters were gained by means of an operational system identification.
Hereafter the subscript r refers to the reduced set of identified mode shapes or measured response
vectors, since those are just available at the sensor locations.

2. Decompose the measured responses acquired from different sensor channels mounted on the
structure by means of the following equation:

q̃(t) = ΦΦΦ
†
r ur(t) (4.2)

in which ΦΦΦ
† =

[
ΦΦΦ

T
r ΦΦΦr

]−1
ΦΦΦ

T
r and q̃(t) denote the pseudo inverse of the incomplete mode shapes

matrix and the approximated modal response matrix, respectively.
3. Check the validity of the decomposed modal responses by means of its power spectrum or simply

its Fourier transform; Such that each modal response must only have one dominant vibration
frequency corresponding to the natural frequency of the system at that mode.

To this end the contribution of all modes within the existing frequency range must be decomposed.
4. Given the modal parameters for a number of vibration modes, the modal impulse response matrix

(IRM) of the system
[
h̄di

]
is generated for each mode (Kazemi-Amiri and Bucher (2015)).
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The IRM together with the decomposed modal responses from step 2 are utilized to set up the
input-output relation for the inverse identification of the acting modal wind load, that is Pi, in the
relation below:

{qi}=
[
h̄di

]
{Pi} (4.3)

While l is equal to the total number of time steps, then
[
h̄di

]
∈Rl∗l stands for the modal displacement

impulse response matrix at the ith mode, wherein h̄di is derived based on the displacement impulse
response function hi(t) = e−ζi ωi t

Mi ωdi
sinωdit for each mode (Kazemi-Amiri and Bucher (2015)).

5. Since Eq. 4.3 is derived by the Duhamel’s integral (convolution), which is classified in the family
of Fredholm integral equation of the first kind, matrix

[
h̄di

]
is ill-conditioned and consequently this

equation can not be solved directly to find the estimated applied wind load P̃i (Jankowski (2013);
Tikhonov and Arsenin (1997)). Alternatively it is benefited from the Tikhonov regularization
scheme in order to identify the modal wind loads (Tikhonov and Arsenin (1997)):

min
{∣∣∣∣q̃i− h̄i P̃i

∣∣∣∣2 +λ
2
i

∣∣∣∣P̃i
∣∣∣∣2
}

(4.4)

Prior to solving the preceding optimization problem, λi the optimal regularization parameter,
should be determined in conjunction with L-curve (Hansen and O’Lary (1993); Hansen (2007)) or
generalized cross validation (GCV) (Wahba et al. (1979)).

6. If required the identified modal wind load can be transferred to modal subspace of the modified
version of the actual structure for the post analyses. The actual and modified structures called
primary and secondary, respectively. Therefore it is looked for a transfer matrix T, so that the
modal subspaces between two structures can be exchanged, considering that principally P = ΦΦΦ

T p:

TP̃St1 = P̃St2 ⇒ TΦΦΦSt1 = ΦΦΦSt2 (4.5)

where P̃St1 and P̃St2 denote the wind loads in the modal subspace of the primary and the secondary
structure. Note that the latter is unknown. Then right multiplication by mSt1ΦΦΦSt1 and provided that
ΦΦΦ

T
St1mSt1ΦΦΦSt1 = I, it renders:

T = ΦΦΦ
T
St2mSt1ΦΦΦSt1 (4.6)

Usually the mass matrix of the primary structure could be not available, since just its modal
parameters are identified, while e.g. mathematical model of the secondary structure and accordingly
its mass matrix should exist for further analysis. In this situation the above transfer matrix can be
derived in terms of the secondary structure’s mass matrix. Therefore the same scheme as above is
followed such that:

P̃St1 = T
′
P̃St2 (4.7a)

T′ = ΦΦΦ
T
St1mSt2ΦΦΦSt2 (4.7b)

The comparison with the left hand of Eq. 4.5 yields T = T′−1
.

In this contribution the modal subspace transferring corresponding to Step 6 was not implemented,
since this work does not include post analysis on the secondary structure. However the required theory
for this purpose was given as the complementary information.
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4.3 Results

4.3.1 The structure and measurement setup

The structure is located in Petzenkirchen, Lower Austria and serves as a weather station tower for
mounting the meteorological sensors in the Hydrological Open Air Laboratory (HOAL) (Blöschl et al.
(2016)). The structural response was obtained as a result of the ambient wind-induced excitation. The
structure is a 9.1 m (30 ft) tall guyed mast, consisted of three parts. Each part has an equilateral triangular
cross section, whose dimensions respectively from bottom to top are [0.43, 0.34, 0.26] m (see Fig. 4.1a).
Each part of the mast is composed of three main legs and horizontal as well as the cross bracing elements,
which are all made up of aluminum alloy. Three cables from either side account for the additional lateral
constraint on the upper part of the mast, in order to prevent the wind over load. Figure 4.1b shows an
in-situ picture of the mast structure.

The wind-induced acceleration response of the structures is measured in horizontal plane of the mast
via capacitive accelerometers, which are suitable for relatively low frequency vibration measurements.
The specifications of measurement sensors, which are products of PCB Piezotronics, are given in Table 4.1.
An almost evenly distributed configuration for the sensor locations was chosen, which are marked by
[S1:S7] in Fig 4.1a. It was avoided to mount the sensors very close to the locations of guys connection,
since the vibration intensity around those points is poor. The vibration responses were measured in two
perpendicular direction (i.e. x and y) at locations [S1, S3, S5, S6, S7], but in the rest of the locations
namely [S2, S4] the response was measured just in one direction (y) in order to deliver the additional lateral
measurement. As a result, there are 12 measurement channels in total. Through this sensor configuration
one can measure general motion of the structure for a proper system identification, especially to take into
account the coupled bending-torsional modes. A representation of the measurement setup on the mast,
where acceleration response is measured in three horizontal directions, is shown if Fig. 4.2.

Table 4.1: Sensors specifications

Sensor Type Sensitivity (mV/(m/s2)) Frequency range (Hz)
Accelerometer MEMS DC 3713B 101.9 0-250

4.3.2 Operational modal analysis

The modal characteristics of the structure has been identified based on the stochastic subspace identifica-
tion method (Peter and Roeck (1999); Reynders and Roeck (2008); Reynders et al. (2008)) by means of
the Matlab toolbox, so-called “MACEC” (Reynders et al. (2014)). The sampling rate for data acquisition
was set to 100 Hz. In order to get a clue about the eigenfrequencies of the system, firstly the acceleration
power spectrum of different measured channels were observed. For instance in Fig. 4.3a the power
spectrum of the sixth channel corresponding to location S4 in direction y is illustrated. For a better
resolution in the frequency range of interest for the wind induced vibrations, the signals were decimated
by factor 7, which consequently yields to the new measurable upper bound of 7.1 Hz with respect to
the Nyqvist frequency. The power spectrum of the decimated signal is depicted in Fig. 4.3b. The signal
processing including signal decimation and the offset removal should be also carried out before system
identification. Following, the results of operational modal analysis, regarding the six identified modes are
provided in Table 4.2 and Fig. 4.4. It should be noted that in Fig 4.3b the peak associated with the third of
the first four modes is not observable well, as this figure shows the signal merely in direction y and this
mode has higher energy in the other direction i.e. x.
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(a) Side view of the mast structure and response
sensor locations

(b) Picture of the instrumented guyed mast

Figure 4.1: The representation of the mast structure and the response sensors configuration

(a) Picture of attached accelerometers on
the mast

(b) Measurement arrangement of the
corresponding sensors

Figure 4.2: View of response sensors on mast and measurement arrangement
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(b) Decimated signal

Figure 4.3: The measured signal power spectrum at sensor location S4 in direction y

Note that in reality the identified mode shapes from experimental vibration data are complex-valued
vectors (Mitchell (1990); Caughey and O’Klley (1965)). As such the identified mode shapes were realized
via the complex transformation matrix (Niedbal (1984); Friswell and Mottershead (1995)).

Table 4.2: The identified natural frequencies and damping ratios of the mast structure

Mode 1 2 3 4 5 6
Eigenfrequency (Hz) 3.03 3.31 3.44 3.53 5.49 6.58
Damping ratio (%) 0.52 1.36 0.9 0.91 0.44 0.56

4.3.3 Identification of the wind load

In this study solving the ill-posed inverse problem corresponding to Eq. 4.3 for fluctuating part of modal
wind loads was accomplished by Tikhonov regularization scheme (Tikhonov and Arsenin (1997)). There
are different methods dealing with the ill-posed inverse problems, to which the readers are referred for
more information (Hansen (1987); Klimer and O’Lary (2001); Varah (1973)). The optimal regularization
parameter, which is needed for solving the optimization problem of Eq. 4.4 has been determined by
L-curve method as well as generalized cross validation (GCV).

The accuracy of the regularized solution is inversely proportional to the size of the problem, i.e.
the dimensions of matrices in Eq. 4.3, which in turn depend on the time length and the system degrees
of freedom (dofs). In Kazemi-Amiri and Bucher (2015), the augmented IRM was introduced and it
was comprehensively explained how augmented IRM increases the accuracy of the input-output (force-
response) relation, while keeping the problem size unchanged. Moreover by projecting the physical
coordinates onto the modal subspace two advantages are achieved. Firstly the multiple dofs system
reduces to one at each mode that gives rise to reduction of the problem size. Note that the single parameter
Tikhonov regularization scheme treats the inverse problems with single dof much better than the case with
multiple dofs. This is due to the fact that there might be different degrees of ill-conditioning with respect
to each dof, while single regularization scheme cannot treat them individually but rather on average.
There are methods developed based on the idea of multiple regularization levels like L-hypersurface
(Belge et al. (2002)) and multiple GCV (Modarresi (2007)). Those methods are way more complex in
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Figure 4.4: Identified mode shapes
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implementation than their single level counterparts and are usually more efficient for a few number of
unknowns, which does not always hold for the case of wind load identification. The second advantage of
modal projection is that the continuous quantity of wind pressure/load acting on the structural element is
discretized in modal subspace as an equivalent single force. As a result of the latter, the underdetermined
state of the corresponding inverse problem, with respect to a limited number of sensor locations, is also
resolved. To sum up, the modal projection of the problem is effectively a good choice.

Afterwards, it should be decided, which response quantity is to be used for the wind load reconstruc-
tion. Importance is attached to the point that the response type is another influential factor on the accuracy
of recovered load. According to author’e investigation (Kazemi-Amiri and Bucher (2015) and Chapter 3),
the displacement response is more suitable over the acceleration in order to infer the wind loads. This is
because of the condition number, which reflect the degree of instability of inverse problem response. The
condition number of displacement IRM is considerably smaller than that of acceleration. It means that
there is less sensitivity to the contained noise in the measured displacement signal and more accurate
wind loads can be recovered.

4.3.3.1 Real application of the wind load identification

Acceleration and displacement are more common types of measured responses among others in structural
vibration measurement tasks. However it was mentioned that the wind loads can be recovered more
accurately based on the displacement response. But since the mast structure under measurement is
relatively light-weight and on the other hand the accelerometers are also light-weight units, then ac-
celerometers were used for the measurement purpose in order to avoid the drastic effect of sensor mass
on the behavior of the structure. Consequently the displacement responses had to be derived from the
measured acceleration. The acceleration signal is integrated twice in frequency domain according to
integral property of Fourier transform to obtain the displacement responses (Brandt and Brincker (2014)).
In order to prevent the drift phenomenon, which usually occurs due to integration, every time before
integration the signal was windowed and also passed through high-pass Butterworth filter with cut-in
frequency of 0.2 Hz.

As the multiple DOFs wind load identification is transformed to modal load reconstruction, the
structural responses of the structure need to be decomposed into modal responses, once the system mode
shapes are identified. The displacement signals were decomposed into their modal responses by means of
the identified mode shapes, according to Eq. 4.2. In order to check the validity of the decomposed modal
displacements responses, the power spectrum pertaining to the first six modes are plotted in Fig. 4.5.
According this figure each signal features one dominant peak in the power spectrum corresponding to the
modal natural frequency. This confirms that the displacement responses were correctly decomposed in
the modal coordinates.

In the next step, the displacement modal impulse response matrices were constructed for 60 s
according to the identified modal information in Table 4.2. To this end, with the time step equal to 0.07 s
and based on the sampling rate of the decimated data i.e. 14.3 1/s, the size of the IRM should be set to
l = 857 in Eq. 4.3 to have the desired time length. This equation was afterwards solved for the modal
wind loads by means of the Eq. 4.4 through L-curve and GCV methods. The time history and power
spectrum of the identified modal wind loads are given in Fig. 4.6. According to Fig. 4.6, the L-curve and
GCV responses are almost the same in time history plots for the 1st to 4th modes. In Figs 4.7i and 4.7k
corresponding to the 5th and 6th modes, GCV method (unlike L-curved) recovered the modal wind load
just in the vicinity of the modal natural frequency. Consequently the identified wind loads by GCV have
drastically small amplitudes in time history plots (Figs. 4.7i and 4.7k) compared to those by L-curve.
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Figure 4.5: Power spectrum of the decomposed modal displacement responses
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Figure 4.6: Reconstructed wind loads from field measurement data
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4.4 Verification of field application results

A procedure was sought for verifying the identified modal wind loads indirectly, since in contrast with
the numerical simulation, the applied wind loads are not available in the full-scale testing. Some studies
compare the retrieved responses from identified wind loads with the actual measured responses. However
since Eq. 4.3 is derived based on the convolution integral, the IRM has smoothing effect on the applied
load. It means that for a highly or slightly fluctuating identified load, apart from its validity, almost
identical responses might be retrieved (Hansen (2007); Groetsch (1984)). As a result in this contribution,
the results of the numerical simulation of the same problem is provided too.

Following, by inspection of the similarities in time and frequency domain between the features of the
field and simulation reconstructed wind loads, the validity of the field results can be crosschecked.

4.4.1 Simulation of the wind load reconstruction

The full-scale finite element of the mast structure was created in SlangTNG (Bucher and Wolff (2013)).
The acting wind loads along the structure were generated according to the digital simulation of the
fluctuating part of wind speeds at different height levels, in two perpendicular horizontal directions inde-
pendently. The correlated fluctuating wind speeds were simulated at 18 different heights corresponding
to the panels of the mast with the assumption that wind speed is constant over one panel (see Fig. 4.1a).
Then the resulted wind loads due to the action of wind pressure on the exposed area of mast elements,
were considered as nodal forces on the nodes of mast cross sections.

The simulated noise polluted displacement response was achieved by adding the unit amplitude white
noise with adjustable noise level to the displacement response, which is directly derived from solving
the equation of motion . The noise was scaled with respect to the response standard deviation of the
corresponding degree of freedom. The configuration of the virtual sensors as well as the measurement
sampling rate are similar to the sensor configurations in Fig. 4.1a and the field measurement sampling
rate, respectively.

The time history and the power spectrum of the reconstructed wind loads are illustrated in Fig. 4.7
for the first mode with the eigenfrequency equal to 3.03 Hz. The results obtained by L-curve and
GCV are almost identical and of a high accuracy. The corresponding result of the fifth mode with the
eigenfrequency of 5.69 Hz is also represented in Fig.4.7. Although GCV fails to find the optimal solution
at this mode but L-curve provides a good quality recovered wind load signal. The noise level for the
numerical simulation of the results was set to 10% of the response standard deviations of the responses at
the location of the virtual sensors.

