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Kurzfassung

Geoinformationssuchmaschinen stellen dem Benutzer eine Reihe von Funktionen zur
Verfügung wie zum Beispiel Geocoding oder die Suche nach Plätzen mit bestimmten
kategorischen Tags. Während komplexe Algorithmen zur Verfügung stehen um Routen
oder Trips zu planen, sind Suchalgorithmen vernachlässigt worden die kognitive Frage-
stellungen zu beantworten suchen. Zum Beispiel können Geoobjekte nur dann gefunden
werden, wenn diese explizit in das fundamentale Geoinformationssystem eingetragen
worden sind. Eine ähnliche, aber wohl noch größere Herausforderung stellt die Suche nach
den zur Erholung dienenden Gebieten dar, welche sehr speziell von der Wahrnehmung
der Menschen abhängen.

Diese Arbeit beschäftigt sich daher mit der Entwicklung der Theorie zur Integration
von kognitiven Modellen in Geoinformationssystemen. Besonderes Augenmerk wurde auf
rechner- und algorithmische Methoden zur Informationsgewinnung und Verarbeitung
gelegt. Eine spezifisch angesprochene Fragestellung ist die Suche nach “Cognitive Regions”,
einem Begriff aus den Kognitionswissenschaften, welche aufgrund von wahrgenommenen
möglichen Aktivitäten gebildet werden. Ein direkter Anwendungsbereich ergibt sich in
der Integration der vorgeschlagenen Methoden in Geoinformationssuchmaschinen der
Zukunft.

Als Gundlage wird somit eine Generalisierung von Orten und Gebieten in Form einer
Segmentierungstechnik vorgeschlagen, welche aus der traditionellen Bildverarbeitung in-
spiriert ist. Basierend auf dieser Grundlage, werden Methoden untersucht um geografische
Bereiche nur auf Grundlage von User Generated Content und Volunteered Geographic
Information herauszulesen. Dabei stellt Natural Language Processing einen fundamenta-
len Baustein in der Datenverarbeitungskette dar. Abschließend wird die Integration von
semantisch angereicherten Graphen in das entwickelte Framework untersucht.

Als Proof-of-Concept werden verschiedene Fragestellungen, die der Geoinformationswis-
senschaft entspringen, diskutiert und die vorgeschlagenen Ansätze evaluiert.
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Abstract

Today’s Geographic Information Systems and spatial search engines support people to
search for spatial data by ‘name’ or categorical tags, or in contrast, by concrete address
or location data. While sophisticated algorithms exist to compute complex routes or
planning trips, spatial search is inadequately supported for answering nuanced and fuzzy
questions such as searching for ‘recreational’ regions within a city.

To address this issue, spatial search engines have to incorporate cognitive models of
spatial search behaviour, allowing sense-making of complex queries expressed according to
human’s conceptualization of place. In this thesis it is argued that cognitive areas bridge
the gap between cognitive models and today’s possibilities of spatial search engines.

The phenomena of cognitive regions capture the ability of humans to conceptualize
and generalize space according to the activities they can carry out at a given place.
Therefore, in this thesis cognitive areas are proposed, which are inspired by traditional
image segmentation. Based on this foundation, methods are investigated that allow to
infer the geometric extent of “cognitive regions” on the basis of User Generated Content
and Volunteered Geographic Information. Hence, Natural Language Processing is one of
the fundamental building blocks in the processing of huge amounts of data. Finally, the
integration of semantically enriched conceptual graphs is investigated.

As proof-of-concept, different problems, originating from Geographic Information Science,
are discussed and the proposed approaches are evaluated.
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CHAPTER 1
Introduction

Volunteered Geographic Information has received much attention in recent years due to its
potential for being a freely available Geographic Information System, where casual users
can consume and produce geo(spatial) information. Goodchild [2007] coined the term
“citizens as sensors” and draws attention to the benefits and disadvantages of bringing
Geographic Information Systems into the reach of casual users. OpenStreetMap1, the
world’s leading Volunteered Geographic Information platform, has produced a large
amount of crowd-sourced geographic information. Wikimapia2 allows users to add
textual descriptions to spatial entities, while using FourSquare3 allows users to check
in at locations and share this information world-wide and among their friends and
community. While the data drawn from these spatial knowledge bases is more or less
accurate, Volunteered Geographic Information democratizes spatial systems which were
for a long time under the control of governments, meaning access to them was moderated.
Although Volunteered Geographic Information is publicly available and usable, little
research has been done to exploit this vast amount of geographic information in the field
of urban computational reasoning. In the coming age of smart cities, this voluntarily
produced geographic information can be exploited for novel context- and location-based
services, recommendation and urban planning systems, and much more. Despite the
fact that geographic questions have been addressed in different fields of geographic
information science, there remains a major gap of integrating the cognitive understanding
into computational models for spatial search and reasoning. This thesis will therefore
concern itself with the question of integrating spatial search and cognitive models for
urban areas into the next generation of Geographic Information Systems.

1https://www.openstreetmap.org/
2http://wikimapia.org/
3https://de.foursquare.com/
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1. Introduction

1.1 Motivation

The notion of place and its representations have become prominent research topics within
the field of geographic information science [Gao et al., 2013, Goodchild, 2011, Scheider
and Janowicz, 2014, Kuhn, 2001]. Modern Geographic Information Systems are designed
to deal with the notion of space, rather than with that of place. While space is an abstract
concept that we can satisfactorily model through mathematical abstractions, the notion
of place is strictly related to human conceptualizations of space, and how to represent
and automatically process it within Geographic Information Systems remains an open
question.

The notion of place may correspond to different things, such as e.g. Points of Interests,
geographic regions, or settings (i.e. aggregations of spatial features) [Schatzki, 1991]. In
this thesis, we regard a place as a region of space that is homogeneous with respect to
certain criteria. We adopt the taxonomy for geographic regions proposed in [Montello,
2003] and focus on the category of so called cognitive regions. These regions are derived
by people as they experience the world. Cognitive regions are vague (i.e. they do not
have crisp boundaries), and their geographic interpretation may (and usually does) differ
slightly among several individuals, as shown, for example, for the cognitive regions of
downtown Santa Barbara [Montello et al., 2003], and Southern and Northern California,
and Alberta [Montello et al., 2014].

As of today, the main support for place-based search in Geographic Information Retrieval
systems relies on the use of place names as provided by gazetteers. However, this type of
search falls short when it comes to capturing human conceptualization of places. For
that reason, this thesis proposes a novel framework that facilitates capturing humans’
conceptualization of place and preparing it for place-based questions by using computa-
tional models. One essential part is to model place based on mathematical abstractions
and computational models according to the type of place discussed above, i.e. cogni-
tive regions. The framework itself is tailored to extract place-related information from
crowd-sourced spatial knowledge bases and User Generated Content, and process it for
spatial needs. To obtain human conceptualizations, different techniques are investigated
to model and process data obtained from the mentioned sources according to spatial
problems such as segmentation of space and similarity of regions, Machine Learning to
derive cognitive regions, and contextual analysis of User Generated Content for spatial
question answering.

In conclusion, spatial search plays a fundamental role in our everyday life; from simple
searches for restaurants in our vicinity, to more complex routing tasks. In a cognitive
way, however, searching should not be restricted to geocoded entities or to computing
shortest paths. In this work, synergies from different fields were investigated in order
to build a framework for spatial search incorporating Natural Language Processing,
Information Retrieval, Machine Learning, and Cognitive Science. The framework was
implemented and evaluated based on different questions originating from geographic
information science. The results achieved show the potential of the framework for use as
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1.2. Methodology

a spatial recommendation system.

1.2 Methodology
As one of the first, Schatzki [1991] introduced the term settings as human-formed
constellations of places. Recent research [Ballatore, 2014, Hobel et al., 2015, 2016] has
taken up this new concept of place constellations as new research direction for Geographic
Information Retrieval. In computational terms, the search for place constellations can
be modeled in analogy to image segmentation and traditional Information Retrieval,
where each pixel, cell, segment, or document contains a number of aggregated places.
The essential parts of the framework are published in three papers, which are briefly
introduced in the following and form the basis for the ideas presented in Chapter 3,
Chapter 4, and Chapter 5, respectively.

A Semantic Region Growing Algorithm: Extraction of Urban Settings [Hobel
et al., 2015] The vast amount of Volunteered Geographic Information allows for novel
ways of understanding, analyzing and generalizing urban areas. In this chapter, a cognitive
model for the understanding of urban areas is designed by extracting geographic areas
that are conceptually uniform regarding certain activities. Thereby, urban settings are
a more accurate way of generalizing cities, since they are more closely related to how
humans make sense of urban space. To this end, a semantic region growing algorithm
is formalized, allowing the segmentation of geographic areas, and, consequently, the
similarity measurement of urban areas building on a semantic foundation becomes
possible within a computational model.

Deriving the Geographic Footprint of Cognitive Regions [Hobel et al., 2016]
The characterization of place and its representation in current Geographic Information
Systems has become a prominent research topic. This chapter is concerned with places that
are cognitive regions, and presents a computational framework to derive the geographic
footprint of these regions. The main idea is to use Natural Language Processing tools
to identify unique geographic features from User Generated Content sources consisting
of textual descriptions of places. These features are used to detect an initial area that
the descriptions refer to on a map. A semantic representation of this area is extracted
from a Geographic Information System and passed over to a Machine Learning algorithm
that locates other areas according to semantic similarity. As a case study, we employ the
proposed framework to derive the geographic footprint of the historic center of Vienna,
and validate the results by comparing the derived region against a historical map of
the city. Furthermore, by using an ontological model we will show that a city can be
categorized into functional regions.

Extracting Semantics of Places from User Generated Content [Hobel and
Fogliaroni, 2016] The next generation of Geographic Information Systems should
support place-based searches. As mentioned, the notion of place is a vague concept that

3



1. Introduction

strictly relates to human conceptualization of space. In this chapter, we regard places as
cognitive regions affording activity opportunities and present a computational workflow to
populate the model with information from User Generated Content available on the Web.
An algorithmic realization is provided that relies on the Resource Description Framework
along with a real example utilising an implementation of the proposed workflow that
relies on OpenStreetMap and TripAdvisor4 as data sources.

The following contributions discuss different problems in geographic information science,
which gave inspiration to the concrete problems addressed in this thesis:

1. Visualisation of User-Generated Event Information: Towards Geospatial Situation
Awareness Using Hierarchical Granularity Levels [Hobel et al., 2014]

2. Exploiting Linked Spatial Data and Granularity Transformations [Hobel and Frank,
2014]

3. Implementing Naïve Geography via Qualitative Spatial Relation Queries [Fogliaroni
and Hobel, 2015]

1.2.1 Hypothesis

The hypothesis of this thesis is based on the following foundational theories and observa-
tions: (i) cognitive science describes cognitive regions as regions in the mind [Montello,
2003]; (ii) there is empirical evidence that cognitive regions have vague boundaries [Mon-
tello et al., 2003]; (iii) the notion of cognitive regions is related to human conceptualization
and the activities they afford [Schatzki, 1991]. Following this argumentation, this work
aims at demonstrating the following hypothesis:

“The extraction and processing of cognitive regions can be formalized within
a computational model.”

1.2.2 Research Questions

The fundamental first research question of this thesis is given as follows:

“Can cognitive regions be formalized and processed with the synergistic
interplay of methods arising in different fields?”

This major research question is broken down into the following more specific research
questions:

RQ2: How to model cities as regions of functional areas?
4https://www.tripadvisor.at/

4



1.3. Outline of this Thesis

RQ3: How can semantic similarity be integrated in spatial search engines?

RQ4: How to incorporate statistics and Machine Learning in spatial Information Retrieval?

RQ5: Can Natural Language Processing be used in Geographic Information Retrieval?

RQ6: How to build the next generation of knowledge bases for spatial search?

1.2.3 Contribution of this Thesis

This thesis exploits synergies of Geoinformation and Informatics to advance Geographic
Information Systems. In particular, the main contributions are:

• The formal framework for the ‘semantic’ generalization of urban areas is defined,
which exploits synergies from image segmentation techniques and traditional Infor-
mation Retrieval.

• A novel approach to identify cognitive regions is introduced, which operates on
unstructured data, and is based on Natural Language Processing and Machine
Learning.

• A semantic graph structure tailored for spatial search tasks, and an algorithmic
solution to populate the introduced model are proposed. The algorithmic solution
operates on textual descriptions of spatial areas.

1.3 Outline of this Thesis
The remainder of this thesis is structured as follows:

In Chapter 2 we provide an overview of the proposed framework and discuss the relation-
ships between the different essential concepts developed in this thesis.

In Chapter 3, the concepts of place and cognitive regions are discussed, and some
fundamental background information is provided. Furthermore, an approach of clustering
into uniform and homogeneous regions in urban areas is introduced, and a partitioning
technique inspired by image segmentation is proposed. Building upon cognitive regions,
semantic similarity is discussed, and approaches to quantitatively compare different
extracted regions are introduced.

An automated approach for extracting cognitive regions from unstructured text is the
subject of Chapter 4. To that end, techniques from Natural Language Processing are
utilized, and a combinatorial place matching procedure is introduced which is tailored to
OpenStreetMap’s knowledge base.

In Chapter 5, we discuss the creation of a knowledge base that aims at further enabling
more “intelligent” spatial search engines. With this knowledge base, more complex and
nuanced questions about urban areas can be answered.

5



1. Introduction

Chapters 3-5 each conclude with a presentation of possible areas of application, as well
as a case study.

Finally, a detailed discussion of the results is subject of Chapter 6, and conclusions are
drawn in Chapter 7, where possible extensions and future work are also outlined.

6



CHAPTER 2
Overview

Human conceptualization of space is one of the main research questions in Geographic
Information Science, Spatial Information Theory, Urban Planning, and many other
disciplines [Karwan and Frank, 2012, Lynch, 1960, Tuan, 1979]. Many have studied
the way humans navigate through or reason about space [Lynch, 1960, Raubal, 2001].
Building on the findings of such studies, computational models and applications have
been developed that simulate human conceptualization in order to improve the usability
of software, or to equip computer systems with basic reasoning capabilities for dealing
with tasks involving a spatial component. This chapter provides an overview of the
information system developed in this thesis, and how its contributions holistically advance
spatial information systems.

2.1 Information needs
Spatial search is at the core of human activity. However, little research has been done in
the field of cognitively supported spatial search. Spatial search is more or less restricted
to names and categorical attributes in which semantics of places is expressed, and
to spatial relations among the entities, e.g “restaurant in Vienna”, or “nearby public
transport”. Modern Geographic Information Systems are designed to deal with the
notion of space, rather than with the notion of place. While the term space is sufficiently
represented by means of mathematical abstractions, the notion of place is related to
human conceptualization, and is, therefore, a cognitive concept whose computational
interpretation remains a challenging task. So far, spatial search engines support users in
simple requests such as the search for Points of Interest in a given city. Consequently,
gazetteers and ontologies are used as geographic knowledge bases containing attributes
and topological information.

With the theory and computational models developed in this thesis, one important
possible application lies in the advancement of spatial search engines to support more
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2. Overview

intuitive requests, tailored to the needs of the user and expressed in a way that is
more natural to the way of human conceptualization of place than what is currently
available. To that end, it is argued that traditional techniques of different fields can
be combined to allow for the holistic processing of geographic information according to
users’ different spatial search needs. With the aid of computational models, such systems
allow more cognitive and intuitive questions about the environment. In the past, places
were represented and processed as single entities, disregarding the interwoven connections
between them. As one of the first, Ballatore [2014] expressed the characteristics of places
as follows:

“Places are inescapably multi-faceted (comprising diverse processes), they are
socially constructed (emerging as the result of human agency and practices),
relational (emerging in a context, not in a vacuum), scale-dependent (different
places exist at different scales), and they are dynamic (emerging, changing,
and ultimately disappearing).”

