
Quantification of Nuclei in
Synthetic Ki-67 Histology Images

of the Breast

Image Analysis in Digital Pathology

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Biomedical Engineering

by

Michaela Weingant, BSc

Registration Number 0571302

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Robert Sablatnig

Assistance: Matthew DiFranco, PhD

Vienna, 22nd August, 2016

Michaela Weingant Robert Sablatnig

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Zellkernzählung in Synthetischen
Ki-67 Histologiebildern der Brust

Bildanalyse in der Digitalen Pathologie

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Michaela Weingant, BSc

Matrikelnummer 0571302

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Robert Sablatnig

Mitwirkung: Matthew DiFranco, PhD

Wien, 22. August 2016

Michaela Weingant Robert Sablatnig

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Michaela Weingant, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. August 2016

Michaela Weingant

v





Acknowledgements

Thank you to Prof. Sablatnig for supervising my progress on a topic of the Biomedical
domain and giving me the necessary hints and background on a ”proper” academic
approach and its demands.

A huge acknowledgement goes to my co-supervisor Matthew DiFranco for his time, effort
and encouragement and his genuine interest in my topic. His belief in me and my skills
helped me considerably towards finishing my studies while giving me the chance to
experience real, applied research in a multinational team with all its downs and ups.

I want to thank my family for their continuous moral and financial support and constant
believe in me and my path.

My gratitude also goes towards all my friends who kept encouraging me while at the
same time providing many joyful and diverse opportunities for recreation and diversion.

My conversations with Elke as my ”librarian” really helped me to put all my books in
their appropriate shelf and thereby allowed me to focus on my work.

Peter deserves a special shout-out for having spent many hours, day and night, listening
to me, thinking with me, questioning, proof-reading and correcting my work, for the save
room and time he provided by his moral and hands-on support.

Last but not least, I am deeply grateful for the motivation which Wuserl and Wurmi
gave me to finish my studies and especially the patience of Wurmi who had to share me
with this thesis in her first weeks with us.

vii





Abstract

Breast cancer is a common disease and the diagnosis as well as treatment decisions are
among other factors largely based on a number of examinations by the pathologist. They
are traditionally conducted on tissue samples sliced into thin slides. In the last decade
the field of Digital Pathology has emerged, which after scanning of the tissue slides allows
the digital viewing and analysis of tissue slides formerly manually examined under the
microscope. One of the exams in breast cancer diagnosis includes the quantification of the
proliferative activity of nuclei, which is an indicator of tumor growth. The proliferative
activity is expressed as the Labeling Index (LI, rate of dividing vs. non-dividing nuclei)
and is made visible on a tissue slide with a stain called Ki-67.
The aim of the work presented is to develop and evaluate an algorithm for the automatic
quantification of the Ki-67 LI on a digitized slide. The algorithm is based on the color
deconvolution of the images, dividing the image into two channels: one showing the
dividing (Ki-67 positive) and one showing the non-dividing (Ki-67 negative) nuclei. Three
deconvolution approaches are implemented and tested. Each channel is hereafter post-
processed using a pipeline of well-established image processing steps and the result is a
segmentation of all nuclei found in each channel. The amount of nuclei in each channel is
quantified and yields the LI for each image. No supervised training on labeled data is
required prior to the image analysis.
In order to evaluate the performance of the algorithm, a fully labeled dataset of Ki-67
stained images of the breast is required. Because no benchmark dataset of this tissue
and stain type is available, a synthetic dataset is built, using nuclei manually extracted
from digitized clinical Ki-67 slides and a novel synthesis method, allowing the definition
of varying nuclear arrangement, LIs and stain appearances. The images in the datasets
generated provide detailed ground truth information.
An in-depth evaluation based on the synthetic images points out that the presented
algorithm is able to estimate the LI in an image with an absolute error of 1.5%.
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Kurzfassung

Brustkrebs ist eine häufige Erkrankung und sowohl die Diagnose, als auch die Entschei-
dung für die bestmögliche Behandlung basieren zu einem großen Teil auf einer Reihe
an Untersuchungen durch Pathologen und Pathologinnen. Diese Untersuchungen wer-
den traditionellerweise an Gewebsproben durchgeführt, die hierfür in dünne Scheiben
geschnitten werden. Die im letzten Jahrzehnt aufgekommene Digitale Pathologie erlaubt
es, eingescannte Gewebsschnitte digital zu betrachten und zu analysieren, die zuvor
manuell unter dem Mikroskop begutachtet wurden. Eine der Untersuchungen in der
Brustkrebsdiagnose berücksichtigt die Messung der Proliferationsaktivität der Zellkerne,
welche einen Indikator für Tumorwachstum darstellt. Die Proliferationsaktivität wird
als Labeling Index bezeichnet (LI, Verhältnis an sich teilenden vs. sich nicht teilenden
Zellkernen) und kann durch eine Färbemethode namens Ki-67 auf dem Gewebsschnitt
sichtbar gemacht werden.
Das Ziel der vorliegenden Arbeit ist es, einen Algorithmus zu entwickeln und zu evalulie-
ren, der den Ki-67 LI auf einem digitalen Schnitt automatisch misst. Der Algorithmus
fußt auf der Farbzerlegung der Bilder, der sie in zwei Kanäle aufteilt: einen Farbkanal,
der die in Teilung befindlichen (Ki-67 positiven) und einen, der die nicht in Teilung
befindlichen (Ki-67 negativen) Zellkerne zeigt. Dafür werden drei Ansätze zur Farbzer-
legung implementiert und getestet. Jeder Kanal wird hiernach in mehreren Schritten
weiterverarbeitet, wobei etablierte Bildverarbeitungsschritte angewandt werden, und in
einer Segmentierung aller Kerne in jedem Kanal resultiert. Die Anzahl der Kerne in jedem
Kanal wird gezählt und daraus ergibt sich der LI für jedes Bild. Vor der Bildanalyse sind
keine überwachten Lernschritte auf annotierten Daten vonnöten.
Um das Ergebnis des Algorithmus zu evaluieren wird ein vollständig annotiertes Datenset
von Ki-67 gefärbten Bildern der Brust benötigt. Da kein solches Vergleichs-Datenset
dieses Gewebe- und Färbetyps existiert, wird ein synthetisches Datenset erstellt, das
manuell extrahierte Zellkerne von digitalisierten, klinischen Ki-67 Schnitten verwendet
und anhand einer neuartigen Synthese-Methode die Definition von variablen Kernver-
teilungen, LIs und Färbungseigenschaften erlaubt. Die so generierten Bilder stellen eine
detaillierte Grundwahrheit dar.
Eine ausführliche, auf den synthetischen Bildern basierende Evaluierung ergibt, dass der
vorgestellte Algorithmus in der Lage ist, den LI in einem Bild bis auf einen absoluten
Fehler von 1.5% zu messen.
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CHAPTER 1
Introduction

This chapter provides an overview of the motivation, research question and structure of
this work. First, an introduction into the motivation for this topic is given. Then, the
research question is defined, followed by the scope of discussion. Finally, the chapter
concludes with an outline of the thesis.

1.1 Motivation

Pathological exams of tissue specimen are a vital part of routine cancer diagnosis [53].
The tissue is routinely being examined under the microscope, which is time-consuming
(around 25 minutes to count 2000 cells) and requires an expert pathologist [55, 83, 88].
The diagnosis is also subject to various sources of variability, it can for example be
different from pathologist to pathologist or depend on the processing steps of transferring
the tissue onto a glass slide [53]. While the latter factor can be alleviated via rigorous
standardization measures, the pathologists variability is a human factor which can never
be fully avoided [7, 21, 53, 83]. In the last decade, digitization of slides via scanning has
found its way into pathology [32] which has prompted a noticeable response in the research
community, as can be seen in Figure 1.1, showing the number of times, relevant keywords
have appeared in publications on Pubmed1. The possibility of slides being available as
digital images promises the opportunity to apply digital image analysis methods on the
tissue [32]. While it is self-evident that any analysis software is intended to support,
rather than replace the pathologist and his wealth of expertise, the possibilities of digital
image analysis lie in the facilitation and speed-up of daily clinical routine tasks as well
as in the opportunities for large research studies on current or retrospective data [32].

1Pubmed: http://www.ncbi.nlm.nih.gov/pubmed, accessed on January 26th 2016, 09:50
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1. Introduction

Figure 1.1: Appearance of terms in title or abstract of search results on Pubmed

1.2 Problem Statement

The grading of breast cancer cases required for rendering a diagnosis and concluding
the best possible treatment is based on findings from mammography as well as on
examinations of extracted breast tissue on glass slides [31]. These histological exams
include counting cells in the tissue under the microscope. With breast cancer being the
most frequent cancer among women between 40 and 60, the quantification of cells is
a frequent task in the daily routine of a pathologist [31]. At the same time, it is of a
time-consuming nature because in theory it requires to manually count cells in a selected
or given area of the sample [18]. Besides the disadvantageous time factor, the outcome
of such a manual assessment has also shown to be highly variable depending on factors
such as the pre-processing steps of the slide or the expertise of the pathologist [53].

One of the exams for grading beast cancer studies the proliferation rate of cells, because
it is an indicator for the aggressiveness of a breast tumor [18]. The percentage of dividing
(i.e. proliferating) cells with respect to the total number of cells is termed Labeling Index
(LI) and has a large impact on the treatment decision [19]. Cells which undergo division
can be made visible in tissue by being colored with a specific stain called Ki-67 and they
will appear as brown nuclei, while non-dividing cells and nuclei are typically colored
with an unspecific blue stain [82]. Since the introduction of digital pathology, there
have been research efforts to find ways of support the manual visual assessments (which
are referred to as LI estimation rather than LI determination) with assessments via
digital analysis. Most of them require either training of the pathologist on the software,
request manual inputs to adapt to every new case or heavily rely on assumptions based
on different aspects of the tissue or nuclei which bears the risk of delivering biased results
[32]. Adding to these constraints, one of the key factors of any digital image analysis
solution is a thorough evaluation step to ensure that the algorithm actually delivers a

2



1.3. Research Questions

quantifiable answer to the problem [30]. An obvious ambiguity lies in the fact that the
ground truth datasets used for verification are typically created by pathologists who label
the cells based on their manual counts, despite the fact that the high variability of such
manually created assessments was one of the driving forces for creating a non-variable
digital solution. This factor favors the use of an artificial dataset, where the undisputable
ground truth LI is available from the production process of the dataset [58, 68]. To date
and to the best knowledge of the author, no such dataset synthesis method for training
and testing Ki-67 LI estimation algorithm exists.

1.3 Research Questions

In line with the current state of the art, this work seeks to tackle two of the current
challenges concerning the automated Ki-67 labeling on digitized slides. The research
questions are:

Can scoring of the Labeling Index in Ki-67 stained slides (LI estimation) be performed in
an automated fashion, requiring neither prior training of the program nor manual inputs
from the user? If so, to which point of accuracy?

Is a synthetic, labeled dataset suitable to evaluate the performance of such an algorithm?

1.4 Methodological Approach

A pipline is assembled to test and accomplish the aims of the work, using Matlab as a
prototyping-tool, which provides a large library of readily built-in functions especially
for image processing. The pipeline includes sections to adapt to images with varying
staining characteristics, to classify, segment and count the cells. After extensive literature
research, the most relevant solutions for each section are coarsely implemented to test the
functionality for the given use case and the most appropriate solutions are implemented
within the final pipeline.

The evaluation of the Ki-67 LI algorithm is based on a custom-built synthetic dataset
of Ki-67 breast images. Established criteria for nuclei quantification and segmentation
algorithms are employed to rate the performance of the algorithm.

1.5 Scope of Discussion

The presented work focuses on finding answers and insights to the research questions
stated in Section 1.3, while aspects like the time-wise performance of any suggested
solution, as well as the user-experience (e.g. in terms of a graphical user-interface) are not
investigated further. This work does not aim at providing a complete, clinically usable
software solution or directly binding into any existing software or systems for handling
pathology data.

3



1. Introduction

The synthetic dataset generated within the scope of this work is not intended to mimic
all aspects of natural appearance and behavior of human breast tissue, but is specialized
in allowing the evaluation of a nuclear quantification and segmentation algorithm.

1.6 Structure of the Work

In the beginning of the work, the state of the art about the topics touched is presented:
Chapter 2 first covers the aspects of the medical topic of pathology and paves the way for
Chapter 3. There, the motives and challenges for the development of digital pathology
solutions and the status thereof are outlined and a focus is laid on the necessities and
prerequisites of advancing research in automated Ki-67 labeling.

Chapter 4 then expands on the suggested solutions for the research questions, namely the
generation of a synthetic Ki-67 dataset and the implementation of a nuclei quantification
and segmentation algorithm, concluding with a section about the conducted evaluation
criteria and methods.

Chapter 5 reveals the outcome and characteristics of the synthetic dataset and expands on
the performance of the nuclei quantification and segmentation algorithm by illustrating
as well as discussing the quantitative and qualitative results given by the evaluation.
The chapter concludes with recommendations for further investigations on the suggested
solution and highlights a number of potential further use-cases for the synthetic dataset.

The thesis concludes by summarizing the major findings with regards to the stated
research questions in Chapter 6.
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CHAPTER 2
Pathology

Pathology is the diagnostic practice to assess tissue and give a diagnosis which serves as
the basis for further, customized patient treatment. The correctness of the diagnosis is
important, as it is a decisive factor for the therapeutic response1 of this patient to the
consequent steps, be it a mere follow-up, or local excision, medical treatment or even
surgery and chemotherapy [53].

Pathology becomes relevant during a diagnostic process, when the physician determines
that a histological confirmation/assessment is required in order to proceed with the
treatment [53]. It includes the examination of solute cells, called ”Cytology”, and the
examination of whole tissue, called ”Histology” or ”Histopathology”. In the context of
this work, the focus lies on Histology.

There is a clear distinction between clinical practice and the research domain when it
comes to the pathologists goal and timely issues [53]. In clinical practice, pathologists
have a clear focus on delivering an accurate diagnosis within a short time-span [53].
They analyze a number of features in the histology slides, such as tissue architecture,
nuclear morphometry and quantification or cellular color and texture [53]. For example
it ideally only takes about 20 minutes to render a diagnosis based on an inter-operatively
extracted tissue sample [42]. In research, as a contrast, the pathologist tries to quantify
and describe the differences between histology samples, while looking at similar features
such as nuclear morphometry, stroma quantity, tissue classification etc. The time required
for research analysis tasks does not play such an essential role as for clinical routine tasks
[53].

1therapeutic response is a term for the success of treatment
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2. Pathology

2.1 Processing Steps prior to Analysis by Pathologist

The tissue to be examined undergoes certain processing steps, before it can be viewed
and analyzed under the microscope by a pathologist [53, 88]. First, tissue is taken from
the patient in form of a biopsy or a tumor excision, both of which are usually done
in the operating room. In the pathology lab, the tissue is fixated by formalin as soon
as possible, which prevents natural biological processes such as apoptotic cell death or
growing microorganisms [42, 53, 64, 88]. Specifically in histology, the fixation is conducted
in such a way that the biological reactivity of proteins stays intact, which is important
for the detection of enzymes or antigen structures [42]. Then the tissue specimen are
dehydrated and embedded in paraffin. In order to achieve near-transparent characteristics
for bright-field microscopy, the block of tissue embedded in paraffin is then cut into small
slices of 3-5 micrometers using a microtome, which is a high precision slicing instrument.
The slices are placed on glass slides for convenient manipulation under the microscope
and dried in an incubator [64, 88]. Because the tissue is still near-transparent at this
stage, the structures of interest have to be highlighted. This is achieved via dying with a
stain that targets different structures. The standard staining protocol, which is in use
for around a century, uses Hematoxylin and Eosin (H&E) to highlight tissue structures
such as nuclei in different colors [42, 88].

2.2 Staining Protocols in Breast Cancer Diagnosis

In line with the focus of this work, this section will only discuss staining protocols common
in breast cancer diagnosis. The term staining protocol actually refers to the instructions
of applying a stain to a slice of tissue on a glass slide. Many diagnostic histological
processes, also besides breast cancer, utilize the so-called ”H&E-staining”, which is a
long established standard-protocol, as mentioned previously. According to this protocol,
the tissue is exposed to two substances, Hematoxylin (H) and Eosin (E). Hematoxylin
dyes the nuclei blue/purple, because it binds to DNA and Eosin dyes the other structures
(such as stroma or cytoplasm) pink, because it binds to proteins [85]. This images treated
with this stain have nuclei in a blue tone and the cytoplasmic structures appear clear to
red or purple, depending on the constituents [53]. The foremost advantage of H&E is that
it visualizes almost all cellular components and provides fair contrast at opposite ends of
the spectrum [53] although the latter claim is challenged in recent publications like [34].
For further, more functional investigations, a range of sophisticated staining techniques
called Immuno-Histo-Chemistry (IHC) can be applied [85]. IHC utilizes antibodies, which
bind to and therefore highlight specific antigens. In breast cancer diagnosis, such antigens
are the Human Epidermal Growth factor 2 (HER2), Estrogen (ER), Progesterone (PR)
or Ki-67. [85] The presence of the Ki-67 antigen is an indicator of tumor growth and
it can be found as a monoclonal antibody at the nucleus of a proliferating cell, thus
it allows the assessment of cell proliferation [26, 85]. More details on the Ki-67 stain
are given in Section 2.3.1. IHC staining targets only exclusive, functional parts of the
otherwise transparent tissue in a slide [69]. Therefore it is combined with a counter-stain,
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2.3. Breast Cancer Diagnosis with the Bloom-Richardson Method

most commonly Hematoxylin. Hematoxylin dyes both nuclei and the surrounding tissue
architecture in a blue shade and enables the visualization of IHC-negative nuclei, the
latter being of importance as a contrast to the nuclei stained via IHC [85].

Since the receptor status (i.e. the quantity of specific antigens) has an impact on the
prognostic outcome of each patient, it is vital that the staining protocols are quality-
controlled and strictly standardized and adhered to in order to enable reproducible,
reliable results [85]. In breast cancer research, a frequent task is to conduct standardized
cross-patient IHC examination. The best solution for this problem so far is to insert
many small biopsy samples into one paraffin block in a strictly grid-structured manner.
This block is called Tissue MicroArray (TMA). Its slices contain tissue samples from a
larger patient group and the subsequent staining process is automatically standardized
across the entire group [85].

2.3 Breast Cancer Diagnosis with the Bloom-Richardson
Method

Equal to all diagnosis rendered via the analysis of histological specimen under the
microscope, it is of crucial importance that careful attention is paid to the preparation of
the breast tissue [18]. This includes e.g. prompt fixation after biopsy or excision [18].

The semi-quantitative method for assessment of what is called the histological grade in
breast carcinoma includes several features [18]. They are viewed in Table 2.1 and each
variable is assessed separately [18].

The sum of all scores yields the overall tumor grade, where 3-5 is a grade I tumor
(well differentiated) and has the best prognostic outcome for the patient, 6-7 points is a
grade II tumor (moderately differentiated) and 8-9 points is a grade III tumor (poorly
differentiated) and has the worst prognostic outcome [18, 93]. In this context, the term
”prognostic outcome” refers to the theoretical outcome if the patient remains untreated
[20]. It is necessary to try and minimize the subjectivity of deriving the grade by adhering
to strict criteria for each of these evaluation steps in order to ensure reproducibility of

Table 2.1: Assessed features and resulting scores to yield histological grading of breast
cancer [18]

Feature Criterion Score

Tubule formation
Majority of tumor (>75%) 1
Moderate degree (10-75%) 2
Little or none (<10%) 3

Nuclear pleomorphism
Small, regular uniform cells 1
Moderate increase in size and variability 2
Marked variation 3

Mitotic counts Dependent on microscope field area 1-3
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2. Pathology

these scorings and grades [93]. As an example, for the assessment of the mitotic activity
only nuclei in which clear morphological features of mitosis are expressed may be counted,
while apoptotic or hyperchromatic nuclei as well as lymphocytes have to be ignored [18].
A certain impact of subjectivity yet can never be ruled out [93]. Basically, all these
features can be assessed on tissue stained with the standard H&E protocol [18]. However,
one way to alleviate some of this subjectivity is to substitute the H&E-based mitotic
count with the assessment of the proliferative activity using an IHC stain targeting a
nuclear antigen only present in phases of proliferation, such as Ki-67 [16].

In addition to the cancer grading, indicating the prognostic outcome, there are also
histological analysis techniques aiming at the predictive outcome of the patient – how
well the patient will respond to different treatment strategies and the theoretical outcome
if the patient is treated [20]. To this end, several receptor statuses are tested, using
the aforementioned IHC staining protocols for ER, PR, HER-2 and Ki-67 [20]. The
examination results from determining these receptor statuses can greatly influence the
subsequent treatment plan [85]. They are commonly determined via counting the
percentage of IHC-positive nuclei in relation to the IHC-negative nuclei [85]. A certain
threshold divides overall positive tissue from overall negative tissue, where the thresholds
vary depending on the type of IHC and country (e.g. in Europe it is 10% for the ER and
PR examination, in the U.S.A. 1%) [85]. The status of the HER2 receptor, in contrast,
is not based on the nuclei quantification, but on the solidity and staining intensity of the
cell membranes [85].

2.3.1 Proliferation Assessment via Ki-67 Scoring

A prognostically highly significant and thus important part of the histological grading
procedure targets the proliferation activity of the tumor, expressing how fast the tumor
grows in terms of cell growth and division [88]. This can be done via a mitotic count2 in
common H&E staining [79, 88], whereas mitotic cells can easily be confused with other
structures or constructs visible in histopathological images, such as apoptotic, necrotic
or merely epithelial cells as they are highlighted by the same stain [74]. Alternatively,
the proliferative activity can also be assessed via using antibodies against cell phase
specific antigens such as Ki-67. The Ki-67 nuclear protein is expressed in all phases of
the nuclear cycle but the resting phase (G0-phase). Consequently, it reveals all phases
in which the cell is undergoing proliferation [20]. Ki-67 scoring has proven to be an
appropriate substitute for the mitotic count and even provides highly significant predictive
information about treatment efficacy when used as the only criterion [20, 79].

