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Abstract

In the last couple of years much effort has been dedicated to the development
and the investigation of hybrid quantum devices, which combine the advantages
of very dissimilar quantum systems for the realization of efficient quantum com-
putation and communication technologies. Particularly interesting in this regard
are solid-state quantum memories based on ensembles of spins (e.g. nitrogen va-
cancy defects in diamond or rare-earth doped crystals) coupled to superconducting
microwave cavities. Here the spin-ensemble acts as a robust memory where the
collective coupling to the cavity mode allows for the coherent transfer of quan-
tum information. The major downside of ensembles inside solid-state systems is
their natural tendency to exhibit inhomogeneous broadening of the transition fre-
quencies, which makes experiments as well as their theoretical description very
challenging. On the theoretical side it is primarily the computational complexity
due to the exponential growth of the associated Hilbert space with the system size
that inevitably calls for approximation schemes. To date, the theoretical descrip-
tion of large spin-cavity systems is mainly limited to weak driving fields, where
the number of spin-excitations in the ensemble is negligible, corresponding to a
Holstein-Primakoff approximation, or to mean-field approaches, where correlations
within the system are neglected.
In this thesis we aim to develop a model that accurately accounts for the dy-

namics of large inhomogeneously broadened spin ensembles, coupled to a single
cavity mode, even in the case of strong driving fields. In particular we employ
the generalized cumulant expansion method to account for correlations within the
system, which allows us to go beyond the Holstein-Primakoff and mean-field ap-
proximations. As a first step, we demonstrate the applicability of the cumulant
expansion technique to the well-studied Jaynes-Cummings model and investigate
its main limitations. We then move on to the Tavis-Cummings model with multi-
ple spins inside the cavity and generalize our approach to ensembles containing a
very large number of spins (∼ 1012). Our model aims not only to provide a proper
description of ensemble-based quantum memories, but also to serve as a novel tool
for the investigation of interesting new physics arising from cooperative effects in
inhomogeneous ensembles.





Kurzzusammenfassung

In den vergangenen Jahren wurden große Anstrengungen in der Entwicklung und
Untersuchung von hybriden Quantensystemen unternommen, welche die Vorteile
von sehr unterschiedlichen Quantensystemen vereinen um damit Quantenrechner
und Quanten-Kommunikationstechnologien effizient nutzbar zu machen. Von be-
sonderem Interesse sind in diesem Zusammenhang Festkörper-Quantenspeicher ba-
sierend auf Spin-Ensembles (z.B. Stickstoff-Fehlstellen in Diamant oder mit Selte-
nen Erden dotierte Kristalle), gekoppelt an supraleitende Mikrowellen-Resonatoren.
Dabei fungiert das Ensemble als robuster Speicher, wobei die kollektive Kopplung
an die Resonator-Mode eine kohärente Übertragung von Quanteninformation er-
möglicht. Der größte Nachteil von Spin-Ensembles in Festkörpersystemen ist ihre
Tendenz zur inhomogenen Verbreiterung der Übergangsfrequenzen, was sowohl zu
experimentellen wie auch zu theoretischen Herausforderungen führt. Letztere zeigen
sich in Problemen der Berechenbarkeit aufgrund des exponentiellen Wachstums des
Hilbert-Raums mit zunehmender Systemgröße, was Näherungsverfahren zwangs-
läufig erforderlich macht. Bislang ist die theoretische Beschreibung von großen ge-
koppelten Ensemble-Resonator-Systemen hauptsächlich beschränkt auf schwache
Treibungsstärken, bei denen die Anzahl an Spin-Anregungen im Ensemble ent-
sprechend einer Holstein-Primakoff-Näherung vernachlässigt werden kann, oder auf
Mean-Field-Näherungen, welche Korrelationen innerhalb des Systems vernachlässi-
gen.
In dieser Arbeit wollen wir ein Modell für die Dynamik von großen, inhomo-

gen verbreiterten Spin-Ensembles gekoppelt an einen Resonator, entwickeln, das
auch bei starker Treibung seine Gültigkeit behält. Wir verwenden dabei eine Ent-
wicklungsmethode für verallgemeinerte Kumulanten, um Korrelationen im System
berücksichten zu können, was eine wesentliche Verbesserung gegenüber der Holstein-
Primakoff- und Mean-Field-Näherung darstellt. In einem ersten Schritt zeigen wir
die Anwendbarkeit der Kumulanten-Entwicklungsmethode auf das gut untersuch-
te Jaynes-Cummings-Modell und untersuchen ihre Einschränkungen. Danach ge-
hen wir über zum Tavis-Cummings-Modell mit mehreren Spins innerhalb des Re-
sonators und verallgemeinern unseren Ansatz auf Ensembles die eine sehr große
Anzahl an Spins (∼ 1012) beinhalten. Unser Modell soll nicht nur eine korrek-
te Beschreibung von Ensemble-basierten Quantenspeichern zur Verfügung stellen,
sondern auch als neuartiges Werkzeug zur Untersuchung von interessanter neuer
Physik, resultierend aus kooperativen Effekten innerhalb inhomogener Ensemble,
dienen.





Chapter 1.

Introduction

“Most phenomena we are familiar with involve such tremendous num-

bers of electrons that it’s hard for our poor minds to follow that com-

plexity. In such situations, we can use the theory to figure roughly what

ought to happen and that is what happens, roughly, in those circum-

stances.” - Richard P. Feynman [1]

The theory of cavity quantum electrodynamics (QED), which deals with the inter-
action between matter and the quantized field modes in a resonator, was initiated
already in 1946 by the pioneering work of Purcell [2]. Cavity QED soon moved
into the spotlight as it opened up a new window on very fundamental issues of
physics. Not only that the placement of an atom inside a cavity can enhance or
likewise reduce its spontaneous emission rate [3, 4]; it is the atom-field coupling
itself that is altered through the cavity, which thereby can give rise to a totally
new behaviour of the coupled system. However, it was not until the 1980s that
the so-called “strong coupling regime” was realized, where the coupling strength
between the atoms and the field mode exceeds the total losses of the system, per-
mitting the observation of self-induced Rabi oscillations [5]. The outstanding role of
cavity QED arose not least from the development of an exactly solvable theoretical
model for the interaction between an atom and a single mode of the quantized field,
by Jaynes and Cummings [6]. This model, which now bears their names, stimu-
lated the discovery of numerous remarkable properties and applications of coupled
spin-cavity systems1 [7–12].
More Is Different2 - It is well known since the celebrated work by Dicke [14] that

the simultaneous presence of many atoms, all interacting with the same electromag-
netic field, can give rise to a cooperative behaviour of the system as a whole which is
quite different from the superposition of effects arising from single atoms [15]. The
investigation of such behaviour in the mean time became an actively developing area

1 In its original version the model of Jaynes and Cummings comprised a molecule (two-level
system) interacting with a single quantized cavity mode. Note that throughout this thesis we
will use the terms “spin”, “atom”, and “two-level system” interchangeably, no matter if we are
dealing with a real spin 1/2 or some other two-level system.

2 Anderson (1972) [13]
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of research on its own. In order to account for ensembles of atoms in cavity QED,
Tavis and Cummings generalized the Jaynes-Cummings model to the case of many
two-level systems [16]. The Tavis-Cummings model has gained renewed interest
since the development and investigation of “hybrid quantum systems”, which aim
to combine the individual advantages of different quantum systems for novel quan-
tum devices in the context of quantum computation and quantum communication
technologies. Particularly attractive in this context are ensemble-based quantum
memories coupled to superconducting microwave cavities [17–29]. Here the cavity
serves as a quantum bus for the coherent in- and output of information which is
to be stored in the ensemble. Among the most promising physical realizations are,
for instance, negatively charged nitrogen vacancy defects in diamond [18–22], rare-
earth doped crystals [23], clouds of ultracold atoms [24, 25] or magnons in yttrium
iron garnet [26, 27]. The main drawback of most of these systems, however, is their
natural inclination for inhomogeneous line broadening, which acts as the major
source for decoherence. Besides the experimental difficulties that arise from the in-
homogeneous broadening the theoretical ones are no less challenging. Clearly, the
exponential growth of the Hilbert space with the number of constituent particles
inevitably calls for approximation schemes.
More Is Difficult - Up to now, the theoretical description of large inhomoge-

neously broadened spin ensembles coupled to a cavity is mainly limited to the
Holstein-Primakoff approximation [30], where the spin-dynamics is restricted to
the south pole of the Bloch-sphere, or to semi-classical mean-field approaches. In
particular, the Holstein-Primakoff approximation, which was successfully employed
in previous studies [31–33], is limited to weak driving fields, where the number of
photons inside the ensemble is always small as compared to the total number of
spins. In this regime the number of excited spins can be readily neglected and the
system behaves linearly with respect to the driving field amplitude. If the incident
pulse, however, is increased to a certain value, the Holstein-Primakoff approxima-
tion breaks down and the system enters the nonlinear regime.
The goal of this thesis is to develop a theoretical model that goes beyond the

Holstein-Primakoff approximation and mean-field methods such as to accurately
describe the dynamics of an inhomogeneously broadened spin ensemble coupled to
a single cavity mode even in the strong-driving regime. A common way to reduce
the system size in many-particle configurations without restricting the excitation
numbers is to truncate the correlations between the particles at some level. Such
approaches are usually referred to as cluster-expansion methods [34, 35] and are
used successfully in semiconductor quantum optics [36, 37]. In this thesis we de-
velop a similar approach based on the generalized cumulant expansion [38] for the
driven Jaynes-Cummings model, including inhomogeneously broadened ensembles
and strong driving fields. With this theoretical framework we aim to provide a
powerful instrument for the investigation of cooperative effects in the presence of
inhomogeneous broadening. In particular our model will comprise complex collec-
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tive phenomena like “superradiance” or its inverse counterpart “superabsorption”
[14, 39]. Inhomogeneous broadening is expected to give rise to interesting new
aspects of such nonlinear effects since it leads to important qualitative differences
already on the linear level, as evidenced by the “cavity protection effect” [31, 32].
Hence the model we develop in this thesis constitutes not only an important tool for
the theoretical description of certain hybrid quantum systems, but will also pave the
way to study new fundamental effects that arise from inhomogeneous broadening
in the nonlinear regime.





Chapter 2.

Model

In this chapter a theoretical model is developed to describe large and inhomoge-
neously broadened ensembles of two-level systems coupled to a single cavity mode
in the presence of strong driving fields. The first section aims to provide a general
introduction to the theoretical framework of our model. In the second section we fo-
cus on the actual implementation of these concepts for the driven Tavis-Cummings
model. Finally, the last section deals with the clustering method developed to solve
the resulting equations of motion even for very large ensembles.

