
D I P L O M A R B E I T

On Convergence of
Entropy Gradient Flow Structures for

Discrete Porous Medium Equations
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Preface

T his thesis investigates gradient flow structures for porous medium equations and their discrete counter-
parts. The first structure goes back to the seminal paper [36] by Jordan, Kinderlehrer and Otto,

where solutions to the Fokker-Plank equation on ℝu� were obtained as metric gradient flows for
the Shannon-Boltzmann entropy functional on the 2-Wasserstein space over ℝu�; that is the space
of probability measures with finite second moment on ℝu�, together with a certain distance which
is closely related to the weak convergence of probability measures.
In [54] Otto used this deep relation between partial differential equations and gradient flows on
spaces of probability measures to identify porous medium equations with Wasserstein gradient
flows for the Rényi entropy.
The second gradient flow structure to be presented in this thesis was proposed independently by
Maas [47] and Mielke [50], in order to provide a discrete counterpart to Wasserstein gradient flows.
The key rôle plays a non local transportation distance between discrete probability measures on
a finite state space, induced by a reversible continuous-time Markov chain on the aforementioned
space. The corresponding Markov semigroup arises as gradient flow for the relative entropy func-
tional with respect to the stationary distribution of the Markov chain.
Erbar and Maas [30] extended this discrete gradient flow framework to relate discrete versions of
porous medium equations to the discrete relative Rényi entropies.
After having established both, Wasserstein gradient flows and their discrete counterpart for finite
Markov chains, the central objective of this thesis is to investigate convergence of the latter to the
former in a suitable scaling limit. To this aim, we will use a simple finite-volume discretisation
for the porous medium equation with drift on the unit interval, which gives rise to corresponding
discrete entropy gradient flows.
At this point, we will pursue two different strategies in order to pass to a gradient flow for the
Rényi entropy on Wasserstein space over the unit interval: First, we opt to exert a Γ-convergence
result for gradient flows in EDE (energy dissipation equality) sense, proposed by Sandier and Serfaty
[60] in case of Hilbertian flows and extended to a metric setting by Serfaty [63]. This approach was
already successfully used by Disser and Liero in [24] to pass from discrete entropy gradient flows
to Wasserstein gradient flows related to the linear Fokker-Plank equation on the unit interval. We
follow the same route and show convergence of the gradient flows related to the finite-volume
discretisation to a Wasserstein gradient flow EDE sense for the Rényi entropy. In particular, this
establishes convergence of the underlying finite-volume scheme via a gradient flow approach.
The final part of this thesis evolves around the passage to a limit of the gradient flow struc-
tures when the underlying entropy functionals are convex along geodesics with respect to the
involved transportation metrics. The convexity of the Rényi entropy of order u� ≥ 1 − 1/u� on the
2-Wasserstein space over ℝu� is a well known result, due to McCann [49]. Curiously, the situation
is vastly different for the discrete setting: We present new counterexamples which show that, in
general, the discrete Rényi entropy of order u� ≤ 1/4 or u� ≥ 7/4 fails to be convex along geodesics
associated to the discrete transportation metrics.
Nevertheless, it is at least possible to obtain a positive result for u� = 1. In this case, convexity
along geodesics for the discrete entropy was established by Erbar and Maas [29] and Mielke [51] for
various choices of reversible finite-state Markov chains.
This enables us to investigate the limit of discrete entropy gradient flows in EVI (evolution varia-
tional inequality) sense, a notion which exhibits strong regularity and uniqueness properties. As
backbone for this approach we provide an abstract stability result for EVI gradient flows under
Γ-convergence of the underlying functionals. This is a generalisation of a stability result by Daneri
and Savaré [20] to gradient flows on metric spaces which converge in the sense of Gromov-Hausdorff.
Gromov-Hausdorff convergence of the discrete transportation metrics on the discrete torus to the
2-Wasserstein distance on the continuous torus was obtained by Gigli and Maas [35]. We will exploit
an adaptation of this result and Γ-convergence of the discrete entropy functionals to show that
the corresponding gradient flows, defined on an equidistant discretisation of the unit interval,
converge to a Wasserstein gradient flow in EVI sense. In particular, the resulting limit curve will
be a distributional solution to the homogeneous heat equation on the unit interval.
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Structure of the Thesis

The first three chapters of this thesis will mainly provide a review of main concepts required in
the later parts of this thesis. Detailed references are provided in the bibliographical notes at the
end of each chapter.

Chapter 1 gives a brief overview of gradient flows in abstract metric spaces. We introduce three
notions of gradient flows, related to the evolution variational inequality and the energy dissipa-
tion equality, as well as an inequality variant of the latter. In addition to basic properties, we
also provide abstract existence and uniqueness results which are based on a minimising movements
variational scheme.
In Chapter 2 we give an account of Wasserstein spaces and gradient flows therein. The corre-
sponding distance function on these spaces of probability measures are introduced by means of
an optimal transportation problem. After a short discussion of the geometry of Wasserstein spaces,
we study Wasserstein gradient flows for two classical types of energy functionals which encom-
pass entropy functionals amongst others and exhibit a tight relation to certain partial differential
equations.
In Chapter 3 we present an entropic gradient flow structure for reversible continuous-time Markov
chains on a finite state space. We show that porous medium equations arise as gradient flows
for the discrete Rényi entropy with respect to suitable non-local transport distances. Finally, we
investigate geodesic convexity of these entropy functionals and the Riemannian structure on the
interior of the corresponding spaces of discrete probability measures.
Chapter 4 portrays two stability results for gradient flows under notions of Γ-convergence in the
abstract metric framework of the first chapter. The first result is concerned about convergence
of gradient flows in EDE sense, the second about stability of EVI gradient flows under Gromov-
Hausdorff convergence of the underlying metric spaces. We briefly illustrate how the former was
successfully applied to study the convergence of Cahn-Hilliard equations, and outline a simple
consequence of the latter for coercive functionals.
In Chapter 5 we investigate how Wasserstein gradient flows for the porous medium equation with
drift on the unit interval may be approximated by their discrete counterparts for reversible Markov
chains. This approach depicts an application of the stability result for EDE gradient flows from
the previous chapter.
Finally, Chapter 6 illustrates convergence to gradient flows for the homogeneous heat equation in
the stronger EVI notion. To this aim, we show geodesic convexity of the involved discrete entropy
functionals and outline Gromov-Hausdorff convergence of the discrete transportation metrics to
the 2-Wasserstein distance.
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Introduction

