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Zusammenfassung

Wörter referenzieren Objekte in der Welt, wobei ein Wort viele Ob-
jekte in der Welt referenzieren kann, die als ähnlich wahrgenommen
werden. Das Wort “Stadt” referenziert unter anderem die Objekte:
Wien, Alexandria oder Las Vegas; das Wort “nahe” kann zum Beispiel
die unterschiedlichsten Distanzen referenzieren wie “der Mond ist nahe
der Erde” oder “nahe dem Stephansdom”. Enthält eine Anfrage an ein
Geografisches Informationssystem (GIS) das Wort “Stadt” oder “nahe”
muss ein Algorithmus im GIS entscheiden, welche Stadt oder welche
Distanz referenziert wird.

Um eine Entscheidung treffen zu können, baut diese Arbeit auf der
Hypothese auf, dass Kontext Referenzen zwischen Wörtern und Ob-
jekten in der Wirklichkeit selektiert. Um diese Hypothese zu belegen,
wird eine Kontext-Algebra vorgeschlagen, implementiert und damit
das Wort “nahe” modelliert.

Die Kontext-Algebra basiert auf der Theorie eines um Kontext er-
weiterten semiotischen Dreieckes (Figure 1). Dieses Dreieck verbindet
Objekte in der Wirklichkeit über Konzepte in einem Agenten mit
Wörtern. Durch die Erweiterung um Kontext wird das Konzept in
kontextualisierte Konzepte aufgeteilt, welche nur Objekte beinhalten,
die in einem Kontext gültig sind. Wird ein Wort nun in solchem Kon-
text verwendet, entspricht es einem kontextualisierten Konzept, das
somit die selektierten Objekten in der Wirklichkeit referenziert.
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Figure 1: Semiotisches Dreieck um
Kontext erweitert

Die Kontext-Algebra bietet eine Formalisierung für Kontext an.
Dabei werden Kontexte durch eine Ordnungsrelation verglichen und
neue Kontexte entstehen durch die Anwendung der Konjunktions- oder
Disjunktionsfunktion von zwei Kontexten. Für die Ordnungsrelation
und die beiden Funktionen sind algebraische Eigenschaften festgelegt.
Mit diesen Eigenschaften, der Ordnungsrelation und den Funktionen
wird Kontext mittels der mathematischen Struktur Verband formal-
isiert.

Alle Kontexte im Verband werden auf Objekte, beobachtet in der
Wirklichkeit, zusammengefasst in kontextualisierte Konzepte abgebildet.
Aus kontextualisierten Konzepten werden typische Objekte (Proto-
typen) ermittelt, die als Übersetzung von einem Wort auf ein Objekt
in der Wirklichkeit dienen. Zum Beispiel kann mittels dem Kontext
“Hauptstadt von Österreich” von dem Wort “Stadt” die prototypische
Instanz Wien ermittelt werden.

Die Kontext-Algebra wird in Haskell implementiert, verifiziert, sowie
dessen Komplexitätsklasse bestimmt. Diese Implementierung zeigt,



dass die Kontext-Algebra mit akzeptabler Performanz realisierbar ist.
Die Implementierung erfüllt die algebraischen Eigenschaften, verifiziert
durch Tests, und mittels Benchmarks ist die Komplexitätsklasse expo-
nentiell bestimmt worden.

Mittels der Kontext-Algebra wird das Wort “nahe” modelliert. Um
das Modell realistisch zu gestalten sind Kontexte und Objekte (Dis-
tanzen) aus Immobilienbeschreibungen durch einen manuellen Prozess
erhoben worden. Das initialisierte Modell für “nahe” ermöglicht es,
verschiedene Distanzen abhängig vom Kontext (Größe des referen-
zierten Objektes, Aktivität) zu referenzieren. In unserem Beispiel ref-
erenziert “nahe dem See” eine Distanz von 1050 Metern, “nahe der
U-Bahn” eine Distanz von 380 Metern und “Gehnähe” eine Distanz
von 550 Metern.

Die Ergebnisse aus der Anwendung der Kontext-Algebra für das
Wort “nahe” zeigen die Plausibilität des um Kontext erweiterten semi-
otischen Dreiecks. Dies lässt den Schluss zu, dass die Hypothese valide
ist.

Schlüsselwörter: Kontext, Kontext-Algebra, Kontext erweitertes Semi-
otisches Dreieck, Geographische Konzepte, Modell für nahe



Abstract

Words are used to refer to objects in reality. One word can imply
many references to different objects that are categorized as similar.
For example, the word “city” can refer to Vienna, Alexandria, or Las
Vegas; the word “near” can refer to a range of distances, e.g. “moon
is near the earth” or “near St. Stephens cathedral”. If a Geographic
Information System (GIS) is queried with a sentence including “city”
or “near”, the challenge for an algorithm executed by the GIS is to
decide which exemplar of the word “city” or which distance “near”
refers to.

To overcome this challenge, the hypothesis is that context selects
references to objects in reality. A context algebra is presented, imple-
mented, and used to represent the word “near”, in order to evaluate
the hypothesis.

Context algebra makes use of the theory established by a context-
enriched semiotic triangle (Figure 2). The semiotic triangle connects
objects in reality to words via concepts in an agent. With context en-
richment, the concept is separated into contextualized concepts that
include objects in reality valid for a specific context. If words are used
in this specific context, then they correspond to a specific contextu-
alized concept, which then selects specific references to objects from
reality.
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Figure 2: Context enriched semiotic
triangle

Context algebra proposes a formalization for context. In this al-
gebra, contexts are ordered with a partial order relation and can be
combined with a disjunction or conjunction function to create other
contexts. This relation and these functions satisfy algebraic properties
that result in a lattice structure for context.

Each context included in the lattice is mapped to a contextualized
concept. A contextualized concept is modeled with sets of objects ob-
served from reality, where a typical object is determined. This typical
object (prototype) is assumed to be the translation from a word to
an object in reality. For example, the influencing context “capital of
Austria” for the word “city” selects the prototypical instance Vienna.

Context algebra is implemented using Haskell, it is then proven,
and the complexity class is determined. The implementation shows
that the context algebra is realizable with reasonable performance. To
prove that the implementation satisfies the proposed algebraic prop-
erties, tests are successfully executed. The benchmarks determine the
complexity class exponential for the implementation.

The word “near” is modeled using the context algebra. To model



“near” realistically, data is acquired via a manual identification pro-
cess of real estate entries. The initialized model makes it possible to
determine references to different distances according to contexts, e.g.
the size of the referenced object or activity. For example, “near the
lake” references 1050 meters, “near by subway” references 380 meters,
and “near by walking” references 550 meters.

The results of the application for “near” provide evidence that the
hypothesis is valid, and that it is able to select references which trans-
late for example “near” into metric distances.

Keywords: context, context algebra, context-enriched semiotic trian-
gle, concept, model for near
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1
Introduction

A natural language interface for Geographic Information Systems (GIS)
has to translate natural language into values usable for spatial algo-
rithms. One example for a natural language input would be: “Show
me grocery shops near my location”. The spatial algorithm within
(function illustrated in Figure 1.1) is capable of answering the query
by selecting all grocery shops in a circle, with the personal location
as the center. The within algorithm depends on a data set including
grocery shops, the exact personal location, and the metric value of
the radius for the circle. Data sets including grocery shops are pub-
licly available (e.g. OpenStreetMap1) and the personal location can 1 http://www.openstreetmap.org/

be measured through sensors using global navigation satellite systems.
The metric distance (e.g. 100 meters) defining the radius, however,
is missing because it cannot be determined from the natural language
input alone. In order to use the algorithm, a translation mechanism
between natural language and metric distances has to be found. The
proposal of such a translation mechanism between natural language
and metric distances is the goal of this thesis.

personal location

grocery shop

near

Figure 1.1: “Near” refers to which dis-
tance?

The approach to create a translation mechanism from words to met-
ric distances is inspired by the human interpretation process. In this
interpretation process, humans use natural language to refer to ob-
jects in reality. Humans carry out interpretation tasks in everyday
situations, such as when translating “near” into metric values, or in
wayfinding tasks. In the example of interpreting a wayfinding task, e.
g. “turn right at the traffic light”, the words must be interpretable
with the available sensory inputs.

In formalizations from words to objects in reality (facts), ambigui-
ties emerge. McCarthy [1987] and his coworkers established a knowl-
edge base including facts about reality that are common to everyone.
One such fact could be “Evening Star” referring to “planet Venus” –
which is true, but it is also true that “Morning Star” refers to “planet
Venus” as well. These two facts create a contradiction in the knowl-
edge base for the word “Venus”. From such contradiction everything
else can be followed, ex falso quodlibet. To cope with ambiguities
arising in formalizations from words to objects in reality is the major
challenge of this thesis.

Context was proposed to resolve ambiguities arising in knowledge
bases. The integration of context in knowledge bases used in Ar-

http://www.openstreetmap.org/


introductory example – let’s meet at a restaurant 2

tificial Intelligence (AI) [McCarthy, 1987] was key to distinguishing
between facts. Additionally, software including context established,
for example, the fields of ubiquitous computing [Weiser, 1993], and
context-aware computing [Schilit et al., 1994]. In this thesis, context
is proposed as a means to resolve ambiguities in the referring process,
which is formalized to establish a translation mechanism from natural
language to metric distances.

1.1 Introductory Example – Let’s meet at a restaurant

The conversation presented in this example shows how context influ-
ences the referring process. The example is as follows: two subjects
want to meet for dinner, and one of them proposes: “Let’s meet at a
restaurant”. The focus of this example is to show how context influ-
ences the number of references that have to be taken into account when
inferring from the word “restaurant” corresponding objects in reality:
e.g. vegan restaurants, fish restaurants, and so on. When two people
want to meet at one restaurant, the references to multiple restaurants
must be reduced to only one reference. But how do people use the
word restaurant so that it refers only to one object in reality? The an-
swer is stated by the guiding hypothesis of this work: Context selects
appropriate references to objects in reality. This selection is illustrated
by maps, showing the number of restaurants it actually refers to.

The references for the word “restaurant” can be reduced by spec-
ifying a regional context, e.g. in Vienna2. Including this context in 2 to indicate context, it will be styled

with italic sans serif font throughout
this work

the above statement results in “Let’s meet at a restaurant in Vienna”.
This context influence reduces possible references to only these restau-
rants located in Vienna. Using the OpenStreetMap (OSM) data set3, 3 queried at July 15 2016
the number of restaurants is reduced from 10484 in Austria to 2048 in
Vienna, shown as red points on the map in Figure 1.2. Compared to
the number of references that are included only for Austria in the data
set, the context “in Vienna” already reduces the number to 1/5.

Two contexts differ in the number of references they reduce, which
is used to partially order the two respective contexts. Considering the
contexts in Vienna and Innere Stadt (translation: downtown) the num-
ber of reduction differs. Influencing the statement with the second
context results in the statement “Let’s meet at a restaurant in Innere
Stadt”, where the number of restaurants included in the data set is
reduced to 363 restaurants. Compared to the 2048 from in Vienna,
this is a further reduction to approximately 1/5 of selected references.
This fact is used to bring the two contexts in relation to each other,
using the relation “is more selective”. In this example context, Innere
Stadt is “more selective” compared to in Vienna, as measured by the
number of references. In summary, two contexts can be ordered with
the order relation “is more selective” by counting the number of refer-
ences. Pursuing the example above by illustrating the statement on a
map, restaurants in other cities are presented in the map as well. In
Figure 1.3 the map also includes restaurants in the cities Klagenfurt
and Graz. This is counter intuitive to the human usage of context, as
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restaurants, retrieved via:
http://overpass-turbo.eu
Query text:
[ out : j son ] [ t imeout : 2 5 ] ;
area [ name="Wien" ] ;
node ( area )
[ " amenity "=" r e s tau ran t " ] ;
out body ;
>;
out s k e l qt ;
OSM

Figure 1.2: Map showing restaurants
in Vienna

humans include already presented contexts in a conversation, and take
them as basis for further conversation [Fauconnier, 1994]. To be able
to consider both such past context and actual context, a combination
mechanism for contexts has to be found.

The result of a combined context has to be another context, includ-
ing the constituents which also act as selectors. In our example, the
constituent contexts in Vienna and Innere Stadt are combined to cre-
ate the new context in Vienna in Innere Stadt. The name First District
is assigned to the combined contexts by Vienna residents. Combined
context do not necessarily have to be assigned new names. For exam-
ple, the contexts in Vienna and serving pizza are not assigned a new
name in common usage, although these two do result in the context in
Vienna serving pizza displayed on the map in Figure 1.4, even further
reducing the references down to 140 restaurants. The combination
mechanism for context is the basis for modeling the referring process,
as multiple contexts may act simultaneously.

A context is also a possible complement of another context. For
example, suppose our two subjects want to meet at a restaurant that is
not serving pizza; then that context is a complement of the previously
used context, serving pizza, resulting in the context not serving pizza.
Applying the complemented context to the statement will result in:
“Let’s meet at a restaurant in Vienna that does not serve pizza”.

Context influences the referring process by reducing the number
of references from words to objects in reality. For our example state-
ment, the goal is to select only one reference/object in reality where the
meeting will take place. In order to reduce the references to only one
restaurant, more context has to be introduced. Typical additional con-

http://overpass-turbo.eu
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restaurants, retrieved via:
http://overpass-turbo.eu
Query text:
[ out : j son ] [ t imeout : 2 5 ] ;
area [ name=" Innere Stadt " ] ;
node ( area )
[ " amenity "=" r e s tau ran t " ] ;
out body ;
>;
out s k e l qt ;
OSM

Figure 1.3: Map showing restaurants
for Innere Stadt.

restaurants, retrieved via:
http://overpass-turbo.eu
Query text:
[ out : j son ] [ t imeout : 2 5 ] ;
area [ name="Wien" ] ;
node ( area )
[ " amenity "=" r e s tau ran t " ]
[ " c u i s i n e "=" p i zza " ] ;
out body ;
>;
out s k e l qt ;
OSM

Figure 1.4: Map showing restaurants
in Vienna serving pizza.

http://overpass-turbo.eu
http://overpass-turbo.eu
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texts would be time, e.g. at midnight for food , or transportation mode,
e.g. by car or on foot. As demonstrated above, different contexts can
be ordered and combined – but what exactly should be considered a
context?

1.2 What is “Context” in this example?

The word context originates from the Latin term contextus (past par-
ticiple of contextere), meaning to weave together or to join together
[Cobuild, 1987]. Colllins dictionary includes two synonyms for context:
circumstances and frame of reference. According to Loyola [2007] con-
text has two acceptations: (i) “the parts of a discourse that surround
a word or passage and can throw light on its meaning” and (ii) “in-
terrelated conditions in which something exists or occurs (Webster’s
English Dictionary) and that these acceptations relate to discourses,
situations or events which are common to any organization”. Having
said that, Loyola [2007] concludes that this does not, however, shed
light on what context is.

Every discipline and almost every application define context differ-
ently [Bazire and Brézillon, 2005]. The most-cited definition in the
research field of ubiquitous computers relies on the definition by Dey
[2001]: “Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an appli-
cation, including the user and applications themselves”. In an article
from 1996 [McCarthy, 1996] McCarthy refuses to give a definition for
context, but later on, in 1997, he defines context as “a generalization of
a collection of assumptions, but there are important differences. For
example, contexts contain linguistic assumptions as well as declara-
tive and a context may correspond to an infinite and only partially
known collection of assumptions” [McCarthy and Buvac, 1997]. In
the field of linguistics, Sanders [1988, page 15] provide the following
definition: context is a “. . . set of premises used in interpreting an ut-
terance”; more specifically, “[a] context is a psychological construct, a
subset of the hearer’s assumptions about the world”. In the field of GI-
Science [Goodchild, 1990, Egenhofer et al., 2015], Kuhn [2005] states
that “[c]ontext is an overloaded term and has many aspects”. To gen-
erate common ground, Bazire and Brézillon [2005] extracted common
factors from 150 context definitions within cognitive science. The most
common factors included in the definitions are: attention, activity, sit-
uation, environment, and an observer. Ultimately, however, the study
concludes that a common definition for context cannot be found: “. . .
context stays a very ill-defined concept” [Bazire and Brézillon, 2005].

In this thesis, context is considered as it occurs in the communi-
cation process, where the receiver requires context to understand the
meaning of the words supplied by the sender. The given operational
definition is influenced by a statement from Leech [1981, page 66]:
“[context] has the effect of narrowing down the communicative possi-
bilities of the message as it exists in abstraction from context”. In this
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thesis:

Context is any information that selects appropri-
ate references from a word to objects in reality.

1.3 A General Context operation

A proposal for a general context operation explaining the function of
context is outlined. The general context operation is inspired by the
constitutive rule for institutional facts, presented by the philosopher
Searle [1995]. In order to distinguish between several meanings, Searle
formulates the constitutive rule “X counts as Y in C” [Searle, 1995,
page 43], illustrated in the lower part of Figure 1.5. He expresses this
rule in an example considering a piece of paper in a specific format,
with signs and a particular number on it. Applying Searle’s statement
to this piece of paper, the piece of paper (X) counts as currency (Y)
in the context of the appropriate geographic region (C). The piece
of paper in Figure 1.5 with the e symbol on it counts as currency
only in Europe, while in the U.S. it would be a mere piece of paper, as
illustrated in Figure 1.5. This example seems simple, because everyone
can go to a bank and exchange one currency into another. It was
designed from Searle to explain the constitutive rule and how context
works.

10

paper

currencyin U.S.

in Europe

in U.S.

X Y
Context C

Figure 1.5: Idea of a General Context
Operation

The general context operation is intended to formalize behavior,
as per the constitutive rule stated by Searle. A vague shape for a
general context operation was given by Shoham [1991]. He states that
“. . . among those who talk about context to consider operations that
accept a context and some other information, and produce another,
usually more specific context”. Bringing together the ideas of Searle
[1995] and Shoham [1991] and the introductory example, a general
context operation is formalized in pseudo-code in Algorithm 1.1.

Algorithm 1.1: Pseudo code of an idea
for the General Context Operationfunction generalContextOperation(information, context)

do
moreSpecificContext = makeMoreSpecificContext(context)
moreSpecificInformation = createInfo(information, moreSpeci-

ficContext)
return moreSpecificInformation

Algorithm 1.1 uses two additional functions: (i) one that creates a
more specific context; and (ii) another function that uses this more
specific context to build more specific information. The idea of a gen-
eral context operation is vague, but in the course of this thesis the
parts will become clearer. The goal, ultimately, is to create a general
context operation.
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1.4 Hypothesis and Research questions

In this thesis the following hypothesis is evaluated:

A general context operation selects references from
a word to objects in reality.

This hypothesis in conjunction with Algorithm 1.1 yields a series of
research questions that are addressed in this thesis. By analyzing the
general context operation, the following research questions appear:

1. What properties does context have that a general context operation
must respect?
The function makeMoreSpecificContext takes a context and cre-
ates a more specific context. What functionality is necessary to
create a more specific context? Can algebraic laws be claimed that
such a function must respect? Is there only a single more specific
context, or are there several?

2. How can a general context operation be connected to words and to
reality?
The function createInfo takes information and context, and cre-
ates more specific information. This raises the question of how
context is connected to information. For example, in the introduc-
tion example context is applied to the word “restaurant”. It remains
open whether this is information or a word, and how it relates to
reality. What is meant by information? How does a formalization
look like that respects context properties and is able to connect to
a word and to objects in reality?

3. What is necessary to implement the general context operation, as-
suring all context properties are respected, and what class of com-
plexity can be determined?
Can the proposed formalization defined in the second research ques-
tion be implemented? How can it be assured that the implementa-
tion respects the properties stated for context? In what complexity
class is the implementation categorized?

4. How can data be acquired that respect a connection between a word
and reality?
Information used in makeMoreSpecificContext has to first be ac-
quired. Which usable methods exist to acquire data observable from
reality? Are these methods based on sensor data or questionnaires,
or is it a manual process?

5. What services can be generated by using a general context operation
for natural language?
Is the formalization able to establish a translation mechanism from
natural language to metric distances? Initializing the formalization
with acquired data, what services for natural language interfaces for
GIS can be created?
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1.5 Research approach

In order to evaluate the hypothesis, the research questions are an-
swered in sequential order. How these research questions are answered
is outlined below.

Research Question 1: What properties does context have that a
context formalization must respect? The goal of this research question
is to identify algebraic properties of context. Existing formalizations
are reviewed, with the latest approach reviewed in detail in Section 3.

Research Question 2: How can a context formalization be connected
to words and to reality? To answer this question, a context formaliza-
tion is built, and connected to a word and to reality. First, the context
formalization is introduced using the conclusions of the preceding re-
search question. In the next step, it is connected with a model for
a word. Lastly, the word is formalized by a concept formalization to
connect it to reality. The answer to this research question is presented
in Section 4.

Research Question 3: What is necessary to implement the general
context operation, assuring all context properties are respected, and
what class of complexity can be determined? This question includes
three related questions regarding the implementation. First, the for-
malization including the general context operation in Section 4 has to
be implemented, which is achieved in Section 5. Second, the imple-
mentation is proven to satisfy all the properties assumed for context
in Section 6. Third, the formalization is executed with test data to
determine the complexity class with respect to memory and time con-
sumption in Section 7.

Research Question 4: How can data be acquired that respect a con-
nection between a word and reality? How data can be acquired is
presented through the example case of the word “near”. In order to
answer the question, several existing methods are discussed and eval-
uated by how well they satisfy the requirements needed to initialize
the general context operation. The answer to this research question is
outlined in Section 8.3.

Research Question 5: What services can be generated by using a
general context operation for natural language? By initializing the
implementation with data, example cases are presented that bridge the
gap from natural language input to metric distances, a necessity for
spatial algorithms as outlined in Section 8.5. Additionally, the model is
able to reproduce results shown by cognitive research for vague spatial
terms included in Section 8.5.
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1.6 Contributions

• The identification of algebraic properties for context from former
formalizations contributes to a general understanding of context.
The detailed review that determines properties hidden in formal-
izations sheds light on all context properties assigned in former for-
malizations. This contributes to wider usage, and enables possible
future formalizations that rely on these properties.

• The formalization of the identified properties in a context alge-
bra abstracts from details. The context algebra is general, that is,
it can be applied outside GIScience. This contributes to a better
understanding of context, and may provide an impetus for interdis-
ciplinary research.

• The implementation outlines interfaces for the integration into ex-
isting systems.

– The implementation shows how a context algebra is realizable in
a programming language.

– The implementation can be used as a test case to evaluate further
formalizations against it.

– The implementation is publicly available in the appendix and
on the internet, so that everyone can download an executable
version of the code.

– The code is enriched with documentation that gives hints for the
decisions made in the implementation.

• The context algebra is applied for the example case of “near”, where
data are necessary to initialize the implementation. Contributions
are:

– A review of data acquisition methods.

– A list of requirements for data in order to be useable for the
context algebra.

– A method of how to acquire data from existing data sets.

These can be used to develop methods for automatic data acquisi-
tion, or they can be used as data modeling guidelines for systems
influenced by context.

1.7 Outline

The thesis is structured in nine chapters; some of the chapters corre-
spond with the stated research questions.

Chapter 2 reviews models for the referring process, in order to point
out where context has an influence, and which additional elements have
to be considered. The review of models for the referring process shows
the concepts that have to be considered; both general former concept
formalizations as well as those for usage specifically in the field of GIS
are reviewed. The conclusions point out the elements that have to be
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considered in order to model the reference process, and a review of
existing formalizations for these elements is given.

Chapter 3 reviews a novel model for concept combination using con-
text, which context properties are then extracted from. The model is
based on mathematics applied to quantum mechanics, and is reviewed
to extract context properties. The conclusions show these context
properties.

Chapter 4 establishes the mathematical theory of a context algebra.
Relations, operations, and properties are introduced to model context.
The model is extended by a connection to concepts that create a con-
nection to objects in reality. This connection enables the calculation
of different typical exemplars of a concept, dependent on the context.
The conclusions are the mathematical structure for context, and the
connection to concepts which relate to objects in reality.

Chapter 5 includes an implementation for the context algebra to
present its realization. The context algebra is implemented using the
functional programming paradigm, and differences between mathemat-
ics and implementation are pointed out. Within this implementation,
the general context operation is realized, and applied to model the
introductory “restaurant” example. Conclusions are drawn from the
differences between the mathematical and implementation parts, and
which elements are necessary to formalize the general context opera-
tion.

Chapter 6 evaluates the implementation by how well it satisfies the
properties stated for the context algebra in Chapter 4. Automated
algebraic tests are generated, which assure that all properties stated
in the context algebra are satisfied by the implementation. This is
further proven by executing the implementation with randomly gen-
erated input values. The conclusion that the implementation satisfies
all algebraic properties is drawn from the generated reports of these
test executions.

Chapter 7 evaluates the implementation to show the number of
memory, and execution time needed for several numbers of randomly
generated context. The file sizes and execution time required to es-
tablish a context formalism, as well as the time needed to calculate
different typical exemplars are measured. The measured values are
compared to the theoretical complexity of the context algebra. It is
concluded that the theoretical complexity of the context algebra is
recovered in the measurements.

Chapter 8 shows an application of the implementation for the word
near. The goal of the application is to distinguish between several
meanings of “near”, e.g. near future, near friends, near tram station.
For the geographical meanings, a translation mechanism to metric dis-
tances is created. Data sets that can address all predefined require-
ments are selected, and a web application is built to process the data
that are to be used in the context algebra. Conclusions from the model-
ing of “near” and the demonstrated applications show that the context
algebra establishes a translation mechanism from natural language to
metric distances.
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Chapter 9 contains the overall conclusion of this work, and lists
future research directions. In the conclusion, the research questions are
answered and the hypothesis is evaluated. From the lessons learned,
possible future work is envisioned.

Appendix A includes the code for the implementation of the context
algebra, the general context operation, and an example. Additionally,
the modules needed to evaluate and benchmark the implementations
are included as well. Measurements of the benchmarks are also in-
cluded.

Appendix B contains the implementation needed to acquire the data
for “near” and shows the results produced by the context algebra.



2
Related Work

This chapter reviews models for the referring process, trying to identify
the included elements and their formalizations with respect to context.
A naive idea of a referring process is given in Figure 2.1, where a word
refers directly to an object in reality. Models from the field of semiotics
also include concepts, integrated in the referring process through an
agent. Existing models for concepts with respect to context influence,
as well as their usage in GIS, are reviewed. Models for context are
reviewed in order to identify context properties.

tree

Figure 2.1: Idea of a referring process

2.1 Elements included in the referring process

The referring process relates a word to objects in reality. This process
is in the focus of semiotics [Chandler, 2007, page 2]. In general, semi-
otics is the study of symbols or signs [Chandler, 2007, page 1], and two
models for the referring process are of particular interest here. One of
these models was introduced by de Saussure [1916], the other by Peirce
[1931]; they differ in that the latter includes references to reality.

Similarly to the definition of context, a unique, agreed-upon defini-
tion for sign also cannot be found. Peirce [1931, CP 2.228] understands
a sign as “something which stands to somebody for something in some
respect or capacity”; for Eco [1976, page 7], a sign is everything that
can be taken as a sign, i.e. that refers to something else. In a tax-
onomy for sign, Chandler [2007, page 2] distinguishes: texts, images,
sounds, objects, and gestures.

Saussure’s model For de Saussure a sign connects a concept1 (mental 1 In this work a concept is highlighted
in bold font, e.g. concept, to distin-
guish it from the word it refers to,
which uses small caps, e.g. word.

representation) and a word (sound-image) [de Saussure, 1916, page 67],
as expressed in Figure 2.2.

concept

word

Figure 2.2: Adapted model of a sign
by De Saussure [1916, page 67]

The relation between concept and word is arbitrary [de Saussure,
1916, page 67], and the cardinality of the relation is not a one-to-
one relation. For example, the word bank can stand for the concept
financial bank, river bank, etc. In the perspective of humans, this
cardinality is a reduction of memory usage because if every concept
were expressed by exactly one word it would “. . . exceed our capa-
bility of learning, recalling and manipulating” [Chandler, 2007]. This
cardinality is in contrast to the cardinality used in databases, where
each database entry has its own identifier attached to it. The lack of
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a one-to-one relation creates uncertainty as to what a given word is
actually referring to. De Saussure also observes this uncertainty and
states that the uncertainty is removed by considering surrounding signs
[Chandler, 2007, page 18], as illustrated in Figure 2.3, also known as
the interpretation process.

concept

word

concept

word

concept

word

Figure 2.3: Interpretation process of a
sign according to De Saussure [1916,
page 67]

As was pointed out above, the word bank can refer to both the
concepts financial bank or river bank. Surrounding the word with
a word like financial, the relation to the concept river bank is re-
leased, while the relation to financial bank remains. In the perspective
of the present work, surrounding signs are considered as context and
it is assumed, that the effect of context is a selection of relations be-
tween concepts and words. Leech [1981] describes the effect of context
as “narrowing down the communicative possibilities of the message as
it exists in abstraction from context.”

Using de Saussure’s model to formalize concepts, we face the prob-
lem that it only uses signs, and that references to reality are missing.
De Saussure’s model was used by computer scientists in Artificial In-
telligence (AI) research to represent concepts as a system, built from
algorithms and symbols. It became prominent as the symbolic model
of mind. If this symbolic system is “capable of generating behavior
indistinguishable from that of a person”, Harnad concludes that the
symbolic model “. . . must have a mind”. Searle [1980] counters this
view with the Chinese Room Argument. Searle explains this argument
as follows: “Imagine a native English speaker, let’s say a man, who
knows no Chinese locked in a room full of boxes of Chinese symbols (a
data base) together with a book of instructions for manipulating the
symbols (the program). Imagine that people outside the room send in
other Chinese symbols which, unknown to the person in the room, are
questions in Chinese (the input). And imagine that by following the
instructions in the program the man in the room is able to pass out
Chinese symbols that are correct answers to the questions (the out-
put). The program enables the person in the room to pass the Turing
Test for understanding Chinese but he does not understand a word
of Chinese.” That lack of understanding is referred to as the symbol
grounding problem [Harnad, 1990].

The Chinese Room Argument states that algorithms (programs)
only have syntax, and symbols are arbitrarily chosen. AI methods
were changed to include sensors that provided “appropriate and often
enough” [Brooks, 1999] observation of the world, resulting in embodied
AI. In the field of GIScience, Kuhn [2005] suggests using the second
model from the field of semiotics, as established by Peirce [1931], to
overcome the symbol grounding problem.

WORD object

Abstraction

Interpretation

concept

Ex
ter
na
liz
ati
on

Figure 2.4: Model of a symbol by
Peirce arranged as triangle by Ogden
and Richards [1946]

Peirce’s model For Peirce [1931, CP 2.228], a sign is comprised of an
object, a word, and a concept, arranged in a triangle by Ogden and
Richards [1946]. The object stands for what is represented, the word
for how it is represented, and the concept for how it is interpreted
[Chandler, 2007, p 29]2. The word is similar to the word in Saus- 2 Note: many variants of this termi-

nology exist.sure’s model, but the concept is divided further into a mental part
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and an object part.
Ogden and Richards [1946] presented the three elements of a sign,

arranged as triangle called a semiotic triangle, as shown in Figure 2.4.
The most important difference of the semiotic triangle to the model of
de Saussure [1916, page 67] is that the object can be a place outside
the sign system. The object can relate to physical reality, abstract
concepts, and fictional entities [Chandler, 2007, page 33].

The semiotic triangle defines three relations between a word, a con-
cept, and an object. The relation between an object and a concept is
called abstraction. The relation between a concept and a word is called
externalization. And the dashed line, called interpretation, reflects the
fact that there is not necessarily a connection between a word and
an object. For example, the word bank can be interpreted at least as
a river bank or a financial bank as presented in Figure 2.5.

bank
river bank

Abstraction

Interpretation

financial bank

Abstraction

Interpretation

bank

Ex
ter
na
liz
ati
on

Figure 2.5: Semiotic triangle for the
word bank, referring to river bank
and financial bank

The cardinality of the interpretation relation is many-to-many, which
means words can relate to multiple objects. This cardinality is a result
of the cardinalities given by the abstraction relation and the external-
ization relation. The abstraction relation is a many-to-one relation,
as many objects in reality are abstracted to one concept. The ex-
ternalization relation is a one-to-many relation, as one concept can
be expressed by multiple words. By using the abstraction relation and
the externalization relation to establish the interpretation relation, the
interpretation relation must also have a cardinality of many-to-many.

To reduce the many-to-many relation for the interpretation relation,
context is used to select intended relations. The relations are from
object in reality to a word via a concept.

Concepts

The nature of concepts, i.e. what they really are, is subject of much
debate [Margolis and Laurence, 2014]. What can be agreed on is that
“[c]oncepts are the constituents of thoughts” [Margolis and Laurence,
2014] and “. . . provide a taxonomy of things in the world”, as Smith
and Medin [1981, page 8] reviewed Woods work. Barsalou et al. [1993,
page 1] assume “. . . that concepts are people’s psychological represen-
tations of categories”. “Consequently, they are crucial to such psycho-
logical processes as categorization, inference, memory, learning, and
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decision-making” Margolis and Laurence [2014]. Smith and Medin
distinguished between two functions for concepts. First, a categoriza-
tion function, which determines if an object is a member of a concept.
Second, a concept combination function, to enlarge the taxonomy.

The categorization function is included in the semiotic triangle as an
abstraction relation. Models for the categorization function are defined
as similarity formalizations and explanation-based formalizations, and
are reviewed in Section 2.2. This review highlights the incorporation
of context and their application in GIS.

Experiments investigating concept combination showed results which
existing formalizations were not able to represent. A particular exper-
iment shows the guppy effect, explained in Section 2.5. An approach
reproducing these experimental results is proposed by Aerts and Gab-
ora [2005a] using context extensively. This usage of context is reviewed
in Chapter 3 to extract context properties usable for the context alge-
bra.

Spatial Concepts

Representations of spatial concepts have to respect semantic and struc-
tural aspects [Freksa and Barkowsky, 1996] of spatial concepts. Spatial
concepts are “notions that describe spatial aspects of a subset of the
world” [Freksa and Barkowsky, 1996]. Examples include e.g. moun-
tain, near, and lake. Spatial concepts have vague boundaries, such
as e.g. lake, ocean, regions [Montello et al., 2014], downtown [Mon-
tello et al., 2003]; are size- or scale-dependent, e.g. pond, lake, ocean
[Smith and Mark, 1998, Mark et al., 1999]; and differ across languages
e.g. pond - étang [Mark, 1993].

Spatial concepts inherit multiple interpretations, determined by three
types of relation [Freksa and Barkowsky, 1996]. These relations are: “
(1) between concepts and physical objects, (2) between concepts and
related concepts (context of discourse), [and] (3) between objects and
situation context”. This indicates that context has an effect on the
interpretation of concepts, as evidenced by the following experiment.
Subjects were asked to list typical objects for the concept geographic
space. The listed objects differed according to the influencing con-
text. If influenced by the context city3, subjects interpreted the con- 3 To indicate a context, it is formatted

in sans-serif and italics in this thesiscept geographic space in objects such as: streets, buildings, and parks,
etc. In contrast to that interpretation, when influenced by the con-
text country , the listed objects includes mountains, lakes, and rivers,
etc. [Egenhofer and Mark, 1995]. In conclusion, this suggests that
a relation between a concept and a context exists, and that context
influences the interpretation of a concept.

2.2 Concept formalizations

Concept formalizations enriched with context are built out of exper-
iments conducted by cognitive scientists to understand the relation
between the world and the mind [Varela et al., 1997, page 4], and how
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mental processes affect a subject [Fodor, 1994].
Two general views on concept formalizations can be distinguished:

similarity-based views, and explanation-based views. Both views have
advantages and disadvantages, and are able to model different exper-
iments. In the following section, both views and their formalizations
are discussed and compared. If experiments indicated the context de-
pendence of the formalizations, the context-enriched versions are also
reviewed.

Similarity-based formalizations

Similarity-based formalizations use features of previously experienced
exemplars to determine whether a new exemplar can become part of
an existing concept or not. Several theories have been proposed, which
introduced various formalizations. Each formalization fits one or many
experiments, but none of them are able to model all of the experiments.
The observed influence of context resulted in the integration of context
into the formalizations. For most of these formalizations, applications
in the geospatial domain exist and are also included here.

The classical view dates back to Aristotle and propagates that nec-
essary and sufficient features have to be met by an exemplar in order
for it to be included in a concept. As a consequence, concept member-
ship is a Boolean rating function [Komatsu, 1992]. For example, the
concept dog can be defined by the following features: has four legs,
barks, etc. An animal with four legs that barks is a dog, but is my
neighbor’s barking animal with only three legs a dog? In logic, neces-
sary and sufficient conditions are commonly used, but the definitions of
“necessary” and “sufficient” themselves show “systematic ambiguity”
when applied to natural language conditionals [Brennan, 2012], which
makes their use difficult. In this classical view, the defining features
included in a rating function are of central importance.

A formalization of the classical view is Formal Concept Analysis
(FCA). FCA creates concept hierarchies using necessary features. The
aim of formal concept analysis is to develop mathematical models that
are appropriate for a conceptual structure [Wille, 2005]. Wille follows
the philosophical tradition that a concept is constituted by its exten-
sion (the concept members) and by its intension (the features), which
apply to all objects of the extension. For FCA, the features (“for-
mal attributes”) distinguish concepts that are arranged in a hierarchy
with other concepts, meaning that subconcepts inherit all attributes
of the super-concept. The hierarchy is generated by using a table
called formal context, thereby obtaining the extension and intension
of the concept [Wille, 2005]. From a formal context, a concept lattice
is obtained. One such concept lattice for the concept body of water
is shown in Figure 2.6. FCA is used in practical work by software
engineers, linguists, information retrieval engineers etc. [Wille, 2005,
Preface].

Figure 2.6: Concept lattice for the
concept body of water by Wille [2005]

For the geospatial domain, FCA is adapted by Frank [2006] to gen-
erate a so-called Taxonomic Lattice. Frank changed the “formal at-
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tribute” used by FCA to a is_a relation. This relation is used to cat-
egorize same entities, called taxa, which include same features. These
taxa build hierarchies where distinctions can be added, or two taxa
can be merged.

Prototype theory is mentioned by Wittgenstein [1953] and justified
by experiments conducted by Rosch and Mervis [1975]. Wittgenstein
[1953] stated that concepts do not have features which are used to de-
cide membership (classical view). Rather, membership of an exemplar
is determined by a function of family resemblance. This statement
was confirmed by experiments conducted by Rosch and Mervis [1975].
Rosch and Mervis observed that each exemplar of a concept shares
at least one feature with other exemplars included in this concept,
called graded membership. At least this information is captured and
abstracted from concept members to identify a typical exemplar of a
concept [Komatsu, 1992]. This typical exemplar is called a prototype,
hence the name prototype theory. For example, the concept pet inher-
its many exemplars (e.g. cat, dog, rabbit, etc.) where the prototype
is cat; the typicality is illustrated as distance from the mid point in
Figure 2.7, where typicality data are taken from data collected with
a questionnaire [Aerts and Gabora, 2005a]. Further studies indicate
that prototypes are classified similarly compared to other members
[Hintzman and Ludlam, 1980] after a retention interval, meaning that
prototypes are more resistant to forgetfulness. Prototype theory is
similar to the classical view because both views are based on a mem-
bership function built of features [Komatsu, 1992].

pet
cat

dog
rabbit

mouse
spider

bird
snake

Figure 2.7: Graded membership for
exemplars of the concept pet

Prototypes are included in the membership function that distin-
guishes concept members from non-members [Minda and Smith, 2011].
The membership function is a similarity measure that calculates the
typicality of an exemplar in comparison to the features of the proto-
type. The exemplar can become a member of a concept when it is
highly typical.

In the geospatial domain, similarity measurement functions are ap-
plied to rate the semantic similarity of two exemplars, for example in
geographic information retrieval. The approach by Rodríguez et al.
[1999] uses a matching distance model to calculate the semantic dis-
tance of two exemplars e1 and e2, shown in Equation 2.1. The function
includes the features: parts Sp (e.g., building features: windows, roof),
functions Sf (e.g., the function of a cinema is: entertainment), and
attributes Sa (e.g., additional features: building height). These fea-
tures are equipped with corresponding weights wp,wf and wa. These
weights cannot be fixed because they are influenced by context [Tver-
sky and Gati, 1982]. Rodríguez and Egenhofer [1999, 2004] therefore
presented formulas that can adjust the weighting factors according to
context. The context-enriched semantic similarity measure detected
three out of four cases when compared to human judgments [Rodríguez
and Egenhofer, 1999]. One open question that remains is how the
weights and contexts for the similarity measure function are to be
determined. Janowicz et al. [2010] introduced an approach in which
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pre-calculated similarity rankings are adjusted by users. From the ad-
justment, the implied contexts are learned and added as extra weights.
With the application of similarity measures in geographic information
retrieval Janowicz et al. [2011] introduced a “generic framework for
semantic similarity measurement” pointing to the role of context.

S(e1, e2) = wp · SP (e1, e2) +wf · Sf (e1, e2) +wa · Sa(e1, e2) (2.1)

Figure 2.8: Matching distance equa-
tion for two exemplars, according to
Rodríguez et al.

Fuzzy set theory is an approach to model prototype theory. A con-
cept is represented as a fuzzy value in the range [0, 1]. This value is
also a typicality measure of an exemplar [Zadeh, 1976]. This model
is able to represent variations of a concept; for example, the concept
young has variations such as very young, not very young, or old, as
demonstrated in Figure 2.9.

Figure 2.9: Fuzzy value for the con-
cept young and its variations by Zadeh
[1976, Figure A1]

Fuzzy sets are used to model spatial concepts in the geospatial do-
main. Fuzzy sets represent terms that are included in a query lan-
guage, e.g. the concept close for a query “Find all the cities which are
close to at least several camping sites” [Wang, 1994]. Using this rep-
resentation, Wang [1994] concluded that an influencing context may
change the fuzzy set representation, and proposed different fuzzy sets
according to context, e.g. closewalking, closedriving.

Conceptual spaces Gärdenfors uses a multidimensional metric fea-
ture space to calculate prototypes. The approach treats every feature
as separable and models the features as dimensions in a vector space.
The dimensions are linear combinations representing one object. Gär-
denfors [2004] proposed this metric approach to calculate prototypes
using a Voronoi tessellation. Gärdenfors claims that similarities can
be calculated by a distance function in the metric space between two
exemplars d(e1, e2). The distance function has to respect symmetry
properties and the triangle equation as given in Equations 2.2.

d(e1, e2) >= 0 and d(e1, e2) = 0 only if e1 = e2
d(e1, e2) = d(e2, e1)

d(e1, e2) + d(e2, e3) >= d(e1, e3)

(2.2)

Conceptual spaces were applied to represent landmarks for data
descriptions and similarity measures in the geospatial domain. Raubal
[2004] used this technique to represent spatial landmarks. He argues
that difficulties regarding similarity and the triangle equation raised by
Tversky and Gati [1982] can be avoided if different weights are given
according to context, and contexts are not mixed. In an extended
approach to overcome the difficulties, Schwering and Raubal [2005]
included the shape, size, and distance of the metric space a concept
inherits in their similarity calculation. Keßler [2006] used conceptual
spaces to show how to generate data descriptions adequate for human
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cognition. Conceptual spaces were applied by Schwering and Kuhn
[2009] to build a hybrid similarity measure to account for the complex
semantics included in spatial data.

Exemplar view Nosofsky [1986] uses already-present exemplars in a
concept to decide if a new exemplar can become part of the concept.
In contrast to the prototype view, a concept is represented by multiple
exemplars [Nosofsky, 2011] and not only by a prototype. Experiments
showed good results when exemplars are “. . . retrieved from long term
memory depend[ent] on context, goals, prior processing, frequency of
occurrences or retrieval, time of last retrieval” [Komatsu, 1992, page
508]. Regarding confidence in the classification process, subjects are
more confident if they classify the prototype compared to other exem-
plars [Komatsu, 1992]. In general, the exemplar view uses the same
approach as the prototype view, with the only difference being that
the similarity measure takes into account multiple exemplars.

Explanation-based formalization

Explanation-based formalization emerged from the results of experi-
ments with infants, where differences between concepts of infants and
adults were recognized [Carey, 1985]. These findings led to the idea
that concepts change over time, similar to scientific theories which are
accepted or revised depending on experimental results and observa-
tions [Gopnik and Meltzoff, 1997]. Siegler [2002, page 34] states that
“knowledge moves consistently from less to more advanced . . .”, and
illustrates it as overlapping waves of theories (Figure 2.10).

Figure 2.10: Wave model of overlap-
ping theories by Siegler [2002, page 34]

Theory theory Gopnik and Meltzoff [1997] introduced theory theory,
distinguishing three features of theories [Gopnik and Meltzoff, 1997,
page 32-41]. First, structural features lead to an ontological com-
mitment about the world. Second, functional features predict events.
Third, dynamic features compare predictions with reality. Summariz-
ing the view of theory theory on concepts, they are structured rep-
resentations relating to other concepts [Laurence and Margolis, 1999]
that are accepted or revised.

