
Cut-Elimination in Functional
Higher-Order Logic

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Logic

eingereicht von

Nika Pona
Matrikelnummer 1527977

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch

Wien, 21. September 2016
Nika Pona Alexander Leitsch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Cut-Elimination in Functional
Higher-Order Logic

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Logic

by

Nika Pona
Registration Number 1527977

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr.phil. Alexander Leitsch

Vienna, 21st September, 2016
Nika Pona Alexander Leitsch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Nika Pona
Sankt-Johann-Gasse 1-5/4/9
1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. September 2016
Nika Pona

v

Kurzfassung

Es ist bekannt, dass kein elementarer Beweis der Schnittelimination für den Sequen-
zenkalkül der Logiken höherer Stufe möglich ist. Das beruht darauf, dass ein solcher
Beweis einen elementaren Beweis der Widerspruchsfreiheit der Peano Arithmetik liefern
würde. Deshalb sind alle Beweise der Schnittelimination für die Logiken höherer Stufe
semantisch (durch die Henkin Semantik) oder teilweise semantisch (durch die Resolution,
CERES). In dieser Diplomarbeit wird eine Teil-Logik der Logik höherer Stufe mit der
Quantifizierung nur über Objekte funktionalen Typs untersucht. Der funktionale Typ
ist jeder Typ der einfachen Typentheorie, der ohne den Typ Boolean definiert ist. Diese
Einschränkung definiert eine Logik mit einer leicht handhabbaren Beweistheorie, die
dennoch einige interessante Eigenschaften der vollen Logik höherer Stufe hat. Zuerst
geben wir Definitionen der Syntax und der Semantik von zwei Versionen der Logik
dieser Art und beweisen die entsprechenden Sätze über Schnittelimination. Einfache
Modifizierungen der Beweise der Schnittelimination für den Sequenzenkalkül der Logik
erster Stufe von Gentzen sind für dieses Ziel hinreichend. Man muss nur die βη-Gleichheit
in den Kalkül integrieren und dann das Argument für die Logik erster Stufe mit Gleich-
heit adaptieren. Beweistheoretisch betrachtet ist diese Logik ähnlicher der Logik erster
Stufe als der Logik höherer Stufe. Das wird klar durch die Übersetzung von Beweisen
der funktionalen Logik höherer Stufe in Beweise der Logik erster Stufe, die in dieser
Diplomarbeit definiert ist. Solche Übersetzungen ermöglichen eine neue Sichtweise von
Skolemizierung und Unifizierung, die beide in der Logik höherer Stufe problematisch sind.
Weiters untersuchen wir die Sematik dieser Logik: wir beweisen ihre Unvollständigkeit
bezüglich der Standardsemantik und geben einen Beweis der Vollständigkeit bezüglich
der verallgemeinerten Semantik, welcher der Methode von Schütte folgt. Dieser Beweis
ist einfacher und eleganter als die Spezifizierung des Beweises des Vollständigkeitssatzes
für die Typentheorie von Henkin; überdies illustriert der Beweis die enge Beziehung der
funktionalen Logik höherer Stufe zur Logik erster Stufe.

vii

Abstract

It is known that there can be no elementary (reductive) proof of cut-elimination for a
sequent calculus of higher-order logic, since this would provide an elementary proof of
consistency of PA. Thus the cut-elimination proofs for higher-order calculi are either
semantic (through Henkin semantics) or semi-semantic (through resolution, CERES). In
this thesis I study a sub-logic of higher-order logic in which quantification is restricted to
objects of functional type only. By functional type I mean all types of simple type theory
without the occurrence of the Boolean type. Such restriction gives rise to a logic that
has a manageable proof-theory and at the same time shares some interesting properties
with full higher-order logic. First, I define syntax and semantics of two variants of such
a logic and give the corresponding cut-elimination proofs. These are easy adaptations
of the Gentzen’s proof for LK: one just has to incorporate βη-equality in the calculus
and then repeat the argument for LK with equality. Thus, logic defined this way is
proof-theoretically closer to LK than to LKω. This becomes obvious by looking at a
proof-preserving translation from functional higher-order proofs to first-order proofs that
is defined in this thesis. In addition, such translation provides a new perspective on
Skolemization and unification, which are both problematic in higher-order logic. Second,
I study semantics of this logic: I show incompleteness wrt standard semantics and give a
completeness proof wrt general semantics based on Schütte’s reduction tree method. This
is a simpler and more elegant way of proving this result than a more obvious specialization
of a Henkin-style completeness proof for full higher-order logic.

ix

Contents

Kurzfassung vii

Abstract ix

Introduction xiii
Structure of the thesis . xv

1 Preliminaries 1
1.1 First-order logic L1 and sequent calculus LK 1
1.2 Functional higher-order logic Lfω and sequent calculus LKfω 8
1.3 Functional higher-order Lfω(C) and sequent calculus LKfω(C) 11
1.4 Higher-order logic Lω and sequent calculus LKω 14

2 Cut-Elimination in First-Order and Higher-Order Logics 17
2.1 The cut-elimination theorem for LK and LKe 17
2.2 Cut-elimination theorem for LKω . 27
2.3 Cut-elimination theorem for LKfω and LKfω(C) 30

3 Standard and General Semantics for Lω and Lfω 33
3.1 Standard and general semantics for Lω . 33
3.2 Standard and general semantics for Lfω . 37
3.3 Higher-order unification and incompleteness of Lfω 42
3.4 Completeness of Lfω wrt general semantics 44

4 Interpreting LKfω proofs as LK proofs 53
4.1 From LKfω proofs to LK proofs . 53
4.2 Translation back: from LK∗ to LKfω . 56
4.3 Skolemization in L1, Lω and Lfω . 57

5 Conclusion 63

Bibliography 65

xi

Introduction

The subject of this thesis lies within proof theory, a subfield of mathematical logic where
mathematical proof is itself studied and analyzed as a mathematical object. In order to
carry out such a study, a precise formulation of the notion of proof is required. Gerhard
Gentzen provided such a formulation in his seminal papers Untersuchung über das logische
Schließen I+II [Gentzen, 1935]: sequent calculus for classical and intuitionistic first-order
logic (LK and LJ respectively). Sequent calculus consists of rules that allow to introduce
logical connectives, as well as rules to manipulate the structure of sequents and a proof.
One of the rules introduces by Gentzen is particularly important, given its intuitive
meaning and further use for establishing meta-theoretic results: the cut rule. This
rule allows one to combine proofs and intuitively it corresponds to using lemmas or
intermediate statements in the proof. Formally, it is the following rule:

∆ ` Λ, A A,Γ ` Π
cut(A)∆,Γ ` Λ,Π

In the most simple form it corresponds to Modus Ponens:

` A A ` B cut(A)` B

The main result of Gentzen’s paper, now known as Hauptsatz or the cut-elimination
theorem, states that any theorem of LK can be proved without the cut rule. In other
words, every first-order theorem has an analytic proof, a proof in which only all the
needed information is already contained in the theorem. This is due to an immediate
consequence of the cut-elimination theorem: all formulae that appear in a cut-free proof of
a theorem are subformulae of the theorem. This is particularly important for automatizing
proof search, since one only has to only look at subformulae of the conclusion when
constructing a proof. Historically, this result was important, since it was used to establish
some important consistency results. Since the proof of the cut-elimination theorem is
constructive (in a sense that it consists of a procedure by which one can transform any

xiii

proof into a cut-free proof) it becomes a tool for proof transformation and analysis, which
is valuable in its own right. Among other consequences of the cut-elimination theorem
that provide methods of extracting additional mathematical information from proofs
[Leitsch, 2015] are the mid-sequent theorem and the interpolation lemma.

Now, if our aim is to analyze real mathematical proofs, Gentzen’s result has limited
applications due to the restricted expressive power of first-order logic. In particular,
typically one would want to establish results not only about the individual objects of
the domain under consideration, but also about collections of such objects and their
properties. In order to achieve this, one would need to go beyond the expressive power
of first-order logic.

From the proof-theoretic point of view, it is straightforward to extend the sequent calculus
LK to more powerful logical calculi, where quantification is allowed on types different
from the individual type. For instance, in second order logic one adds quantification
over sets or the objects of the type i→ o (functions from domain to Booleans), and in
simple type theory, also known as higher-order logic, one permits quantification over all
finite types. Such powerful systems allow for shorter and more natural proofs in most
areas of mathematics, which makes them of great interest in the field of formalizing
mathematics and proof-mining. Incidentally, most proof assistants are based on versions
of higher-order logic [Benzmüller and Miller, 2014].

One can prove the cut-elimination theorem and related results for the corresponding
second- and higher-order sequent calculi. However, due to the high expressive power of the
corresponding logics one cannot use reductive method of Gentzen and has to resort to the
semantic or semi-semantic arguments [Tait, 1966], [Prawitz, 1968], [Girard et al., 1989],
[Danos et al., 1997], [Hetzl et al., 2011]. Moreover, some important consequences of
cut-elimination lose their meaning: subformula property and Herbrand disjunction are
not providing any information when higher-order terms (which can contain lambda
abstractions of formulae (e.g., λy.∀xP (x)∧Q(x)) can be used as substitution terms. This
can be partially avoided if we restrict the terms available for substitution.

Thus it seems interesting to look into some fragments of higher-order logics that have high
expressive power, but nicer proof theoretic properties. Some subsystems of higher-order
logics are well-studied, for instance, monadic second-order logic or predicative higher
order logic (cf. [Leivant, 1994]), but some didn’t get much attention. In this thesis
we are interested in subsystems of higher-order logic with quantification restricted to
objects of functional type, that is functionals over some domain. We will define functional
higher-order logics Lfω and Lfω(C) with quantification restricted to the functional types
and the corresponding calculi LKfω and LKfω(C) .

Functional higher-order logic Lfω has increased expressive power in comparison to first-
order logic. For instance, one can characterize finite structures in Lfω (see chapter 3).
However, LKfω is proof-theoretically less complex than the full second-order sequent
calculus. Since one doesn’t quantify over predicates, the cut-elimination theorem is
readily available for LKfω via Gentzen’s reductive argument similar to the one for LK.

However, there is still more proof-theoretic complexity than in first-order logic: in
particular, the usual Skolemization procedure is not validity-preserving in the presence
of function quantification and thus has to be restricted. Thus this logic provides a good
case study for understanding the sources of proof-theoretic and semantic complexity of
higher-order logics.

Structure of the thesis
In Chapter 1 we provide some basic definitions and notational conventions needed for
the rest of the thesis. We define first- and higher-order logic, as well as two sub-logics we
are considering in this thesis.

In Chapter 2 we present Gentzen’s cut-elimination proof for LK and LK= and extend it
to LKfω and LKfω(C). We also sketch the cut-elimination proof of LKω and the proof
that it implies consistency of second-order Peano Arithmetic.

In Chapter 3 we define standard and general semantics for Lω and Lfω and give a proof
of completeness of Lfω wrt general semantics based on Schütte’s reduction trees method.
This is a modification of the first-order completeness proof, whereas for completeness of
LK(C) one needs a method similar to the one for higher-order logic.

In Chapter 4 we define a translation from LKfω proofs to LK proofs, which makes the
relation between LKfω and LK precise. Moreover, it allows to explain the restrictions
needed for Skolemization in higher-order setting.

To conclude, we summarize the results of this thesis: we syntactically and semantically
characterize functional higher-order logics Lfω and Lfω(C) as extensions of first-order
logic.

CHAPTER 1
Preliminaries

Here we provide the basic definitions and fix the notation needed in the next chapters. In
particular, we define syntax of first-order logic L1, higher-order logic Lω and two functional
higher-order logics Lfω, Lfω(C) and their corresponding sequent calculi LK, LKω and LKfω,
LKfω(C). Here we omit some known definitions and results (e.g., concerning substitutions);
for more details consult [Takeuti, 1987], chapters 1–3. For an overview of meta-theoretic
results related to higher-order logic see [Leivant, 1994], [Benzmüller and Miller, 2014] and
[Van Benthem and Doets, 2001]. The semantics of corresponding logics will be defined
and discussed in Chapter 3.

1.1 First-order logic L1 and sequent calculus LK
Here we present Gentzen’s formulation of the sequent calculus LK as given by [Takeuti, 1987].

1.1.1 First-order logic L1

Definition 1 (First-order language L1). Let FV be a countably infinite set of free
variables, usually denoted by α, β, γ, . . . and BV a countably infinite set of bound variables,
usually denoted by x, y, z, Then a first-order language L1 = (C,F ,P) is defined by:

• Set of constant symbols C; usually denoted by a, b, c, . . .

• Set of function symbols F ; usually denoted by f, g, h, . . .

• Set of predicate symbols P; usually denoted by P,Q,R, . . .

Each function and predicate symbols comes with a natural number n, its arity. Then we
say that it is an n-ary or n-place function or predicate.

1

1. Preliminaries

Then given a first-order language L1 = (C,F ,P) we define the set of first-order logic
terms and the set of first-order logic formulae L1 relative to L1. Usually we assume that
the language is fixed.

Remark 1. The distinction between free and bound variables is vital to proof transfor-
mations like cut-elimination, where whole proofs have to be instantiated.

Terms are defined as usual with the restriction that they may not contain bound variables.

Definition 2 (Semi-term, Term). We define the set of semi-terms inductively:

• bound and free variables are semi-terms,

• constants in C are semi-terms,

• if t1, . . . , tn are semi-terms and f ∈ F is an n-place function symbol then f(t1, . . . , tn)
is a semi-term.

Semi-terms which do not contain bound variables are called terms.

Example 1. f(α, β) is a term. f(x, β) is a semi-term.

Definition 3 (Semi-formula, Formula). We define the set of formulae L1 inductively:

• > and ⊥ are formulas.

• If t1, . . . , tn are terms and P ∈ P is an n-place predicate symbol then P (t1, . . . , tn)
is a an (atomic) formula.

• If A is a formula then ¬A is a formula.

• If A,B are formulas then (A→ B), (A ∧B) and (A ∨B) are formulas.

• If A(α) is a formula containing a free variable α then ∀x.A(x), ∃x.A(x) are formulas
if A(x) is the result of substitution of all occurrences of α in A(α) by x.

Semi-formulas differ from formulas in containing non-bound variables from BV.

Example 2. P (f(α, β)) is a formula, and so is (∀x)P (f(x, β)). P (f(x, β)) is a semi-
formula.

We write A(t1, . . . , tn) to indicate some occurrences of t1, . . . , tn in A and A{x1 :=
t1, . . . , xn := tn} to express thatA(t1, . . . , tn) is obtained from a semi-formulaA(x1, . . . , xn)
by replacing the corresponding variables x1, . . . , xn with terms t1, . . . , tn.

2

1.1. First-order logic L1 and sequent calculus LK

1.1.2 Sequent Calculus LK

Definition 4 (Sequent). Let Γ and ∆ be finite (possibly empty) sequences of formulas.
Then the expression S := Γ ` ∆ is called a sequent. Γ is called the antecedent of S and
∆ the consequent of S.

Definition 5 (Semantics of sequents). Semantically a sequent

S := A1, . . . , An ` B1, . . . , Bm

stands for

F (S) :=
n∧
i=1

Ai →
m∨
j=1

Bj .

In particular we define M to be an interpretation of S if M is an interpretation of F (S).
If n = 0 (i.e. there are no formulas in the antecedent of S) we assign > to

∧n
i=1Ai, if

m = 0 we assign ⊥ to
∨m
j=1Bj. Note that the empty sequent is represented by > → ⊥

which is equivalent to ⊥ and represents falsum. We say that S is true in M if F (S) is
true in M. S is called valid if F (S) is valid.

Now we want to define the notion of proof in terms of sequents. In particular, we define
a proof in sequent calculus as a sequence of inferences according to logical and structural
rules.

Definition 6 (Inference). Let S1, S2, S3 be sequents. Then the structures below are called
inferences:

S1
S2

ξ

S2 is said to be the lower sequent of the inference with the rule ξ, S1 is the upper sequents
of the inference.

