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Abstract

Physical device modeling is one of the key technologies to continue semiconductor device
scaling. Effects due to the quantum nature of electrons, the band structure of solids, as
well as scattering and non-equilibrium transport dominate device performance. Dealing
with these effects in device design demands simulation tools that account for them with
sufficient accuracy, while being compatible with the Technology Computer Assisted
Design (TCAD) concept. The novel contributions of this work to the state-of-the-art are
divided into modeling approaches and computational methods.

The contributions in the field physical mobility modeling are the following: A new, six-
valley effective-mass model for holes is derived from k·p-theory allowing to qualitatively
capture effects of confinement and strain on the valence band structure. A new approach
to modeling carrier scattering by polar-optical phonons is devised, where the electrostatic
Green’s function is used to model the interaction between carriers and oscillating dipoles,
thereby taking channel geometry and material variations into account. A novel model
for surface and interface roughness scattering is developed; it represents a generalization
of the roughness scattering model due to Prange and Nee to non-planar channels of
arbitrary shape, allowing consistent modeling of roughness scattering in planar and
non-planar structures, such as nanowires and FinFETs. Two new approaches for mobility
modeling are discussed based on the solution of the linearized Boltzmann transport
equation to consistently treat band anisotropy and anisotropy of the scattering processes:
One approach computes the first-order response of the distribution function, while the
other substitutes the response by a coupled microscopic relaxation time tensor.

The contributions in the field of computational methods include the following innova-
tions: A finite-volume discretization method is devised which is element-based rather
than edge-based allowing for discretization of anisotropic effective mass and k·p Hamilto-
nians while preserving their physical properties. A new numerical method is developed
which performs an exhaustive search for eigenvalues within a given interval for large
sparse systems at negligible added cost; this method allows to maintain a predefined
error tolerance when calculating a channel’s subbands and its properties. A method for
discretizing the scattering operator of the linearized Boltzmann transport equation in
k-space is presented based on symbolic contour integration.

Finally, the developed methods are applied to calculate the mobilities and conductivities
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of a number of existing devices as well as device concepts that are potential candidates
for future technology nodes. NMOS and PMOS devices of the 22 nm node as published
in 2012 are investigated for channel mobility under variation of crystal orientation and
application of strain. It is found that varying the orientation of both the substrate and
the fin can improve channel mobility significantly.

Regarding future technology nodes, two device are chosen for investigation: a MISFET
with an InGaAs channel and a junction-less Si FET. The properties of the InGaAs
device are modeled in detail and excellent agreement with measured results is achieved,
highlighting the accuracy of the modeling framework presented in this work. The junction-
less device is benchmarked against an inversion-mode device. It is shown that while
surface roughness scattering is greatly suppressed in the junction-less device, the resulting
mobility improvement is not sufficient to offset the mobility degradation due to increased
impurity scattering.
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Kurzfassung

Physikalische Bauelemente-Modellierung ist eine der Schlüsseltechnologien für das Fort-
setzen der Skalierung von Halbleiter-Bauelementen. Effekte aufgrund der Quanten-Natur
von Elektronen, der Bandstruktur von Festkörpern, sowie Streuung und Nicht-Gleichge-
wichts-Transport dominieren die Bauelement-Eigenschaften. Mit diesen Effekten im
Bauelement-Design umzugehen verlangt Simulationswerkzeuge, die diese Effekte mit
ausreichender Genauigkeit berücksichtigen. Die Beiträge dieser Arbeit, die den Stand der
Technik erweitern, sind in Modellierungsansätze und rechnerische Methoden unterteilt.

Die Beiträge im Bereich der physikalischen Modellierung der Beweglichkeit sind folgende:
Ein neuartiges Sechs-Täler -Effektive-Masse-Modell für Löcher wird aus der k·p-Theorie
hergeleitet, welches die Einflüsse von Confinement und mechanischer Verspannung auf
die Valenzbandstruktur zu erfassen erlaubt. Ein neuer Zugang zur Modellierung von
Ladungsträger-Streuung durch polar-optische Phononen wird entwickelt, in welchem die
elektrostatische Green’sche Funktion verwendet wird, um die Wechselwirkung zwischen
Ladungsträgern und oszillierenden Dipolen zu modellieren, wodurch die Geometrie des
Kanals und die Variation von Materialeigenschaften berücksichtigt werden. Ein neues
Modell für Streuung durch Oberflächen- und Grenzflächen-Rauigkeit wird entwickelt; es
stellt die Verallgemeinerung des Modells für Oberflächen-Rauigkeit von Prange und Nee
auf nicht-planare Kanäle beliebiger Form dar, wodurch eine Konsistente Modellierung von
Streuung durch Rauigkeit in planaren und nicht-planaren Strukturen, wie Nanowires und
FinFETs, möglich wird. Zwei neue Ansätze für Modellierung von Beweglichkeit basierend
auf der linearisierten Boltzmann-Transport-Gleichung werden besprochen, mit dem Ziel
die Anisotropie von Bändern und die Anisotropie von Streuprozessen konsistent zu behan-
deln. Ein Ansatz berechnet die Antwort erster Ordnung der Verteilungsfunktion, während
im anderen die Antwort durch einen gekoppelten mikroskopischen Relaxationszeittensor
substituiert wird.

Die Beiträge im Bereich der rechnerischen Methoden umfassen folgende Innovationen:
Eine Finite-Volumen-Diskretisierungsmethode wird entwickelt, welche nicht kanten- son-
dern element-basiert ist, was die Diskretisierung von anisotropen Hamilton-Operatoren,
auf Basis anisotroper effektiver Massen und k·p-Theorie, unter Erhaltung deren physika-
lischer Eigenschaften ermöglicht. Eine neue numerische Methode wird entwickelt, welche
eine erschöpfende Suche nach Eigenwerten in einem Intervall für große, schwach besetzte
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Systeme bei vernachlässigbarem zusätzlichen Rechenaufwand durchführt; diese Methode
erlaubt es eine vordefinierte Fehlertoleranz einzuhalten, wenn die Subbänder eines Ka-
nals sowie deren Eigenschaften bestimmt werden. Eine Methode zur Diskretisierung des
Streuoperators der linearisierten Boltzmann-Transportgleichung im k-Raum basierend
auf symbolischer Konturintegration wird ebenso vorgestellt.

Schließlich werden die entwickelten Methoden angewendet, um die Beweglichkeiten und
Leitfähigkeiten von existierenden Bauelementen sowie von Bauelement-Konzepten, die po-
tenzielle Kandidaten für zukünftige Technologie-Knoten sind, zu berechnen. NMOS- und
PMOS-Transistoren des 22 nm-Technologie-Knotens, welche 2012 veröffentlicht wurden,
werden untersucht und deren Kanal-Beweglichkeit unter Variation der Kristallorientie-
rung und Anwendung von mechanischer Verspannung bestimmt. Es stellt sich heraus,
dass eine Änderung der Orientierungen sowohl des Subtrats als auch der Finne die
Kanal-Beweglichkeit deutlich verbessern können.

Bezüglich zukünftiger Technologie-Knoten werden zwei Bauelemente zur näheren
Untersuchung ausgewählt: ein MISFET mit einem InGaAs-Kanal sowie ein übergangsloser
(junction-less) Si FET. Die Eigenschaften des InGaAs-Bauelements werden im Detail
modelliert und eine exzellente Übereinstimmung mit Messergebnissen wird erreicht, was
die Genauigkeit der in dieser Arbeit vorgestellten Modelle unterstreicht. Der übergangslo-
se Transistor wird mit einem inversionsbasierten verglichen. Es wird gezeigt, dass während
Streuung durch Rauigkeit im übergangslosen Bauelement stark unterdrückt wird, die
daraus resultierende Verbesserung der Beweglichkeit nicht ausreicht, um deren gleichzeitige
Verschlechterung durch verstärkte Störstellen-Streuung zu kompensieren.
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CHAPTER 1 Introduction
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1.1 The “Evolution” of the Field-Effect Transistor

Since the invention of the field-effect transistor (FET), solid-state electronics are steadily
getting cheaper, faster, and more ubiquitous. There is no industry with a growth quite
like that observed in the semiconductor industry, making electronics devices cheaper and
at the same time more functional every year. This trend was observed by Gordon E.
Moore who formulated an economic law named after him: The law states that the number
of transistors per chip is likely to double roughly every two years [1]. Throughout the
second half of the 20th century, this increase was achieved by scaling : The mere reduction
of the device dimensions – from hundreds of micrometers to hundreds of nanometers –
allowed to increase the density of transistors bringing a reduction of fabrication cost. As
a welcome side-effect, scaling also improved transistor performance, making the devices
faster and less power-consuming.

At the beginning of the 21st century it became apparent that scaling alone would not
suffice to keep Moore’s Law on track. As the transistor channels became shorter the
control the transistor’s gate could exert over the channel slipped away, as illustrated
in Fig. 1.1. This implied that the ratio between on-current and off-current required
for practical circuits could not be maintained for channel lengths below 100 nm. What
happened since then appears as some sort of evolutionary process when viewed from the
outside, with a series of innovations introduced step-by-step every two technology nodes
as shown in Fig. 1.2.

The introduction of strained silicon marked the first innovation step which aimed
at the on-current. Strain increases the carrier mobility in silicon resulting in higher
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Gate Gate

Figure 1.1: “The Garden Hose Analogy:” As scaling makes the gate smaller, it gets less
effective in controlling the channel. The device becomes harder to turn off.

2002

1st Gen.

2004

2nd Gen.

SiGe
strained Si

2007
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2008

2nd Gen.

High-k
metal gate

2012

1st Gen.

2015

Tri-gate

Figure 1.2: The last ten years of CMOS evolution featured the introduction of strain
engineering in the MOSFET channel [2, 3], the usage of high-k dielectrics
and metal gates [4, 5], and eventually the advent of the tri-gate transistor [6].

on-current and, hence, in a higher on/off-current ratio. The next step was to replace the
SiO2-dielectric by a material with higher permittivity combined with a metal gate. This
innovation restored the gate’s capability of controlling the channel, thus allowing further
scaling, but only for two more technology nodes. With the possibilities of strain and
material engineering seemingly exhausted, the next step to go was to alter the geometry
of the transistor. Rather than having current flow in a sheet beneath the gate, it is
directed through a fin surrounded by the gate on three sides: the tri-gate FET or FinFET
was introduced.

Today, the FinFET is the state-of-the art in semiconductor device fabrication. The
future of the FET evolution is unclear, although on thing is certain: To continue the
scaling, device engineers will have to use every trick they have at their disposal. These are
not limited to but will likely include dopant engineering, altering the channel geometry,
applying different crystal orientations, strain engineering, and adding new, previously
unused materials to the process.

It is important to mention here, that the FinFET is far from being the only option for
the continuation of device scaling. Over the years a number of transistor concepts was
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Double gate UTB

p n+n+

Gate-all-around
(GAA) FET

Junction-Less FET

n+ n+n+

Figure 1.3: Over the years a number of alternative technologies have been proposed to
replace the planar MOSFET. The double-gate ultra-thin-body (DG UTB)
[7–11] and the Gate-all-around (GAA) [12] attempt to improve electrostatic
control of the gate by reducing the transistor body to a thin film or a nanowire,
respectively. The junction-less transistor [13] takes a radical step further: a
highly conductive silicon body is actively pinched off by the surrounding gates,
thus making it a normally-on device, as opposed to traditional normally-off
FETs.

proposed and implemented. Silicon-on-insulator (SOI) based technologies are considered
a potential alternative to the mainstream bulk technology. Technologies like SOI and
SON (silicon-on-nothing) focus on improving the electrostatic control by the gate by
thinning the silicon body, a principle also employed in the FinFET. Some of the promising
SOI technologies are shown in Fig. 1.3

1.2 Principles of Transistor Operation

Every transistor works based on the same basic principle - electron (or hole) transport
over an energy barrier. The height of the barrier controls the current that can pass
through the device and the barrier itself can be controlled either by voltage or current.
The idea for such a device is much older than microelectronics. Patents for a device
which one nowadays would call a transistor were granted in the 1930’s to Julius Edgar
Lilienfeld where a “Device for controlling electric current” is described [14, 15]. At that
time semiconductors were poorly understood. However, this understanding was necessary
to build a working transistor. Semiconductors have an energy gap or forbidden band
in their electronic structure, which is what the the energy barrier consists of in every
transistor.

Figure 1.4 shows the working principle of a transistor - in particular a field-effect
transistor (FET). Other transistor types exist but the main difference between them
is the way the barrier is controlled. For a metal-oxide-semiconductor FET (MOSFET)
it is controlled through a capacitor, for junction FET (JFET) or metal-semiconductor
FET (MESFET) through a reverse-biased (Schottky) diode, and for a bipolar transistor
through a forward-biased diode.
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Equilibrium Low-field High-field

Long-channel transistor

G

DS

~ω

~ω
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Elastic scattering
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ballistic
current

Figure 1.4: The working principle of a transistor: To travel from source (S) to drain
(D) the carriers must surmount a barrier, the height of which is controlled
electrostatically by the gate terminal (G). Only carriers with an energy above
the top of the barrier [16] can pass the barrier. In a long-channel transistor
carriers move through an extended low-field region before reaching the drain.
In the low-field region scattering is mostly elastic, only small amounts of
energy are lost to acoustic lattice vibrations. In the high field region before
the drain, the carriers are accelerated to high kinetic energies which are then
relaxed by emitting quantized lattice vibrations of energy ~ω into the drain.
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Controlling the current by voltage (or current) is the necessary basis for electronic
circuit elements such as amplifiers, current sources and current or voltage-controlled
switches. For digital applications it is crucial to have a high-quality switch. An ideal
switch would be infinitely fast, consume no power, and have zero resistance in the on-state.
The MOSFET emerged as the dominant device for digital applications. Apart from its
low fabrication cost, the MOSFET has the lowest gate leakage, allowing switches that
consume little power. The maximum current that passes over the barrier is diminished
by scattering. Scattering causes electrons and holes to dissipate both momentum and
energy and thus contributes to the electrical resistance in the on-state.

The amount of scattering carriers undergo in a device is characterized by a quantity
called mobility. Although in modern, nanometer-sized transistors lumping all transport-
related phenomena into a single quantity does not accurately reflect physics of transport,
the mobility is still an important figure of merit in device engineering.

1.3 Modeling and Simulation of Novel Devices

Modeling and simulation is instrumental in the development of semiconductor technology.
There are two main areas at which simulation is used in semiconductor technology, (i)
process simulation, which deals with the simulation of fabrication processes, such as
ion implantation, layer deposition, oxidation, thermal annealing, etc., and (ii) device
simulation which aims to predict the characteristics of a device, before it is manufactured.
Usually, process and device simulation are used in combination: A process is simulated
to obtain a device structure, which is then fed into the device simulator. Both areas
comprise what is known as technology computer-assisted design (TCAD).

For several decades, traditional device simulation was based on the drift-diffusion equa-
tions for modeling carrier transport. The crucial parameter therein is the aforementioned
carrier mobility. The entire physics of carrier transport is condensed in this one quantity
which is a function of temperature, doping concentration, the electric field, strain, and
geometry. In a top-down approach the mobility function is fitted to reproduce measured
device characteristics. One ends up with an analytical expression for mobility with an
ample number of parameters, which need to be adjusted to fit the measured results.

As devices get smaller, empirical mobility models lose validity. What happens, is that
one set of parameters, fitted to one device design will fail to reproduce the properties of
a slightly altered design. In other words: At small scales, empirical mobility models lose
their universality. Ultimately, this strongly diminishes the value purely empirical models
for ultra-scaled devices and novel architectures such as the FinFET.

In a bottom-up approach the mobility function is derived from the underlying physics of
carrier transport. This adds significantly to the complexity of the model, since additional
equations need to be solved (numerically) such as the Schrödinger equation and the
Boltzmann transport equation. However, the parameters of these equations are more
directly related to transport physics and the materials of which the device is made. These
are a handful of well-known, measurable material property constants and more universal
than empirical model parameters. Physically-grounded mobility models are still valid at
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Doping

Geometry
Crystal orientation

Stress/strain

Materials

Mobility

Figure 1.5: The goal of the work is to provide a computational framework capable of
computing the electronic structure and mobility of nano-scaled transistor
channels. The framework should take into account the effects of geometry,
material composition, crystal orientation, doping, and mechanical stress. All
these properties can be varied in the process of designing a semiconductor
device.
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the nano-scale and their parameters are portable between similar technologies.
The aim of this work is to develop a unified computational framework for the purpose

of evaluating mobility in a wide range of transistor channel types. Device geometry,
material composition, doping profile, crystal orientation, and stress distribution need to
be taken into account in order to achieve the desired unification shown in Fig. 1.5. A
central requirement is that the methods developed are TCAD-compatible, i.e. robust and
efficient enough to be used in device design and engineering.

1.4 Outline

This thesis is structured as follows: Chapter 2 deals with the physics of carrier transport
in nanoscale devices and lays out the models that are necessary for physical mobility
modeling, such as electronic structure, carrier density and electrostatics, scattering
processes, transport, and methods for calculating mobility itself. Chapter 3 is a general
overview of computational methods used to tackle the problems and equations from the
physics chapter. Chapter 4 discusses the particularities of implementing the models
from the physics chapter using the methods presented in the computational methods
chapter. Finally, the implemented models are put to use and some case studies are
presented along with results in Chapter 5.
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As stated in the introduction, the goal is to model mobility in general and low-field
mobility in particular taking into account the following physical properties of the transistor
channel: geometry, material composition, doping, crystal orientation, and mechanical
stress. Each of these can be viewed as a degree of freedom when thinking up a novel
device design. Therefore, it is desirable to have a model framework that is able to predict
the qualities of a transistor channel based on the input of these properties. Being a
widely used property in engineering, the channel low-field mobility serves as a metric to
rate different device realizations. Even though its particular value can only be observed
in long-channel devices, it serves as a figure of merit even for short-channel devices.

However, none of the above properties relates to transport or low-field mobility directly.
Instead the influence is mediated through electronic structure and scattering processes,
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Electrostatics

Mobility

Band structure

Scattering

V

ρ

vg(k), g(E)
ψn,k

Sn,n′(k,k
′)

Geometry,
Materials

Doping

Orientation,
Strain

Figure 2.1: The device parameters influence the channel mobility only indirectly via the
band structure and the carrier scattering. The interdependencies between the
physical models are shown: Electrostatics and electronic structure affect each
other via potential V and space charge density ρ, electronic structure affects
mobility directly through group velocity vg(k) and density of states g(E), and
indirectly through the transition rates Sn,n′(k,k

′) which themselves depend
on the electronic wave functions.

as illustrated in Fig. 2.1. For instance, crystal orientation or strain affect primarily
the electronic structure which determines quantities such as density of states or group
velocity. These derived quantities are those which affect transport and, eventually, the
mobility.

In order to obtain a reliable, predictive low-field mobility figure, each of the models
must deal with the information available to it in a versatile and accurate fashion. The
network of interdependencies between the models will serve as a guide through the
remainder of this chapter: Starting with the electronic structure in Section 2.1 and its
coupling with electrostatics in Section 2.2, we will continue to scattering processes in
Section 2.3 before combining both with semi-classical transport in Section 2.4, where
low-field mobility will be derived.

2.1 Electronic Structure

The electronic structure or band structure is the dispersion relation of electrons in a
crystal. Its significance comes from the fact that due to the periodic structure of a
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Figure 2.2: Left: the unit cell of a diamond and zinc-blende lattice; right: the correspond-
ing Brillouin zone in reciprocal space. The point of highest symmetry is Γ
in the center of the zone (k = 0), the edges ∆, Σ, and Λ correspond to the
crystal axes 〈100〉, 〈110〉, and 〈111〉, respectively.

crystal, the potential of the crystal affecting electrons is also periodic. Thus, rather than
having electrons scatter off the ionized atomic cores of the crystal, the periodic potential
alters the kinetic behavior of electrons. Electrons traverse the crystal in energy bands,
unperturbed. Scattering within a band occurs, if the crystal potential deviates from the
perfectly periodic form, e.g. by displacement of atoms due to lattice vibrations or by
crystal defects that break the periodicity.

Semiconductors are known to be materials the energy bands of which are interrupted
by a band gap, i.e. an energy range where no propagating states exist. The energy bands
below the gap are referred to as valence bands and the bands above as conduction bands,
where the boundaries between each of the bands and the bandgap are called the band
edges.

The electrical properties of a semiconductor are related to the band structure. More
specifically it was found, that most properties of semiconductors can be derived from
the effects occurring near the band edges [17]. Current, for instance, flows only in states
near the band edges because statistically the number of electrons available for transport
decreases roughly exponentially with energy above the conduction band edge. Similarly,
current in the valence band is due to moving electron vacancies or holes the number
of which also decreases exponentially for low energies. Consequently, for not too high
electric fields, current flow in semiconductors can be explained and analyzed by looking
at the band structure near the band edges.

Fig. 2.2 shows the crystal lattice of diamond or zinc-blende type along with its first
Brillouin zone (BZ), also known as Wigner-Seitz cell, which reflects the lattice symmetries
in Fourier space or reciprocal space. Since in quantum mechanics, position and momentum
are linked by the Fourier transform, an electronic state can be equivalently represented
in real space and reciprocal space.

The diamond/zinc-blende crystal is not only periodic, but also has certain symmetries.

10
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The lattice is said to be invariant with respect to a number of geometrical transformations.
One such transformation would be mirroring the crystal along the [100]-axis while rotating
it around the same axis by 90 degrees. Performing such a transformation will leave us with
the same lattice structure as before the transformation. The set of such transformations
the lattice is invariant to is called a point group, or a space group, if translations are also
allowed. The symmetry groups of diamond and zinc-blende are denoted as O7

h and T 2
d ,

respectively [18].
The crystal symmetry is reflected in reciprocal space as well. The Brillouin zone

is thus also invariant under a number of transformations, such as mirroring, rotation,
and translation. The consequence of this is that only a small section of the Brillouin
zone, called the irreducible wedge, contains the entire band structure information. The
irreducible wedge is highlighted red in Fig. 2.2. The band structure in the remaining
zone can be obtained by rotating or mirroring the irreducible wedge. The edges and
corners of the irreducible wedge are each denoted by specific letters: Γ, X, L, W, K, and
U for the points and ∆, Λ, and Σ for the edges. Due to symmetry, band extrema, i.e.
the aforementioned band edges, are always found along these edges, mostly in one of the
points.

2.1.1 The k·p Model

A number of models for the band structure of semiconductors exists. The three most
widely used models are, the (semi-empirical) tight-binding model (TB), the empirical
pseudopotential model (EPM), and the k·p model. The tight-binding model on the
one hand arrives at the band structure by assuming electrons to be quasi-bound by
the potentials of the atoms in the crystal. It uses atomic orbitals as basis-functions to
expand the coupling between the bound states at adjacent atomic sites. The empirical
pseudopotential method on the other hand assumes electrons to be quasi-free as in a
vacuum. It expands the potential of the ionized atoms and core electrons in terms of
plane-wave basis-functions. Ab-initio methods, such as the density functional theory
(DFT), can be used for band structure calculation, and would constitute a fourth class
of electronic structure models. However, DFT is a much broader theoretical framework
widely used in quantum chemistry.

The k·p model differs from EPM and TB in the sense that the basis-functions are
chosen based on a different kind of assumption. The assumption is that the Bloch-
functions are known at a certain point in k-space, commonly a point of high symmetry.
Let’s assume that the Schrödinger equation in the crystal consists of a kinetic energy
operator and a periodic crystal potential,

H |ψ〉 =

[
p2

2me
+ V

]
|ψ〉 = E |ψ〉 , (2.1)

where p signifies the momentum operator −i~∇ and me the electron rest mass. According
to the Bloch-theorem, the wave-function can be separated into a product of plane wave
and the Bloch-function,

|ψ〉 = eik·r |n,k〉 , (2.2)
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where n and k represent band index and wave vector, respectively. The Bloch-function
un,k(r) = 〈r|n,k〉 has the same periodicity as the crystal lattice. Inserting Eq. (2.2) into
Eq. (2.1), results in an effective Schrödinger equation for the Bloch-function,[

p2

2me
+ V +

~k·p
me

+
~2k2

2me

]
|n,k〉 = En,k |n,k〉 . (2.3)

The Bloch-function at k = 0 would then satisfy[
p2

2me
+ V

]
|n,0〉 = En,0 |n,0〉 . (2.4)

Since the Bloch-functions at k = 0 form a complete orthogonal basis set, the Bloch-
functions away from k = 0 can be expanded in terms of |n,0〉,

|n,k〉 =
∑
m

cn,k |n,0〉 . (2.5)

Inserting the expansion into Eq. (2.3) and multiplying it from left by 〈n,0|, produces an
eigenvalue problem of the coefficients cn,k,

En,kcn,k =

[
En,0 +

~2k2

2me

]
cn,k +

~
me

k ·
∑
m

〈n,0|p |m,0〉 cn,k. (2.6)

This system of equations represents an eigenvalue problem for the coefficients cn,k. which
are also called envelope functions. Taking all the energy bands up to vacuum level into
account would in theory give a very precise band structure description. However, a
high number of matrix elements 〈n,0|p |m,0〉 would need to be determined in that case.
Instead, the equation system in Eq. (2.6) is reduced to contain only a few bands, i.e. the
ones closest to a band edge. The remaining remote bands are treated as a perturbation.