Twaroch and Frank [2005] used theory theory to describe the change
of spatial theories for infants. Twaroch and Frank used three mecha-
nisms to change theories: specialization, generalization, and dynamic
weighting. Within these mechanisms, theories are formalized as a lat-
tice structure. The specialization is described by a step down in the
lattice, and the generalization by a step up. Dynamic weighting is used
to choose between comparable theories.

2.3 Context formalizations

Previous approaches to formalize contexts were inspired by techno-
logical developments, e.g. ubiquitous computing, reasoning, ontology,
and generality in a knowledge base inheriting common knowledge for
Artificial Intelligence.
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Data-structure-driven formalizations

Mobile computers [Weiser, 1991] are used in different contexts, which
leads to several context formalizations integrated in software. One of
the first context formalizations was based on a key-value model pro-
posed by Schilit et al. [1994]. Held et al. [2002] defines requirements
for context models as: structured, interchangeable, composable, uni-
form, extensible, and standardized. Several of these requirements are
satisfied through the use of markup scheme models [Loyola, 2007]. Cy-
ganiak et al. [2014] introduced a schema for context in the Resource
Description Framework (RDF), and concluded that it satisfies all the
requirements. In summary, the proposed models structure context in
a human-readable format.

Brézillon et al. [2002] introduced the contextual graph model that
highlights context in decision trees. A contextual graph represents
actions and events needed to make a decision. In Figure 2.11 an ex-
ample of a contextual graph is shown for the situation “Sick traveler
[o]n a train”. In this figure, boxes indicate actions and circles indicate
events to make a decision. Reaching an event node, the previous path
is considered as context and has to be included in the decision-making
process.

Figure 2.11: Contextual Graph of the
situation “sick traveler on a train” ac-
cording to Brézillon et al. [2002]

Contextual reasoning

C1=Morning

How is Venus called?

Figure 2.12: Context as box metaphor
by Giunchiglia

Giunchiglia [1993] introduced contextual reasoning to perform reason-
ing within context. This formalization assumes that humans use a
subset of a global knowledge base to do reasoning, where context de-
fines the subset of knowledge [Bouquet et al., 2003, Giunchiglia, 1993].
Bouquet et al. [2003] categorized this context usage as compose-and-
conquer. They described it with a box metaphor, where the knowledge
used to reason is put in the box, the reasoning is applied, and the
result is presented as illustrated in Figure 2.12. Such a reasoning pro-
cess is described in Algorithm 2.1. The context is specified as Morning
(SWITCH CONTEXT) and from that point the knowledge taken into ac-
count for reasoning is fixed to morning. At the end of the reasoning
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process, the results valid in this context are given; in the example case
this would be “morningstar”. With respect to algebraic properties,
Giunchiglia [1993] observed a partial order relation for context.

Algorithm 2.1: Pseudo code of a con-
textual reasoning system, related to
GiunchigliaSWITCH CONTEXT "Morning "

ActualVenusName = inferActualNameForPlanet Venus
RETURN ActualVenusName

Ontology Strang et al. [2003] introduced ontology-based context
models that are equipped with a reasoner using Context Ontology
Language (CoOL) [Loyola, 2007].

Ontology-based models are used for mediation and geospatial busi-
ness intelligence in the geospatial domain. Cai [2007] presented a
“framework for semantic interoperability of geospatial information”
that interprets vague spatial concepts in the interaction between GIS
and users. Diallo et al. [2015] present a context ontology designed
for mobile geospatial business intelligence applications, enriched with
contextual metrics built from location and time.

2.4 Context as a logic model

McCarthy [1987] introduced context as a logic model to implement
generality in Artificial Intelligence (AI). McCarthy envisioned that a
collection of facts of reality is able to model human common-sense
knowledge. The facts should be valid in general, e.g. “planet Venus
is the Evening Star”, but as the number of facts increased, other facts
generated ambiguities with existing ones, e.g. “Venus is the Morning
Star”. In order to distinguish whether Venus is the Evening Star or
the Morning Star, McCarthy introduced context.

In McCarthy’s perspective, context was the information necessary
to distinguish between facts about the world. Such use of context was
categorized by Bouquet et al. [2003] as a divide-and-conquer approach
to context. Guha [1991] applied this approach to knowledge bases,
and established microtheories as shown in Figure 2.13. The microthe-
ories contain other microtheories given in proposition Ist(context,
inner microtheory) and different reasoning results are achieved by
using different influencing contexts, as illustrated in the left and right
parts in Figure 2.13. The research contributions from McCarthy [1987,
1993] and his coworkers [Guha, 1991] are summarized in unpublished
articles called “A logical AI approach to context” McCarthy [1996]
and “context formalization (extended notes)” by McCarthy and Bu-
vac [1997]. The most concise axiomatic framework from these findings
was proposed before by Shoham [1991], and is reviewed below. He pro-
posed a logic framework for context using propositional language, and
extending their work by adding “. . . a few more . . . all still somewhat
speculative and imprecise” propositions to that framework.

Partial order relation Context is partially ordered with the relation
“specialized” by McCarthy and Buvac [1997], or by the converse “more
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Figure 2.13: Divide and Conquer use
of context by [Bouquet et al., 2003,
Fig. 1]

general than” by Shoham [1991] which will be used here. The relation
states that for two contexts c1 and c2 the order relation shown in
Equation 2.3 holds and is read as c2 is “more general as or as general
as” c1. The order relation is partial because “not every pair of contexts
are comparable under it” [Shoham, 1991].

ci ∈ C, c1 ⊃ c2 (2.3)

The partial order relation is transitive as given in Equation 2.4.

ci, cj , ck ∈ C, ci ⊃ cj and cj ⊃ ck =⇒ ci ⊃ ck (2.4)

Within the order relation, lower and upper bounds for context are
included. McCarthy [1996] argues that there cannot be something
like a universal context: “This is a fact of epistemology (both of the
physical world and the mathematical world). It is always possible to
generalize the concepts one has used up to the present. Attempts
at ultimate definitions always fail—and usually in uninteresting ways.
Humans and machines must start at middle levels of the conceptual
world and both specialize and generalize.” For McCarthy a bound is
the outermost context that “is needed to give computer programs the
ability to reason about the totality of all they have thought about so far
[McC96].” Akman and Surav [1996] describe the acceptance of a bound
context as a mathematical simplification. Shoham [1991] includes both
bounds, a most general context called tautological context, and a most
specific context called contradictory context.

Context operations Contexts are combined by two operations, con-
junction denoted ∧ and disjunction denoted ∨, and have a negation
operation denoted ¬ [Shoham, 1991]. The conjunction of two con-
texts results in the greatest lower bound c3 of c1 and c2 as given in
Equation 2.5. The disjunction of two contexts results in the least up-
per bound c4 of c1 and c2 as given in Equation 2.6. The negation
operation is given in Equation 2.7.

c1 ∧ c2 = c3 (2.5)
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c1 ∨ c2 = c4 (2.6)

¬ci (2.7)

The partial order relation and the context operation build a lattice
structure for context. So far context was seen as stand-alone entity,
but the benefit of a context formalization is to connect context with
another entity, as the following quote highlights:

“The structure of contexts is of little interest without a way of associ-
ating assertions with contexts; that is stating what is the case in each
context” – Shoham [1991]

Within the connection between context and an assertion, more al-
gebraic laws for context are included in the work of Shoham. The
connection from contexts to assertions is denoted by the property pc.
This property reads as assertion p is valid in context c and is referred
to here as the context application function. Guha [1991] implemented
a context application function in his dissertation. He lists many ex-
amples how a context application function can be reinterpreted by a
function like assuming(p, c). To assign a value to the property, Guha
introduced proposition value(c, p). This proposition enables the eval-
uation of a value; for example, the assertion: value(observed at 8am,
planet Venus) evaluated in the value “Morning Star”, compared to
value(observed at 8pm, planet Venus) with a changed context, evalu-
ates to the value “Evening Star”.

Shoham [1991] observes properties for this function depending on
one of two different aspects: (i) properties concerning only contexts
and (ii) properties concerning the context application function (context
and assertion properties).

Context properties Shoham stated six properties for proposition pc

[Shoham, 1991][Proposition 9,10,11,12,13,14] reviewed here:
The first context property is called context completeness and is given

in Equation 2.8. It states that either the proposition for context c is
valid or the proposition for the negated context ¬c is valid, under
the assumption that both (the negated context and the context) are
included in the context lattice C.

pc ∨ p¬c ∀c,¬c ∈ C (2.8)

The second context property is called positive reflection by Shoham
and refers to the algebraic property idempotent. It is given in Equa-
tion 2.9. It states that the application of the same context c multiple
times is equal to a single application. A similar property called nega-
tive reflection is stated for the case that a proposition is negated and
the same context is applied multiple times in Equation 2.10. From
where this proposition follows is not included in Shoham’s framework.

(pc)c ≡ pc (2.9)
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(¬(pc))c ≡ ¬(pc) (2.10)

The third context property is called symmetry and is given in Equa-
tion 2.11. It assumes that the sequence of influence of two different
contexts c1 and c2 does not affect the result.

(pc1)c2 ≡ (pc2)c1 (2.11)

The fourth context property is called exponentiation and is given in
Equation 2.12. It transforms the sequential application of context into
a conjunction of contexts.

(pc1)c2 ≡ pc1∧c2 (2.12)

The fifth context property is called associativity and is given in
Equation 2.13. It states that brackets do not matter in the evaluation.

p(c
c2
1 ) ⊃ (pc1)c2 (2.13)

Context and assertion properties Six properties considering context
in connection with assertions are stated by Shoham [1991][Propostitions
1,2,3,4,7,8]. In the following propositions, the operations ∧,∨,¬ can
refer to operations used either for assertions or for context.

The first combined property is called assertion weakening and is
given in Equation 2.14. It assumes that assertion p is a superset of
assertion r. If p is valid in context c1, r is also valid in context c1,

pc1 ∧ (p ⊃ r) ⊃ rc1 (2.14)

The second combined property is called context strengthening and is
given in Equation 2.15. It states that if assertion p is valid in context
c1 it is also valid for context c2, if c2 is a superset of c1.

pc1 ∧ (c2 ⊃ c1) ⊃ pc2 (2.15)

The third combined property is called disjunctive context and is
given in Equation 2.16. It states that assertion p1 is true in context c1
and p2 is true in context c2 which is a superset of the disjunction of
the assertions p1 ∨ p2 in the disjunctive context c1 ∨ c2. This property
assumes that the context set is or-closed.

pc1
1 ∧ p

c2
2 ⊃ (p1 ∨ p2)

c1∨c2 (2.16)

The fourth combined property is called conjunctive context and is
given in Equation 2.17. It proposes that either proposition p1 is valid
in context c1 or proposition p2 is valid in context c2 and this is a
superset of the disjunction of both assertions p1 ∨ p2 valid in context
c1 ∧ c2. This property assumes that the context set is and-closed.

pc1
1 ∨ p

c2
2 ⊃ (p1 ∨ p2)

c1∧c2 (2.17)

The fifth combined property is called general consistency and is
given in Equation 2.18. It states that the assertion p in context c1
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and the negation of this assertion ¬p in context c1 together negated is
valid.

¬(pc1 ∧ (¬p)c1) (2.18)

The sixth combined property is called assertion completeness and
is given in Equation 2.19. It states that either p in context c1 is valid
or the negation of ¬p in context c1 is valid.

pc1 ∨ (¬p)c1 (2.19)

The logical model approach for context includes several drawbacks
that makes it difficult to apply in organizations. Loyola [2007] ob-
serves as drawbacks that the approach needs a clear schema of how
to formalize context in the perspective of an organization, and that
predictive calculus used for the logic model is not common knowledge.
Akman and Surav [1996] state that logic formalizations are based on
the premise “that when several contexts occur in a discussion, there
is a common context above all of them”. For a comparison of logic
models, consider the survey from Akman and Surav [1996].

2.5 Concept combination – Guppy Effect

So far concept formalizations and context formalization were reviewed
without mentioning concept combination. Concept combination cre-
ated a problem for existing concept formalizations, e.g. fuzzy sets. A
successful attempt to formalize concept combination based on quantum
mechanics is introduced because it combines context with concepts.

Concept combination is a common process in language, such as
combining two concepts like a pet and bird into the concept pet bird.
The difficulty in formalizing such a combination is that “prototypes
of constituent concepts can differ from the prototypes of their com-
binations in unpredictable way” [Fodor, 1994]. Osherson and Smith
[1981] confirmed that observation in experiments. For example, the
prototype of the conjunctive concept stripped apple differs from the
constituent concepts apple and stripped, given in Figure 2.14. These
“unpredictable” effects occurring in concept combination are catego-
rized as the so-called guppy effect. The prototypical example for the
guppy effect is as follows: subjects are asked to state typical exemplars
for the concepts fish and pet. Typical exemplars for the concept fish
are trout, mackerel etc., while for the concept pet typical exemplars are
dog or cat. If subjects are asked to list exemplars for the conjunction
of both concepts, the concept pet-fish, none of the typical exemplars
for the constituents are included. A prototype for the combined con-
cept pet-fish is guppy, which is not a prototype of the constituent
concepts. Hampton [1997] concludes that subjects overextend proto-
types for the combined concept. In summary, combined concepts can
inherit the guppy effect, which makes the calculation of the prototype
“unpredictable” due to overextending.

Figure 2.14: Prototypes of the con-
cepts apple (a), the more typical ap-
ple apple (b) and the combined con-
cept stripped apple, by Osherson and
Smith [1981]

Concept formalizations such as fuzzy sets fall short when computing
prototypes for a combined concept, because of their combination rule.
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Osherson and Smith [1981] argue that the minimum combination rule
for conjunction in fuzzy sets does not reproduce overextending results
that are shown in cases where the guppy effect occurs. Explanation-
based formalizations are similarly unable to explain concept combina-
tion [Komatsu, 1992]. Adams and Raubal [2009] introduced a metric
conceptual space algebra designed to model concept combination. The
model uses similarity measures including context as weights and is able
to model the combination of spatial concepts such as countries. What
remains open is the determination of context weights and how it can
be used to model the guppy effect.

A successful attempt in formalizing the guppy effect was made
with a quantum-mechanics-based approach including context. The ap-
proach is called State COntext Property (SCOP) and was proposed by
Aerts and Gabora [2005a,b]. The main idea is to influence the concepts
before combining them with context, and calculate their combination
afterwards. With this approach they successfully formalized the guppy
effect. First, the concept pet was influenced by context the pet is a fish,
which results in a different state of the concept. Second, the concept
fish was influenced by the context the fish is a pet, also resulting in a
particular state of the concept fish. Third, the combination of both
states’ concepts, pet-fish, was calculated, and the obtained prototype
was indeed the guppy.

Because of the power to explain and model concept combination,
the understanding of context from SCOP is reviewed in great detail
in Chapter 3. The differences from SCOP to other models such as
conceptual spaces, fuzzy sets, etc. is reviewed by Gabora et al. [2008].

2.6 Conclusion

Context C is what influences the mapping between two sets X and Y
(constitutive rule from Searle). This general statement applied to the
referring process modeled by the semiotic triangle uses for the set X
signs, terms (bank), speech, etc., and for the set Y concepts describing
classes of real things (restaurants, financial bank, river bank, etc.).

What is taken as context is explained in the following chapter, where
the formalization of SCOP is reviewed.
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State Context Property Formalism – SCOP

State COntext Property (SCOP) formalism was introduced by Aerts
and Gabora and is used to, for example, model concept combination
[Aerts and Gabora, 2005a,b, Gabora et al., 2008]. The formalism ap-
plies quantum theory to cognitive science, in the research field of quan-
tum interaction. The goal in introducing SCOP is to understand the
context application in SCOP and to extract context properties.

The field of quantum interaction uses models originating in quan-
tum theory to model experiments conducted in cognitive science [Wang
et al., 2013a]. Busemeyer and Bruza [2012] and others ([Gabora, 2001,
Gabora et al., 2008, Kitto, 2008]) state that if cognitive experiments
present similar effects as experiments in quantum physics, then quan-
tum interaction models are beneficial for example for effects of contex-
tuality, similarity, compatibility, and order.

Hogarth and Einhorn [1992] observed an order effect in human belief
updating, and Moore [2002] in answers to questionnaires. The same
order effect occurs in electronic spin experiments where the order of
the measurements influences the outcome. This similarity was used by
Trueblood and Busemeyer [2010], Busemeyer et al. [2011], Busemeyer
and Bruza [2012], Atmanspacher and Römer [2012], Wang et al. [2013b]
to model the order effect in human belief updating, and for answers in
questionnaires with quantum models.

In the field of GIScience, Hahn and Weiser [2015] observed an order
effect during perspective taking when a knowledgeable source gives
route directions to a stranger. In giving a route direction to a stranger,
the source evaluates first the knowledge of the stranger and changes
the expressions accordingly. For example, the knowledgeable source
changes “Stephansdom” into “cathedral”, because the source is aware
of the missing knowledge from the stranger. In the process of changing
the expression, the order of perspective taking is from stranger →
source and leads to a different outcome compared to the order of source
→ stranger.

The quantum effect of superposition of an electron is perceived sim-
ilarly to effects occurring in context combination as described by Aerts
and Gabora [2005b] and further discussed in this section. Schrödinger
[1935] explains superposition with the thought experiment about a cat
put in a box. A device in the box is filled with a radioactive substance
and connected to a Geiger counter. If the radioactive substance de-
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cays, the counter discharges and the device releases poison. The decay
of the radioactive substance is not predictable from outside the box.
Therefore, no one knows if the cat is still alive or not. The cat is in a
superposition state, only a measurement can bring evidence in which
state the cat is in.

In the field of cognitive science, the use of quantum models for cog-
nitive effects is under debate. For example, Pothos and Busemeyer
[2013] received 35 highly controversial comments on their use of quan-
tum models for the order effect. From these comments one can con-
clude that more experiments directly targeting quantum effects, such
as order effect and superposition, have to be conducted to supply broad
evidence for the legitimate use of quantum models for cognition. Nev-
ertheless, the SCOP formalism proposes many properties for context
that may be considered in the context algebra.

Quantum theory is “a set of rules allowing the computation of prob-
abilities for the outcomes of tests which follow specified preparations”
[Peres, 1934]. In contrast to classic probability theory which relies on
Kolmogoroff [1933] axioms, quantum theory relies on von Neumann
[1932] axioms. The difference is that Kolmogoroff axioms are based
on set theory, where probabilities are assigned to events modeled as
sets, whereas von Neumann axioms are based on vector spaces, where
probabilities are assigned to events modeled as a subspace of a vector
space. Another important aspect in both these approaches is that while
classical probability theory is described as Boolean algebra, quantum
theory is described as partial Boolean algebra [Hughes, 1992, page 192].
An outstanding difference is that, in contrast to classical probability
theory, quantum theory excludes the distributive axiom. In classical
probability theory, three events A,B,C follow the distributive axiom
obtained from Boolean logic and given in Equation 3.1.

A∩ (B ∪C) = (A∩B) ∪ (A∩C) (3.1)

Modeling these events within quantum theory, the distributive axiom
does not hold [Hughes, 1992, page 206], as shown in Equation 3.2, be-
cause quantum theory relies on “quantum logic” [Hughes, 1992, chap-
ter 7]. The absence of the distributive axiom is used to model effects
such as quantum superposition [Busemeyer and Bruza, 2012].

A∩ (B ∪C) 6= (A∩B) ∪ (A∩C) (3.2)

In order to apply quantum theory to cognitive experiments, the
mathematical theory has to be generalized. This was achieved by
various researchers [Atmanspacher et al., 2002, Aerts and Aerts, 1997,
Khrennivov, 1999], and the SCOP model [Aerts and Gabora, 2005a,b]
is reviewed here in detail. This review includes an introduction to
Hilbert space, because context is modeled as a projection operator
which requires knowledge of Hilbert space.
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3.1 Hilbert space

A Hilbert space is a special vector space defined over a field F. Typi-
cal instances for the field F are the Real numbers R or the Complex
numbers C, which in a Hilbert space are called scalar values. Unless
otherwise stated, this introduction considers only Hilbert spaces over
the field of the Real numbers R. The reason is twofold. First, complex
numbers C are mostly used in physics (quantum experiments) and not
often applied in quantum interaction; and second, it reduces the com-
plexity of the explanation but still includes all the properties required
for context.

SCOP uses the notation introduced by Dirac [1939] (Dirac nota-
tion) for vectors in a Hilbert space. A column vector with real scalar
values r1, r2 is called ket vector and written in Dirac notation as in
Equation 3.3.

v =

(
r1
r2

)
= |v〉 (3.3)

A row vector with real scalar vectors r3, r4 is called a bra vector , as
given in Equation 3.4.

( r3 r4 ) = 〈u| (3.4)

Operations of vector addition and inner product are defined in a
Hilbert space. Vector addition is equal to vector addition in any other
vector space [Lawden, 2005, page 12]. The inner product of a bra and
a ket vector is called braket and results in a positive real number just
as in ordinary vector spaces [Mac Lane and Birkhoff, 1991, page 304].
The scalar elements of the vectors are multiplied, and the results are
added as shown for the braket built by 〈u| and |v〉 in Equation 3.5.
The Dirac notation is beneficial here, because it indicates that 〈u| has
to be a row vector, and |v〉 a column vector.

〈u|v〉 = r3r1 + r4r2 (3.5)

As any other vector space, a Hilbert space is also established by base
vectors. Base vectors span the space and are comparable to elementary
events in classical probability theory [Busemeyer et al., 2011]. The base
vectors can be chosen arbitrarily with the restriction that each base
vector is orthonormal to all other base vectors. Orthonormality is a
conjunction of two properties: orthogonality and normality. An exam-
ple for a vector space with orthogonal base vectors is Euclidean space.
Orthonormality can be interpreted in a statistical sense, meaning that
base vectors refer to independent events. Note that base vectors are
not equipped with scalar values.

3.2 Concept represented as state vector

The special vector called state vector is used to model the actual state
of the system and acts as “working memory” [Baddeley, 1992]. A state
vector is comparable to the probability function from classical prob-
ability theory [Busemeyer et al., 2011]. In other words “. . . [a] state
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[vector] is characterized by the probabilities of the various outcomes of
every conceivable test” [Peres, 1934, page 24] where every conceivable
test is modeled with basic vectors.

The state vector is normalized and can include scalar values for
multiple base vectors. Normality means that the vector has a length
of 1. This property is similar to classical probability theory where the
sum of all conceivable tests has to sum up to 1.

The state vector is used by Aerts and Gabora [2005a] to model a
concept and its evaluation in the process of refinement. This implies for
the concept that it can have multiple states of a concept. Gabora [2001]
illustrates the states of a concept as shown in Figure 3.1. Starting at
time t0, concept p can refine into the possible states p1 (t1), p2 (t1),
p3 (t1), and p4 (t1).

The refinement from one state to another state is achieved by ap-
plying context, modeled as an operator. For example, in Figure 3.1
the context e3 is applied to concept p (t0), which refines it into state
p3(t1). The further application of context e7 refines the concept into
state p7(t2), as shown in Figure 3.1.

p(t0)

t0 e3

p3(t1)

p1(t1)

p2(t1)

p4(t1)

p5(t1)

t1 e7

p7(t2)

p1(t2)

p2(t2)

p4(t2)

p5(t2)

t2

Figure 3.1: States of a concept by
Gabora [2001]

3.3 Context represented as a projection operator from state
to state

In quantum theory, an operator A is applied to a vector |v〉 which
yields another vector |v′〉 given in Equation 3.6. Operators respect the
associative property given in Equation 3.7. Examples of operators are
rotation operators and Pauli [1927] matrices for electron spin.

A|v〉 = |v′〉 (3.6)

〈u|(A|v〉) = (〈u|A)|v〉 = 〈u|A|v〉 (3.7)

Projection operators, or projectors for short, are a special type of
operator that map from the space represented by a vector to a sub-
space of the vector. An example for a projection operator is the iden-
tity projector I which maps to the whole space. An example for a
three-dimensional identity projector is given in Equation 3.8. For each
base vector a projection operator exists, which is built by the outer
product of the considered base vectors, having only one entry in the
diagonal. Projection operators for more than one base can also be gen-
erated by the outer product. Projection operators can be interpreted
as yes/no questions [Peres, 1934, page 66] for those base vectors that
are considered by the projector. For example, the identity projector
(Equation 3.8) includes yes questions for all base vectors.

I =

 1 0 0
0 1 0
0 0 1

 (3.8)

Projection operators are idempotent [Hughes, 1992, 1.26], as given in
Equation 3.9. Idempotency states that a multiplication of a projector
with itself results in the same projector.

AA = A = A2 (3.9)

Aerts and Gabora [2005a] used projection operators to model con-
text. For example, the context the pet is a fish represented as Pfish
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applied to the concept pet (modeled by a state vector) p(t0) refines
this state into the state “pet is a fish” p(t1), which is a subset of
the former state. The application is illustrated in Figure 3.2, showing
base vectors. In terms of identifying algebraic properties for context,
the properties of projection operators also apply to context. In fact,
context also satisfies the property of idempotency.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0

. . . 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0

. . . 0
0 0 0 0 0 0 0 1
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0 0 0

. . . 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0

. . . 0
0 0 0 0 0 0 0 0




state, pet is a fish, p(t0)

Figure 3.2: state pet influenced by
context is a fish resulting in the state
“pet is a fish”The set of all projection operators of a Hilbert space forms a lattice

structure [Basieva and Khrennikov, 2015]. The set of projection op-
erators corresponds one-to-one to sub-spaces [Hughes, 1992][page 47].
Aerts and Gabora [2005a] expressed this correspondence between pro-
jection operators and sub-spaces through mapping λ. The sub-spaces
are partially ordered [Beltrametti and Cassinelli, 1981][page 105] to
form the lattice. The lattice is bound with the zero operator 0 given
in Equation 3.10, and the identity operator I in Equation 3.8.

0 =

 0 0 0
0 0 0
0 0 0

 (3.10)

The lattice structure of projectors with its partial order relation
applies to context as well. Aerts and Gabora [2005a] label the partial
order relation “is stronger than or equal to”, denoted by ≤. They
assign the zero operator the name zero context, and the identity op-
erator the name unit context. The partial order relation respects the
properties of reflexivity, transitivity, and symmetry.

Two contexts are combined by conjunction or disjunction resulting
in another context. The combination of two contexts with “and” (con-
junction) results in an infimum context, denoted

∧
c. This infimum

context is more concrete than the constituents. The calculation of the
infimum context for contexts ci included in a context set C is the in-
tersection of two contexts given in Equation 3.11, [Aerts and Gabora,
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2005a]. ⋂
ci∈C

λ(ci) = λ(
∧
ci∈C

ci) (3.11)

The combination of two contexts with “or” (disjunction) results in
a supremum context, denoted

∨
c. This context is more abstract than

the constituents.
Aerts and Gabora [2005a] calculated the supremum context for con-

texts ci in a context set C with the closure operation given in Equa-
tion 3.12. The closure operation in Equation 3.12 does not produce an
equal for the disjunction of two contexts λ(c1) ∪ λ(c2) 6= λ(c1 ∨ c2).
The reason for selecting the closure operation is based on a thought ex-
periment which lacks empirical evidence (surprisingly, they conducted
a questionnaire but didn’t include questions tackling this major argu-
ment for use of the closure operation). The thought experiment creates
a hypothetical situation where a person cannot decide which of two al-
ternatives is valid. In their perspective, the situation resembles the
behavior of an electron in superposition modeled with the closure op-
eration in quantum mechanics. Busemeyer and Bruza [2012][page 2]
explain superposition for cognition of being in an indefinite state, e.
g. “conflicted, ambiguous, confused, uncertain” where either of two or
more possibilities are achievable. Note: this does not mean that more
possibilities can be realized at the same time. However, this thought
experiment led Aerts and Gabora [2005a] to conclude that the context
structure is quantum-like, also calling the supremum context superpo-
sition context. ⋃

Ci∈C
λ(ci) ⊂ λ(

∨
ci∈C

ci) (3.12)

Each context c has an orthocomplement context c⊥. The orthocom-
plement function has the properties stated in Equation 3.13. Aerts
and Gabora [2005a] argue that it is not a complement because of the
“existence of superposition states”. Here superposition is referred to
as a principle that tells which set of states is admissible from the
system [Hughes, 1992]. Aerts and Gabora [2005a] argue for the exis-
tence of the orthocomplement via a thought experiment constructed
by the disjunction of a context c with its orthocomplemented c⊥ built
as: λ(c) ∪ λ(c⊥) ⊂ λ(c ∨ c⊥). This equation relies on superposi-
tion, and within the mapping λ it differs from a complement version:
λ(c) ∪ λ(c⊥) 6= λ(c ∨ c⊥) because of possible admissible states cre-
ated by the superposition. Besides the thought experiments included
in the argument of Aerts and Gabora [2005a], there is no empirical
evidence (same as for superposition context) for the preference of the
orthocomplement over the complement.

(c⊥)
⊥
= c

ci ≤ cj =⇒ c⊥j ≤ c⊥i
c∧ c⊥ = 0, c∨ c⊥ = 1

(3.13)

Aerts and Gabora [2005a] conclude that context forms a complete
orthocomplemented lattice e.g. in Figure 3.3.

c1 ∨ c2 ∨ c3

c2 ∨ c3c1 ∨ c2 c1 ∨ c3

c1 c2 c3

c1 ∧ c2 ∧ c3

Figure 3.3: Lattice structure for con-
text
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3.4 Basic context

The context lattice is built by elements chosen to cover all possible
contexts. Aerts and Gabora [2005a] presented in an example how
these elements could be selected to model the concept pet.

The elements were collected from a questionnaire. In the questions,
subjects rated the likelihood of an exemplar of the pet concept influ-
enced by context e.g. The pet is chewing a bone. The most likely
exemplars, e.g. dog, cat or hamster responded by the participants are
used as basic contexts, e.g. The pet is a hamster , to build the Hilbert
space indicated in Figure 3.2. For each mention of an exemplar (multi-
ple mentions possible), another basic context is included which results
in a Hilbert space of dimension 1400 for the concept pet [Aerts and
Gabora, 2005b]. Basic contexts are located at the bottom of a context
lattice, e.g. contexts c1, c2, c3 in Figure 3.3.

Basic contexts are used to build all other contexts in the context
lattice by combination. Other contexts, e.g. The dog is chewing a
bone, are built by basic contexts c1 The pet is a dog and c2 The pet is
chewing a bone, illustrated as c1 ∨ c2 in Figure 3.3.

The number of basic contexts included in a context is used to calcu-
late a prototype. The calculation of the prototype is done by counting
the number of basic contexts for an exemplar divided by the whole
number of basic contexts. For example, the basic context The pet is a
dog is counted seven times and the basic contexts The pet is a hamster
is counted twice. This results for dog in a probability of 7/9, and for
hamster of 2/9. The maximum number is picked as the prototype, in
this example dog as 7/9 > 2/9.

3.5 Conclusion

SCOP takes context into account for the relation between concepts
and exemplars. Context acts as a glue to connect exemplars and con-
cepts. The concept influenced by a particular context relates to those
exemplars that are valid in the context. Turning this model into the
constitutive rule from Searle [1995], the concept X (represented as state
vector) counts as the prototype Y (basic context) in context C (repre-
sented as projection operator). For example, the concept pet acts as
dog in the context the pet is chewing a bone.

The remarkable idea of SCOP is that concepts probably take a state
influenced by context, and change over time as context is refined. In
each state of the concept, other exemplars are taken into account to
calculate the prototype. By using this approach for each state, different
prototypes may arise depending on the context. The state of a concept
serves as input for the next calculation where it is influenced by another
context, and results in another state.

The SCOP formalism includes algebraic properties for context and
the partial order relation. Contexts are associative and idempotent,
the partial order relation is reflexive, transitive, and symmetric. Simi-
lar properties were already stated by Shoham [1991] reviewed in Chap-
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ter 2.4, and are confirmed by SCOP [Aerts and Gabora, 2005a,b].
The influencing context is modeled by a lattice structure with two

combination functions where the “or” combination is under discussion.
Contexts are “and” and “or” combined, as in normal language where
Aerts and Gabora argue that the “or” combination of contexts shows
effects similar to the superposition of electrons. Their argument is not
based on empirical evidence, however, and for that reason it is not
considered in the remaining work.

Basic contexts are gathered from answers of questionnaires and are
combined to populate the Hilbert space. The established Hilbert space
has finite dimensions equipped with real scalar values, which in turn
makes use of a Hilbert space superfluous as demonstrated by the con-
text algebra in the following Section 4.

In the geospatial domain, several features included in SCOP and re-
viewed in this chapter are topics of high interest. For example, di Do-
nato [2010] argues that existing techniques, e.g. ontologies, are not
able to model geospatial semantics, where SCOP could be a promising
alternative. Di Donato [2010] highlights the idea of states for a concept
and concludes that an in-depth analysis of SCOP is necessary to iden-
tify applicability in the geospatial domain. Such an analysis is shown
in this chapter, extracting properties usable for the geospatial domain,
i.e. context properties for the representation of near. The idea that
concepts inherit states was also proposed by Raubal [2008]. He pre-
sented an algebraic model inspired by time geography and conceptual
spaces and justified it using the spatial concept “landmark”. These two
examples document the interest by the geospatial domain to integrate
concepts and context into one formalization, as is demonstrated in this
work.



4
Context Algebra mapped to concepts

In this chapter, context algebra is introduced, and a mapping from a
context to a concept formalization is established to calculate context-
dependent prototypes. To achieve this goal the chapter is structured
into two sections. First, an algebra for contexts is defined in Sec-
tion 4.1. Second, from that context algebra a mapping is defined to
a concept formalization in Section 4.2. Within this mapping, differ-
ent prototypes can be calculated dependent on context influence. All
properties from the algebra and the mapping are discussed to create
a self-contained description of the context algebra, including some of
the properties already introduced in Chapters 2 and 3.

4.1 Context Algebra

Context algebra provides methods to calculate with context in a gen-
eral manner, allowing it to be applied in many applications. A context
algebra is an instance of an algebraic system. According to Gill [1976,
page 94] an algebraic system includes:

• “a set V known as domain of the algebra”

• “a set of relations on V ”

• “a set of operations on V ”

• “a set of postulates . . . for the operations”

• “a set of theorems that are statements concerning V and can be
proved from the postulates by means of accepted rules of logic.”

• “a set of definitions about symbolism and terminology”

• “a set of algorithms”.

The context algebra is introduced in this sequence, with all elements
included.

The domain of the context algebra is a context set C. Possible
elements included in this set are listed in Table 4.1. These contexts
are used within this chapter, where a particular context is referred
to as ci or by its label. The contexts in Table 4.1 establish a relation
between the concept restaurant and specific exemplars, e.g. Plachutta,
as given in the introduction in Section 1.1.
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context label

c1 in Vienna
c2 in Innere Stadt
c3 serving pizza
c4 serving regional cuisine
c5 in Vienna serving pizza
c6 not in Vienna
c7 in Vienna serving pizza at 8 o’clock
c8 at 8 o’clock
c9 serving pizza or serving regional cuisine
c10 first district

Table 4.1: Example contexts included
in context set C also used in the intro-
duction example; context maps from
the concept restaurant to exemplars
e.g Plachutta

Partial order relation

Two contexts ci, cj ∈ C are partially ordered by the binary order re-
lation is more selective than or equally selective as. This relation is
denoted ≤ 1, and its mathematical definition is given in Equation 4.1. 1 Mathematics read the symbol ≤ as

“less than or equal than” and it is used
here because the number of references
included in the left context are “less
than or equal to” compared to the
number of references in the right con-
text. For the reading, this implies that
the context on the left side is “more se-
lective or equally selective” as the con-
text on the right side.

ci ≤ cj ∀ci, cj ∈ C (4.1)

The order relation is read as context ci is more selective than or equally
selective as context cj . An example for such an ordering is given by the
contexts c1 and c2. They can be ordered as c2 ≤ c1, reading context
c2=in Innere Stadt is more selective than or equally selective as context
c1=in Vienna for the statement “Let’s meet at a restaurant”.

The partial order relation ≤ is asymmetric. This property states
that the converse of ≤ is the relation ≥. The converse partial order
relation is given in Equation 4.2 and reads is less selective than or
equally selective as the other context.

cj ≥ ci ∀ci, cj ∈ C (4.2)

By defining both partial order relations, the equality of two contexts
can also be calculated, which is done as stated in Equation 4.3. If two
contexts satisfy both relations ≤,≥ then the two contexts are equally
selective.

ci ≤ cj and ci ≥ cj =⇒ ci = cj (4.3)

The partial order relations ≤,≥ are reflexive. Reflexivity states that
the partial order relation can be applied to every context ci ∈ C and
returns meaningful results. The relation is also meaningful if a context
ci is related to itself, as given in Equation 4.4.

∀ci ∈ C ci ≤ ci (4.4)

The partial order relations ≤,≥ are transitive, as stated in Equa-
tion 4.5.

ci ≤ cj and cj ≤ ck =⇒ ci ≤ ck (4.5)

For example, consider the contexts c1, c5, and c7. Contextc5=in Vienna
serving pizza is more selective than or equally selective as context c1=in
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Vienna. Furthermore, context c7=in Vienna serving pizza at 8 o’clock
is more selective than or equally selective as context c5=in Vienna
serving pizza. Now, the transitivity property states that c7 is also more
selective than or equally selective as context c1. Within transitivity,
the three contexts are ordered as: c7 ≤ c5 ≤ c1.

Greater selective contexts and least selective contexts for three con-
texts can be determined within the partial order relation.

Greater selective contexts are more selective or equally selective with
respect to two other contexts. A greater selective context is denoted
as g and is also included in the context set C. In order to be a greater
selective context it has to satisfy the law stated in Equation 4.6.

g ≤ ci (4.6)

An example greater selective context can be found for the two con-
texts c1=in Vienna and context c3=serving pizza: the greater selective
context is context g = c5 = in Vienna serving pizza.

Least selective contexts are less selective or equally selective with
respect to two other contexts. A least selective context is denoted as l
and is also part of the context set C. A least selective context is found
if it satisfies the law stated in Equation 4.7.

l ≥ ci (4.7)

An example for a least selective context from the contexts c3 and c4 is
already included in the context set C. The least selective context for
these is context c9 = l=serving pizza or serving regional cuisine, which
is less selective than or equally selective as each of the other contexts
c3=serving pizza and c4=serving regional cuisine.

One universal least context and one universal greatest context in a
partially ordered context set C exist; and if they exist, they are a least
selective context or greatest selective context for all contexts included
in the context set. The universal least context denoted ⊥ satisfies
Equation 4.8. In the perspective of the constituting rule of Searle, the
least context represents a context where no relation between X and Y
can be determined, i.e. no relation to reality can be determined.

∀ci ∈ C ⊥ ≤ ci (4.8)

The universal greatest context, denoted > satisfies Equation 4.9. In
Searle’s perspective the greatest context includes all relations between
X and Y.

∀ci ∈ C ci ≤ > (4.9)

The least and greatest contexts are unique for a context set C. For
every context ⊥,>, ci ∈ C it follows that ⊥ ≤ ci ≤ >. The ⊥ context
is more selective than or equally selective as all other contexts, and
the > context is less selective than or equally selective as all other
contexts in the context set. > and ⊥ context can only be determined
with respect to a specific model, as noted by McCarthy [1996] reviewed
in Section 2.4.
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In summary, a partially ordered set of contexts is represented by the
mathematical structure poset. The poset can be drawn as an ordering
diagram. For example, considering the contexts ⊥, c1, c3, c4, c8,>, the
ordering diagram included in Figure 4.2 is created.

⊥

c8c1 c3 c4

>
Figure 4.1: Ordering diagram for con-
texts c1, c8, c3, c4,⊥,> depicted from
in Table 4.1

Context combination operations

Contexts included in a context set C can be combined with two binary
operations, conjunction and disjunction, resulting in another context.

The conjunction operation of two contexts, denoted ∧, is given in
Equation 4.10. The conjunction of two contexts results in a greater
selective context as both constituents ci, cj ∈ C.

ci ∧ cj = g g ≤ ci, cj ∈ C (4.10)

A combination for two contexts results in another context. For exam-
ple, the context c1 = in Vienna conjunct with the context c2= in Innere
Stadt results in the context c10= first district, which is determined by
a new name. Another example for a combination can be created from
context c1= in Vienna and context c3= serving pizza, which results in
context in Vienna and serving pizza. In most cases, the term “and” can
be omitted, which is given in context c5 = in Vienna serving pizza.

The disjunction of two contexts, denoted ∨, is stated in Equa-
tion 4.11. The disjunction of two contexts results in a least selective
context.

ci ∨ cj = l l ≤ ci, cj ∈ C (4.11)

For example, the disjunction of the context c3= serving pizza and
c4= serving regional cuisine results in context c9= serving pizza or serv-
ing regional cuisine.

Conjunction and disjunction of two contexts satisfy the idempotent
property. This property is given in Equation 4.12 and shows that the
combination of one context with itself results in itself.

c∧ c = c, c∨ c = c (4.12)

For example, context c1= in Vienna in conjunction with itself results in
in Vienna and in Vienna which equals in Vienna. Also, the disjunction of
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context c1 with itself resulting in in Vienna or in Vienna is the context
itself.

Both operations are commutative, as given in Equation 4.13. This
property states that the order of the context does not have any influ-
ence on the outcome.

ci ∧ cj = cj ∧ ci, ci ∨ cj = cj ∨ ci (4.13)

For example, if context c1= in Vienna is conjunct with context c3= serv-
ing pizza, there is no difference between c1 ∧ c3= in Vienna serving pizza
or c3 ∧ c1= serving pizza in Vienna.

Both operations are associative, as given in Equation 4.14 which
states that parentheses do not affect the operation.

ci ∧ (cj ∧ ck) = (ci ∧ cj)∧ ck, ci ∨ (cj ∨ ck) = (ci ∨ cj)∨ ck (4.14)

Both operations satisfy the consistency law stated in Equation 4.15.

ci ≤ cj ci ∧ cj = ci, ci ∨ cj = cj (4.15)

For example, context c5= in Vienna serving pizza is more selective than
or equally selective as c1= in Vienna, resulting in c5 ≤ c1. If both are
combined by the conjunction operation, the result is the more selective
context c5. If both contexts are combined by the disjunction operation,
the result is the less selective context c1.

Both operations are isotone, as stated in Equation 4.16.

cj ≤ ck ci ∧ cj ≤ ci ∧ ck ci ∨ cj ≤ ci ∨ ck (4.16)

If the context poset includes a universal least context ⊥ and a uni-
versal greatest context, > laws given in Equation 4.17 and 4.18 for the
conjunction and disjunction operation have to be satisfied. The laws
for the least context are stated in Equation 4.17, and those for the
greatest context are stated in Equation 4.18

ci ∈ C ci ∧⊥ = ⊥ ⊥∨ ci = ci (4.17)

ci ∈ C ci ∧> = ci ci ∨> = > (4.18)

Considering the contexts from Table 4.1, the ⊥ and > context can
be determined. The ⊥ context has to be more selective compared to
all other contexts. As no context is more selective than all others, the
⊥ context has to be added to the poset C. There exists one context
which is more selective than all others, called the empty context= { }.
It is created by the conjunction of all contexts in the poset C, which
represents ⊥ in this example. The > context is the least selective
context and is created by the disjunction of all contexts included in
the poset C.

The contexts resulting from the disjunction and conjunction oper-
ations are included in the ordering diagram, which also shows greater
and least context. An example ordering diagram for the generic con-
texts ci, cj , ck, cl, ⊥, > is shown in Figure 4.2. The ordering diagram
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includes greater contexts (conjunction) and least (disjunction) con-
texts for each context. They can be determined by following the path
of both constituting contexts ascending or descending, and when the
paths meet, the least or greater context is found. For example, the
greater context of ci, ck and cj , ck, cl is determined by following the
descending path indicated by dotted lines ending up at context ck.
The least context is represented by the vertex that is reachable from
both constituent contexts via an ascending path. For the contexts
ci, ck and cj , ck, cl, the least context is ci, cj , ck, cl where the path is
indicated by the dashed line.

⊥ = {}

{cj}{ci} {ck} {cl}

{ci, cl}{ci, ck}{ci, cj} {cj , ck} {cj , cl} {ck, cl}

{ci, cj , ck} {ci, cj , cl} {ci, ck, cl} {cj , ck, cl}

> =

{ci, cj , ck, cl}

Figure 4.2: Greater selective context
and least selective context in an order-
ing diagram for context set C includ-
ing the contexts ci, cj , ck, cl,⊥,>Context Lattice

Within partial order relation and combination operations, a lattice
structure for contexts can be derived. To derive a context lattice, the
partial order relation and the operations are realized with set functions.
The partial order relation is realized as it is. The ∧ function is realized
as set intersection, given in Equation 4.19, the ∨ function is realized
by the set union given in Equation 4.20, and summarized in Table 4.2.

combination set function
operation

conjunction ∧ intersection ∩
disjunction ∨ union ∪

Table 4.2: Context combination func-
tions realized as set functionsconjunction: c1 ∧ c2 = c1 ∩ c2 (4.19)

disjunction: c1 ∨ c2 = c1 ∪ c2 (4.20)

A context ci has a complement context denoted, as given in Equa-
tion 4.21.

ci ∈ C ci (4.21)

A context lattice is complemented if for every c ∈ C there is a
complement element c. For example, the complement of context c1= in
Vienna is c1 = c6= not in Vienna.
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The complement of the complement of a context results in the con-
text itself, as shown in Equation 4.22

c = c (4.22)

For two contexts ci, cj ∈ C and the referring complement contexts
ci, cj the partial order relation given in Equation 4.23 relates them.

ci ≤ cj =⇒ cj ≤ ci (4.23)

Furthermore, the complement laws stated in Equation 4.24 are sat-
isfied by the combination operations.

ci ∧ ci = ⊥ ci ∨ ci = > (4.24)

The complement function is realized as a negation operation, as-
suming a bound context lattice C.