In the sense of the above definition, places as aggregate concepts depend highly on the
semantics that implicitly exists between places. Our developed approach in this thesis is to
tackle this complexity by processing places based on the distribution of semantic attributes
in order to model the interconnections of co-occurring objects. Computationally, these
aggregated concepts can be processed by a methodology using a simplified “semantic”
representation, specifically the bag-of-words model.

Definition 2.1.1: Bag-of-Words Model

The bag-of-words model is a representation of the frequencies of words used in
text classification, disregarding the words’ order of appearance in the text. The
vocabulary is the set of all words occurring in the document T := {ti : i = 1, . . . , n},
where n denotes the size of the vocabulary. Specifically, each document in the
bag-of-words model is represented by the vector (x1, . . . , xn), where xi is the
frequency of the word ti in this document.

The bag-of-words model allows for the processing of places by two different approaches.
Firstly (i), processing the semantics of places according to techniques employed in image
segmentation; and secondly (ii), utilizing Machine Learning techniques for identifying
patterns of aggregated places. Considering techniques employed in image segmentation, a
simplified representation of cities as homogeneous and functional regions can be created.
Partitioning a map into functional regions allows for nuanced questions about the
environment. For instance, this partitioning approach can be useful for tourists asking
questions about which areas present similar characteristics to the areas they are familiar
with, comparing them based on a user’s preference model. Accordingly, Machine Learning
based on the bag-of-words model has the potential to derive homogeneous and uniform

8



2.2. System Architecture

areas automatically. The pattern recognition approach, which is based on Machine
Learning, has several areas of application for aiding humans in finding places that are
similar to the areas they are familiar with, automatically retrieving the geometric extent
of cognitive regions. It can be argued that most cognitive regions have homogeneous
characteristics, which leads humans to conceptualize these regions as cognitively coherent
areas. To capture the human conceptualization of places that are composed of other
places, User Generated Content can be exploited to infer the spatial footprint of cognitive
regions. Moreover, User Generated Content has the potential to aid humans in complex
questions. The proposed model, therefore, will preserve the semantics, and will be
tailored to the spatial needs of the user. The model itself helps in asking for activities
that can be done in combination, or in deriving implicit semantic relations, such as which
places are conceptualized as near to each other. For the concept near, people often
associate to one place multiple Points of Interest which are in the proximity, resulting in
conceptualizations of near that are largely independent of the actual distance.

2.2 System Architecture

In Figure 2.1 a schematic conceptual model of the framework developed in this thesis
is illustrated. It will be explained in detail in the following sections. The objective is
to process and provide the information according to the spatial needs of the user. As a
result, for a given spatial concept as input (e.g. shopping area), it is possible to combine
all computation steps (e.g. computing the spatial extents of all regions of this type) into
a pre-processing step, where the results are afterwards stored in the system, and remain
available for later reuse. This scheduling of the workload has beneficial implications for
the time and resources needed when the system is presented with a new query, since we
can argue that in the area of tourist information many queries can be anticipated. A
part of such a request will therefore already be available in the system when it is actually
requested by a user (e.g. a tourist). The underlying processing and subsequent use of
the results of queries can be classified into three conceptual classes: (i) segmentation and
similarity, (ii) machine learning, and (iii) context analysis.

The foundational basis of the framework is a spatial database management system of
Points of Interest and, to model places as aggregates, a grid-based clustering of the
Points of Interest which yields the bag-of-words. This simplified representation in the
form of a vector space model is exploited for a generalization method that partitions
a map into “activity clusters” that further allow for finer-grained measurements of
similarity. Questions the model can answer are, for example, “where are the activity
centers of different cities?”, and “how similar are they according to my preferences?”.
The segmentation and similarity model is a subject of Section 2.3 and of Chapter 3.

The grid-based clustering approach is reused for our Machine Learning approach, which
allows questions such as which areas are similar to the areas a user is familiar with, or,
by incorporating User Generated Content, makes it possible to automatically derive
the geographic footprint of cognitive regions. In order to extract the training cells for

9



2. Overview

Figure 2.1: Conceptual illustration of the framework

automated reasoning, a place matching procedure is discussed that operates on textual
place descriptions with the aid of Natural Language Processing. The Machine Learning
model is a subject of Section 2.4 and of Chapter 4.

The Natural Language Processing approach is refined to automatically generate a model
that allows questions tailored to spatial information needs. The proposed model will
therefore preserve the spatial semantics, and the outlined algorithmic solution can
automatically populate the model based on User Generated Content. Based on the
information contained in the sources, a user can ask for implicit information, such as
which places are near to other places, or implicit classifications, such as which spatial
objects are related to different activities. The context analysis of User Generated Content
is described in Section 2.5 and in Chapter 5.

2.3 Segmentation & Similarity
Generalization is one of the fundamental research areas of geographic information sci-
ence [Hobel and Frank, 2014, Hobel et al., 2014]. The goal is to derive an abstraction of
the physical reality and provide methods for reasoning. How to model place according to
the conceptualization of human beings is a non-trivial question. A simplified model can
be seen in analogy to an image, where different functional areas of a city are reflected
as objects on a map, e.g. a shopping street or a park. While parks are often obviously
characterized as green spots on a map, others, such as shopping areas, are not as easily
perceivable.

To mimic human decision making, the model discussed in this thesis makes use of
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aggregated places (i.e. services an area provides) as the deciding characteristic for the
partitioning of space. To answer questions such as “where can I do different tasks in
combination?” and questions of tourists asking about the similarity of “activity clusters”,
an approach adapted from image segmentation is pursued in order to cluster a city map
into cognitive regions. Image segmentation facilitates the process of analyzing an image by
partitioning it into segments that share certain characteristics [Pinoli, 2014]. In analogy
to traditional image segmentation, Hobel et al. [2015] argued that place affordances can
be utilized to classify a city into functional regions. Partitioning a map into functional
regions subsequently allows the application of distance functions to compare and measure
how suitable an area is for certain tasks. The applicability of metrics and similarity
functions of traditional Information Retrieval is investigated, and their relation to human
preference models is discussed.

Example 2.3.1: Partitioning of City Maps into Cognitive Regions

Once homogeneous areas have been identified, a formal description of the area
makes it possible to search, compare, or cluster such regions. Figure (a) depicts
three conceptual shopping settings together with their respective frequency distri-
bution of tags. While each one of them contains shops, places like parking spots
and restaurants are also part of the constellation “shopping area". Figure (b)
shows a schematic visualization of these cognitive regions as grid-based clusters.

(a) Schematic Visualization (b) Segmentation

2.4 Machine Learning

Hobel et al. [2016] extended the idea of clustering cities into functional regions by an
automated approach, which exploits User Generated Content in the form of textual
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2. Overview

descriptions in order to capture human conceptualization of given areas, and a Machine
Learning model in order to derive homogeneous and uniform areas according to the
services a region offers.

Example 2.4.1: Deriving the Geographic Footprint of Cognitive Re-
gions

To give an illustrative example, the geometric extent of the historic center of Vienna
was derived by a Machine Learning model where the distribution of services is the
underlying foundation for the semantic similarity of conceptual areas. Figure 4.9
approximately shows the encompassed area of a historic map of Vienna (from 1850).
The outer boundary of the classified area coincides with a physical separation
which is now a major road of the city.

12
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In order to derive the initial translation from textual descriptions expressed in natural
language to the bag-of-words model, a place matching algorithm is discussed. The
algorithmic solution is tailored to the OpenStreetMap dataset, and utilizes methods of
Natural Language Processing. In the proposed process, Hobel et al. [2016] automatically
extracted the places people mentioned in textual descriptions, and trained a classifier
based on a grid-based clustering approach.

The proposed approach can be used for answering questions such as inferring the geometric
extent of cognitive regions automatically, and questions such as “where are cognitive
regions that correspond to the area I am familiar with?”.

The introduced approach has significant implications for the next generation of routing
services. It is comparable to today’s indoor navigation, where cognitive areas are defined
to ease the routing tasks of people. For instance, colored areas and navigation lines are
defined, and routing instructions adhere to the functional properties which are available.
With the presented approach, it will be possible to derive navigation and annotated
mobile maps incorporating the semantic strength of cognitive regions for cognitively
enhanced outdoor navigation. For example, the instruction “cross the historic center, and
then keep right” is a more intuitively understandable formalization for outdoor navigation
than a simple sequence of street names and crossings.

2.5 Context Analysis

Agnew [1987] defined place as a combination of three elements: location, locale, and
sense of place. Of course, the sense of place can only be inferred from human descriptions.
To that end, Hobel and Fogliaroni [2016] introduced a model, called the semantic
representation of place in the Resource Description Framework, and an algorithmic
solution to populate the ontological model based on User Generated Content by exploiting
modern Natural Language Processing tools.

The introduced model complements the previously discussed approaches by adding the
sense of place. The semantic representation of place unites the cognitive approach of
place with affordance theory [Gibson, 1979, 1977] resulting in a coherent model for spatial
search. In this thesis, it is argued that the semantic representation of place is suitable to
answer spatial questions provided in natural language by processing the input in the same
manner as User Generated Content. This means that we have a procedure of encoding
User Generated Content into the semantic representation of place (i.e. activities), and
spatial queries given in the form of natural language can be processed with the same
procedure, resulting in a graph representation of the query. We have therefore reduced
the problem of answering the query posed in natural language to the problem of matching
two graphs. For simplification, the semantic similarity of verbs, context, and activities is
disregarded.

The processed data gives an indication of human impressions, such as which geo-features
are perceived as near to each other, and which activities are ascribed to which geo-features.

13
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Although this has been addressed in literature before [Alazzawi et al., 2012], the presented
approach is a novel one because it not only uses part-of-speech tags (e.g. verbs), but also
exploits the grammatical structure (e.g. direct object) of sentences in the algorithmic
solution.

Example 2.5.1: Illustration of Semantic Representation of Place

Obtained semantic representation for the place “Historic Center of Vienna” by
processing the sentence “I even enjoyed walking down the beautiful Kärtnerstrasse
admiring many nice, original shops”.

The created knowledge base also has beneficial implications for the technical realization
of the previously introduced parts of the framework by complementing the proposed
approaches. For the segmentation and similarity approach (see Section 2.3), the place
affordances are manually mapped from the service to the actual activity, which can be
done automatically with the proposed knowledge base. Another beneficial implication
stems from the Machine Learning approach (see Section 2.4), as services (i.e. tags) that
have no meaning for humans can be automatically excluded because no activities are
mapped to the geo-feature.

2.6 Summary and Focus

So far, spatial search is insufficiently supported when dealing with questions about place.
This thesis deals with techniques to equip Geographic Information Systems with the
capability to process spatial queries in cognitively aware ways. Three approaches are
proposed that facilitate spatial search by utilizing the semantics of places.

The first approach is inspired by image segmentation and Information Retrieval. The
basic idea is to aggregate places according to the conceptualization of human beings, and
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to allow measurement of similarity based on distance functions.

The second approach enhances the first approach by utilizing place descriptions retrieved
from User Generated Content and by computing cognitive regions, which are aggregations
of places, based on Machine Learning. An analogy to traditional text classification is
drawn to compare the semantic similarity of regions, and to cluster spatial areas according
to semantic properties.

Finally, by further utilizing User Generated Content the models are extended to a full-
fledged knowledge base that allows naïve question answering and reasoning. The model
itself is based on affordance theory, and an algorithmic solution is proposed to populate
the ontological model by human impressions retrieved from User Generated Content.

This chapter gave an overview of the investigated techniques and how they are combined
to provide rich methodologies for the semantic modeling of spatial queries. To conclude,
the focus of this thesis is the semantic representation of place. In the following chapters,
the implementation details of the proposed approaches are elaborated in more detail.
Each approach is evaluated based on use cases that illustrate the practical usefulness of
the techniques applied.
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CHAPTER 3
Segmentation & Information

Retrieval

This chapter is primarily drawn from Hobel et al. [2015]. It discusses the cognitive aspects
of a computational model for urban generalization, and also how cognitive homogeneous
areas can be compared by means of Information Retrieval. The essential idea is to
partition a map into homogeneous and uniform areas by focusing on the semantic aspects
of space. It is shown that the derived regions can be compared by using their semantic
description and human preference models.

3.1 Excursus
OpenStreetMap is a community-driven project whose main goal is to create a digital map
of the entire world; it is essentially a prototype of Volunteered Geographic Information
[Goodchild, 2007]. The geometric footprint of spatial features is represented by means of
a simple and exceptionally flexible scheme consisting of

• nodes: pairs of coordinates (longitude and latitude) used to represent point features;

• ways: lists of nodes used to represent line and surface features;

• relations: sets of nodes, ways, or other relations mainly used to represent features
consisting of several parts.

The thematic or semantic aspect of spatial features is managed through a tagging system,
where each geometric feature is described by an arbitrary number of tags. As the
OpenStreetMap project evolved and grew over time, its community developed a set of
tagging guidelines which describe how tags should be used for a particular feature. Before
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3. Segmentation & Information Retrieval

contributing new information to the database, mappers are asked to carefully read these
guidelines. However, users are neither obligated to respect the guidelines, nor are their
contributions subject to rigorous control. It has been shown that in terms of geometry, the
OpenStreetMap dataset is rapidly approaching the coverage and precision of commercial
ones [Zielstra and Zipf, 2010]. The freedom granted by the tagging system yields a
semantically very heterogeneous dataset [Mooney and Corcoran, 2012]. Consequently,
different volunteers tag the same feature differently, or, conversely, use the same tag to
annotate conceptually different features. Keßler and de Groot [2013], D’Antonio et al.
[2014] show the possibility of assessing the trustworthiness of Volunteered Geographic
Information data by analyzing the historical evolution of features in a dataset.

The ambiguous meaning of place poses a considerable challenge to knowledge engineers
whose task is to design computational models of places. Today, the most commonly
adopted strategy is to represent places by means of Points of Interests such as targeted by
OpenStreetMap. The representation of places as Points of Interests, however, disregards
many of the aspects that seem to characterize the human conceptualization of places:
(i) there is empirical evidence [Montello et al., 2003] that people typically conceive a
place as a region; (ii) different people tend to associate different spatial footprints to the
same place [Montello et al., 2003]; (iii) there are indications [Schatzki, 1991, p.655] that
conceptualization of a place relies on the activities available or possible at that spatial
location – i.e. what some refer to as place affordances [Jordan et al., 1998]. The approach
of representing places as Points of Interests suffers from several drawbacks: places are
indicated as specific points rather than vague or approximated regions; while Points of
Interest are associated with precise feature types, the place affordances are not explicitly
indicated, and it is up to the user to map from an activity (e.g. to eat) to a feature type
(e.g. a restaurant). Going even further and focusing our attention on activities, it is easy
to see that activities are usually not restricted to a single place, and have an extent in
space and time that involves several places of different kinds. Shopping, for example, can
also involve sitting in a coffee shop, or going to a bank to withdraw money.

Humans are able to search for areas that afford [Gibson, 1977, 1979] an activity without
having to specify the exact type of place they are looking for. For example, if the task
is to “buy a pair of shoes and perhaps a coat”, humans can, based on experience or
knowledge, think of areas where they are most likely to find such things (e.g. a shopping
street or shopping mall). In such a case, the individual shop is of less concern since the
exact object to buy is not determined yet. Rather, it is the constellation or setting of
shops and maybe restaurants that is of importance when attempting to find an area
suitable for an activity, which corresponds to the cognitive notion of place.