S1 S2
S3

ξ

Here S1 and S2 are the upper sequents of the inference, and S3 the lower sequent.

Definition 7 (LK). In sequent calculus there are two groups of rules, the logical and
the structural ones. All rules with the exception of cut have left and right versions;
left versions are denoted by ξL, right versions by ξR. Every logical rule introduces a
logical operator on the left or on the right side of a sequent. Structural rules serve the
purpose of making logical inferences possible (e.g., exchange) or to put proofs together
(cut). A and B denote formulas, Γ,∆,Π,Λ sequences of formulas. In the rules there are
introducing or auxiliary formulas (in the premises) and introduced or principal formulas
in the conclusion.

3

1. Preliminaries

Axioms:

A ` A

for any atomic formula A ∈ L1

The logical rules:

• ∧-introduction:

A,Γ ` ∆
A ∧B,Γ ` ∆ ∧L1

B,Γ ` ∆
A ∧B,Γ ` ∆ ∧L2

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧B ∧R

• ∨-introduction:

A,Γ ` ∆ B,Γ ` ∆
A ∨B,Γ ` ∆ ∨L

Γ ` ∆, A
Γ ` ∆, A ∨B ∨R1

Γ ` ∆, B
Γ ` ∆, A ∨B ∨R2

• →-introduction:

Γ ` ∆, A B,Π ` Λ
A→ B,Γ,Π ` ∆,Λ → L

A,Γ ` ∆, B
Γ ` ∆, A→ B

→ R

• ¬-introduction:
Γ ` ∆, A
¬A,Γ ` ∆ ¬L

A,Γ ` ∆
Γ ` ∆,¬A ¬R

• ∀-introduction:
A{x := t},Γ ` ∆
∀x.A,Γ ` ∆ ∀L

where t is an arbitrary term replaced with x in the lower sequent.

Γ ` ∆, A{x := α}
Γ ` ∆,∀x.A ∀R

where α is a free variable which may not occur in Γ,∆, A. α is called an eigenvari-
able.

• ∃-introduction

A{x := α},Γ ` ∆
∃x.A,Γ ` ∆ ∃L

Γ ` ∆, A{x := t}
Γ ` ∆, ∃x.A ∃R

with the same conditions for t and α as for ∀ rules.

4

1.1. First-order logic L1 and sequent calculus LK

The structural rules:

• Exchange

Γ ` ∆1, B,A,∆2
Γ ` ∆1, A,B,∆2

ExR
Γ1, B,A,Γ2 ` ∆
Γ1, A,B,Γ2 ` ∆ ExL

• Weakening:
Γ ` ∆

Γ ` ∆, A WeakR
Γ ` ∆
A,Γ ` ∆ WeakL

• Contraction:
A,A,Γ ` ∆
A,Γ ` ∆ ContrL

Γ ` ∆, A,A
Γ ` ∆, A ContrR

• The cut rule:

Γ ` ∆, A A,Π ` Λ
Γ,Π ` ∆,Λ cut(A)

The formula A is the auxiliary formula of cut(A) and there is no principal formula.
A is called the cut-formula.

Definition 8 (LKe). To LK add the following rules in order to obtain the calculus for
first-order logic with equality:

Equality rules:

Γ ` ∆, s = t Γ ` ∆, A(s)
= R1Γ ` ∆, A(t)

Γ ` ∆, t = s Γ ` ∆, A(s)
= R2Γ ` ∆, A(t)

Γ ` ∆, s = t Γ, A(s) ` ∆
= L1Γ, A(t) ` ∆

Γ ` ∆, t = s Γ, A(s) ` ∆
= L2Γ, A(t) ` ∆

Alternatively, one may define LKe by adding to LK the following axioms:

5

1. Preliminaries

Axioms of LKe

` t = t

s1 = t1, . . . , sn = tn ` f(s1, . . . , sn) = f(t1, . . . , tn)

s1 = t1, . . . , sn = tn, P (s1, . . . , sn) ` P (t1, . . . , tn)

for all terms t, s1, . . . , sn, t1, . . . , tn, function symbols f ∈ F and predicate symbols P ∈ P
of L1.

Proposition 1. Let A(s1, . . . , sn) be an arbitrary formula. Then:

s1 = t1, . . . , sn = tn, A(s1, . . . , sn) ` A(t1, . . . , tn)

for all terms s1, . . . , sn, t1, . . . , tn.

Proof. By induction on the complexity of the formula A(s1, . . . , sn).

Base: A(s1, . . . , sn) atomic. Then we have:

s1 = t1, . . . , sn = tn, P (s1, . . . , sn) ` P (t1, . . . , tn)

which is an axiom.

Induction Step: Consider cases ∧ and ∀, other are analogous.

Case ∀

Assume A(s1, . . . , sn) = ∀x.B(s1, . . . , sn). Since s1, . . . , sn are terms, x doesn’t occur in
any of si. Below I use si = ti as a shortcut for s1 = t1, . . . , sn = tn.

By induction hypothesis we have a proof fo s1 = t1, . . . , sn = tn, B(α, s1, . . . , sn) `
B(α, t1, . . . , tn), with α not occurring in s1, . . . , sn, t1, . . . , tn. We get the proof of si =
ti, ∀x.B(s1, . . . , sn) ` ∀x.B(t1, . . . , tn) by ∀L and ∀R application (see next page).

Case ∧

By induction hypothesis we have s1 = t1, . . . , sn = tn, B(s1, . . . , sn) ` B(t1, . . . , tn) and
s1 = t1, . . . , sn = tn, C(s1, . . . , sn) ` C(t1, . . . , tn), from which by weakenings and ∧R
and ∧L we get the desired result.

6

1.1.
First-order

logic
L

1
and

sequent
calculus

L
K

Case ∀

...
I.H.

si = ti, B(s1, . . . , sn){x := α} ` B(t1, . . . , tn){x := α}
∀L

si = ti, ∀x.B(s1, . . . , sn) ` B(t1, . . . , tn){x := α}
∀R

si = ti,∀x.B(s1, . . . , sn) ` ∀x.B(t1, . . . , tn)

Case ∧

...
I.H.

si = ti, B(s1, . . . , sn) ` B(t1, . . . , tn)
WeakL

si = ti, B(s1, . . . , sn), C(s1, . . . , sn) ` B(t1, . . . , tn)

...
I.H.

si = ti, C(s1, . . . , sn) ` C(t1, . . . , tn)
WeakL

si = ti, B(s1, . . . , sn), C(s1, . . . , sn) ` C(t1, . . . , tn)
∧R

si = ti, B(s1, . . . , sn), C(s1, . . . , sn) ` (B ∧ C)(t1, . . . , tn)
∧L

si = ti, (B ∧ C)(s1, . . . , sn) ` (B ∧ C)(t1, . . . , tn)

7

1. Preliminaries

Proposition 2. Symmetry and transitivity of equality are provable in LKe:

• s = t ` t = s (Symmetry)

• s1 = s2, s2 = s3 ` s1 = s3 (Transitivity)

Proof. Consider the following derivations:

[Symmetry]

` s = s

Axiom instance: s = t, s = s ` t = s
ExL

s = s, s = t ` t = s
cut(s = s)

s = t ` t = s

[Transitivity]
Symmetry:

s1 = s2 ` s2 = s1 Axiom instance: s2 = s1, s2 = s3 ` s1 = s3 cut(s2 = s1)
s1 = s2, s2 = s3 ` s1 = s3

Note that we need atomic cuts in both proofs.

In this thesis we are interested in more expressible logics where one is allowed to quantify
not only over individuals. Although such a logic can be viewed as a restriction of higher-
order logic such that quantification is allowed only over the objects of functional type, it
is more convenient to define it as an extension of first-order logic, thus we first provide
definitions of basic functional higher-order logic Lfω and Church functional higher-order
logic Lfω(C) and then full higher-order logic.

1.2 Functional higher-order logic Lfω and sequent calculus
LKfω

Here we define the functional higher-order logic Lfω and the corresponding sequent calculus
LKfω. Intuitively, Lfω is a logic where one can quantify over functions and functionals
(functions of higher order). First, we need a way to distinguish the objects of different
type or order. Define functional types:

Definition 9 (Functional types F). The set of higher-order functional types F is the
smallest set such that:

• i ∈ F (individual type);

8

1.2. Functional higher-order logic Lfω and sequent calculus LKfω

• τ → σ ∈ F if τ, σ ∈ F.

Definition 10 (Functional higher-order language Lfω). Let FVω be a countably infinite
set of typed free variables, usually denoted by ατ , βτ , γτ , . . . and BV a countably infinite
set of typed free variables, usually denoted by xτ , yτ , zτ , . . ., for each functional type τ ∈ F.
Then a functional higher-order language Lfω = (Cω,P) is defined by:

• Set of typed constant symbols Cω; usually denoted by aτ1 , bτ2 , cτ3 , . . . for τ1, τ2, τ3, . . . ∈
F

• Set of untyped predicate symbols P; usually denoted by P,Q,R, . . .

Then given a first-order language Lfω = (Cω,P) we define the set of functional higher-order
logic terms and the set of functional higher-order logic formulae Lfω relative to Lfω. As in
the case of first-order logic, we assume that the language is fixed.

Definition 11 (Pre-term). Pre-terms T of Lfω are defined inductively:

• ατ is a pre-term if ατ ∈ FVω

• cτ is a pre-term if cτ ∈ Cω

• tτ1→...→τn(tτ1
1 , . . . , t

τn−1
n−1) is a pre-term of type τn if tτ1→...→τn , tτ1

1 , . . . , t
τn−1
n−1 are pre-

terms of corresponding types

Definition 12 (Term). A pre-term tτ is called a term if τ = i.

Definition 13 (Semi-term). A semi-pre-term is defined as pre-terms, with addition of
the clause:

xτ is a pre-semi-term if xτ ∈ BVω
Then a semi-term is any semi-pre-term of type i.

Definition 14 (Semi-formulae, formulae). Formulae are defined in the usual way using
the notion of the term defined above:

• P (t1, . . . , tn) is a formula, if t1, . . . , tn are terms

• For →,¬,∧,∨ as usual

• If A(ατ) is a formula containing a free variable ατ then ∀xτ .A(xτ),∃xτ .A(xτ) are
formulas if A(xτ) is the result of substitution of all occurrences of ατ in A(ατ) by
xτ ∈ BVω.

Then semi-formulas Lfω are defined as formulae, but they can contain bound variables x
that do not occur in any ∀x or ∃x.

9

1. Preliminaries

Definition 15 (Order of a type). The order of a type τ , O(τ):

• O(i) = 0

• O(τ → σ) = max[O(τ) + 1,O(σ)]

Definition 16 (Order of a term). The order of a term tτ :

O(tτ) = max{O(σ) ; sσ is a subterm of t}

Example 3. F (i→i)→(i→i) is a second-order term of a second-order type, Fgi→i is a
second-order term of first-order type i→ i; (Fg)xi is a second-order term of the zero-order
(individual) type i; g(x) is a first-order term of individual type.

Thus, terms to which a predicate is applied in a formula can be of any order but only of
the individual type. Below I’ll omit the type superscripts if they are redundant.

Example 4. Given F (i→i)→(i→i), gi→i ∈ Fω, P ((Fg)xi) is a semi-formula and ∀xi.P ((Fg)x)
is a formula.

Definition 17 (Sequent Calculus LKfω). To obtain LKfω in the sequent calculus LK
replace the quantifier rules with the following rules:

Γ, A{xτ := T} ` ∆
∀LΓ, ∀xτ .A ` ∆

Γ ` ∆, A{xτ := T}
∃RΓ ` ∆,∃xτ .A

where T is any pre-term of type τ replaced with xτ in the lower sequent. Sometimes we
will add subscript to the rule to emphasize that the functional quantification rule was
used.

Γ ` ∆, A{x := ατ} ∀fRΓ ` ∆,∀xτ .A

Γ, A{x := ατ} ` ∆ ∃fLΓ,∃xτ .A ` ∆

with ατ ∈ FVω not occurring in Γ,∆, A(xτ). It is called an eigenvariable.

10

1.3. Functional higher-order Lfω(C) and sequent calculus LKfω(C)

Remember that the idea was to extend L1 in a way that one could quantify over
functions and functionals and define a corresponding calculus. With this calculus LKfω
we added a possibility to derive formulae that express theorems involving quantification
over functionals. However, the question is whether the resulting logic has the desired
expressive power. In particular, we are interested in the following:

Definition 18 (Functional Comprehension). For t any pre-term of Lfω:

` ∃f∀x1 . . . ∀xn[f(x1, . . . , xn) = t(x1, . . . , xn)]

is a functional comprehension formula.

This formula is derivable in LKfω, which means that we are at least quantifying over
the functions defined by the terms of Lfω. These, however, are quite limited: in terms
of lambda-calculus (see below), we just have applications of constants. Consider, for
instance, A = ∃f.f(x) = x. There is no proof in LKfω of A. However, semantically it
should be true, since the identity function should be available as one of the functions we
quantify over. Thus we want to make the term language more expressible, so that we
quantify over all meaningful functionals, here, all functional terms of simple type theory.
All this will be made precise in the following chapters where we define semantics for these
logics.

1.3 Functional higher-order Lfω(C) and sequent calculus
LKfω(C)

Now we extend the term language to the functional fragment of simple type theory by
allowing to form terms by abstraction and allowing beta-reduction in the derivation.

Definition 19 (Lambda terms). The set of simply-typed lambda terms, denoted Λ, is
built up from a countably infinite set of simply typed constants Cω and variables Vω by
the following rules:

1. If xτ ∈ Cω or xτ ∈ Vω , then xτ ∈ Λ.

2. If Mσ→τ , Nσ ∈ Λ, then (MN)τ ∈ Λ.

3. If xσ ∈ Vω and M τ ∈ Λ, then (λxσM)σ→τ ∈ Λ.

The notions of free and bound variables are defined as usual (with λ being the only binder).

Definition 20 (β-reduction). The rule of β-reduction is (λx.M)N →β M [x := N] and
λx.M is called a β-redex of (λx.M)N . A term which does not contain a β-redex is said
to be in β-normal form.

11

1. Preliminaries

To define the extended language Lfω(C) we take all simply typed lambda terms over Lfω;
that is, all simply typed terms with types restricted to F.

Definition 21 (Pre-term). Let T be pre-terms of Lfω. Then Church pre-terms T (C) of
a language Lfω are define in the following way:

• if t ∈ T then t ∈ T (C)

• if xτ ∈ BVω and tσ ∈ T (C), then (λx.t)τ→σ ∈ T (C)

Terms and formulae defined in the same way as for Lfω. Note that now terms can contain
bound variables, however, only λ-bound.

To make use of the λ-terms we need the corresponding rules. Consider the functional
comprehension again:

Definition 22 (Functional Comprehension). For t any pre-term of Lfω(C):

` ∃f∀x1 . . . ∀xn[f(x1, . . . , xn) = t(x1, . . . , xn)]

is a functional comprehension formula.

In this form it will not help us deriving ` ∃f.f(x) = x, since for no term t(x) = x. If we
incorporate β-equality, then it is a direct consequence of the functional comprehension:

` ` ∃f∀x[f(x) = (λz.z)(x))] ∃fR, β-reduction` ∃f∀x.f(x) = x

Definition 23 (LKfω(C) via β-reduction). To obtain sequent calculus LKfω(C) to the
rules of LKfω one could add the following rules:

Γ ` ∆, A(T)
βR

Γ ` ∆, A(T′)

Γ, A(T) ` ∆
βL

Γ, A(T′) ` ∆

if T β T′ (if T in some steps β-reduces to T′).