According to power spectrum plot in Figs.4.7b, it can be observed that a slight deviation of the
identified signal power spectrum from that of the actual signal occurs only after the natural frequency
of that mode and consequently the background signal is correctly identified. This leads to a negligible
discrepancy between the identified and actual modal wind load signal in the time history plots. The
validity of the experimental results corresponding to the first to fourth modes can be qualitatively
verified by crosschecking with this set of simulation results. Analogous to the simulation results, the
experimentally identified loads by GCV and L-curve are almost identical in time history with deviation
of power spectrums after the natural modal frequencies. However less discrepancy is expected for the
reconstructed loads by GCV since the deviation of the GCV-based identified loads power spectrum,
after corresponding natural frequencies, are less compared to those recovered by L-curve. The next
interesting analogy exist between the results of simulation in 5th mode and the real application in 5th
and 6th modes. In simulation, GCV has obviously failed to recover the applied modal wind load except
around related mode natural frequency (Fig. 4.7d). But rather L-curve could identify the wind load but
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relative inaccurately compared to the 1st to 4th modes result. As a result the validity of experimental
results of the 5th and 6th modes can be verified but with a degree of uncertainty. Nevertheless, the higher
the mode number the less contribution it has in the response to the input excitation.
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Figure 4.7: Reconstructed wind loads from numerical simulation

4.5 Conclusion

In this contribution, it was dealt with the field application of an introduced procedure for modal wind load
identification inversely from full-scale field measurement data of structural response. The major focus was
drawn to the technical aspects of the practical application, including the case study, measurement setup,
data processing and the utilized methods within the load identification procedure. It is important to note
that all information needed for wind load identification was acquired solely based on the measurement
data. In this regard, no additional assumptions were required to be made either on the structural properties
e.g. assumptions on system mass or stiffness matrices or on the wind characteristics of the structure’s site.
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It was discussed profoundly, what are the advantages of wind load reconstruction in the modal
subspace, use of displacement responses and utilizing the augmented modal impulse response matrices.
The Tikhonov solution was utilized in conjunction with the methods of L-curve and GCV for tackling the
inherent ill-posedness of the inverse load identification problem. The modal parameters (natural mode
shapes and frequency and damping ratios) are required for the generation of the modal impulse matrices
as well as decomposition of the measured displacement responses. The structural modal properties were
obtained by means of operational modal analysis from the same ambient vibration testing data, which is
used for inverse load identification.

It is not generally feasible in practice to measure the actual wind loads acting on the structural
element, in order to verify the load identification results. It was described that there might not exist
another solution for this purpose better than simulation of the problem and observation of the existing
analogies. The numerical simulation of the same problem can demonstrate the strength or weakness of
the introduced procedure for practical wind load identification. Consequently the validity or failure in the
real application of the introduced procedure was verified by means of the analogy between the field and
numerical simulation results. It was obviously observed that for a number of first vibration modes the
experimental results are reliable. Last but not least, as the case study had the complexity and generality
of an arbitrary structure sufficiently, this method can be applied for modal wind load identification of
other structures too.
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Chapter 5

Collaborative research contribution

Vienna doctoral program on water resource systems is a multidisciplinary program, which consists of
several research clusters. Collaborative research works between and within clusters is one of the main
focuses of the doctoral program. In this regard, every PhD candidate is encouraged to plan research
projects with the collaboration of other candidates in the relevant research fields. The author’s contribution
to the collaborative research work includes two parts. section 5.1, entitled “Wind-induced stochastic
response analysis from sparse long-term response data”, is an interdisciplinary collaboration with Mr.
Patrick Hogan, whose specialization is Astrophysics and Meteorology. Section 5.2 is comprised of a
research project together with Dr. Franz Bamer in the same discipline as mine, entitled “A new model
order reduction strategy adapted to nonlinear problems in earthquake engineering”.

5.1 Wind-induced stochastic response analysis from sparse long-term re-
sponse data

The main objective in this study is to develop methods for stochastic response analysis of structures
under wind-induced excitation, when the discontinuous/sparse measured response (acceleration, velocity
and strain/stress) is available. The measurement was carried out over one year according to predefined
intervals (of orders of hours) between each triggering, which at least should have 10 minutes duration.
In this regard it is of high interest to establish a mathematical relationship between structural response
indicators and mean wind speed corresponding to the measurement sets. Hence wind speed data is an
underlying key factor of the introduced methods and makes this contribution an interdisciplinary work
between structural mechanics and meteorology. Those response indicators dealt with here are response
standard deviation, response threshold passage counts as well as moments of area of the stress power
spectral density (PSD) used for stress cycle counting that is an inevitable item in wind fatigue evaluation.
The mentioned relationship with mean wind speed assists to interpolate the missing data corresponding
to the gaps in the measurement data.

By application of the mentioned idea the amount of measurement data is considerably reduced,
which in turn raises the computational efficiency for long term wind stochastic response analysis. This
efficiency is considered to be beneficial for structural monitoring in initial in-service ages of structure.
For the sake of design, usually through a large simulation process, the dynamic response analysis of
the structure to wind excitation with different direction and mean wind speed must be carried out.
However it is well-known that the structural behavior can be notably different after construction due
to several resons including the assumptions made in modeling of structure and surrounding ambient
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effects as well as imperfections and manmade errors during the construction phase. As a result this study
aims to provide a fast, efficient and especially realistic methodology, working based on discontinuous
vibration measurement under wind excitations. Furthermore the proposed method also assists to fill the
measurement gaps, which usually occurs even within any long-term continuous monitoring program, as it
is quite likely that measurement gaps exist due to different reasons e.g. defects/crashes of the sensors,
data acquisitions, storage equipments or power outage etc.

5.1.1 Introduction

Wind effects on the structure can be seen from different aspects. For example in the sense of building
energy and thermal performance of buildings wind can cause heat loss through increasing the infiltration
rate and surface heat transmission (Arens and Williams (1977)). Wind can disturb the occupants comfort
due to imposing uncontrolled accelerations on tall buildings (Melbourne and Palmer (1992); Kareem
(1983)). Excessive wind-imposed structural displacement can also cause destruction on the mechanical
installations or on architectural elements. In addition to the above mentioned issues, wind can affect a
wide range of structures including ordinary buildings, high-rise buildings and towers, overhead power
lines, on/offshore wind turbines, cranes and industrial chimneys etc (Huang (2016); Nateghi-A (1996);
Yeter and Soares (2013)). In this sense the wind loading accounts for the destructive effects on the
structures, which depending on the particular case can be due to wind overloads in storm events (e.g.
hurricanes, typhoons), aeroelastic stability issues, architectural damages due to sudden change in wind
pressure gradients or cumulative fatigue damage in structural elements etc. As a result wind loading
of structures has received substantial research effort within the last decades in many countries (Holmes
(2007)). A breakthrough in wind engineering was the introduction of wind tunnel testing. Wind tunnel
tests try to simulate the wind turbulence caused by different regimes in atmospheric boundary layer
(ASCE (2012)). Plenty of useful benefits were achieved by wind tunnel tests in wind engineering. Wind
tunnel tests also assisted to codify many aspects of wind loading. However the wind tunnel tests are also
prone to uncertainty since the exact simulation of a natural phenomenon might be impossible. Nowadays
in addition to the wind tunnel tests, which usually are performed before construction, in-situ structural
health monitoring is also implemented. Many structures which serve as lifelines e.g. important bridges,
main power lines or power plants according to their degree of importance might experience structural
health monitoring from beginning of their service life. The outcomes of this contribution tries to provide
an efficient and fast method for stochastic wind response analysis of structures by linking structural
response and wind speed data, that can be achieved through field measurement. Since whole data will be
obtained from field measurements at least over one year, then the realistic wind mechanism of the site
as well as changes in structural properties due to meteorological and seasonal changes are considered.
However it is self-evident that in order to capture the effects of extreme events, data corresponding to
a much longer time period is required. Fortunately nowadays long term wind data is available due to
the presence of numerous weather stations around the world. Therefore the extreme events wind data
corresponding to the structure’s site can be corrected by means of the existing data from the weather
station at another similar site in the neighborhood.

In this study the stochastic structural response of a mast structure which serves as a weather station
in conjunction with the associated wind speed data is analyzed. The weather station belongs to the
Hydrological Open Air Laboratory (HOAL) of Vienna Doctoral Program on Water resource systems.
The structural acceleration of the mast was measured within one year according to an 18-hour automatic
triggering, that records data for a duration of 30 minutes. The wind speed, whose data analysis is relatively
cheaper, was continuously measured in parallel. The one year ten-minute mean wind data was processed
to detect the predominant wind direction at the structure’s site. Thereby histogram and accordingly the
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mean wind speed probability distribution function of different blowing directions were obtained. Every
triggered structural data was tagged by its associated mean wind speed data. Then the mathematical
relationships between mean wind speed data and response standard deviation, displacement response
threshold passage counts and moments of area of the stress power spectral density was sought, in order
to retrieve the missing data corresponding to the unmeasured ten-minute time intervals. The first two
mentioned indicators are used for the purpose of the structural vibration control under wind, while the
latter is used for frequency domain fatigue damage estimation.

5.1.2 Wind-induced stochastic response analysis

5.1.2.1 Theoretical background

Consider the classically damped equation of motion for a single degree of freedom (SDOF) linear system
under arbitrary dynamic load f (t) as input:

mü+ cu̇+ ku = f (t) (5.1)

In the above relationship u, m, c, k denote the displacement, mass, damping and stiffness of the
system. The equation of motion can be solved by means of convolution (Duhamel) integral as follows
(Clough and Penzien (1995); Maia et al. (1998)):

u(t) =
∫ t

0
f (τ)h(t− τ)dτ (5.2)

in which h(τ) is the so-called impulse response function. Applying the Fourier transform on both sides
of Eq. 5.1 and solving for U(ω), which is the system response in frequency domain, yields(Maia et al.
(1998)):

U(ω) = H(ω).F(ω) (5.3)

while H(ω) is the response transfer function. Comparison of Eqs.5.2 and 5.3 shows that those are
respectively time and frequency domain pairs such that (Clough and Penzien (1995); Maia et al. (1998)):

H(ω) =
∫

∞

−∞

h(t)e−iωt dt (5.4)

In order to analyze the stochastic response of the system, the ensemble average of response, that is
E [u(t)u(t + τ)], should be evaluated. It has been illustrated (Clough and Penzien (1995)), that if the input
is a zero mean stationary process, then the response is also stationary with the autocorrelation function
equal to:

Ru(τ) = E [u(t)u(t + τ)] =

∞∫∫

0

Rp(τ−θ2 +θ1)h(θ1)h(θ2)dθ1 dθ2 (5.5)

where θ1 = t − τ1 and θ2 = t + τ − τ1 are expressed in terms of dummy time variables τ1 and τ2
corresponding to two fictitious time instants. The power spectral density (PSD) function of the response
Su is related to the response autocorrelation function through the Fourier transform as follows (Clough
and Penzien (1995); Bucher (2009a)):

Su(ω) =
1

2π

∫
∞

−∞

Ru(τ)e−iωτ dτ (5.6)
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Substituting Eq. 5.5 and after some computations, above relationship reduces to the following (Clough
and Penzien (1995); Bucher (2009a)):

Su(ω) = |H(ω)|2 S f (ω) (5.7)

In order to find the response variance firstly the inverse pair of Eq. 5.6 is considered:

Ru(τ) =
∫

∞

−∞

Su(ω)eiωτ dω (5.8)

By means of the latter and Eq. 5.7, as the process is zero mean, then the response variance is derived:

σ
2
u = Ru(τ = 0) =

∫
∞

−∞

|H(ω)|2 S f (ω)dω (5.9)

The above derivatives can be extended to the case of lightly damped linear multiple degrees of
freedom (MDOF) system by means of modal analysis, where the set of uncoupled modal equations of
motion is given below:

q̈+2 diag[ζiωi] q̇+diag[ω2
i ] q = P(t) (5.10)

in which P(t) = ΦΦΦ
T ppp(t) denotes the generalized dynamic loads in modal coordinates. Any response

quantity z(t), e.g. shear force, moment at a section or response at a degree of freedom, can be obtained
by linear combination of the modal responses z(t) = ∑

n
Bn qn(t). For instance if z(t) corresponds to

the response at a degree of freedom j then Bn = φ jn, or if z(t) denotes the base shear of a building,
then Bn = [1 . . .1] fn = ω2 [1 . . .1]Mφφφ (Clough and Penzien (1995)). In the latter fn = ω2Mφφφqn is the
equivalent modal static external load in terms of modal responses which is used for structural analysis at
each time step (Chopra (1995)).

Similar to SDOF case the autocorrelation function can be written, that yields (Clough and Penzien
(1995)):

Rz(τ) = E [z(t)z(t + τ)] = ∑
m

∑
n

Rzmzn(τ) (5.11)

while (Clough and Penzien (1995))

Rzmzn(τ) =
∫∫

∞

0
Bm Bn RPmPn(τ−θ2 +θ1)hm(θ1)hn(θ2)dθ1 dθ2 (5.12)

In case of civil engineering structures with low damping, whose mods are not closely spaced, the
responses of mth and nth mode are approximately uncorrelated, which simplifies the autocorrelation
function of a MDOF system (Eq. 5.11) to the following (Clough and Penzien (1995)):

Rzm(τ)≈∑
m

Rzmzm(τ) (5.13)

which immediately gives rise to the following relationship for variance of the response quantity:

σ
2
z = ∑

i
σ

2
zi

(5.14)

The PSD for the response z(t) of a MDOF system is computed by taking the Fourier transform from
Eq. 5.11 (Clough and Penzien (1995)):

Sz(ω) = ∑
m

∑
n

Szmzn(ω) = ∑
m

∑
n

Bm Bn Hm(−ω)Hn(ω)SPmPn(ω) (5.15)
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where Hi(ω) stands for the frequency response function at ith mode and SPmPn is the cross spectral density
function for the modal load processes Pm and Pn. Integrating Eq. 5.15 from −∞ to ∞ gives the variance.
Again the modal cross contributions can be neglected, which simplifies the response PSD to:

Sz(ω)≈∑
m

Szmzm(ω) = ∑
m

B2
m |Hm(ω)|2 SPmPm(ω) (5.16)

It was mentioned before, that the generalized modal load at mth mode is given by Pm(t) = φφφ
T
m ppp(t).

Consequently if each individual load at ith dof is defined by Spi(ω) (or equivalently Rpi(ω)), then the
covariance function and cross spectral density of modal loads Pm and Pn can be derived as follows (Clough
and Penzien (1995)):

SPmPn(ω) = ∑∑ φim φkn Spi pk(ω) = φφφ
T
mSp(ω)φφφ n (5.17)

and

RPmPn(τ) = ∑∑ φim φkn Rpi pk(τ) = φφφ
T
mRp(τ)φφφ n (5.18)

where m, n correspond to mode number and i and k denote the degree of freedom and Rp and Sp are the
covariance and PSD matrices of external dynamic loads, with matrix components Rpi j and Spi j respectively.
The power spectral density Sz can be also derived, similar to Eq. 5.15, but rather directly in the physical
coordinates without modal expansions.

According to Davenport (Davenport (1961b, 1963)), conceptually wind speed can be treated as a
stationary random process by summation of the time-averaged (mean) X̄ and the fluctuating part x(t).

X(t) = X̄ + x′(t) (5.19)

Consequently the preceding analysis method applies to wind vibration analysis and as a result the
above definition for X(t) also applies to the wind pressure/force as well as different types of structural
response (Holmes (2007)). Hereafter the wind effect is confined just to the along-wind (so-called drag)
force, without loss of generality though. If variable X(t) is replaced by V (t), which is to stand for the
wind speed, by quasi-steady assumption of the wind flow, the drag force is derived such that (Simiu and
Scanlan (1978)):

FD(t) =
1
2

ρairV 2ACD =
1
2

ρairV̄ 2ACD
︸ ︷︷ ︸

F̄D

+ρairACD(V̄ v′(t)+ v′(t)2/2)︸ ︷︷ ︸
f ′
(
t)

(5.20)

where the frontal area A = Bl consist of the breadth of structure/element, B, normal to the wind with
length l, and CD is the so-called drag coefficient. In the right hand side of Eq. 5.20, the second order term
of fluctuating wind speed is usually neglected (Simiu and Scanlan (1978)).