4.2 Mapping from Context to Concepts

In this section the mapping from the context algebra to a concept
representation is introduced. This mapping enables the representation
for the introduction example “Let’s meet at a restaurant”. Within this
mapping, context (e.g. serving pizza) is used to select references from
all the possible references of a word (e.g. restaurant) to exemplars
in reality (e.g. Plachutta). To introduce the mapping, first the idea
is sketched and then the formalization is presented. At the end of
this section an example will demonstrate how the mapping is used to
calculate prototypes depending on context.

Contextualized Concepts

The idea of mapping context to a concept representation is based on
the context-enriched semiotic triangle illustrated in Figure 4.3. In
general, the semiotic triangle highlights the issue of many-to-many re-
lations between a word, a concept, and the exemplar in reality. Here,
context is introduced to select only those references that are intended
to be referred to. The enriched semiotic triangle was initially intro-
duced by Hahn et al. [2016] for spatial concepts, but it is used here for
concepts in general.

The semiotic triangle describes the abstraction and externalization
process for a concept labeled Concept in Figure 4.3. In Figure 4.3 two
observations are made in two different contexts for the Concept. The
first observation includes exemplar exemplar 1 in context 1 , while exem-
plar 2 is observed in context 2 . By making the context explicit in the
abstraction process, the Concept can include multiple sub-concepts
depending on context; they are called contextualized concepts. In Fig-
ure 4.3 two contextualized concepts, denoted by Concept@context 12 2 this specific notation for a contextu-

alized concept will be used from now
on

and Concept@context 2 , are established from the two observations.
By introducing contextualized concepts, references used in the inter-

pretation process can be distinguished. For example, by using context
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WORD
exemplar 1 in context 1Interpretation

exemplar 2 in context 2
Interpretation

Concept

Concept@context 1
Ex

te
rn
ali
za
tio

n

Concept@context 2

Ext
erna

liza
tion

Abstraction

Abstraction

Figure 4.3: The semiotic triangle
from Ogden and Richards [1946] used
for geographic information science by
Kuhn [2005], enriched with context
Hahn et al. [2016].

context 1 only the reference to exemplar 1 is selected. The estab-
lishment of contextualized concepts represents the idea that concepts
inherit multiple states, as was concluded in Section 3.5.

Formalizing the mapping of context to concepts

The idea of contextualized concepts established by a context-enriched
semiotic triangle is formalized here. In this idea, context acts on the
relation between concepts and exemplars. To respect this idea, the
context lattice is equipped with a mapping to a mathematical struc-
ture representing the concept. In order to establish the mapping, the
mathematical representation for the concept is introduced using sets.

In order to be as general as possible, concepts are represented as
a set of exemplars. Sets can include all types of elements and are
equipped with an equality relation. The set representation of a concept
is the co-domain of the mapping function.

The mapping function has to select sets (co-domain) for a particu-
lar context (domain). The co-domain is given as the set E including
exemplars e ∈ E. The domain is given by the context lattice including
contexts c ∈ C. The mapping function m operates on the structures
C,E and is defined as m : C 7→ E. It selects sets of exemplars Ea as
defined in Equation 4.25 and reads influenced by context.

m(c) =

∅ if c = ⊥
Ea |a ∈ C, a ≤ c if c 6= ⊥

(4.25)

The mapping function distinguishes the cases for ⊥ context and all
others contexts. If the context equals to the ⊥ most selective context,
no particular set E is selected, which results in the empty set denoted
∅. For all other contexts, the result is built by a set of exemplars Ea
built from atomic context representation.

Atomic context representation (or short atomic contexts) repre-
sented as variable a in Equation 4.25 are the building blocks for the
context representation. Atomic contexts are contexts which are less
selective than the most selective context ⊥. One can think of as a min-
imal non-zero element. Atomic contexts are chosen from an agent and
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depend on the contexts influencing a concept. Atomic contexts build
the mapping from the lattice structure to the concept structure in-
cluding exemplars. The concept is partitioned according to the atomic
context representation, resulting in contextualized concepts denoted
Ea.

The benefit of using atomic context representations is that every
non-atomic context can be built by a disjunction of atomic contexts,
as given in Equation 4.26.

ci, a1, a2, . . . , ah ∈ C ci = a1 ∨ a2 ∨ . . .∨ ah (4.26)

Each atomic context representation a of the context lattice has to
satisfy the laws in Equations 4.28 and 4.27.

ci ∧ a = a or ci ∧ a = ⊥ (4.27)

Furthermore, a is an atom if a 6= ⊥ and if, for every ci ∈ C

a ≤ ci or ci ∧ a = 0 (4.28)

Atomic context representations of a context lattice are at the bot-
tom of the ordering diagram, as indicated by Figure 4.4.

⊥

a2a1 a3 . . . ah

Figure 4.4: Atomic representation in-
cluded in a context lattice (general
version by Gill [1976, page 166])

The atomic context representations ai are mapped to contextualized
concepts Ea. The entities included in sets Ea are the exemplars that
have a relation with this particular context. Examples are given in the
following explanation.

Explanation of the mapping by formalizing the introductory ex-
ample

In the introduction, the example sentence “Let’s meet at a restau-
rant” was illustrated by maps (Figure 1.2, 1.4), which are now used
to present the mapping from the context lattice to the concept repre-
sentation. As context, the two contexts c1= in Vienna and c3= serving
pizza are considered here. As concept, the concept restaurant is used
to represent the sentence.

To establish the context lattice, atomic context representations are
determined. The contexts c1 and c3 are not atomic contexts, because
they can be further combined to build more selective contexts. The
combination of both contexts results into the three atomic context
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representations: a1= in Vienna and serving pizza, a2= in Vienna and not
serving pizza, and a3= not in Vienna and serving pizza. They are used to
build c1 and c3 by disjunction of the atomic context representations.
All other contexts resulting from the disjunction of these three atomic
contexts a2 ∨ a3 and > = a1 ∨ a2 ∨ a3 and the ⊥ context result in the
context lattice for this example, illustrated in Figure 4.5.

⊥

a2a1 a3

c3 = a1 ∨ a3c1 = a1 ∨ a2 a2 ∨ a3

>
Figure 4.5: Context lattice for c1= in
Vienna and c3= serving pizza built by
atomic context representations

Contextualized concepts are modeled as sets Ei built by exemplars.
The exemplars are observed in reality and for example stored in a
database for a hypothetical web service. It shows exemplars/ loca-
tions of concept restaurant on a map similar to Figures 1.2 and 1.4.
The web service includes four restaurant brands: Plachutta labeled P ,
Pizza Hut labeled H, Vapiano labeled V , and Cantinetta labeled C.
The contextualized concepts (restaurant@in Vienna serving pizza and
restaurant@serving pizza) including the observations for the exemplars
(different locations for a brand) are illustrated as Venn diagrams in
Figure 4.6. The contextualized concepts Ec1 and Ec3 are mapped to
contexts that are a combination of atomic context representations. In
the web service, exemplar Plachutta is observed once (one location
included in the database), Cantinetta is observed three times (three
locations included in the database), and Vapiano is observed five times
(five locations included in the database) in the combination of con-
text c1 and c3, illustrated by the overlapping area indicated by Ea1

in blue color. In this case, the combination of the contexts results in
the atomic context representation a1; but the fact that a combina-
tion of two contexts results in atomic context representations is not
usually true, as becomes clear if one imagines, for example, a bigger
context lattice. The Venn diagram also shows how the contextualized
concepts respect the combination of contexts starting with the atomic
context representation. For example, the left circle indicates the con-
textualized concept that maps to the atomic context representation
a2. Disjunct, the contextualized concepts established from the atomic
context representation a2 and a1 generate the contextualized concept
Ec1 covering the green and blue areas.

Ec1

in Vienna

P P

P P
P

Ec3

serving pizza

V V

VV
V

H H

H H
H

H

H
H H

HH

Ea1

P
CC
C
VV
VV
V

Figure 4.6: Contextualized concepts
represented with Venn diagrams in-
cluding exemplars

All possible mappings from the context lattice shown in Figure 4.5
to all possible contextualized concepts Ei are included in Table 4.3.
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Together, Table 4.3 and Figure 4.5 illustrate the function of map-
ping m(c). Every element in the context lattice is connected by the
mapping m(c) with a contextualized concept Ei sharing the same
color. For example, the ⊥ context does not consider any of the atomic
context representation and returns the empty set, as given in Equa-
tion 4.25. The > context considers each atomic context representation
which is less selective than all other contexts. The context c1= in Vi-
enna is created by the union of the atomic context representation of
a1= in Vienna ∧ serving pizza and the atomic context representation
a2= in Vienna ∧ serving pizza represented by the dark green area.

context disjunction of Ei

⊥

in Vienna ∧ serving pizza a1

in Vienna ∧ serving pizza a2

in Vienna ∧ serving pizza a3

in Vienna a1 ∨ a2 = c1

serving pizza a1 ∨ a3 = c3

in Vienna ∨ serving pizza a2 ∨ a3

> a1 ∨ a2 ∨ a3

Table 4.3: All possible contexts gener-
ated from atomic context representa-
tions for the restaurant example

Hahn et al. [2016] applied context algebra to the concept near, and
observed that some combination of contexts can yield non-sensical
contexts. They established a context lattice including the contexts
walking and driving for the concept near. By combining these two
contexts, the combination context walking ∧ driving is built, which
results in a non-sensical context because it cannot be realized. Hahn
et al. [2016] concluded that non-sensical contexts are not an issue for
the model because the mapping from the non-sensical contexts maps
to an empty contextualized concept or the context is considered as ⊥.

Prototype calculation of contextualized concepts

Every concept selects a prototype, for which it is assumed that it can be
calculated from observed exemplars. Methods to calculate a prototype
are reviewed in Sections 2.2 and 3. The calculation of the prototype
is not the focus of this research, which is why the approach by Aerts
and Gabora [2005a] is selected:

The calculation of the prototype classifies exemplars by the number
of observations, designating the most observed exemplar as prototype.
Which observations and exemplars e are considered is given by the
contextualized concept E in Equation 4.29. Function p is defined over
a contextualized concept and an exemplar, and calculates a number
p(E, e) : e → R in the range [0, 1] called contextual typicality. The
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contextual typicality is calculated by dividing the number of observa-
tions for one exemplar #e by the overall number of observations for
all included exemplars in the contextualized concept #E as given in
Equation 4.29.

p(E, e) = #e
#E (4.29)

The prototype equals the exemplar with the highest contextual
typicality value for one contextualized concept calculated with Equa-
tion 4.30.

q(E, ei) = max
ei∈E

(
p(E, ei)

)
(4.30)

The number of observations for each exemplar for contextualized
concepts Ei is presented as observation table. The tabular form shows
contextualized concepts in columns and the number of references to
exemplars in columns. This table is called observation table because
it classifies /lists exemplars as they are observed in reality. For the
database of the hypothetical web service example from above, Ta-
ble 4.4 shows the observation table for the exemplars considered for
restaurant given in Figure 4.7.

exemplars
contexts

⊥ in Vienna p(in Vienna) serving pizza p(serving pizza) > p(>)

Plachutta 0 6 6
14 = 0.43 1 1

25 = 0.04 6 6
30 = 0.20

Pizza Hut 0 0 0
14 = 0.00 11 11

25 = 0.44 11 11
30 = 0.37

Cantinetta 0 3 3
14 = 0.21 3 3

25 = 0.12 3 3
30 = 0.10

Vapiano 0 5 5
14 = 0.36 10 10

25 = 0.40 10 10
30 = 0.33

#Ei 0 14 1 25 1 30 1

Table 4.4: Observation table for the
restaurant example

The observation table does not have to include atomic context rep-
resentations. If it included only atomic context representations, the
numbers in the table would sum up to the > context. In this example,
the numbers for the > context for Plachutta and Vapiano are not the
sum: 0 + 6 + 1 6= 6 and 0 + 5 + 10 6= 10. The reason is that both
contexts in Vienna and serving pizza are not atomic representation con-
texts. The exemplars are counted for each of the two contexts, but
only once for the top context, summing up to 6 and 10 observations as
shown in Figure 4.7.

Ec1

in Vienna

P P
P P
P

Ec3

serving pizza

V V
VVV H H

H H
H
H

HH H
HH

Ea1

P
CC
C
VV
VV
V

Figure 4.7: Observation Table 4.4 rep-
resented with Venn diagrams

Prototypes are picked from contextual typicality values included in
observation tables. To calculate the prototype, the observation table
includes contextual typicality, with the highest values designating the
respective prototypes. For example, in Table 4.4 the prototype for con-
text in Vienna is Plachutta, having a contextual typicality of 0.43; and
for context serving pizza it is Pizza Hut, having a contextual typicality
of 0.44. The observation table lists all contextual typicality values for
each exemplar supporting the designation of a prototype.

The prototype calculation function equals the interpretation rela-
tion in the context-enriched semiotic triangle. Here it is assumed that
the interpretation of the word equals the prototype of the concept.
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4.3 Conclusion

In this section the mathematical structure for (i) context, (ii) concepts,
and (iii) the mapping between both is presented.

Context inherits the partial order relation ≤ read as “is more selec-
tive than or equally selective as”. For the order relation the properties
of asymmetry, reflexivity, and transitivity are stated. For three con-
texts, greater selective and least selective contexts can be found. One
unique greatest context > and one least context ⊥ are included in the
context structure. These properties of context enable the mathemati-
cal structure of a partially ordered set for context.

Contexts can be combined by the binary functions conjunction and
disjunction. The conjunction of two contexts results in a context that is
“more selective than or equally selective as” the two constituents. The
disjunction of two contexts results in a context that is “less selective
than or equally selective as” the two constituents. Both operations
satisfy idempotency, commutativity, associativity, consistency, and the
isotone law.

Contexts form a lattice structure, including a complement opera-
tion. For every context in the lattice such a complement context can
be found. Specific rules for the complement of ⊥ and > are included.
By these operations, a lattice structure for context is applied. Atomic
context representations are introduced to build all other contexts by
disjunction.

A mapping from the context lattice to concepts is introduced that
allows us to distinguish between multiple interpretations of a concept.

1. Concepts are modeled with a set labeled E.

2. The mapping of contexts in lattice C to a concept is given by func-
tion m : C 7→ E and used to partition the concept into contextual-
ized concepts. Contextualized concepts are subsets of the concept
set representing observations only valid for one context.

3. Multiple interpretations of a concept are calculated using contextu-
alized concepts. It is assumed that the interpretation corresponds
with the prototype of the contextualized concept.

4. The prototype of a contextualized concept is calculated with two
functions. The first function calculates a contextual typicality value
p(E, e) = #e

#E for one exemplar e. The second function applies the
former function to each exemplar in a contextualized concept, and
designates the exemplar with the highest contextual typicality value
as the prototype: q(E, ei) = max

ei∈E

(
p(E, ei)

)
.

Summarizing the content of this chapter in the perspective of the
constitutive rule of Searle:

• X represents a concept externalized by a sign (text, image, sound,
etc.)

• Y represents the concept and its interpretation, formalized as con-
textualized concepts with prototype calculation functions where the
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prototype equals the interpretation; and

• C determines the contextualized concept.



5
Implementation of the Context Algebra

In this chapter the context algebra and the mapping introduced in
Chapter 4 are implemented. The goal of this implementation is to
present a realization of the context algebra. In contrast to the con-
text algebra that “avoids mentioning unnecessary details” the formal
implementation “avoids imprecision” [Loeckx et al., 1997]. Haskell
[Marlow, 2010] is selected as the programming language, because it
allows to check the consistency of the context algebra using the static
type system. Additionally, the syntax of Haskell is almost identical to
the mathematical notations introduced in context algebra in Section 4.

The implementation is structured into several modules according to
the mathematical structure. An overview of all modules is given in
Figure 5.1. In the middle of Figure 5.1 there is the module Mapping,
integrating context and concept implementation. The reason for it
being in the middle is that it relies on context and on concept im-
plementation. Context implementation is divided in two modules,
module ContextAlgebra, stating abstract classes, and module Con-
textAlgebraSetInstance, instantiating the abstract classes. Con-
cept is implemented by the module Concept. Contextualized concepts
are specified by module ContextualizedConcept and instantiated in
module NominalExemplars.

MappingContextAlgebra

ContextAlgebraSetInstance

Concept

ContextualizedConcept

NominalExemplars

Figure 5.1: Haskell modules imple-
menting the Context Algebra

The General Context Operation introduced in Section 1.3 is imple-
mented on behalf of the context algebra implementation. Use of the
General Context Operation is demonstrated using the introductory
example “Let’s meet at a restaurant” presented in Section 1.1.
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5.1 Context Algebra

The ContextAlgebra module is built upon several abstract classes,
each representing a mathematical structure. The abstract classes given
in Section 5.1 provide a polymorphic interface that can have multiple
implementations. These are presented and discussed before an imple-
mentation using sets is introduced.

Abstract Classes

All necessary abstract classes needed to build the context algebra are
given in Figure 5.2. Each class includes functionality that is closely
related, e.g. partial order relations are part of module PartialOrder.
Attention is drawn to specifying the data types as polymorphic data
types in order to enable the highest flexibility for the instances.

The ContextLattice class integrates all other classes and builds the
context lattice. To establish the ContextLattice the classes Partial-
Order, Universe, Bound, and Complement are prerequisites. Each of
the classes includes functions (given below the class name in Figure 5.2)
that other classes rely on, indicated by arrows in Figure 5.2. To high-
light the abstract classes in the algorithms they are written in red
font. All classes are included in module Context Algebra given in
Code Fragment A.1.

ContextLattice
conjunction, disjunction

Complement
complement

Universe
atomicRepresentation

Bound
greatestContext, leastContext

PartialOrder
isMoreSelectiveOrEqualSel,
isLessSelectiveOrEqualSel,

equals

Figure 5.2: Abstract classes constitut-
ing the Context LatticeThe PartialOrder class includes three functions to relate two con-

texts and compare two contexts for equality. These functions are
isMoreSelectiveOrEqualSel, isLessSelectiveOrEqualSel and eq-
uals. Function isMoreSelectiveOrEqualSel represents the partial
order relation ≤ introduced in Equation 4.1 and the converse func-
tion introduced in Equation 4.2 is represented by isLessSelective-
OrEqualSel. The definitions for these functions are given in Code
Fragment 5.1. Each function takes two contexts as input parameters
and evaluates to a Boolean value. The equals function makes use of
these two functions; if both evaluate True, then the two contexts are
considered equal.
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Code Fragment 5.1: Abstract class
Partial Order

class Part ia lOrder c where −− ^ c r e f e r s to a polymorphic context type
i sMoreSe l ec t iveOrEqua lSe l : : c −− ^ f i r s t input context

−> c −− ^ second input context
−> Bool −− ^ true i f f i r s t context i s more or equal s e l e c t i v e

−− compared to the second context

i sLe s sS e l e c t i v eOrEqua lS e l : : c −− ^ f i r s t input context
−> c −− ^ second input context
−> Bool −− ^ true i f f i r s t context i s l e s s or equal s e l e c t i v e

−− compared to the second context

−− | compares two context s and re tu rn s t rue i f they are equal ,
−− i n c l ud e s a d e f au l t implementation
equa l s : : c −− ^ f i r s t input context

−> c −− ^ second input context
−> Bool −− ^ true i f the f i r s t context equa l s to the second context

equa l s c1 c2 = c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2
&&
c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2

The Bound class includes functions defining the > and the ⊥ con-
text for the partial order relation. The greatestContext function
implements the > element of the partial order relation as given in
Equation 4.9. Analogously, the leastContext function implements
the ⊥ element as given in Equation 4.8. The definition of the class
including the two functions is given in Code Fragment 5.2.

Code Fragment 5.2: Abstract class
Bound

class Bound c where
−− | r e tu rn s the un i v e r s a l l e a s t context , bottom
leas tContext : : c −− ^ un i v e r s a l l e a s t context
−− | r e tu rn s the un i v e r s a l g r e a t e s t context
greate s tContext : : c −− ^ un i v e r s a l g r e a t e s t context , top

The Universe class includes a function that returns all atomic rep-
resentation contexts. It is named atomicRepresentation and is nec-
essary to establish the greatestContext function from the Bounded
class. The definition for this class is given in Code Fragment 5.3.

Code Fragment 5.3: Abstract class
Universe

class Universe c where
−− | r e tu rn s a l l atomic r ep r e s en t a t i on context s
atomicRepresentat ion : : [ c ] −− ^ l i s t i n c l ud ing a l l atomic r ep r e s en t a t i on context s

The Complement class includes the function complement. This
unary function gets a context and evaluates to the complement of
this context as given in Equation 4.21. The class definition is given in
Code Fragment 5.4.

Code Fragment 5.4: Abstract class
Complement

class Complement c where
−− | complements the input context
complement : : c −− ^ input context to be complemented

−> c −− ^ complemented context

The ContextLattice class integrates all the previous classes to
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specify the combination functions conjunction and disjunction. The
definition is given in Code Fragment 5.5.

Code Fragment 5.5: Abstract class
ContextLattice

class ( Part ia lOrder c , Bound c , Complement c ) => ContextLatt i ce c where
−− | r e tu rn s the con junct ion o f f i r s t and second context
con junct ion : : (Bound c , Complement c , Par t ia lOrder c ) =>

c −− ^ f i r s t input context
−> c −− ^ second input context
−> c −− ^ conjunct r e s u l t context

−− | r e tu rn s the d i s j un c t i o n o f f i r s t and second context
d i s j un c t i o n : : (Bound c , Complement c , Part ia lOrder c ) =>

c −− ^ f i r s t input context
−> c −− ^ second input context
−> c −− ^ d i s j un c t r e s u l t context

Several attempts exist for implementing a lattice structure for an
abstract data type in the functional paradigm. For example, the
implementation from Jones [1992] shows a lattice established from
abstract classes similar to this approach. Another implementation
for a lattice is available on the Haskell library repository hackage:
https://hackage.haskell.org/package/lattices. The article by
Jones and the online library are used for insights into the implemen-
tation of the context algebra.

Implementation

All the abstract classes mentioned above are included in module Context-
Algebra, which is instanced in module ContextAlgebraSetInstance.
The requirement for the implementation is that functions are exe-
cutable without specifying the data type for context. To achieve this
requirement, a container that holds context is necessary.

The abstract data type Data.Set is selected as container for con-
text. With this selection all the functions included in the abstract
classes have to be implemented based on the functions available in
Data.Set. For convenience, the Data.Set container is referred to as
set.

A context is implemented with polymorphic data types included
in a set. Code Fragment 5.6 shows the implementation for context
having a polymorphic type parameter c. The function createContext
creates a context representation by taking the context and creating a
singleton set. It is used to represent atomic context representations,
where combined contexts are created by the disjunction of the atomic
context representations. The full implementation is given in Code
Fragment A.2.

Code Fragment 5.6: Data type repre-
senting context

import quali f ied Data . Set as Set

type Context c = Set . Set c

−− ^ c r e a t e s atomic context r e p r e s e n t a t i o n s
createContext : : c −− ^ polymorphic type f o r context

−> Context c −− ^ context r ep r e s en t a t i on
createContext = Set . s i n g l e t on

https://hackage.haskell.org/package/lattices
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The instance of the PartialOrder class implements functions isMore-
SelectiveOrEqualSel and isLessSelectiveOrEqualSel using set func-
tions. What can be a feature that distinguishes two sets and can
establish a partial order? For the relation isMoreSelectiveOrEqual-
Sel all contexts included in the first set have to build a subset of
the contexts included in the second set. This is implemented with
the Set.isSubsetOf function given in Code Fragment 5.7. For the
contrary relation isLessSelectiveOrEqualSel, two cases are distin-
guished by guards (indicated by the | symbol) shown in Code Frag-
ment 5.7. The first guard is for the case of two contexts being equal, in
which case this relation is true. The second guard is for all other cases,
in which case it is the negation of the isMoreSelectiveOrEqualSel
function. The equals function does not have to be implemented be-
cause it already has a default implementation in the abstract class.

Code Fragment 5.7: Instance of the
abstract class PartialOrder

instance (Ord c ) => Part ia lOrder ( Context c ) where
i sMoreSe l ec t iveOrEqua lSe l = Set . i sSubsetOf

i sLe s sS e l e c t i v eOrEqua lS e l c1 c2
| c1 == c2 = True
| otherwise = not $ c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2

An instance for the Universe module cannot be given here, because
it depends on the use case. An instance of the class has to implement
the function atomicRepresentation, returning all atomic representa-
tions used in the specific use case. An example use case is given for
the restaurant example in Table 4.3, showing the Universe instance
in Code Fragment A.7.

The instance of the Bound class implements the functions greatest-
Context and leastContext. The implementation of the greatest-
Context function relies on the function atomicRepresentation given
in the Universe class. The result of the greatestContext function is
built by the union of all atomic contexts given in Code Fragment 5.8.
The leastContext function is represented by an empty set.

Code Fragment 5.8: Instance of the
abstract class Bound

instance ( Universe c , Ord c ) => Bound ( Context c ) where
greate s tContext = Set . unions . map createContext $ atomicRepresentat ion

l ea s tContext = Set . empty

Within the Complement instance the function complement is imple-
mented. The complement selects all the contexts, but not the input
context. To implement this behavior, all contexts have to be found
and the input context has to be removed. This is implemented with
the set function difference between the greatestContext and the
input context, shown in Code Fragment 5.9.

Code Fragment 5.9: Instance of the
abstract class Complement

instance ( Universe c , Ord c ) => Complement ( Context c ) where
complement = Set . d i f f e r e n c e greate s tContext
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The class ContextLattice uses functions provided by the previous
classes to implement the functions conjunction and disjunction.
Both functions include several special cases that have to be dealt with.
These special cases are given by the Equations 4.12, 4.15, 4.17, 4.18,
4.19, 4.20 and 4.24, and are checked by the guards at the beginning of
the functions given in Code Fragment 5.10. If no special case applies,
the conjunction and disjunction function have to be implemented as
functions available on sets. Possible candidates for the implementation
are the union and the intersection function, which indeed are able to
represent conjunction and disjunction as given in Code Fragment 5.10.

Code Fragment 5.10: Instance of the
abstract class ContextLattice

instance ( Universe c , Complement c , Ord c)=> ContextLatt i ce ( Context c ) where
d i s j un c t i o n c1 c2
| c1 ` equa l s ` l ea s tContext = c2 −− Equation 4 .17
| c2 ` equa l s ` l ea s tContext = c1 −− Equation 4 .17
| c1 ` equa l s ` greate s tContext = greate s tContext −− Equation 4 .18
| c2 ` equa l s ` greate s tContext = greate s tContext −− Equation 4 .18
| c1 ` equa l s ` c2 = c1 −− Equation 4 .12
| complement c1 ` equa l s ` c2 = greate s tContext −− Equation 4 .24
| complement c2 ` equa l s ` c1 = greate s tContext −− Equation 4 .24
| c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 = c2 −− Equation 4 .15
| otherwise = c1 `Set . union` c2 −− Equation 4 .20

con junct ion c1 c2
| c1 ` equa l s ` l ea s tContext = leas tContext −− Equation 4 .17
| c2 ` equa l s ` l ea s tContext = leas tContext −− Equation 4 .17
| c1 ` equa l s ` greate s tContext = c2 −− Equation 4 .18
| c2 ` equa l s ` greate s tContext = c1 −− Equation 4 .18
| c1 ` equa l s ` c2 = c1 −− Equation 4 .12
| complement c1 ` equa l s ` c2 = leas tContext −− Equation 4 .24
| complement c2 ` equa l s ` c1 = leas tContext −− Equation 4 .24
| c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 = c1 −− Equation 4 .15
| otherwise = c1 `Set . intersection ` c2 −− Equation 4 .19

5.2 Mapping from Context to Concepts

The mapping function introduced in Equation 4.25 is specified as an
abstract class and implemented in module Mapping. A prerequisite for
the mapping implementation is an implementation for a concept.

Concept implementation

For the concept implementation, two containers are invented. The first
container is used as a connection to context, while the second container
is used to build the concept.

The first container is built by an abstract data type labeled Obser-
vation. Observation stores a tupel of a context data type c and an
exemplar of data type e given in Code Fragment 5.11. The exemplar
represented by data type e can be a logical axiom [McCarthy, 1987],
an instance of a concept [Aerts and Gabora, 2005a], an abstract class
of exemplars [Hahn and Frank, 2014], or something else influenced
by context. The only requirement is that exemplar e is observed in
context c. As this connection has to be observed, this combination of
context and exemplar is called Observation.
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Code Fragment 5.11: Data type Ob-
servation combining an exemplar and
a context

data Observation c e = Obs ( c , e ) deriving (Show,Eq,Ord)

The data type of Observation is given in Code Fragment 5.11.
It derives the type classes Show (to have a String representation for
printing it on the command line), Eq (==) and Ord for comparisons
(greater, lower) necessary for the next container.

The second container is an abstract data type labeled Concept stor-
ing multiple Observation. A Concept includes all observations con-
sidered in a particular use case. To implement a Concept the ab-
stract data type MultiSet is selected, because a MultiSet can include
same entries multiple times in contrast to a set that can hold equal
entries once. MultiSet is an external library available on Hackage:
https://hackage.haskell.org/package/multiset and is an exten-
sion of Data.Map. The definition of the Concept data type is given in
Code Fragment 5.12, it derives the type class Show in order to have a
String representation.

Code Fragment 5.12: Data type rep-
resenting a concept

data Concept c e = C (Mult iSet ( Observation c e ) ) deriving (Show)

createConcept : : Observation c e
−> Concept c e

createConcept = C . Mult iSet . s i n g l e t on

Functions to manipulate a Concept are implemented. To establish
a Concept an Observation is created and added to the Concept. The
Observation is created with the constructor of the data type Obs and
is changed to a Concept by function createConcept. This new concept
can be added to an existing Concept using the method addConcept.
This and other functions are provided in the Concept module given in
Code Fragment A.3 in Appendix A.

Abstract class

The abstract class Mapping specifies the mapping function m given in
Equation 4.25. The function takes a context c and a Concept c e as
input, and returns a Concept c e, as given in Code Fragment 5.13.
To map the context to the concept it is necessary that the polymorphic
data type for the context equals the type for the concept given in Code
Fragment 5.13.

Code Fragment 5.13: Abstract class
Mapping

class Mapping c e where −− data type c equa l s f o r context and concept
m : : (Ord c , Ord e , Bound c , Part ia lOrder c ) =>

c −− ^ more s e l e c t i v e context or equal s e l e c t i v e context
−> Concept c e −− ^ concept i n c l ud ing Observat ions now in f l u en c ed with context c
−> Concept c e −− ^ concept with Observat ions f o r context s c and more s e l e c t i v e ones

https://hackage.haskell.org/package/multiset
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Implementation of the Mapping: m : C 7→ E

The implementation of the abstract class Mapping distinguishes two
cases introduced by Equation 4.25. The two cases are distinguished in
the implementation by guards | that enable pattern matching. The
first case matches if the actual context ctx equals the leastContext
and results in a Concept without any Observation, given in Code
Fragment 5.14. In the second case, only those Observations are re-
turned that are observed in a “more selective as or equally selective
as” context compared to the given context.

Code Fragment 5.14: Instance of the
abstract class Mapping

instance Mapping c ( Concept c e ) where
m ctx concept
| l ea s tContext ` equa l s ` ctx = emptyConcept
| otherwise = fromObservat ionLis t

[ obs | obs <− toObservat ionL i s t concept
, getContext obs ` i sMoreSe l ec t iveOrEqua lSe l ` ctx ]

5.3 Contextualized concepts

A contextualized concept is created by the mapping of a context to a
concept. For a contextualized concept a function to calculate a pro-
totype is implemented. The implementation for this class depends on
the type of the exemplars that are taken into account. An implemen-
tation for exemplars on a nominal measurement scale [Stevens, 1946]
is provided in Code Fragment A.6.

Abstract class

The abstract class ContextualizedConcept defines the function to
calculate a prototype given in Code Fragment 5.15. The function to
calculate the prototype is defined as calculatePrototype, which op-
erates on a concept and results in a tupel consisting of the prototype
exemplar of type e and a contextual typicality of type Double. The ab-
stract class definition is included in module ContextualizedConcept
Code Fragment A.5.

Code Fragment 5.15: Abstract class
ContextualizedConcept

class Contextual izedConcept c e where
−− | r e tu rn s a tupe l i n c l ud ing the prototype with i t s contextua l t y p i c a l i t y value
ca l cu l a t ePro to type : : (Show e , Ord e ) =>

Concept c e −− ^ con t ex tua l i z ed concept i n c l ud ing exemplars e
−> ( e ,Double) −− ^ ( p r o t o t yp i c a l exemplar , contextua l t y p i c a l i t y )

Implementation

The implementation of contextual typicality depends on the type of
exemplars that is considered. An implementation of the abstract class
ContextualizedConcept for exemplars categorized by a nominal mea-
surement scale [Stevens, 1946] is presented in Code Fragment 5.16 in-
cluded in module NominalExemplars presented in Code Fragment A.6.
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The implementation of the calculatePrototype function relies on
the function rateObservations that counts all observations for each
exemplar, as mathematically introduced in Equations 4.29 and 4.30.
The number of observations for each exemplar is divided by the to-
tal number of all observations made for this context. The result of the
rateObservations function is a list including each exemplar equipped
with a contextual typicality value. These contextual typicality values
are compared, and the maximum contextual typicality is designated
as the prototype in function calculatePrototype.

Code Fragment 5.16: Instance of the
ContextualizedConcept class for ex-
emplars on a nominal measurement
scale

instance Contextual izedConcept c e where
ca l cu l a t ePro to type = List .maximumBy (compare `on` snd ) . ra teObservat ions

rateObservat ions : : (Show e , Ord e ) =>
Concept c e −− ^ con t ex tua l i z ed concept

−> [ ( e ,Double ) ] −− ^ contextua l t y p i c a l i t y f o r a l l exemplars
ra teObservat ions con = map (\ ( exemplar , o c cur r ence s ) −>

( exemplar , fromIntegral occur r ence s /
fromIntegral to ta lOccur r ence s ) )

. Mset . toAscOccurList . Mset . f romList

. concatMap (\ (O (_, e ) , o)−> replicate o e )

. toOccurrenceL i s t $ con
where to ta lOccur r ence s = numberExemplars con

5.4 General Context Operation

An idea of the General Context Operation was presented as pseu-
docode in Section 1.3, and is now implemented. For a better under-
standing the pseudocode is given here in Code Fragment 5.17. Code Fragment 5.17: Pseudo code of

an idea for a General Context Opera-
tion

function generalContextOperation(information, context)
moreSpecificContext = makeMoreSpecificeContext(context)
moreSpecificInformation = createInfoForMoreSpecificCon-

text(information, moreSpecificContext)
return moreSpecificInformation

Implementation

The implementation of the General Context Operation is shown in
Code Fragment 5.18. The input parameters of the generalContext-
Operation are extended by the actual context, which indicates in
which context the concept is before executing the generalContext-
Operation operation. This actual context is combined with the new
context to establish a moreSelectiveContext. The moreSelective-
Context is the equivalent to the moreSpecificContext variable in
the pseudocode. This moreSelectiveContext context influences the
concept con implemented as mapping m. The result of the mapping
creates a contextualized concept according to the moreSelective-
Context. This contextualized concept includes observations that are
valid in the moreSelectiveContext which is according to the pseudo
code algorithm moreSpecificInformation.
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Code Fragment 5.18: Implementation
of the General Context Operation

genera lContextOperat ion : : (Ord c , Ord e , Bound c , Part ia lOrder c , ContextLatt i ce c
, Mapping c e ) =>
c

−> c
−> Concept c e
−> Concept c e

genera lContextOperat ion actualCtx newCtx con = m moreSe lect iveContext con
where moreSe lect iveContext = actualCtx ` con junct ion ` newCtx

The general context operation presented in Code Fragment 5.18
combines two contexts with the conjunction operation. In the same
fashion, a general context operation with a disjunction operation can
be implemented. Here the conjunction is selected in order to formalize
the introduction example in the next section. The example in the next
section refines the context to even more selective contexts, where the
conjunction combination operator is applicable.

Example using the General Context Operation

Ec1

in Vienna

P P

P P
P

Ec3

serving pizza

V V

VV
V

H H

H H
H

H

H
H H

HH

Ea1

P
CC
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VV
VV
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Figure 5.3: Contextualized concepts
represented with Venn diagrams in-
cluding exemplars

The introduction example “Let’s meet at a restaurant” is implemented
using the generalContextOperation. In this example, two subjects
negotiate about which restaurant to meet at. Restaurant is consid-
ered here as concept restaurant because it refers to many objects in
reality. Context influence on the concept is used to reduce the num-
ber of references to objects in reality. One subject considers an online
map that is equipped with a generalContextOperation and displays
possible references to restaurants according to the context stated in
the negotiation. The context of the negotiation changes as messages
are exchanged, which is represented here as states. In addition to the
introductory example a prototype for each state is obtained.

The Context lattice has to be initialized with atomic context repre-
sentations. The influencing contexts are in Vienna and in Vienna serving
pizza. To include the two contexts in the lattice it is initialized with
the atomic context representations a1= in Vienna and serving pizza,
a2= in Vienna and not serving pizza and a3= not in Vienna and serv-
ing pizza given in Figure 4.5. The atomic context representations are
implemented with the function createContext shown in Code Frag-
ment 5.19. The context in Vienna is created by the disjunction of the
atomic contexts a1 and a2 given in Code Fragment 5.19. The necessary
instance for the Universe class is implemented using the three atomic
context representations given in Code Fragment A.7 in Appendix A.

Code Fragment 5.19: Contexts in-
cluded in the restaurant example

type CtxType = Context String

a1 = createContext " ( in Vienna ) and ( s e rv ing p i z za ) "
a2 = createContext " ( in Vienna ) and not ( s e rv ing p i z za ) "
a3 = createContext " not ( in Vienna ) and ( s e rv ing p i z za ) "

inVienna = a1 ` d i s j un c t i o n ` a2
s e rv ingP i z za = a1 ` d i s j un c t i o n ` a3
inViennaOrServingPizza = a2 ` d i s j un c t i o n ` a3
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Concept restaurant is initialized with observations of exemplars
taken from Venn Diagram 5.3. Observations for the exemplars Plachutta,
Pizza Hut, Vapiano, and Cantinetta are established following the num-
ber given in Venn Diagram 5.3. Restaurant is represented in the im-
plementation as given in Code Fragment 5.20.

Code Fragment 5.20: Observations
initializing concept “restaurant”

p lachutta1 = O (a1 , " Plachutta " )
plachuttaV = replicate 5 $ O (a2 , " Plachutta " )
p izzahut = replicate 11 $ O (a3 , " Pizza Hut " )
cand inet ta = replicate 3 $ O (a1 , " Candinetta " )
vapianoV = replicate 5 $ O (a1 , " Vapiano " )
vapianoP = replicate 5 $ O (a3 , " Vapiano " )

r e s t au ran t = unionConcept . map createConcept $ obs
where obs =[ p lachutta1]++plachuttaV++pizzahut++cand inet ta++vapianoV++vapianoP

The first state of the discussion considers the sentence: “Let’s meet
at a restaurant”. For this sentence, no context influences restau-
rant. Without context influence, a context from the context lattice
has to be selected that has no effect on the concept, which is the
greatestContext. For the greatestContext all restaurants available
in the concept have to be considered. Applying the generalContext-
Operation with the greatestContext does not have any effect on
the restaurant. In this state, the online map displays all restaurants
available around the globe.

The negotiation proceeds with the sentence: “Are you in Vienna
today?”. The listener acknowledges the sentence with “Yes I’m in
Vienna till Sunday.”. Both sentences can be fused, which results in the
next state the context algebra can process:

The second state is “Let’s meet at a restaurant in Vienna”. In this
sentence, restaurant is influenced by the context in Vienna, result-
ing in the contextualized concept restaurant@in Vienna. How this is
calculated using generalContextOperation is shown in Code Frag-
ment 5.21. Code Fragment 5.21: Applying

the General Context Operation for
“restaurant” in context “in Vienna”

re s t s InVienna = genera lContextOperat ion greate s tContext inVienna r e s t au ran t
prototypeInVienna = ca l cu l a t ePro to type re s t s InVienna

The output includes only restaurants that are located in Vienna.
The online map is refreshed according to this outcome, and now shows
only restaurants in Vienna, as shown in Figure 1.2. Additionally, the
prototype for the contextualized concept is determined as given in
Code Fragment 5.21, resulting in Plachutta with a contextual typicality
of 0.43. The negotiation proceeds in the following exchange:

The third state is “Let’s meet at a restaurant in Vienna serving
pizza”. The discussion is left out because it is not important how the
third state is reached. In this state, restaurant@in Vienna is influenced
by in Vienna serving pizza, which is a more selective context compared
to in Vienna resulting in contextualized concept restaurant@in Vienna
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serving pizza. The calculation is given in Code Fragment 5.22 where
the context in Vienna serving pizza is represented as variable a1 (con-
sider Code Fragment 5.19). The result is the contextualized concept
restaurant@in Vienna serving pizza which is shown in Figure 1.4. For
the contextualized concept, the obtained prototype is Vapiano with a
contextual typicality of 0.55.

Code Fragment 5.22: Applying
the General Context Operation for
“restaurant” in context “in Vienna
serving pizza”

re s t s InViennaServ ingP izza = genera lContextOperat ion inVienna a1 re s t s InVienna
protoInViennaServ ingPizza = ca l cu l a t ePro to type re s t s InViennaServ ingP izza

Note that the third input parameter restsInVienna is the output
of the previous state and includes only restaurants in Vienna. This
implies that in further states only “more selective” contexts can be
processed, e.g. restaurants@in Vienna serving pizza on a Sunday . If
a “less selective” context is applied, not every observation included in
the initial concept is taken into account.

The negotiation has to proceed in order to agree on one restau-
rant, or both agree on a prototype. The goal here was to present the
principle of applying the generalContextOperation, but if the whole
negotiation is to be processed all further contexts have to be included
in the context lattice. A self-contained algorithm of this example is in-
cluded in Code Fragment A.7. Additionally, the prototype calculation
mechanism is demonstrated, which obtains a prototype for every state
of the negotiation. The prototype can be beneficial in this negotiation
because if both subjects share a prototype, an additional reduction of
references is reached.

5.5 Conclusion

The context algebra is implemented in this chapter using the func-
tional language Haskell. A requirement for the implementation is the
polymorphic property for data types. To guarantee polymorphic prop-
erties, abstract data types are introduced for context and concepts.
This guarantees that a later application can rely on self-defined data
types.

The implementation is structured in modules distinguishing ab-
stract classes according to mathematical structures. The implementa-
tion relies on one module for the context algebra, one for the mapping,
and one for the concept it is mapped to. The abstract classes are
instanced using existing abstract data structures based on sets. For
contextualized concepts, a function to calculate a prototype is included
that relies on exemplars classified on a nominal measurement scale. All
implementations of the modules are included in Appendix A, so that
later researchers can reuse them.

The implementation of the general context operation shows a use
case for context algebra. It is applied to model the example “Let’s
meet at a restaurant” introduced in Section 1. Additionally, the ben-
efit of the prototype calculation function is shown, which can help
further reduce references to objects. The full implementation of the
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example including the general context operation is included in Code
Fragment A.7 in Appendix A.

The general context operation is similar to the filter operation used
by Crease [2013] to represent geographic relevance. Crease [2013] de-
velops a mechanism to represent geographic relevance in mobile appli-
cations in multiple steps, beginning with a filter operation. His filtering
approach was a manually applied contextual analysis based on space,
time and activity. This manual process can be exchanged with the
general context operation to establish automatic filtering. The gen-
eral context operation is also more general because it is not limited to
space, time and activity. The usage of the general context operation
to generate geographic relevance is beneficial for two reasons (i) it is
more general than the contextual analyses and (ii) it is implemented
and can be executed by a computer.



6
Evaluation of the Implementation

In this chapter, the implementation is tested to verify that it satisfies
all laws of the context algebra outlined in Section 4.1. The evaluation
concentrates on the functions included in the abstract classes spec-
ified in module ContextAlgebra, which are implemented in module
ContextAlgebraSetInstance.

The evaluation of the implementation is achieved with property test
functions designed to verify algebraic laws of functions. The test func-
tions are created on behalf of the functions in module ContextAlgebra,
including abstract classes only. Test functions created for functions
defined in abstract classes without an implementation are beneficial
because no implementation details are considered. The test func-
tions make use of the functionality offered by the QuickCheck1 library, 1 https://hackage.haskell.org/

package/QuickCheckwhich is specially designed for algebraic property testing [Claessen and
Hughes, 2011].

