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Abstract

The way the brain connects its different areas to provide its unequaled level of efficiency is
an aspect of the brain working that is currently not fully understood. A way to characterize
it is to map the networks constituting functional connectivity owing to rest-functional
Magnetic Resonance Imaging (rest-fMRI), a non-invasive imaging technique. Owing
to connectivity metrics such as correlation or coherence calculated between rest-fMRI
signals from different regions of the brain surface, Resting State Networks (RSNs) are
constructed. Although functional networks share topological similarities with anatomical
networks, they are not static as it has been assumed until 2010. The complexity of the
problem is thus increased and methods are developed to extract dynamic properties from
functional networks with a high enough time resolution. The main approach currently
used to analyze dynamic functional connectivity identifies a finite set of connectivity
states consisting of activity pattern reoccurring across time and subjects. However, the
functional connectivity also varies spatially over time and the representation of dynamic
functional connectivity as states is too restrictive.

The aim of this master thesis is to develop a new approach to represent dynamic functional
connectivity as workable networks respecting both spatial and temporal variability. It is
inspired by community evolution mining in social networks and text topics and proposes
a richer alternative to connectivity states. The functional networks are thus considered as
dynamic communities that interact across time. These interactions are characterized at
different levels by events and their analysis provides insights in the functional organization
of the brain. A clean and robust representation of the dynamic functional connectivity
and their interactions across individuals is thus established and applied to a population of
200 subjects. Six different dynamic communities are thus identified across the population.
They share similarities with static RSNs and they are repeatable across subsets of the
population . The temporal characteristics of their activation allow to detect recurrent
pattern in their co-occurrence and they are characterized by events whose significance
can be evaluated.
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CHAPTER 1
Introduction

This chapter introduces the aims of the thesis. They are first justified by the current
challenges of brain functional connectivity analysis which permits to clearly define the
problems to be solved here. Then, the methodological approach constructed and tested
in this thesis is briefly depicted. Finally, the structure of the report is exposed.

1.1 Motivation
The idea that brain functions can be localized and mapped appears in the 19th cen-
tury [PMN11]. Franz Joseph Gall (1757-1828) used the skull shape to estimate the
function localization and was thus the father of phrenology [PMN11]. Although the
assumption that the skull and the brain function were linked appeared to be false, it has
provided the starting point for brain function mapping [PMN11].

Moreover, networks in nature are everywhere, from the ecosystem to the cell level
[Spo13]. Modeling the brain connectivity with networks seems therefore a spontaneous
thought and it has became possible with the development of non-invasive neuroimaging
modalities[Spo13]. An extensive mapping of the structural connectivity residing in brain
anatomy has been thus realized and later, the identification of structured correlations in
physiologically-based signals has ushered to the idea of a functional connectivity supported
by the anatomical connectivity [Spo13]. This functional connectivity can be detected with
several modalities such as ElectroEncephaloGraphy (EEG) or MagnetoEncephaloGraphy
(MEG), but the Functional Magnetic Resonance Imaging (fMRI) is the modality of
reference for identification of functional networks named Intrinsic Connectivity Networks
(ICNs) [SZPBPH15]. Rest-fMRI (rest-fMRI) is particularly suited for this task because
it detects the same networks as task-fMRI but with a shorter experiment duration and
with less constraints [SZPBPH15]. The association of neuroscience with network science
enables to study brain function as a complex system and to stop thinking of a brain
as a organ responding to environmental stimulus while its functional activity is in part
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1. Introduction

ruled by its network activation and deactivation [Spo13]. The ICNs are made of nodes
corresponding to voxels, group of voxels or Regions Of Interest (ROIs). They are linked
by edges if their corresponding time series are statistically linked and thus revealed an
interaction [HWA+13].

Furthermore, it has been unsurprisingly demonstrated that functional networks are not
static [CG10]&[MMH+11]. Instead of using the whole experiment duration to establish
the pattern of ICNs, new approaches have then arose to build dynamic Resting-State
functional Networks (RSNs) [HWA+13]. Most of them assume fixed spatial network com-
ponents that form recurrent activity patterns considered as states [SVB+13]&[CMPA14].
No existing representation permits to consider neither the spatial variation of the network
by itself, nor the interactions between networks. However, other scientific fields using
network modeling, such as sociology, have already developed techniques for analysis of
complex systems which can be adapted to neurology ([TSFZ11], [CLT+11], [VBAW15]).

1.2 Medical Applications and Relevance
Some neuropathologies stay unexplained and most of them are incurable, but RSNs
can be utilized as biomarkers for their diagnosis and their comprehension [HWA+13].
It is of key interest because they most of the time result in very serious degradation
of life quality and are a real burden for the society [DO14]&[LZL+15]. Moreover, our
brain directs our life. We think, we feel, we learn, we dream through it and functional
connectivity networks at rest have been demonstrated to be one technique to observe
how the brain processes. Cognition tasks can for instance be detected through fMRI
signals [SRR+11] and a lot of work is realized to see how cognition relates to resting
state networks properties (for instance: [KHS+11]&[HSGJ+12]). Emotions [EVDVSV11]
and learning [BWP+11] have also been linked to resting state networks fluctuations, as
well as sleep [TL14], daydreaming [KD14] or consciousness [HCPP14].

1.2.1 Illustrative Examples: Schizophrenia, Bipolar Disorders and
Epilepsy.

Bipolar disorders can be differentiated from Schizophrenia with rest functional networks
[AKPC13]&[DAB+14]. Schizophrenia and bipolar disorders are two complex diseases
that are difficult to exactly diagnose [DO14]. Indeed both of them present psychotic
symptoms and it leads to misdiagnosis that not only has disadvantageous economical
consequences but also provokes human suffering due to the treatment inefficiency [DO14].
Figure 1.1 from Rashid et al. [RDPC14] provides an example of how these diseases can
be differentiated. It highlights the differences of dynamic connectivity patterns between
Healthy Controls (HC), Schizophrenia (SC) and Bipolar Disorders (BP) patients. Here
states of connectivity are defined (see Section 2.4.1 for the definition of a state) and
each state corresponds to a combination of components that are linked or not when
the state is active. For instance, in state 4, it is visible that bipolar disorders impacts
connectivity because there is a connection between a component from temporal domain
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and a component from parietal domain for bipolar disorders patients, while it is absent
for healthy patients. It is thus state specific and it can be used as marker. Moreover
state 3 also presents interesting connection variations between schizophrenia RSNs and
bipolar disorders RSNs. This kind of markers thus provides a promising tool for an early
categorization of diseases [SZPBPH15].

Figure 1.1: Visual summary of significant connectivity differences in four dynamic states.
Each state represent an activation pattern on the brain surface that can be characterized
by active subunits parts of different anatomical domains (frontal, parietal, occipital, sub-
cortical, temporal and cerebellum). These subunits activation can be correlated or not
and when they are, a colored link connects them if this connection is more present in one
category of the subjects (HC: Healthy Control, BP: Bipolar Disorders, SZ: Schizophrenia).
If a region shows no connectivity differences between the groups, it is marked with a gray
cross. from [RDPC14] with the permission by the authors.

The graph properties of the networks are also used for characterization of diseases (see
Section 2.2.3 for more details about graphs theoretic approaches in brain functional
connectivity). Epilepsy is for example considered as a network disorder by Pedersen et
al. [POWJ15]. By a graph analysis on static rest functional networks, they observe that
epilepsy patients present more isolated network nodes and an higher network segregation.
Their hypothesis to explain this observation is that it is a defense mechanism to prevent
“instigation or spread of focal seizure” [POWJ15].

Other neuropathologies, such as Alzheimer disease ([HMP+13], [LOFB14], [BKP+15] for
instance) or migraines [LZL+15], are also investigated through study of brain functional
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1. Introduction

connectivity.

1.2.2 Present state of development

Functional networks provide still tracks to be explored to understand and maybe con-
tribute to prevent or at least reduce the effects of these diseases. Most of these possible
applications are still at the research level, but static fMRI is already used for pre-surgical
planning in order to identify hubs in the networks[SZPBPH15]. For instance it permits to
shorten the intraoperative functional mapping and to prevent awake craniotomy needed to
determine trajectories to access the pathological region and delimit the zone of resection
[SZPBPH15].

It may become a diagnosis tool for brain-related disorders in the future but further studies
are still required to assess the accuracy and the reliability of the functional dynamic
networks extracted from rest-fMRI signals with low Signal-to-Noise Ratio, high variability
across individuals and high sensitivity to environmental factors [LSS13]&[SZPBPH15].

1.3 Problem Statement and Aims
The main contribution of this thesis is the development of a robust representation of
the dynamic RSNs on the whole brain surface. This representation enables the analysis
of the interactions between RSNs. In contrast to other methods that consider only
static networks or characterize the dynamic properties of RSNs by temporal chains of
connectivity states (see Chapter 2), it integrates the spatial variability of localized RSNs
as well as their temporal activation pattern (see Section 7.1).

Spatial overlap between the networks at time t is not allowed and it permits to know
to which network a node belongs to. However, the temporal overlap is possible in order
to observe which networks have a coordinated activity. Moreover, no prior assumptions
concerning the regions to be integrated in the networks are made (see Chapter 5).
The representation thus developed requires to circumvent noise problem to extract the
maximum quantity of information from the fMRI signals (see Section 8.1).

In addition to an accurate identification of dynamic functional networks, tools and
methods to detect interactions between networks are defined (see Section 5). The goal
is to reveal, if it exists, one or several redundant interactions across subjects between
identified networks.

To conclude, the aims of this thesis are:

• Detection of dynamic localized RSNs represented as Dynamic Communities (DCs),

• Development of algorithms for the analysis of dynamic networks interactions,

• Validation of the representation with a cohort of 200 subjects from the Human
Connectome Project (HCP) [VEUA+12] and detection of recurrent interactions .
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1.4. Methodological Approach

1.4 Methodological Approach
The developed representation is based on Dynamic Communities (DCs) constructed as
series of similar communities detected via the correlation between parcels of the brain.
One DC corresponds to a dynamic RSN and if it is repeatable across the population, it
is validated as a true dynamic RSN (see Section 7.1). The temporal overlap between
the periods of activity of the DCs, latter named co-occurrence, is a first information
concerning the possible interactions between the RSNs since two RSNs which co-exist
during a long period are likely to interact (see Section 7.2). The interactions of DCs are
characterized by events that are based on the starting and stopping of the activity of
DCs and that are more or less significant (see Section 7.3).

After usual rest-fMRI pre-processing steps and parcellation of the brain surface, DCs are
detected for each subject owing to these main steps:

1. Sliding Window Analysis to capture the correlation of the parcels at each time
frame.

2. Community Detection to define a set of communities for each time frame.

3. Tracking and consolidation of DCs within subjects.

4. Identification of corresponding DCs across subjects on population level.

1.5 Structure of the Thesis
This thesis is structured as follows.

Chapter 2 provides first a brief overview of the physical and physiological basis of fMRI.
Essential information to understand the significance of brain functional connectivity are
then given before the presentation of the already implemented methods for the detection
and analysis of RSNs, first as static network and then as dynamic networks.

Chapter 3 describes two methods: community detection and spectral clustering. They
are part of the workflow and contribute to the construction of the representation.

Chapter 4 deals with the dataset used in this thesis and the way it is preprocessed to
suppress the noise inherent to fMRI signals.

Chapter 5 focuses on methods used to build our new detection approach of dynamic
RSNs, first at subject-level and then at population-level.

Chapter 6 consists in the description of three approaches developed for the validation of
the results.

Chapter 7 presents the main experiments realized in order to validate our approach and
define the best parameters for the representation. A description of the results goes along
each experiment.
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Chapter 8 discusses the results and the different choices made for the robustness of the
representation.

Chapter 9 finally concludes the thesis with the major findings and the possible guidelines
for future work.
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CHAPTER 2
State of the art

This chapter provides an overview of the current state of the art for brain dynamic
function detection. The physical and physiological basics of fMRI are first briefly described
in order to explain what is the meaning of the data used. In the second section, the
main definitions and properties of brain function are given to construct the frame of the
analysis. Then, the approaches already developed for identification of RSNs are presented
to motivate the contributions of our method. Finally, the issues linked to these networks
are discussed in order to demonstrate the utility of a new dynamic RSNs detection.

2.1 Functional Magnetic Resonance Imaging (fMRI)
fMRI signals are obtained voxel-wise from Magnetic Resonance Imaging (MRI) scans. It
is therefore necessary to understand first the physical basics of image formation of MRI
to be able to deal with fMRI. This imaging modality is a measure of a biological process
which induces constraints that must be taken into account for every fMRI experiments
[PMN11].

2.1.1 Nuclear Magnetic Resonance (NMR)

The NMR signal in medical imaging is based on the fact that a large part of the human
body consists of protons 1H [Lau73]. The proton is a paramagnetic atom as it has an
unpaired electron and its spin I is thus non zero: I = 1

2 . Therefore its angular momentum
~p = ~I.~ is also non zero, as well as its nuclear magnetic moment ~µ = γ~p. ~ is the Planck’s
constant and γ the gyromagnetic ratio which nucleus-specific [HSM04].

Without an external magnetic field, the spins of protons are randomly oriented and
the vector sum of their magnetic moments, also named magnetization ~M , is equal to
zero. However, if an external magnetic field ~B0 is applied, the spin and consequently
the magnetic moment, can have only two different orientations due to the rules of
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2. State of the art

quantum mechanics: parallel or anti-parallel to the direction of ~B0 [Str11]. Each of
these orientations corresponds to an energy level. When an ensemble of spins without
any interaction is considered, both energy levels are equally occupied and the total
magnetization is equal to zero. However, if spins can interact with an energy reservoir
and with each other, they tend to choose a state of minimal total energy and the lowest
energy level is more occupied. A slightly higher number of spins are parallel to ~B0, the
orientation with the lowest energy level, and the total magnetization ~M is no more equal
to zero [Str11]&[HSM04]. Moreover, applying ~B0 also creates a torque on the magnetic
moments and it causes a precession motion of ~µ around ~B0-axis at the Larmor frequency
ω0 = γB0, with B0 the magnitude of the static magnetic field ~B0, in order to conserve
the angular momentum [Str11]&[HSM04]. ~M , the sum of all individual nuclear magnetic
moments ~µ, is constant and aligned with ~B0. It is the equilibrium magnetization ~M0
and it has thus no precession motion in a constant external magnetic field. However,
~M0 is far too low to be directly measured (4.10−9 times B0) and it needs to leave the
equilibrium [Str11]&[HSM04]. It is realized by applying RadioFrequency (RF) magnetic
field ~B1(t) pulses resonating at the Larmor frequency ω0. ~M is in a precession motion
around an axis defined by the vector sum of static magnetic field ~B0 and time-varying
RF magnetic field ~B1, as long as ~B1 is applied. The system is excited and increases
its energy [Str11]&[HSM04]. In the rotating frame about ~B1-axis at Larmor frequency,
~B1 appears stationary. This is illustrated in Figure 2.1 where the rotating frame is

(x′, y′, z′) where x′ corresponds to ~B1 direction and ~B′1 is the stationary RF field in
this frame. If ~B′1 lies along the x′-axis, orthogonally to ~B0, then ~M precesses around
x′-axis. The pulse-duration (2-3ms) must be just long enough to make this 90◦ rotation
possible [Str11]&[HSM04].

Figure 2.1: Magnetization during the RF pulse in the rotating frame (x’,y’,z’) at Larmor
frequency around z-axis

Then, when the RF field is switched off the relaxation of ~M from the (x, y) plane to the
equilibrium state ~M0 aligned with z-axis is observed and this time, it is possible to measure

8
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~M by detecting the signal generated by its rotation into a coil. Indeed, by Faraday’s
law, a varying magnetic flux inside a coil induces voltage changes [Str11]&[HSM04].
Furthermore, it is necessary to spatially encode the data and it is realized by three sets of
linear gradient coils in x-, y- and z-direction [Str11]&[HSM04]. First of all, a thin slice is
“selected” owing to a linear magnetic field gradient in z-direction applied simultaneously
with a RF-pulse shape determining the slice profile. It is now necessary to encode the 2D
slice. Linear gradients are applied in x- and y-direction to realize respectively a frequency
and phase encoding. Indeed, Larmor frequency is different for each row constructed
by the gradient in x-direction and the precessions have different frequencies. For the
phase encoding in y-direction, the phase is accumulated in the rotating frame because
of the frequency encoding. It creates a new space named k-space which is the Fourier
Transform of the image space for the reconstruction [Str11]&[HSM04]. Here, we have
just given a brief overview of the basics of the techniques for image formation in 2D
but it is enough to understand how to locate where does the information come from.
However, this information we are interested in needs to be defined.

The relaxation of the magnetization can be decomposed into two mechanism: spin-lattice
relaxation and spin-spin relaxation [HSM04]. Spin-lattice relaxation is characterized
by its time constant T1 and it corresponds to the return of magnetization longitudinal
component Mz to the equilibrium. Its physical meaning is the transfer of the energy
gain during RF-pulse from the spins to the energy reservoir, the lattice, mentioned
above [HSM04]. Its temporal evolution after the RF field is switched off is illustrated on
Figure 2.2.

Figure 2.2: Evolution of the longitudinal magnetization Mz after several times T2. M0 is
the magnitude of ~M at the equilibrium.

On the other hand, spin-spin relaxation stands for the interaction of spins between each
other since each spin is a magnetic dipole and can slightly influence the magnetic field
of its neighbors by the additional magnetic field it generates. It can thus also influence
the precessional frequency [HSM04]. After ~B1 is switched off, it results in a progressive
loss of phase between the rotating spins that is finally visible by an exponential decay of
the magnetization in transverse plane Mxy with the time constant T2 as illustrated by
Figure 2.3.

9



2. State of the art

Figure 2.3: Evolution of the transverse component of the magnetization Mxy after the
RF pulse.

The time constant T2 is always lower than T1 and both are highly dependent on the
strength of ~B0 and on the tissue type which is excited [Str11]&[HSM04].

The RF-pulse is repeated at an interval named Repetition Time (TR) until enough
data are acquired to generate an image [Str11]&[HSM04]. The choice of the TR is very
important for the formation of the image since it gives more or less time to tissues to
relax. If TR is short, tissues with short T1 appear brighter than those whose T1 are
longer and therefore it emphasizes the difference of T1. The Echo Time (TE) corresponds
to the delay between the end of the excitation and the data acquisition [Str11]&[HSM04].
With a short TE, only the spins from tissues with the shortest T2 have time to lose
their phase coherence. These tissues appear darker than those with longer T2 whose
transverse magnetization has not enough time to decay. Therefore, the differences in T2
between tissues are more visible. Moreover due to inhomogeneities in ~B0, spins lose their
phase coherence quicker and we thus need to define an effective transverse relaxation
time T ∗2 < T2 [Str11]&[HSM04]:

1
T ∗2

= 1
T2

+ γ∆B0 (2.1)

This formula is the basis of fMRI since Blood Oxygen Level Dependent (BOLD) signal
induces magnetic field inhomogeneities also included in ∆B0, the variation of static field
magnitude [Str11]&[HSM04].

2.1.2 Blood Oxygen Level Dependent (BOLD) signal

fMRI has been developed in the early 1990s by Kwong and al (1992) [KBC+92]. It
results from the observation that T ∗2 -weighted magnetic resonance signals slightly increase
(about 1%) in particular regions of the brain when the neuronal activity increases and
experiments were inspired by the imaging of blood flow by Positron Emission Tomography
(PET) [KBC+92]. Indeed, fMRI utilizes the physiological phenomenon that when a
neuron is activated, it requires glucose and oxygen, and thus the region of the brain
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where this neuron is located receives a larger blood flow. One particularity that still
intrigues scientists and remains unexplained is that the amount of blood supplying the
concerned neuron is higher than the one needed for a simple re oxygenation of the cell
after energy consumption induced by the activation [PMN11]. This region presents
thus a local excess of oxygen in veins and fMRI measures a signal depending on the
variation of oxygenation, named BOLD signal. The variations of oxygen concentration is
detectable by fMRI owing to the magnetic properties of hemoglobin. Indeed, hemoglobin
bound to oxygen is diamagnetic since it presents no unpaired electron and no magnetic
moment, while deoxyhemoglobin is paramagnetic due to an unpaired electron and a
nonzero magnetic moment [Str11]. The variation of oxy/deoxyhemoglobin concentration
creates thus inhomogeneities in the magnetic field due to the change of susceptibility and
it influences the speed of phase decoupling of protons’ spin. Thus the time T2* changes
during activation, that is to say when the proportion of oxyhemoglobin is higher, and a
T ∗2 -weighted image provides information on the activation pattern [PMN11].

fMRI can thus detect neuronal activity that results in a surplus of oxygen linked to
an increase of blood flow that is called hemodynamic response [PMN11]. Figure 2.4
illustrates the properties of the hemodynamic response that determine the interpretation
of BOLD signals in fMRI. It has first to be noticed that the response to activation is
rather slow since for a neuronal activity of few milliseconds, the maximum blood flow,
that is to say the maximum of BOLD signal, is reached after 5 seconds. It forms a
plateau as long as the neural activity is sustained and then it requires around 10 seconds
to return to the baseline. Another aspect of BOLD signal demonstrated by Figure 2.4
is the high variability of response among subjects: change in BOLD signal can have
different amplitudes and the time characteristics are also not the same among subjects.
Moreover, different regions in the same subject may present temporal variability in their
hemodynamic response, even if the delay before the maximum has a small variance
[PMN11]. It can be explained by a difference in the vasculature and also by the task
triggering the activation when different functional regions are compared [PMN11].

It can thus be tricky to analyze fMRI signals and preprocessing is highly necessary to
obtain comparable results [PMN11]. Furthermore, the variation of BOLD amplitude
is only about few percents, even if the blood flow is a very good indicator of neuron
activation since it can locally increase about 60% during one task [HSM04]. However,
blood flow is not the only physiological parameter that influences the BOLD signal.
Indeed, the blood volume, determined by the current diameter of vessels, as well as the
proportion of oxygen used will also determined the oxy/deoxyhemoglobin ratio and thus
the BOLD signal, as illustrated in Figure 2.5. These three physiological components can
also be influenced by diseases and other physiological parameters which explain the high
variability of BOLD signals between individuals [PMN11].

2.1.3 Properties of fMRI

To obtain T ∗2 -weighted imaging with short TR such as those of Human Connectome
Project (HCP) data (see Section 4.1) and thus with high temporal resolution (sub second),
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Figure 2.4: Hemodynamic responses to a 500ms stimulus sampled every 250ms. The four
different plots are the hemodynamic response from different subjects. figure following
[PMN11].

Figure 2.5: Representation of the different components of the BOLD signals and example
of factors that can influence it. Inspired from http://www.fil.ion.ucl.ac.uk/
spm/course/slides10-zurich/Kerstin_BOLD.pdf.
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2.1. Functional Magnetic Resonance Imaging (fMRI)

it is necessary to use Echo Planar Imaging (EPI) [ZFC+14]&[SVB+13]. On the contrary
to classical data acquisition methods such as spin echo, EPI records several echoes of
the RF-pulse per pulse, until the transversal magnetization has completely decayed. It
permits to apply a different phase encoding to each echo and thus to acquire faster the
whole volume of interest, since it is even possible to acquire in one TR the entire range
of phase encoding steps, even if several pulse sequences are preferable for the image
quality [PAMB+01].

The spatial resolution of fMRI is limited by the size of the capillaries from where the
BOLD signal is emitted [HSM04]. It is not able to resolve details at smaller scale than
approximately 100 microns. However, a compromise between the spatial resolution and
the scanning time is necessary since increasing the spatial resolution also increases the
number of voxels to acquire. The choice of the spatial resolution depends on the aim of
the experiment and for an entire brain acquisition, as in our case, few millimeters are
enough [HSM04]&[SVB+13].

2.1.4 Use of fMRI

It exists two type of fMRI experiments: rest-fMRI and task-fMRI [HSM04]. During
rest-fMRI experiments, subjects receive the instructions to “lie still, think of nothing
in particular, and not fall asleep” [SVB+13]. The variability of what happens in the
brain of all subjects is huge because nobody can think of nothing and rest experiments
last from 5 to 15 min [PMN11]. However, as it is demonstrated in the following section,
recurrent and meaningful information is extracted from resting-state.

On the other hand, task-fMRI requires the subjects to realize specific tasks at precise
moments of the experiment [Str11]. A clear paradigm has to be constructed to ensure
the reliability of the results. The set of possible tasks is infinite and task only requires
a relative simplicity for its reproducibility and also a clear interpretation described by
the paradigm. Thus, many academic fields use fMRI with success, such as cognitive
neuroscience, psychology, psychiatry and radiology for example [HSM04].

fMRI is also used for clinical applications and especially for presurgical planning for brain
tumor resections. It can for instance help the neurosurgeon to decide if the operation is
too hazardous because the tumor is located in a key functional region, or also to choose
the best approach to remove the tumor without additional tests during the operation
[SZPBPH15]. Furthermore, fMRI is able to contribute to a personalized medicine
approach by indicating how a tumor or a treatment has reorganized the functional
connectivity[SZPBPH15].

2.1.5 Other modalities for detection of brain functional connectivity.

After fMRI, the main modalities that are used to characterize resting-state functional
connectivity (see Section 2.2.1) are the ElectroEncephaloGraphy (EEG), the MagnetoEn-
cephaloGraphy (MEG) and the Positron Emission Tomography (PET) [HWA+13]. PET
is historically the first modality that has detected functional connectivity [FFLF93].
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The EEG measures the neural activity by recording electrical signals produced by the
brain via scalp electrodes. The advantage of this technique is its high temporal resolution
on the order of the millisecond, with a measurable bandwidth 1-100 Hz [BS09]. However,
mainly because the electrical signal needs to go through several different resistive layers
before reaching the electrodes, the spatial resolution is low, on the order of centimeter,
while the fMRI provides a temporal resolution on the order of millimeter [BSR+15]. EEG
and fMRI could therefore be complementary since a weakness of fMRI is its temporal
resolution. Indeed, fMRI is restricted by the measurable frequency bandwidth 0.001-0.5
Hz [BS09]. The fMRI signal corresponds to an indirect measure of the brain activity via
BOLD signal while in contrast EEG directly measures the electrophysiological activity
of the brain. Several joint studies have been conducted to obtain both high spatial and
temporal resolution ([BS09],[HWA+13],[CMPA14]). and it has been demonstrated that
large scale EEG-detected RSNs (see Section 2.2.1) have “similar spatial patterns and
correlated temporal dynamics to the networks independently derived from BOLD-fMRI
data” [YDZ+15]. EEG can thus also be a validation tool for RSNs.

MEG is also a technique that measures electrophysiological signals. It records the
extracranial biomagnetic field and detects its variations induced by the electrical neural
activity. It thus also provides information to Functional Connectivity (FC), and on the
contrary to EEG, it is not as much perturbed by changes in tissue conductivity and
permittivity [HWA+13]. It has therefore an higher spatial resolution than EEG and
conserves an higher temporal resolution than fMRI [HWA+13]. However, the spatial
resolution stays low due to the indetermination of the inverse problem and it has also led to
detect spurious correlations [dPDPS+10]&[HWH11]. On the other hand, it has permitted
the early analysis of dynamic within- and across-network interactions, characterized at
different frequencies and time scales [VLRM01]. However fMRI and MEG cannot be
recorded simultaneously.

PET consists in injecting to the patient a positron emitting radiotracer which is involved
in the biological process of interest. A measure of the positron emission permits to
establish the distribution of the radiotracers in the body [SZPBPH15]. A common
radiotracer is the FluoroDeoxyGlucose (FDG) which is considered the same way as
glucose by blood owing to the high similarity between these two sugar [SZPBPH15]. It
is very efficient to detect tumors because they need a lot of energy and therefore a lot of
glucose. It is a mean to detect brain activity as we have seen that blood volume increases
in active zone of the brain (see Section 2.1) and some “metabolic” networks revealed by
this technique correspond to RSNs obtained via fMRI [DB12]. However, the spatial and
temporal resolution of PET is lower than the one of fMRI or even MEG [DB12]. It is
therefore not adapted for the analysis of dynamic RSNs.