In order to be able to evaluate Eq. 5.16, the wind load PSD matrix must be known. The wind load
PSD can be determined by means of Fourier transform of the wind load autocorrelation function and
using the linear part of f ′(t) (Holmes (2007)):

SFD(ω) =
4F̄D

2

V̄ 2 χ
2Sv(ω) = ρ

2
airV̄

2A2C2
Dχ

2Sv(ω) (5.21)

in which Sv(ω) is the wind speed power spectrum and χ , so-called aerodynamic admittance, accounts
for adjustment of the non-stationary effects. There are different functions suggested in literature (Simiu
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and Scanlan (1978); Holmes (2007)) for wind speed power spectrum (e.g. see Eq. 3.14). Principally,
the square of the reference mean wind speed appears in wind speed power spectrum. Therefore the
relationship between mean wind speed and wind speed power spectrum is nonlinear of second order.

For two different physical points i(y1,z1) and k(y2,z2), located on a line perpendicular to the wind
direction the wind cross spectral density is given by (Simiu and Scanlan (1978)):

SViVk(ω) =
√

SViVi(ω)SVkVk(ω)exp


−ω

√
C2

z (z1− z2)2 +C2
y (y1− y2)2

2π(V̄zi +V̄zk)


 (5.22)

while Cz and Cy are exponential decay coefficient and are determined experimentally. Considering
Eq. 5.22, the cross spectral density of wind load becomes:

S fi fk(ω) = ρ
2
airV̄iV̄kAi Ak CDiCDk χiχkSViVk(ω) (5.23)

By means of the above function the elements of wind load PSD matrix S f is calculated. This matrix and
its associated covariance matrix can be used in Eqs. 5.17 and 5.18, respectively.

5.1.2.2 Stochastic response analysis from sparse response measurements

It is quite useful in many fields of wind engineering to divide the wind, blowing in a site, into a couple of
identical angular spacings, where each spacing represents the blowing direction and then within each
direction the histogram of the mean wind speed can be obtained. This is done in order to identify the
predominant wind directions and obtaining the probability density function of the mean wind speed. It
is common practice to consider, that structural response sets under different excitations corresponding
to the wind of a specific direction and mean wind velocity, have the same statistical properties and this
assumption is also used in the simulations for evaluation of wind fatigue (Jia (2011)). This is due to
the fact that they belong to the ensemble of the random processes with similar wind load PSD (see
Eq. 5.21). It is investigated in this study how the wind response statistics can be obtained if solely the
discontinues/sparse measured response data of the fluctuating part of wind load over a long period of
time is available. Consequently, the mathematical relationship between the mean wind speed in a specific
wind direction and the response standard deviation of the zero mean fluctuating structural response is
sought. According to definition standard deviation is the second root of variance, which can be found by
integrating Eq. 5.15:

σ
2
z (ω) = ∑

m
∑
n

∫
∞

−∞

Szmzn(ω)dω = ∑
m

∑
n

Bm Bn

∫
∞

−∞

Hm(−ω)Hn(ω)SPmPn(ω)dω (5.24)

In above relation, the response variance is a function of response transfer function, H(ω), and PSD
of the modal wind loads, i.e. SPmPn . The response transfer function is the structure’s property, while the
PSD of the modal wind loads are dependent on the external excitation. More inspection by considering
Eqs. 5.17 and 5.21, and the fact that the square of the reference mean wind speed appears in wind speed
power spectrum, reveals that the relationship between the PSD of modal wind loads (or response variance)
and the reference mean wind speed must be of fourth order. Consequently the response standard deviation
is function of the square of the reference mean wind speed. When the measured wind excitation response
exists, this second order relationship can be found experimentally from the pairs of the discontinuous
response data versus different wind speeds by means of a second order polynomial curve fitting.
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Another objective is seeking the relationship between mean wind speed at a reference height and
the number of data points corresponding to the absolute value of responses at a structural point that are
larger than a certain threshold (threshold passage counts). This relationship can be also established
experimentally according to the data of discontinuous response measurement at different mean wind
speeds over one year, which turns out to be a linear relationship.

The mathematical expression for both response standard deviation and threshold passage probability
can be used for in-service structural vibration control and failure probability estimation related to risk
analysis under random excitations.

5.1.3 Fatigue analysis

Structural or mechanical components are frequently subjected to repeated loads. The resulted cyclic
stresses, even at levels well below the given material’s ultimate strength, cause microscopic damages
in those components (Dowling (2013)). Accumulation of the microscopic damage leads into crack
nucleation, short and long crack growth and final fracture, due to which failure of the element occurs
(Lee et al. (2005)). This whole process is called f atigue. At present there are three main approaches to
estimating fatigue life (namely total time/cycles under cyclic load until failure), including stress-based,
strain-based and fracture mechanics approach. In this contribution the traditional stress-based approach
is dealt with. According to the stress-based method, a fatigue cumulative model is used in order to
accumulate the amount of damage associated with the number of cycles under different stress levels. The
cumulative models are comprised of the nonlinear, bilinear and finally the linearized model (Palmgren-
Miner). The simplicity and relative accuracy of the latter (Palmgren-Miner) made it the most popular one
among other models. Unlike the latter, the two former are indeed complicated in real applications.

According to Palmgren-Miner rule, if a certain stress level σi is applied for a number of cycles Ni, the
fraction of the used life (damage), which is independent of the cycles under another stress level, is Ni/N fi .
Obviously N fi is the number of stress cycles to failure at a certain stress level. Consequently the failure is
expected when the sum of fatigue damage fractions equals unity (Dowling (2013); Lee et al. (2005)):

∑
i

Ni

N fi

= 1 (5.25)

In order to be able to calculate the cumulative damage, Ni and N fi need be determined. In the subsequent
chapter, different techniques for counting the number of cycles of various stress levels within a loading
block will be described. The number of stress cycles to failure N fi is usually determined according to the
stress-li f e or S−N curves, which are derived based on fatigue tests for different metals.

It was mentioned that the stress cycles are responsible for the cyclic loading damage. One stress cycle
corresponds to a closed loop, with maximum and minimum stress respectively σmax and σmin respectively,
in the stress hysteresis plot of the loading block. The number of cycles to failure is then calculated as
follows (Dowling (2013); Lee et al. (2005)):

N f =
1
2

(
σa

σ ′f −σm

) 1
b

(5.26)

where σ ′f and b are obtained from the S-N curve of a certain material and the stress amplitude σa and
mean stress σm are determined by the following definitions:

σa =
σmax−σmin

2
, σm =

σmax +σmin

2
(5.27)
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5.1.4 Cycle counting Techniques

For fatigue damage estimation the number of cycles of different stress levels must be counted. The cycle
counting, depending on the loading type, can be easy or indeed complicated. If the loading is made up
of a couple of consecutive harmonics then the cycles are easily countable. But instead, for an irregular
loading history a more sophisticated technique should be adopted. Generally there are time and frequency
domain approaches in cycle counting for fatigue analysis.

Usually the features of loading history must be considered, whether the structural element undergoes
the uni- or multi-axial loading. For the uni-axial loading there is the efficient cycle counting method,
called rainflow cycle counting (Matsushi and Endo (1968); Dowling and Socie (1982)). The cycle
counting will become even more difficult in case of an element undergoing variable multi-axial loads. For
the multi-axial loading with purely in or out of phase loading in each axis (proportional loading), there
exist just one principle stress plane throughout the loading history. Thus by means of the signed version of
Von Mises or Tresca stress, an equivalent stress time history can be generated. Afterwards the traditional
rainflow count algorithm is applied. It was shown in (Sines (1955)) that the mean torsional stress does not
affect fatigue life. Consequently if the stress signal can be separated into mean and fluctuating parts, as in
wind vibration response, the equivalent torsional stress history can be generated just from the fluctuating
part of the response for fatigue estimation without taking the presence of mean stress into account.

The most complicated case is the stress/strain cycle counting of non-proportional multi-axial load-
ing histories, in which the angle of the principal stress plane changes during the loading history and
consequently just the introduction of the equivalent Tresca or Von Mises stress is not enough. There
are plenty of different methods developed for cycle counting of non-proportional multi-axial loading.
Above all the critical plane approach (Bannantine and Socie (1991)) and Wang and Brown’s approach
(Wang and Brown (1996)), both of which are strain-based methods, can be mentioned. Recently two
stress-based methods were introduced, which both define an equivalent uniaxial stress function. The
first is an empirical method (Anes et al. (2014)) and the second (Irvine (2016)) defines a hypersphere
equivalent stress function. It should be noted that the methods developed for non-proportional multi-axial
loading, are either pretty complicated in implementation or are not global to handle cases with different
loading features or materials.

Fortunately in structural mechanics the contribution of the normal stresses are dominant over that of
the torsional or shear stresses. As a result in most of the cases, the multiaxial fatigue estimation problems
reduce to the class of uniaxial normal stress fatigue estimation. Hence the traditional rainflow cycle
counting in time or frequency domain fatigue analysis applies.

5.1.5 Frequency domain fatigue estimation

Contrary to the time domain where the stress cycles are identified and counted from stress time history, in
frequency domain the probability density function of stress cycles p(σa) is used to estimate the expected
value of the fatigue damage associated with a loading block. The density function of stress cycles p(σa),
which plays the key role in frequency domain fatigue estimation, is a function of moments of area of
the stress PSD and can be adopted according to different methods. For more information the reader is
referred to the literature Mršnik et al. (2013). Afterwards without taking the mean stress into account
(i.e. σm = 0 in Eq. 5.26) and considering that Eq. 5.26 can generally be written in form of N f =C/σm

a ,
fatigue can be expressed in terms of expected damage in time T under Palmgren-Miner rule (Eq. 5.25)
(Benasciutti and Tovo (2005)):

E[D] =
νp T

C

∫ +∞

0
σ

m
a p(σa)dσa, (5.28)
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in which νp is the expected number of peaks occur in the stress signal per unit of time and the number of
cycles at certain stress levels, which are in the stress bin [σai σa j ], is considered as follows:

N(σax) = νp T
∫

σa j

σai

p(σa)dσa , σai ≤ σax ≤ σa j (5.29)

Studies showed that the probability density function of stress cycles p(σa) suggested by Dirlik
delivers well-estimated results, when compared to results of the reference time domain rainflow method
(Kemper and Feldmann (2011); Halfpenny (1999)). Dirlik’s function is an empirical expression and
derived based on Monte Carlo simulations (Dirlik (1985)). Following, the proposed Dirlik’s function is
expressed in terms of moments of stress PSD, that is Mi:

p(σa) =
1√
M0

[
G1

Q
e
−Z
Q +

G2Z
R2 e

−Z2

2R2 +G3Ze
−Z2

2

]
(5.30)

where the ith moment of area under the stress PSD, i.e. Mi, is defined by:

Mi =
∫

∞

0
f i Gσσ ( f )d f (5.31)

in which Gσσ ( f ) denotes the stress PSD at frequency f . The other parameters, used in Eq. 5.30, are given
below:

G1 =
2(xm−α2)

1+α2 G2 =
1−α−G1 +G2

1
1−R

(5.32)

G3 = 1−G1−G2 R =
α− xm−G2

1

1−α−G1 +G2
1

(5.33)

Q = 1.25
(α−G3−G2 R)

G1
Z =

σa√
M0

(5.34)

α =
M2√
M0 M4

xm =
M1

M0

(
M2

M4

)0.5

(5.35)

Finally the expected peak numbers, used in Eq. 5.28, is also given in terms of the stress PSD moments
i.e. νp =

√
M4/M2.

5.1.6 Wind fatigue life estimation

In order to be able to apply Eq. 5.28, the stress PSD at the critical point of structure is required. The stress
PSD can be obtained either from finite element model or directly from the measured stress data. The one
from a finite element model is usually used in the simulation analyses, while the other is demanded in
in-situ fatigue estimation. Since this contribution concentrates on the practical wind fatigue estimation,
the latter is dealt with. For this purpose one method could be extraction of the the stress response PSD
from continuous measured stress data for example over one year, similar to the rainflow time domain
approach to cycle counting. However the introduced method in this study is frequency fatigue estimation
from the discontinuous/sparse measured response (stress) data. It means that the continuous record of
stress response is not available, but instead a relatively lower number of ten-minute records at different
mean wind speed over one year exists.
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According to the following expression one year expected fatigue damage can be computed in
frequency domain (Benasciutti and Tovo (2005); Kemper and Feldmann (2011)):

E[D] =
nd

∑
i

[
T1year

Tre f

σm

C

∫ +∞

0

∫ V̄Tar

0

√
M4(V̄ )

M2(V̄ )
p(σa,V̄ ) f (V̄ )dV̄ dσa

]
fdi∆di (5.36)

where f (V̄ ) is the mean wind probability density function, usually of type of Weibull distribution function,
derived from the mean wind histogram data. The mean wind speeds are calculated with respect to time
period Tre f and the maximum mean wind speed (target speed) assumed to be V̄Tar . The summation
accounts for adding up the damages corresponding to winds that blow from different directions. Therefore
fdi denotes the normalized probability of blowing wind in the direction spacing i, whose angular length
equals ∆di = 2π/nd . The number of identical angular spacings is nd .

An innovative method is introduced in this study for evaluation of Eq. 5.36. The first link to this
method is that the wind speed data is classified by the wind direction spacing and mean wind speed
(as mentioned in Sec. 5.1.2.2). The advantage of this classification is that firstly the expected damage
associated with each wind direction can be evaluated separately. Secondly in each direction the expected
damage corresponding to a loading block can be calculated for the duration Tre f with mean wind speed
V̄Tre f and then being accumulated over one year by means of the mean wind speed probability density
function, which returns the relative time duration of different mean wind speeds. As a result the stress
PSD moments Mi(V̄ ) and consequently the probability density function of stress amplitude cycles cycles
p(σa) should be attributed to mean wind speed as well. Up to this stage, the functions that express Mi(V̄ )
in terms of mean wind speeds are unknown.

The second link in the introduced method reveals how to achieve the unknown functions for finding
the values of moments of stress PSD in terms of mean wind speed. Attention is drawn to the fact that the
moments of stress PSD are functions of stress response PSD. The PSD of the stress response at a point p
of an n dofs system, Gσσ (ω) = 2Sσσ (ω), can be generally expressed, as follows (Mršnik et al. (2013);
Halfpenny (1999)):

Sσσ (ω) =
n

∑
i

n

∑
j

Hσi(ω)Hσ j(−ω)S fi f j(ω) (5.37)

where Hσi(ω) and Hσ j(ω), which are the structure’s properties, denote the stress response transfer
functions that relate stress at point p respectively to the wind loads at dof i and j. S fi f j(ω) is the i jth

element of wind load PSD matrix. An element of wind load PSD matrix is dependent on the wind
speed at the reference point with second order of power and on the element of wind speed PSD matrix
(eq. 5.22). An element of wind speed PSD matrix is in turn function of mean wind speed at the reference
point, of second order of power (see eq. 5.21). Consequently the moments of stress PSD are functions of
mean wind speed of fourth order. According to Hooke’s law for a structure experiencing deformations
in linear elastic region, the stresses are derived from deformations by linear mathematical operations.
Civil engineering structures are usually designed to function linearly under target loads and it is common
in literature to assume linear elastic behavior of material for structures fatigue estimation (e.g. see Jia
(2011)). Hence the relationship between the moments of stress PSD and the mean wind speed will be of
fourth order of power in the linear region of deformations.

The turbulence transport depends on several factors. Wind speed is one of the dominant factors
among others. However at the very low wind speeds the local mechanisms, like heat flux in the site, are
more influential on the turbulence transport than wind speed. As a result, there is still turbulence at those
low wind speeds, which excites the structure, while is not observed by mean wind speed. This fact is
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illustrated in Fig. 5.1, where the turbulence intensity increases disproportionately in the lower wind speed
(say less than 1.5m/s). This leads to the fact that the response indicators, such as standard deviation or
moments of strain PSD etc, do not tend to zero in the vicinity of zero mean wind speed. Consequently,
the curve fitting model, which applies better to the moments of strain PSD is a fourth order binomial
of form Mi(V̄ ) = ai V̄ 4 +bi, in which the constants ai and bi are found by means of curve fitting and bi

accounts for the non-zero values in the vicinity of zero mean wind speed.
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Figure 5.1: The seasonal turbulence intensity

The above mentioned explanation also holds for the responses standard deviation, but rather in that
case the algebraic model is of second order of power.

