
Semantic Stream Processing of
Environmental Data

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. (FH) Peter Wetz
Matrikelnummer 0932123

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung:
O.Univ.Prof. Dipl.-Ing. Dr. techn. A Min Tjoa
Mag.rer.soc.oec. Elmar Kiesling, PhD

Diese Dissertation haben begutachtet:

O.Univ.Prof. Dipl.-Ing. Dr.
techn. A Min Tjoa

O.Univ.Prof. Dipl.-Ing. Dr.
techn. Andrew Frank

Wien, 16. Juni 2016
Peter Wetz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Semantic Stream Processing of
Environmental Data

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. (FH) Peter Wetz
Registration Number 0932123

to the Faculty of Informatics

at TU Wien

Advisor:
O.Univ.Prof. Dipl.-Ing. Dr. techn. A Min Tjoa
Mag.rer.soc.oec. Elmar Kiesling, PhD

The dissertation has been reviewed by:

O.Univ.Prof. Dipl.-Ing. Dr.
techn. A Min Tjoa

O.Univ.Prof. Dipl.-Ing. Dr.
techn. Andrew Frank

Vienna, 16th June, 2016
Peter Wetz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. (FH) Peter Wetz
Schumanngasse 3 / 7
1180 Wien
AUSTRIA

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. Juni 2016
Peter Wetz

v

Acknowledgements

First and foremost I would like to thank my supervisor A Min Tjoa. Without his insights,
comments, and suggestions this research would not have come to fruition in this way. His
decades of experience and unique way of networked thinking opened up new perspectives
and changed the way I approached new problems. The way he brings people together
makes research more fun and having him supervise my work was truly inspiring. I would
also like to thank Andrew Frank for revising this thesis and providing valuable feedback.

I want to thank Amin Anjomshoaa who warmly welcomed me at TU Wien, sparked
first research ideas, and guided me in finding the right direction. His constant and
never-ending friendliness and helpfulness will be something I will have fond memories
of. I would also like to show my thanks to Elmar Kiesling, who became involved at a
later stage of my studies. It was a pleasure to work with him and his always honest and
detailed feedback significantly improved this endeavor. Likewise I want to thank my
office colleagues from Graz (Hermann, Alfred, Vicky, Patrick, Jörg, Julia, Petra, Georg,
and Angela) and Vienna (Lam, Dat, Peb, Bernhard, Lisa, and Andi). Without you my
daily office routine in the past years would have been much less fun and exciting.

I would also like to thank my parents, who supported me during my studies at all times.
They were always helpful, supportive, and respectful of what I was doing, which is
something I am both happy and thankful for. My sincere thanks also go out to my
girlfriend Lisa, who sometimes had to endure my moods due to bad days I had. I am
officially sorry. Getting her feedback and having discussions with her was always fruitful
and opened up new ways of thinking aside from my narrow and limited computer science
perspective.

vii

Kurzfassung

Da seit 2008 mehr als die Hälfte der Weltbevölkerung in urbanen Gegenden lebt, wird zu
einem großen Teil in den Städten entschieden werden, ob wir die globalen Umweltproble-
me lösen. Gleichzeitig wurde in der Wissenschaft in den letzten Jahren die Anwendung
von Methoden der Informatik, um Umweltprobleme zu lösen, mehr und mehr erfolg-
versprechend. In dieser Arbeit stellen wir ein Verfahren vor, das das Ziel verfolgt, es
BürgerInnen zu ermöglichen, gut informierte Entscheidungen auf Basis von Echtzeit-
Umweltdaten zu treffen, um so zur Problemlösung beitragen zu können. Damit dieses Ziel
erreicht werden kann, müssen Herausforderungen wie (i) die Integration von heterogenen
Umweltdaten, (ii) die Identifikation adäquater Datenstrom-Management Systeme und
(iii) das Design eines Systems zur effizienten Nutzung von Umwelt-Datenströmen durch
städtische Interessensgruppen, gemeistert werden. Wir schlagen eine ontologie-basierte
Methode vor, damit die stark heterogenen Umweltdaten integriert werden können. Zu
diesem Zwecke führen wir ein neuartiges kontrolliertes Vokabular ein, das zwei de-facto
Standards, nämlich die Semantic Sensor Network Ontology und das RDF Data Cube Vo-
cabulary, kombiniert und erweitert. Um Datenstrom-Management Systeme zu evaluieren,
erstellen wir ein Rahmenwerk namens YABench, das es erlaubt, verschiedene RDF Stream
Processing (RSP) Systeme auf Basis unterschiedlicher Simulationsszenarien zu verglei-
chen. Dabei verwenden wir Parameter und Messzahlen, die vor allem im Umweltbereich
wichtig sind, wie hochfrequente Messdaten, Korrektheit der Resultate (Precision und
Recall) sowie Leistungsfähigkeit der Systeme (Speicherverbrauch und CPU-Belastung).
YABench unterstützt somit die Entscheidung, geeignete RSP Systeme für unterschied-
liche Umweltdaten-Szenarien zu ermitteln. Nachdem durch YABench C-SPARQL als
passendes System identifiziert wird, stellen wir darauf aufbauend das Konzept “Linked
Streaming Widgets” vor. Linked Streaming Widgets sind semantische Bausteine, die
Streaming-Daten verarbeiten und von Anwendern zu Applikationen, sogenannten Mas-
hups, zusammengesetzt werden können. Anwender können so Umwelt-Streaming-Daten
integrieren und mit anderen Datenquellen verknüpfen, um letztendlich wohlinformierte
Entscheidungen zu treffen. Wir setzen dieses Konzept als Erweiterung einer Mashup-
Platform um. Des Weiteren präsentieren und diskutieren wir zwei Anwendungsfälle
auf Basis von Citybike-Daten und Luftgütedaten und zeigen so die Durchführbarkeit
des Konzepts. Eine abschließend durchgeführte Evaluierung demonstriert weiters die
Praktikabilität der technischen Implementierung von Linked Streaming Widgets.

ix

Abstract

Whether we cope successfully or fail to deal with the world’s environmental challenges will
be determined in cities where, since 2008, more than half of the global population resides.
Recently, also the application of computer science methods to solve environmental issues
is increasingly promising. In this thesis we present an approach to enable citizens to
make well-informed real time decisions based on environmental data. To this end, we
leverage semantic web technologies as a practical means to overcome the obstacles of
(i) environmental data integration, (ii) identifying data stream management engines to
process real time environmental data, and (iii) enabling efficient use of environmental
data streams for city stakeholders. We develop an ontology-based approach to integrate
highly heterogeneous and dynamic environmental data sources. We present a novel
vocabulary that combines and extends two de-facto standard vocabularies, that is, the
Semantic Sensor Network Ontology and the RDF Data Cube Vocabulary. Further, we
create a framework to evaluate suitable RDF Stream Processing (RSP) engines based on
the special requirements of the environmental data domain, such as processing of high-
frequency data, providing correct results, and scalability. This framework called YABench
facilitates the identification of appropriate RSP engines under varying circumstances for
scenarios in the environmental domain. After we identify C-SPARQL as a suitable RSP
engine, we propose “Linked Streaming Widgets”. Linked Streaming Widgets represent
lightweight semantic modules based on stream data, which can be combined to web
applications by end users. By doing so, users can author their own mashups integrating
environmental stream data sources, ultimately supporting well-informed decision making.
We implement this concept as an extension of a mashup platform. To demonstrate its
feasibility, we present and discuss two use cases based on citybike and air quality data,
respectively, and perform performance evaluations indicating the practicability of Linked
Streaming Widgets.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

I Analysis 1

1 Introduction 3
1.1 Motivation . 3
1.2 Aim of the work . 6
1.3 Problem Statement . 6
1.4 Methodology . 11
1.5 Contributions . 12
1.6 Structure . 14
1.7 Publications . 14

II Design 17

2 Modeling Environmental Data Streams 19
2.1 Motivation . 19
2.2 Related Work . 20
2.3 Ontology for Modeling Environmental Data Streams 23
2.4 Architecture . 32
2.5 Summary . 34

3 Evaluating Stream Processing Engines 37
3.1 Motivation . 37
3.2 Related Work . 38
3.3 YABench framework . 50
3.4 Validation against CSRBench . 55
3.5 Experimental setup . 57

xiii

3.6 Discussion . 59
3.7 Summary . 70

4 Environmental Streaming Mashups 71
4.1 Related Work . 71
4.2 Linked Streaming Widgets . 79
4.3 Use Case: Citybike Mashup . 90
4.4 Use Case: Route Enrichment Mashup . 95
4.5 Summary of Use Cases . 96
4.6 Evaluation . 96

III Conclusion 103

5 Summary 105

6 Answers to Research Questions 109

7 Future Work 111

Appendices 117
A Experiment 1 queries . 117
B Experiment 2 queries . 118
C Experiment 3 queries . 119
D Python wrapper for C-SPARQL . 120
E RML mappings for the citybike use case 122
F Continuous queries for the citybike use case 129
G Semantic models of citybike use case widgets 131
H RML mappings for the route enrichment use case 133
I Continuous queries for the route enrichment use case 143
J Semantic model of route enrichment use case widget 144
K Construct query cascade . 145

List of Figures 147

List of Tables 149

List of Listings 150

List of Abbreviations 151

Bibliography 155

Curriculum Vitae 175

Part I

Analysis

1

CHAPTER 1
Introduction

This chapter presents the outline and motivation of this thesis. We show why the problem
of integrating environmental data streams is relevant and state why the challenges related
to this problem need to be tackled (Sections 1.1–1.2). These challenges include the
integration of heterogeneous data sources, evaluation of stream processing engines, and
the provision of data streams for users who lack programming expertise (Section 1.3).
Further, we present the design science methodology used in the present work (Section 1.4)
and the main contributions, that is, an ontology for environmental stream data, a
benchmarking framework to evaluate stream engines, and a stream extension to a data
integration platform (Section 1.5). Finally, we provide an overview of the structure of
the present thesis (Section 1.6) and list peer reviewed articles which were published over
the course of this research (Section 1.7).

1.1 Motivation

The environmental state of our planet has been rapidly deteriorating due to human
activity. Despite technological achievements to minimize human impact on environmental
processes, the combination of population growth and increasing consumption undermine
the gains that have been made [Har98]. An annual report of the United Nations
Environment Programme (UNEP), called Global Environment Outlook (GEO), points
out that the “World Remains on Unsustainable Track Despite Hundreds of Internationally
Agreed Goals and Objectives”. Specifically, urban areas will have a large impact on
the future development of threatened earth systems such as the atmosphere, biosphere,
and hydrosphere [UNE12b, UNE12a]. As a consequence, we face a critical number of
challenges which need to be addressed in order to improve the environmental state
of the world. Computer science, as a means to deal with big volumes of complex
data, are promising to address these challenge, such as global warming, pollution, and
urbanization. However, the idea to deal with environmental issues with technological

3

1. Introduction

means demands an increase for research and advances in the novel field of Environmental
Informatics [HPRR95]. Researchers have already shown that methods and technologies
derived from computer science have great potential [HC03].

In 2010, the global population living in urban areas surpassed 50% for the first time in
history [Umw11]. The proportion of people living in cities is even higher in developed
regions [UN12]. Therefore, it will be essential to our environment to find solutions in
cities and view them as enablers for environmental change. Most harmful developments
in urban areas are caused by people’s behavior and affect, among others, air and water
quality, noise pollution, climate and waste issues. The considerable impact of urbanization
on global environmental issues, therefore, cannot be neglected. However, this can be
seen as an opportunity to face these issues with techniques and technologies based on
Information Technology (IT) methods enabled by and made available in cities. IT can
act as a mediator to help tapping the full potential of urbanization.

This work contributes towards realizing the vision of a Smart City, a term which emerged
in both the academic literature and the public discourse in the last years. One aspect of
this vision is the availability and quality of Information and Communication Technologies
(ICT) enabling, for instance, innovative traffic management, or providing environmental
monitoring [CDBN11, HVMn+11]. One major barrier currently is that most urban
developments are centered around vertical, i.e., domain- and industry-specific, solutions.
These solutions foster data silos, a term derived from “information silos” [oFO88], and
market islands. The goal is to provide horizontal services that make data available in a
unified manner at urban-scale.

Another motivation of this work is the fact that urban areas continuously generate
data due to their ubiquitous presence of sensors. Data is often considered as the new
oil [RZB+12, Ken11, Pal06]. Availability and the ability to make use of data is a major
advantage compared to rural areas, where a lack of data inhibits the creation of novel
data services. This enables research towards the exploitation of the data generated by
such devices which ultimately leads to innovative citizen services [RZB+12]. In such a
city people are empowered to monitor their environment, retrieve real time data (traffic,
pollution, public transport, etc.), and provide feedback to city managers leading to
improved short-term decisions based on real-world conditions. Sensors can be any type
of device measuring environmental values. This diversity consequently allows to tackle
issues of energy, climate, mobility, and architecture. For instance, people who record
energy consumption in homes gain detailed insight into their consumption behavior
which allows them to better manage electricity costs. Similarly, traffic sensors record
traffic flows and allow the development of services which improve routing algorithms and
ultimately lead to less congestion especially in cities. Sensor data is often continuously
generated and available immediately, however, means to exploit it are sparse. Availability
of raw data is, therefore, only a first step that has to be followed by careful processing
and addition of contextual information to enable the implementation of new applications.

By following the Smart City vision, new developments can contribute to a more com-
prehensive understanding of the world around us. The focus of this work is to raise

4

1.1. Motivation

awareness for environmental challenges. Services built upon ICT and ubiquitous sensing
will facilitate city stakeholders, i.e., city managers, policy makers, citizens, with a means
to make well-informed decisions, taking into account environmental factors based on
the current monitored state of the city. The underlying idea follows a quote of Thomas
Goetz, who wrote in his Wired article [Goe11]: ‘Provide people with information about
their actions in real time, then give them a chance to change those actions, pushing them
toward better behaviors.’

Finally, the European Union (EU) Directive from 2003 [Uni03] is a key motivation. This
directive regulates the right of citizens of the EU to obtain access to environmental
information. Every citizen should have means to easily and continuously access such
information as much as possible in a systematic way, particularly through the use of
ICT [Uni03]. However, from a technical perspective, there are critical barriers to access
environmental information in an easy way, thwarting the initial aims of the EU.

Current deficits and challenges include the following: (i) environmental information is
distributed via multiple agencies exacerbating access to the data, (ii) the data is stored
heterogeneously, i.e, without a standardized presentation, (iii) often, citizens do not know
which agency they can request certain data from, (iv) the currently implemented process
does not account for the increasing importance of real time data, and (v) utilization of
the “context” of the data lacks, that is, providing additional information related to the
data, which can be used for more sophisticated services.

There are several challenges in providing large-scale environmental information to the
public. The proposed research addresses them to enable comprehensible, comparable and
unified access to up-to-date environmental data.

By combining the impact of urbanization on our environment and the right of environ-
mental information on the one hand, and the enabling technologies in the context of
smart cities, on the other hand, this thesis proposes an approach that allows to process
pervasive environmental data in real time. An abundance of data generated in a city are
available, but they are not used to their full potential. Therefore, we propose a unified
system offering intelligent exploration of environmental data via sensors. By doing this,
we address the presented challenges. Stakeholders are then able to use data sources
to observe, aggregate, and visualize data as it flows in to change their behavior. This
will help people to make use of previously meaningless, but still pervasively available,
environmental data.

This work aims at allowing people in an urban environment to make decisions concerning
environmental aspects of their surroundings based on timely data. Semantic processing
of the data enables to (i) create a homogeneous data repository and (ii) construct queries
mashing-up different data sources. This work will extend the value of urban sensor data,
which is currently limited due to its confinement in vertical applications.

5

1. Introduction

1.2 Aim of the work
The aim of the present work is to create horizontal services, i.e., services that make data
available in a unified manner, and applications that use federated and aggregated sensor
data across domains enabled by semantic technologies. Such services can focus on the
needs and interests of users, e.g., as data streams can be discovered and used based on
contextual information extracted from the stream’s semantics.

As a result the user may just discover data from his proximity, based on his interests
(e.g., air quality observations), based on time constraints (e.g., last 30 minutes), or a
combination of these (e.g., air quality sensor observations of the last 30 minutes as near
as 100m to the user). Even discovery based on current values, aggregates (sum, median,
mean, mode, min, max, etc.) or trends (increasing trend, decreasing trend, stagnating)
poses an interesting opportunity for city stakeholders, e.g., one may be interested, if the
average speed of cars at the road to his/her home in the last 30 minutes has fallen below
a certain value.

Furthermore, since we will follow a graph-oriented approach which enables data to be
interlinked, utilization of available, but currently isolated data will be extended into the
following directions: (i) streams automatically will obtain a context-aware characteristic,
for instance based on geographic location, sensor interest or thematic interest, which
enhances stream discovery and stream querying, (ii) federated queries provide a means
to combine different data streams into one query, and (iii) continuous queries can be
enriched with background knowledge sourced from static knowledge repositories.

There is a large amount of environmental data which gets continuously generated and
there are semantic web technologies, which can help to deal with this data effectively.
Our investigation will aim to connect these aspects to better understand the dynamic
nature of our environment.

More specifically, the concept of Linked Data Streams, which is a recent and not yet well
explored research area, has not been applied to environmental sensor data in an urban
context. Therefore, this thesis contributes to the current knowledge in three ways: (i)
Proposing an approach to abstract and map observation data to a formalized vocabulary,
(ii) provide a means to identify suitable data stream processing engines, and (iii) the
development of a prototypical system for semantic stream processing of urban data
sources. The ultimate goal is to democratize the usage of stream processing through
analysis with a simple user interface.

1.3 Problem Statement
The thesis tackles the challenge to make real time environmental data of a city usable for
its stakeholders. Therefore, the overall problem to be addressed is:

– Can real time environmental data be provided to create actionable knowledge for
urban stakeholders?

6

1.3. Problem Statement

Due to the heterogeneity of environmental data, an initial step is to integrate it. Het-
erogeneity can be technical, structural, and semantic. Overcoming the former two is
possible by applying data transformations and schema mappings. However, the is-
sue of semantic heterogeneity is needs to be addressed in order to solve the stated
problem. Resolving semantic heterogeneity would pave the way for developing a com-
mon machine-understandable method to process previously semantically disparate data
sources. Addressing this is non-trivial and requires the definition of a common formal
understanding of the domain at hand.

Generally, data integration has been a well-studied problem over the last decades [Hul97,
Ull97, HRO06]. Thus far, however, no satisfying solution in the context of real time
and semantically heterogeneous data could be found. We define the city of Vienna as
the area this research will be applied on, because it has an active Open (Government)
Data community, performs excellently in recent Smart City Rankings [Coh14], and runs
a courageous Open Data Platform1.

1.3.1 Integrating Heterogeneous Data Sources

The first challenge, which we deduce from the overarching problem statement is the
integration of heterogeneous data. By heterogeneous data we mean data derived from
different sensors, such as continuous environmental data. We therefore formulate:

RQ1 What data integration methods can be used to model environmental real time data
to overcome heterogeneity and to allow reusability and explorability?

We aim to provide a system, which allows to grasp the current state of a city. Hence, we
need to deal with a vast amount of different data sources. Initial investigation revealed
that there are numerous data sources of interest available, but they are provided in a
highly heterogeneous manner. Mainly, the sources differ in the following characteristics:

• Data type

– RDF
– JSON
– XML
– CSV
– PDF
– HTML

• Data access

1https://open.wien.at/site/open-data/ (accessed 16 June 2016)

7

https://open.wien.at/site/open-data/

1. Introduction

– API
– File download
– Manual crawling

• Update frequency

– static, i.e, rarely updated
– hourly/daily/weekly/... updated
– stream data, i.e., real time updated

As a result of these variations, highly diverse data is available. Integration of these data
sources provides the basis for further utilization of the data streams.

Ontologies have been a well-known tool to tackle data heterogeneity for years [NM01,
Hul97, Gru93]. They represent formal vocabularies of a specific domain. Applications
can reuse and process information from different sources, if they share a common
understanding of the structure of information. This approach is called Knowledge Sharing.
We follow this vision of Knowledge Sharing because environmental data coming from
different sources can be collated by a common domain ontology. Hence, this will form the
basis for further processing of the data. Comprehensive and standardized semantic models
are required to power semantic search (e.g., discovery of sensors serving context-sensitive
data) and knowledge extraction (e.g., detect event patterns such as decreasing air quality)
from sensor generated data. Essentially, we need to answer questions about the required
granularity and complexity of the data that is modeled in the ontology. Furthermore, we
need to decide if a lightweight model fits, or if heavyweight and formal semantics need to
be implemented. There are strengths and weaknesses to each approach [UG04] which we
need to evaluate in detail.

Different approaches to model continuous sensor data have already been proposed, e.g.,
the Semantic Sensor Network Ontology (SSNO) [CBB+12]. Yet, due to the generic
descriptions of observation and measurement data offered by the ontology, it cannot
be used to annotate data with domain specific knowledge. What we want to achieve
in this work is to enrich the data with domain specific context and lift it to a higher
semantic level. Another limitation is that it is mainly designed to perform reasoning for
sensor-related descriptions rather than its observations. Furthermore, its applicability
regarding challenges for semantic web sensors still has to be investigated [CG10].

The recently proposed RDF Data Cube Vocabulary is an approach to model measurement
and observation data [CR14]. However, the extent of Knowledge Reuse is still an open
issue, i.e., which vocabularies can be reused and which parts need to be modeled from
scratch. A major advantage of Knowledge Reuse is that existing concepts can be reused by
interlinking with existing ontologies. Another advantage of an ontology-based approach
is Reasoning, i.e., inferring novel implicit facts based on explicit knowledge. Lastly,
this method enables aggregations of sensor observations across domains, allowing for
intelligent data combination and knowledge extraction.

8

1.3. Problem Statement

Finally, semantic enrichment of environmental smart city data streams accounts for
heterogeneity of incoming raw data observations and will, thus, enable interoperability
and further exploitation of available data streams. Furthermore, we aim to advance the
state of the art by providing high quality Linked Data (see [Ber06]) in the domain of
Linked Stream Data (LSD), hence, moving one step towards the Web of Data vision. The
process of lifting diverse data sources on a common higher level, i.e., data harmonization,
has the potential to improve both data reusability and data value.

1.3.2 Evaluation of Stream Processing Engines

The second subproblem is to evaluate stream processing systems which can subsequently
be used to provide the data to the user. Common solutions in the domain of the semantic
web aim to offer static data or data which does not change frequently. In contrast, we
have to deal with permanently updated and continuous streams of data. Therefore, this
problem can be formulated as follows:

RQ2 How can we evaluate systems for semantic processing of real time environmental
data streams?

Different approaches in evaluating semantic stream processing systems have already
been proposed, but their scope is limited and they do not cover the whole process from
scenario description to results visualization. Consequently, designing a method to evaluate
real time stream processing systems, namely C-SPARQL and CQELS, is the resulting
challenge.

This challenge can be investigated from two perspectives. First, in the literature Data
Stream Systems are proposed [BBD+02]. Although they partially introduce continuous
queries, scalable processing, and handling of real time data, they rely on a relational
database paradigm that lacks semantic query languages and ontological foundations.
Hence, they cannot be utilized to leverage integrated data streams from different sources.
Second, from the semantic perspective the typical approach to face provision and access
to data is the Simple Protocol and RDF Query Language (SPARQL) Protocol and RDF
Query Language (SPARQL and SPARQL 1.1, respectively), which is a World Wide Web
Consortium (W3C) Recommendation to query Resource Description Framework (RDF)
graph data [HS13, PS08]. This provides the ability to utilize a query language and the
power of ontologies. When applied to the proposed work, SPARQL has one substantial
limitation in that it is tailored towards dealing with static knowledge bases and not
geared towards knowledge evolution based on continuous querying and changing data.
SPARQL does not allow to introduce continuous semantics in a real time environment.

Efficient means to process semantic data streams are required in order to combine
the advantages of both presented perspectives. Recently, efforts toward this issue
have been proposed in research: C-SPARQL [BBC+10c], CQELS [LDPH11], SPARQL-
stream [CCG10] and Morph-Streams Processor [CCJA12], EP-SPARQL [AFRS11] plus

9

1. Introduction

ETALIS [AFR+11], and INSTANS [RNT12]. Moreover, at the W3C, an RDF Stream
Processing Community Group2 has been formed to deal with the definition of a common
model for RDF streams to facilitate provision, transmission, and continuous queries.

Evaluating semantic stream processing engines is essential for the implementation of a
system which should be capable of integrating heterogeneous data streams. Scharrenbach
et al. [SUM+13] present three key performance indicators that help in defining stress
tests for the evaluation of stream processing frameworks. The key performance indicators
are (i) response time over all queries, (ii) maximum input throughput, and (iii) minimum
time to accuracy and the minimum time to completion for all queries (includes precision,
recall, and error rate).

By leveraging RDF Stream Processing, our system will be able to provide efficient,
federated, and time-dependent queries over arbitrary data sources, while it makes use
of the added semantics. Furthermore, this will empower users to combine static or
historical background knowledge with real time data sources, entailing novel use cases
and applications while using the data. To this end, a key goal is to identify which stream
processing proposal is best-suited for our approach.

1.3.3 Leveraging Data Streams for City Stakeholders

The final challenge derived from the initial problem statement is how to let users make
use of data streams. After having identified a means to process semantic data streams,
interested stakeholders should be able use such streams to gain new knowledge. We aim
to capture the changes of environmental city data and enable corresponding services to
the users of the final system. These requirements can be collected under the term Stream
Processing or Stream Reasoning, i.e., means that allow to infer new knowledge based on
continuous data streams [VCHF09].

When living in a large city with much traffic, it would, for instance, be helpful to
provide services which help citizens to circumvent traffic jams, predict their impact,
and even recommend alternative routes. This vision goes beyond typical data mining
techniques which enable to detect traffic jams. Providing more sophisticated analysis
incorporating pollution data and putting real time data into context to citizens and
city managers are more challenging and require more complex approaches than the
state of the art. Or if newcomers to a city are looking for an apartment, which should
be both quiet and favorably located. Based on environmental urban data streams a
service could provide information on which locations are noisy based on real time data.
Even recombining different data sources, e.g., air quality, weather and traffic data, to
uncover new facts would enable innovative analysis. Based on weather phenomena (wind
speed, rainfall, snowfall, etc.), detection of specific events (whirlwind) can be enabled.
Currently, there is no system that allows for such complex queries, let alone enables
ordinary users to do so in a real time fashion exploiting the accessibility and flexibility of
web technologies [MUHB14]. As a result, we define the following research question:

2http://www.w3.org/community/rsp/ (accessed 16 June 2016)

10

http://www.w3.org/community/rsp/

1.4. Methodology

RQ3 How can non-expert users, i.e, urban decision makers, be enabled to explore
environmental stream data?

To address this question of leveraging available data streams, reasoning approaches will
be utilized. More precisely, stream data features of SPARQL extension proposals will
be investigated and applied, i.e., windowing functions and federation of static data with
dynamic streams, to achieve time-varying inferences. To extend available approaches,
and to contribute to the current state of the art, this work will combine stream reasoning
techniques with a widget-based approach. Similarly to Web Services [ACKM04], widgets
are small web applications that fulfill small well-defined tasks. Each data stream is
represented as a widget and implements an innovative interface that allows intelligent
coupling of such widgets combined with processing functions, again modeled as widgets.
Hence, users will have the power to efficiently exploit available data streams in a real
time manner.

These processing widgets have encoded queries based on stream specific criteria, e.g.,
time windows or aggregates (sum, count, average, etc.), and therefore return RDF triples
that answer this query. So called presentation widgets, will also be needed to visualize
the output via maps, bar charts, line charts, pie charts, and histograms. This step covers
three aspects of leveraging data streams: (i) analyzing via continuous stream queries, (ii)
publishing via returning RDF graphs, and (iii) visualizing via corresponding presentation
interfaces.

1.4 Methodology

We adopt the design science research methodology. Design science is important in
disciplines where the creation of artifacts is essential. This is often the case in an
application-oriented IT contexts [PTRC07]. Furthermore, in design science knowledge
and understanding of a problem domain and its solution are achieved in the building
and application of the designed artifact [vAMPR04]. The methodology is a four phased
process consisting of (1) Theory (2) Design (3) Evaluate and (4) Justify, combining
theoretical and practical aspects. The result will be an IT artifact solving a class of
problems. Figure 1.1 provides an overview of how design science will be applied in this
thesis.

Semantic Stream
Processing of

Environmental Data

Understand Build Evaluate Communicate

Literature /
State of the Art

Iterative
Implementation

Verification Documentation

Figure 1.1: Design Science Approach (adapted from [PTRC07])

11

1. Introduction

In the first phase we will review the available literature of the related research fields.
This will map previous research efforts from two perspectives. First, we will review
literature on semantic stream processing. Second, the review will cover activities from
the Environmental Information Systems field related to modeling environmental data.
This will help to get an understanding of the related research fields and to identify gaps
which have not been addressed.

Based on this, the build phase consists of an iterative implementation activity, dealing
with the presented problem statements. We will identify suitable data sources, evaluate
available systems able to process environmental streams, and implement an approach
to utilize them. Ontology engineering methods will be applied and stream processing
systems have to be evaluated to guarantee a scalable and useful solution to the central
research problem. This phase will result in a prototypical implementation of a system
aimed to address and solve current challenges in environmental data stream processing.

In the evaluation phase characteristics of the prototype will be analyzed in terms of
performance and scalability. This will allow us to draw conclusions regarding the feasibility
of our approach and will help to compare it to similar works. Finally, results will be
disseminated through publication of papers at workshops, conferences, journals, and,
ultimately, a PhD thesis.

To sum up, each step of the four phases will contribute to the building of artifacts,
which help us to understand the problem domain and to solve the described challenges.
Especially the Build and Evaluate phases are crucial for the design and implementation
of our solution approaches. This helps us to iteratively advance towards finding detailed
answers to our research questions.

1.5 Contributions

In the following we describe the central contributions of this thesis. First, a novel semantic
data model for environmental stream data is designed to be able to timely integrate
available raw data streams. To make use of the stream data model, we need to evaluate
existing semantic stream processing systems with respect to their suitability to process
environmental data streams. In this step we take into account the special requirements
which are imposed by environmental data, such as the high frequency of data arrival,
necessity of correct results, and the ability to provide results as fast as possible. To this
end, we develop a framework which is enables to generate and conduct stream processing
experiments and visualize the results. Second, based on our findings from the data model
and experimentation, we present an approach which hides the complexity of the data
model and stream processing and allows end users that lack programming knowledge to
make use of environmental data streams.

Environmental stream data model. By both defining the requirements to environ-
mental stream data and by knowing the principle of reuse in the semantic web, we

12

1.5. Contributions

identify a need to bridge two vocabularies of this field having a semantic overlap.
Namely these are the Semantic Sensor Network (SSN) ontology and the RDF Data
Cube Vocabulary. We analyze issues which arise when using these ontologies with
respect to stream data and create a novel vocabulary via extending and reusing
both. This vocabulary provides a lightweight method to model streaming environ-
mental data sources. Further, it enables to semantically describe such sources and
facilitates processing, reuse, and discoverability. Moreover, the semantic enrichment
of raw data streams fosters integration of disparate sources and integration of slowly
changing static knowledge sources.

Stream data scenario generation. When stream processing engines are evaluated,
the input data and the complexity of its model strongly influence the results which
will be returned. Feeding data which is not suitable to gain relevant insights
into an engine’s performance with respect to the applied domain can render the
measurements useless. To this end, we provide a means to flexibly generate stream
data sources in order to emulate different scenarios of interest in a streaming setting.
This approach allows to define input data of varying size, speed, complexity, and
arrival time distribution. In future, researchers will be able to use this approach
to define scenarios which fit the domain they investigate. This makes their results
more reliable and useful.

Stream processing evaluation framework. We provide a comprehensive framework
to conduct evaluations of semantic stream processing systems based on streaming
scenarios which can be defined as desired. The presented benchmarking framework
allows us to interpret a system’s behavior and to quantify and characterize its results
along various dimensions. These dimensions include performance characteristics
(memory consumption, CPU load, etc.) as well as correctness measurements
with regard to result delivery (precision and recall). The framework covers all
stages of benchmarking starting from data generation, performing an experiment,
and presenting its results. This is the first benchmark proposal for semantic
stream processors comprehensively complementing an engine’s characteristics into
a consolidated view. Ultimately this allows to gain detailed insights into the
performance and behavior of the tested engines. The use of this framework enables
us to identify the most suitable system for our domain of environmental stream
data processing.

Streaming mashups architecture. An innovative aspect of our work is the imple-
mentation of an architecture which facilitates end users to compose mashups based
on stream data. A key challenge is to abstract away the complexity which is
introduced by stream processing. To overcome this barrier we implement a method
which transforms input data streams to RDF data which, in turn, is consumed
by streaming widgets. These widgets provide a simple user interface and are se-
mantically annotated to support users in semi-automatically building meaningful
mashups. Hence, we show how the complexity of the data model can be hidden,

13

1. Introduction

while still providing the users with a capability to compose mashups by integrating
and enriching available data. Furthermore, this enables end users to integrate
stream data with static data sources fostering novel insights based on real time
environmental data streams.

1.6 Structure
Chapter 2 introduces an ontology for the modeling of environmental stream data.

We elicit the requirements, discuss design considerations, and present the final
vocabulary which is subsequently used as a data model to represent environmental
data streams.

Chapter 3 describes the developed framework to benchmark semantic stream processing
engines. The framework is used to investigate which of the proposed engines is the
most feasible for the implementation of linked streaming mashups.

Chapter 4 introduces linked streaming widgets as a means to process stream data. We
present our extensions to the Linked Widgets Platform and showcase how streaming
widgets can be used to provide real time data to end users. We also provide an
evaluation on the performance characteristics of our approach.

Chapters 5–7 summarize our work and provide answers to the initially stated research
questions. Furthermore, directions for future work which could not be covered in
this work are discussed.

Sections on related work which reflect on the state of the art and highlight our contribu-
tions against related approaches are embedded as subsections in Chapters 2–4.

1.7 Publications

This thesis includes work and results from the following peer-reviewed publications
([WAT13, WTD+13, WTD+14, WTD+16, KW15, KWA+16]):

• Wetz, P., Anjomshoaa, A., Tjoa, A M. (2013), A Survey on Environmental
Open Data in Austria. In Proceedings of the 2013 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC2013), IEEE, pp. 4566 – 4570.
http://dx.doi.org/10.1109/SMC.2013.777.

• Wetz, P., Trinh, T. D., Do, B. L., Anjomshoaa, A., Tjoa, A M. (2013), Austrian
Environmental Data Consumption — A Mashup-based Approach. In Proceedings
of the 1st International Workshop on Semantic Machine Learning and Linked Open
Data (SML2OD) for Agricultural and Environmental Informatics co-located with
the 12th International Semantic Web Conference (ISWC 2013).

14

1.7. Publications

• Wetz, P., Trinh, T. D., Do, B. L., Anjomshoaa, A., Kiesling, E., Tjoa, A M. (2014),
Towards an Environmental Information System for Semantic Stream Data. In Pro-
ceedings of the 28th Conference on Environmental Informatics – Informatics for Envi-
ronmental Protection, Sustainable Development and Risk Management (EnviroInfo
2014), BIS-Verlag, Oldenburg, pp. 637 – 644. http://dx.doi.org/10.1037/rmh0000008.
Best Paper Award

• Wetz, P., Tuan, D. T., Lam, D. B., Anjomshoaa, A., Kiesling, E., Tjoa, A M.
(2015), Towards an Environmental Decision-Making System: A Vocabulary to
Enrich Stream Data. In Advances and New Trends in Environmental and Energy In-
formatics, Springer, ISSN: 2196-8705, pp. 317-335. http://dx.doi.org/10.1007/978-
3-319-23455-7_17.

• Kolchin, M., Wetz, P. (2015), Demo: YABench-Yet Another RDF Stream Process-
ing Benchmark. In RDF Stream Processing Workshop co-located with the 11th
Extended Semantic Web Conference (ESWC 2014), Portoroz, Slovenia.

• Kolchin, M., Wetz, P., Kiesling, E., Tjoa, A M. (2016), YABench: A comprehensive
framework for RDF stream processor correctness and performance assessment. In
Web Engineering – 16th International Conference on Web Engineering, ICWE
2016, Lugano, Switzerland, June 6-9, 2016, Proceedings, Springer Berlin Heidelberg.
accepted

15

Part II

Design

17

CHAPTER 2
Modeling Environmental Data

Streams

In this chapter we present the design of an ontology to model environmental stream data.
We present related work (Section 2.2), elicit the requirements, evaluate existing ontologies
(i.e., the Semantic Sensor Network Ontology and the RDF Data Cube Vocabulary), and
discuss design considerations (Section 2.3). Subsequently, we show how the developed
ontology relates to the overall architecture developed in this thesis (Section 2.4).

2.1 Motivation

Methods based on IT can support city planners and assist in real time environmental
decision-making, such as, for instance, analyzing traffic and air pollution data streams
to dynamically optimize traffic routing. Such applications are rendered possible by the
ubiquitous presence of data stream-generating sensors. Integrating this real time sensor
data can lead to innovative citizen services and will ultimately help to trigger change
in how we interact with the environment [RZB+12]. However, available techniques to
exploit continuously generated environmental data streams are still limited and existing
environmental information systems that monitor air pollution, water quality, or transport
systems based on real time data operate only within the isolated scopes of their domain.
Abundant raw data is only a first step; to extract relevant insights, it is necessary to
enrich it with contextual information, integrate it with data from other streams, and
carefully process and analyze it.

In this chapter, we present related work and state of the art in environmental data
modeling to facilitate processing of heterogeneous environmental data streams. We then
conceptualize and outline a vocabulary that captures concepts which are required to model
environmental stream data. This vocabulary is used in an architecture of a web-based

19

2. Modeling Environmental Data Streams

platform for the semantic integration of heterogeneous environmental data sources in real
time. This platform provides a unifying layer that integrates diverse environmental city
data. In particular, we tackle three main challenges, i.e., to (i) integrate data originating
from different sources and formats, (ii) facilitate semantic querying of the integrated
stream data following linked data principles, and (iii) address information needs in the
environmental domain in real time.

2.2 Related Work
Using ontologies to model data from different sources has been studied for years [Noy04,
MIKS00, WVV+01, Gag07, BCVB01, HG01]. Ontologies allow to develop precise domain
models for a given field of interest. Given an agreement on an ontological model, the
semantics of data provided by data sources for integration can be made explicit. Hence,
based on this shared understanding, challenges due to semantic heterogeneity are reduced.