2.1. Cumulant Expansion for Expectation Value

Based Approaches

The following treatment covers the broad class of open quantum systems obeying
the Markovian approximation with respect to their environment, which requires
the correlation time between the system of investigation and its surrounding to
be negligibly small3. The governing equation for open quantum systems of the
Markovian type is the Lindblad master equation [41, 42]

dρ

dt
= − i

~
[H, ρ] + L , (2.1)

where the first term is the usual Liouville-von Neumann equation for a closed
quantum system with the Hamiltonian H and density operator ρ. The second term
on the right hand side of Eq. (2.1) is the Lindblad term,

L =
∑
m

λm
2

(2LmρL
†
m − L†mLmρ− ρL†mLm) , (2.2)

which is responsible for the coupling to the environment. Here λm and Lm are the
transition rates and jump operators respectively.

3 A detailed description of the Markovian approximation can be found in any textbook on open
quantum systems (see, e.g., [40, 41]).
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Unfortunately, a direct solution of Eq. (2.1) is available only for very small sys-
tems, as the Hilbert space of a composite quantum system grows exponentially with
the number of constituents. It is apparent that procedures which directly solve for
the system’s density matrix ρ(t) quickly run into troubles for growing system sizes.
However, in many cases it is not necessary to know the whole density matrix; in
particular for correlated many-particle systems it is convenient to go immediately
for the quantities of interest, such as expectation values, and derive equations of
motion for them [34, 43–45].

Hierarchy of Equations of Motion To obtain the equations of motion for the
expectation value 〈Â〉 := Tr(Âρ) of some operator Â, Eq. (2.1) is multiplied by Â.
Following this, its trace is calculated;

Tr(Â
dρ

dt
) = − i

~
Tr(Â[H, ρ]) + Tr(ÂL) .

Using the time independence of the operator Â in the Schrödinger picture, the com-
mutativity of time derivative and trace operation as well as the cyclic permutability
of the latter, one finally ends up with a generalized Ehrenfest equation of motion
(cf. [34]),

d

dt
〈Â〉 = − i

~
〈[Â,H]〉+

∑
m

λm
2
〈2L†mÂLm − L†mLmÂ− ÂL†mLm〉 . (2.3)

Performing this procedure, a hierarchy of linear differential equations is obtained.
To stay on top of this set of equations, we sort them by the order of their expectation
value. An expectation value of first-order in the following denotes the expectation
value of a single operator only; a second-order expectation value denotes the joint
expectation value of a product of two operators, and so on. The interaction part of
H couples the equations for nth-order expectation values to equations for expecta-
tion values of order n+ 1 and in this way generates an infinite hierarchy of coupled
linear differential equations4,5

d

dt
〈1〉 = 〈1〉+ 〈2〉

d

dt
〈2〉 = 〈1〉+ 〈2〉+ 〈3〉

... (2.4)
d

dt
〈n〉 = 〈1〉+ 〈2〉+ . . .+ 〈n〉+ 〈n+ 1〉

...

4 Such a hierarchy is usually called BBGKY hierarchy after Bogoljubow, Born, Green, Kirkwood,
and Yvon [46].

5 An explicit example, of such a hierarchical set of equations for a real physical system, is given
in Appendix B.
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Here 〈n〉 symbolizes some linear function of nth-order expectation values.
Solving any such system apparently requires a closed set of equations, and there-

fore demands truncation procedures. Equations (2.4) obviously form a closed set
of equations, if 〈n+ 1〉 = 0 at some level. For small systems without gain such
truncations come naturally, as the total number of excitations is limited and man-
ageable. For instance, consider a system including one photon as single excitation;
then all expectation values which contain two or more creation operators a† vanish.
As a result, the equations form a closed set, which can be readily solved [47]. In-
deed, for such configurations usually the Lindblad master equation can be directly
integrated as well, because the effective Hilbert space remains small. If the num-
ber of excitations is numerous instead, or depends on an external driving, different
truncation strategies have to be used. In the following section such a truncation
procedure, based on the generalized cumulant expansion, is developed.

2.1.1. Generalized Cumulants

Cumulants (or semi-invariants) play a very important role in probability theory as
well as statistical physics6, since they determine the character of the considered
random variables [48, 49]. A brief repetition of the basic definitions of moments
and cumulants for classical random variables can be found in Appendix A.
In his 1962 paper Kubo pioneered the significance of generalized cumulants for

quantum mechanics [38]. Introducing an ordered exponential function and assum-
ing that an average can be defined in such a way that it gives rise to a convergent
moment generating function, the joint cumulant for operators X1, X2, . . . is defined
as [38, 50]

〈O(Xα1
1 Xα2

2 . . .)〉c :=

[
∂α1+α2+...

∂ξα1
1 ∂ξα2

2 . . .
ln 〈O(eξ1X1+ξ2X2+...)〉

]
ξi=0

, (2.5)

where O is some ordering operator. Eq. (2.5) fully determines cumulants in terms of
expectation values. The first-order cumulant of a certain operator A corresponds to
the expectation value 〈A〉 itself, whereas the second-order cumulant of two operators
gives their covariance. The expressions for cumulants of higher order become more
cumbersome. As an example, equations (2.6)-(2.9) show cumulants up to fourth
order:

〈A〉c = 〈A〉 (2.6)

〈AB〉c = 〈AB〉 − 〈A〉 〈B〉 (2.7)

〈ABC〉c = 〈ABC〉 − 〈AB〉 〈C〉 − 〈AC〉 〈B〉 − 〈BC〉 〈A〉+ 2 〈A〉 〈B〉 〈C〉 (2.8)

6 In statistical physics the term Ursell function is more common.
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〈ABCD〉c = 〈ABCD〉 −
(
〈A〉 〈BCD〉+ 〈B〉 〈ACD〉+ 〈C〉 〈ABD〉 (2.9)

+ 〈D〉 〈ABC〉+ 〈AB〉 〈CD〉+ 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉
)

+ 2
(
〈AB〉 〈C〉 〈D〉+ 〈AC〉 〈B〉 〈D〉+ 〈AD〉 〈B〉 〈C〉

+ 〈BC〉 〈A〉 〈D〉+ 〈BD〉 〈A〉 〈C〉+ 〈CD〉 〈A〉 〈B〉
)

− 6 〈A〉 〈B〉 〈C〉 〈D〉
No simple formula for the expansion of high-order cumulants can be given. However,
their calculation, using Eq. (2.5), is rather straightforward, although the resulting
expressions become very cumbersome with increasing order. For the required trun-
cation procedure we make use of two basic properties of cumulants:

(i) A cumulant of certain order can be solely expressed by expectation values of
the same and lower order.

(ii) If one or more operators are statistically independent from the others, the
corresponding cumulant equals zero. In other words, cumulants of statistically
unconnected operators vanish.

2.1.2. Truncation Procedure

Employing the latter property (ii) of cumulants from above, truncating cumulants
for many physical systems comes more naturally than the truncation of expectation
values mentioned earlier. Even if the number of excitations is numerous, one can
assume that contributions from cumulants of rising order decrease, as do the cor-
relations between increasing numbers of constituents. Therefore (instead of setting
〈n+ 1〉 = 0 ) it is assumed that at a certain order

〈n+ 1〉c ≈ 0 . (2.10)

It then follows through property (i) that the expectation values of the (n + 1)-th
order can be well approximated by a nonlinear combination of lower-order expec-
tation values

〈n+ 1〉 ≈ f
(
〈n〉 , 〈n− 1〉 , . . . , 〈1〉

)
, (2.11)

which allows to truncate the hierarchy of equations (2.4) to obtain a closed set of
equations, as illustrated in Figure (2.1),

d

dt
〈1〉 = 〈1〉+ 〈2〉

d

dt
〈2〉 = 〈1〉+ 〈2〉+ 〈3〉 (2.12)

...
d

dt
〈n〉 = 〈1〉+ 〈2〉+ . . .+ 〈n〉+ f

(
〈n〉 , 〈n− 1〉 , . . . , 〈1〉

)
.



Chapter 2. Model 9

Here f
(
〈n〉 , 〈n− 1〉 , . . . , 〈1〉

)
is some nonlinear function involving solely expecta-

tion values of order n and lower. Thus, the infinite hierarchy of linear differential
equations (2.4) turns into a closed set of nonlinear differential equations (2.12),
where the nonlinearities arise from the truncation (2.11). The explicit form of the
nonlinear function f

(
〈n〉 , . . . , 〈1〉

)
for the first three orders can be inferred from

the equations (2.7)-(2.9):

〈AB〉 ≈ 〈A〉 〈B〉 (2.13)

〈ABC〉 ≈ 〈AB〉 〈C〉+ 〈AC〉 〈B〉+ 〈BC〉 〈A〉 − 2 〈A〉 〈B〉 〈C〉 (2.14)

〈ABCD〉 ≈ 〈A〉 〈BCD〉+ 〈B〉 〈ACD〉+ 〈C〉 〈ABD〉+ 〈D〉 〈ABC〉 (2.15)

+ 〈AB〉 〈CD〉+ 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉

− 2
(
〈AB〉 〈C〉 〈D〉+ 〈AC〉 〈B〉 〈D〉+ 〈AD〉 〈B〉 〈C〉

+ 〈BC〉 〈A〉 〈D〉+ 〈BD〉 〈A〉 〈C〉+ 〈CD〉 〈A〉 〈B〉
)

+ 6 〈A〉 〈B〉 〈C〉 〈D〉

From now on, we denote the truncation of all second-order expectation values,
〈AB〉 ≈ 〈A〉 〈B〉, as the first-order cumulant expansion. Eqs. (2.14) and (2.15)
then correspond to the second-, and third-order cumulant expansion, respectively.
Note that, by property (ii), the approximations (2.13)-(2.15) are exact, if one of
the operators is statistically independent of the others.

Intuitive Approach to the Cumulant Expansion Before we move on to a
concrete application of the cumulant expansion, we aim to complement to the
subject an intuitive approach that was developed during this thesis. Instead of
starting from the pure mathematical definition Eq. (2.5) it is instructive to begin
our investigation from the latter property (ii) of cumulants, which allows for a more
physical motivation. It follows right from statistical independence that the relation
〈AB〉 = 〈A〉 〈B〉 holds, if A and B are statistically unconnected [51]. In order
to truncate the hierarchic set of equations (2.4) at higher orders, we seek for a
generalization of this factorization for expectation values involving more than two
operators. We therefore make the general ansatz

〈ABC〉 = α 〈AB〉 〈C〉+ β 〈AC〉 〈B〉+ γ 〈BC〉 〈A〉+ δ 〈A〉 〈B〉 〈C〉 , (2.16)

with unknown coefficients α, β, γ, and δ ∈ R. Indeed, this ansatz should comprise
the extreme cases where a single or all operators are statistically unconnected. Let
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us consider, as an example, that the operator A is statistically independent of the
other two operators B and C; then clearly the relation

〈ABC〉 = 〈A〉 〈BC〉 (2.17)

holds, where the underline (“ ”) indicates the statistical independence of A. The
ansatz (2.16) simplifies to

〈ABC〉 = α 〈AB〉 〈C〉+ β 〈AC〉 〈B〉+ γ 〈BC〉 〈A〉+ δ 〈A〉 〈B〉 〈C〉

= α 〈A〉 〈B〉 〈C〉+ β 〈A〉 〈C〉 〈B〉+ γ 〈BC〉 〈A〉+ δ 〈A〉 〈B〉 〈C〉

= γ 〈A〉 〈BC〉+ (α + β + δ) 〈A〉 〈B〉 〈C〉 . (2.18)