However, many details about the Ki-67 assessment are subject to open discussions
[20]: The definition of the threshold or cut-off value for a ”positive” result (e.g. >1%,
>10%, >20% etc.) remains a challenging questions yet unsolved, although the significant
correlation between Ki-67 index and treatment efficacy has already been established
[20, 93]. Data suggests that the cut-off value is helpful in identifying the patients with

2The mitotic count describes the percentage of cells currently undergoing mitosis, i.e. cell division
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the highest chance to profit from chemotherapy [70]. It is also not yet fully established
whether it is the percentage of positive nuclei which is more relevant or the percentage of
stained area [20, 70]. Another open issue concerns the locations or so-called microscopic
fields, in which the assessment should be conducted [26, 65]. It is agreed, however,
that the evaluation of Ki-67 should be performed in areas with the highest percentage
of positive nuclei, e.g. the invasive border of the tumor tissue [70]. As suggested in
[26], the hotspot containing the highest percentage of positive nuclei, is determined via
visual judgment at low 40x magnification of the tissue. This view shows what is called a
low-power field [26]. One recommendation is to consecutively count the nuclei in three
to five high-power fields (400x) within this low-power field [16, 37]. The challenge lies
in the heterogeneity of the Ki-67 staining intensity, which increases towards the tumor
edge and is particularly prevalent in hotspots, so the question remains whether these
high-power fields should focus on hotspots, only include them or avoid them altogether
[16]. Between 500 and 2000 tumor cells are observed during the assessment [16, 43, 83].

The level of Ki-67 expression, i.e. how strong and frequent the stain attaches to tissue
nuclei, is commonly described and referred to as Ki-67 Labeling Index (Ki-67 LI) or
proliferation index and the process of deriving this index is referred to as Ki-67 scoring or
LI estimation [12, 94]. The scoring should optimally only include cells within the tumor
region and exclude other areas such as connective tissue [41].

2.3.2 Sources of Variability

Histology-based diagnosis has yet not been standardized to an extent which eliminates
all possible sources of variations [53]. The reproducibility of diagnosis in Ki-67 scoring
and histology in general stems from a range of factors: First, there is a natural variability
among the characteristic of the human body [53]. Together with the long chain of
pathological deviations which can affect a tissue, this leads to an infinite number of
biological appearances – the biological variability [53]. Secondly, two pathologists can
assess the same slide and conclude different diagnoses from it – this is called the inter-
observer variability [21, 53]. Thirdly, the same pathologist can render different results
on the same slides when assessing them at two time-instances, which is termed intra-
observer variability [7, 83]. Adding to this, there are also considerable inter-laboratory
differences in the staining techniques, introducing yet another factor of variability with
significant impact on the Ki-67 LI [54]. And last but not least, the non-uniform diagnostic
evaluation criteria as mentioned in Section 2.3, also play a role in the low reproducibility
of assessments.

All of the mentioned factors are motivators for the development of more standardized
solutions of histology-based diagnosis. Among other efforts, this has supported the
necessity for and advancement of developing non-subjective digital solutions for pathology-
related tasks. The next chapter gives an overview about the field of so-called digital
pathology.
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2.3.3 Summary

Pathology is a medical discipline for the assessment of tissue in a qualitative and
quantitative manner via examination under the microscope. For this purpose, the tissue
is excised and treated in order to be placed on a glass slide and display the biological
structures. One of the treatment steps is staining of the tissue to highlight distinct
structures, such as nuclei or cell membranes. The most common stain is Hematoxylin
and Eosin, H&E, which dyes the nuclei blue/purple and the other structures (such
as cytoplasm) pink. There are also stains summarized under the term Immuno-Histo-
Chemistry (IHC), which target functional characteristics of the tissue. Ki-67 is one of
these IHC stains, which dyes the nuclei of proliferating cells in a brown shade. It is
counter-stained with Hematoxylin to be able to differentiate between proliferating (Ki-67
positive) and non-proliferating (Ki-67 negative) cells. The quantification of positive
versus negative cells is called Labeling Index (LI) scoring and is a diagnostic measure
for tumor growth which is routinely examined in breast cancer cases, because it has an
impact on the treatment decisions and thus the prognostic outcome of each patient.

Various sources of variability make the reproducibility of pathological diagnosis difficult,
such as the natural variability of human body, the variability within pathologically
occurring deviations of diseases, the variability of a diagnosis rendered by a single
pathologist on two different time instances, the variability of a diagnosis rendered on
one slide by different pathologists and even the variability of the tissue preparation
steps which can differ within and between laboratories. Adding to this, the diagnostic
evaluation criteria are not standardized.

With breast cancer being one of the most frequently occurring cancer types, rigorous
evaluation standardization as well as reproducible, non-subjective quantifications are
desired. Therefore the task of Ki-67 LI assessment can greatly benefit from digital image
analysis solutions.
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CHAPTER 3
Digital Pathology

Digital pathology basically describes the digitization of a physical pathology slide into an
image, which can be viewed on a computer screen [76]. Several terms exist for describing
the field of digital pathology, e.g. computational pathology, [21] virtual microscopy
[89], digital histopathology [35] or pathology virtual slide technology [72] and for the
denomination of created images, e.g. (digital) whole slide imaging/images [15, 27, 90] or
virtual slides [90]. In the last two decades, the field has grown largely (see Figure 1.1)
and in 2014 the term also included the entire pathology information system, complete
with archiving management, real-time evaluation, tele-viewing and –consultation, and
applications in education, clinical routine diagnosis, research and the development of
artificial intelligence instruments [76]. While the field of radiology has been digital at
least 10 years before pathology, the concepts utilized in radiology cannot simply be reused
for pathology, because there are vast differences to be considered [76]. In radiology, live
specimen (e.g. patients) are imaged, whereas in pathology there is a constant interchange
between wet, hands-on laboratory conditions and digital observations [76].

The following sections give an insight into the motives for the ongoing advancement
of the field of digital pathology, the technical state-of-the-art, as well as into the most
challenging factors in the development of solutions. Also, an excerpt of frequent digital
image analysis problems in digital pathology is highlighted, with a focus on digital
solutions for Ki-67 scoring. In the end, evaluation approaches for quantification and
segmentation algorithms in digital pathology are investigated.

3.1 Motives for the Advancement of Digital Pathology

The inclusion of pathology images and metadata into information systems is on track to
the ultimate goal of creating a large cradle-to-grave electronic patient record and today
this goal is technically in foreseeable reach [32]. The digital availability of data also
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allows the use of old cases for data mining or re-assessing therapies, offering potential
benefits for future patients [32].

The handling of glass slides is an efficient way to make an initial diagnosis but they are
overall expensive, time-consuming and largely inefficient in terms of storage, research,
education and re-consultation [32]. The conversion of glass slides into digital Whole
Slide Images (WSI) offers more cost-effective and efficient means or archiving, presenting
and transmitting pathology information [32]. Compared to glass slides, virtual slides
offer several opportunities, such as being easily viewed by several people at the same
time, cases can be assessed anywhere and anytime, lab-space used for pathology can be
in multi-use for other purposes, WSI can be repeatedly annotated or quick switching
between slides is possible [32]. Currently, institutions are required by law to keep their
glass slides and tissue blocks for at least ten years, but the digitization provides the
option of storing the slides using considerably less physical space and avoids the risk of
being lost, damaged or fade over time [53].

The use-cases include making tissue diagnosis, educational purposes for all stages of
proficiency, consultation (also via telepathology, where a diagnosis is made in another
location than the physical glass slide location), quality management, archive management
and, last but not least, research [32]. The largest hopes of pathologists concerning
digitizing pathology are pinned on factors like improved ergonomics for the pathologist,
diagnostic accuracy, measurement accuracy, time saved and speed of slide navigation [49].
Together with foreseen positive impacts on laboratory aspects like slide preparation or
slide handling, overall positive effects are expected to be noticed in the overall quality of
healthcare, the economy of healthcare pathways, the economy of pathology departments
and the development pace of diagnostics [49]. A study has shown that over a 5-year
span, the use of digital pathology can be a huge cost saving factor by increasing the
productivity, by lab consolidation and by avoiding unnecessary treatment costs thanks
to more accurate cancer diagnoses even from non-subspecialty pathologists [29].

The field of digital imaging analysis has therefore gained increasing attention over the
past two decades, both in research and in clinical practice [95]. The motivation for
digital image analysis to aid in the diagnostic process is founded in the fact that manual
diagnosis under the microscope does not only foster various factors of variability, but
is also time-consuming and requires high expertise and skill from the examiner [41, 95].
Furthermore, pathology and microscopy images exhibit very complex natures, which
makes manual assessment challenging and causes large variability of the examination
results [95]. Thus, one of the major advantages, which also drives the motivation for this
work, is that Computer-Aided Diagnosis (CAD) based on digitized slides provides the
opportunity for quantitative analysis of pathology images with a high throughput rate
[95]. The CAD can reduce the bias and deliver reproducible and accurate estimates of
diseases, thereby decrease various factors of variability [95].

While computer algorithms on digital slides can automate some of the pathologists routine
tasks, such as screening pap smear slides, and thereby reduce the staff expenses and
allow more time for challenging cases, the motive for introducing digital image analysis
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in research is even more profound [53]. The analysis results rendered by a pathologist
are incomplete with regard to the fact that the human visual system is unable to fully
identify and classify all biologically or clinically important features [53]. In contrast to
manual assessment, CAD also allows the extraction of rigorous quantifiable measures
of image features, which does not only facilitate the clinical workflow, but also opens
the door for vast comparative studies of older cases in order to deepen insights into
potential prognosis and individualized treatment options [95]. For example, it is hard to
demonstrate that the average nucleus diameter is bigger in one specimen than the other
or to quantify the chromatin distribution, which can form very complex patterns [53].
Here, Digital Image Analysis (DIA) can prompt answers to these tasks on a comparative,
reproducible and reliable basis [53].

3.2 State-of-the-Art

In the early stages of digital pathology, the digitization was conducted by capturing still
images with a digital camera mounted onto the ocular of the microscope [85]. As of
2016, the scanning procedure is handled automatically by Whole Slide Imaging scanners
(WSI-scanners) [85]. They conduct all steps including loading the slides onto the scanning
platform, detecting the tissue regions on the slide and selecting a focus point, as well as
image acquisition, compression, registering and storing them on a laboratory information
systems [85]. Several vendors and file formats can be found on the market: Aperio
produces images with an extension called .svs, which is a tiff-based single-file format,
the .vms-files by Hammamatsu are jpeg-based multiple images, the .scn-files by Leica
are bigTIFF with XML metadata in single-file format and 3DHistech allows the use of
various image formats in their multiple-file .mrxs-files [32].

WSI scanners perform rapid slide-scanning at 20× or 40× magnification1 creating high-
resolution images with around 0.5 to 0.25 micrometers per pixel, respectively [53, 85].
To reduce the file size, the images are stored in a pyramid structure with varying
magnification levels, which facilitates fast navigation and multi-scale image analysis [85].
Storing a common tissue area of a glass slide of of 15mm × 15mm yields in the range
of 3GB of data, which may be reduced to 200-500MB by compression [69]. The storage
space of an entire case (up to 30 different stains applied to different sections of the
specimen) may amount to 10s of GB, with extremes going into 100s of GB when multiple
focal planes are stored per slide [69]. These numbers exceed data sizes found in radiology
studies by at least an order of magnitude [69].

While all of the available digital pathology systems allow the inclusion of relevant
metadata, the missing common format and data model hinders straightforward sharing
between devices and laboratories [32]. There has been an effort to create DICOM2 and

1Those numbers always refer to the magnification in addition to a 10× objective, resulting in total
perceived magnifications of 200 or 400 times the real size

2DICOM = Digital Imaging and Communications in Medicine, the most common medical imaging
and communications standard to facilitate the interchange of images and metadata
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HL73 standards as well as IHE4 profiles to facilitate interchange of images including their
metadata, leading to the publication of an IHE framework in 2010 and two DICOM
supplements in 2014, but they have yet to be adopted by all the vendors [32].

In 2015, the Food and Drug Administration had not yet approved the solitary use of
digital pathology for primary diagnosis [32]. However, the concordance rates between
examination results from light microscopy and WSI is above 90% for different fields
of pathology, e.g. dermatological pathology, gastrointestinal tract pathology or breast
pathology [32]. The discordance is claimed to be induced mostly by lack of experience in
the handling of digital pathology [32].

Concerning the acceptance of digital pathology, a 2014 symposium on digital pathology
in Sweden conducted surveys among the participants and showed that digital pathology
for various fields of application (such as diagnosis, re-reviewing, secondary consultation
or education) is in average still used in only 40% of all cases, but the pathologists and
related healthcare personnel have high expectations that this number will increase in the
upcoming years, predicting a use in almost 80% of all cases by the end of 2016 [49].

3.3 Challenges

While improvements of image-viewing solutions, image quality or scan times are happening,
the complete conversion to digital pathology like in radiology is not yet reality [32]. The
WSI technology has successfully found its way into niche applications of clinical, research
and educational purpose but some challenges still require more attention to allow full
integration [32]. These include, among other aspects, the lack of standard development
for practice and validation guidelines, work-flow adaptations, regulatory issues or the
huge amounts of data generated [32]. The lack of standardization concerns e.g. the
sample processing and viewing process: Tissue sample, staining, optical properties of
microscope and scanner, storage format, display calibration can vary [34, 85].

As stated in Section 2.3.2, the three sources of variability, especially the technical
variability, can significantly pose an obstacle for digital image processing systems [53].
The human visual system of the pathologist who evaluates the respective sample is also a
criterion which benefits from more physiological prerequisites – the contrast on the slides
introduced by the applied stains may not be optimal for human visual perception [34].

At the current stage of viewers for digitized whole slide images, studies have shown
differences in diagnoses based on assessment of digitized images compared to physical
slides under the microscopes [12, 56]. Yet, pathologists still prefer the microscope, which
to date offers faster panning and focusing as well as an hardly reproducible optical
impression of being nearer to the tissue [53]. Also, the point at which pathologists
trust and routinely use such systems to an extent that justifies the large costs put into
purchase and development of these tools has not been reached yet [76]. Pathologists

3HL7 = Health Level 7, another major medical communication standard [32]
4IHE = Integrating the Health-care Enterprise, an international organization [32]
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are non-subject matter experts, which means that they are not trained to use and/or
understand image processing software. Thus any program for the pathologist community
should be designed in a way that allows to be fully utilized by a non-technical subject
matter expert [28].

With the large data volume created in digital pathology and the necessity to have large
amounts available online at any time, cost-efficient storage solutions are still an issue [49].

In 2015, despite increasing numbers of publications in the last decade, the research on
automated histology analysis is still scattered in comparison to automated radiology
analysis [71]. This leads to methods being tailored to limited, private datasets and a
standard on quantitative criteria to be reported is still lacking [53]. There is an evident
need for public benchmark datasets and standardized evaluation criteria in order for the
field of digital pathology to advance to the next critical step [53].

3.4 Frequent Digital Image Analysis Challenges in Digital
Pathology

In the scope of this work, the focus lies on digital analysis for images acquired by
brightfield-microscopy (as opposed to fluorescence or multispectral microscopy) since the
majority of diagnostic steps in breast cancer is performed for this kind of imaging [85].
Most to-date officially approved DIA solutions in digital pathology concern the features
of grading systems, like the quantification of bio-marker expression such as ER, PR and
HER25, or the automatic calculation of the mitotic rate [41].

3.4.1 Artifacts

Histopathology images exhibit artifacts, which can pose a challenge to any DIA design
[95]. They stem from different steps of the slide processing or digitization pipeline and
include tissue deformations, background clutter, noise, blurred regions, poor contrast
and more [95]. Fixation errors for example introduce changes in tissue morphology
and imperfections during mounting or variation of staining may lead to missing parts
or out-of-focus regions and over- or under-staining [85]. Bad fixation can also lead to
shrinkage artifacts, which can result in clefts being mistaken as lumina6[18].

Artefacts and problems during the staining process include poor or excessive contrast
and saturation [64]. Tissue slices are by their nature very thin (3-5 micrometers) and
can happen to form tissue deformations such as folds when being mounted onto the glass
slide [53]. These folds typically appear as areas of high color saturation and are hard
to address and avoid in DIA, yet some efforts have been published [53]. Furthermore,
variations in the water content of different tissue areas can result in tearing when the
tissue is drying during the processing steps [53]. These tears appear as white cracks,

5Estrogen (ER), Progesterone (PR) and Human Epidermal Growth factor 2 (HER2), see Section 2.2
6Biological term describing a tissue opening such as the inside of a tubular structure, artery or ducts
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which have no biological implications. As of 2015, no work has yet addressed this artifact
specifically [53]. Also, dull blades of the microtome can lead to alternating light and dark
regions, known as chatter artifacts [53].

Another class of common artifacts stems from the stitching process [53]: since WSIs are
not scanned all on one, but in strips and tiles, the whole image is created by stitching
these parts together [53]. This happens in the scanner software [53]. The stitching
becomes challenging when a large specimen has to be sectioned and scanned in several
steps [53]. So far only manual solutions have been proposed [53].

3.4.2 Color Deconvolution

Depending on the task, e.g. the aforementioned IHC quantification or nuclei detection,
DIA methods can profit from separating the stains which were applied to dye different
tissue structures [85]. Several approaches have been proposed [85]. One category of
solutions suggest to cluster or classify the RGB (red, green and blue) pixel values to
gain binary images or probability maps for the applied stains [85]. The clusters which
correspond to the respective stains have to be identified or the data has to be labeled. A
different set of approaches is based on the physical background of the staining process
[67, 85]. In brightfield microscopy, the images are formed according to the Lambert-Beer
law about light absorption. Using this model, the concentration of a stain is proportional
to the optical density (the logarithm of the intensity of this stain) in the tissue [67, 85].
The concentration of each of up to three stains can be found by linear decomposition,
based on the fact that the image was acquired using three detection channels in the
image. The identified stain concentrations allow the derivation of single-stain images by
reversing the previously applied approach [67, 85]. Ruifrok et al. [67] was the first to
report this approach for quantification of IHC by color deconvolution, which came to be
a fundamental work in this field.

However, for the solutions based on these technique, the specific absorption spectrum for
each stain has to be provided by the user, as e.g. in [85], or vectors for deconvolution
can also be extracted or estimated using manual selection of representative regions, as in
[51]. As laid out in [34], many methods resort to fixed vectors for conducting the color
deconvolution, as for example provided by Ruifrok [67]. Deconvolution steps relying on
fixed vectors are for example utilized in [47, 63, 89].

Some proposed DIA solutions try to overcome this limitation either by being robust
to staining variabilities [85] or by standardizing/normalizing the appearance prior to
further DIA steps, as in [50]. The normalization process includes the identification of
the inherent stain concentrations in each pixel before all channels are normalized and
re-mixed to obtain a standardized appearance [85]. Most methods rely solely on the
image-inherent color information and do not consider spatial dependencies of different
structures in the tissue, which potentially limits their robustness [4].

The mentioned normalization approach by Macenko et al. [50] bases the deconvolution
step on the assumption that the reference stain vectors are implicitly given in the non-
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Figure 3.1: Examples for the heterogeneous appearances of images produced in different
laboratories, (a) and (b) from one laboratory and (c) and (d) from another. Images
(e)-(h) show their more homogeneous normalized equivalents after normalization using
the approach by [50] (images taken from [91])

linear ”optical density” representation of the pixel distributions (Equation 4.1). The
fringes of the pixel cloud are said to constitute the stain vectors and can be identified
with the help of a singular vector decomposition [50]. However, [4] accredits the method
by [50] only limited applicability as it would not sufficiently adapt to strong staining
variations and yield poor stain vector estimates. Examples of the normalizing effect of
applying the method in [50] on prostate whole slide images from different laboratories
can be viewed in Figure 3.1. The upper row shows the appearance of images as they were
originally digitized in two different institutions and the lower row shows their respective
appearance after normalization.

Another approach for color deconvolution utilized as a component in a method for grading
nuclear pleomorphism (i.e. roughly speaking the shape variations) is published in [11] and
based on the assumption that the stains can be linearly separated. It analyses the Cyan
Magenta Yellow and Key (CMYK) representation of the original image for dominantly
purple and non-purple values, computes the main axes thereof and then projects the
original RGB pixel values onto axes orthogonal to the main axes. This approach is used
in a method for detecting regions of interest in H&E stained images by Bahlmann et al.
[3].
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3.4.3 Tissue Classification

The typical tissue area on a histology slides measures 15x15mm, with resolutions reaching
into the gigapixel range [85]. For this reason, it is common to first identify the regions
of interest within the given tissue [85]. As a first step, most WSI scanners already
exclude large portions containing white background from the scanning process [85]. To
further reduce the regions for DIA, relevant areas for the respective task are identified
[3, 10, 33, 59, 62]. When classifying breast cancer into benign or malign classes for
example, only the epithelial areas of the tissue are relevant [85]. Quantification of IHC or
the performing of histological grading requires only the tumor tissue, hence all non-tumor
regions should be excluded from the DIA [85]. Generally, epithelial and stromal regions
of tumor contribute differently to the prognostic outcome [85]. Hence, it is common to
segment the tumor into the classes ”epithelium” and ”stroma” before proceeding with
other DIA or grading steps [85]. For tissue segmentation/classification, the division
can be done by supervised pixel-wise classification of small sub-image blocks, based on
features such as color and/or texture [85, 3]. Unsupervised methods have also been
proposed [36].

3.4.4 ImmunoHistoChemical (IHC) Quantification

In contrast to ubiquitous H&E stained slides, where the features of interest are rather
complex – the size of the nuclei, their texture and shape, their spatial arrangement and
tubule formation, the stroma interaction etc. – the features of interest in IHC stained
slides are foremost contained in the staining intensity and color [85]. This factor makes
IHC samples applicable for DIA. One readily available feature is the percentage of pixels
which are positively stained with a specific target antigen (e.g. ”brown” pixels, denoting
the presence of the Ki-67 antigen), in relation to the negatively stained pixels (e.g. ”violet”
pixels, denoting the absence of the Ki-67 antigen) [85]. Owed to these circumstances and
the fact that visual IHC examinations are prone to variability among pathologists even
when following strict guidelines, the American Society of Clinical Oncology together with
the College of American Pathologists encourage the use of DIA techniques in order to
improve the consistency of interpretation of IHC slides [85].