2.2 Functional Brain Connectivity

The Functional Connectivity (FC) observed with fMRI enables modeling the interactions
of brain regions and the properties progressively established owing to the networks it
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forms [SVB+13]. In this section, the different types of connectivity in brain are defined
and the characteristics of FC are further discussed.

2.2.1 The notion of Functional Connectivity (FC) and other types of
connectivity

The networks we want to detect in this thesis consist of nodes corresponding to locations
on the brain surface (pixels, ROIs or identified components (see Section 2.3)). They are
connected if there is a sufficiently high FC between them [SVB+13]. FC is defined as
“the temporal dependency of neuronal activation patterns of anatomically separated brain
regions” [VdHHP10]. It evaluates to what extent distinct regions of the brain functionally
communicate. It is differentiated from effective connectivity which only estimates direct
connection and causality and which is not considered in this thesis [SVB+13]. The
different means to describe connectivity are explained in the Section 2.2.2.

FC is different from anatomical connectivity, also named Structural Connectivity (SC)
[SVB+13]. FC is revealed by metrics such as correlation between BOLD signals from
different brain regions measured by fMRI. It only implies that activity from several regions
are linked and these regions can be totally physically separated. Links between regions in
SC are physical and can be detected by Diffusion Tensor Imaging for instance [PMN11].

There is an influence from cerebral anatomy to functional networks design [HSC+09]&
[VdHMKHP09] and its characteristics are still studied. Liao et al. [LYZ+15] compare
dynamic functional networks from rest fMRI with anatomical networks and demonstrate
that structural connections limit the dynamicity of functional networks. Moreover, Shen
et al.’s experiments [SHB+15] on macaque shows that the stability of a functional networks
is higher when the regions constituting this networks are anatomically linked. Liégeois et
al. [LZP+15] confirm these approach by demonstrating that dynamic functional networks
with high modularity are primarily shaped by structural networks. These observations
tend to confirm the hypothesis that SC would be a transitory structure for dynamic
functional connectivity [LZP+15].

The definition of networks also raises some issues. ICNs refer to the spatially static
networks that are both detected during rest-fMRI and task-fMRI. A functional net-
work detected at rest is named a Resting-State functional Network (RSN). ICNs are
localized to gray matter regions [BDDS05]&[DLBDS+06] and thus enable to restrict the
analysis to the surface of the brain (see Section 4.1). The term has been introduced
by Seeley et al. in [SMS+07] in order to “avoid misconceptions evoked by resting-state
networks” since these networks are obtained with a “resting” brain and prove by their
existence that this brain is never really resting. Then, ICNs take on a new dimension
when Smith et al. [SFM+09] demonstrate that the functional modularity of the brain
detected at rest can be extended to task experiments. The association of ICNs to
task-fMRI finally permits to attribute functions to each ICN [LFE+11]. These networks
are even detected during sleep and anaesthesia [PDH13] and are consistent across sub-
jects [YKS+11] and also across some species [LHP+13]. They are attributed to a function
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according to their anatomical location and further task-experiments. The set of ICNs
that is often used for the functional classification of networks is made of 7 networks
([YKS+11], [LFE+11], [ADP+14], [ZFC+14]): somatomotor, visual, auditory, ventral and
dorsal attention, default-mode, and limbic networks. These networks can have different
names in the literature and some of them are often considered as an aggregate of 2
networks. They are represented in Figure 2.6.

Connectivity structures detected at rest are reproducible during tasks. The fundamental
difference between a rest and a task experiment lies in the fact that during rest, the
cognitive activity is unconstrained [ADP+14]. Therefore, during rest-fMRI the brain
is involved in several types of mental activity which have an influence on functional
connectivity organization [DDM+10]. For instance, keeping the eyes closed or opened
affects the spectrum of spontaneous activity and the functional connectivity pattern on
specific brain regions ([MLPN+08], [WEC10], [YLH+09]). It can be remarked that EEG
also detects this variation. Shirer et al. [SRR+11] even classifies cognitive states with
functional connectivity information. Therefore, rest-fMRI and task-fMRI are very similar,
except that tasks during fMRI are not known. It is one of the difficulty to deal with in
case of dynamic RSNs detection because all the subjects do not make the same cognitive
tasks during rest experiments and the behavior of the detected networks can be totally
different from one subject to another. However, a relatively high repeatability across the
population is finally obtained, as demonstrated in Section 7.1.

2.2.2 Functional Connectivity (FC)

The previous paragraph defines what has to be detected, the FC, and what it represents.
It is now necessary to model it to be able to measure it and form dynamic RSNs then.

Modeling the connectivity

FC observed with fMRI enables describing which distant brain regions interact with each
other without apparent physical link. The FC between two data points of the brain can
be estimated via different metrics such as correlation, coherence or mutual information
between their respective time series [BS09]&[HWA+13]. The most commonly used metric
is the correlation as it directly provides the information if two regions are functionally
connected. However, it must be kept in mind that a positive correlation can have different
reasons, as presented on Figure 2.7 [PMN11]&[SVB+13]. Indeed, if two regions A and
B are correlated, it can either mean that A has a direct influence on B (and B on A
respectively) and it is an effective connectivity, or that another region C is implied in this
relation. It can result in an indirect influence if this region C is influenced by A and then
influences B. Moreover, the region C can also directly influence both region A and B and
it is then a shared influence [PMN11]. Therefore, if two data points have correlated time
series, it does not mean the connection between them is direct. Another region can be
involved in their interaction, but the latter can also be the result of variations in signal
amplitude or noise level [Fri11]. The implicit assumption that correlation is equivalent to
a direct connection has thus to be handled with care and has to be prohibited if the scale
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Figure 2.6: 7-networks partition of the human cerebral cortex based on rest-fMRI scans
of 1 000 subjects. from [YKS+11]with permission by the authors.

of the sought networks is neural in order to identify the effective connections. However,
it is commonly accepted for detection of functional networks [PMN11].

Another metric of interest is the partial correlation. On the contrary to correlation,
it gives access to a more accurate evaluation of direct connections but not to their
directionalities [SVB+13]. In the case of the three nodes example, the partial correlation
is calculated by taking each pair of nodes to regress out the third time series from the two
first ones, and calculating then the correlation between the two nodes. For instance, if the
connection between node A and node B is indirect as illustrated in the second column of
Figure 2.7., regressing out C from A and B permits to eliminate the spurious connection
between A and B. For more than three nodes, always two of them are selected and the
others are regressed out of these two nodes [SVB+13]. Other methods can be used to
obtain an even more exact representation of the networks. However, it depends on the
level of connectivity it aims to model. Figure 2.8 from [SVB+13] shows the spectrum
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Figure 2.7: Different types of interactions between three nodes A, B, C that generate a
correlation between A and B. The left panel depicts a direct interaction where correlation
equal connection, the center panel illustrates an indirect influence from A to B via another
node C and the left panel describes a shared influence from a common input region C to
A and B.

of different network modeling approaches from neural-level brain to graph-theoretical
networks. In this thesis, we are not interested in modeling the biophysical level at neuron
scale and the fMRI is not adapted to this approach.

Figure 2.8: Different modeling-level of brain connectivity, from direct neuronal connection
with effective connectivity to whole-brain Graph Theory with functional connectivity.
figure following [SVB+13].

Therefore correlation, coherence or mutual information are the kind of metrics used to
build functional networks based on Graph Theory [Fri11]. It provides less information than
partial correlation for instance, but most of brain connections are anyway bidirectional and
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even if correlation does not mean causation, correlation is a sign that a causation exists
somewhere. If networks with higher spatial resolution are required, the computational
cost increases and at the whole brain level, it becomes too high [SVB+13]. As we are
interested in the connectivity at the whole brain level, only metrics such as correlation,
coherence or mutual information are discussed in this thesis.

Measuring Pairwise Connectivity: Metrics

Pearson’s Correlation Coefficient One popular metric to estimate the correlation
is the Pearson’s correlation coefficient r [HWA+13]. The correlation between two time
series (X,Y ) is thus equal to their covariance cov(X,Y ) normalized by their respective
variance σX and σY , as described in Equation 2.2 where E is the expectation and µX
and µY their respective mean. It varies between −1 and +1 and r = 1 means a total
positive correlation, r = 0 corresponds to no correlation and r = −1 is a total negative
correlation.

rXY = cov(X,Y )
σXσY

= E[(X − µX), (Y − µY )]
σXσY

(2.2)

Spearman’s Correlation Coefficient Another correlation metric that is sometimes
preferred to Pearson’s correlation coefficient is the Spearman’s rank correlation coefficient
ρ [TF15]&[MMVDV15]. It also measures the statistical dependence between two variables,
here two time series, but in a non-parametric way. It estimates how well the relationships
between these two time series fits to a monotonic function, while Pearson’s correlation
coefficient refers to linear functions. Its value can be analyzed the same way as Pearson’s
correlation coefficient values. For two time series (X,Y ) of same size n with respective
raw scores Xi and Yi, Spearman’s rank correlation coefficient is defined as:

ρXY = 1− 6
∑n
i=1 d

2
i

n(n2 − 1) (2.3)

where di is the difference between rank xi of Xi and yi of Yi.

Coherence On the top of these two correlation coefficients, the coherence is also used
to estimate if two brain regions are connected ([SMD04], [RAW15], [HD15], [YAMC15]).
If their time series are ergodic - it means that their respective statistical properties can
be obtained from a single, long enough, random sample of their time course - and if
they are linearly related, coherence is a metric that estimates their causality with a
value between zero, if they are not at all connected, and one, if one of the series can
be perfectly predicted from the other. It differs from correlation coefficients since it
requires a higher number of time points to be stable and it is therefore calculated over
multiple time windows [RAW15]. It thus reduces the effect of noise but also the temporal
resolution. The coherence CX,Y of two time series (X,Y ) at frequency ω is computed as:

CXY (ω) = |GXY (ω)|2

GXX(ω)GY Y (ω) (2.4)
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with GXY (ω) the cross-spectral density between X and Y and GXX(ω) and GY Y (ω) the
respective autospectral density of X and Y at frequency ω.

Mutual Information The mutual Information I is another metric that evaluates
the FC. It permits to avoid the assumption of Gaussianity of the dependence structure
between two time series (X,Y ) of size n [CWBFF09]&[HPV+11]. It is defined as:

IXY (ω) =
n∑
i=1

n∑
j=1

p(Xi, Yj)log
p(Xi, Yj)
p(Xi)p(Yj)

(2.5)

with p(Xi) the probability distribution function and p(Xi, Yj) the joint probability
distribution function.

Other metrics are rarely used. For instance, Shine et al. [SKB+15] have developed
their own metric based on first order temporal derivatives of time series in order to
increase the sensitivity of the SWA. The choice of the metric still depends on the aims
of the experiments. Coherence is for instance more adapted than correlation when the
frequency information has to be captured [YAMC15]. Pearson’s correlation coefficient is
a well-known statistical concept and it provides accurate results, at least as good as the
other proposed metrics [HPV+11]&[SKB+15].

2.2.3 From Pair-wise Connectivity to Networks

Modeling brain connectivity with networks offers to use the rich set of methods in graph
theory developed for multiple scientific fields [Spo13]. It is necessary to adapt the graph
model to the information to be captured [SVB+13]. In the following section, we review
the graph theory concepts relevant for this thesis. In order to characterize the brain
connectivity, the first studies typically used a small number of spatial maps built with
the connectivity definition described above. Regions Of Interest (ROIs) were chosen and
then, based on fMRI time series from other pixels of the brain, correlation spatial maps
were built for each ROI [BZYHH95]. This approach is named a seed based approach and
it is a model based approach since the “seeds” are fixed (see description of the method in
Section 2.3.1). Later, brain connectivity has been considered as ensemble of networks,
turning it into a model free approach using Graph Theory tools developed for numerous
different scientific fields, such as biology or sociology [Spo13]. This is the most commonly
used approach [Spo13]. It requires to define nodes, corresponding to functionally distinct
brain regions, and edges to functionally link these nodes [SVB+13].

One node can be a group of neighboring voxels resulting from a parcellation based on
the similarity of their time series. Therefore, it is a clustering approach providing a hard
parcellation without spatial overlap and with local nodes [dRVdH13]&[BJG+13]. This is
the approach we are using in this thesis. On the other hand Independent Component
Analysis (ICA) on time series results in weighted spatial maps gathering distributed
groups of points [Bec12]. Each map corresponds to one node of the global network and
they can overlap with each other.
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Once the nodes are defined, the edges are evaluated by comparing the time series of
the different nodes consisting in the average of the pixels’ time series contained in the
corresponding node [SVB+13]. Most of the time, the directionality of the edges is not
taken into account, except when models for effective connectivity are used, as explained
in Section 2.2.2.

The networks and their analysis aim to answer questions such as: “How are the functional
connections between brain regions organized? How efficiently can the brain integrate
information between different sub-systems? And are there brain regions that have a
specialized role in this efficient communication?” [VdHHP10]. To answer this kind of
questions, graph theoretic approaches have been widely utilized [POWJ15]. Indeed,
analyzing the connectivity structure of the human brain in the form of a network provides
insights in its organization and function since the architecture of a network is directly
impacted by its robustness, its performance to integrate information and to efficiently
communicate [VdHHP10].

2.2.4 Graph Theoretic Approaches to Brain Network Analysis

Network Models

The most general categories of graphs are regular, random or complex networks [POWJ15].
A regular network shows high local connectivity with low global connectivity, while a
random network is the opposite, a low local connectivity and a high global connectivity.
As for the complex network, it displays a balance between local and global connectivity
[POWJ15].

The graph metrics that are of interest to decide which of these three general models is
the most fitted to model a network are [POWJ15]:

• The local efficiency: inverse of the shortest path length between connected nodes
that are neighbors with the node of interest [POWJ15];

• The clustering coefficient: number of connections between the nearest neighbors of
a node, that can be normalized by the maximum number of connections between
these nodes for instance[SVB+13];

• The modularity: number of modules (highly connected groups of nodes that share
few connections with other groups) inside the network [SVB+13];

• The global efficiency: average of the inverse of the shortest path lengths between
all nodes [POWJ15];

• The betweenness centrality: proportion of shortest path length passing by the node
[POWJ15].

Figure 2.9 illustrates these three models of networks by their respective typical adjacency
matrix associated with their characteristic properties [POWJ15].
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Figure 2.9: Adjacency matrices of three different network models (regular, random and
complex networks) and comparison of their graph-theory metrics with complex model as
reference. Figure following [POWJ15].

When brain connectivity is concerned, two models are of particular interest: the small-
world network and the scale-free network, which are both complex networks [WC03].
Only three network parameters are required to determine if the studied network can be
modeled by scale-free and/or small-world networks [Gri05]:

• The connectivity distribution P(k) which corresponds to the probability for any
node to be connected to k other nodes,

• The level of clustering which is estimated by the clustering coefficient C defined
above,

• The average shortest path length L between two nodes.

A small-world network shows a high level of clustering. It implies a high clustering
coefficient C which means probable subgraphs within the global graph, and a short
average node-to-node distance [WS98]. A scale-free network has a low average number
of edges per node and yet a small number of highly connected nodes. The scale-free
networks have thus a high global connectivity. Its connectivity distribution follows a
power-law scaling: P(k) ∼ k−y [BA99].

The combination of the properties from these two networks is recognized as a robust
network architecture where information transfer and integration is processed with a high
level of consistency and is therefore very adapted to model brain [VDHMP08]&[OHN+14].
A large part of nodes are dedicated to local functioning owing to the small-worldness
and fewer sets of nodes facilitate the global information processing [BS12].
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Illustrations of use of graph metrics

If graph metrics such as P, C or L deviate from these complex model characteristics,
considered as normal characteristics, toward random or regular network model charac-
teristics, they can serve as biomarkers for disease detection for instance (see Section
1.2).

Centrality metrics enable to determine which nodes have an overwhelming influence on
the rest of the graph and are therefore considered as hubs. A hub has a high node degree
and a high node betweenness. It means that a lot of edges are connected to it and that a
lot of shortest paths pass through this node. These particular nodes show for instance
disconnections in neurodegenerative diseases and also in brain reorganization of comatose
patients for instance [FRCA14]. Community structure analysis is also of key interest to
comprehend brain function. It consists in detecting the more densely connected regions
of the networks [FRCA14].

Limitations of graph theory

The reliability of graph analysis entirely depends on the correct network modeling at
a lower level. The nodes have to be appropriately defined with a neurological base for
the interpretation of the results [SVB+13]. Moreover, non-directed graphs with the
assumption that all connections are direct are used (see Section 2.2.2) and it has to be
taken into account in the interpretation. Furthermore, graph metrics that are used are
summarizing abstractions of the whole graph and no change in the metric does not mean
no change in the graph since variations can be counterbalanced or averaged [SVB+13].
A particular attention is needed for their interpretation since each graph metric can hold
biases and the choice of the metric has to be adapted to the graph concerned [FRCA14].

2.2.5 From Static to Changing Graphs: Dynamicity

Until 2010 [CG10], all studies on resting-state functional networks have assumed that
“the statistical interdependence of [fMRI] signals between distinct brain regions is constant
throughout recording periods of task-free experiments” [HWA+13]. It has provided re-
markable advances in the field of neuroscience for the understanding of brain functions and
yet it is based on an average of the spatio-temporal characteristics of these functions while
dynamic aspects are likely to give further insight into the brain work [HWA+13]. Recent
research focuses on dynamic functional connectivity ([CG10], [ADP+14], [LRVDV13],
[AFPA14], [ZFC+14], [KVDV15], [TF15], [YAMC15], [RAW15], [LLT+16]), and suc-
cessfully extends these dynamic properties to others species such as macaques or rats
([MMH+11], [HWG+13], [MHM+16]). The dynamicity of brain function seems logical
since brain must interpret, coordinate and respond in real time to internal and external
stimulus, even at rest [HWA+13].

The functional connectivity between two nodes can vary according to three different
parameters: the strength of the connectivity measured by the absolute value of the
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correlation coefficient, its sign and its existence since it can be lost if its strength is no
more above a defined threshold as illustrated in Figure 2.10.

Figure 2.10: Illustration of time-varying properties of Functional Connectivity. The first
row depicts an example of two averaged networks obtained when they are assumed to be
static while row 2, 3 and 4 illustrate what such networks could look like at different time
steps. The row 2 shows variations in the magnitude of the strength of the functional
connectivity between two nodes, while the row 3 illustrates sign changes of strength and
the row 4 represents lost or gain of connections depending on whether the connectivity
strength is above or under a threshold. Such variations may lead to node membership
changes as illustrated in time window 3 and the networks may have a different appearance
at different time steps. Red edges represent positive connections, blue edges represents
negative connections. figure following [HWA+13].

The formal definition for the non-stationarity of a time-series is that its mean and its
covariance are not constant in time [HRGCB12]. The temporal variability of a metric
alone does not mean it is non-stationary. In the context of functional connectivity, a
difference must be made between true variability based on non-stationarity and variability
generated by noise [HRGCB12].

FMRI signals are subject to numerous sources of non-stationary noise: non-neural
noise such as noise generated by cardiac or respiratory activity, noise linked to the
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measuring device, noise caused by the variations in BOLD signal mean and variance
over time (see Section 2.5 for more details). All these noise sources can influence the
dynamic functional connectivity metrics and induce dynamicity in a true stationary
signal [HWA+13]. In order to determine if observed dynamicity is generated by noise
and has nothing to do with cognition, the changes in functional connectivity has been
compared with other simultaneous measurements of neural or physiological processes
such as EEG (see Section 2.1.5) and their reproducibility across populations has been
established [HWA+13]. Moreover studies which examine dynamic functional connectivity
demonstrate a certain level of relation with cognition since it has even been proved that
detected metastable states can be attributed to stages of consciousness [HCPP14].

The functional dynamic properties are also affected by diseases such as schizophrenia
or epilepsy (see Section 1.2) and it is an additional argument for the relevancy of this
dynamic fluctuations. Dynamic functional networks also share incontestable similarities
with structural networks, as explained into Section 2.2.1.

It is important to know the time scale of interest for brain functional networks dynamicity
to set the parameters of the methods designed to detect it. Van Dijk et al. demonstrate
that the ICNs become stable within 4-5 minutes [VDHV+10]. Therefore, according to
the temporal resolution of fMRI, the functional connectivity is observed on the scale of
the second. EEG and MEG have also been used to observe microstates on the scale of
milliseconds with high accuracy [CMPA14].

2.3 Detecting Static Functional Networks

In this section we review the standard approaches to identify static Intrinsic Connectivity
Networks (ICNs). They are important since many approaches for identification of dynamic
RSNs are based on these methods [HWA+13]. They also provide a simple illustration of
the issues in FC detection.

2.3.1 Seed-Based Correlation Analysis

An obvious approach to study the functional connection of one region, defined by a
pixel or a group of pixels, with other parts of the brain is to analyze the correlation
between its time series and the other available time series from different brain region. It
thus provides a functional connectivity map based on a particular region named “seed”.
A more sophisticated model than the one resulting from a linear correlation analysis
is established by using a General Linear Model (GLM) if regressors of no interest are
available [CSB10] (see Section 4.2 for a short description of a GLM)[CSB10] . The
choice of the seed location is for instance determined by a functional activation map
established during a previous task experiment [VdHHP10]. A region with a very high
activity during the task is selected and then, with the resting state fMRI signals, the
functional connectivity information of this region is extracted. The process of such a
seed-based correlation analysis is described in Figure 2.11.
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Figure 2.11: Different steps of a seed-based correlation analysis. (a) a resting-state
fMRI experiment is measured. (b) from a task fMRI signal, a region of high activity
is selected as region of interest, later used as seed voxel. (c) to study the functional
connectivity between this seed region and other parts of the brain, the correlation between
the seed voxel time serie from rest fMRI and the other time series corresponding to
all other voxel is calculated. (d) a functional connectivity map is established from the
correlation information. A high correlation between voxel j and the seed voxel means a
high functional connectivity. adapted from [VdHHP10].

This approach has been the first one used for the evaluation of functional connectivity in
1995 by Biswal et al. [BZYHH95]. They has succeeded to demonstrate that left and right
hemispheric regions of the primary structural motor network have correlated fMRI signals
at rest and they have concluded that it is a sign for information exchange, or in other
words, for FC. Several other studies have then confirmed this results for motor network
and also highlights other connections of this anatomical network with primary visual
network, auditory network and cognitive networks (for instance: [CHC+02], [DLSDS+05],
[DRB+06]). Seed-based correlation analysis has also been used for clinical applications,
to study the effect of aging for instance [AHSV+07] or to analyse physiological processes
such as sleep [LPZN+09]. It is a very straightforward method that, although it results in
a limited quantity of information concerning the FC, provides results easy to analyze
on top of being uncomplicated to implement [BV07]. Indeed it gives a direct answer
to the direct question about the connections of one ROI. Moreover, its reliability in
the detection of static resting-state network has been demonstrated by Shehzad et al
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[SKR+09].

However, this method has major drawbacks. Using only few maps from the seed-based
correlation analysis is an under-representation of the data and networks can be missed
[CSB10]. Seed-based correlation analysis can also be influenced by structured spatial
confounds such as other networks than the one which includes the seed, and also structured
noise like residual head motion artifact [CSB10]. A temporal filtering reduces this negative
influence but the residuals are always present in the detected networks. Furthermore
seed size and location must be carefully defined since it influences the final networks
[BAHS08].

It is possible to use all the available time series to establish the connectivity networks
instead of using the univariate approach of the seed-based voxel analysis, and it is
therefore preferred [CSB10]. Although comparing all the time series in a multivariate
approach increases the complexity of the network interpretation, it also permits to obtain
consistent functional maps that are not reachable with a seed-based approach since there
are potentially as many spatial maps as possible seeds [CSB10].

2.3.2 Spatial Independent Component Analysis (ICA)

The ICA is a method that aims to represent non Gaussian multivariate data owing to
linear combination of statistically independent vectors, or at least as independent as
possible. It optimizes a measure of “non-Gaussianity” between the estimated components
in order to obtain the “maximally statistically independent, non-Gaussian components”
[CSB10]. A common example used to illustrate the idea of ICA is the situation where
two people are speaking at the same time in a room, the cocktail party problem [HO00].
They are recorded by two microphones located at two different places and provide thus
two different signals: x1(t) and x2(t). These signals are weighted sums of each acoustic
signal emitted by the speakers s1 and s2, and the weights aij depend on the distance of
the speaker j from the microphone i:

x1(t) = a11s1(t) + a12s2(t) (2.6)

x2(t) = a21s1(t) + a22s2(t) (2.7)

The aim of the ICA is to identify (s1, s2) from (x1, x2) without knowing weights (aij).
It is possible by considering that s1 and s2 are statistically independent [HO00]. In a
more general case, we want to separate n random variables s = [s1 s2 . . . sn] from a set
of linear mixtures x = [x1 x2 . . . xn]. The problem can be written as:

x = As (2.8)

where A = (aij) is the unknown mixing matrix. The ICA model is a generative model
that identifies latent variables called independent components [HO00]. The decomposition
into independent components is only possible if the components si are assumed to be
statistically independent. It means that the value of si can not influence the value of
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sj and it is formally described by the equality between the joint probability density
function P (si, sj) of si and sj and the multiplication of their respective probability density
functions P (si) and P (sj). An additional assumption is also that the components do not
have Gaussian distribution. To solve Equation 2.8, A is first estimated and then inverted
to obtain s [HO00].

Application to RSNs

Spatial ICA is utilized in static functional connectivity analysis in order to extract inde-
pendent spatial map to constitute nodes of a functional network. It means that, through
ICA, the global resting state connectivity pattern can be described by a finite number
of independent spatial source of resting state signals [VdHHP10]. The independence
of the spatial map is not based on the spatial information but on the correlation of
the signals. Therefore, spatial overlap is possible between spatial maps and it is not a
hard parcellation as the one created by clustering [BDDS05]. Moreover, according to
the quantity of information we are interested in, it is possible to choose a low or a high
dimensional ICA. A low dimensional ICA, that is to say 10 to 30 components, is close
to a seed-based analysis since each map generated by the ICA can be considered as one
single seed-based map. Increasing the number of components up to several hundred
of components gives access to more numerous and more detailed nodes [SVB+13]. It
thus increases the available quantity of information since we can for instance look which
nodes inside two large-scale interacting networks are responsible from this interaction as
illustrated on Figure 2.12 [SVB+13].

Figure 2.12: Two large scales networks interacting via the nodes in red.

One of the advantages of ICA compared to seed-based analysis is that ICA uses the
whole-brain data without pre-established ROIs and is able to simultaneously compare
activities from multiple distributed voxels. Consequently prior spatial assumptions are
not necessary and ICA provides a richer description of the networks [SVB+13]. Moreover,
RSNs detected by ICA are less sensitive to noise than seed-based correlation analysis
([BMB08], [MBH+09], [CSB10]). Indeed, structured noise effects can be separated from
the signal by being sidelined into additional components that are then not considered as
resting-state networks.

ICA has also drawbacks. First, ICA is a stochastic process and the components are built
via iterative optimizations. It implies a run-to-run variability even on the same data but
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software solution have been developed to establish an averaged solution from multiple
ICA decompositions and circumvent this problem [ADP+14]. Moreover, it has already
been pointed out that it requires to specify a number of components. There are statistical
tools to estimate the optimal model order but with a neurobiological point of view, it
is impossible to consider there is a “best” number of components since the ICNs are
hierarchically organized and this hierarchy is complex to capture [CSB10]. Every resting
state networks can be separated in subnetworks and so on. Therefore, by choosing a
number of components for the ICA, a complexity level in this hierarchy is also selected
but the robustness of finest levels is restricted by the data quality, particularly the
experiment duration [CSB10]. Furthermore, a large number of components representing
subnetworks require more effort for the identification and classification [TFA+08]. One
of the main disadvantages of ICA compared to seed-based correlation analysis is the
increased complexity for the interpretation of the results [CSB10].

Principal Component Analysis (PCA) is a possible alternative to ICA since they are both
explorative methods [LRG+13]. However, ICA is more adapted for fMRI signals analysis
since the independence between components of ICA only implies that their time courses
are not highly correlated, while for PCA, the decomposition is based on the orthogonality
between the time courses and it can miss partially correlated signals [CSB10]. The ICA
is therefore closer from biological models we have described in Section 2.2.2.

