
DIPLOMA THESIS

A Hypervisor Layer for Virtualization of a
System-on-Chip

A Virtualization extension for Network-on-Chip

Submitted at the Faculty of Electrical Engineering and Information Technology,
TU Wien

in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur (equals Master of Sciences)

under supervision of

Univ. Prof. Dipl.-Ing. Dr. techn. Axel Jantsch
Dipl.-Ing. Dr. techn. Martin Pongratz

Institut of Computertechnik Technology (E384)
TU Wien

by

Elvin Sebastian
Matr.Nr. 0825309

Kliviengasse 78, 1220 Wien

1. Oktober. 2016

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

This work presents a novel concept for a hardware-based virtualization solution, to provide spatial
seperation between multiple application on a Cyberphysical System-on-Chip. This Cyberphys-
ical System-on-Chip is able to sense its underlying substrate and adapt to degradation effects
in it. The presented virtualization solution will support the Cyberphysical System-on-Chip to
adapt its architecture, to meet the performance requirements of its applications, by providing the
necessary means to reloacte applications to processors, which can provide the performance. The
solution introduces a paging approach within a Network-on-Chip interface, known from Memory
Management Units in processors, and a configuration scheme, which transforms the network to
a virtualization layer within the chip. This approach will provide the means to virtualize entire
operating systems and a hardware partioning scheme to run them.

Kurzfassung

Diese Arbeit präsentiert ein neues Konzept einer hardwarebasierter Virtualisierung, für die Um-
setzung eines Cyberpyhsical System-on-Chip, dass in der Lage ist den physikalischen Zustand
seiner Funktionseinheiten zu messen. Dieses Konzept bettet mehrere Funktionsblöcke, die teil-
weise auf dem Konzept einer Memory Management Unit basieren, in allen Network-on-Chip
Schnittstellen des Cyberphysical System-on-Chip ein. Dieser Ansatz wandelt das gesamte Network-
on-Chip, unter der Ebene der Memory Management Units in den Prozessoren, in eine zweite Vir-
tualisierungsebene um. Diese Ebene ermöglicht Hardwarepartionierungen durchzuführen und
gesamte Betriebssysteme zu virtualisieren. Das gibt dem Cyberpyhsical System-on-Chip die
Möglichkeitje nach dem Zustand des darunterliegenden Substrats, Applikationen auf verschiede-
nen Prozessoreinheiten zu verteilen um den Leistungsanforderungen der Applikationen gerecht zu
werden. Die Arbeit liefert zusätzlich Mechanismen diese Virtualiserungsebene zu konfigurieren
und einen modularen Aufbau der Funktionsblöcke um die Austauschbarkeit/Erweiterbarkeit zu
gewährleisten.

I

Ich danke an dieser Stelle meinen Eltern und widme die Arbeit meiner Schwester.
Ein spezielles Danke gilt auch für Andrej Hanic für seine Hilfe.

II

Table of Contents

1 The Cyberphysical System-on-Chip 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Related Work . 4

2 Overview on System Communications 7
2.1 System Communication Characteristics . 7

2.1.1 Signal Types . 7
2.1.2 Physical Structure . 7
2.1.3 Data Transfer Modes . 8

2.2 On-Chip Communication Standards . 10
2.2.1 AMBA . 10
2.2.2 IBM CoreConnect . 12
2.2.3 Wishbone . 13
2.2.4 Open Core Protocol . 13

2.3 Off-Chip Communication Standards . 14

3 Background Topics 16
3.1 Network-on-Chip . 16
3.2 AMBA Rev. 2 Interconnect . 20

3.2.1 AMBA AHB Signals . 20
3.2.2 AMBA APB Signals . 25

3.3 Gaisler GRLIB . 25
3.4 Virtualization . 27

4 Virtualization Solution 31
4.1 Network-on-Chip Abstraction . 31
4.2 Application Isolation . 33
4.3 Architecture Configuration . 35
4.4 Application Protocol . 36

5 Implementation and Testing 40
5.1 Architecture and Interfaces . 40

5.1.1 Module Interfaces . 43
5.1.2 Abstraction Slave . 44

III

5.1.3 Abstraction Master . 48
5.1.4 Control Unit . 50

5.2 FPGA Implementation and Testing . 54

6 Conclusion 63

Literature 65

IV

Abbreviations

AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
APB Adanved Peripheral Bus
AXI Advanced eXtensible Bus
CAN Controller Area Network
CMOS Complementary Metal-Oxid Semiconductur
COTS Commerical off-the-shelf
CPSoC Cyberphysical System-on-Chip
CPU Central Processing Unit
DCR Device Control Register (Bus)
DDR Double Data Rate
DLC Data Link Control
DMA Direct Memory Access
DSP Digital Signal Processor
DSU Debug Support Unit
FIFO First In - First Out
FPGA Field Programmable Gate Array
HCI Hot Carrier Injection
IMA Integrated Modular Avionics
I2C Inter-Intergrated Circuit
IP Intellectual Property
I/O Input/Output
MAC Medium Access Control
MAGIC Malicious Aging In Circuits/Cores
MSI Message Signaled Interrupt
NBTI Negative-Bias Temperature Instability
NI Network Interface
NoC Network-on-Chip
OCP Open Core Protocol
OPB On-Chip Peripheral Bus
OS Operating System
OSI Open System Interconnect
PCB Printed Circuit Board
PCIe Peripherial Component Interface Express
PLB Processor Local Bus
QoS Quality of Service
RAM Random Access Memory
ROM Read-only Memory
RTL Register-Transfer-Level
SPI Serial Peripheral Interface

V

SoC System-on-Chip
SR-IOV Single Root I/O Virtualization
UART Universal Asynchronous Receiver Transmitter
VLSI Very-Large-Scale-Integration
VM Virtual Machine
VMM Virtual Machine Monitor

VI

1 The Cyberphysical System-on-Chip

The Cyberphysical System-on-Chip is a novel concept of a self-aware system-on-chip, which is
able to sense its underlying substrate and act according to its condition. The need for such a chip
will be explained in the following chapter and how this work will support to achieve this goal.

1.1 Motivation

Many advances in science, economy and society in the last decades are due to the fact of ever in-
creasing computing power at every person’s disposal. These continuous increases in performance
are possible, because of architectural improvements and the doubling of integration density every
few years described by the famous Law of Moore [Moo65]. This increase enabled VLSI-Systems
(Very-Large-Scale Integration) with increased clock frequencies for digital circuits, to a point
where thermal and power constraints became major limiting factors. This cap in clock frequency
was solved by power efficient architectures and high scale parallelization. The rising availability
of chip IPs (Intellectual Property), which are blueprints for subsystems, allows companies to de-
sign their customized modular systems and provide means for reusability of those subsystems.
Today the number of IP subsystems like hardware accelerators and I/O interface controllers on
a chip are increasing. Because all of these components were independent components outside
the chip before, these systems are often referenced as System-on-Chip or SoC. This capability
for companies to design their SoCs and give them into production at foundries, promoted new
business models and products like the ThunderX Processor of Cavium [Gwe14] depicted in Figure
1.1, which was designed to handle high server loads with up to 48 processing cores and many
hardware accelerators for encryption and compression. The ThunderX uses the most prominent
example how IPs are changing the semiconductor industry. It uses processor architecture of ARM
Limited, which is currently dominating the mobile market and is gaining more ground in other
markets due to the fact, that their processors can be licensed for SoC applications and it can run
Linux.
System-on-Chips enable a lot of flexibility, because it is possible to integrate many subsystems
to offload tasks from the application processor. Offloading increases performance and reduces
power consumption since subsystem can be optimized for its specific application instead of being
run on a general purpose processor. [FL11] gives a good overview of SoC-Design and discusses
some example of processor offloading like AES-Encryption (Advanced Encryption Standard), 3D
Graphics or simple Audio/Video Compression. Subsystems can have their independent firmware

1

The Cyberphysical System-on-Chip

or micro-kernel, like the proprietary REX OS which manages the Baseband subsystem on Qual-
comm mobile SoCs, and they provide a high-level interface for the application processor to access
them. Because of the number of subsystems and their independent application, modern SoCs can
be seen as miniaturized distributed systems.
The increasing amount of subsystems are causing challenges for floorplanners in interconnecting
them and layouting a system bus through a chip while maintaining timing constraints and min-
imizing clock skew. The increased number of subsystems on a chip also lead to rising load on
interconnects to a point where the cost of communication increased relative to the cost of com-
putation in the last years. This challenge pushed researchers towards a Network-on-Chip concept
more than a decade ago and is currently becoming more and more popular in the industry out
of necessity. Network-on-Chip (NoC) communicates in segments with various topologies. Data
will be routed through the chip via routers as endpoints of segments like in the all familiar IP
(Internet Protocol) networks. This concept reduces the amount of wire routing effort enormously
and increases the performance of a SoC.

I/O
Network

PCIe v3

SATA 6G

Ethernet
MACs

DMA

Coproc
Network

DDR3/4
Ctlrs

16MB
L2$

4x72

RAID

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

I$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

7
8

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit
CPU

Write Buffer 8x
6

4
K

B
 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

6
4

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer
6

4
K

B
 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer
6

4
K

B
 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer
6

4
K

B
 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer
6

4
K

B
 I
$

3
2

K
B

 D
$

ARMv8
64-bit

Write Buffer

7
8

K
B

 I
$

3
2

K
B

 D
$

ARMv8
64-bit
CPU

Write Buffer 8x

Coherent Fabric

Secure
Vault

Crypto
Engine

Reg-Ex
Engine

Comp
Engine

…
48 cores

total

Coherent
Interconnect

200
Gbps

Cavium
ThunderX

Ethernet
MACs

200Gbps
Switch

100
Gbps

Figure 1.1: Cavium ThunderX SoC-Architecture Source: [Gwe14]

While increasing miniaturization provided space for more subsystems, new problems have arisen
in the building blocks of the modern semiconductor industry. Since transistor sizes are cur-
rently decreasing by half every three years, effects like Negative-Bias Temperature Instability
(NBTI), electromigration and hot carrier injection (HCI) [SWV+09] are dramatically influenc-
ing the reliability of CMOS technology. Because the size of the transistor is becoming smaller,
these degradation effects affect the transistor faster. These aging effects are being noticed in
a performance decrease of the processor or subsystem. NTBI affects the switching speed of
pMOS-Transistors while HCI affects nMOS-Transistors. There is currently research into soft-
ware patterns to accelerate aging of the underlying silicon by exploiting processor and pipeline
architectures [KKW+15]. These so called MAGIC attacks (Malicious Aging in Circuits/Cores)
can be used for research purposes, but also as malware. There are efforts to delay aging by load
balancing in multi-processor systems. One attempt is to develop a self-aware SoC, also called a
Cyber-Physical System-on-Chip (CPSoC) [SDG+15]. The CPSoC can sense the state of its sub-
strate and act upon it by adjusting frequency and voltage of its subsystems and network-on-chip

2

The Cyberphysical System-on-Chip

routers. This capability would require the ability to adapt to changing conditions for applica-
tions, operating systems, interconnect architecture and hardware architecture during runtime and
requires extensive research.

1.2 Problem statement

This thesis will provide a starting point which is needed to explore the implementation options
for a Cyberphysical System-on-Chip (CPSoC). A System-on-Chip, in general, can be divided into
several clusters. Each of them can be occupied by a single or multiple subsystems, which can be
Intellectual Properties (IP) of different vendors. Within a cluster there can be an IP compatible
interconnect to connect the local subsystems, while a different interconnect, most likely Network-
on-Chip, can be used as a global interconnect like displayed in Figure 1.2. The focus will be on
a controlled access of resources over Network-on-Chip, for a consistent address space within the
CPSoC by exploring ways to establish and manage logical connections between single subsystems.
The applications running on the clusters, which can be bare-metal code or an operating systems,
should not require modification to be executeable on the target design.

AHB Cluster Cluster

Cluster

ClusterClusterCluster

Cluster

IP IP IP

IP

IPIP

IP

Cluster

NoC

NoC

NoC

NoC

NoC

NoC

NoC

NoC

NoC

Figure 1.2: Cluster and Interconnect Schema

The GRLIB from Gaisler Inc. is a library with a collection of IPs and many preconfigured
FPGA designs (Field Programmable Gate Array). An AMBA AHB (Advanced Microcontroller
Bus Architecture - Advanced High-Performance Bus) to interconnect the IPs is included in the
library. Another valuable IP is the LEON3 processor, based on the SPARC v8 architecture, which
is the prefered architecture in aerospace application besides the PowerPC architecture. With the
provided development tools like compiler and debugger, the GRLIB environment provides all
prerequisites for exploring first ideas and concepts regarding the CPSoC. The gained insight of
this work should provide direction for future works. The next section will provide a overview of
considerations, which were the starting point of this work.

3

The Cyberphysical System-on-Chip

1.3 Related Work

The Cyberphysical System-on-Chip is a novel architectural concept for future SoCs. Therefore
there are only few or no related works until now. However, since the CPSoC involves many partial
aspects, which are already relevant in today’s SoC architecture, papers to each of those aspects can
be found. Aspects like Network-on-Chip interconnects, hardware-based virtualization, hardware
partitioning and much more, are topics which have to be considered in the overall design of the
CPSoC. Aguiar et al. [AH10][AMSH12] gives a good overview of the general topic of virtualization
of embedded systems. They introduced a hardware modification to a MIPS processor architecture
to reduce hypervisor overhead. The MIPS architecture uses both memory virtualization and fixed
mapping for different parts of the memory even in Kernel Mode of the Operating System (OS).
Some parts can not be reached in User Mode. The challenge for achieving full-virtualization on a
MIPS processor is, how to run a GuestOS without direct access to priviledged instructions and to
the Translation Lookaside Buffer (TLB) of the Memory Management Unit in Kernel Mode of the
OS. To achieve the goal Aguiar et al. removed the restriction on the address space in User Mode
and turned off the TLB in Kernel Mode of the processor, which is is occupied by the hypervisor.
The OS will be pushed into User Mode. The TLB will then be used by the hypervisor to redirect
access from the exception handling routines of the GuestOS to that of the hypervisor. These
exception handling routines will then be called whenever the OS uses priviledged instructions.
The presented solution allows to run multiple GuestOS on a single processor, but it requires
modification of the processor and a hypervisor to schedule the Operating Systems. Because the
processor has to be shared in this approach, it is not recommended for safety critical systems.

The works of Kliem and Voigt with [KV12][KV13] introduced a SecureBridge concept based on the
GRLIB library, for partitioning the system memory to provide spatial separation between multiple
operating systems. The work introduced a system with multiple processing subsystems, each
capable of running an independent operating system. The external memory controller can only
be reached by a backbone, which is separated by a bridge from the subsystem. This SecureBridge
monitors the accessed memory addresses and enforces spatial separation of the subsystems. The
bridge has different implementations to test performance. One implementation has combinatory
logic with a direct access to the backbone, once the master interface on the backbone side of the
bridge is arbitrated. Only the address is manipulated by the SecureBridge during the access.
The other implementation has a cache and an optimizer integrated to enhance overall system
performance. The optimizer has the responsibility to optimize the access to the backbone by
utilizing the whole data width of the backbone. This implementation has latency in the bridge
but improves the overall performance. The work shows that the system is not scalable with
a single clock domain without badly influencing the clock frequency of the system. Therefore
it is suggested to implement multiple clock domains for the subsystems and the backbone and
the SecureBridge had to be adapted, because it would interface with two clock domains. This
is now managed by asynchronous FIFO queues for input and output. The concept to enforce
spatial separation at the boundary of one logical component to another is quite popular, because
it is easier to implement at the source of a transfer instead at the destination and it removes
avoidable traffic between them. The downside of this concept is, that the processor itself can not
be virtualized, because the focus is only on spatial separation and not on temporal separation
of applications. Since no temporal separation is required, there is no need for a hypervisor
intervention in the subsystem.

The source of transfers is not always a processor, it can also be a DMA capable (Direct Memory
Access) I/O. Münch et al. provide a hardware-based I/O virtualization solution for PCIe (Pe-

4

The Cyberphysical System-on-Chip

ripheral Component Interconnect Express) [MIM+13][MPHH15][MPH15]. It utilizes the Single
Root - I/O Virtualization (SR-IOV) feature of the PCIe standard to share a physical I/O to
multiple virtualizedd OS. This feature provides multiple virtual functions to access the physical
hardware. These virtual functions are virtual interfaces, which can be mapped into the address
space of the virtual machines. To isolate I/O DMA access to their respective virtual environment
an I/O Memory Management Unit (IOMMU) can be used in the PCIe controller, but Münch et.
al decided to implement a non-transparent bridge (NTB) close to the I/O. Firstly IOMMUs are
not common in embedded system components as they are in IT server technology and secondly
the NTB has less complexity and is more predictable. This is especially necessary for safety
critical applications like avionics. The NTB acts as a firewall to the traffic coming from the I/O
and from the PCIe controller and can be only configured with a limited amount of rules, which
the traffic has to comply.

The same firewall concept is applied by Grammatikakis et al. with [KGC12][GPP+14]. They
introduced a virtualization and a security concept for architectures based on a Network-on-Chip.
In [KGC12] the focus is on a fully virtualized hardware with the help of traditional MMUs and
IOMMUs. The system is comprised of multiple processors and accelerators, which are connected
by a Network-on-Chip. Between the accelerators and the NoC a Command Processing Unit (CPE)
is used to regulate access to the hardware. This CPE has an internal TLB cache for translating
virtual addresses to physical addresses, an interrupt unit for signaling an access violation to the
hypervisor and a monitoring unit. The main purpose of the CPE is not only sharing various
resources among virtualized environments, but also for protection of each environment from
malicous hardware drivers or processes on other environments. An impressive design feature of
the CPE is, that differentiation between multiple sources of access and individual translation is
possible. But all this comes with increased complexity of the design. [GPP+14] contributes a NoC-
Firewall, which acts as a gatekeeper to the Network-on-Chip. The firewall has less complexity than
the CPE with its IOMMU features. To provide a lightweight solution, the firewall implemented
a segmentation-based approach into the NoC interface. Segementing requires more logic than
paging for calculating segements/pages, but size of a segmentation table can be smaller than of
the size a page table. The work showed that the network delay can be reduced up to 50% in an
environment with malicous memory access, due to reduced traffic. The test was performed with
various numbers of processors and memory controller, each with their own network access.