12

1.3. Functional higher-order Lfω(C) and sequent calculus LKfω(C)

Example 5.
` (λz.z)x = (λz.z)x

βR
` (λz.z)x = x ∃fR` ∃f.f(x) = x

Alternatively one could incorporate β-reduction via addition of equality axioms: whenever
T β T′, add T = T′ as an axiom to LKe. Note that we have to treat the equality
predicate differently now: it can apply to pre-terms as well as terms. Formally we define
this by adding to the language a symbol =τ for each τ ∈ F. Then we redefine the notion
of formula:

Definition 24 (Formulae of Lfω(C)). Intuitively, we allow s =τ t as atoms:

• for every predicate symbol P other than =τ for each τ ∈ F, P (t1, . . . , tn) is a
formula if t1, . . . , tn are terms (that is, pre-terms of type i)

• For =τ for each τ ∈ F, s =τ t is a formula if s and t are pre-terms of type τ .

• Then the definition is as before.

Then we add the equality axioms to LKfω for each =τ and get LKfω(C). We will use the
following calculus in this thesis.

Definition 25 (Sequent Calculus LKfω(C)). Take the rules of LKfω and:

• ` t =τ t, for all pre-terms t of Lfω of type τ ;

• ` s =τ t, for all pre-terms s, t of Lfω of type τ such that s β t;

• s1 =τ1 t1, . . . , sn =τn tn ` f(s1, . . . , sn) = f(t1, . . . , tn), for all pre-terms s1, . . . , sn, t1, . . . , tn
and functional symbols f ∈ Cω of corresponding types;

• s1 =τ1 t1, . . . , sn =τn tn, P (s1, . . . , sn) ` P (t1, . . . , tn), for all pre-terms s1, . . . , sn, t1, . . . , tn
and predicate symbols P ∈ P of corresponding types.

Proposition 3. Let A(s1, . . . , sn) be an arbitrary formula. Then:

s1 =τ1 t1, . . . , sn =τn tn, A(s1, . . . , sn) ` A(t1, . . . , tn)

for all pre-terms s1, . . . , sn, t1, . . . , tn of corresponding types.

Proof. As for simple equality =.

Proposition 4. Symmetry and transitivity of equality are provable from the above axioms:

13

1. Preliminaries

• s =τ t ` t =τ s

• s1 =τ s2, s2 =τ s3 ` s1 =τ s3

Proof. As for simple equality =.

Example 6.
` (λz.z)x =i x (β-axiom) ∃fR` ∃f.f(x) =i x

From this point of view, extending the term language to other type systems (system T,
for instance) means adding additional equation axioms.

1.4 Higher-order logic Lω and sequent calculus LKω
Here we define the set of higher-order logic formulae Lω.

Definition 26 (Higher-order types T). Define the set of higher-order types T:

1. i, o ∈ T, (individual and boolean types)

2. τ → σ ∈ T, if τ, σ ∈ T.

The difference with functional type F is that we have two base types: individual and
boolean. This gives us a possibility to quantify over objects other than functionals. For
instance, sets (objects of type i→ o) or formulae (objects of type o).

Then the terms of Lω are all simply typed lambda-terms. The formulae of Lω are all simply
typed lambda-terms of type o given some simply-typed language Lω = (Cω,→o→o→o

,∀(τ→o)→o
τ), where Cω are any typed constants and → and ∀ are distinguished logical

constants. If in the above one replaces ∀τ with ∀in we get the second-order logic L2. We
also distinguish between free variables ατ , βσ, . . . and bound variables xτ , yσ, Then
∀xτ .A is a shortcut for ∀τλxτ .A.

As a sub-system of higher-order logic Lω, we could have defined Lfω as all simply typed
terms of type o, with all sub-pre-terms other than logical connectives restricted to types
in F ∪ {i→ o}.

Definition 27 (LKω). LKω is LK with the following quantifier rules:

• ∀-introduction:
A(T),Γ ` ∆

∀xτ .A(xτ),Γ ` ∆ ∀L

14

1.4. Higher-order logic Lω and sequent calculus LKω

where T is an arbitrary simply-typed term of type τ .
Γ ` ∆, A(ατ)

Γ ` ∆,∀xτ .A(xτ) ∀R

where ατ is a free variable which may not occur in Γ,∆, A(xτ). ατ is called the
eigenvariable of this inference.

• ∃-introduction
A(ατ),Γ ` ∆
∃xτ .A(xτ),Γ ` ∆ ∃L

Γ ` ∆, A(T)
Γ ` ∆, ∃xτ .A(xτ) ∃R

Example 7.
Γ2, P (β) ∧Q(β) ` ∆2 ∀-L
Γ2, ∀xi→o.x(β) ` ∆2

It can be rewritten in the following way:

Γ2, x{xi→o := λyi.P (y) ∧Q(y)}(β) ` ∆2 ∀-L
Γ2, ∀xi→o.x(β) ` ∆2

Thus we identify βη-equal terms; sometimes we will explicitly mention this fact. We will
perform the β-abstraction and expansion implicitly, for simplicity. That is, we identify
P (β) ∧Q(β) and (λy.P (y) ∧Q(y))(β), or derive the latter from the former by “β-rule”.

Alternatively, one could obtain the sequent calculus LKω by adding to LK the compre-
hension axiom schema:

Definition 28 (Comprehension Schema).

` ∀−→z ∃Xτ∀−→y [Xτ (−→y)↔ A(−→y ,−→z)]

for A any formula in Lω with all free variables replaced by −→y ,−→z , and τ corresponding
to the term [λ−→u .A(−→u ,−→z)]τ (−→y) =β A(−→y ,−→z)

Note that the schema is derivable in LKω in the following way:

...
` ∀−→y [A(−→y ,−→α)↔ A(−→y ,−→α)]

βη-expansion
` ∀−→y [(λ−→z .A(−→z ,−→α))(−→y)↔ A(−→y ,−→α)]

∃R` ∃Xτ∀−→y [Xτ (−→y)↔ A(−→y ,−→α)]
∀R... ∀R` ∀−→z ∃Xτ∀−→y [Xτ (−→y)↔ A(−→y ,−→z)]

15

CHAPTER 2
Cut-Elimination in First-Order

and Higher-Order Logics

2.1 The cut-elimination theorem for LK and LKe
Here I describe the reductive proof of cut-elimination for LK and LKe. This is a form of
the original Gentzen’s proof. Later we will see that for LKfω we can use a very similar
argument, although in general it is not possible to give a reductive cut-elimination
proof for higher-order sequent calculus. For the detailed description of the proof see
[Takeuti, 1987], Chapter 1.

Theorem 1. Every LK-proof of S can be transformed into a cut-free proof of S.

First of all, introduce a rule equivalent to cut, called mix :

Definition 29 (Mix rule). Assume that ∆2,Λ1 contain at least one occurrence of A:

∆1 ` Λ1 ∆2 ` Λ2 mix(A)∆1,∆∗2 ` Λ∗1,Λ2

where ∆∗2,Λ∗1 are obtained from ∆2,Λ1 by removing all occurrences of A. A is called a
mix formula.

It is easy to see that in LK this rule is equivalent to cut. From now on by LK we mean
LK with the mix rule instead of the cut rule.

Proof of Theorem 2. Below we show that if a proof of S contains just one mix as the
last inference, then this mix can be eliminated. Then, by induction, we can remove all of
mixes in any proof and therefore obtain a cut-free proof of S.

17

2. Cut-Elimination in First-Order and Higher-Order Logics

Theorem 2 (Cut-elimination for LK). If an LK-proof of S contains one mix as the last
inference, then there is an LK-proof of S without mix.

The proof is done by double induction on grade and rank of the proof determined by the
unique mix we are trying to remove. Let P be a proof of S that contains only one mix
as the last inference. Define:

Definition 30 (Grade). Grade of the proof:

• Grade of the formula A is the number of occurrences of logical connectives in A.

• Grade of a mix is the grade of the corresponding mix formula.

• Grade of the proof Grade(P) is the grade of the mix.

By assumption the last inference of P has the following form:

S1︷ ︸︸ ︷
∆1 ` Λ1

S2︷ ︸︸ ︷
∆2 ` Λ2 mix(A)

∆1,∆∗2 ` Λ∗1,Λ2︸ ︷︷ ︸
S

A branch of P containing S1 as end-sequent is called a left branch of P and a branch of
P containing S2 as end-sequent is called a right branch of P . Then define rank of P .

Definition 31 (Rank). The rank of the proof is defined as follows:

• The rank of a left (right) branch is the number of consecutive occurrences of the
mix formula in the branch, starting from S1 (S2);

• Rankl(P) is the maximal rank among left branches;

• Rankr(P) is the maximal rank among right branches;

Rank(P) = Rankl(P) +Rankr(P)

Note that Rank(P) is always ≥ 2.

Proof. By induction on grade and rank of the proof P , examining the possible structure
of S1, S2 and S. Apply the induction hypothesis to P ′ when Grade(P ′) < Grade(P) or
Grade(P ′) = Grade(P) and Rank(P ′) < Rank(P).

Case 1: Rank(P) = 2.

Consider all cases corresponding to the forms of proofs of S1 and S2.

18

2.1. The cut-elimination theorem for LK and LKe

S1 or S2 initial sequent: obtain S by some exchanges and contraction from S2 or S1.

S1 or S2 structural inference: obtain S by weakenings and exchanges from S1’s
predecessor.

Below I will only show one propositional case in detail, other cases are analogous.

Case →

...
Q

Γ, A ` ∆, B
→-R Γ ` ∆, A→ B

...
P1

Γ1 ` ∆1, A

...
P2

Γ2, B ` ∆2 →-L
A→ B,Γ1,Γ2 ` ∆1,∆2 mix (A→ B)Γ,Γ∗1,Γ∗2 ` ∆∗,∆1,∆2

Then we can “move the cut upwards” and by applying the induction hypothesis, first to
the proof of the mix (B) lower sequent, then to the mix (A) lower sequent we obtain a
mix-free proof of S:

...
P1

Γ1 ` ∆1, A

...
Q

Γ, A ` ∆, B

...
P2

Γ2, B ` ∆2 mix (B)
A,Γ,Γ#

2 ` ∆#,∆2 mix (A)
Γ◦,Γ1, (Γ#

2)◦ ` ∆#,∆◦1,∆2
Some weakenings

Γ,Γ∗1,Γ∗2 ` ∆∗,∆1,∆2

Case ∀

For treating the quantifier cases, we will need the following lemma:

Lemma 1. If S(α) is LK-provable by the proof P (α), then S(t) is LK-provable by P (t),
where α is a free variable different from all eigenvariables of the proof and doesn’t occur
in t, and t is an arbitrary term.

Proof. By induction on number of inferences. See [Takeuti, 1987], pp. 16–17.

...
P ′(α)

Γ1 ` ∆1, A(α)
∀-R Γ1 ` ∆1,∀xA(x)

...
Q

Γ2, A(T) ` ∆2 ∀-LΓ2, ∀xA(x) ` ∆2 mix (∀xA(x))Γ1,Γ∗2 ` ∆∗1,∆2

19

2. Cut-Elimination in First-Order and Higher-Order Logics

By lemma above, whenever we have a proof of Γ1 ` ∆1, A(α), we also have a proof
Γ1 ` ∆1, A(T). Then we can “move the cut upwards” in the following way:

...
P ′(T)

Γ1 ` ∆1, A(T)

...
Q

Γ2, A(T) ` ∆2 mix (A(T))Γ1,Γ◦2 ` ∆◦1,∆2
Some weakenings
Γ1,Γ∗2 ` ∆∗1,∆2

Then, by induction hypothesis, since the grade of the mix formula decreased, we get
mix-free proofs of Γ1 ` ∆1, A(T) and Γ2, A(T) ` ∆2.

Case 2: Rank(P) > 2.

Here proceed by induction on Rank(P). Rank(P) > 2 means that either left or right rank
is > 1. Assume that Rankr(P) > 1. The other case is treated analogously. Remember
that we have the inference of this form as the last inference of the proof P , which contains
exactly one mix:

S1︷ ︸︸ ︷
∆1 ` Λ1

S2︷ ︸︸ ︷
∆2 ` Λ2 mix(A)

∆1,∆∗2 ` Λ∗1,Λ2︸ ︷︷ ︸
S

Now, as previously, proceed by analyzing the structure of S1 and S2:

∆1 in S1 contains A: Assume ∆1 in S1 contains A. Construct the proof as follows:

...
∆2 ` Λ2

Exchanges and contractions
A,∆∗2 ` Λ2

Weakenings and exchanges
∆1,∆∗2 ` Λ∗1,Λ2

20

2.1. The cut-elimination theorem for LK and LKe

A not the principal formula of S2: Now assume that S2 is the lower sequent of
some unary inference ξ, however, A is not a principal formula of ξ. That is, the inference
looks like this:

...
P1

∆1 ` Λ1

...
P2

∆ ` Λ ξ∆2 ` Λ2 mix(A)∆1,∆∗2 ` Λ∗1,Λ2

P1 and P2 do not contain mixes by assumption, and ∆ contains at least one occurrence
of A, since the Rankr(P) > 1. Consider the following proof:

...
P1

∆1 ` Λ1

...
P2

∆ ` Λ
mix(A)∆1,∆∗ ` Λ∗1,Λ

Rank of this proof is Rank(P) − 1, thus we can apply the induction hypothesis and
eliminate the mix. Then we can construct the following mix-free proof of S:

...
∆1,∆∗ ` Λ∗1,Λ

Exchanges
ξ∆∗2,∆1 ` Λ∗1,Λ2

Exchanges
∆1,∆∗2 ` Λ∗1,Λ2

In case that S2 is the lower sequent of some binary inference ξ and A is not a principal
formula of ξ, we make a similar argument:

...
P1

∆1 ` Λ1

...
Q1

Ψ1 ` Π1

...
Q2

Ψ2 ` Π2 ξ∆2 ` Λ2 mix(A)∆1,∆∗2 ` Λ∗1,Λ2

P1, Q1 and Q2 do not contain mixes by assumption, and Ψ1 or Ψ2 contains at least one
occurrence of A, since the Rankr(P) > 1. Consider the following proofs:

21

2. Cut-Elimination in First-Order and Higher-Order Logics

[Pl : if Ψ1 contains A]
...
P1

∆1 ` Λ1

...
Q1

Ψ1 ` Π1 mix(A)∆1,Ψ∗1 ` Λ∗1,Π1

[Pr : if Ψ2 contains A]
...
P1

∆1 ` Λ1

...
Q2

Ψ2 ` Π2 mix(A)∆1,Ψ∗2 ` Λ∗1,Π2

[P ′i : if Ψi doesn’t contain A]

...
Qi

Ψi ` Πi

Exchanges and weakenings
∆1,Ψ∗i ` Λ∗1,Πi

In the last case Ψ∗i = Ψi. Rank of all above proofs is Rank(P)− 1, thus we can apply
the induction hypothesis and eliminate the mix. Then we can construct the following
mix-free proof of S:

...
Pl or P ′1

∆1,Ψ∗1 ` Λ∗1,Π1
Some exchanges

...
Pr or P ′2

∆1,Ψ∗2 ` Λ∗1,Π2
Some exchanges

ξ∆1,∆∗2 ` Λ2,Λ∗1
Some exchanges
∆1,∆∗2 ` Λ∗1,Λ2

A is the principal formula of S2: Now consider the cases where the mix formula is
the principal formula of the last inference in S2.

Case →

...
Q

Γ ` ∆

...
P1

Γ1 ` ∆1, A

...
P2

Γ2, B ` ∆2 →-L
A→ B,Γ1,Γ2 ` ∆1,∆2 mix (A→ B)

Γ,Γ#
1 ,Γ

#
2 ` ∆#,∆1,∆2

22

2.1. The cut-elimination theorem for LK and LKe

Again, we want to move the cuts upwards in order to decrease the rank measure and
then apply the induction hypothesis:

[Q1]

...
Q

Γ ` ∆

...
P1

Γ1 ` ∆1, A mix (A→ B)
Γ,Γ#

1 ` ∆#,∆1, A

[Q2]

...
Q

Γ ` ∆

...
P2

Γ2, B ` ∆2 mix (A→ B)
Γ, B,Γ#

2 ` ∆#,∆2

In both Q1 and Q2, Rankr(Pi) decreased, thus by induction hypothesis, we get a mix
free proofs Q′1 and Q′2 of their end-sequents. From Q1 and Q2 we construct a proof P ′ in
the following way:

[P ′]

...
Q

Γ ` ∆

...
Q′1

Γ,Γ#
1 ` ∆#,∆1, A

...
Q′2

Γ, B,Γ#
2 ` ∆#,∆2 →L

A→ B,Γ,Γ#
1 ,Γ

#
2 ` ∆#,∆1,∆2mix (A→ B) Some weakenings

Γ,Γ#
1 ,Γ

#
2 ` ∆#,∆1,∆2

Observe that Rankr(P ′) = 1, thus we can apply the induction hypothesis, since by
assumption, the right rank of the original proof was more than 1.