The concept of place plays an increasingly important role in Geographic Information
Science [Winter et al., 2009, Winter and Truelove, 2013] and the ontological discussion
about how to model it is ongoing [Couclelis, 1992, Jones et al., 2001, Humayun and
Schwering, 2012, Vasardani et al., 2013, Winter and Truelove, 2013]. Many suggest that
the semantics of the term place is tightly bound to the idea of affordance and activities
[Jordan et al., 1998, Scheider and Janowicz, 2014]. Drawing the connection of action to
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place is essential for the ability to plan [Abdalla and Frank, 2012]. Schatzki [1991] asserted
that: “[...] places are defined by reference to human activity” [Schatzki, 1991, p.655].
He positions human activities as the central concept for understanding the construction
of places. Furthermore, he explains that such representations of places organize into
settings, local areas, and regions. This general notion of hierarchical structuring of
space is relatively undisputed and supported by findings of other researchers [Montello,
1993, Couclelis and Gale, 1986, Richter et al., 2013, Freundschuh and Egenhofer, 1997].
How these levels of abstractions are formed, however, is unclear. For example, common
administrative units of abstraction do not always correspond to what people have in
mind about regions [Meegan and Mitchell, 2001].

The focus of this thesis lies on settings or cognitive regions which, according to Schatzki
[1991], can either be demarcated by barriers (e.g. apartment building) or identified by
bundles of activities that occur in them (e.g. a park, or a shopping street). Ontologically
speaking, they can be categorized as entities of either bona fide (i.e. physical, sharp,
crisp) or fiat (i.e. non-physical, imaginary, human-driven) type [Smith, 1995]. Since
this thesis is concerned with entities larger than apartment buildings, such as shopping
areas, fiat objects will be the the main type of inquiry. The entities are therefore of the
vista-space scale [Montello, 1993], since they can be learned by human activity. In the
following, settings are referred to as cognitive regions.

3.2 A Model for Cognitive Regions

City maps are cartographic representations of spatial data partitioning space into discrete
chunks that represent physical or social (administrative) objects. These objects are either
defined by their physical extent or by authoritative institutions. Schatzki [1991] asserted
that there are places that fall into the same abstract category due to certain constellations
of possible activities. The following approach is inspired by region growing used in image
segmentation [Adams and Bischof, 1994].

A formalization of the proposed semantic region growing approach is summarized in the
following steps:

1. The task is to partition a map according to the services an area offers. In analogy
to the pixels of an image, the area of interest M (a city map in our case) is
partitioned into a collection of n non–overlapping cells C = {ci : i = 1, . . . , n} such
thatM =

⋃n
i=1 ci. This method is analogous to spatial indexing strategies, where

grid-based clustering is performed to hierarchically partition the space in uniform
square or hexagonal grid cells.

2. A description D is a formula consisting of one or more predicates specifying the
membership of a single cell ci to a specified cognitive region R. An example of such
a description could be: “contains at least one shop and restaurant”.
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3. What in image segmentation jargon is called a segment, is directly comparable to
a cognitive region: a set of contiguous cells satisfying the same description D. A
cognitive region R ⊆ C is a subset of the cell partition C and is called complete iff
it cannot be extended further with adjacent cells.

4. The segmentation of a mapM according to a description D produces a (possibly
empty) set RD of cognitive regions such that by construction

⋃
R∈RD

R ⊆ C holds.
A segmentation RD = {R} is called complete iff it consists of only one cognitive
region such that R = C.

5. As image segmentation relies on a similarity function that is used to decide if two
neighbor pixels are similar, our approach consequently relies on a Boolean function
fsim which, given a cell c and a description D, decides whether c adheres to D.
Different cognitive regions identified through the same description D are pairwise
disjoint, i.e. it holds that ∀x, y ∈ RD (x 6= y =⇒ Rx ∩Ry = ∅). Cognitive regions
that adhere to different descriptions can overlap, e.g. a park that crosses a shopping
street.

3.3 Semantic Region Growing
Semantic region growing, as used here, is aimed at segmenting or extracting cognitive
regions according to a description D and a set of m cells, referred to as seeding cells
Cseed = {c̃1, c̃2, . . . , c̃m}.

In the case that a seeding cell c̃ ∈ Cseed matches a given description D – i.e., fsim(c̃, D) =
TRUE – and it is not yet classified as a member of another cognitive region adhering
to the same description D, c̃ will be the starting point of a new cognitive region: a
recursive process extends the region identified so far until the elements of the adjacent
neighborhood of a cell no longer adhere to the description D.

We can either process all cells as seeding cells (Cseed = C), or find all cells in C that
adhere to the description D, and use them as Cseed – both cases yield a robust result in
contrast to random seed generation. For instance, if Cseed contains only five seeding cells,
then the result will be at most five segments/cognitive regions. Note that a cognitive
region R may not be identified by the algorithm if R ∩ Cseed = ∅, depending on the
neighborhood function.

It is possible that, during the growing process, starting from a seeding cell c̃i and building
a cognitive region Ri, another seeding cell c̃j is integrated in Ri. When the algorithm
processes the seeding cell c̃j , it will not give rise to a new cognitive region since it has
already been assigned to the cognitive region Ri. The semantic region growing technique
is implemented as shown in Algorithms 1 and 2.

As can be seen in the implementation of Algorithm 2, the size of the adjacent neighborhood
of a cell can be adapted by using a customized implementation of neighbors(c, C) to
specify requirements such as larger or restricted neighborhoods. In any case, a larger
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Algorithm 1 Identify cognitive regions.
Input

D = a predicate to segment the map into cognitive regions,
Cseed = the set of seeding cells,
C = the set of cells

Output
R = cognitive regions

1: procedure IdentifyCognitiveRegions
2: R ← ∅
3: for all c̃ ∈ Cseed do
4: if (∀Ri ∈ R : c̃ /∈ Ri) ∧ fsim(c̃, D) then
5: R← {c̃}
6: R ← R∪ {R}
7: RegionGrowing(D, c̃, R,R, C)
8: end if
9: end for

10: return R
11: end procedure

Algorithm 2 Region Growing.
Input

D = a predicate to segment the map into cognitive regions,
c = a cell,
R = the current cognitive region that is extended,
R = the set of cognitive regions,
C = the set of cells

Output
R = the extended cognitive region

1: procedure RegionGrowing
2: N ← neighbors(c, C)
3: for all n ∈ N do
4: if (∀Ri ∈ R : n /∈ Ri) ∧ fsim(n, D) then
5: R← R ∪ {n}
6: RegionGrowing(D,n,R,R, C)
7: end if
8: end for
9: return R

10: end procedure
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neighborhood can be used to ensure better coverage, or restrictions can be imposed to
separate cognitive regions.

Example 3.3.1: Partitioning of City Maps and Cognitive Regions

Figure (a) shows an empty segmentation and Figure (b) shows a complete seg-
mentation. Figure (c) shows a partitioning into cognitive regions of a certain
type.

(a) Empty Segmentation (b) Complete Segmentation

(c) Segments

3.4 Application Areas

In this section, two application areas of this hierarchical segmentation in functional
regions are discussed.
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3.4.1 Similarity in the Vector Space Model

The categorical types, i.e. services, can be modeled in the vector space or the bag-of-
words model. The vocabulary is the set of all categorical tags occurring in the city,
T := {ti : i = 1, . . . , n}, where n denotes the size of the vocabulary. Specifically, each
cell in the bag-of-words model is represented by the vector (x1, . . . , xn), where xi is the
frequency of the categorical tag ti in this cell. The bag-of-words model yields a simplified
‘semantic representation’ of cognitive areas.

One particularly interesting question is how to compare different cognitive regions. Places
as aggregates can be modeled by using the aggregated semantic attributes, which enables
comparison and assessment of cognitive regions. Such a composed area offers not only
single place affordances but rather encompasses a set of affordances which are seamlessly
interconnected. In the case of OpenStreetMap, the aggregated categorical tags in cells
offer a baseline for those affordances, i.e. services. However, before going into further
analysis, tags that can not be mapped to a specific place affordance, e.g. a tag with the
key “ref”, have to be removed from the set of categorical tags.

In order to simulate human decision-making, artificial intelligent systems developed in
this thesis can make use of distance functions to derive closest or best matches of different
cognitive regions. So far, we have presented a reduction of cognitive regions to the
vector space model. However, a priori there is no canonical way to define a metric on
these vectors which exactly mirrors the cognitive reasoning process mentioned before. In
mathematics, many different ways to define the “metric concept” have been proposed. In
the following examples, we start with the notion of a metric space:

Definition 3.4.1: Metric Space

A metric space is an ordered pair (A, d) where A is a set and d is a metric on A,
i.e. a function

d : A×A→ R (3.1)

such that for any r1, r2, r3 ∈ A, the following holds:

• d(r1, r2) ≥ 0

• d(r1, r2) = 0⇐⇒ r1 = r2

• d(r1, r2) = d(r2, r1)

• d(r1, r3) ≤ d(r1, r2) + d(r2, r3)

The following is a list of distance function examples that adhere to the requirements of
the metric space:
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Definition 3.4.2: Discrete Metric

Discrete metric (r1, r2 ∈ A):

dDiscrete(r1, r2) :=
{

0 , if r1 = r2

1 , if r1 6= r2
(3.2)

Definition 3.4.3: Euclidean Metric

Euclidean distance (r1 = (r11 , r12 , . . . , r1n), r2 = (r21 , r22 , . . . , r2n) ∈ Rn):

d(r1, r2) :=

√√√√ n∑
i=1
|r1i − r2i |2 (3.3)

Definition 3.4.4: Manhattan Metric

Manhattan distance (r1 = (r11 , r12 , . . . , r1n), r2 = (r21 , r22 , . . . , r2n) ∈ Rn):

d(r1, r2) :=
n∑

i=1
|r1i − r2i | (3.4)

Definition 3.4.5: Hamming Metric

Hamming distance (r1 = (r11 , r12 , . . . , r1n), r2 = (r21 , r22 , . . . , r2n) ∈ Rn):

d(r1, r2) :=
n∑

i=1
dDiscrete(r1i , r2i) = |{i ∈ {1, . . . , n} | r1i 6= r2i}| (3.5)

We argue that urban search is directly comparable to traditional Information Retrieval,
where cognitive regions correspond to documents containing the categorical tags as words.

In 1957, Luhn [1957] suggested a statistical approach to search for information with the
similarity criterion:

“The more two representations agreed in given elements and their distri-
bution, the higher would be the probability of their representing similarity
information.”
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Therefore, the degree of similarity between a representation of a fixed cognitive region
and a collection of cognitive regions can be used to rank the search results. This can be
interpreted as counting the number of elements that two cognitive regions share. For
instance, let the fixed cognitive region’s representation be a vector ~r1 = (r11 , r12 , . . . r2n)
of which each component ri (1 ≤ i ≤ n) is associated with a tag and a cognitive region
returned by a search is a similar vector ~r2 = (r21 , r22 , . . . , r2n), then a similarity measure
can be based on the standard inner product of two vectors:

Definition 3.4.6: Standard Inner Product

ι(r1, r2) :=
n∑

i=1
r1i · r2i (3.6)

Example 3.4.1: Cosine Similarity

The cosine similarity measures the similarity between two vectors of an inner
product space that measures the cosine of the angle between them. A schematic
illustration of the similarity of two documents r1 and r2 is given below:

‘shop’

‘restaurant’

r1 r2

In 1983, Salton et al. [1983] proposed that comparisons can be made by the cosine-
similarity function, which does not adhere to the mathematical concept of metric space
(see Definition 2.5.1), and is defined as follows:
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Definition 3.4.7: Cosine-Similarity

simcos(r1, r2) := cos(^(r1, r2)) =
∑n

i=1 r1i · r2i√∑n
i=1 r

2
1i
·
√∑n

i=1 r
2
2i

(3.7)

In the scope of this thesis, these similarity measures are important building blocks
of artificial intelligent systems used to answer more complex questions than what is
possible today. For instance, today’s geographic search engines cannot answer which
areas are similar to shopping streets, or which areas are similar to a familiar area in my
surroundings. By using similarity functions, these comparisons can be made by intelligent
systems, and facilitate modern Geographic Information Retrieval.

3.4.2 Human Preference Models and Cognitive Regions

Human search depends on different aspects of personal search criteria, which can be
incorporated in addition to the already introduced distance metrics.

Fine-grained or significant differences in place constellations can reveal how suitable the
composition of a cognitive region is for someone’s preferences, or they can be used to
identify flaws in the naturally evolved or planned structure of a city. For instance, when
people are required to travel by car due to an inefficient public transport system, or out
of personal necessity, shopping areas with parking spots are certainly more attractive
destinations. It follows that cities without dedicated parking spots in the vicinity of
shopping areas must have an efficient public transport system.

Human search is characterized by specific needs, which are the activities required of or
by the human being in question. To mimic human decision making, the preferences must
be integrated into spatial search systems. This can be done by formalizing spatial needs
as a list of requirements n1, n2, . . . , nm, where m is the total number of required place
affordances. Then τ(R) is denoted as the total number of cells in a given segment/cognitive
region R. We set the absolute values n1, n2, . . . , nm, which we defined in the list above,
in relation to the area of the cognitive region, which yields normalized density values:

ai = ni

τ(R)
∀i = 1, . . . ,m (3.8)

Therefore, based on an ontology of specific place affordances and human preferences, a
matching of normalized ranking criteria can be defined. A distance metric listed above
can then be selected based on the requirements of the user.
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3.5 Case Study
For an evaluation of our approach, we attempted to identify shopping areas in two
cities. By using GeoTools1, an open source library for geospatial data, we set up a
fine-grained hexagonal grid, whereby the side length of the cells was set to 0.0005 degrees,
and preprocessed the OpenStreetMap data by assigning the nodes and their tags to the
enclosing cells.

3.5.1 Identification of Cognitive Regions

In this example, the rules for the description of the semantic region growing algorithm
are based on the following assumptions:

A cell has to encompass at least two places where you can shop (i.e. shops of any type)
or a cell has to encompass at least two tags that relate to places where someone can get
something to eat or drink a coffee (e.g. restaurants, fast food outlets, cafes).

These simple constraints were sufficient to find the commonly known shopping areas
in Vienna, and many smaller clusters that can be interpreted as local shopping and
leisure areas. The segmentation result for Vienna is shown in Figure 3.1. Using the
same description, we employed the algorithm on the dataset of London, and obtained a
comparable result (see Figure 3.2). By selecting a slightly different description, different
cognitive regions are derived, which is coherent with results from different studies such
as the experimental study to infer the location of downtown Santa Barbara [Montello
et al., 2003]. The introduced approach allows us to derive human conceptualizations of
cognitive regions. The derived concepts have clearly defined boundaries and have uniform
and homogeneous characteristics.

Arguably, there is no hard method to evaluate the result, since the topics of interest are
cognitive regions which do not really allow for a ground truth. Nevertheless, an estimation
of feasibility is still possible, either by looking at descriptions found on the internet (e.g.
tourism guides) or by comparing the results to expert knowledge (i.e. people familiar
with the city). Indeed, Mariahilferstraße and Oxford Street are well-known shopping
streets that have been correctly identified as part of shopping settings by our algorithm.
Additionally, detailed explorations of some other clusters identified in the Vienna dataset
consistently revealed that all larger regions found can be considered shopping areas.