To get an estimate on the influence of such remote bands, we can look a the case
of a single band. Here, only one band is retained in Eq. (2.6) and all other bands are
considered remote. It that case, perturbation theory would give

En,k = En,0 +
~2k2

2me
+

~
me

k · 〈n,0|p |n,0〉+
~2

m2
e

∑
m 6=n

|k · 〈n,0|p |m,0〉 |2

En,0 − Em,0
. (2.7)

The denominator En,0 −Em,0 causes the influence of the remote bands to diminish the
larger the energy spacing is between them and the bands of interest.

The Dresselhaus-Kip-Kittel Model for Holes

In diamond and zinc-blende crystals, the k·p Hamiltonian for the valence band is due to
Dresselhaus, Kip, and Kittel [19]. It forms a second order expansion of the band structure
at the zone center, i.e. the Γ-point in k-space. Semiconductors with diamond lattice,
such as Si and Ge, have two atoms per unit cell, each with four electrons in their outer
shells; thus each unit cell contributes eight valence electrons resulting in four two-fold
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spin-degenerate bands. The first s-type band is far below the valence band edge and
only included as perturbation. The remaining three bands are superposition of p-type
states and form the valence band edge at k = 0. They are called the heavy hole and light
hole and split-off band. When spin-orbit coupling is neglected, two heavy hole bands
and a light hole band, each two-fold spin-degenerate, meet at the Γ point forming a
six-fold degeneracy. Omitting the spin-degeneracy, the valence band can be described by
a thee-band effective Hamiltonian, written as a 3×3 matrix,

H3×3 =
~2

2me

Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

Nkxky Lk2
y +M(k2

x + k2
z) Nkykz

Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)


+

lεxx +m(εyy + εzz) nεxy nεxz
nεxy lεyy +m(εxx + εzz) nεyz
nεxz nεyz lεzz +m(εxx + εyy)

 . (2.8)

L, M , and N are the band curvature parameters and l, m, and n the deformation
potentials for the various strain components εξη. Other notations for the L, M , and N
parameters are common, such as the A, B, C parameters [19],

L = A+ 2B A = 1
3(L+ 2M)

M = A−B B = 1
3(L−M) (2.9)

N = −
√

3C2 + 9B2 C2 = 1
3 [N2 − (L−M)2],

or the Luttinger Parameters γ1, γ2, and γ3 [20],

L = −(γ1 + 4γ2) γ1 = −1
3(L+ 2M)

M = −(γ1 − 2γ2) γ2 = −1
6(L−M) (2.10)

N = −6γ3 γ3 = −1
6N.

The deformation potentials can be equivalently expressed in terms of strain parameters
av, b, and d [17],

l = −(av + 2b) av = −1
3(l + 2m)

m = −(av − b) b = −1
3(l −m) (2.11)

n = −
√

3d d = − 1√
3
n.

Spin-orbit coupling lifts the degeneracies of the valence bands. At the Γ-point it splits
the the six-fold degeneracy resulting in a four-fold degenerate band edge and a two-fold
degenerate split-off band. To describe spin-orbit coupling, the three-band Hamiltonian
need to be extended to a six-dimensional basis, using the 3×3 Hamiltonian for each spin
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state and adding a Hamiltonian describing the spin-orbit interaction,

H6×6 =

[
H3×3 03×3

03×3 H3×3

]
− Eso

3



0 i 0 0 0 −1
−i 0 0 0 0 i
0 0 0 1 −i 0
0 0 1 0 −i 0
0 0 i i 0 0
−i −i 0 0 0 0

 , (2.12)

where Eso is the energy difference between the valence band edge and the split-off band
at Γ [21].

Valence Band Parameters for Si, Ge, and SiGe

The Dresselhaus-Kip-Kittel (DKK) model can be used to model the valence band structure
of the most widely used semiconductors, such as Ge, Ge, and SiGe alloys, which have a
diamond crystal lattice. The description is also valid for semiconductors with zinc-blende
type lattices, such as GaAs. However, since these semiconductors have a direct band
gap the DKK model is extended to also include the conduction band valley at Γ. Such
models will be discussed in Section 2.1.1.

To use the DKK for modeling the valence band structure of a particular semiconductor,
actual figures are needed for the band parameters L, M , N , spin-orbit splitting Eso,
and strain parameters l, m, n. One way to determine them is through measurement:
cyclotron resonance measurements, as done by the authors of the DKK model, can
provide values for the band parameters L, M , and N . Alternatively, the values can be
obtained from theoretical calculations based on other models, such as non-local EPM
[22], or first principles calculations. Table 2.1 gives a list of parameters for the DKK
model for Si and Ge at room temperature.

To obtain the parameters for a SiGe alloy as functions of Ge content x, some kind of
interpolation needs to be applied. It has to reproduce the values of pure Si and Ge for
x = 0 and x = 1, respectively. A common way to interpolate alloy properties is using a
quadratic function of x. For instance,

a0(x) = a0(Si)(1− x) + a0(Ge)x+ βx(1− x) = 5.431�A + x0.2�A + x20.027�A (2.13)

gives the average lattice constant for SiGe, where β is called a bowing parameter [23]. For
β = 0 a linear interpolation is obtained. This works well if the values of both materials
are similar. For SiGe, however, the L and N parameters in Ge are several times larger
than their counterparts in Si and a linear or quadratic interpolation will not suffice.

A method for the interpolation of SiGe band parameters was proposed in [24]. The
method is based on the approach by Lawaetz [25], which relates the matrix elements used
to derive the band parameters to lattice properties, such as lattice constant or ionicity.
In [19] the parameters L, M , and N are expressed in terms of F , G, H1, and H2, which
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are the k2-perturbations of each remote band,

L = F + 2G

M = H1 +H2

N = F −G+H1 −H2.

(2.14)

The strongest perturbations are due to the conduction bands states directly above the
valence band edge,

F = −Ep

E0

H1 = −
Ep′

E0′
,

(2.15)

where Ep and Ep′ are the k·p matrix elements of the hole states and each of the two
conduction bands, respectively. As Fig. 2.3 shows, the ordering of the two conduction
bands is opposite for Si and Ge, and while E0′ has a similar value in both materials, E0

is lower in Ge by about 3 eV. Since F is inversely proportional to E0, F is much larger in
Ge than in Si and so are L and N . Experiments [26, 27] have shown that the dependence
of the band energies at the Γ point follows a linear rule, so E0 can be expressed as

E0(x) = E0(Si)(1− x) + E0(Ge)x. (2.16)

One problem, however, is that E0(Si) is notoriously difficult to measure [28], and the
values are only available at very low temperatures.

The matrix elements Ep and Ep′ , as well as those used in G and H2 are related to
lattice properties by the semi-empirical model of Lawaetz [25], which multiplies Ep, Ep′ ,
G, and H2 by a scaling factor,

δ(x) = [1 + α(D(x)− 1)]

(
a0(Si)

a0(x)

)2

, (2.17)

where D is an enhancement factor accounting for d-orbital core states in Ge. In Si its
value is 1.0 since there are no d-orbital states, in Ge the value was found to be 1.25
[29]. For SiGe the value is obtained by linear interpolation [24]. The computed relation
between valence band parameters and alloy composition is shown in Fig. 2.4.

Kane Model

In direct-band semiconductors, such as GaAs, GaSb, InP, InAs, or InSb, but also indirect
semiconductors with a low-lying Γ-valley, a model is required that couples conduction and
valence bands. This coupling is responsible for the non-parabolicity of the conduction
band in the Γ point. The four-band k·p model due to Kane [37] is structurally similar to
the DKK model. The effective Hamiltonian reads

H4×4 =
~2

2me

 A′k2 + E0 Bkykz + ikxP Bkxkz + ikyP Bkxky + ikzP
Bkykz − ikxP L′k2

x +M(k2
y + k2

z) N ′kxky N ′kxkz
Bkxkz − ikyP N ′kxky L′k2

y +M(k2
x + k2

z) N ′kykz
Bkxky − ikzP N ′kxkz N ′kykz L′k2

z +M(k2
x + k2

y)

. (2.18)
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Figure 2.3: Qualitative plot of the band structure in Si and Ge along the ∆ axis; the
states at the valence band edge are similar to p-type atomic orbitals. The
bands closest to the valence bands edge are the conduction bands at E0,
which correspond to an s-type orbital and E0′ which is again of p-type. Both
are considered remote bands in the k·p description of the valence band
and are thus treated as second-order perturbation. The magnitude of the
perturbation is inversely proportional to the transition energy. In Ge, E0 is
lowered significantly (by ∼ 3 eV) as compared to Si, which is responsible for
the non-linear dependence of the band parameters on the Ge mole fraction.
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Table 2.1: List of band parameters the valence band of the pure Si and Ge, as well as
SiGe alloys; listed are the band parameters A/B/C, the deformation potentials
av/b/d [17], the spin-orbit splitting parameter Eso, and the direct transition
energies at the Γ-point E0 and E0′ . For pure Si and Ge, these parameters
are taken from experiments and theoretical calculations referenced in the
respective table header. The alternative notations L/M/N and l/m/n as
well as the Luttinger parameters were computed using the formulas given in
Eqs. (2.9) to (2.11). The L/M/N parameters for SiGe alloys are interpolated
as functions of the Ge content x. The Γ-point energies Eso, E0, and E0′ have
an apparently linear dependence on x as demonstrated experimentally [26,
27]. The similarity of the deformation potential of Si and Ge indicate that a
linear interpolation is adequate here as well. The band parameters, however,
show large non-linear variations due to their inverse dependence on the direct
transitions E0 and E0′ .

Unit Si Ge SiGe

L 1 −5.53 −30.44 −Ep/E0 + 2G

M 1 −3.64 −4.73 −Ep′/E0′ +H2

N 1 −8.32 −33.93 −Ep/E0 −G− Ep′/E0′ −H2

A 1 −4.27 −13.3 1
3 [−Ep/E0 + 2G− 2Ep′/E0′ + 2H2]

B 1 −0.63 −8.57 1
3 [−Ep/E0 + 2G+ Ep′/E0′ −H2]

|C| 1 4.93 12.78 [1
3(2Ep′/E0′ + 3G)(2Ep/E0 −G+ 2H2)]

1
2

γ1 1 4.27 13.3 −1
3 [−Ep/E0 + 2G− 2Ep′/E0′ + 2H2]

γ2 1 0.315 4.285 −1
6 [−Ep/E0 + 2G+ Ep′/E0′ −H2]

γ3 1 1.387 5.655 −1
6 [−Ep/E0 −G− Ep′/E0′ −H2]

l eV 1.74 4.56 l(Si)(1− x) + l(Ge)x

m eV −4.56 −4.14 m(Si)(1− x) +m(Ge)x

n eV 8.31 9.18 n(Si)(1− x) + n(Ge)x

av eV 2.46 1.24 av(Si)(1− x) + av(Ge)x

b eV −2.1 −2.9 b(Si)(1− x) + b(Ge)x

d eV −4.8 −5.3 d(Si)(1− x) + d(Ge)x

Eso eV 0.044 0.29 Eso(Si)(1− x) + Eso(Ge)x [30]

E0 eV 4.1 0.8 E0(Si)(1− x) + E0(Ge)x

E0′ eV 3.4 3.14 E0′(Si)(a0(Si)/a0(x))1.92 [31]

References [22, 32–34] [33, 35, 36] [24, 25]
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Figure 2.4: SiGe band parameters as functions of the Ge content x. L and N exhibit
a clearly non-linear dependence on x due to their dependence on the per-
turbation parameter F , which is inversely proportional to the direct energy
transition E0.

Here, the lower right 3×3 block has the same structure as the DKK Hamiltonian, albeit
with modified parameters L′ and N ′. The E0 transition is now directly included in the
models while it was modeled as a remote band in the DKK model. Thus, the parameters
L and N , which depend on the perturbation parameter F , have different values than in
the DKK model. The coupling parameter P is commonly expressed as

P =
1

~

√
EP

2me
, (2.19)

where EP is called the Kane energy. Similar to the approach in the DKK model, the
Kane model can be extended to eight bands and a spin-orbit Hamiltonian can be added
to include spin-orbit coupling. Deformation potentials were omitted in Eq. (2.18), but
apply in the same way as for the DKK Hamiltonian plus a hydrostatic deformation
potential ac for the conduction band.

An extensive list of parameters for III-V compound semiconductors is found in [38],
including ternary and quaternary alloys.

k·p Hamiltonians for Electrons

In indirect semiconductors the conduction band minimum lies in some point different
from the Γ-point. In Si, this is along the ∆-edge, whereas in Ge it is at the L-point. As
in the case of holes, a k·p model can be formulated here as well. However, the expansion
point k = 0 is not placed a Γ but at or near the respective valley minima.

In Si, a two-band k·p-model due to Hensel, Hasegawa, and Nakayama [39] is used.
The two bands in question are ∆1 and ∆2′ and the point of expansion k = 0 is placed at
the X-point. Since the band structure is periodic in k-space, ∆2′ corresponds to ∆1 in
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Parameter Value Unit

ml 0.916 me

mt 0.196 me

M 0.235 me

k0 0.15 2π/a0

Ξu 9.2 eV
Ξu′ 7.0 eV

Table 2.2: Parameters for the two-band k·p model for Si.

the next Brillouin zone and vice versa. The bands are degenerate at the X-point. The
remaining bands are treated as second-order perturbation. The effective Hamiltonian of
the two-band k·p model reads [40]

H2×2 =

~2k2
x+~2k2

y

2mt
+ ~2(kz−k0)2

2ml
+ Ξuεzz −~2kxky

M + Ξu′εxy

−~2kxky
M + Ξu′εxy

~2k2
x+~2k2

y

2mt
+ ~2(kz+k0)2

2ml
+ Ξuεzz

 , (2.20)

where k0 = 0.15(2π/a0) denotes the k-space distance between the X-point and the
∆-valley minimum, ml and mt are longitudinal and transversal effective masses of the
electrons, and Ξu and Ξu′ are the uniaxial and shear deformation potentials. The two-band
k·p parameters for Si are given in Table 2.2.

In Ge, the conduction band minima lie at the L-points. The conduction band is non-
degenerate (apart from spin) and a single-band effective mass description can approximate
the conduction band structure near the L-point. A more accurate band description can
be obtained by including the heavy hole bands 2.2 eV below the conduction band edge;
reference [41] gives the expression

E =
~2k2
⊥

2me
+

~2k2
⊥

2

(
1

mt
− 1

me

)
Eg,L

Eg,L + E
+

~2k2
‖

2ml
, (2.21)

citing [42]. Here, ml and mt are again the longitudinal and transversal effective masses,
and Eg,L = 2.2 eV is the energy difference between conduction and valence band in the
L-point. An effective Hamiltonian matrix can be constructed, which the eigenvalue in
Eq. (2.21),

H =

 ~2k2
x+~2k2

y

2me
+ ~2k2

z
2ml

√
Eg,L

2M ~(kx + iky)√
Eg,L

2M ~(kx − iky) −Eg,L

 , (2.22)

where kz = k‖ and 1/M = 1/mt − 1/me. Recently, a ten-band model for L-valley
electrons in Ge was proposed in [43], which includes two heavy hole bands below and
two conduction bands above the conduction band edge, as well as spin-orbit interaction.

In SiGe, the conduction band minimum depends on the Ge content x. Since the Si
has ∆-valleys and Ge L-valleys, a cross-over between ∆ and L valleys occurs at the mole
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fraction x = 0.85. Depending on whether the Ge content of a particular alloy is below or
above 0.85, the two-band k·p model or the L-valley k·p model can be used. For alloys
with x close to 0.85 both ∆ and L need to be modeled.

2.1.2 The Effective Mass Model

The effective mass model can be viewed as the special case of a k·p model with a single
band. All the interactions with other bands are lumped together in one parameter, i.e.
the effective mass. The dispersion relation is parabolic and reads

E(k) = E0 +
~2

2
k ·m−1 · k, (2.23)

where m is the tensor-valued effective mass parameter. A single-band description is
accurate close to the band edge, i.e. for very small values of kinetic energy.

Electrons

The effective mass model is mostly used to describe bands that are non-degenerate at
the valley minimum. This is the case for the conduction bands of the most important
semiconductors, such as the ∆-valleys in Si, the L-valleys in Ge, or the Γ-valley in GaAs.

Due to symmetry, the effective mass can be described by one or two effective mass
parameters. For the Γ-valley, which is isotropic, the effective mass tensor becomes a
scalar m∗, such that

E(k) = Ec +
~2k2

2m∗
. (2.24)

For the X/∆ and L-valleys two parameters are sufficient, i.e. the longitudinal and
transversal effective masses,

E(k) = Ec +
~2k2

l

2ml
+

~2k2
t

2mt
, (2.25)

where “l” and “t” denote the longitudinal and transversal direction, respectively. In the
case of X or ∆-valleys, the corresponding basis vectors for the first out of six valleys are

el =

1
0
0

 , e
(1)
t =

0
1
0

 , e
(2)
t =

0
0
1

 . (2.26)

The basis vectors of the other two valleys are obtained by permuting the vector elements.
In the case of L-valleys, the basis vectors read

el =
1√
3

1
1
1

 , e
(1)
t =

1√
2

−1
1
0

 , e
(2)
t =

1√
6

 1
1
−2

 . (2.27)

The basis of the other three valleys can be obtained by changing the sign of one row and
permuting the elements (x→ y, y → z, z → x).
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Holes

The valence band structure of the technologically most important semiconductors has
a three-fold degeneracy at the highest-symmetry point Γ (if SO-coupling is neglected).
The curvature of the dispersion relation at the Γ-point is ill-defined: Different curvatures
are obtained when looking in the equivalent 〈100〉, 〈110〉, and 〈111〉 directions. These
differences cannot be represented by a single effective mass tensor. This makes an
approximation of the valence band structure by parabolic effective mass Hamiltonians
less straightforward than it was the case for electrons. The complications involving
the valence band become clear when looking at the energy contour plot of the valence
dispersion relation shown in Fig. 2.5.

It is apparent that providing the valence dispersion relation along the Cartesian kx,
ky, and kz axes is insufficient to describe the dispersion relation as a whole. In fact the
density of states is dominated by protrusions of the contour or “fingers” pointing at each
of the equivalent 〈110〉 directions.

This raises the question whether the contribution of these fingers can be modeled in
an effective way. In fact, two opposing fingers, e.g. [110] and [1̄1̄0], can be approximated
by an ellipsoid as shown by the overlay in Fig. 2.5. All the twelve fingers can thus be
approximated as six intersecting ellipsoids. Each ellipsoid can be treated as as valley,
with its own effective mass Hamiltonian. The effective mass of each of the six valleys
is described by a tensor, with three masses, ml, mt, and mz, where for a [110]-pointing
ellipsoid, l corresponds to direction [110], t to [11̄0], and z to [001].

Each ellipsoid corresponds to one of the following six envelope-function states in the
three-band k·p model [44],

ψ1 =
1√
2

∣∣∣∣∣
1
1
0

〉
, ψ2 =

1√
2

∣∣∣∣∣
1
−1
0

〉
, ψ3 =

1√
2

∣∣∣∣∣
1
0
1

〉
,

ψ4 =
1√
2

∣∣∣∣∣
1
0
−1

〉
, ψ5 =

1√
2

∣∣∣∣∣
0
1
1

〉
, ψ6 =

1√
2

∣∣∣∣∣
0
1
−1

〉
.

(2.28)

Inserting the states into the Hamiltonian from Eq. (2.8), one obtains effective mass
parameters for each of the six valleys represented by the ellipsoids [44],

ml = − 2

L+M −N
, mt = − 2

L+M +N
, mz = − 1

M
, (2.29)

as well as the deformation potentials

Dl =
l +m− n

2
, Dt =

l +m+ n

2
, Dz = m, (2.30)

The six-valley-model neglects the couplings between the six ellipsoids that are present in
the three-band k·p Hamiltonian, which the model has been derived from. The couplings
are visible as anti-crossings in Fig. 2.5 that connect the six ellipsoids to a single warped
energy surface.
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kx

ky

kz

Anti-crossing

Figure 2.5: An energy-iso-surface of the valence dispersion relation in Si computed from a
three-band k·p model; due to the degeneracy at the Γ-point, the valence band
structure in diamond and zinc-blende crystals has a rather complex shape
even close the valence band. The iso-surface exhibits a warped structure
with “fingers” pointing in the 〈110〉-directions. These twelve fingers can be
approximated by six ellipsoids, three of which have been overlaid in this figure.
The ellipsoids closely approximate the energy surface everywhere except at the
locations where two ellipsoids intersect; here, the coupling between the k·p
bands causes an anti-crossing which cannot be represented by the ellipsoids.
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Figure 2.6: Capacitance-voltage curves for p-type MOS-capacitors with different surface
orientations: Results from the six-valley-model (lines) and the three-band
k·p model (symbols) are compared. The six-valley-model results agree very
well with those from three-band k·p and both have the same orientation-
dependence.

Each of the six decoupled valleys has a parabolic dispersion relation of its own and is
independent of the other five. Neglecting the couplings makes the six-valley-model less
accurate than the three-band or even six-band k·p models. The model does however
capture the effects of confinement, orientation, and strain on the hole concentration quite
well (see Fig. 2.6) while providing analytical dispersion relations for the valence band
that can be handled much more efficiently in simulations.

The six-valley-model can also be used as basis for mobility calculation (c.f. Section 2.4.2).
Figure 2.7 shows good agreement between results from the six-valley-model and the
three-band k·p-model. The accuracy of the six-valley-model however depends on that
of the three-band k·p model, i.e. both models are limited to materials with small spin-
orbit-coupling energies, such as Si.

2.1.3 Electronic Structure of Confined Systems

Charge carriers may be spatially confined. Confinement can be either geometric, e.g.
by putting a semiconductor between insulators, electrostatic, where the electrostatic
potential forms one or more barriers holding carriers in place, or both. Confinement can
be partial, which means that carriers are confined in one or two dimensions, while they
are free to move in the remaining two or one dimension, respectively. Systems of carriers
confined in all three spatial directions are called quantum dots.

Partially confined systems have an altered electronic structure, a so-called subband
structure, which is the energy dispersion relation along the axes of free carrier movement.
To obtain the subband structure a bulk-Hamiltonian, such as the k·p and effective mass
Hamiltonians defined in the previous sections, is converted into a k-dependent partial
differential operator, of which the eigenvalues form the subband structure.
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Figure 2.7: Stress-dependent hole mobility of a 5 nm thin Si channel with a (001)-surface;
stress is applied in transport direction ([110]) and perpendicular to it ([11̄0]).
Symbols were obtained from a k·p-Hamiltonian, solid lines from the six-
valley-model with parameters fitted to the k·p-result, and dashed lines with
analytical six-valley parameters.

The conversion to a partial differential operator is done in two steps [45]:

Rotation: As the bulk-Hamiltonian is defined in the crystal coordinate system it needs
to be rotated in order to represent it in the device coordinate system, where the
coordinate axes coincide with the axes of free carrier movement.

Substitution: The momentum operator in k-space, ~kξ, is replaced by its real-space rep-
resentation −i~∂ξ, where ξ denotes a coordinate pointing in confinement direction,
which is perpendicular to the axes of free carrier movement. Consequently, a term
of the kinetic energy operator, ~2kξkη/2mξη is converted into −~2∂ξ∂η/2mξη.

An eigenvalue problem is formulated,

Hkψk = Ekψk, (2.31)

where the envelope wave function ψ is the solution variable. Geometric confinement is
imposed by homogeneous Dirichlet boundary conditions. The nth eigenvalue En,k and
eigenvector ψn,k correspond to the energy value of subband n at k and the corresponding
envelope wave function, respectively.

