
Streaming und Exploration von
sich Dynamisch Ändernden

Oberflächenrekonstruktionen in
Immersive Virtual Reality

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Manuel Kröter
Matrikelnummer 0820478

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Mag. Dr. Hannes Kaufmann
Mitwirkung: Dipl.-Ing. Dr. Annette Mossel

Wien, 7. April 2016
Manuel Kröter Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Streaming and Exploration of
Dynamically Changing Dense
Surface Reconstructions in

Immersive Virtual Reality

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Manuel Kröter
Registration Number 0820478

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Priv.-Doz. Mag. Dr. Hannes Kaufmann
Assistance: Dipl.-Ing. Dr. Annette Mossel

Vienna, 7th April, 2016
Manuel Kröter Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Manuel Kröter
Wasserburgergasse 5/14, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. April 2016
Manuel Kröter

v





Acknowledgements

I am thankful to my advisors Priv.-Doz. Hannes Kaufmann and Dr. Annette Mossel for
giving me the opportunity to write this diploma thesis at the Interactive Media Systems
group. Besides guiding me through the thesis and providing me with valuable feedback, I
want to thank Annette for helping me in conducting the user study. I also want to thank
all the volunteers of this study for their time and participation.

My special thanks go to my parents Irene and Werner for always supporting me and
making my studies possible. Furthermore, I want to thank my brother David for his help
in all situations and especially the time in Vienna. I want to thank Stefan for the great
moments in Copenhagen and Vienna and also for providing his laptop for the time of
my thesis. Lastly, I am extremely thankful to Stephi for all her support and the last six
wonderful years.

vii





Kurzfassung

Günstige Tiefenbildkameras wie die Microsoft Kinect ermöglichen es die Struktur der
Umwelt zu erfassen. Mit Hilfe von 3D Rekonstruktionsverfahren kann ein detailliertes
3D-Modell in Echtzeit aus den Kameradaten berechnet werden. Autonome Roboter
können diese Techniken anwenden, um eine Karte der Szene zu erstellen, während sie
diese erforschen. Dies ermöglicht es dem Roboter, sich selbst in unbekannten Umgebungen
zu orten und zu navigieren. Das rekonstruierte Modell kann zudem auch für andere
Parteien interessant sein, um sich ein Bild dieser Umgebung zu machen. Besonders weit
entfernte oder gefährliche Bereiche können durch Roboter gescannt werden, während
entfernte Beobachter in der Lage sind, sicher einen Überblick über die Szene zu bekommen.
Um diese Fernerkundung zu erlauben, während die Szene noch gescannt wird, müssen
die rekonstruierten Daten inkrementell über ein drahtloses Netzwerk gesendet werden.
Da derzeit keine Lösungen mit inkrementeller Netzwerkübertragung vorhanden sind,
wird das existierende Rekonstruktionsframework InfiniTAM erweitert, um genau dies
für große, dynamische Modelle zu unterstützen. Die Visualisierung und Exploration des
Modells wird mit Hilfe der Unreal Engine 4 durchgeführt, einer State-of-the-Art 3D-
Engine. Zu diesem Zweck wird eine Darstellnung des Modells als Dreiecksnetz bevorzugt,
während dichte Rekonstruktionsverfahren meist mit einer volumetrischen Darstellung
arbeiten. In aktuellen Ansätzen wird das Dreiecksnetz in einem Nachbearbeitungsschritt
extrahiert. Dies ist jedoch nicht anwendbar, wenn die Szene noch während dem Scannen
betrachtet und erforscht werden soll. Das verwendete Rekonstruktionframework ist daher
so angepasst, dass ein aktuelles Dreiecksnetz in Echtzeit erhalten wird. Das rekonstruierte
Dreiecksnetz wird schließlich in einem Virtual Reality Setup mittels Head-Mounted
Display und einem omnidirektionalen Laufband erforscht. Der Einsatz von Virtual Reality
Hardware ermöglicht es, auf natürliche Art und Weise zu navigieren. Das entwickelte
System ist in Bezug auf die Speicheranforderungen und Datenübertragunsraten evaluert.
Zudem ist der Erwerb des Raumverständnisses im Rahmen einer Nutzerstudie analysiert.

ix





Abstract

Low cost commodity depth cameras like the Microsoft Kinect allow to sense the structure
of the environment. With the aid of dense surface reconstruction methods, a detailed 3D
model can be computed in real-time from the acquired camera data. Autonomous robots
can apply this techniques in order to build a map of the scene while they are exploring
it. This allows the robot to locate itself and to navigate in unknown environments.
Besides that, the reconstructed model can be interesting for different parties, who want
to explore these environments as well. Especially, distant or dangerous areas can be
scanned by robots while remote observers are able to safely get an overview of the scene.
In order to support remote exploration while the scene is still scanned, the reconstructed
information has to be streamed incrementally over wireless network. Since currently no
solution exists with this feature, the existing reconstruction framework InfiniTAM is
extended to support the transmission of a large scale, dynamically changing model. The
visualization and exploration of the model is performed with the aid of Unreal Engine 4,
a state-of-the-art 3d engine. For this purpose, a triangular mesh representation is favored,
while dense reconstruction methods mostly operate on a volumetric representation.
In current approaches, the mesh is extracted in a post-processing step, which is not
applicable when the scene should be explored while being scanned and updated. The
used reconstruction framework is therefore adapted to maintain an up-to-date mesh in
real-time. The reconstructed mesh finally is explored in a virtual reality setup using a
head-mounted display and an omnidirectional treadmill. The usage of virtual reality
hardware enhances the ease of use and makes it possible to navigate in a natural way.
The developed system is evaluated in terms of memory requirements and data rates as
well as within a user study, that analyzes the effect of the incremental streaming and the
virtual reality exploration on spatial knowledge acquisition.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Incremental Network Transmission . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Live Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals of Real-Time Surface Reconstruction 7
2.1 Depth Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Scene Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 State-of-the-Art 11
3.1 Dense Real-Time Surface Reconstruction . . . . . . . . . . . . . . . . . . . 11
3.2 Network Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Surface Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Visualization and Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology 21
4.1 Model Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 GPU - CPU Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Raycasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Network Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Dynamic Scene Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Visualization and Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



5 Implementation 45
5.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Usage Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Network Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Dynamic Scene Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Visualization and Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Experimental Results 63
6.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 85
7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A User Study Pre-Questionnaire 89

B User Study Post-Questionnaire 93

List of Figures 101

List of Tables 102

Bibliography 103



CHAPTER 1
Introduction

The reconstruction of environmental geometry is broadly researched in computer vision
and computer graphics. The goal of this process is to capture the 3D structure of the
scene using information from an RGB or depth camera and generate a computer model
from it [NIH+11]. Especially in the area of robotics, these methods are widely applied,
when the robot has to navigate autonomously in unknown environments. In order to
avoid obstacles and to explore new areas, the robot simultaneously needs to build a model
of the environment and estimate its position within the generated model. This principle
is called Simultaneous Localization and Mapping (SLAM) [TL08]. Another application
area of this method is architecture, where a 3D model of a building can be generated by
walking through it with a handhold scanning device [FCSS09]. Other persons can then
experience this building without actually being there.

The capturing of an environment and its exploration is often performed by two remotely
connected parties, such as in a typical setting in robotics: a human observer virtually
explores the scene while an autonomous robot is actually scanning it. Using a robot might
be cheaper, safer or more convenient than going everywhere in person. For example,
a quadcopter can scan large areas without effort [WMG+12] or firefighters can send a
robot into dangerous buildings to safely get an overview. In all these cases, data has to
be exchanged between the two parties in some way. The aim of this thesis is to create a
3D reconstruction pipeline, which integrates such data transmission over wireless network
and allows for live exploration by a remote observer, as illustrated in Figure 1.1.

1.1 Incremental Network Transmission
A trivial solution is to transmit the final model after the reconstruction process has
finished. As a consequence, one has to wait a long time before the environment can be
analyzed, especially for large scenes. If the data is streamed incrementally while scanning,
the scene can be explored from the start and findings are obtained sooner. This can be

1



1. Introduction

Scanning and reconstruction Live exploration of remote environment

Virtual reality
exploration

3D reconstruction Voxel triangulation and
dynamic scene update

Incremental
streaming
of 3D model
(as voxels)

RGB-D camera
with color and
depth sensor

RGB-D capturing

Figure 1.1: A room is scanned using a RGB-D camera and 3D model is reconstructed
from the camera data. The model of the room is transmitted incrementally over network
to a remote client. On the client side, the volumetric model is triangulated and can be
virtually explored while it is gradually expanding.

vital in scenarios like the firefighter example. Moreover, it is possible to influence the
way the scene is scanned. For instance, one can give directions to the scanning robot if
something interesting is discovered during exploration.

Current reconstruction systems do not incrementally stream the reconstructed model
but only the sensor data. The 3D reconstruction process is completely [NSS14], or at
least partially [WMG+12], performed on a remote server. This is advantageous since
generally, the server is more powerful than the mobile scanning computer (e.g. the
robot). Moreover, the complete 3D model of the reconstruction is available on the server
and thus, the scene can be remotely explored, independently of the current position of
the scanning camera. The major drawback is, that this principle is prone to network
failures or bottlenecks. Once the network connection is lost, the reconstruction cannot
continue and might fail due to camera tracking errors. Moreover, the robot does not get
instructions from the server anymore, e.g. for navigation purposes. Autonomous decisions
cannot be made because the robot does not store the 3D model of the environment itself.

In the reconstruction pipeline developed within this thesis, not the camera data, but the
model itself is streamed. This way, the reconstruction is both available to the scanning
computer and the remote server, and one is less dependent on a stable network connection.
If the network connection is lost, the reconstruction still continues on the client side
and once the connection is established again, the model on the server is updated. The
latency of the model update is not critical compared to the case when streaming camera

2



1.2. Live Exploration

images. The major challenge with the incremental transmission of the model is to keep
the needed bandwidth as low as possible. Furthermore, the reconstruction process needs
to be very efficient in order to minimize the required computing power on the mobile
computer.

1.2 Live Exploration
As already mentioned, a reason for the need of incremental model transmission is the
desire to explore the scene while still scanning. The observer should be able to examine
the reconstruction as quickly as possible and to get to know the spatial layout of the
environment.

1.2.1 Exploration in Virtual Reality

Exploring the scene by navigating through the model using standard input and output
devices such as a keyboard and a standard computer monitor does not facilitate a natural
user experience due to the limitations of both input and output device. Studies have
shown, that the spatial knowledge acquisition can be enhanced by exploring a virtual
scene as natural as possible [RL09]. Learning the spatial arrangement of a scene requires
mental resources and the fewer one has to concentrate on the human-computer interface,
the more one can concentrate on the environment [BKJP04]. In addition, non-visual
sensory information such as vestibular cues or muscle usage support the building of a
mental map, as one can easier keep track of the orientation and position within the scene
[RB04].

In order to improve the exploration in terms of ease-of-use and spatial knowledge
acquisition, one can use immersive Virtual Reality (VR) technologies. As part of this
thesis, the implemented reconstruction pipeline integrates a head-mounted display (HMD)
and an omnidirectional treadmill (ODT) for scene exploration. An HMD allows to rotate
and look around in the virtual scene like in reality and an ODT enables to walk infinitely
in the virtual world while actually staying at the same place in the real world.

While it was previously shown that natural walking significantly contributes to spatial
learning [RB04], there are no studies yet that analyze the effect of a low friction ODT.
In this thesis, it is evaluated in an experimental user study if walking with an ODT is
to be favored over pure virtual walking with keyboard input when considering spatial
knowledge acquisition. Apart from that, the study also examines if the fact, that the
model is not available in its entirety from the beginning but incrementally expands during
exploration, increases or decreases the spatial knowledge.

1.2.2 Visualization

To be able to explore the reconstructed scene, the model needs to be visualized first.
Generally, there are two options: Raycasting or standard forward rendering [FVDF+94].
The process of raycasting is an image-based approach. It generates an image by shooting

3



1. Introduction

a ray into the scene for every pixel and gathering information at the intersection with the
model. The computational effort therefore depends on the resolution of the final image.
Forward rendering is an object-based approach and constitutes the standard approach
used by most existing 3D engines. The image is computed by projecting the model on
the image plane. The complexity of the model determines the runtime. While raycasting
is fine for live feedback during scanning, forward rendering is favored when exploration
and interaction with the model is desired. In the latter case, high image resolutions and
high framerates are necessary, especially in a VR setup [Ocu16b].

Dynamic Mesh Update In order to apply forward rendering, a triangular mesh needs
to be extracted from the representation used for reconstruction. Most of the currently
available reconstruction solutions perform this mesh computation in a post-processing
step. In this thesis, a real-time extraction is implemented since it is necessary to support
live exploration. Note, that the underlying representation does not only grow during
reconstruction but can also change in already scanned areas. Thus, the mesh does not
only have to be expanded but updated in existing areas, which comprises an additional
challenge. Lastly, the final rendering step is adjusted to support this dynamically changing
geometry. In standard rendering approaches, the geometry to be rendered is loaded
before visualization and is then not changed anymore [FVDF+94].

1.3 Contribution
To sum it up, the aim of the thesis is to create a 3D reconstruction pipeline, which
allows to generate a 3D computer model from a real-world environment and to stream
that model incrementally over wireless network to another PC. The model can then be
remotely explored in a VR setup, which supports the spatial knowledge acquisition. All
steps happen in real-time while the environment is still scanned and the reconstructed
model grows. For this purpose, the existing state-of-the-art reconstruction framework
InfiniTAM, developed by Kähler et al. [KPR+15], represents the base implementation.
InfiniTAM is extended with following parts:

• Incremental transmission of the reconstructed model over network

• On-the-fly mesh generation (and dynamic update) from the underlying model

• Communication with UE4 to pass the extracted meshes

In order to visualize and explore the gradually expanding reconstruction in an immersive
VR setup, the game engine Unreal Engine 4 (UE4) is applied [Epi16]. In addition to the
standard UE4 capabilities, it contains following features:

• Communication with InfiniTAM

• Dynamic update of the scene representation

4



1.3. Contribution

• Integration of the VR hardware (Oculus Rift HMD and the Virtualizer, an ODT
from Cyberith [CH14])

The implemented system is evaluated in terms of frame rate, required memory and network
bandwidth. Besides that, a user study is performed, which examines the effectiveness of
the VR exploration regarding spatial knowledge acquisition in unknown environments.

A paper summarizing the work of this thesis is also submitted to the International
Symposium on Mixed and Augmented Reality (ISMAR) 2016. At the time of writing,
the submission is currently under reviewing.

The rest of the thesis is structured in the following way: Chapter 2 introduces the
main concepts of 3D reconstruction methods. The state-of-the-art in real-time dense 3D
reconstruction, network transmission, mesh computation and visualization and exploration
is reviewed in Chapter 3. Afterwards, Chapter 4 covers the methodology, where the
concepts of the developed reconstruction pipeline are explained along with the used
methods. Implementation details and instructions, how to use the system, are presented in
Chapter 5. Chapter 6 describes both, the system performance, as well as an experimental
user study, targeting spatial knowledge acquisition during live exploration. Finally, the
thesis ends with a conclusion in Chapter 7.

5





CHAPTER 2
Fundamentals of Real-Time

Surface Reconstruction

Before reviewing related work and introducing the methodology, the basic concept of
real-time surface reconstruction is explained. Reconstruction methods work either in
real-time or offline. While offline approaches compute the model from a captured camera
stream in a post-processing step, real-time approaches can reconstruct the scene while
it is scanned [NIH+11]. This enables live feedback and allows to see which regions of
the scene still need to be scanned and if the reconstruction process is working without
failure. Furthermore, these methods can be used in robotics as mentioned in Section 1.
This thesis focuses on real-time techniques.

2.1 Depth Sensors

To be able to build a 3D model of the environment, one needs to sense not only the
color but also the depth of the scene, i.e. the distance to the nearest object. With that
information, it is possible to reconstruct a 3D point in space. Standard RGB cameras
only provide color images but not depth information. There exist approaches to estimate
this information from the available color data, which can however lead to wrong values
and require additional computational resources.

RGB-D cameras spare this step since they are able to measure the depth directly. An
example of such an RGB-D camera is the Xtion Pro Live from Asus [Asu16], which works
the same way as the first version of the Microsoft Kinect. It projects a known infrared
dot pattern into the scene, which is then captured with a built-in infrared sensor. The
depth of the scene is estimated by analyzing the distortion of this pattern. This principle
is called structured light. Besides the scene depth, the camera measures the color with a
separate RGB sensor. Figure 2.1 shows an image of the Asus Xtion. Another type of

7



2. Fundamentals of Real-Time Surface Reconstruction

RGB-D sensors are Time-of-Flight (TOF) cameras, as for instance the second version of
the Microsoft Kinect. They emit infrared light pulses and measure the time until the
light is reflected back. The larger the distance to an object, the longer the measured
time is. The drawback of using both types of RGB-D cameras is, that they do not work
in direct sunlight since the infrared part of the sunlight interferes with the infrared dot
pattern or light pulses. As a consequence, the cameras can only be used indoors in a
reliable way. A more robust and precise depth estimation can be performed with laser
scanners, however, they are also more costly. Within the thesis, the Xtion Pro Live
camera is used since only indoor scenes are scanned.

RGB Sensor 

Infrared Projector

Infrared Sensor

Figure 2.1: RGB-D camera Xtion Pro Live from Asus [Asu16].

2.2 Scene Representation

Independently of the real-time property and the camera type, a further characteristic
of a reconstruction system is the used scene representation. It defines how the recon-
structed environment is stored in memory and strongly affects the reconstruction process.
Generally, the model can be represented either in a sparse or dense way [NIH+11]. In
contrast to sparse models, a dense representation allows to maintain fine details of the
geometry and is thus well suited for exploration and interaction with the captured scene.

A Signed Distance Function (SDF) [CL96] is a common type of such a dense representation
and is also applied in InfiniTAM, the reconstruction framework used in this thesis
[KPR+15]. A SDF stores the distance to the closest surface for each point in space,
where all values on one side of the surface are negative and all values on the other side of
the surface are positive. The scene is therefore represented implicitly as the zero crossing
of this function. A drawback of dense representations is the high amount of required
memory and, especially for large scenes, an efficient data structure is necessary. An
overview of dense data structures suited for large scales can be found in Chapter 3.

2.3 Reconstruction

The actual reconstruction process of real-time methods mainly consists of two steps:
Camera pose estimation (or camera tracking) and integration of the current camera

8



2.3. Reconstruction

information into the model [NIH+11] (mapping).

Pose Estimation The goal of camera pose estimation is to track the position and
orientation of the scanning camera by using its images. This process is also referred to
as visual odometry [SSC11]. By comparing the information of two camera frames, it is
possible to estimate how the camera moved and rotated in between. As a consequence,
the complete camera trajectory can be reconstructed. Like the scene representation, the
method for camera pose estimation can be classified as either dense or sparse. Sparse
camera tracking approaches use only parts of the available image information. They try
to compute and find corresponding points in both images. Then a transformation is
computed which best maps the points from frame one onto the points of frame two. This
transformation constitutes the camera transformation between the two frames. Corre-
sponding points can be found using RGB image features like SIFT or SURF[PPS13] and
the transformation can be estimated using a procedure like RANSAC [FB81]. RANSAC
tries to find the best transformation by eliminating wrong point correspondences. Instead
of only using a set of points, dense methods estimate the transformation by using the
information of every pixel. In order to still achieve real-time performance dense methods
often utilize the GPU. The computations for each pixel can performed very well in
parallel. A widely used method within dense camera tracking is Iterative Closest Points
(ICP) [BM92]. It tries to find the camera transformation matrix by iteratively aligning
two 3D point clouds. The point clouds can be generated from the depth images and the
internal camera parameters. ICP is also used in this thesis and is therefore explained in
more detail in Section 4.

Camera Drift In order to achieve well aligned reconstructions, it is fundamental to
keep the error in the camera pose estimation step as small as possible. Since only the
relative camera transformations between two frames are computed, the error sums up
over time. This problem is known as camera drift [SSC11]. Especially for large scenes, it
leads to unpleasant results: walls or floors are not straight anymore and reconstructed
objects can overlap. Figure 2.2 shows a reconstructed scene with notable camera drift,
where it can be seen that corresponding parts are strongly misaligned. To mitigate this
problem, instead of a frame-to-frame tracking, a frame-to-model camera tracking can be
applied [NIH+11]. This means, that the camera transformation is not estimated directly
between two successive camera frames but between the current frame and a frame which
is synthesized from the current model. As a consequence, the resulting model is much
more aligned to the model, but the general problem of camera drift still remains. The
impact of drift can be perceived especially when scanning regions, that have already
been scanned and reconstructed before. By detecting this loops, i.e. regions which have
already been scanned, the accuracy of the reconstruction can be improved. Once a loop
is detected, the model has to be transformed in such a way to align the corresponding
parts. While there exist solutions that perform the so called loop closure [AFDM08] for
point clouds, at the time of writing this thesis, there does not exist any publicly available

9



2. Fundamentals of Real-Time Surface Reconstruction

Figure 2.2: Distorted reconstruction due to camera drift.

method to compute this in real-time for large-scale scenes stored as a dense SDF. Thus,
the implementation in this thesis does not integrate loop closure.

Data Integration Besides camera pose estimation, the second step of a real-time
surface reconstruction method is the integration of the current camera information into
the 3D model. By using the inverse of the estimated camera transformation matrices, all
images of the camera stream can be mapped to a common world coordinate system. The
3D world position of the individual pixels can then be inferred with the depth information
of the individual images, resulting in a point cloud. Finally the individual 3D points of
this cloud need to be integrated and combined with the existing model. Since this step
depends entirely on the used scene representation, it is not described in more detail here.

10



CHAPTER 3
State-of-the-Art

At the time of writing, there is no prior art that combine 3D reconstruction, network
streaming and a mesh extraction component into a single application. However, all these
areas are well studied itself and the most relevant approaches are presented in the next
four subsections.

3.1 Dense Real-Time Surface Reconstruction

3D surface reconstruction methods, which incrementally fuse camera data into a single
representation of the scene, got very popular in recent years, especially since the release
of the Microsoft Kinect RGB-D camera [Cor16a].

3.1.1 KinectFusion

One of the first algorithms, which is able to reconstruct scenes in a dense way in real-time
is called KinectFusion[NIH+11]. It estimates the camera pose with ICP where it uses
a synthetic depth map from the current model to limit the camera drift. As a model
representation, it uses a dense volumetric SDF. KinectFusion achieves real-time rates
because both tracking and integration is performed on the GPU. The major limitation of
KinectFusion is, that it can only scan desktop-sized scenes and fails to reconstruct larger
environments. This is due to the fact, that the SDF is stored in a regular 3D voxel grid
on the GPU. Therefore, both space which is occupied by objects and empty space, is
stored the same way, which leads to a large memory footprint. By decreasing the size of
the individual voxels in order to store finer geometric details or by increasing the total
scene size, the amount of the required memory increases cubically. On a GPU with two
GB memory, a volume with 5123 can be stored. This corresponds to a cube with around
2.5m side length when using a voxel resolution of 0.5 cm. There are now several methods,
which extend the KinectFusion algorithm to overcome the space limitation.

11



3. State-of-the-Art

3.1.2 Extending the Scale

Camera

Active Volume on GPU

Camera

to CPU          to GPU

Figure 3.1: Principle of a Moving Volume approach in 2D. Only a small parts of the
scene is stored on GPU (black), the rest is maintained on CPU (gray). When the camera
moves to the right, the red blocks are streamed from GPU to CPU to make space for the
new area (green).

Moving Volume Approaches Moving Volume approaches reconstruct the scene by
dividing it into an active and an inactive volume, where only the active volume is stored
inside the GPU. This volume is translated according to the estimated camera motion. It
always holds those parts of the scene which are in front of the camera. The scene is still
represented as a regular grid, but the parts of the scene that fall out of the current active
volume are streamed to the CPU to make space for new data on the GPU. The principle
is illustrated in Figure 3.1. That way, the supported scene size is solely limited by the
available CPU memory. However, the size of the active volume is still restricted. This has
the effect that either fine details cannot be reconstructed or that only close-by structures
can be scanned (even if the sensor supports a larger depth range). Point Cloud Library’s
LargeKinfu [HF16], Moving Volume KinectFusion [RM12] or the most recent Kintinuous
project by Whelan et al. [WKJ+14] implement this moving volume idea. In Kintinuous,
the parts which are streamed out of the active volume to the CPU are converted to
point clouds first. This further reduces the required memory on the CPU, but existing
point information on CPU is not considered when revisiting an already scanned area. If
the information is contained as SDF, it can be uploaded to the GPU again and fused
with new data. Implementations of LargeKinfu and Moving Volume KinectFusion are
available for public use and at the time of writing this thesis, the authors of Kintinuous
have also released a public version of their code.