5.1.7 Results of method application to real measurement data

In this section firstly the details of the setup for wind speed and structural response measurement are
described. Then the analysis of wind speed data is provided and afterwards the results corresponding to
analyses of displacement response standard deviation and threshold passage counts are presented. Finally
the application of the introduced method to spectral wind fatigue analysis is dealt with.

5.1.7.1 Measurement setup description

The measurement is carried out on a guyed mast which serves as a weather station for meteorological
observations in the Hydrological Open Air Laboratory in Lower Austria (Blöschl et al. (2016)). The
structure is 9.1 m (30 ft.) tall and consists of tubular elements (Fig. 5.2).

The wind speed is measured continuously over one year with a frequency of ten samples per second
by means of sonic anemometers in three perpendicular directions. Due to the technical restrictions
the anemometer was installed at the height of three meters above the ground. The wind speed data
corresponding to two perpendicular horizontal directions, namely in x-y plane (see Fig 4.1a), are used in
this study, by which the relative wind angle can be instantaneously identified too.

The structural acceleration response is measured at several points on the structure, among which
the one on the top of the mast is used in this study. The acceleration response is measured in two
perpendicular horizontal directions by capacitive accelerometers, suitable for registering the relatively
low frequency vibrations similar to that which occurs due to wind-induced excitation, with a sampling
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Figure 5.2: Picture of structure, on which the wind speed and structural response is measured

rate of 100 Hz. The acceleration measurement is triggered automatically every 18 hours and the data
was recorded for 30 minutes, then the middle ten-minute data was adopted for response analysis. The
total amount of measured data, due to the gaps between consecutive triggering, is far less than the case of
continuous measurement.

5.1.7.2 Wind speed data analysis

From the horizontal components of the wind speed data, the ten-minute mean value and standard deviation
of the resultant wind speed were computed. The mean wind speed was then classified according to the
blowing directions. For this purpose 16 wind directions, each with ∆di = 2π/16 degrees, were considered.
Fig. 5.3 shows the normalized probability density of mean wind directions fdi in polar coordinates, which
is calculated as follows:

fdi =
ni

nTot ∆di
(5.38)

in which ni and nTot denote the number of mean wind speed located in angular spacing i and the total
number of ten minutes mean wind data over a year, respectively. Hereafter the analysis of results
corresponding to directions W , WSW is focused on, as either the probability of blowing in other directions
is negligible or their wind speeds are so low such that they do not excite the structure considerably. In
Table 5.1 the relative values of probability density of wind directions, i.e. Fdi = ni/nTot are presented.

The next step is to process the wind speed data. As the sonic anemometer devices can measure at
even very low speed winds speed and since those low speed winds correspond to local wind mechanisms,
the mean wind speed lower than 0.8 m/s were removed from the wind data. The histogram of the mean
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Table 5.1: Probability density of wind directions

N NNE NE ENE E ESE SE SSE
Fdi (%) 2 4 8 6 5 5 2 1

S SSW SW WSW W WNW NW NNW
Fdi (%) 2 3 9 24 15 7 4 3
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NNE

NNE

NE

ENE

E

ESE

SE
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S
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SW
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W
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0.6
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Figure 5.3: One year distribution of mean wind speeds according to blowing direction

wind speed in each direction spacing can then be generated. The mean wind speed histogram is used to
estimate the parameters of Weibull distribution, given below (Garcia et al. (1998); Seguro and Lambert
(2000); Dorvlo (2002)):

P(V̄ ) =
k
c

(
V̄
c

)k−1

exp

[
−
(

V̄
c

)k
]

(5.39)

in which c and k are the scale and shape parameters of Weibull distribution. The histograms and fitted
Weibull distributions corresponding to major wind directions are represented in Fig. 5.4.

5.1.7.3 Wind stochastic response and fatigue damage analysis

The acceleration horizontal components corresponding to the fluctuating part of the wind response, in
other words x′(t) in Eq. 5.19, on the top of the structure is measured. Each time series of ten-minute
triggered acceleration data (see section 5.1.7.1) is tagged by its associated ten-minute mean wind speed.
The acceleration signals are decimated by factor 7, which consequently yields to the new measurable
upper bound of 7.1 Hz with respect to the Nyqvist frequency. The displacement response from the
acceleration is derived by double integration in frequency domain (Brandt and Brincker (2014)). In
order to prevent the drift phenomenon due to integration, every time before integration the signal was
windowed and also passed through high-pass Butterworth filter with cut-in frequency of 0.2 Hz.

Firstly it is dealt with the standard deviation of displacement response as an important stochastic
response indicator. As it was described in section 5.1.2.2, the goal is to find a second order polynomial
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Figure 5.4: Mean wind speed histogram and fitted Weibull distribution

from sparse measurement data, which returns the response standard deviation at any mean wind speed.
Figure 5.5 represents the plot of standard deviation of displacement components versus the mean wind
speed as well as the fitted second order polynomial according to the triggered data over one year. This
figure corresponds to measured data in wind direction WSW . The R-squared measure of goodness of fit
(R2) in x and y direction is respectively 0.60 and 0.62.
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Figure 5.5: One year scatter and fitted second order polynomial corresponding to standard deviation of
horizontal displacement response components

Figures 5.6 provides the decomposed seasonal subsets of x component one year data in wind direction
WSW , corresponding to Fig. 5.5a. The seasonal subsets are called winter (October-March) and summer
data (April-September). The R2 values associated with fitted second order polynomial for winter and
summer displacement standard deviation are respectively 0.83 and 0.54. The significantly smaller R2 for
summer data is due to large dispersion of data, which states that unlike winter data, relationship between
mean wind data and displacement response standard deviation is weak.

The structural behavior, other than small changes in natural frequencies does not change substantially
over a year, thus to find the reason for the above mentioned weakness of the relationship between mean
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(d) Summer data, Wind direction W

Figure 5.6: Seasonal scatter and fitted second order polynomial corresponding to standard deviation of
displacement response x components
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wind speed and response data in summer, the wind properties should be inspected. Predominantly the
wind blows from WSW and W , this means the wind in these directions is generated by the large scale
wind mechanisms in the region, where the structure is located. As mentioned before the structure is
located between the farms. As a result in summer the large scale mechanism is influenced by the local
airflow, especially locally generated winds due to convection effects and changes in surface roughness
by vegetation. In this regard the turbulence intensity for the resultant of the horizontal ten-minute mean
wind speeds was according to the following equation calculated:

Iu =
σu

V̄
(5.40)

where σu is the ten-minute standard deviation of the resultant horizontal mean wind speed. Figures 5.7
represents the plots of winter and summer wind turbulence intensity for wind direction WSW , which
evidently shows that in summer the turbulence intensity, unlike in winter, does not follow a constant
trend. Consequently it is wise and conservative to select the relationships between wind mean speed
and response indicators from winter data and utilize them for the whole year analysis. Consequently,
hereafter just the winter results are represented. By this, the amount of data, which must be processed is
considerably reduced, too.

0 65
0

0.2

0.4

0.6

0.8

1

Index

I u
[]

(a) Winter data

0 45
0

0.2

0.4

0.6

0.8

1

Index

I u
[]

(b) Summer data

Figure 5.7: Seasonal turbulence intensity

The next response indicator, which is dealt with in this contribution, is the number of threshold
passages ndT h(V̄ ), whose relationship with mean wind speed is investigated. To the knowledge of the
authors, this relationship has not been mathematically expressed yet. However it possible to find this
relationship statistically by means of observation. For this purpose the resultant of x and y displacement
components at each time step is computed and the number of data points, which are larger than the
displacement threshold of dT h = 1e−4 m is counted. It has been observed that the relationship between
threshold passage counts and mean wind speed is linear. Thereby this relationship can be expressed
by a line whose equation can be derived by curve fitting. For instance figure 5.8 provides the data of
displacement threshold passage counts and the corresponding fitted lines with R2 values 0.81 and 0.74 for
directions WSW and W , respectively.

Once the mathematical expression of displacement threshold passage counts in terms of mean wind
speed is known, the expected value of probability of threshold passage over one year, i.e. Pd1year , can
readily be calculated too. To this end, the expected probabilities of passage threshold are computed
similar to Eq. 5.36 for the two predominant wind directions WSW and W :
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Figure 5.8: Winter scatter and fitted trend-line corresponding to displacement threshold passage count

E[Pd1year ] =
2

∑
i=1

[∫ V̄Tar

0

ndT h(V̄ )

n10min
f (V̄ )dV̄

]
fdi∆di (5.41)

in which n10min = 600∗νs is the number of data points in 10 minutes (νs denotes data sampling rate).
By mean of the above equation, the total expected value of probability of threshold passage over one
year was found to be Pd1year = 10.97%. In Table 5.2, the details for computations regarding Eq. 5.41 is
provided.

Table 5.2: Computation details of one year threshold passage probability

Wind direction fdi (%) ndT h(V̄ ) Pd1yeari
(%)

WSW 60.73 1531V̄ −1008.9 8.94
W 38.24 622.3V̄ +341.5 2.03

In the last part, the results applicable to fatigue damage estimation are presented. It was earlier
explained in section 5.1.6, that wind fatigue damage can be estimated from discontinuous/sparse measured
response (stress) data by means of Eq. 5.36, provided that one can find the mathematical expressions of
moments of stress PSD (i.e. Mi(V̄ )) in terms of mean wind speed. In the same section it was discussed
that these expressions are in form of Mi(V̄ ) = ai V̄ 4 +bi.

Once such expressions exist, the expected damage can be computed by implementing a numerical
integration scheme to evaluate Eq. 5.36, as follows: Above all, the increment rates of mean wind speed
dV̄ and stress amplitude dσa are selected. Then at each mean wind speed bin, the values of Mi(V̄ ) are
obtained from the equation of the fitted curves (section 5.1.6). It should be noted that different stress
amplitudes occur at a certain mean wind speed bin. When Mi(V̄ ) are known, for each of stress amplitude
bins, which occur at a certain mean wind speed bin, the value of stress amplitude cycles probability
density function, p(σa), can be computed. As a result, a vector of the numerical values of the integrand,
associated with the representative stress amplitudes of the bins, at each mean wind speed bin is evaluated.
Afterwards the integration can be numerically evaluated by means of the matrix of integrand values
corresponding to the stress amplitude and mean wind speed bins. By this the expected damage of all
predominant wind directions can be summed.
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Unfortunately in this work the measured stress data is not available. However the introduced approach
can be qualitatively evaluated for displacement data, with respect to the point that for structures with linear
elastic behavior, the stress field is achieved from displacements linearly. As a result it is assumed that the
displacements data is in this sense (its relationship with mean wind speed) equivalent to stress responses
data. Then the relationship between mean wind speed and moments of displacement response PSD over
oner year is sought. To this end, the displacement-based values of Mi(V̄ ) associated with the ten-minute
triggered data over one year were numerically evaluated from the definition Mi =

∫
∞

0 f i Gσσ ( f )d f . In
order to find the values of Mi(V̄ ), the displacement response PSDs, Szz( f ) or its stress counterparts
Gσσ ( f ), can be obtained directly from measured response data for instance through Welch method and
then the integrals are computed numerically. Figure 5.9 represents the moments of response PSD versus
mean wind speed and the corresponding fitted curves of form Mi(V̄ ) = ai V̄ 4 +bi, over one year. From
the fitted curves, the values of stress PSD moments for any desired ten-minute data with mean wind speed
V̄ can be achieved.

Table 5.3 provides the R2 values corresponding to fitted curves in Figure 5.9.

Table 5.3: R2 measure of goodness of fit

Wind direction M0 M1 M2 M4

WSW 0.83 0.82 0.82 0.82
W 0.94 0.94 0.93 0.93

5.1.8 Conclusion

In this contribution the wind stochastic response of a real structure from sparse measurement data over
one year was analyzed. The main focus was drawn to the point of, how the mean wind speed data can be
of benefit, in order to fill the structural response measurement gaps. For this purpose the wind speed was
measured continuously over one year and predominant wind directions as well as mean wind probability
density functions based on ten-minute averaging were obtained. The ten-minute structural responses were
recorded according to an 18-hour automatic triggering within one year. Then every ten-minute data was
tagged by its corresponding mean wind speed.

It was comprehensively discussed how to recover the structural response indicators associated with
those unmeasured ten-minute time intervals between two consecutive triggering. In this contribution
two response indicators, i.e. displacement response standard deviation and threshold passage counts,
were targeted. These indicators are important for the sake of structural vibration control under long
term random excitations like wind. It was shown that from the sparse response data the mathematical
relationship between response indicator and mean wind speed data can be achieved.

In this study an efficient procedure for frequency domain wind fatigue estimation was also introduced.
To this end merely the moments of stress PSD are required, in order to calculate the density function of
stress amplitude cycle counts. It was described that in the presence of wind probability density function
associated with each predominant blowing direction, the values of the moments of stress PSD at different
mean wind speeds corresponding to unmeasured ten-minute time intervals can be interpolated from the
sparse measurement data. Once the moments of stress PSD are known, the expected one year damage
due to wind vibration can readily be calculated. Since in this work the measured strain/stress data did not
exist, the introduced approach for estimation of expected one year wind fatigue damage was qualitatively
evaluated for displacement data.

The mathematical relationships between mean wind speed and displacement response standard
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Figure 5.9: Winter scatter and fitted second order polynomial corresponding to displacement
displacement PSD moments

deviation as well as mean wind speed and moments of stress (displacement) PSD were selected according
to the presented theoretical background.
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5.2 A new model order reduction strategy adapted to nonlinear problems
in earthquake engineering

Earthquake dynamic response analysis of large complex structures, especially in the presence of nonlin-
earities, usually turns out to be computationally expensive. In this paper, the methodical developments
of a new model order reduction strategy (MOR) based on the proper orthogonal decomposition (POD)
method as well as its practical applicability to a realistic building structure are presented. The seismic
performance of the building structure, a medical complex, is to be improved by means of base isolation
realized by frictional pendulum bearings. According to the new introduced MOR strategy, a set of deter-
ministic POD modes (transformation matrix) is assembled, which is derived based on the information
of parts of the response history, so-called snapshots, of the structure under a representative earthquake
excitation. Subsequently, this transformation matrix is utilized to create reduced-order models of the
structure subjected to different earthquake excitations. These sets of nonlinear low-order representations
are now solved in a fractional amount of time in comparison to the computations of the full (non-reduced)
systems. The results demonstrate accurate approximations of the physical (full) responses by means of
this new MOR strategy if the probable behavior of the structure has already been captured in the POD
snapshots.

5.2.1 Introduction
The evaluation of the response history of a structure in the time domain is one of the main topics in
earthquake engineering and structural dynamics. It is common practice to create simple structural models,
e.g. multistory shear frames, which should be able to describe the structural behavior and peculiarities
of the real structure. This approach leads to useful results for the investigation of rather simple and
uniform structures in order to come to meaningful engineering decisions regarding structural resistance.
On the contrary, the analysis of complicated systems can require the application of nonlinear high-order
systems, as a characterization by a low dimensional structural model could lead to an oversimplification,
i.e. important motion patterns could be ignored. Therefore, an effective strategy is to obtain a set of a low
number of “important” equations of motion that approximates the high-dimensional nonlinear dynamical
system as accurately as possible, that is, model order reduction (MOR).

The solution of the nonlinear set of equations of motion in the time domain is realized by numerical
algorithms, which require computational effort if the number of degrees of freedom (DOF) is high. Even
the response calculation of linear systems can be expensive, as a factorization of the stiffness matrix is
necessary to solve the eigenvalue problem and calculate the natural modes of vibration.