SoC virtualization is about mapping applications to processors. Multiprocessor SoCs are systems,
which may not have to support an operating system because of limited processing architecture
features or memory. An example is a system comprised of several Digital Signal Processors
(DSP), which are not OS capable processors. This circumstance means, there is the necessity
of finding other ways for a SoC to schedule its tasks. [Bie14] approaches a solution to this
problem by implementing a hardware-based virtualization layer between processor and storage.
The virtualization layer consists of an interconnect and a VirtBridge for each application. The
VirtBridge has the responsibility of saving the application context in case of a task interruption.
There are hardware-based means implemented to interrupt an executing application and save its
context by injecting code into the instruction stream of the application. These injected code will
flush the pipeline and save the programm counter, register data and more. This context will then
be stored in a specific memory of the VirtBridge and kept there until the application is assigned a
processor again. Then it is restored again by injected code. This processes it totally transparent
for the application. This solution provides an unique hardware-based temporal separation of
applications and was proved on a Xilinx MicroBlaze processor.

The presented works inspired the design of the proposed solution in this work. The approach of

5

The Cyberphysical System-on-Chip

Kliem and Voigt with the SecureBridge and the NoC-Firewall approach of Grammatikakis et al.
were chosen as a reference. The SecureBridge design was interesting because it used the GRLIB
and showed the potential of the library. The NoC-Firewall design of Grammatikakis et al. was the
prefered design choice, because the target design of this work uses a Network-on-Chip. But unlike
Grammatikakis, the target design uses a paging mechanism with a reduced page table size for less
complexity. The works of Münch et al. provided insight in DMA transactions, but their focus is
mostly on PCIe. Because of the provided awareness for DMA, the target solution in this work also
provides isolation of DMA transfers. The other works mentioned provided better understanding
of the topic, but were not considered at this point since focus was on spatial separation instead
of temporal separation. Once more, the mentioned papers here are just an excerpt of works
about virtualization. Even the authors mentioned before have more papers to offer, which can
contribute for a much deeper understanding of the topic. Especially Grammatikakis has several
papers worth reading.

6

2 Overview on System Communications

Interconnects are functional units that provide the means for data exchange between many com-
ponents in a system and therefore are essential for the capabilities of a system. The following
chapter gives an overview of interconnect characteristics and established standards. It will pro-
vide a good basis to compare the State-of-the-Art with the emerging Network-on-Chip paradigm
in system interconnection.

2.1 System Communication Characteristics

System communication can be implemented in many ways to improve performance, power effi-
ciency and area requirement. Depending on the application type and the given design constraints,
it is important to choose between different implementations. This section provides an overview
on interconnect characteristics when selecting an implementation for a system.

2.1.1 Signal Types

Signal types involved in system communication can be broken down into three types. These types
are address, data and control signals. These signals are typically exchanged between a master
and a slave. The master initiates a transfer to a slave and provides all the necessary address
and control information for the slave to execute the transfer. The flow of data in a transfer is
dependent on a control signal, which indicates if it is a read or a write. In the case of a write,
the data is provided by the master. Otherwise, the data is provided by the slave. There can be
different channels implemented for read and write with their respective address and data signals
to improve performance. The required amount of wires is determined by the physical structure
and the data transfer modes of the interconnect.

2.1.2 Physical Structure

The physical structure of an interconnect influences its capabilities. The most commonly known
structure is the shared bus as depicted in Figure 2.1. All masters and slaves share a common
bus for exchanging information. All masters can write on the address and control bus while the
data bus can be accessed by masters and slaves to share data independent of a write or a read
transfer. Shared buses utilize tristate buffers to switch between read, write and high impedance.

7

Overview on System Communications

They are commonly used for off-chip communication because they reduce the amount of wires
involved. The downside is the power consumption of the bus and the tri-state buffers. For on-chip
communication, an AND-OR bus depicted in Figure 2.2 or a multiplexed (MUX) bus shown in
Figure 2.3 is preferred, because of the reduced power requirements.

Master 1 Slave 1

Slave I/FMaster I/F

BUFFER BUFFER

Control

Bus

Control

Master 2 Slave 2

Slave I/FMaster I/F

BUFFER BUFFER

ControlControl

Figure 2.1: Shared Bus Interconnect. Source: [PD08]

Master 1 Slave 1

Slave I/FMaster I/F

Master 2 Slave 2

Slave I/FMaster I/F

AND AND AND AND

OR

Control Control Control Control

Figure 2.2: AND-OR Interconnect. Source: [PD08]
M

U
X

M
U

X

M
as

te
r

1

M
as

te
r

I/F

S
la

ve
 1

S
la

ve
 I/

F

M
as

te
r

2

M
as

te
r

I/F

S
la

ve
 2

S
la

ve
 I/

F

Control

Control

Figure 2.3: MUX Interconnect. Source: [PD08]

Beside masters and slaves, there is an arbiter and a decoder involved in the communication. The
arbiter is responsible for scheduling the access of multiple masters to the bus, while the decoder
selects the designated slave of a transfer. These selects have dedicated signals for every member
of a bus. In MUX and AND-OR buses the decoder and the arbiter also control the multiplexers
or the AND-Gates. The decoder and the arbiter can be centralized but also distributed, directly
at each master or slave. For example CAN bus (Controller Area Network) has its arbitration
protocol, which implements a priority access scheme.

2.1.3 Data Transfer Modes

There are many modes of transfer to increase the performance of system communication. The goal
is to eliminate idle states of the interconnect to maximize the throughput. Therefore arbitration
of masters is a key factor and many modes of transfers are implemented in today’s interconnects.

Pipelined Transfer

One of these modes is the pipelined transfer. In its basic form, a transfer can be divided into
phases, an arbitration phase, an address phase and a data phase. In the arbitration phase, a
master, which requests access to the bus, will be granted by the bus arbiter. This grant can be
seen in Figure 2.4 between T3 and T4. Once the access is granted the master will provide all
the necessary information in the address phase between T4 and T5 like address, if it is a read or

8

Overview on System Communications

write data transfer, and other information depending on the implementation. After that, the data
phase between T5 and T6 delivers the actual data and responses, while the address phase for the
next transfer has started in parallel. Possibilities here are the address phase of the next transfer
of the same master or a new transfer of another master. During the address phase arbitration
can be given to the next master in line. In a non-pipelined interconnect a transfer has to be
finished before the next master is granted access to the bus and the transfer has to start from
the arbitration phase.

HCLK

HGRANTx

HADDR[31:0]

HWDATA[31:0]

HBUSREQx

HMASTER[3:0] #1

T1 T2 T3 T4 T5 T6

A A + 4

Data (A)

Figure 2.4: Pipelined transfer in AMBA AHB interconnects. Source: [ARM99]

Burst Mode

It is important to reduce the time for data fetches to reduce idling times of masters, especially
when a big amount of data is accessed. In this mode the master does not request arbitration for
every single transfer, but requests arbitration once and keeps the bus access grant until a burst
is over.

Split Mode

It is possible that a slave can’t serve a request immediately and the master has to hold until
the slave is ready. This request will block any other masters from performing their requests and
decreases performance. A split transfer mode can be introduced, which will be issued by the slave
to eliminate this bottleneck. The split indicates the arbiter of the bus to release the master and
give access to another master until the slave indicates the arbiter to re-engage the held master.

Out-of-Order

The split transfer mode increases the overall performance of the bus but still leaves room for
improvement. While a master is split from the bus, it idles and can’t perform any further
operation until the transfer is resumed. Out-of-Order access can further improve performance
in such cases. It would allow a split master to access other slaves until the first transfer can be
continued. Unlike the split transfer, this technique would require the master to support such
Out-of-Order execution capabilities to be able to guarantee data consistency.

9

Overview on System Communications

2.2 On-Chip Communication Standards

In times of decreasing Time-to-Market for semiconductor products, it has become essential to
buy IPs and customize a product according to individual requirements. The actual degree of
freedom for customizability is provided by open interconnect standards. Most of the state-of-the-
art interconnect standards were developed by vendors of processors. These interconnects were
publicly available so vendors of specialized subsystems would adapt them to make the subsystem
compatible with the processor. An increasing amount of supported subsystems strengthens the
processor on the market. This section will discuss the most common open interconnect standards.

2.2.1 AMBA

The Advanced Microcontroller Bus Architecture was one of the first open interconnect standards
provided by the Advanced RISC Machine (ARM) Limited. Its second revision of the standard
became quite popular when it was released in 1999 and is still being used today. It comprises
of the Advanced High-Performance Bus (AHB) for increased performance and the Advanced
Peripheral Bus (APB) with low-power focus. The standard is a MUX bus and has introduced
a pipelined bus with burst and split capabilities. It supports a 32-bit address width and a data
width of 8 bit up to 1024 bit1. A schema of AHB is depicted in Figure 2.5 and consists of an
arbiter and a decoder for controlling the communication between masters and slaves.

Figure 2.5: AHB interconnect schema. Source: [ARM99]

The arbiter has to guarantee that the multiplexer from the master to the slave is correctly set in
the arbitration phase, so the master can provide the necessary information for the transfer during
the address phase. The decoder uses the information provided by the master in the address phase
to set up the multiplexer for returning data from the slave to the master in the data phase. For

1it is recommended to keep it between 32 bit and 256 bit

10

Overview on System Communications

better visualization take a look at Figure 2.4. Because of the pipelined architecture, a single
cycle bus handover to other masters can be provided. APB is an extension of AHB with reduced
complexity for easy interfacing with the interconnect. A bridge is necessary to connect the APB
slaves to the AHB as shown in Figure 2.6. The bridge will deal with the more complex AHB
protocol and provides the transfer data on a simpler interface to the APB slaves. Besides this
standard topology with one active master and one active slave on the same AHB bus, there is
also a matrix topology, which allows multiple masters to access different slaves at the same time.
Figure 2.7 shows a partial matrix topology. A full matrix topology would only have slaves on the
right side and all units would be connected directly to the matrix, instead of sharing connections
to the matrix. Each matrix port for masters would have an input stage with a decoder for
selecting the slave and each matrix port for slaves would have an output stage with an arbiter
for selecting the master. This setup increases the performance of the whole interconnect due to
concurrently access for multiple masters.

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
External Memory

Interface

AHB or ASB APB

PIO

UART

Keypad

DMA bus
master

Figure 2.6: AMBA Interconnect Hierarchy. Source: [ARM99]

Master #1 Slave #1

Slave #2

Slave #4

Slave #5

Slave #6
Slave #3

Master #2

Matrix

Figure 2.7: Partial Matrix AHB interconnect schema.

Revision 3 of the AMBA standard brought a new interconnect called the Advanced eXtensible
Interface (AXI) with improved architecture and functionality. One improvement is the imple-
mentation of a channel based communication. Five channels are defined, a read address channel,
a read data channel, a write address channel, a write data channel and a write response channel.
Each channel possesses individual handshakes. The read and write channels can operate concur-

11

Overview on System Communications

rent and each of them supports out-of-order execution. Therefore each transfer is assigned an
ID. Among transfers with the same ID the order has to be kept, but the order of different IDs
can be changed to improve bus utilization. For burst modes, only the start address has to be
provided and the slave will calculate the increment. In AHB this was not the case and the address
has to be provided for each increment. This improvement means the bandwidth requirements
for the address channels is lower than for the data channels for AXI burst transfers. Also, AHB
supported only incremental and wrapping bursts while AXI supports fixed bursts for accessing
FIFOs (First In - First Out) of memory mapped I/Os. This burst will continuously access the
same address. AXI also supports the matrix topology as AHB does for improved performance.

2.2.2 IBM CoreConnect

The IBM CoreConnect was developed at the same time as the AMBA standard, but it was
not open until 1999. It was used as the interconnect standard for IBMs PowerPC architecture.
The CoreConnect standard comprises of 3 buses. The Processor Local Bus (PLB) for high
performance, the On-Chip Peripheral Bus (OPB) for large number and low-bandwidth peripherals
and the Device Control Register (DCR) bus for low-bandwidth access to registers. These buses
are specified to be AND-OR interconnects, where each unit interfaced to the bus controls its own
enable signal for the AND gate or have to guarantee that their output is set low while they are
inactive. PLB was the direct contender to ARM AHB and supported a data width up to 256
bit, burst mode, split transactions, separate read and write bus as well as pipelining. Also, it is
possible to assign priorities (4 groups) to masters to implement a variety of arbitration schemes.
One major downside of PLB is the number of members on the bus, directly influences bus clock
because of increased wire load. Therefore it is required to reduce the number of members on PLB
and offload slaves to OPB. DCR is being used for configuration purposes of slaves even when the
PLB is overloaded. Figure 2.8 shows a configuration example of CoreConnect. DCR is arranged
in a Daisy Chain there, but can also be arranged as a point-to-point connection if required.

External Bus Interface Unit

DRAM
Controller

I/O
Controller

Data
Bus

DRAMAddress SRAM, ROM, I/O
Bus Controls Controls

Processor Local Bus

O
n-

C
hi

p
P

er
ip

he
ra

l
B

us

OPB

P
LB OPB

Parallel

Serial

OPB
Master

Slave

Port

Port

OPB
Bridge

DMA
Controller

PLB
Master

DCR Bus

D
C

R
 B

us

D
C

R
 B

us

DCR Bus

DCR Bus

D
C

R
 B

us

Arbiter

A
rb

ite
r

Processor Core

Data Instruction
Cache UnitCache Unit

Figure 2.8: IBM CoreConnect Architecture. Source: [IBM]

12

Overview on System Communications

One major benefit of CoreConnect is, that OPB is capable of handling multiple masters and
therefore can connect to various PLB with a PLB-to-OPB bridge. Another option would be to
implement a bridge for direct access to the OPB domain and a Direct Memory Access controller
between the same PLB and OPB.

2.2.3 Wishbone

Wishbone is a bus specification devised by Silicore Corporation and is now maintained by the
OpenCores community. It is freely available and has been placed into the public domain with
the intent to make the intellectual property free. The Wishbone interface has a simple design to
make it viable for small embedded systems, but it also has the capability to be used for high-
performance systems too. The bus has a synchronous design, but also needs combinatory logic
for maximum performance. The bus supports 8-bit to 64-bit data width and burst transfer with a
pipeline architecture. Wishbone defines a single bus, which can be instanced many times within a
design to meet different performance and power requirements for each instance. The specification
also leaves room for various topologies like shared bus, crossbar or pipeline depicted in Figure
2.9.

I P C O R E ' A '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

I P C O R E ' B '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

I P C O R E ' C '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

D I R E C T I O N O F D A T A F L O W

Figure 2.9: Wishbone Pipeline topology. Source: [Ope]

To accomplish a shared bus or crossbar topology, the arbiter has to pretend to the master it is
the slave and stall transmissions until the bus is free. This is necessary because there are no
arbitration signals defined. The bus is designed as a point-to-point protocol as depicted in Figure
2.10. Address decoding needs to be implemented locally in the slaves.

The Wishbone specification defined a tagging mechanism to add user specific signals to the
interconnect. Each attached tag has to be associated with one of eight tag types which correspond
to the eight basic Wishbone signals. It is required to document added tags in the Wishbone
datasheet of each device manual delivered with the IP.

2.2.4 Open Core Protocol

The Open Core Protocol (OCP) is socket-based interconnect standard. It defines neither an
architecture nor any components and only defines the interface between devices and the intercon-
nect. OCP is also designed as a point-to-point protocol and allows many topologies. The OCP
interface can be used as a wrapper for other buses as the ones previously mentioned. This ca-
pability makes it possible to use IPs and interconnects which are incompatible, by implementing

13

Overview on System Communications

C L K _ I
A D R _ O ()
D A T _ I ()

D A T _ O ()
W E _ O

S E L _ O ()
S T B _ O
A C K _ I

C L K _ I
A D R _ I ()
D A T _ I ()

D A T _ O ()
W E _ I
S E L _ I ()
S T B _ I
A C K _ O

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

C Y C _ O C Y C _ I
T A G N _ O T A G N _ I

R S T _ I R S T _ I

T A G N _ I T A G N _ O
U S E R

D E F I N E D

S Y S C O N

Figure 2.10: Wishbone standard connection and signals. Source: [Ope]

an OCP wrapper with a converter logic around the IPs and interconnects. OCP defines three
categories of signals for data flow, sideband and test signals. Only a subset of dataflow signals has
to be implemented to support a basic OCP interface while the others are for enhanced features
like JTAG support in test signals or metadata in sideband signals. OCP also has profiles for its
interfaces to meet different requirements for individual devices attached to the interconnect. The
main profiles are Bridging profiles for components designed for other interconnects and Native
OCP profiles for components designed for OCP. Each of these has subsets of profiles for single
transfers, burst transfers and more.

2.3 Off-Chip Communication Standards

While more and more controllers and accelerators are being integrated into a SoC, there are
still components outside the SoC which need to be interfaced. The best example is the RAM
(Random Access Memory) with its DDR-Interface (Double Data Rate). While the controller for
the interface is already integrated into most SoCs, RAMs will still be placed outside of SoC for a
while due to their area costs. Because the primary constraint for off-chip communication is the pin
count, which influences the packaging cost of a device, the preferred bus type is a bi-directional
tri-state communication bus for parallel communication. To reduce the pin count further, it is
possible to implement a uni-directional serial communication standards like PCI Express (PCIe).
PCIe uses a tree topology with multiple lanes to communicate with the attached devices. Each
lane consists of 2 pairs of differential RX and TX wires. All data is exchanged as packets, even
interrupts in so-called Message Signaled Interrupts (MSI). Each packet contains a header with
the destination address, so switches in the nodes of the tree can route the packets. The Central
Processing Unit (CPU) accesses the PCIe endpoints over the address space of the Root Complex,
which is the root of the tree topology. The Root Complex translates the address into the PCIe
address and sends the packetized request to the PCIe endpoint assigned to the accessed address.
PCIe drivers are required to set up the Root Complex, but are not needed for accessing the PCIe
endpoints. Beside PCIe, which is used for high-performance communication, there are several well
known low-bandwidth communication standards like I2C (or IIC for Inter-Integrated Circuit)or
SPI (Serial Peripheral Interface). It is not uncommon to connect components in smartphones

14

Overview on System Communications

via these protocols, and occasionally even UART (Universal Asynchronous Receiver Transmitter)
is being used to utilize all the available resources efficiently, to reduce complexity and Printed
Circuit Board (PCB) footprint.