A coefficient comparison of (2.17) and (2.18) gives the relations

γ = 1 and α + β + δ = 0 . (2.19)

The same argument applies to statistically independent operators B and C which
gives β = 1 and α = 1, respectively. Hence, the coefficients in Eq. (2.16) are
determined:

α = β = γ = 1 , δ = −2 . (2.20)

Obviously, our intuitive approach coincides with the expansion (2.14), which was
obtained using Eq. (2.5). A similar calculation can be made to derive the third-
order cumulant expansion (2.15); however, we will not show it here but move on to
the application of the cumulant expansion to the driven Tavis-Cummings model.
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Figure 2.1.: Pictogram of the cumulant expansion method. 1st-order expectation val-
ues are represented by single unconnected squares (yellow); 2nd-, 3rd-, and 4th-order
expectation values are represented by two (green), three (blue), and four (red) con-
nected squares, respectively. The truncation is indicated by dashed red lines cutting
the connections (solid black lines) between individual squares.
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2.2. Tavis-Cummings Model with External Driving

In this section we apply the cumulant expansion technique described above to the
interesting case of an inhomogeneously broadened ensemble of two-level systems
coupled to a single cavity mode, as illustrated in Figure 2.2. Our approach includes
dissipation to the environment through cavity and spin losses as well as a coherent
external driving field using the input-output formalism of Gardiner and Collett [52].
Physical realizations of this model can include, for instance, negatively charged
nitrogen vacancy defects in diamond [18–20, 22], rare-earth spin ensembles [23],
clouds of ultracold atoms [24, 25] or magnons in yttrium iron garnet [26, 27].

Figure 2.2.: Schematic of the physical system under investigation. An ensemble of two-
level systems (blue spots) is coupled to a single cavity mode (reddish area) with the
individual coupling strength gk (green arrows). The system is driven by an external
field η and involves dissipation to the environment through cavity and spin losses, κ
and γ.

Tavis-Cummings Hamiltonian On the one hand, we consider a spin ensemble
which is well confined inside the cavity, so that all two-level systems experience
the same electric field. The spatial density of the ensemble, on the other hand, is
assumed to be sparse, to guarantee that dipole-dipole interaction among individual
spins can be neglected. Under these assumptions the system under consideration
is well described by the Tavis-Cummings Hamiltonian (~ = 1) [16]

H = ωca
†a+

1

2

N∑
k=1

ωkσ
z
k +

N∑
k=1

(
gkσ

−
k a
† + g∗kσ

+
k a
)

+ i
(
η a†e−iωpt − η ∗a eiωpt

)
, (2.21)
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where a†, a are the standard creation and annihilation operators of the cavity field;
σzk, σ

±
k are the Pauli operators of the k-th spin and N is the total number of spins in

the ensemble. The first two terms, hence, correspond to the energy of the uncoupled
cavity mode with frequency ωc and the ensemble of two-level systems with transition
frequencies ωk, respectively. The third term accounts for the interaction between
the cavity field and the spin ensemble, written in the rotating wave approximation
(where the terms proportional to σ−k a and σ+

k a
† are neglected); here gk is the

individual coupling strength of the k-th spin to the cavity mode. Finally, the last
term acts as an external driving field of amplitude η and frequency ωp [53, p.276].

Lindblad Term To account for losses of the system we have to specify the Lind-
blad term of the master equation (2.1). For our model we consider interactions
with the environment of the form [19]:

L(ρ) = κ (2aρa† − a†a ρ− ρ a†a) → cavity-bath

+ γh

N∑
k=1

(2σ−k ρ σ
+
k − σ

+
k σ
−
k ρ− ρ σ

+
k σ
−
k ) → ensemble-bath

+ γp

N∑
k=1

(σzkρ σ
z
k − ρ ) , → non-radiative dephasing

(2.22)

where the first term corresponds to the cavity losses of rate κ; the second term gives
the radiative decay of the individual spins at rate γh, and the last term describes
their non-radiative dephasing by introducing the decay rate γp/2 [40]. Notice that
the latter term is still of the Lindblad type (2.2), using the identity σzkσ

z
k = 1̂.

Further note that in (2.22) we neglect thermal fluctuations, which are negligible for
kBT � ~ωk.

The Tavis-Cummings Hamiltonian (2.21), along with the Lindblad term (2.22),
fully determines the behaviour of the system through the Lindblad master equation
(2.1), dρ/dt = −i[H, ρ] + L . In order to solve the dynamics of this problem, we
follow the procedure presented in Section (2.1) and derive equations of motion for
the expectation values of the operators for the cavity mode and the spin degrees of
freedom. Using the commutation relations7

[a, a†] = 1̂ , [σ+
k , σ

−
j ] = σzkδkj , [σzk, σ

±
j ] = ±2σ±k δkj , (2.23)

7 Here σz and σ± are the Pauli operators σz :=

(
1 0
0 −1

)
, σ+ := 1

2 (σ
x + iσy) =

(
0 1
0 0

)
, and

σ− := 1
2 (σ

x − iσy) =

(
0 0
1 0

)
in contrast to the spin operators Sz := 1

2σ
z and S± := σ±,

which give rise to slightly different commutation relations.
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we obtain a hierarchic set of coupled differential equations that is shown up to
third order in Appendix B and serves as starting point for all further investigations.
For reasons of clarity and comprehensibility, we present here only the first-order
equations,

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − i

N∑
k=1

gk 〈σ−k 〉+ η , (2.24)

d

dt
〈σ−k 〉 = −(γh + 2γp + i∆k) 〈σ−k 〉+ i gk 〈σzka〉 , (2.25)

d

dt
〈σzk〉 = −2γh(〈σzk〉+ 1)− 4 gk Im(〈σ−k a

†〉) , (2.26)

where we introduced ∆c := ωc − ωp and ∆k := ωk − ωp. For simplicity, we choose
in our calculations the coupling strengths gk and the amplitude of the driving field
η to be real valued.
In the following sections we truncate the hierarchy of equations (B.1)-(B.25)

employing two different methods. First, we introduce the Holstein-Primakoff ap-
proximation [30], which can be effectively applied in the linear regime at weak
driving fields [31–33]. Following this, we utilize the cumulant expansion method,
developed above, to account also for nonlinear behaviour of the system at stronger
driving fields.

2.2.1. Holstein-Primakoff Approximation

For weak driving fields η(t) the dynamics of large ensembles can be calculated very
accurately assuming that most spins remain unexcited, 〈σzk〉 ≈ −1, which is the so-
called Holstein-Primakoff approximation. Under this assumption, the term “〈σzka〉”
in Equation (2.25) can be replaced by “−〈a〉”. As a result, (2.24) and (2.25) form
a closed set of equations by themselves:

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − i

N∑
k=1

gk 〈σ−k 〉+ η (2.27)

d

dt
〈σ−k 〉 = −(γh + 2γp + i∆k) 〈σ−k 〉 − i gk 〈a〉 , (2.28)

which can be solved efficiently for large ensembles by going to the continuous limit
and setting up a Volterra integral equation [32]. The coupled equations (2.27) and
(2.28), however, are completely linear, and therefore do not describe any nonlin-
ear physical effects, such as optical bistability [15]. Clearly, if we turn to strong
driving fields, the number of spin-excitations can not be neglected and the Holstein-
Primakoff approximation fails.
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2.2.2. Cumulant Expansion Method

Since the Holstein-Primakoff approximation disregards the number of excited spins,
it misses to account for any nonlinear effects regarding η(t). In this section we over-
come this drawback by invoking the cumulant expansion method, which inevitably
results in a nonlinear theory. We start with the first-order cumulant expansion,
which corresponds to a mean-field approach and can be understood from a very
intuitive point of view. Then we move on to the more sophisticated second- and
third-order cumulant expansion method, using the truncation procedures (2.14)
and (2.15).

First-Order Cumulant Expansion The most simple approach to the system
dynamics in case of considerable spin excitations is accomplished by factorising
the expectation values 〈σzka〉 and 〈σ−k a†〉 into 〈σzk〉 〈a〉 and 〈σ

−
k 〉 〈a〉

∗, respectively.
Equations (2.24) - (2.26) then become

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − i

N∑
k=1

gk 〈σ−k 〉+ η , (2.29)

d

dt
〈σ−k 〉 = −(γh + 2γp + i∆k) 〈σ−k 〉+ i gk 〈σzk〉 〈a〉 , (2.30)

d

dt
〈σzk〉 = −2γh(〈σzk〉+ 1)− 4 gk Im(〈σ−k 〉 〈a〉

∗) , (2.31)

which is a closed set of nonlinear differential equations, which can be solved at least
numerically. It is apparent from Eq. (2.7) that the complete factorizations

〈σzka〉 = 〈σzk〉 〈a〉 and 〈σ−k a
†〉 = 〈σ−k 〉 〈a〉

∗ (2.32)

imply that all correlations within the system are omitted

〈σzka〉c = 〈σ−k a
†〉c = 0 , (2.33)

corresponding to a mean-field theory [45]. Clearly, such cumulants gain significance
for an increasing driving field η(t), since the photons mediate an indirect spin-spin
interaction and thereby give rise to the formation of correlations within the system.
On our route towards a reliable method for calculating the system dynamics at
strong driving fields, we therefore follow the strategy to include higher orders of
cumulants in our model.
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Second-Order Cumulant Expansion To account for correlations within the
system it is necessary to invoke at least second-order expectation values. Equations
(B.1) - (B.12) constitute the basis of the second-order cumulant expansion; they
include equations of motion for all expectation values up to second-order, which
are 12 in total: 〈a〉 , 〈σ−k 〉 , 〈σzk〉 , 〈σzka〉 , 〈σzkσ

−
j 〉 , 〈σ−k a†〉 , 〈σ

+
k σ
−
j 〉 , 〈σ−k a〉 , 〈a†a†〉 ,

〈a†a〉 , 〈σzkσzj 〉 , 〈σ−k σ
−
j 〉. Note that equivalently one could have chosen a different set

of variables by, for instance, writing down an equation of motion for the quantity
〈σ+

k a〉 instead of 〈σ−k a†〉, as these variables are just the complex conjugates of each
other. To obtain a closed set of equations, all the third-order expectation values
occurring in (B.1) - (B.12) are truncated according to Eq. (2.14). As an example,
we present Eq. (B.6) after the truncation:

d

dt
〈σ−k a

†〉 =− (κ+ γh + 2γp + i (∆k −∆c)) 〈σ−k a
†〉+ η 〈σ−k 〉+ i

N∑
j=1
j 6=k

gj 〈σ+
j σ
−
k 〉

+ i
gk
2

(〈σzk〉+ 1) + i gk

(
〈σzka〉

∗ 〈a〉+ 〈σzka†〉 〈a〉
∗ + 〈a†a〉 〈σzk〉

− 2 〈σzk〉 〈a〉
∗ 〈a〉

)
. (2.34)

Henceforth, this equation is decoupled from higher-order expectation values. The
closed set of equations, obtained by this strategy, can again be solved numerically,
for instance, using Runge-Kutta methods. The validity of the second-order cu-
mulant expansion is limited by the approximation that all third-order cumulants
vanish 〈ABC〉c = 0 (for the example given in Equation (2.34), 〈σzka†a〉c = 0).