An alternative is to replace a high-dimensional nonlinear set of equations of motion with a reduced
set, providing the main dynamic behavior of the system to reach the required level of accuracy. MOR
methods are used in many fields of research, where high-dimensional systems are dealt with. Some
review papers of MOR, especially for structural dynamic applications, are presented by Rega and Troga
(Rega and Troger (2005)) and Koutsovasilis and Beitelschmidt (Koutsovasilis and Beitelschmidt (2008a)).
The classical but also effective method of modal truncation is well-known in the field of earthquake
engineering, which is however mainly applicable to linear systems.

This paper concentrates on a new MOR strategy based on the proper orthogonal decomposition
(POD) method. The POD provides a low dimensional uncorrelated description (basis vectors), by which
a high-dimensional correlated process, e.g. structural response, is spanned. Firstly, it was used as a
statistical formulation in the papers of Kosambi (Kosambi (1943)), Karhunen (Karhunen (1947)) and
(Loeve Loeve (1946)).
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The first paper regarding the field of structural dynamics was written by Cusumano et al. (Cusumano
and Kimble (1993)) in the early 1990’s, who presented an experimental study of dimensionality in
an elastic impact oscillator. In the papers of Feeny and Kappagantu (Feeny and Kappagantu (1998),
Kappagantu and Feeny (1999)) a relation of the proper orthogonal modes to normal modes of vibration is
investigated. Then they used the POD as they so call optimal modal reduction and exploit the benefits of
the application of these modes in comparison to the linear natural modes. Furthermore, Kappagantu and
Feeny (Kappagantu and Feeny (2000a), Kappagantu and Feeny (2000b)) investigated the dynamics of an
experimental frictionally excited beam and they verified that the proper orthogonal modes are efficient
in capturing the dynamics of the system. Liang et. al. (Liang et al. (2002)) discuss the realizations
of the POD, i.e. Karhunen-Loeve Decomposition, principal component analysis and singular value
decomposition and compare these three methods. Kerschen and Golivani (Kerschen and Golivani (2002))
analyze the physical interpretation of the POD modes and its relation to the singular value decomposition
and they investigated POD based on auto-associative neural networks (Golivani (2003)).

The necessity to describe a high dimensional set by a small set of equations of motion, i.e. MOR,
has aroused interest mainly in the last two decades in the field of earthquake engineering (Qu et al.
(2001), Schemann and Smith (1998)). Krysl et al. (Krysl et al. (2001)) deal with nonlinear MOR in FE
analysis. They introduce the POD for low-order representations and point out the benefits concerning
numeric integration, optimality and robustness. Tubino et. al. (Tubino et al. (2003)) investigated the
seismic ground motion of the support points of a structure and classify the POD as a very efficient
tool to simulate multi-variate processes. Bucher (Bucher (2001)) examined the stabilization of explicit
time integration methods for analysis of nonlinear structural dynamics by modal reduction. Gutierrez
and Zaldivar investigated in Gutierrez and Cela (1998) how to handle the stability problem of explicit
time integration by modal truncation methods more related to problems in earthquake engineering and
structural dynamics and they applied the Karhunen-Loeve Decomposition, which is formally identical to
the POD analysis, to capture the essential characteristics of nonlinear systems and provide experimental
examples conducted on a shaker table (Gutierrez and Zaldivar (2000)). Bamer and Bucher (Bamer and
Bucher (2012)) developed a MOR strategy applying the POD method for transient excited structures
resting on one-dimensional friction elements. This study presented a powerful combination of the POD
and explicit time integration schemes.

The current work investigates the extension of the POD-based MOR strategy, which is applicable to
nonlinear systems in contrast to the method of modal truncation. The new strategy pursues the following
objective: a low number of deterministic nonlinear modes (i.e. set of POD modes) is determined that
defines a representative characterization of the structural behavior. Therefore, due to the information
content of the full (or a part of the) time response of the structure to one representative excitation a set of
deterministic modes, i.e. POD modes, is evaluated. Subsequently, this set of modes is utilized to project
the equations of motion of a structure under different earthquake excitations onto POD coordinates and
thereafter an order truncation is performed in a similar manner to the application of modal truncation
to linear systems. The presentation of the novel MOR approach is accompanied by an explanatory and
illustrative example, which supports basic understanding and visual insight into the method as well as an
application to a realistic building structure.

It is essential to demonstrate this new strategy and its advantages by means of a practical application.
Related to the first explanatory example this application differs in complexity and the type of nonlinearities.
The method is applied to the dynamic model of a realistic building structure. The building is erected on
friction pendulum bearings for the sake of seismic isolation to minimize the transferred acceleration to
the building during an earthquake. A three-dimensional dynamic model of the base isolated structure is
derived by implementing the finite element model of the structure and the bi-directional friction pendulum
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systems. The paper then deals with the nonlinear dynamic model of the base-isolated structure. Thereafter,
the new POD-based MOR strategy and the example of its practical application is provided. Finally, the
results and conclusions are outlined.

5.2.2 Earthquake excitations

Within the presentation of the new strategy and the application to a realistic building structure, a set of
six earthquake excitation records is chosen for the numerical demonstrations. The earthquake records
are applied in fault-parallel and fault-normal directions. The excitation set includes the Bam earthquake
(2003) in Iran and the following five representative events in California, US: Northridge Rinaldi (1994),
Imperial Valley (1979), Landers (1992), Loma Prieta (1989), North Palm Springs (1986). Table 5.4
presents a list of the events taken from the Pacific Earthquake Engineering Research Center (PEER)
(Pacific Earthquake Engineering Research Center (2016)). Fault-parallel is defined in x- and fault-normal
in y-direction. Concerning the Bam event only a one-dimensional record is available, therefore, an
excitation attack angle of 30 degrees with respect to the x-axis is chosen.

Event year location nt T d M PGA
Bam 2003 Iran 1995 19.95 - 6.6 7.16

Imperial Valley 1979 California / Huston Road 3905 39.05 10 6.5 4.79
Landers 1992 California / Barstow 4932 49.32 36 7.3 4.13

Loma Prieta 1989 California / Gilroy 2507 25.07 12 7.0 9.51
North Palm Springs 1986 California / Palm Springs 6009 60.09 6.7 6.0 9.99
Northridge Rinaldi 1994 California / Newhall 1200 12.00 6.7 6.7 5.23

Table 5.4: Earthquake excitation list; nt [−] number of time steps, T [s] duration of the record, d [km]
distance from epicenter, M moment magnitude, PGA [m

s2 ] peak ground acceleration

5.2.3 Nonlinear model order reduction and the POD - mathematical formulation
The n-dimensional set of equations of motion of a structure with nonlinear material behavior excited by
horizontal components of ground acceleration is expressed as (cf. Chopra (1995))

Mẍ+Cẋ+R(x) =−M(fxẍg + fyÿg) , (5.42)

where M and C are mass- and damping square matrices of order n and R(x) is the nonlinear internal
restoring force vector dependent on the displacement x with the dimension n×1. The right hand side
of the set of equations of motion describes the earthquake excitation term, while ẍg and ÿg denote the
ground acceleration in x- and y-direction and f j,( j = x,y) are the influence vectors in the corresponding
direction, that is,

fx(xi) = 1 , fy(yi) = 1 , i = 1...n , (5.43)

at the global x and y DOF of all nodes, whereas the other components of fx and fy are zero. Thus, i
describes the number of nodes of the FE discretized structure. This general approach indicates that in
this paper the ground acceleration in the corresponding direction, i.e. x- and y-direction, is equal in all
structural support points. In the following equations the term on the right hand side of the set of equations
of motion (5.42) is denominated by F(t), which has the unit of a force.
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Nonlinear systems, as they are depicted in Equation (5.42), have generally to be solved by the
application of a numerical algorithm, that is, a step by step procedure in the time domain in order to obtain
the response of the structure as a function of time. The application of a numerical method inevitably
leads to the existence of computational effort if n is a large number. Therefore, the approximation by a
low-dimensional description of the system seems to be useful, namely the application of MOR.

The main goal of MOR techniques is primarily to define a transformation matrix T ∈Rn×m, m� n to
approximate the displacement vector x ∈ Rn through a reduced coordinate vector qr ∈ Rm by the relation
(cf. Koutsovasilis and Beitelschmidt Koutsovasilis and Beitelschmidt (2008b))

x = Tqr , (5.44)

such that the dynamic properties of the system are preserved and the error is small. The notation of the
variable m ∈ N is the dimension of the reduced subspace.

The projection of the nonlinear system defined by Equation (5.42) onto that subspace leads to another
second-order ordinary differential equation (cf. Koutsovasilis and Beitelschmidt Koutsovasilis and
Beitelschmidt (2008b))

mrq̈r + crq̇r + r = fr , (5.45)

where mr = TTMT, cr = TTCT ∈ Rm×m are mass- and damping matrix and fr = TTF(t) ∈ Rm×1 is the
force vector in the reduced subspace. It should be noted that the reduced system matrices mr and cr are
generally not diagonal. The vector of the restoring forces in the reduced subspace is

r = TTR(x) = TTR(Tqr) . (5.46)

Consequently, one necessity of nonlinear MOR is the evaluation of the vector of the restoring forces in
the physical (full) coordinate at every time step.

Modal truncation is a widely-used tool and an effective method for order reduction of linear systems
in the field of earthquake engineering. An accurate approximation of the response history is achieved by
applying a small number of lower structural modes proportional to the number of DOF. An early and
successful application of modal truncation to problems involving small local nonlinearities is presented in
Wilson (1990) and Ibrahimbegovic and Wilson (1992). In this work, the objective is to find a new strategy
that is applicable to nonlinear systems in a similar manner to modal truncation. The approach is to define
a set of deterministic modes that can be evaluated from the information of an existing response history of
the structure. Consequently, this set of modes contains nonlinear motion patterns if the structure shows
nonlinear response behavior to the excitation.

The proposed strategy is established based on the theory of the POD method. Generally, the POD (c.f.
Liang et al. (2002), Chatterjee (2000), Holmes et al. (1996)) is a straightforward approach to obtain a
low-dimensional uncorrelated process from a correlated high dimensional or even infinite-dimensional
process. Holmes et al. (Holmes et al. (1996)) examined the theoretical background of the POD and its
properties profoundly. In the following, the mathematical basics of the POD are discussed shortly, but
as the paper is more targeted to the strategic approach in earthquake engineering, the attention to the
mathematical background and the numerical problems are limited to an essential minimum.

The aim of the POD is to find a set of ordered orthonormal basis vectors in a subspace so that samples
in a sample space are expanded in terms of l basis vectors in an optimal form. This means that the POD
is able to find an orthonormal basis, which describes an observation vector in a subspace better than any
other orthonormal basis can do. A measure for this problem is the mean square error (cf. Qu Qu (2004))

E
{
‖x−x(l)‖2}≤ E

{
‖x− x̂(l)‖2} , (5.47)
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where x ∈Rn×1 is the random vector, x(l) is the approximation of this random vector in an l-dimensional
POD subspace and x̂(l) is the approximation of the random vector by any other possible orthonormal
basis. Therefore, the random vector can be expressed as (cf. Qu Qu (2004))

x = ΦΦΦpppqp , ΦΦΦppp = [ϕp,1,ϕp,2, ...,ϕp,s] and qp = [qp,1,qp,2, ...,qp,s] , (5.48)

where ϕp,i are the POD modes and qp,i denote the coordinates in the POD subspace and s is the number
of realizations of the random vector (also called snapshots). This leads to an optimization problem with
the following objective function (cf. Qu Qu (2004))

ε
2(l, t) = E

{
‖x−x(l)‖2}→ min (5.49)

subject to the orthonormality condition (cf. Qu Qu (2004))

ϕ
T
p,iϕp,j = δi j (i, j = 1,2, ...,s) . (5.50)

The transformation into the l-dimensional POD subspace is a truncation of the first l lower POD modes
(cf. Qu Qu (2004))

x(l)≈ΦΦΦpqp , ΦΦΦp = [ϕp,1,ϕp,2, ...,ϕp,l] , l < s� n . (5.51)

5.2.4 The new approach

In this section the reader’s attention is drawn to the methodical approach. Therefore, a simple and
illustrative two-dimensional structural example subjected to a set of ground motions goes along with
the presentation of the new MOR strategy. Earthquake excitation records are presented in section 5.2.2,
respectively in Table 5.4.

The academic example concerns a two-storey frame system as an academic example modeled by
nonlinear elasto-plastic (bilinear) beam elements. The geometrical discretization is shown in Figure
5.10. The frame span is l = 6 [m] and the height of it is h = 4 [m], consequently the total height is eight
meters. The columns as well as the beams of the frame structure are discretized by five elements, which
leads, under consideration of the boundary conditions shown in Figure 5.10, to a total number of 86
DOFs. Elasto-pasticity is realized by a bilinear stress-strain curve with kinematic hardening in axial beam
direction as shown in Figure 5.11. Fictitious material parameters are assumed in this accademic example
to induce large plastic deformations in order to illustrate a clear visualization of the nonlinear behavior
and accordingly a good insight into the nonlinear MOR procedure. The paramters of the elasto-plastic
(bilinear) material are: Young’s modulus E = 2.1× 1011

[ N
m2

]
, Poisson’s ratio 0.3 [−], elastic yield

limit 2.4×107
[ N

m2

]
, with 5% post-yielding stiffness ratio. The cross section of the column is quadratic

(0.1×0.1 [m2]) and the cross section of the beam is rectangular (0.1×0.3 [m2]).
In addition to the presented nonlinear system with hysteretic material behavior, the equivalent

structure with linear material parameters is presented. The linearized material parameter is equal to
the initial stiffness of the elasto-plastic material model presented in Figure 5.11, i.e. Young’s modulus:
E = 2.1×1011

[ N
m2

]
.

The extended approach of the new MOR strategy is based on the mathematical formulations of the
POD in Eqs. (5.47) - (5.51). In structural dynamics, systems are discretized in space and time, therefore,
the numerical realization of the proposed strategy is implemented based on the following straightforward
algorithm.

Firstly, an a priori response identification, i.e. the realization of a random vector x(t), is evaluated,
where t is in a limited time interval t0 ≤ t ≤ t1. Therefore, the response to one excitation in the specific
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Figure 5.10: Test example: two-story frame
structure subjected to ground motion
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Figure 5.11: Elasto-plastic stress strain relation of
the beam in local element coordiates

time period is computed, i.e. Eq. (5.42) is solved numerically in the defined time period. This analysis is
performed in the physical coordinate x. Consequently this constitutes, dependent on the size of the time
period t1− t0 (snapshot time period) and the number of DOFs of the system, the most time consuming
part of the procedure. According to the actual example, for the linear as well as the nonlinear system,
the Bam earthquake in Table 5.4 is chosen as the representative event. The snapshot time period is here
limited by t1 = 0 [s] and t2 = 12 [s]. This means that the largest possible time window for the snapshot
response identification is chosen, therefore, the maximum possible response information is captured here.
Although, in order to increase effectivity of the algorithm a representative deterministic basis can be
obtained by concentrating on the strong-motion phase of the earthquake since the relevant nonlinearities
will be activated during that phase, but then it is more likely that insufficient POD response bases for
MOR transformation matrix for the upcoming analyses are acquired. The time history of the excitation is
shown in the left subplot of Figure 5.12.
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Figure 5.12: left side: Bam earthquake excitation, excitation function in the snapshot time period; right
side: Snapshot response function xs(t) of the nonlinear system (solid line), snapshots (dots)

The snapshot response function xs(t), i.e. the random vector, is realized by s observations (snapshots)
at different time instances (cf. Han and Feeny Han and Feeny (2003)) within the snapshot time period

Xs = [xt1 ,xt2 , ...,xts ] =




x1(t1) · · · x1(ts)
· · · · · · · · ·

xn(t1) · · · xn(ts)


 . (5.52)

It is of utmost importance to capture nonlinear deformation patterns in order to create the possibility to
depict possible nonlinear reactions in forthcoming calculations. In the specific example, 40 observations
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(snapshots) in equidistant time instances are taken into account from the snapshot response function for
the a priori identification of the overall response behavior. Those observations of the nonlinear system are
specified by dots in the right subplot of Figure 5.12, to be distinguished from the overall response within
the time period of analysis. According to the linear system, the computation of the snapshots is realized
by the same procedure. As a result, it is also necessary here to capture the main motion patterns according
to possible future response histories. However, it can be observed that for the system identification of the
linear response, the required number of snapshots is considerably smaller than for the nonlinear system
response.