For the general case of k·p-Hamiltonians, the En,k values computed at different k
define a non-trivial subband dispersion relation. For effective mass Hamiltonians, the
subband dispersion relation is parabolic and can be expressed analytically. Stern and
Howard derived the parabolic subband dispersion relation of electrons in the X and L
valleys confined to a thin film with {100}, {110}, and {111}-oriented surfaces [46]. Here,
a general procedure is given to obtain the subband dispersion relation, i.e. subband
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effective mass tensor, for arbitrary orientations and arbitrary dimensionality, i.e. both
films and wires. The starting point is the effective-mass Schrödinger equation,

Hψ = − ~2

2me
∇ ·w ·∇ψ + V (r)ψ = − ~2

2me
∂iwij∂j = Eψ + V (r)ψ. (2.32)

The inverse effective mass tensor w is separated into blocks corresponding to confined
(⊥) and unconfined (‖) bases,

w =

(
w⊥ wc

w†c w‖

)
. (2.33)

The potential V (r) is assumed to be invariant (or sufficiently slow-varying) in the
transport direction, leaving a potential that only depends on the confined coordinates,
V (r) = V (r⊥). Using ∇‖ 7→ ik‖, Eq. (2.32) is rewritten as

− ~2

2me

[
∇⊥ ·w⊥ ·∇⊥ + 2ik‖ ·wc ·∇⊥ − k‖ ·w‖ · k‖

]
φ+ V (r⊥)φ = Eφ, (2.34)

where φ is the component of the separated wave function ψ that lies in the subspace
of the confined coordinates. Defining a new unknown function F as φ = Feik⊥·r⊥ and
choosing k⊥ = −w−1

⊥ ·wc ·k‖, all first-order terms vanish and Eq. (2.34) can be simplified
to

− ~2

2me

[
∇⊥ ·w⊥ ·∇⊥ − k‖ · (w‖ −wc ·w−1

⊥ ·wc) · k‖
]
F + V (r⊥)F = EF. (2.35)

Thus, the eigenvalue equation for F reads

− ~2

2me

[
∇⊥ ·w⊥ ·∇⊥

]
F + V (r⊥)F = EF. (2.36)

while the dispersion relation for the subbands reads

E(k‖) = En +
~2

2me
k‖ · (w‖ −wc ·w−1

⊥ ·wc) · k‖, (2.37)

where En is the eigenenergy from Eq. (2.36) corresponding to the nth subband. Equa-
tion (2.37) is equivalent to

E(k‖) = En +
~2kikj

2memij
, (2.38)

with mij being a component of the the mass tensor, i.e. w’s inverse. This means that
the confinement mass is obtained by rotating and projecting the inverse mass tensor,
while the dispersion mass is obtained by rotating and projecting the mass tensor. This is
consistent with the special-case formulas given in [46].
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2.2 Carrier Density and Electrostatics

The carrier concentration is directly connected to the electronic structure. Every electronic
state (including conduction band and valence band states) contributes to the carrier
concentration according to the state density and its occupance. Each state, confined
or not, is identified by a subband index n and/or a wave-vector k, as indicated in the
previous section. For partially confined systems, k is restricted to the subspace spanned
by the axes of free movement. For fully confined systems (quantum dots), this subspace
is a null-space and the subband index becomes the state index.

In the semi-classical picture, carriers are viewed as particles of a carrier gas for
most of the time, their wave-like nature only being appreciated when calculating the
transition probabilities or rates of a carrier scattering from one state to another. Quantum
confinement is another wave-like property of carriers and is dealt with in the semi-classical
framework by reducing the dimensionality of the carrier gas. The dimension of the space
spanned by the axes of free movement defines the dimensionality of the carrier gas:
Unconfined carriers can move in three dimension, hence they constitute a 3D carrier
gas (3D electron gas/3DEG); carriers confined to a thin film or surface constitute a 2D
carrier gas (2D electron gas/2DEG), and similarly, carriers confined to a thin wire form
a 1D carrier gas (1DEG); fully confined carriers inside a quantum dot can be seen as a
0D carrier gas.

For the general case of a partially confined system the wave function of a state is
expressed as a product of a standing wave and a plane wave,

Ψn,k(r) = ψn,k(r)L−
d
2 eik·r, (2.39)

where d is the dimension of the carrier gas. The factor L−
d
2 normalizes the plane wave

component with respect to a cube/square/line segment of size L. The probability density
of the state is

ρn,k(r) = L−d|ψn,k(r)|2. (2.40)

The carrier concentration is obtained by summing the density of all states weighted by
their semi-classical distribution function fn(k),

n(r) =
∑
n,k

g

Ld
ρn,k(r)fn(k) ≈ g

(2π)d

∑
n

∫
Rd

ρn,k(r)fn(k)ddk, (2.41)

where g denotes the degeneracy of the state, due to spin and valley multiplicity.
In equilibrium, the distribution function is a Fermi-Dirac distribution, and depends on

energy rather than the state index (n,k),

f0(E) =
1

1 + e
E−EF
kBT

. (2.42)

The equilibrium distribution is parametrized with respect to temperature T and Fermi-
level EF. For a generic (sub-)band structure, the equilibrium carrier concentration reads
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Figure 2.8: Qualitative picture of the density of states (left), equilibrium distribution
(center), and spectral carrier density (right) for different carrier gas dimen-
sionalities assuming a parabolic energy dispersion

n(r) =
g

(2π)d

∑
n

∫
Rd

ρn,k(r)f0(En(k))ddk. (2.43)

For a parabolic subband structure, i.e. for constant effective mass, the probability
density ρn,k(r) is independent of the k-vector and the k-space integral in Eq. (2.43) can
be reduced to an energy-integral using the density of states (see Fig. 2.8),

n(r) =
∑
n

∞∫
0

ρn,k(r)g(E)f0(E)dE, (2.44)

The expression can be further simplified into

n(r) =
∑
v

∑
n

ρv,n(r)Nd
C,v,nSFdv,n, (2.45)

where the indices v and n denote valley and subband index. Nd
C,v,n and SFdv,n are the

effective density of states and the supply function, respectively; the expressions for these
terms depend on the carrier gas dimensionality d and are summarized in Table 2.3.

Each electron and hole carries one negative or positive elementary charge, respectively.
As such, they contribute to an overall space charge distribution, which is also comprised
of ionized dopant atoms in the crystal lattice. The total space charge density reads

% = q0(ND −NA − n+ p), (2.46)

where n and p denote the electron and hole concentrations, while ND and NA represent
the concentrations of ionized donors and acceptors. Not all dopants need to be ionized,
however, at room temperature and under moderate doping concentration and bias field,
it is safe to assume a complete ionization of the dopants.
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Table 2.3: The supply function SF, the effective density of states NC and the density of
states mass mdos are summarized for carrier gases of dimension d. Fi denotes
the Fermi-Dirac integral of order i. m‖ refers to the subband dispersion mass

from Eq. (2.37)

d SFd Nd
C md

dos

0D
1

1 + exp
(
Es−EF
kBT

) g 1

1D F− 1
2

(
−Es−EF

kBT

)
g

(
m1D

doskBT

2π~2

) 1
2

m‖

2D ln

(
1 + e

EF−Es
kBT

)
g
m2D

doskBT

2π~2

√
det(m˜ ‖)

3D F 1
2

(
−Ec−EF

kBT

)
g

(
m3D

doskBT

2π~2

) 3
2

3

√
det(m˜ )

The charge density in Eq. (2.46) affects the electrostatic potential via the Poisson
equation,

∇ · ε∇ϕ = −%. (2.47)

The electrostatic potential ϕ locally shifts the state energies in the band structure. In
other words the electrostatic potential enters the Schrödinger equation as a diagonal
term V ,

H0 |Ψ〉 − q0ϕ |Ψ〉 = E |Ψ〉 , (2.48)

where H can be any kind of effective mass or k·p (or other type of) Hamiltonian. This
closes the circle between electronic structure, concentration, and electrostatics. To solve
the overall problem a self-consistent solution needs to be found, that satisfies all three
equations simultaneously.

2.3 Scattering Processes

A predictive semi-classical device modeling and simulation framework needs to include all
relevant carrier scattering processes occurring in technologically important semiconductors:
strained Si, Ge, SiGe, and group III/V compound semiconductors. From a physical point
of view, scattering processes can be divided into three major categories: carrier-defect
scattering, carrier-carrier scattering, and carrier-phonon scattering. This classification is
shown in Fig. 2.9. From a modeling point of view, however, it makes more sense to divide
the processes into two categories: Coulomb-like interactions and random-potential-like
interactions, as will be done in this section (shown in Fig. 2.10).

The starting point for modeling scattering processes within the semi-classical framework
is Fermi’s golden rule, which defines the transition rate from state n,k to state n′,k′ as

28



2 Physics of Transport Modeling

Scattering

Defect

Lattice
defects

Impurity

Roughness

Alloy
disorder

Carrier Lattice

Polar

Acoustic

Optical

Non-polar

Acoustic

Optical

Inter-
valley

Figure 2.9: Taxonomy of scattering processes from a physical point of view. The high-
lighted processes dominate transport in semiconductor channels at room
temperature.
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Figure 2.10: Taxonomy of scattering processes from a modeling point of view. Coulomb-
like processes are due to a charge fluctuations which disturb an electronic
state via electrostatic interaction. Random-potential processes are due to
variations of the electronic structure which can be either caused by defects
and disorder, or by deformations of the crystal lattice through phonons.
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[47]

Sn,n′(k,k
′) =

2π

~
〈|Hn,n′;k,k′ |2〉δ(E(k)− E(k′)± ~ω), (2.49)

One of the assumptions in deriving Fermi’s golden rule, is that a system is perturbed
by time-dependent potential V (r, t), where the time dependence is represented by a
harmonic oscillation. Thus the time-dependent potential is written as product of a static
part and a harmonic oscillation,

V (r, t) = V (r)eiωt, (2.50)

where a purely static perturbation can be represented by setting ω = 0. The effect of
the harmonic oscillation on energy conservation is taken into account by the δ(E(k)−
E(k′)± ~ω) term in Eq. (2.49), whereas the static part of the perturbation is represented
as the matrix element,

Hn,n′;k,k′ =

∫
R3

Ψ∗n,k(r)Ψn′,k′(r)V (r)d3r, (2.51)

where V (r) is the static part of the perturbing potential. The square matrix element is
central to the modeling of the various scattering processes as it contains all the physical
properties of the scattering interaction. It must be noted that V (r) is a random function
of position r and not square-integrable in many cases, making the evaluation of the
integral in Eq. (2.51) difficult. These problems can be avoided by looking at the ensemble
average of the square matrix element,

〈|Hn,n′;k,k′ |2〉 =

〈∣∣∣∣∣∣
∫
R3

Ψ∗n,k(r)Ψn′,k′(r)V (r)d3r

∣∣∣∣∣∣
2〉

=

∫∫
R3×3

Ψn,k(r)Ψ∗n′,k′(r)Ψ∗n,k(r′)Ψn′,k′(r
′)〈V ∗(r)V (r′)〉d3r d3r′.

(2.52)

The expression 〈V ∗(r)V (r′)〉 =: c(r− r′) is the autocorrelation function of the perturbing
potential, which is not random but rather well defined and integrable.

If the random potential V (r) is spatially uncorrelated, the autocorrelation function
becomes 〈V ∗(r)V (r′)〉 = |V0|2L3δ(r− r′). As a consequence, the square matrix element
for an uncorrelated random potential simplifies to

〈|Hn,n′;k,k′ |2〉 = |V0|2L3

∫
R3

|Ψn,k(r)Ψn′,k′(r)|2d3r. (2.53)

For plane wave states, L−
3
2 eik·r can be inserted as ψn,k, giving a square matrix element,

〈|Hn,n′;k,k′ |2〉 = |V0|2, (2.54)
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which is constant, i.e. independent from k − k′. Such scattering processes are called
isotropic because the scattering rate,

Sn,n′(k,k
′) =

2π

~
|V0|2δ(E − E′ ± ~ω), (2.55)

is uniform for all final wave vectors k′ on the energy surface E(k′) = E(k)± ~ω.
For partially confined systems the electron states Ψn,k are separated into a bound state

in the confinement cross-section and a plane wave along the axes of free movement,

Ψn,k(r) = ψn,k(r⊥)L−
d
2 eik·r‖ . (2.56)

Using this separation approach, Eq. (2.53) can be rewritten as

〈|Hn,n′;k,k′ |2〉 = |V0|2L3

∫
R3−d

|ψn,k(r⊥)ψn′,k′(r⊥)|2d3−dr L−2d

L∫
0

|ei(k+k′)·r‖ |2︸ ︷︷ ︸
=1

ddr

= |V0|2L3−d
∫

R3−d

|ψn,k(r⊥)ψn′,k′(r⊥)|2d3−dr, (2.57)

for a d-dimensional carrier gas. The integral is called the form factor.
In the following sections 〈|Hn,n′;k,k′ |2〉 shall first be derived for random-potential

processes and then for Coulomb-like processes.

2.3.1 Non-Polar Lattice Scattering

Non-polar lattice scattering is divided into two types of processes: (i) near-elastic
scattering by acoustic phonons (acoustic deformation potential, ADP) and (ii) inelastic
scattering by optical phonons (optical deformation potential, ODP, and inter-valley
scattering, IVS). Figure 2.11 shows the different scattering processes in the context of the
phonon dispersion relation. As the different names suggest, non-polar lattice scattering
is due to a deformation-potential-type interaction. Lattice vibrations cause a random
displacement of atoms in the lattice which locally modifies the electronic structure. These
local band structure changes in turn cause a perturbing potential for the electrons.

Scattering by Optical Phonons

The deformation potential due to optical phonons is proportional to the atomic displace-
ment u(r),

V (r) = Doptu(r, t). (2.58)

Assuming that the displacement direction is uniformly distributed, the autocorrelation
function of the perturbing potential can be written as

c(r− r′) = D2
opt〈u∗(r)u(r′)〉. (2.59)
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Figure 2.11: Qualitative picture of the phonon dispersion relation in most semiconductors;
acoustic and optical branches are marked; also shown are those parts of the
phonon dispersion responsible for the different phonon-related scattering
processes.

Applying the Wiener-Khinchin theorem, the displacement’s autocorrelation function can
be represented as the inverse Fourier transform of its power spectrum,

〈u∗(r)u(r′)〉 =
∑
q

|Ũ(q)|2eiq·(r−r′) ≈
(
L

2π

)3 ∫
R3

|Ũ(q)|2eiq·(r−r′)d3q, (2.60)

with the spectrum of the potential remaining to be determined.
Optical phonons can be viewed as an ensemble of harmonic oscillators - one per unit

cell of the crystal [48]. Classically, the oscillator’s energy is equal to the maximum kinetic
energy,

max{Ekin} = 2M̄ω2|Ũ(q)|2, (2.61)

where ω is the oscillator frequency and M̄ is the reduced oscillator mass [48]. Quantum-
mechanically, the oscillator energy depends on the number of energy quanta stored in
the oscillator,

E = ~ω
(
N +

1

2

)
. (2.62)

Equating the two energies, one obtains the squared displacement amplitude,

|Ũ(q)|2 =
~

2ρ̄mL3ω

(
N +

1

2

)
, (2.63)

which is q-independent. It can now be used to express the autocorrelation function of
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the perturbing potential,

c(r− r′) =
~D2

opt

2ρ̄mL3ω

(
N +

1

2
∓ 1

2

)(
L

2π

)3 ∫
R3

eiq·(r−r′)d3q

=
~D2

opt

2ρ̄mω

(
N +

1

2
∓ 1

2

)
δ(r− r′),

(2.64)

where the sign ∓ distinguishes between phonon absorption and emission, respectively.
We can identify D2

opt|Ũ(q)|2 as |V0|2 and insert into Eq. (2.53); the square matrix element
reads

〈|Hn,n′;k,k′ |2〉 =
~D2

opt

2ρ̄mω

(
N +

1

2
∓ 1

2

)∫
R3

|Ψn,k(r)Ψn′,k′(r)|2d3r. (2.65)

For a d-dimensional carrier gas in a partially confined system, the squared matrix element
can be written as

〈|Hn,n′;k,k′ |2〉 =
~D2

opt

2ρ̄mLdω

(
N +

1

2
∓ 1

2

) ∫
R3−d

|ψn,k(r)ψn′,k′(r)|2d3−dr, (2.66)

with the form factor integral known from Eq. (2.57).

Intra-valley and Inter-valley Scattering

The expression given in Eq. (2.66) can be used to model two kinds of scattering processes,
intra-valley scattering and inter-valley scattering. In intra-valley scattering - also called
optical deformation potential (ODP) scattering - the final states of the scattered carrier
are restricted to the same valley as that of the initial state. ODP scattering occurs only
for Γ-valley holes and L-valley electrons. This restriction is due to selection rules related
to the symmetry of the diamond and zincblende crystals.

Contrary to ODP scattering, inter-valley scattering (IVS) can only occur between two
different valleys. A slightly modified version of Eq. (2.66) can be used for modeling IVS
scattering from valley v to valley v′,

〈|Hv,v′;n,n′;k,k′ |2〉 =
~D2

iv

2ρ̄mLdω

(
N +

1

2
∓ 1

2

) ∫
R3−d

|ψv,n,k(r)ψv′,n′,k′(r)|2d3−dr. (2.67)

Scattering by Acoustic Phonons

The main difference between acoustic and optical phonon scattering is that the acoustic
perturbation potential is related to the local strain, i.e. the derivative of displacement,
rather than the displacement itself,

Uac(r, t) = Dacε(r, t) = Dac
∂u(r, t)

∂x
(2.68)
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Figure 2.12: Perturbing potential due to acoustic lattice vibrations; an elastic causes local
changes of mass density which translate into variations of the conduction
and valence band edges. The displacement and the resulting potentials are
phase-shifted by π/2 w.r.t. each other.

This is illustrated in Fig. 2.12. The autocorrelation function of the perturbing potential
reads

c(r− r′) = D2
ac

〈
∂u∗(r)

∂x

∂u(r′)

∂x

〉
. (2.69)

The autocorrelation of the strains can be represented in Fourier-space using the Wiener-
Khinchin theorem,〈

∂u∗(r)

∂x

∂u(r′)

∂x

〉
=
∑
q

q2|Ũ(q)|2eiq·(r−r′) ≈
(
L

2π

)3 ∫
R3

q2|Ũ(q)|2eiq·(r−r′)d3q, (2.70)

The spectral term q2|Ũ(q)|2 can be rewritten using the displacement amplitude from
Eq. (2.63),

q2|Ũ(q)|2 =
~q2

2ρmL3ω

(
N +

1

2
∓ 1

2

)
. (2.71)

To eliminate the q-dependence of the term, two approximations are introduced: (i) the
phonon dispersion is assumed to be linear, ω = vsq, and (ii) the phonon energy is assumed
to be small, ~ω � kBT , so that the phonon number can be approximated as

N =
1

1− e
~ω
kBT

≈ kBT

~ω
=
kBT

~vsq
� 1 ⇒ N +

1

2
∓ 1

2
≈ N (2.72)

The two simplifications result in a q-independent term for the strain spectrum,

q2|Ũ(q)|2 =
kBT

2ρmL3v2
s

. (2.73)
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Finally, the square matrix element reads

〈|Hn,n′;k,k′ |2〉 =
D2

ackBT

ρmv2
s

∫
R3

|Ψn,k(r)Ψn′,k′(r)|2d3r, (2.74)

where an additional factor 2 was introduced in the formula to account for both absorption
and emission of acoustic phonons. The square matrix element for partially confined,
d-dimensional carrier gases can be written as

〈|Hn,n′;k,k′ |2〉 =
D2

ackBT

ρmv2
sL

d

∫
R3−d

|ψn,k(r)ψn′,k′(r)|2d3−dr. (2.75)

To simplify the treatment of ADP scattering in transport calculations, the phonon
energy is ignored in Fermi’s golden rule (~ω = 0 in Eq. (2.49)). In total, three approxi-
mations have been introduced in the model of ADP scattering:

1. A linear dispersion relation for acoustic phonons is assumed, ω = vsq.

2. A large number of acoustic phonons is assumed and approximated as in Eq. (2.72).

3. The exchanged energy in Fermi’s golden rule is neglected.

These approximations are valid for room temperature. For very cold systems, with
temperatures on the order of a few tens of Kelvin or below, the assumptions do not hold.
Consequently, the q-dependence in Eq. (2.71) cannot be eliminated, and ADP scattering
has to be regarded as anisotropic (and inelastic) process at very low temperatures.

2.3.2 Coulomb Scattering

Ionized impurity scattering (IIS) is of Coulomb type: The perturbing potential is due to
the system’s electrostatic response to a random charge distribution. The matrix element
for an electrostatic potential ϕ is

Hn,n′;k,k′ = −q0

∫
Ψ∗n,k(r)Ψn′,k′(r)ϕ(r)dV, (2.76)

where the electrostatic potential is determined by the Poisson equation

∇ · ε∇ϕ+ % = 0. (2.77)

For a random charge density %, the potential ϕ is also a random function. Hence,
Eq. (2.76) cannot be evaluated directly.
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G(r, r′) ϕ(r′)%(r)

∫
dV

G(r, r′) ψ∗n,k(r′)ψn′,k′(r
′)Un,n′;k,k′(r)

∫
dV ′

Figure 2.13: The electrostatic problem viewed as a filter; the electrostatic Green’s function
can be applied to a charge density to obtain the potential. Conversely, the
filter can be applied in reverse to the product of two wave functions to obtain
a sensitivity function that maps the influence of a charge density onto the
interaction’s matrix element.

The Electrostatic Green’s Function

The Poisson equation is a partial differential equation that couples the potential at one
point r to the other points r′, thus the potential is a correlated random function, while the
charge % may be seen as an uncorrelated random function. The relation between charge
density and potential can be viewed as a filter. The potential is the low-pass-filtered
charge density, and the filter response is the electrostatic Green’s function as shown in
Fig. 2.13. Due to the r↔r′-symmetry of the Green’s function, the filter can be reversed
and we can rewrite Eq. (2.76) as

Hn,n′;k,k′ = −q0

∫∫
Ψ∗n,k(r′)Ψn′,k′(r

′)G(r, r′)%(r)dV dV ′

= −
∫
Un,n′;k,k′(r)%(r)dV, (2.78)

where the function

Un,n′;k,k′(r) = q0

∫
Ψ∗n,k(r′)Ψn′,k′(r

′)G(r, r′)dV ′ (2.79)

is the matrix element for a single point charge at r or sensitivity function [49] for the
interaction between state (n,k) and (n′,k′).

Now the square matrix element can be evaluated. The square matrix element is in fact
an ensemble average over channels with different random point charge distributions,

〈|Hn,n′;k,k′ |2〉 =

∫∫
U∗n,n′;k,k′(r)Un,n′;k,k′(r

′)〈%(r)%(r′)〉dV dV ′. (2.80)

Assuming that the point charge distributions in the ensemble are uncorrelated, implying
〈%(r)%(r′)〉 ∝ δ(r− r′), the square matrix element simplifies to

〈|Hn,n′;k,k′ |2〉 = q2
0

∫
|Un,n′;k,k′(r)|2Nimp(r)dV, (2.81)
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where Nimp is the impurity concentration in the channel. For partially confined systems
the squared matrix element reads

〈|Hn,n′;k,k′ |2〉 =
q2

0

Ld

∫
|Un,n′;k,k′(r)|2Nimp(r)d3−dr. (2.82)

Now the remaining question is how to compute the sensitivity function from Eq. (2.79)
especially in the context of confined carriers. In a low-dimensional system, the cross-
section coordinates where the confinement occurs (r) and the coordinates of free propaga-
tion (q = k− k′) need to be considered separately. By applying a separation analogous
to the one for the wave function (Eq. (2.56)), differential operators in the transport
direction, ∇‖, can be replaced with iq. After this, the Poisson equation reads

[∇⊥ · ε∇⊥ − εq2]ϕq(r) + %q(r) = 0. (2.83)

The inverse of this operator is the reduced Green’s function Gq(r, r′). The knowledge
of the actual Green’s function is not required, however. What is required is a way to
compute the integral in Eq. (2.79) which is equivalent to solving the equation

[∇⊥ · ε∇⊥ − ε‖k− k′‖2]Un,n′;k,k′(r) + q0ψ
∗
n,k(r)ψn′,k′(r) = 0, (2.84)

to obtain the sensitivity function. This approach is more favorable from a numerical
point of view than directly expressing the Green’s function, because the Laplacian in the
Poisson equation is a sparse operator and the sparsity can be leveraged for computational
efficiency, whereas the Green’s function is always a dense non-local operator. The
approach is also more convenient from a modeling point of view, because it allows to set
any kind of boundary conditions, to include channel geometry, and to include variations
of the dielectric function ε.