Third-Order Cumulant Expansion Finally, we defer the point of truncation
once more and consider also all third-order cumulants, except of those including
three spin operators. Note that the field operators a and a† play a prominent role in
the system since the cavity mode acts as a collective variable mediating excitations
among the individual spins of the ensemble. We therefore treat the third-order
cumulants involving field operators preferentially and neglect those involving only
spin operators. The set of dynamical variables above is thus extended by 13 ad-
ditional expectation values: 〈σzka†a〉, 〈σ−k a†a〉, 〈σ

−
k a
†a†〉, 〈σzkaa〉, 〈σ−k aa〉, 〈a†aa〉,

〈aaa〉, 〈σzkσzja〉, 〈σ−k σ
−
j a
†〉, 〈σ+

k σ
−
j a〉, 〈σzkσ−j a†〉, 〈σzkσ−j a〉, 〈σ−k σ

−
j a〉. Their temporal

evolution is determined by the equations (B.1) - (B.25) given in Appendix B. In
order to close this set of equations we use (2.14) and (2.15) for the third-order
expectation values including three spin operators and all fourth-order expectation
values, respectively.
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We demonstrate this procedure on the example of Eq. (B.21):

d

dt
〈σ−k σ

−
j a
†〉 =

j 6=k
− (κ+ 2γh + 4γp + i(∆k + ∆j −∆c)) 〈σ−k σ

−
j a
†〉+ η 〈σ−k σ

−
j 〉

+ i
N∑

m=1
m 6=k,j

gm 〈σ+
mσ
−
k σ
−
j 〉+ i

gk
2

(〈σ−j 〉+ 〈σzkσ−j 〉) + i
gj
2

(〈σ−k 〉+ 〈σzjσ−k 〉)

+ i gk 〈σzkσ−j a†a〉+ i gj 〈σzjσ−k a
†a〉

The expectation value 〈σ+
mσ
−
k σ
−
j 〉 is expanded according to

〈σ+
mσ
−
k σ
−
j 〉 = 〈σ+

mσ
−
k 〉 〈σ

−
j 〉+ 〈σ+

mσ
−
j 〉 〈σ−k 〉+ 〈σ−k σ

−
j 〉 〈σ−m〉

∗

− 2 〈σ−m〉
∗ 〈σ−k 〉 〈σ

−
j 〉 . (2.35)

Here m 6= k 6= j, as otherwise the commutation relations (2.23) enable a reduction
of the order of the expectation without any truncation needed. The fourth-order
expectation values, 〈σzkσ−j a†a〉 and 〈σzjσ−k a†a〉, respectively, are both treated in the
same way,

〈σzkσ−j a†a〉 = 〈σzk〉 〈σ−j a†a〉+ 〈σ−j 〉 〈σzka†a〉+ 〈a〉∗ 〈σzkσ−j a〉+ 〈a〉 〈σzkσ−j a†〉 (2.36)

+ 〈σzkσ−j 〉 〈a†a〉+ 〈σzka†〉 〈σ−j a〉+ 〈σzka〉 〈σ−j a†〉

− 2
(
〈σzkσ−j 〉 〈a〉

∗ 〈a〉+ 〈σzka†〉 〈σ−j 〉 〈a〉+ 〈σzka〉 〈σ−j 〉 〈a〉
∗

+ 〈σ−j a†〉 〈σzk〉 〈a〉+ 〈σ−j a〉 〈σzk〉 〈a〉
∗ + 〈a†a〉 〈σzk〉 〈σ−j 〉

)
+ 6 〈σzk〉 〈σ−j 〉 〈a〉

∗ 〈a〉 ,

where again k 6= j. Equation (B.21) is then decoupled from all higher-order expec-
tation values. Applying this procedure to all equations of motion for operators of
third-order (B.13) - (B.25) results in a closed set of equations.

Once this is accomplished - no matter through which truncation scheme - the closed
set of equations can be solved numerically. We reveal the system’s dynamics by
a straight forward Runge-Kutta integration [54] for well defined initial conditions.
Furthermore, we are interested in the stationary solutions or steady-states, which
demonstrate various nonlinear effects such as bistability within a certain interval
of the driving signal η. The steady-state solutions are found by setting all time
derivatives to zero and by solving the obtained algebraic set of equations by a
modification of the Powell hybrid method [55]. The results for both, stationary
states and dynamics of the system, are shown in Chapter 3 for distinct physical
systems. In each case we compare the results obtained from the different truncation
methods, ranging from the simple linear model to the intricate third-order cumulant
expansion developed in this section.
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2.3. Clustering of Large Spin Ensembles

The main goal of this thesis is the development of a rigorous model for large and
inhomogeneously broadened spin ensembles coupled to a single cavity mode in the
presence of strong external driving. Up to now we showed how cumulant expansion
methods of increasing orders can be implemented to account for rising correlations
due to increasing driving powers; however, we did not care about the system size.
The first-order cumulant expansion method is based on the equations (2.29) - (2.31),
which can be written as 3N + 2 real-valued equations (2 and 2N for the complex
valued quantities 〈a〉 and 〈σ−k 〉, as well as N for the real valued expectation values
〈σzk〉). For the second- and third-order cumulant expansion the amount of real-
valued equations is given by 4N2 +N(N−1)/2+5N +5 and 13N2 +N(N−1)/2+
5N + 9, respectively. Hence, even for the highest order of the cumulant expansion
methods regarded in this thesis, the computational effort grows only quadratically
with the number of spins in the ensemble8, which is indeed remarkable considering
the exponential growth of the corresponding Hilbert space. Nevertheless, a further
reduction of the configuration space is indispensable, since we aim to describe very
large ensembles of up to about 1015 spins (N ≈ 1012 for a typical nitrogen-vacancy
setup, as used in [31–33]).

The use of collective spin operators, Ĵz =
∑

k σ
z
k, is a well-established approach in

many-particle quantum optics. However, the inhomogeneous broadening of the spin
ensemble complicates matters to some degree. For the present thesis we decided to
adopt this procedure in a fairly simple way. Since deriving the equations of motion
(B.1) - (B.25) for the individual spins (no matter how many spins there actually
are) is not the difficult part (rather than solving them), we cluster the equations
themselves. As long as the distributions of the expectation values describe smooth
functions in frequency, it is perfectly valid to group them in small frequency clusters
and solve only one equation per cluster; this procedure, illustrated in Figure (2.3),
corresponds to a plain discretization (or better “re-discretization”) method.

We demonstrate this clustering for the coupled equations (B.1), (B.2), and (B.4).
For simplicity we consider only the inhomogeneous frequency distribution of the
spin ensemble and omit any inhomogeneities of the coupling strengths. In general
the gk can possess a frequency as well as a spatial dependence; however we assume
that the coupling is homogeneous within the whole cavity and set gk = g. Starting
from the equation for the collective quantity 〈a〉, we rearrange the sum,

∑N
k=1, to

8 ...since we neglect cumulants involving three spin operators.
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Figure 2.3.: Clustering of an inhomogeneous spin distribution. The continuous spin dis-
tribution ρ(ω) is grouped into Ñ equidistant frequency clusters (dashed bars), which
are labeled by Greek indices. Within each cluster we assume a constant detuning
from the central frequency ωs. Consequently, the equations of motion have to be
solved only once per cluster, since for instance 〈σ−kµ〉 = 〈σ−jµ〉. The µ-th cluster that
contains Mµ spins is highlighted in blue. A sum over all spins inside this cluster,∑Mµ

kµ=1 〈σ
−
kµ
〉, is replaced by the multiplication Mµ 〈σ−kµ〉.

Ñ equidistant frequency clusters;

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − ig

N∑
k=1

〈σ−k 〉+ η

= −(κ+ i∆c) 〈a〉 − ig
( M1∑
k1=1

〈σ−k1〉︸ ︷︷ ︸
M1〈σ−

k1
〉

+ . . .+

Mµ∑
kµ=1

〈σ−kµ〉︸ ︷︷ ︸
Mµ〈σ−

kµ
〉

+ . . .+

MÑ∑
kÑ=1

〈σ−kÑ 〉︸ ︷︷ ︸
MÑ 〈σ

−
k
Ñ
〉

)
+ η ,

where the Greek indices, running from 1 to Ñ , label the different frequency clusters.
Hence, 〈σ−kµ〉 is the expectation value corresponding to the k-th spin in the µ-th
cluster and Mµ gives the number of spins within that cluster. Clearly, all Mµ sum

up to the total number of spins,
∑Ñ

µ=1Mµ = N . As indicated above we assume in
the following that the expectation values are constant within each cluster;

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − ig

(
M1 〈σ−k1〉+ . . .+Mµ 〈σ−kµ〉+ . . .+MÑ 〈σ

−
kÑ
〉
)

+ η

= −(κ+ i∆c) 〈a〉 − ig
Ñ∑
µ=1

Mµ 〈σ−kµ〉+ η .

Note that here the sum stretches from 1 to Ñ . Consequently, the equation for 〈σ−k 〉
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has to be solved only once for each cluster µ;

d

dt
〈σ−kµ〉 = −(γh + 2γp + i∆kµ) 〈σ−kµ〉+ i g 〈σzkµa〉 .

The same clustering also applies to equations for expectation values of higher order:

d

dt
〈σzkµa〉 =− (κ+ 2γh + i∆c) 〈σzkµa〉 − 2γh 〈a〉+ η 〈σzkµ〉

− ig
( M1∑
j1=1

〈σzkµσ
−
j1
〉

︸ ︷︷ ︸
M1〈σzkµσ

−
j1
〉

+ . . .+

Mµ∑
jµ=1
jµ 6=kµ

〈σzkµσ
−
jµ
〉

︸ ︷︷ ︸
(Mµ−1)〈σzkµσ

−
jµ
〉

+ . . .+

MÑ∑
jÑ=1

〈σzkµσ
−
jÑ
〉

︸ ︷︷ ︸
MÑ 〈σ

z
kµ
σ−
j
Ñ
〉

)

+ ig 〈σ−kµ〉+ 2i g( 〈σ−kµa
†a〉 − 〈σ−kµa

†a†〉∗ )

=− (κ+ 2γh + i∆c) 〈σzkµa〉 − 2γh 〈a〉+ η 〈σzkµ〉 − ig
Ñ∑
ν=1

Mν 〈σzkµσ
−
jν
〉

+ ig 〈σzkµσ
−
jµ
〉+ ig 〈σ−kµ〉+ 2i g( 〈σ−kµa

†a〉 − 〈σ−kµa
†a†〉∗ )

All other equations (B.1) - (B.25) are treated accordingly.

The amount of required equations thus depends on the number of clusters Ñ ,
which is a tremendous reduction as compared to the total number of spins N . The
actual number of equations that have to be solved for the different orders of cluster
expansions are summarised in Table 2.1.