If µµµ is the expectation of all observations, then the sample covariance matrix ΣΣΣsss of this random vector,
which is realized by the observation matrix, is defined by (cf. Kerschen et. al. Kerschen et al. (2005))

ΣΣΣsss = E{(x−µµµ)T (x−µµµ)} . (5.53)

The POD modes and the POD values are defined by the eigensolution of the sample covariance matrix. If
the data have zero mean, the covariance matrix is (cf. Kerschen et al. Kerschen et al. (2005))

ΣΣΣsss =
1
s

Xs
T Xs (5.54)

and the POD is realized by the singular value decomposition (SVD) of the observation matrix Xs. The
POD modes ϕp,i are equal to the left singular vectors and the POD values λp,i to the singular values of
Xs, which are all real and positive and arranged in a rectangular diagonal matrix in descending order. The
energy, which is contained by the snapshot matrix, is defined by the summation of the POD values, i.e.
V = ∑

s
i=0 λp,i. As a consequence, the energy ratio of the ith POD mode is (cf. Kerschen et al. Kerschen

et al. (2005))

Vi =
λp,i

∑
s
i=0 λp,i

. (5.55)

In structural dynamics applications the sum of only a few POD values often captures the main part
of the total energy included in the observation matrix, which reflects the big advantage of the POD, i.e.
the property of optimality with respect to energy in a least square sense. In the present demonstration,
99 percent of the total energy is captured by only two deterministic modes. The first two evaluated
POD modes of the nonlinear system are depicted in Figure 5.13. In comparison, the natural modes of
vibration, which create the basis for the classical modal truncation method are shown in Figure 5.14.
They are computed according to the eigenvalue problem

(
K−ω2M

)
Φ = 0, where K is the linearized

initial stiffness matrix according to the assumption above.

Figure 5.13: First two Pod modes Figure 5.14: First two natural modes

As depicted in Figure 5.13, the POD modes can obviously represent nonlinear displacement patterns,
which are expected to occur in this illustrative example, i.e. plastic deformation areas around the joints
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of the frame system. But rather these deformation patterns are not representable by the first two linear
natural modes of vibration depicted in Figure 5.14. Therefore, according to the nonlinear response, an
accurate representation of the snapshot response function xs(t) is expected by the representation of only
the two deterministic POD modes, but a significant error by the representation of the first two natural
modes of vibration is expected.

Following, the transformation into the reduced subspace is performed in the same manner, as if the
classical method of modal truncation would be applied to linear systems. The low-order set of equations
of motion is then

M̃q̈P + C̃q̇P + R̃ = F̃ , (5.56)

where M̃ = ΦΦΦ
T
PMΦΦΦP and C̃ = ΦΦΦ

T
PCΦΦΦP are mass- and damping matrices and F̃ = ΦΦΦPF is the excitation

vector in the POD reduced subspace. The reduced vector of the inner restoring forces R̃ is still dependent
on the displacement in the physical coordinate x,

R̃ = ΦΦΦ
T
PR(ΦΦΦPqP) = ΦΦΦ

T
PR(x) . (5.57)

Therefore, the vector of the inner restoring forces R(x) has to be evaluated from the physical model
in the full-order coordinates in every calculation time step. According to the linear POD reduced system,
the vector of the inner restoring forces is described by the relation R̃ = K̃qP, where K̃ = ΦΦΦ

T
PKΦΦΦp is the

stiffness matrix in the POD reduced subspace. In this case, no updating in every time step of the inner
restoring forces has to be performed. Furthermore, the equations of motion in the reduced-order set
are not decoupled and have to be solved numerically. Finally, after the time integration is finished, the
solution vector qP dependent on time is transformed back into the physical coordinate x. Concerning the
representative excitation, a comparison of the full benchmark solution (snapshot response function xs(t))
makes sense in order to verify the quality of the low-dimensional representation of the POD modes. If
the approximation of the benchmark solution (in this example: Bam earthquake response) is satisfactory,
then the reduced solution to the whole set of the remaining earthquakes is calculated by application of
these deterministic modes. If the approximation is not sufficient, one possibility is to increase the number
of snapshots within the snapsthot time period, another one is to change the start and end time instances
t0 and t1 of the snapshot response function in order to improve the response information quality of the
snapshot matrix (remark: in this paper t0 and t1 are already the beginning and end time step of the Bam
excitation record). The visualization of the novel approach is depicted in Figure 5.15.
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Figure 5.15: Approach of the new strategy

All computational results according to the whole excitation set presented in Table 5.2.2 are depicted
in Figures 5.16 - 5.21. Within each of the response computations of the linear, as well as the nonlinear
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Figure 5.16: Results Bam earthquake. Top left: Bam earthquake time history; bottom left: peak
acceleration response spectrum ζ = 0.04; top right: linear response functions; bottom right: nonlinear

response functions

system, two different integration algorithms were chosen for the integration procedure in the physical (full)
coordinate (86 DOFs), i.e. the implicit Newmark integration (NEW) and the explicit central difference
scheme (CD). They serve as reference solutions to the suggested new POD strategy (POD), which is
compared to the classical modal truncation method (MT). In each Figure on the top right, the nonlinear
response is also for the sake of comparison plotted. All time response functions are compared according
to the horizontal displacement in the right corner of the first floor of the frame structure, xh(t), depicted
in Figure 5.10. For the reduced computations, 2 DOFs concerning the new POD strategy (99.9 % of the
total energy of the snapshots is captured) and 4 DOFs concerning the classical MT strategy (according to
an assumed cut-off frequency of 30 Hz dependent on a qualitative investigation of the fourier transforms
of the events (mode 1: 1.46 [Hz], mode 2: 6.45 [Hz], mode 3: 20.38 [Hz], mode 4: 23.65 [Hz], mode 5:
40.15 [Hz]) are considered.

According to the proposed strategy in Figure 5.15, the Bam earthquake serves as the representative
event (Figure 5.12). A test run of the reduced order model over the time period of the representative Bam
earthquake shows that the deterministic POD modes can represent the nonlinear (elasto-plastic) response
time history. This is shown in the top right and the bottom right subplot in Figure 5.16. According to
Figure 5.16, both the linear and the nonlinear POD response functions approximate the full reference
solutions (NEW and CD) accurately. Therefore, the deterministic set of POD modes is able to represent
nonlinear (plastic) deformation patterns. Consequently, the chosen number of 40 snapshots within the
chosen snapshot time period (see Figure 5.12) is apparently sufficient for this example. Figures 5.17
- 5.21 present the numerical evaluation of the rest of the earthquake set shown in Table 5.2.2, i.e. the
comparison of the reduced order models with the full benchmark solutions. In each of the linear and
nonlinear response evaluations it is shown that the POD responses provide reliable approximations of the
benchmark solutions (response functions are overlapping with each other). This underlines the robustness
of the new strategy according to changes in the excitation if the deterministic POD modes are evaluated
based on a different excitation history (see Figure 5.12).
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Figure 5.17: Results Imperial Valley earthquake. Top left: Imperial Valley earthquake time history;
bottom left: peak acceleration response spectrum ζ = 0.04; top right: linear response functions; bottom

right: nonlinear response functions
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Figure 5.18: Results Landers earthquake. Top left: Landers earthquake time history; bottom left: peak
acceleration response spectrum ζ = 0.04; top right: linear response functions; bottom right: nonlinear

response functions
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Figure 5.19: Results Loma Prieta earthquake. Top left: Loma Prieta earthquake time history; bottom
left:peak accleration response spectrum ζ = 0.04; top right: linear response functions; bottom right:

nonlinear response functions
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Figure 5.20: Results North Palm Springs earthquake. Top left: North Palm Springs earthquake time
history; bottom left: peak acceleration response spectrum ζ = 0.04; top right: linear response functions;

bottom right: nonlinear response functions
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Figure 5.21: Results Northridge earthquake. Top left: Northridge earthquake time history; bottom left:
peak acceleration response spectrum ζ = 0.04; top right: linear response functions; bottom right:

nonlinear response functions

According to the linear computations, both strategies show accurate results (see the top right subplots
of Figures 5.16 - 5.21). In this special linear elastic case, the method of modal truncation shows slight
advantages, which is not surprising as no snapshot response function in the physical coordinate must
be evaluated. However, a distinct advantage is that the POD strategy does not require an investigation
of the Fourier transform of the excitation in order to determine the cut-off frequency for estimating the
truncation of the natural basis modes. On the contrary, the POD method fulfills the requirement in Eq.
(5.47) and (5.2.3), where an optimally truncated basis is defined. Therefore, dependent on the required
level of accuracy, an automatic truncation based on the energy content per mode is performed (see Eq.
(5.55)). According to the nonlinear system (see the bottom left subplots of Figures 5.16 - 5.21), the modal
truncation responses show a severe deficit with respect to the exact solution, since the natural modes (as
earlier presented within the Figures 5.13 and 5.14) cannot detect the nonlinear deformation patterns. On
the contrary, the POD strategy, as already discussed above, shows reliable approximations. Therefore, in
the presence of strong nonlinearities, the new POD strategy has sizeable advantages over the classical
method of modal truncation. However, within a limited range, the modal truncation method is reliable. In
the top right subplots of Figures 5.16 - 5.21 the separation point (sep. point, black mark) defines the time
instant, when, according to Figure 5.11, the first nonlinear effect occurs (yielding of the material). Before
this time instant, each response line (CD, NEW, POD, MT) is the same. This is not surprising, because
this is the simple linear-elasic solution. Afterwards, as presented in the top right subplots of Figures 5.16 -
5.21, the nonlinear yielding effect is shown by the drift-off of the light gray nonlinear reference responses
in these subplots (nonl. resp.), which is equivalent to the nonlinear Newmark response of the bottom
right subplots of these Figures. Here, the black mark also shows the separation point of the linear and the
nonlinear response and, additionally, the qualitative separation point of the modal truncation solution
(blue mark), i.e. where the modal truncation solution drifts off. Therefore, it is clearly shown that there is
a limited range of nonlinearity, where the modal truncation response also presents useful results - after
the modal truncation separation point, a severe drift-off of this solution function is observed.
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The first substantial numerical benefit of the proposed strategy arises from the combination of
the MOR and the application of an explicit time integration method, such as the second order central
difference scheme. The time consuming part of the computation is the evaluation of the inner restoring
force vector, which has to be evaluated in every time step on Gauss integration point level in the physical
(full) coordinate according to Eq. (5.57). This recalculation cannot be avoided. The application of
an explicit time integrator to the full system leads inevitably to considerably small integration time
steps, which have to be smaller than a certain value (critical time step for the central difference scheme
∆tcr =

2π

ωn
, where ωn is the highest eigenfrequency). Therefore, a huge number of time steps has to be

processed within one integration run and, consequently, a high number of the expensive recalculations of
the inner restoring force vector R(x). For the integration in the POD reduced subspace the critical time
step is considerably larger (according to this example in the paper even larger than the measurement time
step of the earthquake data), which leads to a stabilization of the procedure and, as a consequence, to
approximately a 500-fold increase of speed compared to the full central difference integration method
(CD). These numerical issues are discussed in a similar manner by Gutierrez and Zaldivar (Gutierrez
and Cela (1998)) applied to modal truncation. For the numerical benefit of the combination of the basic
POD method with explicit numeric time integration, the reader is referred to Bamer and Bucher (Bamer
and Bucher (2012)). It would also be possible to implement an implicit integration scheme (i.e. the
Newmark method with constant acceleration assumption) in the reduced subspace, which is under special
circumstances convergent for all possible time steps. However, the application of this integration scheme
requires the iterative Newton Raphson procedure, following, in each timestep of the reduced system,
the restoring force vector R must be computed several times (modified Newton Raphson method). If
the classical (not modified) Newton Raphson method is applied the number of iterations is minimized,
but then in every iteration procedure the tangential stiffness matrix in the full space is to be evaluated,
which has then again transformed into a tangential stiffness matrix in the reduced supspace. Therefore,
the explicit central difference scheme is chosen, which is stabelized by the model order reduction process.
Generally, each integration scheme can be applied for the realization of the POD reduced strategy and, of
course, the choice of the integration scheme is also dependent on the level of high dimensionality, type of
nonlinearity, etc.

The second big numerical advantage of the new strategy is that the actual time consuming process,
which is the evaluation of the snapshot matrix, is only executed once at the beginning of the whole
calculation procedure. This a priori assumption of nonlinear mode patterns makes sense if the excitations
show physical “similarities”, which is the case in earthquake analysis, where a considerably small number
of low frequency modes is mainly affected.

The practical application of this novel approach in earthquake engineering analyses can be realized in
a straightforward manner. Earthquake design codes frequently specify the earthquake loading in terms
of response spectra rather than actual acceleration records, but this is directly usable only in the case
of linear system behavior. For the analysis of nonlinear systems, several response spectrum compatible
artificial earthquake accelerations (as specified e.g. in Eurocode 8) can be generated, see e.g. Giaralis
and Spanos (2009). Based on these artificial accelerations the proposed model order reduction approach
is carried out exactly as described in this section.

5.2.4.1 Error evaluation

For the sake of accuracy evaluation a posteriori error analysis is presented. As reference solution to the
reduced response functions, i.e. solutions by POD reduction and modal truncation, the solution of the
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Central Difference algorithm in the physical coordinate is chosen. The error indicators are

xr,POD(t) = |xh,CD(t)− xh,POD(t)| (5.58a)

xr,M(t) = |xh,CD(t)− xh,M(t)| , (5.58b)

where xh,CD(t), xh,POD(t) and xh,M(t) are the response functions of the Central Difference, the POD and
the Modal Truncation responses of the node shown in Figure 5.10. Figure 5.22 represents the absolute
error of the reduction methods corresponding to analyses provided in Figures 5.16 to 5.21 as defined in
Eq. (5.58).
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Figure 5.22: Error evaluation; x-axes ... time [s], y-axes ... POD error function xr,POD(t) [m] (red) and
modal truncation error function xr,M(t) [m] (blue)

As depicted in Figure 5.22, the error by application of the classical modal truncation method is much
more considerable than the error produced by the approximation through the POD strategy. Especially,
if the structure responds nonlinearly, that is, plastic deformation patterns occur, a huge difference by
application of the modal truncation method is observed. Figure 5.22 provides evidence of the inability
of the linear modes to represent elaso-plastic displacement patterns shown in Figure 5.13 and 5.14.
Additionally, the applicability and accuracy of the proposed POD strategy seems not to be remarkably
sensitive to differences of the peak acceleration response spectra of the excitation time histories in the
presented examples. This is seen in the peak acceleration response spectra in the bottom left plot of the
Figures 5.16 to 5.21 and the related error functions in Figure 5.22, where a correlation between those
parameters cannot be detected directly. One noticeable point is here that the error functions of the Landers
and the Northridge response in Figure 5.22 seem to be in similar ranges, but the characteristics of the
response spectra show considerable differences. Therefore, the proposed strategy demonstrates a high
robustness with regard to time history analysis in earthquake engineering and should be of great value in
this field.

However, a more extensive evaluation of direct correlations between changes in the spectra of the
excitation histories and the quality of the outcome of the POD response is beyond the scope of this
chapter. Additionally, future research should also include a priori error estimations based on wavelet
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transformations of the excitation functions. The underlying idea is that earthquake records with similar
intensities and frequency contents activate the same nonlinearities and consequently lead to the same
POD basis. A publication concerning this strategy appeared quite recently (Podrouzek et al. (2014)).