Screening

Screening models attempt to predict a first-order response of the carrier ensemble to
the Coulomb perturbation potential, since a self-consistent treatment of screening is
not possible within the framework of perturbation theory employed in the derivation
of Fermi’s golden rule. Screening in the linear approximation is included by adding an
additional term to the Poisson equation,

[∇⊥ · ε∇⊥ − εq2]ϕq(r) + %q(r) +
d%q
dϕq

ϕq = 0. (2.85)

Different models for screening exist, most of which are special cases of the Lindhard
theory, which itself is derived from perturbation theory and the random phase approx-
imation [50]. In the most general case, a change of potential at one point affects the
carrier concentration at all other points, making the screening term non-local. Merely
keeping the fully non-local screening operator in Eq. (2.85) changes the computational

effort from O(n
3
2 ) to O(n2) for a computational mesh of n points. This does not yet
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include the effort to compute the coefficients of the screening operator which can increase
the effort to O(n4).

Such a computationally demanding approach is not practical for a TCAD tool, where
moderate run times are essential. An approximation of screening in the static limit
is needed that constitutes a sparse screening operator which can be rapidly evaluated.
Such an approximation can be found by looking into a related problem: When solving a
coupled Schrödinger-Poisson problem (discussed in Section 2.2) an approximate response
of the charge carriers to potential changes is needed to linearize the Schrödinger-Poisson
equations and solve them using a Newton-Raphson scheme. Such an approximate response
for confined systems has been derived in [51]; for parabolic subbands it reads

d%q
dϕq

= −q0
dnq
dϕq

≈
∑
n

|ψn(r)|2Nd
C,nF d

2
−2

(
En − EF

kBT

)
q0

kBT
(2.86)

where Nd
C,n is the effective density of states for a d-dimensional carrier gas [52], and Fi is

the complete Fermi-Dirac integral of order i. This screening operator is diagonal and can
be evaluated rapidly while still taking confinement, the low-dimensional nature of the
charge carriers, and the Fermi-Dirac distribution into account.

2.3.3 Polar-Optical Phonon Scattering

In III/V materials, carrier scattering by polar-optical phonons (POP) is by far the most
important scattering mechanism [53]. It is caused by longitudinal-optical (LO) phonon
modes, similar to ODP scattering. However, the mechanism of interaction with electrons
is different. In compound semiconductors, one unit cell contains two atoms of different
species, e.g. a Ga and a As atom in GaAs. Due to different valence, each of the two
atoms carries a slightly different charge. When the two atoms vibrate, their displacement
with respect to each other produces an oscillating electric dipole, as pictured in Fig. 2.14.
Thus, in a sense, POP scattering combines the features of ODP scattering and Coulomb
scattering, as shall be shown.

The semi-classical model for POP scattering in bulk crystals was first derived by
H. Fröhlich [54], after whom the interaction Hamiltonian for POP scattering is named.
Fröhlich’s model has been reproduced in a wide range of textbooks, (e.g. [48]), but
dealing with confined systems needs some adaptation of the original derivation, which
shall be carried out in the remainder of this section.

The starting point is the interaction between the free electrons and the dipoles. The
electrostatic potential due to a given charge density can be evaluated using the electrostatic
Green’s function:

ϕ(r′) =

∫
R3

G(r, r′)%(r)dV. (2.87)

The dipoles in the crystal lattice manifest as a random polarization field P. To account
for this in the charge density, it is decomposed into a free and a bound charge density,
the latter of which is due to polarization,

% = %f + %b = %f −∇ ·P. (2.88)
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P = 0

u

P

Figure 2.14: Illustration of a unit cell in a compound semiconductor; red and blue
correspond to atoms of different valence carrying a different charge; when
the atoms are displaced w.r.t. each other (due to a longitudinal optical
phonon), they form a local variation of the polarization P, resulting in an
electric dipole.

Since the free charge density is either treated separately (when solving the global Poisson
equation) or zero (in bulk crystals), only the bound contribution needs to be considered
here,

ϕ(r′) = −
∫
R3

G(r, r′)∇ ·P(r)dV. (2.89)

The matrix element for the perturbing potential is

Hn,n′;k,k′ = −q0

∫
R3

ϕ(r′)ψ∗n,k(r′)ψn′,k′(r
′)dV ′

= −q0

∫∫
R3×R3

ψ∗n,k(r′)ψn′,k′(r
′)G(r, r′)∇ ·P(r′)dV dV ′

=

∫
R3

Un,n′;k,k′(r)∇ ·P(r′)dV,

(2.90)

where in the last step, the definition of the single-point-charge matrix element from
Eq. (2.79) was used. Using the first Green’s identity and the sensitivity function already
known from Coulomb scattering (Section 2.3.2), the expression can be transformed into

Hn,n′;k,k′ = −
∫
V

P(r) ·∇Un,n′;k,k′(r)dV +

∮
∂V

Un,n′;k,k′(r)P(r) · dA, (2.91)

where the second term vanishes for a sufficiently large volume V , leaving the relation

Hn,n′;k,k′ = −
∫
R3

P(r) ·∇Un,n′;k,k′(r)dV. (2.92)
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Analogously to Eq. (2.80), the squared matrix element is defined as

〈|Hn,n′;k,k′ |2〉 =

∫∫
∇U∗n,n′;k,k′(r) · 〈P∗(r)⊗P(r′)〉 ·∇Un,n′;k,k′(r

′)dV dV ′. (2.93)

Assuming that the polarization fluctuation is uncorrelated, implying 〈P∗(r)⊗P(r′)〉 →
‖P(r)‖2L3δ(r− r′), the expression is simplified to

〈|Hn,n′;k,k′ |2〉 = L3

∫
‖P(r)‖2‖∇Un,n′;k,k′(r)‖2d3−dr. (2.94)

Now the amplitude of the polarization fluctuation needs to be found. The net dipole
moment in a unit cell is [48]

p = q∗u, (2.95)

where q∗ is the effective charge, i.e. the charge difference between the two atoms, and
u is the displacement vector. The polarization is given by the dipole density per unit
volume,

P =
q∗u

Vcell
, (2.96)

with Vcell being the unit cell volume, yielding the square matrix element

〈|Hn,n′;k,k′ |2〉 = L3

∫ (
q∗‖u(r)‖
Vcell

)2

‖∇Un,n′;k,k′(r)‖2d3−dr. (2.97)

For the displacement amplitude, the term derived for ODP scattering in Eq. (2.63) can
be reused, giving

〈|Hn,n′;k,k′ |2〉 =

∫
~q∗2

2M̄VcellωLOLd

(
N +

1

2
∓ 1

2

)
‖∇Un,n′;k,k′(r)‖2d3−dr. (2.98)

While the displacement vector u could be determined in the same way this was done
for optical deformation potential scattering in Section 2.3.1, the direct determination
of the effective charge q∗ poses a difficult problem involving calculation of the electron
density around the atomic cores using ab-initio methods. However, it is possible to link q∗

to a different phenomenon: Most materials exhibit different permittivity at low and high
(optical) frequencies. In ionic crystals such as compound semiconductors, the difference
is considered to be due to the ionic contribution to susceptibility. The low-frequency
permittivity of bulk semiconductors is usually a well known figure, as is the high-frequency
permittivity which can be derived from the material’s refractive index. Thus, the two
figures can be used to determine the effective charge q∗.

The oscillating atoms in the unit cell are modeled using a classical harmonic oscillator
subject to an external field [48, 55],

d2u

dt2
+ ω2

0u =
F

M̄
=
q∗E

M̄
, (2.99)
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which leads to the displacement and polarization amplitudes

û =
q∗Ê

M̄

1

ω2
0 − ω2

, P̂ =
q∗2Ê

M̄Vcell

1

ω2
0 − ω2

. (2.100)

The electrical displacement field (flux density) is composed of the electronic and ionic
contributions,

D̂ = ε0

(
ε∞r +

q∗2

M̄Vcell

1

ω2
0 − ω2

)
Ê, (2.101)

with the dielectric function being

εr(ω) = ε∞r

(
1 +

q∗2

M̄Vcellε∞r

1

ω2
0 − ω2

)
, (2.102)

as shown in Fig. 2.15. Two different modes for polar-optical waves are possible: longitu-
dinal and transversal. Transversal waves have the electric field E orthogonal to the wave
vector q; thus, in the absence of magnetic fields,

∇×E = iq×E = 0 =⇒ E = 0, (2.103)

which reveals that the oscillator eigen-frequency, ω0 where the dielectric function has a
singularity, is the transversal mode frequency ωTO. Longitudinal waves which are relevant
for POP scattering have the wave vector parallel to the electric field; thus, for a medium
with zero net charge,

∇ ·D = iq · εE = 0, (2.104)

necessitating that the dielectric function becomes zero a the longitudinal mode frequency
ωLO, since q ·E 6= 0. From those two conditions and Eq. (2.102) it can be derived that
ω2

LO/ω
2
TO = ε0

r/ε
∞
r , and eventually

q∗2

M̄Vcellε∞r
= ω2

LO

(
1− ε∞r

ε0
r

)
, (2.105)

which relates the effective charge q∗ to the low- and high-frequency dielectric constants.
Equation (2.105) can now readily be inserted into Eq. (2.98) to obtain the final

expression for the square matrix element of POP scattering [56, 57],

〈|Hn,n′;k,k′ |2〉 =
~ω
2Ld

(
N +

1

2
± 1

2

)∫
χion‖∇Un,n′;k,k′(r)‖2d3−dr, (2.106)

where

χion = ε0(ε∞r )2

(
1

ε∞r
− 1

ε0
r

)
(2.107)

is the effective ionic contribution to susceptibility.
The sensitivity function Un,n′;k,k′ can be obtained from Eq. (2.84) for partially confined

systems. In that case the gradient operator in Eq. (2.106) is composed of two terms - one
in the confinement directions, the other in the directions of free movement,

∇ = ∇⊥ + iq‖, ‖∇Un,n′;k,k′(r)‖2 = ‖∇⊥Un,n′;k,k′(r)‖2 + q2‖Un,n′;k,k′(r)‖2. (2.108)
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Figure 2.15: Qualitative graph of the idealized dielectric function in a ionic crystal

2.3.4 Surface and Interface Roughness Scattering

Surface or interface roughness scattering (SRS) occurs at semiconductor surfaces, hetero-
interfaces, and semiconductor-dielectric interfaces. Carriers scatter off the rough surface
or interface which can be seen as a fluctuation of the interface’s vertical position across
the interface plane. Because the its perturbation potential is static, SRS is elastic.

For two-dimensional carrier gases the most widely used model for surface and interface
roughness scattering was initially formulated by Prange and Nee [58]. Here, the squared
matrix element |Hn,n′;k,k′ |2 from Eq. (2.49) is effectively an average over an ensemble of
rough channels, 〈|Hn,n′;k,k′ |2〉. For a system of 2DEG carriers it reads

〈|Hn,n′;k,k′ |2〉 =
C(q)

A
|Fn,n′;k,k′ |2, (2.109)

where q = k−k′, C(q) is the roughness power spectrum, and Fn,n′;k,k′ are the form-factors
due to confinement. The form-factors account for the “closeness” of the states to the
interface. They are commonly approximated by the derivatives of the wave functions at
the interface,

Fn,n′;k,k′ =
~2

2m

dψ∗n,k
dx

dψn′,k′

dx
. (2.110)

Roughness is a random process and hence can only be characterized by its autocorrelation
function c(r) = 〈∆(r′)∆(r′ + r)〉, where ∆(r′) is the actual fluctuation of the interface
position. The 2D-Fourier transform of the roughness autocorrelation function is the
aforementioned roughness power spectrum. The autocorrelation function is frequently
modeled either as Gaussian [58]

c(r) = ∆2e−
r2

Λ2 , C(q) = π∆2Λ2e−
q2Λ2

4 (2.111)
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Figure 2.16: Comparison of surface roughness scattering in a planar 2DEG (top) and a
non-planar 1DEG (bottom) channel; in the 2DEG case the rough planes
are parallel to the direction of free propagation in which the electronic
state is described as plane wave. The interacting states are selected via the
plane-wave component only, resulting in a q = k− k′ dependence for the
square matrix element. In the 1DEG case roughness appears both along the
axis and in the cross-section, thus both plane-wave and the standing wave
component contribute to the state selection.

or exponential [59]

c(r) = ∆2e−
√

2r
Λ , C(q) =

π∆2Λ2(
1 + q2Λ2

2

) 3
2

. (2.112)

The roughness amplitude ∆ and autocorrelation length Λ are parameters of the rough
surface or interface.

The extension of SRS to the 1DEG is more involved than it was in the case of phonon
scattering. The reason for this is shown in Fig. 2.16. In a 2DEG the rough interface is
always parallel with the direction of propagation. Wavefunctions are separated into a
1D standing wave perpendicular and a plane wave parallel to the interface. Hence, one
only needs to be concerned with the plane wave part in the derivation of the SRS square
matrix element, and the standing wave enters Eq. (2.109) only as a form-factor. In a
1DEG, the wave functions are separated into a 2D standing wave in the channel cross
section and a plane wave along the device axis. Now the roughness has to be taken into
account not only in the plane-wave part but also in the standing wave part.

The starting point for evaluating the SRS matrix element Hn,n′;k,k′ for a 1DEG, shall
be a look at the perturbing potential in Fig. 2.17. The position of an abrupt potential
step of height ∆V fluctuates by the value of the function ∆(r). The resulting perturbing
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Figure 2.17: The potential across the interface is modeled as a step function. The inter-
face roughness causes the position of the abrupt potential step to fluctuate.
Subtracting the potential of an ideal surface results in the perturbing po-
tential which is either a thin barrier or a thin well depending in the sign of
the fluctuation. For roughness amplitudes much smaller than the electron
wavelength the thin barrier/well can be approximated as ∆V∆(r)-weighted
δ-distribution.

potential is either a very thin barrier or well (depending on the sign of ∆(r)) of height
∆V and width ∆(r). The perturbing potential is approximated by a weighted surface-
delta-distribution ∆V∆(r)δ(r ∈ S ), where S represents the set of points on the ideal
surface (Fig. 2.16). This allows to convert the evaluation of the matrix element Hn,n′;k,k′

from a volume integration to a surface integration,

Hn,n′;k,k′ = ∆V

∫
S

Ψ∗n,k(r)Ψn′,k′(r)∆(r) dA. (2.113)

This matrix element cannot be evaluated directly since ∆(r) is a random function. The
ensemble average of the square magnitude of Eq. (2.113), however, can be evaluated:

〈
|Hn,n′;k,k′ |2

〉
=

∫∫
S

dAdA′Ψn,k(r)Ψ∗n′,k′(r)Ψ∗n,k(r
′)Ψn′,k′(r

′)∆V 2
〈
∆(r)∆(r′)

〉
. (2.114)

So far no assumptions about the electron states Ψn,k have been made. Recalling
Eq. (2.56), the electron states are decomposed into a two-dimensional bound state in the
cross-section and a plane wave along the channel axis,

Ψn,k(r⊥) = ψn,k(r)
1√
L
eikz = ψn,k(x, y)

1√
L
eikz. (2.115)

Using this separation ansatz, Eq. (2.114) can be rewritten as

〈|Hn,n′;k,k′ |2〉 =
1

L2

∫∫
C

L∫∫
0

fn,n′;k,k′(s)f
∗
n,n′;k,k′(s

′)

ei(k−k′)(z−z′)〈∆(r)∆(r′)〉dzdz′dsds′. (2.116)
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The integration across surface S was separated into integrations along curve C , i.e.
the intersection of S with the cross-section plane, and a normalization length L along
the channel direction; s denotes the path coordinate along the curve C and z the axial
coordinate. We introduced the form-functions fn,n′;k,k′(s) which are defined as

fn,n′;k,k′(s) = ψ∗n,kψn′,k′∆V. (2.117)

The effect of different effective masses in the materials on either side of S can be included
in the form-functions as

fn,n′;k,k′(s) = ψ∗n,kψn′,k′(V− − V+)

− ~2

2
∇ψ∗n,k;− ·m−1

− ·∇ψn′,k′;−

+
~2

2
∇ψ∗n,k;+ ·m−1

+ ·∇ψn′,k′;+, (2.118)

where the subscripts + and − indicate limits at either side of S . In the limit of high
potential barriers (e.g. dielectrics), the wave functions ψn,k do not penetrate from one
medium into the other but vanish at the interface. In that case the expression in
Eq. (2.118) can be approximated by

fn,n′;k,k′(r) ≈ ~2

2
∇ψ∗n,k ·m−1

well ·∇ψn′,k′ . (2.119)

The autocorrelation function
〈
∆(r)∆(r′)

〉
=: c(r) in Eq. (2.116) can be represented as

inverse 2D Fourier transform of the roughness power spectrum,

c(r) =
1

4π2

∫∫
R

C(q)eiq⊥(s−s′)eiq‖(z−z′)dq⊥dq‖, (2.120)

separating the roughness “wave vector” q into an axial component q‖ and a component
q⊥ along C . Inserting Eq. (2.120) into Eq. (2.116), one arrives at

〈
|Hn,n′;k,k′ |2

〉
=

1

4π2L2

∫∫
C

dsds′
∫∫
R

dq⊥dq‖

∞∫∫
−∞

dzdz′

fn,n′;k,k′(s)f
∗
n,n′;k,k′(s

′)C(q)eiq⊥(s−s′)ei(k−k′+q‖)(z−z′). (2.121)

The double axial integration of the plane wave term ei(k−k′+q‖)(z−z′) for a sufficiently
large L leads to

L∫∫
0

ei(k−k′+q‖)(z−z′)dzdz′ =

L∫
0

dz

L∫
0

ei(k−k′+q‖)z′′dz′′

≈ L lim
L→∞

L∫
0

ei(k−k′+q‖)z′′dz′′ = 2πLδ(k − k′ + q‖)

(2.122)
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allowing to simplify the previous equation to〈
|Hn,n′;k,k′ |2

〉
=

1

2πL

∫∫
C

dsds′
∫
R

dq⊥fn,n′;k,k′(s)f
∗
n,n′;k,k′(s

′)C(q)eiq⊥(s−s′). (2.123)

A change of variables s′ − s =: s′′ gives

〈
|Hn,n′;k,k′ |2

〉
=

1

2πL

∫
R

C(q)dq⊥

∫
C

∫
C

fn,n′;k,k′(s)f
∗
n,n′;k,k′(s+ s′′)ds

 eiq⊥s
′′
ds′′. (2.124)

The term in square brackets is the autocorrelation of the form-functions fn,n′;k,k′(s) and
the integration surrounding it is a Fourier transform s 7→q⊥. Using the Wiener-Khinchin
theorem the Fourier transform of the autocorrelation of fn,n′;k,k′(s) can be expressed as
square magnitude of its Fourier transform Fn,n′;k,k′(q⊥) obtaining the final expression for
the square matrix element [49, 60, 61],

〈
|Hn,n′;k,k′ |2

〉
=

1

2πL

∫
R

|Fn,n′;k,k′(q⊥)|2C(q)dq⊥. (2.125)

A few assumptions are contained within this last step of our derivation:

1. For closed curves C (e.g. in a gate-all-around channel) the Fourier transform is in
fact a Fourier series expansion.

2. For open curves C , such as the tri-gate channel in Fig. 2.16 the Fourier transform
is effectively windowed by the finite length of the curve C . However, due to
electrostatic confinement the wave functions, and hence the form functions decay
exponentially towards both ends of C . The windowing effect is therefore negligible.

3. The roughness power spectrum is assumed to be isotropic, C(q) = C(q).

The integral in Eq. (2.125) represents momentum conservation in the cross-section
plane. It can be summarized that in a planar geometry with a 2DEG, carrier momentum
conservation is characterized by a δ(k − k′ + q) term. In a non-planar structure with
a 1DEG, there is still a δ(k‖ − k′‖ + q‖) term for the axial direction. However, the
cross-section momentum conservation is not sharply defined but is now accounted for by
the integral in Eq. (2.125).

2.3.5 Alloy Disorder Scattering

Alloy disorder scattering occurs in alloyed semiconductors, such as binary (e.g. Si1-xGex),
ternary (e.g. In1-xGaxAs) and quaternary alloys. This work follows the discussion in [62],
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in which alloy disorder scattering is considered as an elastic, isotropic intra-valley process
modeled using the semi-empirical expression

〈|Hn,n′;k,k′ |2〉 =
U2

alloyVcell

Ld

∫
x(1− x)|ψn,k(r)|2|ψn′,k′(r)|2d3−dr, (2.126)

with Vcell = a3/8 being the unit cell volume. The square matrix element depends on
the local material composition x; for pure materials, x is either 0 or 1, which results in
the transition rate being zero. The effective scattering potential Ualloy is used to fit the
measured data.

2.4 Transport and Mobility

This section looks at carrier transport, which, in the semi-classical framework, is governed
by the Boltzmann transport equation (BTE).

∂fn(r,k, t)

∂t
+vn(k) ·∇rfn(r,k, t) +

F(r)

~
·∇kfn(r,k, t) = −

[
∂fn(r,k, t)

∂t

]
scatt.

(2.127)

The solution variable of the BTE is the distribution function fn(r,k, t). The BTE is
based on semi-classical mechanics, treating carriers as particles. The wave properties of
the carriers were appreciated in the previous section to calculate the subband structure,
the probability density, and the transition rates due to scattering. These steps essentially
provide the coefficients for the free streaming operator on the left hand side and the
scattering operator on the right-hand side of Eq. (2.127).

In the most general case, the scattering operator reads[
∂fn(r,k, t)

∂t

]
scatt.

=
∑
n′,k′

Sn′,n(k′,k)fn′(k
′)[1− fn(k)]

−Sn,n′(k,k′)fn(k)[1− fn′(k′)],
(2.128)

where Sn,n′(k,k
′) denotes the transition rate given by Fermi’s golden rule in Eq. (2.49).

Scattering does not affect the position of a particle and therefore the spatial coordinate
of the distribution function has been omitted in above equation.

2.4.1 Linearizing the Boltzmann Transport Equation

For a three-dimensional problem, the BTE constitutes a seven-dimensional integro-
differential equation. Solving such an equation seems like a daunting task, but one does
not necessarily need to include all seven dimensions. For confined systems, the k-space is
reduced from three to two (2DEG) or one (1DEG) dimension. For stationary problems,
the time-dependence can dropped to obtain the time-independent or steady-state version
of the BTE,

vn(k) ·∇rfn(r,k) +
F(r)

~
·∇kfn(r,k) = −

[
∂fn(r,k)

∂t

]
scatt.

. (2.129)
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The equation is further simplified when a constant force field F is assumed and the
spatial coordinate can be dropped,

F

~
·∇kfn(k) = −

[
∂fn(k)

∂t

]
scatt.

. (2.130)

The BTE for a constant field can be used to determine macroscopic properties of a
material or a channel based on microscopic information about electronic structure and
carrier scattering. This equation can now be linearized to obtain the linear response of
the carrier ensemble to a small force field F. To do this, the distribution function is
separated into an equilibrium part and a first-order response part,

fn(k) = f0(E) + f1
n(k), (2.131)

where the equilibrium part only depends on energy as stated in Eq. (2.42). Inserting the
expression back into Eq. (2.130), one obtains

F

~
·∇kEn(k)

df0(E)

dE
+

F

~
·∇kf

1
n(k)︸ ︷︷ ︸

neglected

= −
[
∂f0

∂t

]
scatt.︸ ︷︷ ︸

= 0

−
[
∂f1

n

∂t

]
scatt.

, (2.132)

The second-order acceleration term on the left-hand side is negligible for small force fields.
The scattering operator on the right-hand side contains the equilibrium distribution in
its kernel. In other words: The equilibrium distribution is unaffected by scattering and it
holds that [

∂f0

∂t

]
scatt.

= 0. (2.133)

Omitting these terms, we arrive at the linearized Boltzmann transport equation (LBTE),

F(r) · vn(k)
df0(E)

dE
= −

[
∂f1

n

∂t

]
scatt.

, (2.134)

where the definition of the group velocity, vn = ∇kEn/~, has been used. The solution
variable is now the linear distribution response.

Linearization also applies to the scattering operator. Here, it is makes sense to split
the scattering operator into an elastic an an inelastic part,[

∂fn
∂t

]
scatt.

=

[
∂fn
∂t

]el

scatt.

+

[
∂fn
∂t

]inel

scatt.

. (2.135)

For elastic processes the transition rate in Eq. (2.128) is symmetric, Sn,n′(k,k
′) =

Sn′,n(k′,k), and the elastic scattering operator simplifies to[
∂fn
∂t

]el

scatt.