Table 2.1.

Cumulant Expansion (CE) Number of Equations

1st-order CE 3Ñ + 2

2nd-order CE 4Ñ2 + Ñ(Ñ + 1)/2 + 11Ñ + 5

3rd-order CE 13Ñ2 + Ñ(Ñ + 1)/2 + 23Ñ + 9

Note that some expectation values, like 〈σzkµσ
z
jν 〉, are symmetric in the indices

µ and ν, a fact which has to be appropriately taken into consideration for the
number of equations. Hence the quantity 〈σzkµσ

z
jν 〉, for instance, demands only

Ñ(Ñ + 1)/2 equations, rather than Ñ2. An important technical difference between
the clustered and “unclustered” case arise for the diagonal elements of expectation
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values including two spin operators. In contrast to the case without clusters, where
the diagonal elements k = j of such expectation values drop out, in the clustered
case the diagonal elements µ = ν have to be considered, since they account for
different spins but within the same cluster.





Chapter 3.

Results and Discussion

In this chapter we apply the cumulant expansion (CE) approach developed above on
the Tavis-Cummings model for three very different physical situations of increasing
complexity. We start with a single spin inside the cavity (N = 1), which corresponds
to the well studied Jaynes-Cummings model. Following that, the number of spins is
increased (N = 3) to make for a basic test on spin-spin correlations. These first two
realizations provide an ideal test on the validity of our approach, since the moderate
system sizes enable an exact numerical solution of the problem via direct integration
of the master equation [56]9, which serves us as a benchmark for the developed CE
approach. Finally, we apply our model to a real physical system involving a large
inhomogeneously broadened spin ensemble. The parameters we used throughout
our calculations are summarized in the table below and correspond to the values in
the experimental realization [31], which we aim to describe in Section 3.3.

Table 3.1.

Parameters

cavity frequency . . . ωc/2π = 2.6915GHz
cavity losses . . . κ /2π = 0.4MHz
spin losses (non-radiative) . . . γp/2π = 20 kHz
spin losses (radiative) . . . γh/2π = 1 kHz

In our calculations we assume that the driving field as well as the central spin of
the ensemble is on resonance with the cavity frequency ωc = ωp = ωs.

9 Note that such direct integration methods are always severely limited in the size of the con-
sidered system. For the software package [57, 58] that we use in our calculations, the maximal
number of spins that can be handled in an open quantum system is approximately N = 12.
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3.1. The Jaynes-Cummings Model

In Section 2.2 we developed the CE approach for the Tavis-Cummings model,
which can be considered as the many-spins generalization of the well known Jaynes-
Cummings model. Setting N = 1 in Eq. (2.21) gives the Jaynes-Cummings Hamil-
tonian,

H = ωca
†a+

1

2
ωsσ

z + g
(
σ−a† + σ+a

)
+ i
(
η a†e−iωpt − η ∗a eiωpt

)
, (3.1)

where we omit the index k = 1 for the spin operators and write ωs for the frequency
of the single spin. The Lindblad term (2.22) is simplified accordingly,

L(ρ) = κ (2aρa† − a†a ρ− ρ a†a) + γh (2σ−ρ σ+ − σ+σ−ρ− ρ σ+σ−)

+ γp (σzρ σz − ρ ) .
(3.2)

Indeed the corresponding master equation for the Jaynes-Cummings model can be
solved directly by numerical integration [57, 58], which serves as a benchmark for
the approximation schemes developed in this thesis. We will refer to the solution
obtained by the direct methods as the exact solution, since they account for the full
quantum mechanical problem taking into account exactly all correlations within the
system. In the following we calculate both, the stationary states and the dynamical
evolution of the system using the Holstein-Primakoff approximation and the CE
method. The resulting solutions will then be compared with the exact ones. Clearly,
since N = 1, all equations of motion for expectation values involving more than
one spin operator drop out and we end up with a reduced set of equations, which
serves as an optimal starting point to apply our truncation procedure.

Stationary States While the cavity is driven with a constant external field
η(t) = η, the system settles after some time into a stationary state due to the
dissipative processes characterized by κ, γh, and γp. These stationary states typ-
ically give rise to nonlinear behaviour with respect to the driving field amplitude
η, such as optical bistability [15], and thereby provide an interesting test for our
model. The stationary solutions are calculated by setting all time-derivatives in the
corresponding equations (B.1) - (B.25) to zero and by solving the resulting alge-
braic equations numerically. For this purpose we use a modification of the Powell
hybrid method [55]. Figure 3.1 shows the stationary states obtained by the CE
of first-, second-, and third-order as well as the exact solution obtained from the
master equation. The results are presented for three different coupling strengths
g/2π = 0.5MHz, 2MHz, and 8MHz. The stationary transmission through the
cavity, being proportional to the cavity probability amplitude |〈ast〉|2 (shown in
the left column of Figure 3.1), typically consists of two branches, the low- and the
high-transmission branch, which merge into each other via some nonlinear region
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(a)

(b)

(c)

Figure 3.1.: Stationary states versus the normalized driving amplitude η/κ
(κ/2π = 0.4 MHz) for N = 1 and increasing coupling strengths g/2π (a)-(c).
Left column: Steady-state solution of the cavity probability amplitude |〈a〉st|

2.
Right column: Steady-state 〈σ−〉st of the spin operator σ−, whose expectation value
is purely imaginary in the absence of detuning, ∆s = 0. The solutions obtained from
the 1st-, 2nd-, and 3rd-order CE are shown by the red, green, and blue solid lines,
whereas the exact solution is represented by the dashed black line. The grey area in-
dicates the nonlinear regime for which the cavity probability amplitude does not scale
with the driving power (|〈a〉st|

2 6∝ |η|2). The results are shown for three different
coupling strengths g/2π: (a) 0.5MHz, (b) 2MHz, and (c) 8MHz.
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(grey area in Figure 3.1). Below and above that region the system behaves lin-
early, which means that the expectation values such as 〈a(t)〉 scale linearly with
the driving field amplitude η (〈a(t)〉 ∝ η). Such a behaviour is indicated by the
linear growth of the steady-state transmission in log-log scale as shown in the left
column of Figure 3.1. The levels of the transmission branches are well described
by the first-order CE only in the limits η → 0 and η � 1. The first-order CE, how-
ever, overestimates the nonlinearity, since it predicts a bistable behaviour for the
cavity probability amplitude |〈a〉st|

2. Figure 3.1 shows that the actual nonlinear
behaviour of the system starts at higher driving field amplitudes than predicted
by the first-order CE and is also much less pronounced. Furthermore, also the
dip in the stationary state of 〈σ−〉, which occurs in the nonlinear regime, can not
be resolved, as shown in the right column of Figure 3.1. In order to describe the
nonlinearity of the steady-states correctly, higher-order correlations within the sys-
tem have to be considered. The presented figure shows that the results obtained
from the second- and third-order CE agree reasonably well with the exact solution
for g/2π = 0.5MHz. Increasing the coupling strength, however, also increases the
correlations within the system. As a consequence, for g/2π > 0.5MHz the results
from the second-order CE start to deviate significantly from the exact solution for
η/κ > 0.5. If we turn to the third-order CE, no stable solutions can be found in
the strong nonlinear regime, that is for η/κ > 1.5 and 6 , respectively, but below
these critical values the third-order CE gives a perfect agreement with the exact
solutions.
It is therefore shown that the CE approach provides a promising method to

investigate the nonlinear steady-state regime where correlations of the system can
play an important role.

Dynamics Following the investigation of stationary solutions, we are also in-
terested in the dynamical evolution of the system under a constant driving field.
Initially, at t = t0 = 0, the system is in its ground state, with the cavity being
empty, 〈a(t0)〉 = 0, and the spin resting at the lowest point of the Bloch-sphere,
〈σz(t0)〉 = −1 and 〈σ−(t0)〉 = 0. When the constant driving field is switched on, the
cavity field amplitude starts to oscillate, since the system is in the strong-coupling
regime where the spin-coupling exceeds the total losses (g > κ+γh+γp) and thereby
allows for a Non-Markovian feedback [15]. After some of these Rabi-oscillations the
system finally settle to a stationary value (depicted in Figure 3.1). In the following
we calculate the dynamical evolution of the system via Runge-Kutta integration
of the corresponding equations of motion using the Holstein-Primakoff approxima-
tion as well as the CE methods and compare our results with the exact solution.
The initial conditions for higher-order expectation values can be derived from the
first-order expectation values, since at t = 0 the system is uncorrelated, which al-
lows for a full factorization of all expectation values (〈σza(t0)〉 = 〈σz(t0)〉 〈a(t0)〉).
Figures 3.2 and 3.3 provide the temporal evolution of the cavity probability am-
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Figure 3.2.: Dynamics of the cavity probability amplitude |〈a(t)〉|2 as well as the spin
operators 〈σz〉 and 〈σ−〉 for the coupling strength g/2π = 2MHz. A constant driving
field of amplitude η/κ = 0.5 (κ/2π = 0.4 MHz) is applied for t ≥ 0. Results from
the Holstein-Primakoff approximation are shown by the dashed cyan line; solutions
obtained by 1st-, 2nd-, and 3rd-order CE are shown by solid lines in red, green, and
blue, respectively, and the exact solution is represented by the dashed black line.
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Figure 3.3.: Dynamics of the cavity probability amplitude |〈a(t)〉|2 as well as the spin
operators 〈σz〉 and 〈σ−〉 for the coupling strength g/2π = 2MHz. A constant driving
field of amplitude η/κ = 1 (κ/2π = 0.4 MHz) is applied for t ≥ 0. Results from
the Holstein-Primakoff approximation are shown by the dashed cyan line; solutions
obtained from the 1st-, 2nd-, and 3rd-order CE are shown by solid lines in red, green,

and blue, respectively, and the exact solution is represented by the dashed black line.
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plitude |〈a(t)〉|2 as well as the spin operators 〈σz(t)〉 and Im 〈σ−(t)〉 for a coupling
strength of g/2π = 2MHz and driving field amplitudes of η/κ = 0.5 and 1.0, re-
spectively. In the first case the system just started to enter the nonlinear regime,
as the spin excitations 〈σz(t)〉 are still rather weak (no more than 5% from the
initial alignment 〈σz〉 = −1 during the first Rabi-cycle). Nevertheless, this small
deviation from the south-pole of the Bloch-sphere already alters the evolution of
the cavity amplitude significantly with respect to the Holstein-Primakoff approx-
imation (〈σz(t) = −1〉), as shown in the upper panel of Figure 3.2. The relative
error δ |〈a(t)〉|2H.P. =

(
|〈a(t)〉|2H.P. − |〈a(t)〉|2exact

)
/ |〈a(t)〉|2exact for the cavity proba-

bility amplitude obtained from the Holstein-Primakoff approximation equals 0.27
at the position of the second Rabi-peak (t = 3.8µs). Interestingly, although the
first-order CE captures the evolution of the spin fairly well for the first 0.6 mi-
croseconds, the improvement in the evolution of the cavity field amplitude with
respect to the Holstein-Primakoff approximation is rather weak. In order to de-
scribe the systems’s dynamics correctly, the correlations between the cavity field
and the single spin have to be considered. Indeed, for the parameters used in Figure
3.2 the second-order CE significantly improves the obtained results and third-order
CE already gives a perfect agreement with the exact solution.