ICA has become one of the most popular method for the definition of RSNs and has
provided interesting results, even for dynamic RSNs ([ADP+14], [CA12], [HWA+13],
[RDPC14], [ZFC+14]).

2.3.3 Clustering

Clustering aims to group data points with high level of similarity into a single group
and data points with low level of similarity into different groups, so-called clusters
[VdHHP10]. The metric used to measure the distance between the data points in terms
of similarity is the correlation or any other measure described in Section 2.2.2 to estimate
the connectivity.

On the contrary to ICA, clustering does not allow spatial overlap between networks
and are patient specific [VdHHP10]. Indeed, to compare the results of clustering across
subjects, additional seed-like processing steps are necessary. However, the obtained
results are rather similar [VdHHP10].

Clustering algorithms have been used to build static functional networks, such as hierarchi-
cal [CHC+02]&[SSC+05], Laplacian [TDP06] and normalized cut clustering [VDHMP08].
However, this approach is no more used and ICA is preferred to clustering-based methods
or PCA which is also another possibility for the detection of resting-state networks
[CSB10].
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2.4 From Static to Dynamic Networks
This section deals with the methods that expand network detection to dynamic networks
that change in time. They can be split into two kinds of approaches [HWA+13]. The
first one observes pairwise dynamic variations between regions by the mean of a Sliding
Window Analysis (SWA) for instance. On the other hand, the second approach is
multivariate and examines “global changing pattern of synchrony” via temporal ICA
for example. All these approaches are explorative and are not based on neurobiological
knowledge [HWA+13].

2.4.1 Sliding Window Analysis (SWA)

The Sliding Window Analysis (SWA) is currently the most commonly used approach in
the literature to introduce the temporal dimension in functional connectivity ([SPK+10],
[ADP+14], [LRVDV13], [ZFC+14], [SKB+15]). It consists in selecting points owing to
a window that has a fixed length and in extracting then the functional connectivity
information within this window. It is exactly the same approach as the one used for the
detection of static characteristics except that only a part of the signals is examined and
then, the window is shifted by a fixed number of time points. The length of this shift is
important since it defines the temporal overlap between the windows and it takes its value
between one and the total length of the window minus one. The SWA can be applied
directly on preprocessed fMRI signals but also on spatially averaged signals resulting
from a parcellation via ICA or clustering [HWA+13]. It is also possible to combine it with
a seed-based correlation analysis [LRVDV13]. Moreover, as an alternative to one window
size, results from different time window length can be integrated [HWA+13]&[TF15].

Tapered window

Instead of a rectangular window with uniform weights attributed to the points inside
the window, a tapered window can be applied. It reduces the sensitivity to outliers and
also the spurious fluctuations [ZFC+14]. Indeed, a “rectangular” window means that all
the time points inside the window have the same weight in the correlation coefficient
estimated at t. Therefore, if there is a single outlier in the value of correlation, all the
sliding time window that contain this point are biased over their whole time length,
provoking a false lecture of the data due to a brutal stop of the effect caused by the
outlier [ZFC+14].

A tapered window attributes a structure of weights to the points it contains, reducing
the duration of the outlier effect and smoothing its influence [PDMA12]. Different types
of functions can be defined to taper the window. One type of function commonly used
in financial studies for instance is exponential functions that give the highest weight to
the last point [ZFC+14]. The window correlation at time t is therefore more specifically
influenced by the last time point of the window defined therefore as the point t, while the
weights of the w−1 previous time points exponentially decrease with the distance to time
t. Gaussian functions convoluted with rectangular windows are another class of functions
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that is commonly used for rest fMRI signals are concerned [ADP+14]&[YAMC15]. The
main difference with exponential functions is the symmetry of Gaussian kernels which
attributes the same weights to time points from the past and from the future of the time
point t which corresponds to the point of highest weight on the middle of the window.
Figure 2.13 describes these different windows and the corresponding notations.

Figure 2.13: Examples of three different window types used in literature. (a) Rectangular
window. (b) Exponential-tapered window. (c) Gaussian-tapered window.

The use of a tapered window has an impact on the calculation of Pearson’s correlation
coefficient [PDMA12]. From the definition of the window shape of size ∆t, a structure of
weights {w1, . . . , w∆t} are defined such as

∑∆t
k=1wk = 1 [PDMA12]. For a rectangular

window, we have: ∀ k ∈ [1,∆t], wk = 1
∆t . For a Gaussian-tapered or an exponential-

tapered window, each weight corresponds to one point of the window as well.

Once the weights are defined, it is possible to compute the weighted Pearson’s correlation
coefficients rtij in time window t of truncated signals yi = {yi(1), . . . , yi(∆t)} and yj =
{yj(1), . . . , yj(∆t)} owing to the sample mean ȳti and the corresponding variances σtiand
covariances σtij by applying the following equations [PDMA12]:

ȳti =
∆t∑
k=1

wkyi(k) (2.9)

σti =

√√√√ ∆t∑
k=1

wk(yi(k)− ȳti)2 (2.10)

σtij =
∆t∑
k=1

wk(yi(k)− ȳti)(yj(k)− ȳtj) (2.11)

rtij =
σtij
σtiσ

t
j

(2.12)

Temporal variations of the functional connectivity metrics of interest, such as correlation
coefficients in our case, are thus obtained. It is then possible to identify reoccurring
patterns in the functional connectivity that are called states [HWA+13] or to build
networks inside each window and track them across time to build dynamic functional
networks (see Section 5.3).
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State Definition

Clustering methods can be used in order to detect reproducible correlation pattern in the
temporal variation of functional connectivity. Clustering is applied among correlation
matrices computed over time windows. Each row and each column of these correlation
matrices represents a voxel, a ROI or a component from spatial ICA. Figure 2.14 adapted
from [ADP+14] illustrates a complete process to detect connectivity states. Allen et
al. [ADP+14] first perform a spatial ICA on the whole duration of rest-fMRI data to
identify independent spatial maps that correspond to the static ICNs (see Section 2.3.2).
Then, with a SWA, they compute a covariance matrix for each window and subsample
them. They select the windows with the highest functional connectivity variance and
name them “subject exemplars”. Finally, they apply a k-means clustering algorithm to
these sets of covariance matrices (one set per subject) in order to identify the redundant
functional connectivity patterns and analyze their structure and frequency [ADP+14].

Clustering analysis provides satisfying results for the detection of states [HWA+13]
but presents also shortcomings. Apart from the limitations introduced by the SWA,
it is necessary to choose the adapted clustering algorithm and assumption, as well as
appropriate parameters. Allen et al. [ADP+14] uses k-means clustering with L1 distance
function and a number of clusters k=7, and perform the clustering only on selected
time frames. They compare its results with those obtained with other algorithms such
as hierarchical clustering, with other distance metrics such as correlation or Euclidean
distance, and also test other number of clusters. They thus demonstrate that their
results are consistent over these variations but further studies are necessary to study the
sensitivity of states detection to clustering algorithms and parameters [HWA+13].

Furthermore, the following approaches are developed as an alternative for connectivity
state detection. The clustering can for instance be based on the use of topological network
metrics, such as modularity or community membership, as features ([BWP+11], [DBG12],
[JVM+12], [KPCP12]). Indeed, graph theory is of key interest for network analysis and
its metrics are extensively used to summarize static brain functional connectivity (see
Sections 1.2 and 2.2.3). The temporal variability is introduced via multilayer network
approaches that aim to quantify temporal variations owing to multilayer graph statistics
or by directly observing the temporal fluctuations of graph metrics. In that last case,
a weighted network is identified for each time window and the graph metrics are then
calculated for each time window. Apart from state detection via clustering, it can be
helpful to determine in which configuration (rich club, small worldness...) the brain
spends more time for instance and compare this observation between diseased and healthy
groups of patients [vdHKGS12]&[CMPA14]. Another approach to identify states is to
detect change points in connectivity with model-based methods, therefore without using
any clustering [CHA+12].
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Figure 2.14: Steps for the states identification inside rest-fMRI signals. A_ Static spatial
ICA for the detection of spatial maps of interest. A group ICA is applied to the entire
set of fMRI signals and independency between signal sources is maximized to obtained
spatial maps whose corresponding averaged signal is then construct from original data by
back-reconstruction. B_ Functional connectivity analysis where a first evaluation of the
covariance matrix is realized via stationary analysis and then the dynamic connectivity is
extracted with a SWA. For each window, a covariance matrix is obtained and reorganized.
C_ First clustering on a selection of covariance matrices for each subject and then
k-means to extract cluster centroids from the subject exemplars. The cluster centroids
corresponds to a state. adapted from [ADP+14], with permission by the authors.
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Limitations

SWA is a simple approach but it also has major shortcomings that have to be taken
into account for the interpretation of the results. The most obvious issue in SWA is the
choice of the window length w. As the frequency band of interest for dynamic analysis
of fMRI is (0.01 - 0.1 Hz) (see Section 4.2) and because it is necessary to encompass
several cycles of resting state fluctuations to obtain a robust estimation of functional
connectivity [SVB+13], the window length w is included in the range (30 - 300 s) if the
whole frequency spectrum of fluctuations is resolved. A too large time window does not
detect fast connectivity variation by averaging the correlation or any other connectivity
metric over too many time points and it is thus a low-pass filter behavior with a cutoff
frequency of 1/w [TF15]. On the other hand, a too small window confers a high influence
to high frequency components, acting like a high-pass filter with a cut-off frequency of
1/w, and to noise too, since the number of points inside the window decreases and also
because Signal-to-Noise Ratio of fMRI signals is particularly low at high frequency due
to the low-pass properties of BOLD signal [HWA+13]. Shirer et al. [SRR+11] estimates
that windows from 30 to 60 seconds permit to reliably detect cognitive states so it already
reduces the range for the window length. However, Thompson et al. [TF15] demonstrate
that the estimated functional connectivity is influenced by the window size because a
window of length w is more sensitive to non-stationary phenomenon with a repeating
frequency multiple of 1/w. It is a problem for the accuracy of the connectivity analysis
since Thompson et al. [TF15] also demonstrate that the fluctuations of within and
between resting-state networks appear at different frequency and they report that the
optimal window length for identification of visual network variations is different from
the optimal window length that ensures the highest sensitivity for default mode network.
Leornardi et al. [LVDV15] realize an extensive study to determine to what extent SWA
generates spurious fluctuations of dynamic functional connectivity. They conclude that
the common choice of a window length between 30 and 60 s is reasonable.

Another approach consists in applying wavelet transform to focus on particular frequency
ranges (see paragraph below on time-frequency analysis). The Wavelet Transform
Coherence (WTC) is for instance utilized to access to instantaneous correlation coefficients
at different frequency bands owing to a window length varying according to the frequency
content of the time series ([CG10], [HWG+13], [YAMC15]). However, the integration of
the results for different frequency bands is complex and there is no relevant summarizing
measures yet [LVDV15]. Furthermore, Lindquist and al. [LXNC14] take inspiration
from the field of finance and apply multivariate volatility models to fMRI signals to
study their functional connectivity in a parametric way, without any choice of frequency
band of interest. They demonstrate their method to be less sensitive to noise than
SWA but further studies are necessary to establish the reliability of their approach.
To conclude, there are leads for alternatives to SWA and its window length problem.
However, an informed and cautious interpretation of the results from SWA provides
recurrent well-defined dynamic networks in an intuitive way that has been extensively
studied [HWA+13]. Therefore, SWA is currently the best established method for a direct
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analysis of resting-state dynamic functional connectivity [LVDV15].

2.4.2 Time-Frequency Analysis

A time frequency analysis can be applied to rest-fMRI time series in order to estimate
the coherence and phase lag, also named time shift, between each couple of time series. It
utilizes WTC to realize a multi-resolution time-frequency coherence analysis [TC98]. It
provides information dependent at once on time and frequency without selection of time
window length since the effective size of the analysis window is the scale of the wavelet
and it is adapted to the frequency components of the signal [HWA+13]. First, shorter
windows are used for fast fluctuations (high frequencies) and then, the window length
progressively increases to capture lower frequency variations. This exploratory analysis
provides a high quantity of information such as the frequency which has the highest
influence on coherence in a particular region, or the temporal variations of magnitude and
phase relationships between two nodes within a given frequency band. It is an asset but
also a drawback when it must be extended to multiple subjects or even to multiple brain
regions[HWA+13]. It is then necessary to decrease the dimensionality of the information.

Chang and Glover [CG10] for instance design a time-averaged coherence profile. Frequency
bands can also be selected and the overall fluctuation of variability is estimated via
standard deviation or mean-squared successive differences [HWA+13]. Yaesoubi and
al. [YAMC15] are the first to extend this technique to a whole-brain analysis. They
first decompose the resting-state data into independent components via spatial ICA and
apply a complex wavelet transform to obtain information from both time and frequency
domains. Then, they apply a clustering to identify the different functional networks and
detect the recurring patterns of connectivity corresponding to states in both temporal
and frequency domains. It directly provides the temporal fluctuation and frequency and
phase profiles of each recurrent functional connectivity states. They extract states that
are present in many frequency bands as well as states occurring only in narrow ranges of
frequency. It demonstrates the frequency domain also hold information that can be used
as a complement to the dynamic connectivity information extracted from the temporal
domain [YAMC15].

2.4.3 Temporal Independent Component Analysis

A temporal ICA identifies “distinct temporal functional modes” from the rest-fMRI signals
[SVB+13]. These modes are the extracted components from the temporal variability
of the nodes and serve as functional networks. ICA allows spatial overlapping of its
component [SVB+13]. However, the spatial or temporal ICA both provides models
with constant spatial weight over time and thus are not able to indicate the possible
time-varying correlation strength between nodes [SVB+13]. Moreover, temporal ICA
components are obligatory independent over time. Therefore, in the case of one node
shared by two mutually exclusive functional networks, if this node is particularly active
for only one function at time t, the temporal ICA considers the networks as temporally
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independent and the correlation is equal to zero, while a negative correlation has to be
detected [SVB+13].

Importance of Networks spatial overlap

The main difference between SWA and ICA is based on the possibility of overlapping
networks. Smith et al. [SMM+12] demonstrates that for instance the default mode
network can be decomposed into several overlapping subnetworks. They also applied
SWA to original time series and to times series reconstructed from the temporal functional
modes obtained by temporal ICA. The variability shows a difference of 25% between
the two SWA models and they assume that this difference is due to the overlap of the
networks. Indeed, it must be considered that some regions of the brain can have different
roles by being involved in different functional networks. However these networks can
also variate over time and interact, possibilities that temporal ICA cannot deal with
[HWA+13]&[SVB+13].

Independent Vector Analysis (IVA)

Independent Vector Analysis (IVA) examines spatial coupling and therefore allows
dynamic changes in the spatial patterns while ICA establishes only the time-varying
functional connectivity between spatially fixed networks [CMPA14]. The principle of
IVA is to extend ICA to multiple datasets. These dataset can be generated via SWA,
as illustrated in Figure 2.15. Instead of applying the ICA to the whole dataset, ICA is
applied to subsets where obtained components, also named sources, are still mutually
time-independent but in assuming that each component is dependent on at most one
component from another subset. Then a joint source separation is performed between
the subsets to take into account this dependence [KLL06]&[AFPA14]. Therefore, the
independence of the sources inside temporal subsets are maximized and their dependence
across subsets is also captured. A high dependence of sources across the dataset means that
the corresponding networks are approximately static while a high variability characterize
dynamic networks. Figure 2.15 describes the different steps of the IVA that finally
describes spatiotemporal variability of functional connectivity via a data-driven approach.

2.4.4 Co-Activation Patterns (CAPs)

Previous studies remark that in specific individual time frames, the networks obtained
via methods such as seed-based correlation analysis or spatial ICA, are similar to ICNs
obtained on the whole time course [HWA+13]. Therefore, it means that within the
individual time frame where the signal amplitude of the nodes of the concerned ICN is
high, one of the detected networks has a high spatial similarity with this ICN. ICNs can
thus be identified from a small number of time frames from the resting state fMRI signals
[LD13].
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Figure 2.15: Steps of Independent Vector Analysis. A SWA is first applied independently
to NS subjects and the resulting data are reorganized into subsets Cji containing data
from window i in subject j. L is the number of windows with a fixed length T . These
subsets are the input of a temporal IVA decomposition that identify M Independent
Components (ICs) for each window and they are contained into Cji . These components
are then reorganized via a joint source separation into M spatial maps of dynamic
connectivity named Source Component Vectors (SCVs). figure following [CMPA14].

Based on this observation, Liu et al [LD13] apply a clustering algorithm on selected
individual BOLD volumes registered during a rest-fMRI experiment and use the spatial
similarity as distance between them. The BOLD volumes are selected if they present
a seed region with a high signal intensity. The resulting cluster centroids are named
Co-Activation Patterns (CAPs) and they depend on the selected seed. These CAPs
intend to “characterize a set of representative instantaneous configurations of BOLD
activity” [HWA+13]. Liu and al. identify 30 different CAPs but they observe that their
connectivity patterns are very different from those obtained with spatial ICA. Moreover,
they remark that the static networks obtained with a seed-based correlation analysis
performed over a given time interval are actually a sum of CAPs. Therefore, the temporal
variations observed in SWA can be considered as the relative occurrence of CAPs between
the consecutive time windows [LD13]. It is a new approach that demonstrates the
existence of different level in the time-varying connectivity [HWA+13]. The observation
of this reoccurring single-volume snapshots of BOLD activity also raises the issue of
whether consecutive sequences of BOLD activity are also recurrent. Majeed and al.
[MMH+11] develop an algorithm to reliably answer this question and they detect similar
patterns across a scan that are reproducible across subjects and that for instance involve
well-known regions of the default-mode network. These identified patterns are responsible
from 25 to 50 % of the variance in the low frequency BOLD time courses [HWA+13].

It is now established that rest functional connectivity can be decomposed spatially and
temporally into recurrent patterns. Karahanoğlu et al. [KVDV15] also demonstrate
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that temporal components not only reoccurred into cycles as Majeed et al. [MMH+11]
assume it, but also present temporal overlaps, as well as spatial patterns. They use
recent methods of signal processing to temporally deconvolve fMRI signals on their entire
spectrum. Indeed the bandpass filtering is made unnecessary by the prior analysis of
hemodynamic response function and they thus obtain denoised fMRI signals. With
the deconvolved signals, they identify “transient” time points that are characterized
by high variation of the signal intensity (activation and de-activation) and observe the
activity spatial map at this particular moments. To study the consistency of these
spatial maps, they apply a clustering on them and identify 20 CAPs which spatially
overlap. Furthermore, by back-projection, they reconstruct their time lines and observe
temporal overlapping between specific resting-state networks that also have a behavioral
significance [KVDV15].

2.5 Limitations and Challenges

There are numerous approaches that aim to represent FC, from a static to a dynamic
representation [CMPA14]. Each one have specific drawbacks but all of them are also
affected by the major limitation of fMRI, that is to say noise [HWA+13].

2.5.1 Noise

The Signal-to-Noise Ratio of fMRI signal is low and the partition of the signal for dynamic
functional analysis still decreases it since less data points are used [HWA+13]. Moreover,
the noise is hard to estimate because its strength varies across the experiment and
this variation can also appear as spurious dynamic function information during analysis
[HWA+13]. It is the reason why preprocessing steps are essential, particularly for dynamic
connectivity analysis. However, all the noise cannot be removed in spite of numerous
approaches developed to reduce it (for instance [BL07], [CCG09], [PBS+12], [KIE+12]).
Some methods integrate the denoising to their application. The ICA, temporal or spatial,
can for instance increase its dimensionality to enable to select only the most reliable
components and consider the others as noise [CSB10]&[ADP+14]. Karanoglu and al.
also developed an approach based on recent signal-processing techniques where they need
to deconvolve the fMRI signals and it results into denoised signals [KVDV15].

2.5.2 Weaknesses of the current representation of dynamicity

Currently, there are two different kinds of representations for brain dynamic function:
states and components. Indeed, CAPs are actually spatial and/or temporal components
of a certain type of states (see Section 2.4.4). There are also different kinds of states
defined according to different properties (temporal independence, connectivity patterns.
etc.).
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Definitions of Regions of Interest

Prior to the detection of functional connectivity, the nodes of the networks need to be
defined. Different methods are described in the previous sections to establish a spatial
parcellation and they most of the time rely on static networks. For dynamic studies,
spatial ICA is the dominating method [HWA+13] and components are identified from
the whole fMRI duration and may not recover the entire brain surface. It is therefore
interesting to eliminate this spatial constraint based on static information. Moreover,
using ICA means that the networks are made of independent components and it is
particularly inappropriate to study interactions between them [LLT+16].

Another problem raised by the use of a supervised parcellation is the assumption that
ROIs are reproducible across subjects while they can be subject specific [LLT+16]. This
observation underlines the problem of the level of analysis: the link between individual
and population is not fully established by neuroscience. The dynamic networks are first
studied at the subject level and then translated to the population level to test their
robustness and obtain exploitable results. However, a high quantity of information is
neglected in the process [LLT+16].

Spatial Overlap of the networks

One question that has also to be addressed when the dynamic functional networks are
identified is how to deal with networks’ spatial overlap [SMM+12]. Indeed, one node
can be correlated at time t with other nodes of a network A, while at time t + 1 it
is correlated with nodes from network B. This spatial overlap asks the question of
whether the correlation variations inside a network is due to nodes shared between
several overlapping networks and that change their membership, or due to internal
connections being non-stationary. Both of these possible explanations of connectivity
changes are neurobiologically relevant but it is currently not possible to determine
which one is dominant in the dynamic behavior of resting-state dynamic functional
networks [SVB+13].

Use of the available data

Defining states and components require assumptions. Indeed, they are defined through
their independence or their temporal reproducibility (see Section 2.4) while static networks
are only based on connectivity measure, such as correlation. Furthermore, the construction
of the states and components is often based on a finite number of time points or spatial
components where the connectivity is particularly strong or dynamic ([ADP+14], [LD13],
[ZFC+14], [KVDV15]). The information put aside is indeed more likely to result from
noise but it can yet hold a high quantity of information. Therefore, these approaches are
too restrictive.
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2.6 Contribution of this thesis
Several of the problems exposed in the previous part are addressed by the detection
method developed in this thesis.

Concerning noise, our approach applies the conventional preprocessing steps in order to
remove the maximum of noise before identifying functional networks. At different steps
of the workflow, constraints are applied to prevent the noisy networks to be detected, by
for instance requiring a minimum number of nodes or a minimum time of activity. The
transition from the subject level to the population level acts also as a filter by requiring a
high number of recurrence among subjects since a network corresponding to noise is less
likely to be reproducible across subjects. Moreover, several validation steps are performed
to assess the effect of the remaining noise.

The parcellation used in this thesis is a geometric parcellation. It is not based on ROIs and
therefore, no assumption on the subject variability is made. A geometrical parcellation
prevents the spatial overlap between the nodes of the networks but it has the advantage
to take into account the whole brain surface. Moreover, as they are not supervised, they
do not require assumption based on static information or on respective independency as
for ICA. It is therefore more adapted to the detection of interaction [LLT+16]. No prior
assumptions are made and the approach described in the following paragraphs only use
the correlation information and identify dynamic networks very closed from the static
ICNs. The approach used here is very similar to a repetition of the method described
in [YKS+11] for the identification of static ICNs inside successive windows selecting a
small number of time points. Furthermore, no time point of interest are selected and the
functional networks are constructed with the complete time course of the experiment.
The quantity of information taking into account for the detection of dynamic RSNs is
consequently increased but the cost is that a higher amount of noise is including this
information.

The problem of the spatial overlap between networks is addressed by allowing a node
to change its membership. Current representations cannot deal with the spatial overlap
this way since they are not building real dynamic networks with node membership. In
our case, time-varying spatial maps is the solution to assess changes of node membership
without influencing the detection of within networks fluctuations. Concerning the
interactions between networks, exchange of nodes would reveals a spatial and temporal
interaction. Currently, the interactions between states and components are limited
transition probabilities for instance [ADP+14].

The representation we propose here is similar to the concept of component representation
since it identifies individual networks that resemble static ICNs and allows their co-
occurrence as well as their spatial overlap over time. However, it is more flexible and
requires the fewest assumptions on what should the dynamic networks look like without
noise. By taking into account all the available data, it is more influenced by noise but it
also accesses to more information and built easy to handle networks that creates new
outlooks, such as new biomarkers for neuropathologies (see Section 1.2).
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2.7 Summary
The Functional Connectivity (FC) is mainly detected via fMRI. This imaging modality
detects variation of blood flow oxygenation near activated cells. Several metrics, such as
the Pearson’s correlation coefficient, are available to extract this connectivity from a set
of signals attributed to different locations on the brain surface. Each location represents
a node. They are thus pairwise related and it is possible to represent the functional
connectivity information as a graph.

This graph can be static or a temporal dimension can also be introduced. In that
case, the dynamic FC is analyzed. There are different possible representations of the
dynamic FC but they rely on static assumption, such as a parcellation based on static
independence, and they are not considering all the available data, restricting either the
spatial or the temporal dimension. At the end of the day, the dynamic characteristics of
the FC are represented by states or components of connectivity and their interactions
are not considered.
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CHAPTER 3
General Methods for the
construction of Dynamic

Communities (DCs)

The previous chapter gives an overview of what has already been done for the analysis
of the functional connectivity. In this thesis, a new approach is developed and before
explaining it in more details, it is necessary to present few techniques used for its
construction. This chapter thus describes a method for the community detection as well
as the principles of spectral clustering, two techniques used in Chapter 5.

3.1 Community Detection based on Stability

A community detection aims to separate the data from a graph into relevant groups. It
differs from clustering because existing communities are unknown. They can have totally
unequal size and density, and their number is also unknown. Moreover, they often have a
hierarchy [For10]. Communities are identified by detecting groups of nodes with a higher
connection density internally than with the rest of nodes. It thus relies on connection
inhomogeneities to partition the network.

According to this definition of community, an obvious optimization criterion for the
community detection is the modularity. It is defined as the sum of the difference for each
community between the actual fraction of links inside this community and the fraction
of links inside this same community if links would be randomly placed. However, the
modularity optimization is not adapted to handle the hierarchical properties of networks
because it has a resolution limit that lead to miss the detection of small communities
[FB07]. It is thus necessary to define a quality criterion adapted to multi-resolution
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networks and small communities. Le Martelot and Hankin [LMH13] demonstrates that
stability can be one of them .

3.1.1 Concept of Stability Measure

One way to conceptualize the stability approach is to visualize edges of the graph as
vessels filled of water and whose width depends on their weight. If a droplet of ink is put
on a node, the ink will diffuse through the vessels and we can observe how it diffuses
over time, as in Figure 3.1.

Figure 3.1: Diffusion dynamic on the graph at different time steps. Nodes with different
colors mean they are not members of the same community. The blue stain represents the
diffusion at the represented time step. adapted from: http://wwwf.imperial.ac.
uk/~mpbara/Partition_Stability/

The droplet of ink can be deposed at each node and its diffusion can be observed for each
of them. What we want to see is if the ink is trapped in a particular region during an
abnormally long time. Such an observation would reveal the existence of communities
at that particular time. The advantage of this method here is that we can continue to
observe the diffusion behavior and remark several time period where the partition realized
by the ink is stable in time. It gives the different time scales where different relevant
communities appears in the graph, and the more we wait, the coarser the communities
are.