5.2.5 Practical application of the new approach

In addition to dealing with the development of the introduced novel POD-based MOR approach, it is
within this section to represent the application of the new proposed MOR strategy on a realistic example.
For this purpose, a dynamic structural model of a medical complex, according to its constructional plan,
was derived. A schematic three-dimensional sketch of the building is depicted in Figure 5.23.

Figure 5.23: Three-dimensional visualization of the building structure

As shown in Figure 5.23, the building structure exhibits complex geometries. As a result, it seems to
make sense to discretize the geometry by a finite element model in order to capture the main dynamic
specifications.
If such a structure with medical function is located in an earthquake prone region, one way to improve its
seismic performance can be realized through base isolation by means of frictional pendulum bearings.
Consequently, the analytical simulations demand large computational time and storage due to the
presence of nonlinearity imposed by those frictional isolators. In the following, firstly, the structural
system specifications and implementation of frictional bearings are presented. Then, the displacement
responses to the set of the six earthquake events presented in Table 5.2.2 are evaluated. The numerical
evaluations compare the new introduced strategy, as an alternative means, with the iterative Newmark
integration scheme, which is known as an efficient and exact method.

5.2.5.1 Structural system and model specifications

The building structure consists of three wings, referred to as wing I, II and III. Figure 5.24 shows a
schematic sketch of the ground plan of the building containing the basic dimensions. The floor slabs of
each wing are separate from the others except for the basement slab, which is indiscrete over all three
wings. This means that all three wings are coupled through this slab and they work all together during the
earthquake excitations. However, the distance between the wings, which are connected by the basement
slab, is about 1.5 meters, consequently, contact problems induced by ground motion are not considered in
the computations.
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Figure 5.24: Schematic ground plan, building construction (units in
meters), output nodes 1 and 2 (red marks)

Figure 5.25: A schematic
cutout of the vertical section
A-A of the basement levels

presented in Figure 5.24 (units
in meters)

The grid indicates the location of the columns and the binding beams, and the red lines indicate the
location of the shear walls, which are responsible for the lateral reinforcement. The regular distance
between the columns is 6.5 [m]. The building structure has three stories below the ground level, while
the highest parts of the building above ground level have 13 stories and the remaining parts have eight
stories including the basement levels. Therefore, the plan of the structure is irregular along its height
along with the irregularities in the horizontal area. The dashed lines define the area, where the building is
only located below the ground. The height of one story is three meters; this leads to a total construction
height of 42 meters.

Below the three stories at the basement level, there is the indiscrete slab on the top of the isolators at
level of −9.00 [m]. Below this slab, along each of the columns, a single friction pendulum (FP) bearing
system is attached. Figure 5.25 depicts a part of the cross section A-A of the basement level shown in
Figure 5.24. The horizontal diameter of the FP system is 2.00 meter. Thus, the dimension of the quadratic
cross section of the columns in the basement and FP story is 2.00×2.00 [m2], while in the remaining
stories the columns are modeled as quadratic cross sections with the dimensions 0.40×0.40 [m2]. All FP
bearings have the same radius of the concave surface, which is equal to 3.00 meters.

A representative full-scale finite element model of the building structure was created in the software
package slangTNG (Bucher and Wolff (2013)). The shear walls and slabs were modeled by shell/plate
elements and the columns and beams by beam elements. A linear elastic material was considered for
the modeling of the superstructure (Young’s modulus E = 3.5 · 1010 [ N

m2 ], Poisson’s ratio ν = 0.3 [−],
density ρ = 2500 [ kg

m3 ]). Nonlinear FP elements, whose implementation in slangTNG is presented in
section 5.2.5.2, are assigned below the lowest basement plate of the structure. The total number of DOFs
is 33000.

As a result, the superstructure behaves linearly, which is the major reason for implementing base
isolator systems for earthquake vibration protection.
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5.2.5.2 Dynamic model of the frictional pendulum element

This is to present how the frictional pendulum (FP) element in the finite element model of the structure
behaves. The geometrical diagram of the FP element, which is realized as a spherical shell, is defined in
Figure 5.26. As depicted, R denotes the radius of the concave spherical surface and the origin of the local
coordinate system is chosen to be in the center of the sphere. The position vector of the slider is described
by U = [u,v,w]T . Since the desired behavior of the FP element is an in-plane elasto-plastic bidirectional
action, the change of the vertical position w can be neglected. Accordingly, the displacement of the
FP element is reduced to an in-plane motion defined only by the components u and v, i.e. U = [u,v]T .
This simplification makes sense as the radius R is much larger relative to the horizontal displacement
|U| ≈

√
u2 + v2. The equivalent representation of such an element together with the acting forces on it is

represented in Figure 5.27.
The horizontal force equilibrium of the dynamical system is

FFr +Fk = Fex , (5.59)

where FFr and Fk are the elasto-plastic frictional- and centring force and Fex = [Fx,Fy]
T accounts for the

interacting horizontal force, which couples the FP element to the super structure.
Following, the force equilibrium is split into two parts as two dynamic situations can occur: situation
stick and situation slide. The force equilibrium during the situation stick yields to

Fex = k1

{
u
v

}

︸ ︷︷ ︸
Fk

+k2

{
∆u
∆v

}

︸ ︷︷ ︸
FInt

if |Fex−Fk|< µN . (5.60)

This relation renders a linearly-elastic system, where the friction coefficient µ must be a value between
0 and 1. For the computations, this value was taken to be once 4 % and for the second demonstration run
of the method it was set equal to 8 %. The normal contact force N acts orthogonal to the contact area of
the slider and the concave surface. The vector ∆∆∆UUU = [∆u,∆v]T defines the radial distance with respect to
the current sticking point of the slider if the sticking condition is true. During the situation slide the FP
element is described by the following horizontal force equilibrium

Fex = k1

{
u
v

}

︸ ︷︷ ︸
Fk

+
µN
|U̇|

{
u̇
v̇

}

︸ ︷︷ ︸
FFr

if |Fex−Fk| ≥ µN , (5.61)

where U̇ = [u̇, v̇]T is the velocity vector.
In both relations, i.e. Eq. (5.60) and Eq. (5.61), the centring force |Fk|= k1r = k1

√
u2 + v2 acts linearly

orthogonal to the vertical axis through the deepest point of the surface and the center of the sphere. The
fact that the centring force is linear indicates that the spherical shell of the real system is approximated by
the paraboloid, whose potential energy increases with W

R r in radial distance from the deepest point, i.e.
the stiffness is inversely proportional to the radius of the sphere k1 =

W
R .

The frictional force FFr is modeled either linearly elastic or elastic-perfectly plastic as presented
in Eqs. (5.60) and (5.61), respectively. Note that, FInt the force corresponding to ∆∆∆UUU accounts for the
internal elastic behavior of the bearing coating material, in a small elastic range (situation stick, Eq.
(5.60)) and acts towards the current location of the slider (not the center of the concave sphere). Generally,
the implementation of a realistic model requires k2 to be much larger than k1, i.e. k2� k1. During the
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Figure 5.26: Geometric definition of
the FP element

Fk

Fx

FyW

ẋ FFr

slider unit center

Figure 5.27: Internal specifications of the FP element; Fx, Fy,
N, recentering force Fk, frictional force FFr

situation slide, the frictional force acts in opposite direction to the velocity with the magnitude (perfectly
plastic) µN. This is discussed in Eq. (5.61). Another point regarding Eq. (5.60) is that the reacting
force N is assumed to be constant throughout the calculation procedure. This is justified by the following
reasons: Firstly, just x and y components of the exciting ground motion are taken into account for the
computations. Secondly, the motion has already been simplified to be planar and therefore no additional
force component due to vertical motion is generated. Finally, in our preliminary analysis, the uplift force
on the isolator slap was observed to be extremely small in comparison with the downward force due to
the weight of the structure. Considering the above-mentioned fact together with the force diagram given
in in Figure 5.27, follows that the normal contact force N is approximately constant and equal to the
weight induced force of the super structure, W , i.e, N =W in Eq. (5.61).

The FP bearing element governed by Eqs. (5.59) to (5.61) has been implemented in the software
package slangTNG (Bucher and Wolff (2013)). For a comparable study on this implemented friction
pendulum system, the experimental work of Mosqueda et al. (Mosqueda et al. (2004)) is suggested.
Concerning the computations in this paper, the friction coefficient µ of the FP slider is assumed to be
a constant value, as discussed above. However, µ is indeed a value dependent on velocity, pressure
and temperature. Recent publications dealing with this issue are authored by Castaldo and Tubaldi
(Tubaldi (2015)), as well as Kumar et. al. (Kumar et al. (2015)). Regarding the proposed new strategy, it
is expected that the implementation of a friction coefficient, which depends on velocity, pressure and
temperature, would lead to comparable results concerning accuracy and speed of the reduced order model.
In other words, it is envisaged that a specific nonlinear model of the FP bearing element with variable
friction coefficient does not influence the overall behavior of the reduced order model in comparison to
the full model, i.e. the effectiveness of the model order reduction procedure. In every time step the vector
of the inner restoring forces in Eq. (5.57) has to be evaluated in the full (physical) coordinate anyway.

For additional information about friction pendulum systems the reader is referred to the literature (e.g.
Almazan et al. (1998), Llera and Almazan (2003), Ordonez et al. (2003), Ryan and Chopra (2004), Ray
et al. (2013) and Bucher (2009b)). More detailed examination of this topic would lead beyond the scope
of this paper, which should focus more on the methodical extension of the new MOR strategy as well as
the application on a complex realistic system.

5.2.5.3 Numerical evaluation

The evaluation of the MOR strategy applied to the realistic building structure is dealt with displacement
response calculations to the six different earthquake excitations presented in Table 5.4. The Calculation
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Figure 5.28: POD values; friction coefficient
µ = 0.04 [−] (logarithmic scale)
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Figure 5.29: POD values; friction coefficient
µ = 0.08 [−] (logarithmic scale)

outputs are presented by the in-plane motion response of the slider at the red marked node (node 1:
coordinates [19.5,0.0,−9.5]T [m]) in Figure 5.24 in x- and y-direction. As this node defines the location of
a moving friction pendulum, it shows directly the nonlinear response behavior of the system. Additionally,
a second output node (node 2: coordinates [32.5,0.0,h]T [m]) is chosen. Here, the coordinate h stands for
every possible storey of the building structure. According to h = 32.5 [m] the maximum acceleration of
the roof is presented and according to each storey (h =−9.5,−6.5,−3.5, . . . ,32.5 [m]), the maximum
drift responses are shown.

The numerical demonstrations are performed by assuming two different friction coefficients for the
FP-isolators, namely 4% and 8%. The methodology applied to the realistic example is equivalent to
the academic example, which is presented in section 5.2.4. Therefore, the main focus below is on the
presentation of the numerical results.

Integration over the whole Bam earthquake by the Newmark method in the physical coordinate leads
to the snapshot response function xS(t) and consequently to the snapshot matrix XS, which contains
400 snapshots in equidistant time intervals. Following, the evaluation of the left singular vectors of the
snapshot matrix leads to the POD modes and its singular values to the POD values in descending order.
The number of POD modes that have to be taken into account in order to capture 99,99 percent of the
total energy was evaluated to be 31 for the calculations concerning the friction coefficient of 4 % and 38
concerning the friction coefficient of 8 %. The logarithmic plots of the singular values (POD values) for
both friction coefficients dependent on the corresponding energy are shown in the Figures 5.28 and 5.29.

Time integration in the 31- and 38-dimensional PODs, which contain 99% of the total energy, reduced
subspace over the whole Bam earthquake produces the POD reduced response. After back transformation
into the physical coordinate, the reduced response must be compared with the benchmark solution (full
Newmark response). The response motion of the slider (output node 1) of the full and the POD-reduced
calculation is depicted in Figures 5.30(a) (friction coefficient of 4%) and 5.31(a) (friction coefficient
of 8%). As clearly shown, a reliable approximation of the benchmark solution is achieved, therefore,
nonlinear effects can be represented. In the next step, the responses to the remaining earthquakes are
evaluated in the reduced subspaces, as well as the full reference solutions by application of the standard
Newmark algorithm.

The first 30 modes are computed according to a linearization of the slider element. The boundary
conditions below each slider element are fixed. The required linearization of the slider element is realized
by taking the initial stiffness matrix of the system into account, similarly to the linearization assumption
of the academic example. This inevitably leads to an over-estimation of the slider stiffness, although the
vector of the inner restoring forces is calculated.

The red lines in the Figures 5.30 and 5.31 show the POD reduced responses and the blue lines the
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full reference solutions. As depicted in these Figures, accurate approximations are achieved for both
assumptions of the friction coefficients (note: the lines cover each other). Additionally, it is clearly shown
in these Figures that the modal truncation method fails to approximate the full solution.

The maximum accelerations at the roof in output node 1 are presented in the left and right subplot
of Figure 5.32. Additionally, the maximum drifts between all floors above output node 2 are presented
in Figures 5.33 and 5.35. As for both friction coefficients, the slider drift itself (drift in the floor 0) is
generally much larger (which is actually the purpose of base isolation). Therefore, for each of the friction
coefficients a second figure is presented in order to create the possibility to visualize the results, not
only in the slider, but also in the hospital building itself. This is realized in Figures 5.34 and 5.36. The
numerical values of the drifts of the stories 0 (slider drift), 1, 5, 10 and 14 are presented in Tables 5.5 (for
friction coefficient of 0.04) and 5.6 (for friction coefficient of 0.08).

It is expected that the proposed new strategy is also applicable to different types of nonlinearities, e.g.
large deformations, viscoelasticity, viscoplasticity, hyperelasticity etc. In addition, concerning seismic
protection, it is expected that the proposed new strategy is also applicable to smart structures with shape
memory alloy-based seismic damping and isolation tools. The new strategy should produce response
approximations with comparable accuracy to the nonlinearites already presented in this paper. However,
it is also of utmost importance here to emphasize the fact that the nonlinear deformation patterns, namely
the special hysteretic behavior dependent on superelasticity, temperature and memory effect, must be
captured in the snapshot matrix.
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Figure 5.30: Planar position of the FP-element (output node) over the time period of excitation; friction
coeficent µ = 0.04; x-axes ... slider displacement in x-direction [m], y-axes ... slider displacement

y-direction [m]; blue line ... full response; red line ... POD response; green line ... mode superposition
response

5.2.6 Conclusion

In this chapter, a model order reduction (MOR) strategy, which is applicable to the dynamic response
analysis of linear and nonlinear structural systems is presented. Usually, the analysis of building structures
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coeficent µ = 0.08; x-axes ... slider displacement in x-direction [m], y-axes ... slider displacement
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Figure 5.32: Maximum acceleration at the roof; left subplot: µ = 0.04; right subplot: µ = 0.08; full
newmark (black), POD response (red), modal truncation (green)

0

5

10

14

|xd| |xd| |xd| |xd| |xd| |xd||yd| |yd| |yd| |yd| |yd| |yd|
Bam Imp.V. Land. Loma.P. Nor.P.S. North.