The central equation of this thesis is the porous medium equation with drift

d
du�u� = Δ(u�u�) + div(u�∇u�) for u� > 0, (1)

which admits a representation as gradient flow with respect to entropy functionals on a Wasser-
stein space. In a similar fashion, it is also possible to identify the discrete counterpart to (1) as
gradient flow on a space of discrete probability measures, endowed with a suitable non-local trans-
portation metric.
In both formulations the underlying functionals are defined on spaces of probability measures
which do not admit any linear structure needed to study gradient flows in the classical sense by
means of the equation

d
du�u� = −∇u�(u�). (2)

At first glance, the derivatives in the equation above are not well defined when u� is a functional
on some metric space (u�, u�). However, metric analysis still provides certain ‘moduli of the deriv-
atives’ involved in (2), namely the metric differential

∣u̇�∣(u�) ∶= lim
u�→u�

u�(u�(u�), u�(u�))
|u� − u�|

of a curve u� : ℝ+ → u�, and the (local) slope

∣∂u�∣(u�) ∶= lim sup
u�→u�

(u�(u�) − u�(u�))+

u�(u�, u�)

of a functional u� : u� → ℝ ∪ {+∞}. Indeed, with these two definitions at hand, (2) makes sense in
a metric space as well, provided that we take the modulus in both sides of the equation. However,
it is not hard to see that the resulting scalar equation comes with a loss of information and need
not be equivalent to (2) in Euclidean space, or more generally, when u� is a Hilbert space. In order
to retain equivalence to the gradient flow equation in (2) in this case, it is meaningful to look at
the derivative of the energy:

d
du�u�(u�(u�)) = ⟨u̇�(u�), ∇u�(u�(u�))⟩ ≥ − ∣u̇�(u�)∣ ∣∇u�(u�(u�))∣ ≥ −1

2 ∣u̇�(u�)∣2 − 1
2 ∣∇u�(u�(u�))∣2 . (3)

Apparently, there is equality in the first inequality above, exactly, when u̇�(u�) and ∇u�(u�(u�)) differ
by a negative factor. On the other hand, equality in the second inequality above holds iff − ∣u̇�(u�)∣ =
∣∇u�(u�(u�))∣. In other words, there is equality between the left-hand and right-hand side in (3),
precisely, when u̇�(u�) agrees with −∇u�(u�(u�)). This means that we may write (2) in the equivalent
form

1
2 ∣u̇�∣2(u�) − 1

2 ∣∂u�(u�)∣2(u�) = − d
du�u�(u�(u�)). (4)

This equality is known as (pointwise) energy dissipation equality and provides a notion of gradient
flows on metric spaces which will be reviewed in Chapter 1. In addition, we will study a different
generalisation of (2) to a metric setting which is based on the so called evolution variational inequality
which is established by exploiting convexity of the underlying functional u�:

1
2

d
du�u�2(u�(u�), u�) ≤ u�(u�) − u�(u�(u�)) ∀u� ∈ u�. (5)

Above inequality and its natural generalisation to strongly convex functionals turn out to provide
powerful regularisation and uniqueness properties. In particular, the evolution variational in-
equality already implies the energy dissipation equality, whilst the converse implication need not
be true in general.
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Equipped with the abstract tools from the first chapter, we are ready to study gradient flows on the
space of probability measures on ℝu� inChapter 2. A suitable metric on this space is provided by the
2-Wasserstein distance which metrises the weak convergence of probability measures on bounded
metric spaces. This distance is usually defined by means of the Kantorovich transport problem. For
our purposes, the following characterisation of the 2-Wasserstein distance via the Benamou-Brenier
formula plays a major rôle:

u�2
2(u�0, u�1) = inf {

1
∫
0

∥u�u�∥
2
u�2(u�(u�)) du�} , (6)

where the infimum is taken over curves of probability measures u�(u�) for u� ∈ [0, 1], joining u�0 to
u�1, and suitable functions u� : [0, 1] → ℝu� solving the continuity equation

d
du�u�(u�) + div(u�u�u�(u�)) = 0

in the sense of distributions. The distance u�2 provides a metric for the space of Borel probability
measures with finite second moment on ℝu�. This metric space is called 2-Wasserstein space over
ℝu� and will be denoted by u�2(ℝu�).
Now we are in the position to study gradient flows for certain functionals on u�2(ℝu�). Of particular
interest will be the Rényi entropy functional

u�u�(u�) =
⎧{
⎨{⎩

1
u� − 1 ∫

ℝu�

u�u�(u�) du�, if u� has density u�,

+∞, otherwise.

It turns out that the density u� of each curve u� : ℝ+ → u�2(ℝu�) which satisfies a weak formulation of
(4) for the functional u�u�, is a distributional solution of the homogeneous porous medium equation

d
du�u� = Δ(u�u�).

This relation is a crucial inspiration for Chapter 3, mainly based on the work [30] by Erbar and Maas:
There we will present a gradient flow structure for the space of discrete probability measures on
the finite set Xu� ≃ {1, 2, … u�}, which gives rise to solutions of the discrete porous medium equation

d
du�u�u� =

u�
∑
u�=1

Qu�u�u�u�
u� for u� > 0. (7)

Here we assume that the matrixQ ∈ ℝu�×u� is the generator of a reversible time continuous Markov
chain on Xu� and u� is a curve taking values in Pu�, that is the space of probability densities with
respect to the stationary distribution u� of Q.
In order to interpolate a discrete density u� between points u� and u� in Xu�, we introduce the mean

û�u�,u� ∶= u� − 1
u�

u�u�
u� − u�u�

u�

u�u�−1
u� − u�u�−1

u�
(8)

for 0 < u� ≤ 2. Inspired by the Benamou-Brenier formula (6), we define a distance function on Pu�

by

W2(u�0, u�1) ∶= inf {
1

∫
0

∑
u�,u�

(u�u�(u�) − u�u�(u�))2û�u�u�(u�)u�u�u�u�u� du�} ,

where the infimum is taken over all smooth curves u� : [0, 1] → Pu� joining u�0 to u�1, and u� : [0, 1] →
ℝu� satisfying the discrete continuity equation
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d
du�u�u�(u�) +

u�
∑
u�=1

(u�u�(u�) − u�u�(u�))û�u�u�(u�)u�u�u� = 0 ∀u� ∈ Xu�.