Input contexts used by the QuickCheck library are randomly gener-
ated to ensure that many input combinations are tested. The randomly
generated contexts are taken from the existing formalization of the
introduction example included in module GeneralContextOperation
Code Fragment A.7.

Automatic execution of the property test functions is done by the
module ContextAlgebraEvaluation, which integrates the functional-
ity of several modules as shown in Figure 6.1. Within the QuickCheck
library, the tests are sequentially executed and results are presented in
a detailed report for each property test.

ContextAlgebraEvaluation

GeneralContextOperation

QuickCheckHelper

ContextAlgebra

ContextAlgebraSetInstance

Figure 6.1: Haskell modules establish-
ing the algebraic tests

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
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6.1 Property tests for algebraic laws

Property tests are implemented on behalf of the abstract classes spec-
ified in module ContextAlgebra because each instance of a context
algebra has to satisfy the algebraic tests. The functions defined in the
abstract classes include all necessary information to create the prop-
erty tests.

Each algebraic law given in the context algebra in Section 4.1 is
proven by a unique property test. For example, the algebraic law of
idempotency (Equation 4.12) of the function conjunction is tested by
prop_isIdempotent given in Code Fragment 6.1. In this algorithm,
the advantage of using Haskell can be observed because the imple-
mentation of the test is identical to the mathematical formulation in
Equation 4.12, aside from different names for the functions.

A property test has to evaluate either to a Bool or to a Property
data type to be used by the QuickCheck library. A property test
evaluates either to True if the test is passed successfully, or to False
otherwise. Code Fragment 6.1: Implementation

of a property test for the idempotent
law

prop_isIdempotent : : ( Part ia lOrder c , ContextLatt i ce c ) =>
c
−> Bool

prop_isIdempotent c = ( c ` con junct ion ` c ) ` equa l s ` c
&&
( c ` d i s j un c t i o n ` c ) ` equa l s ` c

The property tests are structured according to the abstract classes
they belong to, e.g. for class PartialOrder the property tests prop_is-
Asymmetric and prop_isTransitive are included, as shown in Code
Fragment 6.2. In the same fashion, tests for all other laws are imple-
mented. The respective algorithms are included in the appendix; Algo-
rithm A.8 implements tests for the Bound class, Algorithm A.9 for the
Context Lattice class, Algorithm A.10 tests including greatest and
least context, and Algorithm A.11 implements tests for the Complement
class.

Some laws have prerequisites for input contexts that have to be
checked before executing the test. For example, the property test
prop_isTransitive (included in Code Fragment 6.2) has the prereq-
uisite that context c1 is more selective than or equally selective as
context c2, and the same is also true for c2 ≤ c3. In order to ensure
the prerequisites, QuickCheck offers the operator ==> which checks
first the input contexts and executes the test only if the condition is
satisfied.

Each executed property test results in a report that can be cus-
tomized to ensure that every possible input combination is tested. A
default report of an execution is stated in Code Fragment 6.3. A de-
tailed report includes information about the number of contexts used
as input for a predefined classification. Such a classification is es-
tablished for the property test prop_isAssociative relying on Equa-
tion 4.14. The classification for this test is the ordering of input con-
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Code Fragment 6.2: Implementation
of property tests for the laws included
in the PartialOrder abstract class

−− ∗ Part ia lOrder r e l a t i o n t e s t s

−− | t e s t i f two context s are asymmetric
−− input r e s t r i c t i o n , only equal context s are t e s t ed
prop_isAsymmetric : : ( Part ia lOrder c , Show c ) =>

c −− ^ f i r s t context
−> c −− ^ second context
−> Property −− ^ True i f the two context s are asymmetric

prop_isAsymmetric c1 c2 = ( c1 ` equa l s ` c2 ) ==>
c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2

&&
c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2

−− | t e s t i f th ree context s are t r a n s i t i v e
prop_i sTrans i t ive : : ( Part ia lOrder c ) =>

c −− ^ context one
−> c −− ^ context l e s s s e l e c t i v e than context one
−> c −− ^ context l e s s s e l e c t i v e than context two

−> Property −− ^ True i f th ree context s are t r a n s i t i v e
prop_i sTrans i t ive c1 c2 c3 = ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2

&&
c2 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) ==>
c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c3

texts which is achieved by function classify provided by QuickCheck.
The classify function takes a classification criterion, e.g.(c1 `is-
MoreSelectiveOrEqualSel` c2), and a label for this classification
"c1 <= c2" as given in Code Fragment 6.4. The used labels show the
mathematical symbol for the partial order relation, <= for the isMore-
SelectiveOrEqualSel relation and >= for the isLessSelectiveOr-
EqualSel relation, the reason for being that they consume less console
output space. For the associative law, six classifications are established
as given in Code Fragment 6.4. An example report produced by exe-
cuting the test is included in Code Fragment 6.8. The classification of
input contexts included in the detailed report ensures that all possible
context combinations are used to test the claimed laws. Code Fragment 6.3: Default report of

an executed property test
i s asymmetric property :
+++ OK, passed 1000 tests .

6.2 Random context generation for tests

Randomly generated input contexts are used as inputs to execute prop-
erty tests. The contexts obtained from the introductory example “Let’s
meet at a restaurant” are: >, ⊥, a1, a2, a3, a1 ∨ a2, a1 ∨ a3, a2 ∨ a3;
the ordering is given in Figure 4.5. These contexts are formalized to
represent the introduction example in the GeneralContextOperation
module as given in Code Fragment 5.19. The random selection of in-
put contexts is achieved by an instance of the abstract class Arbitrary
offered by QuickCheck. The instance has to implement the function
arbitrary which can be achieved in multiple ways. The way cho-
sen here uses the function elements offered by QuickCheck, which
randomly selects an element from a list of contexts defined in Code
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Code Fragment 6.4: Customized prop-
erty test to classify input contexts

prop_i sAssoc i a t ive : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>
c −− ^ context c1
−> c −− ^ context c2
−> c −− ^ context c3
−> Property −− ^ True i f the three input context s are a s s o c i a t i v e

prop_i sAssoc i a t ive c1 c2 c3 = c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ) " c1 <= c2 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2 ) " c1 >= c2 " $
c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) " c1 <= c3 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c3 ) " c1 >= c3 " $
c l a s s i f y ( c2 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) " c2 <= c3 " $
c l a s s i f y ( c2 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c3 ) " c2 >= c3 " $
m ` equa l s ` n
&&
o ` equa l s ` p

where m = c1 ` con junct ion ` ( c2 ` con junct ion ` c3 )
n = ( c1 ` con junct ion ` c2 ) ` con junct ion ` c3
o = c1 ` d i s j un c t i o n ` ( c2 ` d i s j un c t i o n ` c3 )
p = ( c1 ` d i s j un c t i o n ` c2 ) ` d i s j un c t i o n ` c3

Fragment 6.5. Code Fragment 6.5: Instance of the
Arbitrary class for the Context Alge-
bra

import GeneralContextOperation

instance Arbi t rary CtxType where
−− | input context s f o r the QuickCheck t e s t s
a r b i t r a r y = elements [ l ea s tContext

, g reate s tContext
, a1
, a2
, a3
, inVienna
, s e rv ingP i z za
, inViennaOrServingPizza ]

6.3 Automatic test execution and resulting reports

QuickCheck has to determine how many random input contexts are
needed to execute the test, which is automated by wrapper functions.
For example, the property function prop_isTransitive (included in
Code Fragment 6.2) takes three input contexts wrapped by function
qCheckTernary as shown in Code Fragment 6.6. Several versions of
wrapper functions are implemented, distinguishing the input of needed
input contexts; the ones that result in Bool and others that result in
Property are included in module QuickCheckHelper given in Code
Fragment A.14.

The wrapper functions establish the connection to QuickCheck. Ex-
ecution is achieved through function quickCheckWith, as shown in
Code Fragment 6.6. The number of executions is set via the value
numberTests to 1000, to ensure that each possible input combination
is tested.

Every wrapped property test is executed sequentially in the main
function implemented in module ContextAlgebraEvaluation in Al-
gorithms A.12 and A.13. The wrapping of the property test prop_is-
Associative is represented as function testisAssociate given at the
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Code Fragment 6.6: Wrapper func-
tions for QuickCheck execution

numberTests=1000

qCheckTernaryP : : ( Arb i t rary c , Show c ) => ( c −> c −> c −> Property ) −> IO( )
qCheckTernaryP = quickCheckWith stdArgs { maxSuccess = numberTests }

top of Code Fragment 6.7. Every other test (included in Code Frag-
ments 6.2, A.8, A.9, A.10, A.11) is also wrapped in a manner given
in Algorithm A.12. All wrapped tests are executed sequentially in the
main function, a part of which is included in Code Fragment 6.7 and
its entirety in Algorithms A.12 and A.13 in Appendix A. Code Fragment 6.7: Part of the main

executable connecting QuickCheck
with the property tests

t e s t i s A s s o c i a t i v e = qCheckTernaryP
( prop_i sAssoc i a t ive : : CtxType−> CtxType−> CtxType−> Property )

main = sequence_ [putStrLn " i s a s s o c i a t i v e property : "
, t e s t i s A s s o c i a t i v e
. . .
,
,putStrLn " t e s t combination with complement : "
, testwithCombBoundComp ]

The report generated from the execution of the main function shows
that the implementation satisfies all laws. For the execution of the
property tests the instance ContextAlgebraSetInstance of the con-
text algebra is selected. The created report in Code Fragment 6.8
provides evidence that each test is executed, and that the set imple-
mentation respects all laws given in the context algebra Section 4.

6.4 Conclusion

The set implementation of the context algebra was successfully proven
to respect all algebraic laws stated by the context algebra. The test for
algebraic laws is executed via separated property tests for each alge-
braic law. To ensure that the test is executed with many different in-
put combinations, randomly generated context combinations obtained
from the introduction example “Let’s meet at a restaurant” are used.
Classifications of the input contexts ensure that every line in the im-
plementation is covered. The automatic execution of all tests resulted
in a successful report, which concludes that the set implementation
satisfies all laws stated in the context algebra.
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Code Fragment 6.8: Report of the ex-
ecution of all property tests

λ> main
i s asymmetric property :
+++ OK, passed 1000 tests .
i s t r a n s i t i v e property :
+++ OK, passed 1000 tests .
i s l e a s t context property :
+++ OK, passed 1000 tests .
i s g r e a t e s t context property :
+++ OK, passed 1000 tests .
i s idempotent property :
+++ OK, passed 1000 tests .
i s commutative property :
+++ OK, passed 1000 tests :
56% c1 >= c2
30% c1 <= c2
12% c1 <= c2 , c1 >= c2
i s a s s o c i a t i v e property :
+++ OK, passed 1000 tests :
21% c1 >= c2 , c1 >= c3 , c2 >= c3
10% c1 <= c2 , c1 >= c3 , c2 >= c3
9% c1 >= c2 , c1 >= c3 , c2 <= c3
9% c1 <= c2 , c1 <= c3 , c2 >= c3
8% c1 <= c3 , c1 >= c2 , c2 <= c3
8% c1 <= c2 , c1 >= c2 , c1 >= c3 , c2 >= c3
6% c1 >= c2 , c1 >= c3 , c2 <= c3 , c2 >= c3
4% c1 <= c2 , c1 <= c3 , c1 >= c2 , c2 <= c3
3% c1 <= c3 , c1 >= c2 , c1 >= c3 , c2 >= c3
3% c1 <= c3 , c1 >= c2 , c1 >= c3 , c2 <= c3
3% c1 <= c2 , c1 <= c3 , c2 <= c3 , c2 >= c3
3% c1 <= c2 , c1 <= c3 , c2 <= c3
3% c1 <= c2 , c1 <= c3 , c1 >= c3 , c2 >= c3
2% c1 <= c3 , c1 >= c2 , c2 >= c3
1% c1 <= c2 , c1 <= c3 , c1 >= c2 , c1 >= c3 , c2 <= c3 , c2 >= c3
i s c on s i s t e n t property :
+++ OK, passed 1000 tests .
i s i s o t one property :
+++ OK, passed 1000 tests :
41% c1 >= c2 , c1 >= c3
20% c1 <= c3 , c1 >= c2
15% c1 <= c2 , c1 <= c3
10% c1 <= c2 , c1 <= c3 , c1 >= c2
9% c1 <= c3 , c1 >= c2 , c1 >= c3
2% c1 <= c2 , c1 <= c3 , c1 >= c2 , c1 >= c3
t e s t combination with l e a s t context :
+++ OK, passed 1000 tests .
t e s t combination with g r e a t e s t context :
+++ OK, passed 1000 tests .
t e s t double complement property :
+++ OK, passed 1000 tests .
t e s t l e s s then complement property :
+++ OK, passed 1000 tests .
t e s t combination with complement :
+++ OK, passed 1000 tests :
86% c >= ! c
13% c <= ! c



7
Complexity analysis of the Implementation

A complexity analysis for the implementation is presented to answer
questions regarding the computational complexity of the approach.
The complexity class is determined regarding file size and execution
time. To find a complexity class, the implementation is executed with
several numbers of contexts and exemplars. Three measurements are
made: (i) measurement of execution time for the context lattice genera-
tion; (ii) measurement of the time needed to calculate a prototype; and
(iii) measurement of file size used to store a concept. The results are
analyzed to determine bottlenecks, and are discussed to avoid worst-
case scenarios. Recommendations are given for possible preprocessing
steps.

A function determining the maximal number of contexts in a con-
text lattice is presented. The function is used to determine whether
the implementation has a bottleneck, and to provide a quick estimate
about the number of contexts included in a context lattice. [Ado-
mavicius and Tuzhilin, 2011] reported that a recommender system is
influenced by multiple contexts at one time. For example, [Baltrunas
et al., 2011] observed an influence of fourteen different contexts at one
time for a recommender system about places of interest (POIs). If four-
teen contexts have to be included in the context lattice, the function
determines how many contexts are included in total.

7.1 Maximal number of contexts included in a context lat-
tice

A function that describes the maximal number of contexts included in
a context lattice is presented here. Hahn et al. [2016] included such a
function for a context lattice and explained it as follows: the lattice
consists of levels, where the number of contexts included in a level
depends on the number of contexts included in a lower level starting
from the atomic context representation. In summary, the number of
context included in a lattice is determined by the number of atomic
context representations.

The explanation by Hahn et al. [2016] is correct, but one element
was accounted for too little in their formula. Including this element,
the formula for the number of contexts is given by Equation 7.1 where c
stands for the number of atomic context representations. The formula
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for a general lattice structure is given by, for example, Gill [1976, page
5] and is equal to the cardinality of power sets.

2c (7.1)

The dependency between atomic context representations and the
number of contexts established from them is graphically expressed in
Figure 7.1. The exponential increase of contexts included in the lattice
with fourteen atomic contexts used in a recommender system for POIs
[Baltrunas et al., 2011] results in 16384 contexts in total.
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Figure 7.1: Maximal increase function
of contexts included in a context lat-
tice

The maximal increase function given in Equation 7.1 is categorized
in the complexity class exponential (EXP). What implications follow
for the implementation will be analyzed through measurements.

7.2 Complexity of used libraries

The complexity class for the implementation is also influenced by the
libraries used. The implementation of the context algebra given in
module ContextAlgebraSetInstance (Algorithm A.2) is based on
the module Data.Set. From this library the functions Set.subset,
Set.singleton, Set.union, Set.intersection, and Set.differen-
ce are used for the partial order relation, to establish a context, and
to implement the disjunction, conjunction, and complement functions.
The Data.Set library is implemented using the functional pearl pre-
sented by Adams [1993]. In the theoretical work, the set is imple-
mented as a tree with worst complexity for union and intersection
of O(n+m) where n and m are the sizes of the elements included
in the two sets. The Haskell implementation follows this complexity
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as documented online 1 and given in Table 7.1. The O notation of 1 https://hackage.haskell.org/
package/containers-0.5.7.1/docs/
Data-Set.html

the Data.Set functions highlight that the functions are linear in the
cardinality of the sets, aside from the singleton function which is
constant.

context algebra function function complexity

isMoreSelectiveOrEqualSel subset O(n+m)

createContext singleton O(1)
conjunction intersection O(n+m)

disjunction union O(n+m)

complement difference O(n+m)

Table 7.1: Complexity class for used
functions of the Data.Set implemen-
tation

A concept is implemented in module Concept (Algorithm A.3) using
the library MultiSet 2 which also influences the complexity class of the 2 https://hackage.haskell.org/

package/multisetcontext algebra. The documentation for MultiSet includes benchmark
results that are equal to the ones given in Table 7.1.

In summary, the complexity from the used libraries is linear to the
number of elements in the sets. The number of elements in the set is
exponential, and depends on the atomic context representation. From
a theoretical point of view, the implementation is of the exponential
complexity class EXP.

7.3 Benchmark implementation

To measure execution time and file size, several modules are created
to randomly generate contexts and exemplars, and to calculate the
prototype. These additional modules are called benchmark implemen-
tation, and generate different workloads for the implementation. They
differ from the evaluation implementation (Section 6) in their random
generation of contexts and exemplars, and in the parametric execution
of the combination functions.

The additional library criterion 3 is used to measure execution time. 3 http://hackage.haskell.org/
package/criterion-1.1.0.0To eliminate influences originating from task scheduling or other back-

ground operations, the library criterion is used. The library repeats
benchmarks independently while measuring execution time, and cal-
culates the statistical median used in further analysis in this work.
The functions e.g.nfIO are applied to evaluate the context algebra
functions strictly.

Additional modules with functions including parameters are intro-
duced to execute the context algebra functions with different number
of contexts and exemplars. The first module ConceptGenerator given
in Algorithm A.16 generates a context lattice and exports the result
in a text file. This file is read by the second module ProtoCalculator
given in Algorithm A.17 where prototypes for this context lattice are
calculated. The third module Main given in Algorithm A.15 uses these
two modules and implements benchmarks to measure execution time.
The split into three modules is needed to measure only one function-
ality at a time, e.g. when calculating a prototype it is not of interest

https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Set.html
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Set.html
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Set.html
https://hackage.haskell.org/package/multiset
https://hackage.haskell.org/package/multiset
http://hackage.haskell.org/package/criterion-1.1.0.0
http://hackage.haskell.org/package/criterion-1.1.0.0
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how long it takes to establish the context lattice.
The module ConceptGenerator (Algorithm A.16) includes the func-

tion createAndStoreConcept which creates a context lattice, includ-
ing a mapping to a concept, and writes the result into a file. The
number of contexts and exemplars is given by input parameters de-
fined by the benchmarks. Measurements taken from this module are
the execution time it takes to generate the context lattice, and the file
size of the created file representing the concept.

The module ProtoCalculator (Algorithm A.17) includes the func-
tion calcProto to measure execution time for prototype calculation.
The function reads the concept file generated earlier. The varying
input parameter chooses a level in the context lattice, from which
a context is selected and mapped to a concept to calculate different
prototypes according to input parameters. The variations in level in-
fluence the time it takes to calculate a prototype. It is assumed that in
lower levels, e.g. atomic contexts, less observations are considered for
prototype calculation compared to higher levels in the contexts, which
influences the time. The calculation time for prototypes is measured
in this module.

The module Main (Algorithm A.15) creates benchmarks for the
functions createAndStoreConcept and calcProto. The benchmark
for the generation of the concept is given in Code Fragment 7.1, the
other in Algorithm A.15.

The execution and measurements of the benchmarks is achieved by
the function bench, which is equipped with a label. For the bench-
mark shown in Code Fragment 7.1 the input parameters are given
by the expressions maxNumberContext and exemplars. These specify
the maximal context number, and the number of exemplars assigned to
each context. The benchmark included in Code Fragment 7.1 starts by
executing the benchmarks with context lattices having one atomic con-
text representation, and continues up to a context lattice established
by 12 atomic context lattices. Each contextualized concept so created
inherits one exemplar as the expression exemplars defines it. All these
benchmarks are grouped together into one benchmark group, and build
a full benchmark for the function createAndStoreConcept. In the
same manner benchmarks are generated for the function calcProto
given in Algorithm A.15.

Code Fragment 7.1: Implementation
of a benchmark group

generat ionBench = defaultMain
[ bgroup " Concept gene ra t i on "$
map (\ c −> bench ( l a b e l c )

$ nfIO ( createAndStoreConcept c exemplars ) ) [ 1 . . maxNumberContext ]
]
where maxNumberContext = 12

exemplars = 1
l a b e l c = ( " contexts−"++(show c)++"−exemplars−"++(show exe ) )

The created benchmark groups are executed via the main function.
The modules are compiled into an executable file which is executed
via a command line. The measurement values are returned on the
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standard output and a summary HTML file is generated from the
criterion library. The measurement values generated in this way are
used in the following analysis.

7.4 Measurements and Analysis

Three characteristics of the implementation are measured: (i) execu-
tion time for the generation of the context lattice, (ii) file size of the
concept and the context lattice, (iii) execution time for the calcula-
tion of a prototype. The resulting measurement values are analyzed
to identify the complexity class of the implementation.

Three benchmark groups are executed, alternating the number of
exemplars included in the concept. All these groups are executed with
different sizes of context lattices, ranging from one to twelve atomic
context representations. The first benchmark group is established with
one exemplar and is intended to show the lower bound for the bench-
mark. The second group is established with ten exemplars per context,
where each context is equipped with the same ten exemplars. The last
group uses twenty exemplars and is used to observe a trend for the
analysis.

The benchmarks are executed on a notebook with the properties
given in Table 7.2. It runs a Linux Mint 4 operating system, based 4 https://linuxmint.com

on Ubuntu Trusty (14.04.4) executing benchmarks and compiling the
implementation with the Glasgow Haskell compiler (GHC) 5 release 5 https://www.haskell.org/ghc/

7.10.2.

Test system

Brand Lenovo Thinkpad X220
Processor Intel Core i5 (2nd Gen) 2520M / 2.5 GHz
Ram 4GB DDR3 SDRAM

Operating System Linux Mint 17.2 Rafaela
Kernel Version 3.16.0-38-generic

GHC 7.10.2

Table 7.2: Details of the system exe-
cution benchmarks

Execution time for the context lattice generation

The execution time for the generation of the context lattice and the
concept are measured for several context lattice sizes and different
numbers of exemplars. In detail, the execution time of the function
createAndStoreConcept is measured for: one to twelve atomic con-
text lattices each with either one, ten, or twenty equipped exemplars.
The mean measurement values are given in Figure 7.2. The x-axis of
this figure shows the number of atomic context representation, and the
y-axis shows the logarithm of mean measurement time to generate all
contexts. The red line is the maximal increase function given in Equa-
tion 7.1. The measurement values of the three different benchmark

https://linuxmint.com
https://www.haskell.org/ghc/
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groups (one exemplar, ten exemplars, twenty exemplars) converge with
eight and more atomic context representations. The measurement val-
ues for the creation time including one exemplar are given in Table 7.3.
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Figure 7.2: Measurements for creation
time of different context lattices

atomic mean execution
contexts time in seconds

1 70 · 10−6

2 110 · 10−6

3 150 · 10−6

4 300 · 10−6

5 900 · 10−6

6 5.8 · 10−3

7 47 · 10−3

8 500 · 10−3

9 6
10 80
11 120
12 25 · 103

Table 7.3: Measurements for creation
time of a concept including one exem-
plar per context

One upper bound function for all measurements is included in dot-
ted blue in Figure 7.2. This function is given in Equation 7.2, in the
range from eight to twelve atomic context representations. The max-
imal function has the most impact on execution time. For example,
the execution time for three contexts in mean is about 150 millionths
of a second, whereas the execution time for twelve atomic contexts is
about 25000 seconds (almost seven hours). The influence of the differ-
ent numbers of exemplars is practically negligible for overall execution
time.

23.8·c−30 (7.2)

In conclusion, the execution time of a concept including the context
lattice follows an exponential function which falls into the complexity
class EXP in terms of the number of atomic context representations.

File size of a generated concept

The file size of an exported concept is measured in order to draw con-
clusions about the file sizes of the data structures. The exported file
includes annotations necessary to build the data structure during ex-
ecution time. From the file sizes, the influence of contexts, exemplars,
and annotations is obtained. To reduce the influence of context names
and exemplar names in the files size, they are generated in a specific
pattern. The context pattern starts with a small letter c, followed
by an underscore, and one or two randomly generated characters e.
g.c_ab. The pattern for exemplars is similar, only starting with an e
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to produce identifiers such as e_db. This pattern guarantees that the
names have a constant influence on the file size.

The file sizes of the generated context lattices for several numbers
of exemplars are included in Figure 7.3. The context lattices mapped
to one exemplar present a minimal file size for a concept. The mea-
surement values for the benchmark with ten exemplars shows the same
inclination, only shifted upwards. The measurement values for bench-
marks with twenty exemplars also shares the inclination, and a shift
upwards with smaller differences.
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Figure 7.3: Measurements for file size
of different context lattices

Possible upper bound functions are based on the maximal exponen-
tial function. Sample upper bound functions are given in dotted blue
lines in Figure 7.3. The upper bound function for the context lattice
mapped to one exemplar is graphically found as 21.15·c+5 = 21.15·c · 25.
Compared to the maximal function, it is increased by factor 1.15, and
a constant upward shift of factor 25. This increase depends on the con-
text and exemplars, and the annotation needed to describe the data
structure in the exported file. File sizes for concepts established with
ten and twenty exemplars show a similar pattern, having a different
upward shift. These lattices mapped to 10 exemplars have the con-
stant 28.2. This shows that the number of exemplars has an influence
on the upward shift. For twenty exemplars, a multiplier of 29.1 is iden-
tified. Taking into account this dependency, the constant is split into
a constant value a and the number of exemplars e, resulting in a · e.
Within this abstraction, a general file size function is found, as given
in Equation 7.3.

21.15·c+a·e (7.3)

In summary, the file size of the concept depends on two factors: the
number of atomic contexts and the number of exemplars mapped to
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the contexts. The influence of the number of exemplars is constant,
and in summary dominated by the exponential function.

The general file size function also defines the complexity class. The
complexity class is given by the term of the function with the biggest
number of increase, determined by the exponential function 21.15·c. In
conclusion, the file size of concepts is of the EXP complexity class.

Execution time of prototype calculation

Execution time is measured for the calculation of prototypes from pre-
viously generated concepts. The calculation of prototypes is done for
contextualized concepts that include different numbers of observations.
To identify a trend, contextualized concepts from all context lattice lev-
els are generated to measure the difference for the included number of
observations. These measurements are executed for the three bench-
marks including one, ten, and twenty exemplars. From the measure-
ments, upper bound functions are depicted that lead to a conclusion
about the complexity class for the execution time of prototypes.

⊥

a2a1 a3

a1 ∨ a3a1 ∨ a2 a2 ∨ a3

>

Figure 7.4: Context lattice created
from three atomic context representa-
tions

The number of context combinations that can be achieved varies
with the number of atomic context representations, which influences
execution time. For example, a context lattice built with three atomic
context representations includes four levels, as shown in Figure 7.4. As
the ⊥ level does not include any observation, the first contextualized
concept is created by level one, i.e. atomic context representations.
From the atomic representation level, two other levels can be reached
in the context lattice from Figure 7.4. The contexts in different context
levels are connected with different numbers of observations that have to
be taken into account to calculate the prototype. The atomic context
representations include the least number of observations. With every
disjunction of atomic contexts, the number of observations increases
until the > context is reached, which includes all observations and the
calculation time is at its theoretically highest.

The mean measurement values are shown in three figures distin-
guished by the number of exemplars. Measured execution time values
for all possible contextualized concepts including twenty exemplars are
given Figure 7.5. Measurement values including one and ten exemplars
are given in Figure A.2 and Figure A.3, respectively, in Appendix A,
as all share the same pattern. The axis labeled “number of atomic
context rep.” lists the number of atomic context representations that
are used to build the context lattice. The axis labeled “context com-
binations” represents on which level the context is taken to create the
contextual concept. The axis labeled “mean execution time in s” shows
the mean execution time to calculate the prototype. The measurement
values confirm the argument that with increasing level of the depicted
context the time to calculate the prototype also increases.

The upper bound functions are found and compared to obtain a gen-
eral upper bound function. The prototype calculation times for context
lattices built from twelve atomic context representations mapping to
contextualized concepts including one, ten, and twenty exemplars are
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Figure 7.5: Measurements for proto-
type calculation time including 20 ex-
emplarsgiven in Figure 7.6. All obtained upper bound functions share a pat-

tern given in Equation 7.4. The variable a depends on the number of
exemplars, and the variable b on the number of atomic contexts as well
as on the number of exemplars.

2c · a · c · 10−6 + b (7.4)
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Figure 7.6: Measurements for proto-
type calculation time for different ex-
emplar numbers

To confirm the pattern, the upper bound functions for context lat-
tices built by ten, eleven, and twelve atomic context representation are
given in Table 7.4 and are obtained from Figure 7.5, Figure A.3 and
Figure A.2, respectively.
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atomic contexts
upper bound functions

1 exemplar 10 exemplars 20 exemplars

10 2c · 8c · 10−6 + 0.12 2c · 120c · 10−6 + 1.2 2c · 300c · 10−6 + 3.2
11 2c · 8c · 10−6 + 0.25 2c · 120c · 10−6 + 2.5 2c · 300c · 10−6 + 5.5
12 2c · 8c · 10−6 + 0.52 2c · 120c · 10−6 + 5.5 2c · 300c · 10−6 + 11

Table 7.4: Upper bound functions for
prototype calculation timeFunction 7.4 depicts the complexity class for the prototype calcula-

tion time. The most increasing factor is the exponential function 2c,
which results in the function O(2c) resulting in complexity class EXP
for the time it takes to calculate the prototype.

7.5 Discussion

The measurements confirm an exponential complexity of the imple-
mentation driven by the maximal function 7.1. The similarity of the
measurements and the maximal function provide evidence that the im-
plementation does not include any bottleneck. The factors increasing
the maximal function are created e.g. by data structures. The imple-
mentation can be improved, but large gains will be unlikely because
of the influence of the maximal function given in Equation 7.1.

In respect to practical large-scale implementations methods to cir-
cumvent or reduce the execution of the implementation can be found
given certain factors:

• Assuming the number of contexts and observations is fixed: the
context lattice and prototypes can be preprocessed, storing results
in a lookup table. The context lattice is fully populated, and for each
context a prototype is obtained. The result of the preprocessing
establishes a lookup table including the context and the prototype e.
g. in Vienna 7→ Plachutta, serving pizza 7→ Pizza Hut etc. The amount
of time needed to calculate the lookup table can be disregarded,
because it must be done only once in advance. Querying the lookup
table will circumvent the execution of the implementation.

• Assuming the number of contexts is fixed and the observations
change: this affects only the prototype calculation, the context
lattice is not affected. By adding or removing observations, the
prototype may change and must be recalculated. Depending on the
number of changes to the observations they can be computed in real
time or be stored together with the context in a lookup table. One
reduction in this method can be computing only those prototypes
that are affected by the change. In this method the context lattice
is processed once and then stored, while the prototype calculation
is redone with every change in observations.

• Assuming the number of contexts is flexible: this affects every part
in the implementation, and for each change both the context lat-
tice and the prototypes have to be recomputed. If contexts change
constantly, no preprocessing is possible.
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7.6 Conclusion

The implementation is analyzed to answer the question of the compu-
tational complexity regarding file size and execution time. A major
influence on the complexity comes from the number of atomic context
representations. The influence is modeled by the maximal function 2c,
where c is the number of atomic context representations.

Conclusions from the memory and execution time measurements
result in the EXP (exponential) complexity class for the implementa-
tion. The complexity classes were determined from measurements of
the algorithms: concept generation time EXP, file size of a concept
EXP, and prototype calculation time EXP. From the maximal func-
tion and the measurements, it follows that the implementation does
not include a bottleneck.

For practical large-scale implementations, methods are discussed to
circumvent execution and the associated exponential amounts of time.
Assuming either the number of contexts or the number of observations
are fixed, a preprocessing step generates results stored in a lookup
table to circumvent the execution.



8
Context Algebra applied to represent “near”

In this chapter, the context algebra is initialized with data to represent
the concept near. The contributions in this chapter are:

• requirements for data in order to initialize the context algebra

• a review of existing data acquisition approaches with an evaluation
of whether they are able to acquire all needed data– which concludes
that existing approaches fall short

• a manual data acquisition approach that satisfies all requirements
to initialize the representation of near

• a data analysis and the initialization of the model

• envisioned applications for the initialized representation of near
with natural language input and natural language output

Attempting to represent the concept near has two motivations: (i)
near is a universal semantic primitive, and (ii) existing models ob-
serving context influence can be integrated by this model. Wierzbicka
[1996] classifies near as a universal semantic primitive that is under-
stood but cannot be defined in terms of rules or other concepts. Lakoff
and Johnson [2008][page 56f] include near on a list of “prime candi-
date[s] . . . that are understood directly without metaphor . . . emerging
from spatial experience”. Near is a polysemy, used to express multi-
ple meanings, e.g. near in time, near in space, or a near relationship.
The spatial meaning is further investigated to translate the word near
into metric distances. As former representations have concluded, such
a transformation is not trivial because of the context-dependence of
near. For example, near can refer to a wide range of distances – to
thousands of kilometers for “the moon is near the earth”, but also to
a mere meter or less, as in “the chalk is near the blackboard”. By es-
tablishing a representation for near, it is expected that references will
be distinguished and different metric distances determined according
to the respective context.

8.1 Meanings for “near”

To focus on the spatial meaning of near, all other possible mean-
ings that near is interpreted to have to first be identified. The elec-
tronic lexical database WordNet includes several meanings for near,
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described as synsets. A synset is “a set of word forms that are in-
terchangeable in some context . . . without changing the way the sen-
tence . . .” is interpreted [Fellbaum, 1998, page 24]. “It is convenient
to think of a synset as representing a lexicalized concept of English”
[Fellbaum, 1998, page 24]. Synsets are accompanied by explanations
similar to those included in dictionaries, which makes the meaning
clearer. The synsets including descriptions for near are queried online
with http://wordnetweb.princeton.edu/perl/webwn?s=near, and
show five usages as an adjective, two as an adverb, and one as a verb.
In Table 8.1 several synsets including their meaning are given, which
have to be distinguished in order to focus on the spatial meaning of
near.

synset explanation

time "in the near future"
space "stood near the door"
degree "they are near equals"
circumstances "she was near tears"
relationship "her mother is always near"
spending with reluctance "very close (or near) with his money"
very close in resemblance "a dress of near satin"

Table 8.1: Sample of synsets for near

8.2 Context influence on former models for “near”

Many studies and formalization approaches for near exist that high-
light the influence of context.

Fisher and Orf [1991] conducted a study where participants were
asked if a central building on the university campus is near or close.
They identified extreme cases, where either all buildings are near or
close, or “a core grouped to be not-near”. Robinson [2000] conducted
a study to obtain a fuzzy value for linguistic terms that are used for
geographic query languages. The experiment was conducted with two
different spatial contexts, where results showed that even within a
small sample there exists significant semantic variation. Neighbor-
hood relations like “Is this far?” rely on surrounding objects. Ev-
idence is shown by studies conducted by Worboys [2001], Duckham
and Worboys [2001], Worboys et al. [2004] asking if places are “near”
to a reference place. The results showed that context and scale factors
affect the judgment of nearness. For an extensive review and a discus-
sion of the role of context for proximity terms such as near, refer to
Burigo and Coventry [2010]. In summary, it shows that formalizations
for neighborhood relations have to take context into account.

Danofsky [1976] presented a model to understand the concept near
using weighting factors like purpose, dimensions of objects, absolute
distance, etc. Danofsky established several thresholds for concrete
and discrete examples of near that are context-dependent. Robinson
[1990] presented an algorithm for data acquisition to model near with

http://wordnetweb.princeton.edu/perl/webwn?s=near
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Figure 8.1: Buildings considered near
to the library by Worboys [2001, Fig.
2]

a fuzzy number. Wang [1994] also used fuzzy numbers to model vague
natural language. Wang concluded that one fuzzy distribution is not
enough to model one word, and that multiple fuzzy representations
are needed that change depending on the influencing context. Another
approach was introduced by Frank [1992] using an algebraic approach
to model proportions of distances, considering very near, near, far,
and very far. Gahegan [1995] presented a formalization that includes
influence of context on the fuzzy membership function. In a two-
stage process first the context is taken into account, and then the
fuzzy membership functions are applied. Duckham andWorboys [2001]
established a three-valued (T, F, ?) nearness relation based on the
survey results included in the map shown in Figure 8.1. Yao and
Thill [2007] claimed that the fuzzy approaches are not accurate, and
proposed a neurofuzzy system to model context-contingent distance
terms. They used sample data to train a “neural network to figure out
the membership functions”, which shows higher prediction accuracy
compared to previous fuzzy membership functions, but they conclude
that the existing neural network libraries “[are] not well suited for
the prediction of metric distances from a linguistic distance measure”.
From this review, the need to include context in a representation of
near is apparent.

8.3 Data acquisition for “near”

This section explains the process of data acquisition for the concept
near. Data that initialize the model have to be grounded and have to
come from reality. Possible data acquisition approaches are reviewed,
and an appropriate approach is proposed to acquire data. It is imple-
mented and described in this section.
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Data requirements to initialize the representation

To illustrates the requirements for data, the constituting rule from
Searle is consulted. The distinction in the elements X, Y, and C is
used to specify requirements for each element.

1. X – this element contains linguistic expressions for different mean-
ings of near. For example, a temporal meaning as in “near lunchtime”,
a spatial meaning as in “near my home”, or a relationship meaning
“near to my heart”.

2. C – this element contains linguistic expressions surrounding X: A
perfect example for a context is: “walking to a near pub”, where
near is stated in conjunction with the context walking . These lin-
guistic expressions are used to identify contexts that influence the
concept. In summary, the data have to explicitly include context.

locatum

relatum

nea
r@c

ont
ext

Figure 8.2: Relatum and Locatum
representing near.

3. Y – this element contains objects observable in reality that are
referred to with linguistic expressions. For example, the linguis-
tic expression: “walking from central station to nearby St. Pauls
Cathedral” is processed to extract a metric distance, in this case
500 meters. To derive a metric distance, the position of the Loca-
tum, here central station, and the Relatum here St. Pauls Cathedral,
have to be found in a gazetteer as illustrated in Figure 8.2. The re-
lation from the linguistic expressions to positions on the earth also
grounds the model in reality, and so avoids the symbol grounding
problem (Section 2.1). The focus here is on the spatial meaning of
“near” relating to distances observable in reality; similar approaches
could be used for other meanings.

Data have to satisfy the three requirements above in order to ini-
tialize the context algebra used to represent near.

Data acquisition approach

Data acquisition approaches have to acquire data that satisfy the re-
quirements stated in Section 8.3. In the following, four data acquisition
methods are reviewed, and possible data sets are discussed regarding
their suitability for satisfying the above requirements.

• Sensors that measure data can be one possible data source. The
difficulty with this approach is that sensor measurements have to
be categorized, where “ . . . data may require different classifications
(even at the same level of granularity) when used within different
contexts” [Freksa and Barkowsky, 1996, page 117]. As the require-
ment is to extract context from data, this is not an appropriate
approach to find different values in different contexts.

• Questionnaires produce data that can be used to initialize the con-
text algebra. For example, Aerts and Gabora [2005a] used an email-
delivered questionnaire where subjects rated the typicality of exem-
plars influenced by context on a seven-point Likert [1932] scale.
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This approach is reasonable and produces useful data for calcula-
tions, but it is very time-consuming.

• N-Grams list occurrences of words stated in a sequence. The ben-
efit of using natural language is that objects in reality are already
recognized by an agent. This approach looks for patterns where
words appear in a sequence, and counts their occurrences in huge
text collections. In terms of a data acquisition approach, n-grams
can be used to identify which surrounding words (context) influ-
ence a specific word. The number of surrounding words is limited,
as search engine companies like Google1 extract 2-grams (n = 2, 1 https://books.google.com/

ngrams/two words build a sequence) and tri-grams (n = 3, three words
build a sequence) from digitized books [Lin et al., 2012]. Derungs
and Purves [2014] used tri-grams in the form of “A near B”, where
A and B are cities, to model near. The results showed that the ap-
proach falls short because additional context, e.g. the population of
the cities, is not included in the tri-grams but affects the distance
near refers to. Based on our requirements, the main criticism is
that this method cannot determine the influencing context.

• Natural language processing (NLP) tools generate parsing trees and
identify word types from a sentence. It could be used to determine
surrounding words to extract context influence. A workflow using
parsing trees was introduced by Hobel et al. [2016] and Gelernter
and Balaji [2013], using machine-learning techniques to extracted
geographic features from texts describing a place. What is miss-
ing, however, is an identification mechanism that can distinguish
between words that act as context, and those that do not. Another
problem of natural language processing is identifying the relation
to reality, e.g. the metric distance that near refers to. One ap-
proach introduced by Zhang et al. [2010], Wallgrün et al. [2014], Xu
et al. [2014] is to identify locatum and relatum in the text using
simple patterns, and then use a gazetteer to identify their locations
in reality. They concluded that in order to apply their approach
to large data sets “. . . analysis will require advanced language pro-
cessing, interpretation, and geoparsing techniques” [Wallgrün et al.,
2014]. Regarding our three requirements, NLP is indeed the most
promising method of acquiring the necessary data, but it does not
yet satisfy all of the requirements stated above.

Neither of these approaches satisfies all requirements, nor are they
easily usable for large data sets. In order to acquire all necessary data
to initialize the representation for near, a new approach has to be
devised.

Data sets including the concept near, the influencing context, as
well as relatum and locatum are necessary to gather all data required
to initialize the representation for near. The web is one popular source
to look for data sets. For example, Wallgrün et al. [2014] used por-
tals that rate and describe holiday trips to build a corpus for spatial
relations. Like Wallgrün et al. [2014], a data set available on the web

https://books.google.com/ngrams/
https://books.google.com/ngrams/
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that includes real estate advertisements is chosen because it includes
all the necessary data. Real estate advertisements include the relatum
as the property, and the locatum as another point of interest described
in relation to the relatum: e.g. “The flat (Gusshausstrasse 25-27, 1040
Vienna) is in near walking distance to Karlsplatz”. The context that
influences near can be determined from the text of the advertisement,
e.g. in our example Near is mentioned in the context walking . As
they include all necessary data, real estate advertisements are chosen
to initialize a representation of near.

Two real estate data sets available on the web are used to initialize
near. Both data sets mainly include properties in Austria that are
advertised in the German language. The first data set is obtained from
the portal available at https://www.willhaben.at/iad/immobilien,
referred to here as willhaben. The second data set is obtained from
derStandard, which is available online at http://derstandard.at/
Immobilien and referred to here as derStandard.

Data acquisition process

The data acquisition approach is inspired by natural language pro-
cessing tools. It is a manual process establishing a workflow supported
by a web application. To acquire the necessary data from the data
sets, the real estate entries are imported into the data base of the web
application.

The willhaben data are retrieved by a web crawler, and stored as
comma-separated values (CSV)2 file. The data set includes entries 2 special thanks to Gerhard Muggen-

huber for providing the data in a per-
sonal communication

ranging from March 2013 to August 2014, and includes textual de-
scription fields for the address as well as explanation fields for the real
estate entry. An example entry for one flat in CSV format is given
in Table 8.2. Not all fields are filled with text, which leads to many
missing addresses in the data set. The entries without an address are
not included in the further acquisition process.

ID address . . . description

1 Gusshausstrasse 25-27, 1040 Wien . . . Dies helle Objekt . . .

Table 8.2: Example entry included in
“willhaben” data set

The derStandard data set is provided by the company3 der Stan- 3 special thanks to Michela Bocchi
and the editorial office of derStandard
Immo company for providing the data
in a personal communication

dard4 itself, in an eXtended Markup Language (XML) format and in

4 http://derstandard.at/

a real-estate-specific schema (for more details see Appendix B). The
entries are collected from a period from March 2007 to February 2016
and include several fields specifying the address and the description
of the real estate object in natural language. An example entry for
one flat, including only tags used in the processing step, is given in
XML format in Algorithm 8.1. The address and the description are
mandatory, which yielded a large number of data that can be used for
further processing.

Database import In the data importing step, both data sets are parsed
and imported in a spatial database system. The parsing and commu-

https://www.willhaben.at/iad/immobilien
http://derstandard.at/Immobilien
http://derstandard.at/Immobilien
http://derstandard.at/
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Code Fragment 8.1: Example entry in-
cluded in “derStandard” data set

<immobil ie>
<geo>

<plz >8010</plz>
<ort>Graz</ort>
<s t r a s s e >Hugo Wolf Gasse 8</ s t r a s s e >
<land iso_land="AUT" />
<bundesland>Steiermark</bundesland>

</geo>
<f r e i t e x t e >

<ob j e k t t i t e l >PROVISIONSFREIE GARCONNIERE NAECHST UNIVERSITAET GRAZ ZU VERMIETEN
</ob j e k t t i t e l >
<objektbeschre ibung> Neubau , ruh ige Lage , . . .
</objektbeschre ibung>
. . .

</ f r e i t e x t e >
. . .