Hierarchical Approaches Besides the moving volume approaches, there are several
methods which try to increase the supported scale by ignoring empty space. This can
be achieved by using octrees or similar hierarchical data structures. In a SDF scene
representation, all data that is further away from the closest surface than a certain
threshold can be considered as empty space. Zeng et al. use a ten level octree on the

12



3.1. Dense Real-Time Surface Reconstruction

GPU and are able to reconstruct a space about ten times larger (8 m x 8 m x 2 m) than
the original KinectFusion algorithm at the same resolution [ZZZL13]. Steinbrücker et
al. further extend the scale and can scan a corridor consisting of nine rooms (45 m x
12 m x 3.4 m) while still fitting in their 2.5 GB GPU memory [SKCS13]. In contrast
to Zeng et al. even the color information of the scene is integrated. They apply a
multi-resolution strategy, where not only leaves but also octree branches can hold scene
data. Measurements with high distance to the sensor (including more noise) are stored
with a lower resolution at higher levels of the octree and close surfaces are represented at
lower levels with finer a resolution. A voxel size of up to 0.5 cm is used. A CPU version of
this approach is available for public use, however this does not contain a camera tracking
component. Chen et al. avoid octrees including their pointer overhead and propose a
regular spatial subdivision with are more shallow hierarchy [CBI13]. This results in a
better performance and enables efficient GPU-CPU streaming of sub-parts of the scene
to support scales only limited by the CPU memory.

Voxel Block Hashing Even though Chen et al. improve the speed, the drawback of
hierarchical data structures is still, that the required traversal of the hierarchy generally
introduces additional computational overhead, which leads to a reduced performance.
Especially for mobile reconstruction systems as targeted in this thesis, the performance
is critical. To avoid these performance issues, Nießner et al. introduce a technique called
Voxel Block Hashing, which is both fast and space efficient [NZIS13]. The main idea is,
that they store data only near actual surfaces but without resorting to a scene hierarchy.
This is achieved by introducing a spatial hash function which maps a 3D voxel position
from world space to a hash table entry. The hash table is maintained on the GPU and
only data (SDF and color) for currently visible voxels is stored on the GPU memory.
All other voxels are streamed out to the CPU similar to the Moving Volume techniques.
Voxel Block Hashing requires only about 10% of the memory in comparison to a regular
3D grid and is superior to other techniques regarding the frame rate. It is integrated
in the InfiniTAM framework [KPR+15] and is explained in more detail in Section 4.1.
Figure 3.2 shows a comparison of storing the scene in a regular grid (as in standard
KinectFusion or Moving Volume approaches), a hierarchical grid or using Voxel Block
Hashing.

3.1.3 Improving the Camera Pose Estimation

Most of the mentioned surface reconstruction approaches integrate depth-based ICP for
camera pose estimation. For environments with a lot geometric features it works well,
however for some scenes, such as hallways, it likely fails. The low geometric information
alone does not allow to compute a unique pose in these cases. In order to get a good pose
estimate, not only the depth but also the color information of the RGB-D sensor can be
used. A common approach is, to estimate sparse visual features and find matches between
image pairs. For example, Henry et al. [HKH+12] use FAST features in combination
with ICP. In order to better exploit all the available color information, Steinbrücker et

13



3. State-of-the-Art

   Regular                        Hierarchical                      Voxel Block 
      Grid                                 Grid                               Hashing

Figure 3.2: Comparison of storing the scene in a regular grid (left), a hierarchical grid
(middle) or using Voxel Block Hashing (right).

al. propose a dense estimation where they minimize both the photometric error and
geometric error between two consecutive RGB-D image pairs [SSC11]. In the Kintinuous
project, Whelan et al. integrate Steinbrücker’s RGB-D tracking and combine it with
frame-to-frame ICP [WJK+13].

Loop Closure As mentioned in Section 2, another way to improve camera pose
estimation is to integrate a loop closure procedure. Current state-of-the-art approaches
mostly apply appearance-based methods using a pose graph to detect loops [WKJ+14,
LM13]. In a pose graph, each node corresponds to a keyframe and stores a camera image
with the corresponding pose estimate. A new node is inserted, whenever the camera
moved more than a defined threshold or when some time had passed. The main idea
is then to compare the current camera image with the previous keyframes using sparse
visual features based on the color image. Whenever a loop is found, a new edge is added
to the pose graph and the graph with its poses can be corrected by running a pose graph
optimization algorithm. After adjusting the existing pose estimations, the current 3D
model is deformed. Usually, a point-based representation is used in these approaches and
in this case, the deformation can be done efficiently. A drawback of such appearance-based
methods is, that they do not work well in low-light environments or when the camera is
moved too fast due to motion blur. Apart from that, to be able to detect loops, previous
regions have to be seen from a similar viewpoint, so that corresponding features can be
found. Recently, Fioraio et al. introduced a method which does not rely on the color
information and which works for large scale volumetric models. They are [FTF+15] able
to perform online global optimization without explicitly performing loop closure. The
scene is divided into a number of subvolumes, where each subvolume is assigned a pose,
and these poses are optimized by performing geometric registration of the volumes. The
subvolumes are fused together in order to get a global map. The authors state that their
approach is able to produce results similar to state-of-the-art offline in only a fraction of
time. An implementation of this approach is not available to the public at the time of
writing.

14



3.2. Network Streaming

3.2 Network Streaming

The streaming of a 3D reconstruction depends very much on the representation of the
data to be sent. In order to achieve a low bandwidth requirement, a proper compression
method is necessary. This method can be either lossless, i.e. all the original information is
contained, or lossy. In that case, information is sacrificed to achieve a higher compression
rate. Since RGB-D sensors already introduce some noise, a loss of information due to
compression can be acceptable if it is below the noise level.

3.2.1 Transmission of Images

Most of the related approaches send the current camera images or images of the current
reconstruction as seen from the camera’s viewpoint over network. Sending raw images is
not feasible, as a Kinect camera produces depth and RGB images with about 45 MB
per second. In order to keep the data rate low, the images can be compressed using
standard image compression methods or algorithms specifically designed for depth data.
Coatsworth et al. suggest to compress RGB images using the lossy JPEG compression
and depth images using the lossless DEFLATE algorithm [CTF14]. They evaluated in
an experiment that this combination offers a good compromise between compression
ratio and computing complexity. In their approach, each image is encoded separately.
The redundancy usually observed in a camera stream is not exploited. Nenci et al. also
consider this temporal relation between the depth images using the H.264 video codec to
achieve a higher compression rate [NSS14]. Since video codecs like H.264 usually only
support 8 bit per pixel, they are not directly applicable for depth data with 16 bit per
pixel. Moreover, they result in blurred edges which results in strong artifacts in the
surface reconstruction. Nenci et al. try to solve this by dividing the depth image into
multiple channels, where each channel contains a certain (normalized) depth interval.
The channels are then compressed individually. Generally, this scheme is targeted at a
lossy compression mode. When choosing lossless compression, it even results in a higher
bandwidth (0.31 bytes per pixel) than the approach by Coatsworth et al. (0.27 byte per
pixel). A further method for depth maps by Mehrotra et al. exploits the fact that the
Kinect depth map accuracy decreases with distance. As a consequence, distant values
can be compressed higher without introducing additional error. The authors claim, that
their near-lossless method achieves a compression rate between 7 and 16.

3.2.2 Transmission of the 3D Model

Besides compressing and streaming images, the second option is to transmit the re-
constructed model, i.e. the point cloud, the mesh or the SDF, itself. In that case, an
important requirement besides a low computational complexity and a low data rate is
the support for incrementally acquired models. There are a number of methods which
make use of octrees to compress the space.

15



3. State-of-the-Art

Point Clouds Kammerl et al. developed a real-time approach for point clouds streams
[KBR+12]. They encode the structural differences between the octrees of two consec-
utive point clouds and achieve therefore both spatial and temporal compression. The
compression is lossy and depends on the desired voxel resolution of the scene. With a
resolution of 5 mm, a compression ratio of 1:27 is achieved (0.45 bytes per point) when
compared to the uncompressed point cloud with 12 bytes per point. Kammerl’s method
is available as part of the Point Cloud Library. Recently, Golla and Klein introduced
another point cloud progression algorithm for real-time streaming which is based on
local 2D parameterizations [GK15]. They divide the scene into a regular 3D voxel grid.
The point cloud within each voxel is compressed separately by parameterizing them as
planar patches. The actual point positions are encoded with height maps and holes
are represented by occupancy maps. For these two maps, standard image compression
techniques are used and the planar patches are compressed using the Lempel-Ziv-Markov
chain algorithm. Similar to that, Morell-Gimenez et al. achieve a spatial compression
by detecting planes [MOCGR14] in the point data and representing those with a more
compact form. However, it is not specifically targeted at the incremental transmission of
reconstructed model.

Meshes Apart from streaming point clouds, another option is to compress and transmit
the reconstruction data as meshes [MLDH15]. However, meshes are usually not the
representation used during scene reconstruction. They have to be extracted first which
introduces additional computational cost at the mobile scanning computer. Moreover,
two different representations of the same scene would have to be stored on the mobile
platform which increases the memory footprint. As a consequence, mesh transmission is
not considered as an option in this thesis.

SDF Streaming of volumetric reconstruction data stored as a SDF is not done in related
work but one can apply compression methods targeted at arbitrary data. Note, that the
scene representation chosen for the 3D reconstruction not only determines the supported
scene size but also strongly affects the network transmission. When the model is stored
very memory efficient, the possible amount of data to be transmitted is already limited.
In case a volumetric SDF model is used, it contains many zeroes or similar numbers.
This data can be compressed effectively by using a lossless general purpose algorithm
like run-length encoding or more advanced methods such as DEFLATE or bzip2. The
latter achieve a higher compression but are also more computational expensive [Sal04].

3.2.3 Network Protocols

Independently of the chosen compression scheme, the data needs to be sent over network
with an appropriate network protocol. Depending on the data to be streamed, the
network protocol may need to satisfy different requirements. If for example images are
transmitted and a real-time rate is required, the latency of the transmission is critical,
whereas some packet losses might be acceptable. If the reconstructed model is streamed,

16



3.3. Surface Extraction

the most important factor is the throughput. The Transmission Control Protocol (TCP)
is connection-oriented, ensures ordered data delivery and is reliable, i.e. no data is
lost [For02]. The User Datagram Protocol (UDP) on the other hand is connectionless,
unreliable and does not guarantee ordered delivery, but comes with less overhead than
TCP. The advantage of these two main protocols is, that they are known and widely
supported. Besides those standard options, there exists the Stream Control Transmission
Protocol (SCTP) [SM01], which is reliable, connection-oriented and allows both ordered
and unordered data delivery. In contrast to TCP, it preserves message boundaries like
UDP. Moreover, it supports multi-streaming, i.e. multiple streams between two endpoints.
When comparing SCTP with UDP and TCP regarding their performance, SCTP achieves
the highest throughput but with the highest delay [NM12]. Another state-of-the art
protocol is the UDP-based Data Transfer Protocol (UDT) [GG07], which is intended
for transferring very large datasets over high-speed wide area networks. In contrast to
standard UDP, it is reliable and connection oriented.

3.3 Surface Extraction

To supply live feedback during scanning, most reconstruction frameworks apply raycasting
to visualize the reconstructed surfaces. However, as already mentioned, a mesh represen-
tation is desired for exploration purposes and has to be extracted from the underlying
model. As the network streaming, the mesh extraction should work for dynamic data.
Thus, it needs to be able to update in real-time upon model changes.

3.3.1 Mesh Extraction from Point Clouds

To compute a mesh from a dense point cloud, a popular choice is Poisson Surface
Reconstruction [KBH06], which first computes a mathematical model before triangulating
it. This method however does not perform well for reconstruction data since it is developed
for continuous surfaces without holes.

In order to extract a mesh from point clouds, which are measured by a camera, the
Greedy Projection Triangulation (GPT) can be used [MRB09]. It directly connects the
points instead of computing a mathematical model first. The triangulation happens
locally, where only the neighborhood of a point is taken into account. The method works
in real-time for incremental noisy data sets. The major issue of this approach is, that
it keeps all the input points. As a result, a mesh with a huge amount of triangles is
generated. Besides requiring a lot of memory, it hinders interactive exploration of the
mesh when reconstructing large spaces .

To tackle this issue, Ma et al. introduce an algorithm to detect planar regions and
represent those with fewer points, i.e. larger triangles [MWB+13]. Planes are detected by
using a region growing segmentation based on the point curvature. The segmented points
of a plane are then converted to a triangular mesh using their new QuadTree-Based
(QTB) algorithm. Within this method, a quadtree is applied for point decimation. All

17



3. State-of-the-Art

boundary points of a planer region are contained and all interior points are replaced by
a set of new ones. The number of new vertices should be as small as possible without
causing skinny triangles, i.e. triangles with very small angles. All points, not belonging
to any planar regions, are triangulated using GPT. While this approach reduces over 80%
of planar points, it is not designed for incrementally acquired point clouds. Whelan et al.
improve the robustness and speed of the algorithm and most importantly extend it to
allow incremental mesh growing [WMB+15]. Apart from that, they added the capability
to maintain the color information of the reduced planar segments by automatically
generating textures. This incremental meshing is integrated in the Kintinuous project,
however the publicly available version does not include it but uses basic GPT instead.

3.3.2 Mesh Extraction from SDF

To create a triangular mesh from a volumetric representation such as a SDF, the standard
choice is to apply the Marching Cubes algorithm [LC87]. This algorithm steps through
the volume and takes eight SDF values at a time, which would lie on the corners of
an imaginary cube. Using these eight values, it is possible to find the triangles, which
represent the surface passing through that cube. The final mesh is then just the set of
triangles of all cubes. This method is applied in the thesis and is explained in more detail
in 4.7. A drawback of this method is, that it produces a very high number of triangles if
one wants to generate a mesh with a high level of detail. The tessellation factor, i.e. the
size of the triangles, is determined by the resolution of the volumetric SDF and it is the
same all over the mesh, also for planar regions. Figure 3.3 shows the dense triangulation
of a reconstructed couch.

Figure 3.3: Marching Cubes Triangulation from a volumetric 3D reconstruction with a
voxel resolution of 1 cm. The left image shows the triangulation and the right image
shows the corresponding colored mesh.

There exist adapted algorithms based on the original Marching Cubes algorithm like
Marching Tetrahedra or Adaptive Marching Cubes, which try to solve this issue [NY06].

18



3.4. Visualization and Exploration

Steinbrücker et al. integrate Marching Cubes in their reconstruction pipeline to dy-
namically extract a mesh from the SDF model [SKCS13]. Since they store the model
at different levels in an octree with different voxel resolutions, also the corresponding
mesh is computed with different levels of detail. Areas that are scanned closely, produce
smaller triangles than far away regions. Further improvements, such as point decimation
in planar regions, are not integrated. The dynamic update of the mesh is achieved by
recomputing the mesh of the corresponding parts of the octree.

3.4 Visualization and Exploration

3.4.1 Visualization using 3D Engines

When the triangular mesh representation is available, the standard rendering pipeline
using rasterization can be applied. For that purpose, there exist a number of game
engines which ease the development process. These engines already incorporate advanced
techniques to produce realistic visual and physical effects, such as collision detection,
while still providing a high performance. Among the current state-of-the art engines
are Unreal Engine 4 (UE4) [Epi16] and Unity 5 [Uni16]. Both have multi-platform
support and are free for personal use. UE4 is based on C++ and has Blueprints, a
visual scripting system, which allows fast prototyping without any coding. Unity is based
on C# and its main advantage is the large asset store, a library which offers a lot of
additional functionality. Since in this theses the goal is to explore a reconstruction while
still scanning, the main requirement is the ability to render a large dynamically changing
mesh. Both in UE4 and Unreal this can be achieved using procedural meshes. UE4
has more advanced lighting capabilities, however the lighting is less important since the
reconstruction already contains the measured color. Besides that, another requirement is
the support for VR devices, such as an HMD or an ODT, in order to allow the desired
immersive exploration. As both have support for an HMD, but not for any ODT, they
can be used equally well. The treadmill has to be integrated in both scenarios. In this
thesis, Unreal Engine 4 is used, mainly because it builds on C++, which makes the
integration with the rest of the reconstruction pipeline easier.

3.4.2 Exploration with VR Hardware

Head-Mounted Displays HMDs (for VR) are displays, worn on the head like glasses,
and provide a much higher field of view compared to a normal desktop screen. They
enable a stereoscopic view by showing separate images for both eyes. Moreover, these
devices track the position and orientation of the user’s head which allows to adjust the
visualization according to the current head movement. This way, the user is able to
explore the virtual surroundings in a natural way just by turning the head. State-of-the
art devices include the Oculus Rift [Ocu16a], HTC Vive [Hig16] or PlayStation VR
[Son16]. Besides a high display resolution and field of view, a high refresh rate and low
latency is critical to fully immerse the user in the virtual world and to avoid symptoms
like headache or nausea [MS92]. The so called cybersickness can also be introduced by

19



3. State-of-the-Art

the VR content when different sensory cues are in conflict, e.g. when experiencing a
virtual rollercoaster ride, while actually sitting at a desk. To enhance the VR experience
and to limit motion sickness, the user can move in the virtual environment by actually
walking the the real world.

Omnidirectional Treadmills While HMDs allow to look around freely, walking more
than a few steps is usually not possible because of the limited available space in the real
world. An ODT can be used to tackle this problem. Such a device enables a person to
walk in virtual space while actually staying at the same position. In contrast to a typical
treadmill, the person can move in any direction. Generally an ODT can be either active
or passive. Active systems track the user’s movement and try to maintain a still position
by moving the user in the opposing direction. With such an approach, the user performs
a natural walking movement like in the real world. In passive systems, the users stands
on a stationary platform and is fixed to the ODT. The user moves by sliding the feet
over a low-friction surface. These systems are lighter and more affordable than active
system, but enable a less natural experience. The Infinadeck [Inf16] is an example of an
active system. The Cyberith Virtualizer [CH14] and the Virtuix Omni [Vir16] are two
VR treadmills, which are both passive systems. In this thesis, the Oculus Rift as well as
the Cyberith Virtualizer are integrated in the immersive exploration setup.

20



CHAPTER 4
Methodology

In this chapter, the concepts of the implemented 3D reconstruction system are introduced
and the applied methods are explained. Implementation details and instructions, how to
use the system, can be found in the following Chapter 5. The system is based on the
InfiniTAM framework [KPR+15] from Oxford University which uses a volumetric SDF
as a scene representation. InfiniTAM integrates Voxel Block Hashing [NZIS13] to store
the model efficiently in terms of both memory usage and computational performance.
UE4 [Epi16] is used for visualization and exploration purposes.

The thesis implementation allows to scan and reconstruct the geometry of large environ-
ments using an off the shelf camera like the Microsoft Kinect, which delivers both color
and depth information. The acquired reconstruction data is incrementally streamed over
network, and the gradually expanding reconstruction can be explored in an immersive
VR setup. Since network transmission is involved, the system is divided into a server
part and a client part as illustrated in Figure 4.1. Colored parts indicate novel features.
Yellow modules modify or extend existing functionality, whereas green modules are newly
added. The server performs the actual scene reconstruction, which consists of the camera
pose estimation, the integration of the camera images into the model, the swapping
of data between the GPU and the CPU memory and the raycasting procedure. This
raycasting step creates a synthetic depth map from the volumetric model, used both for
camera tracking and live feedback. The network transmission of the volumetric model
is performed in a separate procedure after the GPU - CPU swapping stage. The client
part of the framework allows to explore the reconstruction. It listens for incoming voxel
data and assembles it again, so that the client has an exact copy of the server-side model.
Since a mesh representation is used for exploration, it is extracted from the volumetric
representation and dynamically updated after integrating new voxel data. The computed
mesh is passed to the visualization module without interrupting it. As already mentioned,
this visualization and exploration module builds upon UE4 and runs in a separate process.

21



4. Methodology

Figure 4.1: Overview of the reconstruction pipeline. The server performs the scene
reconstruction and sends the model incrementally to the client. The client maintains an
up-to-date mesh representation and enables live exploration of the reconstructed scene.
Yellow color indicates, that corresponding parts are modified functionality

Since main parts of the reconstruction system rely on properties of the Voxel Block
Hashing data structure, it is introduced first. Afterwards, the individual parts of the
implemented pipeline are explained.

4.1 Model Representation

4.1.1 Truncated Signed Distance Function

During the reconstruction, the model is represented as a three-dimensional truncated SDF
(TSDF) [CL96]. A SDF stores for the distance each point in space to the closest object
surface, where the two sides of a surface are distinguished by the sign of the distance. The
zero crossing of the SDF then determines the surface location. In contrast to a standard
SDF, a TSDF only considers values within a certain range from the surface. All values
further away are set to the maximum distance. The considered range of distances is
called truncation band. Figure 4.2 shows the TSDF for a simple rectangular object in 2D,
where the width of the truncation band is set to three. While in the implementation, the
Euclidean distance measure is used, the Manhattan distance is applied in this example
in order to show nicer numbers.

22



4.1. Model Representation

3   3   3   3   3   3   3   3   3   3

3   3   2   2   2   2   2   3   3   3

3   2   1   1   1   1   1   2   3   3

2   1  -1  -1  -1  -1  -1  1   2   3

2   1  -1  -2  -2  -2  -1  1   2   3

2   1  -1  -1  -1  -1  -1  1   2   3

3   2   1   1   1   1   1   2   3   3

3   3   2   2   2   2   2   3   3   3

3   3   3   3   3   3   3   3   3   3

Figure 4.2: Example of a TSDF (with Manhattan Distance) for a simple object The
surface is defined as the zero crossing and is illustrated in red.

4.1.2 Voxel Block Hashing

The basic data structure to store such a function is a regular voxel grid, where each
voxel stores a distance value. The position of the voxel is encoded implicitly by its index
within the grid. Since all values outside the truncation band are the same, they do not
contain any valuable information and thus this representation is not space efficient.

Voxel Block Hashing [NZIS13] overcomes this limitation and is applied in the developed
system. In this approach, the world is divided into so-called voxel blocks, where each of
these blocks holds n3 voxels. The position of the voxels within the block is determined
by its index. The main difference to the basic representation is, that information is not
stored densely for every point in space, but only for regions which are close to a surface.
In order to store a voxel block, at least one of its voxels has to be inside the truncation
band of the TSDF. Note, that in this case, there is no implicit connection between the
voxel block position and its index, because the data is stored in an unstructured way.
Instead, the blocks are addressed using a spatial hash function, which maps points in
space to a hash table. Given a voxel block world position, one can find the corresponding
hash table entry. But given the index of an entry, the world position cannot be retrieved.
As a consequence, besides the information, if the corresponding block is actually allocated,
each hash table entry stores the block position. The hash function to compute an index
h from a 3D voxel block position with integer world coordinates x, y and z can be seen
in Equation 4.1,

h = ((x× p1)⊕ (y × p2)⊕ (z × p3)) mod n (4.1)

where n is the number of hash table entries and p1, p2 and p3 are large prime numbers. In
InfiniTAM, these numbers are set to 73856093, 19349669 and 83492791. The ⊕ operator
defines a logical XOR and mod stands for the modulo operator.

The hash table usually contains a lot of empty entries to minimize hash collisions. In
order to avoid allocating a lot of empty memory, the actual voxel data of the block, i.e.
TSDF values and colors, is not saved in the hash table directly, but in an additional
voxel block array. Each hash table entry maintains a reference to this array. Figure 4.3
shows the principle of the data structure in two dimensions. For illustration purposes,
one voxel block only holds 42 voxels. In the implementation, each block stores 83 voxels.

23



4. Methodology

Hash Table

Voxel Blocks

World

Object SufaceCamera

Figure 4.3: The principle of the Voxel Block Hashing data structure. A hash function
maps world positions to a hash table. Each hash table entry maintains a block world
position and a reference to the voxel block array. The voxel block array stores the actual
TSDF and color data.

Handling Hash Collisions Note, that the hash function is not injective, which means
several world positions can be mapped to the same index. Such hash collisions are
handled by extending the hash table with an additional array, which holds all collided
entries. This array is called the unordered part and the standard hash table region is
called the ordered part. Figure 4.4 illustrates this concept. Each hash table entry (either
in the ordered or unordered part) stores a possible reference to a further entry in the
unordered part. Therefore, all voxel blocks with the same hash index form a linked list.
Voxel blocks, stored in the ordered part, can be retrieved in constant time, whereas a

unorderedordered

Hash Table

World

Figure 4.4: Division of hash table in an ordered and an unordered part to resolve hash
collisions. Three voxel blocks map to the same hash index in the ordered part. The green
block, which is allocated at first, is stored at that index. References are maintained to
entries in the unordered part, where the other two blocks are stored.

lookup in the unordered part involves a little overhead, since the linked list has to be
traversed. However, by creating a large hash table, which ensures a low load factor, the
number of collisions can be reduced and the performance remains high.