3.5.2 Semantic Similarity of Cities

Consider the following scenario:

Alice grew up in London and she knows from experience that in the urban setting of
Oxford Street there are plenty of places to withdraw money (i.e. ATMs and banks), that
there is a wide selection of cafes and restaurants to have lunch or get something to drink,
and also that there is a large diversity of shops and several tourism attractions that can

1http://docs.geotools.org/
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Figure 3.1: Visualization of the results identified by the semantic region growing algorithm
in Vienna.

Figure 3.2: Visualization of the results identified by the semantic region growing algorithm
in London.
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be visited while moving from one shop to the next. Alice plans a trip to Vienna, and
she would like to find, in advance, areas of Vienna that are similar to her idea of Oxford
Street.

B/A Tourism R/C/FF Shop Absolute

Inner City 0.31 1.28 2.60 0.81 5.02
Mariahilferstraße 0.10 0.62 6.39 2.28 9.41

Bank/ATM

Tourism

Restaurant/Cafe/Fast
Food

Shop
Diversity

Absolute

Figure 3.3: The deviations of the conceptual shopping area Oxford Street (London) to
the conceptual Mariahilferstraße and Inner City (Vienna) in respect to the defined feature
vector (values are multiplied by 10).

To model these preferences and action possibilities, we defined the following four features,
which will later be used to define a similarity distance to other identified shopping areas
(cognitive regions):

1. The number of tags in a setting of type bank or ATM n1.

2. The number of tags in a setting of type restaurant or cafe or fast food n2.

3. The number of tags in a setting of type tourism n3.
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3. Segmentation & Information Retrieval

4. The number of different shopping types (i.e. subcategories of shops) n4.

We denote by τ(S) the total number of cells in a given segment/setting S. We set the
absolute values n1, n2, n3, and n4, which we defined in the list above, in relation to the
area of the setting, which yields normalized density values (where m is the number of
defined features):

ri = ni

τ(S)
∀i = 1, . . . ,m (3.9)

To explore the similarity in respect to our defined feature vector, we are now considering
the following distance measure

m∑
i=1
|r(S1)

i − r(S2)
i | (3.10)

Equation (3.10) formalizes the sum of the absolute values of the differences between
corresponding features for two settings with normalized values r(S1)

(·) and r(S2)
(·) , and as

such corresponds to the Manhattan distance.

Based on the use case scenario outlined above, Alice wants to find shopping areas in
Vienna that compare in similarity to London’s Oxford Street. Therefore, we denote by
r

(S1)
i the values of Oxford Street and make a comparison with the larger-sized extracted
conceptual shopping settings of Vienna, since we normalized the data based on the size of
the settings. According to the total deviation (see Eq. (3.10)) the best matching setting
is the area found around the Inner City, and the second best is the cluster around the
lower part of Mariahilferstraße, which is illustrated in Figure 3.4.

Figure 3.3 illustrates the deviations of the defined preferences between the areas of Inner
City and Oxford Street (blue), as well as Marahilferstraße and Oxford Street (green). The
total deviation, which is defined through the similarity distance given in Eq. (3.10), can
be read off the absolute deviation axis. A lower deviation is indicated when the instance
that is being compared, i.e. the line for Inner City or Mariahilferstraße, respectively, is
nearer to the center. In this case, it can clearly be seen that the total deviation of Inner
City is lower than the deviation of Mariahilferstraße, as compared to the original Oxford
Street area. To enable a more fine-grained comparison, we plotted for each i = 1, . . . , 4
the value of |r(S1)

i − r(Sj)
i |, which is the single deviation on an independent axis. In the

previous formula, the variable j stands for either 2 or 3, which correspond to Inner City
and Mariahilferstraße, respectively.

In the following, we briefly elaborate on the individual feature differences according to
Figure 3.3:

1. Regarding the density of banks and ATMs, the area found in the Inner City as
well as the one around Mariahilferstraße are both relatively close to the area that
contains Oxford Street.
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Figure 3.4: Visualization of the identified shopping areas in Vienna, which are most
similar to the Oxford Street (London).

2. In terms of the density of tourism attractions, Mariahilferstraße is a bit closer to
Oxford Street than the Inner City.

3. The higher deviations in terms of density of restaurants, cafes, and fast food outlets,
and in terms of shop diversity of Mariahilferstraße indicate that the Inner City is
more similar to Oxford Street.

3.6 Summary and Focus
In this chapter, a generalization procedure has been defined that subsequently allows
for more semantic aspects to be considered than is possible with current spatial search
engines. We denote homogeneous areas as cognitive regions or settings, which are
simplified “semantic representations” and relate to human conceptualization of space.

In the beginning of this chapter, we argued that conceptualization of space is similar to
image segmentation and proposed a method inspired by a technique called region growing.
The proposed method allows us to partition a map into homogeneous and conceptually
uniform areas, mimicking human decision making by segmenting a map into functional
areas.

In order to facilitate the comparison of cities with respect to certain functional areas,
distance and ranking mechanisms are discussed. Human requirements and preferences
are modeled as spatial search criteria and integrated into the proposed computational
model of cognitive regions.

In this chapter, two significant assumptions have been made: (i) first, seeding cells have
to be known; and (ii) second, a description D for the regions is available. In the next
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chapter, we will try to mitigate these issues by utilizing textual place descriptions and
Machine Learning to automatically derive conceptually uniform areas.
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CHAPTER 4
Deriving the Geographic

Footprint of Cognitive Regions

In the previous chapter, we discussed cognitive aspects of urban search. Cognitive
regions are highlighted as the pillars of city generalization, where methods of traditional
Information Retrieval serves as foundation in respect to similarity of regions. In this
chapter, the basic idea of cognitive regions is integrated in an automated approach
to extract conceptual areas by the use of Natural Language Processing and Machine
Learning. This chapter is mainly drawn from Hobel et al. [2016].

4.1 Excursus
In this chapter, methods of Information Retrieval, Natural Language Processing, and
Machine Learning are utilized to both identify seeding cells for cognitive regions from
User Generated Content, and to advance the identification of homogeneous and uniform
areas. This section, therefore, addresses two research directions: term extraction, and
probabilistic classification.

Geographic Information Retrieval is a specialization of traditional Information Retrieval
supported by geographic knowledge bases that enables the retrieval of geographic in-
formation and geotagged objects. The respective tools enable the identification and
disambiguation of place names, the mapping of place names onto spatial features and vice
versa, and the derivation of place semantics. Regarding the latter, the literature primarily
focuses on the identification and classification of places [Tversky and Hemenway, 1983,
Smith and Mark, 2001], and on the automatic generation of ontologies [Popescu et al.,
2008].

To enhance the capabilities of the next generation of geographic search engines, different
approaches are currently being pursued to facilitate the retrieval of geo-related content.
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4. Deriving the Geographic Footprint of Cognitive Regions

Applications range from the conceptualization of space into a metric space algebra
[Adams and Raubal, 2009], to the contextualization of unstructured text [Adams et al.,
2015, Adams and McKenzie, 2012] to relate concepts to places, to the development of
content-rich knowledge bases and vocabularies [Ballatore et al., 2015], and to semantic
similarity measures for geographic terms [Ballatore et al., 2013].

Interesting approaches of automatically mapping spatial content are pursued in different
fields. Jones et al. [2008] focused on modeling vague regions by statistical density surfaces,
and mining place descriptions in natural language to infer the approximate region. Grothe
and Schaab [2009] exploited freely available georeferenced photographs to derive the
geographic footprint of imprecise regions by using Kernel Density Estimation and Support
Vector Machines. Cunha and Martins [2014] derived imprecise regions by exploiting
Machine Learning for interpolating from a set of point locations. Lüscher and Weibel
[2013] concentrated on using characteristics of topographical data to delineate regions.

The current focus on similarity measures for geographic terms [Ballatore et al., 2015,
2014] is further proof that there is an interest in the disambiguation of places and place
descriptions. One of the goals is to prepare shared and universally accepted vocabularies
to facilitate the interpretation and the resolution of spatial requests. For instance, if
the task is to search for a place where “one can get something to eat”, there are more
possible matches than just restaurants. Coffee shops, pubs, or even supermarkets may
also fulfill the requirements of the request.

The availability of mature Natural Language Processing tools [Manning et al., 2014] allows
for advanced processing of textual spatial descriptions [Chang et al., 2015, 2014a,b, Coyne
and Sproat, 2001] where tokenization and part-of-speech taggers are used to automatically
break text into meaningful symbols – a selection of Part-of-Speech Tags (POST) is shown
in Table 4.1. Two recent interesting approaches are presented in [Alazzawi et al., 2012]
and [McKenzie et al., 2013]. The former builds upon current state-of-the-art Natural
Language Processing to extract spatial activities from unstructured text; the latter
presents a model to derive user similarity from spatial topics they discuss on social media.

Table 4.1: A Selection of Part-of-Speech tags (POST) [Santorini, 1990]

POST POST
tag Definition tag Definition

CC coordinating conjunction DT determiner
IN preposition or subordinating conjunction WRB adverb
JJ adjective WP pronoun
NN noun, singular or mass TO to
NNP proper noun, singular VB verb
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4.2 Framework

In the following, we outline a processing workflow (see Figure 4.1) to derive the geographic
footprint of a given cognitive region from textual descriptions of that region. Details of
the single steps involved are given in further subsections.

Figure 4.1: Schematic illustration of the proposed workflow to derive the geographic
footprint of cognitive regions.

The proposed approach relies on two types of data sources (depicted as white databases in
Figure 4.1): (i) a User Generated Content database containing textual descriptions of a
given cognitive region, and (ii) a geographic database that might be either a Geographic
Information System or a Volunteered Geographic Information system.

The workflow consists of three main stages labeled in Figure 4.1 as Natural Language
Preprocessing, Geo Matching, and Machine Learning, respectively. First, the textual
descriptions undergo a Natural Language Processing phase in order to extract from them
a set of nouns referring to geographic features. In the next step, this set is compared
to the geonames available in the spatial database in order to assign each a location on
the map. Finally, a grid of regular cells is superimposed onto the map and the cells
containing at least one of the geographic features mentioned in the textual descriptions
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4. Deriving the Geographic Footprint of Cognitive Regions

are selected. These, together with a different set of cells selected randomly from the grid
as counterexamples, are used as training samples for a Machine Learning model that
categorizes all other cells according to the activities they allow. As a result, each cell is
associated to either of the two training sets, unless too little information is known about
it – in which case it is marked as “unclassified”.

4.2.1 Natural Language Preprocessing

The Natural Language Processing stage relies on the Stanford CoreNLP Natural Language
Processing Toolkit [Manning et al., 2014]. More specifically, it relies on three of the tools
provided: the sentence splitter, the part-of-speech tagger, and the dependency parser.

Figure 4.2: The dependency tree generated by the Stanford’s part-of-speech tagger and
dependency parser [Manning et al., 2014] for the sentence “The Karntner Strasse is a bit
touristy, but generally the area is where one could spend most of one’s time in Vienna”.

The sentence splitter tokenizes each User Generated Content description into sentences
(step 1 in Figure 4.1) that are passed over to the Part-of-Speech tagger and the dependency
parser (step 2 in Figure 4.1). The tagger classifies every word in a sentence according to
its syntactical class, e.g. noun (NN), verb (VB), adjective (JJ) (see Table 4.1 for a more
complete list of syntactical classes and tags). The parser generates a so-called dependency
tree whose nodes denote the syntactical class of each word in a sentence, with edges
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representing the hierarchical structure of grammatical relations between the words. For
example, given the sentence “The Karntner Strasse1 is a bit touristy, but generally the
area is where one could spend most of one’s time in Vienna.”, the Part-of-Speech tagger
and the dependency parser produce the tree shown in Figure 4.2. Note that each term is
also lemmatized, i.e. it is transformed into its base form.

Given a dependency tree, it is easy to extract from it the set O of common and proper
nouns, tagged NN and NNP, respectively. This set then possibly contains a reference to
geographic features in the textual description that we are interested in locating on the
map. Since the name of a geographic feature may be a compound noun (e.g. Kärntner
Straße, St. Stephen’s Cathedral), we need to further process the set of nouns before
trying to match them with geonames available in the geographic database.

Algorithm 3 Finding candidate compound geonames.
Input
O = the set of nouns in UGC descriptions,
x = maximum number of words making up a compound geoname

Output
A = {An : n ∈ O} = the set of candidate geonames for each noun n in O

1: procedure CompoundGeonames
2: A ← ∅
3: for all n ∈ O do
4: An ← ∅
5: D ← {n} ∪RetrieveDependencies(n, x)
6: for all d ∈ 2D do
7: An ← An ∪ PermutationsOf(d)
8: end for
9: A ← A∪ {An}

10: end for
11: end procedure

We propose the procedure reported in Algorithm 3 that, given a noun n ∈ O, produces a
set An consisting of simple and compound nouns that we refer to as candidate geonames
for n. For each noun n ∈ O we access the dependency tree to retrieve other nouns that,
together with n, might make up a compound noun. This is done through the function
RetrieveDependencies(n, x) (line 5) which, starting from the node corresponding to n,
traverses the tree upwards (towards the root) and downwards (towards the leaves), and
retrieves up to x ∈ N other nouns in both directions. These nouns, together with n,
are stored in the set D. The final set An of candidate compound nouns associated to
n consists of all possible permutations of the elements of the powerset of D (lines 6-8).
The set A is the collection of all candidate geonames associated to all nouns n ∈ O, i.e.
A = {An : n ∈ O} (line 9).

1The correct spelling in German language is Kärntner Straße. This comment has been retrieved from
the Web and is purposely reproduced here with its original incorrect spelling.
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Example 4.2.1: Natural Language Preprocessing

In our example, from the dependency tree in Figure 4.2 we derive:

O = {Strasse, Karntner, bit, area, time, Vienna}

And for the noun n = Karntner we have:

DKarntner ={Karntner, Strasse}
AKarntner ={∅,Karntner, Strasse, Karntner Strasse, Strasse Karntner}

Note that in this case the number x of dependencies to be retrieved does not
influence the sets of candidate compound names, as far as x > 0.

4.2.2 Geographic Matching

This stage does not rely on any external tool. The objective is trying to match every
candidate geoname in the set An obtained in the previous stage against a unique feature
in the geographic database according to name comparison (step 3 in Figure 4.1). The
result is a set G that contains at most one geographic feature from the database for
each element in An: We choose the one (if it exists) whose name best matches against
the candidate geonames in An. This implies that we also discard nouns referring to
categorical features (e.g. street, square), as our final goal is to pinpoint an initial area on
the map that the textual descriptions refer to.

We propose the procedure reported in Algorithm 4 that works as follows. For each noun
n ∈ O we retrieve (line 4) from the geographic database a set P of features whose names
pattern-match (i.e. via regular expression) against n. In defining the regular expression
(i.e. a search pattern), particular attention must be given to encode case-insensitivity
and special characters (e.g. vowel mutations) to deal with spelling issues occurring when
people write place names in a non-native language (e.g. the German word Straße vs.
Strasse). Of all the retrieved features P we are only interested in selecting (lines 5-11)
one whose name best matches against an element of the set An of candidate geonames
associated to the noun n. Specifically, for each candidate geoname c ∈ An and for each
feature p ∈ P we compute the Levenshtein distance2 between c and the name of p (line 7).