</immobil ie>

nication with the database are achieved by Haskell programs listed in
Appendix Section B.2 for the willhaben data set, and in Section B.2
for the derStandard data set. As database system (short database),
the open-source object-relational database system postgresql5 enriched 5 http://www.postgresql.org

with spatial algorithms6 is used. The reason for selecting a spatial 6 http://postgis.net

database system is to have spatial algorithms available to calculate
the distance between relatum and locatum in further steps. In or-
der to import the data in the database, a relational schema is created
which is included in Figure B.1 in Appendix B. In total, 43438 entries
are imported into the database, with 978 entries from willhaben and
42460 entries from derStandard, as listed in Table 8.3.

data set entries entries including near

derStandard 42460 9424
willhaben 978 153∑

43438 9577

Table 8.3: Total number of real estate
entries

To model near, only entries mentioning “nahe” (adjective) or “Nähe”
(noun) in the description or title are considered. A filter in the data
base is executed to process only entries mentioning near. This filtering
process reduced the number of entries to 9577 (distribution is included
in Table 8.3).

Web Application to guide the workflow To process the real estate en-
tries, a web application was devised that creates a workflow for extract-
ing the required data. The architecture of the web application is split
into a back-end and a front-end part, both shown in Figure 8.3. The
back-end (database and scotty7 web Server) is executed as a server 7 http://hackage.haskell.org/

package/scottydaemon on a computer located at the Research Group Geoinformation.
The back-end handles the communication with the database via several
modules (Algorithms B.13 and B.14) to query and update real estate
entries (Algorithm B.11) and to overview the workflow, and two mod-
ules that support further functionality in Algorithm B.12 and B.15.

http://www.postgresql.org
http://postgis.net
http://hackage.haskell.org/package/scotty
http://hackage.haskell.org/package/scotty
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The retrieved data are transferred into Haskell types in the modules
shown in Algorithm B.16 and Algorithm B.17.

Frontend

Backend

External

DB scotty
Server

Geocoder
OpenCage

Overview

Immo
Process

Log-On

Figure 8.3: Web application architec-
ture guiding the data acquisition pro-
cess

The back-end queries an external gazetteer service (Algorithm B.18)
available via http://api.opencagedata.com/geocode/ to get loca-
tions for addresses, which is used because a Haskell library exists.
The front-end is implemented via several HyperText Markup Lan-
guage (HTML8) interfaces: (Log-On Algorithm B.19, Overview Algo-

8 https://www.w3.org/TR/html5/

rithms B.20, B.21 and Immo Process Algorithms B.22, B.23), which
makes it accessible from various platforms (mobile, tablet, PC) and
allows delivery via the scotty web server to the client.

The scotty server establishes a connection to the database and
to an external gazetteer, and includes the functionality to deliver the
front-end. Scottymanages functions written in Haskell [Marlow, 2010]
to create web interfaces, and controls the HTTP9 handling. Function- 9 https://www.w3.org/Protocols/

rfc2616/rfc2616.htmlality to store data acquired from the user are provided via Representa-
tional State Transfer (REST) [Fielding and Taylor, 2000] architecture
style services.

The front-end interfaces are based on HTML and JavaScript li-
braries and uses Asynchronous JavaScript + XML (Ajax) requests
for retrieving additional data and sending data to the scotty server.
The HTML interface uses responsive libraries to adjust the interface
to mobile and non-mobile web browsers. The main interface, called
ImmoProcess, includes a map that is established by OpenLayers310 10 http://openlayers.org

using functionality written in JavaScript shown in Algorithm B.25,
B.26, B.27, B.28, and B.29. The data acquired through this interface
are sent via Ajax to the main module (given in Algorithms B.8, B.9,
and B.10) and executed on the server, which fuses the functionality
of all modules to store the data in the database, e.g. the contexts
influencing near.

The web application provides interfaces for multiple parallel users
that have to identify themselves before beginning the workflow on the
Log-On interface. If an agent enters credentials that are known to the
system (user and password are stored in the database) into the Log-On
interface shown in Figure 8.4, a session is established and the Overview
interface is shown. The authentication mechanism (Algorithm B.12
and B.8) enables the identification of user-processed real estate entries,
and denies access to unknowns users. The active session is necessary in
order to receive further interfaces. REST services also respond only if
a session is active. A session is active for three hours, and is expanded
with every completed workflow described below.

Figure 8.4: Log-On interface

The workflow includes six steps and is established by the interfaces
Overview and ImmoProcess. The work flow starts with the Overview
interface that is shown after a successful authentication and includes
the first step of the workflow. The other five steps are processed in the
ImmoProcess interface, and when completed the user is redirected to
the Overview interface to start the workflow again. The six steps are
as follows:

1. Selecting a real estate entry The user selects one of the real estate

http://api.opencagedata.com/geocode/
https://www.w3.org/TR/html5/
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
http://openlayers.org
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entries included in the Overview interface (in Figure 8.5) by clicking
the button labeled “bearbeiten”, which redirects the user to the
ImmoProcess interface.

Figure 8.5: Overview interface, show-
ing real estate entities that have to be
processed

2. Identifying context The user identifies context influencing near in
the title and description of the real estate entry. The title and the
description are presented on the top left part in the ImmoProcess
interface (Figure 8.6), highlighting the words nahe and nähe with a
green background to aid in the identification process. From words
surrounding “near”, those words that (in the user’s understanding)
influence near have to be selected, and then inserted into the in-
put field marked as “context”. In this example, the user selects the
sentence “Das Wiener Stadtzentrum ist leicht und schnell zu erre-
ichen und mit dem nahegelegenen Stadtpark findet . . .” and identi-
fies “gelegenen” as an influencing context. They then insert it into
the input field (shown in Figure 8.6). By clicking the button labeled
“add Context”, the context is stored in the database and this step
is completed.

3. Locating the real estate entity The user locates the real estate en-
try on the map from possible locations that are retrieved from a
gazetteer. The address specified by the real estate agency for the
real estate entry is prepopulated in the input field labeled “Start-
punkt” in the ImmoProcess interface (Figure 8.6). In the example,
for the real estate entry given in Figure 8.6 the prepopulated ad-
dress is “1030, Wien, Seidlgasse”. To translate this address into a
location, the button labeled “verorten” is pressed which queries a
gazetteer and shows the returned locations as markers on the
map. The response of the gazetteer will in most cases include mul-
tiple results11 from which the user selects the appropriate one; this 11 The response of the gazetteer ser-

vice depends on the query data; for
incomplete input data the gazetteer
service responds with all possible lo-
cations the address matches to, in the
entire world. This behavior is simi-
lar to what was described in the in-
troduction example, and will be fur-
ther discussed in Section 9.2 where an
integration of the context algebra for
gazetteers is recommended

will change the marker to . This step is completed by pressing
the button labeled “speichern” to store the address and the location
in the database.

4. Locating the locatum The user locates the locatum included in the
text description in the map using suggestions from a gazetteer. The
address of the locatum is identified in the same sentence where the
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context was identified. For the example given in Figure 8.6, “Stadt-
park” is identified as the locatum and entered into the input field la-
beled “Endpunkt” in the ImmoProcess interface (Figure 8.6). With
the same mechanism as in the previous step, suggested locations are
proposed by a gazetteer (designated with markers ) and the user
selects the appropriate marker, which will then change its color to
blue . This step is again completed by pressing the button labeled
“speichern” to store location and address in the database.

5. Categorizing the real estate entity regarding spatial meaning The
user categorizes the real estate entry regarding space meaning. The
category is assigned via clicking on either of three buttons included
in the bottom left part in the ImmoProcess interface (Figure 8.6).
Which button/category to select by the user is given in Table 8.4.

relatum location locatum location example quality category

missing missing “. . . in näherer Zukunft” – “in near future” not located

maybe identified maybe identified “flat near subway station Pilgramgasse” partly located

identified identified
“The flat Gusshausstrasse 25-27 is

located
located near Karlsplatz”

Table 8.4: Categorization guide for
spatial meaning of real estate entriesBy pressing one of these buttons the category is stored in the

database and this step is completed.

6. Finishing the process for this real estate entity The user completes
or aborts the data acquisition for this real estate entry in this step.
If all previous step were successfully completed, the interface looks
as shown in the screenshot in Figure 8.6, and the user can complete
the workflow by pressing the button labeled “finished”. If the user
is not sure if there was a mistake somewhere or if one of the pre-
vious steps was not completed successfully, the user can press the
“zurück” button, and the current entry can be processed again later
by another user. After clicking one of the two buttons, the Overview
interface reappears and the workflow can be started again.

The workflow was successfully completed for 6141 real estate entries
by ten users. In group sessions, up to six users processed different en-
tries simultaneously. Due to time constraints not all 9755 real estate
objects were processed, but 6141 entries provide enough data to have
meaningful results. The average duration to process one real estate
entry is about six minutes, depending on the time spent locating the
relatum and locatum. A major influence on the duration comes from
the results delivered by the gazetteer service, which are sometime in-
correct. In one case the query included the words “Vienna, Austria”,
but the returned results were located in China. In such cases, a differ-
ent gazetteer has to be queried which may yield better results.
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Figure 8.6: ImmoProcess interface in-
dicating a completed workflow
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Data analysis

Within the workflow described above, the real estate entries are pro-
cessed and further analyzed. The analysis is separated in two parts.
The first part analyzes the acquired data regarding contexts in order
to generate contextualized concepts. The second part focuses on the
distances between relatum and locatum, which are used as exemplars
to initialize the representation of near.

Context identification According to the constituting rule of Searle,
the contexts C influencing the interpretation of near are identified. In
order to identify the influencing contexts, the stored contexts are lem-
matized. In this preprocessing step all identified contexts are processed
by a lemmatizer, which brings the word to its canonical form so that
differences in tense or case are eliminated, e.g. “liegende, gelegene”
is lemmatized to “liegen”, “zu Fuß” (by foot) into “gehen” (walk),
etc. This preprocessing step results in 111 different contexts given in
Tables B.1, B.2, and B.3, which are then further analyzed.

The analysis distinguishes three types of contexts influence: no con-
text, one context, and combined context. The type no context stands
for no context influence on near, the type one context includes context
in the form of one word, e.g. walk (gehen). The type combined context
stands for multiple contexts, e.g. walk, immediate (gehen, unmittelbar).
The majority of the processed entries, 62 % (=2618+201+952

6141 ), include
no context, 37 % (=978+213+1068

6141 ) include one context and a minor-
ity of 1% (=13+64

6141 ) include more than one context. Their distribution
within the quality classes is given in Figure 8.7. In total, 93 one-context
type contexts are identified, as well as 18 combined contexts.
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Figure 8.7: Contexts identified dur-
ing data acquisition, grouped by cat-
egorization and number of context in
combination

Three combined contexts are the highest number of contexts identi-
fied for near. These are: located, airport, train (liegen, Flughafen, Bahn)
and located, absolute, walk (gehen, liegen, absolut). The latter context,
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for example, was derived from the sentence: “Die naheliegende in ab-
soluter Gehdistanz liegende Infrastruktur in der Krottenbachstrasse.”

The contexts mentioned in the real estate entries for near estab-
lished four different meanings. The spatial meaning was the main
meaning that was identified. If no spatial meaning for near was in-
cluded, other contexts indicating different meanings were identified
and stored in the database. From the meanings listed by WordNet in
Table 8.1 relationship, temporal, and spatial meanings are identified in
the real estate data collection. Additionally, an information meaning
for near is included which may be related to a German use of near that
has no proper equivalent in English. Such language-dependent effects
for near were already reported by van der Zee et al. [2009]. They com-
pared English and Finnish usages of near and concluded that differ-
ences are related to, for example, functional relatedness. The contexts
and their number of occurrences identifying the relationship, temporal,
and information meanings are shown in Table 8.5.

meaning English number of
and context translation occurrences

relationship

Naheverhältnis close relationship 15
Angehörige close relatives 3

time

nahe Zukunft near future 7
information

Auskünfte information 76
Details details 8
Informationen information 89
Interesse interest 13

Table 8.5: Meanings of near identified
in the real estate data set

For the spatial meaning, 64 different located contexts are identified
that are either one context type or combined contexts. A small sample
including multiple combined contexts is given in Table 8.6, all others
are included in Tables B.1, B.2 and B.3. The contexts included in
Table 8.6 are translated into English and the number of occurrences in
the data collection are included. The one-contexts walk; located and
immediate occurred most often in the data collection, with 136 occur-
rences of (walk), 664 of (located), and 438 of (immediate). These are
also part of many combined contexts, such as: located, very ; immedi-
ate, shore; immediate, in a direct line etc. and occur in combination, e.
g. walk, located ; immediate, walk.

Exemplar identification According to the constituting rule of Searle,
the possible interpretations (exemplars) Y of near are identified. As
exemplars that near can refer to, the direct line between the relatum
and locatum is determined. Also other determination methods for
example the path on a road network can be used to extract exem-



data acquisition for “near” 92

context English translation
number of occurrences

not located partly located located

gehen walk 62 7 67
gehen, liegen walk, located 0 0 4

liegen located 131 66 447
liegen, Flughafen, Bahn located, airport, train 0 0 1
liegen, absolut, gehen located, absolute, walk 0 0 1
liegen, ganz located, totally 0 0 1
liegen, sehr located, very 6 0 0

unmittelbar immediate 133 34 271
unmittelbar, Altstadt immediate, old town 0 0 1
unmittelbar, Autobahn immediate, highway 4 0 0
unmittelbar, Luftlinie immediate, in a direct line 0 0 5
unmittelbar, See immediate, lake 1 0 0
unmittelbar, Ufer immediate, shore 0 0 28
unmittelbar, Zentrum immediate, center 0 0 1
unmittelbar, gehen immediate, walk 2 0 6
unmittelbar, liegen immediate, located 0 0 2

Table 8.6: Sample of Contexts that in-
fluence near, included the number of
occurrences

plars from relatum to locatum. For example, the shortest path or the
fastest path are better exemplars for context walking , but which of
these should be chosen? Does this method also make sense for context
located? Which determination method to use is context dependent
and the data set lacks of this context to decide which determination
method to use and as common denominator the direct line is used
here. Real estate entries with a non-spatial meaning do not have a
location assigned to the relatum and the locatum, and therefore no
distance/exemplar can be obtained for these meanings. Real estate
entries with non-spatial meanings and entries that are classified as not
located and partly located are discarded. For the 2084 as “located”
classified real estate entries, the distance is determined as a direct line
between relatum and locatum calculated in the database and rounded
to integer precision. The minimal distance calculated is about five me-
ters, while the maximal distance about 100 kilometers. The number of
occurrences for distances in the range from zero to 1000 meters is given
in Figure 8.8. The exemplars with a distance larger than 1000 meters
occur between one and five times. In total, 1391 difference exemplars
are identified that occur between one and eleven times, which are the
possible interpretation exemplars for Y.
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Figure 8.8: Exemplar occurrences in
the range from 0 to 1000 meters

The locations for relatum and locatum are for example in Croatia,
Poland, Spain, and the USA, but most locations are in Austria. Ex-
emplars obtained from the Vienna area are designated by red lines in
Figure 8.9.

Data acquisition and analysis resulted in 2084 real estate entries
satisfying all requirements. They will be used to initialize the context
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exemplars for near OSM

Figure 8.9: Exemplars for near in the
Vienna area

algebra. From these entries, 72 different contexts and 1391 different
exemplars are identified. With respect to the constitute rule of Searle,
contexts C and exemplars Y are determined and are ready to initialize
the near representation.

8.4 Context Algebra initialized with data

To create a representation for near using the context algebra, a context
lattice and contextualized concepts have to be initialized with data.
From the real estate data only the entries satisfying all requirements
are applied here. The representation for near is split in two parts. In
the first part, the identified contexts build the context lattice influenc-
ing near. In the second part, the exemplars initialize contextualized
concepts.

Context lattice In order to build a context lattice, atomic represen-
tations have to be identified. The idea of atomic contexts is to build a
complete lattice, where every element in the lattice can be mapped to a
subset of exemplars. In this case, the identified exemplars do not map
to all possible context combinations. Only for the contexts included in
Tables B.1, B.2, B.3 are mappings to subsets of exemplars identified.
That not all contexts that are included in a completed context lattice
can be mapped to a subset of exemplars was also observed by Aerts and
Gabora [2005a]. They assumed that atomic contexts may not occur in
data, and that the contexts that occurred in the data (they used basic
contexts) are sufficient to build the context lattice. Without atomic
contexts not all possible context combinations are included in the con-
text lattice only these that occurred in the data. This assumption is
reasonable and is also applied here. With that assumption in mind,
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all the 72 contexts (57 are one-contexts, 15 are combined contexts)
classified as located build the top part of the context lattice.

A part of the context lattice is shown in Figure 8.10 to indicate miss-
ing atomic contexts. Contexts that are written in black are mapped
to subsets of exemplars. Contexts that are written in gray include no
exemplars in the mapping. The points indicate that the context lattice
also includes other elements.

The least and greatest context complete the context lattice. The
⊥ context maps to the most selective context that is generated by
conjunction of all contexts. This context maps to the empty set. The
> context considers all contexts included in the lattice. This context
maps to the whole set of exemplars.

The context lattice also includes contexts for non-spatial mean-
ings. These contexts are future (Zukunft), located on the left side
of Figure 8.10, close relationship (Naheverhältnis), not shown in Fig-
ure 8.10 indicated by dots . . ., and context information (not shown in
Figure 8.10), comprising two German contexts Auskünfte and Informa-
tionen that have only one English translation for both.

>

walkimmediate located absolutefuture . . .

immediate,
absolute

immediate,
located

immediate,
walk

walk, located walk, abso-
lute

located, abso-
lute

immediate,
walk, located

immediate,
located,
absolute

immediate,
walk, abso-
lute

walk, located,
absolute. . .

. . .

immediate,
walk, located,
absolute

. . . . . . . . .. . .

. . .. . .. . . . . . . . .

⊥

Figure 8.10: Part of the context lattice
for near initialized with data acquired
from the data analysis

Exemplars Exemplars constituting contextualized concepts for near
are used to calculate a prototype referred to as an interpretation for
near. For the non-spatial contexts, extra exemplars are included: time,
relationship, and information, which are also considered prototypes.
The prototype determination for the spatial meaning is considered
further. So far, the method to calculate the prototype is creating
an observation table (Table 4.4) including contextual typicalities, and
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selecting that exemplar as prototype that has the highest typicality.
This method deals with exemplars on a nominal scale [Stevens, 1946],
which are clearly distinct from each other. In the data acquisition for
near the exemplars are scattered; having only sparse occurrences with
equal numbers of occurrences means the proposed prototype determi-
nation method given by Equation 4.29 cannot be applied to determine
a prototype. The exemplars acquired during the process are distances
categorized on a ratio measurement scale. The feature of a ratio mea-
surement scale is that exemplars are not clearly distinct from each
other. Methods like average, median, or mode are used to reduce the
distribution to a central tendency. These measures cannot be used in
this case because the data are too scattered.

Kernel Density Estimation (KDE) is selected as a method to deter-
mine the prototype for exemplars on a ratio measurement scale. KDE
is a generalization of a histogram generated for nominal data [Silver-
man, 1986]. The benefit of this method is that exemplars do not have
to be categorized, which is problematic because categorization is in it-
self context-dependent. To establish the KDE distribution, the kernel
is placed on each data point and adds up if the data point occurs more
often in the data set. The established distribution is similar to an
observation table used to determine contextual typicality. Within the
contextual typicality, the maximum value determines the prototype.

A result for a contextual typicality distribution for near@> created
by KDE is given in Figure 8.11 and Figure 8.12. In Figure 8.11 a
snapshot of the distances in the range from zero to 1000 meters is
shown, and the entire distribution is given in Figure 8.12. From the
distribution in Figure 8.11 the distance with the highest KDE value
is selected as prototype, included as a point in Figure 8.11. For the
contextualized concept near@> the prototypical distance is 190 meters.
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Figure 8.11: Contextual typicality of
near@> clipped from 0 to 1000 meters,
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Figure 8.12: Contextual typicality of
near@> from 0 to 50.000 meters

The KDE algorithm has to be included in the implementation of
the context algebra. The Haskell library statistics12 includes a func- 12 http://hackage.haskell.org/

package/statisticstion to calculate KDE. To integrate the function, a new module Ratio-
Exemplars is created that instances the abstract class Contextualized-
Concept by implementing the function calculatePrototype. The
implementation is given in Algorithm B.30 in Appendix B.5. Here
the usage of abstract classes introduced before is beneficial, because
the user of the context algebra can now change between the mod-
ules RatioExemplars and NominalExemplars without changing other
code.

The KDE implementation creates contextual typicalities for near
that are illustrated in figures included in Section B.5. Those contex-
tualized concepts having at least five “located” categorized real estate
entries are included in Figures B.3, B.4, B.5, B.6, B.7, and B.8. The
contexts in the Figures are given in German language, a translation
for each context is included in Table B.4. In summary, eighteen con-
textual typicalities are determined using KDE and illustrated in six
figures included in Appendix B.5.

8.5 Applications using the context algebra representing “near”

Possible applications for the representation of near with the context
algebra are discussed. The possibilities the context formalization offers
are given in examples usable for future applications.

http://hackage.haskell.org/package/statistics
http://hackage.haskell.org/package/statistics
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Natural Language input

The context algebra can be applied to applications that use natural
language input, to transform the natural language into metric dis-
tances. From the resulting distances, a prototype is determined which
results into one metric distance. This metric distance can be used
as input for spatial algorithms as envisioned in the introduction in
Section 1. A schema for how the context algebra can be used in an
application is given in Figure 8.13. A benefit of using context algebra
is that the gap between vague natural language terms and the pre-
cise metric distances needed for spatial algorithms is bridged. This
is visualized in Figure 8.13, where natural language text (represented
as “. . .” in Figure 8.13) is transformed into text resulting in contex-
tualized concepts for near and near@Bern and used as input for the
context algebra. The output of the context algebra is a precise metric
distance obtained from the determined prototype of the contextualized
concept. As the contextualized concept can change, e.g near referring
to the contextualized concept near@>, resulting in 200 meters, the
prototypes can also change, e.g. near@Bern results in 1000 meters.
The context algebra integrates the dynamic change of intended mean-
ing by including the influencing context to approximate the intended
meaning of a vague term. How such a context algebra could be used
in applications for natural language input is outlined below.

. . .→ near

context algebra

200 meters (prototype)

Bern → near@Bern

context algebra

1000 meters (prototype)

Figure 8.13: Application of the con-
text algebra to translate natural lan-
guage input (near) into distances

Distinguishing between meanings For applications dealing with nat-
ural language input it is beneficial to identify which meaning of near
is used. As near is a semantic primitive, it is challenging to identify
its meaning. Context algebra is able to distinguish different mean-
ings (temporal, spatial, relationship, etc.) according to the influencing
contexts.

A context algebra initialized with a data set including contexts that
relate to specific meanings is key to distinguishing between multiple
meanings of near. By following a conversation, all sentences can be
parsed and those that include near or influencing contexts are pro-
cessed by the context algebra. The gradually added context during a
conversation is used to generate different contextual concepts by query-
ing the context lattice for the found contexts. These contexts create
the mapping to exemplars that are used to determine a prototype. The
prototype identifies the meaning in which it is used, e.g. “10 minutes”
for temporal usage.

In the initialized context algebra for near, temporal meaning, rela-
tionship meaning, and spatial meaning can be distinguished. For ex-
ample, if the context future is included in the natural language input,
the context algebra creates the contextualized concept near@future. In
the initialized context algebra, this contextualized concepts maps to
only one exemplar that indicates use of the temporal meaning of near.

Translation mechanism The initialized context algebra for near trans-
lates the word “near” into a distance usable for spatial algorithms.
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Hahn et al. [2016] described such a use of the context algebra that
splits the concept near into contextualized concepts producing differ-
ent prototypical distances according to context. The prototype of a
contextualized concept is mapped from near onto a metric distance,
as given in Figure 8.13.

For example, when describing the location of your flat to a new
colleague with the sentence “My flat is located near Maria-Theresien-
Platz”, which distance does near relate to? The context algebra is able
to determine the intended distance. First, the influencing contexts
are identified: here, the context located . Second, located is selected
from the context lattice and the contextualized concept near@located
is established. Third, the exemplars included in near@located are
processed by KDE to form a contextual typicality function given in
Figure 8.14. Fourth, from this function the maximal typicality is des-
ignated as prototype, which for near@located results in about 570 me-
ters, given as point in Figure 8.14.
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Figure 8.14: Contextual typicality for
near@located

The translated distance from the contextualized concept near@located
can be used as input for a spatial algorithm. For example, if the new
colleague wants to find a flat located near Maria-Theresien-Platz he
can use a spatial algorithm (e.g.within) using the 570 meters as radius
to look for flats.

Natural language output

The context algebra can also be applied to applications that produce
natural language output. For such applications the context algebra
received a metric distance as input, and translates this distance into a
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natural language output. For example “200 meters” is translated into
“near”. A schema for this process is indicated in Figure 8.15.

The determination of the natural language output is a process fol-
lowing five steps: First, prototypes are determined for all contextual-
ized concepts. This results in an array of metric distances. Second,
these are compared to the input metric distance. Third, the met-
ric distance with the least deviation is selected to be the appropriate
language output. Fourth, the selected prototype is translated into the
contextualized concept which links to natural language. Fifth, the con-
textualized concept, e.g. near@> is selected as the resulting natural
language output, e.g. near.

→ 200 meters

context algebra

near (prototype)

Figure 8.15: Application of the con-
text algebra to translate distances into
natural language (near)

Selecting the appropriate word to describe a distance One example
of applications that produce natural language outputs are wayfind-
ing applications. For example, Xu et al. [2014] observed from a web
corpus that wayfinding systems generate route descriptions that in-
clude metric distances, whereas human-generated route descriptions
usually include vague spatial terms. For example, the wayfinding sys-
tem states a description as: “Turn right in 600 meters”. In contrast, a
human description could be: “Turn right near the statue”. By equip-
ping the wayfinding system with a context algebra, the description
could include natural language derived from metric distances.

Context algebra can be used to translate a distance into a verbal
description. For example, the distance of “600 meters” is to be trans-
lated into a verbal description. If no additional context is given, the
prototype of the > context is selected and compared to the distance.
For the established model of near@>, the prototype is about 190 me-
ters (prototype in Figure 8.16). This prototype, however, is not a
good fit for the distance of “600 meters”. To find a better match, the
context lattice can be queried for more selective contexts. If the user
can provide a more refined context, e.g. walk, the prototype for the
contextualized concept near@walk is determined and compared to the
distance. In this case the prototype for near@walk equals 550 meters
(prototype in Figure 8.16) which fits much better than the contextu-
alized concept near@>. Now the context lattice can be used to check
if a more selective context has a prototype with less deviation. Indeed
the more selective contextualized concept near@immediate walk has
the prototype of about 580 meters (prototype in Figure 8.16), which
fits even better with the distance input. This prototype can be used to
produce the natural language description resulting in “near immediate
walk”.

Object influence to near

Two studies concluded that the size of the object that a spatial relation
refers to influences the understanding of distance. The first study by
Morrow and Clark [1988] found that “distance is judged to be larger,
all else being equal, the larger the landmark, the larger the figure,
. . .”. The second study by Carlson and Covey [2005] concluded that



conclusion 100

0 100 200 300 400 500 600 700 800 900 1,000

0

1

2

3

4

5

6

7

8
·10−3

distance in meters

near@>
prototype near@>
near@walk
prototype near@walk
near@walk immediate
prototype near@walk immediate

Figure 8.16: Contextual typicality for
near@>, near@walk and near@walk im-
mediate

distance terms (e.g near) and terms that do not convey distances (e.
g. left) are both “systematically influenced by the size of the objects”
they describe. Context algebra is able to model this influence of the
size of the object. The relatum and the locatum can be included as
context information for the distance relation. The established model
for near accounts at least for the locatum of the spatial relation near.

Which flats are near the city center, the subway, or the lake? The
locatum has influence on the distance that a spatial relation refers to.
The data that initialize the context algebra for near include several
locata that can be used to verify if a context algebra can model this
behavior. To distinguish between distances according the size of the
locatum, three different locata are selected: center , lake and subway .
These locata are used to influence near, which creates the contextu-
alized concepts near@center , near@subway and near@lake. The con-
textual typicalities for these contextualized concepts are included in
Figure 8.17. In this figure, the prototypes for all three contextual-
ized concepts differ, e.g. the prototype for near@center is about 1300
meters, the prototype for near@lake is about 1050 meters, and for
near@subway it is about 380 meters. This demonstrates that context
algebra is able to represent the object’s influence on the spatial relation
near.

8.6 Conclusion

In this chapter, the context algebra is initialized with acquired data,
and benefits for using a context algebra for existing applications are
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Figure 8.17: Contextual typical-
ity for near@center , near@lake, and
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pointed out. The context algebra is initialized to represent the concept
near. Conclusions drawn from representing near can be distinguished
into three parts: (i) requirements for data initializing the context al-
gebra, (ii) how data can be acquired, and (iii) applications for the
resulting model.

How can data be acquired to respect a connection between a word and
reality? The fourth research question of this thesis addresses: How
can data be acquired that respect a connection between a word and
reality? In this chapter this question is answered by creating require-
ments for data:

• Context is explicitly stated in the data.

• Data have to include a reference to reality to be grounded.

• To investigate the spatial meaning, references to the earth have to
be included in the data.

Only data sets that are able to satisfy all requirements can be used
to initialize the context algebra. With these requirements, two real
estate data collections (available in the German language) including
about 40000 entries are selected. These real estate entries are filtered
for the occurrences of near, which resulted in about 9500 entries that
are further processed.

Existing data acquisition techniques (questionnaires, parsing tress,
etc.) are unable to extract all the required data, making a new, manual
process necessary. The data acquisition and extraction workflow is
guided by a web application. In this acquisition process, the real estate
data are manually processed to identify contexts and create references
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to reality on a map. Contexts are extracted from the description of the
real estate object. The coordinates of a real estate object (relatum)
and the coordinates of another object mentioned with a near relation
(locatum) are identified on a map. At the end of processing, the object
is classified by whether it is usable to investigate the spatial meaning
of near. Context, location, and description of a relatum (the real
estate object) and locatum (the object near to the real estate object),
as well as the classification are stored in a spatial database which
creates a knowledge base for the representation of near. The manual
acquisition process was specially designed for this use case, but is too
time-consuming for a practical application. Further research on how
to automatically detect influencing contexts in texts is necessary, and
NLP may offer promising methods in that regard in the future.

The stored data are analyzed, and four different meanings of near
that can be used are extracted: temporal, relationship, information,
and spatial. All these meanings have different contexts, making it
possible to distinguish between them. The spatial meaning for near is
further investigated in order to extract data for the transformation of
natural language into metric values.

The data analysis showed evidence for the context structure pro-
posed in Section 4.3. In the data set the word near was influenced
by no context in 62 % of cases, while 37 % showed influence by one
context, and 1 % by a combination of contexts (two or more contexts).
The contexts are combined from several “basic” ones, e.g. walk, lo-
cated , to combined contexts, e.g. walk, located and located, very . The
maximum combination of contexts are three conjunct contexts, e.g.
located, airport, train. In the analysis, only conjunct contexts were
identified; no disjunct contexts were included in the data.

For the spatial meaning, contextualized concepts are established
where each includes a prototype. The exemplars used to determine the
prototype range from five meters to 100 kilometers. The exemplars are
now given on a rational measurement scale in contrast to the exemplars
given on a nominal scale considered so far. Therefore, the prototype
determination algorithm has to be changed. The method of Kernel
Density Estimation (KDE) is chosen to determine the prototype. The
distribution of the KDE is taken as contextual typicality, where the
maximum value is selected as prototype.

The representation for near is initialized with the located catego-
rized real estate entries. 72 contexts are obtained from located entries
that populate the context lattice. For all these contexts, a mapping to
subsets created by 1391 exemplars is included.

Applications The representation of near can be used to translate nat-
ural language into metric distances. It is able to distinguish between
several meanings in which near can appear, e.g. temporal, informa-
tion, relationship and spatial meanings. It can translate natural lan-
guage input to metric distances that can be used as input for spatial
algorithms. For example, the natural language sentence “. . . my flat is
located near subway station Pilgramgasse ” is translated into a metric
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distance of 570 meters for the contextualized concept near@located .
The representation of near can also be used to translate metric

distances into natural language. For example, route descriptions can
be expressed with natural language, e.g. “550 meters” is translated
into “near walking”.

The representation of near is able to model the results of cognitive
experiments. Studies concluded that the size of objects used in combi-
nation with near has an influence on the distance near refers to. The
context algebra is able to model the influence of the objects to near,
e.g. near@lake results in 1050 meters whereas near@subway results in
380 meters.

In conclusion, the context algebra for the concept near is able to dis-
tinguish between contexts and generate different distances according
to context influence.

Research questions arising from this application of context algebra
are:

• Are there other relevant contexts influencing near? A first direction
would be to determine contexts from other data sets.

• What are relevant contexts influencing spatial terms in general?

• Where to collect necessary data to initialize the context algebra?



9
Conclusion and Future Work

9.1 Conclusion

To evaluate the hypothesis, the conclusions of this work are stated
with respect to the research questions. Each research questions is
answered by proposing a context algebra, implementing it, testing it,
and applying it to represent the concept near.

At the end of this section, a short summary is given highlighting
the main contributions.

Research Question 1: What properties does context have that a general
context operation must respect? Contexts are partially ordered with
the relation “is more selective than or equally selective as”, denoted ≤.
Selectiveness makes sense in light of the definition of context: “Context
is any information that selects appropriate references from a word to
objects in reality”. For that relation a converse relation “is less selective
than or equally selective as”, denoted as ≥, exists. Both relations
satisfy the algebraic properties of reflexivity and transitivity.

The partial order relation includes a universal greatest context and
a universal least context. The least context, denoted >, is less selective
than all other contexts, e.g. serving pizza or in Vienna. The greatest
context, denoted ⊥, is more selective than all other contexts, e.g.
serving pizza in Vienna. > and ⊥ context can only be defined with
respect to a use case, and are not generally applicable.

Contexts are combined by the conjunction and disjunction opera-
tions, and contexts have complements. Two conjunct contexts estab-
lish another context that is a more selective than or equally selective
as both constituents. Two disjunct contexts establish another context
that is less selective than or equally selective as both constituents.
Both operations respect the properties of idempotency, commutativ-
ity, associativity, consistency, and isotone. Special laws for > and ⊥
are included for combination operations, e.g. ci ∈ C ci ∧ ⊥ =

⊥ ⊥∨ ci = ci. A complement denoted c for context is included in
the context algebra satisfying axioms, e.g. c = c.

Within these properties, the context algebra represents context in
a lattice structure. The operations are realized as set union and set
intersection including special cases for > and ⊥ context.

In conclusion, context is partially ordered and can be complemented,
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and two contexts can be conjunct and disjunct. The partial order re-
lation and complement, and the conjunct and disjunct operations re-
spects their own properties and result in a lattice representation for
context.

Research Question 2: How can a general context operation be connected
to words and to reality? The semiotic triangle is used as starting point
to connect words with reality. It is enriched with context to distinguish
between objects in reality. The connection is established through the
following approach:

1. Observations connect exemplars with context in reality, e.g. the
exemplar 200 meters in the context walking is one observation for
near.

2. All observations are mapped to the context lattice to establish con-
textualized concepts.

3. A contextualized concept corresponds to a word used in a context.

The formalization of the observations, context lattice, concepts, and
contextualized concepts is split into two parts. The first part uses the
formalization established in research question 1, the second part for-
malizes the mapping from context to concepts creating contextualized
concepts.

The mapping from the context lattice to concepts is established
through contextualized concepts. Contextualized concepts summarize
observations of reality for a specific context. All contextualized con-
cepts together build the concept that is connected to a word, which
establishes the connection from a word to reality.

Research Question 3: What is necessary to implement the general con-
text operation, assuring all context properties are respected, and what
class of complexity can be determined? In order to implement the
general context operation, the context algebra has to be implemented
first. It is implemented with the functional language Haskell using ab-
stract classes, instantiating them using set functions. The implemen-
tation is available online at hackage via the URL: https://hackage.
haskell.org/package/ContextAlgebra. This implementation sup-
ports the implementation of the general context operation. Its use is
described for the restaurant example introduced in the introduction.

To ensure that the implementation satisfies all laws stated in the
context algebra, algebraic property tests are executed. For each func-
tion. e.g. partial order relation, conjunction, and disjunction, prop-
erty tests are established and executed with 1000 randomly gener-
ated input contexts. The execution results in a report showing that
each property test was successfully executed which assures us that the
claimed laws are satisfied.

As many contexts may influence a word at one time, the imple-
mentation is executed with different number of inputs to identify its
complexity class. Benchmarks for context lattice generation time and

https://hackage.haskell.org/package/ContextAlgebra
https://hackage.haskell.org/package/ContextAlgebra
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memory consumption as well as the time used to calculate a prototype
are executed. All benchmarks show a unique result for the implemen-
tation, resulting in an exponential complexity class.

Research Question 4: How can data be acquired that respect a con-
nection between a word and reality? Methods to extract context and
references to reality from data are needed to create representations of
real world entities. A review of existing approaches concluded that
they fall short when it comes to identify influencing context. In order
to acquire the necessary data, a web application is created that users
can use to acquire the necessary data. With this application the data
acquisition process is outlined, which is complex and requires more
automation if it is to be applied on larger scales. The key is that
the application outlines which data must be acquired to establish a
connection between words and reality.

Data have to meet the following requirements to initialize the con-
text algebra:

• Context is explicitly stated in the data.

• Data have to include a reference to reality to be grounded.

• To investigate spatial meaning, references to the earth have to be
included in the data.

For the representation of the concept near, media including real es-
tate advertisements meet all requirements. Real estate data include
descriptions mentioning the word near for multiple meanings, e.g. tem-
poral, information, relationship, spatial. Additionally, the descriptions
include contexts that influence the concept near. To create a reference
to reality, the real estate entry is located on a map and connected with
its coordinates. To investigate the spatial meaning, the distance that
near mentions from the entry to another object on earth is included in
the database. This is done by locating the other object on the map.

The acquired data are processed to be usable for the context algebra.
The contexts are lemmatized, which brings them into the canonical
form of the word. Distances are calculated to be usable as observations
for building contextualized concepts.

Research Question 5: What services can be generated by using a gen-
eral context operation for natural language? Problems solved from
the representation of near with a context algebra are shown in several
use cases.

One class of use cases translates natural language input into metric
distances. Depending on the context, different metric distances are
calculated. For example, the natural language input “My flat is located
near subway station Pilgramgasse” is translated into the contextualized
concept near@located , resulting in 570 meters. The benefit is that the
general context operation bridges the gap from vague natural language
terms to metric distances, as is required for their use as input for spatial
algorithms.
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Another class of use cases produces natural language output from
metric distances. For example, wayfinding systems internally calculate
route directions based on metric distances which are presented to the
user as-is, e.g. “Turn right in 600 meters”. As such descriptions are
different from descriptions usually given by humans, context algebra
can translate the metric distance into vague spatial terms. The benefit
here is that the output of spatial algorithms can be transformed into
vague spatial terms better understandable by users.

Regarding near, cognitive studies demonstrated the influence of the
sizes of objects to the intended distance near refers to. For example,
the distance for near@lake is larger compared to near@subway . This
effect can be modeled by context algebra, resulting in 1050 meters for
near@lake and 380 meters for near@subway . The benefit here is to
have a model for cognitive effects influencing near.

Evaluation of the hypothesis Based on the answers to the research
questions and the applications for near, the hypothesis is confirmed.

A general context operation selects references from
a word to objects in reality.

The thesis can be summarized into four main results. Several results
use the perspective of the constitutive rule of Searle [1995]: “X counts
as Y in context C”.

1. A context formalization is created that acts on a form of mapping
between X → Y that is composable and respects properties that
are assumed from context.

2. The elements X and Y can represent different things, e.g. words→
things, words→ properties, pictures→ things.

3. Two models for context formalization are presented, a mathematical
one and one implemented in the functional programming language
Haskell.

4. A proposal for how context formalization can be used for spatial
information processing, e.g. data collection, user query, and user
instructions is included.

9.2 Future Work

There are several directions for future work. One direction is to in-
vest in context research, another direction is data acquisition, and yet
another one is to identify possible applications for context algebra.

Context

This work presented a formalization for context that can be pushed
further as cognitive research provides new insights.
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The number of context included in the context lattice shows an
exponential increase, which may limit the usability of context alge-
bra. The number of atomic context representations is determined as
a critical factor for this increase. Future work has to find mechanisms
to keep the number of atomic context representations low in order
to avoid an exponential explosion. Perhaps distinctions of different
kinds of contexts could be beneficial. For example, Janowicz [2008]
distinguished context into six kinds that have an influence on similar-
ity judgments. It remains a question for future work which distinction
could be beneficial for context algebra.

Here context is used to distinguish between meanings of a word.
In data analysis, it is found that contexts used in conjunction with
concept can be used to detect the meanings in which the concept is
used. For example, the context walking represents a spatial mean-
ing of the concept near. Maybe a distinction of context within the
usage of the concept can lead to a classification of different kinds of
contexts? One direction for investigation could be combining context
algebra with WordNet or a similar collection that includes meanings
for words. The explanations and synsets describing meanings can be
used to calculate a correlation between used contexts and synset of the
word.

By how much context are we influenced? The data analysis of real
estate entries concluded that no more than three contexts are used in
one sentence. Future research has to point out by how many contexts
we can be influenced. Perhaps existing contexts are dropped if a new
context is? Maybe contexts are grouped together?

What happens if the receiver did not understand the message from
the sender? How much of the previous context is dropped? A first
direction is the formalization of Weiser and Frank [2013], building a
communication model.

Does the order of context influence matter? The context algebra
assumes that two contexts are commutative, which means the order
of influence has no effect on the result. Experiments by Meyer and
Schvaneveldt [1971] became prominent as a priming effect, where the
first word influences (primes) the response of a second word. If this
effect also occurs with context, it would raise new research questions.

Mobile map applications should adapt to user needs using context
to minimize user interaction. Raubal and Panov [2009] presented an
“AdaptationModel” based on formal models for context, users, and
tasks which is applied to a pedestrian navigation service. They con-
cluded that user interaction and cognitive load for the user was reduced
by including context. The aspect to select map features according to
context was addressed by Hahn and Frank [2014]. They applied the
state context property model (review in Section 3) to select features
for the concept of “map” combined with other concepts. Their focus
was on the guppy effect, which may occur also for the concept map.
To model the guppy effect, they entangled the concept “map” with the
concept “buy” to build a “buy map”. Comparing the features for these
three concepts they observed that map features are different, following
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the guppy effect pattern. Context algebra is also able to model the
guppy effect, but future research has to be conducted to identify such
geographical guppy effects in experiments with subjects.

Data

Data are necessary to initialize the context algebra. In this thesis, a
time-consuming manual data acquisition process was presented. Use
of context algebra will be limited by this time-consuming manual data
acquisition process. Future research has to come up with automatic
data acquisition methods.

Two types of automated procedures are possible. The first method
extracts data from sensor data. The second method extracts data from
natural language input.

Data extracted from sensors involves a categorization step to build
a concept and faces the symbol grounding problem. The classification
process is also influenced by context, which contexts are influencing
the classification is the key for classification. A possible approach
was presented by Keßler et al. [2007] that looked on the impact of
different context parameters on semantic similarity measures. If this
approach is useful in overcoming the categorization issue, then the
data obtained from sensors can be used to initialize the context algebra.
This will be beneficial because the data can be updated and results will
adapt in real time. Another data source could be life logging [O’Hara
et al., 2009], where persons collect data about their life and make them
publicly available. Data extracted from sensors, for example included
in a mobile phone, face the symbol grounding problem that has to be
addressed.

Data extracted from natural language involves natural language
processing tools. Natural language given as written text is a possible
data source. What is needed are techniques to extract the necessary
data from the written text. A starting point is to detect the meaning
of a written text, a promising method using machine learning applied
to detect spatial-temporal information from narrative discourses was
presented by Howald and Katz [2011] and may apply here too. From
written text, the context influencing the entity has to be identified.
A possible method how to identify contexts are parsing trees built by
natural language processing tools [Manning et al., 2014]. Furthermore,
the entities have to be identified and linked to reality. As many enti-
ties link to regions in reality these regions have to be identified. An
approach to automatize the identification of regions was introduced
by Hobel et al. [2016]. Hobel et al. presented an algorithm based on
machine learning on how to identify regions. To link entities given by
addresses to reality, gazetteers provide the desired functionality. The
main research question is how to extract exemplars and context in
natural language.

Prototype calculation Prototype calculation methods are presented
for exemplars categorized on a nominal and on a rational measurement
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scale in this work. In the same manner all other Stevens’s measure-
ment scales have to be considered and methods implemented how to
calculate the prototype.

Applications

Future applications for the context algebra are sketched.

Personalized knowledge base Personalized applications can benefit
from an integration of context algebra. This can result in a personal-
ized context algebra using observations valid for a single person only.

A personalized context algebra is based on data from a single person.
How data can be collected for a single person could generate challenges.
To get a data set for a single person that covers all the experiences the
person has had is, of course, impossible. Maybe online social networks
already collect enough data? McKenzie and Raubal [2011] presented
a framework to extract “spatial and temporal location[s]” that may be
fit to initialize the context algebra.