The definition ofW somewhat resembles the distance on a Riemannian manifold. Indeed, it turns
out that the interior ofPu� can be endowed with a Riemannian structure which induces the distance
W. This allows us to study the gradient flow for the discrete Rényi entropy functional

F u�
u� (u�) ∶=

⎧{{{
⎨{{{⎩

1
u� − 1

u�
∑
u�=1

u�u�
u� u�u� if u� ≠ 1,

u�
∑
u�=1

u�u�u�u� log u�u� if u� = 1,

on the Riemannian manifold intPu�. Now the particular structure of the mean û�u�u� in (8) comes
into play, which allows us to identify the gradient flow equation for the functional F u�

u� with the
corresponding discrete porous medium equation in (7).

At this point, we have established two types of gradient flow structures on distinct metric spaces:
the first one for probability measures on Euclidean space in the context of the 2-Wasserstein dis-
tance, the latter one for discrete probability densities on the finite set Xu� with respect to the dis-
tance W. Now the question arises whether one can relate these two notions by approximation of
the former by the latter. To this aim, we present an abstract framework for convergence of gradient
flows in general metric spaces in Chapter 4, following results of Serfaty [63] and Daneri and Savaré
[20].
The main ingredient is a certain notion of convergence of functionals u�u� on metric spaces (u�u�, u�u�)
to a limit functional u� on (u�, u�): Let u�u� : ℝ+ → u�u� be curves satisfying the energy dissipation
equality (4). Moreover, we assume that there is a limit curve in the sense that there exists a metric
space (u�, u�) together with mappings u�u� : u�u� → u� such that u�u� ∘ u�u� is pointwise convergent to a
curve u� : ℝ+ → u�. In order to retain u� as solution of (4), it is enough to check the Γ-lim inf bounds

lim infu�→∞ u�u�(u�u�(u�)) ≥ u�(u�(u�)), (9.a)

lim infu�→∞

u�
∫
0

∣u̇�u�∣2(u�) + ∣∂u�u�(u�u�)∣2(u�) du� ≥
u�

∫
0

∣u̇�∣2(u�) + ∣∂u�(u�)∣2(u�) du� (9.b)

for all times u� > 0, together with suitable initial conditions on all u�u�.
In the second part of this chapter we provide a similar stability result for the evolution variational
inequality (5). Here a bound of the form (9.a) is not sufficient and the stronger notion of (sequential)
Γ-convergence of the functionals u�u� is required. Since the metric appears explicitly in (5), we need
to relate the metrics u�u� to the metric u� by assuming that u�u� is ‘almost an isometry’ between u�u� and
u� up to some small error u�u� > 0, viz.

dist (u�u�(u�u�), u�) ≤ u�u� and ∣u�(u�u�(u�), u�u�(u�)) − u�u�(u�, u�)∣ ≤ u�u� ∀u�, u� ∈ u�u�. (10)

Provided that a sequence of such mappings exists for some (u�u� ↘ 0), we say that the metric spaces
(u�u�, u�u�) are convergent to (u�, u�) in the sense of Gromov-Hausdorff.

In Chapter 5 we are concerned about applying the first stability result of the previous chapter
to approximate the 2-Wasserstein gradient flow for the porous medium equation (1) on the unit
interval Ω ∶= (0, 1) by its discrete counterparts as already done for linear Fokker-Plank equations
by Disser and Liero [24]. The Markov chains for the corresponding gradient flow structures will
be induced by a simple finite-volume scheme for (1). The resulting generator Q only allows for
nearest-neighbour transitions; in other words,Q is a tridiagonal matrix, which enables us to obtain
explicit expressions for the metric differential of a curve in Pu�, and the slope of the discrete Rényi
entropy functional F u�

u� , both with respect to the discrete transportation distance W.
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In the next step, we consider piecewise constant interpolants u�u� of discrete gradient flow curves
in Pu�, which (up to a subsequence) are weakly convergent to a probability density curve u� on
Ω. Now it remains to verify the Γ-lim inf bounds in (9) to allow for an application of the first
stability result in Chapter 4. Thus, we established that u� is the density curve of a gradient flow
satisfying the energy dissipation equality (4) in u�2(Ω). As a consequence of the results obtained
in the Wasserstein framework, u� is a distributional solution of the porous medium equation (1)
with non-flux Neumann boundary condition.

In the last chapter, we adapt our approach from Chapter 5 to the related notion of gradient flows
satisfying the evolution variational inequality (5). In this case, the abstract framework of conver-
gence is provided by the second stability result in Chapter 4. That means that we have to assure
that the spaces (Pu�,W) converge to (u�2(Ω), u�2) in the sense of Gromov-Hausdorff as (u� → ∞).
To this aim, we make the simplifying assumption that the underlying discretisation of Ω is equidis-
tant which implies that the induced generator is of following form

Q = u�2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 … 0
1 −2 1 0 … ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ … 0 1 −2 1
0 … 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This particular structure of Q allows us to adapt an argument by Gigli and Maas [35], thereby ob-
taining suitable mappings u�u� : Pu� → u�2(Ω), satisfying (10) by exploiting strong regularisation
properties of the heat semigroup on the real line.
Equipped with these ‘almost isometric’ mappings and Γ-convergence of the discrete Rényi en-
tropiesF u�

u� to u�u� as (u� → ∞), it remains to obtain gradient flow curves u� : ℝ+ → Pu� which satisfy
(5) for the functionals F u�

u� . This is indeed straightforward, provided that the entropies F u�
u� are

convex along geodesics in the Riemannian manifolds intPu�, i.e.