Figure 5.33: Maximum drift of the stories above the output node 2 in x and y direction; friction
coefficient: µ = 0.04, including the slider drift in the ground floor 0
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Figure 5.34: Maximum drift of the stories above the output node 2 in x and y direction; friction
coefficient: µ = 0.04, excluding the slider drift in the ground floor 0

Storey Bam xd Imp.V xd Land. xd Lom.P. xd Nor.P.S xd North. xd

0 0.212 0.556 0.482 0.899 0.107 0.287
1 0.00201 0.00618 0.00449 0.00874 0.00215 0.00293
5 0.00223 0.00587 0.00452 0.00947 0.00239 0.00304

10 0.00182 0.00488 0.00385 0.00836 0.00225 0.00259
14 0.00167 0.00439 0.00346 0.00745 0.00190 0.00234

Table 5.5: x-component of the maximum drift of node 2 in meter; full system; µ = 0.04 corresponding to
the Newmark response function
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Figure 5.35: Maximum drift of the stories above the output node 2 in x and y direction; friction
coefficient: µ = 0.08, including the slider drift in the ground floor 0
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Figure 5.36: Maximum drift of the stories above the output node 2 in x and y direction; friction
coefficient: µ = 0.04, excluding the slider drift in the ground floor 0
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Storey Bam xd Imp.V xd Land. xd Lom.P. xd Nor.P.S xd North. xd

0 0.219 0.451 0.399 0.832 0.0933 0.250
1 0.00247 0.00562 0.00514 0.00810 0.00398 0.00370
5 0.00256 0.00529 0.00546 0.00836 0.00463 0.00444

10 0.00243 0.00448 0.00477 0.00732 0.00418 0.00400
14 0.00209 0.00391 0.00426 0.00656 0.00368 0.00352

Table 5.6: x-component of the maximum drift of node 2 in meters; µ = 0.08 corresponding to the
Newmark response function

with complex geometries makes the engineer to create a finite element model with a large number of
DOFs, which is associated with computational effort in the response analysis. Therefore, the goal of
this paper is to provide a new model order reduction strategy that is simple in application, but also very
effective even in the presence of nonlinearities for problems in the field of earthquake engineering and
structural dynamics. This strategy is extended based on the proper orthogonal decomposition (POD)
method to derive a proper transformation matrix in order to transform the nonlinear systems into another
low-dimensional subspace, which demands considerably less computational effort for the response
calculation. Once the transformation matrix is derived, the approach of the strategy is similar to the
method of modal truncation for linear systems. The presentation of the novel approach comes along
with a simple and illustrative example that points out the benefit compared to standard methods as modal
truncation.

In addition to the development of the MOR strategy, its application for the response calculation of
a realistic numerical nonlinear example is demonstrated. The example is the displacement response
calculation of a building structure serving as a medical complex, which is base-isolated by friction
pendulum bearing systems excited by six earthquake excitations. In order to evaluate the accuracy of
the introduced approach, the exact structural responses are also calculated. Numerical evaluations show
that reliable approximations can be achieved if nonlinear response patterns of the structure are already
captured in the POD snapshots to extract the transformation matrix. The advantage of this strategy is
obviously that the transformation matrix is derived just once and it can be used for response calculation
of the structure under different earthquake excitations.

Another substantial advantage of the introduced MOR concerns the speed of the response calculations.
Firstly, compared to the basic central difference algorithm, the new introduced strategy has a much larger
critical time step. Secondly, compared to the Newmark method, which allows usually larger time steps,
no iteration procedure is required.
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Chapter 6

Conclusions

The primary goal of the dissertation is development of a procedure for inverse identification of the wind
load from the measured structural response. This procedure was expanded step-wise from establishing
an optimal input-output relation for a structure, adopting proper methods for inverse ill-posed problem,
selection of measurement sensors and so on. At each step the validity of the results was verified by means
of problem simulations, followed by laboratory tests and afterwards the procedure was implemented in a
field application.

In Chapter 2 new formulations to derive the impulse response matrix, which is then used in the
problem of load identification with application to wind induced vibration. The applied loads are inversely
identified based on the measured structural responses by solving the associated discrete ill-posed problem.
To this end — either based on the parametric structural model or modal characteristics — the impulse
response functions of acceleration, velocity and displacement have been computed. Time discretization
of convolution integral has been implemented according to an existing and a newly proposed procedure,
which differ in the numerical integration methods. The former was evaluated based on a constant
rectangular approximation of the sampled data and impulse response function in a number of steps
corresponding to the sampling rate, while the latter interpolates the sampled data in an arbitrary number of
sub-steps and then integrates over the sub-steps and steps respectively. The identification procedure was
implemented for a simulation example as well as an experimental laboratory case. The ill-conditioning
of the impulse response matrix made it necessary to use Tikhonov regularization to recover the applied
force from noise polluted measured response. The optimal regularization parameter has been obtained
by Lcurve and GCV method. The results of simulation represent good agreement between identified
and measured force. In the experiments the identification results based on the measured displacement as
well as acceleration are provided. Further it is shown that the accuracy of experimentally identified load
depends on the sensitivity of measurement instruments over the different frequency range.

Chapter 3 develops the procedure of inverse wind load reconstruction, given in Chapter 2, for the
large degrees of freedom structures. It was tried to keep the procedure practically applicable and merely
based on the data that can be obtained via vibration response measurements, so that extra assumptions
for unmeasured degrees of freedom responses or mass and stiffness matrix setup are not required. But
instead, just the modal properties of the structural system, which can be obtained directly from the
vibration measurements are demanded, in order to generate the augmented impulse response matrix of
the system and decompose the measured responses into the modal responses. The presented step-by-step
procedure with a fairly comprehensive discussion explains different aspects of the provided wind load
identification method for the real applications. An important goal of in this chapter concerned revealing
the more consistent response type, i.e. displacement or acceleration, for the wind load recovery. It was
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found that the measured displacement response is more appropriate for this purpose, due to the higher
power of displacement signal in lower frequencies and the smaller condition numbers of the modal
displacement impulse response matrix compared to those of the modal acceleration, which consequently
makes the inverse problem less sensitive to the contained noise in the displacement data acquired from
measurement setup. The quality of the reconstructed modal wind loads based on both response types
reduces as the noise level increases. But rather the modal wind load identification from the displacement
response, especially by means of the L-curve method, remains sufficiently accurate even at 15% noise
level. The background signal of wind load is correctly reconstructed from displacement response whereas
the noise-related discrepancy emerges in the high frequency components of the identified load signal
above the natural frequency of the corresponding mode.

Chapter 4 presents the field application of the introduced inverse modal wind load identification
procedure by full-scale field measurement. The major focus was drawn to the technical aspects of the
practical application, including the case study, measurement setup, data processing and the utilized
methods within the load identification procedure. It is important to note that all information needed for
wind load identification was acquired solely based on the measurement data. In this regard, no additional
assumptions were required to be made either on the structural properties e.g. assumptions on system mass
or stiffness matrices or on the wind characteristics of the structure’s site. It was discussed profoundly,
what are the advantages of wind load reconstruction in the modal subspace, use of displacement responses
and utilizing the augmented modal impulse response matrices. The structural modal properties were
obtained by means of operational modal analysis from the same ambient vibration testing data, which is
used for inverse load identification. It is not generally feasible in practice to measure the actual wind
loads acting on the structural element, in order to verify the load identification results. It was described
that there might not exist another solution for this purpose better than simulation of the problem and
observation of the existing analogies. The numerical simulation of the same problem can demonstrate the
strength or weakness of the introduced procedure for practical wind load identification. Consequently the
validity or failure in the real application of the introduced procedure was verified by means of the analogy
between the field and numerical simulation results. It was obviously observed that for a number of first
vibration modes the experimental results are reliable.

The dissertation pursued a secondary goal too, which was studied within Chapter 5, section 5.1. This
study was a collaborative research work in order to fulfill the requirements of the doctoral program.
This work develops methods for stochastic response analysis of structures under wind excitation at
least over one year, when the gappy measured response data is available. This work should make it
possible to be able to extract response statistics as a function of mean wind speed from the mathematical
expressions. The mathematical expressions are derived from the available response data, measured
discontinuously at random mean wind speeds in one year. To this end the wind speed data corresponding
to each set of response data should be known, moreover the probability distribution of mean wind
speeds are required too. For this purpose the wind speed was measured continuously over one year and
predominant wind directions as well as mean wind probability density functions based on ten-minute
averaging were obtained. The ten-minute structural responses were recorded according to an 18-hour
automatic triggering within one year. Then every ten-minute data was tagged by its corresponding mean
wind speed. It was comprehensively discussed how to recover the structural response indicators associated
with those unmeasured ten-minute time intervals between two consecutive triggering. In this section
two response indicators, i.e. displacement response standard deviation and threshold passage counts,
were targeted. Those indicators are important for the sake of structural vibration control under long-
term random excitations like wind. It was shown that from the sparse response data, the mathematical
relationships between response indicator and mean wind speed data can be achieved. In this section

112



6. Conclusions

an efficient procedure for frequency domain wind fatigue estimation was also introduced. To this
end solely the moments of stress PSD is required, in order to calculate the density function of stress
amplitude cycle counts. It was represented that the values of the moments of stress PSD at different mean
wind speeds corresponding to unmeasured ten-minute time intervals can be retrieved from the existing
sparse measurement data. Once the moments of stress PSD are known, the expected one year damage
due to wind vibration can readily be calculated. The mathematical relationships between mean wind
speed and displacement response standard deviation as well as mean wind speed and moments of stress
(displacement) PSD were selected according to the presented theoretical background.

The second collaborative work was described in Chapter 5, section 5.2. This section presents a model
order reduction (MOR) strategy, which is applicable to linear and nonlinear structural systems. Usually,
the analysis of building structures with complex geometries makes the engineer to create a finite element
model with a large number of DOFs, which is associated with computational effort in the response
analysis. Therefore a new model order reduction strategy was sought, not only simple in application, but
also very effective for problems in the field of earthquake engineering. This strategy is extended based on
the proper orthogonal decomposition (POD) method to derive a proper transformation matrix in order to
transform the nonlinear systems into another low-dimensional subspace. Once the transformation matrix
is derived, the approach of the strategy is similar to the method of modal truncation for linear systems.
The application of the method for the response calculation of a realistic numerical nonlinear example is
demonstrated. In order to evaluate the accuracy of the introduced approach, the exact structural responses
are also calculated. Numerical evaluations show that reliable approximations can be achieved if nonlinear
response patterns of the structure are already captured in the POD snapshots to extract the transformation
matrix. The advantage of this strategy is obviously that the transformation matrix is derived just once and
it can be used for response calculation of the structure under different earthquake excitations. Another
substantial advantage of the introduced MOR concerns the speed of the response calculations. Firstly,
compared to the basic central difference algorithm, the new introduced strategy has a much larger critical
time step. Secondly, compared to the Newmark method, which allows usually larger time steps, no
iteration procedure is required.
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Chapter 7

Future works and outlooks

Since the introduced procedures and accordingly the results presented in this research appeared to be
quite promising and in compliance with the objectives of the research, they imply the possibility to deploy
this dissertation’s achievements, to be combined with other methods for further researches. I would like
to generally address the following outlooks based on the methodological developments, presented in his
dissertation:

• As a future work, the online wind load reconstruction (vs. offline method applied in this dissertation)
could be mentioned, which essentially leads to application of the state-space observer models of the
structural system (Juang (1994)) through the structural monitoring. Currently in the existing online
load identification methods (see references in sections 3.1 and 4.1), firstly the system matrices
(mass, stiffness, damping) in the numerical model of structure — e.g. derived from finite element
model of system — must be known. Secondly either the input signal is low-pass filtered or
the natural regularization due to the observer behavior (e.g. Kalman filter) is used, in order to
cope with noise magnification in identified load. Contrarily, in my opinion and as implemented
in this dissertation, firstly the wind load reconstruction procedure should be working based on
system modal parameters (natural frequencies, damping ratios and mode shapes) instead of the
system matrices. Furthermore the proper regularization scheme, in which the optimal extent
of regularization is applicable, should be separately integrated in the procedure (i.e. neither by
high-pass filtering nor regularization effect of the observer). Importance is attached to the point
that obtaining the modal parameters of complicated structures is more realistic than creating a
numerical model of the structure, which can accurately reflect the in-situ structural behavior.

• The verification of the introduced method for wind fatigue analysis based on sparse stress response
data (see Chapter 5, section 5.1) can also be explored further. For this purpose, first of all the
real stress data is needed. In the presence of measured stress data and in light of the proposed
method in section 5.1.6, the expected value of different cycle counts can be compared with those
achieved from conventional time domain cycle counting methods. This provides the possibility of
cross-check and method verification. Note that, This works demands at least one year collection of
stress data and wind speed measurement. However the outcome of this research, once its validity
is proven, can be quite attractive, due to its significant practical advantages and computational
efficiency.

• Further research work might be the behavior improvement of vibration prone structures by means
of in-situ identified wind load. Assume that an actual structure undergoes measurement for the
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purpose of fatigue analysis and the results show that it does not fulfill the design target lifetime.
Consequently the idea of combining the two above mentioned research works could be further
explored. In this way, the identified wind load can be deployed for re-analysis of fatigue life of the
modified version of the structure, which is going to have the desired fatigue lifetime, as expected
in the design. In essence the modified version of the structure has the same geometric shape, but
either its mass/stiffness properties will be changed or vibration damper units like TMD or TLCGD
will be attached to the structure.
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Chapter 4 of this dissertation is based on the paper “Identification of wind loads from structural
responses through full-scale field measurements” by Abbas Kazemi Amiri and Christian Bucher. This
study was submitted to the journal of Wind Engineering & Industrial Aerodynamics. The paper was
prepared by Abbas Kazemi Amiri under supervision of Christian Bucher.

Chapter 5, section 5.1 of this dissertation is based on the collaborative research by Abbas Kazemi
Amiri and Patrick Hogan, under supervision of Christian Bucher and Takashi Maruyama. This study is in
preparation for submission to a journal. The contribution of Abbas Kazemi Amiri to this paper was:

• Literature review

• Concept development

• Wind and structural data analyses

• Paper writing

Chapter 5, section 5.2 of this dissertation is based on the paper “A new model order reduction strategy
adapted to nonlinear problems in earthquake engineering” by Franz Bamer, Abbas Kazemi Amiri and
Christian Bucher (Bamer et al. (2016)). This paper was recently accepted for publication in Earthquake
Engineering and Structural Dynamics. The contribution of Abbas Kazemi Amiri to this paper was:

• A part of the literature review

• Formulation of FP element

• Providing FE model of structural system (hospital)

• Paper edition

125


	Introduction
	Motiviation
	Research questions corresponding to dissertation goals

	Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement
	Introduction
	Dynamic response analysis of discrete-time systems
	Impulse response matrix
	Augmented impulse response matrix

	Complete set of discrete dynamic response

	Load identification using regularization method
	Selection of regularization parameter
	L-curve
	GCV


	Numerical results
	Response comparison of ordinary and augmented schemes
	Simulation of load identification
	Laboratory-scale load identification
	Case study
	Experimental load identification


	Conclusions

	A practical procedure for inverse wind load reconstruction of large degrees of freedom structures
	Introduction
	Development of the modal wind load identification
	Basic equations
	Issues and considerations
	Procedure steps

	Evaluation of the wind load identification procedure
	Calculation of the noisy measured response
	Correlated fluctuating wind speeds simulation
	Decomposed modal responses
	Results of the reconstructed modal wind loads

	Conclusion

	Identification of wind loads from structural responses through full-scale field measurements
	Introduction
	Wind load reconstruction procedure
	Results
	The structure and measurement setup
	Operational modal analysis
	Identification of the wind load
	Real application of the wind load identification


	Verification of field application results
	Simulation of the wind load reconstruction

	Conclusion

	Collaborative research contribution
	Wind-induced stochastic response analysis from sparse long-term response data
	Introduction
	Wind-induced stochastic response analysis
	Theoretical background
	Stochastic response analysis from sparse response measurements

	Fatigue analysis
	Cycle counting Techniques
	Frequency domain fatigue estimation
	Wind fatigue life estimation
	Results of method application to real measurement data
	Measurement setup description
	Wind speed data analysis
	Wind stochastic response and fatigue damage analysis

	Conclusion

	A new model order reduction strategy adapted to nonlinear problems in earthquake engineering
	Introduction
	Earthquake excitations
	Nonlinear model order reduction and the POD - mathematical formulation
	The new approach
	Error evaluation

	Practical application of the new approach
	Structural system and model specifications
	Dynamic model of the frictional pendulum element
	Numerical evaluation

	Conclusion


	Conclusions
	Future works and outlooks
	References
	Appendix Authorship