Case ∀ A is the principal formula in S2 introduced by ∀L. The last inference of the
proof P looks like this:

...
Q

Γ ` ∆

...
Q1

Γ2, A(T) ` ∆2 ∀-LΓ2,∀xA(x) ` ∆2 mix (∀xA(x))Γ1,Γ∗2 ` ∆∗1,∆2

Move the cut upwards in the following way:

23

2. Cut-Elimination in First-Order and Higher-Order Logics

[Q′]

...
Q

Γ ` ∆

...
Q1

Γ2, A(T) ` ∆2 mix (∀xA(x))
Γ,Γ∗2, A(T) ` ∆∗,∆2

Then, by induction hypothesis, there is a mix-free proof of Γ,Γ∗2, A(T)∆∗,∆2. Now
construct a proof P ′ of S with only one mix as the last inference:

...
Q

Γ ` ∆

...
Q′

Γ,Γ∗2, A(T) ` ∆∗,∆2 ∀LΓ,Γ∗2,∀xA(x) ` ∆∗,∆2 mix (∀xA(x))Γ,Γ∗2 ` ∆∗,∆2

Since now Rankr(P ′) is smaller than the original rank, we can apply the induction
hypothesis and get a mix-free proof of S.

Case ∃ Same as the ∀ case. The last inference of the proof P looks like this:

...
Q

Γ ` ∆

...
Q1(α)

Γ2, A(α) ` ∆2 ∃-LΓ2,∃xA(x) ` ∆2 mix (∃xA(x))Γ1,Γ∗2 ` ∆∗1,∆2

By above lemma we have a proof of Γ2, A(β) ` ∆2, since by eigenvariable condition α is
not in Γ2 nor ∆2. Then move the mix upwards:

...
Q

Γ ` ∆

...
Q1(β)

Γ2, A(β) ` ∆2 mix (∃xA(x))
Γ,Γ∗2, A(β) ` ∆∗,∆2

Then, by induction hypothesis, there is a mix-free proof Q′ of Γ,Γ∗2, A(β) ` ∆∗,∆2. Now
construct P ′:

24

2.1. The cut-elimination theorem for LK and LKe

[P ′]

...
Q

Γ ` ∆

...
Q′

Γ,Γ∗2, A(β) ` ∆∗,∆2 ∃-LΓ,Γ∗2,∃xA(x) ` ∆∗,∆2 mix (∃xA(x))Γ,Γ∗2 ` ∆∗,∆2

Since now Rankr(P ′) is smaller than the original right rank, we can apply the induction
hypothesis and get a mix-free proof of S.

Corollary 1 (Subformula property). All formulae occurring in a cut-free proof of S are
subformulae of S.

Proof. By induction on the number of inferences of the cut-free proof.

2.1.1 Cut-elimination for LKe
In general if one adds axioms to LK, the cut-elimination theorem doesn’t hold, as a
simple example below demonstrates. Assume that we have LK with two axioms ` A and
` A→ B, with A and B distinct atomic formulae. Consider the following proof:

Example 8.

` A

` A→ B
B ` B A ` A →L
A,A→ B ` B cut (A→ B)

A ` B cut (A)` B

If there were a cut-free proof of ` B, then by the subformula property it would have to
consist only of formulae B and the proper axioms could not be used, thus it should have
been a pure LK proof. Clearly, ` B is not provable for an atomic formula.

Theorem 3. Let S be a set of sequents closed under substitution. Add S to LK. Then
if S is provable in this extended calculus, then there is a proof where all cuts operate on
sequents in S.

Proof. See [Girard, 1991], p.123: repeat the above cut-elimination proof, just “forget the
cuts” that operate on sequents in S when defining the grade and rank. Below we provide
the proof for S the equality axioms.

LKe admits restricted cut-elimination in the sense described above: if S is LKe provable,
we can always find a proof of S where all cuts operate only on equational atoms.

Definition 32. If the cut formula in an LKe proof is of the form s = t call it inessential.

25

2. Cut-Elimination in First-Order and Higher-Order Logics

Theorem 4. If a sequent S is LKe-provable, then there is an LKe proof of S where all
cuts are inessential.

Proof. Apply the LK reduction to remove all the essential mixes. We only consider the
new cases here:

Case Rank(P) = 2

Assume S2 is an equality axiom. Then, since we are only removing essential cuts, the cut
formula must be of the form P (t1, . . . , tn), for P predicate symbol other than =.

If S1 is also an equality axiom, then we have:

si = ti, P (s1, . . . , sn) ` P (t1, . . . , tn) ti = ri, P (t1, . . . , tn) ` P (r1, . . . , rn)
cut

s1 = t1, . . . , sn = tn, t1 = r1, . . . , rn = tn, P (s1, . . . , sn) ` P (r1, . . . , rn)

where si = ti is a short-cut for s1 = t1, . . . , sn = tn. We can obtain the same end-sequent
using only inessential cuts with the cut-formulae s1 = r1, . . . , sn = rn in the following
way:

s1 = t1, t1 = r1 ` s1 = r1 s1 = r1, . . . , sn = rn, P (s1, . . . , sn) ` P (r1, . . . , rn)
cut

s1 = t1, t1 = r1, s2 = r2 . . . , sn = rn, P (s1, . . . , sn) ` P (r1, . . . , rn)
...

cuts (si = ri)
s1 = t1, . . . , sn = tn, t1 = r1, . . . , rn = tn, P (s1, . . . , sn) ` P (r1, . . . , rn)

The rest of the proof is the same as for LK.

2.1.2 Midsequent theorem for LK and LKe

Theorem 5 (Gentzen’s midsequent theorem for LK). Let S be a sequent which consists
of prenex formulas only and is provable in LK. Then there is a cut-free proof of S which
contains a sequent (called a mid-sequent) S′, which satisfies the following:

1. S′ is quantifier-free.

2. Every inference above S′ is either structural or propositional.

3. Every inference below S′ is either structural or a quantifier inference.

26

2.2. Cut-elimination theorem for LKω

Thus a midsequent splits the proof into an upper part, which contains the propositional
inferences, and a lower part, which contains the quantifier inferences.

Proof. By induction on the number of propositional inferences occurring below a quantifier
inference. The strategy is to move upwards the propositional inferences. Consider ∀R.
Let I be the first propositional inference occurring after this ∀R application. Assume
that I is the first logical inference below ∀R. We have a proof of this form:

Γ ` ∆, A(α)
∀RΓ ` ∆, ∀xA(x)

... I∆ ` Λ

Transform it in the following way:

Γ ` ∆, A(α)
Structural Inferences
Γ ` ∆, A(α), ∀xA(x)

... I∆ ` A(α),Λ
∀-R∆ ` ∀xA(x),Λ
Contraction∆ ` Λ

The mid-sequent is also called a Herbrand sequent. It provides an example of how cut-
elimination can be used as a proof analysis tool: Herbrand sequents provide information
about the substitution terms for quantifiers used in the end-sequent.

2.2 Cut-elimination theorem for LKω
One could try repeating the same argument for proving the cut-elimination theorem for
LKω. Most of the argument will go through. However, consider one of the quantifier
cases in the case where Rank(P) = 2:

27

2. Cut-Elimination in First-Order and Higher-Order Logics

Case ∀

Γ1 ` ∆1, A(α)
∀R Γ1 ` ∆1, ∀xA(x)

Γ2, A(T) ` ∆2 ∀LΓ2, ∀xA(x) ` ∆2 mix ∀xA(x)Γ1,Γ∗2 ` ∆∗1,∆2

Here we cannot apply the induction hypothesis on grade of the formula to A(T), since T
can be an abstraction of a formula more complex than ∀xA(x). For instance:

Example 9.
Γ1 ` ∆1, α(β)

∀-R Γ1 ` ∆1, ∀XX(β)
Γ2, P (β) ∧Q(β) ` ∆2 ∀LΓ2, ∀XX(β) ` ∆2 mix ∀XX(β)Γ1,Γ∗2 ` ∆∗1,∆2

One could try to modify the proof by adding another induction measure. However, there
is no chance that this will work and that in the end we obtain a reductive or elementary
proof (that is, a proof formalizable in Peano Arithmetic). This follows from Gödel’s
second incompleteness theorem. Below we provide the sketch of the proof of this fact
from [Girard, 1991].

2.2.1 Cut-elimination for LKω implies consistency of second-order
arithmetic

The proofs of cut-elimination for LKω are either semantic or semi-semantic, due to the
fact that cut-elimination for LKω implies consistency of second-order arithmetic: thus
no elementary proof can exist, by Second Gödel’s Incompleteness theorem. A forteriori,
such a proof cannot be formalized neither in LKω nor in second-order arithmetic.

Definition 33 (PRA). Primitive recursive arithmetic PRA consists of the following
axioms, added to LK:

1. Equality axioms;

2. Axioms of elementary arithmetic;

3. Defining equations for all primitive recursive functions and predicates.
The above axioms define elementary arithmetic EA.

4. Quantifier-free induction.

All of the above axioms can be expressed by atomic axioms, and then cut-elimination
theorem is proved in the same way as for LKe: in such systems all but inessential cuts
can be removed in the same way as in LK.

28

2.2. Cut-elimination theorem for LKω

Proposition 5. PRA ` Con(LK+), where LK+ is LK with equality and elementary
arithmetic axioms.

Proof. See [Takeuti, 1987].

Definition 34 (PA2). Second-order arithmetic PA2 consists of the following axioms,
added to LK:

1. Axioms of PRA;

2. Equality axioms for second-order variables;

3. Induction axioms for any formula in L2;

4. Comprehension axioms for all A ∈ L2:

∃X∀x(A(x)↔ X(x))

with X not free in A.

Theorem 6 (Girard, 1987). Cut-elimination in LK2 implies consistency of PA2. Hence,
there is no elementary proof of cut-elimination for LK2 and LKω.

In other words, the reductive cut-elimination proof cannot be adapted to LKω.

Proof sketch. The idea is to show, by an argument formalizable in PA, that cut-
elimination in LK2 implies consistency of PA2. Since PA2 6` Cons(PA2) and PA 6`
Cons(PA2), by Gödel’s second incompleteness theorem, we have that cut-elimination
for LK2 cannot be proved neither in PA nor PA2. Hence, more complex methods are
needed for the proof (for instance, reducibility candidates method of [Girard et al., 1989],
chapter 4).

One proceeds by showing that PA ` Cut-elimination in LK2∧Cons(EA)→ Cons(PA2).
The result follows from the fact that PA ` Cons(EA).

To start, show that PA2 can be interpreted in LK2 with second-order equality and
elementary EA axioms. That is, that induction and comprehension axioms can be
interpreted in LK2. It is easy to see that LK2 proves comprehension axioms, thus they
are redundant:

...
` A(α)↔ A(α)

∀R` ∀x[A(x)↔ A(x)]
∃2R, T= λxA(x)

` ∃X∀x[A(x)↔ X(x)]

29

2. Cut-Elimination in First-Order and Higher-Order Logics

Then, we can define the predicate for natural numbers in LK2. Let

N(x) = ∀X(X(0) ∧ ∀z(X(z)→ X(s(z)))→ X(x))

and

N = λxN(x).

Then relativize all quantifiers to N. N-translation of induction and comprehension is then
provable in LK2 + EA + second-order equality. Then similarly, second-order equality
can be eliminated by E-translation: relativize the quantifiers to predicates closed under
second-order equality.

Thus we have that, whenever ∆ ` Λ is provable in PA2, ∆N,E ` ΛN,E is provable in
LK2+EA, where N, E are corresponding relativizations of quantifiers. Via this translation
we reduce cut-elimination in LK2 to consistency in PA2:

Assume PA2 is inconsistent, i.e., the empty sequent is derivable in PA2. Then it’s
translation (`)N,E should be derivable in LK2 + EA. If LK2 admits cut-elimination,
then we can obtain a cut-free derivation of the empty sequent ` in LK2 from axioms
EA. Since the latter axioms are in the first-order language, by the subformula property,
which is the consequence of the cut-elimination theorem, we have a derivation of an
empty sequent in LK from EA. We know that PA ` Cons(EA). Therefore, if the proof
of cut-elimination is elementary, then also PA ` Cons(PA2), which is impossible by
Gödel’s second incompleteness theorem.

2.3 Cut-elimination theorem for LKfω and LKfω(C)

Theorem 7. LKfω admits cut-elimination.

Proof. Use the same proof as the one above for LK. We should only consider the cases
for the new quantifier rules. When Rank(P) = 2 we have the following situation:

Γ1 ` ∆1, A(α)∀fR Γ1 ` ∆1, ∀fA(f)
Γ2, A(T) ` ∆2 ∀fLΓ2, ∀fA(f) ` ∆2 mix (∀fA(f))Γ1,Γ2 ` ∆1,∆2

We can move the mix upwards and then use induction on the grade, as in the first order
case. Note that we don’t have the same difficulty as in LKω due to the fact that the
term T cannot increase grade complexity of the proof. Using Lemma 2 below, we can
construct the following proof:

30

2.3. Cut-elimination theorem for LKfω and LKfω(C)

Γ1 ` ∆1, A(T) Γ2, A(T) ` ∆2 mix (A(T))
Γ1,Γ#

2 ` ∆#
1 ,∆2

Structural inferences
Γ1,Γ2 ` ∆1,∆2

When Rank(P) > 2, the proof remains the same as in the first-order case.

Lemma 2. If Γ(ατ) `LKω ∆(ατ), then Γ(T) `LKω ∆(T) (replace all α’s by T in the
sequent), where ατ is a free variable different from all eigenvariables of the proof and
doesn’t occur in T, and T an arbitrary term of type τ of Lfω.

Proof. By induction on the number of inferences in the proof.

2.3.1 Cut-elimination in LKfω(C)
In the case of adding β-rules to obtain LKfω(C) from LKfω one would need to take care of
the β-rules during cut elimination. When Rank(P) = 2, when moving the cut upwards,
the grade of the cut-formula stays the same and thus the induction doesn’t go through
and the same proof as previously cannot be used. In this case it is easier to adapt the
reductive proof of first-order logic with equality to LKfω(C) as an LKfω with equality
axioms. Moreover, such proof would work for any type system that can be formulated as
an equational theory of the sort described below.

Definition 35. A cut is called inessential if its cut formula is of the form T =τ T′.
Otherwise it is called essential.

Theorem 8. If a sequent S is LKfω(C) provable, then it is provable without essential
cut.

Proof. Same as for LKe, just add the cases for =τ axioms, which are the same as for
simple equality =.

31

CHAPTER 3
Standard and General Semantics

for Lω and Lf
ω

3.1 Standard and general semantics for Lω
Usually one considers a simplified formulation of type theory and its semantics, called
relational type theory. Since one can express functions as special type of relation, this is
not a real restriction.

Definition 36 (Relational types). The relational types T are:

1. i, o ∈ T,

2. τ1 → . . .→ τn → o ∈ T, if τ1, . . . , τn ∈ T.

Below we will omit mentioning o and write:

1. i ∈ T,

2. (τ1 . . . τn) ∈ T, if τ1, . . . , τn ∈ T.

For instance, the second order variables have types of the form (i, . . . , i). (Alternatively
i→ . . .→ i→ o.)