Questions arising from a personalized context algebra are: is a per-
sonalized context algebra able to interpret inputs in a similar fashion
to the owner of the personalized context algebra? If this is true, it
could be beneficial for other users or companies, for example for the
advertisement industry. Personalized context algebra could e.g. pre-
dict how a user interprets an advertisement. If the interpretation is
not the intended interpretation it could be adjusted. How to deal
with data privacy issues? Where will the data be stored, analyzed,
communicated?

Dynamic context algebra In this work a contextualized concept was
initialized with observations made in the past. Future work can change
this static data to dynamic data. One application can be a personalized
context algebra for the case that the user relocates. The addition would
be that observations and contexts can be edited after initializing the
model. If the context algebra is dynamic, new observations can lead
to generalization, specialization, and dynamic weighting of the context
lattice as proposed for spatial theories by Twaroch and Frank [2005].

With the dynamic change of the context lattice functions to add
and remove contexts have to be introduced. Adding a context to the
context lattice implies a complete new organization of the lattice. New
atomic context representations have to be identified and all possible
combinations have to be included in the context lattice. Removing a
context from the context lattice is not necessary, there can be syn-
onyms to the ⊥ context.

The dynamic change of observations building contextualized con-
cepts requires more functionality of the implementation. Similar to
the approach of Raubal [2008], adding observations to the concept
can be interpreted as including new experiences in the model. This
can affect the prototype calculation, and result in another prototype.
Removing observations from the concept can be interpreted as forget-
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ting. This may affect the prototype as contextual typicality changes.
An idea is that not renewed observations are dropped with a function
of time as proposed by Ebbinghaus [Leipzig 1885].

Context algebra to mediate between users Humans take into account
the addressee of the information, and adjust the information appropri-
ately. For example, Hölscher et al. [2011] studied if participants would
follow their own route description and concluded that the assumed
conceptualization of an addressee systematically affects the planning
and description of route description. Context algebra could be used to
adjust the descriptions according to two knowledge bases.

If the knowledge bases of all contributors are known, an additional
context algebra system can adjust the descriptions. First, knowledge
bases can be compared if all contexts and entities are known to all
contributors. If, for example, one knowledge base does not include St.
Stephans Cathedral, another expression has to be found for a route
description. Another possibility is to provide the information to the
user that lacks the knowledge, or to ask the user if they are really
not aware of this entity. All possible cases to consider for wayfinding
instructions are presented by Weiser [2014] in his dissertation. Second,
context algebra uses exemplars referring to reality to mediate between
the two knowledge bases. For example, using the corresponding word
for contributor A and using another word for contributor B. Hahn and
Weiser [2015] already investigated this line of research which can be
used as starting point to solve communication coordination problem.
Third, context algebra could signal to a user that another user is not
aware of the used entity.

How such a mediation process between two users for the spatial
meaning of near can look is outlined in the following. The prerequisite
for a mediation process is that for all users a knowledge base is present.
If an additional system can reach both knowledge bases, the system
can take descriptions made from the first person and translate it for
the second person that uses the second knowledge base. This system
uses the natural language input from the first person, translates it into
a distance, and uses the second knowledge base to produce appropriate
descriptions for the second person.

Gazetteer application A gazetteer translates descriptions from loca-
tions into coordinates. The process is to parse the descriptions that
are given in words, and to look in a knowledge base if an entry is in-
cluded. If a matching entry is found it is returned. The input words
can refer to many objects in the world, e.g. the input “near subway
station” refers to thousands stations over the world.

If context algebra is included in such a system, it can be used to
distinguish between descriptions that are worth processing and those
that are too unspecific; e.g. subway station will not be processed. The
decision if something is worth processing can be made by counting the
number of references for the description. Another approach for the
decision is to use the position in the context lattice. If the context is
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too little selective, more context has to be provided by the user.
Context algebra can also be used to decide which information is

most beneficial to query the user for. If the user transmits a description
that is too unspecific, context algebra can be used to determine which
further contexts will select the most appropriate references and these
contexts can be requested from the user.

The dissertation has answered a few questions and contributed to
our understanding of context – as a result, more and more precisely
formulated questions are posed and await new answers.
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A
Haskell Code for Context Algebra

This chapter includes source code and measurement results for the
context algebra. The Haskell modules implementing context algebra
are included in Section A.1. This implementation is used to produce
the general context operation and demonstrate it’s usage by example
in Section A.2. The source code to evaluate the context algebra is
given in Section A.3. In the last Section A.4 the source code necessary
for the complexity analysis and the measurement results are included.

src

Main.hs

ContextAlgebra.hs

Concept.hs

ContextualizedConcept.hs

GeneralContextOpertion.hs

SetImplementation

ContextAlgebrasetInstance.hs

ExemplarScales

NominalExemplars.hs

RatioExemplars.hs

Evaluation

ContextAlgebraEvaluation.hs

QuickCheckHelper.hs

Complexity

ConceptGeneration.hs

ProtoCalculator.hs

Figure A.1: Directory structure of the
Haskell source code

The functionality of the source code is split into thematically co-
herent directories illustrated in Figure A.1. The Main module and the
abstract classes ContextAlgebra, Concept, ContextualizedConcept
and the GeneralContextOperation are placed in src directory. The
specific instances for the abstract classes e.g.ContextAlgebraInstance,
NominalExemplar and RatioExemplars are stored in according sub
directories SetImplementation and ExemplarScales. The necessary
code for evaluation and complexity analysis is placed in a separated
directory Evaluation and Complexity.

The source code is aligned to fit to the line size of this LATEXtemplate
which sometimes clashes with the Haskell formatting strategy, please
take care. Modules that consume a lot lines of code are split into two
or more listings fitting on one page labeled part 1 and part 2 etc.

A.1 Context Algebra

The full source code of the Haskell modules shown in Figure 6.1 are
given in this section. The abstract classes defined in module Context-
Algebra are highlighted in red font in all algorithms.
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Algorithm A.1: Module ContextAlge-
bra including abstract classes

module ContextAlgebra where

import Test . QuickCheck

−− ∗ Clas s e s that bu i ld the ContextAlgebra
class Part ia lOrder c where
−− | p a r t i a l order r e l a t i o n
i sMoreSe l ec t iveOrEqua lSe l : : c −− ^ f i r s t input context

−> c −− ^ second input context
−> Bool −− ^ true i f the f i r s t context i s more s e l e c t i v e or

−− equal s e l e c t i v e compared to the second context

−− | p a r t i a l order r e l a t i o n
i sLe s sS e l e c t i v eOrEqua lS e l : : c −− ^ f i r s t input context

−> c −− ^ second input context
−> Bool −− ^ true i f the f i r s t context i s l e s s s e l e c t i v e or

−− equal s e l e c t i v e compared to the second context

−− | equal s e l e c t i v e r e l a t i o n
equa l s : : c −− ^ f i r s t input context

−> c −− ^ second input context
−> Bool −− ^ true i f the two input context are equal

equa l s c1 c2 = c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2
&&
c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2

class Universe c where
−− | i n c l ud e s a l l atomic context s
atomicRepresentat ion : : [ c ]

class Bound c where
−− | r e sponse the un i v e r s a l l e a s t context
l ea s tContext : : c
−− | r e sponse the un i v e r s a l g r e a t e s t context
greate s tContext : : c

class ( Part ia lOrder c , Bound c , Complement c ) => ContextLatt i ce c where
−− | con junct ion o f two context
con junct ion : : (Bound c , Complement c , Par t ia lOrder c)=>

c −− ^ f i r s t input context
−> c −− ^ second input context
−> c −− ^ r e s u l t i n g in a more s e l e c t i v e context than both c on s t i t u en t s

−− | d i s j un c t i o n o f two context
d i s j un c t i o n : : (Bound c , Complement c , Part ia lOrder c)=>

c −− ^ f i r s t input context
−> c −− ^ second input context
−> c −− ^ r e s u l t i n g in a l e s s s e l e c t i v e context than both c on s t i t u en t s

class Complement c where
−− | complements the input context
complement : : c −− ^ input context

−> c −− ^ complement o f the input context
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Algorithm A.2: Module ContextAlge-
braSetInstace

{−# LANGUAGE TypeSynonymInstances #−}
module SetImplementation . ContextAlgebraSetInstance where

import quali f ied Data . Set as Set

import ContextAlgebra

type Context c = Set . Set c

createContext : : c
−> Context c

createContext = Set . s i n g l e t on

instance (Ord c ) => Part ia lOrder ( Context c ) where
i sMoreSe l ec t iveOrEqua lSe l = Set . i sSubsetOf

i sLe s sS e l e c t i v eOrEqua lS e l c1 c2
| c2 == c1 = True
| otherwise = not $ c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2

instance ( Universe c , Ord c ) => Bound ( Context c ) where
greate s tContext = Set . unions . map createContext $ atomicRepresentat ion

l ea s tContext =emptyContext
where emptyContext = Set . empty

instance ( Universe c , Ord c)=> Complement ( Context c ) where
complement = Set . d i f f e r e n c e greate s tContext

instance ( Universe c , Complement c , Ord c)=> ContextLatt i ce ( Context c ) where
d i s j un c t i o n c1 c2
| c1 ` equa l s ` l ea s tContext = c2
| c2 ` equa l s ` l ea s tContext = c1
| c1 ` equa l s ` greate s tContext = greate s tContext
| c2 ` equa l s ` greate s tContext = greate s tContext
| c1 ` equa l s ` c2 = c1
| complement c1 ` equa l s ` c2 = greate s tContext
| complement c2 ` equa l s ` c1 = greate s tContext
| c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 = c2
| otherwise = c1 `Set . union` c2

con junct ion c1 c2
| c1 ` equa l s ` l ea s tContext = leas tContext
| c2 ` equa l s ` l ea s tContext = leas tContext
| c1 ` equa l s ` greate s tContext = c2
| c2 ` equa l s ` greate s tContext = c1
| c1 ` equa l s ` c2 = c1
| complement c1 ` equa l s ` c2 = leas tContext
| complement c2 ` equa l s ` c1 = leas tContext
| c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 = c1
| otherwise = c1 `Set . i n t e r s e c t i o n ` c2



context algebra 133

Algorithm A.3: Module Concept
module Concept where

import quali f ied Data . Mult iSet as Mset
import ContextAlgebra

data Observation c e = O ( c , e ) deriving (Show,Eq,Ord)

getContext : : Observation c e −> c
getContext (O ( c ,_))= c

getExemplar : : Observation c e −> e
getExemplar (O (_, e ))= e

data Concept c e= C (Mset . Mult iSet ( Observation c e ) ) deriving (Show)

createConcept : : Observation c e −> Concept c e
createConcept = C . Mset . s i n g l e t on

addConcept : : (Ord c ,Ord e)=>Concept c e −> Concept c e −> Concept c e
addConcept (C a ) (C b) = C $ Mset . union a b

nul lConcept : : Concept c e −> Bool
nul lConcept (C e ) = Mset . null e

emptyConcept : : Concept c e
emptyConcept = C Mset . empty

unionConcept : : (Ord c ,Ord e)=>[Concept c e ] −> Concept c e
unionConcept = fo ld l addConcept emptyConcept

toObservat ionL i s t : : Concept c e −> [ Observation c e ]
toObservat ionL i s t (C e ) = Mset . t oL i s t e

f romObservat ionList : : (Ord c ,Ord e ) => [ Observation c e ] −> Concept c e
f romObservat ionList = C . Mset . f romList

toOccurrenceL i s t : : Concept c e −> [ ( Observation c e , Int ) ]
toOccurrenceL i s t (C obs)= Mset . toOccurList obs

numberExemplars : : Concept c e −> Int
numberExemplars (C obs ) = Mset . s i z e obs

Algorithm A.4: Module Mapping
{−# LANGUAGE Flex ib l eContexts , F l e x i b l e I n s t anc e s , MultiParamTypeClasses ,

TypeSynonymInstances #−}
module Mapping where

import ContextAlgebra
import Concept

class Mapping c e where −− data type e equa l s t h i s o f the l a t t i c e data type
m : : (Ord c , Ord e , Bound c , Part ia lOrder c ) =>

c −− ^ more s e l e c t i v e context or equal s e l e c t i v e context
−> Concept c e −− ^ knowledge base i n c l ud ing f a c t s i n f l u en c ed by context
−> Concept c e −− ^ knowledge base i n c l ud ing f a c t s va l i d f o r context c

instance Mapping c ( Concept c e ) where
m ctx concept
| l ea s tContext ` equa l s ` ctx = emptyConcept
| otherwise = fromObservat ionLis t

[ obs | obs <− toObservat ionL i s t concept
, getContext obs ` i sMoreSe l ec t iveOrEqua lSe l ` ctx ]
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Algorithm A.5: Module Contextual-
izedConcept

{−# LANGUAGE MultiParamTypeClasses , F l e x i b l e I n s t an c e s #−}
module Contextual izedConcept where

import Concept

class Contextual izedConcept c e where
ca l cu l a t ePro to type : : (Show e , Ord e ) =>

Concept c e −− ^ obse rva t i on s r ep r e s en t i ng the
−− con t ex tua l i z ed concept

−> ( e ,Double) −− ^ ca l c u l a t ed prototype f o r the
−− con t ex tua l i z ed concept ,
−− with contextua l t y p i c a l i t y

Algorithm A.6: Module NominalEx-
emplars

{−# LANGUAGE MultiParamTypeClasses , F l e x i b l e I n s t an c e s #−}
module ExemplarScales . NominalExemplars where

import quali f ied Data . Mult iSet as Mset
import quali f ied Data . List as List
import Data . Function
import Contextual izedConcept
import Concept

instance Contextual izedConcept c e where
ca l cu l a t ePro to type = List .maximumBy (compare `on` snd ) . ra teObservat ions

rateObservat ions : : (Show e , Ord e ) =>
Concept c e −− ^ con t ex tua l i z ed concept

−> [ ( e ,Double ) ] −− ^ contextua l t y p i c a l i t y f o r a l l exemplars
ra teObservat ions con = map (\ ( exemplar , occurences ) −>

( exemplar , fromIntegral occur r ence s /
fromIntegral to ta lOccur r ence s ) )

. Mset . toAscOccurList . Mset . f romList

. concatMap (\ (O (_, e ) , o)−> replicate o e ) .
toOccurenceLis t $ con

where to ta lOccur r ence s = numberExemplars con
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A.2 General Context Operation
Algorithm A.7: Formalization for the
restaurant example using the General-
ized Context Operation

{−# LANGUAGE ScopedTypeVariables , TypeSynonymInstances ,
F l e x i b l e I n s t anc e s , MultiParamTypeClasses #−}

module GeneralContextOperation where

import ContextAlgebra
import Concept
import Mapping
import SetImplementation . ContextAlgebraSetInstance
import Contextual izedConcept
import ExemplarScales . NominalExemplars

genera lContextOperat ion : : ( Ord c , Ord e
, Bound c , Part ia lOrder c , ContextLatt i ce c , Mapping c e ) => c

−> c
−> Concept c e
−> Concept c e

genera lContextOperat ion actualCtx newCtx con = m moreSelCtx con
where moreSelCtx = actualCtx ` con junct ion ` newCtx

a1Name = " ( in Vienna ) and ( s e rv ing p i z za ) "
a2Name = " ( in Vienna ) and not ( s e rv i ng p i z za ) "
a3Name = " not ( in Vienna ) and ( s e rv ing p i z za ) "

a1 = createContext a1Name
a2 = createContext a2Name
a3 = createContext a3Name
inVienna = a1 ` d i s j un c t i o n ` a2
s e rv ingP i z za = a1 ` d i s j un c t i o n ` a3
inViennaOrServingPizza = a2 ` d i s j un c t i o n ` a3

instance Complement String
instance Bound String
instance Universe String where

atomicRepresentat ion = [ a1Name
,a2Name
,a3Name ]

instance Mapping ( Context String ) String where
m ctx en t i t y
| l ea s tContext ` equa l s ` ctx = emptyConcept
| otherwise = fromObservat ionLis t

[ obs | obs <− toObservat ionL i s t en t i t y
, getContext obs ` i sMoreSe l ec t iveOrEqua lSe l ` ctx ]

p lachutta1 = O (a1 , " Plachutta " )
plachuttaV = replicate 5 $ O (a2 , " Plachutta " )
p izzahut = replicate 11 $ O (a3 , " Pizza Hut " )
cand inet ta = replicate 3 $ O (a1 , " Candinetta " )
vapianoV = replicate 5 $ O (a1 , " Vapiano " )
vapianoP = replicate 5 $ O (a3 , " Vapiano " )

r e s t au ran t = unionConcept . map createConcept $ obs
where obs =[ p lachutta1]++plachuttaV++pizzahut++cand inet ta++vapianoV++vapianoP

prototypeRestaurants = ca l cu l a t ePro to type r e s t au ran t
re s t s InVienna = genera lContextOperat ion greate s tContext inVienna r e s t au ran t
prototypeInVienna = ca l cu l a t ePro to type re s t s InVienna
re s t s InViennaServ ingP izza = genera lContextOperat ion inVienna a1 re s t s InVienna
protoInViennaServ ingPizza = ca l cu l a t ePro to type re s t s InViennaServ ingP izza
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A.3 Evaluation

The Algorithms A.8, A.9, A.10, A.12 and A.13 are part of the Main
module.

Algorithm A.8: Property tests for
Bound class

−− ∗ Context l a t t i c e bounds t e s t

−− | Check i f l ea s tContext i s the l e a s t context
prop_isLeastContext : : ( Part ia lOrder c , Bound c ) =>

c
−> Bool

prop_isLeastContext c= leas tContext ` i sMoreSe l ec t iveOrEqua lSe l ` c

−− | Check i f g reate s tContext i s the l e a s t context
prop_isGreatestContext : : ( Part ia lOrder c , Bound c ) =>

c
−> Bool

prop_isGreatestContext c = greate s tContext ` i sLe s sS e l e c t i v eOrEqua lS e l ` c
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Algorithm A.9: Property tests for
ContextLattice class

−− ∗ Combination o f context s
−− | idempotent t e s t o f two context
prop_isIdempotent : : ( Part ia lOrder c , ContextLatt i ce c ) =>

c
−> Bool

prop_isIdempotent c = ( c ` con junct ion ` c ) ` equa l s ` c
&&
( c ` d i s j un c t i o n ` c ) ` equa l s ` c

−− | commutative t e s t o f two context s
prop_isCommutative : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>

c −− ^ input context
−> c −− ^ input context
−> Property −− ^ true i f both context s are commutative

prop_isCommutative c1 c2 = c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ) " c1 <= c2 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2 ) " c1 >= c2 " $
( c1 ` con junct ion ` c2 ) ` equa l s ` ( c2 ` con junct ion ` c1 )

&&
( c1 ` d i s j un c t i o n ` c2 ) ` equa l s ` ( c2 ` d i s j un c t i o n ` c1 )

−− | a s s o c i a t i v e t e s t o f th ree context
prop_i sAssoc i a t ive : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>

c −− ^ input context
−> c −− ^ input context
−> c −− ^ input context
−> Property −− ^ True i f th ree context s are a s s o c i a t i v e

prop_i sAssoc i a t ive c1 c2 c3 = c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ) " c1 <= c2 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2 ) " c1 >= c2 " $
c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) " c1 <= c3 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c3 ) " c1 >= c3 " $
c l a s s i f y ( c2 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) " c2 <= c3 " $
c l a s s i f y ( c2 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c3 ) " c2 >= c3 " $
m ` equa l s ` n
&&
o ` equa l s ` p

where m = c1 ` con junct ion ` ( c2 ` con junct ion ` c3 )
n = ( c1 ` con junct ion ` c2 ) ` con junct ion ` c3
o = c1 ` d i s j un c t i o n ` ( c2 ` d i s j un c t i o n ` c3 )
p = ( c1 ` d i s j un c t i o n ` c2 ) ` d i s j un c t i o n ` c3

−− | c on s i s t ency t e s t o f two context s
prop_isCons i s tent : : ( Part ia lOrder c , Bound c , ContextLatt i ce c ) =>

c
−> c
−> Property

prop_isCons i s tent c1 c2 = c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ==>
( c1 ` con junct ion ` c2 ` equa l s ` c1 )

&&
( c1 ` d i s j un c t i o n ` c2 ` equa l s ` c2 )

−− | i s o t one t e s t o f th ree context
prop_is I sotone : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>

c −− ^ input context
−> c −− ^ input context
−> c −− ^ input context
−> Property −− ^ True i f a l l th ree context are i s o t one

prop_is I sotone c1 c2 c3 = c2 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ==>
c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ) " c1 <= c2 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c2 ) " c1 >= c2 " $
c l a s s i f y ( c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c3 ) " c1 <= c3 " $
c l a s s i f y ( c1 ` i sLe s sS e l e c t i v eOrEqua lS e l ` c3 ) " c1 >= c3 " $
( ( c1 ` d i s j un c t i o n ` c2 ) ` i sMoreSe l ec t iveOrEqua lSe l `
( c1 ` d i s j un c t i o n ` c3 ) )

&&
( ( c1 ` con junct ion ` c2 ) ` i sMoreSe l ec t iveOrEqua lSe l `
( c1 ` con junct ion `c3 ) )
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Algorithm A.10: Property tests for
Greatest and Least context

−− ∗∗ Combination with Bound elements

−− | p r o p e r t i e s f o r combining with l ea s tContext context
prop_withCombLeastContext : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>

c
−> Bool

prop_withCombLeastContext c = c ` con junct ion ` l ea s tContext ` equa l s ` l ea s tContext
&&
l ea s tContext ` d i s j un c t i o n ` c ` equa l s ` c

−− | p r o p e r t i e s f o r combining with l ea s tContext context
prop_withCombGreatestContext : : ( Part ia lOrder c , Bound c , Complement c , ContextLatt i ce c ) =>

c
−> Bool

prop_withCombGreatestContext c = c ` con junct ion ` greate s tContext ` equa l s ` c
&&
greate s tContext ` d i s j un c t i o n ` c ` equa l s ` greate s tContext

Algorithm A.11: Property tests for
Complement class

−− ∗ Complement t e s t s

−− | t e s t i f complement o f complement equa l s the input context
prop_isDoubleComp : : ( Part ia lOrder c , Complement c ) =>

c
−> Bool

prop_isDoubleComp c = equa l s c . complement . complement $ c

−− | t e s t i f the complement property ho lds
prop_isLessThenComp : : ( Part ia lOrder c , Complement c ) =>

c
−> c
−> Property

prop_isLessThenComp c1 c2= c1 ` i sMoreSe l ec t iveOrEqua lSe l ` c2 ==>
complement c2 ` i sMoreSe l ec t iveOrEqua lSe l ` complement c1

−− | complement o f g reate s tContext and l eas tContext context
prop_withCombBoundComp : : ( Complement c , ContextLatt i ce c ) =>

c −− ^ input context
−> Property −− ^ True i f property i s f u l f i l l e d

prop_withCombBoundComp c =
c l a s s i f y ( c ` i sMoreSe l ec t iveOrEqua lSe l ` complement c ) " c <= ! c " $
c l a s s i f y ( c ` i sLe s sS e l e c t i v eOrEqua lS e l ` complement c ) " c >= ! c " $
( c ` con junct ion ` complement c ` equa l s ` l ea s tContext )

&&
( c ` d i s j un c t i o n ` complement c ` equa l s ` greate s tContext )
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Algorithm A.12: Module ContextAl-
gebraEvaluation, part 1

{−# LANGUAGE TypeSynonymInstances , F l e x i b l e I n s t an c e s #−}
module Evaluat ion . ContextAlgebraEvaluation where

import Test . QuickCheck
import ContextAlgebra
import Evaluat ion . QuickCheckHelper
import SetImplementation . ContextAlgebraSetInstance
import GeneralContextOperation
−− ∗ Function to generate a l l p o s s i b l e Inputs f o r QuickCheck
instance Arbi t rary CtxType where
−− | input context s f o r the QuickCheck t e s t s , imported from GeneralContextOperation
a rb i t r a r y = elements [ l ea s tContext

, g reate s tContext
, a1
, a2
, a3
, inVienna
, s e rv ingP i z za
, inViennaOrServingPizza ]

t e s t i sAsymet r i c = qCheckBinaryP
( prop_isAsymetric : : CtxType−> CtxType−> Property )

t e s t i s T r a n s i t i v e = qCheckTernaryP
( prop_i sTrans i t ive : : CtxType−> CtxType−> CtxType−>Property )

t e s t i sLea s tCont ex t = qCheckUnary
( prop_isLeastContext : : CtxType−> Bool )

t e s t i sGrea t e s tCont ex t = qCheckUnary
( prop_isGreatestContext : : CtxType−> Bool )

t e s t i s Idempoten t = qCheckUnary
( prop_isIdempotent : : CtxType−> Bool )

test isCommutative = qCheckBinaryP
( prop_isCommutative : : CtxType−> CtxType−> Property )

t e s t i s A s s o c i a t i v e = qCheckTernaryP
( prop_i sAssoc i a t ive : : CtxType−> CtxType−> CtxType−> Property )

t e s t i sC on s i s t e n t = qCheckBinaryP
( prop_isCons i s tent : : CtxType−> CtxType−> Property )

t e s t i s I s o t o n e = qCheckTernaryP
( prop_is I sotone : : CtxType−> CtxType−> CtxType−> Property )

testwithCombLeastContext = qCheckUnary
( prop_withCombLeastContext : : CtxType−> Bool )

testwithCombGreatestContext = qCheckUnary
( prop_withCombGreatestContext : : CtxType−> Bool )

testisDoubleComp = qCheckUnary
( prop_isDoubleComp : : CtxType−> Bool )

testisLessThenComp = qCheckBinaryP
( prop_isLessThenComp : : CtxType−> CtxType−> Property )

testwithCombBoundComp = qCheckUnaryP
(prop_withCombBoundComp : : CtxType−> Property )
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Algorithm A.13: Module ContextAl-
gebraEvaluation, part 2

main = sequence_ [putStrLn " t e s t asymmetric : "
, t e s t i sAsymet r i c
,putStrLn " t e s t t r a n s i t i v e : "
, t e s t i s T r a n s i t i v e
,putStrLn " t e s t i s l e a s t context : "
, t e s t i sLea s tCont ex t
,putStrLn " t e s t i s g r e a t e s t context : "
, t e s t i sGrea t e s tCont ex t
,putStrLn " t e s t i s idempotent : "
, t e s t i s Idempoten t
,putStrLn " t e s t i s commutative : "
, test isCommutative
,putStrLn " t e s t i s a s s o c i a t i v e : "
, t e s t i s A s s o c i a t i v e
,putStrLn " t e s t i s c on s i s t e n t : "
, t e s t i sC on s i s t e n t
,putStrLn " t e s t i s i s o t one : "
, t e s t i s I s o t o n e
,putStrLn " t e s t combination with l e a s t context : "
, testwithCombLeastContext
,putStrLn " t e s t combination with g r e a t e s t context : "
, testwithCombGreatestContext
,putStrLn " t e s t double complement property : "
, testisDoubleComp
,putStrLn " t e s t l e s s then complement property : "
, testisLessThenComp
,putStrLn " t e s t combination with complement : "
, testwithCombBoundComp ]
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Algorithm A.14: Module QuickCheck-
Helper

{−# LANGUAGE TypeSynonymInstances , F l e x i b l e I n s t an c e s #−}

module Evaluat ion . QuickCheckHelper where
import Test . QuickCheck

−− ∗ Helper Functions f o r QuickCheck
numberTests = 10000

qCheckUnary : : ( Arb i t rary c , Show c ) => ( c −> Bool ) −> IO( )
qCheckUnary = quickCheckWith stdArgs { maxSuccess = numberTests }

vCheckUnary : : ( Arb i t rary c , Show c ) => ( c −> Bool ) −> IO( )
vCheckUnary = verboseCheckWith stdArgs { maxSuccess = numberTests }

qCheckBinary : : ( Arb i t rary c , Show c ) => ( c −> c −> Bool ) −> IO( )
qCheckBinary = quickCheckWith stdArgs { maxSuccess = numberTests }

vCheckBinary : : ( Arb i t rary c , Show c ) =>(c −> c −> Bool ) −> IO( )
vCheckBinary = verboseCheckWith stdArgs { maxSuccess = numberTests }

qCheckTernary : : ( Arb i t rary c , Show c ) => ( c −> c−> c −> Bool ) −> IO( )
qCheckTernary = quickCheckWith stdArgs { maxSuccess = numberTests }

qCheckUnaryP : : ( Arb i t rary c , Show c ) => ( c −> Property ) −> IO( )
qCheckUnaryP = quickCheckWith stdArgs { maxSuccess = numberTests }

vCheckUnaryP : : ( Arb i t rary c , Show c ) => ( c −> Property ) −> IO( )
vCheckUnaryP = verboseCheckWith stdArgs { maxSuccess = numberTests }

qCheckBinaryP : : ( Arb i t rary c , Show c ) => ( c −> c −> Property ) −> IO( )
qCheckBinaryP = quickCheckWith stdArgs { maxSuccess = numberTests }

vCheckBinaryP : : ( Arb i t rary c , Show c ) =>(c −> c −> Property ) −> IO( )
vCheckBinaryP = verboseCheckWith stdArgs { maxSuccess = numberTests }

qCheckTernaryP : : ( Arb i t rary c , Show c ) => ( c −> c−> c −> Property ) −> IO( )
qCheckTernaryP = quickCheckWith stdArgs { maxSuccess = numberTests }

vCheckTernaryP : : ( Arb i t rary c , Show c ) => ( c −> c−> c −> Property ) −> IO( )
vCheckTernaryP = verboseCheckWith stdArgs { maxSuccess = numberTests }

A.4 Complexity

This section presents the full source code necessary to execute the com-
plexity benchmarks introduced in Section 7 and the results illustrated
by Figures A.2 and A.3.

Complexity benchmark

The complexity benchmark is executed by Main (Algorithm A.15) mod-
ule which relies on modules ProtoCalculator (Algorithm A.16) and
ConceptGenerator (Algorithm A.17).
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Algorithm A.15: Module Main for
benchmarks

module Main where

import Cr i t e r i on .Main
import System .IO

import Benchmark . ProtoCa lcu lator
import Benchmark . ConceptGenerator

main : : IO( )
main = do
mapM_ makeSafe [ stdout , stdin , stderr ]
generat ionBench

−− ^ needed because on te rmina l unicode cha ra c t e r s abort the execut ion ,
−− the workaround removes the Unicode cha ra c t e r s
makeSafe h = do

ce ’ <− hGetEncoding h
case ce ’ of

Nothing −> return ( )
Just ce −> mkTextEncoding ( ( takeWhile (/= ’/ ’ ) $ show ce ) ++ " //TRANSLIT" ) >>=

hSetEncoding h

prototypeBench = defaultMain
[ bgroup " pro to typeCa l cu la t i on "$
map (\ c −>bench ( l a b e l c ) $ nfIO ( ca l cProto c ) ) [ 1 . . ctx ]
]
where ctx = fromInteger testNumberContexts

exe = testNumberExemplars
l a b e l c = "meets−"++(show c )

++"−contexts−"++(show testNumberContexts )
++"−exemplars−"++(show exe )

generat ionBench = defaultMain
[ bgroup " Concept gene ra t i on "$
map (\ c −> bench ( l a b e l c )

$ nfIO ( createAndStoreConcept c exemplars ) ) [ 1 . . maxNumberContext ]
]
where maxNumberContext = 12

exemplars = 1
l a b e l c = ( " contexts−"++(show c)++"−exemplars−"++(show exe ) )
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Algorithm A.16: Module Concept-
Generation for benchmarks

{−# LANGUAGE TypeSynonymInstances , F l e x i b l e I n s t an c e s #−}
module Benchmark . ConceptGenerator ( createAndStoreConcept ) where
import Test . QuickCheck
import Data . List ( permutat ions )
import quali f ied Data . Set as Set
import ContextAlgebra
import Concept
import SetImplementation . ContextAlgebraSetInstance
type CtxType = Context String
type Exemplar = String
maxNumberContextsForArbitrary = 500
maxNumberExemplarsForArbitrary = 500

createAndStoreConcept : : Int −> Int −> IO ( )
createAndStoreConcept numberContexts numberExemplars = do

exemplars <− getNumberElements getrandomExemplar numberExemplars
atomicContexts <− getNumberElements getrandomContext numberContexts
let allContextCombin = e s t ab l i s hCon t ex tLa t t i c e atomicContexts
concepts <− sequence $ ! map ( genConcept4Ctx exemplars ) allContextCombin
let concept = unionConcept concepts

f i l e p a t h = " . / s r c /Benchmark/TestConcepts /Concept−"++(show numberContexts)++"−"
++(show numberExemplars)++" . txt "

wr i t eConceptFi l e f i l e p a t h concept

getNumberElements : : (Ord a)=> (IO a)−> Int −> IO [ a ]
getNumberElements f number = do
e lements <− sequence $ ! replicate ( toAbsAndZeroToOne number ) f
let a = Set . f romList e lements
i f Set . s i z e a == number then return e lements −− check i f a l l e lements are d i s t i n c t

else getNumberElements f number

getrandomContext =generate ( a r b i t r a r y : : Gen CtxType )
getrandomExemplar =generate ( a r b i t r a r y : : Gen Exemplar )
getrandomInt = generate ( a r b i t r a r y : : Gen Int )

e s t ab l i s hCon t ex tLa t t i c e : : [ CtxType ] −> [ CtxType ]
e s t ab l i s hCon t ex tLa t t i c e atomicRep = ordNub createdContexts
where
d i s j u n c t i o n s s t a r t c t x l i s t = scanl Set . union s t a r t c t x l i s t
permutateAtomics = permutat ions atomicRep
createdContexts = concatMap (\v −> d i s j u n c t i o n s (head v ) ( t a i l v ) ) permutateAtomics

genConcept4Ctx : : [ Exemplar ] −> CtxType −> IO ( Concept CtxType Exemplar )
genConcept4Ctx exemplars ctx = do

numbers <− getNumberElements getrandomInt ( length exemplars )
let concepts = zipWith (\ e a −>fromObservat ionLis t $ ! replicate

( toAbsAndZeroToOne a ) (O ( ctx , e ) ) ) exemplars numbers
return $ ! unionConcept concepts

wr i teConceptFi l e : : FilePath −> Concept CtxType Exemplar −> IO( )
wr i t eConceptFi l e f i l ename concept = writeFile f i l ename (show concept )

instance {−# OVERLAPS #−} Arb i t rary CtxType where
a rb i t r a r y = elements $ take maxNumberContextsForArbitrary generateContextsUniverse

generateContextsUniverse = map createContext $ gene ra t eS t r i ng "c_"
instance {−# OVERLAPS #−} Arb i t rary Exemplar where

a rb i t r a r y = elements $ take maxNumberExemplarsForArbitrary generateExemplars
generateExemplars = gene ra t eS t r i ng "e_"
gene ra t eS t r i ng : : String −> [ String ]
g ene ra t eS t r i ng p r e f i x = [ x++[a ] | x <− p r e f i x : s t r i n g s , a <− [ ’ a ’ . . ’ z ’ ] ]
where s t r i n g s = [ x++[a ] | x <− p r e f i x : s t r i n g s , a <− [ ’ a ’ . . ’ z ’ ] ]

toAbsAndZeroToOne a = i f a == 0 then 1 else abs a
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Algorithm A.17: Module ProtoCalcu-
lator for benchmarks

{−# LANGUAGE TypeSynonymInstances , F l e x i b l e I n s t an c e s , MultiParamTypeClasses #−}
module Benchmark . ProtoCa lcu lator ( testNumberContexts , testNumberExemplars , ca l cProto ) where
import System .IO . Unsafe
import quali f ied Data . Set as Set
import ContextAlgebra
import SetImplementation . ContextAlgebraSetInstance
import Concept
import Mapping
import Contextual izedConcept
import ExemplarScales . NominalExemplars
type CtxType = Context String
type Exemplar = String

−− has to be s e t
testNumberContexts = 10
testNumberExemplars = 1

ca l cProto : : Int −> IO ( Exemplar , Double)
ca l cProto numberDisjunct ions = do

concept <−readConcept testNumberContexts testNumberExemplars
let extractContext = ordNub $ map getContext $ toObservat ionL i s t concept

toCombineContexts = take numberDisjunct ions extractContext
contextua l i zedCon = m ( automat icDis junct ion toCombineContexts ) concept

return $ ca l cu l a t ePro to type contextua l i zedCon

readConcept testNumberContexts testNumberExemplars = readConceptFi le f i l ePa t h
where
f i l ePa t h = " . / s r c /Benchmark/TestConcepts /Concept−"

++(show testNumberContexts)++"−"
++(show testNumberExemplars)++" . txt "

readConceptFi le : : FilePath −> IO ( Concept CtxType Exemplar )
readConceptFi le f i l ename = do

f i l e <−readFile f i l ename
let parsedConcept = read f i l e
return parsedConcept

automat icDis junct ion : : [ CtxType ] −> CtxType
automat icDis junct ion = fo ld l Set . union l ea s tContext −− changed

instance Universe String where
atomicRepresentat ion = map ( Set . elemAt 0) extractAtomicRepresentat ion

extractAtomicRepresentat ion = f i l t e r ((==) 1 . length ) a l lContex t s
where concept = unsafePerformIO $ readConcept testNumberContexts testNumberExemplars

a l lContex t s = ordNub . map getContext . toObservat ionL i s t $ concept

instance Mapping CtxType Exemplar where
m ctx concept
| l ea s tContext ` equa l s ` ctx = emptyConcept
| otherwise = fromObservat ionLis t

[ obs | obs <− toObservat ionL i s t concept
, getContext obs ` i sMoreSe l ec t iveOrEqua lSe l ` ctx ]

−− Taken From Yi
ordNub : : (Ord a ) => [ a ] −> [ a ]
ordNub l = go Set . empty l

where
go _ [ ] = [ ]
go s ( x : xs ) = i f x `Set .member` s then go s xs

else x : go ( Set . insert x s ) xs
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Measurement results

The measurement values for the time needed to calculate a prototype
for different numbers of exemplars and context lattice sizes are illus-
trated in Figures A.2 and A.3..

The measurement values for context lattices each contextualized
concept mapped to one exemplar is given in Figure A.2. For the mea-
surement including ten, eleven and twelve contexts the upper bound
Functions A.1, A.2 and A.3 are determined.

2c · 8c · 10−6 + 0.12 (A.1)

2c · 8c · 10−6 + 0.25 (A.2)

2c · 8c · 10−6 + 0.52 (A.3)
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Figure A.2: Measurements for proto-
type calculation time including one ex-
emplarThe measurement values for context lattices each contextualized

concept mapped to ten exemplars is given in Figure A.3. For the mea-
surement including ten, eleven and twelve contexts the upper bound
Functions A.4, A.5 and A.6 are determined.

2c · 12c · 10−5 + 1.2 (A.4)

2c · 12c · 10−5 + 2.5 (A.5)

2c · 12c · 10−5 + 5.5 (A.6)
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B
Representation of “near”

The representation of near is initialized with data extracted in a man-
ual work flow. They are analyzed in order to build realistic contextual
typicalities. The core of the manual work flow is a web application
using a database. The relational data model used in the database to
store the data is given in Section B.1. Two data collections retrieved
from online platforms are imported into the database using the method
presented in Section B.2. The web application is introduced in Sec-
tion B.3 displaying data, enabling determination of context, location
of locatum and relatum etc. and storing it in the database. The
processed data are analyzed in the database where results are given
in Section B.4. The results are retrieved from the database to cre-
ate contextual typicalities where the method and results are given in
Section B.5.

B.1 Relational data model

The data needed to represent near and to build the web application are
stored into four relations illustrated in Figure B.1. The two relations
willhaben and derStandard include all data imported from the pro-
vided data files. These relations include all attributes that are given in
the data files. In Figure B.1 these two relations are on the left where
points e.g. . . . indicate more attributes that are not further used. Only
those attributes are listed that are used in the further process. From
both relations, those entries that include “nahe” or “nähe” in their
description or title are copied into the relation near. Relation near
stores all information that are determined while the data acquisition
process. Relation users includes attributes to identify users.

Near is the main relation storing data and extracting several views
to calculate contextual typicality and prototypes. The attributes are
mostly self explanatory starting with an unique identifier id for each
real estate entry. StartText and endText include the addresses of the
relatum and locatum in natural language. Attribute beschreibung
is filled with one of these three categories: ’not located’, ’partly
located’ and located’ according to the categorization made by the
user for this real estate entry. Attributes Contexts includes the de-
termined contexts, attribute start the location of the relatum and
attribute end the location of the relatum in coordinates. Attribute
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route stores the calculated direct line between relatum and locatum.
The following attributes idderstandard and idwillhaben include for-
eign keys to reference entries in relations willhaben and derStandard.
Attributes StartStatus and EndStatus were designed for another
classification which was not applied and are left empty. According
to the processing status of an entry the attribute status is ” (empty)
for todo, ’inWork’ for in progress and ’finished’ for entries that are
completely processed. For each status an own view is created. At-
tribute userid stores the identifier of the user that set this entry to
status ’finished’.

The locations of the relatum and locatum are determined on a map
shown in reference system EPSG code 43261 not having defined a 1 http://epsg.io/4326

projection to measure metric distances. To enable metric distance
measurements view near3857 is created that projects the locations into
the projection system EPSG code 38572. From this view other views 2 http://epsg.io/3857

are created that categorize the processed real estate entries. According
the categorization the views unbrauchbar3857 for not located entries,
brauchbar3957 for partly located entries and perfekt3957 for entries
that can be further processed are established. To distinguish these
views the attribute beschreibung is used. The entries included in
the view perfekt3857 are analyzed and used to initialize the context
algebra for near.

B.2 Data import

The two data sets (willhaben and derStandard) are given in two dif-
ferent formats e.g. CSV and XML. Each data set is imported with
different functionality. Both import implementations share the usage
of Haskell library HDBC to communicate with the database. Algorithms
used to import the willhaben data set into the relation willhaben are
given in following section. Algorithms used to import the derStandard
data set into relation derStandard also follow.