Most commercially available platforms for DIA on pathology images supply algorithms
for nuclei and membrane staining quantification [85]. Automatic scoring solutions have
shown to highly agree with expert scoring results [85, 6].

It is advised not to draw a direct conclusion from the stain intensity derived via color
deconvolution to the quantity of IHC stain in a sample, as not all stains are stoichiometric,
i.e. the amount of stain visible does not necessarily reflect the amount of histochemical
reaction products [21, 78]. Adding to it, some stains such as DAB7 do not follow the
Lambert-Beer Law, thus they are not true absorbers - a scattering effect can broaden the
observed spectrum [21, 81].

7Diaminobenzidine, an anti-Ki-67 antibody
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3.4.5 Nuclei Detection and Segmentation

Even though a diagnostic factor can be concluded via the percentage of positively stained
nuclear area without the need for segmenting single nuclei, DIA approaches customarily
include nucleus detection or segmentation steps [85, 80]. The ER, PR and Ki-67 receptor
status for example are commonly examined via the rate of positively stained nuclei [85].
For this task, it is sufficient to detect the cells, whereas detection refers to obtaining
the rough object location rather than delineating its boundaries [95]. It results in one
marker/seed per nucleus, which can be one pixel or a small Connected Component (CC)
within the object of interest [95]. A large variety of solutions for nuclei identification
has been proposed, including different approaches for all pre- and post-processing steps
[95, 85]. It is commonly combined with segmentation of nuclei, either as a preceding
step, generating seeds for the segmentation, or following segmentation of nuclear areas as
an adjacent step, where the seeds serve as markers for the separation of nuclei clumps
into individual nuclei [85, 95].

Methods for nuclei detection rely on common algorithms also utilized in other image
processing areas, such as distance transforms, morphology operations, H-maxima and
H-minima transform, Laplacian of Gaussian filters, Hough transforms, radial symmetry-
based voting procedures or supervised learning. It is common to combine several of these
algorithms to achieve the identification [95, 30, 92].

Nuclei segmentation remains one of the most challenging problems in pathology DIA,
especially for slides stained with H&E, due to the varying tissue appearance and im-
perfections during the staining process [85]. Additionally to the challenges introduced
by artifacts and challenges before or during the digitization process, the tissue has an
inherent heterogeneity, which any DIA solution has to tackle [95]. This heterogeneity
includes factors such as varying nucleus sizes, shapes and even intracellular intensity
variations. Nuclei/cells can also overlapp or touch when they build clumps [95]. Adding
to this difficulty, the appearance of epithelial cancer nuclei can differ to a great extent –
from almost perfectly round to highly enlarged or irregularly shaped nuclei, containing
marginalized or coarse chromatic and prominent sub-nuclear particles (nucleoli) [85].
Furthermore, non-tumor nuclei types such as fibroblasts and lymphocyte nuclei can
appear at the same sites as epithelial nuclei, which can hamper the specificity when
only epithelial nuclei are sought to be segmented [85]. Also, even when the exclusive
identification of epithelial nuclei was successful, they may still be difficult to segment into
individual nuclei due to overlapping, clustering or clumping [85, 30]. Last but not least,
even small ”junk” particles, which also absorbed the Hematoxylin stain, may appear in
high grade tumors and complicate the segmentation [85].

In the following sections, an insight into some basic techniques used in nuclei detection
and segmentation methods relevant for this work is given.
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Binarization

A step ultimately required for object segmentation is the binarization of an image into
foreground and background at some stage [40]. At some point, all binarization procedures
require a local or global threshold, which can be determined in several ways, e.g. via
a method by Otsu [60] as used in [92] or via applying a clustering step like k-means
[46] on the image histogram, as used in [72], [40] or [13]. The histogram clustering via
k-means by Lloyd [46] partitions the data via iteratively assigning the n data-points to
a predefined number k of clusters, each represented by a centroid. The procedure is as
follows:

1. Initially, k cluster centers i.e. centroids are chosen

2. The distances between each data-point and each centroid are computed

3. All data-points are assigned to the cluster with the closest centroid

4. In the next iteration, each centroid is updated to the average of all data-points
assigned to this cluster

5. Steps 2-4 are repeated until the specified maximum of iterations is reached or until
the assignments of data-points to clusters do not change any more

In the original publication by Lloyd [46], the cluster centers are initially seeded randomly.
Arthur et al. [2] propose a heuristic for accelerated initial centroid seeding. Regardless of
the cluster seed initialization, the entire k-means clustering procedure can be repeated
several times to avoid falling into local maxima. The repetition returning the lowest
sum-of-distances for all clusters is regarded as the fittest clustering.

The histogram shown in Figure 3.2 displays an example of the result k-means delivers
when applied on the histogram of a stain intensity image after deconvolution. The three
colors represent the assignment of the each intensity value to one of the three classes.

Morphology Operation

Performing a binary morphological operation describes the filtering of a binary image
using a certain structural element – typically a circle, square, cross or other basic
geocriterional shapes [75]. It examines the geocriterional and/or topological structures of
inherent objects with the defined shape [75]. Some of the basic operators are: dilation,
erosion, closing and opening, which in combination extend to operations like boundary
extraction, skeletonizing, hole-filling, ultimate erosion and more [95]. Ultimate erosion
repeatedly applies erosion to an image until the remaining CC would be removed by
another iteration [95]. The resulting CC serve as a marker for each nuclei and can
serve as seed-points for consequent separation of touching objects [95]. The difficulty of
morphological operations is based on the fact that it relies on perfect binarization, which
is hard to achieve on histopathology images [95].
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Figure 3.2: A histogram clustered into three classes via k-means

Distance Transform

Generally, the Distance Transform (DT) is a representation of an image, in which the
value of distance (in pixels) to the nearest feature point is assigned to each pixel. In nuclei
identification, the feature points are made up of edge pixels in a binary image. Most
distances used for this use-case are the Euclidean distance [95], less common alternatives
are e.g. the Manhattan, Mahalanobis [92] or the Dijkstra distance [41]. The local maxima
of the Distance Transform make up the candidates for nuclei centers and require a step
for rejecting unfitting candidates [95].

The applicability of DT is limited to regular shapes in binary images, because it results
in false local maxima when the edge pixels exhibit even small variations. Thus, it fails
in detecting overlapping or touching nuclei. This drawback can be partly alleviated
when adding the original intensity to the distance map and /or using a Gaussian filter
to eliminate noise. However, these improvements are still insufficient for handling large
variances in the complex histological appearance of tissue and can lead to over-detection
[95]. DT is usually combined with subsequent watershed segmentation, where the
remaining maxima serve as seed points for the flooding [95].

Watershed Transform

The input for a watershed transform is a grayscale image typically made up of the DT of
a binary image, which is inverted such that the foreground pixels farthest away from the
object borders appear as local minima. The functioning principle is to regard the input
image as a topographical surface which is flooded starting from each local minimum,
called basin. The water level increases constantly across the image, lower minima are
flooded previous to higher minima. At each point where the floods stemming from two
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or more basins would touch, a dam is built. It represents the watershed line between
those two local minima and is built higher with the rising flood to prevent the basins
from merging. When all basins are flooded and all floods would have merged, the process
is finished.

The result is a binary image in which the dams, i.e. the watershed lines make up the
foreground (1) and all so-called catchment-basins between watershed lines form the
background (0), where each basin contains precisely one previously flooded minimum
[5]. To avoid oversegmentation during watershed, the inverted DT can be processed
prior to the watershed transform. Such processing may include weighting the DT with
a Gaussian kernel [94] or combining it with the intensity gradient information [57]. A
common method also incorporates a priori knowledge into the watershed algorithm by
inducing markers into the image [30], which can be generated via preprocessing steps such
as spatial filtering or morphological operations [24]. The seeds of previously detected
nuclei can serve as markers [85]. When markers are then defined as the only allowed
regional minima during watershed, noise or over-segmentation can be greatly reduced
[24].

Blurring/Gaussian Filtering

Blurring belongs to a range of image filtering methods to enhance or reduce certain image
features, such as edges or noise [41]. In a spatial filtering operation a filter mask, typically
much smaller than the image, is moved from pixel to pixel across the entire image and
conducts a so-called convolution, where the values of the filter mask are multiplied with
the current image pixel values at each position [41]. Despite having high resolution
images available (see Section 3.2), it is necessary or helpful to remove details such as
noise by applying a blur in the form of a Gaussian smoothing filter to the image [30]. In
a step for mitosis segmentation, Sirinukunwattana et al. [74] employ blurring to remove
noise in the red channel before applying a threshold to binarize it. According to [95], two
cell segmentation algorithms are based on shortest path searching within the previously
blurred and regularized image.

3.5 Digital Imaging Analysis Approaches in Ki-67
Assessment

While there are numerous publications about nuclei detection and segmentation ap-
proaches for H&E and IHC stained images, solutions for other specific stains such as
Ki-67 have been more seldom tackled by the research community: in a review by Xing
et al. [95] about cell detection and segmentation in digital pathology, algorithms for
Ki-67 are not even mentioned. Alike many other breast cancer diagnosis steps, in the
assessment of Ki-67 stained slides the detection of nuclei and the identification of nuclei
features such as size, shape, quantity or chromatin texture are vital factors [85]. There
are only a few publications on the automated assessment of the LI in breast cancer and
most of them do not simultaneously tackle nuclei detection and segmentation. In a 2014
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review about breast cancer histopathology image analysis ([88]), only a single publication
dealing with the segmentation of Ki-67 stained breast images is mentioned ([80]). This
attests how underrepresented the field of DIA solutions for Ki-67 LI scoring is. However,
it is also evident that a robust method for digital assessment would help reduce the time
necessary to render a Ki-67 scoring, reduce intra- and inter-observer variabilities and
enhance the accuracy and reproducibility [12]. Following, the approaches and results of
some works evolving around the Ki-67 assessment, also in other domains than breast
cancer, will be highlighted.

One publication dealing with the automatic scoring of the Ki-67 proliferation index is [94],
it is specialized on Neuro-Endocrine Tumor (NET) cases. In order to obtain a Ki-67 score,
they combine seed detection followed by segmentation and cell feature extraction with
texture feature extraction to derive a tumor/non-tumor classification and subsequently
classify into positive and negative nuclei [94]. In a supervised manner, they train their
algorithm on 20 and test it on 109 images of the same annotated dataset [94]. They
reach a Precision, Recall and F1-score of 0.89, 0.91 and 0.90, respectively [94].

A work on Ki-67 expression in prostate cancer by Desmeules in 2015 compares the
visual estimate of the LI found by pathologists against the estimation obtained with
an existing DIA method in TMAs [12]. Readily available software packages for tissue
recognition and nuclei segmentation by Calopix and Agfa Healthcare were used. Both
steps included manual re-adjustment and verification. The comparison is done via
comparing the distributions of both estimation methods described by mean, standard
deviation, median and IQR (Inter-Quartile Range) of the LI over the whole dataset
of 225 patients. The means of visual estimate and DIA are 2.23 (Standard Deviation
SD = 1.98) and 2.05 (SD = 1.74), while the medians are 1.61 (IQR = [0.71, 3.23]) and
1.48 (IQR = [0.86, 2.83]), respectively. Means as well as medians lie close together. The
comparison of these distributions alone would not necessarily prove any correlation if
regarded over the entire dataset, thus an additional statistical test was conducted on the
mean distributions, proofing that visual estimates and DIA give similar results [12]. Two
drawbacks of the presented DIA solution are the necessity for manual input during the
tissue recognition and segmentation phase and the manual setting of thresholds based on
direct visual judgement.

Some DIA solutions are based on plugins of the freely available open source image
analysis software ImageJ8. The available methods can e.g. serve to work out the potential
correlation between DIA-derived and manually derived LI as in Kim et al. ([37], assessing
the Ki-67 LI in meningiomas). They report a 0.98 correlation coefficient between the
medians of DIA and expert-derived LI, while taking around 11s for the DIA output on
each High Power Field9 (HPF) at 40x magnification [37]. The publicly available, online
DIA solution presented in [80] uses one user input, non-adaptive color deconvolution and
subsequent adaptive thresholding to achieve the percentage of positively (Ki-67) stained
nuclear area per total nuclear area. With the help of a non-linear correction function

8Image Processing and Analysis in Java, https://imagej.nih.gov/ij/
9Portion of a WSI visible when applying the highest available zoom
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on the relation between visual LI (ground truth) and DIA LI, the method yields a final
LI correlation of 0.98 [80]. They also point out the limitations of their software when
confronted with badly stained samples and allow a background correction via integration
of a blankfield image10 [80].

A widespread approach for nuclei detection, not only in Ki-67, is to fit each identified
nuclei segmentation mask to an ellipse with the same second moments as the detected
nucleus mask [22, 38, 89]. Ellipses are also used as shape priors for classifying/detecting
nuclei, where un-elliptical candidates are rejected [4] or as a mean to separate clumped
nuclei [73]. In [92] they use a minimum-model approach to detect nuclei in H&E images,
independent of their shape. They point out that a shape prior such as the ”roundness”
would introduce a bias of excluding relevant, but highly pleomorphic, i.e. irregularly
shaped, nuclei. While the practice of ellipse fitting or using it as a shape prior might
yield a visually more attractive output than potentially ragged or dented outlines of
nuclei segmentations, it carries the risk of occluding physiologically essential information
from the viewer.

As mentioned before, there is no consensus on the site or sequence of the Ki-67 scoring.
It has been suggested that the Ki-67 LI can coarsely be assessed using visual judgement
in 10%-steps on hot spots at only 10x or 20x magnification, which yields a fair correlation
to the ground truth LI of 0.94, however leaving a grey zone between 10% and 30% where
more rigorous assessment is required to derive a final and reliable Ki-67 assessment [26].
Another assessment method utilizing a step-wise counting strategy was suggested in [65].
Despite the undisputable importance of Ki-67 assessment, the large variety of publications
trying to conclude a final and universal assessment method and LI definition underlines
the need for a reliable and reproducible assessment method which can adapt to yet
varying definitions of a hotspot and LI-thresholds and still save time for the pathologist.

In general it can be said that the more a method relies on assumptions about the
characteristics of nuclei, the more likely it is that it wrongfully misses or rejects relevant
candidate nuclei, because these dependencies can induce instability [30]. Examples include
the dependency of concavity point detections on correct curvature segmentation, the
dependency of region growing approaches to shape and size of nuclei, the dependency of
marker-controlled watersheds to correct nuclei seeds and the inability of ellipse fitting to
include arbitrary nuclei shapes [30]. Adding to this, such assumptions also require prior
knowledge [30]. All of these factors make the exact segmentation of nuclei, especially when
presenting large overlapping or touching portions, an ongoing challenge in the research
domain [30]. This difficulty can be seen for example in a work by Laurinavicius et al. [43],
which tested the accuracy of Ki-67 DIA estimation as delivered by a software commercially
available since 2011. They had to use several manual tuning and calibration iterations,
including the knowledge of ground truth reference values, to reach a misclassification
rate (patient considered ”positive” or ”negative” with respect to a given LI threshold) of
5-7%.

10A slide scanned empty, without specimen
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3.6 Evaluation of Digital Image Analysis Solutions

The metrics reported as results of DIA solutions differ widely from publication to
publication, making it hard to define a set of analysis method for comparing performances
of different solutions [7]. While publications aiming at classifying tissue in a binary
manner (such as malign or benign) tend to report the accuracy or error, these ratings are
futile for object detection tasks [7]. There, the declaration of sensitivity and specificity
or precision and recall, respectively are more descriptive [7]. Regardless of the metrics
reported, all evaluations have to be based on the comparison with some form of ground
truth.

The more complex the method to be evaluated, the more difficult or tedious it is to
obtain reliable ground truth data for comparison [68, 96]. For instance the evaluation
of a method not only limited to the correctness of the object count, but also including
measures about the equality of the individual objects in segmentation requires higher
quality of the test data than for mere object count correctness [68, 96].

In terms of evaluating segmentation solutions, the image to be segmented is referred to
as Test Image, the outcome of the segmentation is called Segmented Image [96]. The
reference image, to which the segmented image is compared is referred to as Gold Standard
or Ground Truth [22, 96].

In cases where the Test Images consist of real, clinical images the Gold Standard is
derived by manual creation of annotated/segmented images via human visual inspection
of the test images [96]. In cases where the Test Images are generated synthetically, the
Gold Standard is typically derived from the initial image generation procedure [9, 96], as
demonstrated in Figure 3.3.

a b c

Figure 3.3: Example for Gold Standard extraction from image generation procedure: (a)
Ground Truth object mask (b) Synthetic test image (c) Another version of the synthetic
test image

In the following sections, possible criteria for the evaluation of nuclei quantification and
nuclei segmentation are given. Afterwards, details on evaluations using real annotated
images and synthetically derived images as Ground Truth respectively are given.
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3.6.1 Nuclei Quantification

The estimation of the Ki-67 LI is based on the correct identification of nuclei. Detection
algorithms like [88] base their validation on the Euclidean distance between the located
nucleus center and the ground truth nuclei center. In this case, the Ground Truth only
contains a single pixel location per nucleus, thus the method requires the definition of a
hard global distance threshold between located nucleus center and ground truth nucleus
center. In case the located nucleus center is below this threshold, it is counted as a
True Positive and otherwise as a False Positive [88]. Furthermore, if multiple nuclei are
detected within the threshold distance of a ground truth location, they are only counted
as one True Positive [88]. The global threshold is set according to statistical information
about the average size of the nuclei to be detected [88]. The criteria of Precision (also
often referred to as ”Positive Predictive Value” [87]), Recall (also often referred to as
”Sensitivity” [95]) and sometimes F1 -measure are commonly utilized to quantify the
nuclei estimation [95].

3.6.2 Nuclei Segmentation

As stated in [96], there are different approaches to evaluate a segmentation algorithm. The
outcome can be evaluated analytically by directly examining and assessing the principles
and properties of the algorithms, or empirically by either assessing goodness properties
or discrepancy values [96]. Empirical evaluation via goodness includes implicit object
characteristics such as intra-region uniformity or inter-region contrast and, alike the
analytical evaluation, does not require a priori information about the correct segmentation
[96]. On the other hand empirical evaluation via discrepancy measures requires ground
truth segmentation [96]. Generally speaking, the value of the discrepancy measure implies
the error between the segmented and the ground truth image [96]. Evaluation based
on discrepancy measures is the most commonly used method in nucleus segmentation
solutions, where the ground truth provides detailed information about the outlines of
every single nucleus [95]. In these cases, criteria such as the common Dice similarity
Coefficient (DC) published in 1945 [14] and used for example in [35, 87, 89, 88, 97] or the
less frequently used Jaccard Index [22] are applied and serve in two ways: they evaluate
the segmentation quality and they can also be used as the basis for labeling a detected
nucleus as either True Positive, False Positive or False Negative [92]. The equation and
portrayal of the Dice Coefficient can be seen in Figure 3.4.

It has to be added, that in DIA algorithm evaluation, the criterion of True Negative is not
utilized as the image-nature of the data does not allow a useful definition of objects which
are correctly identified as negative. Examples for publications which use True Positive,
False Positive and False Negative but not True Negative as criteria for evaluation of
nuclei segmentation, are [88, 91, 92].

Some segmentation algorithms also report the accuracy of their segmentation results
based on non-standardized criteria such as manually labeling of segmentation outputs as
correct or erroneous [86] or defining a certain percentage of contour points lying on the
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DC = |A∩B|
1

2
(|A|+|B|)

(a) (b)

Figure 3.4: The Dice Similarity Coefficient DC as a measure of overlap between two
objects, weighted by their average area (a) Formula (b) Graphical portrayal

true contours as ”good segmentation” [66]. [77] report their segmentation accuracy in
terms of R0, R1, R2 and R3, which are expressed as follows:

R0 =
number of pixels well classified

number of pixels of the image
(3.1)

R1 =
number of nuclei pixels well classified

number of nuclei pixels of the image
(3.2)

R2 =
number of background pixels well classified

number of background pixels of the image
(3.3)

R3 =
R1 + R2

2
(3.4)

While these rates answer three different questions regarding the classification accuracy, a
single rate could be more easily interpreted [45]. Furthermore, it lacks explanation about
the quality of the segmentation, meaning whether the segmentation yields correct regions
or merely an accurate rate of well classified pixels [45].

The work of [43] uses the Pearson product-moment correlation coefficient, in short
Pearson’s Coefficient, ρ, to report the accuracy of the Ki-67 LI estimation done by DIA
in comparison to visual estimates by pathologists (Equation 3.5):

ρ(X, Y ) =
cov(X, Y )

var(X) · var(Y )
1

2

(3.5)

The coefficient ρ gives the degree of linear relationship between two variables, and can
lie between −1 (a perfect negative, linear correlation) and +1 (a perfect positive, linear
correlation), where 0 would mean that no linear correlation is given, however it does
not rule out a possible non-linear correlation [23]. The value of ρ is more descriptive as
a measure of dependence than covariance alone because ρ is not affected by the scale
of X and Y . In the case of [43], the two variables whose relation is given by ρ are the
Ki-67 LI estimation of a DIA solution and the Ki-67 LI estimation of the visual estimates,
respectively.