Definition 37 (Standard semantics). Let τ ∈ T and let D be a set. Define

1. Dι = D,

2. Do = {true, false},

33

3. Standard and General Semantics for Lω and Lfω

3. D(τ1...τn) = P(Dτ1 × . . .×Dτn)

Let σ be a variable assignment, that is, some function σ : Vω →
⋃
τ∈FDτ . Then

M = (D, I) is a standard Lfω-model if the interpretation I maps the variables and
constants to the members of the appropriate domains Dτ . Formally:

• I(ατ) = σ(ατ) for ατ ∈ Vω1

• I(cτ) ∈ Dτ for cτ ∈ Cω

• Iσ((tσ→τsσ)τ) = Iσ(tσ→τ)I(sσ) ∈ Dτ

• Iσ(λxσ.tτ) ∈ Dσ→τ such that Iσ(λxσ.tτ)(m) = Iσ∪{x:=m}(tτ), where σ ∪ {x := m}
means σ with x mapped to m.

Let |=s
Lfω

denote the standard semantics satisfiability relation: we say that M, σ |=s
Lfω

F o

iff I(F) = true. We say that a formula A ∈ Lfω is |=s
Lfω

-satisfiable iff there is a standard
model M and a variable assignment σ such that M, σ |=s

Lfω
A. The quantified formulae is

interpreted in the following way:

M = (D, I), σ |=s
Lfω
∀xτF (x)

iff

for all d ∈ Dτ : (D, I), σ ∪ {x := d} |=s
Lfω

F (x)

Unsatisfiability and validity are defined as usual.

Theorem 9. The set of Lω-validities wrt standard semantics is not recursively enumer-
able.

Proof. Use the fact that Peano Arithmetic formulated as a second-order theory is a
categorical theory: every two standard models of Peano Arithmetic are isomorphic. Then
the idea is that one can express validity in the standard model of arithmetic using one
L2 sentence, and we know that the former is not recursively enumerable, by Gödel’s first
incompleteness theorem.

In general semantics everything stays the same, except that Dτ is defined differently:

Definition 38 (General semantics). Let τ ∈ T and let D be a set.
1Sometimes it is convenient to write Iσ to mean an interpretation I given the variable assignment σ

34

3.1. Standard and general semantics for Lω

1. Dι = D

2. D(τ1...τn) ⊆ P(Dτ1 × . . .×Dτn).

Then (D, I) with the interpretation as above is a general pre-structure. When we restrict
the subsets to the relations definable in higher-order logic, we get the general semantics.
Let |=g

Lω denote the general semantics consequence. We will omit the subscript when it is
clear which relation is meant.

Theorem 10. The set of Lω-validities wrt general semantics is recursively enumerable.

Proof. See below. In the case of the general semantics we have more structures, since
for each Dτ = D(τ1...τn) ⊆ P(Dτ1 × . . .×Dτn) we have a corresponding structure. Since
with general semantics there are more models available, less sentences are valid, and in
fact we end up with such a “small” set that it becomes recursively enumerable. This
follows from the fact that we can reduce |=g

Lω -validity to first-order consequence from a
recursive set of axioms T T .

Definition 39 (T T). We define a first-order theory T T that characterizes the general
models. Extend a given first-order language L1 to Ls with predicate symbols Eτ (of
different arities) and unary predicates Tτ for all τ ∈ T. Then the theory T T consists of
the following axioms:

1. ∃xTi(x)

2. a) Ti(c), for constants c of L1

b) ∀x1 . . . ∀xn[
∧n
j=1 Ti(xj)→ Ti(f(x1, . . . , xn))], for functions f of L1

c) ∀x1 . . . ∀xn[R(x1, . . . , xn)→
∧n
j=1 Ti(xj)], and predicates R of L1.

3. ∀x(Tτ (x)→ ¬Tσ(x)), for σ 6= τ

4. ∀r∀x1 . . . ∀xn[Eτ (r, x1, . . . , xn) → Tτ (r) ∧ Tτ1(x1) ∧ . . . ∧ Tτn(xn)], for τ = τ1 →
. . .→ τn → τn+1 and the designated predicate Eτ

5. Extensionality axioms:

∀p∀r[Tτ (p) ∧ Tτ (r) ∧ ∀x1 . . . ∀xn(Tτ1(x1) ∧ . . . ∧ Tτn(xn)→

(Eτ (p, x1, . . . , xn)↔ Eτ (r, x1, . . . , xn))→ p = r]

Moreover, one adds the comprehension axioms formulated in the language Ls.

35

3. Standard and General Semantics for Lω and Lfω

Theorem 11. There is a translation function s : Lω → Ls, such that for all φ ∈ Lω :

|=g
Lω φ iff T T |= φs

The translation consists in relativizing the quantifiers to appropriate types. Then the
predicate Eτ is intended to mean the application predicate. For more details see, for
instance, [Van Benthem and Doets, 2001]. Transform a general model into a first order
model in the following way:

Definition 40 (s-transformation). Let (D, I) be a general pre-structure, we obtain a
first-order Ls-structure (D, I)s = (Ds, Is) as follows:

1. Ds =
⋃
τ∈T I(τ)

2. Is(c) = I(c) for c ∈ L.

3. Is(Tτ) = I(τ).

4. Is(Eτ) = ∈.

Lemma 3. For all general models (D, I): (D, I)s |= T T .

Proof. One can just have to check the axioms (1)–(5) and the comprehension axioms.
Consider the comprehension axioms. We want to show that the translations of com-
prehension axioms are true in (D, I)s. (D, I)s |= ∃y∀x(Eτ (y, x) ↔ ψs)) iff there is
d ∈ D =

⋃
τ∈T I(τ) such that (Ds, Is ∪ {y := d}) |= ∀x(Eτ (y, x) ↔ ψ)). In general

models we have that d ∈ I(τ) for d : τ , and the latter exists and contains all the elements
specified by ψ by higher-order comprehension being true on (D, I).

One can easily prove by induction that the translation is truth-preserving:

Lemma 4. For all φ ∈ Lω : (D, I) |=Lω φ iff (D, I)s |= φs

We can characterize (D, I)s-structures using T T up to isomorphism.

Lemma 5. Let S be an Ls-structure. Then S |= T T iff there is a general structure
(D, I) such that (D, I)s is isomorphic to S.

Proof. (⇐) Follows from Lemma 4.

(⇒) For a S = (H,J) such that S |= T T construct a general model (D, I) and an
isomorphism h : (H,J) → (Ds, Is), by induction on τ . Idea: in S we have I(Tτ) ⊆ D,
which we want to transform into Dτ ⊆ P(Dτ1 × . . .×Dτn).

36

3.2. Standard and general semantics for Lfω

(Base case) Di = I(Ti); hi is identity . We know D will be non-empty and that the
interpretation of non-logical symbols will be defined in (Ds, Is) in the same way as in S
by axioms of T T concerning Ti (1)–(2).

(Inductive Step) Assume D(τ1...τn) and h(τ1...τn) are already defined. By (4) (which
describes correct typing in Eτ predicate) we can set hτ with τ = (τ1 . . . τn):

hτ (b) := {(hτ1(a1) . . . hτn(an)); (b, a1, . . . , an) ∈ I(Eτ)}

which is well-defined by extensionality (5). Set Dτ := hτ [I(Tτ)]. We have that Dτ ⊆
P(Dτ1 × . . .×Dτn) and thus (D, I) is a general structure. Note that since the translation
of the comprehension axiom is true in S, the above clause amounts to adding all definable
relations. That hτ is an isomorphism should be clear by construction, since we have
that (b, a1, . . . , an) ∈ I(Eτ) iff (hτ1(a1), . . . , hτn(an)) ∈ hτ (b). Then set h :=

⋃
τ∈T hτ and

we are done. This construction is important, since it can be used for the completeness
proof.

Then the proof of the Theorem 10 immediately follows from the lemmas above:

Proof. (⇐) Assume T T |= φ. It means that for all Ls structures S: S |= T T ⇒ S |= φs.
Then it follows that for all As |= T T ⇒ As |= φs, since As are Ls structures. Since for
all As: As |= T T (by Lemma 3), we have that for all As: As |= φs and therefore for all
general structures A |= φ (by Lemma 4).

(⇒) Assume |= φ. It means that for all general models A |= φ. Take a model S |= T T
and prove that S |= φs. S |= T T implies that S ' As for some A general model (Lemma
5). And since A |= φ, it means that As |= φs (by Lemma 4) and thus S |= φs.

Theorem 12. LKω is sound and complete wrt general semantics.

Proof. See the original Henkin paper, for instance – the proof can be adapted to natural
deduction or sequent calculus.

3.2 Standard and general semantics for Lfω
In this section I define standard and general semantics for the functional higher-order
logic Lfω, show that LKfω is incomplete wrt standard semantics for Lfω, show general
incompleteness of Lfω-c, a simple extension of Lfω, then prove soundness and completeness
of LKfω wrt general semantics. To establish these results, I use @-translation defined in
the previous chapter, as well adapt some techniques available in the literature. I point to
the relation of Lfω to some class of unification problems, as defined by Miller for full type
theory – this will be relevant for defining appropriate Skolemization procedure for Lfω in

37

3. Standard and General Semantics for Lω and Lfω

the last chapter. For proving incompleteness of LKfω wrt standard semantics, I adapt
Schütte’s completeness proof for LK to LKfω.

3.2.1 Standard semantics for Lfω

Definition 41 (Standard semantics). Let τ ∈ F (functional type) and let D be some set.
Define

1. Dι = D,

2. Dτ→σ = {f ; f : Dτ → Dσ is a set-theoretic function}2

Let σ be a variable assignment, that is, some function σ : Vω →
⋃
τ∈FDτ . Then

M = (D, I) is a standard Lfω-model if the interpretation I maps the variables and
constants to the members of the appropriate domains Dτ . Formally:

• I(ατ) = σ(ατ) for ατ ∈ Vω3

• I(cτ) ∈ Dτ for cτ ∈ Cω

• I((tσ→τsσ)τ) = I(tσ→τ)I(sσ) ∈ Dτ

• I(Pn) ⊆ Dn for Pn n−ary predicate

Let |=s
Lfω

denote the standard semantics consequence relation. We say that a formula
A ∈ Lfω is |=s

Lfω
-satisfiable iff there is a standard model M and a variable assignment σ

such that M, σ |=s
Lfω

A. The satisfiability relation is defined as usual:

M = (D, I), σ |=s
Lfω

P (t1, . . . , tn) iff (Iσ(t1), . . . , Iσ(tn)) ∈ I(P) for atomic formulae;

M = (D, I), σ |=s
Lfω

A ∧B iff M = (D, I), σ |=s
Lfω

A and M = (D, I), σ |=s
Lfω

B; Similarly
for other propositional connectives. For the quantified formulae it is interpreted in the
following way:

M = (D, I), σ |=s
Lfω
∀xτF (x)

iff

for all d ∈ Dτ : (D, I), σ ∪ {x := d} |=s
Lfω

F (x)

Unsatisfiability and validity are defined as usual.
2That is, the available functions such as choice function will depend on the underlying set-theoretic

assumptions.
3Sometimes it is convenient to write Iσ to mean an interpretation I given the variable assignment σ

38

3.2. Standard and general semantics for Lfω

Example 10.
(D, I), σ |=s

Lfω
∃f i→i∀xi. x = f(x)

iff

(D, I), σ ∪ {f := m} |=s
Lfω
∀xi. x = m(x)

for some m ∈ Di→i (that is, for some function on Di)

iff

for all d ∈ Di : (D, I), σ ∪ {f := m,x := d} |=s
Lfω

x = f(x).

For any Di and σ, one can take f 7→ m with m ∈ Di→i the identity function on Di to
satisfy this formula, thus it ∃f i→i∀xi. x = f(x) valid wrt standard Lfω semantics.

Standard semantics is very strong, even for this restricted language. In particular, the
Compactness theorem fails for the standard semantics consequence relation |=s

Lfω
.

Proposition 6. The Compactness theorem fails for |=s
Lfω

: there is an infinite set of Lfω-
sentences Γ that is |=s

Lfω
-unsatisfiable, however, all finite subsets of Γ are |=s

Lfω
-satisfiable.

Definition 42 (ψn). ψn = ∃xi1 . . . ∃xin.
∧
i 6=j∈[n] xi 6= xj (Intuitively, the sentence says:

“the are at least n objects in the domain Di")

Observation 1. Let Inj(f) = ∀xi∀yi(f(x) = f(y) → x = y). Then for any standard
model and variable assignment, with F ∈ Di→i : (D, I), σ ∪ {f := F} |= Inj(f) iff F is
an injective function on Di.

[The fact is trivial, however, it can serve as another example of evaluation wrt standard
semantics, thus I provide the details:

(D, I), σ ∪ {f := F} |= Inj(f)

iff

for all d, d′ ∈ Di : (D, I), σ′ |= f(x) = f(y) then (D, I), σ′ |= x = y, with

σ′ = σ ∪ {f := F, x := d, y := d′}

Now take any a 6= a′ ∈ Di, then (D, I), σ∪{f := F, x := a, y := a′} 6|= x = y F (a) 6= F (a′)
and thus (D, I), σ ∪ {f := F, x := a, y := a′} 6|= f(x) = f(y) , that is F (a) 6= F (a′). Thus
F is injective.]

Observation 2. Let Surj(f) = ∀zi∃vi. f(v) = z. Then for any standard model and
variable assignment, with F ∈ Di→i : (D, I), σ∪{f := F} |= Surj(f) iff F is a surjective
function on Di.

39

3. Standard and General Semantics for Lω and Lfω

Definition 43 (ψfin). ψfin = ∀f i→i. Inj(f)→ Surj(f)

Fact 1. All injective functions on D are surjective iff D is finite.

Thus using ψfin one can characterize finite structures in Lfω, from which the failure of
Compactness follows.

Lemma 6. For any σ: M, σ |=Lfω ψ
fin if and only if the domain of M is finite.

Proof. (⇒)
M |=Lfω ψ

fin

iff

for all F ∈ Di→i : (D, I), σ ∪ {f := F} |= Inj(f) then (D, I), σ ∪ {f := F} |= Surj(f)

iff

all injective functions on Di are surjective, i.e., Di is finite

(⇐) Assume that M, σ 6|= ψfin. Show that the domain of M has to be infinite.

M, σ 6|= ψfin

iff

M, σ ∪ {f := F} |= Inj(f) and M, σ ∪ {f := F} 6|= Surj(f)

for some F ∈ Di→i

By observation above, it means that some function F on Di is injective, but not surjective.
This can only happen if Di is infinite.

Proof of non-compactness. Take the sentence ψfin and sentences ψn for each n ∈ N:

Γ = {ψfin} ∪ {ψn;n ∈ N}

Any finite set Γ′ ⊂ Γ is clearly satisfiable, however, Γ is not satisfiable, since {ψn;n ∈ N}
requires the domain to be at least as big as any n and ψfin the domain to be finite.

40

3.2. Standard and general semantics for Lfω

3.2.2 Soundness

To prove soundness of LKfω wrt standard semantics, first extend the notion of |=st
Lfω

-
satisfiability to sequent. Let S be an LKfω sequent ∆ ` Λ We say that M, σ |=s

Lfω
S iff

for some A ∈ ∆, M, σ 6|=s
Lfω

A or for some A ∈ Λ, M, σ |=s
Lfω

A.

Theorem 13 (Soundness of LKfω). LKfω is sound wrt standard semantics: that is, if a
sequent S is LKfω-provable then for all standard models M with variable assignments σ:
M, σ |=s

Lfω
S.

Proof. By induction on the number of inferences in the LKfω-proof of S.

Base: S is an axiom, clearly holds in all standard models.

Induction Step: Induction step is easy. Consider the case ∃-R:

Case ∆ ` Λ,∃xτA :

...
∆ ` Λ, A(Tτ)

∃-R∆ ` Λ, ∃xτA(x)

By induction hypothesis we know that if M, σ 6|= Λ, then M, σ |= A(Tτ) for any σ
and M = (D, I). We know that then I(Tτ) = F ∈ Dτ for some F ∈ Dτ . Thus
M, σ ∪ {x := F} |= A(x) for any M and thus M, σ |= ∃xτA(x).