=
∑
n′,k′

Sn,n′(k,k
′)
[
f1
n(k)− f1

n′(k
′)
]
. (2.136)
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For inelastic processes the scattering operator is not symmetric, and the full expression
in Eq. (2.128) must be used. The factors [1 − fn′(k′)] and [1 − fn(k)], which take the
Pauli-principle of exclusion into account, make the inelastic scattering operator non-linear
and it needs to be linearized as well.[
∂f1

n

∂t

]inel

scatt.

=
∑
n′,k′

Sn,n′(k,k
′)
{
f1
n(k)[1− f0(En′(k

′))]− f0(En(k))[1− f1
n′(k

′)]
}

−Sn′,n(k′,k)
{
f1
n′(k

′)[1− f0(En(k))]− f0(En′(k
′))[1− f1

n(k)]
}
.

(2.137)

2.4.2 Conductivity and Mobility Extraction

The linearized Boltzmann transport equation (LBTE) can now be utilized to extract
macroscopic properties of a channel such as the conductivity or mobility, which relate
current and carrier velocity to a small electric field. Besides electric fields other driving
forces lead to other macroscopic properties: Using for example a temperature gradient as
driving force leads to the Seebeck coefficient.

The General Case

With a semi-classical distribution function available, the electrical current density in a
system of carriers is determined by

Jn =
qg

(2π)d

∫
Rd

vn(k)fa
n(k)ddk, (2.138)

where q = ±q0 denotes the carrier charge, g the degeneracy due to to spin and valley
multiplicity, vn(k) the group velocity of the nth subband, and fa

n the anti-symmetric
part of the distribution function fn. In the limit of low driving force, the asymmetric
part is given by the linear distribution response f1

n with respect to the field E. The linear
distribution response depends on the electric field via the LBTE from Eq. (2.134),[

∂f1
n

∂t

]
scatt.

= qE · vn(k)
df0(E)

dE
. (2.139)

with the force replaced by qE. The response f1
n is linear with respect to the modulus of

the electric field ‖E‖. Consequently the linearity-relation also applies to the current from
Eq. (2.138). The modulus of the electric field can be factored out of the equation to give[

∂f̃1
n

∂t

]
scatt.

= qeE · vn(k)
df0(E)

dE
, (2.140)

where f1
n = f̃1

n‖E‖. The field is assumed to point in the direction given by the unit vector
eE. For a different field direction e′E, a different version of Eq. (2.140) needs to be solved
and a different response f̃1′

n needs to be inserted into Eq. (2.138). While the distribution
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response and current density are linear with respect to the modulus of the field, their
dependence on the direction of the field eE is non-linear. An anisotropic linear relation,

Jn = σn ·E, (2.141)

is thus not sufficient to represent the angular dependence between E and Jn. For a
complete representation, one could expand the function σn(E) using spherical harmonics
in 3D or Fourier harmonics in 2D. Equation (2.141) would be a first-order approximation
to such an expansion.

For practical purposes however, one is mainly interested in the current flow projected
along the same axis along which the field is applied. In this case one can define the
direction-dependent conductivity

σn[eE] :=
eE · Jn[eE]

‖E‖
=

qg

(2π)d

∫
Rd

eE · vn(k)f̃1
n[eE](k)ddk, (2.142)

where the distribution response, the current density, and the conductivity are labeled
using the field unit vector in brackets, [eE], denoting them to be associated with this
particular field direction only. From this, mobility is derived as

µn[eE] :=
σn[eE]

qn
=

∫
eE · vn(k)f̃1

n[eE](k)ddk∫
f0(E(k))ddk

. (2.143)

The Effective Mass Case

The complications involving the angular dependence of conductivity discussed above can
be simplified for parabolic subbands. This is facilitated by introducing a microscopic
relaxation time tensor τ [63], such that

f1
n(k) = −qvn(k) · τn(k) ·Edf0

dE
, (2.144)

with f0 denoting the equilibrium Fermi-Dirac distribution. Inserting Eq. (2.144) into
Eq. (2.138), the conductivity tensor can be obtained:

σn = − q2

(2π)d

∫
Rd

vn(k)⊗ vn(k)τn(k)
df0

dE
ddk. (2.145)

For parabolic bands, the integration over k is replaced by an integration over energy to
obtain

σn = −q2 m−1
n ·

2

d

∞∫
En

τn(E)
∂f0

∂E
Egdn(E)dE, (2.146)

using the d-dimensional density of states gdn(E). Note that the relaxation time in
both Eq. (2.144) and Eq. (2.146) is a tensor. This is necessary to correctly account
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Figure 2.18: Anisotropic scattering in anisotropic subbands: Different positions of the
initial state in k-space result in different probability distributions of final
states. Applying a Herring-Vogt transform eliminates band anisotropy but
distorts the q-dependence of the scattering process at the same time. In
both cases the relaxation time can only be described as a tensor.

for anisotropic scattering processes, such as Coulomb scattering or surface-roughness
scattering, which prefer small deflections between initial and final momenta as illustrated
in Fig. 2.18. Due to symmetry, the tensors mn and τn(E) have the same principal
directions, which implies that they commute. The expression in Eq. (2.146) can be
separated into principal components,

σn,ξ = −q2 1

mn,ξ
· 2

d

∞∫
En

τn,ξ(E)
∂f0

∂E
Egdn(E)dE, (2.147)

where ξ denotes each principal direction. Finally, subband mobility µn and total mobility
µ are computed as

µn =
σn
q0nn

, µ =
1

q0n

∑
n

σn. (2.148)

The linear distribution response f1
n is governed by the linearized Boltzmann transport

equation. Inserting Eq. (2.144), we obtain an equation for the microscopic relaxation
time, ∑

n′,k′

Sn,n′(k,k
′)
[
vn(k) · τn(k) ·E− vn′(k

′) · τn′(k′) ·E
]

= vn(k) ·E. (2.149)

Fortunately, for parabolic bands, the different principal components τξ are not coupled

51



2 Physics of Transport Modeling

by Eq. (2.149), so we can write

∑
n′,k′

Sn,n′(k,k
′)

[
τn,ξ(E)

~kξ
mn,ξ

− τn′,ξ(E)
~k′ξ
mn′,ξ

]
=

~kξ
mn,ξ

. (2.150)

for each principal direction ξ. The symbol kξ denotes the projection of k along the
principal direction ξ. We recall from Eq. (2.49) that for elastic processes Sn,n′(k,k

′) =
2π
~ |Hn,n′;k,k′ |2δ(E(k)− E(k′)). The energy-conserving δ-distribution decouples the scat-

tering operator in Eq. (2.150) for different energies. Since τn,ξ itself depends on the
energy but not the direction of k, a system of equations can be formulated for every
energy as

Lnτn,ξ −Mn,n′τn′,ξ = 1, (2.151)

where the coefficients are

Ln =
∑
n′

gdn(E)Jn,n′,ξ (2.152)

Mn = gdn(E)

√
mn,ξ(E − En)

mn′,ξ(E − En′)
J ′n,n′,ξ. (2.153)

The integrals Jn,n′,ξ and J ′n,n′,ξ are defined as

Jn,n′,ξ =
d

Ωd

∫
Ωd×Ωd

π

~
|Hn,n′;k,k′ |2 cos2 ϑξdΩ′ddΩd (2.154)

J ′n,n′,ξ =
d

Ωd

∫
Ωd×Ωd

π

~
|Hn,n′;k,k′ |2 cosϑξ cosϑ′ξdΩ′ddΩd, (2.155)

with ϑξ denoting the angle between the Herring-Vogt transformed [64] vector k∗ and the
principal direction ξ (see Fig. 2.18),

cosϑξ =
k∗ · eξ
k∗

. (2.156)

Ωd denotes the surface of a d-dimensional “unit sphere” which measures 2 for a 1DEG
and 2π for a 2DEG.1 The integrals in Eqs. (2.154) and (2.155) can be understood as

∫
Ωd×Ωd

y(ϑ, ϑ′)dΩ′ddΩd =


y(0, 0) + y(0, π) + y(π, 0) + y(π, π) : 1DEG
2π∫
0

2π∫
0

y(ϑ, ϑ′)dϑ′dϑ : 2DEG.
(2.157)

1A two-dimensional “unit sphere” is a unit circle. A one-dimensional “unit sphere” are the two points 1
and −1 on the number line; the two points of the one-dimensional “unit sphere” are denoted by their
the pseudo-angles 0 and π.
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For inelastic scattering, energy changes to a value ~ω above or below E, requiring to
take the density of states at E ± ~ω and the reduction of available states due to Pauli
exclusion into account. To properly account for the change in energy, Eq. (2.152) needs
to be modified to

Ln =
∑
n′

gdn(E ± ~ω)Jn,n′,ξ
1− f0(E ± ~ω)

1− f0(E)
. (2.158)

53



CHAPTER 3 Computational
Foundation

Contents

3.1 Model Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Data Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Geometry and Topology . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 I/O and Configuration . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Modeling Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Problem Specification and Assembly . . . . . . . . . . . . . . . 63

3.3.3 Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Algebraic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Abstraction of Linear Operations . . . . . . . . . . . . . . . . . 67

3.4.2 Working with Expressions . . . . . . . . . . . . . . . . . . . . . 67

3.4.3 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.4 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Extension Through Modules . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Module Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Software Development Kit . . . . . . . . . . . . . . . . . . . . . 71

3.5.3 Literate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 71

This chapter lays out the computational infrastructure used to implement all the
models required to tackle the physics explained in Chapter 2. The infrastructure has been
implemented in the course of this work as part of the Vienna Schrödinger-Poisson (VSP)
simulation framework [52], which has been made available commercially within GTS
Framework [65, 66]. The computational infrastructure comprises building blocks which
form the base for the implementation of the models described in Chapter 4 which are
used to simulate the nanoelectronic devices presented in Chapter 5.
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Data

Execution

Model

data flow

control flow
Submodel

Figure 3.1: Conceptual schematic of a model in VSP; solid arrows represent data flow,
double arrows control flow.

3.1 Model Concept

The software design of VSP is based on five concepts which shall be elaborated in detail
in the following sections:

1. Flexibility

2. Automation

3. Efficiency

4. Consistency

5. Customization

From a user point of view Flexibility means that VSP can be conveniently and intuitively
configured to perform a vast multitude of simulation tasks. Models serve as building
blocks of a simulation flow. Automation is closely related to Flexibility and means
providing interfaces for parameterizing the simulation flow, including scriptable input
decks, parameter sweeps, and interfacing with meshing tools, device simulators etc.
Automation also allows VSP to be used in automated device design optimization and
parameter calibration. Efficiency is an enabling concept for Automation; strong emphasis
has been put on Efficiency in the design of VSP. The model design in VSP is based
on broad general approaches to solving certain classes of problems and avoids functions
specifically implemented to cover special cases. Consistency is a result of those general
approaches; it ensures consistent results with respect to changes in dimensionality,
materials, or computational methods used in the simulation. Finally, Customization
allows the VSP to be extended in several ways, like adding new models, materials, or
numerical libraries.

The core design philosophy in VSP can be summarized as follows: Everything is a
model. In the sense of VSP’s design a model is an object similar to a class in computer
programming. A model can be instantiated and the instance can be invoked, which may
result in equations being solved, expressions evaluated and so forth. A model may have
submodels for certain sub-tasks; the model may invoke its submodels during execution.
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Every model instance can store data relevant to the model and may expose the data, so
that it can be passed to and from other model instances. Figure 3.1 shows the architecture
of a VSP model.

Model data is organized into attributes. Three types of attributes are considered:
parameters, properties, and quantities. Parameters represent numerical, or non-physical
entities: error tolerance, number of iteration steps, and so on. Properties represent
concentrated physical quantities: contact voltages, subband energies, etc. Quantities
represent distributed physical quantities – in real space (electrostatic potential, charge
density) and k-space (e.g. band/subband structure). All attributes have identifiers that
can be used to access them. Properties and quantities have physical units.

The VSP modeling framework provides a number of facilities tailored to tackle compu-
tational problems encountered in nanoelectronic device simulation. The main purpose of
these facilities is to foster code reuse which keeps both development time low and reduces
the probability of introducing errors during development. The facilities are structured
in three levels of abstraction: (i) the data level, (ii) the modeling level, and (iii) the
algebraic level.

3.2 Data Level

Data and geometry form the foundation of numerical device modeling and simulation.
This level can be regarded as the low level of VSP’s infrastructure, whereas the modeling
level to be described in the next section would be the high level.

3.2.1 Geometry and Topology

The simulation domains of VSP (in real space or k-space) are called devices. A device is
organized in segments. Segments consist of elements which are simplices spanned between
their vertices – also contained in the respective segment. Segments are non-overlapping, i.e.
no elements or vertices are shared between segments. Global, i.e. device-wide connectivity
is provided by nodes. Figure 3.2 shows a sketch of a VSP device, highlighting the role
of nodes. Figure 3.3 displays the topological relations between segment, element, vertex,
and node. Note that most relations are bidirectional, allowing to go from any topological
entity to any other by following the references; some additional references that serve as
shortcuts (e.g. Element Node) have been omitted for clarity.

VSP can store structured data on all of the aforementioned topological entities, except
on nodes, in the form of quantities. Quantities are one form of model attributes, the other
two being parameters and properties – discussed already in Section 3.1. The relation
between different kinds of attributes is shown in Fig. 3.4. All attributes of a model are
available for data exchange; the user can instruct VSP to transfer attributes between
model instances, demonstrated in Section 4.2.
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Figure 3.2: The role of nodes in VSP becomes clear when looking at devices with more
than one segment. Every segment contains its own set of vertices, rather than
sharing one set of vertices for the whole domain. At the interface between
two segments we may have two (or more) vertices representing the same point
in space. Nodes resolve this ambiguity by referencing the interface nodes.

3.2.2 Data Storage

Quantities may store any kind of position-dependent or k-dependent data; the data
may be be scalar (double, complex, int), vector-valued (Tuple<T>), or tensor-valued
(Transform<T>). A quantity may be represented in arrays of any number of dimensions:
zero-dimensional (e.g. potential, carrier concentration), one-dimensional (e.g. single-band
wave functions), two-dimensional (e.g. multi-band wave functions), four-dimensional (e.g.
multi-band wave functions, k-resolved), and so on. The quantity storage features a smart
allocation system, that reduces the memory footprint as well as the number of system
calls to allocate memory. Allocations are deferred until a quantity is accessed for the
first time, and the default value of a quantity (usually zero) is represented without using
any memory.

On construction, every attribute must be provided with a data type, an identifier, a
brief description, and a tag indicating the attribute’s usage such as input, output, and
internal. Properties and quantities must also be provided with a physical unit. The given
information (type, identifier, description, tag, and unit) is used to refer to the attribute,
verify data flow, and as part of the automated model documentation generation referred
to as literate-modeling (cf. Section 3.5.3).

3.2.3 Discretization

VSP uses a finite volume discretization scheme, thus avoiding the weak formulation funda-
mental to finite elements and relying instead on a formulation based on the conservation
of fluxes in each of the finite volumes. Unlike to most finite volume codes, the fluxes are
treated in their full vectorial form and not as projections along the edge between two
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Figure 3.3: Topological relations between objects in VSP; segments contain both elements
and vertices. Vertices contain their location in real/k-space, while elements
contain geometrical data for computing couplings; elements and vertices
reference each other. Nodes reference one or more vertices along with their
corresponding segments. Quantities can be defined on vertices, elements, or
segments.

points of the mesh. This is important because it is the only way material anisotropy
can be introduced within a finite volume scheme. The discretization was demonstrated
in [67], where the valence band states of a quantum dot were calculated using a highly
anisotropic six-band k·p Hamiltonian.

Most physical laws are laws of conservation. Conservativity, therefore, serves as a
common basis for the numerical modeling in the VSP simulation framework. The finite
volume method (FVM) possesses the inherent property of conservativity and is therefore
well-suited as a common discretization formalism for virtually all problems occurring in
nanoelectronic devices [52].

Traditional FVM codes (Fig. 3.5 left) are edge-based (see e.g. [68]); a mesh node (i)
couples to its neighbors (j) via the edges of the mesh graph. Each edge stores a length dij
and a coupling area Aij , each node stores its Voronoi cell volume Vi. The projection of the
field, i.e. the derivative of a quantity ϕ along an edge, is approximated by (ϕj − ϕi)/dij .
Some material property (permittivity, effective mass, . . . ) relates the field to a flux density
which is multiplied by Aij to obtain the partial flux leaving the cell. This approach has
one major shortcoming: The field obtained by (ϕj − ϕi)/dij is not the gradient of ϕ but
only its projection along eij which implicitly assumes that the flux density caused by
the field is parallel to eij as well. This restricts the discretization to isotropic media, i.e.
ones with scalar field-flux relations.
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Figure 3.4: Relations between attribute types in VSP; the base type for data storage
and exchange is the Attribute; Parameter is a direct descendant of Attribute;
UnitAttribute stores a physical unit along with the raw data; Property and
Quantity are its descendants.
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Figure 3.5: Comparison of edge-based and element-based finite volume methods; in
element-based FVM both gradient and coupling surface area are vector-
valued entities, while in edge-based FVM they are scalar, assuming implicit
projection along the edge.

The FVM approach used in VSP is element-based [67]. Instead of looking at the
neighbor nodes (j) of node i we look at its neighbor elements (l) as shown in Fig. 3.5
(right). By looking at the field in the element, we can now obtain the projection of the
gradient of ϕ not only along one edge but along two edges in a two-dimensional mesh
or three edges in a three-dimensional mesh. This allows to reconstruct the approximate
gradient of ϕ which is assumed constant within the element. The reconstruction is done
by inverting Ul := [dij , dik, . . .] which is a matrix containing the edge vectors of the
element with respect to node i as columns. Consequently, the approximate gradient of ϕ
can be calculated as follows:

[∇ϕ]l ≈ (Ul)−1

ϕj − ϕiϕk − ϕi
...

 . (3.1)

However, U may not be invertible. This could be the case when dealing with a two-
dimensional surface in a three-dimensional coordinate space. In such a case U would be
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Figure 3.6: Element-centric discretization; partial fluxed are evaluated according
to one of the rules in Table 3.2. The resulting nv × nv (nv =
number of vertices per simplex) partial fluxes are added to the system matrix
in the appropriate rows and columns.

Table 3.1: Continuous operators and their discrete counterparts

Continuous Discrete, element l

Gradient ∇ Zl =
[
−Yl[1 1 . . .]T , Yl

]
Divergence dV div Al = [Al

i, Al
j , . . .]

T

Control volume dV Vl = diag(V l
i , V

l
j , . . .)

Scalar quantity q q(r) ql = diag(qi, qj , . . .)

a 3 × 2 matrix which cannot be inverted. In such a case a pseudo-inverse can be used,

Yl := Ul
(

(Ul)TUl
)−1

. (3.2)

The field is now available inside the element l in its vectorial form. As such it can
be manipulated by a second-order tensor to produce the flux density, allowing to fully
account for anisotropy of the medium. The dot product of the flux density, which is also
constant within the element, and coupling area vector Al

i gives the partial flux leaving
the cell i via element l.

The discretization can also be viewed from an element-centric point of view, as
illustrated in Fig. 3.6. Here the element l is composed of nv partial volumes V l

i – the
intersections between the element and each of the vertices’ Voronoi cell. The parts of the
Voronoi cell’s surface that lie within the element are the partial areas or coupling areas
Al
i mentioned before. Along with the element’s edge vectors dij those entities contain

all the information necessary to discretize an (anisotropic) PDE on the mesh. Table 3.1
shows common operators and PDE terms along with a recipe to express each of them in
a discretized form.

During VSP’s initialization, the matrices Zl, Al, and Vl are precomputed for each
element of the input-mesh and are provided to the assembly process described in Sec-
tion 3.3.2.
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3.2.4 I/O and Configuration

VSP is controlled by files written in the Input Deck (IPD) language [69]. IPD is a
hierarchically structured configuration language organized in sections. Each section may
contain nested sections and variables. Variables can be physical quantities containing
units. IPD allows the use and evaluation of mathematical and logical expressions that
are evaluated when needed. Any section may be derived from one or more parent sections
by which it inherits all the parent sections’ content.

VSP-IPDs contain three top-level sections: Device, Materials, and Simulation.
Device defines the base (real-space) device; additional devices (also k-space) can be
specified in their respective sections. Materials contains a nested section for each material
known to VSP. A material database is included with VSP and contains parameter values
for common semiconductors (Si, Ge, GaAs, . . . ) and insulators (SiO2, HfO2, . . . ) as well
as metals. The Simulation section contains all the data and control flow information of
the simulation work flow. The subsections of the Simulation section are used to provide
configuration to each of the models instances in the simulation work flow, also allowing
to specify data to be transferred between model instances.

Device files containing geometry information, meshes, and input data can be read by
VSP. The files must be one of the DEV formats (DEVA, DEVAZ, DEVB, DEVBZ1)
supported by GTS Framework [66], which also provides structure generation and visu-
alization facilities. GTS Framework also features a graphical front-end to VSP, which
facilitates VSP usage by writing syntactically and semantically correct IPD files.

3.3 Modeling Level

Section 3.2 introduced low-level terms such as topology, data, and model attributes grouped
together in the data level. The modeling level described in this section is concerned with
higher-level items, such as mathematical expressions, (differential/integral) equations, or
boundary conditions. VSP provides a high-level interface to deal with these items – the
ModelExtended class.

A model derived from ModelExtended inherits all the required infrastructure required
for translation between the modeling and the topology or data levels. A typical model
layout is shown in Fig. 3.7. It shows two additional modules: Problem (cf. Section 3.3.2)
and Assembler (cf. Section 3.3.2); they are required when partial differential equations
need to be solved numerically, but are optional otherwise.

3.3.1 Expressions

VSP allows the use of symbolic mathematical expressions for specifying equations,
evaluation of expressions, integration, and similar tasks. The following code lines serve
as illustration:

1Suffixes A and B denote ASCII and binary encoding, respectively. Suffix Z denotes compression using
the DEFLATE algorithm.
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ModelExtended

Problem

Assembler matrix Solver

Figure 3.7: Typical algorithmic layout of a VSP model; a Problem instance is generated
that uses the topological structure provided by the ModelExtended instance.
The different types of boundary conditions are handled by the Problem instance.
An Assembler instance uses the information provided by the Problem instance
along with geometrical information from the model to discretize the equation
and to assemble a matrix. The matrix is processed by a solver instance.

// vector potential

A = 0.5 * B0 * cross(ez , position );

// density from wave function

rho = magsq(psi);

// electric field

E = -grad(phi);

// calculating the centroid

Tuple <> center =

integrate(position) / integrate (1.0);

Principle of Operation

Every combination of terms has its own C++ type as shown in Fig. 3.8; nested within are
the type to which the expression evaluates, EvalType, and a tag to represent the location
of evaluation, Location. Operators or functions applied to expressions are aware of both
evaluation and location type and may modify them according to specific rules. For
instance magsq(...), the square-magnitude function will change the EvalType from double,
complex, or Tuple<T> to double, while grad(...) will change EvalType to Tuple<EvalType>

and Location from Vertex to Element. The static typing system in C++ serves as a
formal correctness check for all expressions.

Material properties

The expression system is attached to the material database via the MaterialDBAccess

class:

Quan <double > permittivity;

MaterialDBAccess poissonmat(this , "PoissonMaterialIpd");

permittivity = esp0 * poissonmat.prop <double >("epsr");

62



3 Computational Foundation

EvalType Location

Expression

double,
Tuple,
. . .

Vertex,
Element,
Segment

EvalType Location

EvalType Location

Operand

Unary operator

EvalType Location

EvalType Location

Operand 1

EvalType Location

Operand 2

Binary operator

Figure 3.8: Expression typing scheme in VSP; each expression contains its evaluation
type (double, complex, Tuple, Tensor, . . . ) and location tag (Vertex, Element,
Segment) as nested types. Unary and binary operations derive their evaluation
type and location based on the operands’ evaluation and location types.

SegmentMask conductors;

MaterialDBAccess mattype(this , "MaterialTypeMaterialIpd");

conductors = selectSegments(

mattype.param <MaterialType >("materialtype") == CONDUCTOR );

The read-out of the material database is handled by material models. The MaterialDB-

Access class acts as an interface layer to the material model class specified in its construc-
tor, and wraps the attributes of the material model into expressions, which are retrieved
using the param and prop methods.