2The Levenshtein distance is a string metric that measures similarity by the minimal number of
required editing steps to transform one string into another string.
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Algorithm 4 Geographic matching.
Input
O = the set of nouns in UGC descriptions,
A = {An : n ∈ O} = the set of candidate geonames for each noun n in O,
ε = threshold

Output
G = the set of matched geonames

1: procedure GeoMatching
2: G ← ∅
3: for all n ∈ O do
4: P ← patternMatch(n)
5: (p, d)← (nil,+∞)
6: for all (c, p) ∈ An × P do
7: d← Levenshtein(c, p.name)
8: if d ≤ ε ·WordsIn(c) ∧ d < d then
9: (p, d)← (p, d)

10: end if
11: end for
12: if p 6= nil ∧ IsUnique(p) then
13: G ← G ∪ {p}
14: end if
15: end for
16: end procedure

Example 4.2.2: Geographic Matching

Let us resume the example sentence introduced in Section 4.2.1 and whose depen-
dency tree is shown in Figure 4.2. Assume that for the noun n = Karntner and for
the case-insensitive regular expression “k(a|ae|ä)rntner” (i.e. a search pattern that
matches against karntner, kaerntner, and kärntner) the function patternMatch
(line 4) returns only one feature named ’Kärntner Straße’. The following table
then shows the resulting Levenshtein distance for each candidate geoname in An

and the threshold (assuming ε = 3 in our experiments) multiplied by the number
of words in each noun:

c ∈ An Levenshtein Distance ε ·WordsIn(c)

∅ 15 0
‘Karntner’ 8 3
‘Strasse’ 11 3
‘Karntner Strasse’ 3 6
‘Strasse Karntner’ 12 6

It is easy to see that there is only one entry in this table whose distance is admissible
and is minimum: the entry ‘Karntner Strasse’. 39
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To find possible matches (line 9) we enforce (line 8) that the distance not be larger than
a given threshold ε. Since a candidate geoname might be a compound name, we multiply
ε by the number of words making up the candidate geoname c. The best match is then
the one with the smallest Levenshtein distance. At the end of the loop the variable
p is either empty or it contains a geographic feature. In the first case no match has
been found. Otherwise we must make sure that the feature is unique in the geographic
database (line 12). This might not be the case for features like e.g. shops or restaurants
that have several branches in the same city.

4.2.3 Machine Learning

This stage relies on a Machine Learning model called Multinomial Naïve Bayes: a
probabilistic approach mainly used for text classification that learns from a given set of
pre-classified samples (called training vectors) how to classify other, unclassified feature
vectors according to their similarity with the given training vectors.

(a) Initial Configuration (b) Classified Area

Figure 4.3: A schematic representation of the classification process. Given training
vectors for the cognitive region of interest (purple cells in Figure (a)) and for the counter-
examples (orange cells in Figure (a)), the Machine Learning classifier associates each
other cell to one of the two classes (light purple and light orange in Figure (b)).

We adapt Multinomial Naïve Bayes to classify geographic areas as either being part of
the cognitive region of interest (class 1) or not being part of it (class 2). The training
vectors are obtained by tessellating the map with a regular grid (step 4 in Figure 4.1)
and retrieving the cells I1 containing at least one of the geographic features G derived in
the previous stage. Such cells are the training vectors for the first class. The training
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vectors I2 for the second class consist of the same number of randomly selected cells that
do not contain any of the geographic features in G.

We adopt a bag-of-words model which is typically used for text classification to obtain a
simplified semantical representation of the training cells by extracting certain categorical
attributes from all the geographic features contained in each such cell (step 5 in Figure 4.1).
Recall from Chapter 3 that T := {ti : i = 1, . . . , n} is a vocabulary containing all
categorical attributes of interest from the whole map. Then, each cell is represented by a
vector (x1, . . . , xn), where xi is the frequency of the categorical attribute ti in this cell.
Since our focus is on cognitive regions conceptualized as homogeneous areas in terms of
the activities they allow, we only select categorical attributes of geographic features that
offer a service (e.g. bars, shops, restaurants, banks).

Given the two training sets I1 and I2 as described above, the Machine Learning procedure
is capable of classifying all the remaining cells (step 6 in Figure 4.1), as graphically
exemplified in Figure 4.3.

For convenience, the following two definitions are introduced:

Definition 4.2.1: A Priori Probability

The a priori probability P̂ (k) for class k is the number of cells that are catego-
rized as type k divided by the total number of cells:

P̂ (k) = number of cells of type k
total number of cells (4.1)

Definition 4.2.2: Conditional Probability

The conditional probability P̂ (t|k) of tag t in class k is the number of tags t
occurring in class k plus a smoothing factor of 1 divided by the number of all tags
in class k plus the size of the vocabulary |V |:

P̂ (t|k) = count(t, k) + 1
count(k) + |V | (4.2)
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Example 4.2.3: Multinomial Naïve Bayes

Given a simplified example for demonstration purposes as shown in the table
below, the steps to classify a single test cell are illustrated.

Cell Tags Class

Training c1 restaurant restaurant shop I1
Training c2 restaurant restaurant monument I1
Training c3 restaurant information I2
Training c4 restaurant fountain bar I2

Test c5 restaurant restaurant restaurant fountain bar ?

Then the a priori probabilities for the classes I1 and I2 are given as follows:

P (I1) = 2
4 , P (I2) = 2

4

The conditional probabilities for the relevant tag occurrences ‘restaurant’,
‘fountain’, and ‘bar’ for each class I1 and I2 are given as follows:

P (restaurant|I1) = 5
12

P (fountain|I1) = 1
12

P (bar|I1) = 1
12

P (restaurant|I2) = 3
11

P (fountain|I2) = 2
11

P (bar|I2) = 2
11

Hence, for choosing a class, the following conditional probabilities are calculated:

P (I1|c5) ∝ 1
2 ∗

( 5
12

)3
∗ 1

12 ∗
1
12

P (I2|c5) ∝ 1
2 ∗

( 3
11

)3
∗ 2

11 ∗
2
11

Since the probability P (I2|c5) is slightly higher than P (I1|c5), class I2 is chosen
as class for the test example.
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Definition 4.2.3: Classification

For classification, assuming that the cell c is identified with the vector (x1, . . . , xn)
(e.g. in the example with (restaurant, restaurant, restaurant, fountain, bar)), the
maximum a posteriori class kMAP is defined as follows:

kMAP = max
k∈K

P (c|k)P (k) = max
k∈K

P (x1, . . . , xn|k)P (k) (4.3)

Now, a simplifying independence assumption is made: the feature probabilities
P (xi|k) are independent given the class k.

With this simplifying assumption, the problem can be efficiently solved in practice.
Hence, the Multinomial Naïve Bayes classifier is defined as:

kNB = max
k∈K

P (k)
n∏

i=1
P (xi|k) (4.4)

Besides the Naïve Bayes Classifier, many different approaches for text classification exist:
decision trees, rule induction, neural networks, nearest neighbors, and support vector
machines. However, due to its simplicity and effectiveness for small training samples,
only the Naïve Bayes approach is utilized in this thesis.

4.3 Application Areas

In this section, two possible application areas of this approach are discussed.

4.3.1 Extraction of Cognitive Regions

In the scope of this thesis, we suppose that cognitive regions have homogeneous and
uniform characteristics, e.g. a park consists of trees, green spaces, and children’s play-
grounds. Cognitive regions or settings are of substantial interest to the next generation of
Geographic Information Systems and recommendation systems, considering that cognitive
regions are conceptualizations of people’s mental models, experiences, and individual
knowledge. They also have the characteristic that they are generally understood by
different people even when their boundaries are not clearly defined, which has been shown
in an empirical study for inferring the location of downtown Santa Barbara [Montello
et al., 2003].

Place is an ambiguous term and how people use place names in their everyday normal
speech, describe places in natural language, and conceptualize places according to their
individual experiences and given descriptions, are far beyond the scope of simple query
to object matching. Therefore, the spatial footprint of cognitive regions can be expressed
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Table 4.2: A Selection of the most common Tags within the Historic Center of Vienna

osm-places osm-places
tag number tag number

natural=tree 1548 building=yes 1094
highway=footway 221 amenity=restaurant 191
landuse=grass 143 amenity=cafe 74
historic=memorial 60 shop=clothes 59
amenity=bicycle_parking 59 highway=bus_stop 40
amenity=bench 36 railway=tram 34
amenity=bank 34 tourism=hotel 34
service=parking_aisle 33 amenity=bar 33
religion=christian 31 amenity=telephone 29
amenity=fast_food 29 amenity=place_of_worship 29
tourism=museum 28 amenity=embassy 26
shop=books 24 amenity=fountain 23
shop=bakery 22 shop=shoes 21
amenity=post_box 21 building=church 20
amenity=pub 20 amenity=atm 18

in a bag-of-words model and Machine Learning approaches can be exploited. Table 4.2
shows the most common tags within the historic center of Vienna. Given that unique
characteristics exist, these places can easily be identified by the proposed approach.

A different approach would be to identify “activity clusters” by searching for categor-
ical tags and form clusters with the region growing algorithm, which was proposed in
Chapter 3.

In this respect, the extraction of cognitive regions has several areas of applications.
For example, one could be interested in the geometric extent of a given concept such
as “downtown” that is not mapped as an explicit feature in Geographic Information
Systems, and subsequently integrate it in spatial search engines. Another example
would be the next generation of location-aware routing services, which could profit from
recognizing a driver’s unfamiliar regions and automatically switching to more detailed
routing instructions. In conclusion, this concept has great potiential for several different
areas of application and research.

4.3.2 Relocation Problem

Learning spatial knowledge is one of the main research areas of geographic information
science. According to the Anchorpoint Theory [Golledge and Stimson, 1997], people
learn spatial knowledge in a hierarchical structure where anchorpoints are initial starting
points of knowledge generation. Such anchorpoints can be home, shopping, and work
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places, and according to these anchorpoints, a skeletal structure is created that is ordered
hierarchically by primary, secondary, tertiary, and lower-order paths and places.

@Residential

7→ local supply supermarkets,
small restaurants, kindergarden

@Work

7→ local supply supermarkets,
restaurants

@Shopping

7→ supermarkets, restaurants,
shops

Figure 4.4: Concept Map – white cells designate residential, grey cells work, and black
cells shopping settings of an individual.

A simple generalization of “activity clusters” can be made in respect to residential, work,
and shopping areas. When people move from one city to another, the previous Machine
Learning approach can be utilized to partition the environment in such conceptual
classes. Figure 4.4 schematically illustrates that with given feature vectors of the original
environment, and by utilizing Machine Learning, a new thematic map can be created.

4.4 Case Study
This section describes an implementation of the processing workflow, illustrating the
feasibility of the described approach.

As data sources (see Figure 4.1) we selected two well-known User Generated Content and
Volunteered Geographic Information projects: TripAdvisor3 and OpenStreetMap4. By
means of a customized crawler we retrieved English textual descriptions of the historic
center of Vienna from a dedicated comment page on TripAdvisor. For the geographic
database we used the OpenStreetMap extract of Vienna as provided by Mapzen Metro
Extracts5. OpenStreetMap provides spatial data in the form of points (e.g. a park bench),
ways (e.g. streets and buildings), and relations (e.g. spatial entities consisting of several
parts). Semantic information such as name and categorical attributes are defined as
‘tags’, which are key-value pairs. For example, OpenStreetMap contains an entry for the
“Hofburg Imperial Palace” that includes the name of the feature in several languages
and is described by the following tags (among others): (building, yes), (historic, castle),

3http://www.tripadvisor.com/
4https://www.openstreetmap.org/
5https://mapzen.com/

45



4. Deriving the Geographic Footprint of Cognitive Regions

Figure 4.5: Visualization of the OpenStreetMap dataset of Vienna as used in our
experiments. The whole dataset consists of 290.586 nodes, 368.112 ways, and 810.145
relations, for a total of 1.468.843 features.

(castle_type, palace), (tourism, attraction). The spatial dataset (see Figure 4.5) was
stored in a dedicated database where the geometry of ways and relations was simplified
by their centroid.

Finally, for the implementation of the Machine Learning stage (see Section 4.2.3) we
resorted to a hexagonal grid with uniform cells with an edge-length of 0.0025◦, and we
used the MatLab implementation of the Multinomial Naïve Bayes6 classifier.

4.4.1 Experimental Results of the Framework

We ran our workflow implementation on two experimental scenarios. Both scenarios use
the same data sources with the following difference: in the first scenario (see Figure 4.6),
all training vectors were kept in their integrity. In the second scenario (see Figure 4.7), we
manually removed outlier cells from the training vector associated to the cognitive region,
i.e. those cells that fall far away from the actual city center (compare the distribution of
dark purple cells in Figures 4.6 and 4.7).

6http://de.mathworks.com/help/stats/naive-bayes-classification.html

46



4.4. Case Study

Figure 4.6: Visualization of classification results for the first scenario (several runs).
Dark purple cells represent training vectors for the cognitive region historic center of
Vienna; light purple cells are classified as historic center of Vienna; dark orange cells
represent training vectors for the counter-example; light orange cells are classified as
counter-example. White cells are unclassified.

For the image representations of the results we adopted the following color scheme: dark
purple cells represent training vectors for the cognitive region historic center of Vienna
as extracted from the textual descriptions; dark orange cells represent training vectors
for the counter-example. Light purple and light orange cells show the areas classified as
historic center of Vienna, and as the counter-example, respectively. White cells denote
areas that have not been classified because of insufficient semantic information.

Since counter-examples are selected randomly from the grid, we decided to perform
several runs for each scenario. Figure 4.6 shows the results obtained for five runs on the
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Figure 4.7: Visualization of classification results for the second scenario (several runs).
Dark purple cells represent training vectors for the cognitive region historic center of
Vienna; light purple cells are classified as historic center of Vienna; dark orange cells
represent training vectors for the counter-example; light orange cells are classified as
counter-example. White cells are unclassified.

first scenario. Figure 4.7 shows similar results for the second scenario, where outlier cells
were removed from the training vector of the cognitive region. The results for the two
scenarios mostly coincide, and the cells classified as similar to the cognitive region historic
center of Vienna form a region approximately corresponding to the central district of the
city and its immediate surroundings. Interestingly, the cells that were manually removed
in the second scenario are associated to the class corresponding to the cognitive region
anyway.
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(a) Scenario 1 (b) Scenario 2

Figure 4.8: Visualization of robust results

To mitigate the effects of using randomly selected counter-examples, we performed ten
runs for each scenario and intersected the results to obtain robust results: only cells
classified as historic center of Vienna that occur in the result of each run form the robust
results, as shown in Figure 4.8.

4.4.2 Qualitative Evaluation

We present here a preliminary qualitative evaluation of the outcomes by comparing the
obtained robust results with a historical map of the city of Vienna that dates back to
1850. For that, we geographically overlaid the derived regions with the map, as shown
in Figure 4.9 for the first scenario. It is easy to see how the shape and extent of the
derived region correspond nicely to the city boundaries of 1850: the outer boundary of
the main part of the classified area coincides with a physical separation which is now a
major street of the city, while some the few outlier cells correspond to historical sites
that are not reported in the historical map (e.g. the Schönbrunn Palace).

In summary, the approach, which relied solely on a knowledge base derived from Volun-
teered Geographic Information and crowd-sourced information sources, shows promising
results.

4.4.3 The Relocation Problem

For the evaluation of the idea to classify cities according to their conceptual functions,
four conceptual classes where defined:

• Residential (White)

• Central Business Unit (Red)
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Figure 4.9: Approximate overlay of the robust result (Scenario 1) over a historic repre-
sentation of Vienna (map retrieved from www.valentina.net).

• Shopping (Purple)

• Amusement (Blue)

Given one training sample for each of the conceptual classes – except Residential, which
was provided with three samples – the remainder of Vienna is classified. Figure 4.10
shows the final classification. Grey indicates that the cells are not classified because
insufficient information is available.
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Figure 4.10: Visualization of classified areas (Vienna).

Again, all results were computed by using MatLab’s Multinomial Naïve Bayes7 classifier.