15

3 Background Topics

Interconnects are the backbone of every SoC implementation. There are many different inter-
connect types. In this section the AMBA AHB (Advanced High-performance Bus) and Network-
on-Chip (NoC) will be discussed to give a brief introduction to understand how to exploit the
specification of those different interconnects to implement a bridging/tunneling concept. There
will be an introduction to AMBA APB (Advanced Peripheral Bus) as well because it is used to
connect low-bandwidth I/O to the system. At the end of this chapter, some extensions of the
AHB specification in the GRLIB library of Cobham Gaisler will be discussed as well as a short
introduction into system virtualization.

3.1 Network-on-Chip

There are several Network-on-Chip implementations for different applications. Many quality and
performance considerations have to be investigated before designing a new or using an existing
NoC design methodology. As previously explained the goal of a NoC is to reduce the cost of
design and implementation of a global die interconnect. Therefore the interconnect is segmented
into parts which are connected by switches. That means that sending data from one cluster to
another can take several clock cycles on the interconnect. Because each of the segment is shorter
in length than traditional buses, the capacitive and inductive load is smaller and each of them
can be clocked faster. This switching approach also enables a whole new dimension of topologies
with multiple routes from point to point for interconnects. These topologies can be categorized
according to [PD08] into three groups:

• Regular Networks: network with symmetric topology

– Direct Networks: each router has network entry/exit port for subsystems
(see Figure 3.1)

– Indirect Networks: not all router have network entry/exit ports
(see Figure 3.2)

• Irregular Networks: application specific networks with asymmetric topology
(see Figure 3.3)

16

Background Topics

Cluster Cluster Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

Figure 3.1: 2D-Mesh topology (direct)

Cluster Cluster

Cluster

Cluster Cluster

Cluster Cluster Cluster

R

Figure 3.2: Fat-Tree topology (indirect)

Cluster ClusterCluster

Cluster Cluster

Cluster

Cluster

Figure 3.3: Irregular topology

Direct and indirect networks are subcategories of regular networks, which is beside irregular
networks, the main category. Figure 3.1 and Figure 3.2 are examples of a 2D-mesh network,
which is a regular one, and a fat-tree, which is an irregular one. The 2-D mesh topology is
very popular because of easy hardware implementation. But it is prone to traffic accummulation
in the center and that needs to be considered in the implemented routing algorithm. Before
implementing a routing algorithm, it is important to determine the switching type of the network.
There is the choice between circuit switched and packet switched networks. Packets consists of
multiple Flits (Flow control digits) which can be divided into header, body and tail flit. There
is only one header flit to indicate the beginning of a packet, multiple body flits for the actual
payload and a tail flit to indicate the end of a packet. Circuit Switching establishes a logical
connection between source and destination before sending any data. A header-flit is being sent to
the destination and reserves any link (router to router) it traverses through. In case the header
meets a link which is already reserved on the way, then the source will receive a NACK from that
corresponding switch. If the header is acknowledged by the destination, the physical link is set
up and body-flits of a message can be transmitted. After complete transmission, a tail-flit will be
sent to tear down the connection. The benefit of circuit switching is the guaranteed bandwidth
for an established link. The downside of this technique is the possibility of underutilized links.
For Packet Switching the sent message is split into multiple packets, each with a head-, couple

17

Background Topics

of body- and a tail-flit like in Figure 3.4. Each of these packets has to go independently through
the network and can share the same link with other packets from other sources. The Quality of
Service (QoS) is harder to guarantee with this technique, but it enables to utilize 100% of a link
if necessary. A NoC network has three schemes for packet switching, Store and Foward (SAF),
Virtual Cut Through (VCT) and Wormhole (WH) switching. In SAF a router accepts only new
packets if there is enough buffer space for the entire packet. A packet on the way will always be
stored in one router. This process causes latency in the network because the packet is only passed
to the next router when (a) in the next router, buffer is available for a whole packet and (b) the
whole packet has been received by the transmitting router. VCT tries to reduce that latency by
immediately transmitting incoming flits to the next router, if the next router has buffer space for
an entire packet. Both SAF and VCT have big buffer requirements and therefore are costly for
integration into a SoC. WH improves the cost by reducing the buffer requirements to a single flit.
Like VCT the flits are immediately transmitted as soon as the next router has space for a flit.
Therefore a packet can be stored on multiple routers along a path between source and destination
in the network. The downside of this scheme is the increased congestion probability of links in
the network when a path is occupied. If a different source requires a connection on the same path
for its communication, it has to wait until the link is free again.

Type
(2)

Source
(4)

Destinati
on (4)

Message id (8) Flags (8)Reserved (8)

Type
(2)

Payload (32)

Type
(2)

Payload (32)

Type
(2)

CRC (32)

……

Header

Body

Tail

Min: 0 flit
Max: 5 flits

PriACK Drop Reserved (5)

Figure 3.4: Flits aggregated to a NoC packet. Source: Junshi Wang

So far topologies and switching have been covered. But to get a clear structure of the NoC
communication scheme, it is vital to implement a layered approach. Each layer provides a service
for the upper one and all layers together provide the means of communication between entities.
For that purpose, the OSI-Model (Open System Interconnect) is the most popular choice in
literature. The model divides the communication into seven layers and each layer provides a
service to the ones above them. These layers are in ascending order:

1. Physical Layer: Defines the physical requirements for the communication medium

2. Link Layer: Controls the access to communication medium

3. Network Layer: Ensures that packets are routed through the network to the destination

4. Transport Layer: Provides reliability and flow control for communications

5. Session Layer: Sets up and tears down logical connections

18

Background Topics

6. Presentation Layer: Provides context of data. Is responsible for data format conversion

7. Application Layer: Service implementation for users

Layer 7 is the closest to the user of a service. All other layers provide services to the ones
above them to enable the service of the application layer. In many implementations of a layered
communication system, the presentation and session layer is integrated into the application layer,
which leaves in total five layers. For Network-on-Chip the focus will be on the first four layers.
The physical layer concerns itself with the electrical, thermal and other physical constraints given
by the manufacturing process. Also, the possible topology and floorplanning, provided by a design
methodology, is part of the physical layer. The link layer is divided into Medium Access Control
(MAC) and Data Link Control (DLC). MAC for NoC architectures is fairly simple compared to
other standards. Because NoC is on link layer a point-to-point system, a router only has to wait
until the receiver indicates it is free to receive. The switching technique in the network, which
goes hand in hand with routing of packets in a NoC, determines the way the router arbitrates
its ports and accepts new packets/flits. The DLC controls the correct transmission by error
detection and can be implemented point-to-point or endpoint-to-endpoint. Point-to-point would
mean each switch has to perform an error detection which is costly and would increase latency
in the network. The network layer is all about the routing of packets through the network and
implementing the application specific algorithm for that purpose. Figure 3.5 shows important
considerations when implementing a routing algorithm.

Routing Algorithms

Unicast Routing Multicast Routing

Centralized Routing Source Routing Distributed Routing Multiphase Routing

Lookup Table Finite State Machines

Deterministic Routing Adaptive Routing

Progressive Backtracking

Profitable Misrouting

Complete Partial

Number of
Destinations

Routing Decisions

Implementation

Adaptability

Progressiveness

Minimality

Number of Paths

Routing Algorithms

Unicast Routing Multicast Routing

Centralized Routing Source Routing Distributed Routing Multiphase Routing

Lookup Table Finite State Machines

Deterministic Routing Adaptive Routing

Progressive Backtracking

Profitable Misrouting

Complete Partial

Number of
Destinations

Routing Decisions

Implementation

Adaptability

Progressiveness

Minimality

Number of Paths

Figure 3.5: Routing algorithm characterizations. Source: [AIS09]

Transport layer has the responsibility to segment messages into processable sizes and regulate
the flow between subsystems. The application layer for NoC is the task running in a subsystem
to which the NoC is attached to. This layered approach will come useful to determine which
service needs to be provided first to enable certain functionality/service for the whole system,
which utilizes the Network-on-Chip to communicate.

19

Background Topics

3.2 AMBA Rev. 2 Interconnect

The AMBA Revision 2 provides specifications for three bus systems, the ASB (Advanced System
Bus), the AHB (Advanced High-Performance Bus) and the APB (Advanced Peripheral Bus). This
section will give an in-depth look into AHB and a brief look into APB, provided by [ARM99].

3.2.1 AMBA AHB Signals

The GRLIB chose the AHB interconnect standard to interconnect its IPs. As mentioned before,
AHB is a bus with pipelined architecture and therefore has an arbitration, an address and a data
phase. The involved signals will be discussed in this section.

HADDR[31:0]

Signalwidth: 32 bits
Direction: Master to Slave and Decoder
Phase: Address
Function: Important for decoder to select slave by setting HSELx and for slave to select data.

HBURST[2:0]

Signalwidth: 3 bits
Direction: Master to Slave
Phase: Address
Function: At the beginning of a new AHB Transaction this signal indicates the number of

transfers being handled within the transaction. This doesn’t indicate the amount
of data being transfered. To calculate the data volume, HBURST transfer length
has to be multiplied by HSIZE transfer size. The lengths are shown in Table 3.1.

HBURST[2:0] Type Description

b’000’ SINGLE Single transfer

b’001’ INCR Unspecified transfer-length

b’010’ WRAP4 4 beat transaction with address wrapping

b’011’ INCR4 4 beat transaction

b’100’ WRAP8 8 beat transaction with address wrapping

b’101’ INCR8 8 beat transaction

b’110’ WRAP16 16 beat transaction with address wrapping

b’111’ INCR16 16 beat transaction

Table 3.1: HBURST signals

HBUSREQx

Signalwidth: 1 bit (for each master)
Direction: Master to Arbiter
Phase: -
Function: Master x requests bus by setting signal to high

20

Background Topics

HCLK

Signalwidth: 1 bit
Direction: -
Phase: -
Function: Bus Clock Signal

HGRANTx

Signalwidth: 1 bit (for each master)
Direction: Arbiter to Master
Phase: Arbitration
Function: Arbiter grants Bus to Master x by setting signal to high

HLOCKx

Signalwidth: 1 bit (for each master)
Direction: Master to Arbiter
Phase: -
Function: Master x requests locked access to bus by setting signal to high. The transaction is

locked until the master ends it

HMASTER[3:0]

Signalwidth: 4 bit
Direction: Arbiter to Slave
Phase: -
Function: Indicates Master ID to Slave and is bus internally used for multiplexing masters. For

the slave it is important for continuing RETRY and SPLIT transactions explained
under HRESP.

HMASTLOCK

Signalwidth: 1 bit
Direction: Arbiter to Slave
Phase: Address
Function: Indicates to slave that the running transaction is a locked access by setting signal

to high

HPROT[3:0]

Signalwidth: 4 bits
Direction: Master to Slave
Phase: Address
Function: Master can use these signals to send metadata to the slave for the current transac-

tion. These metadata can be access mode, data type and more as shown in Table
3.2.

21

Background Topics

HPROT[3] HPROT[2] HPROT[1] HPROT[0]

Low (0) Not cacheable Not bufferable User access Opcode fetch

High (1) cacheable bufferable Priviledge access Data fetch

Table 3.2: HPROT signals

HRDATA[31:0]

Signalwidth: 32 bits
Direction: Slave to Master
Phase: Data
Function: Sends reading data from Slave to Master. HRDATA, like HWDATA is segmented

into 4 lanes with 8 bit width. Each of these lanes represent a single increment of an
address as shown in Table 3.5. Which means AHB is able to be used by IPs that
have different data width than a 32 bit e.g. UART has 8bit.

HREADY

Signalwidth: 1 bit
Direction: Slave to Master
Phase: Data
Function: Slave indicates Master to pause transaction and hold bus by pulling signal to low

until signal is high again.

HRESET

Signalwidth: 1 bit
Direction: -
Phase: -
Function: Low-active reset signal

HRESP[1:0]

Signalwidth: 2 bits
Direction: Slave to Master
Phase: Data
Function: Slave responds to master indicating the acceptance of a transfer or other status as

summarized in Table 3.3. Except for OKAY the indication of the other responses
requires a two cycle response procedure starting in the data phase of a transac-
tion. In the first cycle when setting up the response ERROR, RETRY and SPLIT
HREADY has to be pulled to low, to signal the master to pause the transfer. This
action prevents the master to finish the ongoing transfer when HREADY reaches
the master and to continue to the next transfer. Instead, the master has to resolve
the response procedure by idling the bus with IDLE HTRANS-signal. At the same
time, the slave pulls HREADY to high while still maintaining HRESP. Mind that
even if slave and master are setting signals on the bus for example at T2 in Figure
3.6, the signals will only be registered at the edge of T3 by the opposite side which
means that a reaction to an action takes two cycles to return. Therefore 2-phase
response procedure is necessary to flush the bus pipeline.

22

Background Topics

HRESP[1:0] Type Description

b’00’ OKAY Transfer accepted / Slave ready

b’01’ ERROR Transfer rejected

b’10’ RETRY Slave interrupts transfer. Only higher priority master can use bus anymore

b’11’ SPLIT Slave interrupts transfer. Any other Master can use bus

Table 3.3: HRESP signals

T1 T2 T3 T4 T5

HCLK

HTRANS[1:0]

HWDATA[31:0]

HREADY

NONSEQ

Data
(A)

HRESP[1:0] RETRY RETRY OKAY

SEQ IDLE NONSEQ

HADDR[31:0] A A + 4 A

Figure 3.6: AHB 2 cycle response procedure. Source: [ARM99]

HSELx

Signalwidth: 1 bit (for each Slave)
Direction: Decoder to Slave x
Phase: Address
Function: Decoder selects slaves corresponding to HADDR by setting the signal to high. De-

coder has to decode address before next rising edge so slave can accept Address
Phase signals.

HSIZE[2:0]

Signalwidth: 3 bits
Direction: Master to Slave
Phase: Address
Function: Indicates the size of the transmitted data. In combination with HADDR it is needed

to determine on which HWDATA or HRDATA lanes the data is transmitted. If
HADDR doesn’t align with HSIZE as shown in Table 3.5, the slave has to respond
with an error. Also HSIZE can’t be higher than the databus. This means not all
HSIZE signals are always needed. HSIZE supports eight sizes starting with 8 bits
(b’000’) to 1024 bits (b’111’) with power of 2 steps in between.

23

Background Topics

HSPLIT[15:0]

Signalwidth: 16 bits
Direction: Slave to Arbiter
Phase: -
Function: Slave indicates Arbiter after RETRY or SPLIT of one or several masters which can

be granted access again. HSPLIT[x] corresponding with HMASTER[3:0] is set high.
Once Master reengages transaction, HSPLIT[x] should be reset immediately by the
slave.

HTRANS[1:0]

Signalwidth: 2 bits
Direction: Master to Slave
Phase: Address
Function: Defines Burst-Sequence state of a transfer as listed in Table 3.4.

HTRANS[1:0] Type Description

b’00’ IDLE No transfer

b’01’ BUSY Transfer pause

b’10’ NONSEQ New Sequence

b’11’ SEQ Continuation of Sequence

Table 3.4: HTRANS signals

HWDATA[31:0]

Signalwidth: 32 bits
Direction: Master to Slave
Phase: Data
Function: Sends write data from Master to Slave. HWDATA, like HRDATA is segmented

into 4 lanes with 8 bit width. Each of these lanes represent a single increment of an
address as shown in Table 3.5. Which means AHB is able to be used by IPs that
have different data width than 32 bit e.g. UART has 8 bit.

HSIZE HADDR[7:0] DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

BYTE 0x00 x

BYTE 0x01 x

BYTE 0x02 x

BYTE 0x03 x

HALFWORD 0x00 x x

HALFWORD 0x02 x x

WORD 0x00 x x x x

Table 3.5: HWDATA or HRDATA lane selection depending on HSIZE and HADDR

24

Background Topics

HWRITE

Signalwidth: 1 bit
Direction: Master to Slave
Phase: Address
Function: Master sends a high signal if transfer is for writing or a low if it is for reading data.

Depending on it HWDATA or HRDATA is used.

3.2.2 AMBA APB Signals

The Advanced Peripheral Bus (APB) is part of the AMBA Bus hierarchy. It is used to connect
low performance I/O Units to the high-performance system bus. The design emphasis is on
power efficiency and reduced interface complexity for low-bandwidth slaves. Slaves are attached
to an AHB-2-APB Bridge as depicted in Figure 2.6, which handles AHB handshakes. Signals
like HADDR and HWRITE are latched through the bridge to the slaves. As shown in Table 3.6,
the amount of signals involved in APB is far less than in AHB. More details about APB can be
found in the specification [ARM99].

Name Source Description

PCLK - APB Clock

PRESET - APB low-active Reset

PADDR[31:0] Bridge APB address bus

PSELx Bridge For selecting Slave x

PENABLE Bridge Strobe to signal data phase of APB access

PWRITE Bridge Indicates Data direction. High is write, low is read

PRDATA[31:0] Slave Reading Data. Active when PWRITE is low

PWDATA[31:0] Bridge Writing Data. Active when PWRITE is high

Table 3.6: APB signals

3.3 Gaisler GRLIB

The most important question at beginning of a SoC-Design is, which processing unit to choose.
To be able to design a prototype without a foundry, it is necessary that the processing unit is
available as a softcore. This makes it possible to test a design in a FPGA. One popular choice
for a softcore is the LEON family provided by Cobham Gaisler. The LEON processor is based
on a SPARC architecture and is currently in its 4th iteration with the LEON4. Gaisler made
its LEON3 processor available in their GRLIB library, which is under the LGPL open source
license and gained quite a popularity among hobbyists and in academia. Beside the LEON3
processor, the library provides an AHB Controller IP, which is necessary to interconnect the
processor with other IPs provided in the GRLIB. Gailser implemented their AHB bus inter-
face extending beyond the AMBA AHB specifiction to provide also Plug&Play, scan test and
interrupt support for attached IPs. Listing 3.1 and Listing 3.2 show the AHB Slave interface
definition, which has the extra signals added at the bottom to support the extra functionalities.