3.3.2 Problem Specification and Assembly

A Problem instance takes topological information about the boundary conditions, i.e. where
and of what type they are. The information is processed using the low-level topological
information provided by ModelExtended to pre-determine the rank and structure of the
discrete equation system. The boundary conditions can be passed to an Assembler

instance in equation form, along with the equations for the interior points of the domain.
The Assembler instance can then generate a system matrix, which may be passed to a
numerical solver. The most important aspect of the Problem class is that it provides a
mapping between the nodes (Figs. 3.2 and 3.3) and the rows/columns of the matrix to
be assembled.
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Table 3.2: Second-order PDE terms in their discretized form

Continuous Discrete, element l

Laplacian dV∇2 AlZl

Anisotropic Laplacian dV∇ · τ˜ ·∇ Alτ lZl

Ordering for Sparsity

VSP heavily relies on sparse direct linear solvers to perform the bulk of the computational
burden. These solvers most commonly use sparse-LU, sparse-LDL, or sparse-Cholesky
factorization and their performance is greatly affected by the sparsity pattern of the
matrix to be factored. The pattern is subject to the ordering of the rows and columns
of the matrix, and the optimal pattern in terms of memory and operations required to
perform the factoring, is obtained through ordering by nested dissection [70].

The Problem class applies nested-dissection-ordering to the node 7→ row/column map-
ping where it is appropriate. The nested-dissection algorithm itself is implemented as a
meta-model, which uses the framework provided by ModelExtended but does not model
any physics; it is automatically instantiated and invoked by the Problem class.

Assembly

In a 2D or 3D mesh the number of elements is several times greater than the number of
nodes. To reduce the number of times a particular element has to be evaluated when
building the system matrix, the assembly is element-centric: A loop iterates over the
elements of the simulated structure. In each iteration, the partial fluxes between an
element’s vertices are evaluated and added to the appropriate elements of the system
matrix.

This kind of assembly also allows the discretization of the problem’s constitutive partial
differential equations (PDE) to be broken down on a per-element basis. Continuous
operators and operands can be directly translated into discrete ones which are represented
by matrices. Table 3.1 shows how continuous vector-analytic operators (gradient and
divergence) as well as continuous quantities are related to their discrete per-element
representations as matrices. Operand matrices are diagonal and each diagonal entry
corresponds to the operand’s value at each of the element’s vertices, hence for an n-
dimensional simplex with nv = n+ 1 vertices, the element operands are nv-dimensional
diagonal matrices. Operators in contrast are full matrices; Al is a nv × 3 matrix and
contains the area vectors of the coupling surfaces between the element’s vertices (see
Fig. 3.6) as rows; Zl is a 3× nv matrix which relates the values at nodes to the gradient
vector on the element.

Second order operators are discretized by multiplying the corresponding matrices as
shown in Table 3.2. This also allows the assembly of mixed derivatives such as ∂2/∂x∂y
which are just a special case of an anisotropic Laplacian with τ˜ = ex ⊗ ey. First order
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Figure 3.9: Topological treatment of boundary nodes; Dirichlet nodes (left) are not
represented in the system matrix but the coupling to their neighbor nodes is
computed nevertheless. Neumann and Robin nodes (right) are kept in the
system adding an outer self-coupling area element.

derivatives are constructed using the relation

∇ =
1

2
[∇2, r] =

1

2
(∇2r− r∇2) (3.3)

which is guaranteed to have an anti-symmetric discrete representation. In quantum me-
chanics, the self-adjointness property of Hamiltonians implies that comprising differential
operators of even order must be must be symmetric and while operators of odd order
must be anti-symmetric. This must also hold for the operators’ discretized form.

VSP’s assembly process discriminates between two types of boundary conditions, (i)
Dirichlet and (i) Neumann boundary conditions, shown in Fig. 3.9. The type of boundary
condition at each segment must be declared during initialization of the Problem-instance.

For Dirichlet boundary conditions, the Problem class pre-eliminates each node that is
part of a Dirichlet boundary segment. The row and column corresponding to the element
do not appear in the matrix, which means that the dimension of the matrix is reduced by
the number of Dirichlet-nodes. For each interior node coupling to one or more boundary
nodes, the terms of the linear equation belonging to the boundary nodes are transferred
to the right-hand side of the equation.

A special case of Dirichlet boundary conditions are floating boundary conditions. For
floating segments, all the nodes are lumped together into a single element of the solution
vector, hence occupying only one line in the matrix. The total flux entering or exiting
the floating segments is imposed via the right-hand side.

For Neumann boundary conditions, the boundary nodes are kept in the system. By
default, a zero-flux Neumann boundary condition is imposed. A non-zero flux is imposed
by multiplying the boundary flux density with the boundary element surface area Si
and adding the product to the right-hand side of the linear equation. Robin boundary
conditions,

n ·∇ϕ+ αϕ = β, (3.4)
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are constructed from Neumann boundary conditions by adding αiSi to the matrix diagonal
and βi to the right-hand side. Plane wave boundary conditions,

n ·∇ψ − ikψ = 0, (3.5)

used for open-boundary conditions in quantum transport simulations are a special case
of Robin boundary conditions.

The assembly process is automated by the Assembler class. It allows specification of
the PDE system as a set of discrete operator equations for each device segment. The
Assembler object can then extract a sparse matrix from the defined equation. The
following code snippet illustrates the process for a simple Poisson equation:

Assembler <double > assembler(problem );

Variable var_phi;

assembler.defineEquation(partvol * rho +

eps0 * area(epsr * grad(var_phi )));

Sparse <double > matrix(problem.size ());

Full <double > rhs(problem.size(), 1);

assembler.assembleLinear(matrix , rhs);

The symbolic Sparse matrix is converted to a CSR/CSC format [71] (ConstSparse) which
can be processed using matrix operations and solvers displayed in Section 3.4.

3.3.3 Contour Integration

Contour integration is a specific but recurring task in the models presented in this work.
Contour integration is mainly used in three contexts: (i) density-of-states calculation,
(ii) assembly of the scattering operator of the Boltzmann transport equation, and (iii)
evaluation of the effective generation/recombination rates for tunneling transport (not
discussed in this work).

The ContourIntegrator class evaluates the integral of an expression ξ along a curve of
surface S defined by the contour (iso-level φ0) of a scalar function φ:

I[ξ, φ, φ0] =

∫
S

ξdS, where S = {r ∈ Rd|φ(r) = φ0}. (3.6)

For each element that intersects the contour at φ0 the intersecting segment of the
contour surface is generated; the integrand ξ is interpolated onto that segment and
multiplied by the area or the length of the segment, respectively. The sum of the products
yield the approximated value of the integral.

The following snippet illustrates the evaluation of the density of states at energy E0

using

g(E0) =

∫
E(k)=E0

dSk
‖∇kE‖

, (3.7)

from a band structure provided by quantity E :
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Quan <double > E;

double E_0;

ContourIntegrator contour_integrator(this);

contour_integrator.generate(expr(E));

double dos_value =

contour_integrator.integrate(

E_0 , 1.0 / norm(grad(expr(E))));

The ContourIntegrator class is instantiated using a ModelExtended instance before passing
the contour-generating function by calling the generate method. This pre-processing
step sorts the elements and vertices of the mesh for fast access, thereby reducing the
run-time of multiple integrate calls.

Rather than performing the integration, the ContourIntegrator can also supply a list
of pairs containing the vertex indices and their respective integration weights. This mode
of operation is called symbolic contour integration.

3.4 Algebraic Level

The algebraic level is detached from the low-level picture of the topological and data
level, and the high-level picture of the modeling level. It provides abstraction of entities
such as matrices, solvers, and projections to a generic finite-dimensional linear operator,
called MatrixInterface.

3.4.1 Abstraction of Linear Operations

A MatrixInterface object has the property of dimension and provides various methods for
multiplication by a vector (or multiple vectors) from left and right, as well as evaluation
of bilinear forms. Derivate classes of MatrixInterface are required to at least implement
left and right multiplication as a minimal set of operations. The remaining methods can
be constructed by MatrixInterface automatically. Figure 3.10 shows all the algebraic
operator classes and their relation to MatrixInterface.

3.4.2 Working with Expressions

Interoperability between quantities, expressions, and matrix storage is simplified by three
means of transferring data between these representations provided by VSP:

1. The Assembler converts the system of defined equations to a sparse matrix.

2. The function assignToMatrix evaluates an expression and writes the values using
mapping provided by a Problem instance to the column of a full matrix:

Problem problem;

Quan <double > rho;

Full <double > rhs;

assignToMatrix(rhs , problem , expr(rho) * volume , false );
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Figure 3.10: Relation map of the algebraic operators in VSP; the base type is
MatrixInterface. The common interface allows to represent dense or sparse
matrices, projections, solvers (direct, sparse direct, iterative), and combina-
tions of these as generic algebraic operators.

Variants of assignToSparse and assignToDiag exist, which write the evaluated
expression to the diagonal of a matrix.

3. The contents of a matrix can be wrapped into an expression using the function
matexpr. The expression can then be used in a term or assigned to a quantity :

Problem problem;

Quan <double > phi;

Quan <double > phi_0;

Full <double > x;

phi = matexpr(x, problem) - phi_0;

3.4.3 Solvers

Two classes of numerical solvers are crucial for quantum-electronic simulation: linear
solvers and eigenvalue solvers. Both are provided by a number of software packages that
are stable and efficient. VSP links to several numerical libraries and tries to select the
most appropriate solver for a problem at hand during run-time.

Linear Solvers

Available linear solvers in VSP are divided into (i) dense solvers provided by LAPACK
or an interface-compatible library, (ii) direct sparse solvers such as SuperLU [72] or
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PARDISO [73], and (iii) iterative solvers such as CG, GMRES, or BiCGStab [71]. The
linear solver selection follows the rules:

• Full LAPACK for very small systems

• Banded LAPACK for 1D problems

• Direct sparse for 2D problems

• ILU-preconditioned iterative for 3D problems

Eigenvalue Solvers

Available eigenvalue solvers fall into two categories: “direct” solvers provided by the
LAPACK library and subspace solvers such as the Implicitly Restarted Arnoldi Method
(IRAM) provided by ARPACK [74] or the Jacobi-Davidson method [75]. The efficiency
of the eigenvalue solver is crucial, since most of the simulation time in quantum problems
is spent there. The eigenvalue solver is selected based on the following rules:

• Full LAPACK for very small systems (e.g. bulk k·p)

• Banded LAPACK for 1D systems with few variables

• ARPACK (shift-invert) for 1D/2D problems

• ARPACK (plain) for definite 3D problems

• Jacobi-Davidson for large/indefinite 3D problems

Shift-invert is a technique that considerably improves performance of subspace solvers.
It is based on the spectral transformation

A 7→ (A− σI)−1 ⇒ λ 7→ 1

λ− σ
, (3.8)

which makes convergence for eigenvalues close to the pole σ more favorable than for the
remaining spectrum. For IRAM, the matrix inversion in Eq. (3.8) needs to be exact. For
this reason, direct sparse linear solvers are used for inversion.

One challenge in quantum-electronic carrier models (cf. Sections 4.3.2 and 4.3.3) is
that the exact number of eigenvalues needed is unknown beforehand; instead, the carrier
model requires all eigenvalues within an energy interval, usually between a band edge and
a cut-off energy, Elim. While most direct solvers are capable of doing an interval search,
subspace solvers require the number of sought eigenvalues to be known in advance. In VSP,
this issue is resolved by developing a technique called subspace deflation [52] explained in
Fig. 3.11. The method wraps around an existing subspace-based eigenvalue solver, such
as ARPACK, thus the solver code needs not be altered. The wrapper repeatedly invokes
the subspace solver until the search interval is exhausted, but eliminates already found
eigenvalues from the matrix using a projection technique, resulting in negligible overhead
compared to knowing the exact number of eigenvalues in the interval beforehand.
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Figure 3.11: Searching for eigenvalues up to to λmax; (1) shows the spectrum of a positive
definite Hermitian matrix A. A is first shifted to the left by λshift > λmax

(2) and the first nev = 3 eigenvalues computed by a subspace solver (e.g.
ARPACK); a projection matrix P1 = I − viv

H
i is constructed from the

eigenvectors vi. The subspace solver is invoked again on the projected
system P1(A−Eshift). The projection (3) moves the found eigenvalues to 0
and effectively prevents the solver to converge on already found eigenvalues.
The process is repeated (4) until all eigenvalues < λmax are found.

3.4.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) is most commonly used in scattering models to
transform form functions from real into momentum space, where the square matrix
element can be evaluated more efficiently. The commercial libraries MKL by Intel and
ACML by AMD both provide their own FFT-implementation – VSP can use either.

3.5 Extension Through Modules

Due to its modular and model-oriented design, VSP can be readily extended by new
models. With the proper interface new models can easily be integrated into the existing
set of models.

3.5.1 Module Loading

VSP provides a module loading mechanism for external modules. Modules are shared
objects or libraries that contain model classes VSP can use. When provided with a list
of module names during invocation

$ vsp -M module1 ,module2 input.ipd

VSP locates and loads the given modules during startup; during the load code is executed
which causes the models contained in the modules to be recognized by VSP.
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3.5.2 Software Development Kit

Users can develop their own specific models using the VSP Software Development Kit
(SDK). The SDK contains all headers necessary to access all the infrastructure presented
in this chapter, along with examples and a CMake project [76] pre-configured for module
building.

In order to make a model class recognizable to VSP, it must be registered. This is done
using a simple macro, as shown below:

struct MyModel : ModelExtended

{

...

};

REGISTER_MODEL(MyModel );

The macro generates code which is executed during module load and registers the model
class with VSP’s model server.

3.5.3 Literate Modeling

In [77] the authors of NEMO5 point out: “Being a research code employed by changing
generations of students, documentation, clarity, and modularity of the code are essential.
Only when all these criteria are fulfilled, can junior researchers act as builders of individual
modules and the code endure multiple generations of developers.”

VSP goes even further by introducing the notion of literate modeling. It borrows from
the concept of literate programming by D. Knuth [78] in which the program and its
description are written as one document from which code and documentation can be
extracted. The VSP code provides facilities to embed documentation into the models
themselves. Their structure is based on topic-oriented authoring [79]. The following code
snippet serves as illustration:

struct Schroedinger : ModelExtended

{

...

};

EXTERN_DOCUMENT(Topic , models_unstr)

DECLARE_DOCUMENT(

ModelNode <vsp:: Schroedinger >,

Schroedinger)

DOCUMENT(Schroedinger ,

topic = &models_unstr ,

description = "This model solves the "

"closed boundary single band "

"Schroedinger equation ...")

The example only shows how to add a brief description to a model but the model
description can be structured into several paragraphs. The documentation is organized
in nodes representing sections and subsections of the documentation. The node for
the Schroedinger model is added to the Topic node models_unstr which represents the

71



3 Computational Foundation

section containing descriptions of all VSP models operating on unstructured grids.
The information provided with the model’s attributes (Section 3.1) is automatically
compiled into its documentation node. Also, every of the important IPD sections (Device,
Simulation, Logging, WriteQuans, WriteParams) are documented in this manner.

The documentation is contained within the VSP binary and can be accessed by the
user. The user can obtain formatted output for any documentation node by running
VSP in documentation mode. This is useful as a quick reference for models and IPD
sections and lowers the learning barrier of VSP especially for new users. Another usage
is that the output of the entire documentation can be compiled into a manual using a
document preparation system such as LATEX. Additionally, the documentation system
features automated generation of IPD defaults that can be included in simulation IPDs.
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This chapter deals with the implementation details of the models implemented in
VSP. The underlying physics of the models were already discussed in Chapter 2. This
chapter draws on the computational methods laid out in Chapter 3. In a sense, the
chapter combines Chapter 2 and Chapter 3 and discusses the implementation of each
VSP model involved in simulating mobility in planar and non-planar devices. Throughout
this chapter the word model refers specifically to a VSP model as described in Section 3.1
rather than a model in the common sense of the word.
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The chapter is divided into five sections, each dealing with a different class of models:
(i) basic models dealing with basic physical aspects such as electrostatics, (ii) model
chains for consecutive model execution, (iii) carrier models providing electronics structure,
carrier density, and concentration, (iv) mobility models, and (v) scattering models used
by the mobility models.

4.1 Basic Models

This is an umbrella section for models involved in the overall simulation process but not
belonging to any larger class of models.

4.1.1 Poisson

The Poisson model solves the linearized version of the Poisson equation in Eq. (2.47),

∇ · ε∇ϕ = −%− d%

dϕ
ϕ. (4.1)

The second term on the right hand side serves as (approximative) derivative of the space
charge density with respect to the potential and used to stabilize the self-consistent process.
The equation is discretized using the finite volume method discussed in Section 3.2.3.
Dirichlet boundary conditions may be imposed (ideal conductors), all other boundaries
are zero-flux Neumann conditions. A special kind of boundary conditions are floating
boundaries, where a boundary charge rather than an applied voltage is imposed, and the
voltage becomes a solution variable.

Input quantities are the space charge density, interface charge density, and their
respective derivatives, as well as initial potential, boundary voltages, and boundary
charges. The output quantity is the potential difference between a provided initial
potential and the solution, which can then be used as an update in a non-linear iteration
scheme (cf. Section 4.1.2).

The Poisson model accesses the material database through the MaterialTypeMa-
terialIpd model, to determine which segments are metallic, and through the Poisson-
MaterialIpd model, to retrieve the dielectric constants of the materials present on the
device object. The material models access the Materials section of the IPD to obtain
the necessary information:
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Materials

{

...

Si

{

MaterialTypeModel

{

type = "semiconductor";

}

PoissonModel

{

epsr = 3.9;

}

...

}

...

}

4.1.2 Self-Consistent Loop

The self-consistent loop model SCLoop is used to iterate between the Poisson model
and the carrier models, which will be discussed in Section 4.3, until the electrostatic
potential converges. The SCLoop model takes care of setting the correct parameters,
properties, and quantities of the submodels, and of supplying the quantities calculated in
each step, such as potential and space charge density, to the respective models.

The Poisson model is hardwired into the SCLoop model but carrier models can
be specified freely. This is illustrated in Fig. 4.1. The SCLoop model also supports
multiple carrier models in different regions of the device. A typical application would be
the examination of a gate stack with a poly-Si gate, where an accurate description of the
electronic structure is sought in the channel, but a simpler (and faster) model suffices for
the poly-Si gate.

SCLoop not only combines the electron, hole, and doping concentrations into a total
charge density using Eq. (2.46) but also computes the space charge derivative w.r.t. the
electrostatic potential using

d%

dϕ
= q0

(
dND

dϕ
− dNA

dϕ
− dn

dϕ
+

dp

dϕ

)
. (4.2)

The derivative is used in the Poisson model to stabilize the self-consistent loop and to
improve convergence rate. An exact derivative effectively results in a Newton-Raphson
scheme, which has second-order convergence. However, for practical purposes it is
sufficient to merely approximate the derivative and fast convergence can still be achieved.
An update for the electrostatic potential is obtained from the Poisson model and applied
to the current electrostatic potential estimate according to

ϕn = ϕn−1 + dδϕn, (4.3)

where d ∈ [0, 1] is the damping parameter. SCLoop automatically lowers and increases
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Figure 4.1: Common usage scenarios of the SCLoop model; top left: SCLoop configura-
tion involving a Poisson model and the EffMassClassic model for classical
equilibrium carrier distributions (cf. Section 4.3.1); indicates submodel
invocation, indicates data flow; bottom: SCLoop model with the Eff-
MassQuantum model for equilibrium distribution of confined carrier states
(cf. Section 4.3.2); the carrier model instance invokes one closed-boundary
Schrödinger model for every conduction/valence band valley (c 0, c 1, . . . ,
v 0, . . . ); top right: different carrier models can be used on different seg-
ments, where appropriate; here, a classic carrier distribution is sufficient to
model the accumulation/depletion effects in the poly-Si gate, while quantum
confinement is accounted for in the channel.

d from iteration to iteration depending of the convergence behavior. Different strategies
for computing d are described in [52].

The SCLoop model also defines the settings of the contact regions through the
Contact model. In the Contact model the voltage or Fermi boundary conditions are
set to the user-defined values. Voltage-type conditions impose a Dirichlet boundary
condition in the Poisson equation, while Fermi-type conditions keep the Fermi-energy at a
constant value while applying Neumann boundary conditions in the Poisson equation. By
self-consistent iteration, the potential in the Fermi-type contacts will approach the built-in
potential in order to reach charge neutrality. The Contact model also includes the
work function difference for metals. At the same time, contacts define the regions where
space charge is summed up and thereby allows the calculation of capacitance-voltage
characteristics, which the SCLoop model can automatically extract.
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4.1.3 Strain

Device files obtained from process simulators often contain the mechanical stress field
rather than the strain field. However, strain is required as input for electronic structure
models as discussed in Section 2.1. The Strain model converts the stress into strain, by
inverting the elastic relation

σ = C : ε, (4.4)

with σ, ε, and C being the stress, strain, and stiffness tensors, respectively. The Strain
model first rotates the stress tensor from device coordinates into crystal coordinates,
depending on the orientation of the crystal. Then the strain is obtained in crystal
coordinates using relation in Eq. (4.4), and rotated back into device coordinates.

The Strain model accesses the material database through the ElasticityMaterialIpd
model, to obtain the component of the stiffness tensor in Eq. (4.4) for each material
present on the device object. The Materials section of the IPD provides the necessary
information:

Materials

{

...

Si

{

ElasticityModel

{

C11 = 166.0 "GPa";

C12 = 64.0 "GPa";

C44 = 79.6 "GPa";

}

...

}

...

}

4.2 Model Chains

The Chain model is different from the other models in the sense that it does not model
any physics but serves as an utility to instantiate a chain of models and execute the
instances in sequence. Together with VSP’s ability to arbitrarily pass attributes between
models, the Chain model provides the foundation to build complex simulation work
flows and execute them.

A typical example is shown in Fig. 4.2 where the Chain runs SCLoop instances with
increasingly complex (and computationally expensive) carrier models. The converged
result from a SCLoop with a simpler carrier model is used as initial guess for a SCLoop
with a more complex one. Using the the simpler model’s result as initial guess, rather
than starting with complex one right away, saves iterations and thus simulation time.
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SCLoop
sc quantum

EffMassQuantum
cc quantum

SCLoop
sc classic

EffMassClassic
cc classic

Model
chain

SCLoop
sc kp

KdotPQuantum
cc kp

ϕinit

ϕinit

Simulation {

model = "Chain";

Base {

models = ["SCLoop:sc_classic",

"SCLoop:sc_quantum",

"SCLoop:sc_kp"];

sc_classic {

ccd = "~Device.AcceptorConcentration";

... }

sc_quantum { phi = "^sc_classic.phi";

... }

sc_kp { phi = "^sc_quantum.phi";

... }

} }

Figure 4.2: A chain instantiates a list of models and invokes each of them in sequence
when run; attributes can be passed between the model instances. A snippet
of the IPD configuration is shown in the lower part.

4.3 Carrier Models

Carrier models compute the electron and hole concentrations for a given potential, as
well as their respective derivatives or approximations thereof. They all have a common
interface consisting of four input quantities, and four output quantities. The input
quantities are electrostatic potential (ϕ/phi), electron and hole quasi-Fermi energies,
(EFn/Efn and EFp/Efp), and temperature (T ). The output quantities are the electron
and hole concentrations (n/ccn and p/ccp) and the derivatives of the electron and hole
concentration w.r.t. the electrostatic potential.

4.3.1 Classic 3D Carrier Gas with Parabolic Band Structure

The simplest carrier model is EffMassClassic. It evaluates the carrier concentration
using the 3D formulas from Table 2.3 for parabolic bands. It does not include quantum
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confinement, strain, and non-parabolicity effects.
The EffMassClassic model retrieves information about the electronic structure from

the EffectiveMassMaterialIpd model, which references the following section in the
material database:

Materials

{

...

Si

{

EffectiveMassModel

{

Ec0 = 1.12 "eV"; // conduction band edge

Ev0 = 0.00 "eV"; // valence band edge

ConductionBand

{

ValleyX

{

ml = 0.916; // longitudinal effective mass

mt = 0.196; // transversal effective mass

symmetry = "X"; // symmetry: X, L, G(amma), K

gv = 2; // valley degeneracy

shift = 0.0 eV; // valley energy shift

Dt = 1.1 "eV"; // transversal deformation potential

Dl = 9.2 "eV" + Dt; // longitudinal deformation potential

}

...

}

ValenceBand

{

...

}

}

...

}

...

}

4.3.2 Confined Carrier Gas with Parabolic Band Structure

The EffMassQuantum model computes the concentration of a partially or fully con-
fined carrier system, using the appropriate formula from Table 2.3 depending on the
dimensionality of the device geometry. The states’ energies, wave functions, and densi-
ties are computed by invoking the Schroedinger model, which solves the single-band
effective-mass Schrödinger equation, Eq. (2.48), for each valley found in the material
database for the semiconductor materials on the device.