Case ∆ ` Λ,∀xτA :

...
∆ ` Λ, A(ατ)

∀-R∆ ` Λ, ∀xτA(x)

Take any M, σ′ 6|= Λ, show that M, σ′ |= ∀xτA(x):

M, σ′ |= ∀xτA(x)

iff

for all F ∈ Dτ : M, σ′ ∪ {x := F} |= A(x)

By induction hypothesis we know that M, σ |= A(ατ) for any σ, thus for any extension
of σ′ to α, that is for all F ∈ Dτ : A(F) holds in M.

41

3. Standard and General Semantics for Lω and Lfω

Now extend the standard semantics to treat terms of Lfω(C):

Iσ(λxτ .t)F = Iσ
′(t), for F ∈ Dτ and σ′ = σ ∪ {x := F}.

Then similarly one can prove soundness of LKfω(C), since clearly the standard model
will contain all functionals of simple type theory.

Theorem 14 (Soundness of LKfω(C)). LKfω(C) is sound wrt standard semantics: that
is, if a sequent S is LKfω(C)-provable then for all standard models M with variable
assignments σ: M, σ |=s

Lfω
S.

3.3 Higher-order unification and incompleteness of Lfω
To show the limits of LKfω with respect to the standard semantics and its closer resem-
blance to first-order logic rather than higher-order logic, it is instructive to look at some
subset of Lfω formulae, known as unification problems. The intuition is that some formula
cannot be proven in LKfω because there is no way of unifying terms involved, but we have
to start from the axioms of the form A(t) ` A(t) or ` t = t. We follow [Miller, 1992] who
defines and characterizes Lfω(C) unification problems.

Definition 44 (Higher-order unification problem). Let Qi ∈ {∀xτii ,∃x
τi
i }. Then Q1 . . . QnA

is a Lfω-unification problem if A ∈ Lfω and is of the form
∧n
i=0 si = ti for some n ∈ N.

Intuitively, the universally quantified variables occurring in a given unification problem
correspond to the functional and individual constants, whereas the existentially quantified
variables are free variables of the unification problem. Moreover, the quantifier prefix
also specifies the domains of admissible substitutions for the variables: they can only
use the symbols from the quantifiers in whose scope they appear. The usual first-order
unification is then a special case where the prefix is of the ∀∃ form.

Definition 45 (Solution to a Lfω-unification problem). Given a Lfω-unification problem
Q1 . . . QnC, let Ex be the set of existentially bound variables in Q1 . . . QnC and Ax the set
of universally bound variables in B. Then a solution to B is a substitution θ : Ex → Ax
such that θsi = θti and whenever x 7→θ r with x bound by Qi, then r contains only
variables bound by Qj, such that j < i.

Example 11. ∀ci→i∃xi∀di∃yi→i. c(x) = y(d) is a Lfω-unification problem with constants
c, d and variables x, y. y can be unified with c. However, since xi is not ins scope of ∀di
it cannot take value di and thus the terms cannot be unified under this prefix. However
the first order-unification ∀ci→i∀di∃xi∃yi→i. c(x) = y(d) has a solution. Note that it is
also LKfω-provable.

Lemma 7 (Miller 1992). Let A be an LKfω(C)-unification problem. Then A is LKfω(C)-
provable iff A has a solution, provided all types are assumed to be non-empty.

42

3.3. Higher-order unification and incompleteness of Lfω

Proof. See Theorem 2.10 and Theorem 3.8 in [Miller, 1992].

Example 12. Consider a formula ∀i→if∃ix∀iw. fw = x. There is no solution to the
corresponding unification problem, since there is no substitution for x, which would not
use w and solve the equation. To see how this is related to provability in LKfω, consider a
possible cut-free LKfω-proof of this statement. The proof would have to contain quantifier
introduction sequence like this:

` αi→iβi = T ∀-r, βi eigen: T cannot contain βi` ∀iw. αi→iw = T
∃-r` ∃ix∀iw. αi→iw = x ∀-r, αi→i eigen` ∀i→if∃ix∀iw. fw = x

Thus T has to be of the form αβ′ for β′ 6= β. Then, however, one cannot prove a
statement αi→iβi = αi→iβ

′
i in LKfω.

3.3.1 Incompleteness

It is known that:

Theorem 15. The set of Lω-validities (full higher-order validities) is not recursively
enumerable.

Proof. See, for instance [Leivant, 1994]. The idea is that one can express truth in the
standard model of arithmetic with a second-order sentence, since the induction axioms
can be expressed with one second-order sentence. Thus we get the conclusion by Gödel’s
incompleteness theorem.

Knowing the general incompleteness result for second-order and higher-order logics and
having seen the @-embedding LKfω into LK, we can expect LKfω to be too weak to
capture the standard semantics validity. Thus we can expect the following to hold:

Theorem 16. LKfω is incomplete wrt standard semantics.

Proof. Consider a sentence ∀ix∃i→if. fx = x. Clearly, it is true in any standard models,
since it will contain identity function. However, one cannot prove this sentence in LKfω.
The reason is that by cut-elimination we know that the a proof of this formula will
contain a mid-sequent of the form ` Tα = α for T term and α variable. This, however
cannot be proven for any Lfω-term, since only syntactically equal terms can be proven

43

3. Standard and General Semantics for Lω and Lfω

equal in LKfω. That is, βη equality coincides with syntactic equality in this logic as all
terms of Lfω are in the normal form.

Alternatively one can see this using the @-translation: ` @i→i(T, α) = α is not not
LK=-provable, since not first-order unifiable. Thus we can see the most basic case of
the relation of provability in simple type theory to unification established by [Miller
1992]. One cannot unify [αi→ici = ci] where c is a constant and α a variable, both being
Lfω-terms. However, this unification problem has solutions for Lfω(C)-terms and = as
=βη-equality.

We can approximate the incompleteness result for the full higher-order logic in the
following way: given at least to elements in the domain and a designated constant we
can simulate predicate quantification with functional quantification.

Theorem 17. The set {φ ∈ Lfω + c ; ∃xi∃yi. x 6= y |=s
LKfω

φ} is not recursively
enumerable.

Proof. Express predicate quantification using function quantification (for this one needs
the c constant and at least to objects in the domain to represent true and false), then we
have the Comprehension principle in the form:

∃f∀−→x . [f−→x = c↔ A−→x]

where A is an Lfω-formula. The one can express second-order arithmetic truth and make
the same argument as for full higher-order logic.

3.4 Completeness of Lfω wrt general semantics
In general semantics Dτ is defined as some non-empty subset of functions of the corre-
sponding type:

Definition 46 (General semantics). Let τ ∈ F and let D be a set.

1. Dι = D

2. Dτ→σ ⊆ {f ; f : Dτ → Dσ is a set-theoretic function}

Then (D, I) with the interpretation as above is a general structure if each Dτ is non-empty.
We could further restrict the subsets to the functions definable in Lfω, however, then we
would get the general semantics with respect to which LKfω is not complete, due to an
example mentioned above. Let |=g

Lfω
denote the general semantics consequence.

44

3.4. Completeness of Lfω wrt general semantics

In the case of the general semantics we have more structures, since for each subset of
functions we have a corresponding structure. Since with general semantics there are more
models available, less sentences are valid, and in fact we end up with such a “small" set
that it becomes recursively enumerable. In the case of full higher-order logic this follows
from the fact that we can reduce |=g

Lω
-validity to first-order consequence from a recursive

set of axioms that describe the type restrictions and translations of comprehension axioms.
Thus we can use the first-order procedure to enumerate the general validities of Lω or
equivalently Lfω+c. Since the comprehension axioms are not required for |=g

Lfω
-validity, it

is much weaker than |=g
Lω -validity, and even |=g

Lfω(C)
-validity, thus it is better described

as an extension/variant of first-order logic.

Remark 2. A similar result holds for a logic with quantification over predicates, but no
function symbols and no comprehension axioms – the cut-elimination goes through there,
and the expressive power is not much higher than that of first-order logic. When one
adds just predicative Comprehension, one also stays within reasonable logic complexity
and weaker expressive power.

3.4.1 Completeness

Theorem 18. LKfω is complete wrt general semantics as defined above.

Proof. Similar to first-order logic. Below we provide the full proof.

We use Schütte’s method from [Takeuti, 1987]: given an Lfω sequent S, construct a
“derivation tree” T (S) such that either one can easily transform it into a cut-free proof of
S or read off it an interpretation that falsifies S. First we extend the completeness proof
for first-order logic without function symbols to first-order logic with function symbols
and then extend this proof to LKfω. Then to extend the same proof to LKfω where we
will have to modify ∀-L and ∃-R steps in the construction of the reduction tree and the
canonical interpretation.

We will need this definition below:

Definition 47 (Pure pre-terms and pure terms). A (pre-)term of Lfω is said to be pure
if it doesn’t contain any bound variables. Remember that pre-terms are just usual “terms"
of any type, whereas terms are pre-terms of the individual type i.

Theorem 19. Given a first-order sequent S, there is either a cut-free LK proof of it, or
an interpretation MC that falsifies it.

Proof. We adapt the proof from [Takeuti, 1987] to the sequents that may contain function
symbols. We need to modify the cases for quantifier rules in both construction of the
reduction tree and construction of the canonical interpretation.

45

3. Standard and General Semantics for Lω and Lfω

Idea: Given a sequent S construct a reduction tree, each node of which is a sequent
obtained by reversely applying all possible rules to the previous node, until the axiom
sequent is reached. If all the leaves are axioms, then one can easily construct a cut-free
proof of S. If, however, it has an infinite branch, that is, the axiom is not reached, then
one can construct a canonical interpretation from this tree that falsifies S by taking as
domain the terms appearing in the branch.

The reduction tree T (S) for S is constructed from the root S by looping through the
following stages:

(Stage 0) If all leaves of T (S) are of the form A,∆ ` Λ, A, then stop.

(Stage 1) If the topmost sequent obtained at the previous stage Π ` Λ is such that
¬A1, . . . ,¬An ∈ Π not reduced, then the current sequent is Π ` Λ, A1, . . . , An and we
say that ¬A1, . . . ,¬An are already reduced.

[For the details of the construction for other connectives see [Takeuti, 1987]. Here we
discuss in detail the quantifiers since this is the only stage that changes in the proof.]
...

(Stage 8) Assume that we have Π ` Λ at the previous stage, such that ∀x1A1(x1), . . . ,
∀xnAn(xn) ∈ Λ and the ∀R was not applied to ∀x1A1(x1), . . . , ∀xnAn(xn). Then at
the current stage add the node Π ` A1(α1), . . . , An(αn),Λ, where α1, . . . , αn are some
new variables. Then we say that the rule ∀R was applied to ∀x1A1(x1), . . . ,∀xnAn(xn)
respectively.

(Stage 9) Assume that we have Π ` Λ at the previous stage, such that ∀x1A1(x1), . . . ,
∀xnAn(xn) ∈ Π.

Definition 48 (Terms available at a stage k). Terms available at a stage k are pure
terms contained in any sequent added before the stage k. If there are none, take new
variables and let them be available at the stage k.

The goal is to eventually apply the ∀-L reduction to all terms in the branch after the
first appearance of universally quantified formulae on the left. We will need to order
the available terms at the current stage in order to make sure that none of the available
terms is missed by applying the ∀-L rule, thus we define the availability sequence Avail
during the construction of T (S). Later it will be used as the domain of the canonical
interpretation.

At this stage add to Avail all pure terms appearing in the precedent node Π ` Λ and not
already in Avail, in arbitrary order. If Avail is empty, add any variable.

Then add the node A1(t1), . . . , An(tn),Π ` Λ, where t1, . . . , tn are the first pure terms in
Avail not already used for reducing ∀x1A1(x1), . . . ,∀xnAn(xn) respectively.

Example 13. Here is an example of the initial segment of T (∀xQx,∀xPgx ` ∀xPfx);
(∀xPfx)∗ means that the formula is already reduced.

46

3.4. Completeness of Lfω wrt general semantics

...
Qga, Pgga,Qfa, Pgfa,Qa, Pga, ∀xPx,∀xPgx ` (∀xPfx)∗, Pfa

Qfa, Pgfa,Qa, Pga,∀xPx,∀xPgx ` (∀xPfx)∗, Pfa
Qa, Pga, ∀xPx,∀xPgx ` (∀xPfx)∗, Pfa

∀xQx,∀xPgx ` (∀xPfx)∗, Pfa
∀xQx, ∀xPgx ` ∀xPfx

Availability sequence Avail: a, fa, ga, gfa, gga . . .

(Stage 10 and 11) Treat ∃-L and ∃-R in the symmetric manner to ∀-R and ∀-L.

(Stage 12) If Π ` Λ have a formula in common, add nothing; otherwise add Π ` Λ.

Canonical interpretation If the reduction tree T (S) is finite, then all the leaves
are axioms, and one can easily construct a proof of S from the tree (note that this
gives an alternative proof of cut-elimination theorem). Now assume that there is an
infinite branch BC = S1, . . . , Sn, . . . in T (S). Consider

⋃
i Γi and

⋃
i Λi with Si = Γi ` Λi.

We define a canonical interpretation MC = (D, I) and variable assignment σ such that
MC, σ |=g

Lfω

⋃
i Γi but for all A ∈

⋃
i Λi, MC, σ 6|=g

Lfω
A.

• D is the set of all pure terms occurring in the branch BC;

• σ(α) = α for α ∈ V;

• I(f)
−→
d =

{
f
−→
d if f

−→
d ∈ D

k ∈ D arbitrary otherwise

• (I(t1), . . . , I(tn)) ∈ RI if R(t1, . . . , tn) ∈
⋃
i Γi

• (I(t1), . . . , I(tn)) 6∈ RI if R(t1, . . . , tn) ∈
⋃
i Λi

Now by structural induction prove that MC, σ |=g

Lfω
A for all A ∈

⋃
i Γi and MC, σ 6|=g

Lfω
A

for all A ∈
⋃
i Γi. Here consider the case where A ∈

⋃
i Γi is of the form ∀xF (x). By

construction of the branch we know that all pure terms t in the branch, F (t) is added
after the first occurrence of ∀xF (x), thus all elements of D satisfy F (x) by induction
hypothesis and thus ∀xF (x) holds in MC. For A ∈

⋃
i Λi we know that F (a) above is

not satisfied by induction hypothesis, and A is also falsified.

Theorem 20. Given a functional higher-order sequent S ∈ Lfω, there is either a cut-free
LKfω proof of it, or a general model MC that falsifies it.

47

3. Standard and General Semantics for Lω and Lfω

Proof. We modify the previous proof. First, in the construction of the reduction tree, we
change the stages for quantifiers in the following way:

(Stage 9) Assume that we have Π ` Λ at the previous stage such that ∀xτ1
1 A1(x1), . . . ,∀xτnn An(xn) ∈

Π. Then add the node A1(tτ1
1), . . . , An(tτnn),Π ` Λ at the current stage, where tτ1

1 , . . . , t
τn
n

are the first available pure pre-terms of corresponding types, not already used for reducing
∀xτ1

1 A1(x1), . . . ,∀xτnn An(xn) respectively. That is, analogously to the previous proof, we
define availability sequences Availτ , for each type τ occurring in S.

Example 14.
...

Qha,Qgha,Qga,∀xi. Qlx, ∀xi. Qhx,∀xi. Qgx,∀yi→i∀xi. Qyx ` . . .

Qga,∀xi. Qhx,∀xi. Qgx,∀yi→i∀xi. Qyx ` (∀xi∀zi→iPzx)∗, (∀zi→iPza)∗, Pha
∀xi. Qgx,∀yi→i∀xi. Qyx ` (∀xi∀zi→iPzx)∗, (∀zi→iPza)∗, Pha
∀xi. Qgx,∀yi→i∀xi. Qyx ` (∀xi∀zi→iPzx)∗,∀zi→iPza

∀yi→i∀xi. Qyx ` (∀xi∀zi→iPzx)∗, ∀zi→iPfa
∀yi→i∀xi. Qyx ` ∀xi∀zi→i. P zx

Availability sequences:

Availi: ai, (ha)i, (ga)i, (gha)i . . .