25

Background Topics

-- AHB slave inputs

type ahb_slv_in_type is record

hsel : std_logic_vector (0 to NAHBSLV -1);

haddr : std_logic_vector (31 downto 0);

hwrite : std_ulogic;

htrans : std_logic_vector (1 downto 0);

hsize : std_logic_vector (2 downto 0);

hburst : std_logic_vector (2 downto 0);

hwdata : std_logic_vector(AHBDW -1 downto 0);

hprot : std_logic_vector (3 downto 0);

hready : std_ulogic;

hmaster : std_logic_vector (3 downto 0);

hmastlock : std_ulogic;

hmbsel : std_logic_vector (0 to NAHBAMR -1);

hirq : std_logic_vector(NAHBIRQ -1 downto 0);

testen : std_ulogic;

testrst : std_ulogic;

scanen : std_ulogic;

testoen : std_ulogic;

testin : std_logic_vector(NTESTINBITS -1 downto 0);

end record;

Listing 3.1: Gaisler AHB Slave input interface definition

-- AHB slave outputs

type ahb_slv_out_type is record

hready : std_ulogic;

hresp : std_logic_vector (1 downto 0);

hrdata : std_logic_vector(AHBDW -1 downto 0);

hsplit : std_logic_vector(NAHBMST -1 downto 0);

--

hirq : std_logic_vector(NAHBIRQ -1 downto 0);

hconfig : ahb_config_type;

hindex : integer range 0 to NAHBSLV -1;

end record;

Listing 3.2: Gaisler AHB Slave output interface definition

In the definition of ahb slv in type there are 5 signals for scan test. The signal hirq is for
encapsulating the interrupt request signals within the bus. hmbsel is for selecting a memory bank
within the slave and consists of 4 signals, one for each memory bank. The Gaisler AHB Plug&Play
functionality provides support for four banks per slave. This memory bank information is passed
by the slave to the AHBCTRL[Cob16] IP (the bus controller) via the hconfig registers defined
in the ahb slave out type interface. The arrangement of the register is depicted in Figure 3.7
and shows eight 32 bit registers. The first is used for identifying the slave and the last four for
its address range. There are three types of memory banks supported

26

Background Topics

• APB I/O Space

• AHB Memory Space

• AHB I/O Space

Information in the last four registers is interpreted differently for AHB and APB Space. The
difference between AHB Memory and I/O Space is the support of cacheability and prefetchability
for memory space and is indicated by their respective bits. In Figure 3.7, it is shown that the
Memory Bank registers have each a 12-bit field for ADDR and MASK. These fields define the
address space of the individual memory banks of a slave. The difference between APB and AHB
is, that these 12 bits correspond to the first 12 bits of HADDR[31:20] for AHB, while for APB
they correspond with HADDR[19:8] as APB Slaves need an AHB-2-APB Bridge before them to
handle the AHB handshakes. So the first 12 bits of the APB Slave address selects the bridge,
while the APB Slave itself will be selected by the second 12 bits.

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identif cation Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable
TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space

Figure 3.7: Gaisler AHB Plug&Play information register. Source: [Cob16]

Gaisler GRMON debugger & Sparc-elf compiler

Gaisler provides a compiler and a debugger for their LEON Processors. These tools make it
possible to write some programs and load them into the softcore and run them. The GRMON
debugger comes in handy for monitoring the AHB-Bus.

3.4 Virtualization

Virtualization is a big topic in server applications nowadays, but was not considered for embedded
applications for a long time. Recently the interest of virtualized embedded system is growing

27

Background Topics

Page Table

Processing Unit

Memory Management Unit

ROM/RAM/IO

IO Address SpaceMemory Address Space

UnusedIO Address Space Memory Address Space

Virtual Address Space

Physical Address Space

0x00 0x7F

0xFF0x00

Process

Operating System

Hardware

Abstraction

Processor

Figure 3.8: Virtual to Physical Memory translation

because it enables advanced security and safety features [AH10]. Virtualization is an important
topic regarding a Cyberphysical SoC. As mentioned before, adjusting frequency and voltage of
a processor-cluster may require the relocation of applications to another processor-cluster in a
homogeneous multi-processor system. Virtualization was developed in the early computer days to
increase the efficiency of mainframes by enabling parallel execution of applications to circumvent
underutilization. This paradigm made it possible for users to share unused resources efficiently
with each other. While processes were waiting for data from e.g. a tape, usually with access
times in the range of seconds, the idle processor was given to another process, which could do
other computations. This procedure developed to temporal separation which granted each process
resources for a portion of the time. After this period exceeded a timer interrupt occurred and
the control was yielded to a control-process called kernel. The kernel has the duty of scheduling
and allocating resources for processes.

While a process is in control of a processor, it has full access to it, which posed a security risk. It
was able to access the entire memory space and manipulate data from other processes. A solution
to that problem, is to isolate each process with limited privileges in a so called User Mode with
restricted access to memory and other resources, while the kernel is running in a Privileged
Mode, which can grant controlled access to required resources or memory to processes. This
spatial isolation is enforced by a hardware unit called the Memory Management Unit (MMU). It
enables memory protection, but also a dynamic allocation of memory to a process. Any time a
process tries to access data in the memory, the MMU checks in a table if the access is permitted
and translates the access to the location where the data is stored as depitced in Figure 3.8. The
process, therefore, is operating in a so-called virtual memory space, while every access to the
physical memory space is translated by the MMU. This technique makes it possible for the kernel
to accommodate data and opcodes of a process where there is space in memory.

There are two approaches to enable dynamic memory allocation. One is Segmenting and the
other one is Paging. Segmenting allocates memory for a process as a contiguous section. Because
processes have a different amount of opcodes and data, this leads to external fragmentation. This
fragmentation is caused by unallocated memory, which doesn’t have enough space to accommo-
date an entire process. This lost memory can be recovered by rearranging the memory by the

28

Background Topics

kernel, but that would pose lost processing time. In Paging, the memory is divided into equal
sized pages. If a process requires memory, then it is only granted in amounts of a minimum of
a page size, even if it doesn’t need as much. This leads to internal fragmentation, which can’t
be recovered by the operating system. The benefit of paging, is the easy handling of their tables
and allocation in memory. For more details [Sta09] is recommended.

Hardware

Virtual Machine Monitor

OS1 OS2 OS3

Hardware

Appl1

OS

Appl3Appl2

Appl1 Appl3Appl2

User Mode

Priviledged Mode

Figure 3.9: Secure computing by virtualized environments.

Modern servers use the same principle to accommodate whole operating systems of different users
at the same time. It is also used as a security feature by isolating defective machines, for example
due to memory leaks. Because this faulty machine is only granted a limited amount of resources,
it won’t affect other machines, which host other applications. If applications shared the same
machine, the memory leak of one application would affect the other too. [SN05] gives a good
overview of this topic and lists applications for system virtualization like

• Multiple Secure Environments: protects multiple systems from each other

• Managed Application Environments: provides customized environment for a specific appli-
cation.

• Mixed OS environment

• System encapsulation: enable to suspend complete machines and store or move them

• Operating system instrumentation: monitoring entire operating systems

and much more. Especially the possibility for secure environments and mixed os environments are
interesting in SoC applications and are actively explored in mixed critical systems for Integrated
Modular Avionics (IMA). [MIM+13][MPHH15][MPH15] present an approach to reduce I/O Vir-
tualization overhead utilizing commercial off-the-shelf components (COTS) like PCIe controller
using an I/O Memory Management Unit for isolating DMA (Direct Memory Access) transfers
from Ethernet or USB to a respective virtual machine. A hardware-based I/O virtualization ap-
proach is preferable, because an application can almost utilize 100% of the performance compared
to software-based methods due to overheads, which cost in the order of 20% of the performance
according to [MIM+13]. Usually, virtualized environments don’t have direct access to hardware.
Even the processor can only be obtained in User Mode instead of Privileged Mode. An entity

29

Background Topics

called the Virtual Machine Manager (VMM) or Hypervisor controls the hardware (Memory, I/O)
as shown in Figure 3.9 and emulates the hardware via software to the virtualized machines. This
emulation causes overhead and prevents 100% resource utilization. Hardware-based approaches
grant protected access to memory by using Memory Management Unit in the processor (MMU)
and shadow page tables [SN05] handled by the hypervisor instead of normal page tables managed
by the operating system. An I/O Memory Management Unit (IOMMU) in Peripheral Controller
like PCIe Root Complex would translate all DMA access of I/Os to the dedicated memory space
of a virtual machine utilizing the shadow page table. This hardware support for virtualization is
becoming more crucial to maintain system performance, while providing features as listed above.

30

4 Virtualization Solution

In previous chapters, the term Virtualization was discussed. In this chapter, there will be a step
by step approach to enabling virtualization of a System-on-Chip. The first section will handle
the sharing of information between SoC-Clusters. The second section discusses the necessity of
restricting access to resources over Network-on-Chip to prevent memory inconsistency. The third
section in this chapter will summarize the previous ones and introduces a feature, which enables
the configuration of the proposed design. Subsequently a protocol will be introduced to support
all the presented features.

4.1 Network-on-Chip Abstraction

Network-on-Chip has many benefits as previously mentioned for connecting distributed subsys-
tems on a System-on-Chip together. In a SoC, subsystems fulfill various tasks for the whole
system. To coordinate the effort, message passing between these systems is necessary. Since
Network-on-Chip only covers transport, network, link and physical layer, the network interface
of a NoC is not able to put the transported data into context. This situation means a NoC
attached to a traditional system bus, which connects modules within a subsystem, doesn’t act
as an extension of that bus, but as a passive endpoint, also called slave. A master, usually a
processing unit, feeds data to and fetches data from the network interface (NI) of the NoC. This
master can give the data context and use the data accordingly. If there are multiple tasks handled
in a subsystem, then there are also different types of data. It is, therefore, necessary to identify
the data which is communicated between subsystems. Therefore it is required to implement a
protocol on the application layer. To exemplify this, the Hypertext Transport Protocol (HTTP)
is a good comparison. HTTP is an application layer protocol to exchange information between
a browser on a computer (Client) and a Server which stores application specific data, in this
case, a website. HTTP is not the only application protocol using the layers underneath it to
communicate over a network. Other examples are the Simple Mail Transfer Protocol (SMTP)
for mailing services or the File Transfer Protocol (FTP) for file exchange and much more. Out
of this comparison, the first step before specifying an application protocol will be to identify the
application itself.

A traditional embedded system consists of at least one processing unit for computation, some
memory to store opcodes and data and some means to communicate to the outside world for
receiving data to process and communicate the result back to the outside world again. These
parts of an embedded system also require a way to communicate with each other. For that

31

Virtualization Solution

purpose, a system bus was needed and many different buses were developed by various companies
as mentioned before. The focus of this work will be specific on the AMBA AHB bus from ARM
because it is used by Gaisler GRLIB to connect all of their IPs (Intellectual Property). Since
the spatial distance between those parts, now on refered to as subsystems, are increasing it is
not viable to connect them with a contiguous system bus. However, there is still the need to
communicate with those subsystems. As mentioned before the Network-on-Chip enables the
communication between subsystems, but their interfaces are slaves and needs to be controlled by
software-based hardware driver or some form of hardware-based system which can put context to
the data communicated. [GWHB11] implements a virtualization methodology utilizing a message
passing library to control computation subsystems over a NoC. This message passing library is
used by applications during runtime to access the NoC with kernel-modules of the operating
system. This way of accessing the NoC requires a processor on both sides of communication to
run an operating system or at least some kind of program to handle NoC transactions and interpret
it. If one end does not have a processor to run a software-based solution, it would then require
a hardware-based implementation which can interpret the incoming data and perform required
actions on the respective side. Putting this in perspective of a LEON3 processor, sending data
to various IPs like memory and I/O controller over a NoC, a hardware controller, further called
transaction controller, has to fetch the incoming data from the NoC network interface and perform
the requested transaction to the addressed IP. For efficiency reason, this transaction controller is
better situated between the NoC network interface and the IPs instead of sharing a system bus
with all of them. The network interface, which is at the time of this work being planned, will
be an AHB slave. Therefore 2 AHB master interfaces are required for the transaction controller.
One towards the network interface and one towards the various IPs. This setup would enable to
interact with an IP, while fetching incoming data from the network interface. The aggregation
of transaction controller and NoC network interface can be seen as a Gateway, which translates
and manages access to the network, visualized by Figure 4.1.

Cluster 3

Cluster 4

LEON3

Sensor

Actuator

Gateway

Cluster 1

Cluster 2

NoC
interface

Control
Unit

Master

Slave

A
H

B

Figure 4.1: Gateway Design - Outgoing arrow for active unit, Incoming arrow for passive unit.

Until now IPs were considered as a passive units, but some IPs can be active themselves. Examples
are I/O controllers like Ethernet or USB. These I/O controllers provide Direct Memory Access
(DMA) for fetching and storing data, independently from a processor, directly from or to the

32

Virtualization Solution

memory. In case that the memory controller is not located on the same system bus as those
I/O controllers, a DMA access would require to be routed over NoC. The Gateway would have
to accept those DMA transactions and forward them to the cluster which locates the memory
controller. Therefore an AHB slave interface is necessary. Arteris, an upcoming player in the NoC
IP market, has also developed a NoC standard which provides sockets for connecting clusters with
bus standards of different vendors [Mar05]. This gives SoC architects a wider range of choices
for selecting IPs. This approach, to tunnel bus transaction through a NoC with a Gateway,
would facilitate the means to design a contiguous SoC architecture that can be natively accessed
from anywhere instead of separated islands, which would require specific access routines. The
local address spaces of an individual cluster can be partitioned to access certain clusters in the
network. For example, a portion of the local address space of a cluster can be used to access local
sensors and actuators, which are necessary for a Cyberphysical System-on-Chip (CPSoC), and
other partitions of the local address space can be used to access IPs directly in remote clusters
of the network. This capability to natively access any resource from anywhere is a benefit which
comes with a cost. The unrestricted access to independent applications to any resource on the
SoC, might lead to incoherent data. This matter leads to the next topic and section.

4.2 Application Isolation

As the Gateway enables native access to resources over Network-on-Chip, it also gives an op-
portunity for uncoordinated access of resources. In a traditional system an operating system
manages the resources and the access to it, but in a SoC, this is not necessarily given. As men-
tioned before SoCs can be minimalistic designed and do not have to have the resources required
for hosting an operating system. Therefore some resource management and memory protection
process are needed to share resources safely without crashing the system. The discussion about
safe computing is also a discussion about secure computing because software misbehavior can
be unintentional, a bug, as it can be intentional, for attack purposes on a system. [GPP+14]
uses a firewall approach for restricting access over NoC based on segmentation-based deny rules.
[KGC12] implements a paging-based memory management approach targeting virtualization for
embedded system. Memory-Management-Units as mentioned in chapter 3.4 are mainly used for
translation of virtual address to physical but can also be used for memory protection. Both solu-
tions implement a table into the NoC interface to check access permission to a given destination.
This same procedure can be applied once the Gateway accepts a transaction from the AHB bus
and translates them into a NoC confirm packet. This packet can be inspected by the accessed
address and granted access to NoC when it confirms with a page table entry. Entries are based
on addresses and can be used to distinguish NoC destination addresses. Also, the AHB address
can be replaced to provide memory management capability and therefore virtualization capacity.

Because there are different ways to implement application isolation, it is necessary to analyze the
requirements. Since the field of research regarding CPSoC is very young, one main requirement
would be a maximum of flexibility to be able to explore as many options as possible in the
future. A CPSoC is a Multiprocessor System-on-Chip with self-awareness and self-adaption.
How these multiple cores are configured and what kind of processors are being used, is yet to be
defined. The GRLIB and its LEON3 is a starting point for exploring implementation options.
One option would be the flexibility to operate each processing cluster independently each with
its own independent statically assigned application or all processing clusters are grouped in a
single logical compound where a pool of applications is dynamically assigned to each processor.

33

Virtualization Solution

To reduce cost and time in designing a CPSoC, it is recommendable to design a single processing
cluster and reuse it. This means, the local address space would be the same on each cluster and
applications can be programmed independently of the processing cluster, on which it will run
later. This hardware/software decoupling is usually provided by virtualization mechanisms. The
programmer can assume every resource can be accessed via the same addresses. Access going
out of a cluster needs to be checked by the Gateway and depending on I/O access or memory
access there are different requirements. Because I/Os can only be used by one application at a
time a temporal isolation is enough. So a rule-based system to permit or deny access is sufficient.
Memory access needs spatial isolation because data of different applications are stored at the
same time. A rule-based system can also be implemented here, but this would violate hardware
software decoupling. The programmer would need to know which part of the memory he can
access. Virtualization by translating address for memory access would decouple hardware and
software again. An application can always access the same address to store or retrieve data, while
the address will be translated in the background. This procedure is provided by an operating
system with the help of a MMU in the processor, but if this operating system itself needs to
be virtualized, it is necessary to implement the second level of virtualization as depicted in the
scheme in Figure 4.2. One benefit of such a virtualization scheme would be to restrict DMA
transfers from I/Os. If a Gateway on the I/O side shares the same page table as a Gateway on
the application side, then this application can be given direct access to this DMA-capable I/Os.
USB host controller, for example, use a table provided by the host controller driver to access data
in the memory. So in the case of a shared page table the USB host controller can access the same
physical address as the application it is assigned to.

Processing Unit

Network-on-Chip +
Address Translation

ROM, RAM, I/O

Memory Management Unit

Internal Interconnect

AHB

AHB

Process

OS

Hypervisor
or

Bootloader

Hardware

LEON3Layers

Figure 4.2: Network-on-Chip as 2nd Level Virtualization.