27



3. Digital Pathology

In comparison to other measures of association, e.g. the covariance alone, it is invariant
to changes of location and scale of the variables. The correlation coefficient ρ never
exceeds 1 and its sign can be positive or negative, depending on the covariance. If
ρ = +1, it states that there is a perfectly linear, positive relationship between the
variables (if X increases, then Y increases), while ρ = −1 also describes a perfectly linear
relationship, but it is negative (if X increases, then Y decreases). In cases where X and
Y are entirely uncorrelated from each other ρ = 0 is true [23]. For practical purposes
however, a correlation is usually only assumed if ρ exceeds a certain threshold, which
has to be defined for each individual situation [17]. An obvious feature of interest for
the pathologist is the area of the nuclei [68]. Other features include descriptors to divide
between typical and atypical cells [76] to assess the nuclear pleomorphism [18], such as
solidity and eccentricity. These are both criteria which describe morphological features
of a nucleus at an object level [57, 61, 71, 88] and often they are already used in the
post-processing steps of nuclei segmentation to discriminate between likely and unlikely
candidates [7, 39, 68, 86, 89, 88]:

Solidity describes the ratio between the area of an object and the area inside the objects
convex hull [7, 68, 86, 89] and is used mainly in post-segmentation classification to
discriminate between likely and unlikely object candidates, based on the assumption that
nuclei seldomly exhibit concave shapes [68, 86, 89]

Solidity =
AreaObject

AreaConvex Hull of Object
(3.6)

Eccentricity is defined as the ratio of the lengths between the foci and the major
axis length of the ellipse that best fits the object [71], i.e. an ellipse with the same
second-moments as the object. An eccentricity of 0 describes a circle while an eccentricity
of 1 describes a line [8]11. According to [39], properties of elliptical shape models, such
as Eccentricity, are among the most prevalent in digital pathology solutions because they
are very indicative of cancer predicates.

Eccentricity =
LengthMajor Axis

LengthMinor Axis
(3.7)

Sections 3.6.3 and 3.6.4 lay out possible applications and benefits of using manually
labeled or synthetically derived images as ground truth, respectively.

3.6.3 Ground Truth from Pathologists

Generally, cell image analysis algorithms are validated using a set of representative
images which are labeled by one or more subject matter experts, also referred to as
observers or investigators [37, 68]. The results from the analysis method are compared
to these labeled images [68]. This practice is laborious, and the inter- and intra-observer

11p. 226f
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variability in the judgements puts a limit on the validity of the labeled data [52, 68].
In [21], the inter-observer variability for plain nuclei detection exhibits a precision and
recall of only 0.92 and 0.91, respectively, when comparing the results of one observer
with the ground truth labeled by another observer. It is concluded that the apparently
straight-forward job of nuclei detection on a histology slide is not an unambiguous task
[21]. The intra-observer variability on classification of nuclear atypicalness also averages
to 21.2% in this study, the inter-observer variability to even 42%. Detection of cell
nuclei, especially if it includes the precise segmentation/delineation of the nuclei, is the
most tedious labeling task [21]. Furthermore, to ensure statistical soundness, especially
when dealing with biological data in its infinite forms of appearance, nearly impossible
quantities of image data would be required to be manually labeled [52].

The academic community greatly benefits from publicly available datasets [21]. However,
due to the extensive workload required for their creation, still only a small number of
labeled datasets is available [21]. As of the make-span of this work, no such dataset
included labeled, let alone segmented Ki-67 images of breast tissue.

3.6.4 Ground Truth from Synthetic Datasets

While using real images as ground truth may be more suitable for the respective use-case,
they may not prompt evaluation results appropriate for other domains of application
[96]. Therefore, one of the advantages of synthetic images as gold standard is that their
generation can be well controlled and they are easily reproducible. This also allows for
transferring evaluation results from one application domain to another [96]. Benchmark
datasets made of synthetic data bear several benefits: results are comparable among
several works, the parameters can be fitted to the respective usecase, observer bias and
variability can be ruled out entirely and, foremost, the labeled ground truth can be
retrieved [68]. As a consequence, several pathology DIA algorithms validate their solutions
on synthetic data. There have been efforts to create software for synthesizing/simulating
microscopic images, such as [44], for fluorescence microscope images [58], for multi-
parameter cell body images via creating populations with tunable variations among
cellular object-level features such as area, length and solidity [68], for fluorescence
microscopy images, [52] for pap-smear microscopy images, [48] for Ki-67 hotspot clusters
or [1] for synthesizing whole slide images. However, except for [1], all of the present-day
solutions are designed for the simulation of cytology rather than histology images, which
makes them inapplicable for the creation of Ground Truth datasets for testing histology
DIA solutions. The framework presented in [1] applies texture synthesis and texture
placement in predefined regions, using textures (cells, fiber pieces, ducts, . . . ) extracted
from real images stained with CD8 or H&E.
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3.6.5 Summary

Digital pathology basically describes the digitization of a physical pathology slide into
an image, which can be viewed and annotated on a computer screen. This field has
grown rapidly in the last two decades. It aids towards creating a thorough digital patient
record and allows several examiners to work on the same slide as well as conduct large
retrospective studies on existent cases. Conducting diagnosis based on digitized slides,
so-called Whole Slide Images (WSI), offers a cost-effective and efficient alternative to glass
slides viewed via the microscope. With resolutions of up to 0.25 micrometers per pixel the
resulting file sizes range up to 3GB of data per glass slide. These large quantities of data
pose a challenge for both their storage and handling. The largest hopes of pathologists
from the introduction of digital pathology are pinned on factors like improved ergonomics,
diagnostic accuracy, measurement accuracy, time saved and speed of slide navigation.
Furthermore, digital image analysis methods allow the application of computer-aided
diagnosis, enabling a high throughput rate while reducing bias introduced by a human
examiner and instead delivering reproducible and accurate estimates of diseases. Digital
pathology can thereby greatly reduce variability in the diagnosis, which is one of the
greatest challenges in traditional, analogue pathology.

Any digital image analysis solution in digital pathology needs to be robust to several
artifacts as they commonly occur in slides, such as tissue deformations, fixation errors,
background clutter, noise or poor contrast. Methods on slides with color- and contrast-
related artifacts can profit from color deconvolution, which describes the process of
digitally separating the stains which were originally applied to dye and highlight different
tissue structures. Several methods have been proposed to solve this task. Some assume
a linear relation between the stain appearance on the digital slide and the intensity of
the stain applied. They conclude on the original stain colors by information implicitly
present in the image. Other methods require manual input or information about the
stains to be separated.

A common task tackled with image analysis tools is the detection and segmentation of
tissue structures such as nuclei. The major challenges in segmentation can be found in the
heterogeneity of nucleus sizes, shapes and even intra-cellular intensity variations, as well
as overlapping or touching cells. Methods published in this field employ operations such
as thresholding, morphological operations, distance and watershed transforms or gaussian
filtering. There are many solutions suggested for nucleus detection and segmentation
with the majority focusing on H&E-stained slides. Solutions for Ki-67 stained slides are
less frequently proposed and require manual inputs or use a large set of assumptions,
which both limit the respective method robustness.

The evaluation of image analysis solutions for digital pathology is not standardized. It
can be conducted with the use of an annotated dataset of real digitized slides, where the
annotation can either describe mere nucleus locations or to actually delineate segmented
nuclei or cells. The annotations are manually drawn by pathologists, which is a time-
consuming task, thus there are few publicly available benchmark datasets to compare the
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performance of different digital image analysis solutions. As an alternative, an algorithm
can be evaluated on synthetically generated images, where the ground truth is implicitly
generated during the synthesis process. The advantage lies in the exact, pixel-wise ground
truth available, however, synthetic images cannot indistinguishably recreate a realistic
image.

Independent of the ground truth used for the evaluation, the research community largely
agrees on the criteria to be tested. Concerning the object quantification commonly
applied measures are precision, recall and F1-score. For the segmentation performance,
the dice coefficient is used as a measure of overlap between objects found by the algorithm
and ground truth objects.
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CHAPTER 4
Suggested Solution

This chapter deals with the implementation of the work to answer the research question
stated in Section 1.3. To begin with, the motivation, design and realization of the
synthetic Ki-67 dataset is explained in Section 4.1. The subsequent Section 4.2 deals
with the deconvolution of the digital RGB image into relevant channels as well as the
first thresholding step and explains the proposed solution for nuclei segmentation and
quantification required to obtain the sought Labeling Index. Finally, the steps taken
to ensure a thorough algorithm evaluation are covered in Section 4.3. If not mentioned
otherwise, all processes are implemented in Matlab.

4.1 Synthetic DataSet (SDS)

As outlined in Section 3.6.4, the standards for an SDS in digital pathology are yet to
be defined. In this work, the SDS is designed and built without using existing software
solutions for cell body synthesis such as [68] or H&E whole slide [1].as their solutions
deliver an inappropriate type of images for developing and testing an algorithm on Ki-67
analysis.

An overview about the entire process of creating synthetic Ki-67 images is illustrated in
Figure 4.1. The upper sector Initial Synthesis, which is explained in greater detail in
Sections 4.1.1, 4.1.2 and 4.1.3, portraits how the two components, namely background
and nuclei placement, blend to form an initial synthetic image, SIinit . The lower sector
Restaining, explained in greater detail in Sections 4.1.4 and 4.1.5, illustrates how staining
characteristics extracted from real Ki-67 images serve as a basis for creating synthetic
images SIrestained with varying stain appearance. Agreeing with the appearance of cells
in real Ki-67 images, which do not recognizably show the existing cytoplasm or cell
membranes around the nuclei (see Figure 4.2 for an example), the synthetic images are
created with specifically placing nuclei without cytoplasm, membrane etc. rather than
entire cellular structures.
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Figure 4.1: Overview over the image synthesis process
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Figure 4.2: Exemplary region of real Ki-67 image, showing Ki-67 positive (brown) and
negative (purple) nuclei and barely any cytoplasmic structures or membranes.

The synthetic images are generated with four different resolution. These dimensions are
motivated by the following factors:
1680x1050 pixels resolution: The resolution of commonly available computer screens
is included to mimic realistic viewing conditions on full-screen for both clinical and
research personnel at the highest available zoom level (20x). This resolution is in line
with the order of magnitude shown in a microscopic high power field, as also utilized in
[88].
1712x980 and 3214x1803 pixels resolution: Two regions of interest of realistic tissue
scenarios were also recreated during the synthesis procedure, prompting those specific
resolutions.
1200x1200 pixels resolution: Another resolution within the same order of magnitude
as the other three was also included to enrich the dataset diversity.
All of the listed pixel resolutions are used in the creation of the SDS. Ultimately, using
the presented synthetic image generation method, any image resolution can be generated
as long as the synthetic background is generated accordingly and the dimension of the
nuclei placement probability map (see Section 4.1.3 for details) agrees.

4.1.1 Creation of Synthetic Background

Even though the nuclei in the synthetic images shall be represented without their
cytoplasm or membrane, physiologically they are always embedded in a non-uniform
tissue structure, which is perceived as the background of the nuclei in the image by
the human eye. The structural and chromatic appearance of this tissue background
can severely facilitate or complicate the automated segmentation of nuclei in an image,
for example because the structures between nuclei and background seem to interweave
or because the background has a similar stain appearance as the nucleus, making the
contrast too weak to easily define the border. To mimic a realistic background appearance,
a small texture element (see Figure 4.3) from a nuclei-vacant area of a real Ki-67 image
was extracted and propagated to fill images with defined resolution.
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Figure 4.3: The structural basis element for the creation of the embedding tissue of the
synthetic images.

The synthetic background used in the SDSs was generated using a method published
in [25] and made available as a plug-in within the GNU Image Manipulation Program
(GIMP) called Resynthesize 1. Given a sample of a texture, it can recreate more of
this texture in a randomized manner. The method requires the input of the texture to
be resynthesized and the definition of the dimensions for the synthetic image output.
Furthermore, three parameters have to be tuned and set for the resynthesis process:

• The neighbourhood size: Adjustable between 1 and 100. It sets how many nearby
pixels are to be taken into consideration in the output image. The value chosen
empirically for this work is 8.

• Search thoroughness: Adjustable between 1 and 500. It sets how many locations in
the input image are examined to find the best match. The value chosen empirically
for this work is 200.

• Sensitivity to outliers: Adjustable between 0.00 and 1.00. It sets the allowed error,
where 0.00 allows and 1.00 disqualifies a very bad match on a single pixel. The
value chosen empirically for this work is 1.00 to ensure a resulting texture without
any discontinuities.

4.1.2 Nuclei Extraction from Real Data

The nuclei were extracted from a region within a real Ki-67 image deemed to be a good
representation of Ki-67 by a collaborating pathologist. In order to extract the nuclei, the
coordinates of this region within the .svs-file were read out using a WSI viewer 2 and the
desired region itself was stored in a .tif format using the OpenSlide Library in Matlab,
which is able to access .svs-files. The region was opened in the Gimp for the actual nuclei
extraction. The utilized region of the .svs-file was available in a 20x magnification.

The following procedure to outline the nuclei took place each for the positive and negative
nuclei:

On a transparent secondary layer, the outlines of the nuclei were traced in red, giving
good contrast to the underlying image. Close attention was paid so that the tracing line
lies on the outside border of the nuclei in order to guarantee that the nucleus border

1http://registry.gimp.org/node/27986
2Aperio ImageScope v12.1.0.5029
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information would stay intact and part of the resulting mask. Not only solitary nuclei
were traced, but also nuclei in adjacent or overlapping arrangement or obviously being in
the process of proliferation. The background of the resulting mask as well as the traced
borders were filled with black, resulting in a binary mask revealing only the segmented
nuclei as foreground. This mask was stored as the Cut Mask, MaskCut, which serves as
the evaluation basis for the segmentation performance later described in Section 4.3.2.
A duplicate of MaskCut was dilated and subsequently eroded using a small structuring
element (3x3) to merge adjacent nuclei. The 3x3 structuring element was chosen because
only objects with a maximum distance of one pixel to each other should be merged by
this process. The merging resulted in a ”Connected Mask”, MaskConn which serves as
the basis for the actual nuclei extraction described in the next paragraph.

Again, the following procedure to produce individual nuclei images was conducted each
for the positive and negative nuclei:

The MaskConn was opened in Matlab and for each ”Snippet” (i.e. a CC describing
a single nucleus or a clump of overlapping/adjacent/proliferating nuclei), three image
objects were stored as .tif-files:

• Spos or Sneg: the corresponding region in the RGB Ki-67 .tif-file (IRGB , containing
the RGB image of the nucleus with all non-nucleus pixels in black

• SnipMaskCut: containing the corresponding region in the MaskCut

• SnipMaskConn: containing the corresponding region in the MaskConn

A naming scheme was applied which assigned a unique identifier to each nucleus (or
group of nuclei) and specified the number of nuclei within each Snippet Spos or Sneg.
The outlining step as well as the results of an Spos, SnipMaskConn and SnipMaskCut

are shown in Figure 4.4.

a b c d e

Figure 4.4: (a) Outlined positive nuclei in Gimp (b) Outlined negative nuclei in Gimp
(c) Sample of Spos (d) Sample of MaskConn of this Spos (e) Sample of MaskCut of this
Spos

A total of 129 positive Snippets Spos were created via this manual delineation procedure,
whereof 81% (104 Spos) are individual nuclei, 16% (20 Spos) hold two, 2% (3 Spos) hold
three and <1% (1 Spos) holds four touching or overlapping nuclei Npos.
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A total of 203 negative Snippets Sneg were created, whereof 82% (167 Sneg) are individual
nuclei, 13% (27 Sneg) hold two, 4% (8 Sneg) hold three and <1% (1 Sneg) holds five
touching or overlapping nuclei Nneg.

4.1.3 Nuclei Placement

The Snippets are randomly placed on the previously generated synthetic background (see
Section 4.1.1). The randomness is introduced to avoid a grid-like and artificial appearance
of the image. Yet, this randomness is constrained by two decisive factors:
(1) the probability of nuclei placement for each location in the image is defined using
probability Maps MapNucP robability and
(2) the nuclei snippets Spos and Sneg may not overlap or touch unless explicitly specified.
These factors will be explained in more detail in the following paragraphs.

(1) The probability of nuclei placement for each location in the image is
defined using probability Maps MapNucP robability

Using probability maps MapNucP robability, the placement of the nuclei snippets Spos and
Sneg can be arbitrarily constrained to varying probabilities in different areas if desired.
This is intended to result in varying densities of the nuclei in different areas of the
image and the more nuclei are placed in total, the more easily noticeable this effect is.
A MapNucP robability can be designed either randomly (random likelihood) or manually
(manual likelihood), and can differ for positive and negative nuclei, as demonstrated
in examples in Figure 4.5. The constraint for snippet placement can also be left out
entirely, which leads to a uniform placement likelihood across the entire image area.
Thus, this case is referred to as uniform likelihood and accordingly the MapNucP robability

is uniformly white, which explains the seemingly empty rightmost column in Figure 4.5.

Each MapNucP robability can have values between 0 (black) and 1 (white), where 0 defines
areas where nuclei placement is strictly prohibited and 1 defines areas where nuclei
placement is unconditionally allowed. To give an example: A value of 0.5 defines that the
likelihood for nuclei placement in this area is at 50%. For both positive and negative nuclei
placement, one MapNucP robability needs to be specified. If only one MapNucP robability is
specified in total, it is used for placing both nuclei types.

(2) Nuclei Snippets may not overlap or touch unless explicitly specified

As can be seen in Figure 4.6 (Nuclei Extraction from Real Data), during the extraction of
snippets S not only individual nuclei were obtained, but also touching and/or overlapping
groups of nuclei. They serve as a valid ground truth for physiologically appearing nuclei
behavior during proliferation phase. During the placement of S on synthetic images,
any artificial overlap or merging is thus prohibited to avoid the introduction of possibly
non-physiological cellular behavior. It is possible, however, to allow two S to touch, where
touching is defined as two SnipMaskConn lying so close that they merge into one 8-CC
(Connected Component), but do not yet overlap, i.e. A ∪ B == |A| + |B|, as shown in
Figure 4.6 (b). Overlapping, i.e. A ∪ B < |A| + |B|, as illustrated in Figure 4.6 (c), is
not allowed.
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a b c

Figure 4.5: Example results of different design methods for MapNucP robability, showing
areas from 100% placement likelihood (white) to 0% placement likelihood (black)
Upper Map: for the placement of positive Snippets, Spos

Lower Map: for the placement of negative Snippets, Sneg

The MapNucP robability can either be (a) uniform (b) manually generated or (c) randomly
generated (examples for synthetic images generated with (a) and (b) can be seen in Table
5.1)

a b c

Figure 4.6: Definition of touching and overlapping (a) Nuclei do not touch, two separate
CCs (b) Nuclei touch but do not overlap, become one CC (c) Nuclei overlap (grey pixels)
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The restraint that nuclei snippets may not overlap is true among Spos and among Sneg

as well as between Spos and Sneg. As will be explained shortly, the Spos are placed first
and their placement restains the possible locations for the subsequent placement of Sneg.

Nuclei Placement Procedure

Considering these two constraints, an SIinit is generated according to the following
procedure, which starts with Steps 1 to 5 defining the basic settings of where and how
many nuclei are to be placed:

1. A MapNucP robability is chosen, either randomly or deliberately

2. The maximum possible total amount of nuclei (positive and negative) to be placed,
called Amountpossible is restricted by and calculated on the basis of the provided
MapNucP robability. Each MapNucP robability implicitly has a defined Amountpossible

3. The actual total amount of nuclei to be placed in SIinit, denoted Amountplaced, is
randomly chosen between [1, Amountpossible]

4. The LI to be generated (i.e. the ratio between Npos and Nneg in the image) is
randomly chosen between [0,100%], in steps of 5%.

5. The amount of Npos and Nneg are set accordingly, such that the two conditions
given by Amountplaced and LI are met:

- Npos + Nneg = Amountplaced

-
Npos

Npos+Nneg
· 100

In the subsequent steps, the precise placement for every nucleus is defined. These steps
are conducted twice: First for placing the positive Nuclei Npos and then for the negative
Nuclei Nneg. In the following, it is exemplary explained for Spos and Npos.

6. A Spos, holding between 1 and 4 nuclei, is randomly chosen from the available set
of Spos

7. The random row and column, LocRow and LocCol, for the placement of this Spos

are generated

8. A random number between 0 and 1, RndS , is generated

9. RndS is compared against the likelihood PLoc of MapNucP robability at LocRow and
LocCol. If RndS >= PLoc, then LocRow, LocCol as well as RndS are generated
anew until RndS < PLoc.

10. It is checked whether the chosen Spos overlaps with any previously placed Spos on
this SIinit via the logical operation Spos&MaskConn (at the considered placement
area). If Spos&MaskConn > 0, then steps 5-8 are repeated until a LocRow, LocCol

are found where Spos&MaskConn == 0
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11. The Spos is placed at LocRow, LocCol (left upper corner of Spos is located at LocRow,
LocCol)

12. After each placement of Spos, the SnipMaskConn and the SnipMaskCut is saved
to the MaskConn and MaskCut for this very SIinit.

Like other image synthesis methods proposed, the natural appearance of nuclei can be
enhanced via applying a blurring step in order to reduce sharp, unnatural edges between
nucleus and other tissue [44, 52]. This happens during Step 11. Hereby, the entire Spos

is filtered with a 2 × 2 averaging filter kernel, but only those pixels within a dilated
5-pixel-band of the snippet boundary are adopted into the synthetic image, thus the
inside of the nucleus remains non-blurred. The size of the averaging filter was chosen to
be as small as possible in order to retain as much structural information of the nuclei as
possible.

4.1.4 Extraction of Staining Characteristic Variability from Real
Data

For the purpose of creating a representative variety of stain appearances, as it would occur
in a clinical laboratory (see section 2.2 and 2.3.2) it is necessary to create a variability of
the staining characteristics among the synthetic images produced. A dataset of eleven real,
clinical Ki-67 breast WSI from one Pathology Laboratory at the Linköping University
Hospital, Sweden, implicitly offers the necessary information on staining variability. Using
information gained via the aforementioned method of adaptive color deconvolution (see
Section 3.4.2), the individually specific stain vector of each image within this dataset can
be accessed and utilized. The total of all stain vectors then form the basis for introducing
a credible and realistic variation into the stain appearances within the SDS.