In the following, we briefly elaborate on the obtained results. As can be clearly seen in
Figure 4.10, different functional areas give rise to different distinct regions obtained by the
classifier. Notably we see that large extents of the “Donauinsel” and the north-western
part of Vienna are correctly classified as “Amusement” areas. In contrast, the concept
“Central Business Area” gives rise to a lot of small areas that are dedicated tourist
attractions.

Consequently, we believe that the demonstrated result is strong enough to prove that tag
distributions can indeed be used as basis to obtain a large-scale classification of an entire
city.

4.5 Summary and Focus

This chapter shows a novel and automated approach to infer the geometric extent of
“cognitive regions” by utilizing solely crowd-sourced geographic information as fundamen-
tal knowledge bases. Based on the Natural Language Preprocessing and combinatorial

7http://de.mathworks.com/help/stats/naive-bayes-classification.html
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place matching procedure tailored to identify unique OpenStreetMap names, we have
shown that the identification of seeding cells can be achieved by a simple Named Entity
Recognition approach, yielding an improvement of the previously introduced approach
(see Chapter 3).

Based on the previously identified seeding cells, an approach has been proposed which
builds upon a “semantic representation” of OpenStreetMap service tags, allowing the
automated clustering of cities into “cognitive regions” as a set of cells having clearly
defined boundaries. We showed that the classification problem can be efficiently solved by
utilizing the Multinomial Naïve Bayes model as classifier. Thereby, we have discussed a
bi-classification approach operating on initial seeding cells identified by the combinatorial
place matching procedure, and on counter-examples derived from a Monte Carlo approach.

Finally, two possible application areas have been discussed: first (i), the extraction of
homogeneous and uniform cognitive regions with respect to urban search; and second (ii),
the relocation problem by clustering urban areas in cognitive regions. Nevertheless, the
proposed approach cannot answer more complex and nuanced questions about a cognitive
region. For instance, which activities are typically referred to given places. The next
chapter will therefore concern itself with the automated processing of User Generated
Content to derive activities ascribed to geo-features.
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CHAPTER 5
Extracting Semantics of Places
from User Generated Content

The need for integrating and enabling human conceptualization, cognition, and common-
sense reasoning in spatial search and Information Retrieval systems has been addressed
in different specializations of geographic information science [Fogliaroni and Hobel, 2015,
Zhang et al., 2008]. Modern Geographic Information Systems mostly support searches
based on name and category matching, as well as on spatial relations among geographic
features (e.g. the Opera House in Vienna, restaurants near Vienna). An important
category of search that is not yet supported, however, concerns the retrieval of places
based on the activities they afford. Agnew [1987] defined place as a combination of
three elements: location, locale (the structure present in places), and sense of place
(feelings and attachment to places). One major reason hindering place search is the
lack of a cognitively plausible model for places that is capable of truly capturing the
human understanding of such a fuzzy term. In the previous chapters it was argued that
place affordances are essential for the development of recommendation systems based on
place similarity and automated extraction of spatial footprints. This chapter describes
modeling and extraction of place affordances by exploiting User Generated Content,
which is mainly drawn from Hobel and Fogliaroni [2016].

5.1 Excursus
Drawing upon the taxonomy for geographic regions proposed by Montello [2003] and on
affordance theory [Gibson, 1977, 1979], we regard a place as a cognitive region. More
specifically, as a region of space conceptualized as a whole by people based on the activities
it affords.

As a source for activity information we suggest exploiting User Generated Content
like geo-logs, travel social media (e.g. TripAdvisor), and place review forums. These
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are naturally suitable sources for extracting the coveted information, as they convey
human conceptualizations of places in the form of unstructured textual representations
of cognitive regions.

In the spirit of the Semantic Web [Berners-Lee et al., 2001], this chapter introduces
a vocabulary to model places in terms of the activities they afford, and describes a
computational workflow to populate the model from User Generated Content. In addition,
we also present an algorithmic approach that exploits Natural Language Processing tools
to map unstructured text onto the proposed semantic model.

To enable a cognitive view in Information Retrieval, common-sense knowledge bases for
Information Retrieval tasks were proposed, which are based on relationships among spatial
objects [Zhang et al., 2008]. Based on the notion of Naïve Geography [Egenhofer and Mark,
1995], a novel framework was proposed in [Fogliaroni and Hobel, 2015], which enables
qualitative spatial relation and configuration queries as a means to provide the casual
user with more natural spatial search possibilities. Besides the spatial arrangement of
objects, the question how people perceive places is tightly coupled with place affordances.
The term affordance refers to Gibson’s theory of visual perception and designates action
potentials that are recognized by an agent in its environment [Gibson, 1977, 1979]. An
object only affords an action if the agent’s capabilities allow for the performing such an
action.

Recently, much work has also focused on modeling, publishing, and consuming spatial data
within the Semantic Web [Kuhn et al., 2014]. A striking example is the LinkedGeoData
project [Stadler et al., 2012] that provides an encoding of OpenStreetMap data into
the Resource Description Framework. The Linked Spatial Data trend is supported by
different spatial (and temporal) extensions of basic Resource Description Framework
and SPARQL. Some examples are the GeoSPARQL [Battle and Kolas, 2011] and the
stSPARQL [Koubarakis and Kyzirakos, 2010] vocabularies and query extensions.

Natural Language Processing has also become a prominent research topic in geographic
information science. The question how to model semantics of space for the retrieval from
unstructured text is addressed, for example, by Bateman et al. [2010] where an ontology
is presented for the processing of language concerned with space, actions in space, and
spatial relationships. Khan et al. [2013] derived spatial triplets from unstructured text
while Alazzawi et al. [2012] concentrated on pattern mining to derive language patterns
for service identification.

Recent years have seen widespread research dealing with the extraction of structured
information from unstructured text. This has been largely made possible by the availability
of mature Natural Language Processing software like the Stanford CoreNLP toolkit
[Manning et al., 2014]. This is a software suite that offers tools to parse and map
unstructured text onto formal structures. One of the most interesting tools in this suite
is the dependency parser, which generates a so–called dependency tree from a given
sentence. The nodes of such a dependency tree denote the syntactical class of each word
in a sentence (see Figure 5.1 for a partial list of such syntactical classes/tags). The
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Go/VB (root)

Ringstrasse/NNP (prep_along)

the/DT (det)

Graben/NNP (appos)

Kaerntnerstrasse/NNP (nn)view/VB (xcomp)

to/TO (aux)

landmarks/NNS (dobj)

the/DT (det

historic/JJ (amod)

POST POST
tag Definition tag Definition

IN preposition or subordinating conjunction DT determiner
JJ adjective WRB adverb
NN singular noun WP pronoun
NNS mass noun TO to
NNP proper noun, singular VB verb

Figure 5.1: Dependency tree obtained with the Stanford Dependency Parser [Manning
et al., 2014] for the sentence “Go along the Ringstrasse, Kaerntnerstrasse, Graben to
view the historic landmarks”, and the partial list of syntactical classes and tags extracted
from it [Santorini, 1990].
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labeled edges represent the hierarchical structure of grammatical relations between the
words. The root of a dependency tree always contains the verb of the independent clause
of the sentence. The encoding of a sentence in a tree structure is done by extracting
sequences of dependencies among words. Such dependencies are exactly the grammatical
relations holding among different terms. If the parser is unable to narrow down the
relation to a specific one, the edge is generally labeled rel. For example, the sentence
“Go along the Ringstrasse, Kaerntnerstrasse, Graben to view the historic landmarks”
is parsed onto the dependency tree shown in Figure 5.1, where syntactical classes and
grammatical relations are both reported in the nodes.

5.2 Mapping Semantics onto Cognitive Regions

We propose the semantic model for places (specifically, cognitive regions) depicted in
Figure 5.2. A place pl (root node in the diagram) recursively consists of other places or of
an open number of geo-features that define the geographic footprint of pl. A geo-feature
gf is a spatial entity (real or abstract) that possibly affords a number of different activities
to be performed at or nearby the feature location. We regard an activity act = (vb, ctx)
as a pair consisting of a verb and a context. The verb expresses the type of activity (e.g.
see, eat) while the context is any piece of ancillary information that narrows down or,
more generally, modifies the semantics of the activity (e.g. see historical buildings, eat
ice cream).

Figure 5.2: Abstract semantic model of a place. A place consists of one or more places
or geo-features. Geo-features afford for activities. Activities consist of a verb in a given
context.

Note that there is no restriction on the uniqueness of verbs, contexts, and verb-context
pairs. In fact, a historical building (ctx1), for example, can be seen (vb1) but can also
be photographed (vb2). Moreover, historical buildings can be seen and photographed at
different locations.
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According to the proposed semantic model, an activity is also not unique – but geo-
feature-activity pairs (gfi, acti,j) are. Consequently, a place is identified by its constituting
geo-features and the activities they afford.

Embedding this abstract model within the Resource Description Framework [Consortium
et al., 2014], we obtain a data model represented by the vocabulary in Figure 5.3. In this
diagram, rounded nodes represent entities consisting of several attributes; rectangular
nodes denote literals, whose types are defined in other vocabularies in the Semantic Web;
edges report relations among nodes.

Figure 5.3: Vocabulary representing the data model for the abstract semantic model in
Figure 5.2.

This less abstract model shows the composition of entities in more detail. Places and
geo-features are typically referred to by one or more names, and may belong to a certain
category or type (e.g. market, road). A geo-feature also has a geographic footprint
that can be expressed, for example as well-known text (geosparql:wktLiteral). Activities
afforded by a geo-feature are simply represented by a pair of strings, denoting the verb
and the context of the activity.
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5.3 A Workflow to Derive Semantic Place
Representations from Unstructured Text

As of today, information about the central part of the model in Figure 5.3 (i.e. extent, type,
and name of geographic features) can be easily retrieved from several open and private
sources. What still remains an open question, however, is how to retrieve information
about the rest of the model. Namely, we should find an answer to the following questions:
“which geo-features constitute a place?”, “which activities do these features afford?”

We present an approach that uses Natural Language Processing tools to extract this
information from User Generated Content. More specifically, we present a workflow
that uses the Stanford Dependency Parser [Manning et al., 2014] to process textual
descriptions of places available on the Web (e.g. place reviews, tourist guides, travel logs,
geo-blogs).

Figure 5.4: Processing workflow to derive semantic place representations from unstruc-
tured text.

The workflow (see Figure 5.4) consists of five main steps:

1. A web crawler automatically collects place descriptions in the form of unstructured
natural language texts referring to a given cognitive region – e.g. the Historic
Center of Vienna.

2. A spatial dataset of the area of interest is used as a knowledge base to match names
and categories of geo-features against the textual descriptions. This step detects
which geo-features constitute the place of interest.

3. Textual descriptions containing references to geo-features are processed with the
Stanford Dependency Parser [Manning et al., 2014] to obtain a dependency tree – i.e.
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syntactical classes of the terms occurring in the text and a structured representation
of the grammatical relations among them.

4. The resulting dependency tree is parsed to detect verb-context pairs making up
activities that can be performed at or in the proximity of a given location. This
step ensures that the activity sub-trees are attached to a geo-feature node.

5. Activity sub-trees are aggregated by geo-feature to obtain the overall semantic
representation of the place.

Step 1 (data crawling) can be performed separately and targets one of the two input
data sources: the first is a set TD of textual descriptions of a given place pl. The second
data source is the set GF of geo-features in the area of interest. Step 2 (geo-matching) is
assumed to be realized by the function s.refers(gf) appearing at line 3 of Algorithm 6 that
detects whether a sentence s refers to a geo-feature gf (either by name or by category).
An implementation of this function based on regular expressions is provided in Section
4.2.2.

In the remainder of this section we present an algorithmic realization of the core part of
the workflow (steps 3, 4, and 5 above).

Algorithm 5 Given a place name pl, a set TD of textual descriptions referring to pl,
and a geo dataset GF, the algorithm produces a semantic representation of the place pl
according to the model in Figure 5.3.

Input
pl = a place/cognitive region,
GF = {gf | gf is a geo-feature},
TD = {td | td is a textual description of pl}

Output
tpl = semantic tree description of pl

1: function GeneratePlaceTree
2: tpl ← initializeP laceTree(pl)
3: S← getSentences(TD)
4: for all (gf, s) ∈ GF× S do
5: tgf ← GenerateGeoSubtree(gf, s)
6: if tgf 6= ∅ ∧ tgf.hasActivities() then
7: tpl.append(tgf)
8: end if
9: end for

10: return tpl
11: end function

The main function is reported in Algorithm 5. Given a place pl, a set TD of textual
descriptions of pl, and a spatial dataset GF, the function GeneratePlaceTree produces
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a semantic representation tpl of pl according to the model described in the previous
section. As an example, assume that pl is the “Historic Center of Vienna”, GF is the
OpenStreetMap dataset of the city of Vienna, and that TD comprises the text “I even
enjoyed walking down the beautiful Kärntnerstrasse admiring many nice, original shops”.
The dependency tree of the latter is depicted in Figure 5.5, while the partial semantic
representation derived from it is shown in Figure 5.6. As a first step (line 2) the algorithm
creates the root node of the place tree (see Figure 5.6).

Subsequently (line 3), the textual descriptions are split into single sentences. This is
done to avoid associating, later on, activities found in a sentence to the geo-feature(s)
referred to in another sentence of the description. For each geo-feature-sentence pair
(gf, s) the algorithm calls (line 5) the function GenerateGeoSubtree that is in charge
of producing a so-called geo-sub-tree. A geo-sub-tree displays the part of the semantic
representation starting at the geo-feature node and proceeding all the way down to the
verbs and contexts that make up the activities (cf. Figure 5.3). If such a sub-tree is not
empty and it includes at least one activity, it is appended to the place node tpl (line 7).

Algorithm 6 Given a geo-feature gf and a sentence s produces a semantic representation
tgf of gf according to the model in Figure 5.3.

Input
gf = a geo-feature,
s = a sentence

Output
tgf = semantic subtree description of a geo-feature

1: function GenerateGeoSubtree
2: tgf ← ∅
3: if s.refers(gf) then
4: D ← getDependencyTrees(s)
5: for all d ∈ D do
6: Tact ← GenerateActivitySubtrees(d)
7: if Tact 6= ∅ then
8: tgf ← initializeGeoTree(gf)
9: tgf.appendAll(Tact)

10: end if
11: end for
12: end if
13: return tgf
14: end function

GenerateGeoSubtree is described in Algorithm 6. An empty geo-sub-tree tgf is
initialized (line 2) which is actually built (line 8) only if the following two conditions
hold true: (i) The input sentence s refers to the input geo-feature gf (line 3). (ii) It is
possible to associate at least one activity to gf (line 7). If the first condition is satisfied,
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a set D of dependency trees is generated from the given sentence (line 6). The function
getDependencyTrees(s) utilizes the Stanford Dependency Parser [Manning et al., 2014]
to generate a dependency tree for each independent clause of the sentence s (step 3 of
the workflow in Figure 5.4).

enjoyed/VBD (root)

I/PRP (nsubj

even/RB (advmod)

walking/VBG (xcomp)

down/RP (prt)

Kärntnerstrasse/NNP (dobj)

the/DT (det)

beautiful/JJ (amod)

admiring/VBG (vmod

shops/NNS (dobj)

many/JJ (amod)

nice/JJ (amod)

original/JJ (amod)

Figure 5.5: Dependency tree obtained through the Stanford Dependency Parser [Manning
et al., 2014] for the sentence “I even enjoyed walking down the beautiful Kärntnerstrasse
admiring many nice, original shops”. The node labeled in bold text is the only geo-feature.
Blue and red nodes indicate verbs and contexts of activities, respectively.