34

Virtualization Solution

Virtualization can be dynamically managed during runtime by a hypervisor (Virtual Machine
Monitor), but can be also statically setup by the bootloader before starting any applications. At
startup of the SoC, an elected processor can run the bootloader which initializes all the global
hardware and sets up filesystems or applications in the memory. After that, the Gateway of each
cluster can be configured to access only to their respective filesystem or application. Extensive
virtualization capabilities like dealing with table walks, a miss in the local translation-look-aside-
buffer (TLB), are complicated to implement and also require an extra amount of area in every
network interface. Because the main purpose would be memory protection without the need
for dynamic memory allocation for the beginning, a compromise would be preferable. The first
option to choose, is to implement a segment table or a page table. Segment tables allow flexibility
and efficiency. Segments can be placed in the address space wherever and only as many as they
are required. The range of the segments can be set on demand while page tables can only be set
according to their page size and the corresponding border address. For example, pages have a
size of 4kB then page locations can only be chosen by the upper 20 bits of a 32-bit address space.
Page sizes have to be set once and can’t be changed afterwards. If a page table is configured
to 4kB page size, then a whole page will be wasted for an I/O which only requires maybe ten
addresses for its hardware control. At the same time to support an operating system, requiring
16 MB of RAM for uCLinux1, a minimum of 4000-page entries of 4kB pages is required. So a
bigger page size would make management easier. For implementation, a table with 16 pages is
intended. This would require a minimum page size of 2MB to support an embedded Linux OS
with RAM and I/Os. This choice would mean, I/Os needs to be distanced at least 2MB from each
other in the physical memory space. If the distance is lower for two I/Os, then those can only
be assigned to an application as a group. In segment table, I/Os could be placed more flexible
because of adjustable segment length. Extra effort has to be made to prevent overlappings and
the data-structure to support the table, which would be more complicated. It would require
virtual and physical segment starting address, as well as the length of the segment. A page table
only needs one-page size mask for its length and a physical address or invalid address for each
of its table entries. The virtual address pages would be required to be adjacent to implement a
minimal sized table. The physical address pages can be located as wished. For the purpose of
exploration, this work will implement a 16-page table because of its reduced design effort and
therefore a reduced area cost. The next section will view the matter of how to configure the page
table into the Gateway.

4.3 Architecture Configuration

As mentioned before architecture configuration is an important part for virtualization. There
are many ways for different application scenarios. The focus in this section will be on static
page tables which are set up, in the Gateway of a cluster, after initial startup by the bootloader.
The bootloader code would be fetched into the cache of the LEON3 processor and executed.
Because the page table is intended to be small and compact with 16 entries, it would be viable
to write the table entries directly into the Gateway via an AHB-interface for configuration only.
The other option would be to write a base address of the page table into the Gateway and it
will automatically fetch the table by itself. The latter is the better option because this will not
require a processor when the Gateway is extended with a remote configuration option. For the
I/O side, this feature would be substantial due to a lack of a processor. Instead of fetching all the

1highly reduced in functionality, certain systems can even be run with 4 MB or less

35

Virtualization Solution

page entries by the bootloader and then sending them to a remote Gateway, it would only require
to fetch and send a single table base address, with which the remote Gateway can fetch the data
itself. This procedure would reduce traffic in the network especially during startup where there
is a high probabilty of increased traffic. To support this functionality, a new packet type has
to be implemented in the application layer. So far the communication in the network has been
between an AHB slave sending a request to an AHB master for handling the request with an
eventual response back to the slave. With the configuration scheme, a new type of packet needs
to be introduced and sums up with

1. AHB Request packet - Send from a slave to a master

2. AHB Response packet - Send from master handling a request to the source slave

3. Config Request packet - Send from control unit to another control unit

4. Config Response packet - Send from a control unit handling a request to the source

5. DMA Injection packet - Send from a control unit to a master

These would require multiplexing packets in the Gateway to the respective endpoints which are
the master, the slave and the control unit. The DMA injection packet has not been discussed so
far, but it would enable basic DMA transfer capabilities between clusters for future research with
little effort. DMA injection will be discussed in the following chapter because it is a nice-to-have
requirement, but is not essential.

4.4 Application Protocol

The need to establish an application protocol to support inter-cluster-communications has been
strongly expressed in chapter 4.1. Figure 3.4 shows the intended design of a NoC-packet which
is at the moment of this work being planned. Each packet provides space for up to 5 flits for
payload. One flit of this payload is going to be used as a header/identifier for the type of the
payload. The end of chapter 4.3 summarized the different types of operations needed and their
packet types to implement various functionalities of the intended solution. Figure 4.3 depicts the
basic layout of the header flit.

The header can be split into two parts. The first 16 bits are essential header information while
the last 16 bits are only relevant for AHB Request and Response packet because it contains AHB
transaction control information and is irrelevant for Gateway config packets. The packet type
will be identified by the first 4 bits and gives an option for 16 payload types which give some
flexibility if different applications need to be transported over NoC in the future. These types,
as mentioned in chapter 4.3 are

• b’0001’ - DMA Injection Packet

• b’0010’ - AHB Request Packet

• b’0011’ - AHB Response Packet

• b’0100’ - Controller Config Request Packet

36

Virtualization Solution

Packet-Type AHB Master ID Sequence Number AHB Control Information

31 016 1524 2328 27
Bit Bit

HSIZE HPROT

15 11 7 3 0

HBURST HRESP

H
W

R
ITE

A
C

W
R

U
N

U
SE

D

U
N

U
SE

D

Figure 4.3: Application Protocol for AHB transcation tunneling.

• b’0101’ - Controller Config Response Packet

and can be extended in the future to implement for example Message Signaled Interrupts (MSI)
like supported in the PCIe standard. Following the packet type, the 4 bits in position [27 - 24]
of the header are the AHB Master ID to identify the source of a request. The Master ID is the
HMASTER signal of the AHB bus. This Master ID is crucial if multiple masters are located in one
cluster. It would also enable the ability to implement different page tables for each master. The
combination of master ID and source NoC address gives each AHB master an unique identifier
in the system. For this work, the focus will only be on one master per cluster. The following 8
bits after master ID are reserved for sequence numbers, in case 5 flits per packet are not enough
for future applications.

The second part of the application header is specific to individual packet types. In Figure 4.3 the
second half of the header is occupied with AHB control signals. These are only required for DMA
injection packets, AHB request packets and AHB response packets and are assigned as following:

[15] HWRITE determines read or write transcation

[14 - 12] HSIZE size of the data transmitted

[11 - 9] HPROT transaction meta data

[8 - 5] HBURST burst length of transaction

[2] ACWR active write response, not a AHB signal

[1 - 0] HRESP response code for transfers

This arrangement has been chosen to increase efficiency, instead of confirming with conventions.
Because the header is smaller than a regular integer data type, manual packet construction by
software could be bothersome and has to be done with integer manipulations. If in future new
packet types are added, then they only have to adopt the first 16 bit of the header. As mentioned
before, the second part is specific to packet types. HRESP are only used for response packets,
but its position should not be used for other purposes in request packets or injection packets. The
ACWR bit is not an AHB signal and has the purpose of signaling a master handling a request, to

37

Virtualization Solution

send a response to a write transaction back to the source. The master is held until the response
is returned. Handling burst writes in this mode could lead to extensive delays, instead a NoC
packet can be utilized more efficiently and send over the network with multiple data without a
response to individual transfers accepted by the slave. An error returned couldn’t be mapped
to the corresponding transfer, because it has already been accepted with an OKAY response.
That is why ACWR will give an actual response to every single AHB transfer. Read transactions
always have a response because they have to retrieve data. ACWR is activated by a status bit
in the slave generating the request so it can be turned on and off on demand. The proper usage
of this functionality should be explored in future research.

Packet Structure and Handling

After the header, there are four flits left to be used in a packet. Figure 4.6 til Figure 4.8 show
the packet utilization of each packet type. In the first position after the header, it is usually an
address for request packets. AHB Request Packets always contain the address for write or read
transactions. Configuration Request Packets contain the physical Base Address of the page table
in the memory.

Header

HADDR

HWDATA 1

HWDATA 2

HWDATA 3

O
ptional

Figure 4.4: AHB Request Packet

Header

Base HADDR

-

-

-

Figure 4.5: Configuration Request Packet

DMA Injection packets have addresses in the first two positions after the header because they
need a source and destination address. A control unit issues a DMA Injection packet to a master.
This injection packet as seen in Figure 4.6 will have a source HADDR to read data from and send
the data with a write AHB Request packet, containing the destination HADDR, to a destination
cluster. Because the packet is an AHB Request packet, it will be handled by the master at the
destination and the data will be written to the destination HADDR.

Header

HADDR source

HADDR destination

-

-

Figure 4.6: DMA Injection Packet

These AHB Request Packets have their ACWR bit turned off to be able to send three flits of

38

Virtualization Solution

data with each packet. If the ACWR bit would be set, then the last two flits would be dropped
at the destination master. The downside would be, that no response would be given to this
DMA transfer. Because of that, it would be recommended to implement the control logic at the
destination side. However, where and how the control logic of this DMA procedure should be
implemented is not the topic of this thesis. The implemented master module will just provide the
interpretation of an injection packet and respond accordingly. Beside for DMA purposes, AHB
Request Packets are issued by Slave endpoints which accept AHB transactions. The master on
the other endpoint of a communication handles this request and responds with an AHB Response
Packet, if the request was a read request or in the case of a write request, when the ACWR bit
was set. Responses to reading requests have 1 or 4 flits of data. If the read was a SINGLE burst,
then there is only one. WRAP Bursts are not supported. All INCRx burst will return 4 flits
of data for prefetching purpose and all data which are not needed will be dropped. If there is
an ERROR while AHB request is served by a master, the HRESP field in the response packet
will be set accordingly and the flit in the packet will be marked. Responses to ACWR have no
additional data. A Configuration Response Packet also doesn’t have any data in their packets.
Chapter 5 is going into detailed view on how the packets are generated by the gateway and how
they are handled internally.

Header

HRDATA 1

HRDATA 2

HRDATA 3

HRDATA 4

O
ptional

Figure 4.7: AHB Response Packet

Header

-

-

-

-

Figure 4.8: Configuration Response Packet

39

5 Implementation and Testing

In previous chapters the challenges and their solutions were discussed. In this chapter, the focus
will be on the implementation details to give a good overview and to ease future research and
developments based on the solution provided in this work. This chapter will be divided into two
parts, implementation details and testing details.

5.1 Architecture and Interfaces

In chapter 4.1, basic modules were introduced, which are essential for a inter-cluster-communication
interface. The introduced Gateway concept depicted in Figure 4.1 has three major components.
A slave for accepting AHB transactions, a master for performing AHB transaction of incoming
AHB Request Packets and a control unit, which multiplexes outgoing packets and demultiplexes
incoming packets. Also, this control unit is essential for performing basic memory protection
functionality, based on a NoC-Firewall concept discussed in chapter 4.2, as well as a configura-
tion interface for the Gateway and the whole network discussed in 4.3. One task of the control
unit, which has not been discussed, is the interfacing with the NoC network interface. The net-
work interface is being designed with an AHB interface so it can be used as an independent
slave. Figure 5.1 shows the configuration registers of the interface. Because it is not yet imple-
mented, the control unit has to be split into two. One unit is handling control tasks and the
other unit is dealing with the interfacing with the network interface. The interface unit can be
developed at a later time, when the network interface is ready. This work will provide a common
interface definition for all modules within the Gateway, so each module can be replaced at any
time with an improved version. This modularity also provides a mean to change the architecture
altogether and reuse the modules if the defined interface is being used in the new design. This
common interface was a key design requirement from the start to enable modularity. Because of
this modular interface, being defined in this chapters, testing can be done by joining a master
and a slave together for unidirectional communication or even join two Gateways togehter after
their control unit for a bi-directional bridge. Later this bridge can be split again to integrate the
Network-on-Chip.

Before moving to the module interface definition, a short look at the AHB interface of the network
interface is necessary, to determine some key characteristics of the NoC implementation, which
should be considered in the module interface definition. With a quick look on Figure 5.1, there
are 5 parts distinguishable. A control register section and four groups with six registers are
distinguishable. One for transmitting and three for receiving data. The last three are receive

40

Implementation and Testing

TX
C

TR
L

TX
D

ES
T

TX
LE

N
TX

FL
A

G
TX

D
A

TA
F0

TX
D

A
TA

F1
TX

D
A

TA
F2

TX
D

A
TA

F3
TX

D
A

TA
F4

R
X

0C
TR

L
R

X
0

SR
C

R
X0

LE
N

R
X0

FL
A

G
R

X0
D

A
TA

F0
R

X
0

D
A

TA
F1

R
X0

D
A

TA
F2

R
X0

D
A

TA
F3

R
X0

D
A

TA
F4

R
X

1C
TR

L
R

X
1

SR
C

R
X1

LE
N

R
X1

FL
A

G
R

X1
D

A
TA

F0
R

X
1

D
A

TA
F1

R
X1

D
A

TA
F2

R
X1

D
A

TA
F3

R
X1

D
A

TA
F4

R
X

2C
TR

L
R

X
2

SR
C

R
X2

LE
N

R
X2

FL
A

G
R

X2
D

A
TA

F0
R

X
2

D
A

TA
F1

R
X2

D
A

TA
F2

R
X2

D
A

TA
F3

R
X2

D
A

TA
F4

+0
x1

0

+0
x2

0

+0
x3

0

+0
x4

0

+0
x5

0

+0
x6

0

+0
x7

0

+0
x8

0

N
IS

TA
T0

N
IA

D
D

R
N

IC
TR

L
N
II
N
T
E

N
II
N
T
F

N
I0
F
LI
T

N
I1
F
LI
T

N
I2
F
LI
T

N
I3
F
LI
T

+0
x0

0
+0

x0
1

+0
x0

2
+0

x0
3

+0
x0

4
+0

x0
5

+0
x0

6
+0

x0
7

+0
x0

8
+0

x0
9

+0
x0

A
+0

x0
B

+0
x0

C
+0

x0
D

+0
x0

E
+0

x0
F

+0
x0

0

B
as

e
A

d
dr

es
s

F
ig

u
re

5
.1

:
C

on
fi

gu
ra

ti
o
n

R
eg

is
te

rs
o
f

th
e

N
o
C

n
et

w
o
rk

in
te

rf
a
ce

.
S

o
u

rc
e:

[W
a
n

1
5
]

41

Implementation and Testing

buffers each with individual source filters. The source address can be set in NInFLIT as shown
in Figure 5.2, with n in the range of 0 to 3. This registers can be selected by the four NIFLITm
bits of RXnCTRL in Figure 5.3, to select individual source addresses for each receive buffer n
from 0 to 2. This is a nice feature, considering all of the communication of the Gateway will be
to the I/O cluster and the memory cluster, in the design of this work.

Reserved Reserved Reserved Reserved

7
U-X

6
U-X

5
U-X

4
U-X

3
RW-0

2
RW-0

1
RW-0

0
RW-0

NInFLIT

Bit

SOURCE ADDR

Figure 5.2: Rule register. SOURCE ADDR rule for filtering incoming traffic. Source: [Wan15]

FULL Reserved Reserved Reserved NIFLIT3 NIFLIT2 NIFLIT1 NIFLIT0

7
RW-0

6
U-0

5
U-0

4
U-0

3
RW-0

2
RW-0

1
RW-0

0
RW-0

RXnCTRL

Bit

Figure 5.3: Filter select register for each receive buffer. Source: [Wan15]

As noticeable in Figure 5.2, a cluster address is defined by 4 bits. Therefore the NoC in design
is capable of handling 16 endpoints. Because a receive buffer can allow multiple sources, the
register RXnSRC in Figure 5.4 indicates exactly from which source the packet came. RXnLEN
in Figure 5.5 shows the length of the packet, so every RXnDATAm (n=0..2, m=0..4) register has
not to be checked. The same goes for the transmit buffers. Instead of the source address, the
destination address is given in TXDEST and after writing the data into TXDATAm, the TXLEN
is set before sending the packet.

Reserved Reserved Reserved Reserved

7
U-0

6
U-0

5
U-0

4
U-0

3
R-0

2
R-0

1
R-0

0
R-0

RXnSRC

Bit

SOURCE ADDR

Figure 5.4: Source Address register RXnSRC (n=0..2). Source: [Wan15]

Reserved Reserved Reserved Reserved Reserved

7
U-0

6
U-0

5
U-0

4
U-0

3
U-0

2
R-0

1
R-0

0
R-0

RXnLEN

Bit

LENGTH

Figure 5.5: Packet length register RXnLEN (n=0..2). Source: [Wan15]

The information about the NoC address, and packet length, is essential when passing data from
one module to the next and should be aggregated to a record when implemented in VHDL.

42

Implementation and Testing

5.1.1 Module Interfaces

As mentioned before, the packets assembled by modules when dealing with AHB tranasctions,
which are accessing remote resources, need to be passed between modules, but also between
processes within a VHDL entity/component. For this purpose, a record was defined, as listed in
Listing 5.1, to aggregate all relevant information, which are needed to be passed along with the
packets.

type flits is array (0 to 4) of std_logic_vector (31 downto 0);

type noc_transfer_reg is record

len : std_logic_vector (2 downto 0);

addr : std_logic_vector (3 downto 0);

flit : flits;

end record;

Listing 5.1: Record definition of NoC-relevant data.

The record contains the length of the packet, meaning the number of flits the record contains, the
destination address for outgoing packets or the source address for incoming packets and the flits
themselves in an array for easier indexing. Besides the data, which is passed between components,
two control signals have been implemented. A ”ready” signal for indicating valid data by the
sender and an ”acknowledged” signal for indicating acceptance by the receiver. The data handover
is designed to be concluded in 3 cycles if the receiver accepts immediately. Otherwise, the data
and the ready signal will be held. Figure 5.6 shows delayed and immediate acceptance of slv tx.
slv tx and slv tx ready are cleared as soon as the acknowledged slv tx ack has reached the
sender. Mind the two clock-cycle round-trip-time for any reaction to a signal. The signals len,
addr and flit are members of slv tx. The signals only indicated with numbers in brackets are
members of flit.