24



4.2. Camera Pose Estimation

Generally, Voxel Block Hashing allows for a very efficient implementation, even faster
than the original KinectFusion. According to Kähler et al., InfiniTAM also runs on a
Tablet with more than 30 fps.

4.2 Camera Pose Estimation

The first step in the reconstruction pipeline is the camera pose estimation. InfiniTAM
integrates the ICP approach used in the orignial KinectFusion implementation [NIH+11],
which is solely based on the depth image. Apart from that, InfiniTAM also integrates an
option to compute the pose using the color image in a dense frame-to-frame manner but
it cannot be combined with the ICP tracker.

4.2.1 Iterative Closest Point

The idea of ICP is to find the transformation which best aligns two point clouds [BM92].
Basic ICP selects a number of points from the first cloud and finds, for each of these
points, the closest point in the other cloud. As a result, a set of point pairs is generated
where pairs with a too big distance are rejected. This so called data association step is
computationally expensive. In order to find the nearest neighbor faster, a kd-tree data
structure can be used. After the data association, the translation and rotation, which
maps the first cloud onto the other one, is computed. This is achieved by constructing
and minimizing an error function such as the sum of squared distances between the
associated points (si and pi):

Error =
∑

(Rsi + t− pi)2 (4.2)

R represents the rotation matrix and t the translation vector to be found. The function
has a closed form solution. After aligning the point clouds with the found transformation,
the whole process with association and alignment is started again and repeated iteratively
until the error converges. Since ICP is a gradient descent method, it relies on a good
seed point and can get stuck in a local minimum.

Generally, basic ICP can be applied to depth maps by converting them to 3D point
clouds first. However, since basic ICP is time-consuming, a more efficient variant is used
in the field of real-time 3D reconstruction. It can be computed in parallel on the GPU
and allows to use all the input data instead of just a selection of points.

Projective Data Association One important feature is the usage of projective data
association, which makes it possible to find corresponding points very fast without the
need for a special data structure. The idea of this data association is, to project the
points from one depth image into the other one and associate those points that fall on
the same pixel. A point-pair is rejected if the depth difference of the pixels is too big or if
the surface normals are not similar enough. Since in live camera tracking, the pose of the
current frame is unknown, this projection cannot be performed directly. However, when

25



4. Methodology

scanning the scene at 30 frames per second, the camera motion can be assumed to be
very small between consecutive frames. For this reason, the current camera pose estimate
is initialized with the pose estimate of the previous frame in the first ICP iteration.

Point-to-Plane Error Metric Another difference to basic ICP is the use of a point-
to-plane error metric. Instead of considering point-to-point distances, the goal is to
minimize the distances between the points of frame number one and the tangent planes
at the corresponding points of frame number two. According to Rusinkiewicz, this is
slower but usually results in a better convergence rate [RL01]. Equation 4.3 shows the
error function for this case.

Error =
∑

((Rsi + t− pi) · n)2 (4.3)

The difference to Equation 4.2 is the added scalar product with the normal vector ni (at
point pi). This error function can be minimized using a general non-linear least squares
algorithm like Levenberg-Marquardt or Gauss-Newton [Bjö96]. The latter is applied
within InfiniTAM. Figure 4.5 illustrates the difference between the point-to-point and
the point-to-plane distance.

Tangent plane

p

s

point-to-plane

point-to-point

Model

Source

Figure 4.5: Difference between point-to-point and point-to-plane distance. The blue
curve represents the reconstructed model and the red curve represents the current camera
information, which needs to be aligned to the model. The model point p and the source
point s are associated with each other. The point-to-point distance is given as the direct
distance between the two points. The point-to-plane distance is the distance between s
and its orthogonal projection on the tangent plane of p.

The ICP procedure can be performed multiple times on different resolutions of the input
images to further improve the convergence behavior. At first, the pose is computed on a
coarse resolution and then, this pose deals as initial estimate for the finer levels, where it
is iteratively refined. In the InfiniTAM framework, a five scale image pyramid is used,
where in the first three coarse levels, only the three Degree Of Freedom (DOF) camera
rotation is estimated. In the last two finer levels, the full six-DOF pose is computed.

26



4.3. Data Integration

4.2.2 Limiting the Drift

Frame-to-Model Tracking In order to limit the drift of the pose estimates, a frame-
to-model approach is applied instead of frame-to-frame tracking [NIH+11]. For that
purpose, a depth image is synthesized from the current volumetric model using raycasting.
To compute the relative camera translation between the current and the previous frame,
the synthetic depth image is used in combination with the current camera depth image,
instead of two consecutive camera images. Procedures to detect and close loops are not
integrated in the reconstruction pipeline. As a result, even the frame-to-model tracking
leads to notable drift in larger scenes.

Integration of Inertial Measurement Unit Kähler et al. propose to integrate an
Inertial Measurement Unit (IMU), which senses the orientation with a gyroscope, to
improve the pose estimates [KPR+15]. They do not apply any form of sensor fusion, but
just replace the ICP rotation estimate with the relative IMU rotation. Since only the 3-
DOF camera translation has to be estimated with ICP, Kähler et al. use a reduced image
pyramid with two levels instead of five. Besides limiting the drift, the IMU integration
reduces the required computational which makes it possible to achieve real-time frame
rates on Tablets. The publicly available InfiniTAM version only allows to load prerecorded
IMU data. The thesis implementation enables to use also live data of an Android device
by streaming its orientation via UDP to InfiniTAM.

4.3 Data Integration

After the pose of the camera is computed for the current frame, the depth and color
information can be integrated into the volumetric model. Each voxel of the model stores
a running average of the color and the TSDF information, where the information of the
last n measurements is considered. InfiniTAM uses a value of 100 for n per default.

Find Visible Voxel Blocks The first step of the data integration is to determine
which voxel blocks are actually visible, and thus need to be updated. Since the traversal
of all voxel blocks is too expensive, a list of visible voxel blocks is maintained in an
incremental way. In each frame, it is examined, if the blocks visible in the previous frame
are still visible. This is achieved by projecting all eight corners of a block to the current
image plane (using the estimated camera pose and the intrinsic camera parameters).
If any corner falls inside the image boundary, the block is visible. Blocks, which are
not visible anymore, are removed from the list. Previously invisible blocks are found
the inverse way. The pixels of the current depth image are projected into the world
space. The corresponding blocks are found by evaluating the spatial hash function and
performing a lookup in the hash table. If the voxel block is not stored yet for a given
position, a new one is allocated. Finally, the block is added to the list of visible blocks.

27



4. Methodology

Update TSDF and Color The actual integration is performed in a similar way than
in the original KinectFusion system. All the visible blocks are transformed to the current
camera coordinate system using the inverse of the estimated camera pose. The individual
voxels of those blocks are then further projected into the current depth image using the
known intrinsic depth sensor parameters. The depth of the projected voxels and the
values of the depth image at the corresponding positions are compared. Whenever the
difference (which represents an SDF value) is within the truncation band or whenever the
stored voxel is in front of the measured surface, the voxel has to be updated. The depth
difference is truncated at the maximum TSDF value and integrated into the running
average. To update the color information, the voxels are projected into the color image
to retrieve the corresponding RGB data. Note, that the used depth difference is not a
true TSDF value, but a projected one since the distance is only measured along the view
direction. There could be a closer distance in the other directions. While for surface
extraction (using raycasting) this does not affect the quality, it can lead to problems at
3D gradient computations as performed for normal estimation [KPR+15].

4.4 GPU - CPU Swapping

Generally, the camera pose estimation and data integration is performed on the GPU to
ensure real-time performance. The direct use of data stored in the main memory from
the GPU is not possible. In order to access it, it has to be copied to GPU memory. Since
this is too expensive to perform for every data access, the model is stored directly on the
GPU. The major limitation in this case is the low available amount of GPU memory,
compared to the main memory. Although Voxel Block Hashing ensures a low memory
footprint compared to other scene representations, truly large scenes, such as entire
building complexes, are still not possible. This is especially true when requiring a fine
voxel resolution.

4.4.1 Existing InfiniTAM Functionality

For this reason, the idea of Moving Volume techniques is integrated in InfiniTAM: Only
those parts of the model which are currently needed for processing, are stored inside the
GPU memory, all other parts are moved to the main memory. When revisiting previously
scanned areas, the corresponding voxel blocks are uploaded to the GPU again, so that
this existing information can be combined with new data. The GPU - CPU swapping can
be achieved very efficiently, when an unstructured scene representation, such as Voxel
Block Hashing, is used. Each voxel block can be accessed and processed individually,
without the need of maintaining any hierarchy information. Voxel blocks required for
processing, are exactly those, which are currently within the camera’s view frustum.
Voxel blocks, that turned from visible to invisible between the previous and the current
frame, are transferred to the CPU memory. Previously hidden blocks, which are now
inside the view frustum are copied to the GPU memory.

28



4.4. GPU - CPU Swapping

As explained in Section 4.1, the actual voxel data is stored in the voxel block array. This
array lies inside the GPU memory and when using GPU - CPU swapping, it only holds
the visible part of the model. The CPU memory, which stores the complete model, is
called the global memory.

The GPU - CPU swapping takes place after data integration and thus, the required
voxel block visibility information is already available. However because of this order,
an enlarged camera view frustum has to be used for the computation of the visibility
information. This way it is ensured, that for the processing of the next frame, all the
required voxel blocks are inside the GPU memory. Figure 4.6 shows an example, where
one can see which blocks are swapped, when the camera rotates left. The dotted line
represents the enlarged frustum. Green voxel blocks (currently on CPU) are swapped in
to GPU, whereas red blocks (currently on GPU) are swapped out to CPU. The white
(on CPU) and gray (on GPU) blocks remain unchanged.

Camera Camera (rotated left)

Figure 4.6: Voxel block visibility check for GPU - CPU swapping. All blocks within the
enlarged view frustum (dotted line) have to be inside the GPU memory. The red blocks
are swapped out to CPU and the green blocks are swapped in to GPU.

4.4.2 Modifications to InfiniTAM

Decreasing Global Memory Footprint In the original InfiniTAM framework, the
global memory contains exactly the same amount of elements as the hash table. That
means, that there is an implicit one to one mapping from a hash table entry on GPU to a
voxel block entry in the global memory, which is advantageous for the swapping process.
The drawback is, that a lot of CPU memory is required for the global memory since the
hash table is usually large and contains many empty entries to reduce collisions. As a
consequence, the potential advantage of GPU - CPU swapping is mitigated and large
scenes still do not even fit into the CPU memory. In this thesis, the global memory is
adapted to tackle this issue. An additional auxiliary array of indices is stored in the CPU
memory with the same size as the hash table. One element of this array then forwards to

29



4. Methodology

an entry in the global memory. This strategy slightly reduces the performance because of
the additionally required lookups in the auxiliary array. However, the size of the global
memory is greatly reduced since it does not store any empty voxel blocks. Note, that
this strategy is similar to the mapping between the hash table and the voxel block array.

Swapping Out Voxel Block Positions In order to allow the transmission of voxel
blocks over network to a remote party, they need to be copied to CPU first. Sending
them directly from GPU is not possible. InfiniTAM’s swapping procedure is therefore
also beneficial for the network transmission feature since it performs the mandatory
voxel block copying already. To be able to integrate the voxel blocks on the remote side
again, not only the voxel data itself, but also the voxel block world position is required.
In the original framework however, only the voxel data is swapped out to CPU. As a
consequence, the swapping is extended in this thesis to include the voxel block world
positions as well. The positions are only copied one-way to the CPU, since the other
way is not necessary. More details on the network transmission module can be found in
Section 4.6.

Figure 4.7 illustrates both swapping in (right image) and swapping out (left image) of
voxel blocks. The modifcations are highlighted yellow. When swapping out a block, also
the hash table index is transferred to CPU. Given this index and the auxiliary array, the
block within the global memory can be found and updated. After swapping the data to
global memory, the data in the GPU voxel block array is deleted. The swapping in from
CPU to GPU happens in two stages. First, the hash table indices of the required voxel
blocks are transferred to CPU. Given these indices, the CPU is then able to locate the
corresponding blocks in the global memory and copy the data to the GPU. Finally, the
GPU stores these blocks in newly allocated entries in the voxel block array.

1. 2.

Hash
Table

Voxel Block
Array

GPU

Index
Array

Global
Memory

CPU

1 4 6

GPU

CPU

5 10

5 10

...

... ...

...

...

5 10

Positions
References

References

...

Positions

Voxel Data

Indices

1 4 6

1 4 6

Figure 4.7: GPU - CPU swapping procedure. The left figure illustrates the swapping out
to CPU and the right figure shows the swapping in to GPU. Extensions to InfiniTAM
are highlighted in yellow.

30



4.5. Raycasting

4.5 Raycasting
Raycasting is the basic method to create an image directly from a volumetric TSDF
model [FVDF+94]. It creates the image by shooting rays into the scene, which start at
the virtual camera position and run through the pixels of the image plane. For each
pixel, a single ray is casted and the first intersection point of the ray with the model
is computed. The color of the intersection point determines the color of pixel. If a
depth image is desired, the pixel value is set to the distance between the camera and the
intersection point.

The live image extraction from the current state of the reconstruction is crucial during
scanning in order to known if the camera pose estimation is working correctly and to
see which regions still need to be scanned. Besides the live user feedback, raycasting has
another major use case. As stated in Section 4.2 a frame-to-model tracking approach is
applied in order to minimize the camera drift. This requires the synthetic creation of a
depth and normal map from the current model, which can be achieved with raycasting.

In order to find the first object intersection, i.e. the zero crossing of the TSDF, one has
to step along the ray and sample the model. The trivial solution is to check all voxels
along the ray, which is however too expensive for real-time approaches. Since the model
is represented as a TSDF, information about the distance to the surface is available and
therefore, larger steps are possible. However because the SDF is truncated, the surface
location cannot be inferred directly and the maximum step length is limited by the size
of the truncation band, so that the surface is not missed. This is true for the original
KinectFusion approach, where the TSDF is stored in a regular voxel grid. The use of
Voxel Block Hashing enables to skip large empty portions of the scene since only data
near actual surfaces is stored. The possible area of the ray intersection can be limited by
computing the minimum and maximum depth of the scene along the ray direction. This
greatly improves the overall performance of the reconstruction system in comparison to
the standard KinectFusion.

To find the bounds for each ray, all visible voxel blocks are projected into the image
space of the virtual camera. Then for each block, the image space bounding box of the
eight projected corners is computed along with the minimum and maximum depth of this
projected block. Finally, all bounding boxes are rendered to a modified z-buffer. This
buffer holds the minimum and maximum observed depth values of all visible voxel blocks.

The minimum depth value now determines the start point of the ray. At first, an allocated
voxel block has to be found. If no block is allocated at the current ray position, a step
is made with the size of a voxel block. If an allocated block is found, but the TSDF
value of the current voxel is outside the truncation band, a step is made with the size
of the truncation band. When the sampled voxel is inside the truncation band, the
step length is given by its TSDF value. The surface is found when the first TSDF
value is negative. Note, that usually the sample points along the ray do not exactly
correspond to voxel positions and therefore the TSDF values have to be interpolated.
For performance reasons, a trilinear interpolation is only performed when being close

31



4. Methodology

to the surface, otherwise a nearest neighbor lookup is performed. The corresponding
color can be interpolated like the TSDF. A final depth map is generated by rendering
the depths of the intersection points.

For some applications, like camera pose estimation, additionally the normal vector is
required. This vector can be computed either in image space from the computed depth
map or in object space from the TSDF. Usually, the normal direction for a given point
in a SDF corresponds to the direction with the strongest increase of the values, the
gradient. However, as explained in section 4.3, the model does not contain true TSDF
values since distances are only measured along the viewing direction of the scanning
camera. Therefore, distances are not always maximal in orthogonal direction which can
lead to wrong normals. Normal vectors in image space can be evaluated by computing
cross products of vectors between neighboring points. This is faster than doing a gradient
computation in object space, but also produces artifacts at depth discontinuities. For
tracking and live visualization, the latter approach is used. For mesh extraction, a 3D
gradient computation is performed since no depth map is available in this case.

4.6 Network Transmission

The network transmission feature allows to send the reconstruction data incrementally
over a wireless network to a remote client. The client receives this data and integrates it
into its scene representation again, so that both server and client store exactly the same
model.

4.6.1 Server Side Compression and Transmission

The network transmission module runs in parallel in order to avoid blocking the recon-
struction process. The networking feature is not part of the original InfiniTAM framework
and is added as part of this thesis. The major requirement of the transmission is to keep
the required bandwidth as low as possible, whereas the latency is secondary. It is not
that important if the model update on the client side is delayed by couple of frames, as
long as the transmission keeps up with server side model acquisition over time. Note,
that this is a clear advantage over streaming live images, which require an interactive
frame rate with low latency.

Since Voxel Block Hashing is used, the space is already compressed efficiently. Moreover,
individual voxel blocks can be addressed and processed independently of the rest of
the scene, which is a big advantage for this streaming feature. In order to further save
bandwidth, redundancy is removed by streaming only new or changed data. Generally,
voxel blocks outside the view frustum cannot change and can be ignored. Only blocks
inside the frustum integrate new information, but due to errors in camera pose estimation
or sensor noise, they are likely to change every frame and would have to be retransmitted
many times. However, voxel blocks falling out of the current view frustum store new

32



4.6. Network Transmission

data and remain unchanged in the future if the scanning camera is not revisiting this
area. As a consequence, exactly those blocks are transmitted to the client every frame.

The GPU - CPU swapping module already performs the identification of voxel blocks
which fall out of the view frustum. Moreover, they are moved from GPU to CPU. The
swapping module marks those blocks, so that the network streaming module is informed.
In InfiniTAM’s original swapping module, only the TSDF and color data of the voxels is
exchanged between GPU and CPU memory. The world position of a corresponding voxel
block is not included. Since this position is mandatory for the client in order to integrate
the voxel block in its scene representation correctly, the swapping procedure is adapted,
so that it also copies the block position one way from GPU to CPU.

The network transmission module waits for voxel blocks to be marked by the GPU -
CPU swapping module. In order to achieve a higher compression, it gathers multiple
voxel blocks in larger chunks instead of compressing each block alone. Moreover, the
TSDF, color and position of all blocks are grouped into three arrays, so that common
data types are stored together. Finally, the arrays are compressed individually and
transmitted to the client. The network transmission is designed in such a way, that it
detects when the connection to the client is lost. Since the networking runs in parallel
to the main processing, the scene reconstruction continues. The network module waits
until the connection is reestablished and once the client is reachable again, all the data
reconstructed in the meantime is transmitted.

Voxel Block Compression For one voxel block with 83 voxels, 512 TSDF values,
512 color values and one position is transmitted. Generally, the voxels also contain
weights for the integration of new color and TSDF values, however they can be omitted
at transmission since they are not required at the client side. In an uncompressed format,
the amount of data to be streamed for a single block would be equal to 1024 bytes for
the TSDF, 1536 bytes for the color and 6 bytes for the position. Because the color is
used only for visual appeal and makes up for most of the data, it may be deactivated
to further decrease the bandwidth. For compression, the DEFLATE algorithm is used
[Deu96]. This is a lossless general purpose method, which is also used for the PNG
image format or the ZIP archive file format. DEFLATE uses concepts of both Huffmann
coding and LZ77. It achieves the compression in two stages: At first, the data stream
is analyzed to find duplicate strings, which are then replaced by pointers. Afterwards,
individual symbols are exchanged with new ones according to their number of occurrence.
Common symbols are replaced by shorter representations, whereas rarely used symbols
are replaced by longer representations.

Network Protocol Regarding the selection of a network protocol, the main goals are
that no data is lost and that the throughput is maximized. The guaranteed order of
the data, i.e. data is received in the same order in which it is sent, is not important as
long as it is taken care that old data cannot overwrite newer data during the client side
integration. Besides that, the latency is secondary as already mentioned above. In this

33



4. Methodology

thesis, the network protocol is not of primary concern and thus, only the two standard
protocols TCP and UDP are considered because they are widely supported. UDP is not
an option in its standard form since it is unreliable, i.e. data packets can be lost during
transmission. As a consequence, TCP is selected, even though it contains unrequired
features such as ordered transmission, which results in a higher bandwidth.

4.6.2 Client Side integration

The client stores the reconstructed scene as a lossless copy in the same format as the
server. A hash table maintains voxel block positions and references to a voxel block
array, which stores the actual voxel data. In contrast to the server, the representation is
stored completely on the CPU memory and not (partly) on the GPU. The power of the
GPU is not required at the client since it does not perform expensive camera tracking or
raycasting. As a consequence, the voxel block array (now on the CPU) is used directly
to store the whole scene instead of the additional global memory. The size of the array
should be similar to the size of the server side global memory. GPU - CPU swapping is
not required. Note, that even though the same representation is used on both server and
client, the data might be stored in a different way in the hash table. The order in which
voxel blocks are encountered is usually not the same on client and server. It can happen,
that on the server side, there already exists a voxel block with the same hash value and
thus, the new block has to be stored in the unordered part of the hash table. On the
client side however, there might be free space in the ordered part where the block must
be stored. For this reason, the client cannot just inherit the server side hash table index
of the voxel block but has to perform its own voxel block allocation.

The client listens for incoming voxel data and whenever new data arrives, the individual
arrays (TSDF, colors and positions) are decompressed and assembled to voxel blocks
again. Given the position of a voxel block, the client then computes the corresponding
hash value and checks if there already exists a block for that position. If so, the TSDF
and color values are overwritten with the new values. Otherwise, a new voxel block
entry is allocated in the hash table and filled with the new data. Furthermore, the
integration procedure informs the meshing procedure that a new voxel block arrived at
the corresponding part of the scene so that the mesh of this region is updated.

4.7 Dynamic Scene Update

In order to visualize and subsequently explore the scene at the client side, a triangular
mesh is computed from the underlying volumetric representation using Marching Cubes
[LC87]. The mesh is updated on-the-fly upon model changes so that it can be explored
while still scanning the scene. The dynamic update is achieved by partitioning the scene
into several subvolumes, each holding an individual mesh. The meshes are recomputed
whenever underlying voxel blocks changed.

Every subvolume has a unique identifier ID which can be computed from the world

34



4.7. Dynamic Scene Update

position of any underlying voxel block. The client’s Network Transmission module
performs this computation for every newly arrived voxel block to identify the mesh block
to be updated. The computed ID is checked for existence within a map of mesh block
identifiers MID, which holds the identifiers of all mesh blocks to be updated. If the
index does not exist, it is added to MID. The Scene Update module can also access
MID. It regularly reads and removes an ID from the map. Given the ID, the world
position of the mesh block is reconstructed and the corresponding volume is triangulated.

The following subsections explain the scene partitioning, the mapping between the scene
parts and the corresponding voxel blocks and the actual update of individual meshes in
more detail.

4.7.1 Scene Partitioning

Inspired by Steinbrücker et al. [SKCS13], the mesh representation of the scene is composed
of a number of smaller individual meshes, where each mesh covers a certain region of the
volumetric scene. In contrast to Steinbrücker’s approach, the volumetric scene is only
stored at one resolution, which eases the mesh computation. The scene is divided into a
regular 3D grid of mesh blocks, where each mesh block holds its own mesh and covers a
region of n3 voxel blocks. An example is shown in Figure 4.8. Real-time updates are

80 cm

Figure 4.8: Partitioning of a test scene into individual mesh blocks, where each block
contains its own mesh. The mesh of a single mesh block is highlighted in green.

achieved by recomputing an individual mesh, whenever new data for any of its underlying
voxel blocks arrived. The triangulation of the voxel blocks is performed using an extended
InfiniTAM Marching Cubes implementation, as described in Subsection 4.7.3.

The size of the mesh blocks is defined by the number of voxel blocks they should cover.
Increasing the mesh block size leads to fewer but larger meshes that need to be updated
even when only small parts contain new information. Decreasing the mesh block size
optimizes updating of a each single mesh but increases the overhead for mesh maintenance

35



4. Methodology

and rendering since the total number of meshes becomes very large. Moreover, the number
of vertices increases since a vertex on the border of a mesh block is contained in each
adjacent mesh block, too. For the thesis setup, sufficient update rates were found with
ten voxel blocks for each dimension per mesh. Note, that the metric size of a mesh block
also depends on the chosen voxel resolution and number of voxels per voxel block. If one
uses voxel blocks with 83 voxels at a resolution of 1cm, one mesh block covers a volume
of 80x80x80cm.