When the driving field amplitude is increased to η/κ = 1.0, the deviations in the
results obtained from the different methods become more apparent (see Figure 3.3).
The Holstein-Primakoff approximation gives the same behaviour of the system as
already shown in Figure 3.2, but multiplied by a factor of 4, since this model is linear
in η. Although the Holstein-Primakoff approximation still works fine for short times
and accounts correctly for the first Rabi-peak of the cavity probability amplitude,
the subsequent peaks of the exact solution are clearly suppressed as compared to
the linear model, due to the formation of correlations within the system. As was
already shown in the steady-state analysis, the second-order CE tends towards
another stationary state characterized by a large steady-state transmission and
represented by the green curves in Figure 3.1 (which is in agreement with our
dynamical studies). Note that also the first-order CE gives the wrong stationary
state, as calculated above, but it settles at this value at a much later time, which is
not shown in the figure. Albeit the first- and second-order CE fail to describe the
dynamics correctly for the present driving field amplitude, Figure 3.3 shows that
the third-order CE reproduces the exact solutions rather well.

In summary these first results provide important insights into the applicability
of our model. First of all, the third-order CE is sufficient to accurately describe
the dynamics as well as the stationary solutions of the system under considera-
tion for a broad range of coupling strengths and driving fields notably beyond the
linear regime. The third-order CE fails though for high coupling strengths and
strong driving fields, where cumulants of higher order gain significance (results not
shown). However, the presented results indicate that our strategy, to employ higher
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and higher orders of cumulants in order to account for the correlations within the
system, works fine.
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3.2. Three Spins Coupled to the Cavity

Before we move on to the challenging case of inhomogeneous broadening and very
large spin ensembles, we test the CE technique on the Tavis-Cummings model
including three spins inside the cavity. We follow the same procedure as for the
single spin case, but now with two additional spins at frequencies ω1,3 = ω2 ∓∆ω,
where ω2 is the frequency of the central spin, which is on resonance with the cavity
and the driving field (ω2 = ωc = ωp = 2.6915GHz), and ∆ω = 50 kHz. For
reasons of comparison we introduce the collective coupling strength Ω :=

√
Ng.

Thus, in order to achieve the same collective coupling as in the single-spin case, the
individual coupling strength g of the N = 3 spins is reduced by a factor 1/

√
3. We

proceed in our calculations as in the previous section of a single spin, however, here
the set of equations (B.1) - (B.25) include also expectation values which contain
pairs of spin operators.

Stationary States Figure 3.4 compares the results obtained from the first-,
second-, and third-order CE with the exact solution for two different collective
coupling strengths Ω/2π = 0.1MHz and 0.5MHz. In the first case the nonlinearity
is rather small. In fact there is only a slight change in the slope of the cavity prob-
ability amplitude |〈a(η)〉st|

2 as shown in Figure 3.4 (a), however the first-order CE
clearly deviates from the exact solution for driving fields between η/κ = 10−3 and 1,
which indicates that the correlations within the system already play an important
role. The second- and third-order CE both perfectly agree with the exact solution.
For Ω/2π = 0.5MHz, however, the second-order CE starts to deviate from the ex-
act solution at driving fields η/κ > 0.2 and also the third-order CE fails to account
for the nonlinear regime correctly. In particular the dip in the stationary value of
Im 〈σ−2 〉, shown in the right column of Figure 3.4(b), can not be resolved.

Dynamics If we now turn to the dynamical evolution of the system we restrict
our investigation to the case Ω/2π = 0.1MHz, where the stationary states can
be described by the CE pretty well. Figure 3.5 shows the dynamics of the cavity
probability amplitude |〈a(t)〉|2 and the spin operators 〈σz2,3(t)〉 as well as 〈σ−2,3(t)〉
for η/κ = 0.5. Since the expectation values 〈σz1,2,3(t)〉 take values significantly be-
yond the south-pole of the Bloch-sphere, it is apparent that the Holstein-Primakoff
approximation can not describe the dynamics of the system correctly. After a few
microseconds the exact solution for |〈a(t)〉|2 settles at values considerably beyond
those predicted by the linear theory. Comparing the results obtained from the first-
order CE with the exact solutions suggests that correlations form inside the system
within a few microseconds only; for t < 8µs the first-order CE reproduces the exact
solution for the collective quantity |〈a(t)〉|2 quite well, however, for larger times the
first-order CE is insufficient to account for the dynamics correctly and cumulants
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(a)

(b)

Figure 3.4.: Stationary states versus the normalized driving amplitude η/κ
(κ/2π = 0.4 MHz) for N = 3 and two different collective coupling strength Ω/2π =
0.1MHz (a) and 0.5MHz (b). Left panel: Steady-state solution of the cavity prob-
ability amplitude |〈a〉st|

2. Right panel: Imaginary part of the steady-state 〈σ−2 〉st
of the central spin operator σ−2 , whose expectation value is purely imaginary in the
absence of detuning, ∆2 = 0. The solutions obtained from the 1st-, 2nd-, and 3rd-
order CE are represented by the red, green, and blue solid lines, whereas the exact
solution is represented by the dashed black line. Note that for (a) the solution of
the 2nd- and 3rd-order CE lay on top of each other. The grey area indicates the
nonlinear regime for which the cavity probability amplitude does not scale with the
driving power (|〈a〉st|

2 6∝ |η|2).
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of higher order have to be considered. As can be seen from Figure 3.5 already
the second-order CE perfectly agree with the exact solution. Here the third-order
CE do not provide any new information about the system, which suggests that all
third-order cumulants are negligible small.

Overall, these results indicate that the CE approach can be applied on the Tavis-
Cummings model, even in the presence of spin-spin correlations. Of course, our
approach is always limited by the amount of correlations within the system. For
high coupling strengths and large driving fields, many more orders of cumulants
have to be considered to keep track of the formation of correlations inside the sys-
tem. However, the presented results strongly support the hypothesis that the model
developed during this thesis is an appropriate and powerful method to investigate
interesting quantum optical systems beyond the linear regime.
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Figure 3.5.: Dynamics of the cavity probability amplitude |〈a(t)〉|2 as well as the
spin expectation values 〈σz2,3〉 and 〈σ−2,3〉 for N = 3 and the collective coupling
strength Ω/2π = 0.1MHz. A constant driving field of amplitude η/κ = 0.5
(κ/2π = 0.4 MHz) is applied for t ≥ 0. Results from the Holstein-Primakoff ap-
proximation are shown by the dashed cyan line; solutions obtained from the 1st-,
2nd-, and 3rd-order CE are shown by solid lines in red, green, and blue, respectively,
and the exact solution is represented by the dashed black line. Note that the solution
of the 2nd- and 3rd-order CE lie on top of each other.
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3.3. Inhomogeneous Spin Ensemble

Finally, we apply our model to a very large and inhomogeneously broadened en-
semble of spins. In particular we consider a specific experimental realization based
on negatively charged nitrogen-vacancy (NV) centers in diamond coupled to a su-
perconducting coplanar waveguide resonator [31]. A brief discussion of the NV
center and the experiment, which was carried out at the Atominstitut of the Vi-
enna University of Technology, is given in Appendix C. In previous studies [31–33],
the temporal evolution of the system was investigated in the limit of weak driving
fields, where the cavity amplitude scales linearly with the driving field. In this sec-
tion we calculate the dynamics using the CE approach developed in Section 2.2 and
compare our results with the experimental data obtained in the nonlinear regime.
The temporal evolution of the system is probed in the following way: Starting

from an unexcited ensemble and an empty cavity at t0 = 0 (〈σzkµ(t0)〉 = 〈σ−kµ(t0)〉 =

0 for all spins and 〈a(t0)〉 = 0), a constant driving field η(t) = η is applied for about
0.8µs. After that the driving field is switched off, η(t > 0.8µs) = 0, and the system
evolves freely. In our calculations we employ the clustering procedure developed
in Section 2.3 and gather the spins in equidistant frequency groups. Typically
we use roughly 250 of such clusters. We check explicitly that the physics does not
depend on the number of clusters used while making sure that the spin distribution,
given by Eq. (C.1), is well resolved and that the revival time tr = 2π/(ωµ − ωµ+1),
introduced through the frequency spacing between adjacent clusters, does not enter
in the evolution of the system.
The collective coupling strength achieved in the experiment was Ω/2π =

√
Ng/2π

= 8.3MHz, where the number of spins N inside the ensemble is ∼ 1012; the other
parameters that are used in our calculations can be found in Table 3.1.

Linear Regime We start our analysis in the limit of weak driving fields, where
the number of spin excitations is negligible as compared to the total number of
spins coupled to the cavity. Consequently, the system’s dynamical variables scale
with the driving field amplitude (for instance 〈a(t)〉 ∝ η). Of course, here the CE
approach should give the same results as the Holstein-Primakoff approximation,
which already proved to be a powerful model in this linear regime. Figure 3.6
compares the results of our calculations obtained from the first-order CE with
the experimental data. When the driving pulse η(t) is switched on, the cavity
probability amplitude |〈a(t)〉|2 exhibits damped Rabi oscillations and tends towards
a stationary value. After switching the driving field off at t = 0.8µs, the Rabi
oscillations show up again before the system finally decays to zero. As expected, the
dynamics in this regime is well described by the first-order CE and coincides with
the results obtained from the Holstein-Primakoff approximation (data not shown).
The data presented in Figure 3.6 is the last one out of a series of measurements
(where the driving power |η|2 was gradually increased) that meets the scalability
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criterion |〈a(t)〉|2 ∝ |η|2 and thereby marks the end of the linear regime. In the
following we will take the driving field amplitude η0 = η/κ = 0.2 · 106, which
was used in the calculations shown in Figure 3.6, as a reference for the studies in
the nonlinear regime beyond η0. It is worth noting that the transition from the
linear to the nonlinear behaviour is a continuous one and therefore there is some
arbitrariness in our choice of η0.

Figure 3.6.: Linear regime - Dynamics of the cavity probability amplitude |〈a(t)〉|2 in
arbitrary units. The result obtained from the 1st-order CE (solid red line) is compared
with the experimental data (black line). Here the normalized driving field amplitude
used in the calculations is η0 = η/κ = 0.2 · 106 (κ/2π = 0.4 MHz and N = 1012).
To illustrate the linearity, we plot additionally the results calculated for a driving field
amplitude η0/2 (dashed cyan line), which gives the same dynamics for |〈a(t)〉|2 but
smaller by a factor 1/4.