{3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h5} {{32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h5} {{32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h5} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0

4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5

{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}

32'h00000000 32'h2F002E00 32'h00000000 32'h2F102E20 32'h00000000 32'h2F202E20 32'h00000000 32'h2F302E20 32'h00000000 32'h2F402E20 32'h00000000

32'h00000000 32'h80000008 32'h00000000 32'h8000000C 32'h00000000 32'h8000001C 32'h00000000 32'h8000002C 32'h00000000 32'h8000003C 32'h00000000

32'h00000000

32'h00000000

32'h00000000

300 ns 400 ns 500 ns 600 ns 700 ns 800 ns

/tb5_vccont/rstn

/tb5_vccont/clkm

/tb5_vccont/slv_tx_ready

/tb5_vccont/slv_tx_ack

/tb5_vccont/slv_tx {3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h5} {{32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h5} {{32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h5} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

len 3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0 3'h2 3'h0

addr 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5 4'h0 4'h5

flit {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}

(0) 32'h00000000 32'h2F002E00 32'h00000000 32'h2F102E20 32'h00000000 32'h2F202E20 32'h00000000 32'h2F302E20 32'h00000000 32'h2F402E20 32'h00000000

(1) 32'h00000000 32'h80000008 32'h00000000 32'h8000000C 32'h00000000 32'h8000001C 32'h00000000 32'h8000002C 32'h00000000 32'h8000003C 32'h00000000

(2) 32'h00000000

(3) 32'h00000000

(4) 32'h00000000

Entity:tb5_vccont Architecture:test_ahbmst Date: Mon May 09 15:20:14 CEST 2016 Row: 1 Page: 1

Figure 5.6: Module interface data handover with immediate and delayed acceptance.

43

Implementation and Testing

To implement the 3 cycle handover, two variables and the ”acknowledge” signal are being used.
The names vary from process to process, but the procedure is always implemented in the same
way. The procedure is shown schematically in Listing 5.2. r is a variable and B is a condition
like tmp = ’1’ or an assignment like tmp := ’0’. Then not B is the opposite assignment or
condition. ready signal indicates valid data on the output and ack is the acceptance signal from
the receiver. When comparing Listing 5.2 with Figure 5.6, then it is clear, that the condition B

in the end prevents r and output from being cleared, just after being set for a new transmission
following an old one, when ack is still high after the third cycle, because the cleared ack signal
hasn’t reached the sender yet.

-- begin of a process on positive clock edge

if(r = ’1’) then

B;

end if;

-- some code

if(r = ’0’) then

output <= send_data ();

r := ’1’;

not B;

end if;

-- more code

if(ack = ’1’ and B) then

r := ’0’;

output <= clear ();

end if;

ready <= r;

-- end of a process

Listing 5.2: 3 cycle handover procedure for module interface

5.1.2 Abstraction Slave

So far the discussion about NoC abstraction was more of a conceptual one. All the modules
have been explained and their role in the Gateway have been discussed. There is the control unit
responsible for the virtualization tasks and controlling the flow of data between the interfacing
unit, which handles the connection to the NoC network interface, and the master for handling
requests or the slave generating requests. Because the slave is the generation point for most of
the requests, it is the best start for the detailed explanation of the Gateway functionalities.

As mentioned before, AHB is a pipelined bus with burst capabilities. A slave has the duty to
accept the incoming transfers, packetize them and to send them to the corresponding cluster.
The transfer will come over the AHB interface and the basic principles of an AHB transfer have

44

Implementation and Testing

already been discussed in chapter 3.2.1. Now it is necessary to analyze a transfer, to design a
proper interface on Regitster-Transfer-Level (RTL). The interface has some conditions to pass,
before it starts accepting data over AHB. First, the slave has to be selected by the respective
HSEL signal. Then HREADY needs to be high, indicating that a transfer is not stalled by the
slave itself. Subsequent HRESP has to be OKAY, meaning the slave is not in ERROR, RETRY
of SPLIT handling mode. Once these conditions are met, the different modes of HTRANS, have
to be evaluated. IDLE does not need to be considered, because when the bus is in IDLE, the
slave is not selected, if the master accessing the slave is correctly designed. Meaning HADDR
should be zero, and therefore no slave is selected. If HTRANS is in BUSY, then the slave is in
idle and waits until the transfer continues. The standard modes are NONSEQ, starting a new
transaction and SEQ, continuing a transaction. Once a transaction is started with a NONSEQ,
a variable acting as a temporal packet record called noc tx reg of type noc transfer reg is
initialized by setting noc tx reg.len to a value other than 0. The best starting value is two,
because when a packet is generated with NONSEQ, the header and HADDR is stored in the
variable seen in Figure 4.4. Another variable called flit index is used to keep track of the next
empty flit meaning if noc tx reg.len is 2 then flit index is 3. The reason flit index is used
instead of noc tx reg.len is because flit index is also used to select the next flit in a full
response packet called noc rx reg. There noc rx reg.len indicates the absolute length of the
packet compared to the current length of noc tx reg.len. noc tx reg.addr is not set by the
slave, but by the control unit. The address of the destination is stored in the page table. So far
everything was trivial til the first NONSEQ. From here there are three ways, how a transaction is
processed. These are dependent on the HWRITE AHB signal of the transaction and the module
input bit acwr of the slave mentioned in Listing 5.3.

Master
Gateway

Slave
Gateway
Master

Slave

OKAY

OKAY

OKAY

ERROR

HWRITE = ‘1‘ ACWR = ‘1‘

Figure 5.7: Write transaction handling without active write response (ACWR low-active).

acwr is only considered, when HWRITE is high, indicating a write transaction. acwr high means,

45

Implementation and Testing

no response is required for a request, and HWDATA will be collected until a packet is full and
then send to the destination as shown in Figure 5.7. Packets will be continuously generated until
the AHB transaction is over, if there are more transfers than flits in a packet. In the previous and
the following figures, an OKAY response means, that data will be accepted for writes and data
will be returned with OKAY in the case of reads. HWRITE low indicates a read transaction, for
which a packet is generated and immediately sent, while the HRESP is being returned, compared
to a write transaction. In a write transaction, HWDATA is being transmitted by the master,
while HRESP is returned by the slave. So the packet can only be sent once the data has arrived.

Master
Gateway

Slave
Gateway
Master

Slave

SPLIT

OKAY

OKAY

HWRITE = ‘0‘ ACWR = ‘X‘

OKAY

OKAY

ERROR
AHB Response Packet

ERROR

Figure 5.8: Read transaction handling of Gateways.

In Figure 5.8, the slave responds to the master with a SPLIT, which cuts the master off the bus
until a response packet is returned to resolve the split. The master will retry the transaction
this time with the demanded data at the disposal of the slave. In case acwr is low while a write
transaction, responses will be expected for each transfer of data. So after every NONSEQ or
SEQ, the master will be split until the response of every transfer is returned from the remote
cluster. Then the master will retry the same transaction again, and the slave can give it the
actual HRESP, ignoring the retransmitted data as shown in Figure 5.9.

Because there are no internal buffers in the slave, it can store only two request packets. One in
its temporal record and one in the outgoing module interface. Once the packet in the module
interface is accepted, the packet in the record can be moved to the interface and frees the record

46

Implementation and Testing

Master
Gateway

Slave
Gateway
Master

Slave

SPLIT

OKAY

HWRITE = ‘1‘ ACWR = ‘0‘

OKAY

ERROR

AHB Response Packet

OKAY
AHB Response Packet

OKAY

ERROR
AHB Response Packet

Figure 5.9: Write transaction handling with active write response (ACWR low-active).

for continuation. While the record is full, every incoming transaction will be SPLIT and queued.
In the variable split reg, which is a FIFO, the HMASTER signal will be stored and actively
worked through, when no AHB Response Packets are pending. If a response packet is pending,
the master ID in the packet header will be used to request a split continuation from the AHB
arbiter by setting HSPLIT signal of the respective master. If no response packets are waiting,
then the HSPLIT will be set by split reg. If the master does not continue immediately and in
the meantime, a response packet arrives, the HSPLIT signal of the owner will also be set. Any
master contacting the slave will be first checked, if its HMASTER signal corresponds with the
first in split reg. If it does then, the master will be cleared out of the FIFO. If the master is
not the one in the FIFO, then in the NONSEQ condition of HTRANS the HMASTER signal will
be checked against the master ID in the response packet. If this check passes, the response will
be served. Otherwise, a new request packet will be generated and the response packet will be
kept until its been fetched.

The implemented abstraction modules have several ports. While most of the ports have been
discussed in previous sections, the acwr port of the slave is an input port for the response mode
setting of the slave. This input decides, if the corresponding ACWR bit in the AHB Control
Information of a packet header is set or not. This input is low active, meaning responses will be

47

Implementation and Testing

demanded when low and will be driven by the control unit. By default, it will be active after a
reset of the control unit. There are also some generics required for the module. hindex is the
slave ID to determine which HSEL has to be selected and mindex is the ID of the abstraction
master, which is necessary to prevent a loopback of requests. If a loopback happens, the slave will
respond with an ERROR. mindex is by default set to 16 and therefore turned off, unless an ID
under 16 is given. The rest of the generics are AHB Plug&Play information for the AHB slave.
Currently only address ioaddr and its mask iomask are being used. memaddr and memmask are
unused, but can be considered to implement two separate page tables in the control unit.

component vcslv is

generic(hindex : integer := 0;

memaddr : integer := 16#600#;

memmask : integer := 16# fff#;

ioaddr : integer := 16#800#;

iomask : integer := 16# fff#;

mindex : integer := 16);

port (res : in STD_LOGIC;

clk : in STD_LOGIC;

acwr : in std_logic;

requ_ready : out std_logic;

requ_ack : in std_logic;

requ : out noc_transfer_reg;

resp_ready : in std_logic;

resp_ack : out std_logic;

resp : in noc_transfer_reg;

ahbsi : in ahb_slv_in_type;

ahbso : out ahb_slv_out_type);

end component;

Listing 5.3: Abstraction Slave module interface

At last, it should be mentioned, that because the Plug&Play support, multiple address spaces can
be mapped to a single slave with the HCONFIG registers, shown in Figure 3.7. In combination
with the custom signal hmbsel, of the AHB slave input interface definition in Listing 3.1, it is also
possible to bypass the slave and control unit completely, to access the network interface directly.

5.1.3 Abstraction Master

Once the slave generates a request packet and forwards it over the network to a respective cluster,
the request packet needs to be translated back to an AHB request. For this purpose, the Gateway
also comprises a module with a master interface. This abstraction master also has a temporal
packet record for storing active requests and generated responses. These containers are also called
noc tx reg and noc rx reg. Unlike in the abstraction slave, both containers can be used at the
same time depending on the type of request. The master would check every received packet if
it is structured properly, meaning a read request should only have a length of two, and a write
packet should have a minimum length of three otherwise the packets will be dropped. The master
is set up internally as a state machine consisting of five states. At the end of each phase, signals
will be set before transitioning into the next phase.

48

Implementation and Testing

A

A

A

A+x

A+x

A+x

A+n

A+n

A+n

HBUSREQ

HGRANT

HADDR & Control

HWDATA

HRESP & HRDATA

State 1State 0 State 2 State 3 State 3 State 4 State 0

Figure 5.10: Phases of request handling in Abstraction Master.

These states are held until a condition to transit into the next state is met like HGRANT in
Figure 5.10. Once the required condition for a state is fulfilled, the necessary AHB signals, like
HADDR and control signals, are set before a transition occurs. Figure 5.11 visualizes the internal
state machine of the master. State 0 is the Idle state. Once a new request packet has arrived, a
transition occurs into state 1. During the transition, the HBUSREQx is set to indicate an AHB
access request to the bus arbiter. State 1 is the Wait state and is held until HGRANTx is active.
Once HGRANTx is acquired, the first address and control signals will be set, and the master goes
into state 2. State 2 is the first fork in the state machine. Depending on the burst type, there is
a transition to state 0, state 3 or state 4. In case HBURST is SINGLE, the transition goes into
state 4 or state 0, otherwise, if HBURST is INCR, the transition goes into state 3. In latter case,
at the end of state 2, also the 2nd address of the next transfer in the burst transaction is applied
to the bus. Also if the transaction is a write, HWDATA of the first transfer will be sent. In state
3, there is a loop into itself until the end of the noc rx reg in the case of a write transaction or
noc tx reg in the case of read transaction is reached. Just before the last index of the packet
is reached, the transition into state 4 will occur. During the transition of state 3 into itself, or
into state 4, HRDATA will be collected, and HRESP processed. These signals take two cycles
to be received, because of the round-trip-time for each requested transfer. This round-trip-time
also poses the biggest challenge in designing the abstraction master compared to the abstraction
slave. While the slave reacts immediately to a request, the master only gets a response two cycles
later to each transfer. State 4 finishes any transaction and if a response is required by a request,
it will be sent before automatically transitioning into state 0. Responses will be given to read
transactions and write transactions with active ACWR bit in the AHB Control Information fields
of the protocol header. noc rx reg has to be free to accept any incoming request packets. Similar
to the abstraction slave, the master can store two response packets. One in the temporal record
noc tx reg and one in the outgoing module interface. One important aspect of the state machine
implementation, is the HGRANTx and HREADY signal. HREADY is responsible for enabling

49

Implementation and Testing

the state machine. When low, the state machine is held. The HGRANT signal grants bus access
to a master and also signals the relevance of any AHB responses to the master. The response to
the last transfer in a transaction can be without an active HGRANTx. Due to the design of the
AHB bus, the responses of every transaction can be read by every single master on the bus, as
every single slave on the bus can see every request on the bus. This circumstance means, that
state 2 and state 4 must be processed when the HGRANTx is active high and low, while state 1
and 3 only need to be treated when HGRANTx is active high.

State 2

State 1

State 3State 4

State 0

Request Packet received
HBUSREQ set

HGRANTx received
HADDR & Control set

HBURST = SINGLE
HWRITE = 1 & ACWR = 0
Clear Bus & HWDATA set

Automatic
Read HRDATA if HWRITE = 0
| Read HRESP if ACWR = 1

HRESP = SPLIT | RETRY
Clear Bus

HWRITE = 1 & ACWR = 1
Clear Bus & Set HWDATA

| HBURST = SINGLE & HWRITE = 0
Clear Bus

flit_index < packet length
Set HADDR+1 & Control

set HWDATA | Read HRDATA

HBURST = INCR
Set HADDR+1 & Control

set HWDATA

flit_index = packet length
Clear Bus

Set HWDATA | read HRDATA

HRESP = ERROR
Clear Bus

HRESP = SPLIT | RETRY

Return Response Packet
when transition to State 0
if HWRITE = 0 or ACWR = 1

Figure 5.11: State Diagram of Abstraction Master.

5.1.4 Control Unit

So far all the modules discussed are translative ones, which process incoming transmissions, be
it from the AHB or Network-on-Chip side, and translate them during the transition through
the Gateway. There are no higher functions implemented and are strictly designed without any
intelligence. All the intelligence and control is carried out in the control unit. These functions, as
previously discussed, are a virtualization functionality for resource access over the Network-on-
Chip and also local and remote configuration capabilities for the page table. All the Gateways
combined form a layer for enabling the virtualization functionality in the CPSoC. The control unit
is in the first place a multiplexer between the network interface and the abstraction slave/master.
While multiplexing, the virtualization function is performed for the slave input. Currently, the
Gateway provides 16 table entries, with three options:

1. Rejected Access - Access is rejected and an error response will be returned to the slave

2. Direct Access - Access is granted and will be forwarded with unchanged address

3. Translated Access - Access is granted and will be forwarded with updated address

50

Implementation and Testing

The page table is stored in an array of a 32-bit register called datastore, which stores control
registers for the local and remote configuration and response mode for write transactions (acwr).
These are followed by 17 registers for the Gateway page table. The first is the mask for the
address translation, followed by the 16 entries. The entries are basically all ’1’ for Rejected Access
or all ’0’ for Direct Access or the destination address to which a translation should occur for
Translated Access. The translation is limited to the first 24 bits of the address. The last 4 bits
in the entry contain the destination address in the Network-on-Chip. So if any translation to
the 0x00000000 address space is required, it is necessary to set one or more bits between bit 7
and bit 4 to one in the page table entry, like e.g. 0x000000F0. The mask determines the actual
length of the translation. All bits, which are required to be translated, needs to be set to active
high in the mask. The entry which is used among the 16, is selected by the last 4 bits of the
address covered by the mask as depicted in Figure 5.12. Therefore the mask has to have at least
4 active upper bits, otherwise the translation is deactivated, and all accesses are Direct Access.
This setup enables page sizes from 256 Bytes up to 512 Mbytes.

Mask

Rule 0

Rule 4

Rule 15

flit[0]

flit[1]

flit[2]

flit[3]

flit[4]

addr

len

1
& &

==

&

=

≥1=

0 0 0 0 0F 0 0

F F F F 0F 0 0

0 0 0 0 F0 F F

0 1 2 3 54 6 7

8 9 A B DC X X

8 9 A CB 0 0 00 0 0 0 0 5 6 708 9 A B C 5 6 7

0 0 0 0 4 0 0 00

HADDR

Figure 5.12: Address translation in control unit with hexadecimal numbers.

To configure the Gateway, the control unit has an own AHB interface. For this purpose, Table
5.1 lists the four configuration registers and 17 registers for the table, which are provided to be
accessed over the AHB interface. With this, three options can be considered to configure the
Gateway to provide maximum flexibility for future research.

• Local configuration over AHB by a local task

• Automatic configuration over NoC, once table location is provided over AHB

• Remote configuration started by providing table location over NoC

The control unit is after startup by default in Direct Access mode, to enable immediate access
to the Network-on-Chip. Because of this, the AHB address of the slave should be mapped in the
same address space as a remote Boot-ROM. If a cluster has a local Boot-ROM with a valid page
table, the Gateway can be programmed directly. Otherwise, a valid location for the page table

51

Implementation and Testing

has to be provided to start an automatic configuration by the Gateway. Once in configuration
mode, the abstraction slave is cut off from the NoC until the configuration is complete. The
location for the settings can also be transmitted to the Gateway remotely by a Config Request
Packet from another cluster, which has a complete bootloader available and once the bootloader
has set up the page table in an accessible memory.