From a set of 11 available WSI, one representable region was identified in each WSI
(one particularly diverse WSI prompted 2 regions) using the software ImageScope, which
allows fast pan and zoom operations. The representative regions were chosen to contain
both Ki-67 positive and negative cells, i.e. both Ki-67 and H stains. In the case of one
WSI, the observed intra-slide stain appearances indicated that the selection of two regions
instead of one can substantially add to the diversity of the extracted stain appearances,
thus two regions were chosen. The chosen regions were captured as .tif-files at the
displayed resolution and the highest available magnification (20x) using the built-in
function ”Save Snapshot”. Thanks to the specifically chromatic purpose of this step, it
was not necessary to use a library such as OpenSlide via Matlab to access the native,
unaltered pixel-wise data of the region. The resulting snapshots are depicted in Chapter
5, Section 5.1 on page 68).

A stain normalization method by Macenko ([50] implemented by Mitko Veta 3 in Matlab
is used to extract the image-specific stain matrices from the 12 representative regions.

3https://github.com/mitkovetta/staining-normalization (c) 2013, Mitko Veta, Image
Sciences Institute, University Medical Center, Utrecht, The Netherlands
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Contrary to the originally intended purpose of this software, which is bringing images
with differing chromatic appearance to a uniform, ”normalized” appearance, it was used
here in a reversed manner:

The generation of synthetic images initially yields images with uniform, normalized
appearance. Hence they are deconvolved into two stain channels using a fixed stain
matrix and re-stained back to RGB channels using varying stain matrices. These varying
stain matrices are harvested from the 12 representative regions (see bottom of Figure 4.1
for clarification on the process summary).

On these representative regions, the identification of the image-specific optimal stain
vectors as published in [50] and implemented by Mitko Veta (2013) was realized. The
main mathematical operation is carried out on the Optical Density (OD) representation
of the image.

OD = − log10(I) (4.1)

Equation 4.1 converts the RGB image data (I) into OD vectors. After removal of OD
values below a certain threshold (to exclude transparent pixels from further analysis),
the eigenvectors of the remaining tuples are calculated. All tuples are projected onto
the plane spanned by the two eigenvectors corresponding to the two largest eigenvectors
and brought to unit length. Via examining the angle between each tuple and the first
eigenvector, the two robust extremes are identified (αth percentile and (1−αth percentile).
The two corresponding initial OD-tuples represent the two prominent stain vectors in
this image. They are stored as the image-specific optimal 2 × 3 stain matrix, where
each of the two rows describes the three OD-values for the two stains, respectively. This
procedure yields 12 stain matrices Mtarget.

Even though this stain vector identification is intended to identify H&E- and not Ki-67-
specific stain vectors, it is of equally essential usefulness when later applied as the basis
for restaining of images deconvolved with a fixed H&E stain matrix (Msource).

4.1.5 Color Deconvolution and Color Normalization

As pointed out in the previous Section 4.1.4, an essential step in the meaningfulness of
the SDS involves the variation of the staining appearance among the generated synthetic
images. In order to serve this purpose, the mean of the 12 stain matrices is defined as the
fixed stain matrix Msource designated for image deconvolution. Each of the images in the
SDS is deconvolved into the same two channels defined the by Msource and then re-stained
using one of the 12 available, varying stain matrices Mtarget identified in Section 4.1.4.
Both steps are realized using the normalization method published in Macenko et al. [50].

In the following, the most important formulae to understand this process are described.
First, the image values are converted to OD-space, equal to the previous section 4.1.4,
where (I) again denotes the RGB image data:
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OD = − log10(I) (4.2)

Then, the image is deconvolved using Equation 4.3, where Msource is the fixed stain
matrix previously defined:

C = Msource/OD (4.3)

Now, the original three-channel RGB image has been converted into a two-channel image,
C, where the two channels correspond to the intensity of each stain described in the fixed
stain matrix Msource for every pixel location. The intermediate channel images are neither
intended nor capable of representing the optimal deconvolution of any given image, but
for allowing an insight into the functionality of this process, Figure 4.7 displays a sample
image I and the two corresponding channel images, Cpos and Cneg.

Original RGB Image, I Deconvoluted Channel Cpos Deconvoluted Channel Cneg

Figure 4.7: Example image of the deconvolution of an RGB image into a positive and
negative channel

In the next vital operation, the actual restaining takes place: Multiplication of the
two-channel image C with one of the 12 matrices, Mtarget, in Equation 4.4 inserts the
new stain appearance. The exponentiation of the entire expression brings an image I
from OD-space back into RGB-space, creating a restained image SIrestained.

Irestained = e−Mtarget∗C (4.4)

4.2 Nuclei Quantification and Segmentation

In this section, the algorithm developed within the course of this thesis is presented.
First, an overview about the methods used is given and then each subsection expands on
the details of one of the methods.

The algorithm aims at analyzing the nuclei in a Ki-67 stained image in order to derive the
LI, thus the present proliferative activity. The LI calculation bases on the segmentation
outputs of the nuclei in two channels: Firstly, a channel containing proliferating nuclei,
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Cpos, and secondly a channel containing nuclei which are in non-proliferative phases
of the cell cycle, Cneg. The nuclei in each channel are segmented and the number of
resulting connected components CC in each segmentation mask provides the information
for calculating the LI. Figure 4.8 gives an overview of the steps necessary to reach this aim.
Each operation is depicted as a blue ellipse and the in- and outputs to each operation
are denoted by arrows and images:

...

Labelling 

Index

Image     RGB

Cpos       grayscale

Cneg      grayscale

Cpos            binary

Cneg            binary

...

...

Cpos            binary

Cneg            binary

nor mal i ze( )  
& 

adj ust _ 
cont r ast ( )

deconvol ve( ) t hr eshol d( )

segment _pos( )

segment _neg( )

count ( )

...

Cpos       grayscale

Cneg      grayscale

Figure 4.8: Overview of the steps involved in the nuclei segmentation and LI derivation

In the following, each of the operations depicted in Figure 4.8 is coarsely explained, before
they are covered in more detail in the subsequent Sections 4.2.1 to 4.2.4:

deconvolve()

First, the RGB image to be analyzed undergoes a deconvolution. In essence, the term
deconvolution in this context connotes splitting the information present within the three
RGB channels into two channels, which correspond to the two stains of the image:
Ki-67 (positive for the proliferation activity stain) and Hematoxylin (negative for the
proliferation activity stain). These channels are referred to as positive Channel Cpos and
negative Channel Cneg and initially contain grayscale-values.

normalize() & adjust_contrast()

In this step, the channels are each normalized and their contrast is adjusted, after which
their intensities are scaled to [0, 1].

threshold()

A clustering-based thresholding step converts each channel to a binary image.

segment_pos() & segment_neg()
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The subsequent segmentations are conducted differently for Cpos and Cneg and both
employ information won from the original RGB image.

count()

The objects in the resulting segmentation masks for each channel are counted and the
Labeling Index is derived via Equation 4.5.

CCpos

CCpos + CCneg
(4.5)

4.2.1 Deconvolution

The deconvolution of the image to be analyzed embodies the first step in the entire
processing pipeline (see step deconvolve() in Figure 4.8) and the quality of the
results hinges on the quality of the deconvolution. To test this statement, three existing
deconvolution approaches are considered in this work [11, 50, 67]. They all have in common
that they aim at splitting a three-channel RGB image IRGB into two channels, where
each contains the intensity values for one of the stains in each pixel. The characteristic
of each target channel is typically defined as a three-dimensional vector in a defined
three-dimensional colorspace (e.g. RGB, CMY, OD) and the intensity values for one of
the stains in each pixel is derived via orthogonally projecting the original pixel value
onto this vector. The difference between the methods lies in the principles utilized to
arrive at these vectors and once the vectors are identified, IRGB is deconvolved according
to Equation 4.6 for all three methods, where M denotes the matrix containing the two
stain vectors which characterize the channels:

C = M/OD (4.6)

Method by Cosatto

The deconvolution approach by Cosatto [11] is based partly on a set of assumptions about
the colors of the stains and partly on the histograms of the current image. Thus, it can
be described as a semi-adaptive deconvolution. Originally, the method is part of a larger
pipeline used to grade the pleomorphism (in this case the area characteristics of nuclei)
in H&E stained breast cancer histopathology images. Thus, it targets the deconvolution
of H&E stained slides. The deconvolution vector identification process by Cosatto is
initiated by converting the image from RGB to CMY. The two color vectors, henceforth
called H and E, are retrieved using the following set of Equations:

C =

∑

wiPi
∑

wi
with wi = (P Cyan

i )4 (4.7)
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with wi =

∣

∣

∣

∣

Pi −
(Pi · C)C

C2

∣

∣

∣

∣

4

(4.8)
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H = C −
(C · M)M

|M |2
(4.9)

E = M −
(C · M)C

|C|2
(4.10)

Pi is the CMY color vector for a pixel i. In Equation 4.7, a vector C accumulates colors
with a large cyan component, where wi is the weight assigned to the cyan component
P Cyan

i . Next, a vector M , using a different weight wi, sums up all colors unexplained by
the C vector (Equation 4.8). Finally, the vectors H and E are derived by calculating the
vectors orthogonal to M and C, respectively (Equations 4.9 and 4.10). These calculations
are motivated by assumptions about the properties of the stains, namely that the eosin
intensity is correlated to the intensities of the cyan component and the Hematoxylin
intensity is correlated to the intensities of the other components. After deriving the
vectors H and E, the CMY-intensities of each pixel is projected onto both vectors. The
distance between a projected pixel and the point of origin describes the intensity of this
pixel in the respective stain. Pixels where the Hematoxylin stain is more intense than
the Eosin stain ideally are further along H than along E and vice versa. Despite the
fact that this method is intended for use on H&E-slides and the profound assumptions
supporting this usage, the usability of the same method for the deconvolution of Ki-67
stained images is tested in this work.

Method by Macenko

The main assumption in the deconvolution approach by Macenko [50] is, that the stains are
statistically separable. No expectations about the hue of these two stains are incorporated,
as will emerge from the following description of the method, which is summarized as
Pseudocode in Algorithm 4.1 on page 47. Each statement of the algorithm is described
in more by detail, using the keyword Step 1, 2, 3..., respectively.

Step 1: The RGB values of the image in question are first converted to OD, where a
linear combination of stains yields a linear combination of OD values [67]. To facilitate
this step, the RGB-values are uniformly normalized to [01] and reshaped into an m x n

array of 3-element-vectors (m being the rows, m the columns of the RGB image). The
transformation is conducted for every tuple (i.e. the RGB vector of each pixel), using
Equation 4.11, which is the same as the previously quoted Equation 4.1. Again, I is a
vector containing the red, green and blue intensity value of each pixel, normalized to
[0, 1].

OD = − log10(I) (4.11)

After this conversion, all OD values are still normalized and range between [0, 1]. Samples
of the normalized RGB and converted OD values are shown in Figure 4.9. It can be
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Algorithm 4.1: Pseudocode for Calculation of Optimal Stain Vectors (as originally
published in [50])

Input : RGB Slide
Output : Optimal Stain Vectors

1 Convert RGB to OD
2 Remove data with OD intensity less than β
3 Calculate SVD on the OD tuples
4 Create plane from the SVD directions corresponding to the two largest singlar

values
5 Project data onto the plane, and normalize to unit length
6 Calculate angle of each point wrt the first SVD direction

7 Find robust extremes (αth and (100 − α)th percentiles) of the angle
8 Convert extreme values back to OD space

seen that the purple and pink pixels are hardly linearly separable (from the origin of
the coordinate system) in the RGB space, while such a linear separation is more easily
achieved in OD space.

Figure 4.9: Colors in an H&E stained slide: (Left) Samples of normalized RGB pixels
depicted in their original RGB color, (Right) Same samples in OD space depicted in
their original RGB color, also normalized

Step 2: In order to eliminate the influence of background areas from the subsequent
calculations, all data with OD values less than a threshold beta, β are eliminated,
resulting in a smaller vector array called ÔD. In this work β = 0.15.
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Step 3: Singular Value Decomposition (SVD) is calculated based on ÔD. This is
equivalent to the calculation of the eigenvectors of the covariance-matrix of these tuples
(Equation 4.12).

V = eig(cov(ÔD)) (4.12)

Step 4: A plane is created from the two largest eigenvectors, shown in Figure 4.10 left.

Figure 4.10: (Left) Representative depiction of the plane spanned by the two largest
eigenvectors, (Right) Samples projected onto plane, at uniform length.

Step 5: All ÔD-tuples are projected onto this plane and brought to uniform length (1),
which is shown in 4.10.

Step 6 and 7: In order to exclude outliers from the delicate step of identifying the
inherent stain vectors, the angle of each tuple with respect to the first eigenvector direction
is calculated. The alpha, α of the extremes in Algorithm 4.1 is set to α = 1, hence the
1st and 99th percentile of these angles are defined to be robust extremes.

Step 8: The tuples representing the previously found two extremes are the OD values
representing the inherent stain vectors. They do not need to be converted back to RGB
value as the subsequent deconvolution requires the stain matrix to be in OD-space.

In the course of this work, the recreation of the method as described in [50] and its
implementation led to in-depth understanding about all steps. However, a readily
implemented version of this method with a copyright notice granting free permission to
use was discovered after the custom implementation [84]. Since the readily implemented
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version was faster than the custom implementation by an order of magnitude it was
decided to use the former for this pipeline.

Fixed Values Method

Alike in other publications (see Section 3.4.2), the computationally cheapest deconvolution
method involves the usage of fixed deconvolution vectors, as they do not have to be
computed per given image or dataset. In this work stain vectors are utilized which
are commonly deployed in existing DIA solutions (e.g. [63]), namely vectors defined
by Gabriel Landini and Ruifrok [67] in the Color Deconvolution Plugin of the software
”FIJI”. These values are taken from a software by Gabriel Landini4 and stated in Table
4.1, where DAB stands for Diaminobenzidine, an anti-Ki-67 antibody.

Hematoxylin 0.650 0.704 0.286

DAB 0.268 0.570 0.776

Table 4.1: Fixed stain matrices from the deconvolution plugin of FIJI used in this work

4.2.2 Normalization and Contrast Adjustment

As the different deconvolution techniques yield channels with varying values and contrasts,
a necessary prerequisite for further processing of each channel image is to bring it to a
uniform contrast. To this end, each image is first normalized. In this context, the term
normalization signifies the linear operation of transferring the histogram of an image from
any arbitrary scale to the limited, normalized scale of [0, 1]. Subsequently, the contrast
of each channel C is adjusted in such a way that 1% of the data is saturated at high and
low intensities, respectively, of C which increases the contrast.

4.2.3 Thresholding of the Stain Channels

At this stage RGB image has already been deconvolved into the two grayscale channels,
Cpos and Cneg, and the values of each channel are normalized and their contrasts
adjusted. Following, each of the channels is converted into a binary image with two
classes, foreground and background. This is realized via a k-means clustering step on
the grayscale image histogram for all pixel values > 0. The settings for the k-means
clustering are the following:

• Number of clusters to be built:
2 (Cpos), 3 (Cneg)

• Maximum number of iterations:
200

4Gabriel Landini: http://imagej.net/Colour_Deconvolution, accessed on 19.05.2016, 11:15

49

http://imagej.net/Colour_Deconvolution


4. Suggested Solution

• Action when losing all members of a cluster:
create new cluster from point furthest away

• Number of times the clustering is repeated with new initial cluster centers:
5

The outputs of the k-means clustering are the following:

• The cluster centers of the repetition resulting in the lowest sum of distances from
all points to their centers

• The assignment of each datapoint to a cluster center

The different numbers of clusters to be built for Cpos and Cneg are based on the physical
background of the staining steps:

Hematoxylin (the ‘’negative” stain visible in Cneg) dyes all parts of the tissue – cytoplasm,
inter-cellular space and nuclei. While the nuclei are stained more intensely, the cytoplasm
and inter-cellular space appear less intense and the tissue-void space of the slide remains
unstained. Thus, the clustering step for Cneg is initiated with 3 cluster centers.

Ki-67, on the other hand, unexceptionally stains proliferating nuclei and all other parts
of the slide remain unstained. Therefore, the clustering step for Cpos is initiated with
only 2 cluster centers.

Figure 4.11 demonstrates the meaningfulness of choosing different numbers of clusters.
The positive channel Cpos clearly shows two different classes (high staining intensity
of the nuclei and low intensity elsewhere) while the negative channel Cneg can be
differentiated into three classes (high staining intensity of the nuclei, medium intensity of
the surrounding tissue and low intensity). In both channels, only those pixels assigned
to the brightest class are retained as foreground-pixels in the binary image BWpos and
BWneg, respectively.

4.2.4 Segmentation and Quantification

At this stage, both channels have been converted to binary images BWpos and BWneg.
However, as can be seen in Figure 4.11 (c) and (f), these are still very coarse, contain a
lot of noise, holes and unwanted structures.

The following sections describe how these coarse binary images are gradually cleaned
from noise, holes and other unwanted structures. At the end of these sequences, the
result for each channel is the segmentation mask as a binary image, where each CC
represents a nucleus.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Example of clustering the deconvolved channels with k-means (a) Original
image (b) Channel Cpos (c) Pixels in Cpos classified as foreground (white) and background
(black) after k-means clustering, yielding binary positive channel BWpos (d) Channel
Cneg (e) Pixels in Cneg classified as foreground (white), and background (gray and black)
(f) Binary negative channel BWneg

Positive Channel

This section describes the operation segment_pos() of Figure 4.8, which is the seg-
mentation of the positive channel. First, the settings for variables used during the
segmentation are listed in Table 4.2.

In the following, the single steps to convert the coarse binary image after k-means cluster-
ing into a segmentation mask are listed, accompanied by images to aid in understanding
the effect of each measure. BWX denotes a Black-White image (binary), GSX denotes a
Gray-Scale image, RGBgrayX denotes the grayscale-version of the original RGB image
and WS denotes a Water-Shed transform.
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Variable
Name

Size Description

d 5µm Globally defined minimum nucleus diameter

SE r = 1
3d Structuring Element for morphological opera-

tions, disk-shaped with radius r

tsol 0.96 Solidity threshold

tarea_max (d · 5)2 · π Maximum area threshold

k1 SD = d
3 Gaussian kernel 1 with standard deviation SD

k2 SD = d
4 Gaussian kernel 1 with standard deviation SD

Table 4.2: Settings for the segmentation of the positive Channel Cpos

Step
#

Input Action Output Output Image

1 - Binary input image ob-
tained after thresholding
Cpos

BW1

2 BW1 Filter with k1 GS1

3 GS1 Cluster histogram into
2 classes (foreground,
background) using a cus-
tom, fast k-means imple-
mentation based on the
histogram of every 10th

pixel

BW2
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Step
#

Input Action Output Output Image

4 BW2 Eliminate CC with mi-
nor axis length smaller
than d, as they are con-
sidered noise (none in
this example)

BW3

5 BW3 The area and solidity
of all CC in BW3 are
calculated and all CC
with a solidity below
tsol and area above tarea

are labeled as ”irregular”
(brighter CC in image)
in contrast to ”regular”
(darker CC in image)

GS2

6 RGBgray0 Filter grayscale version
of native RGB image,
RGBgray0, with Gaus-
sian kernel k2

RGBgray1

7 RGBgray1,
GS2

Investigate the intensi-
ties in RGBgray1 within
the bounding box of ev-
ery irregular CC and
use k-means to divide
them into three classes.
This creates a locally
adaptive classification.
The brightest class is
merged with the back-
ground, only the two
darker classes are re-
tained

GS3
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Step
#

Input Action Output Output Image

8 GS3 Filter GS3 with Gaus-
sian kernel k1

GS4

9 GS4 Separate possibly con-
nected nuclei in GS4 us-
ing watershed

WS, BW4

10 BW4 Eliminate nuclei candi-
dates which are above
tArea_max as they are
probably not nuclei but
stromal areas or the like
(no candidates in this ex-
ample)

BW5
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Step
#

Input Action Output Output Image

11 BW5, GS2 Result of Steps 9-12 is
binary mask containing
both irregular CC (now
separated, if necessary)
and regular CC

BWfinal

Negative Channel

This section describes the operation segment_neg() of Figure 4.8, which is the seg-
mentation of the negative channel. First, the settings for variables used during the
segmentation are listed in Table 4.4.

Variable
Name

Size Description

d 5µm Globally defined minimum nucleus diameter

SE r = 1
3d Structuring Element for morphological opera-

tions, disk-shaped with radius r

tsol 0.96 Solidity threshold

tarea_min (d · 5)2 · π Maximum area threshold

tarea_max d2 · π Maximum area threshold

k SD = d
4 Gaussian kernel with standard deviation SD

Table 4.4: Settings for the segmentation of the negative Channel Cpos

In the following, the single steps to convert the coarse binary image after k-means cluster-
ing into a segmentation mask are listed, accompanied by images to aid in understanding
the effect of each measure.
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Step
#

Input Action Output Output Image

1 - Binary input image ob-
tained after thresholding
Cneg

BW1

2 BW1 Holes of binary input im-
age BW1 are filled

BW2

3 BW2 Marker marker is pro-
duced via erosion of bi-
nary input image BW2

marker

4 BW2,
marker

Noise is eliminated via
reconstruction of BW2

with marker

BW3
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Step
#

Input Action Output Output Image

5 BW3 Morphological Opening
of each CC with SE

BW4

6 BW4 The area and solidity of
all CC in BW4 are cal-
culated and all CC with
a solidity below tsol and
area above tarea_max are
labelled as ”irregular”
(brighter CC in image)
in contrast to ”regular”
(darker CC in image)

GS1

7 RGBgray0 Filter grayscale version
of native RGB image
RGBgray0 with Gaus-
sian kernel k

RGBgray1

8 RGBgray1,
GS1

Investigate the intensi-
ties in RGBgray1 within
the bounding box of ev-
ery irregular CC and
use k-means to divide
them into three classes.
This creates a locally
adaptive classification.
The brightest class is
merged with the back-
ground, only the two
darker classes are re-
tained

GS2
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Step
#

Input Action Output Output Image

9 GS2 Filter GS2 with Gaus-
sian kernel k

GS3

10 GS3 Separate possibly con-
nected nuclei in GS3 us-
ing watershed

WS, BW4

11 BW4 Eliminate nuclei candi-
dates which are above
tArea_max as they are
probably not nuclei but
stromal areas or the like
(no candidates in this ex-
ample)

BW5
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Step
#

Input Action Output Output Image

12 BW5, GS1 Result of Steps 9-12 is bi-
nary mask with now sep-
arated irregular blobs

BW6

13 BW6 Removal of all CC in
result with Area smaller
than than

tArea_min

4 as
they are considered
noise (no candidates in
this example)

BWfinal

For each identified nucleus, be it in in Cpos or Cneg, the segmentation mask is stored at
the corresponding location in the Result Mask, RM . RM is a binary mask with the first
two dimensions m,n equivalent to the True Mask, TM, with m,n and the original image
m,n,o, where o is the third dimension describing the three color channels red, green and
blue (see Figure 4.12).

a b c

Figure 4.12: Detail from (a) Original RGB nucleus (b) Ground truth segmentation of
this nucleus in the TM (c) segmentation of this nucleus in the RM

4.3 Evaluation Methods

In accordance with common practice as outlined in Section 3.6, the evaluation of the
quality of both nuclei quantification and segmentation is based on a number of criteria.
They are derived by comparing each RM , containing the derived segmentation, with the
corresponding TM , containing the ground truth segmentation stemming from the image
synthesis process. Thus it is an operation conducted on binary image data.
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The subsequent spreections explain which criteria are used and how they are derived for
the particular use case.