The scene is divided into a regular 3D grid of mesh blocks, where one grid element
contains multiple voxel blocks. In the thesis implementation, such a mesh block covers
103 voxel blocks, which leads to an area of 80x80x80 cm (at 1 cm voxel resolution). A
maximum number of 1000 mesh blocks per dimension is used. As a consequence, the
maximum size of the mesh representation is 800 m3 at a 1 cm resolution. Figure 4.8
shows a the partitioning of a reconstructed test scene into 80 cm3 mesh blocks, where
the mesh of a single mesh block is highlighted in green. In the right image, one can also
see the corresponding mesh block. In total, the scene consists of 130 individual meshes.

4.7.2 Mapping between Voxel Blocks and Mesh Blocks

To establish a correct mapping between the voxel blocks vB and their mesh block mB,
each mesh block is identified by a non-negative and unique integer ID. This ID can
be computed – as described by Algorithm 4.1 – from a given 3D voxel block position
vbPos ∈ Z3. First, vbPos is shifted to the positive octant of the coordinate system.
Afterwards, the shifted position is divided by the number of voxel blocks per mesh block
(integer division). This results in a three dimensional mesh block ID3 ∈ Z3. Finally,
ID3 is flattened to a one dimensional integer ID. Note, that due to the division by the
number of voxel blocks per mesh block, all voxel blocks within a mesh block produce the
same mesh block ID.

Algorithm 4.1: Mesh Block ID from Voxel Block Position
Input: Voxel Block Position vbPos ∈ Z3, Number of Mesh Blocks per Dimension

mB, Number of Voxel Blocks per Mesh Block (per Dimension) vB
Output: Mesh Block ID ∈ Z

1 ID ← −1;
2 vbPosshifted ← vbPos+ mB

2 · vB;
3 ID3 ← vbPosshifted / vB; //3D Mesh Block ID
4 if ID3(x) ∈ [0,mB) and ID3(y) ∈ [0,mB) and ID3(z) ∈ [0,mB) then
5 ID ← ID3(x) ·mB2 + ID3(y) ·mB + ID3(z); //1D Mesh Block ID
6 end
7 return ID;

In order to allow this ID computation, the maximum number of mesh blocks per dimension
mB has to be predefined. Limiting it to 1000 keeps the generated index below one billion

36



4.7. Dynamic Scene Update

(four bytes), but still provides a sufficient large address space. Furthermore, in this case,
the flattened integer ID is constructed in simple way: the first three digits represent
ID3(x), followed by three digits for ID3(y), and three for ID3(z).

Given a mesh block ID, one can reconstruct the world position of that mesh block
mbPos ∈ Z3 according to Algorithm 4.2. First, the three dimensional ID3 can be
extracted from ID (lines 3 - 5). Next, the shifted mesh block position is computed (line
6) and finally the shifting is inversed (line 7). The resulting mesh block world position
mbPos corresponds to the voxel block with the smallest position in the mesh block, i.e.
each coordinate is smaller than or equal to the corresponding coordinate of all other
voxel blocks.

Algorithm 4.2: Mesh Block Position from Mesh Block ID
Input: Mesh Block ID ∈ Z, Number of Mesh Blocks per Dimension mB, Number

of Voxel Blocks per Mesh Block (per Dimension) vB
Output: Mesh Block Position mbPos ∈ Z3

1 mbPos =
( 0

0
0

)
;

2 if ID >= 0 then
3 ID3(x)← ID / (mB2);
4 ID3(y)← (ID −mB2 · ID3(x)) / mB;
5 ID3(z)← ID −mB · (ID3(y) +mB · ID3(x));
6 mbPosshifted ← ID3 · vB − mB

2 · vB;
7 mbPos← mbPosshifted − mB

2 · vB;
8 end
9 return mbPos;

4.7.3 Triangulation of a Mesh Block

The triangulation of individual scene parts is performed with Marching Cubes. The
Marching Cubes algorithm can be performed efficiently in parallel on the GPU for large
meshes. However in this implementation, the mesh generation is performed by the CPU
only because the client side representation lies on the CPU. This avoids the need for the
expensive data transfer between the CPU and the GPU memory. Moreover, since only
small regions of the mesh have to be updated at a given time, the power of the CPU is
enough to ensure real-time performance. The GPU of the client is utilized for rendering
only.

The main idea of Marching Cubes is to walk through the volume and compute the
triangles representing the isosurface at each step individually. Eight voxels representing
the corners of an imaginary cube are processed at a time. By comparing the SDF values
of these voxels, the isosurface passing through the cube can be inferred. If the SDF of
one voxel is positive and the SDF of another voxel is negative, the surface has to pass
anywhere in between. The information, if the eight SDF values are in front of or behind

37



4. Methodology

the surface, is enough to determine the general triangle configuration, i.e. the number
of required triangles and their approximate position and orientation. The information,
on which side of the surface the voxel are, is encoded by the signs of the SDF and
can be stored as a single byte, where one bit is used for each voxel. This byte then
serves as an index to perform a lookup in a table, which stores the precomputed triangle
configurations for all 256 bit combinations. These 256 combinations can be reduced to 15
families, where combinations within one family represent triangle configurations which
are symmetrical or rotations of each other. Figure 4.9 illustrates the principle in two
dimensions (Marching Squares).

1

1

1

1

1

1

1 1 1

-1 -1 -1 -1 -1

-1

-1 -1

-1 -1 -1 -1 -1

-1-1

-1 Case 0

Case 5

Case 8

Case 13

Case 11

Case 14

Case 6

Case 1 Case 2

Case 4

Case 9

Case 12 Case 15

Case 10

Case 7

Case 3

Figure 4.9: Principle of Marching Cubes in two dimensions (Marching Squares). The right
image shows the lookup table storing the possible line configurations. The top left image
represents the SDF data and the bottom left image shows the computed surface. The
dot color indicates if the point is inside (white) or outside (black) the surface. Marked in
red is one square, where the inside-outside combination corresponds to configuration 14.
Figure adapted from Wikipedia1.

Given the correct triangle configuration, the exact vertex positions of the triangles have
to be determined. Note, that the vertices always lie on the edges of the imaginary cube.
The final position P of a vertex is computed by taking the corresponding two SDF values
(SDF1, SDF2) and positions (p1, p2) of the edge and performing linear interpolation as
shown in Equation 4.4.

1https://commons.wikimedia.org/wiki/File:Marching_squares_algorithm.svg

38



4.7. Dynamic Scene Update

P = p1 + −SDF1
SDF2 − SDF1

∗ (p2 − p1) (4.4)

The vertex colors are interpolated the same way as the positions. The vertex normals can
be extracted by performing a 3D gradient computation at the computed vertex positions.
Once all triangles have been computed for the current imaginary cube, the processing
continues with next cube. Note, that this cube contains four of the same voxels as
the previous cube, if the previous cube is adjacent. Previously computed information
could be reused in these cases but is currently not done in the thesis implementation for
simplicity reasons. Once the whole volume is processed, the final mesh is given as the set
of all computed triangles.

Extension to InfiniTAM’s Marching Cubes InfiniTAM includes a basic Marching
Cubes approach to compute an uncolored mesh in a post-processing step. Besides the
ability to update the mesh in real-time, the implementation is extended to include the
vertex normals and vertex colors. Moreover, duplicate vertices within one mesh block
are avoided by utilizing a hash map to check if a given vertex already exists. This check
requires additional resources, but it also allows to skip normal and color computation for
existing vertices. Apart from that, it reduces the required amount of memory. Instead of
delivering an array of triangle structures, the meshing procedure now generates separate
position, color, normal and vertex index arrays. The latter contains indices referencing
vertices in the other arrays, where three consecutive indices define one triangle. This is
the standard representation for rendering and is also required by UE4, which is used for
visualization.

4.7.4 Shared Memory Connection and Dynamic Mesh Update in UE4

As already stated, the mesh of the whole scene is divided into a regular grid of smaller
meshes. All these small meshes are stored and maintained by the rendering and exploration
procedure, which runs as a separate process and uses UE4. Within UE4, the scene is
represented as a set of procedural meshes, which can be added and modified at runtime.
The UE4 process communicates with the client’s meshing procedure using shared memory.
With shared memory, different processes on the same computer can directly access the
same memory region and communicate with each other efficiently. Once the meshing
module generates a new mesh of a mesh block, it writes the resulting arrays (positions,
colors, ...) along with a unique mesh block index to the shared memory. The UE4 process
regularly checks if new data is available and if yes, it reads the data and cleans the shared
memory region to make space for a new mesh. Given the mesh block index, UE4 knows
which procedural mesh requires an update. If the index is unseen, a new procedural mesh
is added at runtime.

39



4. Methodology

4.8 Visualization and Exploration

The reconstructed scene can be explored right from the beginning of the scanning process,
so the scene can change and grow while exploring it.

4.8.1 Rendering with Unreal Engine 4

As previously mentioned, the existing game engine UE4 is integrated, since it already
incorporates advanced rendering and physical effects, which are both vital for exploration.

When providing the color information of the scene, the exploration is enhanced because the
depth perception is increased and one can recognize known objects easier. Furthermore,
the reconstructed scene looks more like reality, which can lead to a higher degree of
immersion during exploration in a VR setup. At the scanning process, the RGB-D
camera already captures the color of the scene which contains the full lighting information
including shadows. As a consequence, the camera RGB information can be used directly
for rendering without any further shading calculations. Note, that the specular lighting
component depends on the current view point of the person looking at the scene. This
property is very notable on glossy surfaces like metal where one can perceive specular
highlights. The highlight should change when moving the head, which is not true for the
captured model. As a consequence, when scanning the scene, the measured color is only
correct for the corresponding camera position. Since the objects are usually scanned from
various different locations, the color information of multiple view points is averaged and
the specular lighting problem is less notable. For rough surfaces, which only have a small
specular lighting component, the measured color represents the true lighting information
much better. In order to include dynamic specular highlights and to enhance the 3D
perception during exploration, three artificial points lights are added to the reconstructed
scene.

Besides basic lighting calculation for those lights, no advanced rendering effects are
applied in order to enhance the rendering frame rate. Keep in mind, that even without
specular surfaces, the color quality of the reconstructed model is still degraded compared
to a synthetic 3D model due to slightly wrong camera pose estimation, motion blur,
auto exposure or errors in the depth and color image alignment. Whelan et al. propose
to improve the color information by ignoring measurements near depth discontinuities
[WJK+13] at color integration. Moreover, they apply a weighted color update, where
colors measured at a low angle (between surface normal and camera view direction) are
included more strongly. This improvement is currently not included in the InfiniTAM
framework and is therefore neither contained in the thesis implementation.

4.8.2 Exploration with VR Hardware

The thesis implementation supports the exploration with various input and output devices.
Regarding the output device, one can use a standard desktop screen or a HMD. For input,
one can use a keyboard/mouse setup, a gamepad or an ODT. In this thesis the Developer

40



4.8. Visualization and Exploration

Kit 2 (DK2) of the Oculus Rift HMD is used, which is illustrated in Figure 4.10 [Ocu16a].
The DK2 has a single full HD display which provides a field of view of 100 degrees. It is
shared by both eyes, so for each eye there are 960 x 1080 pixels available. The rendering
can be updated with maximum rate of 75 Hz. Besides tracking the orientation at 1000
Hz using a built in inertial measurement unit (IMU), the DK2 supports optical positional
tracking with an update rate of 60 Hz. However, the positional tracking only works when
the Rift is facing the camera and therefore, it does not work for all orientations. Since
in this thesis, the Rift is used in combination with an ODT, the positional tracking is
turned off.

Figure 4.10: Oculus Rift HMD (Developer Kit 2)[Ocu16a].

The Cyberith Virtualizer ODT [CH14] can be used instead of the gamepad/keyboard
input when using a HMD for display. The Virtualizer allows to move in the virtual world
while actually staying at the same position in the real world. It also enables to decouple
the walking and viewing direction, i.e. the user can walk in one direction while looking in
another direction. This is usually not possible with standard input devices. A mechanical
construction keeps the user at the same place while he walks on a low friction surface.
Walking is performed by leaning the body forward so that one foot slides backwards while
the other one performs a step. Figure 4.11 illustrates the construction. The treadmill’s
surface has built-in sensors and detect the speed and direction of motion. Depending on
how strong the user leans into the fixed construction, the walking speed changes since the
feet slide backwards faster or slower. The user wears textile overshoes in order to ensure
a level of friction which allows effortless walking while not being too slippery. The user
can rotate freely 360 degrees in the Virtualizer so that any walking direction is possible.
Moreover, the device allows to crouch, jump or sit which distinguishes it from similar
treadmills like the Virtuix Omni.

While the Oculus Rift is natively supported by UE4, a plugin is developed in this thesis
in order to integrate the Virtualizer. The UE4 plugin allows to retrieve the current body
rotation, the walking direction and speed and the current height of the user’s hip. The
returned information is then used to update the position and orientation of the virtual
character.

41



4. Methodology

Figure 4.11: The principle of the Virtualizer. The user is placed in the middle of the
device and is fixed to the ring with a belt system. Walking is performed by leaning into
the belt system so that the feet slide backwards. Optical sensors, integrated into the low
friction surface, measure the motion. [CH14]

4.9 Current Limitations

In order to be used in general real world applications, some parts of the implemented
system have to be improved in future work.

Camera Pose Estimation The used InfiniTAM framework enables computationally
efficient 3D reconstruction and allows to large scale scenes with a low memory footprint.
Capturing a large environment successfully is however challenging, due to the applied
camera pose estimation. The reconstruction process cannot continue once a camera
pose could not be estimated because the pose of the previous frame is always required
for the current pose estimation. Such tracking failures can occur when the scanning
camera is moved too fast or when the scanned environment does not contain enough
features, as in hallway scenes. An option to find the camera pose again is to match the
current depth image to the model, where only a certain region around last known camera
position has to be considered. The developed reconstruction pipeline however does not
detect tracking failures, nor does it integrate any form of pose recovery. Even when a
large-scale environment is reconstructed successfully, the resulting model is likely to be
misaligned due to the accumulated camera drift. Loop closure for large-scale dense SDF
representations is still an open problem and is not integrated in the framework.

Mesh Extraction A further issue with the developed system is the huge amount
of triangles produced by the Marching Cubes triangulation. Currently, the extracted

42



4.9. Current Limitations

mesh is only used for rendering without advanced effects. For this purpose, the high
triangle count is still manageable with modern hardware. However, the mesh needs
to be simplified when interaction with the model is desired. Furthermore, the mesh
representation is currently stored completely inside the client’s GPU memory and large
meshes could exceed the available space.

Exploration Collision detection between the virtual character controlled by the user
and the reconstructed model is currently not performed. Wrong depth measurements can
lead to artifacts, which block the way and permit the user to pass. Because of the missing
collision detection, the user does not follow the terrain of the scene but walks on a fixed
invisible plane and may also pass through walls. Moreover, the position and orientation
of the reconstructed model is determined by the initial pose of the scanning camera. In
order to ensure, that the invisible plane fits to the floor of the reconstructed scene, the
depth camera has to be horizontally aligned at a height of 150 cm above the floor at
the beginning of the scan. In future work, the model has to be cleaned from blocking
artifacts in order to perform collision against the extracted mesh. This would also allow
to reconstruct and explore multi-storey buildings, which is currently impossible.

43





CHAPTER 5
Implementation

In this chapter, the implementation of the 3D reconstruction pipeline is highlighted. The
focus lies on those parts which are adapted or newly added to the reconstruction pipeline
as part of this thesis. For all existing and unchanged parts, it is referred to the original
publications of InfiniTAM[PKC+14][KPR+15].

Used Frameworks and Libraries Both server and client applications are imple-
mented in C++ on Windows 7 and use following libraries.

Server:

• InfiniTAM 2 [KPR+15]

• OpenGL/GLUT (freeglut 3.0) [Fre16]

• OpenNI 2.2 [Occ16]

• CUDA 7.0 [Cor16b]

• Windows Sockets 2 (Winsock2)

• zLib 1.2.8 [DG96]

Client:

• InfiniTAM 2

• Unreal Engine 4.9 [Epi16]

• Ultimate Shared Memory (usm) [Cho16]

45



5. Implementation

• Windows Sockets 2 (Winsock2)

• zLib 1.2.8

• Optional: OpenGL/GLUT (freeglut 3.0)

• Optional: CUDA 7.0

While the original InfiniTAM framework, as well as UE4, supports a wide range of
platforms including Windows, Linux or Android, the developed reconstruction pipeline
currently only runs on Windows due to the usage of Winsock and usm.

The rest of this chapter is structured in the following way: first, an overview of the
implementation is given in Section 5.1. Afterwards, it is explained in Section 5.2, how
to run the 3D reconstruction system. The remaining Sections 5.3 to 5.6 describe the
structure and usage of the changed and newly added features more detailed.

5.1 Implementation Overview

This section explains the structure of the most important classes and shows how the
individual modules and their threads communicate with each other.

5.1.1 Class Structure

As it can be seen in Figure 5.1, the reconstruction pipeline consists of three different
processes: The InfiniTAM Server, the InfiniTAM Client and the UE4 Visualization. The
yellow color indicates, that corresponding classes are changed, compared to the original
InfiniTAM implementation. Note, that this just reflects important changes. There
can also be minor changes in unmarked classes. Green classes are newly added to the
framework.

InfiniTAM Server The UIEngine is the entry point to InfiniTAM and controls the
application. It processes user input and displays an image of the reconstruction’s current
state. The UIEngine maintains three other engines: The ImageSourceEngine, the IMU-
SourceEngine and the ITMMainEngine. The ImageSourceEngine handles the connection
to the camera and provides images for the reconstruction. By extending this class, one
can add support for any image source. In this thesis, the OpenNIEngine is primarily used
and allows to process live data from the Asus Xtion Pro Live camera as well as already
captured OpenNI sequences. The IMUSourceEngine makes it possible to integrate IMU
orientation data to improve the camera tracking. Since the default implementation allows
to load only saved data from file, it is extended in this thesis with the IMUNetworkEngine
to use live data. The UIEngine gathers new input data from these two source engines and
forwards it to the ITMMainEngine, which performs the actual reconstruction process.
The ITMMainEngine is divided into three main parts: The ITMVisualizationEngine, the

46



5.1. Implementation Overview

Figure 5.1: Overview of the most important classes and their relations. The yellow color
indicates changed parts compared to the original InfiniTAM implementation. The green
color indicates newly added parts.

ITMTrackingController and the ITMDenseMapper. The main task of the ITMVisualiza-
tionEngine is to compute an image of the reconstructed model using raycasting, which is
used both by the UIEngine as well as the ITMTrackingController. The ITMTrackingCon-
troller maintains a specific camera tracker, which handles the camera pose estimation.
By extending the ITMTracker class, one can add new tracking methods. As mentioned in
the previous chapter, InfiniTAM uses a depth-based ICP tracker per default. Within the
thesis, the ITMTrajectoryReader is added, which allows to read and use precalculated
camera poses instead of performing live tracking. The ITMDenseMapper handles both
the integration of camera data into the model as well as the GPU-CPU swapping. The
integration is performed by the ITMSceneReconstructionEngine and the swapping is
performed by the ITMSwappingEngine. Besides those two engines, the ITMDenseMapper

47



5. Implementation

contains the newly added ITMStreamingEngine, which transmits the reconstruction data
to the client.

InfiniTAM Client and UE4 Visualization The client application is divided into
an InfiniTAM process and an UE4 process. In contrast to the server, large portions of the
original InfiniTAM framework are not required, since the client does not need to perform
pose estimation, integration of camera images into the model or raycasting. What is left,
is the general voxel block data structure as well as a trimmed ITMMainEngine. The
ITMMainEngine contains the ITMStreamingEngine directly, which receives the data
from the server side ITMStreamingEngine. Furthermore, the ITMMainEngine maintains
an ITMMeshingEngine and an ITMSharedMemoryEngine. The ITMMeshingEngine gen-
erates the mesh representation and the ITMSharedMemoryEngine passes the computed
meshes to the UE4 process via shared memory. The UE4 process also contains a Shared-
MemoryEngine, the counterpart of the ITMSharedMemoryEngine. Apart from that, it
contains a DynamicMesh object, which allows to update the UE4 scene representation
on-the-fly. Lastly, a UE4 plugin is implemented to integrate the Cyberith Virtualizer.

5.1.2 Thread Communication

The developed reconstruction pipeline uses several threads to keep the performance
high and to avoid unnecessary blocking. Figure 5.2 shows all threads and how they
communicate with each other. The threads are shown in gray. They communicate via
commonly accessible data structures shown in white.

The InfiniTAM server is composed of two threads. The main thread performs the
actual scene reconstruction and the additional network transmission thread sends the
reconstruction data via TCP to the client. The interface between these two threads
is the StreamingSet. This set contains references of all those blocks which have to be
transmitted to the client. The InfiniTAM client is composed of at least two threads. The
network transmission thread receives data from the server and integrates it into the model.
One or more meshing threads take care of the mesh generation. They communicate with
the network transmission thread via the MeshIDMap. This map contains information
which mesh blocks require an update. By using more than one meshing thread, multiple
meshes can be recomputed at the same time. Apart from the InfiniTAM threads, there
are additional threads within UE4. The shared memory thread receives the mesh data
from InfiniTAM utilizing a shared memory region, where the meshing threads store their
results. The shared memory thread converts and stores the mesh data in temporary
arrays. The UE4 game thread finally reads these arrays and handles the dynamic scene
update.

5.2 Usage Instructions
As already mentioned, the reconstruction pipeline consists of three different processes:
The InfiniTAM Server, the InfiniTAM Client and the UE4 Visualization. Each process has

48



5.2. Usage Instructions

Figure 5.2: Overview of the individual threads, shown in gray. The threads communicate
with each other via commonly accessible data structures shown in white.

to be started separately, so on the client side, one has to run two processes. After starting
one side (client or server), the system waits for the other side to be connected before the
reconstruction process can be started. The system does not contain a configuration file,
which can be loaded at runtime. All the settings are hardcoded and have to be adjusted
at compile time. The InfiniTAM settings of both server and client can be found in two
different files: ITMLibSettings.cpp and ITMLibDefines.h.

5.2.1 Server

Server Settings The size of the scene memory does not grow dynamically during
reconstruction, but has to be defined beforehand in the ITMLibDefines header. Here,
one can set the maximum number of hash table entries, where SDF_BUCKET_NUM
corresponds to the ordered part and SDF_EXCESS_LIST_SIZE to the unordered part.
The SDF_GLOBAL_BLOCK_NUM definition represents the maximum number of voxel
blocks to be stored in the global CPU memory. One block requires 4 KB if color is used
and 2 KB if no color is used. The number of voxel blocks to be stored in GPU memory is
defined by SDF_LOCAL_BLOCK_NUM. It needs to be large enough to store all voxel
blocks, which are currently in the field of view of the scanning camera. This number
depends on the chosen voxel resolution and the size of the view frustum. In most cases,
the default value does not have to be changed. Beside the memory sizes, a further setting
in ITMLibDefines.h is the voxel type to be used. It defines if the reconstruction should

49



5. Implementation

contain color or not. A C++ typedef controls the type of ITMVoxel:

typedef ITMVoxel_s_rgb ITMVoxel ; // With Color
typedef ITMVoxel_s ITMVoxel ; // Without Color

The voxel type on the server and the client need to be set to the same type, otherwise
the client’s network module expects too much or too little data from the server. All other
server settings are defined in the constructor of the ITMLibSettings class. Here, one can
choose the size of the SDF truncation band, the voxel resolution or the minimum and
maximum considered depth range for data integration. For instance, the line

sceneParams (0 . 02 f , 100 , 0 .01 f , 0 . 2 f , 3 . 0 f , fa l se )

selects a 2 cm truncation band with a voxel size of 1 cm. Only depth measurements with
a value between 0.2 m and 3 m are integrated into the model. The value 100 defines,
that the color and the TSDF value of a voxel is computed using a running average of
100 measurements. If the value is reached, older measurement are removed to integrate
new ones. The last boolean value can be used to avoid replacing existing measurements.
If the flag is set to true, new measurements are not integrated anymore. Besides these
scene parameters, the ITMLibSettings class controls the camera tracking method and the
network streaming. By setting the trackerType variable to TRACKER_ICP, a standard
depth-based ICP tracker is applied. More details on the available trackers can be found
in Section 5.3. The variable useNetworkStreaming enables network streaming and the
network port to be used is defined by serverPort. One can also disable GPU - CPU
swapping with useSwapping, however, it is mandatory for network streaming.