3.1.2 Stability definition

Stability definition considers the whole network as a Markov Chain [LMH13]. It means
that each node ai is a state and the weight of each edge between node ai and node aj
represents the transition probability between ai and aj . With n nodes and m edges (all
the nodes are not linked so all the transitions are not possible), an adjacency matrix
A = (Aij) of size n× n can be built with Aij equal to the weight between node i and
j. In our case, the graph is undirected but this definition acknowledges also directed
graphs [LMH13]. A vector d of size n is also defined to store the degree of each node, that
is to say the number of edges connected to it, and D = diag(d). The chain distribution
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is the stationary distribution π = d
2m and we define the diagonal matrix Π = diag(π). A

stationary distribution means that we are assuming that in the long run, all states are
equally occupied [DYB10]. It is also named a random walk and thus, we can say that
the probability of leaving a state at the next Markov time is equally distributed between
outgoing edges. It is thus possible to define the probability vector pt at Markov time tM
such as [LMH13]:

ptM+1 = ptMD−1A ≡ ptMM (3.1)

and M = D−1A is the transition matrix of size n × n. By considering a community
partition into c communities, we also define the n× c 0-1 matrix H = (Hij) providing for
each node its community. If Hij = 1, then the node i belongs to community j. If a label
αi is attributed to each node, the process results in a random variable (Xt)t∈N which
consists of a sequence of αi. If the community partition defined by H is relevant over a
given time scale, then transitions between nodes of a same community are more likely
than transitions between nodes of different communities for such a time span [DYB10].
The quantification of this kind of phenomenon is realized via the autocovariance of the
observable defined as [DYB10]:

cov[XtM ,XtM+τ ] = E[XtMXtM+τ ]E[XtM ]2 (3.2)

where E is the expectation. The less transitions between different communities happen,
the longer are the periods where XtM and XtM+τ are correlated and the higher is the
autocovariance. If the autocovariance is high, the community partition is relevant and it
is stable. To study the stability as a function of time, the evolution of the autocovariance
has to be established as a function of the lag τ [DYB10]. With the previously defined
notations, the clustered autocovariance matrix at Markov time tM of size c× c from the
transition matrix at time tM MtM is defined as [LMH13]:

RtM = HT (Π MtM − πTπ)H (3.3)

(RtM )ij is equal to the probability of starting the Markov chain in a community i and
arriving in a community j after tM time steps, minus the probability that two random
walkers are located in i and j in a stationary situation [DYB10]. Therefore, the answer
of the question to what extent the Markov chain stays in the same community during tM
Markov times is located on the diagonal of RtM . The stability QtMS for a random path of
length tM is then equal to the trace of the auto-covariance matrix [DYB10]. As global
stability definition, we have:

QS = min
0≤tM≤τM

trace(RtM ) (3.4)

where τM is the upper bond of Markov time that has been used.

The algorithm used in this thesis to perform the community detection based on this
stability definition is described in Section 5.3.
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3.2 Spectral Clustering

Another method of interest used in Chapter 5 is the spectral clustering. It uses the
spectral information contained in the graph to represent the data in a space where the
data points can be attributed to clusters by a classical clustering algorithm [VL07].

3.2.1 Graph definition

The first step of the spectral clustering is to build a graph. An appropriate similarity
function needs to be defined and a common function is the Gaussian function [VL07]. In
our case, we already have one, as explained in Section 5.5.2. A similarity matrix S is
thus build and it is used to construct a similarity graph [VL07]. The larger the similarity
is, the lower is the weight. It is now possible to formulate the clustering as the partition
of the graph into subgraphs where the edges within the groups have low weights and the
edges between the groups have high weights [JGGF16].

The similarity graph G is described as G = (V,E) where V = {v1, . . . , vn} is the set of
vertices and E are the undirected weighted edges which are constructed according to the
selected type of graph. The weights of each possible edge are stored into W = (wij). If
two vertices i and j are not connected, wij = 0.

Transforming a set of vertices V = {v1, . . . , vn} with associated pairwise similarities
Sij into a graph can be performed by several means [VL07]. In this thesis, we are just
describing the one we choose to use, the undirected k-Nearest Neighbors (kNN) graph.
It consists in connecting the vertex vi only to its kNN, that is to say the k vertices
which are the most similar to vi. No direction is attributed to the edges, consequently
an edge between vi and vj either means that vj is one of the kNN of vi, or that vi is
one of the kNN of vj , or even that vi and vj are mutual kNN [VL07]. Then the weights
wij attributed to these newly formed edges are inversely proportional to their similarity
Sij . The degree of a vertex vi is defined as di =

∑n
j=1wij) and the degree matrix D is a

diagonal matrix with Dii = di.

3.2.2 Graph Laplacian

Spectral clustering is based on the graph Laplacian matrices. There are different types
of graph Laplacian and here we use the normalized symmetric graph Laplacian Lsym
defined as [VL07] (see Section 8.3 for the explanations of the choices made here):

Lsym := D−
1
2 L D

1
2 = I−D−

1
2 W D

1
2 (3.5)

where L is the unnormalized graph Laplacian:

L := D−W (3.6)

The important properties of Lsym are:
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1. ∀ f ∈ Rn,

fTLsymf = 1
2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

(3.7)

2. λ is an eigenvalue of Lsym with eigenvector D
1
2 u only if λ and u solve the generalized

eigenvalue problem : Lu = λDu.

3. 0 is an eigenvalue of Lsym with eigenvectors D
1
21, with 1 the constant one vector.

4. Lsym is positive semi-definite and have n non-negative real-valued eigenvalues
λ1 ≤ . . . ≤ λn.

These properties are demonstrated in Luxburg Tutorial [VL07].

The key concept of spectral clustering is that the multiplicity of the Eigenvalue 0 of
Lsym is equal to the number of connected components A1, . . . , Ak in the similarity graph
G, and the Eigenspace of λ = 0 corresponds to D

1
21A where 1A is the indicator vector

defined as 1A = (f1 · · · fn)T ∈ Rn with fi = 1 if vi ∈ A and fi = 0 otherwise [VL07]. A
connected component Ai is defined as a group of vertices that are connected together.
For more simplicity, we explain why this property is important via the unnormalized
graph Laplacian L which can be linked then to Lsym [VL07]. If f is an Eigenvector of L
corresponding to Eigenvalue λ = 0, then :

fLfT = 0⇔
n∑

i,j=1
wij (fi − fj)2 = 0 (3.8)

As wij is positive or equal to 0, all the terms in the sum needs to be equal to 0. Therefore
if there are a vertex i and a vertex j which are connected, then wij 6= 0 and fi = fj . If
there is only one connected component, for all connected vertices (i, j), fi = fj and the
Eigenvector f is equal to 1. It means that all vertices with at least one connection are
connected together with identical weights. If we consider the normalized graph Laplacian
Lsym, then all connected nodes are also connected together but with weights depending
on their degree and the Eigenvector fsym of Lsym respects D

1
2 fsym = 1 [VL07]. If the

number of connected components k is different from 0, it is possible to write W as a
block diagram if the vertices are ordered such as connected vertices are gathered. The
resulting unnormalized graph Laplacian L has also a block shape and each block can
be considered as an individual graph Laplacian. As a property of block matrices, the
Eigenvalues of the entire matrix are also those from the block matrices, as well as the
corresponding Eigenvectors filled with zeros at position of other block matrices. Therefore,
as each block is a graph Laplacian of a connected graph, each one has 0 as Eigenvalue of
multiplicity 1 with the corresponding Eigenvector whose components are equal to 1 for
rows of the considered block and 0 otherwise. To conclude, the similarity graph G has
as many connected components A1, . . . , Ak as the multiplicity of Eigenvalue 0 for L or
Lsym [VL07].
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3.2.3 Rearrangement of the data

There are several algorithms for spectral clustering according to the graph Laplacian
that is used. In our case, we use a normalized spectral clustering developed by Jordan
and Weiss with the symmetric normalized graph Laplacian [NJW+02]. The similarity
matrix S as well as the number of clusters to build k are provided as input. The first
step is to build the similarity graph G which is here an undirected kNN graph. Then,
the symmetric normalized Laplacian Lsym is calculated and its first k Eigenvectors
u1, . . . ,uk corresponding to the k smallest Eigenvalues are computed. The rows of the
matrix U = [u1 · · ·uk] are normalized to norm 1 and result in the matrix T = (tij) with:

tij = Uij√∑
k U

2
ik

(3.9)

A k-mean clustering is finally applied to the rows of T. Each row corresponds to one
point while normalized Eigenvectors acts as variables. Therefore tij is equivalent to an
estimation of the membership of point i in the connected component Aj . As output,
clusters C1, . . . , Ck are obtained [VL07].

3.2.4 k-means Clustering

The k-means clustering algorithm is here only briefly described in the way we use it since
it is not the main point of the consolidation step (see Section 5.5.2). K-means clustering
is also called Lloyd’s algorithm and it is an iterative, data-partitioning algorithm. It
aims to attribute each observation to only one of the k-clusters that are defined by a key
observation, named centroid. The number of cluster k is an input of the algorithm. It is
initialized by a random definition of k cluster centroids among the observation. According
to these initial cluster centroids, the final partition changes. Then the distances between
every observation and each cluster centroid are calculated. For every observation, a vector
contains its associated values for a set of variables. Every distance metric can be used,
such as squared Euclidean distance, cosine or the sum of absolute difference, but only
one must be selected. In the case of a Batch update, each observations is then attributed
to the cluster with the closest centroid. Once the initial clusters formed, the averaged
of the points in each cluster is computed to produce k new cluster centroid locations.
The distances between observations and the centroids are once again calculated and the
observations assigned to cluster. The operation is repeated until the cluster assignment
becomes stable [FHT01]. However, one constraint of k-means clustering is the choice of
k and there are several methods to select the most appropriate [VL07].

3.2.5 Selected metrics for the choice of the number of clusters k

Silhouette Coefficient

The Silhouette coefficient permits to directly estimate the accuracy of a partition by
combining a measure of cohesion and a measure of separation [Rou87]. The cohesion a of
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a partition corresponds to the sum of the weights of all the edges between the points of
the same cluster. On the other hand, the cluster separation b is the sum of the weights
of all the edges linking a point from one cluster to another cluster. The Silhouette
Coefficient s is calculated vertex per vertex and for a vertex x into a cluster D∗lα , it is
equal to:

s(x) =

1− a(x)
b(x) if a(x) < b(x)

b(x)
a(x) − 1 otherwise

(3.10)

with:
a(x) =

∑
y∈D∗lα

wxy (3.11)

and:
b(x) = min

D∗l′α ∈D∗α

∑
y∈D∗l′α

wxy (3.12)

The Silhouette coefficient for an entire cluster is equal to the averaged silhouette coefficient
of the point of the cluster [Rou87]. It varies between -1 and 1. The aim of the optimization
is to obtain a cluster coefficient as close as possible from 1 since it means that the average
of ab is low and therefore that the cohesion a tends to be low and the separation b tends
to be high. A low value of a means high similarities between the points of a same cluster
so the cohesion is high, while a high value of b means that the two most similar clusters
have yet a low similarity, so they are well separated. For our optimization procedure, we
calculate the average cluster Silhouette coefficient for values of cluster number in a range
of [7,13] (see Section 7.4.3 for justification). A fixed number of clusters for all subjects
may not be extracted since all subjects may not activate the same RSNs during the
experiment. Therefore, the optimization process is run independently for each subject
and reiterated 50 times per number of clusters to obtain a consistent number of clusters.
The results of the optimization procedure are described in Section 7.4.3.

Eigengap Heuristic

Luxburg et al. [VL07] recommend to use Eigengap heuristic to determine k. It is indeed
a natural approach since spectral clustering is based on Eigenvalues from the graph
Laplacian and it has been demonstrated above that the multiplicity of the Eigenvalue 0 is
equal to the number of connected components in the graph. In real dataset, the number
of completely disconnected components is lower than k, but the k lower Eigenvalues are
still close to zero if the graph is structured in k possible clusters. Therefore, to optimize
the number of clusters k, the Eigengap heuristic approach consists in choosing k such as
the ordered Eigenvalues λ1, . . . , λk are very small and λk+1 is significantly larger [VL07].
The largest Eigengap designates the transition between λk and λk+1 and thus the optimal
k is identified.
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3.3 Summary
In this chapter, the general methods and tools utilized for the accurate detection of the
dynamic RSNs are explained. First, a community detection based on the concept of
stability has been depicted. This method enables to perform a partition of the space in
identifying more or less homogeneous groups of nodes. Second, the spectral clustering and
the way it reorganizes the space to enhance the separation between clusters is explained.

All the aspects of these methods are not dealt with because they are described according
to the choices made for their implementation in Chapter 5. For more details concerning
these methods, the literature cited in this chapter provides the basics of each techniques.
Moreover, the Section 8.3 justifies the choices made for the spectral clustering.
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CHAPTER 4
Data

The dataset that forms the basis of this thesis consists of 200 subjects. It corresponds to
rest-fMRI scans provided by the Human Connectome Project (HCP) [VEUA+12]. It is
essential to know the parameters that have been utilized to record them in order to choose
appropriate parameters for the methods implemented then. Moreover, preprocessing is
required to eliminate as much noise as possible.

4.1 Dataset: Human Connectome Project (HCP)

The HCP responds to a request from the American National Institute of Health (NIH)
emitted in 2009 and has been launched by two consortia in 2010, one made of Washington
University, University of Minnesota and Oxford University (“WU-Minn” HCP Consor-
tium), and the other one created by Massachusetts General Hospital and University
of California Los Angeles. The aim of this project is to “characterize human brain
connectivity and function in a population of 1200 healthy adults and to enable detailed
comparisons between brain circuits, behavior, and genetics at the level of individual
subjects” [VEUA+12]. The second consortium is interested in leading-edge structural
connectomics measured by diffusion MRI, while the WU-Minn HCP Consortium generates
and gives free access to both functional and structural brain connectivity data from a
very large cohort of more than 1000 subjects. Concerning rest-fMRI, approximately 300
subjects are available for the moment and 200 subjects are selected as basis for this thesis,
since it is a sufficiently high number to ensure the statistical significance of the analysis
([ZFC+14], [KVDV15] & [LLT+16]).

Subject cohort

HCP data are acquired on adults twins and their non-twin siblings. Studying twins
and their siblings enables to take into account the genetic factor and the influence of
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environment [SVB+13]. However this aspect is not considered in this thesis and we use
200 random subjects. Moreover, subjects are between 22 and 35 years old.

Experiments

For each subject, two pairs of 15-min sequences of whole-brain resting-state fMRI are
acquired with a 3T scanner at different days. The spatial resolution is 2× 2× 2 mm3

and a temporal resolution of 0.7 seconds is obtained owing to an EPI acceleration factor
of 8 (see Section 2.1). Moreover, scans at higher frequency and therefore with a higher
temporal resolution are available for subsets of the cohort, as well MEG data [SVB+13].
In addition to resting-state fMRI sequences, task fMRI data are also provided by the
HCP. They are not used in this thesis since the aim is to detect dynamic RSNs so the
paradigms are not described here.

4.2 Preprocessing

MRI spatial distortions and signal loss are corrected by the HCP consortium and the
alignment between subjects is also performed at high resolution (0.7mm) [SVB+13]. It
also provides a gray matter surface mesh obtained from the original 3D fMRI matrices.
The surface mesh is used here because the information concerning FC is located in gray
matter [HWA+13] and it thus permits to reduce the amount of data to be stored by
conserving only the data of interest into a simpler representation [VEUA+12]&[SVB+13].

Three main operations are still necessary before processing the signals :

• applying movement regressors,

• filtering the signals to only obtain the frequency band of interest,

• parcellating the brain surface in order to decrease the computational cost.

4.2.1 Head Motion Correction

Head motion corrections must always be applied to fMRI signals [PMN11]. Indeed, all
the subjects irremediably move their head, due to swallowing for instance, and head
movements have an overwhelming influence on fMRI data [PMN11]. Two main effects of
head motion can be distinguished. On the one hand, the displacement of the head can
result in a mislocation of the recorded time series on the brain surface. As the whole
brain is involved in this effect, it is also referred as bulk motion [PMN11]. The basic
motion correction techniques uses a single reference image to realign the time series. This
effect is particularly visible at the edges of the brain where the motion has the biggest
influence since the concerned pixels can contain brain tissue at time t and then no more
brain tissue at time t+ 1. On the other hand, the MRI signal itself can be affected by
head movement and this effect is called the spin history effect. It is produced by the
displacement of protons from one slice to another. Indeed, the MRI scanner selectively
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excites slices for the 3D reconstruction of the signal and the response of the protons
is analyzed according to their excitation (see Section 2.1). Therefore, if the proton is
no more in its slice of excitation, it corrupts the reconstruction of the signal. At the
end of the day, it can result in large alteration of the intensity in a single slice or in a
finite set of slices [PMN11]. Standard motion corrections do not handle this effect but
exploratory methods such as ICA can be used to leave out the components of the signals
corresponding to this effect into additional components [PMN11].

The aim of the head motion correction is to realign the fMRI images at different time
series. It is thus necessary to estimate the motion that has caused the misalignment of
these images and it is done owing to movement regressors [PMN11]. It assumes that
head motion can be approximated by a rigid body transformation: it can be translated
or rotated along three axis but it can not be deformed. At least 6 regressors are needed,
one for each translation and one for each rotation, but for a better accuracy, their first
derivatives are also used [PMN11].

The set of recorded signals is considered as a matrix Y that can be defined such as :

Y = g b + bold (4.1)

with g the matrix of the movement regressors, b the part of the signals linked to head
movement and bold the part of the signal holding the functional information that has
to be extracted and which is independent from the motion. It is a Generalised Linear
Model (GLM). It enables to regress noise by estimating b by b̂ via an ordinary least
squares estimation :

b̂ = (gTg)−1 gT Y (4.2)

Then the BOLD signal component bold corresponding to the residual in this GLM is
easily approximated by :

bold = Y− gb̂ (4.3)

The head motion is thus corrected by processing only bold.

4.2.2 Band-pass Filtering

One source of noise that has not been preprocessed yet is the “physiological noise”
[HWA+13]. This noise can be produced by cardiac pulsation and respiration that
provokes shifts in the main magnetic field B0 due to body motion. Moreover, the
changes of respiratory and cardiac rate have also an influence on BOLD contrast and it is
particularly important to eliminate it for rest fMRI analysis because they are located in
the low frequency domain we are interested in ([BMB08], [CG09], [DIH99], [SvGdZ+07]).
Indeed, noise linked to cardiac activity occurs around 0.1-0.5 Hz while respiratory activity
produces noise between 0.6 and 1.2 Hz [BS09].

Moreover, the frequency band of interest selected for functional connectivity analysis in
resting-state is usually [0.01,0.1]Hz [SVB+13]. The inferior cutoff frequency permits to
remove the slowest temporal drifts in the data [SVB+13] while the superior one select
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4. Data

Figure 4.1: (A) Set of 10 initial non corrected fMRI signals from 10 different time points,
HCP data. (B) Movement regressors used for the head motion correction. (C) Set of the
same 10 fMRI signals corrected for head motion. (D) Set of the same 10 fMRI signals
corrected for head motion and after band-pass filtering.

only low frequency domain since, for instance, correlation between auditory, visual and
somatomotor regions has been detected in this domain [CSB10]&[VdHHP10]. Thus, we
apply a band-pass filter to select only this frequency domain because it allows to select
the information of interest and to eliminate most of physiological noise.

Figure 4.2: Brain surface parcellated into 800 regions, 400 on each hemisphere.
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4.2.3 Parcellation

The HCP data provides 64984 spatial points on the brain surface corresponding to voxel
of gray matter in the MRI scan. However, for our analysis, this number is too high
and would require a too expensive computational cost. Therefore, the brain surface is
reorganized into 800 parcels [BJG+13] where the fMRI signals from each voxel included
in one parcel are averaged to provide only one signal per parcel and simplify the analysis.
It also permits to improve the Signal-to-Noise ratio. On the other hand, it decreases the
spatial resolution, one of the advantage of the fMRI compared to EEG for example, but
it remains relatively high. Figure 4.2 illustrates the parcellation realized on the brain
surface.

4.3 Summary
The approach developed in this thesis is tested on 200 subjects from the HCP that
aims to map the brain structural and functional connectivity [VEUA+12]. They are
already partly preprocessed but additional corrections are necessary. The head motion is
corrected via a GLM and a specific frequency range is selected. Moreover, the brain cortex
is parcellated to decrease the computational cost and it increases also the Signal-to-Noise
Ratio since the resulting signals, input of our workflow, are the averaged signals of the
voxels included in this parcel.
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CHAPTER 5
Methodology

The methods defined in this chapter have been used to create a robust representation of
dynamic functional networks via Dynamic Communities (DCs). They have been selected
and designed to fit the constraints required by the nature of the data and the aims
defined in the first chapter. Most of them are based on graph theory techniques and
their implementation are partly inspired by their use in social networks.

5.1 Notation and Overview
The approach developed in this thesis is different from those explained in Section 2.4
and is summarized in Figure 5.1. The dynamic RSNs are considered as communities
and as they can change over time, they are called Dynamic Communities (DCs).

Before preprocessing, the brain surface from one subject α initially has N0 = 64984 nodes
and their corresponding signals made of T samples are represented here by Sα. It is then
meshed with N = 800 nodes and the communities are made of these nodes. Each of the
N nodes has a signal contained into S∗α, the set of preprocessed signals. Before extending
the analysis to the whole population containing Ns = 200 subjects, it is necessary to
process each subject individually.

The first part of the approach is the detection of communities in each time point at
subject level. A Sliding-Window Analysis (SWA) first acquires the correlation between
signals from S∗α inside a window of w time points shifted time point per time point.
The correlation information is thus extracted for T − w time points and stored into
Cα =

{
C1
α . . .CT−w

α

}
. Each Ct

α is a correlation matrix for the N nodes. From each Ct
α,

a community detection is then performed to obtain a set of static communities inside
each window t represented by the vector C∗tα = (C∗ti,α). C∗ti,α is the label of the community
to which node i is affected. For the subject α, the entire set of communities from all the
time points is accessible via C∗α =

{
C∗1α . . .C∗T−wα

}
.
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With C∗α, it is possible to construct the Subject-level Dynamic Communities (sDCs). A
community tracking is performed to link the communities from C∗tα with the communities
from C∗t+1

α ∀t ∈ [1, T − w − 1]. For the subject α, nα sDCs are first detected and stored
into Dα. The matrix Dα = (Ditj,α) represented on Figure 5.1 is the front-tracer matrix
whose coefficient Ditj,α is equal to 1 if the node i is in sDC j at time t and 0 if not. Dα
also contains properties of interest of the sDCs. The n∗α post-processed sDCs and their
properties are stored into D∗α.

Then, when the sDCs are available for each subject, the Population-level Dynamic Commu-
nities (pDCs)) can be constructed by identifying the recurrent sDCs in the population. The
pDCs are represented by P = {P1, . . . ,Pn} with Pm =

{
D∗ l1α1 , . . . ,D∗ lnmαnm

}
,∀ m ∈ [1, n].

Figure 5.1: General Work-flow. For more details on each step, see the corresponding
paragraph. The parameters indicated in the blocks are key parameters that illustrate the
compromises made to reach accurate sDCs and pDCs with their associated events.
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5.2 Sliding Window Analysis (SWA)

The Sliding Window Analysis (SWA) is applied on the preprocessed signal from individual
subjects. In the previous section, the set of N signals for a subject α was represented by
S∗α. Each signal has T time points. As we have seen in Section 2.4.1, SWA consists in
sliding a window of fixed length w and in calculating the correlation at a time t between
each pair of signals owing to the w time points contained inside the window. Here w = 80
is selected. As the TR of the HCP data is 0.7 seconds [VEUA+12], it corresponds to
a duration of 80 × 0.7 = 56 seconds and we are therefore in the range described in
Section 2.4. This window is a Gaussian tapered window constructed by the convolution
of a rectangular window with a width w

2 and Gaussian kernel made of w2 points with a
standard deviation equal to 1

3
11w

[ADP+14]. This window is represented on Figure 5.2.

Figure 5.2: Shape of the window used for the SWA.

The correlation is measured through the tapered Pearson’s correlation coefficient r (see
Equation 2.12) calculated between all pairs of signals structured by the window.

Output

As output of the SWA, we obtain a symmetric correlation matrix between all the parcels
and at each time t ∈ [1, T − w] and with the notation defined in Section 5.1, it is
represented by Cα =

{
C1
α . . .CT−w

α

}
. It permits to build a graph for each window, that

is to say T − w graphs, as explained in the following section. Figure 5.3 shows the input
and the output of this SWA with the number of parcels N equal to 6.

5.3 Community Detection at each time point

At each time t, a correlation matrix Ct
α contains the Pearson’s correlation coefficient

for each couple of signals. From this correlation matrix, an adjacency matrix At can be
calculated to construct an undirected graph Gt = (V,Et). The vertices V are parcels on
brain surface and edges Et connects nodes whose correlation at time t is positive and
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Figure 5.3: Input and output of the SWA. To simplify the visualization, the number of
parcels N considered here is equal to 6. T is the number of time points in the fMRI
signals and w is the window length. The window is shifted time point per time point and
is a Gaussian tapered window. S∗α is the matrix where the pre-processed fMRI signals
are stored and Cα is the three dimensional matrices containing the correlation matrices
for each window. The construction of the graphs represented here in an arbitrary way is
based on these correlation matrices.

above a fixed threshold equal to 0.8. Edges are weighted according to the correlation
between the two nodes they connect: the more they are correlated, the closer they are.

5.3.1 Motivations

For each of this graph, a community detection based on stability is performed as defined in
Section 3.1. It is convenient to use community detection rather than a classical clustering
algorithm because it can access hierarchical information, but above all it requires no
assumption on the separation of the data space [LMH13]. They can have totally different
size and density and there is no need to specify a number of communities to detect
[For10].

The resulting communities are the active RSNs at time t, considered as static inside the
window centered on t. The only constraint is a high stability within the graph. They may
have totally different properties and size and this structure is therefore less influenced
by the noise since it can be integrated to a community without changing the overall
separation structure.

5.3.2 Implementation via an Optimization algorithm

Le Martelot and Hankin [LMH13] have developed a simple greedy algorithm for community
detection based on stability optimization. Each parcel of the brain is one node and the
edges between nodes are weighted via the correlation coefficient of the fMRI signals from
this two nodes. The community detection algorithm is applied independently at each time
window. Only one Markov time is used because it is not necessary to obtain multi-scale
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5.3. Community Detection at each time point

communities and it is preferable to identify finer communities at this moment of the
procedure since further steps are then planed to consolidate them if necessary. Although
the multi-resolution properties of the stability optimization is finally not used, the choice
of this method instead of the modularity optimization is still relevant because it provides
higher resolution communities [FB07] and as future work, it could be interesting to go
further in the analysis of the networks to detect larger communities. The algorithm
presented is a simplification of the one from Le Martelot and Hankin [LMH13] since it
uses only one Markov time. The complete version is available in [LMH13].

The initialization step consists in partitioning the graph Gt such as each initial community
contains one node. The partition is represented by H and it can be visualized as a set of
vectors Hi of size N , the number of nodes. Each vector Hi defines a community at the
considered time t by attributing 0 or 1 to a node and

∑
i H = 1.

The global stability QS of partition H is calculated and stored as the best known stability.
Then, we try for each single node n to merge its community with each neighboring
community and calculate the stability Qs,temp. If at least one merge of its community
with another community permits to increase the stability, the merge producing the
highest stability QS∗ is acted and we look at the next node. If not, nothing happens and
we look at the next node as well. When all nodes have been inspected and if at least
one merge has occurred, we pass to the community level and calculate for each single
community Ci the stability if it is merged to a neighboring community Cj. With the
same principle used at node level, if one combination with this single community increases
the stability, it is realized and we inspect the next community. If not, nothing happens
and we examine the next communities. When all communities have been analyzed, if no
community merge has been made, the detection ends. If at least one community merge
happens, the procedure starts again at the node level and is repeated until merge does
not happen anymore. This algorithm is explained by the pseudo code 5.1. The output
of the algorithm, H, is the final partition of the graph at time t.