4.3.1 Evaluation of Nuclei Quantification

The criteria to be examined for the evaluation of the nuclei quantification are:

• Labeling Index Error ErrorLI

• Precision P

• Recall R

• F1-score F1

Each of these will be discussed in more detailed in the following paragraphs.

Labelling Index Error ErrorLI

One of the main questions of this work is how accurately the presented algorithm is able
to estimate the Labeling Index LI which represents the ratio of positive nuclei in respect
to the total number of nuclei in the image, i.e. the proliferative activity of the tissue.
In order to evaluate this aspect, a criterion called Labeling Index Error, ErrorLI , is
introduced. It reports the absolute Error between estimated LI (LIest) and ground truth
LI (LItrue) as formulated in Equation 4.13.

ErrorLI = LIest − LItrue (4.13)

LIest and LItrue range between [0,1], where 0.0 signifies that 0% of the nuclei in the
image are Ki-67 positive (all nuclei are negative) and 1.0 signifies that 100% of the
nuclei in the image are Ki-67 positive (no nuclei are negative). ErrorLI ranges between
[-1,1], where ErrorLI = −1.0 represents an extreme example and signifies that LItrue

was underestimated by 100%, which is the case if LItrue = 1.0 and LIest = 0.0. At
the opposing end of the scale, ErrorLI = 1.0 signifies that LItrue was overestimated by
100%, which is the case only if LItrue = 0.0 and LIest = 1.0. A value of ErrorLI = 0.02
predicates that LItrue was overestimated by 2%. The desired value is ErrorLI = 0.0,
which states that the estimated LI matches the true LI exactly, LIest == LItrue.

LIest is derived by counting the number of CC in the RM of each channel, RMpos and
RMneg, conducting the following calculation (Equation 4.14):

LIest =
#CC in RMpos

#CC in RMpos + #CC in RMneg
(4.14)

Accordingly, LItrue is derived by counting the number of CC in the TM of each channel
(Equation 4.15).
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LIest =
#CC in TMpos

#CC in TMpos + #CC in TMneg
(4.15)

Precision P , Recall R and F1-score F1

Precision, Recall and F1-score are described by the Equations 4.16, 5.2 and 5.3, where
TP stands for ”True Positive”, FP for ”False Positive” and FN for ”False Negative”.

P =
TP

TP + FP
(4.16)

R =
TP

TP + FN
(4.17)

F1 = 2 ·
P · R

P + R
(4.18)

In order to derive Precision, Recall and F1-score, the counts of TP, False Positive FP
and False Negative FN in each image are required. Given the fact that the nuclei are
counted via segmentation, the derivation of TP, FP and FN is based on the comparison
between the True Mask TM and the Result Mask RM . The basic algorithm for this step
is outlined in Algorithm 4.2.

Algorithm 4.2: Pseudocode for Derivation and Definition of TP, FP and FN

1 for each CC in TM do
2 identify CC in RM having overlap with this CC;

3 if number of CC in RM identified == 0 then
4 copy current CC in TM to FN-mask;

5 else
6 identify CC in RM with largest DC;

7 store largest DC in DC-list;

8 store CC in RM with largest DC in TP-mask;

9 eliminate CC in RM with largeste DC from RM to prevent double-counting;

10 end

11 end

12 TP-count = number of CC in TP-mask;

13 FP-count = number of remaining CC in RM;

14 FN-count = number of CC in FN-mask;
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The definition of ”overlapping” in this case, as examined in Line 2 of Algorithm 4.2,
is equivalent to the definition of a true positive in [89]: if the Dice Coefficient (DC )
between the blob in the TM and the blob in the RM is below a certain threshold, the
blob in the RM is not regarded as overlapping and will not be counted as a TP. The
threshold is set to 0.2, as in the works of [89]. The explanation of the Dice Coefficient
DC and details of its implementation are laid out in the adjacent Section 4.3.2.

Once TP, FP and FN are defined, identified and counted for each image, the other criteria
Precision P , Recall R and F1-score F1 can be determined for each image. For each, the
resulting value per image is passed on to evaluate the performance of the algorithm on an
entire dataset. These criteria are chosen according to their frequent reporting in similar
publications, thus they allow comparing the algorithm performance.

4.3.2 Evaluation of Nuclei Segmentation

The criteria to be examined for the evaluation of the nuclei segmentation are::

• Dice Similarity Coefficient DC

• Area Estimation AreaEst

• Pearson’s Coefficient of the Area ρArea

• Pearson’s Coefficient of the Solidity ρSolidity

• Pearson’s Coefficient of the Eccentricity ρEccentricity

Each of these criteria is calculated for both positive and negative nuclei and is based on
the respective TP nuclei. The values reported per image are the median of the entire
population of nuclei in each image and the values reported per experiment (Quartiles,
Median etc.) are based on all images in the respective dataset. The median is chosen to
be the preferable measure of central tendency over the mean, because there are no clear
grounds to assume a normal distribution among the reported data.

Each of these will be discussed in more detailed in the following paragraphs.

Dice Coefficient DC

In order to define to which extent a nucleus was correctly segmented, the commonly used
Dice Coefficient DC is examined as a measure of weighted overlap between segmentation
result and ground truth (Equation 4.19):

DC =
| A ∩ B |

1
2(| A | + | B |)

(4.19)

Literature research (see Section 3.1) revealed that the motivation for developing nuclei
segmentation DIA solutions is among other factors founded in the pathologists’ need
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for the quantification of morphological nuclei features, such as area or atypicalness
(e.g. how elliptical it is, how many indentations it has etc.) to assess the nuclear
pleomorphism. However, as a criterion for evaluating the segmentation, the commonly
used Dice Coefficient alone does not indicate whether or not the true object area has
been over- or underestimated, since it is merely a measure of overlap. In this light, the
DC by itself is only of limited expressiveness concerning the quality of the segmentation,
since the two model cases exemplified in Figure 4.13 reveal the same dice coefficient. As
a consequence, the pathologist would make the same assumptions about the area/size
of the nuclei for both cases, even though case (a) clearly underestimates and case (b)
clearly overestimates the area.

a b

Figure 4.13: Example of two segmentation cases resulting in the same DC (Horizontal
stripes = TM , Stripes at 45◦ angle = RM) (a) RM is entirely surrounded by TM (b)
TM is entirely surrounded by RM

Thus, this work also specifically examines the over- or underestimation of the area, as
laid out in the next paragraphs.

Area Estimation AreaEst

Via comparing the segmented area RMArea (CC in the RM) to the ground truth area
TMArea (CC in the TM) of each true positive nucleus and returning the ratio for each
nucleus, the called Area Estimation Coefficient, AreaEst, is calculated. It is given in
Equation 4.20:

AreaEst =
RMArea

TMArea

(4.20)

The criteria reported is the median of all nuclei area estimations per image. It casts light
onto whether the nuclei areas are generally over- or underestimated.

Pearson’s Coefficient of the Area ρArea, Solidity ρSolidity and Eccentricity
ρEccentricity

As previously laid out in Section 2.3, morphological nuclei features such as shape and area
are also of interest in the context of diagnosing breast cancer in histopathological images.
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Thus it is desirable to examine the correlation between the outputs of the segmentation
algorithm and the ground truth features of the nuclei.

To this end, the Pearson’s Correlation Coefficient ρ is utilized as a measure of correspon-
dence between two variables (Equation 4.21):

ρ(X, Y ) =
cov(X, Y )

(var(X)var(y))
1

2

(4.21)

It is applied on a small representative, but not exhaustive set of nuclear features covering
three high-level morphological feature families: area as a representative for size features,
solidity as a representative for convex hull features and eccentricity as representative
for elliptical features [7]. The features chosen are also used for verification in other
publications [39, 68, 89] and demonstrate the possible applicability of the algorithm in
the mentioned context. These features, identified via segmentation, are correlated to
their ground truth equivalents via the mentioned Pearson’s Correlation Coefficient ρ, as
laid out in the following Equations, which are conducted for each CC which is a TP.

Equation 4.22 for Area Correlation

ρArea = ρ(AreaRM , AreaT M ) (4.22)

Equation 4.23 for Solidity Correlation (Sol = Solidity):

ρSol = ρ(SolRM , SolT M ) (4.23)

Equation 4.24 for Eccentricity Correlation (Ecc = Eccentricity):

ρEcc = ρ(EccRM , EccT M ) (4.24)

The value of ρ indicates whether there is a meaningful and reproducible correlation
between the identified features and ground truth values. If ρ is high, it means that a
feature is systematically under- or overestimated and the output value can be corrected
by a linear correctional term, thus it is reliable enough as an output to be reported to
the pathologist. If ρ is close to 0, however, the identified features are revealed to be close
to random guessing and do not add to the diagnostic value of the segmentation results.

Area Estimation and ρArea are features which are complementary to each other and both
necessary in order to fully report the correctness of the segmentation regarding the size
of the nuclei. While Area Estimation reveals information about the extent of over- or
underestimation across the entire image for Npos and Nneg, it could counterbalance and
consequently hide systematically or randomly occurring cases of both over- and under-
detection, resulting in a median acceptable area estimation, but stemming from severe
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segmentation errors. The criteria ρArea adds essential information to this impairment
as it investigates whether there is a consistent correlation between the value reported
and the ground truth. The closer ρArea to +1, the more reliable the value reported by
AreaEst. Vice versa, the |ρArea| alone does not include any hint on the extent of over- or
underestimation of the area.
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CHAPTER 5
Results and Discussion

This chapter deals with the resulting output of the dataset synthesis and the performance
of the nuclei segmentation and quantification algorithm.

5.1 Synthetic Dataset

In this section, the result of the SDS generation is presented and discussed, aided by
sample pictures. First, the effect of the colorspace variation on the SDS is highlighted,
then the most important characteristics of the datasets generated for further experiments
are illustrated.

5.1.1 Colorspace Variation

Illustrated by Figures 5.1, 5.2, 5.3 and 5.4 the effect of the color deconvolution and
normalization, as described in Section 4.2.1 is displayed.

Figure 5.1 shows Ki-67 snapshots taken from the real, clinical Ki-67 breast WSI from the
Pathology Laboratory at the Linköping University Hospital, Sweden. In this illustration,
the necessity of any nuclei detection algorithm to adapt to locally prevailing staining
characteristics becomes obvious, as the shades of Ki-67 (brown) and Hematoxylin (purple)
vary from image to image, even though they stem from the same laboratory. The leftmost
and middle-left image of the second row in Figure 5.1 even stem from the same original
.svs-file.

This hand-selected collection of snapshots was taken as the basis for extracting the set
of 12 stain matrices Mtarget to be used for colorspace variation of the synthetic images
SIinit via restaining. Figure 5.2 depicts the fixed stain matrix Msource used for the
deconvolution of each SIinit (empty rings), as well as the 12 varying stain matrices
Mtarget used for restaining them to varying appearances.
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Figure 5.1: Set of Ki-67 snapshots taken from real, clinical images
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Figure 5.2: Two viewing angles (a) and (b) on the OD-values of the 12 stain matrices
Mtarget represented by filled dots: The purple dots (lower cluster) represent the Hema-
toxylin values, the red dots (upper cluster) represent the Eosin values. The larger, empty
ring within each cluster represents the values of Msource. The light-gray dots are the pro-
jections of the all tuples cast along the OD axis B, to emphasize their three-dimensional
position.
The axes are labelled according to RGB scale corresponding to the respective OD scale
(see Equation 4.1).
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Following, a set of 12 synthetic images SIinit is shown in Figure 5.3. It gives an idea of
the stain appearance right after the initial image synthesis. It can be seen that all sample
images have the same stain appearance, i.e. all backgrounds, positive and negative nuclei
are equally colored within a certain range and the most obvious difference in appearance
stems only from the varying densities and ratios and positive and negative nuclei.

Figure 5.3: Clips from 12 representative synthetic images SIinit before restaining

Figure 5.4: Clips from 12 representative synthetic images SIrestained after restaining

69



5. Results and Discussion

Figure 5.4 demonstrates the impact of even small staining variations contained in a
supposedly coherent dataset stemming from a single laboratory. All images now exhibit
a different stain appearance, regarding background, positive and negative nuclei. The
overall density or ratio of positive and negative nuclei does not in any way affect the
resulting appearance of SIrestained since the deconvolution and restaining process is
conducted using predefined matrices, Msource and Mtarget. This fact needs to be stressed,
as – in contrast – the density and ratio immanent in these images strongly affect the
performance of the nuclei quantification algorithm presented in Section 4.2. Summarizing,
adapting the normalization method published in Macenko et al. [50] to be used in a
reversed manner leads to the expected result of successfully introducing realistic stain
variations into a given set of synthetic images.

5.1.2 Dataset Characteristics

In this work, 2 different SDSs, namely a ”uniform” and a ”designed” Dataset, have been
created. They are called Duniform and Ddesigned respectively. The following Table 5.1
presents the characteristics of these two Datasets:

”Uniform distribution”
Dataset Duniform

”Designed distribution”
Dataset Ddesigned

Distribution Func-
tion for Nuclei

The probability of a nucleus to be
placed is uniform across the en-
tire image, thus the definition nu-
clear placement probability maps,
MapNucP robability, are obsolete

The probability of a nucleus to
be placed, thus the distribu-
tion function, can be manually
designed via nuclear placement
maps, MapNucP robability

Example of
MapNucP robability

(white = 100%
probability for
nuclei placement,
black = 0% prob-
ability for nuclei
placement)

none (uniform probabil-
ity would yield only-white
MapNucP robability)

- for placement of Spos

- for placement of Sneg

70



5.1. Synthetic Dataset

”Uniform distribution”
Dataset Duniform

”Designed distribution”
Dataset Ddesigned

Example of real
Ki-67 model im-
age

none (uniform cell distribution is
no natural behaviour)

Example of result-
ing synthetic im-
age SIinit

Image Size(s) Uniform
(1680x1050)

Varying
(1200x1200,
1712x980,
3214x1803)

# of Synthetic Im-
ages Per Dataset

50 50

# of differ-
ent Stain-
Appearances

12 12

Versions available
(see Figures 5.3
and 5.4)

- SIinit (Original)
- SIrestained (Restained)

- SIinit (Original)
- SIrestained (Restained)
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”Uniform distribution”
Dataset Duniform

”Designed distribution”
Dataset Ddesigned

Density of Nuclei
(Ntotal/µm2)

Uniform Designed

0

1

2

3

4

×10
-3

Distribution of La-
belling Index in
Dataset
(Npos/Ntotal)

Uniform Designed

0

0.2

0.4

0.6

0.8

1

Table 5.1: The characteristics of the two generated dataset Datasets Duniform and
Ddesigned
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The fact that Ddesigned possesses a smaller overall nuclear density, as visible in Table 5.1
is due to the fact that the image synthesis algorithm calculates the number of maximally
possible nuclei based on the MapNucP robability specified. The maps utilized in Ddesigned

allow nuclei placement only in restricted regions, thus the total number of nuclei, Ntotal,
is smaller than in the images found in Duniform, where the maps allow uniform placement
across the entire image. This factor can be seized to examine whether the algorithms
performance varies when confronted with differing nuclear densities.

As laid out in Section 4.1.2, the nuclei in the SIinit have been extracted from one
exemplary sample region of a real Ki-67 svs-file. Even though not explicitly notable at
a first glance, the nuclei display a directional bias. This means that their mean major
axis is biased along a certain direction. As illustrated in Figure 5.5 (b) and (c), the
positive nuclei show a notable bias towards being rotated about -70◦ against the x-axis,
the negative nuclei show a bias at about -30◦. This originates from the physiological
tendency of nuclei to align with the surrounding tissue scaffolding they are embedded
into, which can be observed in Figure 5.5 (a).

While this observation may call for the implementation of a directional bias correction,
its correction would not induce any difference for the functionality or performance of the
presented nuclei quantification and segmentation method because the latter disregards
any rotational nuclei features.

5.1.3 Summary and Discussion of Synthetic Datasets Results

Using the procedure for generating synthetic images described in Section 4.1, two datasets
have been created. They mostly differ in the distribution of the nuclei on each image: in
the dataest Duniform the nuclei are uniformly distributed in the dataset Duniform and
in the other dataset Ddesigned the distribution is variable across the image, confining
both the allowed areas and the relative densities of the nuclei. Each dataset contains 50
images available both in a standard stain appearance version (SIinit) and in one of 12
different varying stain appearance versions (SIrestained). In both datasets, some images
are extremely sparse and some are very densely populated (measured in Ntotal / µm2).
In average, Duniform features a higher nuclei density than Ddesigned due to the constraint
on the nuclei placement in the generation of the latter. Both datasets exhibit the full
possible range of Labeling Indices LI, namely between 0 and 100%.

The optical appearance of the synthetic images, showing both isolated and touching or
overlapping nuclei on a background structure, provides a realistic testing opportunity for
any nuclei detection and/or segmentation algorithm which is either specialized on Ki-67 LI
estimation or on general nuclei quantification. The ground truth mask provided alongside
every single image, precisely outlining every nucleus, permits the exact evaluation of
any DIA solution in both quantitative (how good is the nuclei detection) and qualitative
(how good is the segmentation) aspects. As such, the research question whether a SDS
generation is suitable for the evaluation of a nuclei quantification and segmentation
algorithm can be answered in the affirmative.
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a

b c

Figure 5.5: (a) Nuclei tend to align along their surrounding tissue structure
Frequency of angles between x-Axis and major axis of ellipse with same second moment
as positive (a) and negative (b) nuclei used in the generation of the dataset (y-label
omitted to show relationality, not absolute values)
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5.2 Nuclei Quantification and Segmentation Metrics

Twelve experimental setups have been conducted to test the impact and performance of
variable settings. In essence, three different deconvolution methods (Cosatto, Macenko
and fixed, see Section 4.2.1) were applied on the two versions of each image (original
synthetic image SIinit and restained synthetic image SIrestained) within each of the two
dataset Datasets Duniform and Ddesigned. Table 5.2 introduces the naming scheme for
the experimental setups and their characteristics.

Table 5.2: Setups for the different experiments conducted on the presented nuclei
quantification and segmentation algorithm, using the two SDS created. By testing each
of the three deconvolution methods on two versions of the image to be analysed, a total
of 6 setup combinations, called A-F, are examined.

Name of exper-
imental setup

A B C D E F

Deconvolution
method

Cosatto Cosatto Macenko Macenko Fixed
(Ruifrok)

Fixed
(Ruifrok)

Image to be
analysed

SIinit SIrestained SIinit SIrestained SIinit SIrestained

Dataset Duniform

+
Ddesigned

Duniform

+
Ddesigned

Duniform

+
Ddesigned

Duniform

+
Ddesigned

Duniform

+
Ddesigned

Duniform

+
Ddesigned

The results of the most vital criteria of these experimental setups is illustrated on the
succeeding pages using boxplots. The following general information is valid for all plots:

• Each pair of boxplots (e.g. the two left-most columns in a boxplot labelled ”A”)
represents the performance of the algorithm using a specific setup A-F (see Table
5.2) on both the uniform and designed dataset (left and right column of the pair,
respectively). The data samples stem from the verification process on each of the
50 images of each dataset.

• The upper boundary of each blue box represents the 25% quantile (q1) of the data,
the red line represents the median and the lower boundary represents the 75%
quantile (q3) of the data. The distance between the quartiles q1 and q3 is referred
to as Inter-Quartile Range (IQR).

• The plotted lower and upper whiskers (dashed black vertical line above and below
each box) include all data values which are not considered outliers.

• The whiskers emerging at the top and bottom of the box denote the extremes,
defined as values higher than q3 + w · (q3˘q1) or lower than q1˘w · (q3˘q1), where w
is a weighting factor (here: w = 1.5). The distance between the whiskers is referred
to as Range of Extremes (RoE).
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• Any value outside of the RoE is defined as an outlier, represented by red, filled
dots.

• The green line in each plot represents the ”desired” value for the examined criteria,
to facilitate visual judgement of the performance of the different experimental
setups.

• The dashed horizontal line on the bottom/top of the plots represent the lowest/largest
value of the 20/80 percentile of each distribution, respectively. Any data points
lying outside these boundaries are displayed on the dashed horizontal line.

The arrangement of experiments in the boxplots and the division of the results into
boxplots for each criteria enables insights into two main factors to be examined in the
course of this work:

1. The influence of different deconvolution methods on the algorithm performance
(the 4 leftmost columns represent the Cosatto method, the 4 middle columns
represent the Macenko method and the 4 rightmost columns represent the fixed
deconvolution).

2. The influence of the nuclei density on the algorithm performance (each of the 6
column-pairs has the high-density dataset Duniform on the left and the low-density
dataset Ddesigned on the right).

5.2.1 Nuclei Quantification

In the following, the evaluation all the criteria for the nuclei quantification stated in
Section 4.3.1 is presented and discussed, namely the LI Error, Precision, Recall and
F1-Score.