Server Execution When executing the compiled server program with no command
line parameters, the system tries to use live image data from a connected RGB-D camera
(such as the Asus Xtion Pro Live) with a default camera calibration. To improve tracking
and integration, one can provide a path to an existing calibration file as the first command
line argument. The content of the default calibration file can be seen below:

640 480
525 .0 525 .0
319 .5 239 .5

640 480
525 .0 525 .0
319 .5 239 .5

1 0 0 0
0 1 0 0
0 0 1 0

0 0

50



5.2. Usage Instructions

The first three lines correspond to the RGB sensor and the following three lines correspond
to the depth sensor. For each sensor, the size of the image (first line), the focal length
(second line) and the principal point (third line) are given. All values are expected to be
pixels. Besides that, the file contains a 4x4 matrix, which maps points from the RGB
image to the depth image. In the default calibration, the identity matrix is used. The
values in the last line are required for the conversion of Kinect disparity values to depth
values. For OpenNI devices, as used within the thesis, these values are ignored. When
applying standard ICP tracking, only the depth sensor information is required for camera
tracking. The RGB sensor information is only used to integrate the color into the model
correctly. The OpenNICalibTool1 performs a calibration for OpenNI supported cameras
like the Asus Xtion and generates a file in the InfiniTAM format. Apart from the camera
calibration file, a path to an existing OpenNI file can be provided as the second command
line argument to use a prerecorded scene instead of live camera data.

After running the program, the user has to start live reconstruction by pressing the b
key. Since the first camera pose determines the orientation and position of the whole
reconstructed model, the scanning camera has to be aligned with the real floor plane
before starting the process. Moreover, the camera should be positioned at a height of 1.5
meters above the floor in order to fit the size of the virtual character used for exploration
at the client side. After the process has started, one can switch between different live
visualization modes or pause the integration of new data. The corresponding keys are
displayed at the bottom of the screen. The program is closed by pressing the Escape key.
Figure 5.3 shows a screenshot of the server’s user interface.

Figure 5.3: Screenshot of the InfiniTAM server application.

1https://github.com/carlren/OpenNICalibTool

51



5. Implementation

5.2.2 Client

Client Settings Equally to the server, the ITMLibDefines header defines, if color
should be used or not. Both server and client need to use the same voxel type. The hash
table size is chosen using SDF_BUCKET_NUM and SDF_EXCESS_LIST_SIZE, which
should be set as large as at the server side. The maximum number of supported voxel
blocks, i.e. the scene size, is controlled by SDF_LOCAL_BLOCK_NUM. Note, that
this is in contrast to the server, where this definition controls the number of blocks on the
GPU. This is due to the fact, that the client does not use the GPU but stores everything
on the CPU memory. Therefore, the SDF_LOCAL_BLOCK_NUM corresponds to the
server’s SDF_GLOBAL_BLOCK_NUM and should be set equally large. Moreover,
the ITMLibDefines header controls meshing characteristics such as the size of one
mesh block (in voxels blocks) and the number of supported mesh blocks per dimension
(MESH_CHUNK_SIZE and MESH_CHUNKS_PER_DIM ). The ITMLibSettings class
contains network transmission parameters such as the name/IP address of the server
(serverName) and the corresponding network port (serverPort).

Client Execution In order to run the client, the UE4 process should be executed at
first to avoid any problems. Afterwards, the InfiniTAM process has to be started. Both
processes do not require any command line arguments. At startup of the UE4 process, it
is checked which input and output devices are connected. If a HMD is detected, it is used
automatically instead of the standard display. The same is true for the Virtualizer. If a
Virtualizer device is found, navigation is only possible with the treadmill. Otherwise, the
user can navigate with either the gamepad or the keyboard. When using a gamepad, one
moves with the joystick or with the arrow buttons. When using a keyboard, movement
is performed with WASD or the arrow keys. In this non-Virtualizer setup, the walking
direction is defined by the viewing direction and the viewing direction is determined
directly by the HMD or using the mouse (when using a standard display). Figure 5.4
shows a screenshot of the client’s user interface.

The following sections describe the structure and usage of the changed and newly added
features in more detail. At first, the camera tracking module is examined, followed by
the network transmission. Afterwards, the dynamic scene update including the mesh
computation, the shared memory connection between InfiniTAM and UE4, and the
actual mesh update within UE4 is explained. Finally, features of the visualization and
exploration are highlighted.

5.3 Camera Pose Estimation

The camera tracking behaviour is defined by the used camera tracker object. During
initialization of the ITMMainEngine, the camera tracker is created by the ITMTrackerFac-
tory and then maintained by the ITMTrackingController. The selection of specific camera
tracking method happens in the ITMLibSettings class by adjusting the trackerType
variable. By default, depth-based ICP tracking is used. InfiniTAM supports standard

52



5.3. Camera Pose Estimation

Figure 5.4: Screenshot of the InfiniTAM and UE4 client application.

ICP tracking (TRACKER_ICP) as well as weighted ICP tracking (TRACKER_WICP).
The latter uses an ICP weighting scheme which integrates a model of the sensor noise
[NIL12]. When using one of the two ICP trackers, the tracking behavior can be further
influenced with the ITMLibSettings variables depthTrackerICPThreshold and depthTrack-
erTerminationThreshold. The ICP threshold defines the maximum depth difference for
the ICP correspondence. Two points are only associated as pair, if the distance between
them is below the threshold. The termination threshold represents the error value when
to stop the ICP iterations. Once the error is reached, the ICP process stops early before
the maximum amount of iterations. Besides depth-based ICP tracking, one can also
choose color-based tracking (TRACKER_COLOR), however, it resulted in stronger drift
and more frequent tracking failures during testing.

IMU Integration In order to get an improved tracking performance, one can add
IMU rotation estimates to ICP tracking by selecting the IMU tracker (TRACKER_IMU).
In this case, the camera rotation is initialized in each frame with the IMU rotation
followed by a limited ICP pose estimation. In contrast to standard ICP, a smaller image
pyramid with less levels is used where the focus lies on the estimation of the camera
translation. The rotation is only estimated on the finest resolution. Since the default
implementation does not support the integration of live IMU data, it is added in this
thesis. The IMUNetworkEngine is a subclass of IMUSourceEngine and listens for IMU
data coming via a UDP network connection. After creating the IMUNetworkEngine, it
waits for new IMU orientation data at port 5555. The expected format of an orientation
are four numbers (separated by a comma), which correspond to a timestamp and a 3D

53



5. Implementation

Android Rotation Vector 2. The most recently received orientation is converted to a
rotation matrix and is used as the rotation estimate as described above. For this thesis,
the integrated IMU of a Nexus 4 smartphone is used. The smartphone is attached to
the RGB-D camera and its orientation is streamed to the scanning computer with the
existing Android application HyperIMU [Cam16]. This application is able to read the
Android Rotation Vector and send it via TCP or UDP. In order to minimize the latency,
a tethered connection is used between the smartphone and the scanning computer. Due
to the reduced ICP computations, the IMU Tracker makes it possible to run InfiniTAM
directly on tablets with a Tegra K1 chip, such as the Google Nexus 9 or the NVIDIA
Shield. Note, that the thesis implementation however only runs on Windows.

Loading a precalculated trajectory Besides the support for live IMU data, the
tracking module of InfiniTAM is extended to enable the usage of a precalculated camera
trajectory instead of performing live tracking. Two different trajectory readers, which
support different data formats, are implemented. The TRACKER_READER allows to
load camera poses of the scenes from Choi et al. [CZK15] and Zhou et al. [ZK13]. For
each frame, the corresponding camera pose is given as a 4x4 matrix 3. Following line
shows an example pose for a single frame:

0 0 1
1.0000000000 0.0000000000 0.0000000000 2.0000000000
0.0000000000 1.0000000000 0.0000000000 2.0000000000
0.0000000000 0.0000000000 1.0000000000 −0.3000000000
0.0000000000 0.0000000000 0.0000000000 1.0000000000

One pose is encoded by five lines, where the first line holds the frame number (third
number) and the other four lines store the 4x4 matrix. Parts of the code to load the
trajectory are taken from Choi et al. [CZK15].

The second trajectory reader TRACKER_READER_RTAB makes it possible to read
a trajectory as generated by RTAB-Map [LM13]. RTAB-Map stands for Real-Time
Appearance-Based Mapping and is graph-based SLAM application integrating loop
closure. The loop detection is based on sparse features of the RGB image. The trajectory
format is similar to the TUM RGB-D SLAM format 4. One pose is given as eight
numbers, which correspond to a timestamp, a 3D translation vector (x, y, z) and a
rotation quaternion (qw, qx, qy, qz):

timestamp x y z qw qx qy qz

Note, that RTAB-MAP enforces real-time processing. If the processing of a single frame
takes longer than the update rate of the camera, frames are dropped. As a result, the
generated trajectory does not store a pose for every input frame. One option is to

2http://developer.android.com/guide/topics/sensors/sensors_motion.html#sensors-motion-rotate
3http://redwood-data.org/indoor/fileformat.html
4http://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

54



5.4. Network Transmission

ignore frames with missing poses, i.e. the data of those frames is not integrated into the
model. The second option is to use the trajectory reader, similar to the IMU tracker, in
combination with the ICP tracker. The precalculated RTAB-Map pose, if available, is
only used as a seed point for a following ICP procedure. This second option is set as the
default behaviour for TRACKER_READER_RTAB.

5.4 Network Transmission

The incremental transmission of reconstruction data over network is enabled by the
adapted ITMSwappingEngine at the server and the newly added streaming engines at
both server and client. The network transmission can be turned on via the useNet-
workStreaming variable in the ITMLibSettings class. The streaming engines of server
and client communicate via TCP, where the default port is 5445. Note, that both the
client and the server need to use the same scene parameters. The voxel resolution is
transmitted to the client directly after a new connection is established. However, since
the information if voxels contain color is hardcoded, it still has to be ensured at compile
time, that both server and client use the same voxel type.

5.4.1 Server Side Compression and Transmission

As mentioned in the methodology chapter, all voxel blocks, that fall out of the view
frustum (and are swapped to CPU), are transmitted to the client, along with their world
positions. For this purpose, the server’s ITMSwappingEngine is adapted, that it informs
the ITMStreamingEngine about newly swapped out blocks. This is achieved by adding the
corresponding blocks to the commonly accessible StreamingSet. In order to save memory,
each element of this set does not actually store the voxel data but only a reference to the
global CPU memory, where the swapped out data is stored anyway. Moreover, each set
entry contains the block world position, which is required for the client side integration.
For this purpose, the swapping out function of the ITMSwappingEngine is changed, so
that also the block positions are copied to CPU. Unlike the voxel data, the positions
are however not stored permanently in the global memory. The ITMStreamingEngine
runs in parallel to the reconstruction process in a separate thread and regularly checks, if
the StreamingSet contains new entries. All blocks referred to in the queue, are gathered
and removed from the queue. They are compressed and transmitted to the client via
TCP. When the queue is empty, the ITMStreamingEngine checks again after the next
frame. If the connection is lost, the current blocks to be transmitted are added to the
StreamingSet again and the ITMStreamingEngine waits for the same client to reconnect.
During this time, the StreamingSet keeps growing and remembers which voxel blocks
need to be transferred upon reconnection. The transmission is based on the Winsock2
library, which is contained in the Windows operating system. The main steps of the
server side transmission process are illustrated in Figure 5.5.

55



5. Implementation

Figure 5.5: Main steps of the ITMSwappingEngine and ITMStreamingEngine for network
transmission at the server side.

Keeping the data rate low By using a set data structure for the StreamingSet, each
element is unique. If a block is swapped out to the CPU, which is already in the set (i.e.
it was swapped out before but it was not transmitted since then), it is not added again.
Even though, the StreamingSet is not updated in this case, always the most recently
swapped out voxel data is to be transmitted since references to the global memory are
stored instead of a data copy. This feature decreases the data rate because multiple
retransmissions are reduced. In order to further minimize the required bandwidth, the
voxel blocks are compressed in a lossless way using the zLib library (version 1.2.8) before
transmission. All gathered voxel blocks and their positions are splitted up into three
arrays, where the first array contains the 3D world positions of all blocks, the second array
contains all TSDF values and the last array stores the color values. The grouping of the
same data types is performed with the intention to achieve a higher compression. Besides
that, any padded bytes (due to memory alignment) are avoided, which further decreases
the memory footprint. The SDF and color arrays are then compressed individually.
The positions are not compressed because the amount of data compared to the SDF
and color data is negligible. One uncompressed block requires 6 bytes for the position,
1024 bytes for the SDF data and 1536 bytes for the color. By limiting the speed of
the streaming engine thread, the data rate can be reduced even more at the cost of
latency for two reasons. If data is for example only transmitted once a second instead of
every frame, more blocks have to be streamed and compressed at a time and a possibly
higher compression can be achieved. Besides that, if more blocks accumulate in the
StreamingSet, the chance is higher that a block is already contained. This limits repeated
transmission of the same blocks. Currently, blocks are transmitted to the server, even if
they did not change since the last time they fell out of the view frustum. By detecting
and sending only changed blocks, the data rate could be further improved.

56



5.5. Dynamic Scene Update

5.4.2 Client Side Decompression and Integration

Since the client does not have a data integration module, the ITMStreamingEngine
takes care of the integration process itself. After receiving the voxel resolution of the
server, it initializes the hash table and the voxel block array. Keep in mind, that on the
client side, this array stores the whole model on CPU. After the initialization, it starts
listening for incoming data in a separate thread. Whenever new data arrays arrive, they
are decompressed using zLib and composed to voxel blocks again. The missing voxel
weights are filled with default values, since they are not required at the client. These
fields could be removed from the voxel type at the client side in order to save memory.
Afterwards, the arrived blocks are allocated into the hash table, if necessary, and the
voxel block array is updated. Figure 5.6 shows the main steps of the client’s streaming
process. The ITMStreamingEngine informs the ITMMeshingEngine about new data via

Figure 5.6: Main steps of the ITMStreamingEngine at the client side.

a commonly accessible data structure, similar to the server side ITMStreamingEngine
and ITMSwappingEngine. The ITMMeshingEngine maintains the HashIDMap, a hash
map containing key value pairs of integer IDs (key) and integer timestamps (value).
The ID identifies a mesh block and the timestamp refers to the time when the ID was
added to the map. The ITMStreamingEngine computes for each arrived voxel block,
the corresponding mesh block ID from the 3D voxel block position and adds it to the
HashIDMap with the current timestamp. This timestamp is increased every second.
Note, that all voxel blocks within a mesh block result in the same mesh ID. When the
map already contains a computed mesh ID, only the existing timestamp is updated with
the newer one.

5.5 Dynamic Scene Update

The client is able to dynamically recompute the meshes of regions, where voxels changed,
using the ITMMeshingEngine. The ITMSharedMemoryEngine then passes the computed
meshes to the UE4 process.

5.5.1 Mesh Extraction

The ITMMeshingEngine runs in parallel and can use more than one thread for an
improved performance. The number of desired threads is specified when creating the
ITMMeshingEngine, where four threads are used per default. Each meshing thread

57



5. Implementation

Figure 5.7: Main steps of the scene update in InfiniTAM.

maintains its own mesh memory but all access the same MeshIDMap. This map tells
the threads, which mesh blocks require a mesh update. Every thread regularly checks
the MeshIDMap for new entries using a thread-safe function. With the aid of the stored
timestamps, always the oldest entry is returned. This entry corresponds to the mesh
block, which did not change for the longest time and thus, has the highest probability
to remain this way. Using this strategy, the available computing power is utilized in an
efficient manner since the required number of mesh updates is minimized. Note, that if
there is enough computing power available, mesh blocks are still updated even if they are
changing from frame to frame. The ITMMeshingEngine also ensures, that two threads
cannot process the same mesh block at a time. This achieved by maintaining a separate
set of currently processed mesh block IDs. In the case, that the oldest ID is currently
processed by another thread, the thread updates the next oldest. The returned mesh
block ID is converted to a world position and the mesh for the corresponding cubic mesh
block area is generated.

5.5.2 Shared Memory Connection

The computed meshes then have to be transferred to the UE4 process. The connection
between the InfiniTAM client and UE4 is implemented with shared memory. For
that purpose, the library Ultimate Shared Memory [Cho16] is used, which provides
a straightforward interface for shared memory access on a Windows machine. An
ITMSharedMemoryEngine is added to the InfiniTAM client, which performs the writing
of mesh data to a shared memory region. This region is defined to have space for two
meshes. It holds two vertex arrays, two color arrays, two normals arrays and two index
arrays. As a consequence, one mesh can be written by InfiniTAM while the other mesh
is read at the same time by the UE4 process. However, all meshing threads use the
same ITMSharedMemoryEngine. Only one of the meshing threads can pass its computed
mesh to UE4 using the ITMSharedMemoryEngine at a time. If multiple meshing threads
finished processing at the same time, all but one have to wait. Besides the data arrays, the

58



5.6. Visualization and Exploration

shared memory also holds an info field for each mesh. This info field tells the UE4 process,
how many vertices and triangles are contained in the arrays, so that it knows how much
data is needs to read. Moreover, the info field stores the mesh ID. Apart from identifying
meshes, the ID field is also used to indicate, that UE4 is finished with reading the data
from shared memory by setting the ID to -1. This way, the ITMSharedMemoryEngine of
InfiniTAM is informed, that the corresponding mesh data can be overwritten with new
data. Figure 5.7 illustrates the main steps of the scene update in InfiniTAM.

5.5.3 Scene Update in UE4

In order to update the scene in UE4, the experimental procedural meshing feature is used.
This feature allows to create and change meshes at runtime. The procedural mesh class
allows to store multiple mesh sections, which can be updated individually. This would fit
the mesh block characteristic very well. However, it turned out, that updating the mesh
sections of a single procedural mesh is slower than having multiple procedural meshes
with only one section. As a result, the DynamicMesh class is created, which stores several
procedural mesh objects with only a single section. At initialization of the DynamicMesh,
650 of such (empty) procedural meshes are created to avoid any performance issues at
runtime. However, if more meshes are required, they are dynamically added in groups of
ten meshes. Besides the DynamicMesh class, the UE4 process has a SharedMemoryEngine
in order to access and read the mesh data. It runs in a separate thread in parallel to the
UE4 game thread and regularly checks if new data is available in the shared memory
region. Whenever the ID field is bigger or equal to 0, data is available and the UE4 scene
has to be updated. Since the scene update cannot be performed from a parallel thread,
the UE4 SharedMemoryEngine converts and saves the data into temporary UE4 arrays
which are also accessible by the game thread. The game thread can then update the
DynamicMesh in the next frame.

5.6 Visualization and Exploration
The rendering and exploration of the scene is performed with UE4 per default. In order
to explore the reconstruction in a VR setup, the hardware needs to be integrated into
the pipeline. In contrast to the Oculus Rift, the Virtualizer is not supported natively
by UE4. As a consequence, a plugin is developed. Besides the default UE4 exploration,
the reconstruction pipeline can be also used with InfiniTAM only. The Virtualizer
integration in the standard UE4 mode is highlighted first, followed by an explanation of
the standalone rendering.

5.6.1 Virtualizer Integration in Unreal Engine 4

Within the thesis, a UE4 plugin is developed to integrate the Cyberith Virtualizer. It
acts as a wrapper to the existing DLL from Cyberith and exposes the functionality to
UE4. The DLL is able to connect to the Virtualizer hardware and retrieve information
without any other drivers to be installed.

59



5. Implementation

Figure 5.8: Class structure of the UE4 Virtualizer plugin.

Figure 5.8 shows the class structure of the plugin. It is divided into two parts: The
actual C++ plugin and a second interface which allows to call the C++ plugin functions
via the UE4 blueprint system. The C++ plugin is added by extending UE4’s module
interface with the IVirtualizer interface. The actual implementation of the IVirtualizer
interface is contained in the VirtualizerDevice class. This class handles the connection to
the underlying Cyberith DLL and forwards the function calls. Most importantly, the
C++ plugin allows to retrieve following information from the Virtualizer:

• Orientation of the user’s hip (GetPlayerOrientation)

• Walking direction relative to current body rotation (GetMovementDirection_Local)

• Walking direction (GetMovementDirection_Global)

• Walking speed (GetMovementSpeed)

• Height of the user’s hip (GetPlayerHeight)

Besides passing the function calls to the DLL, the plugin handles any required type
conversions since the Cyberith DLL returns scalar values for all functions. These values
are converted to more meaningful types, such as 3D direction vectors for the player
orientation or the movement direction. The retrieval of the global movement direction
is also not offered by the DLL. It is added, in order to avoid the repeated manual
computation from the player orientation and local movement direction. Note, that the
Virtualizer plugin is not implemented as a standard input controller like a keyboard or a
gamepad. As a consequence, one has to call the plugin functions manually every frame
and adjust the players orientation and position accordingly. The additionally implemented
Blueprint Function Library can be used for that purpose, which contains only static
functions. Internally, it maintains a VirtualizerDevice object, which handles the function
calls. Figure 5.9 shows the integration of the Virtualizer with a UE4 character using it’s
blueprint. The characters position is updated at every frame by retrieving the Virtualizer
information and passing it to the UE4 function AddMovementInput.

60



5.6. Visualization and Exploration

Figure 5.9: Integration of the Virtualizer via UE4’s blueprint system.

5.6.2 Client Standalone Visualization

Apart from the standard UE4 rendering and unlike previously explained, the client can
be used with InfiniTAM only. In this case, the UI Engine is used the same way as on
the server, where standard raycasting of the volumetric representation is performed.
As a consequence, the ITMVisualiationEngine is used also on the client side. The
ITMMeshingEngine and the ITMSharedMemoryEngine are not required and are disabled.
Figure 5.10 shows the modified class structure of the client for this case. The standalone

Figure 5.10: Class structure of the client when using the standalone visualization mode
instead of UE4.

mode is mainly used for testing and allows to analyze the latency of the network streaming
because the individual voxel block updates are immediately visible. When using the
UE4 mode, updates are only visible after the corresponding mesh is recomputed. In
order to perform raycasting in real-time, the client has to be used with CUDA support,
where the model is stored on the GPU. The CUDA support has to be switched on at
compile time by disabling the flag #COMPILE_WITHOUT_CUDA. However, since
the client does not integrate any form of GPU-CPU swapping, the whole model needs fit

61



5. Implementation

inside the GPU memory and thus, the voxel block array needs be big enough. Note, that
only the ITMSharedMemoryEngine is implemented with CUDA support but not the
ITMMeshingEngine and the ITMSharedMemory Engine. Thus, if using the UE4 mode,
CUDA must be disabled to avoid any errors. The visualization mode can be changed in
the client’s ITMLibSettings class.

Within the thesis, the UI Engine is also adapted in such a way, that it is possible to render
the raycasted image to the Oculus Rift using the Oculus SDK 0.6. Note, that this feature
is however disabled by default because high frame rates over 30 fps could not be achieved
for a high definition resolution, as required by the Rift, even with CUDA support. The
Oculus Rift support can be enabled using the flag #WithRift at compilation. Both at
the server and at the client, the Rift support can be enabled. Of course in this case, the
standalone mode is mandatory at the client.

62



CHAPTER 6
Experimental Results

This chapter covers the evaluation of the implemented reconstruction pipeline and consists
of two parts. At first, the results of a technical evaluation of the system performance
are presented in Section 6.2. Besides that, a user study is performed, which examines
the effectiveness of the system regarding the spatial knowledge acquisition in unknown
environments. This study is presented in Section 6.3 along with its results.

6.1 Test Data
While the used InfiniTAM framework allows to store large scale environments in memory
effectively, the scanning is challenging and for scenes with few geometric details like
hallways often not possible. It has to be performed by skilled users since the camera
always needs to see enough features to avoid the loss of the tracked camera pose. A
tracking failure requires to start the scan process from the beginning since InfiniTAM
does not integrate a pose recovery feature. Even if one manages to reconstruct large
scenes without tracking failure, the resulting models are not well aligned and overlap
because InfinTAM suffers from camera drift and does not integrate any form of drift
correction like loop closure. Kähler et al. propose to use the rotation estimate of an IMU
to improve the camera tracking, but tests in this thesis only found minor improvements
and do not solve the general problem. Since the aim is to explore the reconstructed
environments, well aligned models are however crucial. Thus, for evaluation purposes,
live ICP camera tracking is suspended and precomputed camera trajectories are used
instead. All other steps of the pipeline are still performed in real-time.

In order to compute optimized trajectories for prerecorded camera streams, a state-of-the-
art offline reconstruction system by Choi et al. [CZK15] is used. This system considers
both color and depth information and tracks the camera using either the RGB-D odometry
[SSC11] or the Kintinuous [WJK+13] approach. The key idea is that the recording is
divided into several smaller fragments, where in a first step, each fragment produces its

63



6. Experimental Results

own geometry with its own trajectory. All fragments are then pairwise aligned using
geometric registration. A pose graph for the whole recording is generated and globally
optimized. The generated trajectory can be loaded with the developed trajectory reader.