Output

Finally, a set of communities is obtained for each window and a community i can be
represented by a footprint Hi on the brain surface since the nodes of the communities are
parcels of brain surface. Only the communities with more than 40 nodes are conserved and
the other are rejected as noise. All the nodes are finally not attributed to a community.
For each time t, a set of labels is attributed to each community and a vector C∗tα of size
N permits to read to which community the node is part of. The community membership
for each node and for each time window is stored into C∗α ∈ NN×(T−w) for subject α.
Figure 5.11 permits to visualize the input and the output of the community detection. It
is now possible to construct DCs.
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Algorithm 5.1: Community Detection via Stability Optimization, adapted
from [LMH13]
Input: Graph Gt = (V,Et)
Output: Partition H

1 Initialize the community partition H by creating 1 different community per node of
Gt;

2 Calculate the stability QS of community partition H;
3 while at least 1 community merge with another community do
4 while at least 1 node change its community membership do
5 for all nodes n in the graph do
6 Q∗S ← −∞;
7 for all community neighbors Hj of the community Hi | n ∈ H do
8 Htemp ← H;
9 Merge Hj and Hi in Htemp;

10 Calculate the stability QtempS of Htemp;
11 if QtempS > Q∗S then
12 Q∗S ← QtempS ;
13 H∗ ← Hj ;
14 end
15 if Q∗S > QS then
16 Merge H∗ and Hi in H;
17 Calculate the stability QS of community partition H;
18 end
19 end
20 end
21 end
22 for all communities Hi of H do
23 Q∗S ← −∞;
24 for all neighbouring communities Hj of Hi do
25 Htemp ← H;
26 Merge Hi and Hj in Htemp;
27 Calculate the stability QtempS of Htemp;
28 if QtempS > Q∗S then
29 Q∗S ← QtempS ;
30 H∗ ← Hj ;
31 end
32 end
33 if Q∗S > QS then
34 Merge H∗ and Hi in H;
35 Calculate the stability QS of community partition H;
36 end
37 end
38 end
39 return H;62



5.4. Community Tracking

Figure 5.4: Input and output of the Community Detection. The colors of the nodes are
not related to the colors of communities. It is an illustration example with N = 6 parcels.

5.4 Community Tracking

The communities defined by C∗α for subject α are equivalent to static communities detected
inside each window of w time points. The community tracking, based on the similarity
of the community footprints, temporally links them to form the subject-level Dynamic
Communities (sDCs).

5.4.1 Problem Definition

For each time window t ≤ T and for a subject α, a set of static communities C∗tα ={
Ctα,1, C

t
α,2, . . . , C

t
α,nt

}
, where nt is the number of communities identified at time t, is

now available via C∗α =
{
C∗1α . . .C∗T−wα

}
. Indeed, the nodes labeled by i ∈ [1;nt] in

C∗tα are members of Ctα,i. To introduce the temporal dimension, it is necessary to link
these communities across time to form DCs Dα. One DC Dlα, where l ≤ nα with nα
the final number of sDCs for subject α, is a sequence of static communities ordered by
time: Dlα =

{
Ct1α,i1 , C

t2
α,i2

, . . . , Ctlα,il

}
, with t1 < t2 < . . . < tl and ∀j < T, ij < nj . This

definition implies that Dlα does not have a community Ctα,ij at each time step t and that
it cannot present more than one community Ctα,ij per time step t. Figure 5.5 illustrates
the input and the output of this step named here tracking.

A community Ctjα,i will be attributed to the DC Dlα if its footprint on the brain surface
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Figure 5.5: Input and output of the community tracking.

is similar enough to the footprint of the previous community in time Ctj−1
α,ij−1

of Dlα and
if no other community Ctjα,i′ is more similar. The community tracking is based on the
similarity because the footprint of DCs have to be as spatially stable as possible.

5.4.2 Similarity Definition

It is thus necessary to define a similarity function to build the DCs by tracking com-
munities. One commonly used similarity metric in community mining is the Jaccard
([GDC10],[VBAW15]) defined as :

J(Ctjα,ij , C
tj−1
α,ij−1

) =

∣∣∣Ctjα,ij ∩ Ctj−1
α,ij−1

∣∣∣∣∣∣Ctjα,ij ∪ Ctj−1
α,ij−1

∣∣∣ (5.1)

Takaffoli and al. [TSFZ11] also uses another similarity function :

sim(Ctjα,ij , C
tj−1
α,ij−1

) =


∣∣∣Ctjα,ij∩Ctj−1

α,ij−1

∣∣∣
max

(∣∣∣Ctjα,ij ∣∣∣,∣∣∣Ctj−1
α,ij−1

∣∣∣) if

∣∣∣Ctjα,ij∩Ctj−1
α,ij−1

∣∣∣
max

(∣∣∣Ctjα,ij ∣∣∣,∣∣∣Ctj−1
α,ij−1

∣∣∣) ≥ k
0 otherwise

(5.2)

where they introduce a similarity threshold k whose optimization is described in the
Section 5.4.4. It implies that Ctjα,ij and Ctjα,ij−1

cannot be similar if they do not share
at least a proportion of k parcels in their respective footprint. The second definition of
similarity is selected for the community tracking and this choice is explained in more
details in Section 8.2. It is now possible to use community mining tools developed for
social networks, and in this field, the tracking of DCs can be characterized by events.

5.4.3 Events Definition

The tracking is performed time point per time point. At t = 0, there is no DC. At t=1,
each community detected in the first time window initializes a DC. Then, a DC can
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survive only if in the following time windows there is at least one community which is
similar enough to its last community. If such a community exists at time t, a survival
happens at time t, but if there is no such community it is the death of the DC. Moreover,
it can happen that several communities have a high similarity with the same DC at
the same time step without being correlated and it provokes a split of the DC. On the
contrary, if a unique community matches several non-correlated DCs, it is a merge. If a
community has no match with any of the DC, it is a birth. These events are illustrated
in Figure 5.6.

Figure 5.6: Example of DC partition illustrating the different types of events : survival,
birth, death, split, merge. Each color represents one DC.

In the context of the brain dynamic RSNs represented by these DCs, birth/death/survival
simply mean that the activation of the concerned RSN starts/stops/continues. However,
in the case of a split or a merge, it reveals a high level of interaction between the RSNs
involved in these events. Indeed, if for instance a DC A splits into DC B and DC C, it
means that actually B and C share a high proportion of their parcels with A and are
likely to merge again later to form one unique RSN or to merge with other DCs with a
recurrent pattern. It is only an example but it is something interesting to observe if it
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Figure 5.7: Illustration of community events on network footprints. (a) Split of DC A
into DC B and DC C. (b) Merge of DC A′ and DC B′ into DC C ′.

exists. Figure 5.7 depicts the translation of splits and merges from DCs to the concrete
footprints on the brain surface.

Mathematically, the events are defined this way :

• Birth: Dlα is born at time tj if:

∀ tm < tj ,
{
sim(Ctmα,im , C

tj
α,ij

) ≥ k
}

= ∅ (5.3)

• Death: Dlα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
dies at time tj = tj−1 + 1 if:

∀ tm ≥ tj ,
{
sim(Ctjα,ij , C

tj−1
α,ij−1

) ≥ k
}

= ∅ (5.4)

• Survival: Dlα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
survives at time tj > tj−1 if ∃ ! Ctjα,ij where:

sim(Ctjα,ij , C
tj−1
α,ij−1

) ≥ k (5.5)

• Split: Dlα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
splits at time tj > tj−1 if ∃ C =

{
C
tj
α,1, . . . , C

tj
α,η

}
with η ≥ 2 where : 

∀ Ctjα,i ∈ C,

∣∣∣Ctjα,i∩Ctj−1
α,ij−1

∣∣∣∣∣∣Ctjα,i∣∣∣ ≥ k.∣∣∣(Ctjα,1∪...∪Ctjα,η)∩C
tj−1
α,ij−1

∣∣∣∣∣∣Ctj−1
α,ij−1

∣∣∣ ≥ k.
(5.6)

• Merge: A set of DCs D =
{
Dl1α , . . . ,D

lη
α

}
with η ≥ 2 merges at time tj if

∃ Ctjα,i where :

∀ Dλα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
∈ D,

∣∣∣Ctjα,i∩Ctj−1
α,ij−1

∣∣∣∣∣∣Ctj−1
α,ij−1

∣∣∣ ≥ k.∣∣∣∣∣(Ctl1j−1
α,1 ∪...∪C

t
lη
j−1
α,η )∩C

tj
α,i

∣∣∣∣∣∣∣∣Ctjα,i∣∣∣ ≥ k.

(5.7)
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The definition of split means that a DC A splits into communities {A1, . . . , Aη} if at least
k proportion of the parcels of communities Ai, ∀i ∈ [1, η], are in A. The second condition
of the definition prevents the effects of nodes from A leaving the network. Indeed, all the
brain parcels are not attributed to a community at each time step due to a constraint
on their size during the community detection and if the size of Ai is relatively small
compared to the size of A, the first condition is easily fulfilled. The definition of merge
requires from community A′, which results from the merge of communities

{
A′1, . . . , A

′
η

}
,

that it shares at least k proportion of its parcels with community A′i, ∀i ∈ [1, η]. The
second condition of the definition is to ensure that most of the nodes of A′ were already
in the networks inside communities {A1, . . . , Aη} before the merge because if community
A′i contains only few parcels, its parcel proportion k represents a low number of common
parcels with A′.

These definitions are adapted from definitions developed by Takaffoli et al. [TSFZ11] for
community mining in social networks. The notations are however different in order to
be closer to the ones used in our algorithm. Moreover, some modifications have been
realized in order to adapt definitions from [TSFZ11] to the specificity of our data. Indeed,
after a DC splits, it dies and the resulting DCs are born, while after a set of dynamic
communities merges, these DCs die and the resulting dynamic community is born. A split
or a merge cannot be associated with a survival. These modifications are necessary in
the algorithm to prevent the generation of spurious events as those illustrated in Figure
5.8(a1)&(a2) and Figure 5.8(b1)&(b2). The deaths of the involved DCs are particularly
necessary after a merge. Indeed, if a DC is not active during several time steps, it is
not considered as dead to allow temporal gap in the activity. Therefore, DCs that have
merged can continue to merge with their resulting DCs at each time step until the initial
merged community is no more active (see illustration on Figure 5.8(b1)&(b2)).

When no split or merge happens to a DC, its death is never declared. It is necessary in
order to allow temporal gaps in its activity. It would be possible to check if a DC is dead
or not at time t with this requirement, but it would be necessary to look at each time
step t′ > t if it survives, splits or merges and it would imply a very high computational
cost.

Alternatives for the definition of events and consequently of the DCs have been tested
but the selected approach provides the most robust DCs with a relatively high number
of splits and merges. Its main drawback is the formation of a high number of DCs that
are considered as noise due to their short life time and that present a high redundancy.
The definitions selected here therefore enhance the need for the post-processing steps
explained in Sections 5.5.1 and 5.5.2.

5.4.4 Optimization of the similarity threshold k

The choice of the similarity threshold k for the community tracking is of key-interest
since it determines the event detection as well as the stability of the detected dynamic
communities. Indeed, the higher the similarity threshold is, the more stable are the
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Figure 5.8: 2 scenarios to illustrate the necessity of the death of the involved DCs after a
split (a) and after a merge (b). (a1) Spurious merge detected after a split at t+1.(a2)
Solution to prevent this effect : after a split, the concerned DC dies.(b1) Spurious cascade
of merges after a true merge at t+1. (b2) Solution to prevent this effect : after a merge,
the DCs that have merged die.
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identified dynamic communities. Moreover, if the similarity threshold is too high, the
number of birth increases because survival, split and merge happen only for higher
similarities. Therefore, the number of DCs is a criterion for the choice of k, even if the
consolidation step is able to solve the issue of a too high number of DCs. The other
criterion used by Takaffoli et al. [TSFZ11] is the number of mutual topics. A mutual topic
is defined in the context of text mining but it can also be applied to brain networks by
using brain surface parcels instead of keywords. They assume that a DC which survives
during several time frames is more likely to conserve the same parcels, or when text is
concerned, to be about the same topic. Thus the average number of mutual topic between
all the DCs obtained must be as high as possible because long living DC are assumed
to be more robust. As a minimum of stability between the consecutive communities of
the DCs is required due to the noise, the similarity threshold is tested in the range of
[0.4,0.8]. Indeed, the higher is k, the higher is the stability. If several maxima appear
into this range, the choice of k must be decided according to the expected stability of
DCs [TSFZ11]. k must not be too high because the community tracking also detects
events and a too high k results in no event of high level of interaction. The number of
events is therefore another criterion for the choice of k and counterbalances the need of a
minimal stability. On the other hand, it is also important to optimize k in keeping in
mind that it must isolate the spurious connectivity resulting from noise into short-lifetime
DCs which can be eliminated via the pruning step. It is therefore another argument for
a rather high k.

For our experiments the optimized k is equal to 0.6 (see result of the optimization in
Section 7.4.2).

5.4.5 Algorithm

Simplified case

To illustrate the approach used in the developed algorithm for community tracking, the
definitions given above are simplified. A simple manner to consider this problem is to
use a similarity matrix. If we consider that all communities Ci, ∀i ∈ N have the same
size NC , we have :

∀(i, j) ∈ N2, sim∗(Ci, Cj) = |Ci ∩ Cj |
|max(Ci, Cj)|

= |Ci ∩ Cj |
NC

(5.8)

This definition of the similarity sim∗ is adapted from the similarity function sim defined
in Equation 5.2. The difference between these two functions is only that the similarity
threshold is no more considered in sim∗.

Then, if we consider only the first condition in split and merge definition, events can be
defined as :
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• Split: Dlα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
splits at time tj > tj−1 if ∃ C =

{
C
tj
α,1, . . . , C

tj
α,η

}
with η ≥ 2 where :

∀ Ctjα,i ∈ C,

∣∣∣Ctjα,i ∩ Ctj−1
α,ij−1

∣∣∣
NC

≥ k. (5.9)

• Merge: A set of DCs D =
{
Dl1α , . . . ,D

lη
α

}
with η ≥ 2 merges at time tj if

∃ Ctjα,i where :

∀ Dλα =
{
Ct1α,i1 , . . . , C

tj−1
α,ij−1

}
∈ D,

∣∣∣Ctjα,i ∩ Ctj−1
α,ij−1

∣∣∣
NC

≥ k. (5.10)

In this particular case, the similarity matrix Stj = (Stja,b) established at a time step
tj is defined as Stja,b = sim∗(Ctji,a, C

tj−1
i,b ). This matrix is turned into a binary matrix

S∗tj =
{
Stj ≥ k

}
and a similarity matrix such the one represented on Figure 5.9 is

obtained.

Figure 5.9: Binary Similarity matrix representing the similarity between the community
of the current time window and the DCs constructed until the previous time window.
The coefficient of the matrix is different from zero if the similarity if higher than k, the
similarity threshold. Each event situation is represented here.
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It is the idea illustrated by Figure 5.9 that is used in the tracking algorithm. If in the
row of the community Ai, no DC matches, it is a birth. If at least two DCs match, it is a
split. If one DC match and if it is the only matching of the DC, it is a survival, but if
the DC has more than one matching, it is a merge. In case of mute DC at time step t,
nothing has to be done as it has been decided that the dynamic community stay available
even with temporal gap.

Real case

All the dynamic communities do not have the same size. Three different “similarity”
matrices are necessary : SStj = (SStja,b) to detect the splits, SMtj = (SM tj

a,b) to detect
the merges and Stj = (Stja,b) to detect survival and birth. Their respective definitions
are given in equation (5.11). ntj is the size of C∗tjα , that is to say the number of static
communities identified at time tj , and nDα is the size of Dα =

{
D1
α, . . . ,D

NDα
α

}
at tj−1,

that is to say the number of already born DCs at time tj−1, in subject α.

∀(a, b) ∈ Nntj×nDi ,
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(5.11)

A first scan of communities is made with matrix SStj to detect splits (see Figure 5.10(a)),
the second with SMtj to detect merges (see Figure 5.10(b)), and a final one with Stj to
look at survivals and births (see Figure 5.10(c)). These different similarity matrices are
defined for specific events and only the concerned events are detected via the analysis of
each matrix. Before declaring a split or a merge, the second condition of each definition
is verified (see equations (5.6) and (5.7)) on the potential splits and merges respectively
detected with SStj and SMtj .

Output

After this tracking step, a set of nα sDCs is available for the subject α. Each sDC is
characterized by its dynamic footprint corresponding to the footprints of the communities
part of this sDC, and by the time line of its activation. When the sDC is not active at t,
it has no corresponding community in the time window t. These data are represented
by a front-tracer matrix Dα = (Ditj,α) of size N × (T − w) × nα. Ditj,α = 1 if the
node i is in the community j in the window t and Ditj,α = 0 if not. This matrix is
stored into a structure Dα with the characteristics of the splits and merges and also with
properties of the sDCs, such as the label of their constitutive community Ctα,i for each t
where it is active and the similarity between the corresponding consecutive footprints.
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Figure 5.10: Example of different similarity matrices used for the community tracking at
time t. (a) Matrix for the detection of the splits SSt.(a) Matrix for the detection of the
merges SMt.(a) Matrix for the detection of the survival and birth St.

Figure 5.11: Input and output of the Community Tracking for the subject α. The choice
of colors is arbitrary and two communities of the same color are not necessary members
of the same dynamic community. The dotted lines link the communities to the DC they
are part of. It is an illustration example.
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The latter is for instance used to calculate the stability of a sDC and it also holds the
information of the lifetime of a sDC, two parameters of interest for the next step. Figure
5.11 summarize the process performed with this community tracking step. The DCs
require then post-processing.

5.5 Post-processing of the Subject-level Dynamic
Communities (sDCs)

After tracking, when we observe the resulting time lines and footprints contains into Dα
for the identified sDCs into subject α, a maority of the sDCs displays one of these three
characteristics :

• a very short lifetime,

• a low stability,

• a high redundancy.

The two first observations are characteristics for noisy dynamic communities which have
to be removed by pruning. The high redundancy among the remaining set of dynamic
communities requires a consolidation step to link the fragments of sDCs that should not
have been detected as different sDCs during the tracking for different reasons.

5.5.1 Pruning

In this pruning operation, we assume that a dynamic community with a too short lifetime
and/or a too low stability corresponds to noise. Indeed, the preprocessing realized before
the SWA is not able to remove all the noise from the data. These properties are calculated
with the data from Dα.

The stability of a dynamic community is defined as the mean of the similarity between
all its constitutive footprints and described to what extent it is well defined on the brain
surface. The similarity definition is the same as the one used for the community tracking
and as at each time frame, a different footprint is attached to the dynamic community,
the averaged similarity is obtained by dividing the sum of the similarity between each
time frame by the number of alive time points. A dynamic community is considered
as noise if its stability is under a defined threshold or if its lifetime is under another
threshold. The pruning on the footprint stability restricts the spatial variability of a
dynamic community.

Concerning the pruning on lifetime, the temporal resolution is reduced since an assumption
on the lifetime of a dynamic community is made. It has an impact for the neurobiological
interpretation of the sDCs, but it is necessary due to noise.

The thresholds for the pruning have been arbitrary fixed according to the observation of
the time lines that permits to obtain an estimation of a “low” lifetime as well as through
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the observation of the stability values for different DCs. With these observations, the
stability threshold is equal to 0.2 and the lifetime threshold is equal to 10. The choice of
the thresholds has also been influenced by the quantity of information we need concerning
the events. The threshold are as small as possible to preserve as many splits and merges
as possible.

The sDCs that are pruned are simply removed from Dα and the front-tracer matrix Dα

is rearranged. The splits and merges which involve these sDCs are also erased if the
remaining sDCs are not sufficient to ensure their integrity. For a split, the initiating sDC
has to survive the pruning and at least two resulting sDCs have to survive as well. For a
merge, at least two initiating sDCs and the resulting sDC have to remain. This pruning
step is performed before the consolidation because if the noise is consolidated with true
DCs, the latter are blurred.

5.5.2 Consolidation

The consolidation consists in linking DC fragments that have been identified as different
sDCs during the tracking. After the pruning used to delete the sDCs resulting from noise,
it is possible to realize this operation on Dα.

Motivation

There are several reasons that can explain that two DCs are declared different during
the tracking although they should be considered as the same DC. First of all, the events
definitions imply that after a split or a merge at time t, the concerned DCs die at time
t+ 1 (see Figure 5.12(a), left panel). Therefore, no more community can be integrated to
the sequence of this DC for t′ > t. However, it is highly probable that one of the DCs
resulting from a split is highly similar to the DC that has been split and when a merge is
concerned, one of the DC that has merged may also be very similar to the resulting DC
(see Figure 5.12(a), right panel). These highly similar DCs are then two fragments of the
same DC which need to be consolidated. Even though DCs resulting from events are
not fragments of the initial DCs, the latter are prevented to later reappear and it can
provoke the birth of a new DC after several time frames which is just a fragment but
that must be labeled differently due to the events (see Figure 5.12(b), left panel). These
two fragments have then to be associated in the consolidation step (see Figure 5.12(b),
right panel).

Furthermore, tracking is made step by step and a DC is characterized by the footprint
of its last living frame. Therefore, if this frame is noisy (see Figure 5.13(c)) or slightly
shifted (see Figure 5.13(b)), the corresponding DC may not survive whereas if previous
footprints were available, it would have survived, as illustrated in Figure 5.13.

The aim of the consolidation is thus to decrease the redundancy generated by these two
phenomena in the set of DCs.
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Figure 5.12: Illustration of two cases where the consolidation is necessary after an event.
The DCs are represented by their footprint in red and the shadows for t′ ≥ t represents
the footprint of the initial DCs from t− 1. (a) Left panel: before the consolidation, a
split results into 2 new DCs and the first one is very similar to the DC that has split.
Right panel: after the consolidation. (b) Left panel: before the consolidation, after the
split two DCs are born but none is similar enough to the initial DC to be consolidated
with it. After several time frames represented by dots, a new DCs is born highly similar
to the initial DC and they must be consolidated. Right panel: after the consolidation.

Spectral Clustering

To realize this consolidation step, a spectral clustering based on the similarity between
the averaged footprints of each DCs is performed. It means that the averaged footprints
(see definition in the next paragraph) of the DCs included in the same cluster are similar
while averaged footprints from different clusters are dissimilar. The advantage of spectral
clustering here is that we do not need to define a similarity threshold for the DCs to be
in the same group. However, we need to fix the number of resulting clusters (see Section
7.4.3). Each group obtained from clustering is then considered as a unique DC.

Averaged Footprint A DC has potentially a different footprint at each time frame it
is alive. It has a set of footprints that are similar enough to be attributed to the same
DC but that also displays differences which can be explained by noise or by small spatial
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Figure 5.13: Examples to illustrate the effect of noise on DC survival. (a) Ideal sequence.
(b) Sequence cut off due to a shift of the footprint at time t. (c) Sequence cut off due to
noisy footprint at time t.

fluctuations inherent to the dynamic characteristics of functional networks. However, to
compare the DCs in order to implement the consolidation, it is necessary to have for each
DC a single footprint. In order to embrace the whole dynamic footprint with its spatial
variability, all the static footprints of one DC are simply summed and the sum is then
normalized by the number of time frames when DC is alive. For each DC, an averaged
footprint is thus generated. Each parcel that has been active at least once in the lifetime
of the considered DC has a coefficient different from 0 and the most recurrent parcels
have a coefficient close to 1 in this footprint. The averaged footprint of sDC i in subject
α is represented by D̄i

α ∈ RN .

Similarity definition During the community tracking, a similarity function has already
been defined according to the definition introduced by Takafolli et al. [TSFZ11] (see
Section 5.4). This definition is used to build communities and we have preferred it to
Jaccard for the community tracking (see Section 8.2 for the explanation). However,
Jaccard is here more appropriate to the consolidation since it is a harder metric (see
Section 8.2).

Moreover, in order to reduce the influence of noise appearing in the footprint D̄i
α in

the shape of low coefficient nodes, only the nodes that are present in at least half of
the footprints of the DCs are selected and therefore nodes whose coefficient in D̄i

α is
higher than 0.5. The counterpart of this selection is that we are also losing a part of
the time-varying footprint but the consolidation is based on its skeleton since it aims
to gather fragments of the same DC at different time points. Therefore, the similarity
matrix coefficient Sij corresponding to the Jaccard between the averaged footprint of
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sDC i and the averaged footprint of sDC j in subject α can thus be defined as [GDC10]:

Sij = D̄i
α ∩ D̄

j
α

D̄i
α ∪ D̄

j
α

(5.12)

Graph definition The similarity matrix S defined above can be utilized to construct
an undirected similarity graph as described in Section 3.2. The similarity graph G is
described as G = (V,E) where V = {v1, . . . , vn} is the set of vertices here corresponding
to the DCs and E are the undirected weighted edges which are constructed according to
the selected type of graph. The weights of each possible edges are stored into W = (wij).
If two vertices i and j are not connected, wij = 0. Moreover, the larger the similarity is,
the lower is the weight.

Implementation To perform the spectral clustering, the approach used is described in
Section 3.2. Instead of imposing a fixed number of cluster for the k-means clustering, we
have decided to add an optimization step to evaluate which number of final sDCs has be
identified in Di. An automatic clustering method could have been used [JGGF16] but as
the literature already provides estimation of the number of RSNs (see Section 2.2.1), an
optimization based on simple metrics with a fixed range for this number is an appropriate
choice. The selection of this metric, the Silhouette coefficient, is explained in Section
7.4.3.

The Algorithm 5.2 adapted from [NJW+02] describes the procedure adopted. The number
of clusters can vary between kmin = 7 and kmax = 13 and is optimized for each subject
owing to the calculation of the Silhouette coefficient on several iteration of the spectral
clustering with different k (see Section 3.2.5). Therefore, all subjects do not have the
same number of final DCs but it is normal since a rest-fMRI sequence lasts approximately
10 minutes and all the dynamic RSNs may not be active during this time.

Algorithm 5.2: Spectral clustering for consolidation of sDCs
Input: Similarity matrix S ∈ Rn×n, frame [kmin, kmax] for the number of cluster k
Output: Clusters A1, . . . , Ak

1 Construct the similarity graph G as kNN graph from S. W is the weighted
adjacency matrix of G.;

2 Compute the symmetric normalized graph Laplacian Lsym;
3 Find the best k in [kmin, kmax] for the subject;
4 Calculate the first k eigenvectors u1, . . . ,uk of Lsym and store them as columns of

matrix U = [u1 · · ·uk] ∈ Rn×k;
5 Normalize rows of U to norm 1 in order to obtain T = [y1 · · ·yn]T ∈ Rn×k;
6 Cluster the points {y1, . . . ,yn} into clusters C1, . . . , Ck with the k-means

algorithm;
7 return Clusters A1, . . . , Ak;
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The process of the spectral clustering is reminded and summarized in Figure 5.14.

Figure 5.14: Steps of the spectral clustering of the N sDCs
{
D1
α . . .DNα

}
from subject α,

as described in Section 3.2.

Output As output, the new structure D∗α is similar to Dα except that is contains the
data for the post-processed sDCs D∗iα of subject α. The consolidation agglomerates the
sDCs Diα surviving to the pruning into a smaller number of sDCs D∗iα according to their
similarity. It remains between 7 and 13 sDCs D∗iα for each subject α. The detection of
population-level DCs (pDCs) is now possible.

5.6 Detection of population-level Dynamic Communities
(pDCs)

We have now a set of sDCs D∗i with their associated events for each subject i. In order
to check the consistency of our approach and also to detect recurrent patterns in DCs
interactions, we need to expand from subject level to population level. All the steps
described above are applied to NS = 200 subjects which form our population. It is now
possible to look for DCs that are present in several subjects, as summarized in Figure
5.15.

The detection of pDCs is based on the similarity of their averaged footprint. The latter
is constructed in an analog way as in the consolidation step (see Section 5.5.2), but
this time for the consolidated sDCs. Then, like in the consolidation step, a similarity
matrix S is calculated to compare the whole dynamic communities from every subject
and the similarity function is also the same as in consolidation at subject-level. Particular
constrains prevent to use once again spectral clustering to parcellate the set of dynamic
communities into sub-groups. First of all, all the sDCs are not necessarily attributed
to a pDC. Indeed, in spite of the de-noising steps, some of the detected sDCs are only
noise or are at least affected by artifacts. Then, it is necessary to differentiate the DCs
identified in the same subject: two sDCs from the same subject cannot be associated
to the same pDCs. It could happen if clustering would be the selected solution because
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Figure 5.15: Input and output of the Population Tracking. The colors are arbitrary. The
number of sDCs and pDCs, as well as the footprints represented here are not meaningful,
they are a simplification of the real case to facilitate the visualization. NS is the number
of subjects constituting the population.

despite the consolidation, few subjects still have redundant sDC footprint. To respect
these constraints, a “manual” clustering is thus required.