Data import from “willhaben” data set

Willhaben data set is provided in one single file formatted as comma
separated values (CSV). Main module (Algorithm B.1) includes all
other modules and is executed reading the file “willhaben.csv”. The
“willhaben.csv” file is parsed by functions included in module Willhaben
(Algorithm B.2) using library cassava http://hackage.haskell.org/
package/cassava where each entry is transformed into a Haskell type.
This data are saved into relation “willhaben” (Figure B.1) in the
database with functionality included in module Database (Algorithm B.3).

http://epsg.io/4326
http://epsg.io/3857
http://hackage.haskell.org/package/cassava
http://hackage.haskell.org/package/cassava
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Algorithm B.1: Module Main for im-
porting “willhaben” data set

module Main where

import Willhaben
import Database

main = do
let w i l l h a b e n f i l e = " wi l lhaben . csv "
w i l l h ab en en t r i e s <−readWi l lhabenFi l e w i l l h a b e n f i l e
insertWil lhabenValuesInDB w i l l h ab en en t r i e s
putStrLn $ " wi l lhaben F i l e : "++ w i l l h a b e n f i l e++" proces sed "
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Algorithm B.2: Module Willhaben
{−# LANGUAGE DeriveGener ic , Over loadedStr ings #−}
module Willhaben ( readWil lhabenFi le , WillhabenEntry ( . . ) , processEveryEntry , check length )

where

import Data . Csv
import quali f ied Data . ByteStr ing . Lazy as BL
import quali f ied Data . Vector as V
import Data . Text
import GHC. Gener ics
import quali f ied Data .Char as C

data WillhabenEntry = WillhabenEntry {
i d f i l e : : ! Text , x u f e f f I d : : ! Text , l i n k 2 d e t a i l : : ! Text , kopf : : ! Text , code : : ! Text ,
o b j e k t i n f o : : ! Text , en e r g i e : : ! Text , auss tat tung : : ! Text , beschre ibung : : ! Text ,
p r e i s : : ! Text , p r e i s d e t a i l s : : ! Text , f l a e ch en : : ! Text , z u s a t z i n f o s : : ! Text ,
kontakt : : ! Text , l ag e : : ! Text , image : : ! Text , adrc l ean : : ! Text , summe : : ! Text ,
code2 : : ! Text , updated : : ! Text , ob jekttyp : : ! Text , bautyp : : ! Text , wohnm2 : : ! Text ,
nutzm2 : : ! Text , grundm2 : : ! Text , gartenm2 : : ! Text , gesamtm2 : : ! Text ,
terassenm2 : : ! Text , balkonm2 : : ! Text , l i f t : : ! Text , zimmer : : ! Text ,
badezimmer : : ! Text , wc : : ! Text , ava i l ab l eAt : : ! Text , heizung : : ! Text , f loor : : ! Text ,
mietkauf : : ! Text , k au fp r e i s : : ! Text , gesamtmiete : : ! Text , net tomiete : : ! Text ,
bk : : ! Text , compensation : : ! Text , mak l e rprov i s i on : : ! Text , baujahr : : ! Text ,
hwb : : ! Text , p l z : : ! Text , o r t : : ! Text , s t r a s s e : : ! Text , wohnnutzm2 : : ! Text ,
objektBautyp : : ! Text , addresseGesamt : : ! Text , address Index : : ! Text , l a t : : ! Text ,
long : : ! Text , popRate : : ! Text , preism2 : : ! Text , mietpreism2 : : ! Text
}
deriving ( Generic , Show)

instance FromRecord WillhabenEntry where
parseRecord v
| Prelude . length v > 0 =

WillhabenEntry <$> v . ! 0 <∗> v . ! 1 <∗> v . ! 2 <∗> v . ! 3 <∗> v . ! 4 <∗> v . ! 5
<∗> v . ! 6 <∗> v . ! 7 <∗> v . ! 8 <∗> v . ! 9 <∗> v . ! 10 <∗> v . ! 11
<∗> v . ! 12 <∗> v . ! 13 <∗> v . ! 14 <∗> v . ! 15 <∗> v . ! 16 <∗> v . ! 17
<∗> v . ! 18 <∗> v . ! 19 <∗> v . ! 20 <∗> v . ! 21 <∗> v . ! 22 <∗> v . ! 23
<∗> v . ! 24 <∗> v . ! 25 <∗> v . ! 26 <∗> v . ! 27 <∗> v . ! 28 <∗> v . ! 29
<∗> v . ! 30 <∗> v . ! 31 <∗> v . ! 32 <∗> v . ! 33 <∗> v . ! 34 <∗> v . ! 35
<∗> v . ! 36 <∗> v . ! 37 <∗> v . ! 38 <∗> v . ! 39 <∗> v . ! 40 <∗> v . ! 41
<∗> v . ! 42 <∗> v . ! 43 <∗> v . ! 44 <∗> v . ! 45 <∗> v . ! 46 <∗> v . ! 47
<∗> v . ! 48 <∗> v . ! 49 <∗> v . ! 50 <∗> v . ! 51 <∗> v . ! 52 <∗> v . ! 53
<∗> v . ! 54 <∗> v . ! 55 <∗> v . ! 56

| otherwise = f a i l " f a i l e d to parse "

myOptions = defaultDecodeOptions {
decDe l imi te r = fromIntegral (C. ord ’\ t ’ )

}

readWi l lhabenFi l e : : String −> IO ( [ WillhabenEntry ] )
readWi l lhabenFi l e f i l ename= do
csvData <− BL. readFile f i l ename
case ( decodeWith myOptions HasHeader csvData : : Either String (V. Vector WillhabenEntry ) ) of

Left e r r −> do Prelude .putStrLn e r r ; return [ ] ;
Right v −> return $ V. t oL i s t v ;

check length : : [ WillhabenEntry ] −>[[Int ] ]
check length = Prelude .map ( processEveryEntry Data . Text . length )

processEveryEntry : : ( Text −> b) −> WillhabenEntry −> [ b ]
processEveryEntry f we = Prelude .map f [ i d f i l e we , x u f e f f I d we , l i n k 2 d e t a i l we , kopf we ,
code we , ob j e k t i n f o we , en e r g i e we , auss tat tung we , beschre ibung we , p r e i s we ,
p r e i s d e t a i l s we , f l a e ch en we , z u s a t z i n f o s we , kontakt we , l age we , image we ,
adrc l ean we , summe we , code2 we , updated we , objekttyp we , bautyp we , wohnm2 we ,
nutzm2 we , grundm2 we , gartenm2 we , gesamtm2 we , terassenm2 we , balkonm2 we , l i f t we ,
zimmer we , badezimmer we , wc we , ava i l ab l eAt we , heizung we , Willhaben . f loor we ,
mietkauf we , k au fp r e i s we , gesamtmiete we , nettomiete we , bk we , compensation we ,
mak le rprov i s i on we , baujahr we , hwb we , p l z we , o r t we , s t r a s s e we , wohnnutzm2 we ,
objektBautyp we , addresseGesamt we , address Index we , l a t we , long we , popRate we ,
preism2 we , mietpreism2 we ]
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Algorithm B.3: Module Database for
the “willhaben” data set

module Database ( createWil lhabenTable , insertWil lhabenValuesInDB ) where

import Control . Exception
import Database .HDBC
import Database .HDBC. PostgreSQL
import Willhaben

connec t i onSt r ing = " host =127 .0 .0 .1 dbname=spat ia lConceptNear user=pos tg r e s password=t "

createConnect ion = connectPostgreSQL connec t i onSt r ing

createWil lhabenTable = do
conn <− createConnect ion
dropstatement <− prepare conn " drop tab l e i f e x i s t s wi l lhaben ; "
let c reate s ta tement = " c r e a t e t ab l e wi l lhaben ( id s e r i a l , i d f i l e varchar (5000) ,

x u f e f f I d varchar (5000) , l i n k 2 d e t a i l varchar (5000) , kopf varchar (5000) ,
code varchar (5000) , o b j e k t i n f o varchar (5000) , en e r g i e varchar (5000) ,
auss tat tung varchar (5000) , beschre ibung varchar (5000) , p r e i s varchar (5000) ,
p r e i s d e t a i l s varchar (5000) , f l a e ch en varchar (5000) , z u s a t z i n f o s varchar (5000) ,
kontakt varchar (5000) , l ag e varchar (5000) , image varchar (5000) , adrc l ean varchar (5000) ,
summe varchar (5000) , code2 varchar (5000) , updated varchar (5000) ,
ob jekttyp varchar (5000) , bautyp varchar (5000) , wohnm2 varchar (5000) ,
nutzm2 varchar (5000) , grundm2 varchar (5000) , gartenm2 varchar (5000) ,
gesamtm2 varchar (5000) , terassenm2 varchar (5000) , balkonm2 varchar (5000) ,
l i f t varchar (5000) , zimmer varchar (5000) , badezimmer varchar (5000) , wc varchar (5000) ,
ava i l ab l eAt varchar (5000) , heizung varchar (5000) , f l o o r varchar (5000) ,
mietkauf varchar (5000) , k au f p r e i s varchar (5000) , gesamtmiete varchar (5000) ,
nettomiete varchar (5000) , bk varchar (5000) , compensation varchar (5000) ,
mak l e rprov i s i on varchar (5000) , baujahr varchar (5000) , hwb varchar (5000) ,
p l z varchar (5000) , o r t varchar (5000) , s t r a s s e varchar (5000) ,
wohnnutzm2 varchar (5000) , objektBautyp varchar (5000) , addresseGesamt varchar (5000) ,
address Index varchar (5000) , l a t varchar (5000) , long varchar (5000) , popRate varchar (5000) ,
preism2 varchar (5000) , mietpreism2 varchar ( 5 0 0 0 ) ) ; "

sq l s ta tement <− prepare conn create s ta tement
execute dropstatement [ ]
execute sq l s ta tement [ ]
commit conn
d i s connec t conn
return ( )

insertWil lhabenValuesInDB : : [ WillhabenEntry]−> IO( )
insertWil lhabenValuesInDB w i l l h ab en en t r i e s= do

conn <− createConnect ion
in s e r t s t a t ement <− prepare conn " i n s e r t i n to wi l lhaben ( i d f i l e , xu f e f f I d , l i n k 2d e t a i l ,

kopf , code , ob j ek t in f o , energ i e , ausstattung , beschre ibung , p r e i s , p r e i s d e t a i l s ,
f l a echen , zu s a t z i n f o s , kontakt , lage , image , adrc lean , summe , code2 , updated ,
objekttyp , bautyp , wohnm2 , nutzm2 , grundm2 , gartenm2 , gesamtm2 , terassenm2 , balkonm2 ,
l i f t , zimmer , badezimmer , wc , ava i lab leAt , heizung , f l o o r , mietkauf , kau fp re i s ,
gesamtmiete , nettomiete , bk , compensation , maklerprov i s ion , baujahr , hwb , plz , ort ,
s t r a s s e , wohnnutzm2 , objektBautyp , addresseGesamt , addressIndex , l a t , long , popRate ,
preism2 , mietpreism2 ) va lue s ( ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ,
? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ) ; "

executeMany in s e r t s t a t ement $ ! toSq lValues w i l l h ab en en t r i e s
commit conn
d i s connec t conn

toSqlValues : : [ WillhabenEntry ] −> [ [ SqlValue ] ]
toSq lValues = map ( processEveryEntry toSq l )

Data import from “derStandard” data set

DerStandard data is provided in XML format in schema Openimmo3. 3 http://www.openimmo.de

The schema groups the information into pieces which supports extrac-
tion of necessary data for data acquisition. For example the Geo tag

http://www.openimmo.de
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(<Geo>) includes the sub tags: <plz> for the Austrian abbreviation
for zip code, <ort> for city, <strasse> for street, <bundesland> for
federal state, and a user defined simplified tag which can be used to
find the location of the relatum. The tag <freitexte> (translated as
free text) includes a description of the real estate object. It is split
into a <objekttitel> (title of the object) and a <objektbeschreibung>
(object description). This tags are used to extract the location of the
locatum and the context.

Module Main includes the functionality to parse the XML file, create
Haskell types from it and saves them into the database. The main (Al-
gorithm B.4) function combines the functions starting with parsing the
file “export.XML” using functions included in module ParseOpenImmo
(Algorithm B.5) which relies on the library xml-conduit http://hackage.
haskell.org/package/xml-conduit. The parsed data are transformed
into Haskell types created in module Openimmo (Algorithm B.6). The
data are then saved into relation “derStandard” (Figure B.1) via the
module Database (Algorithm B.7).

Algorithm B.4: Module Main for im-
porting “derStandard” data set

module Main where

import Openimmo
import ParseOpenimmo
import Database

main : : IO ( )
main = do

let f i l ename = " export . xml "
immobil ien <− extract Immobi l i en f i l ename
insertDerStandardValuesinDB $ ! immobi l ien

http://hackage.haskell.org/package/xml-conduit
http://hackage.haskell.org/package/xml-conduit
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Algorithm B.5: Module ParseImmo
{−# LANGUAGE Over loadedStr ings , BangPatterns #−}
module ParseOpenimmo ( extract Immobi l i en ) where

import Openimmo
import quali f ied Text .XML as X
import Text .XML. Cursor
import quali f ied Data . Text as T

extract Immobi l i en : : String −> IO [ Immobil ie ]
ext ract Immobi l i en f i l ename = do

doc <− X. readFile X. de f f i l ename
let cur so r = fromDocument doc
let immobil ien = map ext rac t Immobi l i e ( cu r so r $/ element " anb i e t e r "

&/ element " immobi l ie " )
return immobil ien

ext rac t Immobi l i e : : Cursor −> Immobil ie
ext rac t Immobi l i e c= Immobil ie {geo= extractGeo c

, f r e i t e x t e = ex t r a c tF r e i t e x t e c
, ob jektkat = Objektkategor i e " " " " " " " " " " " "
, p r e i s e = Pre i s e " " " " " "
, verwaltungTech =VerwaltungTechn " " " " " " " "
}

extractGeo : : Cursor −> Geo
extractGeo c = Geo { p l z = nplz , o r t = nort , s t r a s s e = ns t ra s s e , land= nland ,

bundesland = nbundesland , etage = netage ,
u s e r_de f ined_s imp l i f i ed= nuse r_de f ined_s impl i f i ed }

where nplz = T. s t r i p $ T. concat $ c $/ element " geo " &/ element " p l z " &// content
nort = T. s t r i p $ T. concat $ c $/ element " geo " &/ element " o r t " &// content
n s t r a s s e = T. s t r i p $ T. concat $ c $/ element " geo " &/ element " s t r a s s e "

&// content
nland = T. s t r i p $ T. concat $ c $/ element " geo " &/ element " land "

>=> a t t r i b u t e " iso_land "
nbundesland = T. s t r i p $ T. concat $ c $/ element " geo " &/ element " bundesland "

&// content
netage= T. s t r i p $ T. concat $ c $/ element " geo " &/ element " etage " &// content
nuse r_de f ined_s impl i f i ed= T. s t r i p $ T. concat $ c $/ element " geo "

&/ element " u se r_de f ined_s imp l e f i e ld " &// content

e x t r a c tF r e i t e x t e : : Cursor −> Fre i t e x t
e x t r a c tF r e i t e x t e c = Fr e i t e x t e { o b j e k t t i t e l = nObjek t t i t e l ,

ob j ektbeschre ibung = nObjektbeschreibung }
where nOb j ek t t i t e l =T. s t r i p $ T. concat $ c $/ element " f r e i t e x t e "

&/ element " o b j e k t t i t e l " &// content
nObjektbeschreibung = T. s t r i p $ T. concat $ c $/ element " f r e i t e x t e "

&/ element " ob jektbeschre ibung " &// content
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Algorithm B.6: Module OpenImmo
module Openimmo where

import Data . Text hiding (map, concat )

data Immobil ie = Immobil ie {geo : : Geo , ob jektkat : : Objektkategor ie , p r e i s e : : Pre i se ,
f r e i t e x t e : : Fre i t ex t , verwaltungTech : : VerwaltungTechn}

deriving Show ;

app ly f Immobi l i e : : ( Text −> b) −> Immobil ie −> [ b ]
apply f Immobi l i e f i = concat [ applyfGeo f $ geo i , app ly fOb jek tkat ego r i e f

$ ob jektkat i , app l y fP r e i s e f $ p r e i s e i , a pp l y fF r e i t e x t e f
$ f r e i t e x t e i , applyfVerwaltungTechn f $ verwaltungTech i ]

data Geo = Geo { p l z : : ! Text , o r t : : ! Text , s t r a s s e : : ! Text , land : : ! Text ,
bundesland : : ! Text , e tage : : ! Text , u s e r_de f ined_s imp l i f i ed : : ! Text }

deriving Show ;

applyfGeo : : ( Text −> b) −> Geo −> [ b ]
applyfGeo f g = map f [ p l z g , o r t g , s t r a s s e g , land g , bundesland g , etage g ,

u s e r_de f ined_s imp l i f i ed g ]

data Objektkategor i e = Objektkategor i e {miete_pacht : : ! Text , kauf : : ! Text ,
wohnen : : ! Text , gewerbe : : ! Text , an lage : : ! Text ,
ob j ek t a r t : : ! Text} deriving Show ;

app ly fOb j ek tkatego r i e : : ( Text −> b) −> Objektkategor i e −> [ b ]
app ly fOb j ek tkatego r i e f o = map f [ miete_pacht o , kauf o , wohnen o , gewerbe o

, an lage o , ob j ek t a r t o ]

data Pre i s e = Pre i s e { ka l tmie t e : : ! Text , kaut ion : : ! Text ,
p r o v i s i o n s p f l i c h t i g : : ! Text} deriving Show ;

a pp l y fP r e i s e : : ( Text −> b) −> Pre i s e −> [ b ]
app l y fP r e i s e f p = map f [ ka l tmie t e p , kaut ion p , p r o v i s i o n s p f l i c h t i g p ]

data Fre i t e x t = Fr e i t e x t e { o b j e k t t i t e l : : ! Text , ob j ektbeschre ibung : : ! Text}
deriving Show ;

a pp l y fF r e i t e x t e : : ( Text −> b) −> Fre i t e x t −> [ b ]
app l y fF r e i t e x t e f t ex t = map f [ o b j e k t t i t e l text , ob j ektbeschre ibung text ]

data VerwaltungTechn = VerwaltungTechn { objektnrExtern : : ! Text , oppenimmoObid : : ! Text
, standVom : : ! Text , akt ion : : ! Text}

deriving Show ;

applyfVerwaltungTechn : : ( Text −> b) −> VerwaltungTechn −> [ b ]
applyfVerwaltungTechn f v = map f [ objektnrExtern v , oppenimmoObid v , standVom v

, akt ion v ]
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Algorithm B.7: Module Database for
“derStandard” data set

module Database where

import Control . Exception
import Database .HDBC
import Database .HDBC. PostgreSQL
import Openimmo

connec t i onSt r ing = " host =127 .0 .0 .1 dbname=spat ia lConceptNear user=pos tg r e s password=t "
createConnect ion = connectPostgreSQL connec t i onSt r ing

createDerStandardtab le = do
conn <− createConnect ion
dropStatement <− prepare conn " drop tab l e i f e x i s t s derstandard ; "
let cS = " c r e a t e t ab l e derstandard ( id s e r i a l , p l z varchar (1000) , o r t varchar (1000) ,

s t r a s s e varchar (1000) , land varchar (1000) , bundesland varchar (1000) ,
e tage varchar (1000) , u s e rDe f i n edS imp l i f i e d varchar (1000) ,
mietePacht varchar (1000) , kauf varchar (1000) , wohnen varchar (1000) ,
gewerbe varchar (1000) , an lage varchar (1000) , ob j ek t a r t varchar (1000) ,
ka l tmie t e varchar (1000) , kaut ion varchar (1000) ,
p r o v i s i o n s p f l i c h t i g varchar (1000) , o b j e k t t i t e l varchar (10000) ,
ob jektbeschre ibung varchar (10000) , objektnrExtern varchar (1000) ,
openimmoObid varchar (1000) , standVom varchar (1000) , akt ion varchar (1000) ) "

createStatement <− prepare conn cS
execute dropStatement [ ]
execute createStatement [ ]
commit conn
d i s connec t conn
return ( )

insertDerStandardValuesinDB : : [ Immobil ie ] −> IO( )
insertDerStandardValuesinDB en t r i e s = do

conn <− createConnect ion
let in= " i n s e r t i n to derstandard ( plz , ort , s t r a s s e , land , bundesland , etage ,

u s e rDe f i n edS imp l i f i ed , mietePacht , kauf , wohnen , gewerbe , anlage , ob j ektar t ,
ka l tmiete , kaution , p r o v i s i o n s p f l i c h t i g , o b j e k t t i t e l , ob jektbeschre ibung ,
objektnrExtern , openimmoObid , standVom , akt ion )
va lue s ( ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ) "

i n s e r t s t a t ement <− prepare conn in
executeMany in s e r t s t a t ement $ ! toSq lValues e n t r i e s
commit conn
a <− quickQuery ’ conn " s e l e c t ∗ from use r s " [ ]
print a
return ( )

toSqlValues : : [ Immobil ie ] −> [ [ SqlValue ] ]
toSq lValues = map ( apply f Immobi l i e toSq l )

B.3 Web Application

The Web application is implemented using Haskell and web technolo-
gies distinguished into several directories. The application uses a post-
gres database and is executed via scotty (http://hackage.haskell.
org/package/scotty) webserver with the Glasgow Haskell Compiler
(ghc). The source code directory for this web application is illustrated
by Figure B.2. Directory js includes the JavaScript libraries and the
file myquery.js that is necessary for the web map. Directory css in-
cludes the file mycss.css including styling instructions in Cascading
Style Sheet (CSS) format. Directory images includes the images used

as markers on the web map e.g., letter_a.png , letter_e.png
etc. Directory src includes all Haskell modules executed by the web

http://hackage.haskell.org/package/scotty
http://hackage.haskell.org/package/scotty
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server. The Haskell modules offering the functionality is split into the
four directories Database, Service, View, DataTransferObject.

Webapp

js

myquery.js

css

mycss.css

images

. . .

src

Main.hs

Database

ImmobilieProcessing.hs

SessionHandling.hs

StatusProcessing.hs

DBUtils.hs

DataTransferObject

Immobilie.hs

Status.hs

Service

Geocode.hs

View

LogOnView.hs

ImmobilieView.hs

ProcessView.hs

Figure B.2: Directory structure of the
Haskell Web Application

Scotty web server handles HTTP requests and offers functions for
easy HTTP parameter parsing. Scotty executes the Main module
(given in Algorithms B.8, B.9, B.10) that integrates all other modules
needed to create the processing work flow of real estate entries.

More external libraries are used to establish the necessary func-
tionality. For example, the external library GeocoderOpenCage(http:
//hackage.haskell.org/package/GeocoderOpenCage) is included to
query an online gazetteer. In order to interact with this package the
module Geocode given in Algorithm B.18 is created. Another library
scotty-session(http://hackage.haskell.org/package/scotty-session)
enables a session managing using cookies. A session is only created for
already known users in the database where the functionality to inter-
act with the database is included in module SessionHandling given in
Algorithm B.12. All database related functions rely on the external li-
brary HDBC(http://hackage.haskell.org/package/HDBC-postgresql)
where shared functions for all modules are included in module DBUtils
given in Algorithm B.15. The data retrieved for real estate entries
from modules StatusProcessing (Algorithm B.11) and Immobilie-
Processing (Algorithm B.13, B.14) are translated into Haskell ob-
jects via the modules Immobilie (Algorithm B.16) and Status (Algo-
rithm B.17). The Haskell objects are marked up using library blaze
(http://hackage.haskell.org/package/blaze-html) in the mod-
ules ProcessView (Algorithms B.20, B.21) and ImmobilieView (Al-
gorithm B.22, B.23) to establish HTML interfaces. Also the module
LogInView (Algorithm B.19) uses blaze to generate the Log-On in-
terface.

The front end interfaces (ProcessView, ImmobilieView and LogIn-
View) are using JavaScript libraries and style the interface with HTML
and CSS. The interfaces are responsible which is enabled by CSS li-
brary bootstrap (http://www.w3schools.com/bootstrap/). For in-
dividual styling of the elements own defined CSS file mycss.css (Al-
gorithm B.24) is created. The web map uses the library OpenLayers3
(http://openlayers.org) and is customized and enriched with fur-
ther functionality with the own defined JavaScript Algorithm (Algo-
rithms B.25, B.26, B.27, B.28 and B.29) extensively using JQuery
(http://jquery.com) for DOM processing and AJAX requests. To
highlight the words “nahe” and “nähe” the library highlight (http:
//goo.gl/hDPYA) is used. The input field for contexts auto completes
contexts by showing existing contexts in the database using library
autocomplete (https://github.com/devbridge/jQuery-Autocomplete).

http://hackage.haskell.org/package/GeocoderOpenCage
http://hackage.haskell.org/package/GeocoderOpenCage
http://hackage.haskell.org/package/scotty-session
http://hackage.haskell.org/package/HDBC-postgresql
http://hackage.haskell.org/package/ blaze- html
http://www.w3schools.com/bootstrap/
http://openlayers.org
 http://jquery.com
http://goo.gl/hDPYA
http://goo.gl/hDPYA
 https://github.com/devbridge/ jQuery -Autocomplete
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Algorithm B.8: Module Main for the
Web Application, part 1

{−# LANGUAGE ScopedTypeVariables , Over loadedStr ings #−}
module Main where
import Network .Wai . Middleware . RequestLogger
import Text . Blaze . Html . Renderer . Text
import Control .Monad.IO . C lass
import Control .Monad
import Web. Scotty
import Web. Scotty . Cookie
import quali f ied Data . Text as T
import Data .Maybe
import Data . Text .Read
import quali f ied Data . List as L
import Data . Monoid
import View . LogOnView
import View . ProcessView
import View . ImmobilieView
import quali f ied View . Ana lys i s as Ana lys i s
import quali f ied Se rv i c e . Geocode as G
import quali f ied Database . Immobi l i eProces s ing as IP
import quali f ied Database . S ta tusProce s s ing as SP
import quali f ied Database . Sess ionHandl ing as SH
import quali f ied Database . Ana lys i s as A

main = sco t ty 3000 $ do
middleware logStdoutDev

−− Se s s i on s
get " / " $ do html . renderHtml $ renderLoginPage
post " / l o g i n " $ do

username <− param " username "
pass <− param " password "
isUserknown <− l i f t I O $ checkIfknown username pass
case isUserknown of

Just a −> do
s e s s i o n <− l i f t I O $ SH. c r e a t eS e s s i o n username
setS impleCookie " h i t s " $ T. pack $ show s e s s i o n
r e d i r e c t " / overview "

Nothing −> r e d i r e c t " / "
get " / logout " $ do

name <− liftM toUserSe s s i on $ getCookie " h i t s "
let u s e r s e s s i o n = fromJust name
de l e t eCook i e " h i t s "
l i f t I O $ SH. d e l e t e S e s s i o n u s e r s e s s i o n
r e d i r e c t " / "

−− workf lows
get " / overview " $ do
h i t s<− liftM toUserSe s s i on $ getCookie " h i t s "
i sAc t i v e <− l i f t I O $ i sCook i eAct ive h i t s
case i sAc t i v e of

Nothing −> r e d i r e c t " / "
Just s e s s i o n −> do

setS impleCookie " h i t s " $ T. pack $ show s e s s i o n
renderOverviewPage −− overview page

get " / i np r o c e s s " $ do
id <− param " id "
renderStandardEntry id

get " /inWork " $ do
id <− param " id "
l i f t I O $ SP . updateProcess id SP .Work

get " / f i n i s h e d " $ do
h i t s<− liftM toUserSe s s i on $ getCookie " h i t s "
i sAc t i v e <− l i f t I O $ i sCook i eAct ive h i t s
case i sAc t i v e of

Nothing −> r e d i r e c t " / "
Just s e s s i o n −> do

setS impleCookie " h i t s " $ T. pack $ show s e s s i o n
id <− param " id "
l i f t I O $ IP . processedByUser id ( f s t s e s s i o n )
p ro c e s s f i n i s hBut t on id

get " / geocode " $ do
id <− param " id "
geocodeStr ing <−param " toGeocode "
geocode id geocodeStr ing
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Algorithm B.9: Module Main for the
Web Application, part 2

−− add i t i ona l in fo rmat ion
get " /addContext " $ do

id <−param " id "
ctx <− param " context "
addContext id ctx

get " /addBewertung " $ do
id <−param " id "
bewertung<− param " bewertung "
addBeschreibung id bewertung

−− po in t s
get " / saveStar tPo int " $ do

id <− param " id "
x <− param "X"
y <− param "Y"
savePoint id x y IP . Sta r t

get " / saveEndPoint " $ do
id <− param " id "
x <− param "X"
y <− param "Y"
savePoint id x y IP .End

get " / ge tSta r tPo in t " $ do
id <− param " id "
getPoint id IP . Sta r t

get " /getEndPoint " $ do
id <− param " id "
getPoint id IP . End

get " / saveGeocodeStr ing " $ do
id <− param " id "
str ingToSave <− param " e l ementStr ing "
ptype <− param " po inttype "
saveGeocodingStr ing id str ingToSave ( toPointType ptype )

get " / autocomplete / context s " $ do
toJSONAllContext

get " / an a l y s i s / s t a r t " $ do
c reateAna lys i sPage

get " / an a l y s i s / context s " $ do
ctx <− param " context "
geo j son <− l i f t I O $ A. retrieveGeomForContext ctx
j son $ T. pack geo j son

−− get the r e s s ou r c e s
get " / images / : bar " $ do
v <− param " bar "
f i l e $ " . / images / "++ v

get " / c s s / : bar " $ do
v <− param " bar "
f i l e $ " . / c s s / "++ v

get " / c s s / images / : bar " $ do
v <− param " bar "
f i l e $ " . / c s s / images / "++ v

get " / j s / : bar " $ do
v <− param " bar "
f i l e $ " . / j s / "++ v

checkIfknown : : String −> String −> IO (Maybe String )
checkIfknown user pass = SH. i sUserPassVa l id user pass

c r ea t eSe s s i onForUse r : : String −> IO SH. UserSes s ion
c rea teSe s s i onForUse r user = SH. c r e a t eS e s s i o n user

i sCook i eAct ive : : Maybe SH. UserSes s ion −> IO (Maybe SH. UserSes s ion )
i sCook i eAct ive maybeSession = case maybeSession of

Just s e s s i o n −> SH. i s S e s s i o nAc t i v e s e s s i o n
Nothing −> return Nothing

toUserSe s s i on : : Maybe T. Text −> Maybe SH. UserSes s ion
toUserSe s s i on t = case t of

Nothing −> Nothing
Just t ex t −> Just$ read $ T. unpack text
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Algorithm B.10: Module Main for the
Web Application, part 3

−− ∗ Progres s
renderOverviewPage : : ActionM ( )
renderOverviewPage = do

todo <− l i f t I O SP . se l ectTodo
prog r e s s <− l i f t I O SP . se lectInWork
f i n i s h e d <− l i f t I O SP . s e l e c tF i n i s h e d
html . renderHtml $ createOverview todo prog r e s s f i n i s h e d

renderStandardEntry : : Int−> ActionM ()
renderStandardEntry id = do

l i f t I O $ SP . updateProcess id SP .Work
naheEntry <− l i f t I O $ IP . r e t r i e v e Immob i l i e id
context s <− l i f t I O $ IP . r e t r i eveContex t id
beschre ibung<− l i f t I O $ IP . r e t r i ev eBe s ch r e ibung id
html . renderHtml $ renderImmobi l i e naheEntry context s beschre ibung

p ro c e s s f i n i s hBut t on : : Int −> ActionM ( )
p ro c e s s f i n i s hBut t on id = do

saveProces s id SP . Fin i shed
r e d i r e c t " / overview#todo " −− renderOverviewPage

saveProces s : : Int −> SP . Proces sStatus −> ActionM ( )
saveProces s id prog r e s s = l i f t I O $ SP . updateProcess id prog r e s s

−− ∗ Point manipulat ion
getPoint : : Int−> IP . Point −> ActionM ( )
getPoint id pointtype = do

point <− l i f t I O $ IP . r e t r i e v ePo i n t id pointtype
j son $ T. pack po int

savePoint : : Int −> String −> String −> IP . Point −> ActionM ( )
savePoint id x y po inttype = do

l i f t I O $ IP . updatePoint id x y po inttype
j son $ T. pack x

geocode : : Int −> String −> ActionM ( )
geocode id geocodeStr ing= do

a<− l i f t I O $ G. geocodeText id geocodeStr ing
j son a

toPointType : : T. Text −> IP . Point
toPointType a

| a == " Star t " = IP . Sta r t
| a == "End" = IP .End

saveGeocodingStr ing : : Int −> String −> IP . Point −> ActionM ( )
saveGeocodingStr ing id str ingToSave ptype = do

t ex t <− l i f t I O $ IP . savePo intSt r ing id ptype str ingToSave
j son text

−− ∗ add i t i ona l f i e l d s to f i l l in
addContext : : Int−> String−> ActionM ( )
addContext id ctx = do

newctx <− l i f t I O $ IP . addNewContext id ctx
j son $ T. pack newctx

toJSONAllContext : : ActionM ()
toJSONAllContext = do

a l lContex t s <− l i f t I O $IP . r e t r i e v eA l lCon t ex t s
let toJSON = map (\ c −> T. concat [T. pack " {\" va lue \ " : \ " " , c , T. pack " \"} " ] ) a l lContex t s

most = T. concat (L . intersperse " , " toJSON)
a l l = T. concat [T. pack " {\" query \ " : \ " Unit \ " , \ " sugg e s t i on s \ " : [ " , most ,T. pack " ] } " ]

j s on a l l

addBeschreibung : : Int −> String −> ActionM ( )
addBeschreibung id besch= do

newBeschreibung <− l i f t I O $ IP . addNewBeschreibung id besch
j son $ T. pack newBeschreibung
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Algorithm B.11: Module StatusPro-
cesssing

module Database . S ta tusProce s s ing ( Proces sStatus ( . . )
, s e l ectTodo
, se lectInWork
, s e l e c tF i n i s h e d
, updateProcess )

where

import Database .HDBC
import Control .Monad
import quali f ied Data . Text as T hiding (map, concat )

import DataTransferObject . Status
import Database . DBUtils

data Proces sStatus = Todo | Work | F in i shed

instance Show Proces sStatus where
show (Todo) = " todo "
show (Work) = " inWork "
show ( F in i shed ) = " f i n i s h e d "

−− ∗ Getting overview about e n t r i e s
se l ectTodo : : IO [ Status ]
se l ectTodo = s e l e c t S ( convertToStatus fromSql ) " s e l e c t ∗ from todo l im i t 10 "

se lectInWork : : IO [ Status ]
se lectInWork =s e l e c t S ( convertToStatus fromSql ) " s e l e c t ∗ from inp r og r e s s "

s e l e c tF i n i s h e d : : IO [ Status ]
s e l e c tF i n i s h e d = s e l e c t S ( convertToStatus fromSql ) " s e l e c t ∗ from f i n i s h e d "

updateProcess : : Int −> Proces sStatus −> IO ( )
updateProcess id prog r e s s = void $ updateFieldFrom id (show prog r e s s )

" update near SET s ta tu s=? where id=?"

convertToStatus : : ( SqlValue −> T. Text ) −> [ SqlValue ] −> Status
convertToStatus f [ idSs , beschreibungS , contextsS , statusS , s t a r t s t a tu sS , endstatusS

, usernameS]=
S {idE = f idSs ,

beschre ibung = f beschreibungS ,
context s = f contextsS ,
s t a tu s = f statusS ,
s t a r t S t a tu s = i f ( Sq lNul l == s t a r t s t a t u s S | | toSq l "−.−" == s t a r t s t a t u s S )

then T. empty
else f s t a r t s t a tu sS , −−f s t a r t s t a tu sS ,

endStatus = i f ( Sq lNul l == endstatusS | | toSq l "−.−" == endstatusS )
then T. empty
else f endstatusS ,

username =i f ( Sq lNul l == usernameS )
then T. empty
else f usernameS }−− f endstatusS }

convertSqlToStatus _ _ = error " not ab le to r e t r i e v e s t a tu s "
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Algorithm B.12: Module SessionHan-
dling

{−# LANGUAGE ScopedTypeVariables #−}
module Database . Sess ionHandl ing ( UserSes s ion ( . . ) , i sUserPassVal id , c r e a t eS e s s i o n

, i s S e s s i onAc t i v e , d e l e t e S e s s i o n , getUserId ) where
import Database .HDBC
import Database .HDBC. PostgreSQL
import Data . Text .Read
import Data .Maybe
import quali f ied Data . Text as T hiding (map, concat )
import quali f ied DataTransferObject . Status as S
import Database . DBUtils

type Username = String
type UserSes s ion = (Username , String )

i sUserPassVa l id : : Username −> String −> IO (Maybe String )
i sUserPassVa l id username pass = do

conn <− createConnect ion
se l ec tStatement<− prepare conn " s e l e c t count (∗ ) from use r s where name=? and pass=?"
execute s e l e c tS ta t ement [ toSq l username , toSq l pass ]
r e s u l t <− fetchAllRows ’ s e l e c tS ta tement
d i s connec t conn
case fromSql . head . head $ r e s u l t of
1 −> return $ Just username
_ −> return Nothing

getUserId : : Username −> IO (Maybe Int )
getUserId username = do

conn <− createConnect ion
f i e l d <− quickQuery ’ conn " s e l e c t id from use r s where name=?" [ toSq l username ]
d i s connec t conn
case decimal ( fromSql . head . head $ f i e l d ) of

Left _ −> return Nothing
Right a−> return $ Just $ f s t a

c r e a t eS e s s i o n : : Username −> IO UserSes s ion
c r e a t eS e s s i o n username = do

conn <− createConnect ion
use r Id <− getUserId username
let statem = " update u s e r s SET ac t i v e =?, \" a c t i v eT i l l \"=now()+ i n t e r v a l ’1 hour ’ ←↩

where id=?"
se l ec tStatement<− prepare conn statem
execute s e l e c tS ta t ement [ toSq l $ T. pack " y " , toSq l use r Id ] −− here the other id
a c t i v eT i l l <− quickQuery ’ conn " s e l e c t \" a c t i v eT i l l \" from use r s where id=?"

[ toSq l use r Id ]
commit conn
d i s connec t conn
return ( username , fromSql . head . head $ a c t i v eT i l l )

d e l e t e S e s s i o n : : UserSes s ion −> IO ( )
d e l e t e S e s s i o n ( username , _)= do

conn <− createConnect ion
use r Id <− getUserId username
se l ec tStatement<− prepare conn " update u s e r s SET ac t i v e =? ,\" a c t i v eT i l l \"=? where id=?"
execute s e l e c tS ta t ement [ toSq l $ T. pack "n " , SqlNul l , toSq l use r Id ]
commit conn
d i s connec t conn
return ( )

i s S e s s i o nAc t i v e : : UserSes s ion −> IO (Maybe UserSes s ion )
i s S e s s i o nAc t i v e ( username ,_) = do

conn <− createConnect ion
use r Id <− getUserId username
let ui = fromJust use r Id

statem = " s e l e c t \" a c t i v eT i l l \">=now()+ i n t e r v a l ’10 minutes ’ , \ " a c t i v eT i l l \"
from use r s where id=? and ac t i v e=?"

a c t i v e <− quickQuery ’ conn statem [ toSq l ui , toSq l " y " ]
d i s connec t conn
i f fromSql . head . head $ a c t i v e

then ( return $ Just ( username , fromSql . head . t a i l . head $ a c t i v e ) )
else (do a <− c r e a t eS e s s i o n username

return $ Just a )
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Algorithm B.13: Module Immo-
bilieProcessing, part 1

{−# LANGUAGE ScopedTypeVariables , Over loadedStr ings , MultiParamTypeClasses #−}
module Database . Immobi l i eProces s ing ( Point ( . . ) , r e t r i eve Immob i l i e , r e t r i ev eContex t

, addNewContext , r e t r i eveBeschre ibung , addNewBeschreibung , r e t r i e v ePo in t , updatePoint
, processedByUser , savePointStr ing , r e t r i e v eA l lCon t ex t s ) where

import Database .HDBC
import Data . Text hiding (map, concat ,head)
import Data .Maybe
import Database . DBUtils
import Database . Sess ionHandl ing ( getUserId )
import DataTransferObject . Immobil ie

data Point = Star t | End
i s S t a r tPo i n t : : Point −> Bool
i s S t a r tPo i n t Sta r t = True
i s S t a r tPo i n t End = False

r e t r i e v e Immob i l i e : : Int −>IO Immobil ie
r e t r i e v e Immob i l i e id = do

a l l r e c s <−s e l e c t S ( convertSqlToImmobi l ie fromSql ) statement
return . head $ a l l r e c s

where statement = " s e l e c t id , plz , ort , s t r a s s e , land , bundesland , etage
, u s e r d e f i n e d s imp l i f i e d , o b j e k t t i t e l , ob j ektbeschre ibung from immobi l ie where id="++ show id

r e t r i eveContex t : : Int −> IO (String )
r e t r i eveContex t id = ret r i eveF ie ldFrom id s e l e c tS ta tement

where s e l e c tS ta t ement= " s e l e c t context s from near where id=?"

addNewContext : : Int−> String −> IO (String )
addNewContext ctxId ctx=updateFieldFrom ctxId ctx " update near SET context s=? where id=?"

r e t r i e v eA l lCon t ex t s : : IO [ Text ]
r e t r i e v eA l lCon t ex t s = s e l e c t S convertSqlToContext statement
where statement= " s e l e c t d i s t i n c t context s from near order by context s "

convertSqlToContext : : [ SqlValue ] −> Text
convertSqlToContext = fromSql . head

r e t r i ev eBe s ch r e ibung : : Int −> IO (String )
r e t r i ev eBe s ch r e ibung id = ret r i eveF ie ldFrom id s e l e c tS ta tement

where s e l e c tS ta t ement= " s e l e c t beschre ibung from near where id=?"

addNewBeschreibung : : Int−> String −> IO (String )
addNewBeschreibung id beschre ibung = updateFieldFrom id beschre ibung statement
where statement = " update near SET beschre ibung=? where id=?"

r e t r i e v ePo i n t : : Int −> Point−> IO String
r e t r i e v ePo i n t id point= ret r i eveF ie ldFrom id statement
where statement= i f i s S t a r tPo i n t po int

then " s e l e c t ST_AsGeoJSON( s t a r t ) from near where id=?"
else " s e l e c t ST_AsGeoJSON(\" end \" ) from near where id=?"

updatePoint : : Int −> String −> String−> Point −> IO( )
updatePoint id x y po int = do

conn <− createConnect ion
updateStatement <− prepare conn statement
execute updateStatement [ toSq l id ]
commit conn
d i s connec t conn
where statement= i f i s S t a r tPo i n t po int

then " update near SET s t a r t=
ST_PointFromText ( ’POINT( "++x++" "++y++" ) ’ , 4326) where id=?"

else " update near SET \" end\"=
ST_PointFromText ( ’POINT( "++x++" "++y++" ) ’ , 4326) where id=?"
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Algorithm B.14: Module Immo-
bilieProcessing, part 2

−− ∗ User input
processedByUser : : Int −> String −> IO ( )
processedByUser id username = do

conn <− createConnect ion
use r Id <− getUserId username
let uid = fromJust use r Id
updateStatement <− prepare conn " update near Set u s e r i d=? where id=?"
execute updateStatement [ toSq l uid , toSq l id ]
commit conn
d i s connec t conn

savePo intSt r ing : : Int −> Point −> String −> IO String
savePo intSt r ing id Star t t ex t= updateFieldFrom id t ex t

" update near SET \" s tar tText \"=? where id=?"
savePo intSt r ing id End text = updateFieldFrom id t ex t

" update near SET \" endText\"=? where id=?"

se lectStandardNahe : : String −>IO [ Immobil ie ]
se lectStandardNahe = s e l e c t S ( convertSqlToImmobi l ie fromSql )

convertSqlToImmobi l ie : : (b −> Text ) −> [ b ] −> Immobil ie
convertSqlToImmobi l ie f [ idS , plzS , ortS , s t r a s s eS , landS , bundeslandS , etageS

, u se rDe f inedS imp l i f i edS , o b j e k t t i t e l S , ob jektbeschre ibungS
] =

Immobil ie { i d I = f idS
, geo =toGeo f [ plzS , ortS , s t r a s s eS , landS , bundeslandS , etageS

, u s e rDe f i n edS imp l i f i edS ]
, f r e i t e x t e= toF r e i t e x t e f [ o b j e k t t i t e l S , ob jektbeschre ibungS ]

}
convertSqlToImmobi l ie _ _ = error " not ab le to r e t r i e v e Immobil ie "

toGeo : : ( a−>Text)−> [ a]−> Geo
toGeo f [ plzS , ortS , s t r a s s eS , landS , bundeslandS , etageS , u s e rDe f i n edS imp l i f i edS ]=

Geo { p l z = ( f p lzS )
, o r t =( f ortS )
, s t r a s s e=( f s t r a s s e S )
, land = ( f landS )
, bundesland = ( f bundeslandS )
, e tage = ( f etageS )
, u s e r_de f ined_s imp l i f i ed = ( f u s e rDe f i n edS imp l i f i edS )}

toGeo f _ = error " cannot convert SQLValues to Geo datatype "

t oF r e i t e x t e : : ( a−>Text)−> [ a]−> Fre i t e x t
t oF r e i t e x t e f [ o b j e k t t i t e l S , ob jektbeschre ibungS ]= Fr e i t e x t
{ o b j e k t t i t e l= f o b j e k t t i t e l S , ob j ektbeschre ibung= f objektbeschre ibungS }
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Algorithm B.15: Module DBUtils
module Database . DBUtils ( createConnect ion , re t r i eveFie ldFrom , updateFieldFrom , s e l e c t S ) where

import Database .HDBC
import Database .HDBC. PostgreSQL

createConnect ion = connectPostgreSQL con
con = " host =127 .0 .0 .1 dbname=spat ia lConceptNear user=pos tg r e s password=t "

−− ∗ g en e r i c s
r e t r i eveF ie ldFrom : : Int −> String −> IO String
r e t r i eveF ie ldFrom id s e l e c tS ta tement = do

conn <− createConnect ion
f i e l d <− quickQuery ’ conn se l e c tS ta t ement [ toSq l id ]
d i s connec t conn
return . fromSql . head . head $ f i e l d

updateFieldFrom : : Int −> String −> String −> IO String
updateFieldFrom id updateValue updateStatement = do

conn <− createConnect ion
updateStatement <− prepare conn updateStatement
execute updateStatement [ toSq l updateValue , toSq l id ]
commit conn
d i s connec t conn
return updateValue

s e l e c t S : : ( [ SqlValue ] −> a ) −> String −> IO [ a ]
s e l e c t S conve r t e r statement = do

conn <− createConnect ion
se l e c tS ta t ement <− prepare conn statement
execute s e l e c tS ta t ement [ ]
r e s u l t <− fetchAllRows ’ s e l e c tS ta tement

−− pr in t r e s u l t
d i s connec t conn
return . map conve r t e r $ r e s u l t

Algorithm B.16: Module Immobilie
module DataTransferObject . Immobil ie ( Immobil ie ( . . ) , Geo ( . . ) , F r e i t e x t ( . . ) ) where

import Data . Text hiding (map, concat )

data Immobil ie = Immobil ie { i d I : : ! Text
, geo : : Geo
, f r e i t e x t e : : F r e i t e x t
} deriving Show ;

app ly f Immobi l i e : : ( Text −> b) −> Immobil ie −> [ b ]
apply f Immobi l i e f i = concat [ applyfGeo f $ geo i

, app l y fF r e i t e x t e f $ f r e i t e x t e i
]

data Geo = Geo { p l z : : ! Text , o r t : : ! Text , s t r a s s e : : ! Text , land : : ! Text
, bundesland : : ! Text , e tage : : ! Text , u s e r_de f ined_s imp l i f i ed : : ! Text } deriving Show ;

applyfGeo : : ( Text −> b) −> Geo −> [ b ]
applyfGeo f g = map f [ p l z g , o r t g , s t r a s s e g , land g , bundesland g , etage g

, u s e r_de f ined_s imp l i f i ed g ]

data Fre i t e x t = Fr e i t e x t { o b j e k t t i t e l : : ! Text , ob jektbeschre ibung : : ! Text} deriving Show ;

a pp l y fF r e i t e x t e : : ( Text −> b) −> Fre i t e x t −> [ b ]
app l y fF r e i t e x t e f t ex t = map f [ o b j e k t t i t e l text , ob j ektbeschre ibung text ]
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Algorithm B.17: Module Status
module DataTransferObject . Status ( Status ( . . ) ) where

import quali f ied Data . Text as T hiding (map, concat )

data Status = S {idE : : !T. Text ,
beschre ibung : : !T. Text ,
context s : : !T. Text ,
s t a tu s : : !T. Text ,
s t a r t S t a tu s : : !T. Text ,
endStatus : : !T. Text ,
username : : !T. Text} deriving Show ;

Algorithm B.18: Module Geocode
{−# LANGUAGE Over loadedStr ings #−}
module Se rv i c e . Geocode ( geocodeText ) where

import quali f ied Geocoder
import quali f ied Data . Text as T
import quali f ied Data . List as L

myDeveloperkey = T. pack " r e t r i e v e your key from opencage "

geocodeText : : Int −> String −> IO T. Text
geocodeText id geocodeStr ing = do
geocod ingResu l t <− Geocoder . geocode (T. pack geocodeStr ing ) myDeveloperkey
let r e su l t s InGeoJson = map (\ a −> ( resu l tToJson a id ) ) geocod ingResu l t

geoJson = [
T. pack " {\" type \ " : \" Fea tu r eCo l l e c t i on \" , \" c r s \ " : {\" type \ " : \"name\" ,

\" p r op e r t i e s \ " : {\"name \ " : \"EPSG:4326\" } } ,\ " f e a t u r e s \ " : [ " ]
++ (L . intersperse (T. pack " , " ) r e su l t s InGeoJson )
++ [T. pack " ] } " ]

return $ T. concat geoJson

resu l tToJson : : Geocoder . Result −> Int −> T. Text
resu l tToJson r id= T. concat [

T. pack " {\" type \ " : \ " " , T. pack " Feature \" "
, T. pack " , \ " geometry \ " : { \ " type \ " : \ " Point \" "
, T. pack " , \ " coo rd ina t e s \ " : [ "

, T. pack $ show $ Geocoder . lng $ Geocoder . geometry r
, T. pack " , "
, T. pack $ show $ Geocoder . l a t $ Geocoder . geometry r

, T. pack " ] } "
, T. pack " , \ " p r op e r t i e s \ " : { "
, T. pack " \"Format \ " : \ " " , Geocoder . formatted r , " \" "
, T. pack " , \ " Id \ " : \ " " , T. pack (show id ) , " \" "
, T. pack " } "

, T. pack " } " ]
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Algorithm B.19: Module LogOnView
{−# LANGUAGE Over loadedStr ings #−}
module View . LogOnView where

import Text . Blaze . Html5
import quali f ied Text . Blaze . Html5 . At t r ibut e s as A

import Prelude hiding (head , div , span )

loadHeader : : Html
loadHeader = do
head $ do
t i t l e " Process the concept near , geocoding , context i n f l u e n c e "
l i n k ! A. r e l " s t y l e s h e e t " ! A. type_ " text / c s s " ! A. h r e f " / c s s /mycss . c s s "
l i n k ! A. r e l " s t y l e s h e e t " !