Nonlinear Regime If the amplitude of the driving field is further increased, the
number of spin excitations in the ensemble becomes significant for the behaviour of
the system, which thereby enters the nonlinear regime. Figures 3.7 (a)-(f) provide
the experimental data on the transmission through the cavity (∝ |〈a(t)〉|2) for
a stepwise increase of the driving power, together with the calculated dynamics
employing the Holstein-Primakoff approximation and the first-order CE. It can be
seen that in (a), where the incident power was increased by 6 dB with respect to
the reference driving power |η0|2 (this corresponds approximately to a factor 2 in
the amplitude η), the actual dynamics of the system already starts to deviate from
the results predicted by the Holstein-Primakoff approximation. However, the first-
order CE accounts for the dynamics of the ensemble in the nonlinear regime very
well over nearly 12 dB. Figures 3.7 (a)-(d), indeed, show a remarkable agreement
between our theoretical model and the experimental data.
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(a)

(b)

(c)

Figure 3.7 (a)-(c).: Nonlinear regime - Dynamics of the cavity probability amplitude
|〈a(t)〉|2 in arbitrary units. The results obtained from the 1st-order CE (solid red

line) are compared with the experimental data (black line). The results obtained
from the Holstein-Primakoff approximation are also shown (dashed cyan line). In the
experiment the incident power was increased by (a) 6 dB, (b) 8 dB, and (c) 10 dB
with respect to the linear reference (grey line), which is presented in Figure 3.6 and
corresponds to the driving power |η0|2.
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(d)

(e)

(f)

Figure 3.7 (d)-(f).: Nonlinear regime - Dynamics of the cavity probability amplitude
|〈a(t)〉|2 in arbitrary units. The results obtained from the 1st-order CE (solid red

line) are compared with the experimental data (black line). The results obtained
from the Holstein-Primakoff approximation are also shown (dashed cyan line). In the
experiment the incident power was increased by (d) 11 dB, (e) 12 dB, and (f) 13 dB
with respect to the linear reference (grey line) that is presented in Figure 3.6 and
corresponds to the driving power |η0|2. In the last panel (f) we show additionally
the results obtained from the 3rd-order CE (blue dots), which coincide with those
obtained from 1st-order.
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For driving powers of 13 dB with respect to |η0|2, Figure 3.7 (f) indicates that
the CE approach overestimates the nonlinear dynamics of the system. Interest-
ingly, for the presented parameter regime, no difference between the first-, second-,
and third-order CE is observed. This finding was unexpected and suggests that, in
contrast to the case of very few spins, correlations within the large ensemble-cavity
system play only a minor role for the investigated driving fields. The fact that
the full factorization works so well for a broad range of driving powers might be
understood by the vast amount of spins inside the cavity, which results in a de-
clining contribution of the individual spins to the dynamics of the collective cavity
mode. Indeed, the influence of strong correlations on the system’s behaviour is an
important issue for future research.
Our findings suggest that the failure of the CE approach for driving powers

beyond 12 dB with respect to our linear reference |η0|2 can not be related to the
formation of correlations within the system but calls for other explanations. It is
apparent that the slope of the measured cavity probability amplitude |〈a(t)〉|2 for
t > 0.5µs is much flatter as compared to our calculated values. This discrepancy
may be due to an additional loss or dephasing mechanism that is neglected in our
model. For instance, it is suggested that our assumption of homogeneous coupling
strengths gµ = g might not be fulfilled in the experimental realization. Of course,
if the cavity field is not homogeneous or the spin ensemble is not well confined
inside the cavity, there is some spatial dependence in the coupling strength, which
might cause an additional dephasing of the spin ensemble. It should be noted that
in principle it is technically possible to include such a spatial dependence of the
coupling strength to our model, which is an interesting issue for future studies.





Chapter 4.

Conclusions and Outlook

The main goal of this thesis was the development of a theoretical framework that
accurately accounts for the nonlinear dynamics of large and inhomogeneously broad-
ened spin ensembles coupled to a single mode cavity. We established such a model
by means of an intuitive cumulant expansion approach along with a straightforward
clustering procedure.
Our theoretical model was tested for the Tavis-Cummings model with a sin-

gle spin N = 1, which constitutes the well studied Jaynes-Cummings model, and
N = 3, which additionally allows for spin-spin correlations inside this three-spin
system. The results of this investigation show that for both cases the developed
cumulant expansion approach is a suitable method to describe the stationary states
as well as the temporal evolution of the system even in the nonlinear regime. Our
approach, therefore, is applicable for driving powers that are not accessible in the
Holstein-Primakoff approximation (〈σzk(t)〉 = −1). Although the first-order cumu-
lant expansion produces considerable deviations from the exact solution given by
the quantum master equation for certain parameter regions (mainly for large cou-
pling strengths and driving powers), our results show that one can overcome this
problem by the inclusion of higher-order cumulants.
Furthermore, the developed theoretical framework was used to describe the dy-

namics of a specific physical realization of the driven Tavis-Cummings model based
on NV centers in diamond [31–33]. The specific set-up under consideration involved
a very large ensemble of ∼ 1012 spins inhomogeneously broadened in frequency. In
previous studies the theoretical description of this system was limited to the linear
regime of low driving powers where most spins remain unexcited and the Holstein-
Primakoff approximation can be applied. The present investigation shows that
the cumulant expansion approach developed in this thesis accurately describes the
temporal evolution of the system also for strong driving powers up to almost 12 dB
above the limiting powers of the linear regime. Interestingly, this improvement is
achieved even by the first-order cumulant expansion; for the investigated parame-
ter regime there were no significant differences between the solutions obtained from
the first-, second-, and third-order cumulant expansion. These findings suggest that
the discrepancy arising between our theory and the experimental data for driving
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powers with more than 12 dB above the linear regime can not be related to the for-
mation of correlations within the system. Instead, the deviation of the experimental
data from the theoretical predictions might be attributed to a spatial dependence
of the cavity-spin couplings gk, which was not considered in the model developed
in this thesis. The inclusion of such a dependence into our model is an interesting
prospect for future studies. However, at the time of writing this thesis, the group
of experimentalists headed by Prof. Jörg Schmiedmayer at the Atominstitut of the
Vienna University of Technology puts much effort on improving the experimental
set-up in such a way as to ensure a constant coupling strength within the whole
ensemble. The new experimental configuration is expected to be in accordance with
the developed theoretical model for even stronger driving amplitudes η. Overall, in
this thesis we provide a promising tool for the investigation of interesting nonlinear
effects arising in large and inhomogeneously broadened spin ensembles. Specifically
our model will serve as a base for future studies dealing with superradiance and
superabsorption in connection with inhomogeneous broadening.
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A. Moments and Cumulants

Let us recall the basic definitions of moments and cumulants from statistics and
probability theory [48, 49], first for the case of a single random variable and then
for the multivariate case.

Single Random Variable Let p(x) be the probability distribution of some
stochastic variable x. Then the n-th moment of x is defined as the expectation
value of xn:

〈xn〉 :=

∫ ∞
−∞

xn p(x)dx . (A.1)

It is often convenient to introduce the moment generating function,

M(ξ) := 〈exξ〉 (A.2)

where ξ is some real parameter. With the use of this generating function one can
write down the n-th moment as

〈xn〉 =

[
dnM(ξ)

dξn

]
ξ=0

. (A.3)

Similarly one can introduce the cumulant generating function as the logarithm of
the moment generating function M(ξ):

K(ξ) := ln 〈exξ〉 , (A.4)

which in turn give rise to the n-th cumulant of x

〈xn〉c :=

[
dn

dξn
ln 〈exξ〉

]
ξ=0

. (A.5)

Multivariate Case For a random vector ~x = {x1, x2, . . .} the moment generating
function M(~ξ) is defined as follows

M(~ξ) := 〈eξ1x1+ξ2x2+...〉 , (A.6)

where ξ1, ξ2, . . . are again real valued parameters. From this definition one can
generate the joint moments via partial derivatives

〈xα1
1 x

α2
2 . . .〉 :=

[
∂α1+α2+...

∂ξα1
1 ∂ξα2

2 . . .
〈eξ1x1+ξ2x2+...〉

]
ξi=0

. (A.7)

Introducing the cumulant generating function for the random vector ~x

K(~ξ) := ln 〈eξ1x1+ξ2x2+...〉 , (A.8)

the joint cumulant is given by

〈xα1
1 x

α2
2 . . .〉c :=

[
∂α1+α2+...

∂ξα1
1 ∂ξα2

2 . . .
ln 〈eξ1x1+ξ2x2+...〉

]
ξi=0

. (A.9)
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B. Set of Equations for the Tavis-Cummings Model

Using the generalized Ehrenfest equation (2.3) with the Tavis-Cummings Hamil-
tonian (2.21) and the Lindblad term (2.22), it is straight forward - although te-
dious - to derive the following set of equations. Here we present the hierarchy
of equations of motion for expectation values up to third order, except of those
involving three or more spin operators, as we neglect correlations among them
anyway (see Section 2.2.2). Throughout our calculations we use the commutation
relations (2.23) as well as 〈A†〉 = 〈A〉∗ , 〈B†A†〉 = 〈AB〉∗, where the asterisk (∗)
denotes complex conjugation. Note further that all expectation values including
multiple operators for the same spin k are reduced by employing the identities
σzkσ

z
k = 1̂, σ−k σ

−
k = 0̂, σzkσ

−
k = −σ−k , σ+

k σ
z
k = −σ+

k , σ+
k σ
−
k = 1

2
(1̂ + σzk).

d

dt
〈a〉 = −(κ+ i∆c) 〈a〉 − i

N∑
k=1

gk 〈σ−k 〉+ η (B.1)

d

dt
〈σ−k 〉 = −(γh + 2γp + i∆k) 〈σ−k 〉+ i gk 〈σzka〉 (B.2)

d

dt
〈σzk〉 = −2γh(〈σzk〉+ 1) + 2i gk( 〈σ−k a

†〉 − 〈σ−k a
†〉∗ )

= −2γh(〈σzk〉+ 1)− 4 gk Im(〈σ−k a
†〉) (B.3)

d

dt
〈σzka〉 =− (κ+ 2γh + i∆c) 〈σzka〉 − 2γh 〈a〉+ η 〈σzk〉 − i

N∑
j=1
j 6=k

gj 〈σzkσ−j 〉

+ igk 〈σ−k 〉+ 2i gk( 〈σ−k a
†a〉 − 〈σ−k a

†a†〉∗ ) (B.4)

d

dt
〈σzkσ−j 〉 =

j 6=k
− (3γh + 2γp + i∆j) 〈σzkσ−j 〉 − 2γh 〈σ−j 〉+ i gj 〈σzkσzja〉

+ 2i gk( 〈σ−k σ
−
j a
†〉 − 〈σ+

k σ
−
j a〉 ) (B.5)

d

dt
〈σ−k a

†〉 =− (κ+ γh + 2γp + i (∆k −∆c)) 〈σ−k a
†〉+ η 〈σ−k 〉+ i

N∑
j=1
j 6=k

gj 〈σ+
j σ
−
k 〉

+ i
gk
2

(〈σzk〉+ 1) + i gk 〈σzka†a〉 (B.6)

d

dt
〈σ+

k σ
−
j 〉 =

j 6=k
− (2γh + 4γp + i (∆j −∆k)) 〈σ+

k σ
−
j 〉 − i gk 〈σzkσ−j a†〉+ i gj 〈σzjσ−k a

†〉∗

(B.7)
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d

dt
〈σ−k a〉 =− (κ+ γh + 2γp + i (∆k + ∆c)) 〈σ−k a〉+ η 〈σ−k 〉 − i

N∑
j=1
j 6=k

gj 〈σ−k σ
−
j 〉

+ i gk 〈σzkaa〉 (B.8)

d

dt
〈a†a†〉 =− 2(κ− i∆c) 〈a†a†〉+ 2i

N∑
k=1

gk 〈σ−k a〉
∗

+ 2η 〈a〉∗ (B.9)

d

dt
〈a†a〉 = −2κ 〈a†a〉 − i

N∑
k=1

gk(〈σ−k a
†〉 − 〈σ−k a

†〉∗) + η (〈a〉+ 〈a〉∗)