F u�
u� (u�(u�)) ≤ (1 − u�)F u�

u� (u�0) + u�F u�
u� (u�1) ∀u� ∈ [0, 1] (11)

for all points u�0, u�1 ∈ Pu� and geodesics u� : [0, 1] → Pu� connecting u�0 to u�1.
Whilst the verification of (11) is fairly straightforward for the case u� = 1, it is not clear whether
F u�

u� is convex along geodesics for arbitrary u� > 0. At least for u� ≤ 1/4 or u� ≥ 7/4 the answer is
negative as counterexamples for generators of tridiagonal Toeplitz matrix form will show.
Nevertheless, we can apply the abstract convergence result for gradient flows satisfying the evo-
lution variational inequality in the case u� = 1. Thus, we recover a density curve u� in u�2(Ω),
which belongs to the (unique, provided we fix a starting point) gradient flow, satisfying (5) for the
entropy functional u�1. Consequently, u� is also a distributional solution to the homogeneous heat
equation

d
du�u� = Δu� in Ω,

with non-flux Neumann boundary condition.



1 Gradient Flows in Metric Spaces

1.1 Absolutely Continuous Curves and Their Metric Derivative

In this section we take a glance at absolutely continuous curves, taking values in a metric space,
and introduce the closely related concept of a metric derivative. Indeed, with these tools we lay the
groundwork for various notions of gradient flows in metric spaces, which we are going to study
in the subsequent section.
We will start with the definition of an absolutely continuous curve, taking values in a complete
metric space.

Notation
In this chapter, by (u�, u�) we denote a possibly unbounded interval on ℝ and by (u�, u�) an arbitrary
complete metric space.

1.1.1 Definition Given a curve u� : (u�, u�) → u�, we say that u� belongs to u�u�u�((u�, u�), u�), 1 ≤ u� ≤ ∞, if
there exists a function u� ∈ u�u�((u�, u�), ℝ) such that

u�(u�(u�), u�(u�)) ≤
u�

∫
u�

u�(u�) du� ∀u�, u� ∈ (u�, u�) : u� ≤ u�. (1.1)

We say that u� belongs to u�u�u�
loc((u�, u�), u�), 1 ≤ u� ≤ ∞, if for every u� ∈ (u�, u�) there exists a neigh-

bourhood u� ⊆ (u�, u�) of u� such that u�∣u� ∈ u�u�u�(u�, u�).
In the case u� = 1 we say that u� is absolutely continuous or locally absolutely continuous and
simply write u�u�((u�, u�), u�) or u�u�loc((u�, u�), u�) for the corresponding space, instead of u�u�1((u�, u�), u�)
or u�u�1

loc((u�, u�), u�), respectively.

Although metric spaces lack the linear structure of vector spaces, it is possible to define a certain
generalization of a derivative of functions taking values in arbitrary metric spaces.

1.1.2 Definition A function u� : (u�, u�) → u� is said to be metrically differentiable at a point u� ∈ (u�, u�) if
the limit

|u̇�|(u�) ∶= lim
u�→u�

u�(u�(u�), u�(u�))
|u� − u�| (1.2)

exists. Then |u̇�|(u�) ∈ ℝ is called the metric differential or metric derivative of u� at u�.

1.1.3 Example (Fréchet derivative) Consider a function u� : (u�, u�) → u� where (u�, ‖⋅‖u�) is a Banach space.
Then u� is metrically differentiable at a point u� if u� is Fréchet differentiable at u�, since

∥du�(u�)∥u� = ∥lim
u�→u�

u�(u�) − u�(u�)
u� − u� ∥

u�
= lim

u�→u�

‖(u�(u�) − u�(u�)‖u�
|u� − u�| = |u̇�| (u�).

◀◀

Concerning the following theorem, recall that the limit inferior of a function u� : u� → ℝ ∪ {+∞} at
a point u� ∈ u� is defined as lim infu�→u� u�(u�) ∶= sup

u�∈u�(u�)
inf u�(u�), where u�(u�) denotes the neighbourhood

filter of u�.
1.1.4 Theorem For any curve u� ∈ u�u�u�((u�, u�), u�) the metric differential |u̇�| exists a.e. in (u�, u�) and satisfies

the following properties:
(MD1) The function |u̇�| belongs to u�u�((u�, u�), ℝ).
(MD2) |u̇�| is an admissible integrand for the right-hand side of (1.1.1).
(MD3) The metric differential is minimal in the sense that |u̇�| ≤ u� holds a.e. in (u�, u�), for each function u� ∈

u�u�((u�, u�), ℝ) satisfying (1.1.1).
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1.1.5 Lemma (Lipschitz and arc-length reparametrisation) Let u� ∈ u�u�((u�, u�), u�) be an absolutely continuous
curve with length u� ∶= ∫u�

u� |u̇�|(u�) du�.
(i) For every u� > 0 and u�u� ∶= u� + u�(u� − u�) there exists a strictly increasing, absolutely continuous map

u�u� : (u�, u�) → (0, u�u�) with lim
u�↘u�

u�u�(u�) = 0 and lim
u�↗u�

u�u�(u�) = u�u�,

and a Lipschitz curve

u�u� : (0, u�u�) → u�, such that u� = u�u� and ∣u̇�u�∣ ∘ u�u� = |u̇�|
u� + |u̇�| ∈ u�∞((u�, u�), ℝ) . (1.3)

Moreover, the map u�u� admits a Lipschitz continuous inverse u�u� : (0, u�u�) → (u�, u�) with a Lipschitz constant
u�−1 such that u�u� = u� ∘ u�u�.

(ii) There exists an increasing, absolutely continuous map

u� : (u�, u�) → [0, u�] with lim
u�↘u�

u�(u�) = 0 and lim
u�↗u�

u�(u�) = u�,

and a Lipschitz curve

u� : [0, u�] → u�, such that u� = u� ∘ u� and |u̇�| = 1 a.e. in [0, u�]. (1.4)

1.2 Different Formulations of Gradient Flows in Metric Spaces

Notation
Throughout this section (u�, u�) denotes denotes a smooth, complete connected Riemannian man-
ifold u� of dimension u� ≥ 1, endowed with the metric tensor u� and the Riemannian distance
u�u�.
By (u�, u�) we denote an arbitrary complete metric space and by (u�, u�) a possibly unbounded open
interval in ℝ.
Moreover, we will assume that any extended real functional u� : u� → ℝ∪{+∞} has proper effective
domain, i.e. the effective domain dom u� ∶= {u� ∈ u� : u�(u�) < +∞} of u� is nonempty.