A similarity graph GPop = (VPop,EPop) is constructed with sDCs as vertices in VPop.
The edges are constructed with the thresholded similarity matrix defined above and thus,
two sDCs are linked if their similarity is above the defined threshold. It is an unweighted
graph. The similarity threshold is arbitrary fixed to 0.3, that is to say that the footprints
of dynamic communities must at least display an overlap of 30% to be connected. It
is a rather low threshold but the variability between subject connectivity networks can
be high [HWA+13]. Several tests of thresholds have however permitted to select this
threshold as a compromise between stability across subject and number of subjects it
involves. Moreover, in order to respect the second constraint that prevent the association
of two sDCs to the same pDC, all the links between the dynamic communities from the
same subject are removed.

The algorithm described in this paragraph corresponds to the pseudo-code 5.3. The
degree of each sDC is calculated and sDCs are sorted in a descending order according
to their degree. The sDC with the highest degree is selected and all the other dynamic
communities that are connected to it and that are not in the same subject are matched
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with it to form the first pDC. Their respective properties are merged and they are
removed from the graph to construct a new graph. The degrees are recalculated in this
new graph and the remaining sDCs are reorganized in a descending order with regard to
their degree in this new graph. Once again, the sDC with the highest degree is selected
as cluster centroid and the same steps are iterated until the highest degree of the current
graph reaches the lowest acceptable degree for a center that we have fixed to 10 after
several tests. Thus, the set of pDCs are constructed and it is described by P.

Output

A set of pDCs that represent the consistent dynamic functional networks identified among
subjects is finally constructed. The properties and events of their constitutive sDCs are
as well integrated to them, and it is now possible to realize a population-level analysis.
All the data concerning the population level, such as the constitutive sDCs of each pDC
or their averaged footprint, are stored into a structure P.

5.7 Definition and Analysis of the Interactions
The representation developed in this thesis that result into P access to two levels of
interactions defined by events. The higher level of interaction is characterized by splits
and merges whose definitions are described in Section 5.4. It is a spatial and temporal
interaction since it is revealed by an exchange of node at a particular time point. They
are inherent to community tracking. Another set of events needs to be defined in order
to characterize the lower level of interaction only based on temporal information. These
events are detected at subject level, after the community tracking and the post-processing.
Then, methods to independently measure the occurrence of the events and their accuracy
as representation of interactions are required.

5.7.1 Definition of the events

Definitions of interactions based on temporal and spatial information:
higher level of interaction.

The events of higher interaction are the splits and merges defined in Section 5.4. Their
definition is yet too restrictive and they are not enough to survive at the population level.
Consequently other markers are needed to analyze the interactions between the sDCs
and then between the pDCs. A lower level of interactions is thus characterized.

Definitions of interactions based on temporal information: lower level of
interaction.

Events characterizing a lower-level of interaction between DCs are likely to occur more
frequently than splits and merges. For two sDCs A and B, they are defined as:

• death− death(A,B) = 1 if A dies at t and B dies between t− τ and t+ τ .
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Algorithm 5.3: Population-level DC tracking
Input: Sets of sDCs

{
D∗1, . . . ,D∗Ns

}
, events E , similarity threshold kPop, lowest

degree for center dmin
Output: pDCs partition P = {P1, . . . ,Pn}, events EPop

1 Calculate the similarity matrix S = (Sij) between all the sDCs in
{
D∗1, . . . ,D∗Ns

}
;

2 W = (Wij)← S;
3 Wii ← 0;
4 if Wij < kPop∗ then
5 Wij ← 0;
6 end
7 if Wij 6= 0 for two sDCs of the same subject then
8 Wij ← 0;
9 end

10 Construct the similarity graph GPop with W as adjacency matrix;
11 Compute the degree di of each node;
12 Ns ← 0;
13 while max(di) > dmin do
14 Ns ← Ns + 1;
15 Define the node with the highest degree max(di) as a new cluster centroid.;
16 Attribute all its direct neighbors to the new cluster PNs and merge their data.;
17 for all nodes i in the cluster PNs do
18 Si. ← 0;
19 S.i ← 0;
20 end
21 W← S;
22 end
23 return {P1, . . . ,Pn} and the corresponding events EPop;

• birth− birth(A,B) = 1 if A is born at t and B is born between t− τ and t+ τ.

• death− birth(A,B) = 1 if A dies at t and B is born between t− τ and t+ τ .

• death− survival(A,B) = 1 if A dies at t and B is active between t− τ and t+ τ .

• birth− survival(A,B) = 1 if A is born at t and B is active between t− τ and t+ τ .

Two parameters are of key interest in these definitions. The first one is τ which corresponds
to the time delay tolerated for the simultaneity of death and/or birth. Indeed, when
the DC A is born/dead, the DC B must be born/dead less than τ time frames before
or after the birth/death of DC A. The observation of the timelines of the DCs and the
evolution of their correlation permits to arbitrary fix τ at 5. This τ is necessary due
to the nature of SWA that average the information and introduce an uncertainty in
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time. The second parameter that must be adequately defined is the number of inactive
time frames required to declare a DC as dead. It is not an explicit of the definition this
issue must be fixed. Indeed, in the definition of community tracking (see Section 5.4),
temporal gaps are allowed in DCs to enable the DC to survive after as many time frame
as necessary. A DC can thus have several episodes of life and death during the scan. A
larger tolerance to temporal gap, that is to say a larger required number of inactive time
frames to declare a DC as dead, decreases the number of death and birth and therefore
of additional events. However, in counterpart it increases the reliability of the events
because a long death is more likely to be a true death. In the results presented in Section
5.4, this minimal number of dead time points is 20. Other numbers have been tested but
20 is a good compromise and it is rather consistent with the lifetime threshold equal to
10 selected for the pruning step.

5.7.2 Interpretation of the events

Higher level of interaction

Splits and merges reveals a high level of interaction since they link two networks that
have been a unique network during the time course. These two networks share thus a
high proportion of their nodes and their time courses should be intricate. A network
that splits or merges can then be related to different functionalities during its lifetime.
Such an observation would for instance give an insight on how the brain is organized
to switch its function and it could serve as disease biomarker if it happens that some
diseases affect this organization.

Lower level of interaction

The analysis of death-death, birth-birth, death-birth, death-survival and birth-survival
events across subjects permits for instance to observe which pDCs stop often their activity
together when it is a recurrent death-death event, or which ones activate at the same time
according to birth-birth events, are they the same or not. With the death-birth events,
if the death of pDC is often simultaneously with the birth of another pDC, it could
for instance means that switching off one pDC implies switching on another. Mutual
influences of functional networks could thus be analyzed. For instance, it could give
hints about the information integration by the brain by determining pattern of activation
through events, and it could also be interesting and easy to access biomarkers.

5.7.3 Methods for event analysis

Increasing the accuracy of the low interaction events

In order to increase the reliability of the death and birth as a complement to the
parameters described above, data from initial steps are re-used. During the community
tracking, a DC is born at time t if the parcels constituting its footprints at time t are
correlated. For the definition of events, a death at time t is declared as a death only if
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the correlation of the footprint at time t has decreased at least of 70% after the necessary
time to be declared as dead (here 20 time points). For a birth at time t, the upcoming
being born footprint, that is to say the footprint of the DC at time t, must have a 70%
lower correlation at t minus the required time necessary to declare the previous episode
of life as dead. These constraints on the correlation permits to ensure a real birth and a
real death of the DC and therefore an accurate additional event detection.

From the subject level to the population level

The events are first identified at the subject level and characterize thus the interaction of
sDCs. However, to obtain a statistically relevant and robust estimation of the interactions
between the dynamic functional networks, it is necessary to transfer these events at the
population level. Therefore, it reduces the number of events taken into account in the
analysis since they must involve at least two sDCs that are components of a pDC (see
Section 5.6). The other events that happen between sDCs that are not linked to a pDC
are not considered in the analysis.

Event occurrence

An event is considered as relevant if it appears in more than one subject. Indeed,
it increases the probability that it is not a spurious event and if it characterizes an
interaction, its repeatability across subjects demonstrates this interaction exists. The
aim is therefore to identify the top-occurring events that happen in several subjects.

Matrices of occurrence for death-death, birth-birth, death-birth, death-survival and birth-
survival events are used to visualize the couple of pDCs that are involved in the top-
occurring events. Indeed, events characterizing the lower level of interaction happens
between two pDCs i and j. The coefficient of one of this matrix in the row i and column
j corresponds to the number of times the death/birth of pDC i occurs at the same time
as the death/birth/survival of pDC j. For the death-death and birth-birth events, these
occurrence matrices are symmetric by definition. Indeed, if the pDC i dies/is born at time
t and the pDC j dies/is born at time t′ ∈ [t− 5, t+ 5], it implies that the pDC i dies/is
born at time t ∈ [t′ − 5, t′ + 5] since it is equivalent to write t ∈ [t− 10, t+ 10]. On the
other hand, the occurrence-matrix for death-survival, death-survival and birth-survival
are not necessarily symmetric.

For the higher level of interaction, the events are less numerous and sparse. Therefore, a
simple extraction of the top-occurring events is enough.

One issue for the analysis of events is the dependency of their number of occurrence
regarding the occurrence, and therefore the co-occurrence, of the DCs it involves. Indeed,
if a DC lives longer than the other DCs, it has more birth and death events and is more
likely to survive when others die or are born. Therefore, its amount of additional event it
is involved in is higher. Moreover, two DCs with long lifetimes may have more temporal
overlap and may also share an higher number of events than the other couples of DCs.
To evaluate the significance of the events and interpret them, it is thus necessary to
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study the relation between occurrence and co-occurrence, as well as the relation between
occurrence and events. The matrices representing the event occurrence can also be
normalized to decrease the influence of these two factors, the occurrence of pDCs and
their co-occurrence. To suppress the first one, the occurrence of an event involving a
pDC A and a pDC B is divided by the sum of occurrences of pDC A and pDC B. The
influence of the co-occurrence on event is eliminated by dividing the number of events
involving pDC A and pDC B by the co-occurrence of pDC A and pDC B. Nevertheless,
these normalizations must be applied with caution because they are also susceptible to
favor outliers. Indeed, even though an event appears one time in one subject, its weight
can be increased by the normalization in regard to the other events if it involves pDCs
with low number of occurrences or co-occurrences. It will thus appear as significant while
it is not. Therefore, a further analysis of the influence of occurrence on co-occurrence
and on number of events is required and is performed in Chapter 7.

5.8 Summary
This Chapter has presented the different steps of the workflow developed in this thesis,
from the preprocessing to the final characterization of the interactions between the
detected dynamic RSNs.

The final output of the workflow are pDCs. Each pDCs is characterized by its constitutive
sDCs occurring in individual subjects. The sDCs change their footprints over time with
a relative stability and they have defined periods of activity. During a period of activity,
at each time step it is equivalent to a community of nodes on the brain surface with an
individual footprint. The set of individual footprints finally forms a dynamic footprint
and associated with the timelines, they characterize a sDCs. The properties of a pDC
depends on its sDCs.

Owing to the occurrence of sDCs and their respective timelines, the global co-occurrence
of the pDCs can be established. The significance of this co-occurrence needs to be
evaluated to estimate if it holds information or if it is just a random co-occurrence.

Moreover, events are expanded to the population-level. If they are numerous enough,
they are analyzed to identify recurrent patterns. As for the co-occurrence, the estimation
of their significance is necessary.

Our methodology provides thus dynamic RSNs represented by pDCs and it allows to
examine interactions between them. Few methods need to be define for the validation of
the results before their presentation.
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CHAPTER 6
Methods for the Validation of the

Results

Several methods are developed to validate the results. The main validation is performed
by testing the repeatability by dividing the population into subsets but it is also possible
to analyze specific properties and verify if the initial requirements are still met at the
population level.

6.1 Properties of interest for the validation of the
Population-level Dynamic Communities (pDCs)

To validate the identified pDCs, some simple characteristics require need to be examined
to evaluate the robustness of the identified dynamic networks.

6.1.1 Repeatability across subjects

The number of subjects where the pDC is identified is an estimation of the consistency
of the pDC across population. Indeed, the more it is present among subjects, the more
its existence as a population wide dynamic functional network is demonstrated. The
minimal number of subjects necessary to declare a set of sDCs as a pDC is determined by
the lowest degree for center dmin (see Section 5.6). Here it is fixed to 50. The numbers
of subjects where the pDC is present can be lower than the lowest degree for center
because the node corresponding to the cluster center of the pDC can be linked to several
sDCs from the same subject and only one of them is finally attributed to the cluster.
This observation also demonstrates the necessity to decrease as much as possible the
redundancy among sDCs since it obligatory generate a redundancy in pDCs, a level
where the interactions are also analyzed.
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6.1.2 Occurrence within the population

The occurrence of a pDC, that is to say the number of time frames it is active across
the whole population, is linked to the number of subjects where this pDCs is active.
However, the latter does not entirely determine the lifetime of the DC since it is possible
that subjects present high difference of activation duration between the pDCs. Thus, a
pDC can be present in a lot of subjects but for very tiny moments. Furthermore, the
occurrence of a pDC is a metric of interest since it is also related to the number of events
the pDC is involved. Indeed, if a pDC is active in a higher number of time frames, it may
increases the probability for higher number of events since there are more time frames
for them to happen.

6.1.3 Stability of the dynamic footprint

Another metric of interest is the stability of the pDCs (see Section 5.5.1 about pruning
for the definition of stability of a DC). We previously explain that we introduce the
spatial variation of the pDCs across time but that a relatively high stability must be
preserved to enable the differentiation of the pDCs and prevent their agglomeration
into an inappropriately low number of pDCs. Therefore, the final pDCs must present a
relatively high similarity to testify they have been constructed in an appropriate way.

Therefore, these three properties must be evaluated to estimate if the pDCs identified
are appropriate representatives of the functional connectivity at a population level. The
occurrence is of particular interest because it can more or less influence the detection of
interactions between pDCs.

6.2 Freezing the Occurrence within the population

In order to establish to what extent the occurrence determines the co-occurrence or the
number of event, an experiment where the occurrence of pDCs is fixed at the population
level is designed. The co-occurrence and the number of events can thus be analyzed
independently from the occurrence. It is realized by generating sets of synthetic subjects
via the process illustrated by Figure 6.1, here with only 3 subjects. To form one population
of 200 synthetic subjects, the sDCs constituting one pDC are randomly re-attributed to
subjects presenting this pDC in the real population, and it is performed for each pDC.
This random process is repeated to form several populations of synthetic subjects. The
number of possible combinations is very high and in the following experiments, the basic
number of synthetic population is equal to 1000. The total occurrence of each pDC is
thus conserved across population via this operation and the occurrence is thus fixed.
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Figure 6.1: Illustration of the composition of sets of synthetic subjects from NS = 3 real
subjects.

6.3 Analysis of the correlation of the Subject-level
Dynamic Communities (sDCs)

The identification of the pDCs is based on the detection of relevant sDCs. This detection
is performed by an analysis of the correlation between signals from parcels of the brain
surface. With time courses of the sDCs and their varying footprint, it is possible to
estimate which brain parcels were considered as correlated during the community tracking
at each time t for the initial fixed window size w0, here equal to 80 time points. Figure
6.2(a) provides a support to illustrate the way the correlation is reconstructed from the
sDCs. By applying the steps of the approach described along this chapter on rest-fMRI
signals, the footprint of a sDC is identified at each time step it is active. Therefore, after
the post-processing steps, it is possible to reconstruct the evolution of the correlation
inside the final footprint of the sDC since for each parcel, the fMRI signal is still available.
The relevancy of these sDCs is thus estimated.

The correlation can be reconstructed for different footprints of interest of the sDC. First
of all, the correlation of a footprint is the averaged correlation between the parcels of the
footprint and it is named the correlation strength. To have the more exact information
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concerning the correlation strength of the sDC, the correlation strength must be calculated
for the “dynamic” footprint that may vary at each time t. However, when the sDC is
not active at time t, no footprint corresponds to this sDC at time t and the “dynamic”
correlation is equal to zero. In order to obtain information about what happens to the
parcels of the sDC during a period of death, it is possible to calculate the correlation
of the footprint from the last-living frame, the one that would have to match another
community footprint if the DC survives. The correlation strength of the next-living
frame, the one where the footprint of the DC corresponds to this community footprint
that has been match to the previous last-living footprint for the re-birth, is also relevant
to access the behavior of the sDC when it is not active. The association of this three
correlation strengths provides a complete visualization of the dynamic evolution of the
correlation inside a sDC and testify their accuracy. Furthermore, it is possible to plot for
every time point the correlation strength of the averaged footprint. It allows to state its
significance as a static representation of the dynamic networks.

The access to the dynamic footprints and their corresponding signals also enables to
see the influence of the size reduction of the window on the correlation strength of an
entire footprint. The developed approach is the same as the one previously described to
reconstruct the correlation from the footprints of the sDCs, except that the correlation is
calculated on a smaller number of time points, as explained in Figure 6.2(b). A window
is available at each time point since it is shifted point per point and the tapered window
gives the highest weight to the correlation of its center point. Therefore, the footprint at
time t is constructed owing to the correlation measured in the window [t− w0

2 ; t+ w0
2 − 1].

To observe the influence of the window size, the correlation strength is calculated the same
way as in Figure 7.12(a) but instead of w0 = 80 with a shift of 1 time point, it is calculated
with for w < w0 with a shift of 1 time point as well. The correlation strength derived
from sDC footprint at time t is then calculated in the window [t− w

2 ; t+ w
2 − 1]. It is

difficult to take a number of time points w lower than 50 because, as explained in Section
2.4, the range of interest for the dynamic information is included in [30,300] seconds and
with TR = 0.7, a window containing 50 time points has a length of 0.5 × 0.7 = 0.35
seconds. Therefore, it is already very close from 30 seconds.

6.4 Summary
The three methods described in this chapter enable to validate the results.The properties
defined in Section 6.1 establish to what extent the detected pDCs are robust and reliable
to represent the FC. In Section 6.2, the method developed to fix the occurrence of
pDCs inside a population enables to solve the problem of dependence on occurrence
of the relation between the different pDCs. Finally, the Section 6.3 allows to estimate
the influence of the length of the window during SWA at subject level in using again
the correlation information. It also permits to visualize the output of the community
detection and the community tracking from the point of view of the correlation, the
fundamental metric of our representation.
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Figure 6.2: Methods for correlation reconstruction. The process is illustrated here for
only two consecutive time frames. The first row represents the time course of one DC. For
each time frame, the SWA and the following steps have extracted a footprint of the DC
from the signal via a window here represented in blue on second and third rows. (a) The
fourth row represents the correlation strength of the dynamic footprints reconstructed
at each time t with the blue windows from the signals of each parcel of the footprint at
time t. (b) Window refinement: the fourth row represents the correlation strength of the
dynamic footprints reconstructed at each time t with the red windows.
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CHAPTER 7
Experiments and Results

This chapter presents the results obtained with our representation. First the existence of
pDCs is demonstrated and their properties are depicted. Then their co-occurrences are
examined as a first insight into the relationship they can share and this aspect is next
characterized by the analysis of different types of events occurring between pDCs. Finally,
the relevancy of our approach, parameters and results is validated through different
experiments.

7.1 Identification of Population-level Dynamic
Communities (pDCs)

To determine if it exists pDCs in the functional connectivity, repeatability and other
particular properties described in Section 6.1 must be testified for the identified DCs.
This is why sDCs are tracked across the population. Several choices of parameters and
approaches, on top of additional experiments for the validation of the latter, finally
permits to obtain 6 different pDCs from a set of 200 subjects.

7.1.1 Footprints of the pDCs

The averaged footprints of the 6 pDCs thus detected are represented on Figure 7.1.

It is possible to compare these pDCs to static RSNs to approximate their function and
also to demonstrate that the detected pDCs are not random distributions of parcels on
the brain surface. Dice coefficients, a standard measure of result similarity [BM10], are
calculated between the static RSNs identified by Yeo et al. in [YKS+11] and our pDCs
are calculated. The Dice similarity coefficient d for two segmentations A and B is defined
as [ZWB+04]:

d(A,B) = 2A ∩B
A ∪B

(7.1)
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Figure 7.1: pDCs detected in a set of 200 subjects. The intensity of the parcels on the
brain surface are dependent on the number of subjects in which the parcels is member of
the concerned pDC. The darker the parcel is, the more frequently it is present in the
averaged footprint of sDCs constituting the pDC. Two views are proposed here : the
lateral view of the pDC averaged footprint on both hemispheres and the lateral and
sagittal view of the same footprint only on the left hemisphere. pDCs are labeled from 1
to 6 and the number of subjects in which they appear are specified.

It is a commonly used metric in medical imaging to evaluate spatial overlap and the
reproducibility of a segmentation [ZWB+04]. The similarity matrix between the set
of pDCs and the set of RSNs from Yeo et al. [YKS+11] is represented by Figure 7.2.
For comparison of the footprints, the averaged footprint of the pDCs is simplified by
considering only the parcels that are present in more than 10 subjects in order to compare
a sharp enough footprint but in conserving the subject variability. Indeed, if the averaged
footprint is made of all the parcels that are present at least one time in the sDCs
constituting a sDC, it covers a very large proportion of the brain due to noise and subject
variability. Moreover, it has to be noticed that on the contrary to Yeo et al.’s parcellation,
the spatial overlap between pDCs is allowed. With the observation of the averaged
footprints, a minimum of 10 subjects is a good compromise.

The similarity matrix permits to attribute a pDC to one or several static RSNs. A pDC
remains however different from a static RSN since it has dynamic properties: it activates
and deactivates and it slightly changes its footprint across time. The link between the
averaged footprint of the pDC and the RSN permits to attribute a possible function
to the pDC and also validate our approach that reveals dynamic RSNs represented as
DCs similar to the static RSNs. Thus, by combining Dice coefficient of Figure 7.2 and
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Figure 7.2: Similarity matrix gathering the Dice coefficients between the pDCs and static
RSNs. The static RSNs are : dorsal attention (da), frontoparietal (fp), default (df),
visual (vis), limbic (li), somatomotor (sm) and ventral attention (va). The pDCs labels
corresponds to those defined by Figure 7.1.

information about parcel occurrence in pDCs from 7.1, it is possible to state that :

• pDC1 present in 139 subjects is similar to the visual RSN.

• pDC2 present in 106 subjects is similar to the somatomotor RSN.

• pDC3 present in 69 subjects is similar to the limbic and default RSNs.

• pDC4 present in 32 subjects is similar to the frontoparietal RSN.

It is more difficult to associate pDCs 5 and 6 to RSNs because the Dice coefficients are
lower. Both of them have their highest similarity with the visual network.

7.1.2 Properties of the pDCs

The properties of interest serve as evaluation of the accuracy of pDCs and are also helpful
for the analysis of their interactions, as explained in Section 6.1. The number of subjects
where each pDC is identified, the stability of each pDC and the number of time frames
within the population where each pDC is active are summarized in Table 7.1.

In the previous paragraph, it has already been demonstrated that the footprints of the
pDCs 1, 2, 3 and 4 are more accurately defined than those of pDCs 5 and 6. They
particularly match the static RSNs while the pDCs 5 and 6 cannot be attributed to one
RSN and share similarity with other pDCs, particularly the first one. The first row of
Table 7.1 shows that they are also present in less subjects than pDCs 1, 2 and 3. However,
it does not mean it does not hold information since they are present in more than 10%
of subjects after the post-processing. Moreover, the pDC 4 is present in less subjects
than the pDC 5 but it has been detected first because it has an higher degree in the
similarity graph. Therefore, the significance of the number of sDCs in a pDC must be
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Properties pDC1 pDC2 pDC3 pDC4 pDC5 pDC6
Number of sDCs 139 106 69 32 42 23

Alive time 35865 26742 16932 7623 8009 4480
Stability 0.8434 0.8342 0.8304 0.8239 0.8280 0.8384

Table 7.1: Properties of interest of individual pDCs.

considered in association with the label of the pDC that also access the weight of the
pDC regarding the complete set of sDCs, without consideration for the membership to a
subject. The data for the occurrence of the pDCs in the second row of the Table 7.1 are
here correlated to the number of sDCs constituting each pDC in the first row.

The last row of the Table 7.1 presents the averaged stability value of each pDC across
sDCs being part of it. The values are rather similar for each pDC and are relatively high,
particularly compared to the stability threshold defined for pruning (0.2). It demonstrates
that the expansion of sDCs into pDCs does not decrease the stability and that the final
pDCs are stable.

It is therefore possible to conclude that these evaluations of the properties of pDCs confirm
that the identified pDCs meet the requirements to represent the dynamic functional
connectivity. To check if they are representative of the population, their repeatability is
interrogated.

7.1.3 Repeatability of the pDCs

In order to test the repeatability of the results, the set of subjects is separated into 2
random sets of 100 subjects and the previously described experiments are independently
applied to them with the same parameters. The repeatability of the experiments is thus
quantitatively estimated via cross correlation.

The subjects where the pDCs are present are known and therefore, their characteristics
can be directly evaluated within subsets of the population without the repetition of the
population-level tracking. However, owing to preliminary tests realized first on 20 and
then 100 subjects for the construction of the workflow, this tracking has been performed
independently on small subsets of subjects. From a qualitative point of view, the results
obtained with these smaller populations are as similar as possible from the results with
200 subjects. Indeed, the footprints corresponds to the same RSNs but they are present
in a lower number of subjects.

The functional connectivity measured in this thesis is mainly represented by the footprints
of the pDCs. To evaluate their repeatability, the averaged footprints are recalculated
over each subset of subjects and they are represented in Figure 7.3. It is already possible
to compare the number of subjects the pDCs are part of. Although it is not an exactly
uniform repartition, this split of the population used for the repeatability analysis is
appropriate because the pDCs are almost equally distributed among the two subsets.
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Figure 7.3: Averaged footprints for 2 subsets of the population. (a) First half of the
population. (b) Second half of the population

Moreover, in order to compare the footprints between the two subsets, the Dice coefficients
between averaged footprints of each pairs of pDCs from different subsets are calculated,
without selection of the parcels. They are represented in Figure 7.4.

Figure 7.4: Dice coefficients between the pDCs of the first half of the population and the
pDCs of the second half of the population. All the parcels of the averaged footprints are
used.

The mean of the Dice coefficients between corresponding pDCs in the two subsets, that is
to say the mean of the diagonal of the matrix represented in Figure 7.4, is equal to 0.7373
with a minimum dice coefficient for pDC 6 equal to 0.6622. If the Dice coefficients are
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calculated with pDCs averaged footprints made of parcels present in at least 5 subjects,
the mean is equal to 0.8603 with a minimum dice coefficient for pDC 6 equal to 0.7749.
Therefore, it confirms the repeatability of the pDC footprints between the different
subsets because when the core of the footprints are addressed, the similarity is still higher
and the weakest pDC is the one with the lowest number of subjects, that is to say the
less significant.

Moreover, the number of time frames where the respective pDCs are active, their
occurrence, is also repeatable. The correlation between the occurrence of each pDC in
each subset is calculated and the Pearson’s correlation coefficient is equal to 0.98769
with a p-value equal to 0.0002265. The repeatability of the occurrence is consequently
demonstrated.

Therefore we can conclude that the pDCs identified with our methodological approach
are repeatable and therefore robust. A major part of the aims defined in Section 1 are
thus validated.

7.2 Co-occurrence of the Population-level Dynamic
Communities (pDCs)

In the previous section, it has been demonstrated that robust and repeatable pDCs exist
in brain functional connectivity. They are active during finite periods of time and some
pDCs are more often active within the population than others. It is possible that different
pDCs have temporally overlapping periods of occurrence that indicate a co-occurrence.
The analysis of this co-occurrence is interesting in the sense that the pDCs that co-occur
may interact and be components of a state of activation. On the other hand, pDCs that
never co-occur can be considered as complementary.