= −2κ 〈a†a〉+ 2
N∑
k=1

gk Im(〈σ−k a
†〉) + 2ηRe(〈a〉) (B.10)

d

dt
〈σzkσzj 〉 =

j 6=k
−2γh(〈σzk〉+ 〈σzkσzj 〉+ 〈σzj 〉+ 〈σzjσzk〉)

+ 2i gk( 〈σzjσ−k a
†〉 − 〈σzjσ−k a

†〉∗ ) + 2i gj( 〈σzkσ−j a†〉 − 〈σzkσ−j a†〉
∗

)

= −2γh(〈σzk〉+ 〈σzkσzj 〉+ 〈σzj 〉+ 〈σzjσzk〉)
− 4gk Im( 〈σzjσ−k a

†〉 )− 4gj Im( 〈σzkσ−j a†〉 ) (B.11)

d

dt
〈σ−k σ

−
j 〉 =

j 6=k
−(2γh + 4γp + i (∆j + ∆k)) 〈σ−k σ

−
j 〉+ i gk 〈σzkσ−j a〉+ i gj 〈σzjσ−k a〉

(B.12)

d

dt
〈σzka†a〉 = −2(κ+ γh) 〈σzka†a〉 − 2γh 〈a†a〉+ η(〈σzka〉+ 〈σzka〉

∗)

− i
N∑
j=1
j 6=k

gj( 〈σzkσ−j a†〉 − 〈σzkσ−j a†〉
∗

) + i gk( 〈σ−k a
†〉 − 〈σ−k a

†〉∗ )

+ 2i gk( 〈σ−k a
†a†a〉 − 〈σ−k a

†a†a〉∗ )

= −2(κ+ γh) 〈σzka†a〉 − 2γh 〈a†a〉+ 2ηRe(〈σzka〉)− 2 gk Im( 〈σ−k a
†〉 )

+ 2
N∑
j=1
j 6=k

gj Im( 〈σzkσ−j a†〉 )− 4 gk Im( 〈σ−k a
†a†a〉 ) (B.13)

d

dt
〈σ−k a

†a〉 =− (2(κ+ γp) + γh + i∆k) 〈σ−k a
†a〉+ η(〈σ−k a

†〉+ 〈σ−k a〉) + i gk 〈σzka†aa〉

+ i
N∑
j=1
j 6=k

gj(〈σ+
j σ
−
k a〉 − 〈σ

−
k σ
−
j a
†〉) + i

gk
2

(〈σzka〉+ 〈a〉) (B.14)
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d

dt
〈σ−k a

†a†〉 =− (2(κ+ γp) + γh + i(∆k − 2∆c)) 〈σ−k a
†a†〉+ 2η 〈σ−k a

†〉

+ 2i
N∑
j=1
j 6=k

gj 〈σ+
j σ
−
k a
†〉+ i gk(〈σzka〉

∗ + 〈a〉∗) + i gk 〈σzka†a†a〉 (B.15)

d

dt
〈σzkaa〉 =− 2(κ+ γh + i∆c) 〈σzkaa〉 − 2γh 〈a†a†〉

∗
+ 2η 〈σzka〉+ 2i gk 〈σ−k a〉

− 2i
N∑
j=1
j 6=k

gj 〈σzkσ−j a〉+ 2i gk(〈σ−k a
†aa〉 − 〈σ+

k aaa〉) (B.16)

d

dt
〈σ−k aa〉 =− (2(κ+ γp) + γh + i(∆k + 2∆c)) 〈σ−k aa〉+ 2η 〈σ−k a〉

− 2i
N∑
j=1
j 6=k

gj 〈σ−k σ
−
j a〉+ i gk 〈σzkaaa〉 (B.17)

d

dt
〈a†aa〉 =− (3κ+ i∆c) 〈a†aa〉 − 2i

N∑
k=1

gk 〈σ−k a
†a〉+ i

N∑
k=1

gk 〈σ−k a
†a†〉∗

+ 2η 〈a†a〉+ η 〈a†a†〉∗ (B.18)

d

dt
〈aaa〉 =− 3(κ+ i∆c) 〈aaa〉 − 3i

N∑
k=1

gk 〈σ−k aa〉+ 3η 〈a†a†〉∗ (B.19)

d

dt
〈σzkσzja〉 =

j 6=k
− (κ+ i∆c) 〈σzkσzja〉 − 2γh(〈σzka〉+ 〈σzkσzja〉+ 〈σzja〉+ 〈σzjσzka〉)

+ 2i(gk 〈σzjσ−k a
†a〉+ gj 〈σzkσ−j a†a〉 − gk 〈σzjσ+

k aa〉 − gj 〈σ
z
kσ

+
j aa〉)

− i
N∑

m=1
m 6=k,j

gm 〈σzkσzjσ−m〉+ i gk 〈σzjσ−k 〉+ i gj 〈σzkσ−j 〉 (B.20)

d

dt
〈σ−k σ

−
j a
†〉 =

j 6=k
− (κ+ 2γh + 4γp + i(∆k + ∆j −∆c)) 〈σ−k σ

−
j a
†〉+ η 〈σ−k σ

−
j 〉

+ i
N∑

m=1
m 6=k,j

gm 〈σ+
mσ
−
k σ
−
j 〉+ i

gk
2

(〈σ−j 〉+ 〈σzkσ−j 〉) + i
gj
2

(〈σ−k 〉+ 〈σzjσ−k 〉)

+ i gk 〈σzkσ−j a†a〉+ i gj 〈σzjσ−k a
†a〉 (B.21)
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d

dt
〈σ+

k σ
−
j a〉 =

j 6=k
− (κ+ 2γh + 4γp + i(∆j −∆k + ∆c)) 〈σ+

k σ
−
j a〉+ η 〈σ+

k σ
−
j 〉

− i
N∑

m=1
m6=k,j

gm 〈σ+
k σ
−
j σ
−
m〉 − i

gk
2

(〈σ−j 〉+ 〈σzkσ−j 〉)

− i gk 〈σzkσ−j a†a〉+ i gj 〈σ+
k σ

z
jaa〉 (B.22)

d

dt
〈σzkσ−j a†〉 =

j 6=k
− (κ+ 3γh + 2γp + i(∆j −∆c)) 〈σzkσ−j a†〉 − 2γh 〈σ−j a†〉+ η 〈σzkσ−j 〉

+ i

N∑
m=1
m 6=k,j

gm 〈σ+
mσ

z
kσ
−
j 〉 − i gk 〈σ+

k σ
−
j 〉+ i

gj
2

(〈σzk〉+ 〈σzkσzj 〉)

+ i gj 〈σzkσzja†a〉+ 2i gk(〈σ−k σ
−
j a
†a†〉 − 〈σ+

k σ
−
j a
†a〉) (B.23)

d

dt
〈σzkσ−j a〉 =

j 6=k
− (κ+ 3γh + 2γp + i(∆j + ∆c)) 〈σzkσ−j a〉 − 2γh 〈σ−j a〉+ η 〈σzkσ−j 〉

− i
N∑

m=1
m 6=k,j

gm 〈σzkσ−j σ−m〉+ i gk 〈σ−k σ
−
j 〉+ i gj 〈σzkσzjaa〉

+ 2i gk(〈σ−k σ
−
j a
†a〉 − 〈σ+

k σ
−
j aa〉) (B.24)

d

dt
〈σ−k σ

−
j a〉 =

j 6=k
− (κ+ 2γh + 4γp + i(∆k + ∆j + ∆c)) 〈σ−k σ

−
j a〉+ η 〈σ−k σ

−
j 〉

− i
N∑

m=1
m6=k,j

gm 〈σ−k σ
−
j σ
−
m〉+ i gk 〈σzkσ−j aa〉+ i gj 〈σzjσ−k aa〉 (B.25)
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C. Nitrogen-Vacancy Ensemble in Diamond

In this appendix we focus on a particular experimental realization for the driven
Tavis-Cummings model based on the negatively charged nitrogen vacancy (NV)
centers in diamond, which constitute a very promising physical system for emer-
gent quantum technologies, with a broad range of possible applications [59]. In
particular the NV centers show great potential for the storage of quantum infor-
mation, owing to their long coherence times (up to one second [60] for a single NV)
and to the combination of microwave and optical transitions which makes them
an easily accessible and controllable qubit [61]. The coupling between a single NV
center and an electromagnetic field is typically rather weak ∼ 10Hz; however, for
an ensemble of N spins the collective coupling is enhanced by a factor

√
N , which

allows to reach the strong coupling regime that is required for quantum informa-
tion processing [18]. Such an ensemble of NV centers is naturally imposed to an
inhomogeneous broadening of the transition frequencies ωk, mainly due to local
dipole-dipole coupling of the NV centers to other magnetic impurities inside the
diamond. In accordance with previous studies [19, 31–33] this line broadening is
well described by taking a q-Gaussian distribution function [62] for the spectral
spin density

ρ(ω) = C

[
1− (1− q)(ω − ωs)2

∆2

] 1
1−q

, (C.1)

Figure C.1.: The normalized spectral
spin distribution ρ(ω) defined by
the q-Gaussian distribution function
Eq. (C.1) with q = 1.39 and γq/2π =
9.4MHz.

where q is the dimensionless shape pa-

rameter, γq := 2∆
√

2q−2
2q−2 is the full

width at half maximum, and C is
the normalization constant. As in the
previous studies, for our calculations
we use the parameters q = 1.39 and
γq/2π = 9.4MHz. Note that this spin
distribution, which is presented in Fig-
ure C.1, is situated between a Gaussian
(q → 1) and a Lorentzian (q = 2) dis-
tribution.
In the experiment, which was per-
formed at the Atominstitut of the
Vienna University of Technology, the
NV ensemble is magnetically coupled
to a λ/2 superconducting microwave

coplanar waveguide resonator. The experiment is carried out in a standard dilution
refrigerator with a synthetic diamond placed on top of a resonator. In order to
avoid thermal excitations the set-up is cooled to a temperature of ∼ 25mK. The
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NV ensemble is Zeeman tuned into resonance with the cavity frequency ωc/2π =
2.6915GHz by a set of superconducting Helmholtz coils. To probe the cavity-spin
system, a time-resolved transmission spectroscopy is performed by a fast homodyne
detection set-up with subnanosecond time resolution (see [31] for more details).
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