Availi→i : gi→i, hi→i, li→i . . .

Canonical model MC Now from the infinite branch BC we read off a canonical general
model MC = ({Dτ ; τ ∈ F}, I) and define a variable mapping σ such that MC, σ |=

⋃
i Γi

and for all A ∈
⋃
i Λi, MC, σ 6|= A. Challenge: we need to build universes Dτ in a sound

way. With this aim we define canonical functionals.

Definition 49 (Canonical functionals Ft,τ). Let T be the set of all pure pre-terms in the
given infinite branch BC and Tτ be the set of all pure semi-terms of type τ ∈ F occurring
in BC. We define sets Dτ of canonical functionals that will be used below to construct
domain of the canonical general model:

• Di = {Ft,i ; ti ∈ Ti} (that is, we add constants corresponding to the pure terms in
BC);

• Dσ→τ = {Ft,σ→τ : Dσ → Dτ ; Fd,σ 7→ Ftd,τ , t ∈ Tσ→τ}. If Ftd,τ 6∈ Dτ , map Fd,σ to
a random element of Dτ .

Example 15. Assume that Di = {Fgna,i, Ffna,i ; n ∈ N} and Di→i = {Fg,i→i, Ff,i→i}.
Then Fg,i→i(Fgna,i) = Fgn+1a,i = gn+1a ∈ Ti, Ff,i→i(Ffna,i) = Ffn+1a,i = fn+1a ∈ Ti.

Now define the type domains Dτ , for τ ∈ F of the Henkin model MC = (Dc, Ic) in the
following way:

48

3.4. Completeness of Lfω wrt general semantics

• Dc = {Dτ ; τ ∈ F} with Dτ sets of canonical functionals of corresponding types.
Note that only finite amount of Dτ are relevant, which are well-defined.

• σ(αi) = Fα,i = αi for αi ∈ Ti ∩ Vω

• σ(ατ) = Fα,τ ∈ Dτ for ατ ∈ Tτ ∩ Vω

• (I(t1), . . . , I(tn)) ∈ I(R) if R(t1, . . . , tn) ∈
⋃
i Γi, where ti1, . . . , tin ∈ Ti

• (I(ti1), . . . , I(tin)) 6∈ I(R) if R(ti1, . . . , tin) ∈
⋃
i Λi, where ti1, . . . , tin ∈ Ti

Note that I(tτ) = Fs,τ ∈ Dτ for some sτ ∈ Tτ .

Now we show that our construction actually works, that is:

Proposition 7. For all A ∈
⋃
i Γi : MC |= A and for all A ∈

⋃
i Λi : MC 6|= A.

Proof. By structural induction on A ∈
⋃
i Γi or A ∈

⋃
i Λi (there is no A in common,

since otherwise the branch would be finite, and we are considering an infinite branch by
assumption). The only interesting case is the quantifier case, thus we only consider it
here:

Case ∀xτB(x) ∈
⋃
i Γi We want to show that MC, σ |= ∀xτB(x).

MC = (Dc, Ic), σ |= ∀xτB(x)

iff

for all d ∈ Dτ : (Dc, Ic), σ ∪ {x := d} |= B(x)

iff

(∗) for all Ft,τ ∈ Dτ : (Dc, Ic), σ ∪ {x := Ft,τ} |= B(x), with t ∈ Tτ

By the construction of the branch BC we know that for all pure semi-terms of type τ ,
that is, for all tτ ∈ Tτ , B(tτ) is added in some sequent Sj , j > i after the first occurrence
of ∀xτB(x) in Si for some i ∈ N. Now assume that for some Fs,τ , (Dc, Ic), σ ∪ {x :=
Fs,τ} 6|= B(x). Since sτ ∈ Tτ , we know that at some point B(sτ) was added in ∪iΓi, any
by induction hypothesis (Dc, Ic), σ |= B(sτ). If Ic(sτ) = Fs,τ , we get a contradiction and
thus (Dc, Ic), σ ∪ {x := Fs,τ} 6|= B(x) and (Dc, Ic), σ |= ∀xτB(x). If Ic(sτ) 6= Fs,τ , then
Fs,τ 6∈ Dτ (by ◦ below), which also contradicts the assumption.

(◦) If Fs,τ ∈ Dτ then Ic(s, τ) = Fs,τ . Prove by induction on term s: If s is a variable,
the claim holds by definition. Assume s = tl such that for t, l the claim holds. Assume
Ftl,τ ∈ Dτ . Then Ft,σ→τFl,σ = Ftl,τ , by definition. Since tσ→τ , lσ ∈ T (all subterms of a
term in T are also in T), Ft,σ→τ ∈ Dσ→τ and Fl,σ ∈ Dσ, then by induction hypothesis
we get that I(s) = I(t)I(s) = Ftl,τ .

49

3. Standard and General Semantics for Lω and Lfω

Case ∀xτB(x) ∈
⋃
i Λi If A ∈

⋃
i Λi, A ∈ Si for some i, we know that B(ατ) in the

sequents Sj , j > i, is not satisfied and thus ∀xτB(x) is also falsified.

This concludes the proof of completeness of LKfω wrt to Henkin semantics.

Corollary 2. Given an S ∈ Lfω, there is either a correctly typed cut-free proof of S∗, or
a canonical interpretation MC that falsifies S∗.

Proof. In case S ∈ L∗1, the first-order procedure can lead to incorrectly typed proofs of
S, since all terms have to be substituted in the ∀-L and ∃-R cases.

Example 16.
...

@i→i(α, α) = α,∀f@i→i(f, α) = α,∀x∀f@i→i(f, x) = x ` @i→i(α, α) = α

∀f@i→i(f, α) = α,∀x∀f@i→i(f, x) = x ` @i→i(α, α) = α

∀x∀f@i→i(f, x) = x ` ∃f@i→i(α, α) = α

∀x∀f@i→i(f, x) = x ` ∀x∃f@i→i(f, x) = x

If one restricts quantification to certain types, however, then we get the result. Then in
the end we get a a correctly typed proof, but instead we have to consider many-sorted
models (i.e., models where each type has a separate domain). This is a simpler model
than a Henkin model. However, it is easy to see that they are equivalent, thus we don’t
need to build Henkin universes as previously.

3.4.2 Soundness and completeness of LKfω(C)
LKfω(C) is not sound with respect to the general semantics for Lfω. We need to add
all the functionals corresponding to simply typed functional semi-terms. Then to see
that the LKfω(C) is sound one would need to check if all axioms hold in all Henkin
models defined this way, which is true by definition, since all such axioms correspond to
β-reductions (applications).

Theorem 21 (Completeness of LKfω(C)). LKfω(C) is complete wrt general semantics
for Lfω(C).

Proof sketch. This can be proven in a similar way as the Henkin completeness for second-
order logic by [Prawitz, 1967]. The only difference with Lfω is that we have to make
sure that the structure we get from the reduction tree is indeed a Henkin model: that
it includes all the functionals corresponding to Lfω(C) pre-terms to the domains Dτ .
The idea is to gradually extend MC to obtain the correct structure. One introduces

50

3.4. Completeness of Lfω wrt general semantics

new functional variables corresponding to each pre-term of Lfω(C) at each point in the
construction, such that all the needed functionals are added when a fixed-point is reached.

51

CHAPTER 4
Interpreting LKf

ω proofs as LK
proofs

Below I show the correspondence between LKfω and LK.

4.1 From LKfω proofs to LK proofs
First I show that proofs of Lfω formulae in LKfω can be directly translated into LK proofs
of corresponding first-order formulae.

Let L1 be a first-order language with FV = FVω, BV = BVω, C = Cω and function
symbols F = {@τ ; τ ∈ F} of the arity corresponding to the type arity. We want to define
a translation function ∗ : Lfω → L1 such that a sequent S is provable in LKfω iff S∗ is
provable in LK.

Definition 50 (Translation function *). On pre-terms:

• [ατ]∗ = ατ ;

• [xτ]∗ = xτ ;

• [cτ]∗ = cτ ;

• [tτ (tτ1
1 , . . . , t

τn
n)τn+1]∗ = @τ ((tτ)∗, (tτ1

1)∗, . . . , (tτnn)∗)

On formulae:

• P (t1, . . . , tn)∗ = P (t∗1, . . . , t∗n)

53

4. Interpreting LKfω proofs as LK proofs

• ⊥∗ = ⊥

• (A→ B)∗ = A∗ → B∗

• (∀xA)∗ = ∀xA∗

Extend to sequents S∗ and proofs π∗ in the obvious manner.

Example 17 (Translation of a Skolemized Choice instance).

Let S = ∀x.x 6= g(x) ` ∃f.hf 6= f(hf).

Then S∗ = ∀x.x 6= @i→i(g, x) ` ∃f.@(i→i)→i(h, f) 6= @i→i(f,@(i→i)→i(h, f))

LKfω proof π of S:

hg 6= g(hg) ` hg 6= g(hg)
∀-l∀x.x 6= gx ` hg 6= g(hg) ∃f -r∀x.x 6= gx ` ∃f.hf 6= f(hf)

LK proof π∗ of S∗:

@(i→i)→i(h, g) 6= @i→i(g,@(i→i)→i(h, g)) ` @(i→i)→i(h, g) 6= @i→i(f,@(i→i)→i(h, g))
∀-l∀x 6= @i→i(g, x) ` @(i→i)→i(h, g) 6= @i→i(f,@(i→i)→i(h, g))

∃-r∀x 6= @i→i(g, x) ` ∃f@(i→i)→i(h, f) 6= @i→i(f,@(i→i)→i(h, f))

Lemma 8. If S is LKfω-provable then S∗ is LK-provable. Moreover, if π is the LKω
proof of S, then π∗ is the corresponding LK proof of S∗.

Proof. By induction on the length of the proof π. Consider the case when S is obtained
by ∃-r application:

Γ ` ∆, A(T) ∃f -rΓ ` ∆,∃fA(f)

[Γ ` ∆,∃fA(f)]∗ = Γ∗ ` ∆∗, ∃fA∗(f). Then π∗ will be the proof γ of Γ∗ ` ∆∗, A(T)∗
available by induction hypothesis combined with the ∃-r application, since T∗ is a
first-order term and A(T)∗ = A∗(T∗):

Γ∗ ` ∆∗, A∗(T∗)
∃-rΓ∗ ` ∆∗, ∃xA∗(x)

54

4.1. From LKfω proofs to LK proofs

In order to characterize LKω in LK we need the converse as well. We will show the
following:

Lemma 9. For S ∈ Lfω : if S∗ is LK-provable and its proof γ is correctly typed, then
γ = π∗ for some LKω proof π of S.

Moreover, any correctly typed proof in the language of L∗1 in LK corresponds to a proof
in LKfω.

Definition 51 (Correctly typed terms, formulae, proofs). For first-order terms in the
language L∗1 define the set of correctly typed terms CT :

• FV,BV, C ⊆ CT

• @τ (t, t1, . . . , tn) ∈ CT if τ = τ1 → . . . → τn → τn+1 and type(t) = τ, type(t1) =
τ1, . . . , type(tn) = τn and t,−→t ∈ CT

Where type(xτ) = τ , type(@τ1→...→τn(t)) = τn. A formula is correctly typed if all terms
occurring in it are correctly typed. The definition extends to sequents and proofs in an
obvious way.

Lemma 10. If a term t of L∗1 is correctly typed, then there is a term s in the language
Lω such that t = s∗. Same holds for formulae.

Proof. Follows from the definitions.

Proof of lemma 9. By induction on the length of the proof γ. Consider the case when
S∗ is obtained by ∃-r application:

Γ∗ ` ∆∗, A∗(t)
∃-rΓ∗ ` ∆∗, ∃xA∗(x)

Since by assumption the proof is correctly typed, by lemma 10 we have that t = s∗ for
some Lω term s. Thus we can apply induction hypothesis and thus we have a proof of
Γ ` ∆, A(s), from which by ∃f -r we get Γ ` ∆,∃xA(x) which concludes the proof π. (In
the case of cut use the second part of the lemma 10.)

55

4. Interpreting LKfω proofs as LK proofs

4.2 Translation back: from LK∗ to LKfω
Now we want from a first-order proof go to higher-order proof.

Given a sequent S ∈ L∗1, define folding of S to Sf ∈ Lω:

• [ατ]f = ατ ;

• [xτ]f = xτ ;

• [cτ]f = cτ ;

• [@τ (t, t1, . . . , tn)]f = tf (tf1 , . . . , tfn)

The definition naturally extends to formulae, sequents, proofs.

Proposition 8. If S is correctly typed, then Sf ∈ Lω

Proof. By definitions.

Due to subformula property of cut-free proofs, if S is correctly typed, but its proof is
incorrectly typed, then the incorrectly typed terms can only occur in the ancestor formula
of a weak quantifier inference. Thus:

Proposition 9. For S ∈ L∗1: if S is correctly typed, doesn’t contain any weak quantifiers
and LK-provable by π, then πf proves Sf .

Clearly, if we restrict axiom and weakening to correctly typed formulae, then we are
getting LKfω-proofs immediately.

Proposition 10. If S ∈ L∗1 is correctly typed and S is LK-provable from correctly typed
axioms by proof π with only correctly typed weakening formulae, then Sf is LKfω-provable
by the proof πf .

Proof. By induction on the number of inferences.

Thus it is enough to restrict the proofs to the ones using only correctly typed proofs. We
give a semantic argument:

Lemma 11. For S ∈ Lfω: if S∗ is LK-provable, then S is LKfω-provable.

Proof. If S is not LKfω-provable, by completeness of LKfω wrt Henkin semantics, there is
a Henkin model M = ({Dτ ; τ ∈ F}), I) such that M 6|= S. From M obtain a first-order
model N = (D,J) such that N 6|= S∗ in the following way:

56

4.3. Skolemization in L1, Lω and Lfω

• D =
⋃
τ∈FDτ

• Define interpretation J :

– J(xτ) = I(xτ) for xτ ∈ V ∪ C (variables and constants)
– J(P) = I(P) for predicate constants
– J(@τ (t, t1, . . . , tn)) = I(t(t1, . . . , tn)) – on the object of not a corresponding

type, extend randomly.

That is, interpret @ as application function, and everything else stays the same.

Clearly then N 6|= S∗.

4.3 Skolemization in L1, Lω and Lfω
During proof transformation and analysis keeping track of eigenvariable conditions can
be tricky; for this reason one often considers Skolemized proofs, proofs without strong
quantifier introductions (for definitions see below). In first-order logic, every sentence
has a Skolemized form: an equi-satisfiable sentence that contains no strong quantifiers;
moreover one can obtain such a sentence by a simple algorithm. In higher-order logic
this is no longer the case unless one imposes some restrictions on Skolem terms. The
defined translation of Lfω into first-order logic provides an explanation for imposing such
restrictions.

4.3.1 First-order Skolemization

In first-order logic we can define a function sk on formulae A such that `LK A iff
`LK sk(A) and sk(A) contains no strong quantifiers.

Definition 52 (Strong and weak quantifiers).
If (∀x) occurs positively (negatively) in B then (∀x) is called a strong (weak) quantifier.
If (∃x) occurs positively (negatively) in B then (∃x) is called a weak (strong) quantifier.

Definition 53 (Positive and negative occurrences). Suppose B contains an occurrence
of A.

• If A is B then A occurs positively in B.

• If B is (C ∧D), (C ∨D), ∀x.C or ∃x.C and A occurs positively (negatively) in C
(or in D respectively) then A occurs in B positively (negatively).

• If B is (C → D) and A occurs positively (negatively) in D then the corresponding
occurrence of A in B is positive (negative); if A occurs in B positively (negatively)
in C then the corresponding occurrence of A in B is negative (positive).

57

4. Interpreting LKfω proofs as LK proofs

• If B is ¬C and A occur positively (negatively) in C then the corresponding occurrence
of A in B is negative (positive).

Example 18. ∀y.P (y)→ ∀x.P (x): ∀y is a weak quantifier, ∀x is a strong quantifier.