In the particular field of this work, that is semantic modeling of environmental obser-
vations, applying ontologies to align data sources has been considered [PB02, MFC+07,
MRS+07, MRM+10]. However, these works focus on a more coarse level of data inte-
gration, meaning they ease semantic integration on a data provider level (databases,
files, repositories, etc.). Our data model operates on the granular level of environmental
observations. This allows to improve the ways of interacting with the data in three ways:
First, data access is facilitated, because applications can use the ontology as a single
point of access. Second, querying can be performed by using the vocabulary provided by
the ontology for unified query formulation. Third, given that ontologies can be designed
in order to be easily extensible, new data sources can be added rapidly.

2.2.1 RDF Data Cube Vocabulary-based Data Modeling

The RDF Data Cube Vocabulary [CR14] has been used to publish semantically explicit
integrated environmental data sets as linked data. For instance, [RFH10] provide vo-
cabularies in the field of environmental observation to enable the long-term analysis of
substance exposure of humans and the environment based on linked data repositories.
They use a set of domain ontologies to encode information of relevant application fields,
such as biodiversity or substances. A global ontology is connected to these domain
ontologies through predefined properties. However, this approach is not generic, because
it uses properties which are specifically defined for the publication of Environmental
Specimen Bank (ESB) data.

Another example for the use of ontologies for environmental data integration is the UK
government. They release data about the bathing water quality utilizing the RDF Data
Cube Vocabulary. The bathing water measurements are also linked to spatial data of the
UK Ordnance Survey and displayed on a map which is updated regularly1. This example

1http://environment.data.gov.uk/bwq/profiles/ (accessed 16 June 2016)

20

http://environment.data.gov.uk/bwq/profiles/

2.2. Related Work

demonstrates how environmental data can be enriched via interlinking with other data
sets and how it can be visualized in an appealing way.

Tarasova et al. [TAM13, Tar13] reuse the RDF Data Cube vocabulary to model hetero-
geneous environmental data sources. The authors process static data sets of historic
data and harmonize them by introducing a semantic metadata model that focuses on a
generic and domain-independent solution. This approach eases retrieval and integration
of measurements from different data collections at a single point, that is the presented
ENVRI portal.

2.2.2 Semantic Sensor Network Ontology-based Data Modeling

The SSN ontology aims “to describe sensors and sensor networks for use in sensor network
and sensor web applications” (see [LHT11]). This ontology relies on design patterns
which draw from the functional approach presented by Kuhn [Kuh09, JC10]. Researchers
use SSN to integrate (e.g., [FMMVA13, LK14] and publish (e.g., [MFM11, JBS+13]
environmental sensor measurements as linked data.

In [BP10] the authors describe Sense2Web2, a linked data platform to publish sensor data.
This platform allows applications and users to request measurements and observation
data and to query events based on semantic web principles. The authors state that the
advantage of this approach lies in improved data access and querying capabilities. This
allows to obtain information or integrate data from various sources. An example access
and exploitation scenario for the constructed linked sensor data platform is also described
using a mashup application.

In [LPQPH11] a Linked Sensor Middleware based on the SSN ontology is presented. The
authors introduce LSD which are essentially sensor stream sources enriched with semantic
descriptions. The developed Linked Stream Middleware platform is used to process LSD
allowing for collecting, publishing, annotating, visualizing, and querying stream data.

Context-aware Sensor Search, Selection, and Ranking Model (CASSRAM) builds upon
the SSN ontology and facilitates the discovery of sensors in the Internet of Things (IoT)
domain through exploitation of context information [PZC+13]. The authors present a
prototype tool which utilizes the model and shows how semantic and statistical reasoning
can be combined to improve the data acquisition process. The tool is evaluated with
respect to performance and response time revealing a trade-off between result accuracy
and resource consumption. Machine learning techniques are proposed to learn optimal
margin of error parameters in order to optimize the trade-off with respect to user
requirements.

Further, the SSN ontology is used for modeling environmental sensor observations in

2http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/Sense2Web.html
(accessed 16 June 2016)

21

http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/Sense2Web.html

2. Modeling Environmental Data Streams

several research projects, such as SemsorGrid4Env3, Aemet Linked Data4, Exalted5, and
Spitfire6.

2.2.3 Research Gap

As shown in Table 2.1, all of the previous research focused on either the RDF Data
Cube vocabulary or the SSN ontology. Moreover, we see that, with one exception, all
works which use the RDF Data Cube Vocabulary process measurement data, whereas all
approaches which use the SSN ontology use the data model to describe the metadata.
This shows that there is a lack of a vocabulary that allows to use the RDF Data Cube
Vocabulary and SSN on the same data structures. This would create compatibility at the
data layer as well as a higher level of reuse. Such a vocabulary offers means to describe
sensors and the data they observe, while it can be queried with query patterns which are
typically used with the respective ontologies.

Moreover, following best practices of semantic web data publishing, vocabularies which
have a semantic overlap, as is the case for Data Cube and the SSN ontology, should
be aligned to enable reuse. Such an alignment can then, for instance, allow to query
respective data sources based on both ontologies. In addition, if a data publisher wants
to provide sensor data as RDF Data Cubes, it is essential to find a mapping between
these two vocabularies. To achieve this alignment, a means to store observational data
corresponding to both vocabularies need to be found.

Initial work on combining both ontologies has already been done. Lefort et al. [LHTW13,
LBH+] aim to align them in order to convert a historic climate data set to RDF. They

Related Work Ontologies Data Layer
RDC SSN Measurements Metadata

[RFH10] X - X -
[TAM13, Tar13] X - X -
[Env] X - X -
[BP10] - X X X
[LPQPH11] - X - X
[PZC+13] - X - X

Table 2.1: Overview of literature in ontology-based environmental data modeling7

3http://www.semsorgrid4env.eu/ (accessed 16 June 2016)
4http://aemet.linkeddata.es/ (accessed 16 June 2016)
5http://www.ict-exalted.eu/ (accessed 16 June 2016)
6http://web.archive.org/web/20150227022003/http://www.spitfire-project.eu/

(accessed 16 June 2016)
7The Ontologies column denotes which ontologies are used by the respective approaches (RDC is

the RDF Data Cube Vocabulary, SSN is the Semantic Sensor Network Ontology). The Data Layer
column shows on which level the presented work operates (Measurements denotes use on the instance
level, Metadata shows that the data model is used to describe the structure of the resources).

22

http://www.semsorgrid4env.eu/
http://aemet.linkeddata.es/
http://www.ict-exalted.eu/
http://web.archive.org/web/20150227022003/http://www.spitfire-project.eu/

2.3. Ontology for Modeling Environmental Data Streams

provide a web-interface to browse the data based on the encoded semantics. However, the
vocabularies are coupled more loosely than is the case in our work. The authors use the
SSN ontology to publish metadata and the RDF Data Cube vocabulary for observation
data. Their work is based on the premise that the declarations of observed properties
in the SSN ontology as classes are not directly compatible with their declarations in
the Data Cube vocabulary as properties. In our work, we did not have to tackle this
issue, because we model the data structure in a way that complies with both approaches
(cf. Section 2.3.2.4).

Stocker et al. [SRK14] design an ontology that aligns and specializes the generic concepts
of several upper ontologies, i.e., SSNO, DOLCE+DnS Ultralite (DUL), RDF Data Cube
Vocabulary (QB), Situation Theory Ontology (STO), GeoSPARQL, Time Ontology
in OWL, and PROV Ontology (PROV-O). However, they also model ssn:Observation
as having a different semantics than qb:Observation. The former represents a sensor
observation that relates to the sensor that made an observation (result of sensing); the
latter represents a data set observation, for instance, a line of a textual observation
file (result of computations). Since their work aims at modeling a multi-step process of
environmental monitoring this separation is suitable in this particular case.

To conclude, modeling of environmental data has been a research topic for many years.
More recently, the use of semantic web techniques in order to model and process envi-
ronmental observations to facilitate integration of increasingly dispersed data sources
has gained interest. Most prominently researchers and developers use the RDF Data
Cube vocabulary and the SSN ontology to store such data. However, since there is
a semantic overlap between these two vocabularies, there is a need to bridge similar
concepts of both to maximize compatibility and possibilities of reuse. This will, for
instance, enable the formulation of unified queries over environmental data sources based
on both vocabularies. Moreover, if this semantic gap would be removed, data cubes
can be automatically generated based on SSN linked data. We address this issue in the
course of this thesis (cf. Section 2).

2.3 Ontology for Modeling Environmental Data Streams
The design of an ontology to model and annotate environmental data streams is a
prerequisite for the overall architecture and a central contribution of this thesis. Ontologies
form an integral part of the semantic web stack [BL03]. They are used to describe data
and explicitly define their semantics. Due to the heterogeneity of environmental data, it is
not feasible to design a single ontology that covers all environmental domains. Therefore,
the linked data principles propose to use multiple coexistent vocabularies to describe
data. Hence, our ontology represents an extensible vocabulary for sensor observations in
the environmental domain, which can be complemented with external information.

The main goal of our environmental data model is (i) to provide a concise, but complete
vocabulary to model, annotate and semantically enrich environmental data streams while
(ii) reusing already existing ontologies wherever possible. Since the SSN ontology and

23

2. Modeling Environmental Data Streams

the Data Cube vocabulary have overlaps in their fields of application, i.e., capturing
(sensor) observations, this is the first approach to combine and align both ontologies
while preserving and respecting the definitions of the concepts. Our integrated ontology
allows for queries that exploit the ideas, notions, and use cases of both source ontologies.

The following sections provide a detailed overview on the design process, requirements,
reused ontologies, and key considerations. We did not use any of the well recognized ontol-
ogy engineering approaches, such as Methontology [FLGPJ97], On-To-Knowledge [SSS04],
and DILIGENT [PST04], because they require that an ontology is built from scratch.
Instead, we use methodological guidelines of the Building Ontology Networks by Reusing
Ontological Resources scenario [FLSFGP12] which was developed as part of the NeOn
methodology [SFGPFL12]. The ontology discussed is actively maintained and available
online8. In the present work we use the prefix es (Environmental Streams) to refer to
terms of this ontology.

2.3.1 Requirements

Environmental data streams are heterogeneous and vary along several dimensions, e.g.,
data type, update frequency, and covered domain. To process them in a homogeneous
manner, the definition of a unifying data model is therefore essential. We choose ontologies
as a foundational data model to describe our domain of interest, i.e., environmental
data. Ontologies are highly useful for data integration tasks and to enable unified data
access [CX05].

Incoming data is converted to a data model that conforms to a described ontology and
therefore enables access to the previously separated sources by means of a controlled
vocabulary. The conversion process semantically enriches the data, because raw data
gets annotated using well-defined domain concepts. In other words, meaning is added to
the data which can later be exploited by applications and humans. Since the enriched
concepts are both machine- and human-readable, they can be reused by semantic clients
as well as by humans. Semantic enrichment is a fundamental requirement to realize
consecutive steps of the presented architecture, i.e., data streaming and stream processing,
in order to create a system which can cope with heterogeneous data streams. Other tasks
to realize are contextualized sensor discovery, semantic search and query mechanisms,
and knowledge extraction from sensor-generated data.

We design an ontology for the environmental domain based on the following set of
requirements:

R1 – Data integration. The ontology should facilitate integration of different data
sources that capture environmental observations. Therefore, it should capture
knowledge about phenomena that appear in our environment. Moreover metadata
about sensors (update frequency, location, etc.) and observations (unit of measure,

8https://github.com/beta2k/environmental-stream-ontology (accessed 16 June 2016)

24

https://github.com/beta2k/environmental-stream-ontology

2.3. Ontology for Modeling Environmental Data Streams

etc.) should be stored. The challenge is to define the vocabulary not too broadly or
too narrowly.

R2 – Reuse of existing ontologies. Reuse of knowledge is a key concept of the se-
mantic web. This is necessary to avoid the dissemination of terms and concepts with
overlapping meaning via different URIs. Moreover, reuse of ontologies saves effort,
because one does not need to start development from scratch. This approach also
facilitates interoperability between, for instance, multiple sensor networks using the
same vocabularies.

R3 – Lightweight. The result should be a lightweight ontology which is easy to (re)use.
Users should be able to start working with the terms quickly and without read-
ing detailed documentations. Lightweight ontologies are commonly used for data
standardization purposes and when resulting applications do not involve complex
reasoning tasks based on so-called heavy semantics.

R4 – Reusability and extensibility. Users of the vocabulary should be able to reuse
and extend it easily. This requires that the vocabulary is designed generic enough in
order to extend it easily with more concrete definitions, if required.

R5 – Separation of knowledge. The problem of conflating concepts arises when the
domain to be modeled is not defined precisely and completely. The vocabulary at
hand should avoid conflating terms by separating the used concepts in a way that
enables flexible queries along different measurement characteristics. Moreover, we
aim to separate domain knowledge from operational knowledge when designing the
ontology. Domain knowledge acts as static and stored background knowledge, which
supports knowledge extraction. It does not change frequently. Operational knowledge
is represented through concrete observations that flow in steadily in the form of
data streams. These two layers shall be separated in the model. By preventing
conflated concept definitions and ensuring a clear separation of knowledge domains
the ontology facilitates semantic interoperability and powerful query mechanisms.
It makes the concepts easier to query and to align them to vocabularies of other
domains (this is also related to the extensibility requirement R4 above). Moreover,
the combination of static knowledge (e.g., geographic maps, point-of-interest data,
etc.) with operational knowledge (i.e., dynamic data streams) improves the ability
to deduce new knowledge.

R6 – Observation Aggregation. It should be possible to aggregate sensor observation
data with typical aggregation functions like MIN, MAX, SUM, or AVG. Moreover,
it should be possible to combine and aggregate observations that stem from different
data sources and vary in their dimensions. For instance, a query could ask for
“Provide the average temperature of sensors located near Vienna from the last two
weeks”. The ontology has to be designed to allow aggregation of data along temporal
or spatial dimensions.

25

2. Modeling Environmental Data Streams

R7 – Dynamic integration of data streams. The ontology should support the def-
inition of new data streams with their accompanying data structure. We expect
that data streams will be added and removed over time and their encoding in the
data model should be flexible enough to account for this. This requires that data
streams can be defined by following a given structure in order to ease the process of
integrating new sources.

R8 – Exploitation of hierarchical structures. Ontologies can store knowledge in
hierarchical structures; an ontology for the environmental domain can make use of
this characteristic to support convenient query formulation. A potential query could
be “Provide all sensor observations which measure precipitation properties”. If the
observed properties are encoded in a hierarchy, where different types of precipitation
such as snowfall or rainfall are subsumed under the same concept, general queries
can be formulated conveniently.

R9 – Stream and observation discovery. This requirement is related to R4 and
R8; it states that both streams and observations should be discoverable along key
dimensions such as spatial, temporal, and environmental characteristics. For example,
if a sensor measures air temperature, it should be possible to query sensors based on
either observed properties (temperature) or features (air). This allows to process
queries regarding either properties or features in a flexible way. Moreover, since we
also encode temporal and spatial knowledge, these dimensions should be supported
for querying as well.

2.3.2 Design Considerations

Several considerations and design decisions were made while implementing above require-
ments. They will be described in the next sections.

2.3.2.1 Decisions between ontology alternatives

QUDT vs. SWEET Several ontologies are available to encode environmental data.
In the context of our work, we want to model properties of observations, e.g., temperature,
length, speed. Two ontologies are available for this purpose: Quantities, Units, Dimensions
and Data Types Ontology (QUDT)9 (prefix: qudt) and Semantic Web for Earth and
Environmental Terminology (SWEET)10 (prefix: sweet). We did a non-exhaustive
evaluation of environmental properties. Table 2.2 shows that SWEET (sweet:Property)
supports a wide range of the properties, whereas QUDT does not support all of them
(qudt:QuantityKind). QUDT developers state that height and depth are not encoded as
quantity kinds, because they are specific quantities of the quantity kind length.

The terms of the SWEET vocabulary are more targeted towards the environmental
domain. This and the fact that units of measure are also encoded in SWEET (and related

9http://www.qudt.org/ (accessed 16 June 2016)
10https://sweet.jpl.nasa.gov/ (accessed 16 June 2016)

26

http://www.qudt.org/
https://sweet.jpl.nasa.gov

2.3. Ontology for Modeling Environmental Data Streams

Properties QUDT SWEET
Temperature Y Y
Length Y Y
Depth N Y
Height N Y
Pressure Y Y
Angle Y Y
Direction N Y
Speed Y Y

Table 2.2: Comparison of supported observation properties of the QUDT and SWEET
ontologies.

to sweet:property) — which enable intelligent reasoning and querying mechanisms — led
us to the decision to use SWEET.

GeoSPARQL vs. WGS84 Several ontologies to encode spatial data are available.
The WGS84 ontology11 is a popular example12. Its simplicity, however, comes with
the trade-off of being less expressive. In contrast, the GeoSPARQL ontology13 is an
official Open Geospatial Consortium (OGC) standard and allows for more complex spatial
encodings such as lines or polygons. The GeoSPARQL ontology enables queries such as
“Provide observations from all sensors in the city of Vienna”, given the coordinates of
Vienna are described as a polygon. GeoSPARQL also comes with a query language that
allows, for instance, queries based on spatial relations.

2.3.2.2 Reusing Ontologies

There are two options for ontology reuse: either through the owl:imports statement, or
through redeclaration of external classes and properties.

Using owl:imports makes the entire external ontology a part of the new ontology. This
may not always be desired behavior, for instance, if large and complex ontologies are
imported. Moreover, owl:imports is transitive, that is, if ontology A imports ontology B,
and B imports C, then A imports both B and C. Because we aim to design a lightweight
ontology (R3), we decided to import small ontologies only. In cases where we want to
reuse terms of large ontologies, or if we just pick particular terms, we simply redeclare
them.

11http://www.w3.org/2003/01/geo/ (accessed 16 June 2016)
12Richard Cyganiak runs prefix.cc, a website to look up namespace prefixes. He did an evalu-

ation on the most requested prefixes and WGS84 shows up at the 6th place. See http://richard.
cyganiak.de/blog/2011/02/top-100-most-popular-rdf-namespace-prefixes/ (accessed
16 June 2016).

13http://www.geosparql.org/ (accessed 16 June 2016)

27

http://www.w3.org/2003/01/geo/
prefix.cc
http://richard.cyganiak.de/blog/2011/02/top-100-most-popular-rdf-namespace-prefixes/
http://richard.cyganiak.de/blog/2011/02/top-100-most-popular-rdf-namespace-prefixes/
http://www.geosparql.org/

2. Modeling Environmental Data Streams

Avoiding owl:imports for large ontologies has the advantage that semantic web tools such
as reasoners do not need to load all referenced ontologies when our vocabulary is used.
The redeclarations are useful for Web Ontology Language (OWL) tools which require
definitions of used classes and properties. Linked data applications can use the URIs
of the definitions for dereferencing. Overall, owl:imports is suitable when reuse of all
axioms of an external ontology is desired. Given that our goal is to reuse existing and
well-known terms to facilitate interoperability, redeclaring them is sufficient.14

We use redeclarations of the following classes: sweet:HumanActivity, sweet:Phenomena,
and sweet:Substance. These classes are furthermore encoded as subclasses of ssn:Feature-
OfInterest meaning that the respective SWEET classes are used as features of interest for
the actual instance data. Similarly, sweet:Property is aligned with ssn:Property. From the
Time Ontology in OWL we declare time:Instant and time:inXSDDateTime to capture
temporal data, i.e., when an observation has been made. From the GeoSPARQL Ontology
we reuse geo:hasGeometry and geo:Geometry to store spatial information, i.e., lo-cations
of sensors. Qudt:numericValue is used to encode actual sensor measurements. We use
owl:imports only for the Data Cube vocabulary and for the SSN ontology, because we
reuse large parts of these ontologies.

2.3.2.3 Modeling of Spatial and Temporal Observation Data

The following considerations are made to store spatial (i.e., locations of observations or
sensors) and temporal data (i.e., when an observation has been made) with the proposed
model.

We initially considered attaching location data, i.e., the location where an observation
was made, directly at the observation level. However, to conform with the SSN ontology,
we decided to do this at the sensor level via geo:hasGeometry (cf. Figure 2.2). This
approach is less redundant, because we do not capture any data of moving sensors. In
other words, we assume that the location of sensors is static. Hence, there is no reason to
attach the same location information for one data stream to each observation again and
again. Moreover, the sensor is attached to each observation through ssn:madeObservation,
meaning that the location of an observation can easily be retrieved.

A similar rationale applies for the encoding of units of measurement. Those are stored at
the data set level (es:DataStream) via the sweet:hasUnit property. Each es:DataStream
is related to exactly one qb:DataStructureDefinition. Therefore, it generates observations
of only a single property and the unit of measurement does not change over time.
Observations also only observe a single property at a time, hence, there is no need to
encode multiple units of measurement for a data stream. The official standardization
document of the Data Cube vocabulary also describes a special qb:componentAttachement

14On semanticweb.com different ways to reuse terms when an ontology is designed have
been discussed and explained (cf. http://answers.semanticweb.com/questions/18505/
ontology-import-vs-owlsameas-in-ontology-design (accessed 16 June 2016))

28

http://answers.semanticweb.com/questions/18505/ontology-import-vs-owlsameas-in-ontology-design
http://answers.semanticweb.com/questions/18505/ontology-import-vs-owlsameas-in-ontology-design

2.3. Ontology for Modeling Environmental Data Streams

property which can be used to attach attributes, for instance the unit of measurement,
to the whole data set in order to avoid redundancy15.

Data Cube allows to encode multiple measures at a single observation. For instance,
an air sensor could observe temperature and wind speed. The vocabulary provides
two mechanisms to implement this, namely multi-measure observations and measure
dimensions. However, because we want to comply to both the SSN ontology and Data
Cube and because it is not feasible to create observations based on the SSN ontology which
capture multiple observed properties, we decide to model single property observations.
If we would follow one of the approaches proposed in the Data Cube specification
(multi-measure and measure dimension observations), this would make our vocabulary
incompatible with SSNO.

2.3.2.4 Defining the Measure Property according to the Data Cube
vocabulary

The Data Cube vocabulary prescribes the definition of a Data Structure Definition (DSD).
The actual observation data is stored according to the structure defined in the DSD. We
have to trade off interoperability and flexibility when the Data Cube vocabulary and the
SSN ontology are combined.

In the DSD the data provider uses qb:measure to create a relationship to a class of type
qb:Measure-Property which in the observation data will materialize as a relation to the ac-
tual measured value. For instance eg:CO2 may be declared as a qb:MeasureProperty. An
example observation will then, e.g., contain the triple eg:Observation eg:CO2 “114”. How-
ever, to comply to both vocabularies, we declare ssn:observationResult as a qb:Measure-
Property in the DSD. Starting from an observation, the actual measurement can then be
queried via the classes ssn:SensorOutput and ssn:ObservationValue.

2.3.3 Reused Ontologies

Table 2.3 summarizes the used vocabularies, their namespaces, prefixes, application
domain and how they were reused (either via owl:imports statement (I) or via redecla-
ration (R)). The prefixes in the table are also used further in this chapter to describe
classes and properties of respective ontologies. Furthermore, we introduce the prefix es
(environmental streams) which is the namespace of the developed ontology. It defines
new classes deduced from upper ontologies and reuses external properties. Figure 2.1
depicts how existing ontologies were combined via subclass statements.

Figure 2.2 provides an overview of the classes and their relations via properties from
an SSN ontology-centric point of view, whereas Figure 2.3 provides an overview of
used classes and relationships from a Data Cube vocabulary-centric point of view.

15There has been some discussion about how and if multiple properties can be encoded into a single ob-
servation of the SSN ontology which influenced our decision to also only create single property observations
(cf. http://lists.w3.org/Archives/Public/public-xg-ssn/2014Apr/0007.html (accessed
16 June 2016)).

29

http://lists.w3.org/Archives/Public/public-xg-ssn/2014Apr/0007.html

2. Modeling Environmental Data Streams

Ontology Name Namespace Prefix Domain Reuse

Semantic Web for
Earth and
Environmen-

tal,Terminology
(SWEET)

http://sweet.jpl.nasa.gov/2.3/ sweet Environmental
terms R

Semantic Sensor
Network Ontology

(SSNO)
http://purl.oclc.org/NET/ssnx/ssn# ssn

Sensor and
Observation
descriptions

I

RDF Data Cube
Vocabulary (QB) http://purl.org/linked-data/cube# qb Multi-dimensional

observations I

Time Ontology in
OWL http://www.w3.org/2006/time# time Temporal data R

GeoSPARQL http://www.opengis.net/ont/geosparql# geo Spatial data R

Table 2.3: Reused ontologies

subclassOf

subclassOf

ssn:FeatureOf
Interest

SSN

SWEET
ES

QB

sweet:Phenomenon

sweet:Substancesweet:HumanActivity

sweet:Property

ssn:SensorOutput

ssn:Observation
Value

ssn:Observation

ssn:Property ssn:Sensor

qb:Observation

es:SensorOutputes:ObservationValue

es:Observation es:Sensor

subclassOf
subclassOf

subclassOf

subclassOf

subclassOf

qb:DataSet

es:Stream

subclassOf

qb:DataStructure
Definition

es:DataStructure
Definition

subclassOf

Figure 2.1: Reuse and combination of external ontologies via owl:subclassOf properties.
Es is the prefix of the developed environmental streams ontology.

In the former, it is shown that we derive es:Sensor, es:Observation, es:SensorOutput,
and es:ObservationValue from respective classes of the SSN ontology and the Data
Cube vocabulary. Sweet:HumanActivity, sweet:Phenomena, and sweet:Substance are
aligned with ssn:FeatureOfInterest, since they contain conceptual domain knowledge
which later will be encoded as Features complying with SSN ontology best practices.
Furthermore, we use geo:hasGeometry in combination with geo:Point to model sensor
locations and ssn:observationResultTime in combination with time:Instant to capture
temporal information of observations.

Figure 2.3 shows that es:Stream is derived from qb:DataSet. We see that units of
measurement are encoded as sweet:Unit via sweet:hasUnit at the data set level. The
bottom half of the figure represents instance data, i.e., the actual data structure definition,
observation and data stream instances according to the Data Cube vocabulary.

30

2.3. Ontology for Modeling Environmental Data Streams

ssn:Feature
OfInterest

sweet:Phenomenona sweet:Substancesweet:HumanActivity

sweet:Property

ssn:Sensor
Output

ssn:Observation
Value

ssn:Observation ssn:Propertyssn:Sensor qb:Observation

es:SensorOutput

es:Observation
Value

es:Observationes:Sensor

subclassOf

subclassOfgeo:Point

subclassOfsubclassOf

ssn:observes

ssn:made
Observation

ssn:hasProperty

subclassOfsubclassOf subclassOf

subclassOf

time:instant

ssn:observation
ResultTime

ssn:observed
Property

subclassOf

geo:hasGeometry

ssn:isProducedBy

ssn:observation
Result

ssn:feature
OfInterest

ssn:hasValue

Figure 2.2: SSN ontology-centric view over classes and their relations

qb:attribute

rdf:type

ssn:Observationqb:DataSet qb:Observation

es:SensorOutput es:Observation
Value

es:Observationes:Stream

sweet:Unit

subclassOfsubclassOf

qb:dataSet

subclassOf

ssn:observation
ResultTime

sweet:hasUnit ssn:observation
Result

ssn:hasValue

es:DataStructure
Definition

ssn:Observation
Value

subclassOf

es:CO2-DSDes:CO2-Observation1

rdf:type

es:CO2-Stream

ssn:featureOf
Interest

qb:dataSet

ssn:observed
Property

sweet:hasUnit

ssn:observation
ResultTime

ssn:observation
Result

qb:attribute

qb:attribute

qb:dimensionqb:measure

sweet:CO2

sweet:ppm

sweet:MassFraction

es:CO2-
SensorOutput1

es:ObservationValue1

20^xsd:double

qudt:numericValue

ssn:observationResult

ssn:hasValue

ssn:featureOf
Interest

ssn:observed
Property

ssn:observation
ResultTime

sweet:hasUnit

time:instant

2014-12-20T03-55-00^xsd:dateTime

time:inXSDDateTime

time:Instant

rdf:typeConcepts

Instances

qb:structure

qb:structure

qb:DataStructure
Definition

subclassOf

Figure 2.3: Data Cube vocabulary-centric view over classes and their relations16

16On the bottom half instance data is visualized, i.e., how an actual data stream, observation and
data structure definition is modeled based on the created vocabulary. Note the absence of location data
(geo:hasGeometry) as a property of the observation and the absence of the unit encoding as a property of
the data stream instance (es:CO2-Stream). For details cf. Section 2.3.2.3.

31

2. Modeling Environmental Data Streams

2.4 Architecture
In this section we describe the relation between the vocabulary and our architecture
and its three different stages, i.e., Data Acquisition, Data Transformation, and Data
Streaming as shown in Figure 2.4. The figure also shows to which part of the architecture
each research question relates to.

DATA ACQUISITION DATA TRANSFORMATION DATA STREAMING

S
T

R
E

A
M

 P
R

O
C

E
S

S
IN

G

Data Source 1 Data Source 1

Data Source 2 Data Source 2

Data Source n Data Source n

Accessible

via API,

Crawling

(CSV,

XML,

JSON,

PDF,

HTML, ...)

DSMS DSMS

Polling

Streaming

RDF

Converter
(translate X to

RDF)

RDF

Converter
(translate X to

RDF)

RDF Stream Processor RDF Stream Processor

Pull / Push

Pruner Pruner

Widget 1 Widget 1 Widget 2 Widget 2 Widget n Widget n

Continuous Query

R
D

F
 S

tre
a
m

Widget =

Continuous Query +

Parameters

Triple

Store
SPARQL

Endpoint

SPARQL

Endpoint

Discovery

Services

Discovery

Services

RQ1

RQ2

RQ3

Figure 2.4: Architecture of the proposed approach

2.4.1 Data Acquisition and Data Transformation

Environmental data is available from different repositories, each providing unstructured,
semi-structured, and structured data. In many cases, data is presented only on a
webpage or exposed via non-standardized interfaces. To allow for timely provision
of data via our platform, such data has to be retrieved on a regular basis. Data
available in (semi)structured formats is more straight-forward to handle, but needs to be
converted into JavaScript Object Notation for Linked Data (JSON-LD), a recent W3C
recommendation [LSK14] that we use as our internal data exchange format.

After conversion, the data is fed into a Data Stream Management System (DSMS) and
the triples are stored in a triple store. The RDF converter uses domain ontologies to
enrich incoming data sources with semantic knowledge, which later will be utilized to
support features such as stream processing or contextualized sensor discovery. The DSMS
is dependent upon the RDF stream processor implementation. We conducted a thorough
evaluation with a novel benchmark which we present in Section 3 to identify the most
suitable stream processor based on the requirements of our scenario.

Data sources differ in type, access mechanisms, and semantic meaning. Ontologies have
been used for years as a means to overcome the resulting heterogeneity [NM01, Hul97,

32

2.4. Architecture

Gru93]. In the context of our proposed framework they are a valuable tool to define a
comprehensive and standardized semantic model which is a prerequisite for semantic
search and knowledge extraction from sensor-generated data.

Furthermore, differences in number and range of observed properties as well as update
frequency (varying from stream data, i.e., real time updated data, to hourly updated
data) result in large variation in the amounts of data provided, which has to be taken
into account when we evaluate implementation candidates for the RDF converter.

2.4.2 Data Streaming

The first stage of data flow in the architecture, i.e., data acquisition, results in semantically
annotated observation data, i.e., RDF streams that can be presented to end-users. In
the second stage, we provide real time data to the user.

We make use of the publish-subscribe design pattern, which controls what messages are
sent by entities that publish data to receiving entities [EFGK03]. In the context of the
proposed framework, loosely coupled widgets can act as publishers and subscribers. A
key advantage of this approach is that through parallel operations, message caching, and
routing, this pattern provides the scalability needed to handle flexible stream compositions
on our platform. Consequently, it addresses the first challenge of providing environmental
data streams to users by allowing clients to subscribe to data streams dynamically.

Furthermore, because of the continuity and potentially large size of data streams, storage
is a key issue. To avoid bottlenecks in subsequent procedural steps, we need to define
when data becomes outdated and can be deleted. In case historical analysis is required,
techniques to aggregate outdated data in order to save storage capacity need to be
implemented.

The architecture supports flexible exploration of the data. Users can combine widgets to
answer questions related to environmental data. Via drag-and-drop, these widgets can
be combined into mashups. A mashup can satisfy information needs, e.g., by displaying
points of interest that satisfy certain air quality criteria. Widgets leverage the modeled
semantics and can be combined in many different ways.

We apply stream reasoning techniques provided through SPARQL extensions, i.e., win-
dowing functions and federation of static data with dynamic streams. Each corresponding
data stream is represented by a widget. A web-based graphical interface allows users to
assemble these widgets and set parameters for their processing functions. In doing so,
users can efficiently explore data streams.

These processing widgets have encoded queries based on stream-specific criteria, e.g.,
time windows or aggregates (sum, count, average, etc.), and return RDF triples that
answer this query, ultimately allowing ad hoc combination of data streams with static or
streaming data. Presentation widgets provide mechanisms to visualize output via, for
instance, maps, bar charts, line charts, pie charts, and histograms. This step covers data

33

2. Modeling Environmental Data Streams

analysis via continuous stream queries, publication via RDF graphs, and visualization
via presentation interfaces.

2.5 Summary

In this section, we propose a data model that serves as a basis for a widget-based
framework. This framework enables the exploration of environmental data streams in an
urban context. We divide the architecture into three stages and identify key issues that
need to be addressed. These include the definition of a new vocabulary for environmental
stream data deduced from already existing and well-adopted ontologies, and applying
semantic stream processing methods to facilitate reasoning.

We evaluate potential ontologies for reuse. The resulting vocabulary aligns and harmonizes
terms of both the Semantic Sensor Network Ontology and RDF Data Cube vocabulary.
This enables interoperability and allows to reuse recommended query patterns and best
practices which are defined for both ontologies.

We identified nine high-level requirements based on the domain of environmental stream
data integration which were addressed as follows.

R1 The data integration requirement is achieved via the definition of a conceptualization
in terms of an ontology which combines domain ontologies into a unifying framework.

R2 We reuse existing ontologies to avoid formulating new concepts which have already
been defined before. This also allows users of these ontologies to adapt their queries
without having to introduce new concepts.

R3 The requirement to provide a lightweight solution in terms of complexity is satisfied.
The developed vocabulary consists of 20 classes and 13 properties. It does not
support complex reasoning tasks, but facilitates to build applications which need to
process environmental stream data based on a common data model.

R4 Reusability and extensibility are ensured by allowing to use terms of external
vocabularies, e.g., terms of the SWEET ontology which comprises an extensive
collection of environmental terms. Moreover, the vocabulary can be extended and
linked via common methods, such as subclassing.

R5 Separation of knowledge is achieved by splitting operational knowledge and domain
knowledge in the model. We also provide a definition of sensor observations in
order to allow for granular queries by separating concepts into observed properties,
observed features, and units of measure.

R6 The design allows to aggregate observations along temporal and spatial dimensions
via using the stored metadata of sensors and their observations.

34

2.5. Summary

R7 We follow the provided structure of the vocabulary, i.e., we define the core concepts
of the ontology. Thereby, we satisfy the requirement to enable dynamic integration
of new data streams.

R8 Exploitation of hierarchical structures is satisfied by linking the vocabulary with the
SWEET ontology. In this ontology, the concepts are arranged in a strict hierarchical
scheme than can be used to formulate queries. These queries subsume concepts
belonging to the same branch of the hierarchy.

R9 The discovery of streams and observations is provided via the foundational design
and structure of the vocabulary. Streams and observations are defined as separate
concepts and linked together, hence, allowing to be discovered separately.

Our architecture aims to facilitate access to and reuse of public environmental data
sources. At present, most of these sources provide only infrequent snapshots of static
data. Given the ongoing efforts in the area of Open Data, we expect that in future
more real time sources will be available which will facilitate innovative applications in
the environmental domain. In the long term, the proposed system could serve as an
open data platform for citizens of a “smart city”. Applications built on top of this
architecture can bring together developers and users. For each of them, it should be
as easy as possible to create, (re)use, modify, and execute mashups. By overcoming
technical barriers of adoption, citizens will be enabled to interact with the available data
sources, e.g., stream data, open data, linked data, tabular data while accessing data in
different formats. Creative (re)combination of available data enables the creation of new
knowledge. The vision is to provide a platform for dynamically building applications that
leverage semantically enriched environmental data in a timely manner. Ultimately, this
could lead to a better understanding of the environment in the local context of a city.

In this chapter we have designed an ontology based on a set of requirements for environ-
mental stream data modeling. The presented requirements generally also apply to other
stream data modeling settings besides the environmental domain. Therefore, they can
be reused to facilitate the design of similar ontologies for other domains, such as IoT or
health care. We validated the resulting ontology by discussing it with respect to each
requirement.

35

CHAPTER 3
Evaluating Stream Processing

Engines

This chapter presents our contributions in the field of evaluating stream processing
engines. Initially, we discuss related work in semantic stream processing (Section 3.2).
Next, we present a novel framework to benchmark RDF Stream Processing (RSP) engines
called YABench (Section 3.3). Next, we validate our approach through a comparison
with results from previous benchmarking efforts, namely CSRBench (Section 3.4). Next,
we discuss our experimental setup (Section 3.5) and present the results of our analysis
(Section 3.6). The results provide evidence that semantic stream processing engines suffer
from performance and correctness issues. Finally, we conclude with a discussion on future
implications and an outlook on future work (Section 3.7).

3.1 Motivation
Since environmental data is generated by continuous sensor measurements, their unified
processing requires a shift from a static and persistent towards a continuous paradigm. In
particular, applications which enable decision-making based on such data foster the need
for efficient processing of and reasoning over dynamic data. Making sense of frequently
changing data flows to draw timely conclusions about the state of our environment is
crucial. This requires proper means to consider the temporal dimension of the data.

We evaluate the use of continuous queries [ABW06] for dynamic data processing in the
environmental domain. More precisely, we compare different approaches which have
already been proposed in the domain of semantic stream processing with respect to
environmental stream data based on our initially defined challenges (cf. Section 3.2).

A number of semantic stream processing engines — also known as RSP engines — have
been proposed that provide (limited) capabilities for reasoning and to cope with hetero-

37

3. Evaluating Stream Processing Engines

geneity. Prominent examples include Continuous SPARQL (C-SPARQL) [BBC+10b],
Continuous Query Evaluation over Linked Streams (CQELS) [LDPH11], and SPAR-
QLStream [CCG10]. They can provide a basis for innovative applications in data stream
analytics, but there is currently no consensus on how these RSP engines should be
benchmarked. Especially performing evaluations with respect to the challenges posed by
environmental stream data, is currently not offered by available benchmarking frameworks.
A common framework that can gather experimental results for environmental scenarios
and uncover issues in current implementations is therefore necessary.