{3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

3'h0 3'h2 3'h0 3'h2 3'h0 3'h5 3'h0 3'h5 3'h0 3'h5 3'h0 3'h5 3'h0

4'h0 4'h7 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0

{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}

{3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h4} {{32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h4} {{32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h4} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

3'h0 3'h2 3'h2 3'h2 3'h2 3'h2 3'h0 3'h1 3'h0

4'h0 4'h4 4'h4 4'h4 4'h4 4'h4 4'h4 4'h7 4'h0

{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}

400 ns 600 ns 800 ns 1000 ns 1200 ns

/tb6_vccont/clkm

/tb6_vccont/slv_rx_ready

/tb6_vccont/slv_rx_ack

/tb6_vccont/slv_rx {3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

len 3'h0 3'h2 3'h0 3'h2 3'h0 3'h5 3'h0 3'h5 3'h0 3'h5 3'h0 3'h5 3'h0

addr 4'h0 4'h7 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0 4'h4 4'h0

flit {32'h00000000}

/tb6_vccont/slv_tx_ready

/tb6_vccont/slv_tx_ack

/tb6_vccont/slv_tx {3'h0} {4'h0} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h4} {{32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h2} {4'h4} {{32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000}} {3'h0} {4'h4} {{32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}}

len 3'h0 3'h2 3'h2 3'h2 3'h2 3'h2 3'h0 3'h1 3'h0

addr 4'h0 4'h4 4'h4 4'h4 4'h4 4'h4 4'h4 4'h7 4'h0

flit {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F302E20} {32'h8000002C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h2F402E20} {32'h8000003C} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000} {32'h00000000}

Entity:tb6_vccont Architecture:test_ahbmst Date: Sun May 29 08:45:24 CEST 2016 Row: 1 Page: 1

Figure 5.13: Gateway traffic for remote configuration. Green: Config Request. Red: Config Response.

Address Register

0x00 Automatic Configuration Control

0x04 Configuration Address

0x10 Remote Configuration Control

0x14 Remote Configuration Address

0x20 Page Table Mask

0x24 - 0x60 Page Table

Table 5.1: Control Unit configuration registers

Table 5.2 lists all configuration bits in the control unit. In the Automatic Configuration registers,
there are the control bits for configuration. These bits will be set automatically when a Config
Request Packet is received, and its origin will be set in bitfield [19-16]. In the case of remote
configuration, the NoC address of the table location cluster will be stored in bitfield [27-24] and
the table address will be retained in register 0x04. This information is included in the Config
Request Packet, or has to be provided over the AHB interface. Bit [23] activates the automatic
configuration, and once it is finished, it will be reset and bit [22] will be set to indicate successful
configuration. If the configuration was triggered remotely, then also bit [21] will be set and a
Config Response Packet will be sent to acknowledge as marked in red in Figure 5.13. The marked
packet in green is the config request. Once received by the opposite side, the receiver starts to
fetch the settings by sending five AHB Request Packets, using the sequence field in the header
to identify them. Every Gateway can send Config Request Packets via the registers 0x10. This
ability might raise security concerns, which have to be tackled in future research about overall

52

Implementation and Testing

Address Bit Activity Description

0x00 27 - 24 - NoC Address of table location

0x00 23 High Start Configuration; Abstraction Slave cut off when set

0x00 22 High Configuration Complete; Bit 23 must be low

0x00 21 High Remote Configured

0x00 19 - 16 - Remote configuration origin

0x00 0 Low ACWR bit - Active Write Response bit for local Slave

0x10 31 High Send Remote Configuration

0x10 30 High Remote Configuration Complete; Bit 31 must be low

0x10 27 - 24 - Remote Configuration Gateway NoC Address

0x10 23 - 20 - NoC Address of table location for Remote Configuration

Table 5.2: Control Unit configuration bits.

system security. To send a configuration request, it is necessary to provide destination NoC
address [27-24], the NoC address where the table is stored [19-16] and the table location address
in register 0x14.

vcni_proc

vcno_proc

vcahb_proc

eo

co

vcni

vcno

vcmo

vcmi

vcsi

vcso

AHB

datastore

Control Unit

acwr

Figure 5.14: Control Unit structure. Solid Lines: Module Interfaces. Dotted Lines: Signals

All the functionalities discussed so far, are implemented into the control unit. To prevent a
monolithic implementation, the control unit is structured in three processes, depicted in Figure
5.14. vcno proc is responsible for all outgoing network traffic to vcno coming in from the slave
port vcsi and the master port vcmi. It also generates the AHB Request Packets for fetching the
configuration settings and Config Response Packet, once the right bits are set in the datastore.
It is also responsible to performing the virtualization functionality and handing over an AHB
Response Packet to vcni proc with an ERROR HRESP over eo, to return it to the slave over
vcso. vcni proc has to demultiplex the incoming traffic over vcni to the master port vcmo in

53

Implementation and Testing

case of an AHB Request Packet, or to the slave port vcso in case of an AHB Response Packet. If
an AHB Response Packet is identified as a configuration fetch, by a header with the master ID
of the abstraction master, it is sent to vcahb proc over co, to be stored in the datastore. This
design allows to connect two control units together to form a bridge, by connecting the vcno of
the first unit to the vcni of the second unit and vice versa. All the testing procedures performed
in the next section, are made in that configuration.

5.2 FPGA Implementation and Testing

In this section, the focus from the design of the Gateway is shifted towards the integration into one
of the FPGA designs of the Gaisler GRLIB. GRLIB provides Makefiles for synthesis, simulation,
and programming FPGA designs. Besides the Gateway model, this work also provides a Ubuntu
64-bit virtual machine setup, to support all the functionalities of the GRLIB, SPARC cross com-
piler, and GRMON debugger. These Makefiles and the GRLIB file-tree enables easy integration
of custom packages into the library. All tests are performed under grlib-gpl-1.5.0-b4164. For
the testing purpose, the pre-existing Digilent NEXYS4DDR design was chosen, because of cost,
area and already existing experience with Digilent boards. To integrate all the VHDL files into the
GRLIB, a VHDL package file called custom was created with component and type declarations
of all discussed modules and records and some extra modules, which have not been mentioned
and have been developed for testing purposes. This package and all the VHDL files have to be
placed in a folder in the lib subfolder of the GRLIB, which is structured on the top-level like

grlib-gpl-1.5.0-b4164/

bin boards designs doc lib netlists software

The lib folder contains a file called libs.txt. It contains all the libraries in the project. If a new
library is placed in lib, the new library folder name has to be appended to the text file. Instead
of creating a new library, the package was added to the existing gaisler library. It has been
placed in grlib-gpl-1.5.0-b4164/lib/gaisler/custom/ and contains all developed files of this
work. The gaisler folder contains a text file called dirs.txt, which lists all the local folders
with packages, so the Makefile can find all of them, when creating a design project. It is also
necessary to place a vhdlsyn.txt, with a list of all the synthesis relevant VHDL files, in the folder
containing the package files. The designs subfolder in the top-level folder of GRLIB, contains
the NEXYS4DDR design in a subfolder called leon3-digilent-nexys4ddr. leon3mp.vhd is the
top module of the design and can be configured by a GUI interface called by the Make command
in

grlib-gpl-1.5.0-b4164/designs/leon3-digilent-nexys4ddr/

make xconfig

The window in Figure 5.15 will pop up. Configuring the entire project from the GUI is possible.
After saving, a file called config.vhd will be created with the constants necessary to generate the
components in leon3mp.vhd. Most of the default settings can be taken as they are, except the
AMBA configuration. In the AMBA submenu shown in Figure 5.16, AHB split-transaction sup-
port must be turned on, otherwise a SPLIT response will cause a lock of the bus. One important

54

Implementation and Testing

advice when experimenting with the configuration is, not to disable the Ethernet to save area in
the FPGA. There is a bug in the design with the Ethernet clock causing unpredictable modes on
the bus. After the configuration, leon3mp.vhd can be edited to accommodate the Gateways. The
Gateway uses a wrapper called vcont, containing the abstraction master, abstraction slave, and
the control unit. Two Gateways have been integrated back to back into the system as a bridge
with both ends attached to the each other. The reason for this, is to monitor the bus activity
caused by both ends of the Gateway. AHB monitoring is possible due to a Debug Support Unit
(DSU) provided in the GRLIB, which can be accessed with the Gaisler GRMON debugger once
the design is built and programmed with the commands

grlib-gpl-1.5.0-b4164/designs/leon3-digilent-nexys4ddr/

make vivado

make vivado-prog-fpga

It is recommended to build the design with at least Vivado 2015.4. Earlier versions are not
advisable.

Figure 5.15: Design configuration main menu.

Figure 5.16: AMBA configuration menu.

After the FPGA is programmed, the SoC can be tested by loading and running test programms
with GRMON. For that purpose the SoC DDR controller needs to be configured with the following
commands

grmon -digilent -u

ddr2delay scan

The first command connects to the SoC over JTAG link (-digilent) with the UART output
redirected to the active debug link (-u). Debugging is also possible over Ethernet and UART.
After that DDR configuration, the debugger has to disconnect with exit. Once reconnected
again, the command info sys should display updated the AHB Plug&Play information of all
components attached to the AHB bus. The DDR controller should displays the DDR details of
Listing 5.4. Then the system is ready to be run.

55

Implementation and Testing

ddr2spa0 Cobham Gaisler Single -port DDR2 controller

AHB: 40000000 - 48000000

AHB: FFF00100 - FFF00200

16-bit DDR2 : 1 * 128 MB @ 0x40000000 , 8 internal banks

140 MHz , col 10, ref 7.8 us , trfc 135 ns

Listing 5.4: AHB Plug&Play information of a configured DDR2 controller

Test Setup

For testing purposes, a C source file was created with the registers in use. Listing 5.5 lists all
registers. Naming convention is G1 or G2 for the Gateway, PT for page table for the local Gateway
configuration, RT for remote page table, BASE for an address and Exx for page table entries.
The purpose of these registers can be read again in Table 5.1, where the last 2 hexadecimal digits
of the address correspond.

volatile unsigned int G1CTRL0 = (unsigned int *) 0x70A00000;

volatile unsigned int G1PTBASE = (unsigned int *) 0x70A00004;

volatile unsigned int G1RTCTRL = (unsigned int *) 0x70A00010;

volatile unsigned int G1RTBASE = (unsigned int *) 0x70A00014;

volatile unsigned int G1PTMASK = (unsigned int *) 0x70A00020;

volatile unsigned int G1PTE01 = (unsigned int *) 0x70A00024;

volatile unsigned int G1PTE02 = (unsigned int *) 0x70A00028;

volatile unsigned int G2CTRL0 = (unsigned int *) 0xC0A00000;

volatile unsigned int G2PTBASE = (unsigned int *) 0xC0A00004;

volatile unsigned int G2RTCTRL = (unsigned int *) 0xC0A00010;

volatile unsigned int G2RTBASE = (unsigned int *) 0xC0A00014;

volatile unsigned int G2PTMASK = (unsigned int *) 0xC0A00020;

volatile unsigned int G2PTE01 = (unsigned int *) 0xC0A00024;

volatile unsigned int G2PTE02 = (unsigned int *) 0xC0A00028;

volatile unsigned int G1TEST = (unsigned int *) 0x60001000;

volatile unsigned int G1MEMREG = (unsigned int *) 0x46001000;

volatile unsigned int G1ERROR1 = (unsigned int *) 0x60000010;

volatile unsigned int G1ERROR2 = (unsigned int *) 0x60002000;

volatile unsigned int G2TEST = (unsigned int *) 0xB0001000;

volatile unsigned int G2MEMREG = (unsigned int *) 0x47001000;

volatile unsigned int G2ERROR = (unsigned int *) 0xB0000010;

Listing 5.5: Configuration and test registers for implemented design.

All names are Precompiler code, which will be replaced with their lowercase form and the pointer
operator *. For an example #define G1CTRL0 *g1ctrl0. GxTEST is an address in the address
space of the abstraction slave. That address will be translated to GxMEMREG, a location in
the memory. G1ERROR1 is an address, that will be rejected by the Gateway. G1ERROR2 is an

56

Implementation and Testing

address, that will be translated, but the translated address does not belong to any component.
This will cause an ERROR response from the AHB bus controller. The configuration of the
Gateways will be discussed in the last section. Until then the results of basic functionalities will
be explained.

Single Read & Single Write without response

From here on, the different modes and functionalities of the Gateways are going to be tested. The
results of the tests will be discussed. The configuration results of the Gateways will be shown
later. After loading a test into the SoC with the load command and executing it with run, the
results can be displayed with ahb 100. The first test will be the SINGLE write without response.
To turn off the response of requests, bit 0 in 0x00 register of the control unit must be turned on.
This happens in line 4 of Listing 5.7 and can be seen as an action on the bus in line 2 of Listing
5.6. When writing control registers, it is important not to reset existing settings. Therefore a
read of the register must be done the get the current state, which can not be seen in the result,
because the buffer of the DSU was not long enough, and add or remove the respective bit. This
is done with the function clearnset(). The first parameter is the register which needs to be
altered, while the second sets all active bits to 0 and the third sets all active bits to 1.

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 35881 70 A00000 00400001 read 2 2 0 0 0 0

3 35898 40001980 C4006030 read 2 2 1 0 0 0

4 --

5 35922 4000403C B0001000 read 3 2 1 0 0 0

6 35928 46001000 00000007 write 2 2 0 0 0 0

7 35948 400019 A0 C400A048 read 2 2 1 0 0 0

8 --

9 35955 400019 BC 81 E80000 read 3 2 1 0 0 0

10 35956 60001000 0000000F write 2 2 0 0 0 0 A1

11 35967 40004040 47001000 read 2 2 1 0 0 0

12 --

13 35974 4000405C 40004344 read 3 2 1 0 0 0

14 35975 46001000 0000000F write 2 2 0 4 0 0 A2

15 35953 60001000 00000000 read 2 2 0 0 0 3 B1

16 35967 46000000 0000000F read 2 2 0 4 0 0 B2

17 35974 60001000 0000000F read 2 2 0 0 0 0 B3

18 35979 60002000 00000000 read 2 2 0 0 0 3 C1

19 35984 49003000 00000000 read 2 2 0 4 0 1 C2

20 35991 60002000 00000000 read 2 2 0 0 0 1 C3

Listing 5.6: Results with page mask 0xFFFFF000 and active write response turned off. Coresponding
transactions grouped with same letter.

The dotted line in the results, are LEON3 opcode fetches, which have been removed to reduce
the length of the results. In line 10 of the results, the SINGLE write transaction is performed
by the program executed, which corresponds to line 6 of the source code. This request is being
transmitted to the other Gateway and executed in line 14 in the results. After that, the LEON3
performs a read on the same register, which is the first SPLIT in line 15, executed right afterwards

57

Implementation and Testing

by MST 4 and the response returned, seen in line 17. Line 18 shows another read, which is
performed. But this time, an error is returned, because the translated address in line 19 does not
exist. Then the ERROR is returned in line 20. All tests had to be exited by causing an ERROR
for the LEON3 (MST 0), which stops the execution, because there had been no trap vectors defined
to catch the exception. Otherwise, the LEON3 continues to perform more actions, and the DSU
overwrites the relevant entries in the AHB monitor buffer.

1 main()

2 {

3 int v = 7;

4 clearnset(G1CTRL0 ,0x00000000 ,0 x00000001);

5 G1MEMREG = v;

6 G1TEST = 15;

7 v = G1TEST;

8 ERROR = G1ERROR1;

9 }

Listing 5.7: Test programm for single read and write without response

Single Read & Single Write with response

For this test, the same source code as in Listing 5.7 is being used, but instead of setting Bit 0 in
line 4 the bit has been deleted, meaning responses for each write request are required. This test
is performed on G2 Gateway. The result of this change can be seen in line 7, 8 and 9 of Listing
5.8. The request is executed by MST 3. The read afterwards follows the same pattern seen before,
with the only difference of the address, on which the action is performed. The last read carried
out in this set returns an ERROR, because the Gateway rejected the access. The read is first
SPLIT and immediately returned with an ERROR, because the request will not be forwarded to
MST 3.

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 35917 C0A00000 00640000 read 2 2 0 0 0 0

3 35934 40001980 C400603C read 2 2 1 0 0 0

4 --

5 35964 47001000 00000007 write 2 2 0 0 0 0

6 --

7 35993 B0001000 0000000F write 2 2 0 0 0 3 A1

8 35998 47001000 0000000F write 2 2 0 3 0 0 A2

9 36005 B0001000 0000000F write 2 2 0 0 0 0 A3

10 36018 40004040 B0000010 read 2 2 1 0 0 0

11 --

12 36031 B0001000 00000000 read 2 2 0 0 0 3 B1

13 36044 47001000 0000000F read 2 2 0 3 0 0 B2

14 36051 B0001000 0000000F read 2 2 0 0 0 0 B3

15 36056 B0000010 00000000 read 2 2 0 0 0 3 C1

16 36062 B0000010 00000000 read 2 2 0 0 0 1 C2

Listing 5.8: Results with page mask 0xFFFFF000 and active write response turned on. Coresponding
transactions grouped with same letter.

58

Implementation and Testing

Burst Write without response

The results until now were showing SINGLE transactions, because burst transactions can not be
performed by software. The only occasion, where bursts are used by the LEON3 is, when it is
fetching opcodes. Another component was developed, to test the Gateway on burst transactions.
It is a combination of simple AHB slave with registers and the abstraction master. This master
MST 5 generates AHB bursts, while the request are forwarded to MST 4 in Listing 5.9. The test
master ahbtstmst executes standard read and write bursts with eight transfers. The values to
write can be set in the registers of the slave interface, but there are already values defined and
only an address and the start bit have to be set. These are done by the actions in line 2 and 5
in the test results as shown in Listing 5.9. The abstraction slave accepts the eight transfers from
line 8 onwards and forwards them. From the structure of the AHB Request Packets, there should
be two packets with three flits of data and one packet with two flits of data transmitted to MST

4. Immediately after the burst, the LEON3 makes a read request. This request has also been
accepted. This shows, that the Gateway can handle requests from multiple sources.