Note that the strong quantifier introduction rule requires eigenvariable conditions. Below
we define the structural Skolemization operator sk:

Definition 54 (Skolemization). sk is a function from closed formulas to closed formulas:

sk(F) = F if F does not contain strong quantifiers.

Otherwise assume that (Qy) is the first strong quantifier in F (in a tree ordering) which
is in the scope of the weak quantifiers (Q1x1), . . . , (Qnxn) appearing in this order. Let f
be an n-ary function symbol not occurring in F . Then sk(F) is defined inductively as

sk(F) = sk(F(Qy){y := f(x1, . . . , xn)}).

where F(Qy) is F after omission of (Qy). sk(F) is called the (structural) Skolemization
of F .

Definition 55 (Skolemization of sequents). Let S be the sequent
A1, . . . , An ` B1, . . . , Bm consisting of closed formulas only and

sk((A1 ∧ . . . ∧An)→ (B1 ∨ . . . ∨Bm)) = (A′1 ∧ . . . ∧A′n)→ (B′1 ∨ . . . ∨B′m).

Then the sequent
S′ : A′1, . . . , A

′
n ` B′1, . . . , B′m

is called the Skolemization of S.

Example 19. Let S be the sequent (∀x)(∃y)P (x, y) ` (∀x)(∃y)P (x, y). Then the Skolem-
ization of S is S′ : (∀x)P (x, f(x)) ` (∃y)P (c, y) for a one-place function symbol f and a
constant symbol c.

By a Skolemized proof we mean a proof of the Skolemized end-sequent. The Skolemized
proof can be obtained by Skolemizing end-sequent and then propagating the changes
upwards in the proof.

4.3.2 Problems with Skolemization in Lω and Lfω
We would want to obtain similar function skω for Lω and consequently Lfω. If we simply
generalize the first-order function sk to include higher types, we don’t obtain the needed
result. First of all, it becomes impossible to Skolemize proofs, as the following simple
example shows:

58

4.3. Skolemization in L1, Lω and Lfω

...
∀x.P (x, α)→ ∀x.P (x, α) ` ∀xiP (x, α)→ P (s, β)

∀L, T = λy.∀xP (x, y)
∀xi→o.x(α)→ x(α) ` ∀xiP (x, α)→ P (s, β)

The end-sequent is Skolemized, however, the proof is not and cannot be. If one Skolemizes
∀x.P (x, a)→ ∀x.P (x, a),∆ ` Γ, one ends up with P (c, a)→ ∀x.P (x, a),∆ ` Γ and then
the ∀L cannot be applied as before.

A related feature of Skolemization that can be used in LK proof transformation is the
following:

Proposition 11. Skolemized LK-proofs do not contain strong quantifier inferences on
the ancestors of the end-sequent.

For LKω this proposition fails as shown by this simple example:

Example 20.

P (α) ` P (α)
∀-l∀x.P (x) ` P (α)
∃-r∀x.P (x) ` ∀x.P (x)
∃-r; T := λy.∀x.P (x)

∀x.P (x) ` ∃Z.Z

However, this holds for LKfω:

Proposition 12. Skolemized LKfω-proofs do not contain strong quantifier inferences on
the ancestors of the end-sequent.

Proof. Same as for LK. By induction on the number of inferences in the proof of the
Skolemized sequent S. In the case ∃R, which was problematic in LKω the induction
goes through since the weak quantifier-introduction can’t “hide” the strong quantifier
inferences as in the above example.

However, skω is not validity-preserving neither in LKfω nor in LKω:

Proposition 13. There is an A ∈ Lfω such that `LKfω sk
ω(A), but 6`LKfω A.

Proof. In particular, the Axiom of Choice is not provable in LKfω (cf. [?]). The following
instance of Axiom of Choice stated as a functional second-order formula is not provable
in LKω and thus not in LKfω:

∀x∃y.x 6= y → ∃f∀z.z 6= fz.

This can be shown using the Henkin models: consider a general structure ({a, b, c}, I) with
any I and σ = ∅ with Di→i consisting of all functions definable by second-order formulae.

59

4. Interpreting LKfω proofs as LK proofs

We have that ({a, b, c}, I), σ |= ∀x∃y.x 6= y, however ({a, b, c}, ∅) 6|= ∃f∀z.z 6= fz. Assume
that this holds: then there is a Lfω-definable function F such that ({a, b, c}, I), {f := F} 6|=
∀z.z 6= fz holds. That is, ({a, b, c}, I) |= ∀z∃!y.A[z, y] ∧ z 6= y. Then ({a, b, c}, I), {x :=
a, y := b} |= A[z, y] ∧ z 6= y. But also ({a, b, c}, I), {x := a, y := c} |= A[z, y] ∧ z 6= y,
which contradicts ({a, b, c}, I), {x := a, y := b} |= ∀x∃!yA[z, y] ∧ z 6= y.

However, the Skolemized version of the Axiom of Choice skω(AC) = ∀x.x 6= gx →
∃f.hf 6= f(hf) is provable in LKfω:

hg 6= g(hg) ` hg 6= g(hg)
∀L∀x.x 6= gx ` hg 6= g(hg) ∃fR∀x.x 6= gx ` ∃f.hf 6= f(hf)

Note that the Skolem function g is “used” in the proof for introducing an existential
quantifier on the right-hand-side.

4.3.3 Restricted Skolemization

In order to obtain sound Skolemization in Lfω we need to restrict Skolem functions. Based
on the counter-example above [Miller, 1987] proposes two restrictions and proves that
they suffice for obtaining a sound Skolemization procedure for higher-order formulae.

We assume that we are given Skolem function symbols for each type. Moreover, each
such symbol comes with an indicated arity – the number of arguments it can take to
form a pre-term. Thus we redefine the notion of pre-term:

Definition 56 (Pre-terms of Lfskω). Define inductively:

• All pre-terms of Lfω are pre-terms of Lfskω ;

• If f is a Skolem symbol of type τ1 → . . .→ τn → τn+1 and arity n, and t1, . . . , tn
are pre-terms of Lfskω , then f(t1, . . . , tn) is a pre-term (of type τn+1)) of Lfskω .

Example 21. fσ1→(σ2→σ3)
2 is a Skolem function with arity 2 and the type σ1 → (σ2 → σ3).

f
σ1→(σ2→σ3)
1 is a Skolem function with arity 1 and type σ1 → (σ2 → σ3). Then we want

to define pre-terms in way that fσ1→(σ2→σ3)
2 (t1, t2) is a pre-term of type σ3 iff t1 has type

σ1 and t2 type σ2 and fσ1→(σ2→σ3)
1 (t) is a pre-term of type σ2 → σ3 iff t has type σ1.

Thus the first restriction is that Skolem function symbols cannot form pre-terms in
the same way as usual higher-order constants and variables; they come with necessary
arguments. This way, the above proof of the Skolemized Choice cannot go through: g

60

4.3. Skolemization in L1, Lω and Lfω

cannot be used as a pre-term of type i → i in the ∃R-introduction, since it is not a
pre-term without a necessary argument of type i.

Of course in LKfω(C) and LKω, one could replace g with λx.gx and obtain another proof
of the Skolemized Choice. This leads to the second restriction on Skolem pre-terms: no
necessary argument of a Skolem function can be bound by lambda abstraction. Same
definition of pre-terms for LKfω(C) allows to formalize this second requirement:

Definition 57 (Pre-terms of Lfskω (C)). Define inductively:

• All pre-terms of Lfω(C) are pre-terms of Lfskω (C);

• If f is a Skolem symbol of type τ1 → . . .→ τn → τn+1 and arity n, and t1, . . . , tn
are pre-terms of Lfskω , then f(t1, . . . , tn) is a pre-term (of type τn+1) of Lfskω (C).

Now in the definition of LKfω and LKfω(C) modify the weak quantifier rules: T is a Lfskω

or a Lfskω (C) pre-term.

Γ, A{xτ := T} ` ∆
∀LΓ,∀xτ .A ` ∆

Γ ` ∆, A{xτ := T}
∃RΓ ` ∆, ∃xτ .A

where T is any pre-term of Lfskω of type τ replaced with xτ in the lower sequent.

Using the ∗-translation we can provide explanation of the restrictions proposed by Miller
from a more general point of view. Consider the example of the Axiom of Choice

AC = ∀x∃y.Pxy → ∃f∀x.Pxfx

and its LKfω proof π again:

hg 6= g(hg) ` hg 6= g(hg)
∀L∀x.x 6= gx ` hg 6= g(hg) ∃fR∀x.x 6= gx ` ∃f.hf 6= f(hf)

We also have a corresponding LK proof of its ∗-translation, by previous results of this
section:

61

4. Interpreting LKfω proofs as LK proofs

LK proof π∗ of S∗:
@(i→i)→i(h, g) 6= @i→i(g,@(i→i)→i(h, g)) ` @(i→i)→i(h, g) 6= @i→i(f,@(i→i)→i(h, g))

∀L∀x 6= @i→i(g, x) ` @(i→i)→i(h, g) 6= @i→i(f,@(i→i)→i(h, g))
∃R∀x 6= @i→i(g, x) ` ∃f@(i→i)→i(h, f) 6= @i→i(f,@(i→i)→i(h, f))

Now note that although the end-sequent of π∗ is the ∗-translation of Skolemized AC
it is not a Skolemization of the ∗-translation of AC. That is, sk(AC∗) 6= skω(AC)∗.
skω(AC)∗ = ∀x 6= @i→i(g, x) ` ∃f@(i→i)→i(h, f) 6= @i→i(f,@(i→i)→i(h, f)) is not the
first-order Skolemization of AC∗, since it introduces constants, while by definition of sk
it is supposed to introduce function symbols.

The ∗-translation of AC looks like this:

(∀x∃y.Pxy → ∃f∀x.Pxfx)∗ = ∀xi∃yi.Pxiyi → ∃f i→i∀xi.Pxi@i→i(f, x).

Its first-order Skolemization sk(AC∗) is the following:

∀xi.Pxigskyi → ∃f i→i.Phskf,@i→i(f, hskf)

where gsk, hsk are Skolem function symbols.

Note that the resulting formula is not a ∗-translation of any Lfω-formula: neither gsky
nor hskf are (semi-)terms of L∗1 by our definition, since we only used terms to be of the
form @τ (t1, . . . , tn).

Now we cannot “use” gsk to prove this statement as we did before: gsk cannot be used for
quantification introduction, since it is not a well-formed pre-term by our definition, only
when it is applied to the argument – then it is just a well-formed first-order term. This
exactly describes the first restriction to higher-order Skolemization by Miller. Thus we
can arrive at the sound higher-order Skolemization procedure by generalizing first-order
Skolemization using ∗-translation.

62

CHAPTER 5
Conclusion

In this thesis we studied sub-logics of higher-order logic in which quantification is restricted
to objects of functional type only. We saw that such a restriction gives rise to logics that
have a manageable proof-theory and at the same time share some interesting properties
with full higher-order logic.

First, we defined syntax and semantics of two variants of such a logic and gave the
corresponding cut-elimination proofs, which are easy adaptations of the Gentzen’s proof
for LK: one just has to incorporate βη-equality in the calculus and then repeat the
argument for LK with equality. Thus, the logic defined this way is proof-theoretically
closer to LK than to LKω. This became obvious by looking at a proof-preserving
translation from functional higher-order proofs to first-order proofs defined in Chapter
4. In addition, such translation provides a new perspective on Skolemization which
is problematic in higher-order logic. Moreover, we studied semantics of this logic:
we showed incompleteness wrt standard semantics and gave a completeness proof wrt
general semantics based on Schütte’s reduction tree method. This is a simpler and more
elegant way of proving this result than a more obvious specialization of a Henkin-style
completeness proof for full higher-order logic.

In conclusion, one can say that restricting to functional types allows a better understanding
of the sources of logical complexity of higher-order logic, both in proof theory and
semantics. By looking at restricted forms of comprehension, it is known that proof-
theoretic complexity in higher-order logics comes from impredicative comprehension.
Similarly, by looking at the functional fragments we can see that some of the complexity
of higher-order logic is due to allowing λ-terms and β-reduction. First, functional higher-
order unification problems are already undecidable. Second, as we have seen, adding
λ-terms already complicates things semantically, since one cannot extract the counter-
model for an unprovable sequent from a reduction tree directly. Moreover, Skolemization
has to take a different form: problems with Skolemization start when they are treated as
objects of the domain of quantification and not as syntactic tools.

63

5. Conclusion

Further work could include:

• Cut-elimination and completeness proof for LKfω(C) with β-reduction instead of
equality. Intuitively, it should be possible to separate the β-reduction steps from
the logical steps in the proof.

• Extending the term language to other term languages, such as system T.

• Since the LKfω is so close to LK, it should be easy to adapt other first-order cut-
elimination procedures. For instance, one could try adapting the Skolemization-free
CERES method for first-order logic to LKfω and LKfω(C).

64

Bibliography

[Benzmüller and Miller, 2014] Benzmüller, C. and Miller, D. (2014). Automation of
higher-order logic. In Computational Logic, pages 215–254.

[Danos et al., 1997] Danos, V., Joinet, J., and Schellinx, H. (1997). A new deconstructive
logic: Linear logic. J. Symb. Log., 62(3):755–807.

[Gentzen, 1935] Gentzen, G. (1934–1935). Untersuchungen über das logische Schließen
I+II. Mathematische Zeitschrift, 39:176–210,405–431.

[Girard et al., 1989] Girard, J., Lafont, Y., and Taylor, P. (1989). Proofs and Types.
Cambridge University Press.

[Girard, 1991] Girard, J. Y. (1991). Proof theory and logical complexity. Annals of Pure
and Applied Logic, 53(4):197.

[Hetzl et al., 2011] Hetzl, S., Leitsch, A., and Weller, D. (2011). CERES in higher-order
logic. Ann. Pure Appl. Logic, 162(12):1001–1034.

[Leitsch, 2015] Leitsch, A. (2015). On proof mining by cut-elimination. In All about
proofs, proofs for all, volume 55 of Mathematical Logic and Foundations, pages 173–200.

[Leivant, 1994] Leivant, D. (1994). Higher order logic. In Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume2, Deduction Methodologies, pages 229–
322.

[Miller, 1992] Miller, D. (1992). Unification under a mixed prefix. J. Symb. Comput.,
14(4):321–358.

[Miller, 1987] Miller, D. A. (1987). A compact representation of proofs. Studia Logica,
46(4):347–370.

[Prawitz, 1967] Prawitz, D. (1967). Completeness and Hauptsatz for second order logic.
Theoria, 33(3):246–258.

[Prawitz, 1968] Prawitz, D. (1968). Hauptsatz for higher order logic. J. Symb. Log.,
33(3):452–457.

65

Bibliography

[Tait, 1966] Tait, W. W. (1966). A nonconstructive proof of Gentzen’s Hauptsatz for
second order predicate logic. Bull. Amer. Math. Soc., 72(6):980–983.

[Takeuti, 1987] Takeuti, G. (1987). Proof Theory. Dover Books on Mathematics.

[Van Benthem and Doets, 2001] Van Benthem, J. and Doets, K. (2001). Higher-Order
Logic, pages 189–243. Springer Netherlands, Dordrecht.

66

	Kurzfassung
	Abstract
	Introduction
	Structure of the thesis

	Preliminaries
	First-order logic L1 and sequent calculus LK
	Functional higher-order logic Lf and sequent calculus LKf
	Functional higher-order Lf(C) and sequent calculus LKf(C)
	Higher-order logic L and sequent calculus LK

	 Cut-Elimination in First-Order and Higher-Order Logics
	The cut-elimination theorem for LK and LKe
	Cut-elimination theorem for LK
	Cut-elimination theorem for LKf and LKf(C)

	Standard and General Semantics for L and Lf
	Standard and general semantics for L
	Standard and general semantics for Lf
	Higher-order unification and incompleteness of Lf
	Completeness of Lf wrt general semantics

	Interpreting LKf proofs as LK proofs
	From LKf proofs to LK proofs
	Translation back: from LK* to LKf
	Skolemization in L1, L and Lf

	Conclusion
	Bibliography