Let u� be a smooth functional on some Riemannian manifold (u�, u�). Then a gradient flow (with
respect to u�) is just a differentiable curve u� : ℝ+ → u�, solving the gradient flow equation

u̇�(u�) = −(gradu�u�)u�(u�) ∀u� ∈ ℝ+ (1.5)

and satisfying lim
u�↘0

u�(u�) = u�0 for some initial value u�0 ∈ u�.
The aim of this section is to generalise this notion to general metric spaces. Clearly, (1.5) makes
a-priori no sense for a curve, taking values in a metric space since one lacks the tools to properly
define the derivative of such a curve. Nevertheless, we may characterise (1.5), only using the no-
tions of geodesics and convexity together with the metric tools developed in the previous section.
We recall that a functional u� ∈ u�2(u�) is convex, precisely, when Hess u� is positive semi-definite, i.e.
Hess u�(u�, u�) ≥ 0 for all u� ∈ u�u�u� and every point u� ∈ u�. This naturally generalises to u�-convexity
in the following sense: u� is called u�-convex if Hess u� − u�u� is positive semi-definite.
The following proposition gives various characterisations of u�-convexity.

1.2.1 Proposition (u�-convexity) Let (u�, u�) be a Riemannian manifold and fix u� ∈ ℝ. Then for every func-
tional u� ∈ u�2(u�) the following statements are equivalent:
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(i) Hess u� − u�u� is positive semi-definite;
(ii) for every constant speed, minimizing geodesic u� : [0, 1] → u�, connecting two points u�0, u�1 ∈ u�, we have

u�(u�(u�)) ≤ (1 − u�)u�(u�0) + u�u�(u�1) − u�(1 − u�)u�
2 u�2

u�(u�0, u�1);

(iii) for every constant speed, minimizing geodesic u� : [0, 1] → u�, connecting two points u�0, u�1 ∈ u�, we have

u�(∇u�(u�0), u̇�(0)) ≤ u�(u�1) − u�(u�0) − u�
2 u�2

u�(u�0, u�1);

(iv) for every constant speed, minimizing geodesic u� : [0, 1] → u�, connecting two points u�0, u�1 ∈ u�, we have

u�(∇u�(u�0), u̇�(0)) ≤ u�(∇u�(u�1), u̇�(1)) − u�
2 u�2

u�(u�0, u�1).

Note that the formulations (iii) and (iv) of Proposition 1.2.1 only require the functional u� to belong to
u�1(u�), whereas (ii) requires no smoothness assumption on u�. Therefore, we may use (ii) to define
an appropriate notion of u�-convex functionals on general metric spaces.

1.2.2 Definition Let (u�, u�) be a metric space and fix u� ∈ ℝ. Then a functional u� : u� → ℝ ∪ {+∞} is
called u�-convex along a curve u� : [0, 1] → u�, connecting two point u�0, u�1 ∈ u� if

u�(u�(u�)) ≤ (1 − u�)u�(u�0) + u�u�(u�1) − u�
2 u�(1 − u�)u�2(u�0, u�1) ∀u� ∈ [0, 1]. (1.6)

In particular, u� is called geodesically u�-convex if for every pair of points u�0, u�1 ∈ dom u� there
exists a geodesic u� : [0, 1] → u�, connecting u�0 and u�1 such that u� is u�-convex along u�.

Now we introduce the notion of slopes which generalise the modulus of a gradient to a general
metric setting.

1.2.3 Definition We call

∣∂u�∣(u�) ∶= lim sup
u�→u�

(u�(u�) − u�(u�))+

u�(u�, u�) ∀u� ∈ dom u�

the slope of u�.

1.2.4 Proposition (Slopes are upper gradients)

(i) The slope ∣∂u�∣ is a weak upper gradient for u�, i.e. for every curve u� ∈ u�u�((u�, u�), u�) with the properties
⇝ u� ↦ ∣∂u�∣(u�(u�)) |u̇�|(u�) belongs to u�1((u�, u�), ℝ) and
⇝ u� ∘ u� is of essential bounded variation on (u�, u�), .i.e. there exists a function u� : (u�, u�) → ℝ ∪ {+∞} of

bounded variation such that u�(u�(u�)) = u�(u�) a.e. in (u�, u�),
one has ∣u�′(u�)∣ ≤ u�(u�(u�)) |u̇�|(u�) a.e. in (u�, u�).

(ii) If u� is lower semicontinuous and geodesically u�-convex for some u� ∈ ℝ, then the slope ∣∂u�∣ is also a strong
upper gradient for u�, i.e. for every absolutely continuous curve u� : (u�, u�) → u� the function ∣∂u�∣∘u� is Borel
measurable and

∣u�(u�(u�)) − u�(u�(u�))∣ ≤
u�

∫
u�

∣∂u�∣(u�(u�)) |u̇�|(u�) du� ∀u�, u� ∈ (u�, u�) : u� ≤ u�. (1.7)

Moreover, the slope admits the representation

∣∂u�∣(u�) = sup
u�≠u�

(
u�(u�) − u�(u�)

u�(u�, u�) + u�−

2 u�(u�, u�))
+

∀u� ∈ dom u�,

where u�− ∶= min {u�, 0}.
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Now we are ready to some reformulations of (1.5). To this aim, recall that the upper right-hand Dini
derivative of a function u� : (u�, u�) → ℝ is given by

d+

du� u� (u�) ∶= lim sup
ℎ↘0

u� (u� + ℎ) − u� (u�)
ℎ ∀u� ∈ (u�, u�), (1.8.a)

whereas the upper left-hand Dini derivative of u� is given by

d−

du� u� (u�) ∶= lim sup
ℎ↗0

u� (u� + ℎ) − u� (u�)
ℎ ∀u� ∈ (u�, u�). (1.8.b)

1.2.5 Proposition (Gradient flows on Riemannian manifolds) Let u� ∈ u�1(u�) be a smooth functional on a
Riemannian manifold (u�, u�) and let u� : (u�, u�) → u� is a continuous curve. For every time u� ∈ (u�, u�) where
u� is differentiable at u�, the following two statements are equivalent:

(i) u� satisfies the gradient flow equation at u�, i.e

d
du�u�(u�) = −(gradu�u�)u�(u�);

(ii) u� satisfies the energy dissipation equality at u�, i.e.

d
du�u�(u�(u�)) = −1

2 ∣∂u�∣2(u�(u�)) − 1
2 |u̇�(u�)|2u� ;

If u� is a geodesically u�-convex functional for some u� ∈ ℝ according to Definition 1.2.2, then any of above
statements is equivalent to any of:

(iii) for every point u� ∈ u� and every geodesic u�u� : [0, 1] → u�, connecting u�(u�) to u�, we have

1
2

d+

du� u�2
u�(u�(u�), u�) ≤ d+

du�u�(u�u�(u�))∣
u�=0

.