Labeling Index Error for each Setup and Dataset

In Figure 5.6, the LI error, ErrorLI , for each setup A-F and Dataset Duniform and
Ddesigned are shown. More specifically, it depicts how far the LI estimated by the
algorithm, LIest, deviates from the true LI, LItrue, known from the ground truth of the
SDS. As an example: The LItrue is 0.90 (i.e. 90% of the nuclei are positive) and the
LIest is 0.89 (i.e. 89% of the nuclei are positive), then the ErrorLI for this model case
amounts to: ErrorLI = LIest − LItrue = 0.89˘0.90 = −0.01 Thus in this example LItrue

was underestimated by −0.01 (i.e. it was underestimated by 1%).

The LI Error is the major criterion for evaluating the performance of the nuclei detection
algorithm and one of the principal answers to the research questions of this work.
Interpreting the median as a measure of correctness and the RoE as a measure of
variability of the estimated LI, the results reveal that setup A on the uniform dataset
performs best, with a median of -0.015 and an RoE of only 0.03. This states that the LI
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Figure 5.6: Labelling Index (LI) Error for each setup A-F and datasets Duniform and
Ddesigned

(Note that the plots for positive and negative nuclei have different vertical scalings to
allow for the best fitted display of the relevant data)
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is estimated with a median deviation of -1.5% and the RoE indicates that the variability
of the estimated LI is very low, thus the LI estimation is a reliable output of the program.
Setup D on the designed dataset performs worst, with a RoE of 0.98 and an IQR of 0.62
despite a median of -0.01. Setups E and F are slightly worse than C and D, because the
medians for Ddesigned are always lower and the IQR is almost as large as in the worst
setup, D on Ddesigned.

Regarding the LI error results in the light of the impact of the deconvolution method,
it is visible that the algorithm benefits from using the Cosatto deconvolution (setup A
and B) as opposed to the Macenko (setup C and D) or fixed (setup E and F) value
deconvolution. This implicates that the impact of the deconvolution method on the
correctness of the LI estimation is significant.

The fact that Experiments A and B exhibit more outliers according to Figure 5.7 does
not infer that they are more likely to fail. The whiskers (bordering the RoE) of the other
experiments include all data points possibly lying in the same range, thus have similar
values as the so-called outliers of experiments A and B.

A clear tendency of less reliable results can be observed on the Ddesigned in comparison
to Duniform: for each experimental setup A-F, except B, ErrorLI is notably larger on
Ddesigned than on Duniform. This can be explained with the major difference between
the number of nuclei in the two datasets: Ddesigned is more sparsely populated with
nuclei than Duniform, as viewable and discussed in Section 5.1.2. As a consequence, the
adaptive deconvolution methods of setups A-D as well as the thresholding steps in the
segmentation process, which are both histogram-based operations, are more influenced
by the color of the background and less influenced by the color of the nuclei. Concerning
setups E and F which use the fixed deconvolution method, the inferior performance on
Ddesigned can also be explained with the thresholding step after deconvolution. It fails
during the histogram-based clustering when there are too few samples of foreground
(nuclei) in comparison to the background.

Precision for each Setup and Dataset

The Precision P is defined as

P =
TP

TP + FP
(5.1)

and describes the portion of TP in relation to the amount of detected nuclei (sum of TP
and FP). The closer P to 1, the better, because P = 1 states that all detected nuclei are
TP. P = 0.5 states that only 50% of the detected nuclei are TP. The constant P = 1 is
highlighted by a green line in Figure 5.7.

Based on the values of P for the positive nuclei detection depicted in Figure 5.7 (a), it
can be concluded that setups A and B (using the Cosatto deconvolution method) on both
Datasets as well as C (using the Macenko deconvolution method) on Duniform perform
best. The superiority of the aforementioned setups is clearly visible in the analysis of
positive nuclei, with the medians, IQR and RoE of setups A, B and C all located clearly
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Figure 5.7: Precision of Nuclei Detection for each setup A-F and Datasets Duniform and
Ddesigned (Note that the plots for positive and negative nuclei have different vertical
scalings to allow for the best fitted display of the relevant data)

above 0.9 and close to 1.0, while the other setups D-F result in massive misperformance.
This is observable in a high number of outliers ranging down to P = 0.0 for setups D-F
on Duniform and large IQRs and RoEs for setups C-F on Ddesigned. P = 0.0 indicates
complete randomness of the assigned ”positive” label, inferring that none of the detected
nuclei represent the ground truth nuclei, but quite the contrary: all detected nuclei
are FP. Taking into consideration the results of Figure 5.7 (b), which depict P for the
negative nuclei detection, the previous conclusion regarding setup A and B has to be
withdrawn. It is visible, that setups A and B still outperform all the other setups,
however this is only true when executed on Duniform. The RoE of the algorithm-setup
A and B on negative nuclei ranges down to 0.0, making it an unreliable result despite
the median P located at almost 1.0. The reason for this is once again to be found in
the sparsity of the Ddesigned: The essential, histogram-based clustering step necessary for
meaningful thresholding between background and foreground fails in the negative channel
if the number of negative nuclei is so small that they do not substantially influence
the histogram. Summarizing and in line with the LI error results, the choice of the
deconvolution method has the largest impact on P , while the second decisive factor is the
density of nuclei in the analyzed images, which is higher in Duniform than in Ddesigned.

Recall for each Setup and Dataset

The Recall R is defined as

R =
TP

TP + FN
(5.2)

and describes the portion of correctly identified nuclei in relation to all true nuclei present
in the image. The closer to 1, the better, because R = 1 states that all true nuclei have
been detected and no true nuclei remained undetected. R = 0.5 states that only 50% of
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5. Results and Discussion

the present true nuclei have been detected. The ideal R = 1 is highlighted by a green
line in Figure 5.8.
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Figure 5.8: Recall of Nuclei Detection for each setup A-F and Datasets Duniform and
Ddesigned (Note that the plots for positive and negative nuclei have different vertical
scalings to allow for the best fitted display of the relevant data)

The distributions of Recall in Figure 5.8 (a) for the positive nuclei are more similar among
all setups than the previously discussed Precision P . A clear tendency towards better
results is visible for Ddesigned in comparison to Duniform. The medians of R for Duniform

all lie between 0.90 and 0.93 while those for Ddesigned lie between 0.92 and 0.94. The same
tendency can be observed in the IQR and RoE of all setups: For Duniform, the RoE is
always larger and ranges further down than for Ddesigned. For the positive channel, setup
A on the designed Dataset performs best, with a median of about 0.93 and a comparably
small IQR and RoE. An entirely different impression is obtained when looking at R for
the negative channel in Figure 5.8 (b). Here, the results vary widely: The best result is
found for setup A on Duniform with a high median R of 0.99 and IQR as well as RoE of
0.0. The worst result is found for setup F on Duniform with a median of 0.45, an IQR of
0.57 and an RoE of 0.64. Despite the large span of results, the same tendency is visible as
in the positive channel, namely that all setups work better on Ddesigned than on Duniform.
An evident question now is why R suggests that the nuclei detection algorithm generally
works better on Ddesigned than on Duniform, which is contrary to the conclusions drawn
from ErrorLI and P. This phenomenon can be explained with the definition of Recall per
say: A high recall merely states that all relevant items have been identified, but does not
express any information on the percentage of irrelevant items. On the sparsely populated
Ddesigned, the massive misperformance of the thresholding step can lead to segmentation
not only of nuclei, but also of other tissue structures visible in the respective channel.
Illustrative examples for two contrary cases are shown in Figure 5.9.
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5.2. Nuclei Quantification and Segmentation Metrics

a b

Figure 5.9: Examples for (a) high Recall despite obvious oversegmentation and (b) low
recall due to undersegmentation. Both images stem from Ddesigned.

This underlines that the Recall alone would not sufficiently describe the performance of a
setup and thus it has to be reported and understood in combination with the precision.

F1-score for each Setup/Dataset

The F1-score is defined as

F1 = 2 ·
P · R

P + R
(5.3)

and describes the harmonic mean of Precision P and Recall R. Its value gives a good
summary of both criteria, Precision and Recall. The closer F1 to 1, the better, because
an F1 = 1 characterizes a high accuracy. A Recall of 0.5 states that only 50% of the
present true nuclei have been detected. The ideal Recall of 1 is highlighted by a green
line in Figure 5.10.

In Figures 5.10 (a) and (b), revealing the F1-score for the detection of positive, respectively
negative nuclei, it is visible that the algorithm works superior on Duniform and noticeably
worse on Ddesigned. Thus, the seemingly better Recall of the algorithm on the Ddesigned

is more than annihilated when averaged with the Precision. In line with previous findings
drawn from interpreting the ErrorLI , P and R of all setups and datasets, the F1-scores
suggest the following conclusions:

• The Cosatto deconvolution utilized in setups A and B, clearly outperforms the
other deconvolution methods

• The algorithm performs better the more densely populated the image is
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Figure 5.10: F1 of Nuclei Detection for each setup A-F and Datasets Duniform and
Ddesigned (Note that the plots for positive and negative nuclei have different vertical
scalings to allow for the best fitted display of the relevant data)

• Using the best setup, the algorithm yields F1-scores of above 0.98 for both positive
and negative nuclei, proofing it to be a reliable solution

Correlations between Image Features, LI and Labeling Index Error for each
Setup and Dataset

To further investigate the claim that there is a correlation between the density of nuclei
in an image and the ErrorLI , the Pearson’s Product-Moment Similarity Coefficient
between the density and the ErrorLI for each Image was computed. As can be discerned
from Figure 5.11, the correlation between the total density of nuclei and the ErrorLI

is not significant, it oscillates around zero for all setups and both Datasets. While this
might surprise at first sight, the explanation lies in the correlation between the density of
positive nuclei and the ErrorLI : it reveals that for setups C-F, all experiments conducted
on Ddesigned show a high negative correlation of less than −0.5. This indicates that the
ErrorLI tends to increase with decreasing density of positive nuclei in an image.

The ErrorLI is also investigated in its correlation to LItrue and the consistently moderate,
but negative correlation is an indication that the ErrorLI decreases with increasing
LItrue. This implies that the algorithm is able to more correctly deconvolve and threshold
the images if a higher relative density of positive nuclei populates the image, adding
weight to the positive nuclei in the histograms. Last but not least, the correlation between
LItrue and LIest is shown, once again demonstrating that setup A and B on Duniform

outperform the other setups, with significant positive correlations of clearly above 0.6
each.
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Figure 5.11: Correlations between Image Features, LI and ErrorLI for each setup and
dataset (Lines between data-points added to facilitate identifying each type of correlation,
no linear interpolation is expressed by them)

5.2.2 Nuclei Segmentation

This section deals with the performance of the nuclei segmentation. First, the visual
output of the segmentation is presented and then a number of criteria demonstrate the
performance of the nuclei segmentation and its potential diagnostic applicability for the
pathologist.

Examples of the Segmentation Output (Visualization)

Figure 5.12 (a) and (b) illustrate how the segmentation result of both positive and
negative nuclei is visualized. The blue dots represent FP. In both cases visible in (a) and
(b), a nucleus has been over-segmented and divided into two nuclei while it should only
be one. This is visualized by both a green dot (TP) and a blue dot (FP) located on the
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same nucleus. In (a), two FN, represented by red dots, can be seen. They mark nuclei
which have not been detected by the algorithm. In (b), a FN, represented by a red dot,
lies adjacent to a TP (green dot). This is due to the fact that two nuclei were identified
as one nucleus. The nucleus having the larger overlap with the RM is considered to be
a TP and the green dot is always drawn in the center of the segmentation mask. The
second nucleus, having the smaller overlap with the RM, is considered to be a FN and
the red dot is always drawn in the center of the FN. While this depiction might not
be intuitive at first sight, it proofs that the evaluation procedure distinctly considers
cases of over- or under-segmentation and labels each connected component within the
segmentation mask as either a TP or a FP, while it prohibits a true nucleus from being
labelled as TP twice.

a b

Figure 5.12: Visualization of the segmentation result: The ground truth outlines (True
Mask, TM) are held in black, the outlines identified by the algorithm (Result Mask, RM)
are held in yellow. TP are represented by green dots, FP by blue dots and FN by red
dots. The two images show (a) the segmentation result of the positive nuclei and (b)
the segmentation result of the negative nuclei, each in a different image.

In Figure 5.12 (a) there is a green ring visible in the upper right corner. This is due to
the process of deriving the illustrative green dot depicting a TP: first, ultimate erosion is
applied to the segmentation mask of the nucleus (i.e. shrinking it to one pixel diameter)
to define the center of the located nucleus and then it is dilated back to a disk of 7 pixels
diameters to be large enough for proper display in the visualization. If the ultimate
erosion is applied on a CC with a hole, as in the present case, it is transformed to a
ring and the subsequent dilation results in a thick ring. Despite the possibly misleading
depiction, this nucleus is nevertheless counted as one TP nucleus.
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5.2. Nuclei Quantification and Segmentation Metrics

Dice Similarity Coefficient for each Setup and Dataset

The Dice Similarity Coefficient DC

DC =
| A ∩ B |

1
2(| A | + | B |)

(5.4)

is a measure of overlap between two regions (in this case, a CC in the TM and a CC in
the RM), weighted by their average area. A perfect segmentation yields DC = 1 while
DC = 0.5 states that the object in the TM and the object in the RM only overlap by
50% in relation to their average area. The values reported in the boxplots of Figure 5.13
are based on the median DC of all objects per image.
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Figure 5.13: DC of Nuclei Detection for each setup A-F and Datasets Duniform and
Ddesigned (Note that the plots for positive and negative nuclei have different vertical
scalings to allow for the best fitted display of the relevant data)

The DC for the segmentation of both positive (Figure 5.13 (a)) and negative (5.13 (b))
nuclei never exceeds 0.91. However, the DC for positive nuclei is more consistent than
for the negative nuclei with values mainly between 0.85 and 0.90, except for setups C
and D on Ddesigned. For the segmentation of the negative nuclei in setups C-F, the IQR
and the mean of the DC systematically range below 0.7 for Ddesigned. The fact that
the maximum value lies above 0.9 does not infer that all nuclei within even the best
performing images have a DC of maximum 0.9, but in contrary – it is the median of
the DC of all objects in the image. Thus, half of the nuclei are segmented in a quality
higher than DC = 0.9. In accordance with the previous results from Section 5.2 these
outcomes indicate that the algorithm performs better and more reliable when using the
Cosatto deconvolution (setups A and B) and considerably worse on the more sparsely
populated Ddesigned. In this context, the term ”performance” refers to the segmentation
performance.
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Area Estimation Coefficient for each Setup and Dataset

As stated in Section 3.6.2, the DC alone does not disclose any information on whether
the objects to be segmented are over- or underestimated. Hence, the criteria of Area
Estimation AreaEst is introduced:

AreaEst =
TMArea

TMArea

(5.5)

It merely puts the segmented area of an object in the result mask, RM, in direct ratio to
the true area of the object. This is done for nuclei verified as TP. Ideally AreaEst = 1,
which is graphically stressed by the green line in Figure 5.14.
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Figure 5.14: Area estimation coefficient AreaEst showing the relation between detected
and true area of the nuclei for each setup A-F and Datasets Duniform and Ddesigned

(Note that the plots for positive and negative nuclei have different vertical scalings to
allow for the best fitted display of the relevant data)

The AreaEst for both positive and negative nuclei is shown in Figure 5.14 (a) and (b),
respectively. The boxplots reveal a tendency of underestimating the area more severely
in Duniform than in Ddesigned. The medians for Duniform area located between 0.8 and 1
(positive nuclei) and between 0.75 and 0.85 (negative nuclei). The AreaEst is generally
more reliable and shows less variations for the segmentation of positive nuclei (Figure
5.14 (b)), except for setup D on Ddesigned, using the Macenko deconvolution on diversely
stained SIrestained. AreaEst of negative nuclei (Figure 5.14 (b)) on setups C-F is generally
lower on Duniform than on Ddesigned, ranging down to AreaEst = 0.5.

Mind that the values reported for each setup and dataset are again the medians per image,
not values per object within an image. As a consequence, it could happen that extreme
over-estimation of some objects balances extreme under-estimation of other objects within
the same image and the median value reported is still fairly good. Thus it is advised to
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5.2. Nuclei Quantification and Segmentation Metrics

look at the Pearson’s Coefficient of the Area Estimates as well for a more coherent picture.

Pearson’s Product-Moment Correlation Coefficient of the Area for each
Setup and Dataset

To shed a light on the incomplete expressiveness in the Area Estimation Coefficient, the
Pearson’s Product-Moment Correlation Coefficient between the estimated object areas
Aest and the true object Areas Atrue is also examined. The formula for this Coefficient,
in short called Pearson’s Coefficient or ρArea, is given in Equation 5.6, where X represents
Aest and Y represents Atrue:

ρ(X, Y ) =
cov(X, Y )

(var(X)var(y))
1

2

(5.6)

The Pearson’s Coefficient is reported for all TP nuclei.
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Figure 5.15: The Pearson’s Coefficient, indicating the degree of linear relationship between
the true area Atrue and the estimated area Aest of the nuclei for each setup A-F and
Datasets Duniform and Ddesigned.
(Note that the plots for positive and negative nuclei have different vertical scalings to
allow for the best fitted display of the relevant data)

Figure 5.15 points out that there is a consistent positive linear correlation between
estimated and true area of above 0.73 for both the negative nuclei and the positive nuclei,
while the medians are all above 0.85. This indicates a significant correlation between
Aest and Atrue. In case of the positive nuclei, the IQR and RoE are always larger on the
sparsely populated Ddesigned than on Duniform, where the contrary can be observed in
case of the negative nuclei. Thus, the algorithm delivers by far more reliable results on
the area estimates when using the Cosatto deconvolution (A-B) than with the Macenko
or fixed deconvolution method (C-F).
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5. Results and Discussion

It is very interesting that according to this criteria, the Cosatto deconvolution (setups
A-B) performs worse on Duniform than the other two deconvolution methods (setups
C-F), such that the former has a slightly lower median and a higher IQR and RoE. This
is contrary to previous findings where the Cosatto deconvolution outperforms the other
two methods. However, in connection with the previously discussed Area Estimation
Coefficient AreaEst, it can be asserted that the algorithm tends to deliver more accurate
measures on the area of the positive nuclei when using the Cosatto deconvolution on the
uniform dataset, albeit not as reliably as the Macenko and fixed deconvolution.

Concerning the interpretation of these numbers, it has to be kept in mind, that even
with a significantly high ρ, indicating a consistent reliability of the estimates, the areas
of the nuclei could still be systematically over- or underestimated on a large scale. If it
can be verified that a high ρ is based on a relationship with truly linear nature, any over-
or under-estimation of the area could be corrected by a linear correction factor to deliver
more accurate results. Figure 5.16 associates each Atrue with the segmented Aest for two
exemplary images and gives a visual confirmation that the underlying distribution is
generally linear.

a b

Figure 5.16: Examples for the correlation between Atrue and Aest for an image of
setup B on Duniform with reported (a) AreaEst = 1.00 and rhoArea = 0.83 and (b)
AreaEst = 0.89 and rhoArea = 0.85

Pearson’s Product-Moment Correlation Coefficient of the Solidity for each
Setup and Dataset

As for the Area, the Pearson’s Coefficient is utilized to examine the correlation between
reported solidity, Sest, and true solidity, Strue as the variables X and Y in this Equation:

ρ(X, Y ) =
cov(X, Y )

(var(X)var(y))
1

2

(5.7)

Contrary to the correlation between estimated and true Area, ρArea, the correlation
between estimated and true Solidity, ρSolidity, is much weaker, as can be seen in Figure
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Figure 5.17: The Pearson’s Coefficient, indicating the degree of linear relationship between
the true solidity Strue and the estimated solidity Sest of the nuclei for each setup A-F
and Datasets Duniform and Ddesigned.
(Note that the plots for positive and negative nuclei have different vertical scalings to
allow for the best fitted display of the relevant data)

5.17. The medians of the correlation for the both positive and negative nuclei solidity
never exceed 0.5. Even though the values for setups A and B are higher than those for
the other setups, they are still too low to indicate a significant correlation. Hence, the
solidity values of the detected objects cannot be reliably reported to the pathologist for
any of the setups.

Pearson’s Product-Moment Correlation Coefficient of the Eccentricity for
each Setup and Dataset

To examine the estimated eccentricity, i.e. the ratio of the lengths between the foci and
the major axis length of the ellipse that best fits the nuclei, the Pearson’s Coefficient
is utilized again. The estimated eccentricity, Eest, and true eccentricity, Etrue, are
represented by the variables X and Y in this Equation:

ρ(X, Y ) =
cov(X, Y )

(var(X)var(y))
1

2

(5.8)

As visible in Figure 5.18, there is a significant positive correlation between Eest and Etrue
for both positive and negative nuclei when conducting setups A and B. For the positive
nuclei (Figure 5.18 (a)), all setups perform approximately equally well on Duniform, with
means of 0.80 to 0.85 and IQR of about 0.05. Looking at the performance on negative
nuclei (Figure 5.18 (b)), only setups A and B perform better on Duniform than Ddesigned,
while there is a higher correlation between estimated and true eccentricity for Ddesigned

than for Duniform for all other setups. This is an interesting observation, which is in

89



5. Results and Discussion

concordance with the results of the other segmentation criteria, DC, AreaEst, rhoArea

and rhoSolidity which all accredit setups C-F to perform better on the segmentation of
negative nuclei when applied on Ddesigned than on Duniform.
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Figure 5.18: The Pearson’s Coefficient, indicating the degree of linear relationship between
the true eccentricity Etrue and the estimated eccentricity Eest of the nuclei for each setup
A-F and Datasets Duniform and Ddesigned.
(Note that the plots for positive and negative nuclei have different vertical scalings to
allow for the best fitted display of the relevant data)

5.2.3 Summary and Discussion of Nuclei Quantification and
Segmentation Results

The major research questions of this work (Section 1.3) was about the feasibility of
automating the LI scoring in Ki-67 stained images of the breast and the achievable
level of accuracy. This question is foremost answered by the presented Labeling Index
Error ErrorLI . It is notable, that to the publication date of this thesis and to the best
knowledge of the author, no algorithm specialized on the analysis of the Ki-67 LI in
breast images has been published. Hence, the performance of this algorithm can only
been evaluated in comparison with DIA solutions for the Ki-67 LI analysis in tissue types
other than breast.