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 37265 50 A00004 60001000 write 2 2 0 0 0 0

3 37278 40004000 D0000000 read 2 2 1 0 0 0

4 --

5 37317 50 A00000 80008000 write 2 2 0 0 0 0

6 37329 40004040 10800010 read 2 2 1 0 0 0

7 --

8 37337 60001000 10000000 write 2 2 1 5 0 0 A1

9 37338 60001004 02000000 write 3 2 1 5 0 0 B1

10 37339 60001008 00300000 write 3 2 1 5 0 0 C1

11 37340 6000100C 00040000 write 3 2 1 5 0 0 D1

12 37341 60001010 00005000 write 3 2 1 5 0 0 E1

13 37342 60001014 00000600 write 3 2 1 5 0 0 F1

14 37343 60001018 00000070 write 3 2 1 5 0 0 G1

15 37344 6000101C 00000008 write 3 2 1 5 0 0 H1

16 37347 60001000 00000000 read 2 2 0 0 0 3

17 37351 60001000 00000000 read 2 2 0 0 0 3 I1

18 37356 46001000 10000000 write 3 2 1 4 0 0 A2

19 37357 46001004 02000000 write 3 2 1 4 0 0 B2

20 37358 46001008 00300000 write 3 2 1 4 0 0 C2

21 37366 4600100C 00040000 write 2 2 1 4 0 0 D2

22 37367 46001010 00005000 write 3 2 1 4 0 0 E2

23 37368 46001014 00000600 write 3 2 1 4 0 0 F2

24 37376 46001018 00000070 write 2 2 1 4 0 0 G2

25 37377 4600101C 00000008 write 3 2 1 4 0 0 H2

26 37405 46001000 10000000 read 2 2 0 4 0 0 I2

27 37412 60001000 10000000 read 2 2 0 0 0 0 I3

28 37417 10800010 10000000 write 2 2 0 0 0 1

Listing 5.9: Burst write handling without individual transfer response. Coresponding transactions
grouped with same letter.

59

Implementation and Testing

Burst Read

Burst reads are more complicated to handle than burst writes without responses. The same setup
as in the previous test for burst writes is used. In line 5 of Listing 5.10, the abstraction slave
accepts the request by responding with a SPLIT to MST 5 and forwarding the request, which is
executed by MST 4 in the next four lines. Also, the LEON3 (MST 0) is performing a single read
request, which is SPLIT in line 10. The request is also forwarded, while the first request from the
burst access is returned and served. After the 4th transfer, the master continues to finish his eight
transfers, but is SPLIT again at the 5th transfer. Meanwhile, the read request from LEON3 has
returned in line 17. This response shows, that the abstraction slave can handle multiple SPLIT
at the same time.

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 37067 50 A00000 80000000 write 2 2 0 0 0 0

3 37079 40004040 10800010 read 2 2 1 0 0 0

4 --

5 37088 60001000 00000000 read 2 2 1 5 0 3 A1

6 37101 46001000 10000000 read 2 2 1 4 0 0 A2

7 37102 46001004 02000000 read 3 2 1 4 0 0 B1

8 37103 46001008 00300000 read 3 2 1 4 0 0 C1

9 37104 4600100C 00040000 read 3 2 1 4 0 0 D1

10 37107 60001000 00000000 read 2 2 0 0 0 3

11 37120 46001000 10000000 read 2 2 0 4 0 0

12 37121 60001000 10000000 read 2 2 1 5 0 0 A3

13 37122 60001004 02000000 read 3 2 1 5 0 0 B2

14 37123 60001008 00300000 read 3 2 1 5 0 0 C2

15 37124 6000100C 00040000 read 3 2 1 5 0 0 D2

16 37126 60001010 00000000 read 3 2 1 5 0 3 E1

17 37128 60001000 10000000 read 2 2 0 0 0 0

18 37139 46001010 00005000 read 2 2 1 4 0 0 E2

19 37140 46001014 00000600 read 3 2 1 4 0 0 F1

20 37141 46001018 00000070 read 3 2 1 4 0 0 G1

21 37142 4600101C 00000008 read 3 2 1 4 0 0 H1

22 37145 60001000 00000000 read 2 2 0 0 0 3

23 37158 46001000 10000000 read 2 2 0 4 0 0

24 37159 60001010 00005000 read 2 2 1 5 0 0 E3

25 37160 60001014 00000600 read 3 2 1 5 0 0 F2

26 37161 60001018 00000070 read 3 2 1 5 0 0 G2

27 37162 6000101C 00000008 read 3 2 1 5 0 0 H2

28 37165 60001000 10000000 read 2 2 0 0 0 0

29 37170 10800010 10000000 write 2 2 0 0 0 1

Listing 5.10: Burst read handling of the Gateway. Coresponding transactions grouped with same letter.

Burst Write with response

Final test setup for the abstraction slave and abstraction master is the burst write with response.
After each write, the abstraction slave responds with a SPLIT and waits until MST 4 returns an

60

Implementation and Testing

AHB Response Packet with the AHB response in Listing 5.11. The write request is repeated
again, but this time the abstraction slave returns HRESP and accepts the next transfer in the
burst and SPLIT again. Mixed in between, is a read from LEON3 MST 0 in line 19, executed by
MST 4 in line 21 and returned to the LEON3 in line 24.

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 37371 50 A00000 80008000 write 2 2 0 0 0 0

3 37382 400019 C0 C2004000 read 2 2 1 0 0 0

4 --

5 37389 400019 DC 96102000 read 3 2 1 0 0 0

6 37391 60001000 00000000 write 2 2 1 5 0 3 A1

7 37408 40004060 10800010 read 2 2 1 0 0 0

8 --

9 37415 4000407C 400044 F4 read 3 2 1 0 0 0

10 37416 46001000 10000000 write 2 2 0 4 0 0 A2

11 --

12 37451 60001000 10000000 write 2 2 1 5 0 0 A3

13 37453 60001004 00000000 write 3 2 1 5 0 3 B1

14 37456 60001000 00000000 read 2 2 0 0 0 3

15 37459 46001004 02000000 write 2 2 0 4 0 0 B2

16 37479 46001000 10000000 read 2 2 0 4 0 0

17 37481 60001004 02000000 write 2 2 1 5 0 0 B3

18 37483 60001008 00000000 write 3 2 1 5 0 3 C1

19 37486 60001000 10000000 read 2 2 0 0 0 0

20 37488 46001008 00300000 write 2 2 0 4 0 0 C2

21 37492 10800010 10000000 write 2 2 0 0 0 1

Listing 5.11: Burst write handling with individual transfer response. Coresponding transactions grouped
with same letter.

Remote Configuration

All the features regarding the abstraction master and abstraction slave have been tested and doc-
umented. The last module to be proven is the control unit. Here only the remote configuration is
documented, because it is a remotely triggered automatic configuration. Unfortunately, the AHB
monitor buffer was not long enough in Listing 5.12 to trace the access to G1RTBASE, but it shows
the access to G1RTCTRL in line 3, which sends the Configuration Request Packet. After that, the
configuration is performed with five accesses. The first one in line 7, is a SINGLE read of the
page mask. The other 4 are bursts, fetching the entries of the table. Figure 5.13 shows how the
Gateways are communicating with each other. After finishing the configuration, the registers of
the configured control unit, where the page table entries are stored, are accessed by the LEON3
to verify the configuration. This is happening in line 29 and 34 to 38 in Listing 5.12. In line 39,
the remote configuration register of the other Gateway is checked, to verify the reception of the
Configuration Response Packet. This can be seen because Bit 31 is cleared and Bit 30 is set.

61

Implementation and Testing

1 TIME ADDRESS D[31:0] TYPE TRANS SIZE BURST MST LOCK RESP

2 36207 4000403C C0A0002C read 3 2 1 0 0 0

3 36213 70 A00010 84000000 write 2 2 0 0 0 0

4 36225 400019 E0 07100010 read 2 2 1 0 0 0

5 --

6 36232 400019 FC D8030000 read 3 2 1 0 0 0

7 36242 40800400 FFFFF000 read 2 2 0 3 0 0

8 36252 40004080 46001000 read 2 2 1 0 0 0

9 --

10 36259 4000409C 00000000 read 3 2 1 0 0 0

11 36272 40800404 FFFFFFFF read 2 2 1 3 0 0

12 36273 40800408 47000000 read 3 2 1 3 0 0

13 36274 4080040C FFFFFFFF read 3 2 1 3 0 0

14 36275 40800410 FFFFFFFF read 3 2 1 3 0 0

15 36286 40004040 C0A00030 read 2 2 1 0 0 0

16 --

17 36293 4000405C 50000018 read 3 2 1 0 0 0

18 36303 40800414 FFFFFFFF read 2 2 1 3 0 0

19 36304 40800418 FFFFFFFF read 3 2 1 3 0 0

20 36305 4080041C FFFFFFFF read 3 2 1 3 0 0

21 36315 40800420 FFFFFFFF read 3 2 1 3 0 0

22 36326 40001 A00 DA034000 read 2 2 1 0 0 0

23 --

24 36333 40001 A1C 81 E80000 read 3 2 1 0 0 0

25 36343 40800424 FFFFFFFF read 2 2 1 3 0 0

26 36344 40800428 FFFFFFFF read 3 2 1 3 0 0

27 36345 4080042C FFFFFFFF read 3 2 1 3 0 0

28 36346 40800430 FFFFFFFF read 3 2 1 3 0 0

29 36348 C0A00020 FFFF0000 read 2 2 0 0 0 0 *

30 36359 40800434 FFFFFFFF read 2 2 1 3 0 0

31 36360 40800438 FFFFFFFF read 3 2 1 3 0 0

32 36361 4080043C FFFFFFFF read 3 2 1 3 0 0

33 36371 40800440 FFFFFFFF read 3 2 1 3 0 0

34 36373 C0A00024 FFFFFFFF read 2 2 0 0 0 0 *

35 36377 C0A00028 47000000 read 2 2 0 0 0 0 *

36 36381 C0A0002C FFFFFFFF read 2 2 0 0 0 0 *

37 36385 C0A00030 FFFFFFFF read 2 2 0 0 0 0 *

38 36389 C0A00000 00640000 read 2 2 0 0 0 0

39 36393 70 A00010 44000000 read 2 2 0 0 0 0

40 36398 10800010 0000007F write 2 2 0 0 0 1

Listing 5.12: Remote Configuration procedure of the Gateways. Transactions with asterisk verify table
has been loaded.

62

6 Conclusion

This work has presented a novel virtualization scheme for Network-on-Chip (NoC) based System-
on-Chip, to meet the reconfigurable architecture requirement of a Cyberphysical System-on-
Chip (CPSoC). This virtualization scheme introduced a second virtualization layer between the
processor and the hardware, by embedding it into the Network-on-Chip interconnect of the design.
At the current state, the developed layer is just two endpoints put together to a bridge with
memory management capabilities. The defined interfaces should allow to integrate the NoC
easily into the bridge and turn the NoC into virtualization layer with multiple entry/exit ports.
Then it can also be seen as a Multi-Layer AMBA AHB (Advanced High-Performance Bus) bus,
mentioned in chapter 2.2.1, with virtualization capabilities. Therefore, when compared to the
matrix in Figure 2.5, each entry point into the virtualization layer, can be configured to a set of
permitted or denied connections to individual slaves on the entire chip. These logical connections,
partition the underlying architecture into multiple logical architectures, for various applications
or operating systems, which run simultaneously and use the partitioned hardware as shown in
Figure 6.1.

CPU#1
Appl1

CPU#4

Hypervisor
CPU#3

Appl2
CPU#2

Appl2

GPUCryptographic
CoreEthernet

Network-on-Chip & Virtualization

Figure 6.1: Hardware partioning example with a Hypervisor controlling the environment.

Basic configuration methods were implemented to manage the virtualization layer. The per-
formed tests demonstrated, that the implemented controller and the NoC protocol, are capable
of configuration over NoC and tunneling AHB requests over the NoC. It was also shown, that

63

the controller can handle any incoming AHB requests from the LEON3. The modularity and
the interface definition between the modules should enable flexibility and reduce complexity for
further research into different topics regarding the CPSoC. These topics could be

• interrupt forwarding with Message Signal Interrupts

• dynamic page table handling

• security features to protect the virtualization layer

• monitoring capabilities for NoC and underlying hardware

and more. Interrupt forwarding is necessary, in order to forward an interrupt of a resource to
the correct CPU in Figure 6.1. Dynamic page table handling can be useful to reconfigure the
architecture during runtime. Security features would be necessary, as currently all endpoints
can configure other endpoints at any time. Monitoring capabilities could prove valuable for
the hypervisor to have access to network load data from the endpoints and information on the
condition of the underlying substrate of a cluster. The mentioned functionalities should display
the potential of the CPSoC, and this work should provide a starting point for future research on
the topic.

Literature

[AH10] Aguiar, A. ; Hessel, F.: Embedded systems’ virtualization: The next challenge?
In: Proceedings of 2010 21st IEEE International Symposium on Rapid System Protyp-
ing, 2010. – ISSN 2150–5500, S. 1–7

[AIS09] Argawal, Ankur ; Iskander, Cyril ; Shankar, Ravi: Survey of Network on Chip
(NoC) Architectures & Contributions. In: Journal of Engineering, Computing and
Architecture Bd. 3, 2009

[AMSH12] Aguiar, A. ; Moratelli, C. ; Sartori, M. L. L. ; Hessel, F.: Hardware-assisted
virtualization targeting MIPS-based SoCs. In: 2012 23rd IEEE International Sym-
posium on Rapid System Prototyping (RSP), 2012. – ISSN 2150–5500, S. 2–8

[ARM99] ARM Limited: AMBA Specification (Rev. 2.0). May 1999
[Bie14] Biedermann, Alexander: Design Concepts for a Virtualizable Embedded MPSoC

Architecture. Springer Vieweg, 2014
[Cob16] Cobham Gaisler: GRLIB IP Core User’s Manual. Version 1.5.0. January 2016
[FL11] Flynn, Michael J. ; Luk, Wayne: Computer System Design: System-on-Chip. John

Wiley & Sons Inc., 2011
[GPP+14] Grammatikakis, M. D. ; Papadimitriou, K. ; Petrakis, P. ; Papagrigoriou, A.

; Kornaros, G. ; Christoforakis, I. ; Coppola, M.: Security Effectiveness and
a Hardware Firewall for MPSoCs. In: High Performance Computing and Commu-
nications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE
11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), 2014 IEEE Intl
Conf on, 2014, S. 1032–1039

[Gwe14] Gwennap, Linley. Microprocessor Report: ThunderX Rattles Server Market.
http://www.cavium.com/pdfFiles/ThunderX Rattles Server Market.pdf. 2014

[GWHB11] Gohringer, D. ; Werner, S. ; Hubner, M. ; Becker, J.: RAMPSoCVM: Runtime
Support and Hardware Virtualization for a Runtime Adaptive MPSoC. In: 2011
21st International Conference on Field Programmable Logic and Applications, 2011.
– ISSN 1946–147X, S. 181–184

[IBM] IBM Corperation: 32-bit Processor Local Bus Specification. 2.9
[KGC12] Kornaros, G. ; Grammatikakis, M. D. ; Coppola, M.: Towards Full Virtualiza-

tion of Heterogeneous NoC-based Multicore Embedded Architectures. In: Compu-
tational Science and Engineering (CSE), 2012 IEEE 15th International Conference
on, 2012, S. 345–352

[KKW+15] Karimi, Naghmeh ; Kanuparthi, Arun K. ; Wang, Xueyang ; Sinanoglu, Ozgur ;
Karri, Ramesh: MAGIC: Malicious Aging in Circuits/Cores. In: ACM Transactions
on Architecture and Code Optimization, Bd. 12, 2015

65

LITERATURE LITERATURE

[KV12] Kliem, D. ; Voigt, S. O.: A multi-core FPGA-based SoC architecture with domain
segregation. In: 2012 International Conference on Reconfigurable Computing and
FPGAs, 2012. – ISSN 2325–6532, S. 1–7

[KV13] Kliem, D. ; Voigt, S. O.: An asynchronous bus bridge for partitioned multi-
soc architectures on FPGAs. In: 2013 23rd International Conference on Field pro-
grammable Logic and Applications, 2013. – ISSN 1946–147X, S. 1–4

[Mar05] Martin, P.: Design of a virtual component neutral network-on-chip transaction
layer. In: Design, Automation and Test in Europe, 2005. – ISSN 1530–1591, S.
336–337 Vol. 1

[MIM+13] Muench, D. ; Isfort, O. ; Mueller, K. ; Paulitsch, M. ; Herkersdorf, A.:
Hardware-Based I/O Virtualization for Mixed Criticality Real-Time Systems Using
PCIe SR-IOV. In: Computational Science and Engineering (CSE), 2013 IEEE 16th
International Conference on, 2013, S. 706–713

[Moo65] Moore, Gordon E. Cramming More Components onto Integrated Circuits.
http://www.cs.utexas.edu/ fussell/courses/cs352h/papers/moore.pdf. 1965

[MPH15] Münch, D. ; Paulitsch, M. ; Herkersdorf, A.: IOMPU: Spatial Separation
for Hardware-Based I/O Virtualization for Mixed-Criticality Embedded Real-Time
Systems Using Non-transparent Bridges. In: High Performance Computing and Com-
munications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software
and Systems (ICESS), 2015 IEEE 17th International Conference on, 2015, S. 1037–
1044

[MPHH15] Münch, D. ; Paulitsch, M. ; Hanka, O. ; Herkersdorf, A.: MPIOV: Scaling
hardware-based I/O virtualization for mixed-criticality embedded real-time systems
using non transparent bridges to (Multi-Core) multi-processor systems. In: 2015
Design, Automation Test in Europe Conference Exhibition (DATE), 2015. – ISSN
1530–1591, S. 579–584

[Ope] OpenCores: Wishbone. B4
[PD08] Pasricha, Sudeep ; Dutt, Nikil: On-Chip Communication Architectures. Elsevier,

2008
[SDG+15] Sarma, S. ; Dutt, N. ; Gupta, P. ; Venkatasubramanian, N. ; Nicolau,

A.: CyberPhysical-System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with
Cross-Layer Virtual Sensing and Actuation. In: Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), 2015

[SN05] Smith, James E. ; Nair, Ravi: Virtual Machines. Versatile Plattforms for Systems
and Processes. Elsevier, 2005

[Sta09] Stallings, William: Operating Systems: Internals and Design Principles. 6. Pear-
son, 2009

[SWV+09] Strong, A. W. ; Wu, E. Y. ; Vollertsen, R. P. ; Sune, J. ; Rosa, G. L. ;
Sullivan, T. D. ; Rauch, S. E.: Reliability Wearout Mechanisms in Advanced
CMOS Technologies. Wiley-IEEE Press, 2009

[Wan15] Wang, Junschi: Cyber Physical System on Chip (CPSoC) ASIC Specification v2.6
/ Institut of Computertechnik Technology, TU Wien. 2015. – Forschungsbericht

66

	Thesis_Sebastian_Final_v4
	1670_001