(iv) for every point u� ∈ u�, u� satisfies the evolution variational inequality

1
2

d+

du� u�2
u�(u�(u�), u�) ≤ u�(u�) − u�(u�(u�)) − u�

2 u�2
u�(u�(u�), u�).

Proof We start by proofing the equivalence of (i) and (ii): The chain rule, together with the in-
equalities of Cauchy-Schwarz and Young imply the estimate

− d
du�u�(u�(u�)) = ⟨−(gradu�u�)u�(u�), u̇�(u�)⟩

u�
≤ ∣(gradu�u�)u�(u�)∣u� |u̇�(u�)|u� ≤ 1

2 (∣(gradu�u�)u�(u�)∣
2
u� + |u̇�(u�)|2u�) .

(1.9)

Note that there is equality in the first inequality of (1.9), precisely, when gradu�u� at u�(u�) and u̇�(u�)
are linearly dependent by a negative scalar. On the other hand, equality in the second inequality
holds iff the norms of both vectors agree. Combining both conditions implies that there is equality
in (1.9), exactly, when the gradient flow equation of (i) holds.

Let us check that (i) implies (iii): Since u�u� as defined in (iii) is a geodesic with end point u�, we have
∇u̇�u�

u̇�u� = 0 and u�′
u�(1) = 0 in the first variation formula (B.2) from Appendix B. Therefore, we obtain

1
2

d+

du� u�2
u�(u�(u�), u�) ≤

1
∫
0

∣u̇�u�(u�)∣2u� du� = −⟨u̇�u�(0), u�′
u�(0)⟩

u�
= −⟨u̇�u�(0), u̇�(u�)⟩u�. (1.10)

Moreover, the gradient flow equality in (i) implies



15 GRADIENT FLOWS IN METRIC SPACES

lim
u�↘0

u�(u�u�(u�)) − u�(u�u�(0))
u� = ∇u̇�u�(0)u� = ⟨(gradu�u�)u�(u�), u̇�u�(0)⟩

u�
= ⟨−u̇�(u�), u̇�u�(0)⟩u�. (1.11)

Together, both (1.10) and (1.11) yield

1
2

d+

du� u�2
u�(u�(u�), u�) ≤ d+

du�u�(u�u�(u�))∣
u�=0

,

which is precisely the inequality in (iii).

Next, we show that (iii) implies (iv): Note that u� is u�-convex along the geodesic u�u� connecting u�(u�)
to u�. Thus, (1.6) corresponds to

u�(u�u�(u�)) − u�(u�u�(0))
u� ≤ u�(u�u�(1)) − u�(u�u�(0)) − u�

2 (1 − u�)u�2
u�(u�u�(0), u�u�(1)) ∀u� ∈ (0, 1].

Now passing to the limit above as (u� ↘ 0) and using the inequality in (iii) results in the evolution
variational inequality

1
2

d+

du� u�2
u�(u�(u�), u�) ≤ d+

du�u�(u�u�(u�))∣
u�=0

≤ u�(u�u�(1)) − u�(u�u�(0)) − u�
2 u�2

u�(u�u�(0), u�u�(1)).

Finally, it remains to go from (iv) to (i): Fix u� ∈ u�u�(u�)u� and u� = expu�(u�)(u�u�). Provided that we
choose u� > 0 small enough, u�u�(u�) = expu�(u�)(u�u�u�) is the unique length minimising geodesic joining
u�(u�) to u� with constant speed ∣u̇�∣u� = u� |u�|u�. In particular, there is equality in (1.10) for this choice of
u�u�, to wit

1
2

d+

du� u�2
u�(u�(u�), u�) = −⟨u̇�u�(0), u̇�(u�)⟩u� = −⟨u�u�, u̇�(u�)⟩u�.

Together with the the evolution variational inequality in (iv) we obtain

− ⟨u�u�, u̇�(u�)⟩u� ≤ u�(u�u�(1)) − u�(u�u�(0)) − u�
2 u�2

u�(u�u�(0), u�u�(1)) =

= u�( expu�(u�)(u�u�)) − u�(u�(u�)) − u�
2 u�2 |u�|2u� ,

where we used that u�u� has constant speed ∣u̇�∣u� = u� |u�|u�in the equality from the first to the second
line. Reordering the terms of this inequality and dividing both sides by u� yields

u�( expu�(u�)(u�u�)) − u�(u�(u�))
u� ≥ −⟨u�, u̇�(u�)⟩u� + u�

2 u� |u�|2u� ,

where we may pass the limit as (u� ↘ 0) to arrive at

⟨(gradu�u�)u�(u�), u�⟩
u�

= ∇u�u� ≥ ⟨u�, −u̇�(u�)⟩u�. (1.12)

Since this inequality holds for all u� ∈ u�u�(u�)u�, there is actually equality in (1.12) and we conclude
■■that the gradient flow equation in (i) is satisfied.

Note that we may carry over the gradient flow characterisations (ii) to (iv) in Proposition 1.2.5 to
general metric spaces by interpreting the modulus |u̇�(u�)| of the velocity field u̇� as metric derivative
|u̇�|(u�) in the corresponding (in-)equalities. We only need to clarify the meaning of a geodesics in
a metric space: Recall that the Hopf-Rinow theorem (cf. Theorem B.3.4 in Appendix B) implies that
for any two points in the connected Riemannian manifold (u�, u�), there exists a length minimizing
geodesic u� : [0, 1] → u�, connecting these two points. Furthermore, we can assume without
restriction that u� is a constant speed curve. This gives rise to the following definition.
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1.2.6 Definition Let (u�, u�) be a metric space. A curve u� : [0, 1] → u� is called constant-speed geodesic
if

u�(u�(u�), u�(u�)) = |u� − u�| u�(u�(0), u�(1)) ∀u�, u� ∈ [0, 1].

We call (u�, u�) a geodesic space if for every pair of points u�0, u�1 ∈ u�, there exists a constant-speed
geodesic u� : [0, 1] → u�, joining u�0 to u�1.