Figure 5.6: (Partial) semantic representation (according to the model in Figure 5.3) of
the Historic Center of Vienna as derived by the description of Figure 5.5.

For the running example we only consider one sentence and one independent clause, so
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only the tree in Figure 5.5 is generated. The node labeled in bold text indicates the only
geo-feature for which a name match was found in the spatial dataset GF. Each such
dependency tree d is given as input to the function GenerateActivitySubtree that
is in charge of mapping from d onto the part of the semantic representation rooted at
the activity node (cf. Figure 5.3). This function returns a (possibly empty) set Tact of
activity-sub-trees: one for each verb-context pair found in the dependency tree. If the
returned set is not empty, the geo-sub-tree is finally initialized (line 8) and the activity-
sub-trees are appended to the geo-feature node tgf. Note that the given algorithmic
realization assumes data to be represented as Resource Description Framework triples,
and persisted in a triple store. This means that a geo-feature gf corresponds to a uniquely
identified node in the triple store. The function initializeGeoTree(gf) creates a new
node only if gf is not already stored, otherwise it retrieves it from the triple store. This
implements step 5 (aggregation) of the workflow in Figure 5.4.

Algorithm 7 Given a dependency tree d, the algorithm produces a set Tact of activity
sub-trees to be attached to a geo-feature sub-tree.

Input
d = a dependency tree

Output
Tact = {tact | tact is the semantic description of an activity act }

1: function GenerateActivitySubtree
2: Tact ← ∅
3: O← d.getDObjs()
4: for all o ∈ O do
5: tact ← initializeActivityTree()
6: vb, ctx← getV erb(o), getContext(o)
7: tact.appendVerb(vb)
8: tact.appendContext(ctx)
9: Tact ← Tact ∪ tact

10: end for
11: return Tact
12: end function

GenerateActivitySubtree is described in Algorithm 7. The dependency tree under
consideration possibly contains several verbs (e.g. enjoyed, walking, admiring), but we
are only interested in those that also have a refining context. To achieve this we suggest
using the grammatical relation dobj (direct object) that leads to the part of the sentence
recognized as the (accusative) object of a verbal predicate [De Marneffe and Manning,
2008]. The dependency tree in Figure 5.5 contains two such objects: Kärntnerstrasse and
shops. For each such direct object o an activity-sub-tree tact is initialized (line 5). The
functions getV erb(o) and getContext(o) (line 6) start from node o of the dependency
tree and traverse it to retrieve the verb vb and the context ctx. By construction, the
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verb vb is always the nearest verbal (i.e. tagged VB) ancestor of o in the dependency
tree. In our example, we get walking for the object Kärntnerstrasse and admiring for the
object shops. We assume that the context consists of the object o itself plus all related
adjectives (i.e. tagged JJ). By construction, these are located in the tree branch rooted
at vb and going trough o. In the example, we have beautiful Kärntnerstrasse and many
nice original shops. Verb and context are appended (lines 7-8) to the root tact of the
activity-sub-tree, which is finally added to the return set Tact (line 9).

5.4 Application Areas
In this section, two possible application areas of the outlined approach are discussed.

5.4.1 Place Search Queries expressed in Natural Language

While today’s spatial search services mostly support searches based on name and category
matching as well as on spatial relations among geographic features (e.g. the Opera House
in Vienna, restaurants nearby Vienna), more intuitive questions about the environment
are not possible. Arguments are frequently made that in order to sufficiently cover the
information needs of a user’s daily task the information sources have to be enriched. By
utilizing the approach presented in this chapter, however, human impressions (e.g. which
places are assumed to be near another place) and the activities that can be performed at
places can be transformed to a machine-processable model.

One possible application for the presented model is to make natural language query
answering possible. In fact, a spatial question posed in natural language can be interpreted
into the same (tree) semantic structure onto which we encoded unstructured place
descriptions. Answering the query then simply consists of matching two graphs. While
the presented approach is part of ongoing research, we believe it provides a solid foundation
for future improvements.

Two major simplifications were the result of neglecting (i) spatial relations, and (ii)
negations. The former can strongly modify the spatial location where an activity can be
performed (e.g. many inexpensive shops can be found outside the city center) – although
this is supposedly rare in reviews that describe a place, as we assume that people typically
describe what one can do at a location, rather than away from it. One approach in
tackling this particular challenge is to utilize ontologies of spatial relations, as provided,
for example, by qualitative spatial calculi [Bateman et al., 2010]. The case of negations is
more concerned with Natural Language Processing, and can be addressed with techniques
used in sentiment analysis.

Another aspect that is disregarded in the current model concerns the semantic similarity
of verbs, contexts, and activities. For example, the activity of “seeing historical landmarks”
is obviously similar (if not outright equivalent) to “admiring old monuments”. To address
this aspect, the semantic similarity of terms should be accounted for. One approach is to
resort to a synonym structure as provided e.g. by WordNet [Miller, 1995].
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5.4.2 Activity Recognition for Place Recommendation and Machine
Learning

In Chapter 3, we introduced a model for partitioning cities into functional regions, which
enables the recommendation and ordering of places based on semantic similarity using
distance metrics. In that preliminary model one important assumption is made: that
place affordances are modeled based on the services an area offers. By using the approach
presented in this chapter, the activities can be derived from textual descriptions of places,
and, consequently, place recommendations based on semantic similarity can be facilitated.

In Chapter 4, we outlined an approach that utilizes Natural Language Processing and
Machine Learning to derive the geographic footprint of cognitive regions. One essential
part of this model relies on manually selecting the services excluded for the vocabulary,
for instance tags with the key “ref”. This manual selection can be replaced by using the
approach introduced in this chapter to infer the services people associate to activities.

In conclusion, the approach presented in this chapter complements the methods presented
in the previous chapters. In combination, the framework then allows us to address and
answer place-related questions.

5.5 Case Study

For the following evaluation, we use real-world and publicly available datasets to construct
the semantic representation. Before giving details of experimental results, we introduce
how the datasets were retrieved and the quantitative and qualitative characteristics of
the constructed semantic representation.

5.5.1 Data Sources and Collection

Two data sources are utilized for the proposed approach: (i) place descriptions of the
Historic Center of Vienna originating from Tripadvisor1; and (ii) OpenStreetMap as the
geographic knowledge base for Points of Interest.

Our first data source, TripAdvisor2, was utilized as the source for place descriptions.
TripAdvisor provides around 225 million crowd-sourced reviews of different attractions,
hotels, and (most interestingly and left unspecified on the website) “places”. A customized
crawler starts at the main page of a given place and dives into the subpages, collecting
all of the place’s full-text reviews. A set of exemplary place descriptions referring to the
spatial object “Kärntner Straße” is shown in Table 5.1.

Our second data source, OpenStreetMap, is a major Volunteered Geographic Information
platform and serves as the knowledge base for the physical features, e.g. roads or buildings,
or generally accepted boundaries (e.g. administrative boundaries). The data set was

1http://www.tripadvisor.com/
2TripAdvisor.at
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Table 5.1: Examples for the retrieved Place Descriptions

We carried on an easy stroll along Karntner Strasse where good restau-
rants, bars and some stores are located.

The cafe is called Bistro 59, just at the junction of Karntner Strasse
and Borsendorforstrasse.

The Karntnerstrasse is a bit touristy but generally the area is where
one could spend most of ones time in Vienna.

It’s great fun to wander down Karntnerstrasse and check out the shop
windows.
By historic center, I assume Tripadvisor means Karntnerstrasse, which
is the main pedestrian drag in Vienna and its tourist center.

I even enjoyed walking down the Karntnerstrasse admiring the shops.

Table 5.3: OSM Dataset

Name of Dataset Features Points Ways Relations

Vienna Bratislava, Austria 1.468.843 290.586 368.112 810.145

retrieved from Mapzen Metro Extracts3 and provides spatial data in the form of Points
(e.g. a park bench), Ways (e.g. streets), and Relations (e.g. administrative boundaries).
The spatial entries (see Table 5.3) were simplified by their centroid and stored in a
dedicated database.

5.5.2 Quantitative Evaluation

For the dataset, we used the concept “Historic Center of Vienna4”. We collected 1235
reviews in the English language. Subsequently, we ran our proposed approach on the
dataset retrieved from TripAdvisor by utilizing the OpenStreetMap dataset to map the
gained information to spatial features. In total, we obtained 33060 geo-features that are
enriched with activity information. We only considered places with names longer than
two characters in order to exclude, among others, categories of buses or trains. This
elimination process then resulted in 2135 single places with a total of 3810 activities. A
first overview based on a visualization of the results revealed that most of the extracted
information is consistent with the aims of the work, and can thus be used as a knowledge

3https://mapzen.com/
4https://www.tripadvisor.at/Attraction_Review-g190454-d1534524-Reviews-Historic_

Center_of_Vienna-Vienna.html
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base for spatial requests. A few outliers such as xpedit or fuel could be identified which
are not places and occurred based on the naive regex-matching.

5.5.3 Qualitative Evaluation

For a brief qualitative evaluation, the processed sentences and the obtained results for
the geo-feature Kärnter Straße are shown and discussed.

Table 5.4 shows a selection of sentences and inferred activities that are referred to the
geo-feature Kärnter Straße, which is a well-known shopping street of Vienna. The derived
results support the character of the street as shopping and sightseeing opportunity.

Table 5.4: Examples for the activities mapped as semantic graph nodes for the place
Kärnter Straße.

Sentence Verb Contextual In-
formation

The Karntnerstrasse is a bit touristy but generally
the area is where one could spend most of ones
time in Vienna.

spend most ones time

It’s great fun to wander down Karntnerstrasse
and check out the shop windows.

wander;
check

Karntnerstrasse;
shop windows

I would suggest Schwedenplatz as the starting
point down to Stephansplatz and while your en-
joying the street crowd and shops of Karntner
Strasse, you’ll reach the Opera house or Wiener
Staatsoper.

suggest;
enjoying;
enjoying;
reach;
reach

Schwedenplatz;
crowd; shops;
Opera; Wiener
Staatsoper

be sure to visit St. Stephen’s Cathedral, walk
along the delightful pedestrian Kärntnerstrasse,
stop to enjoy a piece of decadent cherry strudel
in a Viennese coffee house.

visit;
walk;
enjoy

St. Stephen
Cathedral; pedes-
trian Kärntner-
straße; decadent
piece

There is something for each weather and taste
- enjoy a walk in the generous pedestrian areas
(Kärntner Strasse, Graben) and do some window
shopping (or more if you can afford!)

enjoy;
do

walk; window
shopping

The results obtained by the proposed workflow support the previously introduced ap-
proaches of city generalization and place recommendation as well as Machine Learning
by extracting the activities as well as the geo-features to which the activities are as-
sociated. What remains for future work is generalizing activities and clustering them
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into meaningful classes, which would go beyond the scope of this thesis. However, the
presented approach does show great potential in facilitating spatial search, since place
is a socially constructed concept, and the current trend of research is trying to provide
models for place representation and querying. We focus on a theory that regards place
as emergent of possible activities. In this respect, the next generation of geographic
information services can allow more intuitive queries such as “shopping in Vienna” or
“sightseeing for historic landmarks”.

5.6 Summary
In this chapter, a framework for extracting activities from User Generated Content is
discussed. A semantic model was introduced, modeling place as emergent of possible
activities. The framework extends the previously proposed concepts by populating an
ontology with people’s perception.

In the beginning of this chapter, a preliminary model of place is introduced that comple-
ments the previously introduced approaches by modeling the activities and geo-features
to which activities are asserted.

For the first approach, city generalization and place recommendation based on semantic
similarity, one important assumption is made: that place affordances are modeled based
on the services an area offers. By using the approach presented in this chapter, the
activities can be derived from textual descriptions of places, and, consequently, place
recommendations based on semantic similarity can be facilitated.

The second approach, Machine Learning, depends on manually selecting the services an
area offers. This manual selection can be replaced by using the approach introduced in
this section to automatically infer the services people associate to activities.

Finally, an algorithmic solution is outlined that automatically extracts activities from
User Generated Content by exploiting mature Natural Language Processing tools. It
is argued that besides the applicability in the previous approaches, the approach can
allow for place search where queries are expressed in natural language. By processing
questions such as “where can I view historic landmarks in a place that offers shopping
opportunities?” with the approach presented in this chapter, the problem is essentially
reduced to simple graph matching. What remains for future work is generalizing activities
and clustering them into meaningful classes, which would go beyond the scope of this
thesis.
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CHAPTER 6
Discussion

In this section, the previously posited research questions are discussed.

6.1 Extraction of Cognitive Regions
Montello et al. [2014] explained the characteristics of cognitive regions as follows:

“Cognitive regions are regions in the mind, reflecting informal ways individ-
uals and cultural groups organize their understanding of earth landscapes.
Cognitive region boundaries are typically substantially vague and their mem-
bership functions are substantially variable – the transition from outside to
inside the region is imprecise or vague, and different places within the region
are not equally strong or clear as exemplars of the region.”

In this thesis, it is argued that cognitive regions have relatively uniform and homogeneous
characteristics, allowing the extraction of such regions by two different methods discussed
in Chapter 3 and Chapter 4. Therefore, the question

“How to model cities as regions of functional areas?”,

can be answered by taking the categorical tags of aggregated places as the simplified
’semantic’ representation (i.e. bag-of-words model) of an area. In Chapter 3 a segmenta-
tion procedure is proposed that is inspired by a technique called region growing used in
image segmentation [Adams and Bischof, 1994]. The essential idea is to categorize areas
according to the conceptualization of human beings. This idea is further extended in
Chapter 4, where exemplary cognitive regions are automatically derived by exploiting
User Generated Content, and by utilizing the bag-of-words model of categorical attributes
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the remaining parts of a city can be classified. Additionally, it is shown that the Machine
Learning approach can be further used to classify parts of a city into functional regions
based on an ontological description of the environment.

6.2 Semantic Similarity
By taking the categorical tags as simplified ’semantic’ representation (i.e. bag-of-words
model) of an area, semantic similarity can be addressed in a way analogous to traditional
Information Retrieval (see Chapter 3). Places as aggregated concepts can, therefore, be
exploited, and the question

“How can semantic similarity be integrated for spatial search engines?”,

can be answered by utilizing distance metrics defined on pairs of abstract representations
in order to derive or rank the similarity of places. The feasibility of this approach was
illustrated in an example comparing the conceptual place Oxford Street (London) with
shopping areas in Vienna. It is highlighted that when combining this approach with
human preference models, spatial search can be improved. The human preference model
is closely related to place affordances and can be intuitively integrated into spatial search
models.

6.3 Integration of Machine Learning
In Chapter 4, a probabilistic model for cognitive regions was discussed. Since in the
scope of this thesis it is argued that cognitive regions have uniform and homogeneous
characteristics, the question

“How to incorporate statistics and Machine Learning in spatial Information
Retrieval?”,

can be answered by using a bi-classification approach taking seeding cells and Monte-
Carlo-random counterexamples, and exploiting the bag-of-words model of categorical
tags. Furthermore, the relocation problem of identifying similar functional regions in
different cities shows promising results.

6.4 Natural Language Processing
In the spatial domain, User Generated Content has the potential to bridge the gap from
conceptual models to successful expert systems by providing the necessary data for novel
knowledge bases. To make sense out of today’s huge amount of available information
sources, mature Natural Language Processing methods can be utilized, and, therefore,
the question
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“Can Natural Language Processing be used in Geographic Information Re-
trieval?”

is answered in the affirmative in Chapter 4 and Chapter 5. In conclusion, Natural
Language Processing allows us to derive the geometric extent of cognitive regions by
matching geographic content against User Generated Content as shown in Chapter 4,
and to create semantically enriched search graphs as shown in Chapter 5.