During evaluation, three different prerecorded camera streams are used in order to
reproduce the same scene multiple times. The data sets are referred to as Copy Room,
Lounge and Flat, where the first two sets are taken from Zhou et al. [ZK13] and represent
smaller scenes consisting of a single room. These two sets already come with precomputed
trajectories. The Copy Room stream consists of 5490 frames (around 2:45 min) and the
Lounge recording has 3000 frames (around 1:30 min). The Flat data set is recorded for
this thesis and represents a Viennese apartment with 93 m3 consisting of a hallway, four
rooms, a bathroom and a toilet. The recording contains 22175 frames (around 11:10 min)
and the corresponding camera trajectory is estimated in a prior step with the mentioned
offline approach. The computation is, however, tedious and takes over 20 hours with
modern hardware (Core i7-4940MX, Gefore GTX980M, 16GB RAM). Since one needs to
find appropriate parameters to yield a well aligned reconstruction, the system has to be
executed multiple times. As a consequence, only a single large scale scene is captured
and optimized for this thesis evaluation. Figure 6.1 shows a top view on reconstructions
of all three test scenes, where the Flat scene is shown at the top, the Lounge scene at the
bottom left and the Copy Room at the bottom right. All data sets are OpenNI RGB-D
sequences with both a depth and color resolution of 640 x 480 and are captured with an
Asus Xtion Pro Live camera at 33 Hz. The depth and color image are already registered
using the default internal calibration parameters.

6.2 System Performance
Used Hardware The technical system evaluation is performed on a standard notebook
with an Intel Core i7-4940MX processor (3.10 GHz) and a GeForce GTX 980M graphics
card. Besides that, the notebook has 16 GB of memory and runs Windows 7 64 bit.
Both client and server application are executed on this single notebook, so the network
streaming happens only locally, which simulates a perfect network connection.

This section examines the performance of the developed reconstruction pipeline, but
note, that the accuracy of the camera pose estimation is not the focus of this thesis.
Instead, the ability to store, transmit and explore large environments is at the heart of
this technical evaluation. For this reason, the precomputed camera trajectories are also
used in this section. Details regarding the camera tracking performance can be found in
the original InfiniTAM paper [KPR+15]. The rendering performance of UE4 is also not
analyzed in depth. In all test cases, the number of achieved frames per second lies above
200 and a drop of the frame rate during a mesh update is not noticeable.

The following evaluation focuses on three parts: 3D Reconstruction, Network Transmission
and Meshing. The reconstruction pipeline is executed eight times for each of the three
test data sets with different scene parameters. The voxel size is changed between 0.5
cm and 1 cm and the width of the TSDF truncation band is set to either 2 cm or 4

64



6.2. System Performance

Figure 6.1: Top view on reconstructions of the three used test data sets. The Flat data
set can be seen at the top, the Lounge data set is illustrated at the bottom left and the
Copy Room data set is shown at the bottom right. All scenes are represented with the
same scale to compare the sizes.

cm. Besides that, the scenes are reconstructed with and without color, but the meshing
is only evaluated with color. The Copy Room and Flat data sets are processed at the

65



6. Experimental Results

original camera frame rate of 33 fps. The Lounge recording is processed at only 25 fps
since the original speed looks unnaturally fast.

6.2.1 3D Reconstruction

The 3D reconstruction module must be able to process the data at least at the same
speed as the camera’s frame rate in order to be real-time capable. Since the used Xtion
Pro Live camera provides images at 33 Hz, the maximum processing time for a single
frame is 30 ms. On the test system, InfiniTAM’s reconstruction process takes only 5 ms
per frame in average to track the camera and integrate the data into the model. Another
4 ms are required for rendering the live feedback, consisting of the raycasted image and
the input RGB-D image pair. Kähler et al. already analyzed InfiniTAM’s processing
speed in more detail [KPR+15].

The required memory to store a reconstructed scene in the used volumetric data format
is now analyzed in more detail. Both server and client need to be able to store this
amount of data. Additionally, the client stores the mesh representation but the memory
consumption of the mesh is not considered in this section. See Subsection 6.2.3 regarding
details about the mesh generation.

As per default, InfiniTAM uses a hash table with a maximum of 1179648 addressable
entries, where the ordered part holds 1048576 entries (88.8%) and the unordered part
stores 131072 (11.1%). In order to store this hash table and auxiliary data, only about
20 MB are necessary since each entry is represented with 16 bytes. The hash table size
should be kept high, because, if either the ordered part or the unordered part is fully
occupied, the reconstruction process cannot continue. Keep in mind, that the actual
voxel data is not contained in the table directly. The global memory (or the voxel
block array on the client side), which holds this data permanently on CPU, is allocated
with 327680 entries. This results in a memory usage of around 640 MB for uncolored
data (4 × 512 byte / voxel block) and 1280 MB for colored data (8 × 512 byte / voxel
block). The global memory can be smaller than the hash table because big portions
of the hash table usually remain empty. Note, that the last byte (4th or 8th) of each
voxel is actually an empty byte and is only added for memory alignment reasons. By
disabling this data padding, the memory footprint can be reduced by 13% (colored) or
25% (uncolored). However, this goes hand in hand with a reduced performance since
processors are optimized for aligned data.

Table 6.1 shows the occupancy of the hash table for each test scene after the reconstruction
process has finished. The parameter µ stands for the width of the SDF truncation band,
i.e. the maximum considered distance from an object surface. One can also see the
amount of actually used voxel block memory, which constitutes the minimum size of the
global memory. The single room environments require below 70 MB of memory for an
uncolored reconstruction at a voxel resolution of 1 cm. When enabling color, a twice as
large global memory has to be provided. Furthermore, the required memory is raised
by 30% to 40% in average if the truncation band width is increased from 2 cm to 4 cm.

66



6.2. System Performance

Scene Parameters Hash Table Occupancy Memory
Scene Voxel Size µ Entries Ordered Unordered Colored Uncolored

CopyR.
1 cm 2 cm 25K 2.24% 1.03% 97 MB 49 MB

4 cm 30K 2.66% 1.51% 117 MB 58 MB

0.5 cm 2 cm 139K 12.06% 9.59% 544 MB 272 MB
4 cm 175K 14.79% 14.81% 682 MB 342 MB

Lounge
1 cm 2 cm 27K 2.49% 0.42% 104 MB 52 MB

4 cm 33K 3.10% 0.65% 130 MB 65 MB

0.5 cm 2 cm 152K 13.44% 8.37% 594 MB 298 MB
4 cm 201K 17.37% 14.33% 786 MB 394 MB

Flat
1 cm 2 cm 207K 18.02% 13.94% 811 MB 406 MB

4 cm 279K 23.55% 24.75% 1093 MB 547 MB

0.5 cm 2 cm - - 100.00% - -
4 cm - - 100.00% - -

Table 6.1: Hash table occupancy with default hash table size.

Scene Parameters Hash Table Occupancy Memory
Scene Voxel Size µ Entries Ordered Unordered Colored Uncolored

Flat 0.5 cm 2 cm 1.28M 26.36% 33.33% 5009 MB 2508 MB
4 cm 1.85M 35.81% 66.89% 7247 MB 3629 MB

Table 6.2: Hash table occupancy with enlarged hash table. Both ordered and unordered
part are increased by a factor of four.

This is due to the fact, that more voxel blocks fall into the truncation band and have
to be maintained. An enlarged truncation band can lead to a better camera tracking
behavior and avoids artifacts at the mesh extraction process. The biggest impact on
the memory however has the voxel size. By dividing the side length in half, one original
voxel has to be replaced by eight new ones. But the finer resolution also allows to discard
some of the new voxels if they fall out of the truncation band. As a consequence, a finer
resolution of 0.5 cm increases the hash table occupancy by a factor of around six. The
total occupancy for the single room scenes changes from around 2% up to 16%, while the
Flat data set cannot even be processed completely since it leads to a full unordered part
of the hash table.

To be able to reconstruct the whole scene, the hash table is enlarged. Both the unordered
and the ordered part are increased by a factor of four. While a larger unordered part
allows to handle more hash collisions, a bigger ordered part reduces the probability that
collisions appear in the first place. Since the memory requirement for the hash table is
low, its size should be set too large than too small. Figure 6.2 shows the case with the
expanded hash table. Up to 1.85 million blocks are allocated for the Flat scene, which
leads to a memory footprint between 5 and 7 GB (colored). The reconstruction of the
same scene at a 1 cm resolution requires only 0.8 - 1.1 GB of memory.

67



6. Experimental Results

Scene Parameters Colored Uncolored
Scene Voxel Size µ Sent Blocks Sent Data CR Sent Data CR

CopyRoom
1 cm 2 cm 70K 51 MB 3.34 28 MB 2.48

4 cm 87K 69 MB 3.09 40 MB 2.11

0.5 cm 2 cm 379K 365 MB 2.54 202 MB 1.84
4 cm 490K 488 MB 2.46 295 MB 1.63

Lounge
1 cm 2 cm 80K 60 MB 3.24 31 MB 2.52

4 cm 104K 78 MB 3.24 43 MB 2.35

0.5 cm 2 cm 440K 428 MB 2.52 225 MB 1.93
4 cm 608K 552 MB 2.70 312 MB 1.91

Flat
1 cm 2 cm 540K 238 MB 5.54 154 MB 3.44

4 cm 776K 392 MB 4.85 229 MB 3.33

0.5 cm 2 cm 3.172M 2010 MB 3.86 1104 MB 2.82
4 cm 4.913M 2768 MB 4.34 1652 MB 2.92

Table 6.3: Amount of transmitted voxel blocks and (compressed) data in MB along with
the achieved compression ratio (CR). The shown data does not contain any TCP/IP
overhead.

6.2.2 Network Transmission

As described in Section 4.6, those voxel blocks are streamed to the client, which fall out of
the current camera’s view frustum. Besides the TSDF and color information, each voxel
contains weights, which can be excluded from network transmission to save bandwidth.
Each voxel then only uses 2 bytes (uncolored) or 5 bytes (colored) in an uncompressed
format, instead of 4 or 8 bytes.

Table 6.3 illustrates the results of the network transmission for all three test scenes. The
amount of sent data, shown in the table, considers only the actual payload and does not
include any overhead created by the TCP/IP protocol. One can notice, that the number
of sent voxel blocks is significantly higher than the number of all allocated blocks in the
scene as shown in Tables 6.1 and 6.2. For example, in the CopyRoom scene with a voxel
size of 1 cm and a truncation band of 2 cm, 70000 voxel blocks are transmitted to the
client but the scene consists of only 25000 blocks. In average over all test scenes, the
number of streamed voxel blocks is 2.6 - 3.1 times higher than the number of allocated
voxel blocks. This is due to the fact, that the same voxel blocks fall out of the view
frustum multiple times, when revisiting areas during the scan process.

Table 6.3 also shows, that the compression ratio (CR) is higher when using color compared
to using no color. As a consequence, the cost of using color is mitigated since not 2.5
times more data has to be sent but only 1.5 - 2.0 times more. Another visible trend is
the positive effect of a lower voxel resolution on the compression ratio. In all test cases, a
better compression is achieved at a voxel size of 1 cm compared to 0.5 cm. The width of
the truncation band has no effect on the compression. Besides the parameters, also the
scene itself has an influence on the compression as the Flat data set leads to higher ratios

68



6.2. System Performance

Scene Parameters Colored Uncolored
Voxel Size µ Avg MBit/s Max MBit/s Avg MBit/s Max MBit/s

1 cm 2 cm 3.1 16.5 1.7 11.7
4 cm 4.3 24.2 2.5 14.8

0.5 cm 2 cm 23.0 113.8 12.4 68.8
4 cm 30.7 175.0 18.0 110.6

Table 6.4: Average and maximum data rates of all three test scenes.

1 cm, 2 cm
1 cm, 4 cm
1 cm, 2 cm
1 cm, 4 cm

0.5 cm, 2 cm
0.5 cm, 4 cm
0.5 cm, 2 cm
0.5 cm, 4 cm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
MBits per second

Figure 6.2: Average data rates. The first value of the bar label represents the voxel size
and the second value represents the width of the truncation band. Blue bars indicate
colored reconstructions.

compared to the other two scenes. A higher compression ratio is generally achieved when
the data has many identical values or repeating patterns.

The resulting data rates during the transmission are listed in Table 6.4, where one can see
the average and the maximum rates in MBits per second of all test cases. The average
data rates are also illustrated in Figure 6.2 to inspect the differences visually. A colored
reconstruction with a voxel size of 1 cm and a truncation band of 4 cm led to an average
data rate of 4.3 MBit/s, however there occurred peaks up to 24.2 MBit/s. In average,
these maximum data rates are 5 - 6 times higher than the normal data rate. As already
explained above, the data rate for colored reconstructions is between 1.5 and 2.0 times
higher than for uncolored reconstructions. Furthermore, it can be seen, that the finer 0.5
cm resolution results in a seven times higher data rate. Finally, the enlarged truncation
band of 4 cm leads to a 40% increase of the bandwidth requirement.

It has to be noted, that the data rate is very dependent on how the scene is scanned.
If the robot or the person scanning the scene is moving very fast, the data rate also
increases because more blocks fall out of the view frustum every second. Especially fast
rotations lead to peak data rates and should be avoided. By decreasing the maximum

69



6. Experimental Results

considered depth (i.e. moving the frustum’s far plane closer), one also minimizes the
bandwidth since less blocks can fall out of the smaller view frustum. The full range of the
depth camera should not be used anyway since the depth error increases quadratically
with increased distance to the sensor. In all tests of this evaluation, the maximum depth
is set to three meters.

6.2.3 Meshing

In this section, the processing speed of the meshing engine as well as the extracted
meshes are analyzed. Regarding the processing speed, the meshing module requires 65
ms in order to extract the mesh of one mesh block. Note, that this number represents
an average value. The mesh extraction can involve peak values ranging from 700 ms
to 1 second per mesh. When using only a single thread for the mesh extraction, the
resulting mesh can be written to the shared memory with no delay. If multiple threads are
used, a little overhead is introduced due to synchronization. For instance, four meshing
threads increase the processing time for a single mesh by around 3 ms. The advantage
of using more threads is the increased update rate of the mesh representation. When
using four meshing threads during the reconstruction of the Flat scene, the whole mesh
representation is updated around 40000 times in contrast to only 10000 times, when
using a single thread. As a consequence, the mesh representation grows more smoothly
and changes in the volumetric model are reflected earlier. With the used hardware, also
one thread is enough to achieve a real-time capable update rate. However, the mesh
representation expands in bigger blocks.

The remaining part of this subsection presents details about the extracted meshes. In
Table 6.5, one can see the number of individual meshes (which corresponds to the number
of used mesh blocks) along with the total amount of vertices and triangles. Moreover,
the required memory to store the meshes is listed. One vertex can be stored with 28
bytes, where 12 bytes are needed for the position, 12 bytes are used for the normal
vector and 4 bytes are required for the color. A triangle defined by three vertex indices
requires another 12 byte (4 byte per index). In average, one individual mesh consists
of around 7000 vertices and 13000 triangles, however, there is the tendency, that the
size of the individual meshes decreases with a bigger truncation band. For instance,
the mesh representation for the Flat scene (0.5 cm voxel size) requires 1141 MB at a
truncation band of 4 cm but 1245 MB at 2 cm. Note, that this is in contrast to the
volumetric representation, which requires more memory at a larger truncation band. The
total number of meshes is not affected by the truncation band parameter but by the
voxel resolution. The Flat scene at 1 cm voxel size and 4 cm truncation band leads to
741 individual meshes, whereas a voxel size of 0.5 cm already results in 3353 meshes. In
average, the number of meshes is four to five times higher when using the smaller voxel
size of 0.5 cm. Note, that by using the smaller voxel size, one mesh block is subdivided
into eight new ones, but not all of the new ones actually contain meshes.

70



6.2. System Performance

Scene Parameters Extracted Mesh Representation
Scene Voxel Size µ Meshes Memory Vertices Triangles

CopyRoom
1 cm 2 cm 128 47 MB 0.98M 1.81M

4 cm 129 44 MB 0.92M 1.73M

0.5 cm 2 cm 582 212 MB 4.42M 8.25M
4 cm 584 191 MB 3.95M 7.47M

Lounge
1 cm 2 cm 142 45 MB 0.95M 1.71M

4 cm 152 42 MB 0.88M 1.63M

0.5 cm 2 cm 578 216 MB 4.52M 8.32M
4 cm 490 165 MB 3.42M 6.42M

Flat
1 cm 2 cm 724 270 MB 5.71M 10.29M

4 cm 741 262 MB 5.47M 10.13M

0.5 cm 2 cm 3335 1245 MB 26.07M 47.97M
4 cm 3353 1141 MB 23.69M 44.47M

Table 6.5: Number and size of the extracted meshes (for colored reconstructions only).

6.2.4 Streaming Meshes versus Streaming Voxels

When comparing the required memory for the mesh representation (Table 6.1) and the
volumetric one (Table 6.5), it is apparent that a mesh is much cheaper. This is also
illustrated by Figure 6.3, which shows the required memory to store the Flat scene as
mesh (blue) or as TSDF voxel blocks (green) for different scene parameters.

1 cm, 2 cm
1 cm, 4 cm

0.5 cm, 2 cm
0.5 cm, 4 cm

1 cm, 2 cm
1 cm, 4 cm

0.5 cm, 2 cm
0.5 cm, 4 cm

0 1000 2000 3000 4000 5000 6000 7000
Required memory in MB

Figure 6.3: Required memory to store the Flat scene either as mesh (blue) or as TSDF
voxel blocks (green). The first value of the bar label represents the voxel size and the
second value represents the width of the truncation band. Only colored reconstructions
are considered.

71



6. Experimental Results

The network transmission of the extracted meshes instead of voxel blocks would therefore
also require significantly less bandwidth, if the streaming happens after the reconstruction
has finished. For instance, the Flat data set at 1 cm resolution and 4 cm truncation
band requires 1093 MB (colored) of voxel block data to be streamed in contrast to only
262 MB for the mesh representation. Both values represent the data before compres-
sion. Challenging in mesh streaming is, however, the incremental update of the scene
during scanning. While at voxel block streaming, each voxel block can be updated and
transmitted individually, a mesh has to be retransmitted completely whenever any of the
underlying voxel blocks have changed. To avoid frequent mesh retransmissions, one could
send a mesh only after there are no changes for a certain time. This strategy implies, that
the scene does not build up as continuously on the client side compared to voxel block
streaming. Another option is to triangulate and update each voxel block individually to
avoid retransmission of unchanged mesh parts. In both cases, increased resources are
required at the mobile server to perform the mesh update in real-time, in addition to the
reconstruction. An advantage of mesh streaming, besides the lower data rate, would be
the decrease in the required memory on the client side. Only the mesh representation,
but not the volumetric one, needs to be stored in this case.

6.3 User Study

Besides the technical analysis of the system performance, a user study, based on the
developed framework, constitutes the second part of the evaluation.

One aim of this thesis is to provide the means to explore and get to know unknown
remote locations. The user should get an overview quickly and should be able to navigate
in these scenes. It was shown in previous studies, that the spatial knowledge acquisition
is enhanced when performing virtual exploration as natural as possible [RL09]. With
standard I/O devices, the user sits at a desk and navigates through the scene in a purely
virtual way by pressing buttons. As a consequence, the user has to build a mental map
of the environment solely from the visual information displayed on a desktop monitor.
However, when walking in the real world, one can also resort to non-visual cues in order
to track the orientation and position within the environment. Several studies have come
to the conclusion, that especially the feedback of real body rotation, coming from the
inner ear and the muscles, helps to orientate in the world [RB04]. By integrating a HMD
like the Oculus Rift, it is possible to provide this feedback also in the virtual world. The
user can control the virtual rotation by rotating the head in the real world. While real
body rotation can be integrated very well, natural walking is more complex to achieve.
Usually, the space available in the real world is limited and therefore, also the virtual
space is constrained, when one wants to map real and virtual walking one to one. An
ODT tries to solve this issue by enabling unlimited virtual walking, even though walking
in the treadmill is not entirely natural. While real walking helps to better estimate
distances, it is unclear if this is true for walking in a passive ODT.

72



6.3. User Study

6.3.1 Objective

While related work has studied spatial knowledge acquisition in artificially-generated
virtual environments using immersive VR input- and output devices [RL09], no prior art
exist, that investigates user perception of streamed 3D reconstructions as well as spatial
knowledge acquisition in streamed reconstruction. With this study, the gap should be
closed. It should constitute a foundation for understanding users’ perception in remotely
captured and incrementally reconstructed dense 3D scenes while using means for active
navigation in immersive VR. Therefore, the focus lies on investigating the following
questions:

• How do input device and scene representation influence spatial knowledge acquisi-
tion?

• How do users perceive streamed 3D reconstructions in an immersive virtual envi-
ronment?

Besides analyzing the general perception and the spatial knowledge acquisition, it is
interesting to see, if using the ODT has an effect on cybersickness. Walking virtually,
while actually remaining seated in the real world, leads to a sensory conflict and promotes
cybersickness. The user receives visual feedback which is in contrast to the information
provided by the muscles and the vestibular system. By mapping virtual and real walking
one to one, the conflict can be resolved. However, it is unclear, if this is also true for an
ODT. In this case, the user still remains at the same place in the real world and receives
a different sensory feedback compared to natural walking.

6.3.2 Means of Evaluating Spatial Knowledge

Types of Spatial Knowledge This section introduces the used methodology to
measure the spatial knowledge of the test persons. Before evaluating knowledge of the
environment’s spatial arrangement, one needs to know, that this knowledge can be
classified into three types: Landmark knowledge, route knowledge and survey knowledge
[SW75]. Landmark knowledge can be considered as the lowest form of spatial knowledge.
A person has this kind of knowledge if he or she is able to recognize already visited
places. However, the location of two or more different places in relation to each other is
unknown. With landmark knowledge only, the person is not able to find a way through
the environment between place A and place B, even if both are known. Route knowledge
enables exactly this wayfinding between two known locations, if a path connecting theses
places was already traveled before. Note, that only known routes can be taken but no
alternative ones because the overall layout of the scene is still unknown. The person only
remembers which turns to take but not the exact distance or orientation of the whole
path. The last type, the survey knowledge, constitutes the most complete form of spatial
knowledge. Having a survey knowledge allows to imagine the environment from a bird’s
eye perspective in the correct scale. As a consequence, one is able to find routes between

73



6. Experimental Results

arbitrary places in the environment. Shortcuts can also be inferred, even if they were not
traveled before.

Evaluation Methods Depending on the spatial knowledge type to be tested, different
evaluation tools can be used. Landmark knowledge is mainly evaluated using landmark
recognition tests. Since landmark knowledge represents only a very rough idea of the
environment, it is not considered to be evaluated within this thesis. The most common
and natural manner to test route knowledge is, to let the user reproduce an already
visited path between a starting point and a target point. The user performs this so called
wayfinding task or route replication task while being in the test environment [BTG97].
In order to measure the degree of spatial knowledge, one can record the number of wrong
turns, the amount of required time, the length of the traveled path or the body rotations
performed. The more junctions are contained in the path, where the user has to decide
which way to follow, the more expressive results can be obtained. The wayfinding tasks
can also reveal survey knowledge if the user is able to find previously unknown shortcuts
on purpose. A further means to test survey knowledge is sketch mapping[Moo76]. In
sketch mapping, the test person has to draw a map of the explored environment from a
bird’s eye perspective. In principle, this task can be considered an effective tool since
it requires to reproduce exactly the user’s mental representation of the scene. However,
the results depend very much on the drawing skills of the user and it is challenging
to distinguish map distortions due to bad drawing skills and map distortions due to
lack of spatial knowledge [Wal99]. Besides that, no standard means of evaluating the
drawn maps exist. In many approaches, the maps are only evaluated qualitatively using
independent reviewers. A method derived from sketch mapping, which does not involve
any drawing, is called the map placement task [Wal99]. Within that task, the user has to
arrange magnets on a white board, which represent landmarks of the scene. The goal is to
place all landmarks in the correct relative location to each other. The final arrangement
can be rotated and uniformly scaled in order to produce a normalized representation.
The angles and distances between the magnets can then be used to infer the degree of
spatial knowledge. Finally, spatial knowledge can be also tested using pointing tasks
[Sie81]. As the name suggests, the test person has to point in the direction of an unseen
target, where the angle between the pointed direction and the correct direction provides
the main error measure. An advanced version of pointing to unseen objects is called
projective convergence [Sie81]. Within that method, the user has to estimate the direction
and distance from three different locations to the same target as illustrated in Figure 6.4.
The three distance-angle pairs result in three points, which form a hypothetical triangle
shown in red. This triangle is then the basis for four spatial knowledge measures: Mean
angle error, Mean Miss Distance, Locational Error and Consistency. The Mean angle
error represents the average of the absolute angular errors, i.e. the difference between
the estimated direction and the correct direction. The Mean Miss Distance, or locational
accuracy, is given as the sum of the distances between each triangle corner and the target
point. The Locational Error is very similar to the Mean Miss Distance and represents an
alternative measure. It is defined as the distance between the triangle’s centroid and the

74



6.3. User Study

Target

Pointing Location 1

Pointing Location 2

Pointing Location 3

Figure 6.4: Principle of the projective convergence task. The user has to estimate the
direction and distance to a target (black dot) from three different locations (white dots).
The three estimated positions from a triangle (red), which is the basis of the spatial
knowledge measures.

target point. Finally, the Consistency is given as the perimeter of the triangle.