Several approaches to enable SPARQL-like data access on flows of incoming data have
been proposed recently. Most of them operate over windows to limit an unbounded input
stream from which a finite amount of elements is selected via queries. Conversely, there are
approaches which see flowing information as (complex) events whose occurrence is used
to detect patterns. The present work deals with window-based stream processing engines.
Differences in the implementations of these efforts result in divergent performance-
characteristics, which were investigated in previous work [LDP+12, ZDCC12, DCB+13].
Beyond that, they also crucially differ in their understanding and execution of operational
semantics. Previous work has highlighted differences in report strategies, query semantics,
output operators, and relation notifications. Even though these variations make it difficult
to compare engines, such comparisons are crucial to get a better understanding of their
behavior. Previously, only isolated aspects such as functional coverage, performance, and
correctness, were evaluated through specialized benchmarks, this work compares RSP
engines along all of these dimensions.

Motivated by these needs, we present Yet Another RDF Stream Processing Benchmark
(YABench), an integrated framework to assess correctness and performance of RSP
engines. YABench generates test data, allows for the definition of test scenarios, and
provides analyses of the evaluation runs. We put a strong emphasis on reproducibility and
visual presentation of results to foster an understanding of the individual characteristics
of an engine, including correctness under varying circumstances such as different input
loads, window sizes, and window frequencies.

3.2 Related Work

Related work in the field of semantic stream processing can be split into two main
parts. First, relevant works for stream processing in general and stream processing in the
semantic web will be presented. Stream processing is a relevant area for the presented
work, because real time environmental data necessitate processing in a continuous manner.
Hence, we can deduce the following challenges: (i) the ability to cope with frequently
changing data (C1), (ii) the need for reactive and timely answers (C2), (iii) the need for
precise answers (C3), and (iv) the ability to integrate stream data with static data (C4).
Second, research towards benchmarking stream processing proposals will be discussed.
Benchmarking of stream processing is important in order to ensure that a system can
satisfy the defined challenges.

38

3.2. Related Work

3.2.1 Stream Processing Engines

Given the abundant availability of data produced by environmental sensors, processing
continuous flows of data has gained major interest [HM06]. Stream processing engines are
“capable of timely processing large amounts of information as it flows from the peripheral
to the center of the system” [CM12] and therefore suitable to deal with such data.

The two concepts of timeliness and flow processing are essential for the definition of this
new class of systems. Traditional Database Management Systems (DBMSs) (i) require
data to be persistently stored before being processed, and (ii) process data only when
explicitly queried by users or systems. Both characteristics do not apply in the context
of systems processing flows of incoming data. As a consequence, a new model, namely
the data stream processing model, was proposed [BBD+02].

DSMSs are strongly influenced by traditional DBMS. They typically represent data
in a relational model and express queries in declarative languages such as Structured
Query Language (SQL). Hence, they are an extension of database systems that provides
continuous query answers for constantly changing and unbounded input data. To select
recent elements, DSMSs isolate parts of incoming unbounded data streams using time-
based or count-based windows [GÖ03]. After this windowing, so-called Relation-to-Stream
operators are used to convert resulting tuples into a stream [ABB+04].

The main differences between DSMSs and traditional DBMSs are as follows [CM12]:

• streams are typically unbounded,

• data may not arrive in order, and

• streams have to be dealt with in a one-time processing manner.

A key characteristic of DSMSs is that queries are registered once and then evaluated
continuously or periodically. To date, a large number of DSMSs have been developed in the
academic literature [CCD+03, BTW+06, LPT99, CDTW00, CJSS03, CGJ+02, ABB+04,
ABW06, AAB+05, ACÇ+03a, ACÇ+03b] and various commercial implementations are
available [ibm, tib, mic].

Semantic web technologies are often used in data integration scenarios, yet, until recently,
they were only applied to static and infrequently changing data. As of late, however, the
idea to merge the DSMS paradigm with concepts of semantically enriched data processing
techniques has gained momentum. Transferring ideas for semantic data integration to
data streaming scenarios allows (i) to fuse static and stream data on-the-fly, (ii) to
integrate multiple heterogeneous streams based on elaborate domain models, and (iii)
to reason and perform complex queries over combinations of different sources. Selected
developments in this field are described in the following.

39

3. Evaluating Stream Processing Engines

3.2.1.1 C-SPARQL

Early contributions aimed to formalize a continuous query language for RDF data streams
built upon SPARQL [BBC+10c, BBCG10, BBC+10b]. The extended language called
C-SPARQL supports timestamped RDF triples and evaluation of continuous queries.
Background knowledge and streaming knowledge can be combined within queries. Each
query has a fixed evaluation frequency, which decouples query evaluation from the arrival
of new data to the stream. In the context of real time requirements, this poses a significant
limitation. Moreover, temporal patterns over input elements are not supported.

Figure 3.1 provides a high-level view of the C-SPARQL architecture. Queries can be
registered and run continuously at the system. To this end, the engine uses two sub-
components, a DSMS and a SPARQL Engine. The first is used to execute continuous
queries over RDF Streams, producing temporal RDF snapshots, while the latter retrieves
a snapshot as input and runs a standard SPARQL query, producing a quasi-continuous
result. This result can be either a stream of variable bindings (for SELECT or ASK
queries) or an RDF stream (for CONSTRUCT queries). As implementation of the DSMS
C-SPARQL uses Esper1. The SPARQL engine is Apache Jena-ARQ2.

C-SPARQL has been applied in cloud monitoring applications [MBH+13], self-adaptation
for cloud environments [DPS13], social listening of events [BDVD+13], and data mining

Figure 3.1: High-level architecture of C-SPARQL3. The output of the engine can be
either an RDF stream (triples depicted as triangles) or a stream of relations (colored
squares).

1http://www.espertech.com/products/esper.php (accessed 16 June 2016)
2https://jena.apache.org/documentation/query/ (accessed 16 June 2016)
3Adapted from https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_

Implementation#C-SPARQL_and_C-SPARQL_Engine (accessed 16 June 2016)

40

http://www.espertech.com/products/esper.php
https://jena.apache.org/documentation/query/
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#C-SPARQL_and_C-SPARQL_Engine
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#C-SPARQL_and_C-SPARQL_Engine

3.2. Related Work

on micro-post streams [BCD+14]. The engine is still under active development; its code
resides at GitHub4.

3.2.1.2 CQELS

Similar to C-SPARQL, CQELS [LDPH11] also extends SPARQL for data streams. How-
ever, there are some notable differences: Rather than evaluating queries periodically,
matching triples are reported immediately when they arrive. Therefore, a query will
never report duplicate items in its results. Preliminary experiments suggest signifi-
cant performance advantages of CQELS over C-SPARQL [LDP+12]. Recent experi-
ments [DBDV13, DCB+13], however, highlight essential differences in the semantics of
these two engines.

In contrast to the C-SPARQL Engine which uses a “black box” approach and delegates
the processing to other engines, CQELS uses a “white box” approach (cf. Figure 3.2).
This means that required query operators are implemented natively to avoid processing
overhead and limitations of closed system regimes. CQELS provides a flexible query
execution framework with the query processor dynamically adapting to changes in the
input data. To improve query execution with regard to delay and complexity, query
operators are continuously reordered. Moreover, retrieval of large linked data collections
is minimized by caching of intermediate query results. CQELS has been used in the area
of urban data streams [GAM14] and mashups [QSLPH12].

3.2.1.3 SPARQLStream and Morph-streams processor

SPARQLStream [CCG10] is an extension to SPARQL that supports all Relation-to-Stream
operators, i.e., Rstream, Istream, and Dstream. These operators are applied to control

Figure 3.2: High-level architecture of CQELS5. The output of the engine can be either
an RDF stream (triples depicted as triangles) or a stream of relations (colored squares).

4https://github.com/streamreasoning/CSPARQL-engine (accessed 16 June 2016)
5Adapted from https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_

Implementation#CQELS_and_CQELS-QL (accessed 16 June 2016)

41

https://github.com/streamreasoning/CSPARQL-engine
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#CQELS_and_CQELS-QL
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#CQELS_and_CQELS-QL

3. Evaluating Stream Processing Engines

the output of queries which can either contain only new data, deleted data, or all
data [MWA+03]. Moreover, SPARQLStream supports ontology-based access to legacy
data stream sources. Its queries are translated into target languages such as Esper,
SNEE [GBG+11], GSN [AHS06], and Xively6. Morph-streams is an RDF stream query
processor for the continuous execution of SPARQLStream queries against virtual RDF
streams.

Figure 3.3 shows Morph-streams that uses RDB to RDF Mapping Language (R2RML)
[DCS12] to define mappings between ontologies and data streams. SPARQLStream
queries are rewritten to continuous queries depending on the target language of the
underlying DSMSs. Essentially, a SPARQLStream query is represented as relational
algebra expressions extended with time window constructs. This allows to perform logical
optimization and to translate the algebraic representation into a target language (SNEE
and ESPER) or Representational State Transfer (REST) Application Programming
Interface (API) request (GSN and Xively). This proposed SPARQL extension is used in
the domain of sensor networks to query observation data [CCJA12].

3.2.1.4 Complex Event Processing

In contrast to DSMSs, researchers also developed approaches aimed to detect complex
patterns in data streams. This paradigm is called Complex Event Processing (CEP).
In CEP-based systems, incoming data items represent timestamped notifications of
event occurrences. These can include both instance data (e.g., sensor reading values)

Figure 3.3: High-level architecture of SPARQLStream
7. The output of the engine can be

either an RDF stream (triples depicted as triangles) or a stream of relations (colored
squares).

6https://xively.com/ (accessed 16 June 2016)
7Adapted from https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_

Implementation#SPARQLstream_and_Morph-streams_processor (accessed 16 June 2016)

42

https://xively.com/
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#SPARQLstream_and_Morph-streams_processor
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation#SPARQLstream_and_Morph-streams_processor

3.2. Related Work

and metadata (e.g., location of where the reading was taken). CEP systems are based
on the concept of creating higher-level composite events from primitive events via
processing rules [MUHB14, Luc01]. Semantic CEP systems are able to process RDF data
include Event Processing SPARQL (EP-SPARQL) [AFRS11], INSTANS [RNT12], and
Sparkwave [KCF12]. However, given that we do not aim to deduce complex composite
events based on granular measurements, we do not include a more detailed discussion
here.

3.2.1.5 Summary

Table 3.1 summarizes the currently available DSMS-based semantic stream processing
engines with respect to our requirements. We also map the requirements represented in
columns to the initially stated challenges which we identify with respect to processing of
environmental data (cf. Section 3.2). We see that all challenges can be dealt with by the
discussed systems.

We observe that continuous queries, integration of background knowledge, use of combined
streams in single queries, and S2R operators are well supported. Temporal operators in
queries, such as before, after, or during, and reasoning support, by contrast, are largely
unsupported. We provide more details on each requirement and how it relates to the
domain of environmental data streams in the following.

Time model Timing of events is crucial in the environmental domain and a suitable
time model is required to establish temporal relations between sensor observations. We
distinguish between interval (two timestamps establish lower and upper bounds of an
interval), single timestamp (single timestamps represent a single point in time), and
implicit (no explicit timestamps, sequence order only) time models.

Continuous queries Continuous access to data is a key requirement for the filtering
of high volumes of environmental data streams and for subsequent real time monitoring
and reasoning. These queries provide the foundation to create timely responses.

Engine Time model Continuous
queries

Background
knowledge

Combined
streams

Temporal
operators

Reasoning
support

S2R
operators

Environmental
data challenges C2 C2, C3 C4 C4 C4 C3 C1, C2

C-SPARQL Single Timestamp X X X - RDF entailment X

CQELS Single Timestamp X X X - - X

SPARQLStream Single Timestamp X - X - - X

Table 3.1: Semantic stream processing requirements and challenges8

8S2R denotes Stream-to-Relation or window operators (see [ABW06]).

43

3. Evaluating Stream Processing Engines

Background knowledge The ability to integrate background knowledge into results
is important in the environmental domain, where metadata about the sensor network
is used to interpret measurements correctly. The requirement indicates if an engine
can integrate static knowledge with streamed knowledge, which facilitates contextual
interpretation of observed events. For instance, sensor locations, observed features, and
observed properties are organized into static repositories (e.g., ontologies). In order to
draw relevant and correct conclusions, being able to combine such background information
with incoming streams of events is crucial.

Combined streams It is necessary to allow for queries that operate on multiple
incoming data streams. In our application domain, input streams originate from diverse
sources, hence, the ability to refer to different streams within a single query is an
important feature.

Temporal operators Enabling the identification of event patterns based on complex
temporal specifications via special operators is sometimes required when dealing with
environmental data. For instance, to identify causal relationships between events, such
as increased air pollution and car traffic, temporal operators are essential. Elementary
events can occur before, during, or simultaneously with other events.

Reasoning support facilitates the inference of new knowledge which is not explicitly
stated in data streams. Our preliminary evaluation shows that only RDF entailment
(rdfs:domain, rdfs:range, rdfs:subPropertyOf, rdfs:subClassOf) is available. In the environ-
mental domain, these entailments enable to use the structure of ontologies to compose
more complex queries which, for instance, group classes of sensors observing similar
properties together.

S2R operators enable the partitioning of incoming unbounded flows of data into
bounded partitions based on time- or tuple-based windows. Flexible windowing mecha-
nisms are useful for computationally efficient processing of dynamic data streams.

3.2.2 Stream Processing Benchmarks

The preliminary results shown in Table 3.1 suggest that the engines provide fair coverage
of the requirements shown in the columns. However, in order to get a more thorough
understanding with respect to environmental data streams and to be able to quantify
the performance in more detail, we need to benchmark the respective engines.

In the traditional data streaming domain, the Linear Road benchmark [ACG+04] is
widely used to evaluate DSMSs. It is based on a toll system simulation where param-
eters such as traffic congestion and accident proximity influence toll calculation. The
benchmark consists of a historical data generator, a traffic simulator, a data driver, and a
validator. Linear Road provides a comprehensive framework for experiments and enables
performance comparison between DSMSs and alternative systems, such as relational

44

3.2. Related Work

databases. The authors introduce the L-Rating which is a measure of processable input
while the DSMS is satisfying response time and correctness requirements.

In the semantic web domain, there are several well-established benchmarks, including
Lehigh University Benchmark (LUBM) [GPH05], FedBench [SGH+11], Berlin SPARQL
Benchmark (BSBM) [BS09], and DBpedia SPARQL Benchmark (DBPSP) [MLAN11].
In contrast to DSMS benchmarks, they operate on static knowledge bases and focus
on performance characteristics such as query execution and load times. They do not
address the additional requirements that arise in a streaming context. For instance,
they do not cover aspects such as correctness of results under high load or influence of
window size on the output. The inconsistent interpretation of the operational semantics
of the streaming operators by RSP engines poses additional challenges and makes reuse
of existing benchmarks for non-streaming scenarios infeasible.

The RSP research community has also developed a number of specialized benchmarks
which will be discussed in detail as follows.

3.2.2.1 LSBench

Linked Stream Benchmark (LSBench) [LDP+12] first allowed comparisons between
RSP engines. Based on a social network scenario, the benchmark uncovers conceptual
and technical differences between CQELS, C-SPARQL, and Java Event TrAnsaction
Logic Inference System (JTALIS)9. Furthermore, it highlights differences in performance
between these engines and includes test of functionality and correctness of results.

The data schema used by LSBench extends the schema from the Social Network Intel-
ligence Benchmark10 and is shown in Figure 3.4. The authors use social network data
which consists of two layers, one for stream data (user activity, such as followings or likes)
and one for static data (profile data, relationships between users, etc.).

The authors evaluate the query expressiveness of the engines. They propose twelve
queries11 which cover different features and aspects of streaming scenarios. They identify
a lack of features, such as negation or nested aggregation. Moreover, the authors identify
significant differences in the outputs of engines, even for queries with the same meaning.
This suggests that the underlying implementations of the engines differ and that there is
a need to find an explanation for the hidden operational semantics.

LSBench introduces amismatch function, which is used to quantify the output (dis)agreement
of two engines. For simple queries, the mismatch between the engines is small. However,
for more complex queries C-SPARQL misses answers which appear in the results of
CQELS. JTALIS also shows strong deviations from the output of C-SPARQL and CQELS

9JTALIS is a Java wrapper for ETALIS which is an event processing system used to evaluate
EP-SPARQL.

10https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
(accessed 16 June 2016)

11https://code.google.com/archive/p/lsbench/wikis/queries_list.wiki (accessed
16 June 2016)

45

https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
https://code.google.com/archive/p/lsbench/wikis/queries_list.wiki

3. Evaluating Stream Processing Engines
Evaluation of Linked Data Stream Processing Engines 3

User
GPS PhotoPost

“Kabul” “117.55.192.14” “130” “46”

User metadataUser
User

User Profile

comment
:trackedAt :creator_of

“Russia”“Britney”“Ivan”

“2010-09-28”^^xsd:date “149”:long :lat“35”
:usertag

:like
:like

:long
:lat

Channel
:container_of

Fig. 1: Logical schema of the stream data in a social network.

2.1 Graph-based Stream Data Schema

The data schema is illustrated by a data snapshot in Figure 1. This snapshot has two
layers for stream data and static data corresponding to what users continuously generate
from their social network activities and user metadata including user profiles, social
network relationships, etc. The details of these two layers are described below.
Stream data. that is updated or arrives frequently, is shown in the bottom layer. It
contains various sources of streaming data:
− GPS stream (Sgps): inspired by the use case in Live Social Semantics [1], we assume
that each user has a GPS tracking device to send updated information about her current
location to the SN frequently. This information contains latitude/longitude of the user’s
position, e.g., the location of an event where user is attending, and the sending time.
− Posts and comments stream (Spc): there is a huge stream of posts and comments in
the SN as users start or join discussions. Similar to the availability of the “wall” for each
Facebook user or the “Tweet timeline” for each Twitter, every user in our generated SN
has her own forum for writing posts. People who subscribe to this forum (or “follow”
the forum moderator as in Twitter) can read and reply to the posts and comments created
in the forum. Each forum is used as a channel for the posting stream of a user. In this
stream, we are particularly interested in the stream of “likes” (i.e., people who show their
interest in a post), denoted by Spclike , the stream of tags (i.e., set of words representing
the content of the discussion), denoted by Stags .
− Photos stream (Sfo): Uploaded photos and their associated attributes provide inter-
esting information for discovering user habits, friend relationships, etc. In this stream,
we focus on exploiting useful information from the stream of user tagged in a photo,
Sfotags , and the stream of likes per photo, denoted by Sfolike .
Static data. Udata , that is not frequently changed or updated, is shown in the upper
layer. It contains user profile information (name, date of birth, relationship status, etc.),
the relationships between users and the channel where they write posts, comments.

2.2 Data Generator

To the best of our knowledge, there exists no stream data generator that can realisti-
cally simulate the stream data in SNs. We propose a novel data generator for LSD,

Figure 3.4: Data schema used in LSBench12

due to the differences in execution speed. Despite having proposed the mismatch function,
it is not possible with LSBench to infer which output is correct, and hence no absolute
correctness figures are provided.

The performance and scalability tests suggest that the throughput of C-SPARQL is
considerably below that of JTALIS or CQELS. The authors of [LDP+12] suggest that (i)
an incremental computing approach [GÖ03], and (ii) optimization of underlying systems
which are used by these engines may increase their performance. The benchmark also
reveals that C-SPARQL and JTALIS struggle to cope with big static data sets and
suggests to precompute and index intermediate results over static data in order to avoid
unnecessary and resource-intense recomputations.

3.2.2.2 SRBench

Streaming RDF/SPARQL Benchmark (SRBench) [ZDCC12] provides a set of queries
that cover important RSP-specific aspects such as joining static data with stream data,
or performing ontology-based reasoning. The benchmark is “the first general-purpose
benchmark that is primarily designed to compare stRS [streaming RDF/SPARQL]
engines”. Its authors conduct a functional evaluation of C-SPARQL, CQELS, and
SPARQLStream and conclude that the capability of these engines is still limited with
respect to support for SPARQL 1.1 features, ASK queries, relation-to-stream operators,
and reasoning.

12Adapted from [LDP+12]

46

3.2. Related Work

SRBench uses LinkedSensorData [PHS10] which is a real-world linked data set containing
US weather data published by Kno.e.sis13. To check the capability of an engine to answer
queries over interlinked data sets, the authors additionally use the GeoNames14 and
DBpedia [ABK+07] data sets. An overview of the used data sets and their interrelations
is shown in Figure 3.5.

SRBench provides a set of 17 queries15 covering a broad spectrum of functional aspects
with respect to stream data processing. Because no standard query language for stream
data exists, the queries are first presented by means of a descriptive definition. Based on
these definitions, the actual queries for each targeted system (CQELS, C-SPARQL, and
SPARQLStream) are formulated.

At the time of the evaluation, all three engines had strong limitations especially with
respect to SPARQL 1.1 features. ASK queries are not supported, and SPARQLStream was
the only engine that implemented the window-to-stream operator DSTREAM. Reasoning,
another key distinguishing aspect of RSP engines, was not — and still is not — supported.
At present, only C-SPARQL can perform reasoning based on simple RDF entailment.
Due to the focus on functional evaluation, SRBench does not recognize the different
operational semantics of the benchmarked systems. However, the authors of SRBench
propose correctness metrics such as precision and recall in order to validate query results.

Figure 3.5: Data sets used in SRBench and their interrelations16

3.2.2.3 CSRBench

In Correctness checking Benchmark for Streaming RDF/SPARQL (CSRBench) the
authors check if stream processing engines produce correct results. Compared to previous
benchmarks, performance characteristics and functional coverage are ignored. The main
goal, hence, is to describe the operational semantics of a generic stream processing engine
and to then use this abstract definition to characterize and interpret the functionality of
existing approaches. The operational semantics essentially are a description of how an
engine works and interprets its operators. To this end, the authors of CSRBench use the
Scope, Content, Report, and Tick (SECRET) model [BDD+10].

13http://knoesis.wright.edu/ (accessed 16 June 2016)
14http://www.geonames.org/ (accessed 16 June 2016)
15https://www.w3.org/wiki/SRBench (accessed 16 June 2016)
16Adapted from [ZDCC12]

47

http://knoesis.wright.edu/
http://www.geonames.org/
https://www.w3.org/wiki/SRBench

3. Evaluating Stream Processing Engines

CSRBench [DCB+13] focuses on evaluating a system’s compliance to its respective
operational semantics. This benchmark is complementary to functional (SRBench) and
performance-based (LSBench) evaluations. The authors find that none of the tested
engines passes all tests and provide a detailed account on why certain engines fail at
specific queries. Whereas this is a first step towards correctness validation of RSP
engines, there is a lack of more detailed results evaluating correctness of engines over time.
CSRBench introduces an oracle that computes a binary metric (correct or incorrect) to
determine the validity of query output.

Table 3.2 shows the main results of CSRBench. For queries Q1, Q2, and Q3 it can be
concluded that all engines produce the output which is expected according to their opera-
tional semantics. The output between the engines also only varies slightly. SPARQLStream
does not produce any output, if there are no matching triple patterns, whereas C-SPARQL
produces an empty output result set.

Query Query Type C-SPARQL CQELS SPARQLStream

Q1 SELECT (single observations) + FILTER X X X

Q2 SELECT (single observations) + FILTER X X X

Q3 SELECT (single observations) + FILTER X X X

Q4 SELECT (aggregate observations) + FILTER X × ×

Q5 SELECT (single observations) + FILTER × X X

Q6 SELECT (join of different observations) + FILTER X × X

Q7 SELECT (join of different observations) + FILTER X × X

Table 3.2: Results of CSRBench showing correctness of results for different types of
queries17

For the remaining queries (Q4 to Q7) the engines show unexpected behavior. After
registering a new query, C-SPARQL erroneously reports open windows. This behavior is
only observed for sliding windows (slide is smaller than size of the window). SPARQLStream
produces incorrect results due to differences in the initial window timing and due to way
aggregates are computed in the absence of matches. However, the authors note that the
operational semantics of SPARQLStream depend on the underlying stream processing
engine. Hence, they are likely to change when the underlying engine is also changed,
which in the end would lead to different results. CQELS has issues for queries Q4, Q6,
and Q7. The root cause of these issues is that CQELS fails to remove RDF statements
from the active window. Therefore, wrong aggregations and joins are computed leading
to incorrect results.

3.2.2.4 Theoretical Benchmarking Approaches

Besides these experimental efforts, there is also a theoretical body of work on benchmark-
ing RDF stream engines. In [DBDV13], which is a precursor to CSRBench, the authors

17Adapted from [DCB+13]

48

3.2. Related Work

explain the need for functional testing of proposed engines. They argue that a precise
evaluation and comparison of existing systems is complex. Moreover the authors state
that SRBench and LSBench do not deal with issues related to window operators, because
they assume that returned results are correct.

Scharrenbach et al. [SUM+13] state that most evaluations are conducted under incompa-
rable and limited scenarios. To handle this problem they present three key performance
indicators and seven commandments that help in defining stress tests for the evaluation
of stream processing frameworks.

The key performance indicators are as follows:

• Response time over all queries

• Maximum input throughput (input data elements consumed per time unit)

• Minimum time to accuracy and the minimum time to completion for all
queries (includes precision, recall, and error rate)

In order to obtain measurements of these Key Performance Indicators (KPIs) seven stress
tests are defined, which are called the seven commandments for benchmarking semantic
flow processing systems.

These stress tests are defined as follows:

• Load Balancing: detect bottlenecks under many operating queries and multiple
processors.

• Joins and Inference on Flow Data Only: measure the performance of data
joins on flow data.

• Joins and Inference in Flow and Background Data: measure the perfor-
mance of data joining flow and background data.

• Aggregates: assess the performance of both shrinking and non-shrinking seman-
tics.

• Unexpected Data: measure the ability to handle out-of-order data and data loss.

• Schema: evaluate an engine’s handling of an increasing number and complexity of
the statements in the schema.

• Changes in Background-Data: test how updates in background data affect
performance.

To conclude, currently there are several benchmarks for semantic stream processing
systems available. Table 3.3 compares them and shows that none of the benchmarks
copes with all evaluation dimensions. A checkmark (X) denotes full support, a hyphen (-)
denotes no support, and a tilde (~) denotes partial support of the evaluation type.

49

3. Evaluating Stream Processing Engines

Benchmark Functional
Evaluation

Correctness
Evaluation

Performance
Evaluation Reviewed Engines

LSBench X ~ X C-SPARQL, CQELS, JTALIS

SRBench X - - C-SPARQL, CQELS, SPARQLStream

CSRBench - X - C-SPARQL, CQELS, SPARQLStream

Table 3.3: RSP benchmarks comparison

3.3 YABench framework

The YABench framework is organized into four parts: (i) a stream generator to create
test data streams; (ii) supported engines to be benchmarked; (iii) an oracle to check
correctness of results; and (iv) a reporting tool to generate visualizations based on
experimental results. Because YABench operates in a streaming environment, we define
the following requirements that need to be considered in this setting:

– Valid, scalable, reproducible, and configurable input (R1): Input data should
be meaningful. This allows results to be more easily interpretable. Scalable
and configurable input ensures running reproducible experiments under varying
circumstances, for instance, high/low load and different window sizes.

– Comprehensive correctness checking (R2): It should be possible to check correctness
of engines results, despite them using different operational semantics. Moreover we
aim at measuring real throughput, i.e., how does input load affect correctness of
results.

– Flexible queries (R3): Queries should be parametrizable, meaning that certain
values can be changed based on test configurations. This allows to dynamically test
engines based on same queries, but with varying configurations.

– Useful reports (R4): This is a minor requirement, but nonetheless important for
practical reasons. Users should be able to define and run tests without changing
the source code.

3.3.1 Architecture

YABench is designed around a modular architecture (cf. Figure 3.6) that decouples test
configuration and execution. It allows to define tests in a declarative manner and can
run complete benchmarking workflows with a single command.

The framework consists of four separately executable modules, i.e., the Stream Generator,
RSP engine, the Oracle and the Runner which controls the overall execution flow of a
test. The test configuration consists of a configuration file (config.json) and two query

50

3.3. YABench framework

Figure 3.6: Architecture of the YABench framework

templates, engine.query for the engine and oracle.query for the oracle. The configuration
file defines a set of tests that use the same query templates, but with varying parameters
such as window size and slide.

The results of each test are the oracle results (ORACLE_<name>) and performance
measurements (P_<name>) of the engine. These results can then be visualized by means
of a provided reporting web application.

More details about the architecture and the test configuration can be found on the wiki
of the project’s GitHub repository18.

3.3.2 Stream Generator

The Stream Generator satisfies R1 and is used to create input data that is fed to the
respective engines. It turned out to be more practical to decouple the steps of creating
data, feeding it to the engines, and creating measurements from each other. The generator
for the benchmarks in this work emulates an environmental monitoring scenario and
draws on the LinkedSensorDataset19 which is also used in SRBench [ZDCC12] and
CSRBench [DCB+13]. The data set consists of weather observations from hurricanes in

18http://github.com/YABench/yabench (accessed 16 June 2016)
19http://wiki.knoesis.org/index.php/SSW_Datasets (accessed 16 June 2016)

51

http://github.com/YABench/yabench
http://wiki.knoesis.org/index.php/SSW_Datasets

3. Evaluating Stream Processing Engines

the USA. We selected this simple data model for two reasons: (i) it makes our work
comparable to previous work, particularly to CSRBench (cf. Section 3.4); (ii) having such
a simple and generic model allows for scenario parameterization, e.g., by changing the
number of simulated weather stations to vary load on an engine. More complex data flows
would make it more difficult to discriminate effects such as which parameter influences
which measurable performance indicator of an engine. To simulate more complex data
flows, YABench can easily be extended with additional Stream Generators.

Figure 3.7 illustrates the structure of the data model. A central element is weather:Temp-
eratureObservation, which represents a single observation. This observation is con-
nected to actual measure data via om-owl:result. The om-owl:observedProperty
indicates which environmental condition was sensed by the ssw:system. The system
represents a sensor which is creating measurements. It is connected to the observation
via the om-owl:procedure relation.

The process generates an RDF stream S based on an input function gen(s, i, d, r, n),
where s denotes the number of simulated systems, i denotes the time interval between two
measurements of a single station, d denotes the duration of the generated output stream,
r denotes a seed for randomization to vary the timestamps of initial measurements of
each system, and n defines the generator which should be used. Currently, one such
stream generator is implemented in YABench, which uses the data model and workflow
outlined above. Input load for experiments can be varied with the s and i parameters.
The combination of parameters s, i, and r ensures reproducibility, because they guarantee
that the exact same stream is generated every time for a given parameter set.

Listing 3.1 shows an excerpt of example data generated by the stream generator. The

weather:AirTemperature

LinkedSensorMetadata

weather:Temperature
Observation

om-owl:observedProperty

ssw:System
om-owl:procedure

weather:MeasureData

om-owl:result

xsd:float weather:Fahrenheit

om-owl:uomom-owl:floatValue

LinkedObservationData

Prefixes:
om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-
observation.owl#>

weather: <http://knoesis.wright.edu/ssw/ont/
weather.owl#>

ssw: <http://knoesis.wright.edu/ssw/>

Figure 3.7: Data model of generated streams based on LinkedSensorData.

52

3.3. YABench framework

ssw:Observation_AirTemperature_A521_0 a weather:TemperatureObservation "10" .
ssw:Observation_AirTemperature_A521_0 om-owl:observedProperty weather:_AirTemperature "10" .
ssw:Observation_AirTemperature_A521_0 om-owl:procedure ssw:System_A521 "10" .
ssw:Observation_AirTemperature_A521_0 om-owl:result ssw:MeasureData_AirTemperature_A521_0 "10" .
ssw:MeasureData_AirTemperature_A521_0 a om-owl:MeasureData "10" .
ssw:MeasureData_AirTemperature_A521_0 om-owl:floatValue 95.0^^xsd:float "10" .
ssw:MeasureData_AirTemperature_A521_0 om-owl:uom weather:fahrenheit "10" .

Listing 3.1: Example output of one sensor measurement.

data is persisted in a file using the N-Triples format20 (for the sake of clarity we use
prefixes) which we extend with a timestamp t that is equal to the number of milliseconds
from the beginning of the stream. The timestamp will be used when data is streamed to
the engines.

3.3.3 Engines

We use YABench to evaluate two engines, i.e., C-SPARQL 0.9.521, and CQELS 1.0.022.
After a stream has been generated, the YABench’s engine component invokes a function
stream(d, q, s), where d denotes the destination of output files, q defines the continuous
query which will be registered at the engine, and s defines the input stream, which
was previously generated. At this stage output files will be created for performance
measurements and query results.

YABench wraps each engine to allow stream data feeding under controlled circumstances.
The input RDF stream S consists of a sequence of timestamped triples in non-decreasing
time order in the following form:

S = ((〈s, p, o), t0〉), (〈s, p, o), t1〉), ...)

The wrapper iterates over the input stream S and feeds sets of RDF statements with
same timestamps to the engine, hence,

Ft0 = {(〈s, p, o)〉 | (〈s, p, o), t0〉 ∈ S }

while respecting time intervals i = t1 − t0 between feeds Ft0 and Ft1 .

While feeding the engines with the graphs, we continuously take performance measure-
ments, i.e., absolute and relative memory consumption, CPU usage, and the number of
threads spawned.

3.3.4 Oracle

To check the correctness of query results and thereby satisfy R2, we implemented an
oracle. The implementation is inspired by the oracle used in CSRBench, but built on top
of Jena ARQ23 and extended with means to measure more granular metrics, which are

20http://www.w3.org/2001/sw/RDFCore/ntriples/ (accessed 16 June 2016)
21http://github.com/streamreasoning/CSPARQL-engine (accessed 16 June 2016)
22https://code.google.com/p/cqels/ (accessed 16 June 2016)
23https://jena.apache.org/documentation/query/ (accessed 16 June 2016)

53

http://www.w3.org/2001/sw/RDFCore/ntriples/
http://github.com/streamreasoning/CSPARQL-engine
https://code.google.com/p/cqels/
https://jena.apache.org/documentation/query/

3. Evaluating Stream Processing Engines

computed per window: precision and recall, delay of query results, number of triples in
the window, and number of tuples in query results.

The semantics used by the oracle can be configured by means of configuration files. This
means that the specification of the oracle can be changed as desired, that is, we change
it according to which engine we want to test and, therefore, emulate. Report policy
parameters are provided to emulate either CQELS (OnContentChange) or C-SPARQL
(OnWindowClose). Hence, we are able to provide correct results that account for the
respective report policy.

The oracle checks the results (recorded in QR_<name> file) of a continuous query
q by using the same input stream S and an equivalent, but static, SPARQL query q ′

(oracle.query). It takes into account the report policy [BDD+10] which the given engine
applies as well as window size (α) and slide (β) parameters of the continuous query q.

The following report policies are supported by the oracle:

• Content change: reporting is done only when the content of the active window
changed. Supported by CQELS.

• Window close: reporting is done only when the active window closes. Supported
by C-SPARQL.

To check correctness, the oracle performs the following steps:

(i) Determine the scope [ts, te) of the next window that will report based on the given
window size α, window slide β, and the required report policy.

(ii) Use the scope [ts, te) to select window content from the input stream S where the
relevant triples are defined as

Fts,te = {(〈s, p, o)〉 | (〈s, p, o), t〉 ∈ S, ts ≤ t < te}

(iii) Compute the expected result by executing the SPARQL query q ′ on Fts,te on the
query engine.

(iv) Compare the result of this query with the next result of continuous query q and
compoute precision/recall metrics.

(v) Compute the remaining metrics, i.e., delay, window size, and result size.

3.3.4.1 Delay

The delay d with which the engine outputs query results is computed as the difference
between the end timestamp of the oracle window tWi

eo
and the timestamp when the engine

outputs the result for this window tWi
es

. The timestamp when the result is recorded is
stored in QR_<name> file.

54

3.4. Validation against CSRBench

3.3.4.2 Gracious mode

In addition to the algorithm described above, the oracle implements a new method which
takes known issues of supported report policies into account and aims to eliminate them.

• Content change: lower precision/recall may be observed because of delayed purging
of content of the previous window from the engine’s active window;

• Window close: lower precision/recall may be observed because of the shift of the
engine’s active window scope forward on the timeline which can be caused by high
load, for instance.

In case of content change policy, the oracle aims to compensate for low precision/recall
by performing the following steps:

(i) Determine the scope [t′s, te) of the next window that will report. The left border of
the scope is t′s = ts − β.

(ii) Repeat steps two to four of the algorithm above.

(iii) Move t′s to the time (t) of the next triple which is t > t′s until recall becomes lower
than with the previous t′s and sets t′s to the time with the highest recall.

In case of the window close policy, the oracle does the following:

(i) Move ts of the scope [ts, te) to the time (t) of the next triple which is t > ts until
recall becomes lower than with the previous ts, and sets ts to the time with the
highest recall.

(ii) Move te of the scope [ts, te) to the time (t) of the next triple which is t > te until
precision becomes lower than with the previous te, and sets ts to the time with the
highest precision.

3.4 Validation against CSRBench
The validation against CSRBench ensures that YABench produces equivalent results.
This validates the correct operation of YABench’s internals, however, in later experiments
(cf. Section 3.5) we show that our framework allows to perform evaluations that go
beyond the scope of CSRBench, i.e., providing more granular metrics. The source code
and instructions on how to run the validation are published on GitHub24.

The methodology for the validation is as follows:

24https://github.com/YABench/csrbench-validation (accessed 16 June 2016)

55

https://github.com/YABench/csrbench-validation

3. Evaluating Stream Processing Engines

– We convert the original data used by CSRBench to the N-Triples format, and
extend it with timestamps to emulate an input stream load of one observation per
second. By doing so, the data stream is the same as the output of our stream
generator.

– For each of the seven CSRBench queries we need to setup tests configurations.
These configuration files define parameters such as window size, window slide, and
eventual filter parameters, which are subsequently needed the queries are registered
at the engine.

– For each engine and for each of the seven CSRBench queries we then execute the
test, i.e., feeding the engines with the input stream and registering queries with
the defined parameters.

– After all tests are finished, we compare the results of CSRBench which can be
found at GitHub25 with the results created by YABench.

Table 3.4 summarizes the results of the validation. Results were compared and inspected
manually. Checkmarks indicate that YABench produced results equivalent to CSRBench.
Columns of CSRBench which contain an × denote that the respective engine did not
produce correct results. In all such cases, YABench also indicated that the engine did
not deliver correct results.