Before having the confined states calculated by the Schroedinger model, the Eff-
MassQuantum model first analyzes the profile of the confining potential, as shown
ind Fig. 4.3. Here, we need to distinguish between two situations: shallow and deep
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Etrunc

EF
bound states
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deep
confinement
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bound
states

Figure 4.3: The shallow (left) and deep (right) confinement regimes; in the former mobile
charge is comprised of bound carriers with energies up to Elim and free carriers
above Elim modeled as a classic 3D carrier gas. Shallow confinement is typical
of carrier accumulation. In deep confinement Elim lies above truncation energy
Etrunc and charge is comprised of bound carriers only. Deep confinement is
typical of inversion and fully-depleted channels.

confinement. The two cases roughly correspond to carrier accumulation and inversion,
respectively. In shallow confinement, bound states can only exist up to the energy Elim,
at which carrier can leak out of the potential well. In this case, bound states below Elim

are occupied using a low-order Fermi-Dirac integral from Table 2.3, while the free states
above Elim are treated as 3D carrier gas and are populated using the incomplete 3D
Fermi-Dirac-Integral [52].

EffMassQuantum retrieves its material parameters from the same material database
sections as EffMassClassic (Section 4.3.1). In contrast to EffMassClassic, Eff-
MassQuantum uses the anisotropic masses, and deformation potentials provided by the
material database. Additional attributes are added to the EffMassQuantum interface
for setting strain and crystal orientation.

Single-Band Schrödinger Solver

The Schroedinger model is typically used as a submodel of EffMassQuantum, dis-
cussed above, although stand-alone invocation is also possible. The model solves the
eigenvalue problem of the stationary single-band Schrödinger equation in real-space
representation, −~2

2
∇ ·w ·∇ + V (r) +

∑
ξ,η

εξηDξη

ψ(r) = Eψ(r), (4.5)

where w = m−1 is the inverse effective mass tensor, V the external potential, and εξη
and Dξη the strain and deformation potential components, respectively. The equation
is discretized using finite volumes discussed in Section 3.2.3. The resulting algebraic
eigenvalue problem reads

Hψ = EVψ, (4.6)
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where H is the discretized Hamiltonian, and V a diagonal matrix containing the volumes
of the boxes associated with each vertex on the grid. The generalized eigenvalue equation
can be transformed into an ordinary one,

V−
1
2 HV−

1
2 x = Ex, x = V

1
2ψ. (4.7)

The Schroedinger model solves the discretized and transformed Schrödinger equation,
finding either a given number of smallest or greatest eigenvalues, or all eigenvalues within
a given energy interval using the solvers and methods discussed in Section 3.4.3.

4.3.3 Confined Carrier Gas with Non-Parabolic (k·p) Band Structure

KdotPQuantum is a carrier model that calculates the subband structure and carrier
concentration based on the k·p model of the electronic structure discussed in Section 2.1.1.
KdotPQuantum is interface-compatible with EffMassQuantum, such that the models
can easily replace each other. Being based on a multi-band k·p model of the electronic
structure, KdotPQuantum can represent confinement, orientation, and strain more
accurately than EffMassQuantum and also describes band non-parabolicity.

Multi-Band Schrödinger Solver

KdotPQuantum is hard-wired to the SchroedingerMulti model, which solves the
Schrödinger sub-problem, very much in the same sense as the Schroedinger model does
for EffMassQuantum. Here, we deal with the multi-band Schrödinger equation,∑

j

Ĥ ij
k ψ

j
k(r) + V (r)ψik(r) = Ekψ

i
k(r), (4.8)

where the indices i and j refer to the bands of the k·p band structure model. Each of
the coupling Hamiltonians Ĥ ij

k contains terms of second, first, and zeroth order, similar
to the operator in Eq. (4.5),

Ĥ ij
k = −~2

2
(∇ + k) ·wij · (∇ + k)− ~vij · (∇ + k) + U ij +

∑
ξ,η

εξηD
ij
ξη (4.9)

with inverse masses wij , velocities vij , potentials U ij , and deformation potentials Dij
ξη,

which describe couplings of different order between bands i and j.
As in Section 4.3.2, the multi-band Schrödinger equation is discretized using the finite

volume method. The anisotropic approach described in Section 3.2.3 is particularly
important here, since mixed derivative operators, such as ~2∂x∂y/M often occur in k·p
Hamiltonians. The Hamiltonian blocks in Eq. (4.9) are k-dependent and so are the
energies and the wave function solutions of the multi-band Schrödinger equation. This
k-dependence can be also represented in the discretized equation as

H =

(∑
ξ,η

Aξηkξkη +
∑
ξ

Bξkξ + C

)
x = Ex, (4.10)
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Figure 4.4: k-space scanning process; first, the k-grid is mapped coarsely and the states
that lie within the energy range of interest are selected, while the remaining
ones are discarded; second, the states of the k-points between the ones from
the coarse run are computed; third, a layer of k-points surrounding the
already computed region is tested for states that lie within the energy region
if interest. The last step is repeated until the search returns no new states.

where each of the matrices Aξη, Bξ, and C can be assembled separately and then
combined using sparse matrix addition for different values of k, without invoking the
assembler over and over again.

The SchroedingerMulti model uses the algebraic methods described in Section 3.4.3
to solve the multi-band Schrödinger equations.

k-Space Integration

Because the solutions of the multi-band Schrödinger equation depend on k in a non-trivial
way, a numerical k-space integration is needed to compute the integral for the carrier
concentration in Eq. (2.43). KdotPQuantum uses a k-space grid to represent the
subband structure and to perform the necessary integration. Unless provided with a
specific k-grid by the user, KdotPQuantum constructs an ortho-product grid spanning
the portion of k-space where the subbands of interest are expected to appear.

To make the integration computationally efficient, a search algorithms was devised
that narrows the selection of k-grid points to include only the ones that significantly
contribute to the integral. The search is done in multiple passes until the set of the
contributing k-points is exhausted, as shown in Fig. 4.4.

Extraction of k·p-Parameters from the Material Database

The KdotPQuantum model has an interface to the material database. The interface
consists of the KPMaterialIpd material model and a series of specialized expressions
classes wrapped around it (cf. Section 3.3.1). The corresponding section in the material
database reads similar to this:

Materials {
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Si {

KPModel {

models = ["TwoBandConduction", "ThreeBandValence"];

TwoBandConduction {

symmetry = "X"; // symmetry: X, L, G(amma), K

degeneracy = 2; // spin

H1 // definition of diagonal Hamiltonian block

{

type = "conduction";

ml = 0.916;

mt = 0.196;

aux k0 = 0.15 * 2.0 * pi / 5.431 "Angstrom";

vl = ^k0 / ml;

Dt = 1.1 "eV";

Dl = 9.2 "eV" + Dt;

}

H2 : H1 { vl = -^H1.vl; }

HC // definition of off -diagonal Hamiltonian block

{

type = "coupling";

inv_mtt = -2.0 * (1.0 / ^mt - 1.0);

Dtt = 7.0 "eV";

}

// definition of Hamiltonian using blocks above

H = [["H1", "HC"],

["HC", "H2"]];

}

ThreeBandValence { ... }

}

...

}

The example represents the configuration of the two-band k·p model in Eq. (2.20) taken
from [39, 40]. The model parameters are structured in the same way as suggested by
Eq. (4.8). The Hamiltonian consists of blocks coupling the individual bands of the k·p
model; the block structure is reflected in above example by

H = [["H1", "HC"],

["HC", "H2"]];

allowing an arbitrary number of blocks to be set and, therefore, an arbitrary number
on bands to be modeled. Each element references a subsection where the block masses,
velocities, and potentials can be set following Eq. (4.9). The inverse coupling masses are
provided in units of 1/me and the coupling velocities in unit of ~/me.
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4.4 Mobility Models

Mobility models calculate the low field mobility of a confined carrier system. A mobility
model needs to be attached to a carrier model instance from which it obtains the electronic
structure: subbands, wave functions, and densities. Two mobility models are imple-
mented in VSP, one for each type of electronic structure: EffMassLowField attaches
to instances EffMassQuantum, whereas KdotPLowField attaches to instances of
KdotPQuantum. The two models shall be described in this section.

Both mobility models rely on scattering models, which will be discussed later in
Section 4.5, to compute the square matrix elements. Those are required to evaluate the
transition rates via Fermi’s golden rule, Eq. (2.49), for each of the various scattering
processes. Mobility models instantiate scattering models as their submodels. The user
has the freedom to select the scattering processes to be included in a simulation. The
effect of multiple scattering processes is accounted for microscopically, by adding the
transition rates, rather than macroscopically via Mathiessen’s rule.

4.4.1 Mobility Calculation for Parabolic Bands

The EffMassLowField model implements the model described in the effective mass
case of Section 2.4.2. The mobility computation is a linear process consisting of four
steps: (i) transport mass calculation, (ii) evaluation of the scattering models, (iii) solving
the linearized Boltzmann transport equation for the microscopic scattering rates, and
(iv) extraction of channel mobility and conductivity.

Transport Mass Calculation

The EffMassQuantum model obtains effective masses for each material present in the
device, rotates the effective mass tensor into the device coordinate system, and passes the
rotated mass tensors to the Schroedinger submodels. The EffMassLowField model
obtains the rotated mass tensors and applies the procedure in Eq. (2.37) to compute the
effective mass component relevant for transport.

Scattering Model Invocation

Following the transport mass calculation, each of the selected scattering models is
invoked. Each scattering model is expected to pre-calculate the square matrix elements
for each possible transition between two states. The square matrix elements are retrieved
in the next step via the getSqMatrixElem method. In the single-band effective mass
approximation the square matrix elements of isotropic scattering processes only depend
on the indices of the two subbands. For anisotropic processes, they also depend on the
momentum transfer q = k− k′; for better performance, models of anisotropic scattering
processes tabulate the square matrix element for a range of q-values and use a polynomial
interpolation formula when the getSqMatrixElem method is called.
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Conductivity and Mobility Calculation

Eq. (2.147) involves an energy-integration to compute the conductivity of each subband,
the integrand being the microscopic relaxation time tensor, which is only defined implicitly
via Eq. (2.151). The energy-integration is performed numerically, where the coefficients
in Eqs. (2.152) to (2.155) are evaluated for every energy-grid value and Eq. (2.151) is
solved to obtain the relaxation time tensor components.

Eq. (2.151) represents a system of equations the rank of which is equal to the number
of subbands intersecting energy E. It is a small dense system and can be readily solved
using direct methods. While the integrals Eqs. (2.154) and (2.155) can be reduced to
simple analytical expressions for isotropic scattering processes, they need to be evaluated
numerically for anisotropic processes, necessitating two nested loops for Ωd and Ω′d.

Finally, the subband conductivities are readily inserted into Eq. (2.148) to obtain the
mobility of the individual subbands and the channel as a whole.

4.4.2 Mobility Calculation for Non-Parabolic Bands

The KdotPLowField model calculates mobility and conductivity from the linearized
Boltzmann transport equation (LBTE), which is more general than the approach used in
EffMassLowField model. The starting point is the reduced LBTE in Eq. (2.140),[

∂f̃1
n

∂t

]
scatt.

= qeE · vn(k)
df0(E)

dE
. (4.11)

where eE is a unit vector specifying the direction of the driving field and f̃1 = f1/F is
the reduced distribution response.

kx

ky

i j

lk

ε

i′ j′

l′k′

ε′

Figure 4.5: Energy contours that pass trough k-grid elements ε and ε′ couple the elements’
vertices, i, j, k, l, i′, j′, k′, and l′.
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Figure 4.6: Calculation of the coupling weights for an elastic scattering operator; wν,ν′ is
obtained by integrating the product of the density of states of state ν and ν ′

over the energy interval where ν and ν ′ overlap. Multiplied by a transition
rate it gives the probability flux between ν and ν ′.

k-Space Discretization

Equation (4.11) is discretized using the same k-space grid as that employed to obtain
the subband structure in the first place, i.e. diagonalizing a k·p Hamiltonian. The k-grid
imposes the concept of discrete k-cells that are coupled by probability fluxes due to
scattering [80, 81]. The general form of the discretized equation is thus∑

ν′

Ŝν,ν′wν,ν′
[
f̃1
ν − f̃1

ν′
]

= −q0eE · vν
df0

dE
Vk, (4.12)

where ν = (n,k) is a global index that denotes the index of each k-grid cell in each subband
and Vk is the volume, area, or length of a k-grid cell depending on the dimensionality of
the carrier gas. The discrete cells are coupled through Ŝν,ν′wν,ν′ , where

Ŝν,ν′ =
2π

~
〈|Hn,n′;k,k′ |2〉 (4.13)

is the transition rate due to Fermi’s golden rule without the energy-conserving δ(E−E′±
~ω) and wν,ν′ are weights that arise from the discretization of the scattering operator.
For inelastic processes, additional weights (1− fν) and (1− fν′) appear, and the matrix
Ŝν,ν′ 6= Ŝν′,ν is no longer symmetric.∑

ν′

Ŝν,ν′wν,ν′ f̃
1
ν (1− fν′)− Ŝν′,νwν′,ν f̃1

ν′(1− fν) = −q0eE · vν
df0

dE
Vk (4.14)

To compute the coupling weights wν,ν′ we need to consider the total probability flux
from one cell ν to another ν ′. When an equi-energy contour passes through two elements
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Figure 4.7: The resulting non-zero pattern of the discretized scattering operator for the
example subband structure from Fig. 4.6; sorting all states by absolute energy
produces dense symmetric skyline matrix, thus eliminating storage overhead.

on the k-grid it couples each element’s vertices, as shown in Fig. 4.5. A numerical
integration

∫
dE is performed, where the contribution of each contour is accumulated

dwν,ν′ = gν(E)gν′(E ± ~ω)dE, (4.15)

with gν(E) = 1/~‖vν‖ being the local density of states. The integration is preformed
using the ContourIntegrator class described in Section 3.3.3. Figs. 4.5 and 4.6 visualize
the integration procedure for elastic scattering (~ω = 0) in two-dimensional and one-
dimensional subband structures, respectively.

Energy conservation in the scattering operator makes the resulting matrix wν,ν′ sparse.
Ordering the discrete states by their absolute energy will result in a more dense skyline-
type arrangement of the non-zero elements in the matrix [82] as shown in Fig. 4.7. This
is important since the number of non-zero elements in a realistic device can easily reach
tens or hundreds of millions; dense storage has virtually no memory overhead and results
in fast access times, since the elements don’t have to be searched for in maps.

Scattering Model Invocation

The sparsity of wν,ν′ also means that Ŝν,ν′ only needs to be computed for the non-zero
elements. This is crucial since the computation of the transition rates in confined systems
is by far the most time demanding task and the effort must be kept to a minimum.

The KdotPLowField model invokes each of the activated scattering models and
passes the information about the sparsity pattern of wν,ν′ by calling the scattering
model’s method setSqMatrixElemMaps. A StateIndexer object is passed during the call
which maps each pair of states for which wν,ν′ is nonzero to a unique transition index and
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vice versa. The scattering model is then expected to process each of the transitions and
store the values of 〈|Hn,n′;k,k′ |2〉 of each transition in a list. This list is obtained by the
KdotPLowField model by calling the setSqMatrixElemMaps method. The StateIndexer

is then used to retrieve the information from the list.

LBTE-Solution

Once the scattering operator has been computed, the KdotPLowField model needs to
solve Eq. (4.12). Being a large, sparse system, the discretized LBTE is ideally solved
using iterative methods. However, it needs to be considered that the LBTE is singular,
and necessarily so: In the absence of any fields, the homogeneous Boltzmann transport
equation Eq. (2.130) reduces to [

∂fn(k)

∂t

]
scatt.

= 0. (4.16)

Thus, at least the equilibrium distribution function is within the kernel of the scattering
operator. This also carries forward to its discretized version. To remedy this problem, an
iterated Tikhonov regularization technique is applied [83].

4.5 Scattering Models

Scattering models are a category of models used by low-field models EffMassLowField
and KdotPLowField. Each scattering model describes a specific type of scattering
process based on Fermi’s golden rule (Eq. (2.49))

Sn,n′(k,k
′) =

2π

~
〈|Hn,n′;k,k′ |2〉δ(E(k)− E(k′)± ~ω). (4.17)

Each scattering model provides the square matrix elements, 〈|Hn,n′;k,k′ |2〉, for each
possible transition based on the input consisting of the wave functions along with
process-specific parameters.

The physics of each scattering model has been described in detail in Section 2.3.
This section will establish the connection between the mathematical models and the
implemented VSP models, and also fill in some of the relevant implementation details.

4.5.1 Scattering Model Interface

Before discussing the individual scattering models in detail, a short description of the
programming interface common to all scattering models is shown. The base class for
scattering models has the following interface:

struct ScatteringBase : ModelExtended

{

// constructor , destructor

ScatteringBase(ObjectUnstructured *obj);

~ScatteringBase ();
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// for querying properties of model

virtual bool isIsotropic () const = 0;

virtual bool isElastic () const = 0;

virtual bool isIntraValley () const = 0;

// relaxation energy ~ω
virtual double getRelaxationEnergy () const = 0;

// Is process activated for a specific band structure valley?

bool isEnabled(size_t ival) const;

// square matrix element for a specific transition

// called by EffMassLowField only

virtual double getSqMatrixElem(const tensor ::Tuple <> &q,

size_t ival , size_t jval , size_t isb , size_t jsb ,

int relax = 0) = 0;

// defines the transitions that are possible due to energy

// conservation by means of a StateIndexer object

// called by KdotPLowField only

void setSqMatrixElemMaps(size_t ival , const StateIndexer &indexer ,

const valarray <tensor ::Tuple <> > &kvec);

void setSqMatrixElemMaps(size_t ival , const StateIndexer &indexer );

// retrieves list of square matrix elements

// called by KdotPLowField only

const Full <double > &getHsqMatrix(size_t ival) const;

Full <double > &getHsqMatrix(size_t ival);

}

From ScatteringBase, a template class is derived which allows to predefine the return
values of isIsotropic, isElastic, and isIntraValley based on tags:

// tags for ScatteringTemplate

struct Elastic;

struct Inelastic;

struct Isotropic;

struct Anisotropic;

struct IntraValley;

struct InterValley;

template <class Isotropy , class Elasticity , class Valley = IntraValley >

struct ScatteringTemplate : ScatteringBase

{

};

4.5.2 Coulomb Scattering Template

A special case is the class

template <class Elasticity >

struct CoulombScatteringTemplate :

ScatteringTemplate <Anisotropic , Elasticity >
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{...};

which contains facilities for defining the electrostatic Green’s function and evaluating the
sensitivity function from Eq. (2.79).

The Poisson equation from Eq. (2.84) is discretized using the finite volume method
developed in Section 3.2.3 which also takes care of device geometry, interface conditions,
and boundary conditions. The discretized system is solved using direct sparse methods
mentioned in Section 3.4.3.

It is of advantage, to factor the matrix of the discretized Poisson equation only once
for each discrete value of q = ‖k− k′‖ and to apply only the much cheaper solve-step for
each wave function product ψ∗nψn′ . To make use of this optimization, the system matrix
is only factored on a grid of predefined q-values. The values of 〈|Hn,n′;k,k′ |2〉 at a specific
q = ‖k− k′‖ are then obtained by executing the solve-step at the two adjacent q-grid
points and interpolating between the results.

This template is the base for the models ScatteringIIS and ScatteringPOP.

4.5.3 Non-Polar Phonon Scattering

The models ScatteringADP, ScatteringODP, and ScatteringIVS compute the
square matrix elements for acoustic, intra-valley optical, and inter-valley optical phonon
scattering by means of the integrals given in Eq. (2.75), Eq. (2.66), and Eq. (2.67),
respectively.

Scattering model parameters, such as phonon energy ~ω, sound velocity vs, and mass
density ρ̄m, as well as the individual deformation potentials Dac, Dopt, and Div can be
provided via their respective IPD sections.

4.5.4 Alloy Disorder Scattering

The ScatteringADS model computes the square matrix element for alloy disorder
scattering using integral Eq. (2.126).

Scattering potentials for electrons and holes are provided via the model’s IPD section,
while the cell volume is obtained from the material database for each material found on
the device. Material composition x can be either set via IPD or read from the device
object.

4.5.5 Ionized Impurity Scattering

The ScatteringIIS model implements the integral in Eq. (2.82) to compute the square
matrix element for a given density distribution of charged impurities. It is based on the
CoulombScatteringTemplate class described in Section 4.5.2 which provides the efficient
solution of the Poisson equation, which in turn provides the sensitivity function, Un,n′;k,k′ .

Both volume and interface-densities of charged impurities can be passed to Scat-
teringIIS, as well as screening functions for electrons and holes. The dielectric constants
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for the materials found in the device are obtained from the material database (see Sec-
tion 4.1.1). The ScatteringIIS model can be used for all kinds of charged impurities,
such as dopants, interface charges, or remote charges.

4.5.6 Polar-Optical-Phonon Scattering

The ScatteringPOP model follows the derivation in Section 2.3.3. It implements the
integral from Eq. (2.106) to evaluate the square matrix element using the gradient of the
sensitivity function as defined in Eq. (2.108). As ScatteringIIS, the ScatteringPOP
models is based on the CoulombScatteringTemplate class which provides the means to
obtain the sensitivity function.

The model allows one to set the phonon energy ~ω, while the low and high-frequency
dielectric constants of the materials found in the device are obtained via the material
database.

The ScatteringPOP model can be used for both local polar-optical phonon scattering
which is typically present in compound semiconductors, as well as for remote phonon
scattering that occurs in combination with high-k dielectric gate stacks.

4.5.7 Surface and Interface Roughness Scattering

The ScatteringSRS model implements the procedure laid out in Section 2.3.4. First,
the form-functions are computed along segment interfaces according to Eqs. (2.118)
and (2.119) using the wave functions provided to the model. The ScatteringSRS model
automatically obtains the effective band edge potentials and effective mass tensors from
the EffMassQuantum and KdotPQuantum models used to compute the states.

Seccond, the spectral form-functions need to be computed from the form-functions
Fn,n′;k,k′(q⊥) required for the integral in Eq. (2.125). A computationally efficient pro-
cedure was devised to compute the spectral form-functions, depicted in Fig. 4.8. The
form-functions, defined along the interface curve C , are resampled onto an equidistant
s-grid and fast-Fourier-transformed to obtain their spectral counterparts Fn,n′;k,k′(q⊥).

Having found the spectral form-functions Fn,n′;k,k′(q⊥) the square matrix element
in Eq. (2.125) is obtained via q⊥-integration. In the case of a parabolic subband
structure the wave functions and thus the form-functions are independent of k and k′. So
Fn,n′;k,k′(q⊥) = Fn,n′(q⊥) allows |Hn,n′;k,k′ |2 to be tabulated for different subband pairs
n, n′ and q⊥-values further reducing computational cost.
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Figure 4.8: Computational procedure to obtain the form-functions fn,n′(s) and the spec-
tral form-functions Fn,n′(q⊥): For each two cross-section wave functions ψn
and ψn′ the expression in Eq. (2.118) is evaluated along the interface curve
C on the mesh used for computing the states. The form-function fn,n′(s) is
interpolated onto an equidistant s-grid and padded with zeros if C is open.
The spectral form-function Fn,n′;k,k′(q⊥) is computed using the fast Fourier
transform (FFT). Calculation of the square matrix element for a transition
from subband n to subband n′ in Eq. (2.125) is done as follows: For each
energy value the difference of axial k-vectors is evaluated which represents the
axial momentum transfer q‖. The roughness power spectrum C(q) is offset
using

√
q2
‖+q

2
⊥ and its product with the spectral form-function Fn,n′;k,k′(q⊥)

integrated.
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This chapter presents a number of case studies to demonstrate the models and compu-
tational methods developed in this work. The results focus mainly on inversion mode
devices with a brief section on junction-less devices at the end. The presented inversion-
mode devices, including silicon-based n-type and p-type devices as well as InGaAs n-type
devices, will be analyzed by low-field simulations of the cross-section. These will provide
channel mobility and conductivity. While these low-field quantities are not directly
observable due to the very short gate lengths of the devices, they serve as a meaningful
metric to capture the amount of scattering the carriers undergo in the respective channels.
In this way, trends of channel mobility with respect to crystal orientation, geometry,
stress, and material composition can be established.