A. h r e f " https : //maxcdn . bootstrapcdn . com/ boots t rap /3 . 3 . 5 / c s s / boots t rap . min . c s s "
l i n k ! A. r e l " s t y l e s h e e t " ! A. h r e f " / c s s / jquery−ui . c s s "
s c r i p t " " ! A. s r c " https : // code . jquery . com/ jquery −1 .11 . 2 .min . j s "
s c r i p t " " ! A. s r c " // code . jquery . com/ ui /1 . 11 . 4/ jquery−ui . j s "
s c r i p t " " ! A. s r c " https : //maxcdn . bootstrapcdn . com/ boots t rap /3 . 3 . 5 / j s / boots t rap . min . j s "
s c r i p t " " ! A. s r c " http :// open layer s . org /en/v3 . 9 . 0 / bu i ld / ol−debug . j s "
s c r i p t " " ! A. s r c " / j s /myquery . j s "
s t y l e $ " . modal−header , h4 , . c l o s e {background−c o l o r : #5cb85c ; c o l o r : white ! important ;

text−a l i g n : c en t e r ; font−s i z e : 30px ; } . modal−f o o t e r { background−c o l o r : #f 9 f 9 f 9 ; } "

renderLoginPage : : Html
renderLoginPage = do
loadHeader
body ! A. onload "$(\"#myModal \ " ) . modal ( ) ; "$ do

div ! A. c lass_ "modal fade " ! A. id "myModal "$ do
div ! A. c lass_ "modal−d i a l o g " $ do

div ! A. c lass_ "modal−content " $ do
div ! A. c lass_ "modal−header " ! A. s t y l e " s t y l e=padding :35 px 50px ; " $ do

button ! A. type_ " button " ! A. c lass_ " c l o s e " $ "X"
h4 $ span ! A. c lass_ " g lyphicon glyphicon−l o ck " $ " Login "

div ! A. c lass_ "modal−body " $ do
form ! A. c lass_ " form col−md−12 center−c l o ck " ! A. ac t i on " / l o g i n "

! A. method " post "$ do
div ! A. c lass_ " form−group " $ do
l a b e l ! A. f o r " username " $ span ! A. c lass_ " g lyphicon glyphicon−user "

$ "Username "
input ! A. type_ " text " ! A. c lass_ " form−c on t r o l input−l g "

! A. p l a c eho ld e r "Username " ! A. name " username " ! A. id " username "
div ! A. c lass_ " form−group " $ do
l a b e l ! A. f o r " password " $ span

! A. c lass_ " g lyphicon glyphicon−eye−open " $ " Password "
input ! A. type_ " password " ! A. c lass_ " form−c on t r o l input−l g "

! A. p l a c eho ld e r " Password " ! A. name " password " ! A. id " password "
div ! A. c lass_ " form−group " $ do

button ! A. c lass_ " btn btn−su c c e s s btn−block " ! A. type_ " submit " $
span ! A. c lass_ " g lyphicon glyphicon−o f f " $ " Login "

div ! A. c lass_ "modal−f o o t e r " $ do
div ! A. c lass_ " co l−md−12" $ button ! A. c lass_ " btn " $ " Cancel "
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Algorithm B.20: Module Pro-
cessView, part 1

{−# LANGUAGE Over loadedStr ings #−}
module View . ProcessView where

import Text . Blaze . Html5
import Text . Blaze . Html . Renderer . Text
import quali f ied Text . Blaze . Html5 . At t r ibut e s as A
import quali f ied Data . Text as T
import Prelude hiding (head , div , span )
import DataTransferObject . Status
import quali f ied DataTransferObject . Immobil ie as Immo

loadHeader : : Html
loadHeader = do
head $ do
t i t l e " Process the concept near , geocoding , context i n f l u e n c e "
l i n k ! A. r e l " s t y l e s h e e t " ! A. type_ " text / c s s " ! A. h r e f " / c s s /mycss . c s s "
l i n k ! A. r e l " s t y l e s h e e t "

! A. h r e f " https : //maxcdn . bootstrapcdn . com/ boots t rap /3 . 3 . 5 / c s s / boots t rap . min . c s s "
l i n k ! A. r e l " s t y l e s h e e t " ! A. h r e f " / c s s / jquery−ui . c s s "
s c r i p t " " ! A. s r c " https : // code . jquery . com/ jquery −1 .11 . 2 .min . j s "
s c r i p t " " ! A. s r c " // code . jquery . com/ ui /1 . 11 . 4/ jquery−ui . j s "
s c r i p t " " ! A. s r c " https : //maxcdn . bootstrapcdn . com/ boots t rap /3 . 3 . 5 / j s / boots t rap . min . j s "
s c r i p t " " ! A. s r c " http :// open layer s . org /en/v3 . 9 . 0 / bu i ld / ol−debug . j s "
s c r i p t " " ! A. s r c " / j s /myquery . j s "

createOverview : : [ Status ] −> [ Status ] −> [ Status ] −> Html
createOverview todo prog r e s s f i n i s h e d = do
loadHeader
body $

do nav ! A. c lass_ " navbar navbar−de f au l t navbar−f i xed−top "$ c reateNav igat ionbar
div ! A. c lass_ " panel panel−de f au l t " $ do −− ! A. id " "

div ! A. c lass_ " panel−heading " $ " Beschreibung "
div ! A. c lass_ " panel−body " $ renderBeschre ibung

div ! A. c lass_ " panel panel−de f au l t " ! A. id " todo " $ do
div ! A. c lass_ " panel−heading " $ " todo "
div ! A. c lass_ " panel−body " $ statusToTable todo

div ! A. c lass_ " panel panel−de f au l t " ! A. id " inwork " $ do
div ! A. c lass_ " panel−heading " $ " inWork "
div ! A. c lass_ " panel−body " $ statusToTable p rog r e s s

div ! A. c lass_ " panel panel−de f au l t " ! A. id " f i n i s h e d " $do
div ! A. c lass_ " panel−heading " $ " f i n i s h e d "
div ! A. c lass_ " panel−body " $ statusToTable f i n i s h e d

renderBeschre ibung : : Html
renderBeschre ibung = do

div ! A. c lass_ " tex t " $ do
h1 " Frage s t e l l ung und Methodik "
−− removed here de s c r ibed in the text

c r eateNav igat ionbar : : Html
c reateNav igat ionbar = do

div ! A. c lass_ " conta iner−f l u i d " $ do
div ! A. c lass_ " navbar−header " $ a ! A. c lass_ " navbar−brand " ! A. h r e f "#"

$ toHtml $ T. pack " Beschreibung "
u l ! A. c lass_ " nav navbar−nav " $ do

l i $ a ! A. h r e f "#todo " $ toHtml $ T. pack "Todo"
l i $ a ! A. h r e f "#inwork " $ toHtml $ T. pack " inWork "
l i $ a ! A. h r e f "#f i n i s h e d " $ toHtml $ T. pack " Fin i shed "

u l ! A. c lass_ " nav navbar−nav navbar−r i g h t " $ do
l i $ a ! A. h r e f " / logout " $ span ! A. c lass_ " g lyphicon glyphicon−user "

$ " Logout "
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Algorithm B.21: Module Pro-
cessView, part 2

statusToTable : : [ Status ]−> Html
statusToTable e n t r i e s = do
t ab l e ! A. c lass_ " tab l e tab le−hover " $ do
thead $ t r $ mapM_ ( th . toHtml . T. pack ) [ " ID" , " beschre ibung " , " S ta r t Punkt " ,

"End Punkt " , " Contexts " , " Bea rbe i t e r " ]
tbody $ t r $ mapM_ (\ e −> tr $ statusEntryToTable e ) e n t r i e s

statusEntryToTable : : Status −> Html
statusEntryToTable s = do

td . toHtml . idE $ s
td $ addBewertungView$ beschre ibung $ s
td $ addPointView $ s t a r t S t a tu s $s
td $ addPointView $endStatus $s
td . toHtml . context s $s
td . toHtml . username $ s
td $

form ! A. c lass_ " form− i n l i n e " ! A. ac t i on " / i np r o c e s s " ! A. method " get " $ toHtml $ do
div ! A. c lass_ " form−group " $ do
input ! A. type_ " hidden " ! A. name " id " ! A. va lue ( toValue $ idE s )
input ! A. c lass_ " form−c on t r o l " ! A. type_ " submit " ! A. va lue " bearbe i t en "

addBewertungView : :T. Text −> Html
addBewertungView bewer

| ( bewer == " not\_located " | | bewer == " pa r t l y \_located " | | bewer==" lo ca t ed " ) =do
div ! A. c lass_ " btn−group " $ do

button ! A. c lass_ ( i f bewer == " not\_located " then " btn btn−su c c e s s "
else " btn btn−de f au l t " ) ! A. id " bewertung−not\_located " $ span $ " not\_located "

button ! A. c lass_ ( i f bewer == " pa r t l y \_located " then " btn btn−su c c e s s "
else " btn btn−de f au l t " ) ! A. id " bewertung−par t l y \_located " $ span $ ←↩

" pa r t l y \_located "
button ! A. c lass_ ( i f bewer == " l o ca t ed " then " btn btn−su c c e s s "

else " btn btn−de f au l t " ) ! A. id " bewertung−l o ca t ed " $ span $ " l o ca t ed "
| otherwise =toHtml bewer

addPointView : :T. Text −> Html
addPointView s =div ! A. c lass_ " btn−group " $ do

button ! A. c lass_ ( i f s == T. empty then " btn btn−de f au l t "
else " btn btn−su c c e s s " ) ! A. id " po int " $ span $
( i f s == T. empty then " todo " else " v e r o r t e t " )

immosNearToTable : : [ Immo . Immobil ie ]−> Html
immosNearToTable e n t r i e s = do

t ab l e ! A. c lass_ " tab le−hover " $ do
thead . t r . mapM_ ( th . toHtml . T. pack ) $ [ " ID" , " Ob j e k t t i t e l " , " Status " ]
tbody . t r . mapM_ ( t r . immoNearToTable ) $ e n t r i e s

immoNearToTable : : Immo . Immobil ie −> Html
immoNearToTable immo = do

td . toHtml . Immo . i d I $ immo
td . toHtml . Immo . o b j e k t t i t e l . Immo . f r e i t e x t e $ immo
td $

form ! A. c lass_ " form− i n l i n e " ! A. ac t i on " / i np r o c e s s " ! A. method " get " $ toHtml $ do
div ! A. c lass_ " form−group " $ do
input ! A. type_ " hidden " ! A. name " id " ! A. va lue ( toValue . Immo . i d I $ immo )
input ! A. c lass_ " form−c on t r o l " ! A. type_ " submit " ! A. va lue " bearbe i t en "

idToHtml : : Immo . Immobil ie −> Html
idToHtml e = do

td ( toHtml $ Immo . i d I e )
td ( geoToHtml $ Immo . geo e )
td ( toHtml . Immo . o b j e k t t i t e l . Immo . f r e i t e x t e $ e )

geoToHtml : : Immo .Geo −> Html
geoToHtml e = do
toHtml $ Immo . p l z e
td $ toHtml $ Immo . o r t e
td $ toHtml $ Immo . s t r a s s e e
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Algorithm B.22: Module Immo-
bilieView, part 1

{−# LANGUAGE Over loadedStr ings #−}
module View . ImmobilieView ( renderImmobi l i e )where
import Text . Blaze . Html5
import quali f ied Text . Blaze . Html5 . At t r ibut e s as A
import quali f ied Data . Text as T
import Text . Blaze . Html . Renderer . Text
import Data . List as L hiding (head , span )
import Prelude hiding (head , div , span )
import DataTransferObject . Immobil ie

loadHeader : : Html
loadHeader = do
head $ do
t i t l e " Process the concept near , geocoding , context i n f l u e n c e "
s c r i p t " " ! A. s r c " / j s / jquery . autocomplete . j s "
s c r i p t " " ! A. s r c " / j s / jquery . h i gh l i gh t −5. j s "
−− same in c l ud e s and s c r i p t s as in ProcessView

renderImmobi l i e : : Immobil ie −> String−> String−> Html
renderImmobi l i e immobi l ie context s bewertung= toHtml $ do
loadHeader
body ! A. onload " i n i t ( ) ; "$ do

div ! A. c lass_ " conta ine r we l l " ! A. id "map" $ " "
div ! A. c lass_ " panel−group " ! A. id " panelgroup " $ do

div ! A. c lass_ " panel panel−de f au l t " ! A. id " BeschreibungDiv "
$ divBeschre ibung immobi l ie context s

div ! A. c lass_ " panel panel−de f au l t " ! A. id " StartPointDiv " $ d ivSta r tPo int immobi l ie
div ! A. c lass_ " panel panel−de f au l t " ! A. id " EndPointDiv " $ divEndPoint immobi l ie
div ! A. c lass_ " panel panel−de f au l t " ! A. id " FinishedDiv "

$ d i v f i n i s h e d immobi l ie context s bewertung
div ! A. id " d ia log−conf i rm " ! A. s t y l e " f l o a t : l e f t ; margin : 0 17px 20px 0 ; "

! A. t i t l e "Um welchen Punkt hande lt es s i c h ? " $ do
p $ span ! A. c lass_ " ui−i con ui−icon−a l e r t " $ " the de l e t ed ? "

c r ea t ePo in tDia l og : : Html
c r ea t ePo in tDia l og =

div ! A. c lass_ "modal−d i a l o g modal−l g " $
div ! A. c lass_ "modal−content " $ do

div ! A. c lass_ "modal−header " $ do
button ! A. type_ " button " ! A. c lass_ " c l o s e " $ "&times ; "
h4 ! A. c lass_ "modal−t i t l e " $ "Um welchen Punkt hande lt es s i c h ? "

div ! A. c lass_ "modal−body " $ p $ " body t e s t "
div ! A. c lass_ "modal−f o o t e r " $ do

button ! A. id " StartpunktButton " ! A. type_ " submit "
! A. c lass_ " btn btn−de f au l t " $ " Startpunkt "

button ! A. id " EndpunktButton " ! A. type_ " submit "
! A. c lass_ " btn btn−de f au l t " $ " Endtpunkt "

divBeschre ibung : : Immobil ie −> String −> Html
divBeschre ibung immobi l ie context s=do

div ! A. c lass_ " panel−heading " ! A. id " BeschreibungHeader "
$ preEscapedToHtml . o b j e k t t i t e l . f r e i t e x t e $ immobi l ie

div ! A. c lass_ " panel−body " ! A. id " BeschreibungContent " $ span
$ preEscapedToHtml . ob j ektbeschre ibung . f r e i t e x t e $ immobi l ie

div ! A. c lass_ " panel−f o o t e r " $ addContextView immobi l ie context s

addContextView : : Immobil ie −> String −> Html
addContextView immobi l ie context s=do

l a b e l ! A. f o r ( " context " ) $ " context : "
input ! A. c lass_ " form−c on t r o l " ! A. type_ " text " ! A. id " context "

! A. va lue ( toValue context s )
let jsMethod = toValue ( " re turn addContext ( "++(show $ i d I immobi l ie)++" ) " )
input ! A. id " contextButton " !A. c lass_ " form−c on t r o l btn btn−de f au l t "

! A. type_ " button " ! A. on c l i c k jsMethod ! A. va lue " add Context "



web application 171

Algorithm B.23: Module Immo-
bilieView, part 2

d ivSta r tPo int : : Immobil ie −> Html
d ivSta r tPo int immobi l ie = do

div ! A. id " geocode s t a r t id " ! A. c lass_ " panel−heading " $ " Startpunkt : "
div ! A. c lass_ " panel−body " ! A. id " StartPointContent "

$ geocodePoint immobi l ienId geocodeStr ing " s t a r t "
where geoEntry = geo immobi l ie

geocodeStr ing = (T. concat [ p l z geoEntry ,T. pack " , " , o r t geoEntry
, T. pack " , " , s t r a s s e geoEntry ] )

immobi l ienId = i d I immobi l ie

divEndPoint : : Immobil ie −> Html
divEndPoint immobi l ie = do

div ! A. id " geocode end id " ! A. c lass_ " panel−heading " $ "Endpunkt : "
div ! A. c lass_ " panel−body " !A. id " EndPointContent "$geocodePoint ( i d I immobi l ie ) " " " end "

geocodePoint : :T. Text−> T. Text −> String −> Html
geocodePoint idE geocodeStr ing method=
form ! A. c lass_ " form− i n l i n e from−group " $ do

div ! A. c lass_ " form−group " $ do
let t ex t Id = i f method == " s t a r t " then " s tartGeocodeId " else " endGeocodeId "
input !A. c lass_ " form−c on t r o l " !A. type_ " input " !A. id t ex t Id !A. va lue

$toValue geocodeStr ing
let jsMethod = i f method == " s t a r t "

then toValue ( " re turn saveGeocodeStart ( "++(show idE)++" ) " )
else toValue ( " re turn saveGeocodeEnd ( "++(show idE)++" ) " )

div ! A. c lass_ " btn−group " $ do
let t ex t Id = i f method == " s t a r t " then " s tartGeocodeId " else " endGeocodeId "

jsMethod2 = i f method == " s t a r t "
then toValue ( " re turn saveGeocodeStartStr ing ( "++(show idE)++" ) " )
else toValue ( " re turn saveGeocodeEndString ( "++(show idE)++" ) " )

button !A. c lass_ " form−c on t r o l btn btn−de f au l t " ! A. type_ " button "
! A. id ( toValue $ T. pack ( t ex t Id++"−button " ) ) ! A. on c l i c k jsMethod $ span $ " ve ro r t en "

button !A. c lass_ " form−c on t r o l btn btn−de f au l t " ! A. type_ " button "
! A. id ( toValue $ T. pack ( t ex t Id++"−save−button " ) ) ! A. on c l i c k jsMethod2 $ span $ ←↩

" spe i che rn "

d i v f i n i s h e d : : Immobil ie −>String−>String−> Html
d i v f i n i s h e d immobi l ie context s bewertung=do

div ! A. c lass_ " panel−heading " $ " Abschluss "
div ! A. c lass_ " panel−body " $ addBewertungView immobi l ie bewertung
div ! A. c lass_ " panel−f o o t e r " $ do

form ! A. ac t i on " / f i n i s h e d " ! A. method " get " $ do −− ! A. c lass_ " form− i n l i n e "
div ! A. c lass_ " form−group " $ do
input !A. c lass_ " " ! A. type_ " hidden " ! A. name " id " ! A. va lue ( toValue $ ←↩

i d I immobi l ie )
input !A. c lass_ " btn btn−de f au l t " ! A. type_ " submit " ! A. va lue " f i n i s h e d "

form ! A. ac t i on " / overview " ! A. method " get " $do −− ! A. c lass_ " form− i n l i n e "
div ! A. c lass_ " form−group " $
input ! A. c lass_ " btn btn−de f au l t " ! A. type_ " submit " ! A. va lue " zurueck "

addBewertungView : : Immobilie−>String −> Html
addBewertungView immobi l ie bewer=

div ! A. c lass_ " btn−group " $ do
button ! A. c lass_ ( i f bewer == " not\_located " then " btn btn−su c c e s s "

else " btn btn−de f au l t " ) ! A. id " bewertung−not\_located "
! A. on c l i c k ( toValue ( " re turn addBewertung ( "++

(show $ i d I immobi l ie)++" , ’ not\_located ’ ) " ) ) $ span $ " not\_located "
button ! A. c lass_ ( i f bewer == " pa r t l y \_located " then " btn btn−su c c e s s "

else " btn btn−de f au l t " ) ! A. id " bewertung−par t l y \_located "
! A. on c l i c k ( toValue ( " re turn addBewertung ( "++

(show $ i d I immobi l ie)++" , ’ pa r t l y \_located ’ ) " ) ) $ span $ ←↩
" pa r t l y \_located "

button ! A. c lass_ ( i f bewer == " l o ca t ed " then " btn btn−su c c e s s "
else " btn btn−de f au l t " ) ! A. id " bewertung−l o ca t ed "
! A. on c l i c k ( toValue ( " re turn addBewertung ( "++

(show $ i d I immobi l ie)++" , ’ located ’ ) " ) ) $ span $ " l o ca t ed "
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Algorithm B.24: Cascading style sheet
document mycss.css

#map {z−index : 0 ; width :100%;}
#panelgroup {width :30%; po s i t i o n : f i x ed ; p o s i t i o n : abso lu t e ; top : 0 px ; l e f t : 0 px ; z−index : 1 ; }
#BeschreibungContent { he ight :200 px ; over f low−y : s c r o l l ; z−index : 2 ; }
#todo { he ight :100%; over f low−y : s c r o l l ; }
#inwork { he ight :100%; over f low−y : s c r o l l ; }
#f i n i s h e d { he ight :100%; over f low−y : s c r o l l ; }
#startGeocodeId {width :100%;}
#endGeocodeId{width :100%;}

. ol−s ca l e−l i n e { po s i t i o n : abso lu t e ; r i g h t : 10 px ; background : b lack ; padding : 5px ; }

. autocomplete−sugg e s t i on s { border : 1px s o l i d #999; background : #FFF; over f l ow : auto ; }

. autocomplete−sugge s t i on { padding : 2px 5px ; white−space : nowrap ; over f l ow : hidden ; }

. autocomplete−s e l e c t e d { background : #F0F0F0 ; }

. autocomplete−sugg e s t i on s s t rong { font−weight : bo lder ; c o l o r : rgb (92 , 184 , 9 2 ) ; }

. h i g h l i g h t {background−c o l o r : rgb (92 , 184 , 9 2 ) ; c o l o r : rgb (255 , 255 , 255 ) ; }
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Algorithm B.25: JavaScript document
myquery.js, part 1

var l o c a l h o s t = ’ http :// l o c a l h o s t : 3 0 0 0 ’ ;

var hostURL= l o c a l h o s t ;

var map;
f unc t i on i n i t ( ) {

map = new o l .Map({
l a y e r s : [

new o l . l a y e r . T i l e ({
source : new o l . source .OSM()

})
] ,
t a r g e t : ’map’ ,
c o n t r o l s : o l . c on t r o l . d e f a u l t s ({

a t t r i bu t i onOpt i on s : ({
c o l l a p s i b l e : f a l s e

})
}) ,
view : new o l . View ({

p r o j e c t i o n : ’EPSG:3857 ’ ,
c en t e r : o l . p ro j . t rans form ( [ 16 . 3779201 , 48 . 1784762 ] , ’EPSG:4326 ’ , ’EPSG:3857 ’ ) ,
zoom : 12

})
} ) ;

////////////////////// the autocomplete func t i on
var autocompleteContexts= autocompleteContexts = [

{ value : ’ Ma r i a h i l f e r s t r a s s e ’ , data : ’MH’ } ,
{ value : ’Zimbabwe ’ , data : ’ZZ ’ }
] ;

$ . a jax ({
type : ’GET’ ,
u r l : hostURL +’/ autocomplete / contexts ’ ,
s u c c e s s : f unc t i on (data ) {

var getContexts = eva l ( ’ ( ’ + data + ’ ) ’ ) ;
i f ( getContexts . s ugg e s t i on s == 0) {
} else {

$( ’# context ’ ) . autocomplete ({
lookup : getContexts . sugge s t i ons ,

} ) ;
}

}
} ) ;

////////////////////////// h i g h l i g h t the words :
$( ’#BeschreibungContent ’ ) . h i g h l i g h t ( ’ nahe ’ ) ;
$( ’#BeschreibungHeader ’ ) . h i g h l i g h t ( ’ nahe ’ ) ;
$( ’#BeschreibungContent ’ ) . h i g h l i g h t ( ’ naehe ’ ) ;
$( ’#BeschreibungHeader ’ ) . h i g h l i g h t ( ’ naehe ’ ) ;

/////
map. on ( ’ s i n g l e c l i c k ’ , f unc t i on ( e ) {

var p i x e l = map. getEventPixe l ( e . o r i g i na lEven t ) ;
var f e a tu r e = map. forEachFeatureAtPixe l ( e . p ixe l ,

f unc t i on ( f ea ture , l a y e r ) {
return f e a t u r e ;

} ) ;
var geometry ;
i f ( f e a t u r e ) {

geometry = f e a tu r e . getGeometry ( ) . getCoord inates ( ) ;
} else {

geometry = map. getEventCoordinate ( e . o r i g i na lEven t ) ;
}
whichPoint ( geometry ) ;

} ) ;
var s t a r t p o i n t= getPoint ( " s t a r t " ) ;
var endpoint= getPoint ( " end " ) ;
map. addControl (new o l . c on t r o l . ZoomSlider ( ) ) ;

}
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Algorithm B.26: JavaScript document
myquery.js, part 2

func t i on whichPoint ( geometry ){
$ ( func t i on ( ) {

$ ( "#dia log−conf i rm " ) . d i a l o g ({
r e s i z a b l e : f a l s e ,
he ight : 140 ,
modal : true ,
buttons : {

" i s S ta r tpo in t " : f unc t i on ( ) {
ajaxPointSave ( geometry , " saveStar tPo int " ) ;
$ ( t h i s ) . d i a l o g ( " c l o s e " ) ;

} ,
" i s Endpoint " : f unc t i on ( ) {

ajaxPointSave ( geometry , " saveEndPoint " ) ;
$ ( t h i s ) . d i a l o g ( " c l o s e " ) ;

}
}

} ) ;
} ) ;

}

func t i on getPoint ( kind ){
var c tx id = $ ( ’ input [ name=id ] : hidden ’ ) . va l ( ) ;
var u r l ;
i f ( kind==" s t a r t " ) {

u r l= hostURL+’/ getStartPo int ’ ;
} else {

u r l=hostURL+’/getEndPoint ’ ;
}
$ . a jax ({

type : ’GET’ ,
data : {

id : c tx id
} ,
u r l : ur l ,
s u c c e s s : f unc t i on (data ) {

i f (data . length == 0) {
} else {

var i conFeature s = [ ] ;
var po int = new o l . format .GeoJSON ( ) . readGeometry (data , {

f e a t u r eP r o j e c t i o n : ’EPSG:3857 ’
} ) ;
var i conFeature = new o l . Feature ({

geometry : new o l . geom . Point ( po int . getCoord inates ( ) )
} ) ;
i conFeature s . push ( i conFeature ) ;
var i c on s r c ;
i f ( kind == " s t a r t " ){

i c on s r c =hostURL+’/ images / l e t t e r_a1 . png ’ ;
} else {

i c on s r c= hostURL+’/ images / l e t t e r_e1 . png ’ ;
}
addMarker ( iconFeatures , i c on s r c ) ;

}
}

} ) ;
}
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Algorithm B.27: JavaScript document
myquery.js, part 3

func t i on ajaxPointSave ( coord inate s , startOrEnd ){
var c tx id = $ ( ’ input [ name=id ] : hidden ’ ) . va l ( ) ;
var saveUrl = hostURL+’/’+startOrEnd ;
var r ep r o j e c t ed = o l . p ro j . t rans form ( coord inate s , ’EPSG:3857 ’ , ’EPSG:4326 ’ ) ;
$ . a jax ({

type : ’GET’ ,
data : {

X: r ep r o j e c t ed [ 0 ] ,
Y: r ep r o j e c t ed [ 1 ] ,
id : c tx id

} ,
u r l : saveUrl ,
s u c c e s s : f unc t i on (data ) {

var i conFeature s = [ ]
var i conFeature = new o l . Feature ({

geometry : new o l . geom . Point ( coo rd ina t e s )
} ) ;
i conFeature s . push ( i conFeature ) ;
var i c on s r c ;
i f ( startOrEnd == " saveStar tPo int " ){

i c on s r c =hostURL+’/ images / l e t t e r_a1 . png ’ ;
} else {

i c on s r c= hostURL+’/ images / l e t t e r_e1 . png ’ ;
}
addMarker ( iconFeatures , i c on s r c ) ;

}
} ) ;

}

func t i on addContext ( id ) {
var ctx = $ ( ’ input#context ’ ) . va l ( ) ;
$ . a jax ({

type : ’GET’ ,
data : {

context : ctx ,
id : id

} ,
u r l : hostURL+’/addContext ’ ,
be foreSend : func t i on ( ) {

$ ( ’ input#contextButton ’ ) . addClass ( " btn−i n f o " ) . removeClass ( " btn−de f au l t " ) ;
} ,
s u c c e s s : f unc t i on (data ) {

$ ( ’ input#’ + id ) . va l (data ) ;
$ ( ’ input#contextButton ’ ) . addClass ( " btn−su c c e s s " ) .

removeClass ( " btn−de f au l t btn−i n f o " ) ;
} ,
error : f unc t i on ( error ) {

$ ( ’ input#contextButton ’ ) . removeClass ( " btn−de f au l t btn−su c c e s s btn−i n f o " ) .
addClass ( " btn−danger " ) ;

}
} ) ;

}
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Algorithm B.28: JavaScript document
myquery.js, part 4

func t i on addBewertung ( id , bewertung ) {
$ . a jax ({

type : ’GET’ ,
data : {

bewertung : bewertung ,
id : id

} ,
u r l : hostURL+’/addBewertung ’ ,
s u c c e s s : f unc t i on (data ) {
i f ( bewertung == " par t l y \_located " ){
$ ( ’ button#bewertung−par t l y \_located ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−l ocated ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−par t l y \_located ’ ) . removeClass ( " btn−de f au l t " ) . addClass ( " btn−su c c e s s " ) ;
} else i f ( bewertung == " not_located " ){
$ ( ’ button#bewertung−par t l y \_located ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−l ocated ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−not\_located ’ ) . removeClass ( " btn−de f au l t " ) . addClass ( " btn−su c c e s s " ) ;
} else {
$ ( ’ button#bewertung−not\_located ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−par t l y \_located ’ ) . removeClass ( " btn−su c c e s s " ) . addClass ( " btn−de f au l t " ) ;
$ ( ’ button#bewertung−l ocated ’ ) . removeClass ( " btn−de f au l t " ) . addClass ( " btn−su c c e s s " ) ;
}
}

} ) ;
}

func t i on saveGeocodeStart ( id ) { geocode ( id , ’ s tartGeocodeId ’ ) ; }

func t i on saveGeocodeEnd ( id ) { geocode ( id , ’ endGeocodeId ’ ) ; }

func t i on geocode ( idToGeocode , f i e l d ) {
var t ext = $ ( ’ input#’ + f i e l d ) . va l ( ) ;
var r e s u l t ;
$ . a jax ({

type : ’GET’ ,
data : {

toGeocode : text ,
id : idToGeocode

} ,
u r l : hostURL+’/geocode ’ ,
dataType : ’ j son ’ ,
be foreSend : func t i on ( ) {

i f ( f i e l d == ’ endGeocodeId ’ ) {
$ ( ’ button#endGeocodeId−button ’ ) . removeClass ( " btn−de f au l t btn−su c c e s s " )
. addClass ( " btn−i n f o " ) ;

} else {
$ ( ’ button#startGeocodeId−button ’ ) . removeClass ( " btn−de f au l t btn−su c c e s s " )
. addClass ( " btn−i n f o " ) ;

}
} ,
s u c c e s s : f unc t i on (data ) {

i f (data . length == 0) {
a l e r t ( " Geocodierung l i e f e r t e ke in Ergebnis " ) ;

} else {
var i c on s r c = hostURL+’/ images / l e t t e r_a . png ’ ;
i f ( f i e l d == ’ endGeocodeId ’ ) {

i c on s r c = hostURL+’/ images / l e t t e r_e . png ’ ;
$ ( ’ button#endGeocodeId−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−su c c e s s " ) ;

} else {
$ ( ’ button#startGeocodeId−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−su c c e s s " ) ;

}
var i conFeature s = (new o l . format .GeoJSON ( ) ) . readFeatures (data , {

f e a t u r eP r o j e c t i o n : ’EPSG:3857 ’
} ) ;
addMarker ( iconFeatures , i c on s r c ) ;

}
}

} ) ;
}
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Algorithm B.29: JavaScript document
myquery.js, part 5

func t i on saveGeocodeStartStr ing ( id ){ var t ext = $ ( ’ input#startGeocodeId ’ ) . va l ( ) ;
saveGeocodeStr ing ( id , text , " S ta r t " ) ;

}

func t i on saveGeocodeEndString ( id ){ var t ext = $ ( ’ input#endGeocodeId ’ ) . va l ( ) ;
saveGeocodeStr ing ( id , text , "End" ) ;

}

func t i on saveGeocodeStr ing ( idToSave , text , po inttype ) {
var r e s u l t ;
$ . a jax ({

type : ’GET’ ,
data : {

id : idToSave ,
e l ementStr ing : text ,
po inttype : po inttype

} ,
u r l : hostURL+’/ saveGeocodeString ’ ,
dataType : ’ j son ’ ,
be foreSend : func t i on ( ) {

i f ( po inttype == ’End ’ ) {
$ ( ’ button#endGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t " )
. addClass ( " btn−i n f o " ) ;

} else {
$ ( ’ button#startGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t " )
. addClass ( " btn−i n f o " ) ;

}
} ,
s u c c e s s : f unc t i on (data ) {

i f (data . length == 0) {
a l e r t ( " ke in Ergebnis von der geocodierung " ) ;

} else {
i f ( po inttype == ’End ’ ) {

$ ( ’ button#endGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−su c c e s s " ) ;

} else {
$ ( ’ button#startGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−su c c e s s " ) ;

}
}

} ,
error : f unc t i on (data ){

i f ( po inttype == ’End ’ ) {
$ ( ’ button#endGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−danger " ) ;

} else {
$ ( ’ button#startGeocodeId−save−button ’ ) . removeClass ( " btn−de f au l t btn−i n f o " )
. addClass ( " btn−danger " ) ;

}
}

} ) ;
}

func t i on addMarker ( iconFeatures , markerur l ){
var vectorSource = new o l . source . Vector ({ f e a t u r e s : i conFeature s } ) ;
var i c onS ty l e = new o l . s t y l e . S ty l e ({

image : new o l . s t y l e . Icon ( ({
anchor : [ 0 . 5 , 4 6 ] ,
anchorXUnits : ’ f r a c t i on ’ ,
anchorYUnits : ’ p i x e l s ’ ,
opac i ty : 0 . 75 ,
s r c : markerur l

} ) )
} ) ;
var vectorLayer = new o l . l a y e r . Vector ({

source : vectorSource ,
s t y l e : i c onS ty l e

} ) ;
map. addLayer ( vectorLayer ) ;
var po int = vectorSource . ge tFeatures ( ) [ 0 ] . getGeometry ( ) . getCoord inates ( ) ;
map. getView ( ) . se tCenter ( po int ) ;

}
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B.4 Data analysis

The processed data are analyzed in order to remove false positives. The
contexts are lemmatized and classified accorting to implied meaning.
If entries are categorized as "located" but do not include necessary data
e.g. the location of the locatum is missing, the entries are processed
again. The distances between the relatum and locatum is calculated
and checked for plausibility by looking at the resulting distances. If
the distances are too high e.g. 20 kilometers the entries are checked if
it the distances matches the description in the real estate entry. The
results of the data analysis is given in Tables B.1, B.2, B.3 that include
all identified contexts given in German language, the meaning and the
number of occurrences classified in "not located", "partly located" and
"located" entries.

B.5 Contextual typicality for “near”

Algorithm B.30 shows the algorithm used to calculate contextual typ-
icality and prototypes for exemplars on a rational measurement scale
using kernel density estimation (KDE). Algorithm B.30: Instance Contextual-

izedConcept for exemplars on a ratio-
nal measurement scale

{−# LANGUAGE MultiParamTypeClasses , F l e x i b l e I n s t an c e s #−}

module ExemplarScales . RatioExemplars where

import Data . Function ( on )
import quali f ied Data . Vector . Unboxed as U
import S t a t i s t i c s . Sample . KernelDensity ( kde )
import quali f ied Data . List as List
import Contextual izedConcept
import Concept

instance Contextual izedConcept c Double where
ca l cu l a t ePro to type =ca l cu la t eProto type ’ . createKDE . extractData

ca l cu la t eProto type ’ : : [ (Double ,Double ) ] −> (Double , Double)
ca l cu la t eProto type ’ = List .maximumBy (compare `on` snd )

createKDE : : [Double ] −> [ (Double ,Double ) ]
createKDE rawdata =U. t oL i s t . uncurry U. zip . kde 64 $ dataVector

where dataVector= U. f romList rawdata

extractData : : Concept c Double −> [Double ]
extractData = map getExemplar . toObse rvat i onL i s t

Using Algorithm B.30 the contextual typicalities and prototypes for
near with more than five "located" categorized real estate entries are
created. The contextualized concepts are illustrated in Figures where
those contextualized concepts are grouped according to the distance
where the prototype is included. The contexts are given in German
language where a translation for each context is included in Table B.4.
In summary eighteen contextual typicalities Figures including six dis-
tributions are given in Figure B.3, B.4, B.5, B.6, B.7, B.8.



contextual typicality for “near” 179

context meaning
number of occurrences

not located partly located located

2618 201 952
Alm space 1 0 0
Altstadt space 0 1 1
Angehörige relationship 3 0 0
Augarten space 2 0 1
Auhof space 0 1 0
Auskünfte information 73 2 1
Autobahn space 13 1 7
Badeteich space 0 0 1
Bahn space 3 0 0
Bahnhof space 15 2 3
Bodensee space 0 0 1
City space 8 0 9
Details information 8 0 0
Donau space 3 0 1
Flughafen space 2 0 1
Fußgängerzone space 1 0 0
Getreidemarkt space 0 0 1
Goldenen Stiege space 1 0 0
Golfplatz space 0 0 2
Graben space 2 0 0
Grenze space 0 1 1
Gürtel space 0 0 1
Hauptbahnhof space 0 0 1
Himmel space 3 0 0
Hollabrunn space 1 0 0
Horn space 0 0 1
Informationen information 79 10 0
Innenstadt space 16 0 10
Interesse information 12 1 0
Kagraner Platz spcae 0 16 0
Kamp space 1 0 0
Krankenhaus space 4 0 2
Künstlerviertel space 1 0 0
Küsten space 0 0 1
Landeshauptstadt space 0 0 1
Lobau space 3 1 0
Luftlinien spcae 0 0 1
Mariahilferstrasse space 1 3 0

Table B.1: Number of context occur-
rences in the data sets from A-Ma
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context meaning
number of occurrences

not located partly located located

Meer space 1 0 0
Mittelschule space 1 0 0
Naherholung space 2 0 1
Naheverhältnis relationship 14 1 0
Naschmarkt space 1 2 1
Naturschutzgebiet space 1 0 0
Oper space 3 0 0
Park space 0 2 2
Post space 0 1 0
S-Bahn space 6 1 1
Schloss space 0 0 1
See space 18 3 19
Seilbahn space 1 0 0
Siedlung space 1 0 0
Sonnen space 1 0 0
Stadt space 20 6 25
Stadtpark space 0 0 3
Stausee space 0 0 1
Strand space 3 0 1
Straßenbahn space 1 0 0
Thermen space 3 0 2
U-Bahn space 18 3 12
Umfeld space 2 0 1
Umgebung space 11 5 4
Umkreis space 1 0 0
Universität space 6 1 5
Wald space 5 1 2
Waldrand space 1 0 0
Wien space 6 0 1
Zentrum space 113 12 78
Zentrum, City space 0 0 2
Zentrum, U-Bahn space 0 0 1
Zukunft time 7 0 0
absolut, Zentrum space 0 0 2
annähernd space 3 1 0
annähernd eben space 1 0 0
bei space 11 6 4
boden space 15 0 0

Table B.2: Number of context occur-
rences in the data sets from Me-b
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context meaning
number of occurrences

not located partly located located

direkter space 0 0 2
endlos space 1 0 2
ganz space 5 1 35
gehen space 62 7 67
gehen, liegen space 0 0 4
greifen space 71 0 2
grenz space 0 1 1
großer space 0 0 3
großstadt space 0 0 1
ideal space 0 0 1
liegen space 131 66 447
liegen, Flughafen, Bahn space 0 0 1
liegen, absolut, gehen space 0 0 1
liegen, ganz space 0 0 1
liegen, sehr space 6 0 0
natur space 10 7 12
nächster space 0 2 7
ort space 1 0 0
sehr space 2 1 0
sehr, Zentrum space 0 0 1
so space 1 3 0
unmittelbar space 133 34 271
unmittelbar, Altstadt space 0 0 1
unmittelbar, Autobahn space 4 0 0
unmittelbar, Luftlinie space 0 0 5
unmittelbar, See space 1 0 0
unmittelbar, Ufer space 0 0 28
unmittelbar, Zentrum space 0 0 1
unmittelbar, gehen space 2 0 6
unmittelbar, liegen space 0 0 2
urban space 1 0 0
verlaufende space 0 0 1
zu space 28 7 4
zu, direkt space 0 0 8

Table B.3: Number of context occur-
rences in the data sets from d-z
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context in German language context in English language

Autobahn highway
Stadt city
Innenstadt downtown, city center
See lake
Stadt Stadt (not translated)
U-Bahn subway
Universität university
Zentrum center
ganz realy
gehen walk
liegen located
natur nature
nächster next, close
unmittelbar immediate
unmittelbar, Luftlinie immediate, line of sight
unmittelbar, gehen immediate walk
unmittelbar, Ufer immediate, bank
zu, direkt too, straight

Table B.4: German- English trans-
lation of contexts presented in the
resulting contextualized concepts for
near
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prototype near@Innenstadt

Figure B.3: Contextual typical-
ity for near@highway , near@city and
near@city center
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Figure B.4: Contextual typicality for
near@lake, near@city and near@subway

0 500 1,000 1,500 2,000

0

1

2

3

4

·10−3

distance in meters

near@Universität
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Figure B.5: Contextual typicality
for near@university , near@center and
near@really
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Figure B.6: Contextual typical-
ity for near@walk, near@located and
near@nature

0 100 200 300 400 500 600 700 800 900 1,000

0

1

2

3

4

5

6

·10−3

distance in meters

near@nächster
prototype near@nächster
near@unmittelbar
prototype near@unmittelbar
near@unmittelbar, Luftlinie
prototype near@unmittelbar, Luftlinie

Figure B.7: Contextual typicality
for near@next, near@immediate and
near@immediate, line of sight
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Figure B.8: Contextual typi-
cality for near@immediate, walk,
near@immediate, bank and near@too,
straight
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