Overall, the best achieved ErrorLI using the most advantageous setup (B) was -1.5%
(median value, with IQR of 0.01) on a whole dataset including images with extremely
sparse as well as high density, LItrue between 0 and 100% and varying staining character-
istics. This setup used the deconvolution approach by Cosatto. This lowest ErrorLI is
higher than the error reported for methods compared in Xing et al. [94] for estimation of
the Ki-67 LI in NET tumor cases1, which all range below 1%. A novel method presented

1Neuro-Endocrine-Tumor
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in Xing et al.[94] which is said to outperform all other compared methods however reveals
that their method has a Precision, Recall and F1-Score of P = 0.89, R = 0.91 and
F1 = 0.90, respectively, while the values of the here presented work in the best setup (B)
are P = 0.99/0.99 (for the positive/negative nuclei), R = 0.90/0.98 and F1 = 0.96/0.99.
Thus, the presented values indicate that the presented method works better than the
solution by Xing et al. Yet, it has to be kept in mind that the comparison is flawed as
Xing et al. worked on analyzing images which first of all stem from other tissue sites
of the human body than breast and secondly which were real, annotated images rather
than synthetic images as used here.

Overall, there were no notable differences in both the quantification and segmentation
results between running the algorithm on either versions, the SIinit and the SIrestained,
of the datasets. This supports the conclusion that for both the Cosatto and the Macenko
deconvolution method the sheer diversity of the color appearances did not lead to a
deterioration of the results. Nevertheless, as proved by almost all criteria presented in
Section 5.2, in total Cosatto provides a more robust deconvolution method than Macenko,
which leads to better results. As already stated in the discussion of ErrorLI , the fixed
value deconvolution performs the worst. All of these facts implicate that the choice of the
deconvolution method as the first step in the image analysis chain has a major impact
on the correctness of the automated Ki-67 LI analysis.

As notable in all criteria describing the results of the nuclei quantification, the more
sparsely an image is populated with positive nuclei, the worse the results, suggested
by the fact that the algorithm tends to perform worse on the overall more sparsely
populated dataset Ddesigned. The thresholding step at a very early stage of the algorithm
strongly depends on the presence of a perceivable contrast between negative/negative
nuclei respectively and the tissue background. While this might emerge as a confinement
on the SDS, it is highly unlikely that this impairment would also significantly show
if the algorithm was applied on real data, as the regions on which such an analysis
is usually conducted (so-called hotspots) do not exhibit large nuclei-void regions but
in contrary contain a high percentage of positive nuclei. This conclusion hints at an
aspect worth investigating further: the dataset characteristics should be limited to
physiologically/pathologically occurring densities, which would also have ameliorate the
performance of histogram-based deconvolution approaches such as the ones presented
here.

Concerning the datasets used in this work it should be pointed out that the superior
results of the algorithm on Duniform should not lead to the conclusion that nuclei are more
easily detected when distributed uniformly across the image. Since the presented nuclei
quantification and segmentation algorithm only conducts global, not local operations,
the actual locations of the nuclei on a synthetic image do not in any way alter the
result. Thus, if two images of the same size and stain appearance are populated with
the same number of positive and negative nuclei, respectively and they only differ in the
distribution of the nuclei in each image, the algorithm will output the same LI for both
images and the segmentation quality will be equal as well.
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5. Results and Discussion

Looking at the quantification results it becomes obvious that the low Precision values
and F1-Scores in setups D-F for the positive nuclei could have been alleviated by adding
an area-discriminative noise elimination step to processing the BWpos, as it is done in
the post-processing step for BWneg.

It has to be kept in mind that bad results in the segmentation quality do no necessarily
imply bad results of the quantification criteria. As long as a segmentation yields a DC of
at least 0.2, it is counted as a TP. Thus, even if the areas of all nuclei are severely under-
or overestimated and the segmentation regarding the shape of the objects is in the largest
part incorrect, the quantification might still yield a correct result. In conclusion, it can
be said that as long as the algorithm is able to differentiate between objects of interest
(nuclei) and non-interest (noise and other unwanted structures) and these objects are
described with a minimum quality (DC > 0.2), the output of the LI estimation can still
be correct.

The criteria describing the segmentation quality point to the same conclusions as the
criteria describing the quantification outcomes: The Cosatto method is the preferable
choice for the deconvolution because it yields the segmentations with the highest Dice
Coefficients. Although this does not show equally prominent in the other criteria (Area
Estimation Coefficient and Pearson’s Coefficient for Area, Solidity and Eccentricity),
it is still observable they still support the same conclusion. As with the quality of the
quantification results, the segmentation quality suffers from the sparsity of images, which
can be seen in generally worse results on Ddesigned than Duniform.

Concluding the findings about the color devonvolution methods, it can be said that while
the presupposition of stain characteristics, as when using a fixed vector for deconvolution,
leads to large errors, the use of an entirely unbiased approach for stain vector identification
as in the Macenko method is also not ideal if the contrast of the stains in the image
is too weak. Cosatto et al. presented a stable method which is a fair compromise
between a small set of assumptions and a sufficient amount of adaptability to varying
stain appearances.

Of course, the level of accuracy (in this regard, the correctness of the LI score) can be
increased when using methods more complex than the here applied methods, such as
supervised training, sophisticated shape-, color- and texture based feature classification
steps or different unsupervised learning techniques known from other fields of digital
image analysis applications. The presented algorithm is able to demonstrate that a high
accuracy can already be achieved by seizing the advantages of basic image processing
methods, while making as few assumptions about color-related or physiological aspects
of the nuclei and surrounding tissue.

While the evaluation of this algorithm on the SDSs delivers both quantitative and
qualitative metrics about its performance, it would be highly desirable and insightful to
test it on a real, clinical dataset as well. Since all research in the digital pathology domain
aims at either contributing to disease knowledge in large research studies or facilitating
and enriching the daily diagnostic tasks of the pathologist, the relevant images of interest
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are always WSI. To reach these aims, a SDS can always only substitute real images to a
certain degree, but never replace them.
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CHAPTER 6
Conclusion

In the following paragraphs, the findings of the work conducted in the course of this
thesis are summarized by recapitulating the stated research questions and their respective
answers as well as mentioning other noteworthy discovered aspects.

Can scoring of the Labeling Index in Ki-67 stained slides (LI estimation) be
performed in an automated fashion, requiring neither prior training of the
program nor manual inputs from the user? If so, to which point of accuracy?

In the course of this work, a pipeline of steps has been developed, which deconvolves
a given image into two channels, then binarizes and segments each channel via several
post-processing steps, using solely unsupervised image processing operations and making
barely any assumptions about the shape or size of the nuclei. At the end of the pipeline
the nuclei in the synthetic images are segmented.

It turns out that the initial step of color deconvolution is the most decisive factor in
the quality of the results. It is concluded that, for Ki-67 images, an partly biased
deconvolution method such as the one by Cosatto et al. [11] is more stable to stain
variations than an entirely unbiased approach such as the one by Macenko et al. [50]
and both are preferable to fixed assumptions about the stain appearance. Concludingly,
the deconvolution method of choice for this algorithm is the Cosatto deconvolution.

The algorithm does not need to be trained on a labeled or annotated set of images and it
does not require any user-input prior or during its execution. It is able to adapt to stain
appearance variations as they occur in data from a single laboratory.

Most room for improvement of the presented algorithm lies in making it more stable
towards the lower range of the Labeling Index, such that even images with sparse density
and a low rate of Ki-67 stained positive nuclei are correctly segmented.

As proved in the conducted experiments, using different dataset characteristics and
algorithm settings, the best results are achieved when the test images are well populated
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and the deconvolution is only partly biased. Here, a Labeling Index Error of only 1.5%,
together with a Precision of 0.99, a Recall of 0.90 and an F1-score of 0.96 can be achieved.
These values are within the range of accuracy found in other publications about Ki-67
Labeling Index estimation.

Is a synthetic, labeled dataset suitable to evaluate the performance of such
an algorithm?

While a fully labeled and annotated dataset of real clinical/research WSI of Ki-67 stained
slides of the breast, including the entire physiological range of LI and various kinds of
tricky tissue scenarios, would certainly promote the development and valid comparison
of accurate nuclei detection and segmentation algorithms, to date no such dataset exists.
Nevertheless, a synthetic dataset constitutes a profound basis for the task of evaluating
an algorithm which aims at nuclei quantification and segmentation in Ki-67 stained
breast images. The image generation procedure presented in its current state allows the
exact evaluation of the given algorithm in a qualitative (LI-related) and quantitative
(pixel-wise segmentation-related) manner.

The potential of these image generation procedure is not yet fully exploited. Images
generated this way can not only be used to test and evaluate unsupervised methods,
but could also serve for the training, testing and evaluation of supervised DIA solutions.
Furthermore, by fully utilizing the possibility of predefining the nuclear placement during
image generation a dataset produced can also be applied for training and testing tissue
classification methods e.g. to differentiate between suspicious and normal tissue areas.
To this end, the inclusion of additional types of nuclei (e.g. epithelial nuclei) or the
incorporation of directional nuclei bias features, as well as placing entire annotated cells
(including nuclei and cytoplasm) would enrich the applicability for more sophisticated
detection and/or classification tasks.
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CHAPTER 7
Future Work

This chapter deals with potential directions of improvements of this work and proposes
ideas and possibilities on how to tackle them. Furthermore it covers potential directions
this algorithm and dataset synthesis could take when investigated further.

7.1 Recommendations on the Improvement of the
Suggested Solution

The computational time of the automated Ki-67 plays a subsidiary role in this work,
but may aid in giving an insight into the computational complexity of this solution. To
compute the score of an image within the range of 1200x1200 to 3214x1803 pixels at 20x
magnification, the presented work takes in the range between 26s and 52s, depending
on the size of the image and the number of nuclei in it. Compared to a work by [94],
which takes about 100s to detect cells on a digitized 2310x2150 pixels image at 20x
magnification, the presented segmentation and scoring algorithm is not considerably
faster. If a pathologist opens an image and requests its Ki-67 score, these durations
would be perceived as too slow, especially since pathologists would not only look at one
field of view, but want to be able to freely pan and zoom through entire .svs-files in
ranges of 70,000x40,000 pixels or more and still receive the numbers for each studied
region. However, the presented CIA solution still has the potential to be a huge time
saver for them, because they would otherwise spend time in the order of 30 minutes
([94]) to yield a comparable manual count of all nuclei in a field of view of equal size
as the images presented in this work. Furthermore, the automatic Ki-67 scoring can be
conducted without user-interaction as soon as an image is stored on the server, thus may
present a preliminary result already on opening by the pathologist.

As proved in the results and discussion, when using adaptive deconvolution methods
the correct functioning of the algorithm is severely dependent on the density of nuclei,
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especially positive nuclei. This can represent a large impairment for analyzing images and
regions like the one depicted in Figure 7.1. It shows a region in a real, clinical .svs-file,
which is not only generally sparsely populated but (as can be visually judged by the
ratio of Ki-67 positive to Ki-67 negative cells) also exhibits a very low LI. The nuclei
detection and segmentation algorithm would most likely fail to deliver an accurate result
of the LI because the adaptive deconvolution step is not able to handle such sparsity.
A possible solution would be to deploy a fixed-vector based deconvolution as a first
guidance to coarsely identify Regions Of Interest (ROI) which contain Ki-67 positive
cells. In these regions it would be advisable to conduct in-depth Ki-67 scorings, using
adaptive deconvolution algorithms. Given one of the definitions of a hotspot (see Section
2.3.1), Ki-67 scorings in locations other than possible hotspots do not render diagnostic
consequences, thus a limitation of any analysis to ROI is highly advisable.

Figure 7.1: Region of a Ki-67 image in which left side is generally sparsely populated
and the entire image contains only few Ki-67 positive cells

The topic of ROI identification was briefly investigated in the course of this work and
an ROI identification method proposed by Bahlmann [3] was implemented coarsely. It
is based on the cumulative histograms of H, respectively E channels for sub-image tiles
(Bahlmann suggests the Cosatto deconvolution also discussed in this thesis to derive the
channels). The 0, 10, 20, . . . , 100% percentile values of the cumulative histograms of
both channels of each tile are combined to yield a feature vector with 22 features per tile.
A support vector machine is suggested to classify the feature vectors into two classes,
ROI and non-ROI. For this work, Cosatto is also used as the deconvolution method and
instead of using a support vector machine for classification, k-means serves to divide the
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feature vectors and concomitant tiles into the clusters ROI and non-ROI. In the example
image in Figure 7.2, the clustering was initiated with three clusters instead of two as
proposed in [3] and the cluster containing the tiles with the highest cumulative histogram
of the positive channel was considered to be the ROI regions. The result can be seen in
Figure 7.2. If only two clusters are used, the method is too sensitive and labels too many
regions, containing the slightest faint of Ki-67 positive stain, as ROI regions.

Figure 7.2: Test implementation on ROI identification, based on [3], using three clusters.
The regions assigned to the most positive cluster are highlighted in a light-green shade.

Successfully handling common image-inherent artifacts like smeared cells, uneven illu-
mination conditions resulting in inconsistent intra-image brightness or tissue folds with
excessive staining intensities remain an open issue in the presented nuclei quantification
algorithm. As an example: the clinical dataset at hand contains an unaccountable optical
artifact which is manifested in a purple shade along the upper edge of all nuclei, shown
in Figure 7.3. In the lower row it can be seen how prominently this edge lights up in the
negative channel, where there should be no signal because it is physiologically impossible
that a small portion of the nucleus is in another phase than the principal nucleus thus
does not take up the Ki-67 stain, or that this portion is always located at the upper
edge of the nucleus. An artefact like this requires shape- and size-dependent distinction
between candidate nuclei, a step which is linked to preferably avoidable assumptions.

As discussed in Section 4.1.3, the implementation of the SDS allows the definitions of
MapNucP robability, which constraints the nuclear placement for positive and negative
nuclei, separately. However, only the upper left corner of the bounding box of a Snippet
Spos or Sneg, containing one or several nuclei, is compared with this map, thus it is
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Figure 7.3: A purple shade along the upper edge of Ki-67 positive nuclei in an SDS-image.
The lower row depicts the appearance of those shades in the negative channel of each
image, deconvolved using Cosatto [11].

possible that nuclei encroach into supposedly prohibited regions. This can be seen in
Figure 7.4, where the zones defined for placement of Spos and Sneg are also visualized.
Some nuclei obviously protrude the allowed regions to the lower right. This limitation can
easily be avoided through the incorporation of a comparison between a candidate Spos

and the MapNucP robability which considers not only the upper left corner of the snippets
bounding box, but the entire SnipMaskConn.

Figure 7.4: An example of how the snippets Spos and Sneg, containing one or several
nuclei, are placed within the constraints of a nuclear probability map, MapNucP robability.
The dashed-brown line defines the allowed region for Spos, the faint purple line for Sneg.
Some nuclei appear in the respective forbidden areas.

Another chance for improvement lies in the thresholding step of the nuclei segmentation
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and quantification algorithm, after the deconvolution and contrast adjustment. It
advisable to test local instead of global thresholds for thresholding the channels to insure
the inclusion of more faintly stained nuclei. An example is shown in Figure 4.11 on page
51, where the upmost positive nucleus partly vanishes from (a) to (c).

Last but not least, the major aspect placing a limitation on the presented work is the
use of a single dataset, which is based on images from a single laboratory and is thus
constrained in its range of beast cancer cases, as well as in the variation of its staining
characteristics, possible artifacts and other aspects. Despite being common practice,
the usage of a single dataset for both developing and evaluating an algorithm is always
questionable, not only in image analysis in the field of digital pathology. The risk of this
methodology is that the method may be over-fitted to the limited training data, which
by itself depreciates the expressiveness of the presented results and the applicability
on other data. However, this is a limitation which most publications using a specific,
homogeneous dataset suffer from [11]. As pointed out before, a publicly available, large
benchmark dataset for the quantification and segmentation of Ki-67 images of the breast
would clearly augment the validity of any solution proposed in this métier.

7.2 Further Opportunities with the Suggested Image
Synthesis Method

The presented image synthesis method offers some additional potential applications
besides serving as a Gold Standard for the evaluation of this algorithm. The inclusion of
constraint maps allows the definition of ground-truth models of nuclei arrangement as
they appear around ducts or in stromal areas. One example can be seen in Figure 7.5,
which depicts a scene from a real image with a large, central stromal area and a duct on
the bottom, and the corresponding synthetic remake of these relevant structures. The
latter is an image of the dataset Ddesigned used in this work. This opportunity can be
utilized to generate images for region classification training, where algorithms learn e.g.
to differentiate between stromal and ductal regions based on the nuclear arrangement.

a b

Figure 7.5: Example for (a) a real-world image and (b) its synthetic equivalent for
potential training and testing of tissue classification
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Referring to the directional bias of the nuclei in the dataset (see Section 5.1.2) the current
implementation of the SDS generation limits the usability of the SDS to the verification
of methods which also disregard the directionality. If an algorithm includes tissue type
analysis (e.g. for the detection of ducts) it might want to seize the directionality feature.
In this case it would be beneficial to include a deliberate step in which the nuclei are
rotated to a desired angle. This could simply be achieved via providing a map of
desired angles in specific areas, much like the MapNucP robability, and then rotating each
nucleus/snippet accordingly before its placement on the SIinit.

To be fully utilized as a dataset for region classification tasks, the image synthesis process
would definitely benefit from incorporating a number of additional features beside the
directional bias of the nuclei. Two examples are the inclusion of cells (i.e. nucleus and
cytoplasm) rather than nuclei, with both nucleus and cytoplasm annotated in detail
and/or including nuclei from other tissue types of the breast, such as the more dense
and elongated nuclei found in epithelial tissue. Again, since one of the limiting factors
in digital pathology research is the time-wise availability of pathologist for annotating
data and both suggested measures of improvement require expert annotations, these
improvements would come at a high cost. However, considering the limited availability
of pathologists it is debatable which of the two options would turn out more beneficiary
for the research community: The first option is to set up one fully labeled, annotated,
diverse dataset of Ki-67 stained images of the breast and to make it publicly available to
allow for a comparable evaluation of DIA solutions. The second option is to enrich and
enhance the possibilities of an existing image synthesis method such as the here presented,
which would come at an equal or even lower time-wise expense of pathologists and allows
the generation of a nearly unlimited amount of images with different characteristics.

The possibility of creating synthetic images does not only bring up the question of how
the community can benefit from it, but also whether there is a potential danger in this
direction. Further down the road, when synthetic images become more and more realistic,
it might become increasingly hard for a pathologist to differentiate between a real and
a synthetic image. While the indistinguishability is not ethically questionable in and
of itself, the fact that it opens the door to fraudulent misuse in research and clinical
practice should be kept an eye on.
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Appendix

Abbreviations

CAD Computer Aided Diagnosis
CC Connected Component
CMYK Cyan Magenta Yellow Key
DAB Di-Amino-Benzidine
DIA Digital Image Analysis
DT Distance Transform
ER Estrogen Receptor
FN False Negative
FOV Field of View
FP False Positive
HER Human Epidermal Growth-factor 2
HPF High Power Field
IHC Immuno-Histo-Chemistry
IQR Inter Quartile Range
LI Labeling Index
OD Optical Density
PR Progesterone
RoE Range of Extremes
ROI Region of Interest
SD Standard Deviation
SDS Synthetic Data-Set
SE Structuring Element
SVD Singular Value Decomposition
TMA Tissue Microarray
TP True Positive
WSI Whole Slide Images
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7. Future Work

Nomenclature

AreaEst The Area Estimation of each CC
BWneg Initial binary mask (Black-White) of the negative Channel after

Quantization with k-means
BWpos Initial binary mask (Black-White) of the positive Channel after

Quantization with k-means
BWX Binary Image (Black-White)
CCneg Connected Component in the negative Channel
CCpos Connected Component in the positive Channel
DC Dice Similarity Coefficient
ErrorLI The Labeling Index Error
F1 F1-score
GSX Gray-Scale Image
IRGB The original RGB Image
LIest The Labeling Index as estimated by the algorithm
LItrue The Labeling Index as in the Ground Truth
LocCol Column of the Location chosen for the placement of a Npos or Nneg

LocRow Row of the Location chosen for the placement of a Npos or Nneg

Msource Matrix with two vectors describing the original stain appearance
of an image

Mtarget Matrix with two vectors describing the desired stain appearance of
an image

MapNucP robability Map describing probability for placement of a Snippet (0%= for-
bidden, black; 100% = allowed, white)

MaskConn Binary Image of a Channel containing the CCs of every placed
Snippet (Spos or Sneg)

MaskCut Binary Image of a Channel containing the CCs of every placed
Nucleus (Npos or Nneg)

Nneg Ki-67 negative Nucleus
Npos Ki-67 positive Nucleus
P Precision
PLoc The randomly generated Probability of placing a Nucleus at a

certain Location (to be compared against MapNucP robability at this
location)

R Recall
RM Result Mask
RMArea Area of a CC in the RM
RMneg Result Mask of the negative Channel
RMpos Result Mask of the positive Channel
RndS Randomly chosen Snippet
Sneg Snippet containing one or several connected Nneg

Spos Snippet containing one or several connected Npos

SE Structuring Element
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7.2. Further Opportunities with the Suggested Image Synthesis Method

SIinit Synthetic Image in Initial state (before restaining)
SIrestained Synthetic Image in Initial state (after restaining)
SnipMaskConn Image of same size as Snippet Spos or Sneg, respectively, containing

the the corresponding region in the MaskConn

SnipMaskCut Image of same size as Snippet Spos or Sneg, respectively, containing
the corresponding region in the MaskCut

TM True Mask
TMArea Area of a CC in the TM
TMneg True Mask of the Negative Channel
TMpos True Mask of the Positive Channel
WS Watershed-Transform
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