5.1 Inversion-mode Channels

The bulk of the case studies presented in this chapter focus on inversion-mode devices.
Without a gate, inversion-mode devices would normally be in the off-state. The channel
is either intrinsic or doped to produce majority carriers of opposite type to the type of
the carriers conducting current in the on-state. So, a n-type device would have p-type
doping in the channel, whereas a p-type device would have n-type. While the conducting
carriers are minority carriers in the channel, they are majority carriers in the source
and drain regions which are highly doped. The doping profile produces p/n-junctions
between channel and source, and channel and drain, which form a potential barrier in
the channel limiting the flow of current from source to drain. Thus, in a inversion-mode
device, the gate potential actively reduces the barrier and allows current to flow.

93



5 Results
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3
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Figure 5.1: Left: TEM image of an NMOS fin structure fabricated by Intel [6], [84];
segments of the simulation domain are overlaid. Right: electron concentration
in the fin from a self-consistent Schrödinger-Poisson calculation at gate bias
VG = 1 V; the computational grid is shown.

5.1.1 22 nm n-Type Silicon FinFET

The first device to investigate will be Intel’s tri-gate NMOS transistor [6] a cross-section
of which is shown in Fig. 5.1. While the exact fabrication process of these FinFETs is not
publicly known, the structure shown here was obtained by dismantling a commercially
available chip and exposing the FinFET cross-sections [84]. The teardown has revealed
that the fins are not perfectly rectangular but have inclined sidewalls and are rounded at
the top. Due to the confidentiality of the fabrications process it is not known whether
these modifications are deliberate or involuntarily induced by the process. A closeup of
the TEM image [84] reveals that the FinFET channel is oriented along the {110}-axis and
fabricated on a {100}-surface wafer. The devices are reported to be mechanically stressed
to enhance performance [6]. However, no quantitative figures on the strain conditions in
the devices are known.

In the following paragraphs different parameter variations will be applied to the device
design and their impact analyzed.

Channel and Substrate Orientation

To investigate the transconductivity for different combinations of channel and substrate
orientation, self-consistent Schrödinger-Poisson simulations are performed using the
SCLoop (Section 4.1.2) and EffMassQuantum models (Section 4.3.2), combined with
low-field calculations using the EffMassLowField model (Section 4.4.1). The geometry
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Figure 5.2: Fin channel transfer characteristics for four different channel/substrate ori-
entations of the device shown in Fig. 5.1; degradation of the characteristic
can be observed for [110]/(001) and [110]/(11̄1) orientations, but not for
[110]/(11̄0) which has about the same drive current as [100](010), the tradi-
tional orientation in Si MOSFET fabrication.

of the simulation domain was extracted directly from the TEM-image of the fabricated
device, as shown in Fig. 5.1.

Figure 5.2 shows that channel conductivity behaves differently for each combination of
orientations. The transconductivity is severely degraded for the orientations [110]/(001)
and [110]/(11̄1) but not for [110]/(11̄0) and [100]/(010), the latter being the traditional
channel orientation for Si MOSFET devices. The orientation of the fabricated device is
[110]/(001), which is not optimal, but is likely due to the unavailability of wafers with
surfaces other than (001) for large-scale production.

Sidewall Inclination

As previously mentioned, the fabricated 22 nm FinFETs have inclined sidewalls, i.e. the
fins are tapered. To find a possible reason why and whether tapering has any influence
on performance, a systematic study on an ensemble of different channel shapes, ranging
from triangular via trapezoidal to rectangular is performed. The ensemble of devices is
shown in Fig. 5.3. The simulation procedure is the same as for the previous analysis.

Figure 5.4 shows the fin-shape dependence of the mobility and of the contributing
scattering mechanisms. It reveals that certain orientations show a significant variation
of mobility with respect to fin shape; [110]/(001) clearly shows optimal mobility for a
slightly tapered fin.

The analysis also reveals that surface roughness scattering is the source of mobility
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0 nm 2 nm 4 nm 6 nm 8 nm 10 nm 12 nm 14 nm 16 nm

16 nm

Figure 5.3: To shed light on what influences current degradation, an ensemble of channel
cross-section shapes is generated, ranging from a triangular fin to rectangular
one. Transfer characteristics are calculated for each shape and orientation;
electron concentration is shown for the [110]/(001) orientation (degraded)
at VG = 1 V (strong inversion). We note that electrons preferably occupy
the top of the fin and the device corners with slight inversion close to the
sidewalls.

degradation, while phonon scattering shows little variation with respect to orientation or
shape. This also indicates that the variation of transconductivity for different orientations
shown in the previous analysis is due to surface roughness scattering. The observation
can be explained as follows: In the rectangular channel electrons interact with both
top and sidewall roughness, while in the triangular channel they are squeezed between
the inclined sidewalls. Proximity to rough {110} or {111} surfaces is known to reduce
electron mobility, compared to {100} [85]. Hence, if the interacting surfaces are not close
to {100}, mobility degradation will occur.

It seems plausible from our observations that a tapered fin might have been found to
give the best performance during technology development and was therefore deliberately
chosen for the device design.

Strain

The last analysis of the 22 nm NMOS FinFET is concerned with strain and its impact on
the device performance. Strain is caused by mechanical stress induced by the fabrication
process and acts on carrier transport via two mechanisms: (i) valley re-population and
(ii) effective mass change [45].

Valley re-population happens due to a strain-induced energy shift of individual valleys
in the band structure, and is a first-order effect. Since proccess-induced strain is either
uniaxial or biaxial, differently oriented valleys experience different shifts, causing a carrier
population in each valley different from the unstrained case. Strain is commonly applied
in such way that the valleys with light transport mass (see Section 2.1.3) are more
populated than the others.

This impact of valley re-population for FinFETs is shown in Fig. 5.5. Due to two-
dimensional confinement, the light-mass valleys are already well separated from the
heavy-mass valles, so there is not much to be gained from strain engineering by means of
valley re-population.
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Figure 5.4: Breaking down the mobility into the contributing scattering mechanisms
reveals that surface roughness scattering (SRS) is mainly responsible for
the orientation-dependent behavior. SRS-limited mobility increases with
thinning of the fin top for [100]/(010). In [110]/(001) direction the picture
is quite different: SRS-limited mobility increases with tapering, reaching a
local maximum and then plummeting as the triangular shape is approached;
[110]/(11̄0) does not appear to suffer from increased SRS and exhibits almost
the same behavior as [100]/(010). The explanation for this is that electrons
scatter more off rough {110} and {111} surfaces than they do off {100}
surfaces [85]. In the [100]/(010) and [110]/(11̄0) channels electrons face the
rough sidewalls roughly at {100}, while in the [100]/(001) channel sidewall
are approximately {110}-oriented.
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Figure 5.5: One way to increase mobility is valley re-population which can be achieved by
confinement or strain. Valleys experience different energy shifts due to strain
depending on their orientation, which alters their population. Enhancement
through re-population is possible for 〈100〉 channels only, where tensile stress
causes the heavy-transport-mass valley (double-primed) to shift upwards
and become less populated. In non-planar channels such as fins the valley
with heavy transport mass is already shifted almost out of reach due to
confinement and the mobility is close to its maximum possible value. Thus,
mobility enhancement by re-population is diminished in fins compared to
planar MOS and UTB channels.

98



5 Results

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16

C
h

a
n

n
el

eff
ec

ti
v
e

m
a
ss

/
m

e

Top width / nm

stress

[100]/(010)

[110]/(001)

[110]/(11̄0)

[110]/(11̄1)
0.00

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8 1

C
h

a
n

n
el

eff
ec

ti
v
e

m
a
ss

/
m

e

Axial channel stress / GPa

[100]/(010)

[110]/(001)

[110]/(11̄0)

[110]/(11̄1)

Figure 5.6: The key figure is the transport effective mass; a lighter effective mass directly

results in higher mobility due to a µ ∝ m
−3/2
eff relation in one-dimensional

electron gases [45]. The increased transport mass in the [100]/(010) channel
results in a mobility reduction of ≈ 25% which cannot be reversed using
strain. Channels in 〈110〉 direction do not have this penalty; in fact, their
transport mass can be reduced below the bulk value by tensile stress along
the channel. The resulting mobility enhancement can be as big as ≈ 30%
for 600 MPa which is in excellent agreement with experimental observations
from [86].

Effective mass change is a second-order effects and can only be modeled using higher-
order band structure models, such as k·p. Shear strain can affect the coupling energies
between bands (see Section 2.1.1) which causes a change in the resulting effective mass of
the (sub-)bands. A smaller effective mass results in higher mobility and injection velocity,
both of which are figures of merit in device design.

A k·p-analysis of the subband structure reveals on one hand that [100]/(010)-oriented
devices have a larger transport mass due to confinement and, hence, a lower mobility.
The mass does not change with uniaxial 〈100〉 stress because it does not produce any
shear strain. The combination [110]/(11̄0) on the other hand not only shows confinement-
induced transport mass decrease but also that mass can be reduced below bulk level
(0.196) using tensile stress along the channel (Fig. 5.6). The stress-induced mass reduction
results in a mobility enhancement of ≈ 30% for 600 MPa which is in excellent agreement
with experimental data [86].

5.1.2 22 nm p-Type Silicon FinFET

The second example device studied is a 22 nm PMOS tri-gate transistor, the cross-section
of which can be seen in Fig. 5.7. The simulation here is fully k·p-based [87], i.e. the models
used are SCLoop and KdotPQuantum (Section 4.3.3), along with KdotPLowField
(Section 4.4.2). This is necessary due to the warped structure of the valence band. The
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Figure 5.7: Hole concentration profile at low (left) and high (right) gate voltage for chan-
nel/substrate orientation [100]/(010); the holes exhibit true two-dimensional
confinement in the channel, and are centered below the fin top at low inversion
densities. At high inversion densities the holes form regions of quasi-one-
dimensional inversion near the sidewalls.
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Figure 5.8: Mobility vs. hole inversion density; [100]/(010) channel mobility is below
[110]/(11̄0). Mobility is mostly limited by SRS which causes all three curves
to decrease at high inversion densities. Interestingly, phonon-limited mobility
increases slightly for [100]/(010) and the [110]/(001) channel due to energy-
separation of the heavy and light hole bands by the gate field.
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In0.52Al0.48As

Figure 5.9: Structure of the MIS capacitor fabricated in [88]; the layers are assumed to
be undoped.

six-valley effective mass model for holes (Section 2.1.2) could also be applied here, but it
would need to be calibrated against k·p-results first. The hole concentration computed
by the self-consistent loop is shown in Fig. 5.7.

Similar to what was done for the NMOS FinFET, we look at different channel/substrate
orientations of the PMOS FinFET and evaluate the respective performances. The
investigated channel/substrate orientations are [100]/(010), [110]/(001), and [110]/(11̄0).
Channel mobility was computed for various gate voltages and is displayed as function of
inversion density in Fig. 5.8. There are significant differences in the mobility curves of
the different orientations with [110]/(11̄0) exhibiting the best and [100]/(010) the worst
transport properties.

The favorable performace trend for [110]/(001) and [110]/(11̄0) orientations is consis-
tent with the performance benefits observed in the NMOS device. Again, [110]/(11̄0)
orientation shows the best performance, suggesting that developing a high-performance
CMOS process based on {110}-surface wafers may be worthwhile.

5.1.3 InGaAs-Based Devices

Quantum-well MISFETs based on III/V materials are promising candidates for low-power
high-performance logic applications [88]. They benefit from the high electron mobilities
of the III/V materials and exhibit good channel control due the substrate material acting
as a back-barrier – similar to a SOI MOSFET – but without degradation of thermal
conductivity in the substrate.

In this section, two simulation studies are presented – a planar InGaAs MISFET
and a InGaAs FinFET. Both are based on the same layered structure containing a
In0.7Ga0.3As-quantum well and a gate stack corresponding to the one fabricated in [88]
and shown in Fig. 5.9.
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Table 5.1: Electronic structure parameters for the materials of the MIS capacitor

InGaAs InP InAlAs

mΓ 0.0364 0.0795 0.0733

ml,L 1.478 1.5 1.297

mt,L 0.203 0.408 0.195

ml,X 1.788 1.5 1.493

mt,X 0.249 0.438 0.229

αΓ 2.0

αL 7.0

αX 5.0

Electronic Structure

The electronic structure is modeled using a multi-valley effective mass approach with
non-parabolic correction, i.e. the dispersion of each valley is defined implicitly as

Ekin(1 + αvEkin) =
~
2
k ·m−1

v · k, (5.1)

where mv and αv are the valley-specific effective mass tensor and a non-parabolicity
correction factor, respectively. Table 5.1 shows a summary of the electronic structure
parameters used. The effective masses are based on interpolation rules from [38], the
non-parabolic correction factors are interpolated from the values in [89].

The non-parabolic correction is used in the calculation of the subband edge energies by
linearizing the relation in Eq. (5.1) and calculating the eigenenergy shifts using first-order
perturbation. It is also used to correct the dispersion relation of each subband individually.
Numerical quadrature is used to compute the Fermi-Integrals with the non-parabolic
correction [90]. The non-parabolic correction also affects electron transport via the
density of states and group velocity. The models EffMassQuantum from Section 4.3.2
and EffMassLowField from Section 4.4.1 were extended accordingly to include the
non-parabolic correction.

Dielectric Material

The dielectric used in the presented gate stack is TaSiOx, a high-k dielectric suitable
for III/V MISFETs. The material is found in numerous experimental works, often in
conjunction with Ta2O5. Although [88] does not disclose the exact nature and growth
process of the dielectric, one may conclude from [91, 92] that TaSiOx is in fact a layered
structure composed of Ta2O5 and SiO2 layers. Both SiO2 and Ta2O5 are materials with
well-known bulk properties, thus the dielectric is modeled as (Ta2O5)x(SiO2)1-x and the
resulting dielectric constant approximated as

εTaSiOx
r = ε

Ta2O5
r x+ ε

SiO2
r (1− x), (5.2)
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Figure 5.10: Capacitance-voltage curve of the MIS capacitor used to fit the work-function
and the composition of the dielectric; the error in the circled region was
minimized to avoid the influence of interface traps.

with the layer composition x being treated as a fitting parameter. The values used are

ε
Ta2O5
r = 25 and ε

SiO2
r = 3.9.

Planar InGaAs MISFET

A MIS capacitor reported in [88] has been analyzed (see Fig. 5.9). First, a capacitance-
voltage (C/V) curve is calculated to determine the gate-work-function difference and
the composition of the dielectric. Then, using these results, the channel conductivity is
calculated using the EffMassLowField models along with the appropriate scattering
models.

Capacitance-voltage curve These curves are simulated using a self-consistent Schrödin-
ger-Poisson loop. The simulations are then fed into an automated optimizer to fit the
simulated C/V curve against the measured one. The optimizer is configured to match
the region above the threshold-knee in the C/V curve, thereby omitting the contribution
of interface traps which we have not included in our model.

The C/V curve was successfully fitted yielding a metal-gate work function difference of
−0.4575 eV with respect to the valence band edge of the InGaAs-layer, and a dielectric
composition of x = 0.2404, resulting in a ε

TaSiOx
r = 8.9722.

Transconductance curve Using the fitted parameters, the transconductance of a long
channel device (LG = 40 µm) is simulated. The transconductance was also characterized
in [88]. The roughness power spectrum at the TaSiOx/InP-interface is assumed to be
exponential with an RMS-amplitude of 3�A and an autocorrelation length of 40�A. The
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Figure 5.11: Transconductance versus gate voltage for a 40 µm long channel; the simulated
curve closely matches the measured one. Up to 0.4 V gate voltage the channel
current is limited almost exclusively by POP scattering. For higher gate
voltages SRS becomes also important.

simulated result is in good agreement with the measured curve as shown in Fig. 5.11. A
conductivity simulation with only POP scattering enabled shows, that POP scattering
is by far the dominant and thus conductivity-limiting scattering process. This result is
achieved without any parameter-fitting for POP scattering, leaving the interface roughness
as the only source of uncertainty.

Figure 5.12 shows the contribution of all scattering processes to the overall channel
mobility. This confirms that electron transport in the channel is limited by POP scattering
and SRS on the TaSiOx/InP interface, whereas non-polar phonons and scattering on the
InP/InGaAs interface can be neglected. The latter can be explained by the relatively
low electron barrier between InGaAs and InP of 0.4 eV, resulting in a much smaller SRS
matrix element than for the high TaSiOx/InP-barrier. Furthermore, the InP-layer is
readily penetrated by the electron wave function as can be seen in Fig. 5.13.

InGaAs FinFET

The same modeling framework used for the planar InGaAs MISFET is also applied to
a FinFET. The device uses the same layer structure as shown in Fig. 5.9. However,
the InGaAs layer is 20 nm thick and a 10 nm wide fin is formed from the InGaAs and
InP layers grown on top of the InAlAs layer. TaSiOx and a metal gate are deposited
isotropically onto the free surfaces.

The long-channel properties of the InGaAs FinFET are analyzed by computing the
transconductance curve of a 40 µm long gated fin. The transconductance, shown in
Fig. 5.14, is seen to be dominated by POP scattering and surface-roughness scattering.
The mobilities due to each scattering process in Fig. 5.15 give a more detailed picture:
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Figure 5.12: Electron mobility of the MIS capacitor plotted against the inversion den-
sity; POP scattering clearly dominates electron transport. SRS on the
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POP limits the mobility in the low-density regime, while scattering off the rough TaSiOx

interface limits mobility at higher densities. In the FinFET, surface roughness scattering
also occurs at the sidewalls, becoming the main mobility-limiting process.

5.2 Junction-Less Channels

Contrary to the inversion-mode device, the junction-less device [13] has a high, uniform
doping in source, drain, and channel. Without a gate, the junction-less transistor is
simply a resistor with enough majority carriers in the channel for current to flow, resulting
in a normally-on device. Thus, the gate potential actively squeezes the majority carriers
out of the channel, creating a potential barrier that controls current flow from source to
drain.

While an inversion-mode transistor attracts carriers towards the semiconductor/insula-
tor-interface, the junction-less transistor pinches the channel, repelling carriers from the
interface. This difference in operation is shown in Fig. 5.16 for a pi-gate channel. The
different distribution of carriers in the channel cross-section results in the carrier transport
in the junction-less transistor being affected much less by surface roughness scattering.
However, at the same time, the junction-less transistor has a higher doping concentration
in the channel, resulting in a higher impurity scattering rate. A computational study is
performed to further investigate the differences [49].

The analyzed devices are (i) a inversion-mode NMOS transistor with 3× 1017 cm−3 ac-
ceptor doping in the channel and (ii) a junction-less NMOS transistor with 1× 1019 cm−3

donor doping. The channel of both devices is a Si slab with a maximum width of 30 nm
and a height of 10 nm and is surrounded by SiO2. The channel and substrate orientations
are [100] and (010), respectively. In both devices, the gate consists of poly-Si and is doped
with 1× 1019 cm−3 donors for the inversion-mode device and 1× 1019 cm−3 acceptors for
the junction-less device.

A quantitative comparison between the inversion-mode and a junction-less device is
shown in Fig. 5.17. The gate work-function has been adjusted such that both devices
have the same sub-threshold response and matching off-currents. Above threshold,
the inversion-mode transistor has a much sharper response to the gate voltage, while
saturating a high gate voltage due to increasing surface roughness scattering, also visible
in Fig. 5.18.

The junction-less device shows a shallow response right above threshold voltage but is
not affected by surface roughness - at least not in the shown voltage range. Figure 5.18
shows that mobility is limited by impurity scattering with the impurities being effectively
unscreened for most of the operating regime. At high saturation, screening of the
impurities becomes effective. But in this regime the junction-less transistor operates in
accumulation-mode which causes a sharp increase in surface roughness scattering.
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Figure 5.16: Electron concentration in a pi-gate Si channel cross-section; left – inversion-
mode device, right – junction-less device; both devices are biased above
threshold. In the inversion-mode FET electrons are pushed towards the top
and sidewalls while in the junction-less FET electrons remain centered.
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CHAPTER 6Conclusion and Outlook

6.1 Conclusion

In the presented work a comprehensive theoretical basis for mobility modeling in nano-
scale field-effect transistors has been established, which treats planar and non-planar
technologies, n-type and p-type channels, as well as inversion and accumulation-based
devices on equal footing. This consistency of modeling increases the confidence in the
validity of simulation results. The work comprises two major blocks of innovation.

First, numerous models were contributed in this work to fill gaps that were left open
by previous works, such as (i) the six-valley effective-mass model for holes, (ii) a generic
model for carrier scattering with polar-optical phonons using the electrostatic Green’s
function, (iii) a generalized surface-roughness scattering model suitable for non-planar
channels of any shape, (iv) an approach to calculating the low-field mobility of a channel
by solving the linearized Boltzmann transport equation, and (v) a method to include
effective mass anisotropy and scattering process anisotropy in mobility modeling.

Second, a computational framework has been developed to process the models. The
main requirement for the framework was to be TCAD-compatible, i.e. to be fast, reliable,
and flexible enough for use as a device engineering tool. The developed framework
is capable of processing arbitrary device geometries with unstructured meshes. High-
efficiency algorithms have been developed that adapt to the problem at hand, e.g.
automatically selecting the necessary number of subbands and k-points to satisfy a given
error tolerance. The modular and layer-based design of the framework allows for relatively
easy extension with new models, such as those described in the following section.

6.2 Outlook

This work represents a snapshot of a work in progress. It forms the basis for further
works on physical device modeling. Calculating mobilities already required to deal with
all major aspects of semiconductor device physics, such as electronic structure modeling,
carrier density and self-consistent electrostatics, a comprehensive set of scattering models
based on the semi-classical approach, covering most semiconductor materials at room
temperature, and, finally, mobility modeling based on the linearized Boltzmann transport
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equation. The next development steps point towards extending the presented modeling
framework to simulate entire devices instead of device cross-sections.

6.2.1 Boltzmann Transport Equation in Phase Space

To calculate the current in a narrow-channel devices, such as FDSOI FETs, nanowire
FETs, and FinFETs, the steady-state subband Boltzmann transport equation from
Eq. (2.129) needs to be solved. The right-hand side of the equation containing the
scattering operator has already been dealt with. The methods for evaluating the scattering
operator have been presented in this work. The free-streaming operator at left-hand side
governs the ballistic transport in the BTE. It consists of two differentials, one acting
in real-space, the other in k-space. The velocity coefficient vn(k) contains the subband
structure information.

The solution variable, i.e. the distribution function, is a function of both real and
k-space coordinates. The Cartesian product of real and k-space is called the phase space.
To solve the steady-state BTE, the phase space of the device’s channel needs to be
constructed, along with a grid, and the free-streaming operator discretized within it.

Such a phase-space BTE solver is able to simulate carrier transport in devices at
high fields, including effects such as velocity overshoot, carrier heating, and quantum
resistance. Being an extension of the work presented here, it also allows to include all the
aspects covered in physical mobility modeling, such as doping, channel geometry, crystal
orientation, strain, and different channel materials. The phase-space transport can either
be based on effective mass or on a k·p model of the electronic structure. A prototype of
a phase-space BTE solver is presented in [93].

6.2.2 Quantum Transport

A full solution of the Boltzmann transport equation as discussed in the previous section is
able to exhaust the capabilities of the semi-classical modeling framework. Going beyond
semi-classical transport leads to the domain of quantum transport, where the wave-
nature of electrons and holes is fully appreciated in both carrier propagation and carrier
scattering. Rather than solving a particle equation in phase-space, a wave equation is
solved in real space using open boundary conditions at the devices contacts. The two most
popular methods for quantum transport are the Quantum Transmitting Boundary Method
(QTBM) which operates in the Schrödinger picture and is wave-function-based, and the
Non-Equilibrium Green’s Function method (NEGF) which operates in the interaction
picture and is operator-based. A third method would be the Wigner method based on the
Wigner equation, which can be seen as an extension the Boltzmann transport equation.

The general-purpose computational framework described in Chapter 3 contains compo-
nents that can be used to model quantum transport based on the QTBM and NEGF
methods. The facilities for dealing with geometry, topology, and discretization can be
re-used. The expression system, problem specification, and automatic assembly allow
to specify both parabolic and k·p-based Hamiltonians, as done for the closed-boundary
problems in this work. The aforementioned open boundary conditions are based on the
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plane wave boundary condition in Eq. (3.5) which is readily imposed using the existing
assembly components. The wave-function-based QTBM benefits from infrastructure for
solving sparse systems. A prototype of a QTBM solver for intra-band and band-to-band
source-drain tunneling is presented in [93–95].

The NEGF method allows to include self-consistent scattering in carrier transport,
which is its most important advantage. However, näıvely implemented, NEGF calculations
quickly become computationally intractable for devices with technologically relevant
dimensions. A practical, TCAD-compatible extension to NEGF requires additional work
regarding efficient matrix-inversion techniques.
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