6.5 Knowledge Bases
Spatial search is characterized by human activity. To answer the question

“How to build the next generation of knowledge bases for spatial search?”

one must consider places in the context of spatial search. Throughout this thesis,
essential information is produced to aid spatial search engines with decisions about
activities. In Chapter 3, the main objective was to model cognitive regions according to
the conceptualization of human beings. That in turn allows for comparisons of aggregated
places. Chapter 4 deals with the automatic extraction of cognitive regions aided by
Natural Language Processing and Machine Learning. In Chapter 5 a context model
was proposed that is populated by User Generated Content. The main objective of the
semantic graph structure is to aid humans when they search for implicit semantics of
places. In all three chapters mentioned, knowledge produced by humans can be more
intuitively consumed in spatial search tasks. In conclusion, the proposed techniques are
aimed at supporting spatial searches according to the needs of the users.

6.6 Conclusion
In today’s spatial search engines, users mostly depend on ‘name’ or categorical tags, or
on already concrete address or location data to derive the information they are looking
for. Throughout this thesis, it is argued that spatial search should be intuitive, and that
naïve geography should be supported by the next generation of Geographic Information
Systems.

The main objective of models proposed in Chapter 3 and Chapter 4 is the extraction
of cognitive regions by exploiting both crowd-sourced geographic information and User
Generated Content. Utilizing the distribution of categorical tags of OpenStreetMap in
the form of a bag-of-words model, the spatial footprint of cognitive regions can be derived.
This means that even when the area the user is looking for is not directly mapped in
Geographic Information Systems, a uniform and homogeneous area can be derived solely
by measuring the tag distribution in a city. The approach proposed in Chapter 3 is based
on the intuitive assumption that space can be classified according to the conceptualization
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of human beings. In Chapter 4, the previous approach is extended to an automated
approach which is inspired by text classification used in Information Retrieval. Based on
the hypotheses that humans classify space according to the activities they can perform
there and that cognitive regions have uniform and homogeneous characteristics, the
Machine Learning approach has the potential to aid humans in spatial search tasks. By
applying the proposed techniques, more intuitive questions can be answered, such as
“where is downtown?” or “which shopping areas are more recreational with respect to
different preference models?”. While semantic similarity is a difficult question addressed
in different research areas and not easy to solve, the results presented in this thesis
can be seen as evidence that similarity can be tackled in ways analogous to traditional
Information Retrieval. Furthermore, a knowledge base was proposed in Chapter 5 that
incorporates activities and context information for spatial analysis. By using the proposed
semantic model, knowledge produced by humans can be more intuitively consumed for
spatial search tasks, as is shown in two different use cases. Especially when implicit
semantics are involved, such as activities one can perform at a given place, the proposed
approach shows promising results in enhancing spatial search engines.

In conclusion, the results presented in this thesis provide clear evidence that the integration
of methods adapted from different fields has several advantages. Consequently, the central
research question of this thesis can be answered with a resounding Yes:

“Can cognitive regions be formalized and processed with the synergistic
interplay of methods arising in different fields?”
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CHAPTER 7
Summary and Future Work

This chapter concludes this thesis with a summary of the results achieved. It outlines
possible future research directions in the field of bridging the gap between effective spatial
search engines and cognitive science.

7.1 Summary

The rise of personal, mobile, and in general ubiquitous computing and applications making
use of location data, has led to the creation of geo-data encoded as annotated points,
lines and primitive geometric shapes (in the sense of GPS-coordinates, possibly with a tag
such as river, bridge or restaurant). Using these application, it quickly became clear that
not all questions could be modeled and answered satisfactorily with the available, mostly
distance-based, spatial search engines. On a semantic level, spatial search can be more
than a straightforward address or exact location matching. In this thesis, we concentrate
on socially constructed reality (i.e. cognitive regions), which represents how humans
perceive their spatial surroundings. While sophisticated methods exist to compute
complex routes or plan trips, spatial search is inadequately supported for answering
nuanced and fuzzy questions such as searching for ‘shopping areas’ and ‘recreational
regions’ within a city. Throughout this thesis, it is argued that a generalization of areas
bridges the gap between cognitive models of human understanding of space and the
capabilities of today’s spatial search engines. To consume spatial information more
intuitively and in order to advance spatial search, several techniques are investigated
in this thesis. The central argument is that spatial search is characterized by human
activity. In general, the idea of cognitive regions is discussed, and two techniques are
investigated to derive these regions in the same manner a human would conceptualize
them. The semantic similarity of places is investigated, and distance metrics are applied
which allow a judging of semantic similarity for aggregations of places. To process spatial
information produced by humans a semantic model is introduced, and a technique is
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presented to transform text expressed in natural language into a machine-processable
form.

The phenomena of cognitive regions are based on the fact that humans can conceptualize
and generalize space according to the activities they can carry out at a given place, leading
to uniform and homogeneous areas. For instance, people can, according to the task
‘shopping’, think of suitable regions to fulfil their list of subtasks. Therefore, in Chapter 3,
we discussed the generalization and segmentation of cities into functional regions, which
is inspired by the method region growing used in image segmentation. The results of
this segmentation are simplified “semantic representations” which correspond to human
conceptualization of space. It is argued that the mathematical abstraction in terms of
feature vectors encapsulates sufficient knowledge to arrive at a meaningful computational
representation of cognitive regions. The employed mathematical abstraction lends itself
naturally as a basis for measuring the semantic similarity in terms of distance metrics.
In a second step, the integration of expressed human requirements and preferences can
be achieved by selecting services only according to the needs of the user. We evaluated
the approach in a use case scenario, where conceptual places of London and Vienna
are extracted and their similarity is judged based on the offered place affordances. We
noted that the approach discussed in Chapter 3 relied on two premises, namely that
the initial seeding cells are known and the partitioning ruleset is modeled according to
a semantic-region-specific formula, the existence of which is assumed. Since these two
premises are not automatically fulfilled, this issue naturally links to the next chapter.

In order to overcome the problems of initializing a training set for a cognitive region and
asses multiple regions based on their similarity, we developed an automated approach
which is detailed in Chapter 4. Our proposed approach is twofold: firstly, we process an
additional data source of textual place descriptions and exploit this data to derive the
initial area to which the descriptions refer to; and secondly, with the help of Machine
Learning we are able to classify the remaining parts of a city. For the recognition of
unique geo-features, we developed a Named Entity Recognition approach tailored to the
OpenStreetMap knowledge base. The Machine Learning model utilizes the simplified
semantic representation of regions (i.e. bag-of-words model of offered services) to measure
and decide about semantic similarity of regions. Using this automated approach, large-
scale analysis of different regions is made possible, which enables researchers and urban
planners to explore cognitive regions from their respective perspectives in an automated
manner. The results also confirm the applicability and strength of the proposed bag-
of-words model as the underlying fundamental mathematical modeling methodology.
However, in this model it is assumed that there exists a collection of services that are
recognised by people. The next chapter, therefore, deals with a more sophisticated
Natural Language Processing approach to populate a model of place as emergent of
possible activities.

Our efforts so far to successively replace any a priori manual steps in all of the proposed
methodologies with automated procedures now culminate in the introduction of the
proposed semantic model. For the questions discussed in this thesis, the inception of a
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semantic model has important implications. It allows us to automate the derivation of
activities from textual descriptions, strengthening the approach discussed in Chapter 3.
The semantic model also allows us to automatically infer services which are associated to
activities by people, strengthening the Machine Learning approach discussed in Chapter
4. Independent of their beneficial impact to the previous approaches, their most striking
property is that also they can serve as the fundamental data structure to model semantic
regions for spatial search engines. As has been shown in Chapter 5, the notion of the
semantic model offers an interpretation as a spatial knowledge base that is able to
incorporate the theory of cognitive regions. The canonical way to interpret queries in this
model is to reduce the problem to a graph-matching problem. Therefore, the reasoning
methodology in semantic graphs is different to and independent from the reasoning
approaches based on the bag-of-words model. Although semantic graphs do possess many
desirable features, we do not consider them a replacement for the bag-of-words model.

In conclusion, this thesis demonstrates how the presented computational models can
be integrated in a holistic way to enable cognitively enhanced Geographic Information
Systems. Synergies of different fields are utilized to bridge the gap between cognitive
science and successful expert systems. The examples shown in this thesis serve as proof-
of-concepts and, in combination, serve as proof that the cognitive understanding of place
can be modeled with the proposed techniques in spatial knowledge bases and search
engines.

7.2 Future Research Directions

The work presented in this thesis can be extended in several ways. In the following, seven
possible future research directions are outlined.

7.2.1 Individual Learning

In the near future, location-aware routing systems are going to consider the cognitive
interpretation of the surroundings of the user in their reasoning process. For instance,
they could switch the level of detail when the driver is about to enter a familiar area,
or they could give instructions based on cognitive regions from the view of the driver.
For enhanced usability, the next generation of Geographic Information Systems should
incorporate the option to derive cognitive regions from instructions expressed in natural
language. Future research directions could, consequently, deal with individual learning
instead of deriving a cognitive region based on the collection of reports submitted by
multiple users.

7.2.2 Spatial Clustering

In Section 3.2, a grid-based clustering approach was introduced for spatial region clustering.
Analyzing other clustering paradigms such as clusters created by k-nearest neighbors
or R*-trees could be further investigated. Of special interest is the development of a
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system that detects co-occurring activities in spatial data sets [Ballatore, 2014, Hobel
et al., 2015]. This could be another approach to answering nuanced questions about the
surroundings. Different shopping areas, for example, afford different activities: those
near industrial estates at the periphery of a city are mostly reachable by car only, and
offer long-term activities such as “buying furniture” [Golledge and Stimson, 1997].

7.2.3 Spatial Vocabularies and Reasoning

In Section 3.3, an algorithm was introduced that ‘grows’ cognitive regions based on the
distribution of categorical tags. This model was then extended in Chapter 4, where spatial
entities are retrieved from unstructured text to determine the seeding cells. However,
place descriptions expressed in natural language can also refer to spatial arrangements
such as topological information. To incorporate this information into the next generation
of Geographic Information Systems, approaches using Natural Language Processing can
make use of qualitative spatial reasoning to derive the spatial arrangements of given
entities [Chang et al., 2014a]. As a starting point, spatial vocabularies could be created
to derive geographic arrangements of given concepts. The next research direction would
be to develop a novel reasoning approach, which is more “intelligent” and can incorporate
spatial arrangements when clustering cognitive regions.

7.2.4 Context Graph Refinement from a Natural Language
Processing Perspective

The semantic representation of place proposed in Chapter 5 is just a starting point
of more complex adjustments to capture individual impressions of the surroundings.
Contextual information is stored in a single leaf node of an activity branch. Breaking
the contextual information into a more fine-grained data format could reveal more about
the actual semantics of a sentence. However, in order to refine the proposed approach
a deeper understanding of the current state of Natural Language Processing would be
required, which, consequently, could be a promising topic for future work.

7.2.5 Optimizing Database Management Systems (DBMSs) for
Knowledge Bases

One aspect, which is not part of this thesis, is the performance of the utilized graph
database. In real-life applications, the graph database has to handle not only search
queries but also update and optimization measures. Moreover, the semantic graph
database has to be extended to deal with parallelization. Therefore, possible further
investigation directions could concern the optimization of DBMSs and an investigation
of different types of graph databases.
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7.2.6 Future Research in the Field of Artificial Intelligence

The used data sources inherit the natural properties of User Generated Content, i.e.
incorrectness, incompleteness, and irregularity. To deal with these properties, future
investigations could be concerned with methods of Artificial Intelligence to deal with
these issues. For instance, in Section 4.2.2 combinatorial place matching was introduced,
where one possible starting point could be the investigation of spheres of neighboring
words that can be corrected. This would be similar to a prominent problem of coding
theory – error correction.

7.2.7 Semantic Similarity and Anti-Unification

To quantify the cognitive notion of semantic similarity, we applied a specialized distance
metric based on the vector space model in Section 3.4.1. Techniques from anti-unification
could be analyzed regarding their suitability for operating on semantic models of place in
order to asses their semantic similarity. This way of classification would enable a different
way of reasoning based on primitives developed in theoretical computer science.
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59–62, 64, 69, 70, 74, 76
semantic similarity, 12, 63, 64, 67, 70,

72–74, 77
Semantic Web, 54, 57
setting, 3, 19, 31, 43
similarity, 2, 3, 5, 9, 15, 24–26, 30, 40,

53, 63, 64, 67, 70, 72, 74
similarity distance, 29, 30
smart cities, 1
spatial feature, 17
spatial footprint, 43
syntactical class, 36, 54

term extraction, 33
text classification, 15, 43
text classification A text is represented

as the bag (multiset) of its words
and the frequency of occurrence
of each word is used as a feature
vector for training a classifier.,
41

training cells, 9
training sample, 36, 43, 50

training set, 36
training vector, 40, 41, 46–48

ubiquitous computing, 73
urban area, 3, 5
urban generalization, 17

vector space model, 23
visual perception, 54
vocabulary, 23, 41, 54, 57, 64, 76
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Glossary

Artificial Intelligence The intelligence that software incorporates.. 77

bag-of-words model The bag-of-words model is a simplifying representation used in
Natural Language Processing and Information Retrieval.. 8, 13, 23, 41, 44, 69–71,
74, 75

Geographic Information Retrieval A specialization of traditional information re-
trieval focused on geographically tagged content.. 2, 3, 5, 26, 33, 71

Geographic Information System A system that allows to store and process geo-
graphical data.. xi, 1–3, 5, 7, 14, 35, 43, 44, 53, 71, 75, 76

image segmentation Image segmentation is the process of partitioning an image into
multiple segments.. 3, 5, 8, 11, 14, 19, 20, 31, 69, 74

Information Retrieval The process of retrieving information according to the needs
of the user.. 2, 3, 5, 11, 14, 17, 24, 33, 53, 54, 70, 72

Levenshtein distance The Levenshtein distance is a metric for measuring string sim-
ilarity by the number of used editing steps, required to change on text into the
other.. 38–40

Machine Learning A field of computer science that enables artificial intelligent systems
by pattern recognition and learning approaches.. 2, 3, 5, 8–10, 12, 14, 15, 32–36,
40, 41, 44–46, 64, 66, 67, 70–72, 74, 75, 79

Natural Language Processing The methods used to understand and process infor-
mation expressed in natural language.. ix, xi, 2, 3, 5, 10, 13, 33–36, 54, 58, 63, 64,
67, 70, 71, 74, 76

OpenStreetMap A collaborative project to capture and provide geographic information
for public use.. 1, 4, 5, 13, 17, 18, 23, 27, 45, 46, 52, 54, 60, 64, 65, 71, 74, 79
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Part-of-Speech tagger In corpus linguistics, part-of-speech tagging is the procedure
of marking the words in a text as corresponding to a particular part of speech,
based on both its definition as well as its context.. 36, 37

Points of Interest The term used for geographic information that is of interest accord-
ing to the needs of the user.. 2, 7, 9, 18, 64

region growing A simple image segmentation procedure.. 19, 31, 69, 74

regular expression A regular expression is a sequence of characters that define a string
search pattern.. 38, 39

Resource Description Framework A framework that is used to conceptually repre-
sent information.. 4, 13, 54, 57, 62

User Generated Content Any form of content produced by human beings and often
made publicly available.. ix, xi, 2–4, 9–11, 13, 15, 33, 35, 36, 45, 52–54, 58, 67,
69–71, 77

Volunteered Geographic Information The information captured by human sensors
and provided fo open use.. ix, xi, 1, 3, 17, 18, 35, 45, 49, 64
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