7.2.1 Co-occurrence patterns

It is therefore necessary to detect the couples of pDCs that often co-occur. There are
several points of view to define the co-occurrence: it can be independently calculated
in each subject as the number of time frames where both pDCs are active and then
averaged with the number of subjects, or it can be considered as the absolute number
of time frames where the couple co-occurs in the complete population. The second
definition is selected because the whole analysis is conducted at the population level and
the first definition is more influenced by possible spurious co-occurrence happening in
single subjects. The co-occurrence is therefore characterized by the total number of time
frames where both pDCs are simultaneously active.

Figure 7.5(a) is the upper triangular matrix of co-occurrence for each couple of pDCs.
The color of its coefficient in row i and column j corresponds to the number of frames
where DC i and DC j are active according to the color bar on the right. The pairs of
pDCs with the darkest colors are remarkable co-occurrence patterns. Figure 7.5(b) is
a bar plot representing the occurrence, that is to say the number of time frames where
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each pDC is active and it corresponds to the data of Table 7.1. If we compare the
top-co-occurring couples of pDCs with the top-occurring pDCs, it is obvious that they
are corresponding. Indeed, the three couples with the highest number of shared time
frames are DC1-DC2, DC2-DC3 and DC1-DC3. The significance of the co-occurrence can
therefore be questioned, but it is first necessary to verify if this co-occurrence configuration
is repeatable.

Figure 7.5: (a) Co-occurrence matrix whose coefficients visualized by a color scale are
the number of time frames where the concerned couple of pDCs co-occurs. (b) Bar plot
representing the number of time frames across the population where each pDC is active.

7.2.2 Repeatability of the co-occurrence

The repeatability of the co-occurrence is demonstrated in the same manner as the
repeatability of the pDCs in Section 7.1. The population is split into two subsets of 100
subjects and the co-occurrence of each pair of pDCs is computed within each subset.
The co-occurrence matrices are compared and the correlation between the subsets is
calculated. The results are presented in Figure 7.6.

The Pearson’s correlation coefficient is equal to 0.9751 with a p-value equal to 8.00910−24

that demonstrates the significance of this correlation. In both subset the three top-co-
occurring patterns are again DC1-DC2, DC1-DC3 and DC2-DC3. Therefore, it is possible
to conclude that the co-occurrence is repeatable and it is now necessary to establish to
what extent it is significant.

7.2.3 Significance of the co-occurrence

In order to know if the co-occurrence reveals something else than the occurrence of the
pDCs, it is interesting to study the influence of occurrence of pDCs on co-occurrence. The
occurrence is thus frozen as explained in Section 6.2 and 1000 synthetic populations are
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Figure 7.6: Upper triangular matrices for the two subset of the population. r is the
Pearson’s correlation coefficient between the two sets of co-occurrence in each subset and
p is the corresponding p-value.

generated. It is thus possible to compare the distribution of the co-occurrence at subject
level for each pair of pDCs between the 200 original subjects and 1000 ∗ 200 = 200000
synthetic subjects.

The comparison is realized owing to statistical tests. First of all, the distributions of the
co-occurrence of pDCs pairs are not normal according to one-sample Kolmogorov-Smirnov
test and data visualization, so it is not possible to apply a two-samples t-test to compare
the co-occurrence distributions between the real subjects and the synthetic subjects.
Therefore we use a two-sample Kolmogorov-Smirnov test which tests the null hypothesis
H0 that the distribution of co-occurrence in subjects from synthetic populations and real
subjects comes from the same continuous distribution with a level of significance equal
to 0.05. H0 is rejected for two couples of pDCs:

• pDC 1 and pDC 4 with a p-value equal to 0.020161.

• pDC 2 and pDC 4 with a p-value equal to 0.023369.

The multiple statistic correction with a q-value equal to 0.3 conserves these two pairs of
pDCs whose co-occurrence is independent from the occurrence. The q-value is however
relatively high and it means that the probability that these two results are actually false
positive is equal to 30% and it has to be taken into account.

The rejection of H0 for these two pairs of pDCs means that their co-occurrence is not a
random association and is therefore not just an effect of the occurrence, as well as its
event. The box-plots of the distribution of real and synthetic subjects are represented in
Figure 7.7. It shows that the co-occurrence of pDC 1 and pDC 4 happens globally more
often than random while the co-occurrence of pDC 2 and pDC 4 tends to happen less
often than random.
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Figure 7.7: Box-plots of the distributions of number of frames where a couple of pDCs
co-occurs in one subject. The ordinate represents the number of frames. (a) Left
box-plot: Co-occurrence of pDC 1 and pDC 4 in 200 000 synthetic subjects. Right
box-plot: Co-occurrence of pDC 1 and pDC 4 in the 200 original subjects. (b) Left
box-plot: Co-occurrence of pDC 2 and pDC 4 in 10 000 synthetic subjects. Right box-plot:
Co-occurrence of pDC 2 and pDC 4 in the 200 real subjects.

7.3 Analysis of Events at Population Level

Among the events detected with the sDCs at the subject level, a part of them survives
at the population level if they involve sDCs associated to a pDC. The detection of the
events is performed at the subject level but their analysis is made at the population level
to increase its statistical weight. The different steps of the construction of pDCs from
the fMRI signals are designed to detect as many events as possible in order to obtain
the highest amount of data and by this way, to increase the accuracy of the analysis.
Indeed, it is necessary to extend the dataset because noise remains in the pDCs and it
is therefore also present in the interactions identified through events of high and low
interaction levels.

7.3.1 High Level of Interaction

In spite of all the effort implemented to conserve splits and merges that characterize
spatial and temporal interaction between two or more DCs, the pruning step after the
community tracking where they are identified suppress a large part of them. It is the
cost for the denoising essential to obtain stable and consistent pDCs. The low number
of remaining events can either mean that most of splits and merges results from noise
and does not really happen in the brain, or that the pruning is too hard and suppress
too much information. Several thresholds have been tested for the minimal lifetime and
stability but it is difficult to choose a lower threshold than 10 time frames and 0.20 for
stability if the priority is the noise suppression. Therefore, among the 200 subjects, only
10 splits remains at the population level and only one appears in two different subjects.
The others occurs one time in a unique subject. Therefore, these high level of interaction
events have a too low statistical weight to produce a reliable model for the interaction of
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Figure 7.8: Event matrices without scaling for death-death, birth-birth, death-birth, death-
survival and birth-survival events. The coefficients of the matrices represents the number
of occurrences. Rows and columns corresponds to pDCs.

pDCs.

7.3.2 Low Level of Interaction

The co-occurrence can also be considered as the lowest level of interaction and events
used to represent the low level of interaction, only based on temporal information, are at
the end more or less a characterization of meaningful co-occurrence. Indeed, it highlights
for instance the pDCs that often co-occur with a similar pattern via death-death and
birth-birth events and those which are complementary via death-birth events. At this
lower level of interaction, the events are more numerous and some of them are recurrent
across subjects. The matrices of occurrence described in Section 5.7.3 are represented in
Figure 7.8.

The death-death and birth-birth events are symmetric by definition, but it is visible that
the other matrices are almost symmetric too. A possible interpretation is the influence
of occurrence and co-occurrence of DCs on the number of events they are involved in.
Indeed the co-occurrence is a symmetric properties since if DC A occurs at the same
time as DC B, it also means that DC B occurs at the same time as DC A and it has
already be explained that occurrence more less influences the co-occurrence of particular
couples of pDCs.

Furthermore, the matrices of Figure 7.8 underline that for each type of event, some
of them occurs more frequently. Therefore, re-occurring patterns exist at this level of
interaction. The top-occurring events often involve top-occurring pDCs 1, 2 and 3 but,
for instance, the second top-occurring event for death-birth events happens between pDC
1 and pDC 4. It is particularly interesting because the co-occurrence of this couple of
pDCs is demonstrated as significant in Section 7.2.3. Therefore, it is an example of
significant event that can be of interest for neuroscientists. However, the repeatability of
the events must be established in order to validate their occurrence.
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Events r p
Death-Death 0.73019 4.3164e-7
Birth-Birth 0.87819 1.9772e-12
Death-Birth 0.49947 1.9265e-3

Death-Survival 0.83758 1.8962e-10
Birth-Survival 0.8494 5.7801e-11

Table 7.2: Correlation between the number of events in two subsets.

7.3.3 Repeatability of the events

The population is once again separated into two subsets to perform a test of repeatability
on the lower level of interaction. Indeed, there are not enough events characterizing the
higher level of interaction to process a relevant analysis of their repeatability.

For each of the two subsets of the population, the different kinds of events are counted.
The matrices of occurrence are build and the correlation between those corresponding to
the same type of events are calculated. The results are summarized in the Table 7.2.

It demonstrates that we obtain a high repeatability between the two subsets of the
population since the computed correlation is close from 1. The death-birth events have
a lower correlation value but it is also the type of event with the lower number of
occurrence and it is therefore the most affected by the reduction of the number of subjects
in the population. This experiment validates the events occurrence. Their independence
regarding the occurrence of the pDCs can be tested to evaluate their significance.

7.3.4 Evaluation of the significance of the events

To eliminate the influence of the occurrence on the number of events, the simplest
approach consists in normalizing, for all couple of pDCs (A,B), the number of events
between pDC A and pDC B by the sum of the respective occurrence of A and B. The
normalized event matrices thus generated are depicted in Figure 7.9. The events are
more distributed among pDCs than in Figure 7.8 and some of them tends to show a
higher recurrence, such as death-birth between pDC 1 and pDC 4 or the death-survival
between pDC 4 and pDC 3. To validate this approach, the repeatability is analyzed the
same way as in Section 7.3.3. The correlation and p-values thus obtained are summarized
in Table 7.3.

When we compare Table 7.2 and Table 7.3, the correlation is globally lower when the
number of events is normalized by the occurrence. It can be interpreted in different ways,
such as the non-repeatability of the events and therefore their non-significance, or it can
also indicate that this normalization is not appropriate. Indeed, it favors the events with
a small number of occurrences and therefore, an event that happens few times and in
few subjects, but with pDCs of short lifetime, has finally a relatively high weight in the
related event matrix compared to the other events. It can reflect the true configuration
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Figure 7.9: Event matrices normalized with occurrence for death-death, birth-birth, death-
birth, death-survival and birth-survival events. The coefficients of the matrices represents
the normalized number of occurrences. Rows and columns corresponds to pDCs.

Events r p
Death-Death 0.24857 0.14378
Birth-Birth 0.83152 3.3662e-10
Death-Birth 0.20703 0.22569

Death-Survival 0.62945 3.9108e-5
Birth-Survival 0.66994 7.8544e-6

Table 7.3: Correlation between the normalized number of events in two subsets.

of the brain activity but it is necessary to further explore the links between occurrence
and event to establish the significance of the latter.

Number of events in synthetic populations with fixed occurrences

Sets of synthetic subjects with fixed occurrence are generated according to the method
described in Section 6.2 to provide an evaluation of the significance of the events,
independently from the occurrence of the pDCs they involve. These synthetic subjects
are considered as 1000 different populations and the number of events are calculated
across each population. For each possible event, it thus creates a distribution of their
number, with a mean and a standard deviation. The z-score of the number of events for
each event in the original population is calculated to evaluate to what extent the number
of events is affected by the randomization of the sDCs. The results are represented in
Figure 7.10 with matrices of z-scores.

It is visible in this figure that the number of positive and negative z-scores is balanced, and
that some events have a particularly high z-score. With a two-tailed test and a maximum
p-value equal to 0.05, that is to say a level of significance equal to 0.05, the significant
z-scores are those whose absolute value is higher than 1.96. They are highlighted in
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Figure 7.10: Matrices of z-scores between the distribution of number of events in synthetic
populations and the number of event in the original population. An event with one star
means that the z-statistic reject the null hypothesis and the event with two stars is the
one surviving to the multiple statistic correction with a q-value of 0.05.

Figure 7.10 by stars and summarized with their z-score and corresponding footprint in
Figure 7.11. Moreover, if a multiple statistic correction is applied at a q-value of 0.05, it
remains one event labeled with two stars in Figure 7.10. This event is the simultaneous
birth of pDC 1 and birth of pDC 2. It has a positive score and it happens consequently
more often than random.

This experiment demonstrates that a certain number of events are more significant,
admittedly with more or less confidence, but it demonstrates that they are holding
information. It would be now interesting to observe for instance how their occurrence is
influenced by neuropathologies.

7.4 Validation of the parameters

The results described above meet the requirements defined in Section 1. Indeed, a robust
representation of the dynamic functional networks is constructed and a selection of events
characterizes interactions in a significant way. Further experiments are however helpful
to justify the choices made for the construction of this new representation that uses fMRI
signals with low Signal-to-Noise Ratio and cannot supported by a ground truth because
none exists.

103



7. Experiments and Results

Figure 7.11: Table of the events declared as significant by a statistical test on their
occurrence in synthetic subjects and in real subjects. The concerned events are indicated
in the first row and their related z-score in the second row. The footprints of the involved
pDCs are represented on the right of the table. The framed event is the one that survives
after the multiple statistic correction with q-value equal to 0.05.
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7.4.1 Post-refining of the Window Size to study the Consistency of
Community detection

These experiments use the technique described in Section 6.3 to have a closer look to the
correlation inside the final footprints of the sDCs.

Validation of the community tracking and importance of the time varying
footprint

Firstly, reconstructing the time-varying correlation of the footprints when they are active
enables to validate the community detection. In the graph used for the community
detection, two vertices are connected if their correlation is higher than a correlation
cutoff of 0.8, that is to say if they are highly correlated. However, all the points of one
community do not necessarily have a pairwise correlation higher than 0.8 because all
pairs of node in one community are not necessarily connected. The community detection
algorithm aims to ensure a high correlation between parcels of the community and it
is possible to check how high is this correlation with the first part of this experiment.
Figure 7.12(a) represents with gray blocks the time course of each sDC for one subject
with the associated averaged correlation, also named here correlation strength, within
their dynamic footprints in blue. If the sDC is not active at time t, the sDC has no
dynamic footprint at time t and the “dynamic” correlation is equal to zero. To visualize
the information during a period of death, the correlation of the footprint from the
last-living frame, the one that would have to match another community footprint if
the DC survives, is plotted in green and the correlation of the next-living frame, the
one where the footprint of the DC corresponds to this community footprint that has
been matched to the previous last-living footprint for the re-birth, is plotted in magenta.
Moreover, from observation on several subjects, a correlation threshold for the activation
of the sDCis identified. Even though, it is an arbitrary value, it provides a better
visualization for the comparison of the activity peaks. It is approximately equal to 0.6
and it is here represented by a red horizontal line. Figure 7.12(a) demonstrates that the
parcels from sDCs footprints are globally more correlated when sDC is active. Indeed,
the last-living and next-living footprint correlation respectively decreases and increases
during the inactivity periods while the dynamic footprints have a higher correlation
during activity. Therefore, the community detection results in reliable pDCs after the
community tracking.

The same tool is used to visualize the correlation of the “static” footprint of the sDCs,
that is to say their averaged footprint which is used to build the similarity matrix in
consolidation and tracking across the population. Figure 7.12(b) represents for the same
subject as Figure 7.12(a) the evolution of their correlation in parallel with their time
course. It highlights the importance of the time-varying footprint since the static footprint
is far more smoother and globally higher than the dynamic footprint during the period
of activity. However, their evolution are similar and it is possible to observe that the
last-living and next-living footprints share correlation variations with the static footprints,
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even if both of last-living and next-living footprints correlation are not correlated together
most of the time.

To conclude, this experiment demonstrates that the averaged sDC footprint is not an
accurate representation for the dynamic properties of the pDC. However, the dynamic
community detection is validated here since the communities it extracts from the data
conserve their accuracy after the community tracking and the post-processing, as it is
demonstrated in Figure 7.12(a).

Post-refining of the window size

The selection of a window length for the SWA is one of the weakness of our representation
(see Section 2.4.1). In order to verify the influence of the window size on our results
without repeating the SWA which is computationally expensive (45 minutes per subject),
it is possible to use the data from the already constructed sDCs to observe the correlation
fluctuations at a smaller time scale, as explained in Section 6.3. A refinement to 50
time points may present high peaks when the correlation strength obtained with 80 time
points is subtracted to it. A peak can for instance be an outlier whose influence had
been smoothed by the use of more time points, but it can also be a significant peak of
activation that has been missed due to the same smoothing.

Figure 7.12(d) represents the absolute difference of correlation strengths between a
reconstruction with 80 time points and 50 time points. It does not exist major differences
that could have revealed missed activation. Indeed, when we compare Figures 7.12(c) and
7.12(a) that respectively represent the correlation strength for a window length of 50 and
a window length of 80, it is visible that the variations of the three different correlation
strengths are globally the same. However, it is also remarkable that they are sharper for
50 time points.

The significance of this experiment is limited since it is built on results obtained with a
larger time window but if major differences would have existed between dynamic networks
detected via a SWA with a window length of 80 time points and dynamic networks from
a SWA with a window length of 50 time points, they would have yet been revealed by this
experiment. The constructed sDCs and the associated pDCs are therefore still relevant
at a finer temporal scale and the use of 80 time points is thus validated.

7.4.2 Similarity Threshold for the sDCs Tracking

In order to select the most accurate similarity threshold for community tracking at subject
level, we observe how the number of mutual topics (Figure 7.13(a)), the number of DCs
(Figure 7.13(b)) and the number of events (Figure 7.13(c) and (d)) evolve when k varies
between 0.4 and 0.8. These elements are of particular interest as explained in Section
5.4.4 where the concept of mutual topics is also defined.

The results of these experiments are presented on Figure 7.13. The community tracking
is tested for k = {0.4, 0.5, 0.6, 0.7, 0.8} on 10 different subjects, and the mean of the four
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Figure 7.12: Time courses of pDCs represented by gray blocks aligned with the correlation
of dynamic pDC footprints for one subject. The subject has 8 pDCs and therefore 8
sets of plots. The tapered correlation strengths are plotted between 0 and 1 for each
time window. The x-axis is the time axis where one unit of time corresponds to one time
frame since windows are shifted with a step of one time frame. The red line is arbitrary
located at a correlation of 0.6 and aims to better visualize the correlation variations. (a)
Dynamic correlation strengths reconstructed from the dynamic footprints with w0 = 80.
The blue plot is the tapered correlation strength for the footprint of the pDC at time t
and it is different from 0 only when the pDC is active. The green plot corresponds to
the correlation coefficient of the last alive footprint before a death of the pDC, while the
magenta plot is the correlation coefficient for the upcoming being born DC footprint after
a death. These two plots are different from 0 when the pDC is not active. (b) Correlation
strength reconstructed from the constant averaged footprint with w0 = 80.The blue plot
represents this correlation strength. (c) Dynamic correlation strengths reconstructed from
the dynamic footprints with w0 = 50. (d) Absolute differences between the reconstructed
correlation strengths of dynamic footprints at w0 = 80 and w′0 = 50.
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criteria of interest is plotted. The number of mutual topics corresponds to the number of
vertices that are present in the same communities during two consecutive time frames. It
is obvious that k = 0.6 provides a higher number of mutual topics than the other values
of k, except for k = 0.4. As the stability is a requirement of our representation, k=0.6 is
favored. The number of DCs logically increases with k but has its minimum at k=0.5
and it is similar for k = 0.4 and k = 0.6. Concerning the number of events, it decreases
when k increases because the number of birth increases. Indeed, a community produces a
split or a merge if it shares at least a proportion k of its parcels with several communities.
When k increases, the requirement are higher and instead of split and merge, it is birth
of new DCs that happens.

Figure 7.13: Illustration of the effect of the similarity threshold k. The community
tracking is applied on 10 subjects with k = {0.4, 0.5, 0.6, 0.7, 0.8}. (a) Number of mutual
topics in 10 subjects. (b) Number of DCs. (c) Number of splits. (d) Number of merges.

To conclude, from this experiment on 10 subjects, the most appropriated similarity
threshold k for the community tracking is equal to 0.6. This value enables a high stability
of the resulting sDCs and also the detection of events in a reliable way.

7.4.3 Determination of the number of Subject-level Dynamic
Communities (sDCs)

The choice of a clustering algorithm for the consolidation requires the choice of a number
of clusters that corresponds here to the number of sDCs detected within a subject.
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From the literature [YKS+11], there are several networks partitions but the dominant
trend is to split the brain from 7 ICNs up to 17 ICNs where most of the networks are
actually sub-networks of the 7 ICNs ([ADP+14], [TF15], [LSGVDV14], [YAMC15]). As
mentioned in Section 5.5.2, different approaches are implemented for the determination
of the number of DCs.

Selecting an order of magnitude for the number of sDCs

As a first try, the number of cluster is supposed to be closer from 17 because a higher
number of clusters permits to obtain a higher quantity of information concerning the
interactions. However, the redundancy and the inaccuracy of some resulting sDCs
(see Figure 7.14) urges us to decrease the range of interest. Results obtained with a
fixed number of 8 clusters (see Figure 7.15) are compared with results for 18 clusters
(see Figure 7.14). These values, 8 and 18, were inspired from calculation of Silhouette
coefficient on a small sample of subjects for different number of clusters. It finally appears
that the sDCs are less redundant for a lower number of clusters and therefore for a
harder consolidation. Increasing the number of clusters increases only the redundancy
and not the number of effective sDCs. The footprints for k = 8 depicted in Figure 7.15
are relatively well defined and some of them correspond to well-known RSNs such as the
default-mode networks or the motor network (see Section 2.2.1 for an overview of the
static networks).

Figure 7.14: Averaged footprints of 18 consolidated sDCs for one subject. DC 5 and 7
are very similar. DCs 3, 10, 11, 12, 17 are for instance probably not real sDCs because
they are either non-symmetric on both hemisphere (3) or very distributed (11, 17) or not
enough stable (10, 12).

Consistency of the number of sDCs per subject

In order to check if the number of clusters can be the same for all subjects, the clustering
algorithm is applied with numbers of clusters from 5 to 25 across 20 subjects and with
50 iterations. The mean cluster Silhouette coefficient is then calculated for each number
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Figure 7.15: Averaged footprints of 8 consolidated sDCs for the same subject as in Figure
7.14. DC 1 is similar to the RSN of dorsal attention, DC 2 is similar to ventral attention,
DC 5 is part of the motor network, DC 7 is also part of motor network, DC 8 is similar
to default-mode network. The others do not look like known RSNs [YKS+11].

of clusters (see Section 3.2 for explanation on Silhouette coefficient). The aim of this
experiment is to determine if a local maximum of the subject Silhouette coefficient exists
or not. The plot of Figure 7.16 demonstrates that no local maximum is within this range
and the smallest number of clusters, 5, gives the highest Silhouette coefficient.

Figure 7.16: Averaged subject Silhouette coefficient for 50 iterations on 20 subjects as
function of number of clusters k ∈ {5 . . . 25}

However, when individual subject Silhouette coefficients are observed, a high variability
between the plots of the subject Silhouette coefficients is obvious and the lowest number
of clusters corresponds not always to the largest Silhouette coefficient, as illustrated on
Figure 7.17.

Therefore, 5 is not an optimal number of clusters for all subjects and restricting the
number of sDCs to 5 also decreases the quantity of information about pDCs interactions
then. Indeed, the number of clusters also influences the number of events of low and
high interaction, because a lower number of DCs reduces the possible numbers of actors
for these events. Although it increases the computational cost, it is thus necessary to
perform an individual optimization step for each subject to determine its appropriate
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Figure 7.17: 4 different subject silhouette coefficients as function of number of clusters
k ∈ {5 . . . 13}

number of clusters for the consolidation. Several optimization procedures have been
tested.

Individual optimization of the number of sDCs per subject

The first optimization method, that also permits to draw the previous conclusion, is
the maximization of the Silhouette coefficient in a specific range of number of clusters
k ∈ {7 . . . 13}. For each subject, the spectral clustering is applied 50 times per value of
k and the k corresponding to the maximum of the silhouette coefficient is selected as
the optimized number of clusters k. The final pDCs obtained with this optimization
procedure performed on 100 subjects is presented on Figure 7.19.

The second optimization algorithm uses Eigengap heuristic (see Section 5.5.2) to estimate
the number of connected components in the graph built for the consolidation and the
range for k is also {7 . . . 13}. Figure 7.20 shows the resulting pDCs footprints with exactly
the same parameters as Figure 7.19.

Finally, we replace clustering by community detection based on stability, a method already
used for the community tracking. It does not require any fixed range and determines
thus the number of communities in the pruned sDCs at the first hierarchical level (only
1 Markov time is used). It confirms the use of a range closer to 7 than to 17 for the
optimization of the number of clusters since for 100 subjects, the number of clusters
varies between 3 and 8. Figure 7.21 corresponds to the final pDCs, always with the same
parameters.

Figure 7.18 permits to compare the three optimization processes tested by displaying
the distribution of the difference of cluster numbers for each subject according to the
method selected. It is obvious that the silhouette coefficient and the Eigengap heuristic
methods provide higher number of DCs than the community detection. Indeed, the use
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of community detection permits to consolidate the sDCs to form very stable DCs but
they are at the end too stable and even close from being static when the time lines
are considered. Moreover, reducing the number of sDCs to very low values such as 3
implies that a lot of information is lost since the temporal overlap of the consolidated
DCs is obligatory high. Therefore, the community detection is not appropriated for
the consolidation because it is a too hard process. Figure 7.21 supports this choice
because with equivalent parameters, only three pDCs are detected and one of them is
not meaningful, while consolidation using clustering techniques detects at least 6 pDCs.

Figure 7.18: Histograms representing the distribution of the differences between the
number of sDCs obtained with 2 different techniques. (a) Number of sDCs obtained via
optimization of the silhouette coefficient minus number of sDCs obtained via Eigengap
heuristics.(b) Number of sDCs obtained via Silhouette coefficient optimization minus
number of sDCs obtained via Community Detection.(c) number of clusters obtained via
Eigengap Heuristic minus number of sDCs obtained via Community Detection.

The Silhouette coefficient and the Eigengap heuristic provide more similar results since
the distribution of differences of their number of sDCs on Figure 7.18(a) is centered on 0.
Eigengap heuristic tends to detect globally more sDCs than Silhouette coefficient. The
final number of pDCs is finally higher with Eigengap heuristic optimization, as illustrated
in Figure 7.20, although three of its pDCs are present in less than 10 subjects, while only
one is in less than 10 subjects for Silhouette coefficient optimization. Silhouette coefficient
and Eigengap heuristic optimizations provide thus similar results. After several tests with
200 subjects, the Silhouette coefficient is finally preferred to determine the number of
sDCs after the consolidation because the number of subjects where the pDCs are present
is globally higher for procedures using Silhouette coefficient instead of Eigengap heuristic.
Moreover, it is a compromise between community detection and Eigengap heuristics.

To conclude, the number of sDCs k is optimized between 7 and 13 owing to the mean
Silhouette coefficient estimated via 50 iterations per value of k of the spectral clustering.
It provides then approximately 6 pDCs according to the selected parameters for the
population-level DC tracking. To reduce the redundancy of the detected networks and
obtain stable pDCs, a maximum number of clusters equal to 13 is selected. However,
because a too hard consolidation leads to loss of dynamic information and abusive merge
of DCs, a minimum cluster number of 7 is also set. Moreover, each subject can have a
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different number of clusters and it is neurophysiologically relevant since during the fMRI
experiment, all the DCs may be not active. The minimum is yet 7, the number of static
ICNs, because sub-networks can also be identified and some sDCs might correspond to
noise which can be thus isolated. Furthermore, this range has been confirmed by several
tests with other ranges and the observation of the resulting footprints.

Figure 7.19: pDCs obtained after consolidation with Silhouette Coefficient optimization
for 100 subjects. The similarity threshold between the sDCs is 30% and the lowest degree
for center is equal to 30 (see explanations of this parameters in 5.6). pDCs 1, 3 and 4 are
similar to dorsal attention and visual networks, pDC 2 is similar to motor network, pDC
5 is similar to default-mode network. pDC 4 is only present in 4 subjects and does not
lot looks like any known ICN [YKS+11]

Figure 7.20: pDCs obtained after consolidation with Eigengap heuristics for 100 subjects.
The similarity threshold between the sDCs is 30% and the lowest degree for center is
equal to 30. pDCs 1 and 2 are similar to dorsal attention and visual networks, pDCs 3
and 7 are similar to motor networks, pDC 5 is similar to default-mode network, pDC 6 is
similar to a part of the motor network. The pDC 4 is present in only 3 and cannot be
identified to one of the 7 ICNs described in [YKS+11].