Clearly, every connected Riemannian manifold, endowed with the Riemannian distance, is a geo-
desic space by the aforementioned Hopf–Rinow theorem.
Regarding the following definitions, it is sufficient to require a curve u� to belong to u�u�loc(ℝ+, u�).
Then Theorem 1.1.4 assures that the metric derivative |u̇�| exists a.e. in ℝ+ and is Borel measurable.
Moreover, the reverse triangle inequality implies for fixed u� ∈ u� that

∣u�(u�(u�), u�) − u�(u�(u�), u�)∣ ≤ u�(u�(u�), u�(u�)) ∀u�, u� ∈ ℝ+.

As a result, we obtain that the real-valued function u� ↦ u�(u�(u�), u�) is locally absolutely continu-
ous and therefore differentiable a.e. in ℝ+. Note that this holds also true for the mapping u� ↦
u�2(u�(u�), u�). Thus we can establish the following definitions, inspired by the characterisations of a
gradient flow on a Riemannian manifold as in Proposition 1.2.5.

1.2.7 Definition Assume that u� : u� → ℝ ∪ {+∞} is a functional with proper effective domain dom u�.

(EDI) A curve u� ∈ u�u�loc(ℝ+, u�), starting from lim
u�↘0

u�(u�) = u�0 ∈ dom u�, satisfies the energy dissipation
inequality (EDI) if

1
2

u�
∫
0

|u̇�|2(u�) du� + 1
2

u�
∫
0

∣∂u�∣2(u�(u�)) du� ≤ u�(u�0) − u�(u�(u�)) ∀u� ∈ ℝ+, (1.13.a)

and

1
2

u�
∫
u�

|u̇�|2(u�) du� + 1
2

u�
∫
u�

∣∂u�∣2(u�(u�)) du� ≤ u�(u�(u�)) − u�(u�(u�)) a.e. u�, u� ∈ ℝ+ : u� ≤ u�. (1.13.b)

We call such a curve gradient flow in the EDI sense.

(EDE) A curve u� ∈ u�u�loc(ℝ+, u�), starting from lim
u�↘0

u�(u�) = u�0 ∈ dom u�, satisfies the energy dissipation
equality (EDE) if

1
2

u�
∫
u�

|u̇�|2(u�) du� + 1
2

u�
∫
u�

∣∂u�∣2(u�(u�)) du� = u�(u�(u�)) − u�(u�(u�)) ∀u�, u� ∈ ℝ+ : u� ≤ u�. (1.14)

Such a curve is called gradient flow in the EDE sense.

(EVIu�) A curve u� ∈ u�u�loc(ℝ+, u�), starting from limu�↘0 u�(u�) = u�0 ∈ dom u�, satisfies the evolution varia-
tional inequality (EVI) with respect to a given u� ∈ ℝ if

1
2

d
du�u�2(u�(u�), u�) ≤ u�(u�) − u�(u�(u�)) − u�

2 u�2(u�(u�), u�) ∀u� ∈ u�, a.e. u� ∈ ℝ+. (1.15)

We say such a curve is a gradient flow in the EVI sense with respect to u�.
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1.3 Properties of Gradient Flows in Metric Spaces

Notation
As before, our minimal assumption in this section is that the functional u� : u� → ℝ ∪ {+∞} has
proper effective domain, i.e. dom u� is nonempty, in a complete metric space (u�, u�). Moreover, we
assume that u� is lower semicontinuous.

Before we will compare the different notions of gradient flows introduced in the previous section,
we will show some properties unique to EVI gradient flows. We start with two useful charac-
terisations of EVI, which avoid differentiation and do not assume any absolute continuity of the
curve.

1.3.1 Lemma (characterisation of EVI) For u� ∈ ℝ a continuous curve u� : ℝ+ → dom u� satisfies the EVI,
precisely, when

1
2u�u�u�u�2(u�(u�), u�) − 1

2u�u�u�u�2(u�(u�), u�) ≤ (u�(u�) − u�(u�(u�)))
u�

∫
u�

u�u�u� du� ∀u� ∈ dom u�, ∀u�, u� ∈ ℝ+ : u� ≤ u�;

(1.16)

Above characterisation allows us to obtain a slightly refined version of (1.15) which holds for all
u� > 0. Indeed, (1.16) we can divide both sides of (1.16) by (u� − u�) and pass to the limit superior as
(u� ↘ u�) to obtain the following pointwise variant of the EVI:

1
2

d+

du� u�2(u�(u�), u�) ≤ u�(u�) − u�(u�(u�)) − u�
2 u�2(u�(u�), u�) ∀u� ∈ dom u�, ∀u� ∈ ℝ+. (1.17)

Here d+

du� denotes again the upper right-hand Dini derivative as defined in (1.8.a)

Gradient flows in the EVI sense have extensive contraction and regularising properties. The fol-
lowing theorem summarises some of the crucial results.

1.3.2 Theorem Let u�, u� :∈ u�u�loc(ℝ+, u�) two be curves , both of which solve the evolution variational in-
equality (1.15) with respect to some u� ∈ ℝ and assume that u� is a lower semicontinuous functional with
proper effective domain. Then u� and u� satisfy the following properties:

(i) u�-contraction and uniqueness:

u�(u�(u�), u�(u�)) ≤ e−u�(u�−u�) u�(u�(u�), u�(u�)) u�, u� ∈ ℝ+ : u� ≤ u�.

In particular, for every initial datum u�0 ∈ dom u� there exists at most one gradient flow in the EVI sense.

(ii) Regularising effects: The curve u� is locally Lipschitz and u�(u�) belongs to dom ∣∂u�∣ ⊆ dom u� for all times
u� > 0. For every initial datum lim

u�↘0
u�(u�) = u�0 ∈ dom u� and all times u� > 0 the following a priori estimate

holds:

1
2u�u�u�u�2(u�(u�), u�)+(u�(u�(u�)−u�(u�)))

u�
∫
0

u�u�u� du�+ 1
2 ∣∂u�∣2(u�(u�)) (

u�
∫
0

u�u�u� du�)
2
≤ 1

2u�2(u�0, u�) ∀u� ∈ dom u�.