Checkmarks denoted with one asterisk (*) indicate that YABench produced mostly
identical results, but that some results were missing. This occurred in some cases were
triples were close to a window border. In these cases, we found that in C-SPARQL such
triples may fall either into the scope of Wn or Wn+1. This can be attributed to timing
discrepancies, which we encountered after running benchmarks multiple times and/or on
different systems. However, we verified that all results are present, if not in the correct
window, then at latest in the subsequent window.

Crosses in the YABench columns indicate that results did not match those of CSRBench
experiments. This is expected behavior, however, since the same queries did not pass
correctness tests of CSRBench in the original tests either. The cross denoted with two
asterisks (**) indicates that the query (Q7) did not run on the CQELS engine.26

We can conclude that, besides minor, well-explained inconsistencies, YABench reproduces
the results of CSRBench. Beyond the scope of previous benchmarks, however, YABench
employs a more comprehensive approach that allows (i) to define experiments including
test data, input load parameters, and queries, (ii) to perform experiments that consider
the varying operational semantics of the tested engines, and (iii) to conduct in-depth
analyses based on new throughput, delay, and correctness metrics.

These capabilities are used for experiments discussed in the following section.

25https://github.com/dellaglio/csrbench-oracle-engines (accessed 16 June 2016)
26The system crashed before returning the query results.

56

https://github.com/dellaglio/csrbench-oracle-engines

3.5. Experimental setup

Query C-SPARQL CQELS

CSRBench YABench CSRBench YABench

Q1 X X X X

Q2 X X X X

Q3 X X* X X

Q4 X X × ×

Q5 × × X X

Q6 X X* × ×

Q7 X X* × ×**

Table 3.4: Results of YABench validation against CSRBench results27

3.5 Experimental setup
We use YABench and its oracle to perform experiments with two engines, C-SPARQL
and CQELS. In particular, we are interested in how the correctness of results is affected
by changes in the input data streams. Whereas previous correctness metrics exclusively
focused on checking whether engine results are included in the oracle results, i.e., a
yes/no evaluation, we provide more granular metrics. We use precision and recall
calculations in combination with performance metrics which are computed for each
window. These metrics uncover issues that can be caused by, for instance, shifting of
window borders under load, leading to lower precision or recall values. We measure an
engine’s delay in delivering results and the amount of RDF statements inside a window’s
scope to understand and be able to explain low retrieval rates. YABench is the first RSP
benchmark to provide a comprehensive picture of an engine’s behavior under stress.

We reuse the queries introduced by CSRBench, however, for each query we parametrize
window size α, window slide β, and filter values f (R3). For the input streams, we control
the number of stations s to simulate low, medium, and high load scenarios. The interval
time i between measurements will be 1s and the duration of each experiment is 30s.

Performance measurements, such as memory consumption, are taken at regular intervals,
i.e., 500ms. Because all other metrics observe characteristics of the windows, they are
taken and displayed on a per window basis. We replicated each experiment ten times
and illustrate the distribution of result metrics obtained for precision, recall, and delay
as boxplots. For performance indicators such as memory consumption, YABench-reports
generates aggregated (averaged) line charts. Where appropriate, we will also discuss
detailed observations for individual runs.

27Explanation for cells which include asterisks are given in the text.

57

3. Evaluating Stream Processing Engines

We use the CSRBench queries available on the W3C wiki28 for our experiments, which
were executed on an Intel Core i7-3630QM @ 2.4GHz, Quad Core, 64bit, 12 GB RAM
running Windows 7 Professional. For the sake of completeness we include the (slightly
adapted29) queries in Appendices A–C of this thesis. Complete results are published on
GitHub30 and can be visualized with our web application YABench-reports.

3.5.1 Experiment 1 (Q1): Select

This experiment uses a simple SELECT statement combined with a FILTER asking for
the latest temperature observations above a specified threshold and the sensor which
took the measurement (cf. Appendix A). We run the experiment with the following
parameters: α = 5s, β = 5s, s = 50/1000/10000 (small/medium/big), i = 1s.

3.5.2 Experiment 2 (Q4): Average

The second query makes use of the aggregation function AVG combined with a FILTER to
return the average temperature value over a given window (cf. Appendix B). To answer
such aggregate queries, depending on the report and tick policy as well as window content
and window size, stream processors typically face high resource costs. Because CQELS
does not comply with the semantics of AVG as defined by SPARQL 1.131, we had to
implement a custom AVG operator that returns an empty result if there are no matches.
We run the experiment with the following parameters: α = 5s, β = 5s, s = 1/1000/10000,
i = 1s.

3.5.3 Experiment 3 (Q6): Large change

This query returns sensors that made two observations (of different timestamps) with a
variation between measurements higher than a given threshold (cf. Appendix C). The
query uses the SELECT keyword to ask for shifts of measured values over time from the
same sensor. To execute this query, engines must be able to join triples over different
timestamps. In order to produce meaningful and comparable results for both engines in
this experiment, we slightly changed the number of simulated stations (s) and ran the
experiment with the following parameters: α = 5s, β = 5s, s = 50/200/500, i = 1s.

3.5.4 Experiment 4 (Q6): Large change gracious

This experiment is designed to reveal issues of lower precision/recall values which we
observed during experiment 3 for both engines. For CQELS the reason for decreasing
precision/recall is delayed deletion of window content, for C-SPARQL slight window shifts
are responsible. This led us to the development of a so called gracious mode where the

28http://www.w3.org/wiki/CSRBench (accessed 16 June 2016)
29Variables which are substituted with actual values based on the configuration file are denoted with a

dollar ($) sign in the queries.
30http://github.com/YABench/yabench-one (accessed 16 June 2016)
31http://www.w3.org/TR/sparql11-query/#defn_aggAvg (accessed 16 June 2016)

58

http://www.w3.org/wiki/CSRBench
http://github.com/YABench/yabench-one
http://www.w3.org/TR/sparql11-query/#defn_aggAvg

3.6. Discussion

oracle eliminates these issues resulting in both high precision/recall and the possibility
to detect new issues unrelated to potential window delays. Hence, this experiment shows
the effects of the gracious mode by comparing its results with the non-gracious mode as
well as discussing and explaining the differences. In non-gracious mode the oracle does
not account for any issues and expects ideal behavior of the engines.

We ran two similar tests for both engines with the following parameters, one of them in
gracious mode and the other one in non-gracious mode: α = 5s, β = 5s, s = 1, i = 1s.

3.6 Discussion

The YABench framework provides a reporting web application (YABench-reports). Based
on results of the oracle and performance measurements it displays three graphs, i.e., (i) a
precision/recall graph that includes indicators for the windows, (ii) a graph showing delay
of result delivery, and expected/actual result size, and (iii) a graph providing performance
measurements.

3.6.1 Experiment 1: Select

Figures 3.8a–c illustrate the results of the first experiment; they show boxplots of
precision and recall values for each of the three load scenarios (small: s = 50, medium:
s = 1000, and big: s = 10000); Figures 3.9a–c show boxplots of the observed delay; and
Figures 3.11a–c show line charts of an engine’s memory consumption during the stream
feeding and query evaluation.

We found that CQELS maintains 100% precision and accuracy under low load, whereas
C-SPARQL achieves slightly lower values (precision is at 100% except for window three
and four, the mean for recall ranges between 97% and 100%). Generally, we observe that
recall is lower than precision for C-SPARQL. The shifting of the actual engine windows
compared to the ideal expected windows from the oracle due to delays is responsible for
this behavior which will be explained in more detail later (cf. Figure 3.12).

We observed similar behavior under medium load (cf. Figure 3.8b). For this simple
query, CQELS still scores perfect precision and recall, whereas we observe deteriorating
effects for C-SPARQL. The recall values from window two and three have a particularly
high spread. The mean of all recall measurements lies between 89% and 97%, which is
very high. The spread can be explained by the higher delays of the first two windows
(cf. Figure 3.9b). Because C-SPARQL delivers results upon the closing of a window, the
delay has an effect on precision and recall. This is not the case in CQELS, where delay in
result delivery does not necessarily mean that the window content — and consequently
the computed results — is incorrect. In fact, for CQELS the opposite is the case, meaning
that delayed results still provide correct results. This is also taken into account by our
oracle. The oracle is aware that results can arrive with a delay and still applies its
precision/recall measurements to these results.

59

3. Evaluating Stream Processing Engines

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (C-SPARQL) Recall (C-SPARQL)

#1 #2 #3 #4 #5 #6

100

95

96

97

98

99

Highcharts.com

(a) Results of Experiment 1, precision/recall, s = 50

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (C-SPARQL) Recall (C-SPARQL)

#1 #2 #3 #4 #5 #6

100

85

90

95

Highcharts.com

(b) Results of Experiment 1, precision/recall,
s = 1000

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (C-SPARQL) Recall (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

25

50

75

100

Highcharts.com

(c) Results of Experiment 1, precision/recall,
s = 10000

Figure 3.8: Experiment 1, precision and recall

Results under high load are shown in Figure 3.8c. The results are similar to the low and
medium load scenarios. For C-SPARQL, the first window yields very good recall and
even better precision. Again, recall of the second window has a high spread ranging from
25% to 76%. The remaining windows show recall with a mean varying between 55% and
74%. Considering the high throughput in this scenario (one window of 5s contains about
24.000 result triples out of 350.098 triples), precision (between 78% and 100%) is still
high.

Delay of result delivery under low load is depicted in Figure 3.9a. For CQELS mean result
delivery varies between 81.5ms (window one) and 201.5ms (window six). The values
rise steadily, but even out for the last three windows. Interestingly, delay in C-SPARQL
exhibits the opposite characteristics. The first window always yields longer delay (mean
= 153.5ms), whereas the following windows show short delays between 7ms and 38ms.
Delay can also be negative, when results are delivered too early. This is the case if for a
window size of 5s, where results are delivered before 5s have passed.

Figure 3.9b shows the delay for medium load. We observe similar behavior as before, but
to a greater extent. CQELS delays do not even out anymore for the last windows, but
continue to increase. Except for the first window, which again shows higher delay (mean
= 594ms), C-SPARQL’s mean delays vary between 176.5ms and 313ms.

60

3.6. Discussion

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6
-100

0

100

200

300

400

Highcharts.com
(a) Results of Experiment 1, delay, s = 50

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

500

1000

1500

2000

2500

Highcharts.com
(b) Results of Experiment 1, delay, s = 1000

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

20000

40000

60000

80000

Highcharts.com

(c) Results of Experiment 1, delay, s = 10000

Figure 3.9: Experiment 1, delay

Windows

of

 tr
ipl

es Delay (ms)

Window and Result size (# of triples) + Delay (ms)

23 549

23 549

6 988

6 988

23 974

23 974

11 529

11 529
18 638

18 638

17 091

17 091

3 461

3 461

1 798

1 798

Result size (actual)

#1 #2 #3 #4 #5 #6
0k

10k

20k

30k

40k

0

1000

2000

3000

4000

Delay

Figure 3.10: Correlation between result size and delay for C-SPARQL

For the high load scenario we can see in Figure 3.9c that, in contrast to the lower load
results, the second window of C-SPARQL yields lower delay than the consecutive windows.
However, again, the mean delays from the second window on are constantly between

61

3. Evaluating Stream Processing Engines

1000ms and 2000ms, which is a broad range as can be expected for an engine under high
pressure. The delay results for CQELS behave similar to the results of the medium load
scenario. Delay increases from 8000ms (first window) up to 60000ms (sixth window).

Finally, we found that YABench reveals a correlation between the result size and delay
times, as shown in Figure 3.10, which shows both metrics for a single test run. We
see that delay times increase when result size increases. This relation is expected, but
YABench allows to quantify the influence of large amount of result bindings on an engine’s
performance.

Figures 3.11a–c provide details about the performance of both engines. Due to the
different reporting policies, the C-SPARQL experiments last longer than the CQELS
experiments. This is reflected on the y-axis of the graphs. C-SPARQL is more memory
efficient and exhibits a moderate increase in memory consumption between low (mean =
123MB) and medium (mean = 250MB) load. For both engines, the removal of window
content is apparent in the charts — particularly in Figure 3.11a — in the form of rapid
decreases after every five seconds, i.e., the defined window size. Under medium load,
memory consumption of CQELS rises to about 1100MB where it then flattens out. Both
engines show similar behavior under high load (cf. Figure 3.11c), where the charts show a

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

6 MB

6 MB

76 MB

76 MB107 MB

107 MB
156 MB

156 MB

148 MB

148 MB 176 MB

176 MB
186 MB

186 MB
195 MB

195 MB

186 MB

186 MB

189 MB

189 MB
205 MB

205 MB

100 MB

100 MB
122 MB

122 MB

124 MB

124 MB
136 MB

136 MB

139 MB

139 MB

118 MB

118 MB
127 MB

127 MB

123 MB

123 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s
0

50

100

150

200

250

Highcharts.com
(a) Results of Experiment 1, memory consumption,

s = 50

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

6 MB

6 MB172 MB

172 MB353 MB

353 MB535 MB

535 MB688 MB

688 MB 851 MB

851 MB 1005 MB

1005 MB
1090 MB

1090 MB

1108 MB

1108 MB

1114 MB

1114 MB

118 MB

118 MB

149 MB

149 MB
207 MB

207 MB
266 MB

266 MB

262 MB

262 MB

273 MB

273 MB

300 MB

300 MB

281 MB

281 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s
0

250

500

750

1000

1250

Highcharts.com
(b) Results of Experiment 1, memory consumption,

s = 1000

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

4 MB

4 MB 279 MB

279 MB546 MB

546 MB788 MB

788 MB1075 MB

1075 MB
1253 MB

1253 MB
1372 MB

1372 MB

1413 MB

1413 MB
1506 MB

1506 MB

892 MB

892 MB
1288 MB

1288 MB

1286 MB

1286 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

500

1000

1500

2000

Highcharts.com
(c) Results of Experiment 1, memory consumption,

s = 10000

Figure 3.11: Experiment 1, memory consumption

62

3.6. Discussion

steep increase in memory consumption until ten seconds. Beyond that, the graph flattens
out again with a maximum of 1506 MB (CQELS) and 1288 MB (C-SPARQL).

For C-SPARQL precision always is above recall, when both values decrease. Because
higher load leads to bigger delays in query result delivery, precision and recall decrease.

The observed delay supports the conclusion that the actual windows are shifted, therefore,
deviating from the ideal windows computed by the oracle as is shown in Figure 3.12.
Given a query which asks for all statements occurring on stream S, a delay between
start and end timestamps of the expected window computed by the oracle We and the
actual window Wa by the engine, can be observed. This is also the reason for lower
precision and recall values. We contains only one (s2) of three relevant statements (blue
filling), hence, recall r = 1/3. Out of the two selected statements of We ({s1 , s2}) only
the latter one is relevant, hence, precision p = 1/2. In other words, whereas the scope of
an ideal window is [ts, te), the scope of shifted windows adds a delay to the start and end
timestamps and is denoted as [ts + ds, te + de). The delays ds and de can be different
due to timing issues of engines. This explains different decrease in precision and recall.

We

1 2 3 4 5 6 7 8 9

Wa

S

, = 5

tapp

s1 s2 s3

ds de

p = 1 / 2
r = 1 / 3

s4

Figure 3.12: Lower precision and recall due to delay of actual window Wa

3.6.2 Experiment 2: Average

Results of experiment two are shown in Figures 3.13a–b. This experiment evaluates the
capability to deal with an aggregate query averaging the temperature observations over
a window. It is important to note that YABench only matches result triples successfully
if the output of an engine is exactly the expected average value. In other words, if an
engine outputs 95 as a result of this query, but the expected average should be 96, then
precision and recall will be zero. This implies that a single missed triple (due to, e.g.,
window delays in the case of C-SPARQL) is sufficient to produce low precision and recall
values. For CQELS we discovered the reason for low precision and recall. The engine
delays the deletion of window content, resulting in incorrect average calculation. This
issue is explained in more detail in experiment four.

As a result of these observations, we adapted the low load scenario to only simulate a
single station. This reduces missing triples due to window delays and, hence, we expect
higher precision and recall. Figure 3.13a shows the precision/recall measurements for
low load where the number of stations s equals one. CQELS yields 100% precision and

63

3. Evaluating Stream Processing Engines

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (C-SPARQL) Recall (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

25

50

75

100

Highcharts.com

(a) Results of Experiment 2, precision/recall, s = 1

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (C-SPARQL) Recall (C-SPARQL)

#1 #2 #3 #4 #5 #6 #7
0

25

50

75

100

Highcharts.com

(b) Results of Experiment 2, precision/recall,
s = 1000

Figure 3.13: Experiment 2, precision and recall

recall only in the first window. This confirms our assumption of issues in deletion of
window content: At the first window, there is no possibility to forget to delete outdated
window content, simply because there is no outdated content, yet. In the consecutive
windows, precision and recall drops to zero. This is where content becomes outdated,
but obviously not properly deleted by CQELS, resulting in lower values.

Interestingly, for C-SPARQL we observe the opposite behavior. In the first window
precision and recall are at zero. The consecutive windows, however, show perfect precision
and recall when the average temperature over the measurements of a single station is
calculated. Upon manual inspection we found that C-SPARQL ignores the first streamed
triple for average calculation, resulting in 0% for precision and recall of the first window,
which appears to be a bug in the implementation. For the medium load scenario,
Figure 3.13b shows that — as expected and already explained — both engines show low
precision and recall, except CQELS for the first window. The values do not increase
under high load which is why we omit to show the graphs.

Figures 3.14a–c show memory consumption for all three scenarios. Generally, both engines
show similar behavior as in the first experiment. Memory consumption of C-SPARQL
is lower in experiment two than in experiment one. Moreover, the values increase a bit
slower under high load than in the first experiment.

This experiment revealed additional characteristics of the tested engines. For medium and
high load, CQELS shows increased delays in result delivery for the average query used in
this experiment. Even though each experiment run lasts 30 seconds, under medium load
the last result was delivered between 7min 8sec (min) and 7min 21sec (max) for our ten
test runs. Under high load the last result, which should be delivered after 30 seconds,
actually appeared between 3h 25min (min) and 3h 45min (max) late. These delays make
it impractical for our oracle to perform any measurements regarding retrieval performance
in this experiment. We did not observe the same delays in the first experiment where the
query only requires a simple graph pattern match. We can therefore conclude that the
excessive delay is due to the complexity added through the aggregate query. Due to its
report strategy, CQELS has to recompute and emit the aggregate for each new arriving

64

3.6. Discussion

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

7 MB

7 MB

74 MB

74 MB
107 MB

107 MB

158 MB

158 MB

136 MB

136 MB

137 MB

137 MB

138 MB

138 MB

139 MB

139 MB

139 MB

139 MB

139 MB

139 MB

99 MB

99 MB
108 MB

108 MB

104 MB

104 MB

106 MB

106 MB

105 MB

105 MB

103 MB

103 MB

104 MB

104 MB

105 MB

105 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

50

100

150

200

Highcharts.com
(a) Results of Experiment 2, memory consumption,

s = 1

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

5 MB

5 MB158 MB

158 MB 337 MB

337 MB502 MB

502 MB 673 MB

673 MB 804 MB

804 MB 940 MB

940 MB 1054 MB

1054 MB

120 MB

120 MB

142 MB

142 MB

165 MB

165 MB
206 MB

206 MB

229 MB

229 MB

241 MB

241 MB

258 MB

258 MB

240 MB

240 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

250

500

750

1000

1250

Highcharts.com
(b) Results of Experiment 2, memory consumption,

s = 1000

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

5 MB

5 MB 210 MB

210 MB423 MB

423 MB605 MB

605 MB795 MB

795 MB990 MB

990 MB1205 MB

1205 MB
1284 MB

1284 MB
1335 MB

1335 MB

1382 MB

1382 MB

943 MB

943 MB
1241 MB

1241 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

500

1000

1500

Highcharts.com
(c) Results of Experiment 2, memory consumption,

s = 10000

Figure 3.14: Experiment 2, memory consumption

triple. Moreover, calculating aggregations is more complex than checking for a simple
pattern match. The engine has to fetch all relevant statements in the window, then do
the computation, and finally output the result. Different types of optimizations could
be applied here to improve aggregate calculation while avoiding the need to re-fetch the
whole window content after each new streamed triple. In case of an average aggregate,
a moving average could be used. From a practical perspective, it may not be useful to
receive a new aggregate value for each new arriving triple. Consequently, the explained
behavior may not pose a disadvantage in real use cases, as it frequently is not required
to receive new aggregates in such high frequency as tested here. However, it would
be useful to be able to control when an engine produces new output, i.e., the report
strategy [BDD+10].

3.6.3 Experiment 3: Large change

In Experiment three we use YABench to evaluate an engine’s capability to process
SELECT queries joining triples of different time stamps combined with a FILTER clause.
Figures 3.15a–c show precision and recall for each window. For CQELS, the graphs show
that the engines fails to delete outdated window content: For the first window precision

65

3. Evaluating Stream Processing Engines

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CSPARQL) Recall (CSPARQL) Precision (CSPARQL) Recall (CSPARQL)

#1 #2 #3 #4 #5 #6

100

20

40

60

80

Highcharts.com

(a) Results of Experiment 3, precision/recall, s = 50

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (CSPARQL) Recall (CSPARQL)

#1 #2 #3 #4 #5 #6

100

20

40

60

80

Highcharts.com

(b) Results of Experiment 3, precision/recall, s = 200

Windows

Pe
rce

nt
ag

e (
%)

Boxplots of Precision and Recall

Precision (CQELS) Recall (CQELS) Precision (CSPARQL) Recall (CSPARQL)

#1 #2 #3 #4 #5 #6

100

20

40

60

80

Highcharts.com

(c) Results of Experiment 3, precision/recall, s = 500

Figure 3.15: Experiment 3, precision and recall

and recall are at 100% while for the consecutive windows they constantly lie between 40%
and 60% due to incorrect window content. Counter-intuitively, under high load precision
and recall is higher, but fluctuates more than under low and medium load. C-SPARQL
handles this type of query well. With only two exceptions (recall in the second window
under medium and high load) precision and recall are always above 80%. Similar to the
other experiments, recall is a bit lower than precision. The recall of the second windows
show particularly high fluctuation due to higher delays observed in the first windows.

Figures 3.16a–c show the result delivery delays. Under low load we observe slightly
increasing delay for CQELS, however, it becomes stable at about 60ms. For C-SPARQL
we observe high delay in the first window which consequently becomes less in the second,
third, and remaining windows, evening out little below CQELS at 37ms (mean of window
four). Similar behavior, but to a greater extent, is shown under medium load. Delay of
CQELS becomes stable at 200ms, whereas C-SPARQL remains at 100ms for the second
half of the experiment. Under high load CQELS is not able to catch up with the incoming
data stream anymore, since delay keeps increasing over the course of the experiment
peaking at twelve seconds. In contrast, C-SPARQL performs well with delays of 200ms.

Memory consumption graphs are shown in Figures 3.16d–f. CQELS’s need for more
memory increases quicker than for C-SPARQL. In general, C-SPARQL’s memory con-
sumption does not increase over time. Compared to low load memory consumption of
experiment one (cf. Figure 3.11a), where CQELS requires 200MB of memory, we observe
an increase in memory demand here (250MB), which can be explained by the higher

66

3.6. Discussion

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

100

200

300

Highcharts.com
(a) Results of Experiment 3, delay, s = 50

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6
0

100

200

300

400

500

600

Highcharts.com
(b) Results of Experiment 3, delay, s = 200

Windows

De
lay

 (m
s)

Boxplots of Delay

Delay (CQELS) Delay (C-SPARQL)

#1 #2 #3 #4 #5 #6

0

5000

10000

15000

-5000

Highcharts.com
(c) Results of Experiment 3, delay, s = 500

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

4 MB

4 MB

73 MB

73 MB118 MB

118 MB161 MB

161 MB
175 MB

175 MB
195 MB

195 MB
217 MB

217 MB
236 MB

236 MB
249 MB

249 MB

251 MB

251 MB

101 MB

101 MB137 MB

137 MB

123 MB

123 MB

120 MB

120 MB
133 MB

133 MB

123 MB

123 MB
140 MB

140 MB

142 MB

142 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

100

200

300

Highcharts.com
(d) Results of Experiment 3, memory consumption,

s = 50

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

5 MB

5 MB106 MB

106 MB204 MB

204 MB 308 MB

308 MB 418 MB

418 MB 515 MB

515 MB
572 MB

572 MB
622 MB

622 MB
664 MB

664 MB

105 MB

105 MB
151 MB

151 MB

144 MB

144 MB

152 MB

152 MB

157 MB

157 MB

153 MB

153 MB

150 MB

150 MB

151 MB

151 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

200

400

600

800

Highcharts.com
(e) Results of Experiment 3, memory consumption,

s = 200

Time

Me
mo

ry
 U

sa
ge

 (M
B)

Performance metrics

5 MB

5 MB157 MB

157 MB313 MB

313 MB484 MB

484 MB662 MB

662 MB 829 MB

829 MB 983 MB

983 MB
1092 MB

1092 MB

1110 MB

1110 MB

1109 MB

1109 MB

125 MB

125 MB

155 MB

155 MB
201 MB

201 MB
273 MB

273 MB

286 MB

286 MB

298 MB

298 MB
388 MB

388 MB

Memory Usage (MB) (CQELS) Memory Usage (MB) (C-SPARQL)

0 s 10 s 20 s 30 s 40 s
0

250

500

750

1000

1250

Highcharts.com
(f) Results of Experiment 3, memory consumption,

s = 500

Figure 3.16: Experiment 3, delay and memory consumption

query complexity in this experiment.

To sum up, experiment three reveals good precision and recall performance for CQELS,
if we ignore the mentioned window purging issue. For the high load scenario, however,
delay times start to increase up to a point that makes stream processing impractical.
Memory consumption increases quickly, similar to previous experiments. C-SPARQL
shows good performance and constantly low delay. Only recall for the second windows

67

3. Evaluating Stream Processing Engines

fluctuates, which can be explained by the high delay in the first windows.

3.6.4 Experiment 4: Large change gracious

Experiment four investigates and explains issues that we experienced while manually
testing the engines. Under certain conditions, which are emulated in this experiment
by using the same query as in experiment three, we observed that precision and recall
values are decreasing. For CQELS, which employs a content change report strategy,
these lower values are caused by delayed purging of active window content. With purging
we mean deletion of elements from the content of a window. As time in a streaming
setting moves on, elements exit the scope of windows, hence, engines are responsible of
correctly maintaining the content of windows. In C-SPARQL, which employs a window
close report strategy, the values can be explained by the shifting of an engine’s active
window forward on the timeline (cf. Figure 3.12).

To investigate the root causes of these issues we implemented a gracious mode. In this
mode, the oracle adjusts its window scope to match the window scope of an actual window,
even though the actual window may contain incorrect elements (cf. Section 3.3.4.2). This
has two consequences: First, precision/recall values increase, because gracious mode
reverts the effects of incorrect window content. This allows us to confirm our assumptions
on why low precision/recall values were observed. Second, we are able to visualize window
borders which were actually used internally by the engines. By doing so, we unveil
differences between expected and actual windows. Expected windows are windows which
we would expect from a correctly implemented engine with zero delays.

Figure 3.17 shows the oracle results of the tests for CQELS and C-SPARQL engines. As
we can see in Figure 3.17a, precision and recall values decrease after the first window for
CQELS in non-gracious mode. This confirms the issues we experienced during manual
testing. Figure 3.17b shows results of the same test, but with gracious mode enabled.
Here we can see that precision and recall values are both at 100%. YABench does so by
shifting the window borders of the oracle until reaching maximum precision and recall
values. As a result we can see the adapted window borders at the bottom of the charts.
In Figure 3.17a we observe that the oracle had to shift the window starts to the left in
order to reach high precision and recall. This indicates that the engine forgets to delete
outdated elements from the content of the active window for the query which is used in
this experiment.

Similar, although less pronounced, effects can be observed for C-SPARQL. In non-gracious
(cf. Figure 3.17c) mode we see low recall values. The reason is that due to slight delays in
result delivery, not all relevant items appear in the window content of the oracle. Shifting
window borders again leads to precision and recall of 100%, as shown in Figure 3.17d.
In contrast to CQELS, here we need to shift the window start to the right in order to
improve the results. This is visualized again at the bottom of the figure. This implies
that the actual window of the engine was slightly delayed.

68

3.6. Discussion
Pe

rce
nt

ag
e (

%)

Precision/Recall

100 %

100 %

47 %

47 %

36 %

36 %

38 %

38 %

odd windows even windows precision recall

0 ms 5000 ms 10000 ms 15000 ms

0

25

50

75

100

Highcharts.com
(a) CQELS non-gracious mode

Pe
rce

nt
ag

e (
%)

Precision/Recall

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

odd windows even windows precision recall

0 ms 5000 ms 10000 ms 15000 ms

0

25

50

75

100

Highcharts.com
(b) CQELS gracious mode

Pe
rce

nt
ag

e (
%)

Precision/Recall

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

60 %

60 %

60 %

60 %

60 %

60 %

60 %

60 %

odd windows even windows precision recall

0 ms 5000 ms 10000 ms 15000 ms 20000 ms

0

25

50

75

100

Highcharts.com

(c) C-SPARQL non-gracious mode

Pe
rce

nt
ag

e (
%)

Precision/Recall

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

odd windows even windows precision recall

0 ms 5000 ms 10000 ms 15000 ms 20000 ms

0

25

50

75

100

Highcharts.com

(d) C-SPARQL gracious mode

Figure 3.17: Experiment 4 precision/recall results in gracious and non-gracious modes

Finally, Table 3.5 presents observations which we made during the experiments on CQELS.
It shows the retrieval time of the final result of the tests for small (S), medium (M), and
high (H) load scenarios. The text in parantheses in the first row indicates the type of
query which was used in the experiment. The numbers in parantheses in the second row
indicate the number of simulated stations in the experiment. One would expect the final
result to arrive immediately after the last triple was streamed to the engine, which equals
the duration of one test, i.e., 30 seconds in our case. This is the case when we put CQELS
under low load as shown in the columns denoted by an S. However, under medium and
high load, denoted by M and H columns, we see that delivery delay of the results grows.

E1 (SELECT) E2 (AVG) E3 (SELECT + JOIN)

S (50) M (1000) H (10000) S (50) M (1000) H (10000) S (50) M (1000) H (10000)

AVG 30s 32s 98s 31s 432s 12966s 31s 62s 269s

MIN 30s 32s 97s 31s 426s 12305s 31s 58s 263s

MAX 30s 33s 100s 31s 440s 13523s 31s 65s 277s

Table 3.5: Arrival time (average, minimum, maximum) of final results in seconds for each
conducted experiment (E1, E2, E3) with CQELS

69

3. Evaluating Stream Processing Engines

The reason for that is that CQELS uses the OnContentChange report strategy, where
queries are evaluated after each streamed triple. Obviously, more complex queries increase
the time needed for computation of query results, resulting in a monotonous increase
of delay as is also shown in Figure 3.16c. Hence, the arrival of the last result helps to
quantify and infer the influence of different query types on the capability of CQELS to
provide timely results. These numbers should not be compared with C-SPARQL where
such delays did not appear due to its report strategy In C-SPARQL queries are only
evaluated when a window closes which results in much lower computational effort and
hence avoids high delays in delivering results.

3.7 Summary
In this chapter, we introduced YABench, a comprehensive RSP benchmarking framework
that provides detailed insights into the performance and correctness characteristics of
RSP engines based on granular metrics, including metrics that capture the capability
to produce correct results under load. YABench is a general framework which allows
the flexible definition of streaming scenarios. We defined an environmental stream data
scenario simulating measurements of environmental sensors. The combination of the
dynamic generation of streaming data with the extended set of evaluation instruments
offered by YABench, enables to benchmark state of the art RSP engines with respect
to environmental stream data. The results and detailed discussion of running four
experiments lead us to the conclusion that, compared to CQELS, C-SPARQL is the
preferable approach in our scenario.

The framework is able to carry out the complete benchmarking process from defining
tests, generating suitable test data, executing tests, and finally analyzing the results.
We have shown that the framework replicates basic results of an existing benchmark
(i.e., CSRBench) and conducted and discussed four more comprehensive experiments.
The resulting visualizations provide insightful information on the characteristics of the
tested engines and highlight key differences in their performance. In the process of our
benchmarks, we also identified and extensively discussed previously unknown issues.

To sum up our findings, YABench reveals that C-SPARQL operates more memory
efficiently than CQELS in all experiments. Concerning delay, both engines perform
similar. However, the use of more complex queries and an increase in input load lets
C-SPARQL outperform CQELS. The main reason is the report strategy of CQELS
where queries are re-evaluated whenever new data arrives, whereas C-SPARQL only
evaluates queries when an active window closes which, obviously, happens less frequently.
Concerning precision and recall CQELS yields better results for simple SELECT queries.
However, under certain circumstances (joining triples of one window) we detect an issue
in CQELS which results in decreasing precision and recall measurements. On the other
hand, C-SPARQL suffers from window delays, which increase when load on the engine is
raised. These delays are responsible for declining precision and recall. A gracious mode
to run the oracle, allows us to reveal the extent of these effects visually.

70

CHAPTER 4
Environmental Streaming

Mashups

After describing and discussing a data model for environmental stream data in Chapter 2
and presenting the implementation of a framework for evaluating RSP engines in Chapter 3,
we present the implementation of an architecture based on foregoing results.

The architecture connects the concepts of the environmental data model with semantic
stream data and widget-based mashups and is presented in detail in the following sections.
The platform on which the architecture is prototypically implemented is the “Linked
Widgets platform”1 [TDW+13, TWD+14b, TWD+14a, TWD+14c, TWD+15]. This
platform facilitates data exploration and we extend it to enable processing of stream data.
We introduce stream processing mechanisms embodied in Linked Streaming Widgets.
The framework is based upon semantic annotations that describe the data using domain
vocabularies that can be used to integrate heterogeneous environmental data. “Linked
Streaming Widgets” represent an extension of “Linked Widgets” which are lightweight
web applications equipped with a semantic model that can be used to compose mashups.

We start with the presentation of related work in environmental data integration (Sec-
tion 4.1). To become familiar with the underlying concepts, ideas, and features of the
platform we present its central aspects (Section 4.2). Then, we describe two use cases to
demonstrate the feasibility of our extensions to the Linked Widgets Platform (Sections 4.3
and 4.4). Finally, we conduct a performance evaluation of the approach (Section 4.6).

4.1 Related Work
Data integration — the problem of combining data residing in different sources — has
been a field of interest for computer scientists for years [Len02]. After database technology

1http://www.linkedwidgets.org (accessed 16 June 2016)

71

http://www.linkedwidgets.org

4. Environmental Streaming Mashups

has been introduced in companies in the late 1960s, the number of data repositories
increased rapidly which revealed the need for data integration [ZD04].

First integration approaches were based on multi-database systems in the 1980s [HB91,
LR86]. Consecutive approaches to tackle the issue of data integration used media-
tors [CHS+95], agent systems[BJBB+97], and, more recently, ontologies [MIKS00], peer-
to-peer [AKK+03], and web services [ABM02].

In the context of web services, which are used for “deploying automated interactions
between distributed and heterogeneous applications” [BDS08], a new concept called
mashups emerged. Mashups deal with the issue of data integration on the web by creating
web applications through combining existing web resources (e.g., data or APIs). The
concept has been used to solve data integration challenges. A novel aspect of mashup
development is that users do not necessarily need programming expertise in order to
create these applications; the aim is to reduce the technical knowledge required by the
target group. This is achieved, for instance, by guiding users through the process of
mashup creation [LHPB09].

We perform an analysis of existing environmental data mashup systems with respect
to a set of requirements. The requirements we identify are drawn from the scenario of
supporting the composition of mashups based on environmental stream data. They are
considered to be relevant not only for the environmental application domain, but also for
a broad range of other domains. We discuss each mashup system in detail and provide a
discussion of shortcomings of the state of the art.

R1 – Semantic Stream Data Processing. The mashup system should be capable of
processing semantic stream data sources of interest in order to provide results in
real time and to be able to make use of the semantics inherent to the data.

R2 – Data Integration. It should be possible to integrate stream data sources with
static background knowledge, such as sensor metadata within a mashup. This allows
to contextualize the data generated by environmental sensors and to gain novel
insights based on the integrated data.

R3 – Composition Support. Users should be supported in composing mashups in
that they compose syntactically and semantically valid solutions. Often it is difficult
for users to know which mashup modules can be combined. This lack of support
maximizes composition errors which become visible during execution of the final
mashups.

R4 – Discovery Support. Users should be supported in discovery of data sources and
mashup modules. This makes it easier for users to identify interesting data and to
retrieve modules which again can be combined with respective data sources.

R5 – Visual Programming. The mashup system should follow the visual program-
ming approach. This allows users without any programming background to create
their own mashups.

72

4.1. Related Work

R6 – Alerting Support. In the domain of environmental stream data, monitoring use
cases are of special interest. Often it is necessary to get notified by the system, if
observations are retrieved which are above or below a certain threshold. Hence, the
system should support means for alerting or notification.

R7 – Extensibility. The system should support adding new environmental data sources
and provision of new modules which can be used by other mashup developers via a
Graphical User Interface (GUI). This increases the system’s flexibility and ensures
that the system will stay up to date.

4.1.0.1 Videk

Videk [KFFG11, KFM+13] (cf. Figure 4.1) is a prototype mashup for environmental
intelligence. The system allows to visualize environmental sensor data on a map. Users
can follow current observations or view historical measurements aggregated over different
time periods. The data is enriched with data from external sources (e.g., Geonames,
Wikipedia, Google Maps) to help users interpret the measurements.

Videk consists of four main components, (i) the sensor data, (ii) the mashup server, (iii)
the external sources, and (iv) the user interface. The mashup server forms the core,
because it interfaces with all other components. It combines raw and processed data
with external sources and provides a GUI for end users. Further, the mashup server
contains a storing and processing engine called SenseStream which transforms the sensor

Figure 4.1: Screenshot of Videk2

2Screenshot taken from https://www.youtube.com/watch?v=p5HJC%_af9UY (accessed 16 June
2016)

73

https://www.youtube.com/watch?v=p5HJC%_af9UY

4. Environmental Streaming Mashups

data into useful information and knowledge. Generally, the architecture allows to add
new external and sensor data sources. SenseStream also supports addition of plug-ins to
add features to the processing pipeline. The GUI uses an API layer to retrieve sensor
metadata as well as recent measurements. The interface is based on the Google Maps
layer and enables browsing and exploring the available sensor nodes.