7.5 summary

The key parameters of the three main steps of our approach, the community detection,
the community tracking and the consolidation at subject level, are consequently validated
by the experiments. Added to the individual validation of the different results, it permits
to conclude that our approach is reliable.
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Figure 7.21: pDCs obtained after consolidation with Community detection based on
stability for 100 subjects. The similarity threshold between the sDCs is 30% and the
lowest degree for center is equal to 30. pDC 1 is similar to dorsal attention network, pDC
2 is similar to motor network and DC 3 does not look like any known ICN [YKS+11].

The three main elements highlighted in this chapter are the pDCs that correspond to
the components of the dynamic FC, their co-occurrence and their interactions. For each
of them, its repeatability across two subsets of the population is tested. A particularly
interesting point concerning the pDCs is their similarity with specific static RSNs.
Moreover, it has been demonstrated that our approach enables to detect significant
co-occurrence of couple of pDCs and events for the analysis of interactions and it is
sufficient to state that interactions exist between pDCs.

114



CHAPTER 8
Discussion

In this chapter, the results are first discussed with regards to the aims of the thesis and
the related limitations are highlighted. The main contribution of the thesis is a reliable
and robust representation of the dynamic RSNs via spatial and temporal components
respecting specific requirements. In addition, we define methods for the analysis of their
interactions.

Two key choices made for the methodology are also explained in this Chapter before the
discussion of the limitations of the overall methodology examined step by step.

8.1 Results
The results are validated through different experiments described in the Chapter 7. The
dynamic functional connectivity is represented by 6 different pDCs inside a population of
200 subjects (see Figure 7.1). 4 of them are highly similar to static ICNs (see Figure 7.2)
and they are all reproducible (see Figure 7.3). Moreover, two couples of pDCs have a
particularly significant co-occurrence that increases the significance of their events (see
Section 7.2.3). The significance of the events is also evaluated independently from the
occurrence and some of them happen more often or less often than random (see Section
7.3). The pDCs act thus as components of the dynamic brain functional connectivity,
being sometimes simultaneously active and exchanging nodes at different time steps.
They present a spatial variation as well as activations and de-activations that permits to
study their interactions. The initial requirements defined in Chapter 1 are thus respected,
even if the interactions are only identified at the temporal level (see Section 7.3.1).

8.1.1 Loss of information

The functional dynamic connectivity cannot be analyzed in all the subjects since one
subject presents a reduced number of pDCs and sometimes none. The histogram depicted
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by Figure 8.1 illustrates that approximately 30% of the population has one or none of
its sDC related to a pDC. It is normal that all the pDCs are not represented into one
subject since they may be not all active during the time of the experiment. However,
it is not possible to have none of the functional network active within a subject and it
is necessary to accept that the pDCs detected with our approach do not characterize
the complete functional connectivity. It is the cost to obtain robust pDC. A part of
the information is sacrificed to ensure the reliability of the remaining part but it is still
accessible and it is therefore possible to extend the pDCs to more numerous subjects if
less defined footprints are acceptable. Working at the population level is necessary at
this preliminary stage of the representation development because it needs to be validated,
as well as the tools it provides, to be then applied at the subject-level.

Figure 8.1: Distribution of the number of pDCs per subject. The maximum number
of pDCs detected in 1 subject is 5 while some subjects present no pDC at all. This
distribution is made of 200 subjects.

Furthermore, in order to obtain consistent pDCs, a consolidation step is performed and
also creates a loss of information. Its parameters have been designed in order to decrease
the redundancy between the sDCs (see Section 7.4.3) but it also results in a compression
of the sDC. With Figure 8.2, it is possible to remark that it indeed reduces efficiently
the redundancy: when the footprints of the pDCs, constructed with parcels which are in
at least 5 constitutive sDCs, are compared between each other via their Dice coefficients,
it is visible that the redundancy is globally eliminated within subjects. Indeed, the Dice
coefficients are low, except between the pairs pDC1-pDC5 and pDC1-pDC6. However,
it has already been pointed out that pDC5 and pDC6 are less reliable than the other
pDCs and the properties of these two DCs must be considered with care (see Section 7.1).
The low values of Dice coefficients also confirm that the probability of splits and merges
between these pDCs is very low since it requires sharing of nodes at different time points.
Most of the splits of merges are suppressed during the pruning on lifetime. It could either
mean that they happens at very short time scale (less than ten time frames, threshold
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used during the pruning) or that they do not happen in our representation despite of the
optimization of the parameters along the steps of construction of pDCs, or also that the
pruning is too hard and it is an additional source for the loss of information. It can be
remarked that loss of information happens most of the time during processes that aim to
eliminate noise. Denoising is indeed one of the biggest challenge when fMRI data are
used (See Section 2.5), and if the efficiency of the pre-processing steps is increased, a
higher quantity of significant information could be used.

Figure 8.2: Dice coefficients between the pDCs.

8.1.2 Interpretation of the detected interaction

The events are defined according to death and birth of a DC and therefore according
to a notion of “activation” which is used several time here. In our representation, a
network is “active” at time t if it is formed at time t, that is to say if its parcels have
correlated signals at time t. It is therefore assumed that when the brain needs one of
its function, regions constituting the concerned networks become linked to form this
network. However, correlation of fMRI signals does not mean activation [VdHHP10].
The referred concept of activity here is thus the activity of the network. The translation
to the activity of a function must be handled with care for the interpretation of the
dynamic characteristics of the networks.

Several experiments are performed to determine to what extent the interaction identified
by this representation can be trusted as true interaction and not as a random combination
of death, birth and survival (see Section 7.2.3 and 7.3.4). Their repeatability is first
established between two subsets that ensure similar footprints for the pDCs (see Figure
7.3 and Section 7.3.3). The other experiments uses a fixed occurrence by generating
synthetic subjects (see Section 7.3.4). All the possible combinations of pDCs are not
generated and it is a problem for the evaluation of the event significance if the number
of synthetic populations is lower than 200 according to experiments, since some of the
events detected as significant at one iteration are no more significant at the next iteration.
A set of events is however stable across iterations for a number of 1 000 populations and
it is sufficient to validate our approach (see Figure 7.11).
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The co-occurrence is not directly defined in this thesis as an interaction. It has already
been explained that the events are a sort of characteristic behavior of the co-occurrence
(see Section 7.2). The co-occurrence is influenced by the occurrence but for two couples
of pDCs it happens more or less often than random in a significant way (see Figure 7.7).
On the other hand, a set of events are not influenced by the occurrence and most of them
do not happen between the two couples of pDCs mentioned previously (see Figure 7.11).
Our representation thus provides different ways to study the interaction of the dynamic
functional networks it constructs.

8.2 Definitions of Similarity

Two different similarity functions are utilized in this thesis to compare two communities.
Equations 8.1&8.2 remind below their respective definition with simple notations. A
and B are two groups of points which can for instance be communities as in community
tracking or footprints on the brain surface as in consolidation or pDCs detection.

sim(A,B) = |A ∩B|
max (|A| , |B|) (8.1)

J(A,B) = |A ∩B|
|A ∪B|

(8.2)

The first definition of similarity is used for the community tracking while the second one,
the Jaccard, is utilized for the consolidation and the pDC detection.

If two communities A and B share a very low number of parcels, the similarity is close
to zero because |A ∩B| → 0. The Jaccard J(A,B) is closer to zero than the similarity
function sim(A,B) because |A ∪B| ≥ max (|A| , |B|). On the other hand, if A and B
share almost all their parcels, the similarity is close to one. In that case, max (|A| , |B|)
is still lower than |A ∪B| and then the similarity function sim is closer to one than the
Jaccard. Therefore, the Jaccard is a harder similarity function than sim. The difference
between these two similarity functions decreases when the difference between the size of A
and the size of B increases because then |A ∪B| −−−−−−−−−→

|A|→∞,|B|→0
max (|A| , |B|). Moreover,

function sim is globally higher than Jaccard because |A ∪B| ≥ max (|A| , |B|). It is
illustrated in Figure 8.3 which represents the two similarity functions evolution for a
toy example. Two communities represented by two vectors of size 50 filled with 0 and
1 shares the number of vertices indicated on the x-axis and always contain the same
number of vertices.

As the similarity function sim is generally higher than the Jaccard, its tolerance to noise
in the footprints would be higher too and less spurious DCs are created in the community
detection. Moreover, to increase the stability, the communities associated to the same
sDC must have approximately the same size and it is therefore particularly relevant to
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Figure 8.3: Illustration of the evolution of Jaccard and sim function when two groups of
points A and B increase the number of points they share x represented on the x-axis.
A ∪B = 50 is constant, A ∩B = x and |A| = |B| = 25 + x

use sim. However, for the consolidation, the tolerance to noise has already been allowed
in the community tracking and the loss of information must be restricted by a hard
enough similarity function. It permits a compromise between a too permissive and a too
hard consolidation. For the population-level DC detection, the similarity threshold is
already low and this step is delicate because it is the one that determines which events
remain at the population level. They need to be as accurate as possible and a harder
metric like the Jaccard is more appropriate.

Moreover, an interpretation of their difference is that sim takes one of the community as
reference while Jaccard used both communities. It is relevant for tracking to compare
one community to another because this process aims to link one specific community at
time t to another at time t+ 1. On the other hand, consolidation and pDCs detection
look for ensemble of communities.

8.3 Choices for the Consolidation of sDCs: Spectral
Clustering

The consolidation is performed owing to a spectral clustering, as explained in Section
5.5.2. It is a sensitive step designed to make the sDCs workable for their translation at
the population level and it could be realized in several different ways.

8.3.1 Choice of the method

For the consolidation step, we could have used a different way to link the fragments of
sDCs that are separated by the community tracking. The first try was to perform a
kind of “manual” consolidation also based on the similarity of the averaged footprint
of the sDC, in a similar way to pDCs tracking. The advantage of this method is its
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ability to introduce the constraint of temporal overlap: two fragments cannot be linked
if they temporally overlap. A tolerance of five time frames is accepted, in analogy with
the tolerance for the definition of events. However, a similarity threshold must be fixed
and if it is too high, the redundancy is still high and the sDCs are not consolidated.
On the other hand, if this similarity coefficient is too low, all non-overlapping sDCs
are linked in a non-accurate way. Methods to find an optimal similarity threshold have
been developed but none of them provides an appropriate result. These methods aim to
decrease the similarity between the consolidated sDCs and to increase their respective
stability (see definition in Section 5.5.1). Obviously, increasing the similarity threshold
provides a softer consolidation with more sDCs and therefore higher stability within
sDCs and also higher similarity between sDCs. As decreasing the similarity threshold
would have the contrary effect, an optimal similarity should exist and be detected by the
joint analysis of stability and similarity, but none has been found. Because the similarity
and stability metrics are very similar since the stability is actually the averaged similarity
of the constitutive footprints of the sDCs, with a slightly different definition of similarity
(see Section 5.4), the problem described above is similar to a partition problem which can
be solved with a clustering algorithm. Using clustering induces to delete the constraint
on the temporal overlap but it is finally not so important because this constraint cannot
be satisfied without spatial redundancy in the sDCs as described above. This redundancy
is not acceptable because two sDCs with the same footprints represent the same dynamic
RSN, and yet the events that permit to study the interactions between RSNs would be
attributed to two different sDCs. It is not accurate and it blurs the data.

Therefore a spectral clustering is selected to perform the consolidation. The spectral
clustering reduces the dimensionality of the data and is particularly adapted here since we
already have a similarity metric. It is therefore less computationally expensive. However,
it still raises the issue of parameters and metrics choices, and more particularly of the
number of clusters (see Section 7.4.3).

8.3.2 Choice of spectral clustering parameters

A spectral clustering is based on the spectral information to perform a partition of the
considered graph in a more appropriated space. There are different steps to access this
information and at each step, the choice of a method and the associated parameters
must be made. Section 7.4.3 already illustrates the process to define the number of final
clusters and it has required several experimental tests to fulfill the requirements of the
functional specification of the representation.

Similarity Graph

The first step of the spectral clustering is to build the similarity graph from the similarity
matrix. The most common similarity graph are ε-neighborhood, k-Nearest Neighbors
(kNN), mutual kNN and fully connected graph [VL07].
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The ε-neighborhood graph consists in linking nodes whose distance is below ε, and it
is usually an unweighted graph since all edges have more or less the same scale. The
difficulty with this kind of graph is the choice of ε and the optimal epsilon depends on the
distance scale inside the clusters. Therefore, ε-neighborhood graph are not adapted to
detect clusters with different distance scales [VL07]. The kNN graph described in Section
5.5.2 does not have the problem of ε-neighborhood graph with distance scale since it
is not based on a distance threshold but on the number of neighbors. A node will be
linked to its k closest neighbors even if they are relatively far. However, it implies that it
requires a relatively high density within clusters to be identified and a large inter-clusters
distances to produce an accurate parcellation [VL07]. The mutual kNN graph is similar
to the kNN graph but instead of linking nodes i and j if at least one of this two nodes
is one kNN of the other, both nodes must be one of the kNN of the other. The weight
of the edges is inversely proportional to the similarity between the two nodes it links.
The mutual kNN graph is a compromise between kNN graph and ε-neighborhood graph
and is appropriate for the detection of clusters with different densities [VL07]. The fully
connected graph simply links two nodes if their similarity is positive and therefore, the
returned adjacency matrix is often non-sparse [VL07].

Luxburg et al. [VL07] finally recommend the kNN graph as first choice and it is the
choice made in this thesis since the consolidation step is performed on different subjects
which can present very different similarity matrices and an adaptable graph is required.

Choice of k for the k-Nearest Neighbors graph

The choice of k for the kNN graph influences the number of connected components in
the graph. If k increases, the number of connected components decreases. This number
of connected components must be lower than the number of clusters to be detected,
otherwise the clustering algorithm trivially returns the connected components as clusters
[VL07]. In that case, it is then important to be sure that the connected components
are really the clusters of interest but it is preferable to have a connected graph to take
advantage of spectral clustering [VL07]. For large graph, when number of nodes n→ +∞,
it has for instance been demonstrated that k should be on the order of log(n) [BCQY97].
However, n is here only on the order of 102. We test different values of k for different
subjects with an optimized number of clusters for the spectral clustering (description
of the optimization procedure in Section 7.4.3) and it appears that this asymptotic
result log(n) provides rather appropriate footprints. Moreover, a test is performed in our
algorithm with a Matlab function using the Tarjan’s algorithm to check if the graph that
is clustered is connected or not.

Choice of graph Laplacian

The graph Laplacian used for the consolidation step in this thesis is a normalized
graph Laplacian with a symmetric matrix. Alternatives are unnormalized graph and
non-symmetric normalized graph closer from a random-walk. The choice of graph
Laplacian is not decisive if the degrees of the similarity graph are not highly distributed
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[VL07]. However in our graph, the degrees are roughly included between 5 and 20 for
approximately 100 nodes.

An unnormalized graph Laplacian does not directly enable to maximize the similarity
within the clusters, while normalized graph Laplacians enable to fulfill both objectives
of clustering algorithm: a low similarity between clusters (high separation) and a high
similarity within clusters (high cohesion). Therefore the unnormalized graph Laplacian
must be avoided [VL07]. The difference between a symmetric and non-symmetric
normalized graph Laplacian is that the non-symmetric normalized graph Laplacian does
not normalize the rows of the matrix containing the Eigenvectors of the normalized
Laplacian graph [VL07] (see definitions of both graphs in Section 3.2). It is a small
difference but the symmetric normalized graph is more appropriate to accurately cluster
graphs when the cohesion within clusters varies significantly across clusters [NJW+02].
It is our case here and the symmetric normalized graph is therefore the selected graph
Laplacian for the consolidation of sDCs.

Choice of clustering algorithm

The final clustering step is made very simple by the use of a graph Laplacian and it is
indeed the aim of the spectral clustering [NJW+02]&[VL07]. Therefore, the choice of the
clustering algorithm is not determinant for the quality of the consolidation and a simple
clustering algorithm is appropriated to extract the final clusters that form the sets of
sDCs for each subjects. A k-mean algorithm is thus used in this thesis.

8.4 Limitations
At each step of the construction, approximations are made.

During the preprocessing, a band-pass filtering is applied on the fMRI signals in order to
reduce noise (see Section 4.2) and the frequency spectrum is thus reduced. Moreover,
a parcellation of the brain surface is then realized to decrease the computational cost
by averaging signals from several voxels into one parcel signal. This two operations
are highly necessary because the noise is a real burden for fMRI (see Section 2.5) and
the SWA needs already approximately 45 minutes per subject to run with a reduced
number of nodes. Spatial and temporal resolution are consequently decreased during
preprocessing.

Then, the SWA reduces the temporal resolution again due to noise. Even if almost every
time point of the fMRI scan gets a set of static communities, the latter are established by
considering 80 time points. It does not mean that the temporal resolution of 0,7 seconds
turns into 0, 7 ∗ 80 = 56 seconds owing to the temporal overlap of the window, but it can
no longer be considered as the TR of the fMRI scan. The size of the window cannot be
reduced because several time points are necessary to increase the Signal-to-Noise Ratio
of signals and it has been demonstrated in Section 7.4.1 that a reduction of the window
length until its minimum does not significantly influence the community detection then.
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In addition to the window length, a possible limitation of our approach is the use of
correlation as selected metric to measure the functional connectivity. For instance, mutual
information or coherence are based on higher order statistics [ADP+14] and could be an
interesting alternative to correlation. More work is necessary to quantify the influence of
the metrics used to establish connectivity.

During the community detection based on the information extracted by the SWA, the
community has to contain at least 40 parcels. It increases the consistency of the future
sDCs but small networks are neglected and considered as noise. An arbitrary minimum
size of networks is thus defined and corresponds to one twentieth of the nodes, permitting
still a large variation in the number of nodes in each community. On the other hand,
the hierarchical properties of the community detection based on stability are not fully
exploited since only one Markov time is implemented. The spatial scale used here
is therefore the finest available one, but exploring larger scales could give additional
information on the structure of the dynamic connectivity.

The community tracking generates additional sDCs due to the compulsory death of
DC involved in events, but the consolidation step is implemented to reduce this effect.
Community tracking also limits the temporal variability of the spatial footprints with the
similarity threshold. This variability needs to be limited, otherwise every DC would almost
always find a community to survive and a relative stability is one of our prerequisite. The
similarity threshold is thus optimized to maximize the stability and it does not necessarily
corresponds to the highest similarity threshold since an high similarity threshold generate
more sDCs and less events. A similarity threshold closer from 0.4 (see Figure 7.13) might
be a solution to access the higher level of interaction because the number of splits and
merges would be higher but to the detriment of the robustness of the sDCs. At the end
of the day, the experiment performed in Section 7.4.1 permits to validate this community
tracking since at the population level, the dynamic communities it identified are still
robust.

The pruning on lifetime and stability requires the assumption that sDCs with short
lifetime and low stability corresponds to noise (see Section 5.5.1). Pruning all sDCs
with short lifetime reduces the temporal resolution of the methods, while pruning sDCs
with low stability is an additional restriction of the spatial variability of the footprints.
The thresholds for lifetime and stability cannot be realistically decreased or it would
be equivalent to the suppression of this pruning step, that is yet necessary because the
community tracking return too many sDCs with high redundancy (more than 100).

The consolidation is maybe the most sensitive part of the workflow because it sets the
final number of sDCs and compresses them while the output of the community tracking
should not need this operation. It agglomerates sDCs in generalizing the information
of the cluster centroid to all the sDCs of the cluster when conflict of interest appears
due to temporal overlap. A high quantity of information is therefore lost during this
steps and parameters of the spectral clustering must be carefully chosen (see Section
7.4.3). The current number of sDCs per subject is included between 7 and 13 to be
closer from a 7-networks parcellation as presented in Section 2.2.1, but extracting smaller
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network may provide a more exact insight in the brain organization. However, with
the presented architecture of the representation, it is not possible since increasing the
number of clusters just increases the redundancy. In addition to the loss of information
this step requires, the consolidation is also based on the averaged footprints of the pDCs.
The results of Section 7.4.1 concerning the averaged footprints demonstrate that it must
be handled with care since it does not take into account the dynamic properties of the
networks they represent. Indeed, the consolidation is only based on static information.
The Section 7.4.1 also demonstrates that the dynamic footprints of the sDCs have high
internal correlation strengths, in spite of this consolidation step. Moreover, the stability
of the final pDCs is also high (see Section 7.1) and it demonstrates that the consolidation
is not too hard.

Concerning the detection of events characterizing the temporal interactions, their number
is also partly determined by arbitrary parameters. As a reminder, the death of two
communities can be declared as spontaneous even if in our representation it happens
at 5 time frames of difference. It can thus creates additional events that should not be
taken into account but it is necessary due to the incertitude of the time resolution. On
the other hand, a death is considered as a death only if the sDC is inactive during at
least 20 time frames. Therefore, death and birth can be missed and additional events
are not detected whereas they should have been. By setting existence conditions on the
correlation of the dynamic footprint around death and birth, the number of events is still
decreased in order to conserve only the significant events. It is finally a hard selection of
the events but it is justified since only few of them can be considered as significant, as
demonstrated into Section 7.3.

Finally, the population sDCs tracking also provokes a non-negligible loss of information
because the pDCs it detects are not present in all subjects (see Figure 8.1). The
interactions have consequently less opportunities to be detected and if the subject-level
permits to build the population-level, the contrary is not true. A decision must be taken
concerning the sDCs that are not attributed to a pDC during this operation. Here, they
are not taken into account in the final representation because they are questioning the
robustness of the representation but less restrictive parameters can be used to include
them in the analysis of the functional connectivity. However, if the artifacts are more
efficiently suppressed, this issue is suppressed as well.

8.5 Summary

The first aim of this thesis is the construction of a robust representation of the dynamic
functional connectivity as networks. The choices of parameters and methods generate
approximations and loss of information. They mainly aim to remove noise from the data
in order to obtain only reliable pDCs, stable enough, and related to the RSNs of the
literature. The constraints thus imposed by the low Signal-to-Noise Ratio may require to
be softened and independently examined to allow more flexibility in the representation.
Indeed, even if the Signal-to-Noise Ratio happens to be improved in fMRI signals, some
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factors such as the between-subject variability irremediably complicates the population-
wise analysis of the functional connectivity. However, the dynamic networks provided by
our approach already open new possibilities that can be investigated (see Section 9.2).
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CHAPTER 9
Conclusion and Future Work

9.1 Major Findings of this thesis

In this thesis, a new approach is developed to detect and analyze the functional con-
nectivity in neuroscience. The aim is to provide a richer representation than states or
component of connectivity. It uses the complete time course of experiments as well as
the complete surface of the brain. It has been applied to real subjects to demonstrate its
robustness and its significance. Moreover, its characteristics enables to develop methods
to establish the possible interactions between functionally separated regions of the brain.

9.1.1 A new and robust representation of the dynamic Functional
Connectivity (FC)

The dynamic FC is represented for each subject by a set of sDCs. They are dynamic
because they have periods of activity, during which they are formed, and their spatial
footprint changes over time in conserving a minimum stability in order to conserve a
relative consistency across time frames. Moreover, periods of activity from different sDCs
can overlap and they are therefore spatial and temporal components of the dynamic FC.

It is necessary to extend these sDCs at the population level in order to test their
repeatability and also to take into account the subject variability. Thus, for 200 subjects,
6 different pDCs are identified and validated. Over the whole experiment and the whole
population, they spatially overlap but at the subject level and during individual time
frames, they are spatially separated. The main concern during their construction is to
suppress noise and it is therefore a limitation. A second concern is to access interaction
information.
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9.1.2 An insight in dynamic interactions between components of
dynamic Functional Connectivity (FC)

The interactions defined in this thesis can be classified in two different levels of interaction.
The higher level of interaction is based on the dynamic sharing of nodes between the
DCs and is therefore related to both spatial and temporal characteristics of the DCs.
The lower level of interaction only rely on temporal characteristics but it is only the most
accessible level. The interactions are characterized by events and their are analyzed at
the population level in order to increase the reliability of the analysis.

The lower level of interaction is related to the temporal overlap of the DCs, the co-
occurrence, which is particularly significant for specific couples of DCs. The significance
at this level of interaction is established with both the repeatability across subsets of the
population and the independence regarding the occurrence. A set of events is as well
detected as significant and their recurrence can also be estimated owing to the methods
developed here.

9.2 Future work
A revision of the priorities for the construction of the sDCs and pDCs may provide
interesting results concerning the effect of noise. The pruning step can for instance be
suppressed to access the higher level of interaction and estimate its significance. Moreover,
during the detection of the pDCs in the set of sDCs, it is possible to urge each subject
to participate to each pDCs. It is probable that the resulting spatial identity of the
pDCs represented by their footprint on the brain surface would not be sharp but the
significance of the interactions can also be affected.

A relevant test for the detected pDCs would be to observe their behavior in subjects
performing tasks during task-fMRI. For instance, the HCP provides task-fMRI scans
that can be used since the preprocessing is the same. During a motor task, it would
be expected that the pDCs associated to the motor RSN has higher occurrence. The
interactions may be as well related to the execution of a task. Different motor tasks can
also enable to detect components of the motor dynamic RSN.

Finally, our approach can be utilized to compare the pDCs of patients suffering from
neuropathologies and the pDCs of controls. Interaction events may be clear biomarkers
permitting to realize a classification, as well as dynamic graph metrics available with our
representation.

128



Acronyms

BOLD Blood Oxygen Level Dependent. 10–14, 34, 36, 37, 51, 123

CAP Co-Activation Pattern. 37, 38

DC Dynamic Community. xi, 4, 5, 41, 42, 44, 46, 48, 55, 59, 61–76, 79–81, 84, 86, 89,
90, 94, 97, 98, 104, 106–110, 112, 114–116, 121, 125, 126, 128, 129, 131

EEG ElectroEncephaloGraphy. 1, 14, 16, 25, 52

FC Functional Connectivity. 14–16, 20, 25, 26

fMRI Functional Magnetic Resonance Imaging. 1, 2, 4, 5, 7, 10, 11, 13–16, 18, 20,
23–26, 30–38, 50–52, 58, 85, 97, 101, 110, 115, 120, 122, 124, 125

GLM General Linear Model. 25

HCP Human Connectome Project. 5, 49

ICA Independent Component Analysis. 20, 27–30, 32, 33, 35–38, 40, 124

ICN Intrinsic Connectivity Network. 1, 2, 15, 16, 25, 29, 32, 36, 40, 106, 110–113, 129

IVA Independent Vector Analysis. 36, 37, 125

kNN k-Nearest Neighbors. 44, 46, 75, 118, 119

MEG MagnetoEncephaloGraphy. 1, 14, 50

MRI Magnetic Resonance Imaging. 7, 49, 50

PCA Principal Component Analysis. 29

pDC Population-level Dynamic Community. xii, 56, 76–85, 89–105, 108–117, 121, 122,
125–130
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PET Positron Emission Tomography. 10, 13, 14

rest-fMRI rest-fMRI. 1, 4, 5, 17, 49, 75, 123

RF RadioFrequency. 8–10, 13, 123

ROI Region Of Interest. 2, 15, 20, 26, 28, 32, 39, 40

RSN Resting-State functional Network. 2–5, 7, 14, 16, 25, 28, 29, 40, 47, 48, 55, 58, 63,
75, 82, 89–92, 107, 108, 118, 122, 127, 129

SC Structural Connectivity. 15

sDC Subject-level Dynamic Community. xii, 56, 61, 69, 71, 72, 74–79, 82–87, 89–92, 97,
100, 103, 104, 106–114, 116–118, 120–122, 125–127, 129

SWA Sliding Window Analysis. 30, 32–34, 36, 37, 57, 58, 79, 104, 120, 121, 124, 125

TE Echo Time. 10

TR Repetition Time. 10, 11, 13, 57, 120

WTC Wavelet Transform Coherence. 34, 35
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