6.3.3 Apparatus

Input Device and Scene Representation The experiment is conducted with the
developed 3D reconstruction system. The entire scene is presented to the users at once
(referred to as Data 1 ) or the scene is incrementally updated in a frame-wise manner
to simulate live exploration while the remote capturing is still running (referred to as
Data 2 ). As navigational input devices, the two-handed XBox gamepad with joystick
functionality, and the Virtualizer ODT, are used. All tests are performed by viewing
the scene with an Oculus Rift DK2, and combined either with the gamepad (referred to
as Setup 1 ) or with the ODT (referred to as Setup 2 ), as shown in Figure 6.5. When
using Setup 2, the viewing direction and the walking direction is decoupled, i.e. the
participant can walk in one direction while looking in another direction. When using
Setup 1, the walking direction is determined by the orientation of the HMD. The test
participant sits on a swivel chair, which can be rotated 360 degrees, to be able to walk in
all possible directions. The swivel chair is chosen according to Nybakke et al.[NRI12], so
that vestibular cues of real body rotation are integrated in both setups. This way, only
the actual walking in the ODT can be evaluated.

Test Environment All participants explore the same environment since scanning and
reconstructing multiple large scale environments is challenging, especially if the scene
complexity should be the same. The Flat data set from Section 6.1 is used for this study
in combination with the precomputed camera trajectory to provide a well aligned model.
The size and layout of the Flat with its three rooms, two bathrooms, kitchen and long
nested hallway challenges the user in terms of navigation and orientation, and thus is
well suited to examine users’ subjective perception and spatial knowledge acquisition.

75



6. Experimental Results

+ +
Scene Viewing NavigationPhysical State

(a) Setup 1

+ +
Scene Viewing NavigationPhysical State

(b) Setup 2

Figure 6.5: Two different input/output device setups.

Since the data is prerecorded, the reconstructed scene is also known beforehand. As a
result, basic collision information is fitted manually to the reconstructed model in order
to prohibit the users walking through any objects. Invisible cuboids are used for that
purpose. Note, that reconstruction errors do not pose a problem this way. If performing
collision detection against all reconstructed triangles instead, reconstruction errors can
block the way. Besides avoiding to walk through objects, the invisible collision geometry
also ensures, that the user’s height above the floor is the same all over the scene. Since
the floor can be bent due to camera drift, it is necessary to adjust the user’s position
accordingly, using invisible floor planes.

System Settings In the Flat data set, the scanning party proceeds very slowly through
the environment in order to avoid any tracking failures. In consequence, the scene also
expands only slowly. For the user study, the processing is speeded up by a factor of
two, so that the users have the full scene available within a reasonable amount of time.
After five minutes and 30 seconds, the environment is fully reconstructed. The scene
is reconstructed with color information at a voxel resolution of 1 cm3 and only camera
information within a distance of three meters is integrated into the model. The width of
the truncation band is defined to be 4 cm. The size of a single mesh block is set to the
standard value of 80 cm3, i.e. one mesh block covers the area of 103 voxel blocks.

Used Hardware Both server and client run on the same computer and streaming
happens only locally on this single PC in order to avoid any networking problems during
the user tests. The user study is performed on a desktop computer with an Intel Core
i7-4790K processor (3.10 GHz) and a GeForce GTX 980Ti graphics card. Besides that,
the PC has 32 GB of memory and runs Windows 8.1.

6.3.4 Participants

Forty-two (42) participants (12 females, 28.5%) were involved in the experiment, while
forty (40) participants (12 females, 30%) successfully finished the experiments. Two male
participants aborted their experiments due to cybersickness symptoms, both encountered
while using the ODT. Participants’ ages ranged between 18 and 57 years (mean µ =
31.15, standard deviation σ = 7.9 years). 25 participants reported previous experience
with HMDs while seven own a HMD.

76



6.3. User Study

6.3.5 Study Design

The study procedure for a single user consists of five stages: 1) introduction and pre-
questionnaire, 2) training, 3) exploration, 4) evaluation, and 5) a post-questionnaire.
At stage 1, users are informed about the study and the procedure. Additionally, they
have to fill out a pre-questionnaire. Stages 2) - 4) are performed by each user wearing
the immserive VR hardware. At stage 2, users are introduced to the input- and output
hardware – either Setup 1 or Setup 2 – by explanation and demonstration. Next, users
have up to 5:00 minutes to familiarize with the hardware by freely walking in a test
environment, which comprises a simple UE4 scene with some artificial virtual objects. As
soon as the user feels confident or the maximal training time is reached, the exploration
stage (3) starts. Therefore, the 3D reconstruction is either presented in Data 1 or Data
2 mode. The users can freely walk up to 6:00 minutes with the instruction to explore
the scene, more information are not given. Upon completion of the exploration, users
have to perform two tasks in the evaluation phase (4) to assess their spatial knowledge.
Therefore, they keep wearing the VR hardware and perform a projective convergence
task and a wayfinding task as explained in Section 6.3.2. Projective convergence is done
first to avoid further spatial knowledge acquisition by free walking during the wayfinding
task. At the end of the procedure, users have to fill out a post-questionnaire (5).

Projective Convergence and Wayfinding Figure 6.6 illustrates the target point
as well as the three pointing locations for the projective convergence task. As spatial
knowledge measures, Mean Angle Error, Consistency and Mean Miss Distance are applied.
In Figure 6.7, one can see an example result for the projective convergence task. During
the wayfinding task, the Total Trajectory Length, the Total Amount of Head Rotation and
the Total Time is recorded. The starting point and the target location are also shown in
Figure 6.6.

Sketch mapping is not integrated in the user study due to the issues related to drawing
skills and also due to the lack of a standard quantitative analysis. Map placement is
not performed because the user is required to remember various landmarks. If the test
person cannot recognize the test landmarks, the user is not able to perform the task,
even if he or she has a good understanding of the overall layout of the scene. Note, that
this is also true for the used wayfinding and projective convergence task, but in this case,
only two landmarks are required. The toilet is selected as the wayfinding target and the
washing machine in the bathroom is selected as the pointing target because both are
unique and noticeable locations within the flat.

Pre-and Post-Questionnaire The used questionnaires can be found in Appendix A
and B. In both pre-and post-questionnaire, it is asked for cybersickness symptoms using
the simulator sickness questionnaire (SSQ) [WS98]. The indicator Simulator Sickness is
computed as the difference between the sums of perceived symptoms before and upon test
completion. In the post-questionnaire, further subjective measures are included to collect
participants’ perceptions of the immersive exploration. The measures are evaluated using

77



6. Experimental Results

Figure 6.6: Locations used for the evaluation tasks. The filled green circles represent the
three pointing locations for the projective convergence task and the green unfilled circle
shows the corresponding target point. The red circles illustrate the starting (filled) and
target location (unfilled) for the wayfinding task.

Figure 6.7: Result of a single projective convergence task.

78



6.3. User Study

5-point Likert scale ratings, denoting participants’ degree of agreement with the following
statements:

• Perceived Satisfaction of Input measured as participants’ evaluations of the state-
ment “Please rate how much you enjoyed using the device for navigation.”

• Perceived Scene Quality measured as participants’ evaluations of the statement
“Please rate how much you enjoyed the quality of the virtual environment.”

• Perceived Spatial Understanding measured as participants’ evaluations of the state-
ment “I was able to quickly get an overview of the indoor environment.”

For both Perceived Satisfaction of Input and Perceived Scene Quality, scale levels are:
not at all (1), not much (2), moderate (3), much (4), very much (5). For Perceived
Spatial Understanding, scale levels are: strongly disagree (1), disagree (2), neither agree
nor disagree (3), agree (4), and strongly agree (5).

Furthermore, the task load and system usability is measured as follows:

• Perceived Task Load is measured with the NASA Task Load Index (TLX) [HS88]
and is computed as a mean of questionnaire’s results. Scale levels are: very low (1),
low (2), average (3), high (4), and very high (5).

• Perceived System Usability is measured with the System Usability Scale (SUS)
[Bro96] and is computed as a mean of questionnaire’s results. Scale levels are:
strongly disagree (1), disagree (2), neither agree nor disagree (3), agree (4), and
strongly agree (5).

6.3.6 Results

The study is conducted using an independent factorial design with the independent
variables Setup and Data, while the dependent variables are the computed performance
measures Mean Angle Error, Consistency, Trajectory Length, Total Rotation and Total
Time, and the subjective measures, as denoted in the previous subsection. The quantitative
data is analyzed using two-way independent ANOVA, when suitable pairwise t-tests with
Bonferroni adjustment are employed.

For each combination of Setup and Data, ten randomly assigned participants (three
females, 33.3%) performed the test. Upon explanation of the hardware at stage two,
users took in average µ = 1:13 min (σ = 0:37 min) to familiarize with the setup within
the virtual test scene with no significant difference between Setup 1 and Setup 2. For
Perceived Satisfaction of Input, an average satisfaction of µ = 3.95 (σ = 0.876) is found,
with no significant effect by neither Setup (p = 0.377) nor Data (p = 0.489). No participant
using Setup 1 reported difficulties with using the input device, while only five participants
using Setup 2 (25%) were able to constantly navigate without any reported or observed

79



6. Experimental Results

problems. Three of them were novice users. 75% of the users with Setup 2 had various
levels of difficulties to explore the scene with the Virtualizer. This observation is backed
by the users’ subjective measure Perceived Task Load as highlighted in Figure 6.8.

Figure 6.8: Qualitative results of the Perceived Task Load.

Here, a significant main effect of Setup can be reported with p < 0.042, while no
significance is found for Data (p = 0.068), nor for the interaction between Setup and Data
(p = 0.205). When analyzing the TLX results in particular, a main effect of Setup for the
question “How physically demanding was the task?” is found with p < 0.007, reflecting
the higher perceived physical demand when using Setup 2. Furthermore, a main effect
of Data for “How hard did you work to accomplish your level of performance?” can be
reported with p < 0.03, reflecting the higher perceived mental load for Data 2. Overall,
users explored the scene in average for µ = 4:49 min (σ = 1:22 min). Users performing
the test with Data 1 explored in average for µ = 3:59 min (σ = 1:18 min) while users
with Data 2 required the entire 6:00 minutes due to the time it takes until the entire
model is streamed. For Simulator Sickness, an increase of symptoms is found with µ
= 3.60 (σ = 4.01), however no significant effect can be reported by neither Setup (p =
0.350) nor Data (p = 0.277). For the perceived visual quality of the 3D reconstruction
Perceived Scene Quality, an average satisfaction of µ = 3.78 (σ = 0.947) is found. All
users were astonished by the size of the flat and constantly commented on details they
saw while exploration, such as the coffee machine and pictures. Three users reported
to perceive the 3D geometry with low quality due to the HMD resolution, while two
users commented on 3D model artifacts and the subjectively perceived low quality of the
model’s geometry and texture. Four users reported they would feel like snoopers and
stated to feel actually being in the flat. Finally, users reported similar Perceived System
Usability for both Setup and Data with no significant differences.

Analyzing the quantitative performance data of the spatial knowledge acquisition tasks,
users performed similarly for the projective convergence measures Mean Angle Error,
Consistency and Mean Miss Distance as well as for the wayfinding measures Trajectory
Length, Total Rotation and Total Time. A main effect of Setup and Data cannot be
determined for any of the measures (p > 0.1 for all measures). This finding is backed by

80



6.3. User Study

the subjective measure Perceived Spatial Understanding, where significant results can be
reported by neither Setup (p = 0.453) nor Data (p = 0.707). Even though there are no
significant differences, the best results of the projective convergence task, i.e. the lowest
values, are achieved with Setup 2. For instance, only one of the top ten Consistency
values (the 4th) is accomplished with Setup 1 and only two of the top ten Mean Angle
Error values are accomplished with Setup 1 (2nd and 7th). Figure 6.9 shows the results
of projective convergence task. It illustrates the tendency, that Setup 2 leads to lower
errors in the spatial knowledge tasks in average, but with a higher variance. In contrast
to the Setup, the Data mode does not affect the results.

Figure 6.9: Quantitative results of the projective convergence Task.

With Setup 1, users tend to navigate quicker and straighter than with Setup 2, indicated
by Total Time, Total Rotation and Trajectory Length. This is also visible in Figure 6.10,
which shows typical trajectories for each setup.

However, Trajectory Length varied heavily for Setup 1 due to false navigation turns that
have been observed, also indicated by Total Rotation. These findings can be observed in
Figure 6.11, which illustrates the quantitative results of the wayfinding task. Similar, to
the projective convergence task, the Data mode does not change the results.

81



6. Experimental Results

Figure 6.10: Example paths traveled during the wayfinding task. The left path represents
a typical trajectory performed with the Virtualizer (Setup 2 ) whereas the right path
shows a trajectory performed with the gamepad (Setup 1 ).

Figure 6.11: Quantitative results of the wayfinding task.

82



6.3. User Study

6.3.7 Discussion

The user study is performed to gain insights into general user perception of streamed
3D reconstructions as well as to investigate spatial knowledge acquisition in streamed
reconstruction. The quantitative as well as qualitative feedback on the virtual 3D scene
reveals high acceptance of the concept by the forty test subjects. Many users immediately
suggested real-world use cases such as “I would love to have such an application to be
able to have a look into a hotel before I visit it”. Users’ subjective measures as well as
qualitative feedback indicated a high degree of immersion. Comments ranged from “I
feel like being in the flat”, “I feel like a snooper”. Furthermore, test participants wanted
to actively get engaged with the virtual 3D reconstruction, indicated by comments such
as “I would like to open the entrance door.”, “Can I take something out of the shelf?”.
No participant using Data 2 reported to feel distracted by the data representation.
They rather showed high excitement, indicated by comments such as “This is so Matrix-
like”. They reported positively on the concept of being decoupled from the view of the
remote capturing entity and stated to explore the environment as in reality, by strolling
around or investigating one room after the other. Three users asked for a functionality
to control the view of the capturing, and four for a faster reconstruction. Given the
quantitative performance as well as subjective measures, the evaluation did not indicate
a significant influence on spatial knowledge acquisition, neither by the input device nor
by the data representation. Regarding the input device, it can be noted that the majority
of participants using Setup 2 had difficulties in navigating with the ODT, as they did not
have prior experience with this input device. Thus, they had to concentrate on using the
device and could not fully focus on the environment that mitigates the advantages of this
direct navigational input device. This is also supported by Waller [Wal99], who found
that the proficiency with the navigational interface strongly affects the ability to acquire
spatial information. Therefore, the author cannot draw conclusions on the influence of a
low-friction ODT with its proprioceptive feedback on spatial knowledge acquisition within
a 3D real-world reconstruction. The user study revealed the tendency, that experienced
users are able to build up spatial knowledge more efficiently with the Virtualizer, however,
further research is required to study this question. Promisingly, at the time of writing this
thesis, a Virtualizer software update is released that filters sensor readings and thereby
improves ease of walking for novice users. Furthermore, no significant effect of the data
representation on spatial knowledge acquisition can be determined which is an interesting
finding. It indicates, that spatial knowledge acquisition is not reduced when exploring
the scene from the very beginning of the reconstruction process, compared to exploring
the scene in its entirety after the reconstruction has finished. This result is in contrast to
the finding of Passini [Pas92], who states, that the spatial knowledge is decreased when
less decisions are made during exploration, such as when following a guide. With the
proposed system, the map is expanded only at one place at a time, which also limits the
decision where to go. With a streaming representation, solely the perceived mental load
is increased. Both aspects are vital finding to real-world uses cases.

83





CHAPTER 7
Conclusion

In this thesis, a 3D reconstruction system is developed, which allows to reconstruct an
environment and, at the same time, explore the acquired 3D model of the environment
in Virtual Reality at a remote location.

Existing systems in the field of 3D reconstruction already make it possible to create such
3D models of real environments by capturing the scene with a RGB-D camera. However,
all existing prior art lacks the ability to explore the model while it is still scanned. A live
visualization is provided, which shows the current state of the reconstruction. However,
this visualization shows the model as seen from the scanning camera’s viewpoint. A free
exploration, independent from this viewpoint, is only supported after the reconstruction
process has finished and a mesh has been extracted in a post-processing step. The
scanning of the environment and the exploration of the reconstructed model is usually
performed by two different parties. At location A (server), a person or an autonomous
robot, equipped with a mobile computer and a RGB-D camera, is reconstructing an
unknown environment. At location B (client), another person wants to explore this
remote environment in a virtual way. If the transmission of the reconstructed model and
the mesh extraction happens only after the scanning is finished, the person at the client
side has to wait a long time before any findings can be obtained.

7.1 Contribution
Within this thesis, the existing state-of-the-art 3D reconstruction framework InfiniTAM
is adapted and extended in such a way, that it allows to scan large scale environments
and explore these environments at the same time at remote location. The support for
large scale models is already provided by InfiniTAM’s efficient data representation. It
stores the model internally as a volumetric signed distance function. In order to save
memory, empty space is ignored by applying Voxel Block Hashing. To be able to store a
scene with 90 m2, 800 - 1000 MB are required, when the model is stored with color at a

85



7. Conclusion

resolution of 1 cm. Apart from the low memory footprint, InfiniTAM is implemented
efficiently regarding the computational performance and runs on a tablet (NVIDIA Shield,
Google Nexus 9) at real-time rates (over 30 fps). Note however, that the current thesis
implementation only runs on Windows platforms.

The live and remote exploration is enabled by adding incremental transmission of the
reconstructed 3D model and real-time mesh extraction. With these two additions, the
waiting time is avoided and the reconstructed model can be remotely explored from
the beginning of the scan process. Environmental knowledge is gained quicker and
decisions can be made earlier. Apart from that, the scanning of the environment could
be influenced by the remote party if anything interesting is detected during exploration.

Incremental Model Transmission The novel networking module streams all those
voxels, which fall out of the scanning camera’s view frustum, to a remotely connected
client. The voxels are compressed in a lossless way using DEFLATE and are transmitted
with TCP. In combination with the already space-efficient model representation of
InfiniTAM, average data rates between three and four MBits/sec are achieved, when
reconstructing a scene with color at a voxel resolution of 1 cm. Note, that this value only
corresponds to the payload, and does not integrate any networking overhead.

Dynamic Mesh Update At the client side, the model is additionally stored in a mesh
representation since a mesh is favored for efficient rendering and interaction. The scene
is divided into a regular 3D grid, where each grid element holds its own mesh. Each
mesh is recomputed using CPU-based Marching Cubes, whenever any underlying voxel
changed. Even though the computation is performed on CPU, the meshing module is
able to update the mesh fast enough to keep up with the scanning and reconstruction
process. On modern hardware (Core i7-4940MX, Gefore GTX980M, 16GB RAM), the
computation time for a single mesh is below 100 ms in average.

Integration of Unreal Engine 4 For visualization and exploration purposes, the
extracted meshes are rendered using the existing Unreal Engine 4. A shared memory based
communication between the client side InfiniTAM application and the UE4 project is
implemented in order to forward the mesh data. Within UE4, the rendering is performed
with over 200 fps, even for large scenes consisting of over ten million triangles. The
dynamic update of the mesh data during runtime does not lead to notable drops in the
frame rate.

Exploration in Virtual Reality The remote environment can be explored in an
immersive Virtual Reality Setup, consisting of an HMD and an omnidirectional treadmill.
A UE4 plugin is developed in order to integrate the Virtualizer, an omnidirectional
treadmill by Cyberith. Using the VR Setup, the scene can be explored in a more
natural way. A user study is performed to examine the users’ general perception of and
spatial understanding within 3D reconstructed environments using the VR devices. The

86



7.2. Future Work

results indicate a high acceptance of the general concept, combined with a high degree
of perceived immersion into the virtual real-world environment. A significant effect of
the input device on spatial knowledge acquisition could not be found which might be
due to problems users encountered when using the ODT for the first time. The results
revealed that spatial understanding is not affected by the way the data is presented to
users, which is promising for use cases that require exploration from the very beginning
of the reconstruction process. The presented work provides a foundation for enabling
immersive exploration of remotely captured and incrementally reconstructed dense 3D
scenes and understanding users’ perception within this real-world virtual environments.

7.2 Future Work

The implemented system allows to scan large environments and store them efficiently in
memory. However, in order to be used by untrained users in arbitrary scenes, the camera
pose estimation needs to improved. Due to frequent tracking failures, it is challenging to
process longer video sequences, especially in areas with few geometric features. Even
if one manages to reconstruct the whole environment, camera drift inevitably leads to
misaligned models. The effect of tracking failures can be mitigated by integrating a pose
recovery procedure. If a valid camera pose is found again, the scanning process does
not have to be started from the beginning, but can continue from the current position.
Camera drift can be minimized by detecting already visited places and closing the loop.
Challenging in this case, is the fact, that the model of both server and client needs to
be updated. One option, which avoids retransmitting all changed parts of the model,
is to send only the loop closure instructions and to perform the actual deformation on
both server and client. Apart from loop closure, the general tracking accuracy can be
improved by fusing various types of sensors. Currently, only the depth images are used
for tracking, but one can also use the color information, IMU data or the strength of
Wi-Fi or bluetooth signals.

As the technical evaluation revealed, a mesh (or a point cloud) representation is more
memory efficient than the TSDF. Streaming the mesh data, instead of the voxels, can
significantly reduce the required data rate. For that purpose, the meshing has to be
performed on the limited mobile platform and therefore, a computationally more efficient
mesh extraction has to be developed. Moreover, one needs to find a strategy, how to
cope with the dynamic nature of the volumetric data structure. Currently, changes in
the volumetric representation are reflected at the client side right away by recomputing
the corresponding meshes. If the mesh extraction happens on the server side, the meshes
would have to be retransmitted after every update. This also includes the unchanged
parts of the mesh.

Independently of the data type to be sent, the data rate can be improved by choosing a
proper network protocol. The current implementation uses the TCP protocol because it
is widely supported. However, it contains unrequired features, which increase the data
rate. In future work, a more efficient protocol with less overhead can be evaluated and

87



7. Conclusion

integrated. Apart from that, the network transmission should be ported from Windows
to a mobile operating system, like Android or iOS, by replacing Winsock2 with a multi-
platform library. This way, the 3D reconstruction process can be performed conveniently
with a handheld tablet.

Regarding the mesh computation, a current drawback is the high number of triangles
generated by Marching Cubes. In order to allow real-time interaction for larger scenes,
the meshes need to be optimized. One possibility is geometry simplification, such as
plane detection. The planes can then be represented with fewer triangles. Challenging is
however the fact, that the volumetric data does not only expand, but can also change
in existing regions. One could detect meshes, which did not change in the recent past
and fuse those to bigger meshes, so that larger optimizations are possible. Whenever
underlying voxels changed, the bigger mesh is replaced by the smaller ones again.

Finally, the influence of navigational input on spatial knowledge acquisition requires
further investigations, i.e. by examining standard input devices in a non-immersive VR,
the updated version of the Virtualizer ODT as well as real walking in immersive VR.

88



APPENDIX A
User Study Pre-Questionnaire

89



Participant Number: ________

Age ___________ (years / months)

 [    ] Male       [    ] Female

Do you have previous experience with Virtual Reality?           [     ] Yes       [     ] No

Do you own a head mounted display (HMD)?           [     ] Yes       [     ] No

Pre-Exposure Simulator Sickness

Please circle below if any of the symptoms apply to you now. You will be asked to fill this again after
the experiment.