We analyze Videk regarding our defined requirements as follows. Videk is able to process
stream data (R1) by integrating QMiner which is a stream mining and event detection
engine. However, it is not clear how the authors adapt QMiner in order to be able to
process semantic stream data, or if it processes semantic data at all.

The optional knowledge base component of Videk can store static information for event
processing. However, the component is primarily used to generate rules and not to build
mashups. We therefore evaluate R2 as partially fulfilled.

Users are not supported (R3) in creating mashups with Videk. In fact, Videk itself is a
mashup which has been developed by programmers. The GUI contains widgets, such as a
location widget and a photo widget, but they cannot be used to integrate available data.

The selection widget of Videk allows users to toggle the visibility of sensor nodes according
to their measuring capabilities. Hence — at least to some extent — users are supported
in discovering data sources (R4).

Videk does not follow the visual programming approach (R5). It does not help users that
lack programming experience in creating new mashups.

Despite Videk being aimed to process sensor measurements, it does not provide any means
to be notified, if measured values meet certain criteria, such as exceeding a threshold
(R6).

Means to extend Videk with new data sources and widgets were not identified. Hence,
extensibility (R7) is not supported. However, an API is offered which allows the system
to be plugged into other external mashups.

4.1.0.2 Traffic LarKC

Traffic LarKC [DCDV13, DVCD+11] (cf. Figure 4.2) is a mashup application that
integrates traffic data to forecast street conditions and to find optimal routes in a city.
To this end, the application combines information from remote sources, that is, maps,
traffic sensors, weather data, and calendar data. The mashup uses RDF as an interchange
format to support the integration with semantic processing and reasoning.

The main challenges of Traffic LarKC in providing traffic predictions is the volume,
quality, and heterogeneity of the data. According to the authors, the traffic database
contains more than one billion triples, however, due to the open world assumption [Kee13],
many effects are not observed, such as parking cars or minor accidents.

Traffic LarKC does not process semantic stream data (R1). Even though the authors
state that sensor data of 300 traffic sensors is processed, the system only operates over

74

4.1. Related Work

Figure 4.2: Screenshot of Traffic LarKC3

archived data. This indicates that real time results are not provided which, however,
would be expected if stream processing is performed.

The authors show that Traffic LarKC integrates data from different sources (R2). Even
if the mashup does not explicitly process stream data, data as different as traffic sensor
data, weather data, or event data are integrated.

Traffic LarKC does not allow end users to compose their own mashups (R3). This seems
not to be the primary aim of this application because it has been designed for the purpose
of providing traffic predictions and route recommendations.

The aim of Traffic LarKC is not to make data sources combinable in a flexible manner
for users. Hence, users are not able to discover new data sources or mashup modules
(R4). Similarly, visual programming (R5) and a notification service (R6) are also not
provided to users.

Traffic LarKC is extensible in that it is built upon the The Large Knowledge Collider
(LarKC) platform which offers a pluggable architecture that enables to integrate new
plug-ins into existing workflows and components, such as Traffic LarKC (R7). Because
this does not mean that the mashup application per se is extensible, we evaluate this
requirement as partially fulfilled.

3Screenshot taken from [DCDV13] (Original file kindly provided by Irene Celino (http://orcid.
org/0000-0001-9962-7193).

75

http://orcid.org/0000-0001-9962-7193
http://orcid.org/0000-0001-9962-7193

4. Environmental Streaming Mashups

4.1.0.3 SensorMasher

SensorMasher [LPH09, LP09, LPPH+10] (cf. Figure 4.3) is a mashup infrastructure to
publish stream sensor data. It provides a user interface to explore sensor data and build
web mashups. Its main goals is to enable non-technical users to access and manipulate
sensor data in an intuitive fashion. The platform is based on RDF data. However, the
semantic descriptions and annotations of raw sensor readings and sensors need to be
done by the user. These semantic descriptions can then be exploited in mashups and in
linked open data scenarios in order to enable the discovery and integration of sensors
and sensor data.

The architecture of SensorMasher consists of a DSMS, query processor, Sensor&Mashup
manager, user manager, explorer, composer, and web interface. New sensor data is
pushed to the DSMS. The query processor evaluates continuous queries over the data
in the DSMS. The Sensor&Mashup Manager controls the data flow between the DSMS
and the fusion operators, which are used for processing operations such as data filtering
and data alignment. It is also used to edit and query metadata, deploy mashups, and
provide access control via the user manager. The explorer component enables users to
explore sensor data on a map via a GUI. The composer is used for visually composing
sensor mashups by connecting sensor sources with fusion operators, and finally, the web
interface includes a web services interface and a SPARQL endpoint.

SensorMasher processes semantic stream data and provides answers in real time via
queries running over a DSMS (R1). Similarly, the infrastructure enables integration of
sensor data following the linked data principles (R2). The data is first published and can
then be integrated with other (linked) data sources via mashups.

Figure 4.3: Screenshot of SensorMasher4

4Screenshot taken from [LPPH+10].

76

4.1. Related Work

The provided visual composer component allows users that lack programming knowledge
to create mashups (R3). The composer works similar to a workflow editor where data
sources and operators can be connected to create new sensor mashups. However, it does
not provide means to semantically support this process in order to prevent erroneous
compositions. In addition, the interface has been criticized in that “the process is very
difficult and not user friendly” [LH14].

Data source discovery is also enabled via the composer component (R4). It provides
means to navigate and explore sensors which can then be used to compose mashups. The
visual composer is also responsible for implementing the visual programming paradigm
(R5).

Instruments to create alerts when users want to observe sensor measurements in mashups
are not available (R6), despite monitoring being mentioned as a motivating scenario by
the authors.

According to the authors, new sensor data sources can be added, however, it is not
explained how this works (R7). Sensor data which is published by SensorMasher can
be accessed by external applications through a SPARQL endpoint and RESTful web
services.

4.1.0.4 SemSorGrid4Env

SemSorGrid4Env [GGK+11, GSK+11] (cf. Figure 4.4) is the implementation of a service
architecture to support environmental decision making. The main use case is flood
emergency response. The architecture enables to put sensor readings into context
with other sensor readings, sensor data histories, and stored data. The overall goal of
SemSorGrid4Env is to enable ad hoc generation of mashups over data from computations
combining real time and historical data.

The architecture is divided into three tiers, i.e., a data tier, a middleware tier, and an
application tier. The data tier enables the publication and querying of data through a
connectivity bridge. The middleware tier supports the discovery of data, reconciliation of
data models, and querying over these models. The semantic integrator and semantic
registry are the two main components in this tier. Finally, the application tier provides
domain specific services and REST services to applications and mashups.

SemSorGrid4Env processes stream data in order to provide real time results to users
(R1). The authors use SPARQLStream [CCG10] to support ontology-based data access
for stream data.

Given that correlation of data with different modalities and heterogeneous data integration
are two main features of SemSorGrid4Env, it satisfies our data integration requirement
(R2). This is also shown in the example application of the flood emergency response
mashup.

77

4. Environmental Streaming Mashups

Figure 4.4: Screenshot of SemSorGrid4Env5

Users are not supported in composing new mashups (R3). The system provides REST
interfaces which can be used by web application developers, but not by potential end
users who lack programming expertise.

Discovery of new data sources is enabled by the semantic registry component and the
publication of semantically annotated property documents (R4). However, this is only
enabled for other services and not for human users via a user interface. Similarly,
the presented system does not implement a visual programming approach (R5). The
presented use case of flood emergency response is a web application which has been built
on top of the architecture. The authors state that the architecture enables the creation
of mashups, however, they do not provide a visual interface to do this.

The architecture enables the definition of events based on sensor measurements. When
conditions that characterize such an event are identified, alerts are raised (R6). In the
example scenario such an event is triggered when waves go over the top of a sea defence.

SemSorGrid4Env (re)uses technological standards, such as REST services, Web Services
Description Language (WSDL), and well-known ontologies (R7). This ensures extensibility
on a technical level, but does not allow end users or mashup developers to easily add
new sources or modules, hence, only partially fulfills this requirement.

4.1.1 Summary

Table 4.1 shows a comparison of the presented environmental mashup systems with
respect to the defined requirements. A checkmark (X) denotes full support, a hyphen (-)

5Screenshot taken from [GSK+11] (Original file kindly provided by Alasdair J G Gray (http:
//orcid.org/0000-0002-5711-4872).

78

http://orcid.org/0000-0002-5711-4872
http://orcid.org/0000-0002-5711-4872

4.2. Linked Streaming Widgets

denotes no support, and a tilde (~) denotes partial support of the respective requirement.

Videk and Traffic LarKC do perform stream processing of data. Each supports only one
of the requirements which we identified for environmental data mashups to full extent.
Videk supports discovery of data sources and Traffic LarKC supports data integration.
SensorMasher and SemSorGrid4Env both can deal with stream data sources and enable
data integration. They also support some of the remaining requirements. We show
that existing systems still severely lack features which we consider as substantial for
environmental data mashup systems. The work presented in this thesis fills this gap and
contributes by providing an approach that satisfies the specified requirements.

Mashup R1 R2 R3 R4 R5 R6 R7

Videk ~ ~ - X - - -

Traffic LarKC - X - - - - ~

SensorMasher X X - X X - ~

SemsorGrid4Env X X - ~ - X ~

Table 4.1: Environmental data mashup systems comparison

4.2 Linked Streaming Widgets
Data plays an increasingly important role in our everyday life. Collecting data from
different sources and extracting information, however, is still difficult due to the abundance
of available data. To enable users to benefit from published data, we need to overcome
different data integration challenges:

(i) Data heterogeneity makes it difficult to integrate different types of data available
in different formats distributed among infrastructures.

(ii) Cumbersome manual data integration processes that users perform to collect, clean,
enrich, integrate, and visualize data are neither reproducible nor reusable.

(iii) Lack of support for exploration, as users often rely on domain-specific applications
that do not allow to integrate arbitrary data sources.

(iv) Lack of means for the identification of relevant data sources and meaningful ways
to integrate them.

End users currently are not able to fully realize the potential of available data. Instead
they have to rely on applications built by programmers. The concept of End User
Programming aims to emancipate users from this dependency on programmers. It allows
them to build up an application within a short amount of time [Mar95]. In the research
field of End User Programming, widget-based mashups implement the visual programming

79

4. Environmental Streaming Mashups

paradigm which allows end users to compose ad hoc applications by combining available
widgets and thereby integrate data from disparate sources. Such applications use “content
from more than one source to create a single new service displayed in a single graphical
interface” [Eng15] to increase the value of previously existing data.

The Linked Widgets platform follows a widget-based mashup approach. It aims to (i)
provide practical advantages in data processing without imposing restrictions on data
sources, (ii) allow users to combine multiple data sources leveraging their joint value,
and (iii) allow end users to analyze, integrate and visualize data. This enables urban
stakeholders to facilitate environmental stream data to make well-informed decisions.

The platform uses semantic web technologies and its design follows three guiding principles,
namely “openness”, “connectedness”, and “reusability”. Openness is the key to achieve
our first objective, i.e., the capability to deal with heterogeneous data sources. Developers
can therefore implement and directly add new widgets to the platform. Connectedness
means users can combine data from different sources by connecting different widgets
possibly curated by different developers. Finally, the ability to use the same widget
in a flexible manner to compose applications that serve different purposes, facilitates
reusability.

We use a graph-based model (cf. Section 4.2.1.1) to semantically describe the input and
output of a widget so that the platform can make use of the annotated models to provide
semantic search (cf. Section 4.2.1.4), terminal matching (cf. Section 4.2.1.5), and auto
composition (cf. Section 4.2.1.6).

4.2.1 Linked Widgets Platform

In this section we provide a general overview of the Linked Widgets Platform including
the underlying data model, a characterization of available widget types, and provided
features and extensions by the platform.

4.2.1.1 Linked Widgets Data Model

Linked Widgets [TDW+13] extend standard widgets with a semantic model following
linked data principles. The semantic model describes data input/output and metadata
such as provenance and license. In particular, the model consists of four main components:
(i) input terminals, (ii) output terminals, (iii) options, and (iv) a processing function.
Input/output terminals are used to connect widgets in a mashup and represent the data
flow. Options are HTML inputs inside a widget. They provide a mechanism for users to
control a widget’s behavior. Finally, the processing function defines how widgets receive
input and return their output.

We distinguish three types of widgets: data widget, process widget, and visualization
widget (cf. Section 4.2.1.2). A mashup is an interconnected combination of widgets. It
should contain at least one data widget providing the data and one visualization widget
to display the final results.

80

4.2. Linked Streaming Widgets

Our widgets input and output terminals are enriched with semantic models. These
semantic models are essential for the subsequent search and composition processes.
Furthermore, they are crucial for the effective sharing of widgets. Discovering appropriate
widgets for one’s environmental information need is a non-trivial task which our model
facilitates. For instance users may be interested in pollution data. Hence, the semantic
model supports users in finding appropriate data sources and in finding widgets which
can be used in the composition process. Existing mashup platforms usually employ a
text-based approach for widget search, which is not particularly helpful for advanced
widget exploration and widget composition tasks.

Figure 4.5 presents a part of our ontology for the modeling of Linked Widgets. The use
of semantic web technologies to describe mashups and their components is not by itself a
novel approach (see [NCSP10, PRM11]). However, rather than capturing the functional
semantics and focusing on input and output parameters like SAWSDL [KVBF07], OWL-
S6, and WSMO7, we use a graph-based model [TKSA12, TKSA13, VSVD+11] to formally
annotate the input and output components as well as their relations. The SWRL
vocabulary is reused to define the semantic relation between two nodes in the input and
output graphs. This is shown in the bottom of the figure by the representation of an
extra relation.

Figure 4.5 also shows the detailed model of an exemplary Geo Merger widget. The widget
takes two arrays of arbitrary objects containing the wgs84:location property as input.
Its domain is the Point class with two literal properties, i.e., lat and long. The widget
output is a two-dimensional array in which each row represents two objects from two
input arrays, respectively. Those objects include locations satisfying the distance filter of
the Geo Merger widget.

To specify that input/output is an array of objects, we use the literal property hasArray-
Dimension (0: single element; n > 0: n-dimensional array). Because the input of Geo
Merger is an “arbitrary" object, we apply the owl:Thing class to represent it in the data
model.

The point, location, lat and long terms are available from different vocabularies. However,
since a well-established ontology facilitates data exchange between widgets, we chose
wgs84. The widget annotator module (cf. Section 4.2.1.3) interactively recommends
frequently used terms of the most popular vocabularies to developers. This eases the
annotation process and fosters consistency by diminishing the use of varying terms to
describe the same concepts.

In addition, we can model more advanced widgets by describing additional relations
connecting the input and output of a widget. Namely, the input and output can consist
of object attributes which can be connected with an added relation. As depicted in the
bottom section of Figure 4.5, we create a nearby relation between the two input points.

6http://www.w3.org/Submission/OWL-S/ (accessed 16 June 2016)
7http://www.w3.org/Submission/WSMO/ (accessed 16 June 2016)

81

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/

4. Environmental Streaming Mashups

...

lw:Widget

lw:Input

lw:hasInput

lw:hasOutput

lw:WidgetModel

lw:hasWidgetModel

lw
:h

as
D

at
aM

od
el

lw:geoMerger lw:geoMergerModel

lw:hasWidgetModel

lw:output1

lw:input2

wgs84:point1

wgs84:lat

lw:hasArrayDimension

lw:hasOutput

wgs84: http://www.w3.org/2003/01/geo/wgs84_pos
owl:http://www.w3.org/2002/07/owl

(a) MODEL

(b) EXAMPLE

lw:Output

wgs84:long wgs84:lat wgs84:long

lw:input1

2

lw:hasInput

lw:hasArrayDimension

lw:hasDataModel

1

lw:hasArrayDimension
wgs84:point2

lw:hasDataModel

owl:thing1
wgs84:location

owl:thing2

wgs84:location

wgs84:point1 wgs84:point2

lw:geoMergerModel lw:individualPropertyAtom1

(c) EXTRA RELATION

geo:nearby

swrl:argument1swrl:propertyPredicate

lw:hasAtom

swrl:argument2

owl:Thing

property 1
property 2

property 3

lw: http://linkedwidgets.org/ontologies
swrl:http://www.w3.org/2003/11/swrl
geo: http://www.geonames.org/ontology#

swrl:IndividualPropertyAtom

swrl:argument1

swrl:argument2

swrl:propertyPredicate

Figure 4.5: General Linked Widget model and Geo Merger model

Due to this graph-based description, the platform can answer questions such as “find all
widgets that contain the nearby relation between two locations".

4.2.1.2 Characterization of Linked Widgets

Linked Widgets can essentially be characterized along two dimensions, that is, location
of execution (client vs. server widgets) and type of operation (data vs. processing vs.
visualization widgets) Both characterizations will be described briefly in the following.

Location of execution A novel aspect of the Linked Widgets concept is that they
can be executed in distributed environments. Mashups can be composed of both client
and server widgets. “Client widgets” are executed in the local context of a Web browser
environment using client memory and processor resources. The data is collected and
processed on-the-fly in the browser.

Each client widget consists of:

• a semantic model,

• an execution function,

• input and/or output terminals,

82

4.2. Linked Streaming Widgets

• a core widget interface which is automatically generated for users to run the widget,

• its own user interface programmed by developers.

The execution function transforms the received input into an output according to the
parameters specified in the interface.

To implement a client widget, developers create a user interface and follow three steps:

1. inject a JavaScript file8 to enable cooperation with other widgets,

2. define an input and/or output configuration, and

3. implement a JavaScript run(data) function that is invoked when the widget is
executed in a mashup.

Client widgets are easy to develop, however, their capabilities are restricted by the
web browser execution environment. Furthermore, they cannot deal with heavy data
processing tasks. Finally, as soon as a user closes the browser, the mashup output data
can no longer be accessed. To overcome these limitations, we designed server widgets
in order to shift the execution function from the browser environment to standalone
application environments. Server widgets can be executed as native applications on
different kinds of platforms such as servers, mobile devices, or embedded systems. These
platforms can possibly serve as sources for streaming data.

These server widgets consist of two main parts:

• a user interface, which is the same as for client widgets, but without the run
function, and

• a remote executor.

The client interface is for users to set up parameters and control the remote executor.

When users drag-and-drop a server widget into the mashup editor panel, a client user
interface of the server widget is instantiated. At the same time, we set up a connection
channel between this client interface and the remote executor of the server widget. For
each server widget, we have only a single remote executor, but potentially many client
user interfaces that are instantiated for each instance of the widget. When an instance
of a server widget is executed, the client interface sends its parameters to the remote
executor, which, in turn, creates a widget job to process the data received from the
predecessor widgets.

Server widgets make use of the concept of distributed mashups – a type of ad hoc
applications whose processing tasks are executed in a distributed manner possibly on

8http://linkedwidgets.org/widgets/WidgetHub.js (accessed 16 June 2016)

83

http://linkedwidgets.org/widgets/WidgetHub.js

4. Environmental Streaming Mashups

multiple devices. Such mashups are particularly useful for streaming or real time data
processing applications. Users can close the browser at any time while the backend
performs data collection and processing tasks.

There are two sub-types of server widgets, i.e., server data widgets and server processing
widgets. Servers are the most suitable targets to deploy (server) processing widgets because
they are continuously online. This also allows to offload computationally intense data
processing tasks from mobile devices. Mobile devices, however, are ideal environments
for (server) data widgets. They can, for instance, collect and provide data from mobile
devices for a mashup. For example, smartphones can act as sensors that periodically
provide Global Positioning System (GPS) data.

To create server widgets, developers first define the client interface in a similar manner to
the client widgets implementation. Furthermore, they need to build the remote executor
component. To this end, they implement an abstract method to define the widget job,
i.e., a processing function to transform input data into output data.

Type of operation There are three types of widgets: data widget, process widget,
and visualization widget. A data widget collects data from a data source and provides
the collected data semantically enriched to other widgets. It has no input terminals.
A process widget takes input data from other widgets, applies operations on the data
(enrichment, transformation, and aggregation), and provides the result to consecutive
widgets. It consists of both input and output terminals. A visualization widget has
at least one input terminal and presents the data from another widget in a particular
manner (e.g., textually or visually). It has no output terminals.

4.2.1.3 Annotator

The widget annotator allows developers to create and annotate widgets correctly and
efficiently according to our defined semantic model (cf. Section 4.2.1.1). Developers
can use the drag-and-drop editor. In order to visually define their widget models, they
need to configure three components called the Widget Model, Object, and Relation. The
final output of the annotator is an RDF-based semantic model describing the input and
output terminals of a widget. This output is then stored together with the source code
of a widget and enables the platform to provide features, such as widget search, terminal
matching, and auto-composition.

Figure 4.6 is an example that illustrates the definition of a semantic model for a Citybike
Station Filter widget. In the Widget Model, we define input and output terminals of the
widget. Their data models — arrays of CityBike data at the output and Place objects
at the input — are defined in the Object components. We define property URIs for
the CityBike type, such as freeBikes and freeBoxes. Among these properties is also a
wgs84:location property. Its domain is defined via an additional Object component. The
input is a Place which also contains a wgs84:location. Finally, we make use of a Relation
component to specify geo:nearby as a relation between the input Place and the output

84

4.2. Linked Streaming Widgets

CityBike objects. This means that the widget outputs data about citybike stations which
satisfy the nearby requirement with respect to the Place at the input.

Figure 4.6: Visual model defined for the Citybike Station Filter widget

The system then automatically generates the OWL description file for the model as well
as the corresponding Hypertext Markup Language (HTML) widget file. It includes the
injected JavaScript code snippet required for the widget communication protocol and a
sample of the input/output of the widget according to the defined model. Based on the
HTML file, developers can implement the processing function of the client widget or the
remote executor of the server widget, which receives input from preceding and returns
output to succeeding widgets. Widget annotations are published into the Linked Open
Data (LOD) repository of widgets which can be accessed via a SPARQL endpoint9.

4.2.1.4 Semantic Widget Search

To cope with a growing number of available widgets on the platform we provide a semantic
search feature in addition to conventional search methods which are based on keywords,
categories, and tags. Our semantic search works as follows: After defining desired class,
property, and relation constraints for input/output, the platform formulates a SPARQL
query which is then executed over the available widget repository in order to return
widgets satisfying defined requirements. To stick to the previous example, for instance, we
can find widgets which return CityBike data containing the freeBikes attribute and have
a geographic Place as an input. The generated and executed SPARQL query returning
the desired widgets is shown in Listing 4.1. In this case the Citybike Station Filter widget
is returned.

4.2.1.5 Terminal matching

A common task when users create mashups is to find widgets which can be connected
to another widget. We call this procedure terminal matching. It is crucial to connect
only outputs with inputs if the data which is transmitted along this connection can be

9http://ogd.ifs.tuwien.ac.at/sparql (accessed 16 June 2016)

85

http://ogd.ifs.tuwien.ac.at/sparql

4. Environmental Streaming Mashups

PREFIX lw: <http://linkedwidgets.org/ontology/>
PREFIX wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX dbpedia: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?widget WHERE
{

?widget lw:hasWidgetModel ?widgetModel.
?widgetModel a lw:WidgetModel.
?widgetModel lw:hasInput [lw:hasDataModel ?iDataModel].
?iDataModel a dbpedia:Place.
?iDataModel wgs84:location . [

a wgs84:Point;
wgs84:lat [];
wgs84:long [];].

?widgetModel lw:hasOutput [lw:hasDataModel ?oDataModel].
?oDataModel a lw:CityBike . [

lw:freeBike [];]
}

Listing 4.1: A SPARQL query for semantic widget search

processed by the connected widget. To enforce valid connections (i.e., ensure that the
output terminal can provide all data required at the input terminal), mashup developers
can use the terminal matching module. This module validates connections using the
semantic model. It helps creators to speed up the mashup creation process, while
preserving syntactic and semantic correctness of a mashup. Listing 4.2 shows a SPARQL
query detecting output terminals which can be connected to the input terminal of the
Citybike Station Filter widget.

The following conditions need to be satisfied for matching terminals:

• matching class and array dimension,

• matching attributes, i.e., the set of attributes required by the input terminal must
be a subset of the attributes provided by the output terminal.

4.2.1.6 Automatic mashup composition

The automatic mashup composition algorithm incorporates the semantic model and the
terminal matching algorithm to allow for full-automatic composition of mashups. Users
may lack required knowledge about how to define and control the widget flow during
composing a mashup. When confronted with new widgets, users may consider the process
to create a mashup including a data widget, processing widgets, and finally a visualization
widgets tedious and time consuming. We therefore support them by assembling complete
mashups automatically from a set of available widgets. Essentially, this approach enables
automatic composition of a complete mashup from a widget that consumes/provides data
for a specific output/input terminal. “Complete” in this context means that all terminals
must be wired, i.e., have a valid connection.

86

4.2. Linked Streaming Widgets

PREFIX ifs: <http://ifs.tuwien.ac.at/>
SELECT DISTINCT ?oTerminalName ?oWidget WHERE {

<http://ifs.tuwien.ac.at/WidgetCityBikeStationFilter> ifs:hasWidgetModel ?iWModel.
?iWModel ifs:hasInput [ifs:hasName "input1"^^xsd:string;

ifs:hasDataModel ?iDataModel].
?iDataModel a ?type.
?iDataModel ifs:hasArrayDimension ?listLevel.

?oWidget ifs:hasWidgetModel ?oWModel.
?oWModel ifs:hasOutput [ifs:hasName ?oTerminalName;

ifs:hasDataModel ?oDataModel]
?oDataModel a [rdfs:subClassOf ?type].
?oDataModel ifs:hasArrayDimension ?listLevel.

FILTER NOT EXISTS{
?iDataModel ?property ?iValue.
FILTER NOT EXISTS {?oDataModel ?property ?oValue.}

}
}

Listing 4.2: A SPARQL query for terminal matching

The fundamental steps of this approach are as follows: We first construct a weighted
graph based on terminal matching for a given set of widgets. The vertex set consists of all
input and output terminals of all widgets. Edges of the graph represent valid connections
between terminals. Next, we have to identify complete paths in this graph starting from
all output and input terminals of the widget such that all involved input/output terminals
are wired with other output/input terminals. Each identified complete path represents a
valid mashup solution. More details on the algorithm are presented in [Tri16].

As an example, we provide a collection of eight widgets to present the citybike use
case (cf. Section 4.3). The automatic mashup composition algorithm is initiated when
users select the output terminal of a data source widget such as the Map Pointer. The
algorithm then builds one graph containing all widgets of the collection and detects
complete paths in this graph. An excerpt of the graph is depicted in Figure 4.7. For the
citybike widget collection the algorithm then detects 19 semantically and syntactically
valid complete paths, i.e., mashups, each consisting of two to five widgets.

Figure 4.7: Graph used by the automatic composition algorithm to find complete mashups

87

4. Environmental Streaming Mashups

4.2.2 Streaming Widgets Architecture

We present RDF Stream Processing (RSP) extensions to the Linked Widgets plat-
form architecture in order to cope with stream data. RSP is an emergent field of
research [VCHF09] with the aim to facilitate data integration on real time semantic
data streams. This paradigm is similar to the fundamental concepts of the Linked
Widgets Platform in that both focus on the integration of semantic data. The main
requirements to realize this paradigm are (i) to enable the use of stream data in mashups
in order to gain real time insights based on integrated data and (ii) to provide a means
to integrate different sensor sources among each other, but also to integrate them with
static background knowledge sources. We present extensions to the platform that foster
the processing of RDF streams by means of widgets.

Our analysis of RSP engines (C-SPARQL and CQELS) in Section 3, leads us to the
conclusion that C-SPARQL is the preferable system to be used for linked streaming
widgets. The main reason for this decision is the fact that C-SPARQL reports new results
based on a Window Close policy. This means that results flow into the system at regular
intervals facilitating further processing such as aggregation functions. Moreover this
also fits with the use cases we realize based on environmental data sources where new
measurements are taken also at regular intervals.

Additionally, the fact that C-SPARQL allows for building query networks, where the
results of queries can be reused in other queries facilitating aggregation and reducing
processing load represents further advantages. Finally, C-SPARQL also shows better
performance over CQELS in terms of memory consumption and Central Processing Unit
(CPU) load.

Figure 4.8 shows the overall architecture and processing model of the streaming extensions
to the Linked Widgets platform. As shown at the very left of the figure, arbitrary data
sources such as XML, JSON, and CSV files can serve as input. These data sources are
then RDFized10, i.e., converted, into RDF triples via RDF Mapping language (RML)
mappings [DSC+14, DSS+14]. RML mappings only need to be created once per data
source. We slightly extend the standard features of RML and allow to use variables in
the mapping definitions which are replaced by desired values at processing time.

The RML mappings use special domain ontologies as well as the SSN ontology [CBB+12]
and RDF Data Cube vocabulary [CR14] to create triples conforming to the ontology
developed in Section 2. We present use cases in the following sections, which apply the
RML mappings in regular intervals on the respective data sources.

The semantically enriched data sources are then sent regularly to an instance of the
C-SPARQL server11. We prepare streams at the C-SPARQL server for each data source.
Hence, the triples of each RDFized data source are sent to the accompanying stream at

10the term RDFizing is commonly used in the semantic web literature to refer to the transformation
of arbitrary data to semantically enriched RDF data. Similar terms are triplifying or semantically lifting.

11C-SPARQL provides a REST API which is used here [BV13].

88

4.2. Linked Streaming Widgets

extended
RML Mapping

triples C-SPARQL
Server

CQ

Li
nk

ed
 W

id
ge

ts

Pl
at

fo
rm

 Streaming
Widgets HTTP Endpoint

data

SSN
Ontology

Data Cube
Ontology

Domain
Ontology

CQ results
[HTTP POST]

CQ results [HTTP GET]

CQ.......Continuous Query

JSON

XML

CSV

Figure 4.8: Architecture of Linked Streaming Widgets

the server. Continuous Queries are registered at the server, using data from the data
streams and static background knowledge to create results. These queries continuously
generate result streams which are (i) sent to an endpoint, and (ii) can be reused in other
continuous queries. Given the underlying architecture of C-SPARQL, this approach
currently requires that data needs to be pulled from the data source and subsequently sent
to the engine in a push-based manner. The engine currently does not provide support for
stream processing where new data directly flows to the engine via, for instance, persistent
HTTP connections. One barrier is that these persistent connections have to be supported
and provided by the data sources which is rarely the case.

On the Linked Widgets Platform, we create so called Linked Streaming Widgets, which
make use of the data served by the continuous queries. Depending on the implementation
of these widgets, we can create different use cases covering and combining concepts such
as sensor data based enrichment, aggregation, processing, and visualization. Linked
Streaming widgets, hence, can facilitate the composition of sophisticated mashups which
aim to incorporate stream data.

To initialize the C-SPARQL server (creating required streams and continuous queries,
and serving static knowledge) we wrote a python wrapper. Relevant excerpts of the
source code are included in Appendix D.

Linked Streaming Widgets are lightweight implementations which make use of the
described architecture. They serve a specific purpose related stream data processing. For
instance, they provide data for subsequent widgets, filter measurement data, or provide

89

4. Environmental Streaming Mashups

means to monitor observations. The versatility of Linked Streaming Widgets is shown in
the following use case descriptions.

4.3 Use Case: Citybike Mashup
The first use case deals with citybike data from the city of Vienna. We use a publicly
available interface12 to regularly retrieve the current state (free bikes, free boxes, available
boxes) of the citybike network. We provide a collection of widgets which allows to analyze
and visualize citybike usage over time to satisfy the individual information needs of the
citizens. We follow the streaming widgets architecture and therefore develop (i) RML
mappings to RDFize static and streaming knowledge, (ii) continuous queries operating
over streamed and static RDF data, and (iii) widgets which utilize the results and can
be integrated with other widgets.

The static knowledge is composed of information which is not expected to change
frequently. Hence, we store information about each citybike station such as its geographic
position (latitude, longitude), name, description, and identifier. The accompanying RML
mapping (cf. Listing E.1 in the Appendix) is executed once and generates an RDF
file which can then be used in continuous queries. An excerpt of the generated static
knowledge is shown in Listing 4.3.

For the stream data we create a more complex RML mapping (cf. Listing E.2 in the
Appendix) to match our environmental streams ontology created in Section 2. An excerpt
of the resulting graph that represents a single observation is depicted in Figure 4.9.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:qb="http://purl.org/linked-data/cube#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#">

<rdf:Description rdf:about="http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/904">
<geo:location rdf:resource="http://ldlab.ifs.tuwien.ac.at/envstreams/point/904"/>
<rdf:type rdf:resource="http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/Sensor"/>
<rdfs:comment>bei Altem AKH vis a vis Otto-Wagner-Platz</rdfs:comment>
<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Frankhplatz</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://ldlab.ifs.tuwien.ac.at/envstreams/point/904">
<geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#string">16.355145</geo:long>
<geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#string">48.215156</geo:lat>
<rdf:type rdf:resource="http://www.w3.org/2003/01/geo/wgs84_pos#Point"/>

</rdf:Description>

</rdf:RDF>

Listing 4.3: Excerpt of static citybike station knowledge

12http://dynamisch.citybikewien.at/citybike_xml.php (accessed 16 June 2016)

90

http://dynamisch.citybikewien.at/citybike_xml.php

4.3. Use Case: Citybike Mashup

Figure 4.9: Excerpt of a graph showing a single observation of a sensor

These streams of RDF graphs are continuously created and fed into the C-SPARQL
engine. Continuous queries are registered at the engine varying by window size and
hence also varying by aggregation size. We create continuous queries that provide real
time, hourly, daily, and weekly aggregates. To decrease the processing load, each query
uses the output of the next smaller aggregate: The weekly aggregate query uses the
results of the daily aggregate query as an input, the daily aggregate reuses the hourly
and so on. An example query is shown in Listing F.1 in the Appendix. The query
contains new keywords introduced by C-SPARQL [BBC+10b] that extend the SPARQL
syntax: REGISTER STREAM is used to create a new stream. The URI which is defined
at REGISTER STREAM can then be reused in other queries. FROM STREAM is used to
denote the stream(s) the query should operate on. RANGE and SLIDE define the size
and update frequency. The combination of FROM STREAM and FROM clauses in the
same query enables the integration of stream data and static data. The presented query
retrieves the latest citybike station measurements and returns them as an RDF graph.

In order to query for aggregated data, for instance to average observations over time, we
need to register additional slightly adapted queries. A query computing a daily aggregate
is constructed as follows (cf. Listing F.2 in the Appendix): The CONSTRUCT clause
is similar to the real time query. In the FROM STREAM clause we need to define the
output stream from the hourly aggregate as input stream used by the query. The window
definition is adapted according to the desired type of aggregation, which, in our case is a
daily aggregate. We define both the window size (RANGE) and slide (SLIDE) parameters
as 24h. To compute the actual aggregates, we define a subselect query which makes use
of functions provided by SPARQL and Jena13. afn:now(), SUBSTR(), and CONCAT()

13Jena is a popular open source Java framework to build semantic web applications. C-SPARQL uses
Jena. For more details visit https://jena.apache.org/ (accessed 16 June 2016)

91

https://jena.apache.org/

4. Environmental Streaming Mashups

are used to create a new timestamp based on the results. AVG() computes the average
and IRI() is used to create new URIs according to the chosen URI scheme. STR() and
xsd:dateTime() is required for proper type conversion of retrieved values.

To complete the processing pipeline, the final step is to implement widgets, which reuse,
combine, and integrate data provided by continuous queries. To this end, we developed
the following widgets:

• Citybike Streaming: This widget is key for all use cases built upon citybike stream
data. It is a data widget realized as a server widget providing as a data source to
other widgets. It continuously collects citybike data from continuous queries and
offers different aggregation levels to the user via its interface. Its output conforms
to the RDF Data Cube vocabulary which is accepted by widgets, such as the generic
Map Viewer widget.

• Citybike Streaming Storage: For monitoring use cases, where data is observed and
stored over a longer period of time, we need a means to store data which is output
by data widgets such as the Citybike Streaming widget. In the citybike use case,
the Citybike Streaming Storage widget is responsible for this task. At its output
terminal it provides data conforming to the RDF Data Cube vocabulary.

• Citybike Station Filter: This widget uses geographic locations, for instance served
by the generic Map Pointer widget, at the input terminal to discover and filter
for citybike stations based on distance or number of results. Users who are only
interested in the data of specific stations should use this widget.

• Observation Filter: This widget is generic in that it accepts data based on the
RDF Data Cube vocabulary which can then be filtered by Measure Name, Operator
(greater, lesser, equal), and a Threshold. Hence, this widget only puts observations
on the output, if the filter criteria match.

• Send Event: This widget can receive events at the input which are then sent to
a person via mail or text message. This is useful for monitoring use cases in
combination with the Observation Filter to receive an alert when specific values
are below or above a defined threshold.

Furthermore, we reuse the already available Map Pointer and Map Viewer widgets. Due
to their generic design and model, they can be also used in this use case.

Figure 4.10 shows a graphic representation of the semantic model for the Citybike Station
Filter widget. We use the lw:hasSampleData property to associate the input and output
terminals with descriptions that represent their full tree structures in JSON. As depicted,
the widget accepts an instance of the type dbp:Place at the input, which is related to a
geo:Point via the geo:location property. The geo:Point stores the latitude and longitude
of the input point. The lw:arrayDimension value of one for dbp:Place reflects that the
input is a list of points (1-dimensional array).

92

4.3. Use Case: Citybike Mashup

lw:citybikeStationFilter
lw:citybikeStation

FilterModel

lw:input

dbp:Place

geo:Point

geo:location

lw:output

xsd:float xsd:float

geo:long geo:lat

lw:arrayDimension

lw:hasSampleData

lw:arrayDimension geo:Point

geo:location

xsd:float xsd:float

geo:long geo:lat

qb:DataSet

lw:hasInput lw:hasOutput

owl:Thing

lw:hasDataModel

lw:cityBikeData

lw:hasDataModel

lw:arrayDimension

„{...}“

1

0

lw:arrayDimension

1

lw:arrayDimension
0

0

input tree model output tree model

lw http://linkedwidgets.org/ontologies/
geo http://www.w3.org/2003/01/geo/wgs84_pos#
xsd http://www.w3.org/2001/XMLSchema#

qb http://purl.org/linked-data/cube#
dbp http://dbpedia.org/ontology/Place
owl http://www.w3.org/2002/07/owl#

lw:hasSampleData
„{...}“

Figure 4.10: Semantic model of the Citybike Station Filter widget

The widget returns its output when it has completed its processing function. Again, we
can see in the semantic model that the output can be an object of any type (owl:Thing).
However this owl:Thing has to consist of a geo:Point and furthermore needs to include
a qb:DataSet via the lw:cityBikeData relation. The semantic models of the Citybike
Streaming and the Citybike Streaming Storage widgets are similar to the described model
and hence omitted here. The models of the Observation Filter and Send Event widgets
are shown in Appendix G.

Due to this modeling, we can reuse the Map Pointer to feed the Citybike Station Filter
with a geographic location, which in turn is used to discover and filter citybike stations.
Furthermore, since the widget’s output includes a qb:DataSet, and the Map Viewer
accepts this as an input we can use it to visualize the data.

Figures 4.11 and 4.12 show two mashups which can be composed with the developed
widgets. Widgets with a green frame are server widgets, whereas a blue interface
represents client widgets. In the first figure, we see a visualization of the real time
citybike stream data, that is, available bikes and available boxes at the station which is
selected via the filter widget. The user interface of the filter widget also allows to choose
different types of temporal aggregates. The second figure represents a mashup which
is useful in monitoring use cases. Again, a station is selected via the Map Pointer and
Citybike Station Filter widget. Then the Observation Filter is used to define a threshold

93

4. Environmental Streaming Mashups

Figure 4.11: A mashup displaying citybike stream data of one specific station

Figure 4.12: A mashup monitoring citybike observation data and triggering an event if a
defined threshold is exceeded

based on a Measure Name, an Operator, and a Threshold. If the filter criterion is satisfied,
an event is generated and sent to the Send Event widget, which will send the event as
configured either via mail or text message.

To sum up, the citybike mashup use case acts as a proof of concept that with a limited
amount of specially developed and carefully semantically modeled widgets, different types

94

4.4. Use Case: Route Enrichment Mashup

of scenarios, such as data visualization or observation monitoring, can be realized. Correct
modeling ensures that already available widgets can be reused, which in turn reduces the
perceived complexity of users. Reusability is crucial in mashup environments, because it
limits the amount of available widgets to a manageable number. The creation of a query
network of aggregate queries reduces the processing load and amount of streamed triples
on the server.

4.4 Use Case: Route Enrichment Mashup

As a second use case we show how stream data can be used to satisfy ad hoc information
needs (cf. Figure 4.13). In this case a car driving route is enriched with real time air
quality observation data so that citizens can choose routes based on air quality data. The
data processing flow is similar to the citybike use case, however, we obviously use different
RML mappings (cf. Appendix H) for both static (air quality sensors) and streaming (air
quality observations) knowledge and different continuous queries (cf. Appendix I).

Figure 4.13: A mashup displaying routes which are enriched with stream data based on
air quality observations

For the development of the use case, one new widget was developed and two other widgets
were extended:

• Air Quality Enrichment: This widget receives a route as input. The output is again
a route, but each point of the route is enriched with an air quality index which is
calculated based on stream data observations. The semantic model of this widget
is shown in Appendix J.

• Map Pointer: This widget needs to be able to output routes in order to be compatible
with the Air Quality Enrichment widget. We therefore extended its semantic model
accordingly, that is, adding routes to the output model.

• Map Viewer: The Map Viewer is also extended to be able to display routes which
possibly are enriched with air quality data.

95

4. Environmental Streaming Mashups

This use case showcases benefits which are gained with streaming widgets. Complementing
the citybike scenario, this use case utilizes only client widgets to satisfy ad hoc information
needs without requiring continuous monitoring of observation data. Instead, we use
queries to integrate static knowledge (sensor metadata) and streaming data (air quality
data) to calculate an air quality index. This index is then used to enrich route data and
ultimately presented visually via the generic Map Viewer widget.

4.5 Summary of Use Cases

The presented use cases show that it is possible to implement an approach, i.e., “Linked
Streaming Widgets”, that facilitates the development of mashups which process environ-
mental stream data. Users do not need to use programming languages, but they can use
a visual editor to create their own solutions. We provide specific streaming widgets which
process data that comes from specific sources and we develop generic widgets which use
streaming data as an input, process it (e.g., filtering or storing the data), and make it
available for subsequent widgets at the output.

The mashups which are shown in Figures 4.11–4.13 are just examples out of many other
mashups that can be composed based on the available streaming widgets. The automatic
mashup composition algorithm (cf. Section 4.2.1.6) is used to determine how many
semantically and syntactically valid mashups can be composed for a given set of widgets.
For the widgets provided in the city bike use case, 12 mashups can be composed, if the
Citybike Streaming widget is used as an origin and 19 mashups can be composed, if the
Map Pointer widget is the origin. Widgets provided in the route enrichment scenario
can be used to compose 9 different types of mashups, if the Map Pointer widget is the
starting point. This shows that already a small number of widgets enable the composition
of many different mashup solutions. However, providing new streaming data sources as
widgets is crucial to facilitate the creation of widgets in new application domains and to
foster further ways of integration.

4.6 Evaluation

We quantify performance characteristics of the Linked Streaming Widgets approach in
order to show its practical and technical feasibility. Further, we evaluate and compare two
different approaches to develop and process the required queries. To this end, we conduct
a thorough analysis of query processing performance at the C-SPARQL engine. Namely,
we measure query execution time, triples per stream over time, and memory consumption
over time for two different scenarios based on the citybike use case (cf. Section 4.3).

The two analyzed approaches are subsequently called Construct and Select approach due
to their reliance on either CONSTRUCT or SELECT queries. In order to realize a use case
which also requires to compute aggregate results, we can choose between two alternatives:

96

4.6. Evaluation

• Select approach: We push the real time data into the engine on a single stream
and then register separate queries for each type of aggregate we want to calculate.
The source stream for each query (integrated via the FROM STREAM clause) is the
same for each query, namely the stream which the real time data is put on.

• Construct approach: In this case, we use one data stream to push the source
data into the engine. However, the real time stream is only used by one query
which computes the results based on this data. In addition, we create a cascade of
CONSTRUCT queries. These queries allow to stream their results into a new and
separate stream which can then be consumed by another query (cf. Appendix K).

Both approaches differ in that the Select approach provides more precise answers, because
the queries are executed over the complete sets of measurements in a window. In contrast,
the Construct approach executes queries over aggregated data which may result in
inaccurate results, but will likely yield better performance. Since the CONSTRUCT queries
are cascaded, the approach also introduces interdependencies between the queries. For
instance, if the second query in the cascade – for some reason – stops working, then all
subsequent queries will also stop working, because they are dependent from the results
of the second query. This behavior does not occur for the SELECT queries.

In the following sections we present the results of our evaluation comparing the perfor-
mance of both approaches along different dimensions. We conducted experiments for
different aggregate queries: (i) 2 minute real time, (ii) 10 minute aggregate, (iii) 1 hour
aggregate, and (iv) 6 hour aggregate. The 6 hour aggregate ran successfully only for the
Construct approach. We suspect that for the Select approach there were too many triples
on the stream after six hours of runtime, which caused the engine to fail while trying to
computing the results.

The experiments were conducted on an Intel Xeon CPU E5-2620 0 @ 2.00GHz, Hexa
Core, 4 GB RAM running SMP Debian 3.2.54-2 and ran for 24 hours. We used the
REST version of C-SPARQL called rsp-services-csparql 0.4.9 available at GitHub14.

4.6.1 Results

The results of the evaluation are:

• Query execution time evaluation: Figures 4.14a–c show the results of this
experiment for different aggregate queries varying in window size. The window size
also determines how often the query is executed. The figures show how long the
execution of the queries took over the course of the experiment.

• Triples on stream: Figures 4.15a–c show the amount of triples on the stream
while running the experiment for varying aggregate queries.

14https://github.com/streamreasoning/rsp-services-csparql (accessed 16 June 2016)

97

https://github.com/streamreasoning/rsp-services-csparql

4. Environmental Streaming Mashups

• Memory usage: Figure 4.16 shows the memory consumed over time by the stream
processing engine for both approaches.

Based on the results we can draw a number of conclusions.

4.6.1.1 Query execution time

C-SPARQL executes continuous queries every time a window closes. At this time, the
engine considers all triples within the window scope and computes the results. Hence,
bigger windows contain more triples and therefore yield longer execution times. In our
evaluation we observe that in the case of 2 minute windows, query execution time is on
average five times lower for the Construct approach (average = 40ms) than for the Select
approach (average = 190ms). This gap even increases when we look at the bigger window
sizes of 10 minutes (Construct 36 times faster) and 1 hour (Construct 24 times faster).
For 6 hour windows, the Select approach failed, hence, we only show the results for
the Construct approach in Figure 4.14c. Generally, the execution time of the Construct
queries is good even for big windows where execution time exceeds 1sec slightly. However,
for Select queries the execution times are not acceptable for such window sizes (average
= 240sec).

4.6.1.2 Triples on stream

The gaps between the performances of both approaches can be explained by the amount
of triples available on the stream which a query uses to compute its results. The use of
CONSTRUCT queries limits the amount of triples on the streams which are used by the
queries, while the SELECT queries always operate over the complete real time stream. The
results of this experiment quantify this gap, showing that the difference of triples between
both approaches increase dramatically for bigger windows. For 10 minute windows there
are five times as many triples stored on a stream for the Select approach, for 1 hour
windows there are four times as many. Obviously, it is more resource-intensive for an
engine to compute a query which is executed over five times as many triples.

4.6.1.3 Memory consumption

The memory consumption results show that in general the Construct approach is more
memory efficient. For both scenarios memory usage oscillates, because triples are deleted
when a query for a closing window is computed and these triples are not part of another
additional window. However, we also observe that, even though triples are deleted
after query executions, memory consumption steadily increases over the course of the
experiment. This suggests that the engine fails to delete outdated triples which leads
to unnecessarily high memory consumption over time. The sudden decline at the 800

98

4.6. Evaluation

minute mark at the Construct approach depicts a forced garbage collection by the Java
Virtual Machine15.

4.6.1.4 Summary

The results show that the Construct approach yields better performance with respect to
query execution time, triples per stream, and memory consumption. The main reason for
this is the reduced amount of triples pushed to the streams which need to be processed
by the queries. This performance increase also influenced our decision on implementing a
CONSTRUCT network of continuous queries when we created the widgets for the citybike
use case (cf. Section 4.3). The approach demonstrates the feasibility of the technical
implementation of the Linked Streaming Widgets concept for the given use cases.

Work on optimization of data and query processing is still scarce, because the research
field of semantic stream processing is still in its infancy. We show how the use of
query networks outperforms the alternative approach which uses SELECT queries. To
guarantee more scalability, for instance in distributed environments, further research is
necessary. As an initital step, CQELS Cloud has been presented, which extends CQELS
towards parallel processing in the cloud [LPQLVH13]. The authors of CQELS Cloud
show increased performance and scalability of continuous query operators running on the
Amazon EC2 platform. Hoeksema and Kotoulas [HK] present an extension of C-SPARQL
for the S4 streaming platform also showing favorable throughput improvements.

Another research direction to optimize query processing in a stream environment aims
at reducing the cost of expensive updates for static knowledge which often is integrated
in continuous queries. The infrequently changing data of the static knowledge usually
is retrieved each time a query is computed. Given that updates on this data rarely
happen, valuable processing time may be saved by avoiding or minimizing these updates.
In [DDG+15, DMD+15] Dehghanzadeh et al. present first promising results of their
approach called Window Based Maintenance.

Further paths of research to increase the performance of stream processing approaches are
approximate reasoning [RPZ10], incremental reasoning [BBC+10a, CSGL15], or reasoning
with Graphics Processing Units (GPU)s [LUQ14].

15We ran C-SPARQL with the following command: java -XX:-UseConcMarkSweepGC -Xms2g
-Xmx2g -jar [Path to JAR]

99

4. Environmental Streaming Mashups

1

10

100

1000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Experiment runtime (min)

Execution time (2min S) Execution time (2min C)

(a) Query execution time for the 2 minute queries

10

100

1000

10000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Experiment runtime (min)

Execution time (10min S) Execution time (10min C)

(b) Query execution time for the 10 minute aggregate queries

10

100

1000

10000

100000

1000000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Experiment runtime (min)

Execution time (6h C) Execution time (1h S) Execution time (1h C)

(c) Query execution time for the 1 hour and 6 hour aggregate queries

Figure 4.14: Query execution time evaluation results for both Select (S) and Construct (C)
approaches.

100

4.6. Evaluation

0

2000

4000

6000

8000

10000

12000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Tr
ip

le
s o

n
st

re
am

Experiment runtime (min)

2min SELECT 2min CONSTRUCT

(a) Triples on stream over time for the 2 minute queries

0

5000

10000

15000

20000

25000

30000

35000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Tr
ip

le
s o

n
st

re
am

Experiment runtime (min)

10min SELECT 10min CONSTRUCT

(b) Triples on stream over time for the 10 minute aggregate queries

0

20000

40000

60000

80000

100000

120000

140000

160000

2 102 202 302 402 502 602 702 802 902 1002 1102 1202 1302 1402

Tr
ip

le
s o

n
St

re
am

Experiment runtime (min)

6h CONSTRUCT 1h SELECT 1h CONSTRUCT

(c) Triples on stream over time for the 1 hour and 6 hour aggregate queries

Figure 4.15: Triples on stream evaluation results for both Select (S) and Construct (C)
approaches.

101

4. Environmental Streaming Mashups

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
e

m
o

ry
 u

sa
ge

 (
M

b
)

Experiment runtime (min)

CONSTRUCT Experiment SELECT Experiment

Figure 4.16: Memory usage over time by the stream processing engine C-SPARQL for
both the Select and Construct approaches

102

Part III

Conclusion

103

CHAPTER 5
Summary

The state of our world’s environment is critical. Global organizations such as the United
Nations Organization (UNO) [UNE16], European Environment Agency (EEA) [EEA15],
and the World Health Organization (WHO) [WHO16] frequently raise awareness for issues
like global warming, increasing air/water/soil pollution, resource inefficiency, among
others. Cities have often been criticized, because they cause environmental issues due to
increased waste, traffic, etc. Recently they are also considered as offering huge potential
to face anthropogenic environmental challenges [GFG+08]. In addition, the popular
term Smart City describes the concept of an intelligent city based on the integration
of technological solutions. The vision of a Smart City is to cope with and solve major
environmental challenges; this has generated a lot of interest in both industrial and
academic spheres and has, for example, been strongly supported by EU initiatives.

Ubiquitously available sensors generate timely data about our environment, potentially
supporting city stakeholders, such as citizens, urban planners, and politicians. However,
there is a lack of readily available applications making use of and contextualizing the
amounts of data which is generated continuously. Exploiting the full potential of this data
would improve informed decision-making and could ultimately lead to a more eco-friendly
way of living. Examples are reduction of individual traffic, optimizing public transport,
intelligent waste management, and smart grids to improve the efficiency of electricity
operations.

The work of the present thesis deals with the challenges of exploiting environmental data
created in urban areas to improve decision making for city stakeholders.

The first part gives a motivation and description of current problems in the area of
environmental data integration. We identify a central research question, namely “Can
real time environmental data be provided to create actionable knowledge for urban stake-
holders?”. This question subsequently is divided into three subquestions dealing with (i)
the integration of heterogeneous environmental stream data sources, (ii) the evaluation

105

5. Summary

of semantic stream processing systems, and (iii) the utilization of environmental data
streams by city stakeholders. Further, we report on the used methodology, main contri-
butions, structure of the work, and publications which were written over the course of
this research.

The second part deals with our approach on how to provide data streams to end users.
First, we conduct a requirements analysis and review existing ontologies to formulate a new
vocabulary which can be used to model environmental data streams. This Environmental
Streams Vocabulary extends and reuses concepts of the de-facto standard ontologies SSN
and RDF Data Cube. It can be used to model data streams capturing environmental
data while being compliant with the RDF Data Cube vocabulary and the Semantic
Sensor Network ontology. This facilitates reuse and data integration with sources which
already make use of these ontologies.

Second, we provide a methodology to benchmark semantic stream processing engines
(also known as RSP engines) called YABench. To the best of our knowledge YABench
is the first framework that enables to compare RSP engines with respect to correctness
of results and performance on a granular level. We use this framework to assess which
engine is most suitable with respect to the requirements that are deduced from the
challenge of providing environmental data streams to end users. Our experiments show
that when comparing C-SPARQL to CQELS, the former produces shorter delays in
result delivery when running simulations for different amounts of sensor stations while
providing high precision and recall. Similar behavior is also found when we perform
experiments with more complex queries. C-SPARQL shows better performance in terms
of memory consumption and finally, YABench is able to reveal erroneous behavior of
CQELS. These findings support the conclusion that C-SPARQL is the preferred engine
to provide environmental data streams to end users.

Finally, we extend the Linked Widgets Platform with the concept of Linked Streaming
Widgets. Linked Streaming Widgets allow end users to build light-weight web applications
facilitating integration and reuse of environmental data stream sources. Users are provided
with a visual interface which abstracts away the complexity of stream processing and
data integration. The platform executes data acquisition, transformation, processing,
and registration of queries in the background and enables users to compose applications.
We demonstrate the feasibility of this approach by means of two use cases dealing with
citybike data and integration of traffic route data with air quality data. We compare two
implementation approaches of the processing architecture and evaluate to which extent
the construction of query networks outperforms the traditional approach of using queries
which do not depend on each other.

On a general level the contributions of the present thesis have several implications: It
is evident that stream processing of heterogeneous data, such as environmental data,
necessitates the development of ontologies which have characteristics that are aligned
with the nature of the data. In order to build such an ontology a sound requirements
analysis which takes into account characteristics of the data, such as its volume, frequency,
and variety, is required. Still, more research needs to be done on how to design ontologies

106

which can be used in a stream setting and allow for scalable reasoning. The evaluation
of RSP engines presented in this work has shown that currently engines are either not
scalable enough to deal with streams of moderate frequency, or show incorrect behavior
in some cases. Hence, advancements towards increasing the performance and correctness
of RSP engines to deal with realistic settings of high-frequency and high-volume data
streams are still required. Another lesson we learned deals with the provision of user
friendly interfaces to enable the integration of web data with data streams for non-expert
users who lack programming skills. The design of such an interface requires a trade-off
between usability and functionality. The more complexity is added to the user interface,
the more functionality the user will gain, but the system will be more difficult to use.
This trade-off needs to be carefully considered taking into account the target users and
their information needs.

107

CHAPTER 6
Answers to Research Questions

We answer the research questions stated in Section 1.3 as follows:

R1 What data integration methods can be used to model environmental real time data
to overcome heterogeneity and to allow reusability and explorability?

In Chapter 2 we define a set of requirements and show that the use of data
modeling capabilities satisfy them. More precisely, we use controlled vocabularies,
i.e., ontologies, to provide a controlled schema for semantically describing environ-
mental sensor data streams supporting integration of novel and reuse of existing
data sources.

R2 How can we evaluate systems for semantic processing of real time environmental
data streams?

The YABench framework presented in Chapter 3 is the basis to identify a suitable
semantic stream processing system based on the requirements imposed by envi-
ronmental stream data. The modular framework allows to define environmental
stream scenarios and collects quantifiable results based on granular metrics. These
metrics include hardware consumption and correctness evaluations. This supports
the decision on which system fits best for a given scenario, i.e., environmental
stream data in our case.

R3 How can non-expert users, i.e, urban decision makers, be enabled to explore envi-
ronmental stream data?

The concept of Linked Streaming Widgets and the implementation of two ex-
ample use cases introduced in Chapter 4 show the feasibility and applicability of
the approach to support non-expert users in making improved decisions based on

109

6. Answers to Research Questions

environmental stream data. The integration of both static and real time streaming
knowledge contextualizes the provided information and therefore further raises its
usefulness. Linked Streaming Widgets hide the complexity of stream processing
from users and fulfill the requirements of the end user programming paradigm.

To sum up, based on presented contributions the central research question

Can real time environmental data be provided to create actionable knowledge for urban
stakeholders?

can be answered positively.

110

CHAPTER 7
Future Work

The evaluation of the implementation of our methods shows that it is possible to provide
users with environmental data and to support real time decision making based on data
integration methods. The work of this thesis can be extended in several directions:

Archiving Data Streams. This work presents an approach to explore and utilize real
time environmental data. However, for deeper analysis, such as detecting patterns,
stakeholders may also be interested in historic data, that is, archives of the data
streams. Currently, semantic stream processing engines do not enable access to
expired data items which moved out of a window’s scope. The development of
techniques to archive data streams and make them available ex post is a non trivial
task. Just storing all expiring data items in a triple store will not be scalable for
scenarios such as environmental sensor data. To this end, efficient solutions to
compress, serialize, and deserialize big RDF data are required. Initial approaches
have already been proposed [UMD+13, GFM15], however, their interrelation with
stream processing systems have not been tackled, yet.

Open Data Quality. In line with the provision of real time open data, the quality of
released data sets, especially of time-dependent data, is crucial. Data providers
often publish data sets without taking into account how the data may be used or
combined with already available data. This shortcoming decreases the quality of
open data portals and exacerbates (re)use of the data. Initial work on the assessment
of open data and open data portals is already under way [UNP15, BETL12]. Still,
we need more insights on how a high quality level of open data, particularly real
time data, can be provided to foster use and recombination of the data. Moreover,
completeness and correctness are also important factors which influence the overall
quality of published data sets and need to be considered by the providers.

111

7. Future Work

Transformation of Streams to Linked Data. There is a need to ease the transfor-
mation of raw data to linked data for potential developers in order to facilitate
linked data publication. In our approach we use RML mappings to perform this
conversion on-the-fly. The mappings are to be defined only once, however, this
process is still cumbersome and requires deep knowledge of the underlying data
structures. TripleWave is an initial proposal to provide a system that allows to
deploy RDF streams on the web [MCD+15]. Still, research into efficient ways of
transforming raw data on-the-fly into linked data streams is needed to realize a
Web of Data Streams.

Benchmark Extensions. There are several directions for future research to extend the
proposed benchmark.

First, the functional coverage of the test cases can be increased. It would be
interesting to evaluate the influence of multiple windows in one query on an engine.
To this end, it would be necessary to extend the oracle to support other window
operators and combinations of multiple windows.

Second, the integration of big background knowledge and multiple input streams
would be a valuable asset. This will broaden our understanding of how well engines
can deal with merging high-frequency data streams with large static data sources,
which is one of the promising application scenarios for RSP engines.

Third, the identification of further insights on how engines cope with different
real-world streaming scenarios necessitates the implementation of different types of
data generators. For instance, in a social media scenario, data is likely to arrive in
bursts. In such settings, engines need to be able to deal with strong variations in
inter-arrival times of elements and being able to quantify their behavior under such
circumstance will be revealing.

Fourth, complex reasoning beyond simple RDFS entailment is not yet covered by
YABench, nor by any other existing benchmark. This will become relevant once it
is fully supported by available engines.

Last, the implementation of benchmarks allowing for the registration of multiple
queries at the same time will cover a broader set of realistic use cases.

Decoupling Streaming Extensions. The Linked Streaming Widgets approach pre-
sented in this thesis has shown that it is feasible to build applications on top of
RSP engines, in our case C-SPARQL. Because there are currently several proposals
for RSP engines and that it is therefore unlikely that a single standardized engine
will be adopted, it is crucial that such applications are decoupled from underlying
RSP architectures. This decoupling will facilitate the processing of external streams
and ease the integration of additional modules in the pipeline. To this end, it will
be necessary to conduct research towards decoupled event processing systems to
enable the design of RSP applications irrespective of the underlying engines. Some
early ideas to solve this challenge exist, such as unifying RSP semantics [DCVC15],

112

sharing and reusing continuous queries [KB15b], and decoupling event processing
systems [KB15a, CA15].

Streaming Widgets Flexibility. The presented use cases of streaming widgets demon-
strate the power of combining data streams with mashup development. However,
there are still many possibilities to increase the user experience. Ways that enable
to work with multiple data streams, parametrize queries, and register new queries
have to be investigated. On a more general level, users should be able to aggregate
data more easily and to define more complex patterns for matching in monitoring
use cases. This would greatly enhance the versatility of the approach and of the
platform.

113

Appendix

115

A Experiment 1 queries
REGISTER QUERY test AS

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT ?sensor ?obs ?value
FROM STREAM <http://ex.org/streams/test> [RANGE ${WSIZE} STEP ←↩

${WSLIDE}]
WHERE {

?obs om-owl:observedProperty weather:_AirTemperature ;
om-owl:procedure ?sensor ;
om-owl:result [om-owl:floatValue ?value] .

FILTER(?value > ${TEMP})
}

Listing A.1: C-SPARQL query for YABench experiment one

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?sensor ?obs ?value WHERE {
STREAM <http://ex.org/streams/test> [RANGE ${WSIZE} SLIDE ←↩

${WSLIDE}] {
?obs om-owl:observedProperty weather:_AirTemperature ;

om-owl:procedure ?sensor ;
om-owl:result ?res .

?res om-owl:floatValue ?value .
}
FILTER(?value > ${TEMP})

}

Listing A.2: CQELS query for YABench experiment one

117

Appendix

B Experiment 2 queries
REGISTER QUERY test AS

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT (AVG(?value) AS ?avg)
FROM STREAM <http://ex.org/streams/test> [RANGE ${WSIZE} STEP ←↩

${WSLIDE}]
WHERE {

?obs om-owl:observedProperty weather:_AirTemperature ;
om-owl:procedure ?sensor ;
om-owl:result [om-owl:floatValue ?value] .
FILTER(?value > ${TEMP})

}

Listing B.1: C-SPARQL query for YABench experiment two

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT (AVG(?value) AS ?avg) WHERE {
STREAM <http://ex.org/streams/test> [RANGE ${WSIZE} SLIDE ←↩

${WSLIDE}] {
?obs om-owl:observedProperty weather:_AirTemperature ;

om-owl:procedure ?sensor ;
om-owl:result ?res .

?res om-owl:floatValue ?value .
}
FILTER(?value > ${TEMP})

}

Listing B.2: CQELS query for YABench experiment two

118

C. Experiment 3 queries

C Experiment 3 queries
REGISTER QUERY test AS

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT ?sensor ?ob1 ?value1 ?ob2
FROM STREAM <http://ex.org/streams/test> [RANGE ${WSIZE} STEP ←↩

${WSLIDE}]
WHERE {

?ob1 om-owl:procedure ?sensor ;
om-owl:observedProperty weather:_AirTemperature ;
om-owl:result ?res1 .

?res1 om-owl:floatValue ?value1 .
?ob2 om-owl:procedure ?sensor ;

om-owl:observedProperty weather:_AirTemperature ;
om-owl:result ?res2 .

?res2 om-owl:floatValue ?value2 .
FILTER(?value1-?value2 > ${VARIATION_THRESHOLD})

}

Listing C.1: C-SPARQL query for YABench experiment three

PREFIX om-owl: ←↩
<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT ?sensor ?ob1 ?value1 ?ob2
WHERE {

STREAM <http://ex.org/streams/test> [RANGE ${WSIZE}] {
?ob1 om-owl:procedure ?sensor ;

om-owl:observedProperty weather:_AirTemperature ;
om-owl:result ?res1 .

?res1 om-owl:floatValue ?value1 .
?ob2 om-owl:procedure ?sensor ;

om-owl:observedProperty weather:_AirTemperature ;
om-owl:result ?res2 .

?res2 om-owl:floatValue ?value2 .
}
FILTER(?value1-?value2 > ${VARIATION_THRESHOLD})

}

Listing C.2: CQELS query for YABench experiment three

119

Appendix

D Python wrapper for C-SPARQL

import requests
import settings
import time
import urllib.request
from rdflib import Graph
import log
import urllib.parse
import sys

def registerStream(streamuri):
try:

r = requests.put("http://{}/streams/{}".format(←↩
settings.CSPARQL_SERVERURL, ←↩
urllib.parse.quote_plus(streamuri)))

logger.debug("{} - at ←↩
{}".format(r.text,settings.CSPARQL_SERVERURL))

except requests.exceptions.RequestException as e:
logger.debug(e)
sys.exit(1)

def putStaticModel(staticKB):
try:

#read static knowledge and serialize to turtle
response = urllib.request.urlopen(staticKB)
data = response.read()
g = Graph()
try:

g.parse(data=data, format="xml")
except Exception as e:

logger.debug(e)
sys.exit(1)

turtle_string = g.serialize(format=’turtle’, ←↩
encoding=’utf-8’,).decode("utf-8").replace(’\n’,’ ’)

r = requests.post("http://{}/kb".format(←↩
settings.CSPARQL_SERVERURL), data={"action":"put", ←↩
"iri" : staticKB, "serialization" : turtle_string})

logger.debug("{} - at ←↩
{}".format(r.text,settings.CSPARQL_SERVERURL))

except requests.exceptions.RequestException as e:
logger.debug(e)
sys.exit(1)

def registerQuery(queryname,queryobserver):
#register query

120

D. Python wrapper for C-SPARQL

try:
r = requests.put("http://{}/queries/{}".format(←↩

settings.CSPARQL_SERVERURL, ←↩
queryname),data=settings.QUERYDICT[queryname])

logger.debug("{} - at ←↩
{}".format(r.text,settings.CSPARQL_SERVERURL))

except requests.exceptions.RequestException as e:
logger.debug(e)
sys.exit(1)

#add observer
try:

r = requests.post("http://{}/queries/{}".format(←↩
settings.CSPARQL_SERVERURL, ←↩
queryname),data=queryobserver)

logger.debug("{} - {} {}".format(r.text,’observer added ←↩
at’, queryobserver))

except requests.exceptions.RequestException as e:
logger.debug(e)
sys.exit(1)

if __name__ == ’__main__’:
logger = log.setup_custom_logger(’root’)
putStaticModel(settings.AIRQUALITY_STATICURI)
registerStream(settings.AIRQUALITY_STREAMURI)
registerQuery(settings.AIRQUALITY_QUERYNAME, ←↩

settings.AIRQUALITY_QUERY_DESTINATION)

Listing D.1: Python source code calling REST functions of the C-SPARQL server

121

Appendix

E RML mappings for the citybike use case
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix r2rml: <http://www.w3.org/ns/r2rml#>.
@prefix wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#>.
@prefix ont: <http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/>.

<Mapping1>
rml:logicalSource

[rml:iterator
"//station";

rml:referenceFormulation
ql:XPath;

rml:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[rml:reference "name" ;
r2rml:datatype xsd:string];

r2rml:predicate
<rdfs:label>],

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{id}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

wgs:location],
[r2rml:objectMap

[rml:reference "description"];
r2rml:predicate

<rdfs:comment>];
r2rml:subjectMap

[r2rml:class
ont:Sensor;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}"].

<Mapping2>
rml:logicalSource

[rml:iterator
"//station";

rml:referenceFormulation
ql:XPath;

rml:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[rml:reference "longitude" ;
r2rml:datatype xsd:string];

r2rml:predicate
wgs:long],

[r2rml:objectMap
[rml:reference "latitude" ;

r2rml:datatype xsd:string];
r2rml:predicate

wgs:lat];
r2rml:subjectMap

[r2rml:class
wgs:Point;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{id}"].

Listing E.1: RML mapping to create static knowledge for the citybike use case

122

E. RML mappings for the citybike use case

@prefix rml: <http://pebbie.org/mashup/rml-source/>.
@prefix rm: <http://semweb.mmlab.be/ns/rml#>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix r2rml: <http://www.w3.org/ns/r2rml#>.
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>.
@prefix ont: <http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rel: <http://sweet.jpl.nasa.gov/2.3/relaSci.owl#>.
@prefix cube: <http://purl.org/linked-data/cube#>.
@prefix qudt: <http://qudt.org/schema/qudt#>.
@prefix time: <http://www.w3.org/2006/time#>.

rml:freebikes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freebikesobservation/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:madeObservation];
r2rml:subjectMap

[r2rml:class
ont:Sensor;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}"].

rml:observationfreebikes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:constant
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#dimensionlessUnit";

r2rml:termType
r2rml:IRI];

r2rml:predicate
rel:hasUnit],

[r2rml:objectMap
[r2rml:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/citybikestream";
r2rml:termType

r2rml:IRI];
r2rml:predicate

cube:DataSet],
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freebikesobservation/output/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:observationResult],
[r2rml:objectMap

[r2rml:constant
"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/FreeBikes";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:observedProperty],

123

Appendix

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩
TIMESTAMP}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:observationResultTime],

[r2rml:objectMap
[r2rml:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/BikeStation";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:FeatureOfInterest];
r2rml:subjectMap

[r2rml:class
ont:Observation;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freebikesobservation/{!TIMESTAMP}"].
rml:outputfreebikes

rm:logicalSource
[rm:iterator

"//station";
rm:referenceFormulation

ql:XPath;
rm:source

"http://dynamisch.citybikewien.at/citybike_xml.php"];
r2rml:predicateObjectMap

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
freebikesobservation/output/obsvalue/{TIMESTAMP}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:hasValue],

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:isProducedBy];
r2rml:subjectMap

[r2rml:class
ont:Output;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freebikesobservation/output/{!TIMESTAMP}"].
rml:obsvaluefreebikes

rm:logicalSource
[rm:iterator

"//station";
rm:referenceFormulation

ql:XPath;
rm:source

"http://dynamisch.citybikewien.at/citybike_xml.php"];
r2rml:predicateObjectMap

[r2rml:objectMap
[rm:reference "free_bikes";

r2rml:datatype xsd:int];
r2rml:predicate

qudt:numericValue];
r2rml:subjectMap

[r2rml:class
ssn:ObservationValue;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freebikesobservation/output/obsvalue/{!TIMESTAMP}"].
rml:availableboxes

rm:logicalSource

124

E. RML mappings for the citybike use case

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

availableboxesobservation/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:madeObservation];
r2rml:subjectMap

[r2rml:class
ont:Sensor;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}"].

rml:observationavailableboxes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

availableboxesobservation/output/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:observationResult],
[r2rml:objectMap

[r2rml:constant
"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/AvailableBoxes";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:observedProperty],

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩
TIMESTAMP}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:observationResultTime],

[r2rml:objectMap
[r2rml:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/BikeStation";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:FeatureOfInterest],
[r2rml:objectMap

[r2rml:constant
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#dimensionlessUnit";

r2rml:termType
r2rml:IRI];

r2rml:predicate
rel:hasUnit],

[r2rml:objectMap
[r2rml:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/citybikestream";
r2rml:termType

r2rml:IRI];
r2rml:predicate

cube:DataSet];

125

Appendix

r2rml:subjectMap
[r2rml:class

ont:Observation;
r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
availableboxesobservation/{!TIMESTAMP}"].

rml:outputavailableboxes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

availableboxesobservation/output/obsvalue/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:hasValue],
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:isProducedBy];

r2rml:subjectMap
[r2rml:class

ont:Output;
r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
availableboxesobservation/output/{!TIMESTAMP}"].

rml:obsvalueavailableboxes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[rm:reference "boxes";
r2rml:datatype xsd:int];

r2rml:predicate
qudt:numericValue];

r2rml:subjectMap
[r2rml:class

ssn:ObservationValue;
r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
availableboxesobservation/output/obsvalue/{!TIMESTAMP}"].

rml:freeboxes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freeboxesobservation/{TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:madeObservation];

126

E. RML mappings for the citybike use case

r2rml:subjectMap
[r2rml:class

ont:Sensor;
r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}"].
rml:observationfreeboxes

rm:logicalSource
[rm:iterator

"//station";
rm:referenceFormulation

ql:XPath;
rm:source

"http://dynamisch.citybikewien.at/citybike_xml.php"];
r2rml:predicateObjectMap

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
freeboxesobservation/output/{TIMESTAMP}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:observationResult],

[r2rml:objectMap
[r2rml:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/FreeBoxes";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:observedProperty],
[r2rml:objectMap

[r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩

TIMESTAMP}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:observationResultTime],
[r2rml:objectMap

[r2rml:constant
"http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/BikeStation";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:FeatureOfInterest],

[r2rml:objectMap
[r2rml:constant

"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#dimensionlessUnit";
r2rml:termType

r2rml:IRI];
r2rml:predicate

rel:hasUnit],
[r2rml:objectMap

[r2rml:constant
"http://ldlab.ifs.tuwien.ac.at/envstreams/citybikestream";

r2rml:termType
r2rml:IRI];

r2rml:predicate
cube:DataSet];

r2rml:subjectMap
[r2rml:class

ont:Observation;
r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
freeboxesobservation/{!TIMESTAMP}"].

rml:outputfreeboxes
rm:logicalSource

[rm:iterator
"//station";

rm:referenceFormulation
ql:XPath;

rm:source
"http://dynamisch.citybikewien.at/citybike_xml.php"];

r2rml:predicateObjectMap

127

Appendix

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩
freeboxesobservation/output/obsvalue/{TIMESTAMP}";

r2rml:termType
r2rml:IRI];

r2rml:predicate
ssn:hasValue],

[r2rml:objectMap
[r2rml:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}";
r2rml:termType

r2rml:IRI];
r2rml:predicate

ssn:isProducedBy];
r2rml:subjectMap

[r2rml:class
ont:Output;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freeboxesobservation/output/{!TIMESTAMP}"].
rml:time

rm:logicalSource
[rm:iterator

"//station";
rm:referenceFormulation

ql:XPath;
rm:source

"http://dynamisch.citybikewien.at/citybike_xml.php"];
r2rml:predicateObjectMap

[r2rml:objectMap
[r2rml:template "{TIMESTAMP}";

r2rml:datatype xsd:dateTime];
r2rml:predicate

time:inXSDDateTime];
r2rml:subjectMap

[r2rml:class
time:Instant;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{!TIMESTAMP←↩

}"].
rml:obsvaluefreeboxes

rm:logicalSource
[rm:iterator

"//station";
rm:referenceFormulation

ql:XPath;
rm:source

"http://dynamisch.citybikewien.at/citybike_xml.php"];
r2rml:predicateObjectMap

[r2rml:objectMap
[rm:reference "free_boxes";

r2rml:datatype xsd:int];
r2rml:predicate

qudt:numericValue];
r2rml:subjectMap

[r2rml:class
ssn:ObservationValue;

r2rml:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/citybike/{id}/←↩

freeboxesobservation/output/obsvalue/{!TIMESTAMP}"].

Listing E.2: RML mapping to create stream data for the citybike use case

128

F. Continuous queries for the citybike use case

F Continuous queries for the citybike use case
REGISTER STREAM citybikequery AS
CONSTRUCT { ?s rdfs:label ?label .

?s geo:lat ?lat .
?s geo:long ?lon .
?s ssn:madeObservation ?o1 .

?o1 ei:FreeBoxes ?fboxes .
?o1 time:inXSDDateTime ?time .

?s ssn:madeObservation ?o2 .
?o2 ei:FreeBikes ?fbikes .
?o2 time:inXSDDateTime ?time .

?s ssn:madeObservation ?o3 .
?o3 ei:AvailableBoxes ?avail .
?o3 time:inXSDDateTime ?time .