1.    General discomfort None Slight Moderate Severe

2.    Fatigue None Slight Moderate Severe

3.    Boredom None Slight Moderate Severe

4.    Drowsiness None Slight Moderate Severe

5.    Headache None Slight Moderate Severe

6.    Eyestrain None Slight Moderate Severe

7.    Difficulty focusing None Slight Moderate Severe

8.    Salivation increase None Slight Moderate Severe

9.    Salivation decrease None Slight Moderate Severe

10.  Sweating None Slight Moderate Severe

11.  Nausea None Slight Moderate Severe

12.  Difficulty None Slight Moderate Severe                 
concentrating

1/2



13.  Mental depression No Yes (  Slight     Moderate      Severe  )

14.  "Fullness of the head" No Yes (  Slight     Moderate      Severe  )

15.  Blurred vision No Yes (  Slight     Moderate      Severe  )

16.  Dizziness eyes open No Yes (  Slight     Moderate      Severe  )

17. Dizziness eyes close No Yes (  Slight     Moderate      Severe  )

18.  Vertigo No Yes (  Slight     Moderate      Severe  )

19.  Visual flashbacks No Yes (  Slight     Moderate      Severe  )

20.  Faintness No Yes (  Slight     Moderate      Severe  )

21.  Aware of breathing No Yes (  Slight     Moderate      Severe  )

22.  Stomach awareness No Yes (  Slight     Moderate      Severe  )

23.  Loss of appetite No Yes (  Slight     Moderate      Severe  )

24.  Increased appetite No Yes (  Slight     Moderate      Severe  )

25.  Desire to move bowels No Yes (  Slight     Moderate      Severe  )

26.  Confusion No Yes (  Slight     Moderate      Severe  )

27.  Burping No Yes (  Slight     Moderate      Severe  )

28.  Vomiting No Yes (  Slight     Moderate      Severe  )

29.  Other No Yes (  Slight     Moderate      Severe  )

2/2





APPENDIX B
User Study Post-Questionnaire

93



1/6 
 

Participant Number: ________ 

 

Please indicate what kind of navigation input you have been using during the experiement: 

[     ] Gamepad       [     ] Omnidirectional Treadmill 

 

Please indicate how the virtual environment was presented to you:  

[     ] All at once       [     ] Incrementally over time 

 

Post-Exposure Simulator Sickness 

 

Please circle below again if any of the symptoms apply to you now. 

1.    General discomfort  None  Slight  Moderate Severe 

2.    Fatigue   None  Slight  Moderate Severe 

3.    Boredom   None  Slight  Moderate Severe 

4.    Drowsiness   None  Slight  Moderate Severe 

5.    Headache   None  Slight  Moderate Severe 

6.    Eyestrain   None  Slight  Moderate Severe 

7.    Difficulty focusing  None  Slight  Moderate Severe 

8.    Salivation increase  None  Slight  Moderate Severe 

9.    Salivation decrease  None  Slight  Moderate Severe 

10.  Sweating   None  Slight  Moderate Severe 

11.  Nausea    None  Slight  Moderate Severe 

12.  Difficulty   None  Slight  Moderate Severe                     
concentrating 

13.  Mental depression   No Yes (  Slight     Moderate      Severe  ) 



2/6 
 

14.  "Fullness of the head"  No Yes (  Slight     Moderate      Severe  ) 

15.  Blurred vision   No Yes (  Slight     Moderate      Severe  ) 

16.  Dizziness eyes open   No Yes (  Slight     Moderate      Severe  ) 

17. Dizziness eyes close   No Yes (  Slight     Moderate      Severe  ) 

18.  Vertigo    No Yes (  Slight     Moderate      Severe  ) 

19.  Visual flashbacks   No Yes (  Slight     Moderate      Severe  ) 

20.  Faintness    No Yes (  Slight     Moderate      Severe  ) 

21.  Aware of breathing   No Yes (  Slight     Moderate      Severe  ) 

22.  Stomach awareness   No Yes (  Slight     Moderate      Severe  ) 

23.  Loss of appetite   No Yes (  Slight     Moderate      Severe  ) 

24.  Increased appetite   No Yes (  Slight     Moderate      Severe  ) 

25.  Desire to move bowels  No Yes (  Slight     Moderate      Severe  ) 

26.  Confusion    No Yes (  Slight     Moderate      Severe  ) 

27.  Burping    No Yes (  Slight     Moderate      Severe  ) 

28.  Vomiting    No Yes (  Slight     Moderate      Severe  ) 

29.  Other    No Yes (  Slight     Moderate      Severe  ) 

 

 

 

 

 



3/6 
 

Exploration & Orientation 

 

1. Please specify how much you agree with the following statement: “I was able to EASILY find my way 

the environment?  

Strongly 

disagree 
Disagree 

Neither agree 

nor disagree 
Agree Strongly agree 

1 2 3 4 5 
 

2. Please specify how much you agree with the following statement: “I was able to QUICKLY find my 

way through the environment?  

Strongly 

disagree 
Disagree 

Neither agree 

nor disagree 
Agree Strongly agree 

1 2 3 4 5 
 

3. Please specify how much you agree with the following statement: “I was able to QUICKLY get an 

overview of the entire indoor environment?  

Strongly 

disagree 
Disagree 

Neither agree 

nor disagree 
Agree Strongly agree 

1 2 3 4 5 
 

4. Please indicate how well you estimate your spatial understanding of the presented scene.  

Very poor Poor Acceptable Good Very Good 

1 2 3 4 5 

 

5. Please rate how much you enjoyed using the device for navigation: 

Not at all Not much Moderate Much Very much 

1 2 3 4 5 

 

6. Please rate how much you enjoyed the quality of the virtual environment:  

Not at all Not much Moderate Much Very much 

1 2 3 4 5 

 

 

 

 

 



4/6 
 

Task Load (TLX) 

Please indicate your perceived amount of the following statements regarding the exploration task: 
 

1. How mentally demanding was 
the task? 

Very low Low Average High Very High 

1 2 3 4 5 
 

  
2. How physically demanding was 
the task? 

Very low Low Average High Very High 

1 2 3 4 5 
 

  
3. How hurried or rushed was the 
pace of the task? 

Very low Low Average High Very High 

1 2 3 4 5 
 

  
4. How successful were you in 
accomplishing what you were 
asked to do? 

Very Poor Poor Acceptable Good Very Good 

1 2 3 4 5 
 

  
5. How hard did you work to 
accomplish your level of 
performance?  

Very low Low Average High Very High 

1 2 3 4 5 
 

  
6. How insecure, discouraged, 
irritated, stressed and annoyed 
were you? 

Very low Low Average High Very High 

1 2 3 4 5 
 

 

 

 

 

 

 

System Usability (SUS) 

Please specify how much you agree with the following statement: 

 

1. I think that I would like to use 
this concept frequently 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
2. I found the concept 
unnecessarily  complex 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
3. I thought the concept was easy  
to use                       

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  



5/6 
 

4. I think that I would need the  
support of a technical person to  
be able to use this concept 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
5. I found the various functions in 
this concept were well integrated 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
6. I thought there was too much  
inconsistency in this concept 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
7. I would imagine that most 
people  would learn to use this 
concept very quickly  

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
8. I found the concept very 
cumbersome to use 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
9. I felt very confident using the 
concept 

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

  
10. I needed to learn a lot of 
things before I could get going 
with the concept  

Strongly 
disagree 

Disagree 
Neither 
agree or 
disagree 

Agree 
Strongly 

agree 

1 2 3 4 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6/6 
 

Open Questions 

Please describe in a few words your experience with the application. 

 
 
 
 
 
 

Please describe in a few words your exploration strategy.  

 
 
 
 
 
 

What other uses can you suggest for the concept? (please think of at least 3 uses) 

 
 
 
 
 
 
 
 
 

 





List of Figures

1.1 Incremental transmission and exploration of a reconstructed scene while
scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 RGB-D camera Xtion Pro Live from Asus. . . . . . . . . . . . . . . . . . . . 8
2.2 Distorted reconstruction due to camera drift. . . . . . . . . . . . . . . . . . . 10

3.1 Principle of a Moving Volume approach. . . . . . . . . . . . . . . . . . . . . . 12
3.2 Comparison of different volumetric data structures for 3D reconstruction. . . 14
3.3 Marching Cubes triangulation of a 3D reconstruction. . . . . . . . . . . . . . 18

4.1 Overview of the reconstruction pipeline. . . . . . . . . . . . . . . . . . . . . . 22
4.2 Example of a TSDF for a simple object. . . . . . . . . . . . . . . . . . . . . . 23
4.3 Principle of the Voxel Block Hashing data structure. . . . . . . . . . . . . . . 24
4.4 Hash table structure at Voxel Block Hashing. . . . . . . . . . . . . . . . . . . 24
4.5 Difference between point-to-point and point-to-plane distance. . . . . . . . . 26
4.6 Voxel block visibility check for GPU - CPU swapping. . . . . . . . . . . . . . 29
4.7 GPU - CPU swapping procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Top view on the mesh block grid of a test scene. . . . . . . . . . . . . . . . . 35
4.9 Principle of Marching Cubes in two dimensions (Marching Squares). . . . . . 38
4.10 Oculus Rift HMD (Developer Kit 2). . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Cyberith Virtualizer omnidirectional treadmill. . . . . . . . . . . . . . . . . . 42

5.1 Overview of the most important classes and their relations. . . . . . . . . . . 47
5.2 Overview of the individual threads and their communication. . . . . . . . . . 49
5.3 Screenshot of the InfiniTAM server application. . . . . . . . . . . . . . . . . . 51
5.4 Screenshot of the client application. . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Main steps of the ITMSwappingEngine and ITMStreamingEngine for network

transmission at the server side. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Main steps of the ITMStreamingEngine at the client side. . . . . . . . . . . . 57
5.7 Main steps of the scene update in InfiniTAM. . . . . . . . . . . . . . . . . . . 58
5.8 Class structure of the UE4 Virtualizer plugin. . . . . . . . . . . . . . . . . . . 60
5.9 Integration of the Virtualizer via UE4’s blueprint system. . . . . . . . . . . . 61
5.10 Class structure of the client when using standalone visualization. . . . . . . . 61

101



6.1 Top view on reconstructions of the three used test data sets. . . . . . . . . . 65
6.2 Average data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Required memory to store the Flat scene either as mesh or as TSDF voxel

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Principle of the projective convergence task . . . . . . . . . . . . . . . . . . . 75
6.5 Two different input/output device setups. . . . . . . . . . . . . . . . . . . . . 76
6.6 Locations used for projective convergence and wayfinding tasks. . . . . . . . . 78
6.7 Result of a single projective convergence task. . . . . . . . . . . . . . . . . . . 78
6.8 Qualitative results for the perceived task load. . . . . . . . . . . . . . . . . . 80
6.9 Quantitative results of the projective convergence task. . . . . . . . . . . . . . 81
6.10 Example paths traveled during the wayfinding task. . . . . . . . . . . . . . . 82
6.11 Quantitative results of the wayfinding task. . . . . . . . . . . . . . . . . . . . 82

List of Tables

6.1 Hash table occupancy with default hash table size. . . . . . . . . . . . . . . . 67
6.2 Hash table occupancy with enlarged hash table. . . . . . . . . . . . . . . . . . 67
6.3 Amount of transmitted voxel blocks and data in MB along with the achieved

compression ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Average and maximum data rates of all three test scenes. . . . . . . . . . . . 69
6.5 Number and size of the extracted meshes (for colored reconstructions only). 71

102



Bibliography

[AFDM08] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and Incremental
Method for Loop-Closure Detection using Bags of Visual Words. IEEE
Transactions on Robotics, 24:1027–1037, 2008.

[Asu16] Asus. Xtion Pro Live [Online]. https://www.asus.com/3D-
Sensor/Xtion_PRO_LIVE/, Last accessed on February 10, 2016.

[Bjö96] A. Björck. Numerical Methods for Least Squares Problems. Siam, 1996.

[BKJP04] D. A. Bowman, E. Kruijff, LaViola J., and I. Poupyrev. 3D User Interfaces:
Theory and Practice. Addison-Wesley, 2004.

[BM92] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14:239–256,
1992.

[Bro96] J. Brooke. Sus - a quick and dirty usability scale. Usability Evaluation in
Industry, 189(194):4–7, 1996.

[BTG97] J. Bliss, P. D. Tidwell, and M. A. Guest. The Effectiveness of Virtual Reality
for Administering Spatial Navigation Training to Firefighters. Presence:
Teleoperators and Virtual Environments, 6:73–86, 1997.

[Cam16] S. Campisi. Hyper IMU (version 1.5) [Software].
https://play.google.com/store/apps/details?id=com.ianovir.hyper_imu,
Last accessed on February 11, 2016.

[CBI13] J. Chen, D. Bautembach, and S. Izadi. Scalable Real-time Volumetric
Surface Reconstruction. ACM Transactions on Graphics (TOG), 32:113:1–
113:16, 2013.

[CH14] T. Cakmak and H. Hager. Cyberith Virtualizer: A Locomotion Device
for Virtual Reality. In ACM SIGGRAPH Emerging Technologies, pages
6:1–6:1, 2014.

103



[Cho16] M. Chourdakis. Ultimate Shared Memory: A Flex-
ible Class for Interprocess Memory Sharing [Software].
http://www.codeproject.com/Articles/835818/Ultimate-Shared-Memory-
A-flexible-class-for-interp, Last accessed on February 10, 2016.

[CL96] B. Curless and M. Levoy. A Volumetric Method for Building Complex
Models from Range Images. In ACM Conference on Computer Graphics
and Interactive Techniques, pages 303–312, 1996.

[Cor16a] Microsoft Corporation. Microsoft Kinect [Online].
https://www.microsoft.com/en-us/kinectforwindows, Last accessed
on February 10, 2016.

[Cor16b] Nvidia Corporation. Cuda (version 7.0) [software].
https://developer.nvidia.com/cuda-toolkit, Last accessed on February 10,
2016.

[CTF14] M. Coatsworth, J. Tran, and A. Ferworn. A Hybrid Lossless and Lossy
Compression Scheme for Streaming RGB-D Data in Real-Time. In IEEE
International Symposium on Safety, Security, and Rescue Robotics, pages
1–6, 2014.

[CZK15] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust Reconstruction of Indoor
Scenes. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5556–5565, 2015.

[Deu96] P. Deutsch. DEFLATE Compressed Data Format Specification Version 1.3.
Technical report, RFC 1951, 1996.

[DG96] P. Deutsch and J.-L. Gailly. Zlib Compressed Data Format Specification
Version 3.3. Technical report, RFC 1950, 1996.

[Epi16] Epic Games. Unreal Engine 4.9 [Software]. https://www.unrealengine.com,
Last accessed on February 10, 2016.

[FB81] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Communications of the ACM, 24:381–395, 1981.

[FCSS09] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Reconstructing
Building Interiors from Images. In IEEE International Conference on
Computer Vision (ICCV), pages 80–87, 2009.

[For02] B. A. Forouzan. TCP/IP Protocol Suite. McGraw-Hill, Inc., 2002.

[Fre16] FreeGLUT. Free OpenGL Utility Toolkit (version 3.0) [Software].
http://freeglut.sourceforge.net/, Last accessed on February 10, 2016.

104



[FTF+15] N. Fioraio, J. Taylor, A. Fitzgibbon, L. Di Stefano, and S. Izadi. Large-Scale
and Drift-Free Surface Reconstruction Using Online Subvolume Registration.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4475–4483, 2015.

[FVDF+94] J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips.
Introduction to Computer Graphics. Addison-Wesley Reading, 1994.

[GG07] Y. Gu and R. L. Grossman. UDT: UDP-Based Data Transfer for High-Speed
Wide Area Networks. Computer Networks, 51:1777–1799, 2007.

[GK15] T. Golla and R. Klein. Real-time point cloud compression. In IEEE
International Conference on Intelligent Robots and Systems (IROS), pages
5087–5092, 2015.

[HF16] F. Heredia and R. Favier. Kinfu Large Scale [Online], Last accessed on
February 10, 2016.

[Hig16] High Tech Computer Corporation / Valve Corporation. HTC Vive [Online].
http://www.htcvr.com, Last accessed on February 10, 2016.

[HKH+12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D Mapping:
Using Kinect-Style Depth Cameras for Dense 3D modeling of Environments.
The International Journal of Robotics Research, 31:647–663, 2012.

[HS88] S. Hart and L. Staveland. Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research. Advances Psychology,
52:139–183, 1988.

[Inf16] Infinadeck. Infinadeck [Online]. http://infinadeck.com/, Last accessed on
February 10, 2016.

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction.
In Eurographics Symposium on Geometry Processing, pages 61–70, 2006.

[KBR+12] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach.
Real-Time Compression of Point Cloud Streams. In IEEE International
Conference on Robotics and Automation (ICRA), pages 778–785, 2012.

[KPR+15] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray.
Very High Frame Rate Volumetric Integration of Depth Images on Mobile
Devices. IEEE Transactions on Visualization and Computer Graphics,
21:1241–1250, 2015.

[LC87] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. SIGGRAPH Comput. Graph., 21:163–169,
1987.

105



[LM13] M. Labbe and F. Michaud. Appearance-Based Loop Closure Detection
for Online Large-Scale and Long-Term Operation. IEEE Transactions on
Robotics, 29:734–745, 2013.

[MLDH15] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3d mesh compression:
Survey, comparisons, and emerging trends. ACM Computing Surveys,
47:44:1–44:41, 2015.

[MOCGR14] V. Morell, S. Orts, M. Cazorla, and J. Garcia-Rodriguez. Geometric 3D
Point Cloud Compression. Pattern Recognition Letters, 50:55–62, 2014.

[Moo76] G. Moore. Environmental Knowing, chapter Theory and Research on
the Development of Environmental Knowing, pages 138–164. "Dowden,
Hutchinson and Ross", 1976.

[MRB09] Z. C. Marton, R. B. Rusu, and M. Beetz. On Fast Surface Reconstruction
Methods for Large and Noisy Datasets. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3218–3223, 2009.

[MS92] M. E. McCauley and T. J. Sharkey. Cybersickness: Perception of Self-
Motion in Virtual Environments. Presence: Teleoperators & Virtual Envi-
ronments, 1:311–318, 1992.

[MWB+13] L. Ma, T. Whelan, E. Bondarev, P. HN de With, and J. McDonald. Planar
Simplification and Texturing of Dense Point Cloud Maps. In IEEE European
Conference on Mobile Robots (ECMR), pages 164–171, 2013.

[NIH+11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. In IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 127–136,
2011.

[NIL12] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling Kinect Sensor Noise for
Improved 3d Reconstruction and Tracking. In IEEE International Confer-
ence on 3D Imaging, Modeling, Processing, Visualization and Transmission,
pages 524–530, 2012.

[NM12] Nagesha and S. S. Manvi. Performance Analysis of SCTP Compared to
TCP and UDP. In Advances in Computing and Information Technology.
Springer Berlin Heidelberg, 2012.

[NRI12] A. Nybakke, R. Ramakrishnan, and V. Interrante. From Virtual to Ac-
tual Mobility: Assessing the Benefits of Active Locomotion through an
Immersive Virtual Evironment using a Motorized Wheelchair. In IEEE
Symposium on 3D User Interfaces (3DUI), pages 27–30, 2012.

106



[NSS14] F. Nenci, L. Spinello, and C. Stachniss. Effective Compression of Range Data
Streams for Remote Robot Operations using H.264. In IEEE International
Conference on Intelligent Robots and Systems (IROS), pages 3794–3799,
2014.

[NY06] T. S. Newman and H. Yi. A Survey of the Marching Cubes Algorithm.
Computers & Graphics, 30:854–879, 2006.

[NZIS13] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D Re-
construction at Scale using Voxel Hashing. ACM Transactions on Graphics
(TOG), 32:169:1–169:11, 2013.

[Occ16] PrimeSense / Occipital. OpenNI (version 2.2) [Software].
http://structure.io/openni, Last accessed on February 10, 2016.

[Ocu16a] Oculus VR. Oculus Rift [Online]. https://www.oculus.com/en-us/rift, Last
accessed on February 10, 2016.

[Ocu16b] Oculus VR. Oculus Rift Requirements [Online]. https://www.oculus.com/en-
us/blog/powering-the-rift/, Last accessed on February 10, 2016.

[Pas92] R. Passini. Wayfinding in architecture. Environmental design series. Van
Nostrand Reinhold, 1992.

[PKC+14] V. A. Prisacariu, O. Kähler, M.-M. Ren C. Y. Cheng, J. Valentin, P. Torr,
I. Reid, and D. Murray. A Framework for the Volumetric Integration of
Depth Images. Computing Research Repository (CoRR), abs/1410.0925,
2014.

[PPS13] P. M Panchal, S. R. Panchal, and S. K. Shah. A Comparison of SIFT
and SURF. International Journal of Innovative Research in Computer and
Communication Engineering, 1:323–327, 2013.

[RB04] B. Riecke and H. Bülthoff. Spatial Updating in Real and Virtual Envi-
ronments: Contribution and Interaction of Visual and Vestibular Cues.
In ACM Symposium on Applied Perception in Graphics and Visualization,
pages 9–17, 2004.

[RL01] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm.
In IEEE International Conference on 3-D Digital Imaging and Modeling
(3DIM), pages 145–152, 2001.

[RL09] R. A. Ruddle and S. Lessels. The Benefits of using a Walking Interface to
Navigate Virtual Environments. ACM Transactions on Computer-Human
Interaction (TOCHI), 16:5:1–5:18, 2009.

[RM12] H. Roth and V. Marsette. Moving Volume KinectFusion. In Proceedings of
the British Machine Vision Conference (BMVC), pages 1–11, 2012.

107



[Sal04] D. Salomon. Data Compression: The Complete Reference. Springer Science
& Business Media, 2004.

[Sie81] A. W. Siegel. The Externalization of Cognitive Maps by Children and
Adults: In Search of Ways to Ask Better Questions. In Spatial Representa-
tion and Behavior Across the Life Span. Academic Press, 1981.

[SKCS13] F. Steinbrücker, C. Kerl, D. Cremers, and J. Sturm. Large-Scale Multi-
Resolution Surface Reconstruction from RGB-D Sequences. In IEEE
International Conference on Computer Vision (ICCV), pages 3264–3271,
2013.

[SM01] R. Stewart and C. Metz. SCTP: New Transport Protocol for TCP/IP.
IEEE Internet Computing, 5:64–69, 2001.

[Son16] Sony. Playstation VR [Online]. https://www.playstation.com/en-
us/explore/playstation-vr/, Last accessed on February 10, 2016.

[SSC11] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time Visual Odometry
from Dense RGB-D Images. In IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 719–722, 2011.

[SW75] A. W. Siegel and S. H. White. The Development of Spatial Representations
of Large-Scale Environments. Advances in Child Development and Behavior,
10:9–55, 1975.

[TL08] S. "Thrun and J." Leonard. "Springer Handbook of Robotics", chapter
"Simultaneous Localization and Mapping", pages "871–889". "Springer
Berlin Heidelberg", "2008".

[Uni16] Unity Technologies. Unity 5 [Software]. https://unity3d.com, Last accessed
on February 10, 2016.

[Vir16] Virtuix. Virtuix Omni [Online]. http://www.virtuix.com, Last accessed on
February 10, 2016.

[Wal99] D. A. Waller. An Assessment of Individual Differences in Spatial Knowledge
of Real and Virtual Environments. PhD thesis, University of Washington,
1999.

[WJK+13] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald.
Robust Real-Time Visual Odometry for Dense RGB-D Mapping. In IEEE
International Conference on Robotics and Automation (ICRA), pages 5724–
5731, 2013.

[WKJ+14] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and
J. McDonald. Real-Time Large-Scale Dense RGB-D SLAM with Volumetric
Fusion. The International Journal of Robotics Research, 34:598–626, 2014.

108



[WMB+15] T. Whelan, L. Ma, E. Bondarev, P. de With, and J. McDonald. Incremental
and Batch Planar Simplification of Dense Point Cloud Maps. Robotics and
Autonomous Systems, 69:3–14, 2015.

[WMG+12] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof. Dense
Reconstruction on-the-fly. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1450–1457, 2012.

[WS98] B. Witmer and M. Singer. Measuring Presence in Virtual Environments: A
Presence Questionnaire. Presence: Teleoperators and Virtual Environments,
7(3):225–240, 1998.

[ZK13] Q.-Y. Zhou and V. Koltun. "Dense Scene Reconstruction with Points of
Interest". ACM Transactions on Graphics (TOG), 32:112, 2013.

[ZZZL13] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-Based Fusion for Realtime
3D Reconstruction. Graphical Models, 75:126–136, 2013.

109


	Kurzfassung
	Abstract
	Contents
	Introduction
	Incremental Network Transmission
	Live Exploration
	Contribution

	Fundamentals of Real-Time Surface Reconstruction
	Depth Sensors
	Scene Representation
	Reconstruction

	State-of-the-Art
	Dense Real-Time Surface Reconstruction
	Network Streaming
	Surface Extraction
	Visualization and Exploration

	Methodology
	Model Representation
	Camera Pose Estimation
	Data Integration
	GPU - CPU Swapping
	Raycasting
	Network Transmission
	Dynamic Scene Update
	Visualization and Exploration
	Current Limitations

	Implementation
	Implementation Overview
	Usage Instructions
	Camera Pose Estimation
	Network Transmission
	Dynamic Scene Update
	Visualization and Exploration

	Experimental Results
	Test Data
	System Performance
	User Study

	Conclusion
	Contribution
	Future Work

	User Study Pre-Questionnaire
	User Study Post-Questionnaire
	List of Figures
	List of Tables
	Bibliography