}
FROM <http://linkedwidgets.org/StreamingWidgets/cityBikeStatic.rdf>
FROM STREAM ←↩
<http://ldlab.ifs.tuwien.ac.at/envstreams/citybikestream> ←↩
[RANGE 2m STEP 2m]

WHERE { ?s ssn:madeObservation ?o1 .
?s rdfs:label ?label .

?o1 ssn:observedProperty ei:FreeBoxes .
?o1 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?fboxes]] .

?o1 ssn:observationResultTime [time:inXSDDateTime ?time ←↩
] .

?s geo:location [geo:lat ?lat] .
?s geo:location [geo:long ?lon] .
?s ssn:madeObservation ?o2 .

?o2 ssn:observedProperty ei:FreeBikes .
?o2 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?fbikes]] .

?o2 ssn:observationResultTime [time:inXSDDateTime ?time ←↩
] .

?s ssn:madeObservation ?o3 .
?o3 ssn:observedProperty ei:AvailableBoxes .
?o3 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?avail]] .

?o3 ssn:observationResultTime [time:inXSDDateTime ?time ←↩
] .

}

Listing F.1: C-SPARQL continuous query to retrieve citybike observations. For the sake
of brevity we omit prefix definitions

129

Appendix

REGISTER STREAM citybikeaggdquery AS PREFIX
CONSTRUCT { ?s rdfs:label ?label .

?s geo:lat ?lat .
?s geo:long ?lon .
?s ssn:madeObservation ?o1n .

?o1n ei:FreeBoxes ?fboxes .
?o1n time:inXSDDateTime ?time .

?s ssn:madeObservation ?o2n .
?o2n ei:FreeBikes ?fbikes .
?o2n time:inXSDDateTime ?time .

?s ssn:madeObservation ?o3n .
?o3n ei:AvailableBoxes ?avail .
?o3n time:inXSDDateTime ?time .

}
FROM <http://linkedwidgets.org/StreamingWidgets/cityBikeStatic.rdf>
FROM STREAM <http://streamreasoning.org/streams/citybikeagghquery> ←↩
[RANGE 24h STEP 24h]

WHERE {
SELECT ?s ?label (xsd:dateTime(CONCAT(SUBSTR(STR(afn:now()), 1, ←↩
17), ’00’)) as ?time) (AVG(?fboxesSingle) as ?fboxes) ←↩
(AVG(?fbikesSingle) as ?fbikes) (AVG(?availSingle) as ?avail) ←↩
?lat ?lon (IRI(CONCAT(STR(?s), ’/freeboxesobservation/’, ←↩
SUBSTR(STR(afn:now()), 1, 17), ’00’)) AS ?o1n) ←↩
(IRI(CONCAT(STR(?s), ’/freebikesobservation/’, ←↩
SUBSTR(STR(afn:now()), 1, 17), ’00’)) AS ?o2n) ←↩
(IRI(CONCAT(STR(?s), ’/availableboxesobservation/’, ←↩
SUBSTR(STR(afn:now()), 1, 17), ’00’)) AS ?o3n) WHERE { ?s ←↩
rdfs:label ?label .

?s geo:lat ?lat .
?s geo:long ?lon .
?s ssn:madeObservation ?o1 .

?o1 ei:FreeBoxes ?fboxesSingle .
?o1 time:inXSDDateTime ?time1 .

?s ssn:madeObservation ?o2 .
?o2 ei:FreeBikes ?fbikesSingle .
?o2 time:inXSDDateTime ?time1 .

?s ssn:madeObservation ?o3 .
?o3 ei:AvailableBoxes ?availSingle .
?o3 time:inXSDDateTime ?time1 .

} GROUP BY ?s ?time ?label ?lat ?lon ?o1n ?o2n ?o3n }"

Listing F.2: C-SPARQL continuous aggregate query to retrieve citybike observations.
For the sake of brevity we omit prefix definitions

130

G. Semantic models of citybike use case widgets

G Semantic models of citybike use case widgets

lw
:c

it
yb

ik
eS

ta
ti

o
n

Fi
lt

er
lw

:c
it

yb
ik

eS
ta

ti
o

n
Fi

lt
er

M
o

d
el

lw
:in

p
u

t

o
w

l:T
h

in
g

ge
o

:P
o

in
t

ge
o

:lo
ca

ti
o

n

lw
:o

u
tp

u
t

xs
d

:f
lo

at
xs

d
:f

lo
at

ge
o

:lo
n

g
ge

o
:la

t

lw
:a

rr
ay

D
im

en
si

o
n

lw
:h

as
Sa

m
p

le
D

at
a

lw
:a

rr
ay

D
im

en
si

o
n

ge
o

:P
o

in
t

ge
o

:lo
ca

ti
o

n

xs
d

:f
lo

at
xs

d
:f

lo
at

ge
o

:lo
n

g
ge

o
:la

t

q
b

:D
at

aS
et

lw
:h

as
In

p
u

t
lw

:h
as

O
u

tp
u

t

o
w

l:T
h

in
g

lw
:h

as
D

at
aM

o
d

el

lw
:c

it
yB

ik
eD

at
a

lw
:h

as
D

at
aM

o
d

el

lw
:a

rr
ay

D
im

en
si

o
n

„{
..

.}
“ 1

0

lw
:a

rr
ay

D
im

en
si

o
n 1

lw
:a

rr
ay

D
im

en
si

o
n

0

0

in
p

u
t

tr
ee

 m
o

d
el

o
u

tp
u

t
tr

ee
 m

o
d

el

q
b

:D
at

aS
et

lw
:c

it
yB

ik
eD

at
a

ev
en

t:
Ev

en
t

lw
:h

as
D

at
aM

o
d

el

xs
d

:s
tr

in
g

xs
d

:s
tr

in
g

rd
fs

:la
b

el

rd
fs

:c
o

m
m

en
t ti

m
e:

in
X

SD
D

at
eT

im
e xs

d
:d

at
eT

im
e

lw
:a

rr
ay

D
im

en
si

o
n

1

lw
:h

as
Sa

m
p

le
D

at
a

„{
..

.}
“

lw

h
tt

p
:/

/l
in

ke
d

w
id

ge
ts

.o
rg

/o
n

to
lo

gi
es

/
ge

o

h
tt

p
:/

/w
w

w
.w

3
.o

rg
/2

0
0

3
/0

1
/g

eo
/w

gs
8

4
_p

o
s#

xs
d

h

tt
p

:/
/w

w
w

.w
3

.o
rg

/2
0

0
1

/X
M

LS
ch

em
a#

ti
m

e
 h

tt
p

:/
/w

w
w

.w
3

.o
rg

/2
0

0
6

/t
im

e#

q
b

h
tt

p
:/

/p
u

rl
.o

rg
/l

in
ke

d
-d

at
a/

cu
b

e#
e

ve
n

t
h

tt
p

:/
/p

u
rl

.o
rg

/N
ET

/c
4

d
m

/e
ve

n
t.

o
w

l#
o

w
l

h
tt

p
:/

/w
w

w
.w

3
.o

rg
/2

0
0

2
/0

7
/o

w
l#

rd
fs

h
tt

p
:/

/w
w

w
.w

3
.o

rg
/2

0
0

0
/0

1
/r

d
f-

sc
h

em
a#

Figure G.1: Semantic model of the Observation Filter widget

131

Appendix

lw:citybikeStationFilter
lw:citybikeStation

FilterModel

lw:inputlw:hasSampleData

lw:hasInput

lw:hasDataModel

„{...}“

input tree model

lw http://linkedwidgets.org/ontologies/
xsd http://www.w3.org/2001/XMLSchema#
event http://purl.org/NET/c4dm/event.owl#
rdfs http://www.w3.org/2000/01/rdf-schema#

time http://www.w3.org/2006/time#

event:Event

xsd:stringxsd:string

rdfs:labelrdfs:comment

time:inXSDDateTime

xsd:dateTime

lw:arrayDimension

1

Figure G.2: Semantic model of the Send Event widget

132

H. RML mappings for the route enrichment use case

H RML mappings for the route enrichment use case

@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rm: <http://pebbie.org/mashup/rml-source/>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema/>.
@prefix ont: <http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/>.
rm:Mapping1

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap [
rr:objectMap [rml:reference "MetaInfo.Location" ;

rr:datatype xsd:string];
rr:predicate <rdfs:comment>],

[rr:objectMap
[rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{stationid}";
rr:termType

rr:IRI];
rr:predicate

wgs:location],
[rr:predicate <rdfs:label>;
rr:objectMap [rml:reference "MetaInfo.Name";

rr:datatype xsd:string];
];

rr:subjectMap
[rr:class

ont:Sensor;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:Mapping2
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap
[rr:objectMap

[rml:reference "gml$Point.gml$coord.X" ;
rr:datatype xsd:string];

rr:predicate
wgs:long],

[rr:objectMap
[rml:reference "gml$Point.gml$coord.Y" ;
rr:datatype xsd:string];

rr:predicate
wgs:lat];

rr:subjectMap
[rr:class

wgs:Point;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{!stationid}"].

rm:Mapping3
rml:logicalSource

133

Appendix

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap [
rr:objectMap [rml:reference "MetaInfo.Location" ;

rr:datatype xsd:string];
rr:predicate <rdfs:comment>],

[rr:objectMap
[rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{stationid}";
rr:termType

rr:IRI];
rr:predicate

wgs:location],
[rr:predicate <rdfs:label>;
rr:objectMap [rml:reference "MetaInfo.Name";

rr:datatype xsd:string];
];

rr:subjectMap
[rr:class

ont:Sensor;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:Mapping4
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rml:reference "gml$Point.gml$coord.X" ;
rr:datatype xsd:string];

rr:predicate
wgs:long],

[rr:objectMap
[rml:reference "gml$Point.gml$coord.Y" ;

rr:datatype xsd:string];
rr:predicate

wgs:lat];
rr:subjectMap

[rr:class
wgs:Point;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{!stationid}"].

rm:Mapping5
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap [
rr:objectMap [rml:reference "MetaInfo.Location" ;

rr:datatype xsd:string];
rr:predicate <rdfs:comment>],

[rr:objectMap

134

H. RML mappings for the route enrichment use case

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{stationid}";

rr:termType
rr:IRI];

rr:predicate
wgs:location],

[rr:predicate <rdfs:label>;
rr:objectMap [rml:reference "MetaInfo.Name";

rr:datatype xsd:string];
];

rr:subjectMap
[rr:class

ont:Sensor;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:Mapping6
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap
[rr:objectMap

[rml:reference "gml$Point.gml$coord.X" ;
rr:datatype xsd:string];

rr:predicate
wgs:long],

[rr:objectMap
[rml:reference "gml$Point.gml$coord.Y" ;
rr:datatype xsd:string];

rr:predicate
wgs:lat];

rr:subjectMap
[rr:class

wgs:Point;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/point/{!stationid}"].

Listing H.1: RML mapping to create static knowledge for the route enrichment use case

135

Appendix

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rm: <http://pebbie.org/mashup/rml-source/>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>.
@prefix ont: <http://ldlab.ifs.tuwien.ac.at/envstreams/ontology/>.
@prefix rel: <http://sweet.jpl.nasa.gov/2.3/relaSci.owl#>.
@prefix cube: <http://purl.org/linked-data/cube#>.
@prefix qudt: <http://qudt.org/schema/qudt#>.
@prefix time: <http://www.w3.org/2006/time#>.

rm:pm10
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

pm10observation/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:madeObservation];
rr:subjectMap

[rr:class
ont:Sensor;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:observationpm10
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

pm10observation/output/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:observationResult],
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/propMass.owl#Density";

rr:termType
rr:IRI];

rr:predicate
ssn:observedProperty],

[rr:objectMap
[rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩
TIMESTAMP}";

rr:termType
rr:IRI];

rr:predicate
ssn:observationResultTime],

136

H. RML mappings for the route enrichment use case

[rr:objectMap
[rr:constant

"http://sweet.jpl.nasa.gov/2.3/matrAerosol.owl#PM10";
rr:termType

rr:IRI];
rr:predicate

ssn:FeatureOfInterest],
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#kilogramPerMeterCubed";

rr:termType
rr:IRI];

rr:predicate
rel:hasUnit],

[rr:objectMap
[rr:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/airqualitystream";
rr:termType

rr:IRI];
rr:predicate

cube:DataSet];
rr:subjectMap

[rr:class
ont:Observation;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

pm10observation/{!TIMESTAMP}"].
rm:outputpm10

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

pm10observation/output/obsvalue/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:hasValue],
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}"←↩

;
rr:termType

rr:IRI];
rr:predicate

ssn:isProducedBy];
rr:subjectMap

[rr:class
ont:Output;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

pm10observation/output/{!TIMESTAMP}"].
rm:obsvaluepm10

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=PM10_K" ←↩
];

rr:predicateObjectMap

137

Appendix

[rr:objectMap
[rml:reference "value"; rr:datatype xsd:int];

rr:predicate
qudt:numericValue];

rr:subjectMap
[rr:class

ssn:ObservationValue;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩
pm10observation/output/obsvalue/{!TIMESTAMP}"].

rm:no
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

noobservation/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:madeObservation];
rr:subjectMap

[rr:class
ont:Sensor;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:observationno
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#kilogramPerMeterCubed";

rr:termType
rr:IRI];

rr:predicate
rel:hasUnit],

[rr:objectMap
[rr:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/airqualitystream";
rr:termType

rr:IRI];
rr:predicate

cube:DataSet],
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

noobservation/output/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:observationResult],
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/propMass.owl#Density";

rr:termType
rr:IRI];

138

H. RML mappings for the route enrichment use case

rr:predicate
ssn:observedProperty],

[rr:objectMap
[rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩
TIMESTAMP}";

rr:termType
rr:IRI];

rr:predicate
ssn:observationResultTime],

[rr:objectMap
[rr:constant

"http://sweet.jpl.nasa.gov/2.3/matrCompound.owl#NO";
rr:termType

rr:IRI];
rr:predicate

ssn:FeatureOfInterest];
rr:subjectMap

[rr:class
ont:Observation;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

noobservation/{!TIMESTAMP}"].
rm:outputno

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

noobservation/output/obsvalue/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:hasValue],
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}"←↩

;
rr:termType

rr:IRI];
rr:predicate

ssn:isProducedBy];
rr:subjectMap

[rr:class
ont:Output;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

noobservation/output/{!TIMESTAMP}"].
rm:obsvalueno

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rml:reference "value"; rr:datatype xsd:int];
rr:predicate

qudt:numericValue];
rr:subjectMap

[rr:class

139

Appendix

ssn:ObservationValue;
rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩
noobservation/output/obsvalue/{!TIMESTAMP}"].

rm:no2
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

no2observation/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:madeObservation];
rr:subjectMap

[rr:class
ont:Sensor;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}"].

rm:observationno2
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

no2observation/output/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:observationResult],
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/propMass.owl#Density";

rr:termType
rr:IRI];

rr:predicate
ssn:observedProperty],

[rr:objectMap
[rr:template

"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{←↩
TIMESTAMP}";

rr:termType
rr:IRI];

rr:predicate
ssn:observationResultTime],

[rr:objectMap
[rr:constant

"http://sweet.jpl.nasa.gov/2.3/matrCompound.owl#NO2";
rr:termType

rr:IRI];
rr:predicate

ssn:FeatureOfInterest],
[rr:objectMap

[rr:constant
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#kilogramPerMeterCubed";

140

H. RML mappings for the route enrichment use case

rr:termType
rr:IRI];

rr:predicate
rel:hasUnit],

[rr:objectMap
[rr:constant

"http://ldlab.ifs.tuwien.ac.at/envstreams/airqualitystream";
rr:termType

rr:IRI];
rr:predicate

cube:DataSet];
rr:subjectMap

[rr:class
ont:Observation;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

no2observation/{!TIMESTAMP}"].
rm:outputno2

rml:logicalSource
[rml:iterator

"$.stations[*]";
rml:referenceFormulation

ql:JSONPath;
rml:source

"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩
LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}/←↩

no2observation/output/obsvalue/{TIMESTAMP}";
rr:termType

rr:IRI];
rr:predicate

ssn:hasValue],
[rr:objectMap

[rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{stationid}"←↩

;
rr:termType

rr:IRI];
rr:predicate

ssn:isProducedBy];
rr:subjectMap

[rr:class
ont:Output;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

no2observation/output/{!TIMESTAMP}"].

rm:obsvalueno2
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO2"];

rr:predicateObjectMap
[rr:objectMap

[rml:reference "value"; rr:datatype xsd:int];
rr:predicate

qudt:numericValue];
rr:subjectMap

[rr:class
ssn:ObservationValue;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/airquality/{!stationid}/←↩

no2observation/output/obsvalue/{!TIMESTAMP}"].

141

Appendix

rm:time
rml:logicalSource

[rml:iterator
"$.stations[*]";

rml:referenceFormulation
ql:JSONPath;

rml:source
"http://luft.umweltbundesamt.at/pub/map_chart/index.pl?runmode=values_json&←↩

LAT_START=48.16745932392312&LAT_END=48.3982089367818&LNG_START←↩
=15.840225219726562&LNG_END=16.837234497070312&MEANTYPE=HMW&COMPONENT=NO"];

rr:predicateObjectMap
[rr:objectMap

[rr:datatype xsd:dateTime; rr:template "{TIMESTAMP}"];
rr:predicate

time:inXSDDateTime];
rr:subjectMap

[rr:class
time:Instant;

rr:template
"http://ldlab.ifs.tuwien.ac.at/envstreams/sensors/observation/instant/{!TIMESTAMP←↩

}"].

Listing H.2: RML mapping to create stream data for the route enrichment use case

142

I. Continuous queries for the route enrichment use case

I Continuous queries for the route enrichment use case

REGISTER STREAM airqualityquery AS
CONSTRUCT {

?s rdfs:label ?label .
?s geo:lat ?lat .
?s geo:long ?lon .
?s ssn:madeObservation ?o1 .

?o1 sweetComp:NO2 ?no2 .
?o1 time:inXSDDateTime ?time .

?s ssn:madeObservation ?o2 .
?o2 sweetAir:PM10 ?pm10 .
?o2 time:inXSDDateTime ?time .

?s ssn:madeObservation ?o3 .
?o3 sweetComp:NO ?no .
?o3 time:inXSDDateTime ?time .

}
FROM <http://linkedwidgets.org/StreamingWidgets/airQualityStatic.rdf>
FROM STREAM ←↩
<http://ldlab.ifs.tuwien.ac.at/envstreams/airqualitystream> ←↩
[RANGE 5m STEP 5m]

WHERE {
?s rdf:type ei:Sensor .
?s rdfs:label ?label .
?s geo:location [geo:lat ?lat] .
?s geo:location [geo:long ?lon] .

OPTIONAL {
?s ssn:madeObservation ?o1 .

?o1 ssn:FeatureOfInterest sweetComp:NO2 .
?o1 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?no2]] .

?o1 ssn:observationResultTime [time:inXSDDateTime ?time] .
} OPTIONAL {

?s ssn:madeObservation ?o2 .
?o2 ssn:FeatureOfInterest sweetAir:PM10 .
?o2 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?pm10]].

?o2 ssn:observationResultTime [time:inXSDDateTime ?time] .
} OPTIONAL {

?s ssn:madeObservation ?o3 .
?o3 ssn:FeatureOfInterest sweetComp:NO .
?o3 ssn:observationResult [ssn:hasValue [←↩
qudt:numericValue ?no]] .

?o3 ssn:observationResultTime [time:inXSDDateTime ?time] .
} }

Listing I.1: C-SPARQL continuous query to retrieve air quality observations. For the
sake of brevity we omit prefix definitions

143

Appendix

J Semantic model of route enrichment use case widget

lw:airQualityEnrichment
lw:airQualityEnric

hmentModel

lw:input

dbp:RouteOf
Transportation

geo:Point

geo:location

lw:output

xsd:float xsd:float

geo:long geo:lat

lw:arrayDimension

lw:hasSampleData

lw:arrayDimension geo:Point

geo:location

xsd:float xsd:float

geo:long geo:lat

lw:hasInput lw:hasOutput

dbp:RouteOf
Transportation

lw:hasDataModellw:hasDataModel

„{...}“

1

1

lw:arrayDimension

1

lw:arrayDimension

1

input tree model output tree model

lw http://linkedwidgets.org/ontologies/
geo http://www.w3.org/2003/01/geo/wgs84_pos#
xsd http://www.w3.org/2001/XMLSchema#

dbp http://dbpedia.org/ontology/Place

lw:hasSampleData
„{...}“

xsd:float

lw:airQuality

Figure J.1: Semantic model of the Air Quality Enrichment widget

144

K. Construct query cascade

K Construct query cascade

Figure K.1: Construct query cascade used for the evaluation. CQ1–CQ4 are continuous
queries with different window definitions. CQ2–CQ4 consist of aggregate functions and
consume the output of their preceding queries, that is, a stream of RDF triples.

145

List of Figures

1.1 Design Science Approach . 11

2.1 Reuse and combination of external ontologies 30
2.2 SSN ontology-centric view over classes and their relations 31
2.3 Data Cube vocabulary-centric view over classes and their relations 31
2.4 Architecture of the proposed approach . 32

3.1 High-level architecture of C-SPARQL . 40
3.2 High-level architecture of CQELS . 41
3.3 High-level architecture of SPARQLStream 42
3.4 Data schema used in LSBench . 46
3.5 Data sets used in SRBench and their interrelations 47
3.6 Architecture of the YABench framework 51
3.7 Data model of generated streams based on LinkedSensorData. 52
3.8 Experiment 1, precision and recall . 60
3.9 Experiment 1, delay . 61
3.10 Correlation between result size and delay for C-SPARQL 61
3.11 Experiment 1, memory consumption . 62
3.12 Lower precision and recall due to delay of actual window Wa 63
3.13 Experiment 2, precision and recall . 64
3.14 Experiment 2, memory consumption . 65
3.15 Experiment 3, precision and recall . 66
3.16 Experiment 3, delay and memory consumption 67
3.17 Experiment 4 precision/recall results in gracious and non-gracious modes . . 69

4.1 Screenshot of Videk . 73
4.2 Screenshot of Traffic LarKC . 75
4.3 Screenshot of SensorMasher . 76
4.4 Screenshot of SemSorGrid4Env . 78
4.5 General Linked Widget model and Geo Merger model 82
4.6 Visual model defined for the Citybike Station Filter widget 85
4.7 Graph used by the automatic composition algorithm to find complete mashups 87
4.8 Architecture of Linked Streaming Widgets 89
4.9 Excerpt of a graph showing a single observation of a sensor 91

147

4.10 Semantic model of the Citybike Station Filter widget 93
4.11 A mashup displaying citybike stream data of one specific station 94
4.12 A mashup monitoring citybike observation data 94
4.13 A mashup displaying routes . 95
4.14 Query execution time evaluation results 100
4.15 Triples on stream evaluation results . 101
4.16 Memory usage over time . 102

G.1 Semantic model of the Observation Filter widget 131
G.2 Semantic model of the Send Event widget 132
J.1 Semantic model of the Air Quality Enrichment widget 144
K.1 Construct query cascade used for the evaluation 145

148

List of Tables

2.1 Overview of literature in ontology-based environmental data modeling 22
2.2 Comparison of supported observation properties 27
2.3 Reused ontologies . 30

3.1 Semantic stream processing requirements and challenges 43
3.2 Results of CSRBench showing correctness of results for different types of queries 48
3.3 RSP benchmarks comparison . 50
3.4 Results of YABench validation against CSRBench results 57
3.5 Arrival time of final results in seconds for CQELS 69

4.1 Environmental data mashup systems comparison 79

149

List of Listings

3.1 Example output of one sensor measurement. 53
4.1 A SPARQL query for semantic widget search 86
4.2 A SPARQL query for terminal matching 87
4.3 Excerpt of static citybike station knowledge 90
A.1 C-SPARQL query for YABench experiment one 117
A.2 CQELS query for YABench experiment one 117
B.1 C-SPARQL query for YABench experiment two 118
B.2 CQELS query for YABench experiment two 118
C.1 C-SPARQL query for YABench experiment three 119
C.2 CQELS query for YABench experiment three 119
D.1 Python source code calling REST functions of the C-SPARQL server . . . 120
E.1 RML mapping to create static knowledge for the citybike use case 122
E.2 RML mapping to create stream data for the citybike use case 123
F.1 C-SPARQL continuous query to retrieve citybike observations 129
F.2 C-SPARQL continuous aggregate query to retrieve citybike observations . 130
H.1 RML mapping to create static knowledge for the route enrichment use case133
H.2 RML mapping to create stream data for the route enrichment use case . . 136
I.1 C-SPARQL continuous query to retrieve air quality observations 143

150

List of Abbreviations

API Application Programming Interface.

BSBM Berlin SPARQL Benchmark.

C-SPARQL Continuous SPARQL.

CASSRAM Context-aware Sensor Search, Selection, and Ranking Model.

CEP Complex Event Processing.

CPU Central Processing Unit.

CQELS Continuous Query Evaluation over Linked Streams.

CSRBench Correctness checking Benchmark for Streaming RDF/SPARQL.

DBMS Database Management System.

DBPSP DBpedia SPARQL Benchmark.

DSD Data Structure Definition.

DSMS Data Stream Management System.

DUL DOLCE+DnS Ultralite.

EEA European Environment Agency.

EP-SPARQL Event Processing SPARQL.

ESB Environmental Specimen Bank.

ETALIS Event TrAnsaction Logic Inference System.

EU European Union.

GEO Global Environment Outlook.

151

GPS Global Positioning System.

GPU Graphics Processing Units.

GSN Global Sensor Networks.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

ICT Information and Communication Technologies.

INSTANS Incremental eNgine for STANding Sparql.

IoT Internet of Things.

IT Information Technology.

JSON-LD JavaScript Object Notation for Linked Data.

JTALIS Java Event TrAnsaction Logic Inference System.

KPI Key Performance Indicator.

LarKC The Large Knowledge Collider.

LOD Linked Open Data.

LSBench Linked Stream Benchmark.

LSD Linked Stream Data.

LUBM Lehigh University Benchmark.

OGC Open Geospatial Consortium.

OWL Web Ontology Language.

PROV-O PROV Ontology.

QB RDF Data Cube Vocabulary.

QUDT Quantities, Units, Dimensions and Data Types Ontology.

R2RML RDB to RDF Mapping Language.

RDF Resource Description Framework.

152

RDFS Resource Description Framework Schema.

REST Representational State Transfer.

RML RDF Mapping language.

RSP RDF Stream Processing.

SAWSDL Semantic Annotations for WSDL.

SECRET Scope, Content, Report, and Tick.

SNEE Sensor NEtwork Engine.

SPARQL Simple Protocol and RDF Query Language.

SQL Structured Query Language.

SRBench Streaming RDF/SPARQL Benchmark.

SSN Semantic Sensor Network.

SSNO Semantic Sensor Network Ontology.

STO Situation Theory Ontology.

SWEET Semantic Web for Earth and Environmental Terminology.

SWRL Semantic Web Rule Language.

UNEP United Nations Environment Programme.

UNO United Nations Organization.

W3C World Wide Web Consortium.

WHO World Health Organization.

WSDL Web Services Description Language.

WSMO Web Service Modeling Ontology.

YABench Yet Another RDF Stream Processing Benchmark.

153

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, and others. The design of the borealis stream
processing engine. In Second Biennial Conference on Innovative Data
Systems Research (CIDR 2005), volume 5, pages 277–289, 2005.

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom.
Stream: The stanford data stream management system. Technical report,
2004.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Alle-
mang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika,
Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Korea, November 11-15, 2007., volume 4825 of Lecture Notes
in Computer Science, pages 722–735. Springer, 2007.

[ABM02] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Web services and
data integration. In Tok Wang Ling, Umeshwar Dayal, Elisa Bertino,
Wee Keong Ng, and Angela Goh, editors, 3rd International Conference on
Web Information Systems Engineering, WISE 2002, Singapore, December
12-14, 2002, Proceedings, pages 3–6. IEEE Computer Society, 2002.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous
query language: semantic foundations and query execution. The VLDB
Journal, 15(2):121–142, 2006.

[ACÇ+03a] Daniel J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
C. Erwin, E. Galvez, M. Hatoun, J.-h Hwang, A. Maskey, A. Rasin,
A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik.
Aurora: A data stream management system. In Proceedings of the 2003

155

ACM SIGMOD International Conference on Management of Data, page
666, 2003.

[ACÇ+03b] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan
Zdonik. Aurora: a new model and architecture for data stream management.
The VLDB Journal, 12(2):120–139, 2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts.
Linear road: A stream data management benchmark. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases - Volume 30,
VLDB ’04, pages 480–491. VLDB Endowment, 2004.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
services. Springer, Berlin, Heidelberg, 2004.

[AFR+11] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad
Stojanovic, and Rudi Studer. ETALIS: Rule-Based reasoning in event
processing. In Sven Helmer, Alexandra Poulovassilis, and Fatos Xhafa,
editors, Reasoning in Event-Based Distributed Systems, volume 347 of
Studies in Computational Intelligence, pages 99–124. Springer, Berlin,
Heidelberg, 2011.

[AFRS11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-
SPARQL: a unified language for event processing and stream reasoning.
In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, page 635–644, New York, NY, USA, 2011. ACM.

[AHS06] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for fast and
flexible sensor network deployment. In Proceedings of the 32nd international
conference on Very large data bases, pages 1199–1202, 2006.

[AKK+03] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa,
Renée J Miller, and John Mylopoulos. The hyperion project: from data
integration to data coordination. ACM SIGMOD Record, 32(3):53–58,
2003.

[BBC+10a] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele
Della Valle, and Michael Grossniklaus. Incremental reasoning on streams
and rich background knowledge. In Proceedings of the 7th International
Conference on The Semantic Web: Research and Applications - Volume
Part I, ESWC’10, pages 1–15, Berlin, Heidelberg, 2010. Springer-Verlag.

[BBC+10b] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. C-SPARQL: a continuous query language

156

for RDF data streams. International Journal of Semantic Computing,
4(01):3–25, 2010.

[BBC+10c] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. Querying RDF streams with C-SPARQL.
SIGMOD Rec., 39(1):20–26, September 2010.

[BBCG10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael
Grossniklaus. An execution environment for C-SPARQL queries. In
Proceedings of the 13th International Conference on Extending Database
Technology, pages 441–452. ACM, 2010.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Proceedings of
the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS ’02, pages 1–16, New York, NY, USA,
2002. ACM.

[BCD+14] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle,
Yi Huang, Tony Lee, Seon-Ho Kim, and Volker Tresp. Reality mining on
micropost streams – deductive and inductive reasoning for personalized
and location-based recommendations. Semantic Web, 5(5):341–356, 2014.

[BCVB01] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico
Beneventano. Semantic integration of heterogeneous information sources.
Data Knowl. Eng., 36(3):215–249, 2001.

[BDD+10] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J.
Miller, and Nesime Tatbul. SECRET: A model for analysis of the execution
semantics of stream processing systems. Proc. VLDB Endow., 3(1-2):232–
243, September 2010.

[BDS08] Djamal Benslimane, Schahram Dustdar, and Amit P. Sheth. Services
mashups: The new generation of web applications. IEEE Internet Com-
puting, 12(5):13–15, 2008.

[BDVD+13] Marco Balduini, Emanuele Della Valle, Daniele Dell’Aglio, Mikalai Tsytsa-
rau, Themis Palpanas, and Cristian Confalonieri. Social listening of city
scale events using the streaming linked data framework. In The Semantic
Web–ISWC 2013, page 1–16. Springer, Berlin, Heidelberg, 2013.

[Ber06] Tim Berners-Lee. Linked data - design issues. Technical report, W3C,
2006.

[BETL12] Katrin Braunschweig, Julian Eberius, Maik Thiele, and Wolfgang Lehner.
The state of open data - limits of current open data platforms. In Proceed-
ings of the 21st World Wide Web Conference 2012, Web Science Track at
WWW’12, Lyon, France, April 16-20, 2012. ACM, 2012.

157

[BJBB+97] Roberto J Bayardo Jr, William Bohrer, Richard Brice, Andrzej Cichocki,
Jerry Fowler, Abdelsalam Helal, Vipul Kashyap, Tomasz Ksiezyk, Gale
Martin, Marian Nodine, et al. Infosleuth: agent-based semantic integration
of information in open and dynamic environments. In ACM SIGMOD
Record, volume 26, pages 195–206. ACM, 1997.

[BL03] Tim Berners-Lee. WWW past & future. http://www.w3.org/2003/
Talks/0922-rsoc-tbl/, 2003. accessed 16 June 2016.

[BP10] Payam M. Barnaghi and Mirko Presser. Publishing linked sensor data. In
Taylor et al. [TAR10].

[BS09] Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark.
International Journal On Semantic Web and Information Systems, 5(2):1–
24, 2009.

[BTW+06] Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo.
A data stream language and system designed for power and extensibility.
In Proceedings of the 15th ACM international conference on Information
and knowledge management, pages 337–346. ACM, 2006.

[BV13] Marco Balduini and Emanuele Della Valle. A restful interface for RDF
stream processors. In Eva Blomqvist and Tudor Groza, editors, Proceedings
of the ISWC 2013 Posters & Demonstrations Track, Sydney, Australia,
October 23, 2013, volume 1035 of CEUR Workshop Proceedings, pages
209–212. CEUR-WS.org, 2013.

[CA15] Jean-Paul Calbimonte and Karl Aberer. The Semantic Web: ESWC 2015
Satellite Events: ESWC 2015 Satellite Events, Portorož, Slovenia, May
31 – June 4, 2015, Revised Selected Papers, chapter Reactive Processing of
RDF Streams of Events, pages 457–468. Springer International Publishing,
Cham, 2015.

[CBB+12] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro,
Óscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory
Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David
Kelsey, Danh Le-Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus,
Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, and Kerry
Taylor. The SSN ontology of the W3C semantic sensor network incubator
group. Web Semantics: Science, Services and Agents on the World Wide
Web, 17:25–32, December 2012.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah. TelegraphCQ: con-
tinuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD

158

http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/

international conference on Management of data, pages 668–668. ACM,
2003.

[CCG10] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray. Enabling
ontology-based access to streaming data sources. In Proceedings of the 9th
International Semantic Web Conference on The Semantic Web - Volume
Part I, ISWC’10, page 96–111, Berlin, Heidelberg, 2010. Springer.

[CCJA12] Óscar Corcho, Jean-Paul Calbimonte, Hoyoung Jeung, and Karl Aberer.
Enabling query technologies for the semantic sensor web. Int. J. Semant.
Web Inf. Syst., 8(1):43–63, January 2012.

[CDBN11] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart cities in
europe. Journal of urban technology, 18(2):65–82, 2011.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In ACM SIGMOD
Record, volume 29, pages 379–390. ACM, 2000.

[CG10] Óscar Corcho and Raúl García-Castro. Five challenges for the semantic
sensor web. Semantic Web, 1(1-2):121–125, 2010.

[CGJ+02] Chuck Cranor, Yuan Gao, Theodore Johnson, Vlaidslav Shkapenyuk, and
Oliver Spatscheck. Gigascope: High performance network monitoring with
an SQL interface. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 623–623. ACM, 2002.

[CHS+95] Michael J Carey, Laura M Haas, Peter M Schwarz, Manish Arya, WE Cody,
Ronald Fagin, Myron Flickner, Allen W Luniewski, Wayne Niblack,
Dragutin Petkovic, et al. Towards heterogeneous multimedia informa-
tion systems: The garlic approach. In Research Issues in Data Engineering,
1995: Distributed Object Management, Proceedings. RIDE-DOM’95. Fifth
International Workshop on, pages 124–131. IEEE, 1995.

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 647–651. ACM, 2003.

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv.,
44(3):15, 2012.

[Coh14] Boyd Cohen. The 10 smartest cities in eu-
rope. http://www.fastcoexist.com/3024721/
the-10-smartest-cities-in-europe, 2014.

159

http://www.fastcoexist.com/3024721/the-10-smartest-cities-in-europe
http://www.fastcoexist.com/3024721/the-10-smartest-cities-in-europe

[CR14] Richard Cyganiak and Dave Reynolds. The RDF data cube vocabulary.
W3C recommendation, W3C, January 2014. http://www.w3.org/TR/
2014/REC-vocab-data-cube-20140116/.

[CSGL15] Jules Chevalier, Julien Subercaze, Christophe Gravier, and Frédérique
Laforest. Slider: An efficient incremental reasoner. In Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives, editors, Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Mel-
bourne, Victoria, Australia, May 31 - June 4, 2015, pages 1081–1086. ACM,
2015.

[CX05] Isabel F. Cruz and Huiyong Xiao. The role of ontologies in data integration.
Engineering Intelligent Systems, 13(4):245–252, 12 2005.

[DBDV13] Daniele Dell’Aglio, Marco Balduini, and Emanuele Della Valle. On the
need to include functional testing in RDF stream engine benchmarks. In 1st
International Workshop On Benchmarking RDF Systems (BeRSys 2013),
page 10. 2013.

[DCB+13] Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco Balduini, Óscar Corcho,
and Emanuele Della Valle. On correctness in RDF stream processor
benchmarking. In The Semantic Web - ISWC 2013 - 12th ISWC, Sydney,
NSW, Australia, October 21-25, 2013, Proceedings, Part II, pages 326–342.
Springer, 2013.

[DCDV13] Daniele Dell’Aglio, Irene Celino, and Emanuele Della Valle. Semantic
Mashups: Intelligent Reuse of Web Resources, chapter Urban Mashups,
pages 287–319. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[DCS12] Souripriya Das, Richard Cyganiak, and Seema Sundara. R2RML: RDB to
RDF mapping language. W3C recommendation, W3C, September 2012.
http://www.w3.org/TR/2012/REC-r2rml-20120927/.

[DCVC15] Daniele Dell’Aglio, Jean-Paul Calbimonte, Emanuele Della Valle, and Óscar
Corcho. Towards a unified language for RDF stream query processing.
In Fabien Gandon, Christophe Guéret, Serena Villata, John G. Breslin,
Catherine Faron-Zucker, and Antoine Zimmermann, editors, The Semantic
Web: ESWC 2015 Satellite Events - ESWC 2015 Satellite Events Portorož,
Slovenia, May 31 - June 4, 2015, Revised Selected Papers, volume 9341 of
Lecture Notes in Computer Science, pages 353–363. Springer, 2015.

[DDG+15] Soheila Dehghanzadeh, Daniele Dell’Aglio, Shen Gao, Emanuele Della Valle,
Alessandra Mileo, and Abraham Bernstein. Approximate continuous query
answering over streams and dynamic linked data sets. In Philipp Cimiano,
Flavius Frasincar, Geert-Jan Houben, and Daniel Schwabe, editors, En-
gineering the Web in the Big Data Era - 15th International Conference,

160

http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2012/REC-r2rml-20120927/

ICWE 2015, Rotterdam, The Netherlands, June 23-26, 2015, Proceed-
ings, volume 9114 of Lecture Notes in Computer Science, pages 307–325.
Springer, 2015.

[DMD+15] Soheila Dehghanzadeh, Alessandra Mileo, Daniele Dell’Aglio,
Emanuele Della Valle, Shen Gao, and Abraham Bernstein. Online
view maintenance for continuous query evaluation. In Aldo Gangemi,
Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the
24th International Conference on World Wide Web Companion, WWW
2015, Florence, Italy, May 18-22, 2015 - Companion Volume, pages 25–26.
ACM, 2015.

[DPS13] Rustem Dautov, Iraklis Paraskakis, and Mike Stannett. Utilising stream
reasoning techniques to create a self-adaptation framework for cloud en-
vironments. In IEEE/ACM 6th International Conference on Utility and
Cloud Computing, UCC 2013, pages 375–380. IEEE, 2013.

[DSC+14] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle. RML: A generic language for
integrated RDF mappings of heterogeneous data. In Christian Bizer,
Tom Heath, Sören Auer, and Tim Berners-Lee, editors, Proceedings of the
Workshop on Linked Data on the Web co-located with the 23rd International
World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014.,
volume 1184 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[DSS+14] Anastasia Dimou, Miel Vander Sande, Jason Slepicka, Pedro A. Szekely,
Erik Mannens, Craig A. Knoblock, and Rik Van de Walle. Mapping
hierarchical sources into RDF using the RML mapping language. In 2014
IEEE International Conference on Semantic Computing, Newport Beach,
CA, USA, June 16-18, 2014, pages 151–158. IEEE Computer Society, 2014.

[DVCD+11] Emanuele Della Valle, Irene Celino, Daniele Dell’Aglio, Ralf Grothmann,
Florian Steinke, and Volker Tresp. Semantic traffic-aware routing using
the larkc platform. IEEE Internet Computing, 15(6):15–23, Nov 2011.

[EEA15] EEA. The european environment - state and outlook 2015.
http://www.eea.europa.eu/soer-2015/synthesis/report/
action-download-pdf, 2015.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114–131, 2003.

[Eng15] Nicole C Engard. More library mashups: exploring new ways to deliver
library data. Facet Publishing, 2015.

161

http://www.eea.europa.eu/soer-2015/synthesis/report/action-download-pdf
http://www.eea.europa.eu/soer-2015/synthesis/report/action-download-pdf

[Env] Environment Agency. Bathing water quality API. http://
environment.data.gov.uk/bwq/. accessed 16 June 2016.

[FLGPJ97] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo.
Methontology: from ontological art towards ontological engineering. In
Proc. Symposium on Ontological Engineering of AAAI, 1997.

[FLSFGP12] Mariano Fernández-López, Mari Carmen Suárez-Figueroa, and Asunción
Gómez-Pérez. Ontology Engineering in a Networked World, chapter Ontol-
ogy Development by Reuse, pages 147–170. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[FMMVA13] Susel Fernandez, Ivan Marsa-Maestre, Juan R. Velasco, and Bernardo Alar-
cos. Ontology alignment architecture for semantic sensor web integration.
Sensors, 13(9):12581, 2013.

[Gag07] Michel Gagnon. Ontology-based integration of data sources. In 10th
International Conference on Information Fusion, FUSION 2007, Québec,
Canada, July 9-12, 2007, pages 1–8. IEEE, 2007.

[GAM14] Feng Gao, Muhammad Intizar Ali, and Alessandra Mileo. Semantic discov-
ery and integration of urban data streams. In Proc. of the Fifth Workshop
on Semantics for Smarter Cities a Workshop at the 13th International
Semantic Web Conference (ISWC 2014), pages 15–30, 2014.

[GBG+11] Ixent Galpin, Christian YA Brenninkmeijer, Alasdair JG Gray, Farhana
Jabeen, Alvaro AA Fernandes, and Norman W Paton. SNEE: a query
processor for wireless sensor networks. Distributed and Parallel Databases,
29(1-2):31–85, 2011.

[GFG+08] Nancy B. Grimm, Stanley H. Faeth, Nancy E. Golubiewski, Charles L.
Redman, Jianguo Wu, Xuemei Bai, and John M. Briggs. Global change
and the ecology of cities. Science, 319(5864):756–760, 2008.

[GFM15] José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-
Prieto. HDT-MR: A scalable solution for RDF compression with HDT
and MapReduce. In Fabien Gandon, Marta Sabou, Harald Sack, Claudia
d’Amato, Philippe Cudré-Mauroux, and Antoine Zimmermann, editors,
The Semantic Web. Latest Advances and New Domains - 12th European
Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31 - June
4, 2015. Proceedings, volume 9088 of Lecture Notes in Computer Science,
pages 253–268. Springer, 2015.

[GGK+11] Alasdair J. G. Gray, Raul Garcia-Castro, Kostis Kyzirakos, Manos
Karpathiotakis, Jean-Paul Calbimonte, Kevin R. Page, Jason Sadler, Alex
Frazer, Ixent Galpin, Alvaro A. A. Fernandes, Norman W. Paton, Ós-
car Corcho, Manolis Koubarakis, David De Roure, Kirk Martinez, and

162

http://environment.data.gov.uk/bwq/
http://environment.data.gov.uk/bwq/

Asunción Gómez-Pérez. A semantically enabled service architecture for
mashups over streaming and stored data. In Grigoris Antoniou, Marko Gro-
belnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis,
Pieter De Leenheer, and Jeff Z. Pan, editors, The Semanic Web: Research
and Applications - 8th Extended Semantic Web Conference, ESWC 2011,
Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II, vol-
ume 6644 of Lecture Notes in Computer Science, pages 300–314. Springer,
2011.

[GÖ03] Lukasz Golab and M Tamer Özsu. Issues in data stream management.
ACM Sigmod Record, 32(2):5–14, 2003.

[Goe11] Thomas Goetz. Harnessing the power of feedback loops | magazine. http:
//www.wired.com/2011/06/ff_feedbackloop/, 2011.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. Web Semant., 3(2-3):158–182, October
2005.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199–220, June 1993.

[GSK+11] Alasdair J. G. Gray, Jason Sadler, Oles Kit, Kostis Kyzirakos, Manos
Karpathiotakis, Jean-Paul Calbimonte, Kevin Page, Raúl García-Castro,
Alex Frazer, Ixent Galpin, Alvaro A. A. Fernandes, Norman W. Paton,
Óscar Corcho, Manolis Koubarakis, David De Roure, Kirk Martinez, and
Asunción Gómez-Pérez. A Semantic Sensor Web for Environmental Deci-
sion Support Applications. Sensors, 11(12):8855–8887, 2011.

[Har98] Ronnie Harding. Environmental decision-making: The roles of scientists,
engineers, and the public. Federation Press, 1998.

[HB91] Ali R Hurson and MW Bright. Multidatabase systems: An advanced
concept in handling distributed data. Advances in computers, 32:149–200,
1991.

[HC03] GH Huang and NB Chang. The perspectives of environmental informatics
and systems analysis. Journal of Environmental Informatics, 1(1):1–7,
2003.

[HG01] Farshad Hakimpour and Andreas Geppert. Resolving semantic heterogene-
ity in schema integration. In FOIS, pages 297–308, 2001.

[HK] Jesper Hoeksema and Spyros Kotoulas. High-performance distributed
stream reasoning using s4. In First International Workshop on Ordering
and Reasoning (OrdRing2011).

163

http://www.wired.com/2011/06/ff_feedbackloop/
http://www.wired.com/2011/06/ff_feedbackloop/

[HM06] Jane K. Hart and Kirk Martinez. Environmental sensor networks: A
revolution in the earth system science? Earth-Science Reviews, 78(3–4):177
– 191, 2006.

[HPRR95] LM Hilty, Bernd Page, FJ Radermacher, and W-F Riekert. Environ-
mental informatics as a new discipline of applied computer science. In
Environmental Informatics, pages 1–11. Springer, 1995.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the
teenage years. In Proceedings of the 32nd international conference on Very
large data bases, page 9–16. VLDB Endowment, 2006.

[HS13] Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C
recommendation, W3C, March 2013. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

[Hul97] Richard Hull. Managing semantic heterogeneity in databases: A theoretical
prospective. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’97, page
51–61, New York, NY, USA, 1997. ACM.

[HVMn+11] José M. Hernández-Muñoz, Jesús Bernat Vercher, Luis Muñoz, José A.
Galache, Mirko Presser, Luis A. Hernández Gómez, and Jan Pettersson.
Smart cities at the forefront of the future internet. In The future internet,
page 447–462. Springer, Berlin, Heidelberg, 2011.

[ibm] IBM corporation: IBM Infosphere Streams. http://www-03.ibm.com/
software/products/en/infosphere-streams. accessed 16 June
2016.

[JBS+13] Krzysztof Janowicz, Arne Bröring, Christoph Stasch, Sven Schade, Thomas
Everding, and Alejandro Llaves. A restful proxy and data model for linked
sensor data. Int. J. Digital Earth, 6(3):233–254, 2013.

[JC10] Krzysztof Janowicz and Michael Compton. The stimulus-sensor-observation
ontology design pattern and its integration into the semantic sensor network
ontology. In Taylor et al. [TAR10].

[KB15a] Robin Keskisärkkä and Eva Blomqvist. The Semantic Web: ESWC 2015
Satellite Events: ESWC 2015 Satellite Events, Portorož, Slovenia, May
31 – June 4, 2015, Revised Selected Papers, chapter Supporting Real-Time
Monitoring in Criminal Investigations, pages 82–86. Springer International
Publishing, Cham, 2015.

[KB15b] Robin Keskisärkkä and Eva Blomqvist. Sharing and reusing continuous
queries - expression of interest. In RDF Stream Processing Workshop, May
31, Portoroz, Slovenia, 2015.

164

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams

[KCF12] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continuous
schema-enhanced pattern matching over RDF data streams. In Proceedings
of the 6th ACM International Conference on Distributed Event-Based
Systems, pages 58–68. ACM, 2012.

[Kee13] C. Maria Keet. Open World Assumption, pages 1567–1567. Springer New
York, New York, NY, 2013.

[Ken11] John Kennedy. Data is the new oil. http://www.siliconrepublic.
com/comms/item/22326-data-is-the-new-oil, 2011.

[KFFG11] Klemen Kenda, Carolina Fortuna, Blaž Fortuna, and Marko Grobelnik.
Videk: a mash-up for environmental intelligence. AI Mashup Challange,
ESWC, 2011.

[KFM+13] Klemen Kenda, Carolina Fortuna, Alexandra Moraru, Dunja Mladenić,
Blaž Fortuna, and Marko Grobelnik. Semantic Mashups: Intelligent Reuse
of Web Resources, chapter Mashups for the Web of Things, pages 145–169.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Kuh09] Werner Kuhn. A functional ontology of observation and measurement.
In Krzysztof Janowicz, Martin Raubal, and Sergei Levashkin, editors,
GeoSpatial Semantics, Third International Conference, GeoS 2009, Mexico
City, Mexico, December 3-4, 2009. Proceedings, volume 5892 of Lecture
Notes in Computer Science, pages 26–43. Springer, 2009.

[KVBF07] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL: Semantic
annotations for WSDL and XML schema. Internet Computing, IEEE,
11(6):60–67, 2007.

[KW15] Maxim Kolchin and Peter Wetz. Demo: YABench - yet another RDF
stream processing benchmark. In RDF Stream Processing Workshop co-
located with the 11th Extended Semantic Web Conference (ESWC 2014),
Portoroz, Slovenia, 2015.

[KWA+16] Maxim Kolchin, Peter Wetz, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. YABench: A comprehensive framework for RDF stream
processor correctness and performance assessment. In Web Engineering -
16th International Conference on Web Engineering, ICWE 2016, Lugano,
Switzerland, June 6-9, 2016, Proceedings, 2016.

[LBH+] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor, and Andrew
Woolf. A linked sensor data cube for a 100 year homogenised daily tem-
perature dataset. In In 5th International Workshop on Semantic Sensor
Networks (SSN-2012), CEUR-Proceedings, page 2012.

165

http://www.siliconrepublic.com/comms/item/22326-data-is-the-new-oil
http://www.siliconrepublic.com/comms/item/22326-data-is-the-new-oil

[LDP+12] Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter Boncz, Thomas
Eiter, and Michael Fink. Linked stream data processing engines: facts and
figures. In The Semantic Web - ISWC 2012 - 11th ISWC, Boston, MA,
USA, November 11-15, 2012, Proceedings, Part II, pages 300–312. Springer,
2012.

[LDPH11] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A native and adaptive approach for unified processing of
linked streams and linked data. In Proceedings of the 10th International
Conference on The Semantic Web - Volume Part I, ISWC’11, page 370–388,
Berlin, Heidelberg, 2011. Springer.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 233–246. ACM, 2002.

[LH14] Sudesh Lutchman and Patrick Hosein. Design and specifications of a repos-
itory for real-time open data. In Proceedings of the 2014 ITU Kaleidoscope
Academic Conference: Living in a converged world - Impossible without
standards?, Saint-Petersburg, Russia, June 3-5, 2014, pages 105–110. IEEE,
2014.

[LHPB09] Giusy Di Lorenzo, Hakim Hacid, Hye-Young Paik, and Boualem Benatallah.
Data integration in mashups. SIGMOD Record, 38(1):59–66, 2009.

[LHT11] Laurent Lefort, Cory Henson, and Kerry Taylor. Semantic sensor network
xg final report. W3C Incubator Group Report 28 June 2011, 2011.

[LHTW13] Lauren Lefort, Armin Haller, Kerry Taylor, and Andrew Woolf. The
ACORN-SAT linked climate dataset. Semantic Web Journal, 2013.

[LK14] Alejandro Llaves and Werner Kuhn. An event abstraction layer for the
integration of geosensor data. International Journal of Geographical Infor-
mation Science, 28(5):1085–1106, 2014.

[LP09] Danh Le-Phuoc. Sensormasher - publishing and building mashup of sen-
sor data. In Adrian Paschke, Hans Weigand, Wernher Behrendt, Klaus
Tochtermann, and Tassilo Pellegrini, editors, 5th International Conference
on Semantic Systems, Graz, Austria, September 2-4, 2009. Proceedings.
Verlag der Technischen Universität Graz, 2009.

[LPH09] Danh Le-Phuoc and Manfred Hauswirth. Linked open data in sensor data
mashups,. In Kerry Taylor and David De Roure, editors, Proceedings of
the 2nd International Workshop on Semantic Sensor Networks (SSN09),
collocated with the 8th International Semantic Web Conference (ISWC-
2009), Washington DC, USA, October 26, 2009., volume 522 of CEUR
Workshop Proceedings, pages 1–16. CEUR-WS.org, 2009.

166

[LPPH+10] Danh Le-Phuoc, Josiane Xavier Parreira, Michael Hausenblas, Yuanbo
Han, and Manfred Hauswirth. Live linked open sensor database. In Adrian
Paschke, Nicola Henze, and Tassilo Pellegrini, editors, Proceedings the 6th
International Conference on Semantic Systems, I-SEMANTICS 2010, Graz,
Austria, September 1-3, 2010, ACM International Conference Proceeding
Series. ACM, 2010.

[LPQLVH13] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan Le-Van, and Manfred
Hauswirth. Elastic and scalable processing of linked stream data in the
cloud. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris
Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris
Welty, and Krzysztof Janowicz, editors, The Semantic Web - ISWC 2013
- 12th International Semantic Web Conference, Sydney, NSW, Australia,
October 21-25, 2013, Proceedings, Part I, volume 8218 of Lecture Notes in
Computer Science, pages 280–297. Springer, 2013.

[LPQPH11] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Parreira, and
Manfred Hauswirth. The linked sensor middleware–connecting the real
world and the semantic web. Proceedings of the Semantic Web Challenge,
152, 2011.

[LPT99] Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale
event-driven information delivery. IEEE Trans. on Knowl. and Data Eng.,
11(4):610–628, July 1999.

[LR86] Terry Landers and Ronni L Rosenberg. An overview of multibase. In
Distributed systems, Vol. II: distributed data base systems, pages 391–421.
Artech House, Inc., 1986.

[LSK14] Markus Lanthaler, Manu Sporny, and Gregg Kellogg. JSON-LD 1.0. W3C
recommendation, W3C, January 2014. http://www.w3.org/TR/2014/
REC-json-ld-20140116/.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[LUQ14] Chang Liu, Jacopo Urbani, and Guilin Qi. Efficient RDF stream reasoning
with graphics processing units (GPUs). In Chin-Wan Chung, Andrei Z.
Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World
Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014, Companion Volume, pages 343–344. ACM, 2014.

[Mar95] Gary Marchionini. A small matter of programming perspectives on end
user computing, by bonnie nardie. JASIS, 46(1):78–79, 1995.

167

http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2014/REC-json-ld-20140116/

[MBH+13] Marco Miglierina, Marco Balduini, Narges Shahmandi Hoonejani, Elis-
abetta Di Nitto, and Danilo Ardagna. Exploiting stream reasoning to
monitor multi-cloud applications. In Proceedings of the 2nd International
Workshop on Ordering and Reasoning, OrdRing 2013, Co-located with the
12th International Semantic Web Conference (ISWC 2013), pages 33–36.
CEUR-WS, 2013.

[MCD+15] Andrea Mauri, Jean-Paul Calbimonte, Daniele Dell’Aglio, Marco Balduini,
Emanuele Della Valle, and Karl Aberer. Where are the RDF streams?:
On deploying RDF streams on the web of data with triplewave. In Serena
Villata, Jeff Z. Pan, and Mauro Dragoni, editors, Proceedings of the ISWC
2015 Posters & Demonstrations Track co-located with the 14th International
Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, October
11, 2015., volume 1486 of CEUR Workshop Proceedings. CEUR-WS.org,
2015.

[MFC+07] Deborah L. McGuinness, Peter Fox, Luca Cinquini, Patrick West, Jose Gar-
cia, James L. Benedict, and Don Middleton. The virtual solar-terrestrial
observatory: A deployed semantic web application case study for scientific
research. In Proceedings of the Twenty-Second AAAI Conference on Artifi-
cial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada,
pages 1730–1737. AAAI Press, 2007.

[MFM11] Alexandra Moraru, Carolina Fortuna, and Dunja Mladenic. A system for
publishing sensor data on the semantic web. CIT, 19(4):239–245, 2011.

[mic] Microsoft corporation: Microsoft StreamInsight. https:
//technet.microsoft.com/en-us/library/ee362541%28v=
sql.111%29.aspx. accessed 16 June 2016.

[MIKS00] Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, and Amit P. Sheth.
OBSERVER: an approach for query processing in global information sys-
tems based on interoperation across pre-existing ontologies. Distributed
and Parallel Databases, 8(2):223–271, 2000.

[MLAN11] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo. DBpedia SPARQL benchmark: Performance assessment with real
queries on real data. In Proceedings of the 10th International Conference
on The Semantic Web - Volume Part I, ISWC’11, pages 454–469, Berlin,
Heidelberg, 2011. Springer-Verlag.

[MRM+10] Zaki Malik, Abdelmounaam Rezgui, Brahim Medjahed, Mourad Ouzzani,
and A. Krishna Sinha. Semantic integration in geosciences. Int. J. Semantic
Computing, 4(3):301–330, 2010.

168

https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx

[MRS+07] Zaki Malik, Abdelmounaam Rezgui, A. Krishna Sinha, Kai Lin, and Ath-
man Bouguettaya. DIA: A web services-based infrastructure for semantic
integration in geoinformatics. In 2007 IEEE International Conference on
Web Services (ICWS 2007), July 9-13, 2007, Salt Lake City, Utah, USA,
pages 1016–1023. IEEE Computer Society, 2007.

[MUHB14] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal.
Streaming the web: Reasoning over dynamic data. Web Semantics: Science,
Services and Agents on the World Wide Web, 25(0), 2014.

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath
Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosen-
stein, and Rohit Varma. Query processing, approximation, and resource
management in a data stream management system. In CIDR, 2003.

[NCSP10] Anne H. H. Ngu, Michael P. Carlson, Quan Z. Sheng, and Hye-young
Paik. Semantic-based mashup of composite applications. IEEE Trans.
Serv. Comput., 3(1):2–15, 2010.

[NM01] Natalya F Noy and Deborah L McGuinness. Ontology development 101: A
guide to creating your first ontology. Stanford knowledge systems laboratory
technical report KSL-01-05 and Stanford medical informatics technical
report SMI-2001-0880, 2001.

[Noy04] Natalya Fridman Noy. Semantic integration: A survey of ontology-based
approaches. SIGMOD Record, 33(4):65–70, 2004.

[oFO88] AME Study Group on Functional Organization. Organizational Re-
newal—Tearing down the functional silos. AME Target, 1988.

[Pal06] Michael Palmer. Data is the new oil. http://ana.blogs.com/
maestros/2006/11/data_is_the_new.html, 2006.

[PB02] Hardy Pundt and Yaser Bishr. Domain ontologies for data sharing-an
example from environmental monitoring using field GIS. Comput. Geosci.,
28(1):95–102, February 2002.

[PHS10] Harshal Patni, Cory Henson, and Amit Sheth. Linked sensor data. In Col-
laborative Technologies and Systems (CTS), 2010 International Symposium
on, pages 362–370. IEEE, 2010.

[PRM11] Stefan Pietschmann, Carsten Radeck, and Klaus Meißner. Semantics-based
discovery, selection and mediation for presentation-oriented mashups. In
Proceedings of the 5th International Workshop on Web APIs and Service
Mashups, Mashups ’11, pages 7:1–7:8, New York, NY, USA, 2011. ACM.

169

http://ana.blogs.com/maestros/2006/11/data_is_the_new.html
http://ana.blogs.com/maestros/2006/11/data_is_the_new.html

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for
RDF. W3C recommendation, W3C, January 2008. http://www.w3.
org/TR/2008/REC-rdf-sparql-query-20080115/.

[PST04] Helena Sofia Pinto, Steffen Staab, and Christoph Tempich. DILIGENT:
towards a fine-grained methodology for distributed, loosely-controlled and
evolving engineering of ontologies. In Ramon López de Mántaras and
Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages
393–397. IOS Press, 2004.

[PTRC07] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. Journal of management information systems, 24(3):45–77, 2007.

[PZC+13] Charith Perera, Arkady B. Zaslavsky, Peter Christen, Michael Compton,
and Dimitrios Georgakopoulos. Context-aware sensor search, selection
and ranking model for internet of things middleware. In 2013 IEEE 14th
International Conference on Mobile Data Management, Milan, Italy, June
3-6, 2013 - Volume 1, pages 314–322. IEEE Computer Society, 2013.

[QSLPH12] Hoan Nguyen Mau Quoc, Martin Serrano, Danh Le-Phuoc, and Manfred
Hauswirth. Super stream collider – Linked stream mashups for everyone.
Proceedings of the Semantic Web Challenge co-located with ISWC 2012,
2012.

[RFH10] Maria Rüther, Joachim Fock, and Joachim Hübener. Linked environment
data. In Klaus Greve and Armin B. Cremers, editors, EnviroInfo 2010:
Integration of Environmental Information in Europe, Proceedings of the
24th International Conference on Informatics for Environmental Protection,
Cologne/Bonn, Germany, pages 470–479. Shaker Verlag, Aachen, 2010.

[RNT12] Mikko Rinne, Esko Nuutila, and Seppo Törmä. INSTANS: High-
Performance event processing with standard RDF and SPARQL. In Birte
Glimm and David Huynh, editors, International Semantic Web Confer-
ence (Posters & Demos), volume 914 of CEUR Workshop Proceedings.
CEUR-WS.org, 2012.

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Towards soundness preserving
approximation for ABox reasoning of OWL2. In Proceedings of the 4th
International Workshop on Ontology Dynamics (IWOD) 2010, 2010.

[RZB+12] Bernd Resch, Alexander Zipf, Euro Beinat, Philipp Breuss-Schneeweis,
and Marc Boher. Towards the live city–paving the way to real-time
urbanism. International Journal on Advances in Intelligent Systems, 5(3
and 4):470–482, 2012.

170

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[SFGPFL12] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano
Fernández-López. Ontology Engineering in a Networked World, chapter
The NeOn Methodology for Ontology Engineering, pages 9–34. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[SGH+11] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas
Schwarte, and Thanh Tran. FedBench: A benchmark suite for federated
semantic data query processing. In The Semantic Web - ISWC 2011 - 10th
ISWC, Bonn, Germany, October 23-27, 2011, Proceedings, Part I, pages
585–600, 2011.

[SRK14] Markus Stocker, Mauno Rönkkö, and Mikko Kolehmainen. Towards an
ontology for situation assessment in environmental monitoring. In Proceed-
ings of the 7th International Congress on Environmental Modelling and
Software, pages 1281–1288, San Diego, CA, USA, 2014.

[SSS04] York Sure, Steffen Staab, and Rudi Studer. On-to-knowledge methodology
(OTKM). In Steffen Staab and Rudi Studer, editors, Handbook on On-
tologies, International Handbooks on Information Systems, pages 117–132.
Springer, 2004.

[SUM+13] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara, Emanuele
Della Valle, and Abraham Bernstein. Seven commandments for benchmark-
ing semantic flow processing systems. In The Semantic Web: Semantics
and Big Data, pages 305–319. Springer, 2013.

[TAM13] Tatiana Tarasova, Massimo Argenti, and Maarten Marx. Semantically-
Enabled environmental data discovery and integration: Demonstration
using the iceland volcano use case. In Knowledge Engineering and the
Semantic Web, page 289–297. Springer, Berlin, Heidelberg, 2013.

[TAR10] Kerry Taylor, Arun Ayyagari, and David De Roure, editors. Proceedings
of the 3rd International Workshop on Semantic Sensor Networks, SSN
2010, Shanghai, China, November 7, 2010, volume 668 of CEUR Workshop
Proceedings. CEUR-WS.org, 2010.

[Tar13] Tatiana Tarasova. ENVRI project deilverable 4.2: Semantic component.
2013.

[TDW+13] Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin Anjomshoaa, and A Min
Tjoa. Linked Widgets - An approach to exploit open government data. In
Proceedings of the 15th International Conference on Information Integration
and Web-based Applications & Services, page 438–442. ACM, 2013.

[tib] TIBCO software: Tibco BusinessEvents. http://www.tibco.com/
products/event-processing/complex-event-processing/
businessevents. accessed 16 June 2016.

171

http://www.tibco.com/products/event-processing/complex-event-processing/businessevents
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents

[TKSA12] Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and José Luis Am-
bite. Rapidly integrating services into the linked data cloud. In Proceedings
of the 11th International Conference on The Semantic Web - Volume Part
I, Lecture Notes in Computer Science, pages 559–574. Springer Berlin
Heidelberg, 2012.

[TKSA13] Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and José Luis
Ambite. A graph-based approach to learn semantic descriptions of data
sources. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris
Biemann, JosianeXavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013, volume
8218 of Lecture Notes in Computer Science, pages 607–623. Springer Berlin
Heidelberg, 2013.

[Tri16] Tuan-Dat Trinh. Mashup-based Linked Data Integration. PhD thesis, TU
Wien, 2 2016.

[TWD+14a] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar
Kiesling, and A Min Tjoa. Linked Widgets Platform: Lowering the barrier
for open data exploration. In Valentina Presutti, Eva Blomqvist, Raphaël
Troncy, Harald Sack, Ioannis Papadakis, and Anna Tordai, editors, The
Semantic Web: ESWC 2014 Satellite Events - ESWC 2014 Satellite Events,
Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers, volume
8798 of Lecture Notes in Computer Science, pages 171–182. Springer, 2014.

[TWD+14b] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar
Kiesling, and A Min Tjoa. Open linked widgets mashup platform. In
Proceedings of the AI Mashup Challenge 2014 (ESWC Satellite Event),
page 9. CEUR Workshop Proceedings, 2014.

[TWD+14c] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar
Kiesling, and A Min Tjoa. A web-based platform for dynamic integration
of heterogeneous data. In Proceedings of the 16th International Conference
on Information Integration and Web-based Applications & Services, iiWAS
’14, pages 253–261, New York, NY, USA, 2014. ACM.

[TWD+15] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Elmar Kiesling, and A Min
Tjoa. Distributed mashups: a collaborative approach to data integration.
IJWIS, 11(3):370–396, 2015.

[UG04] Michael Uschold and Michael Gruninger. Ontologies and semantics for
seamless connectivity. ACM SIGMod Record, 33(4):58–64, 2004.

[Ull97] Jeffrey D Ullman. Information integration using logical views. In Database
Theory—ICDT’97, page 19–40. Springer, Berlin, Heidelberg, 1997.

172

[UMD+13] Jacopo Urbani, Jason Maassen, Niels Drost, Frank J. Seinstra, and Henri E.
Bal. Scalable RDF data compression with MapReduce. Concurrency and
Computation: Practice and Experience, 25(1):24–39, 2013.

[Umw11] Wissenschaftlicher Beirat Globale Umweltveränderungen. World in transi-
tion: a social contract for sustainability. WBGU, Berlin, 2011.

[UN12] UN. World urbanization prospects - the 2011 revision. Technical report,
United Nations Department of Economic and Social Affairs, 2012.

[UNE12a] UNEP. GEO-5 assessment full report. http://www.unep.org/geo/
pdfs/geo5/GEO5_report_full_en.pdf, 2012.

[UNE12b] UNEP. GEO-5 report press release. Technical report, United Nations
Environment Programme, 2012.

[UNE16] UNEP. UNEP 2015 annual report. http://apps.unep.
org/publications/index.php?option=com_pub&task=
download&file=012048_en, 2016.

[Uni03] European Union. Directive on public access to environmental information
and repealing council directive, January 2003.

[UNP15] Jürgen Umbrich, Sebastian Neumaier, and Axel Polleres. Quality assess-
ment and evolution of open data portals. In 3rd International Conference
on Future Internet of Things and Cloud, FiCloud 2015, Rome, Italy, August
24-26, 2015, pages 404–411. IEEE, 2015.

[vAMPR04] R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS quarterly, 28(1):75–105,
2004.

[VCHF09] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel.
It’s a streaming world! reasoning upon rapidly changing information. IEEE
Intelligent Systems, 24(6):83–89, 2009.

[VSVD+11] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle,
and Joaquim Gabarró Vallés. Efficient Runtime Service Discovery and
Consumption with Hyperlinked RESTdesc. In Proceedings of the 7th
International Conference on Next Generation Web Services Practices, pages
373–379, 2011.

[WAT13] Peter Wetz, Amin Anjomshoaa, and A Min Tjoa. A survey on environmen-
tal open data in austria. In IEEE International Conference on Systems,
Man, and Cybernetics, Manchester, SMC 2013, United Kingdom, October
13-16, 2013, pages 4566–4570. IEEE, 2013.

173

http://www.unep.org/geo/pdfs/geo5/GEO5_report_full_en.pdf
http://www.unep.org/geo/pdfs/geo5/GEO5_report_full_en.pdf
http://apps.unep.org/publications/index.php?option=com_pub&task=download&file=012048_en
http://apps.unep.org/publications/index.php?option=com_pub&task=download&file=012048_en
http://apps.unep.org/publications/index.php?option=com_pub&task=download&file=012048_en

[WHO16] WHO. Preventing disease through healthy environments: a
global assessment of the burden of disease from environmental
risks. http://apps.who.int/iris/bitstream/10665/204585/
1/9789241565196_eng.pdf, 2016.

[WTD+13] Peter Wetz, Tuan-Dat Trinh, Ba-Lam Do, Amin Anjomshoaa, and A Min
Tjoa. Austrian environmental data consumption — a mashup-based ap-
proach. In Proceedings of the 1st International Workshop on Semantic
Machine Learning and Linked Open Data (SML2OD) for Agricultural and
Environmental Informatics co-located with the 12th International Semantic
Web Conference (ISWC 2013), Sydney, Australia, 2013, 2013.

[WTD+14] Peter Wetz, Tuan-Dat Trinh, Ba-Lam Do, Amin Anjomshoaa, Elmar Kies-
ling, and A Min Tjoa. Towards an environmental information system for
semantic stream data. In Jorge Marx Gómez, Michael Sonnenschein, Ute
Vogel, Andreas Winter, Barbara Rapp, and Nils Giesen, editors, 28th In-
ternational Conference on Informatics for Environmental Protection: ICT
for Energy Effieciency, EnviroInfo 2014, Oldenburg, Germany, September
10-12, 2014., pages 637–644. BIS-Verlag, 2014.

[WTD+16] Peter Wetz, Tuan-Dat Trinh, Ba-Lam Do, Amin Anjomshoaa, Elmar
Kiesling, and A Min Tjoa. Towards an environmental decision-making
system: A vocabulary to enrich stream data. In Jorge Marx Gomez,
Michael Sonnenschein, Ute Vogel, Andreas Winter, Barbara Rapp, and
Nils Giesen, editors, Advances and New Trends in Environmental and
Energy Informatics, Progress in IS, pages 317–335. Springer International
Publishing, 2016.

[WVV+01] Holger Wache, Thomas Vögele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Hübner. Ontology-
based integration of information - a survey of existing approaches. In
IJCAI-01 workshop: ontologies and information sharing, pages 108–117,
2001.

[ZD04] Patrick Ziegler and Klaus R. Dittrich. Building the Information Soci-
ety: IFIP 18th World Computer Congress Topical Sessions 22–27 August
2004 Toulouse, France, chapter Three Decades of Data Intecration — all
Problems Solved?, pages 3–12. Springer US, Boston, MA, 2004.

[ZDCC12] Ying Zhang, Pham Minh Duc, Óscar Corcho, and Jean-Paul Calbimonte.
SRBench: a streaming RDF/SPARQL benchmark. In The Semantic Web
- ISWC 2012 - 11th ISWC, Boston, MA, USA, November 11-15, 2012,
Proceedings, Part I, pages 641–657. Springer, 2012.

174

http://apps.who.int/iris/bitstream/10665/204585/1/9789241565196_eng.pdf
http://apps.who.int/iris/bitstream/10665/204585/1/9789241565196_eng.pdf

Curriculum Vitae

Address DI (FH) Peter Wetz
Schumanngasse 3 / 7
1180 Wien
AUSTRIA

Date of birth July 12th, 1986

Education 2013–2016
Continuation of PhD Studies in Engineering Science
Doctoral College Environmental Informatics
TU Wien

2011–2012
PhD Studies in Engineering Science
Fulfillment of course requirements
Graz University of Technology

2005–2010
Diploma in Information Managment
FH JOANNEUM, Graz

Job Experience 2013–2016
Collegiate at the Doctoral College Environmental Informatics
TU Wien

2010–2013
Junior Researcher
Know-Center competence centre for knowledge-based applica-
tions and systems, Graz

175

2008
Systems Engineer Intern
Graz AG

2007
Software Development Intern
Mondi Frantschach GmbH

Selected Publications Wetz, P., Anjomshoaa, A., Tjoa, A M. (2013), A Survey on
Environmental Open Data in Austria. In Proceedings of the
2013 IEEE International Conference on Systems, Man, and
Cybernetics (SMC2013), IEEE, pp. 4566 – 4570.

Wetz, P., Trinh, T. D., Do, B. L., Anjomshoaa, A., Tjoa, A M.
(2013), Austrian Environmental Data Consumption—A Mashup-
based Approach. In Proceedings of the 1st International Work-
shop on Semantic Machine Learning and Linked Open Data
(SML2OD) for Agricultural and Environmental Informatics co-
located with the 12th International Semantic Web Conference
(ISWC 2013).

Wetz, P., Trinh, T. D., Do, B. L., Anjomshoaa, A., Kiesling,
E., Tjoa, A M. (2014), Towards an Environmental Information
System for Semantic Stream Data. In Proceedings of the 28th
Conference on Environmental Informatics – Informatics for
Environmental Protection, Sustainable Development and Risk
Management (EnviroInfo 2014), BIS-Verlag, Oldenburg, pp. 637
– 644. Best Paper Award

Wetz, P., Tuan, D. T., Lam, D. B., Anjomshoaa, A., Kiesling, E.,
Tjoa, A M. (2015), Towards an Environmental Decision-Making
System: A Vocabulary to Enrich Stream Data. In Advances and
New Trends in Environmental and Energy Informatics, Springer,
ISSN: 2196-8705, pp. 317-335.

Kolchin, M., Wetz, P. (2015), Demo: YABench–Yet Another
RDF Stream Processing Benchmark. In RDF Stream Process-
ing Workshop co-located with the 11th Extended Semantic Web
Conference (ESWC 2014), Portoroz, Slovenia.

176

Kolchin, M., Wetz, P., Kiesling, E., Tjoa, A M. (2016), YABench:
A comprehensive framework for RDF stream processor correct-
ness and performance assessment. In Web Engineering–16th
International Conference on Web Engineering, ICWE 2016,
Lugano, Switzerland, June 6-9, 2016, Proceedings, Springer
Berlin Heidelberg.

Grants & Awards 2014
Best Paper Award EnviroInfo Conference
Student Grant ISWC
Winner of the Web Intelligence Summer School Hackathon
Student Grant Web Intelligence Summer School
Second place “AI Mashup Challenge” at ESWC

2012
Second Place in “Poster & Demo Challenge” at I-KNOW

2005–2007
Scholarship for academic excellence at FH JOANNEUM

177

	Kurzfassung
	Abstract
	Contents
	Analysis
	Introduction
	Motivation
	Aim of the work
	Problem Statement
	Methodology
	Contributions
	Structure
	Publications

	Design
	Modeling Environmental Data Streams
	Motivation
	Related Work
	Ontology for Modeling Environmental Data Streams
	Architecture
	Summary

	Evaluating Stream Processing Engines
	Motivation
	Related Work
	YABench framework
	Validation against CSRBench
	Experimental setup
	Discussion
	Summary

	Environmental Streaming Mashups
	Related Work
	Linked Streaming Widgets
	Use Case: Citybike Mashup
	Use Case: Route Enrichment Mashup
	Summary of Use Cases
	Evaluation

	Conclusion
	Summary
	Answers to Research Questions
	Future Work

	Appendices
	Experiment 1 queries
	Experiment 2 queries
	Experiment 3 queries
	Python wrapper for C-SPARQL
	RML mappings for the citybike use case
	Continuous queries for the citybike use case
	Semantic models of citybike use case widgets
	RML mappings for the route enrichment use case
	Continuous queries for the route enrichment use case
	Semantic model of route enrichment use case widget
	Construct query cascade

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Bibliography
	Curriculum Vitae