(1.18)

(iii) Energy identity: The map u� ∘ u� is locally Lipschitz; the right limits

|u̇�|(u�+) ∶= lim
u�↘u�

u�(u�(u�), u�(u�))
u� − u� and d

du�u�(u�(u�+)) ∶= lim
u�↘u�

u�(u�(u�)) − u�(u�(u�))
u� − u�

exist for all times u� > 0 and satisfies the energy identity
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d
du�u�(u�(u�+)) = − |u̇�|2(u�+) = − ∣∂u�∣2(u�(u�)) ∀u� ∈ ℝ+. (1.19)

The following result shows that the existence of a gradient flow in the EVI sense implies geodesic
u�-convexity of the underlying functional.

1.3.3 Proposition Let u� : u� → ℝ ∪ {+∞} be a functional with proper effective domain and fix u� ∈ ℝ.
Assume for every initial value u� ∈ dom u� there exists a gradient flow u�u� ∈ u�u�loc(ℝ+, u�) in the EVI
sense, starting from lim

u�↘0
u�u�(u�) = u�. Then u� is u�-convex along every geodesic in dom u�.

Now we turn to some comparison results between the different notions of gradient flows in metric
spaces. When comparing (EDI) and (EDE), the following implications are obvious:

1.3.4 Facts Let u� : u� → ℝ ∪ {+∞} be a functional with proper effective domain and u� : ℝ+ → u� be a
locally absolutely continuous curve, starting from u�0 ∈ dom u�.

(i) If u� is a gradient flow in the EDE sense, then the definitions immediately imply that u� satisfies
(EDI).

(ii) If u� is lower semicontinuous and u�-convex for some u� ∈ ℝ, then the inverse implication does
also hold: If u� is gradient flow in the EDI sense, we may use Proposition 1.2.4.ii and the AM-GM
inequality to infer

u�(u�(u�)) − u�(u�(u�)) ≤
u�

∫
u�

|u̇�|(u�) ∣∂u�∣(u�(u�)) du� ≤ 1
2

u�
∫
u�

|u̇�|2(u�) du� + 1
2

u�
∫
u�

∣∂u�∣2(u�(u�)) du� a.e. u� ≤ u�.

Hence, u� is also a solution to (EDE).

On the other hand, the following result, namely, that (EVIu�) is the strongest of the three notions of
gradient flows in a metric setting, is a non-trivial consequence of Proposition ii.

1.3.5 Proposition Let u� : u� → ℝ ∪ {+∞} be a lower semicontinuous functional with proper effective domain
and u� ∈ u�u�loc(ℝ+, u�) be a curve, starting from u�0 ∈ u�. If u� is a gradient flow in the EVI sense with
respect to some u� ∈ ℝ, then u� satisfies (EDI) and (EDE).

The following elementary example shows that the implication in Proposition 1.3.5 cannot be re-
versed.

1.3.6 Example Consider the space (ℝ2, ‖⋅‖∞) and define a smooth functional on ℝ2 by u�(u�1, u�2) ∶= u�1.
Clearly, u� is convex and ∣∂u�∣ = ∥∇u�∥∞ ≡ 1.
Next define a family (u�u�)u�∈ℝ+ of smooth curves with joint initial datum (0, 0) by

u�u� : [0, +∞) → ℝ2, u�u�(u�) ∶= (−u�, u�
1 + u�) ∀u� ∈ [0, +∞),

and note that u�(u�u�(u�)) = −u� and |u̇�|(u�) = ∥u�′(u�)∥∞ = 1 for all u� ∈ ℝ+. Now it is immediate to
check that every u�u� satisfies (1.14) as well as (1.13). On the other hand, the lack of uniqueness of
the flow curve u�u� and Proposition 1.3.2 imply that the family (u�u�)u�∈ℝ+ does not belong to (EVIu�) as
u�(u�) ∶= (u�, 0) depicts the unique gradient flow for u� in the EVI sense.
In particular, Proposition 1.2.5 cannot be applied since the norm ‖⋅‖∞ does not induce any inner

◀◀product on ℝu�.

The difference between (EDI) and (EDE) in a general metric setting is more subtle. We just refer to
Example 3.15 in [3]. By making use of the minimizing movement scheme which will be introduced in
the next section, this example shows that there exists a gradient flow in the EDI sense, which does
not satisfy (EDE).
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1.4 Existence of Gradient Flows in Metric Spaces

In this short section we investigate a discrete approximating scheme which plays a major role in
the existence theory of gradient flows in metric spaces.
At first we introduce a uniform partition of ℝ+:

Notation
Denote by u�u� ∶= (u�u�)u�∈ℕ0

the uniform partition of ℝ+ into left-open, right-closed intervals u�u�
u� ∶=

((u� − 1)u�, u�u�], u� ∈ ℕ of size u� > 0.

1.4.1 Definition Let a lower semicontinuous functional u� : u� → ℝ ∪ {+∞} with proper effective
domain dom u� be given, where (u�, u�) is a Polish metric space. Define the functional

Φ : ℝ+ × dom u� × u� →→→→→ ℝ ∪ {+∞} (1.20.a)

(u�, u�, u�) ↦↦↦↦↦ 1
2u� u�2(u�, u�) + u�(u�). (1.20.b)

For any given time step u� > 0 and discrete initial datum u�0
u� ∈ dom u�, a u�-discrete minimizing

movement starting from u�0
u� is a sequence (u�u�

u�)u�∈ℕ in dom u� which satisfies

Φ(u�, u�u�−1
u� , u�u�

u�) ≤ Φ(u�, u�u�−1
u� , u�) ∀u� ∈ u�, ∀u� ∈ ℕ.

A discrete solution is the piecewise constant interpolant

u�u�(u�) ∶=
∞
∑
u�=1

u�u�
u�u�u�u�

u�
(u�) ∀u� ∈ ℝ+.

In general, the existence of a discrete minimizing movement (u�u�
u�)u�∈ℕ cannot be assured without

further assumption on the functional u�. However, in case of existence of such a sequence for every
u� > 0, one hopes to find a limit curve as (u� ↘ 0) which satisfies the definition of a gradient flow
in some sense.
For instance, a first convergence result could be obtained if one requires all sublevel sets of u� to be
boundedly compact and some regularity to hold:

1.4.2 Theorem (Existence of EDI gradient flows) Let (u�, u�) be a Polish metric space and u� : u� → ℝ ∪ {+∞}
be a lower semicontinuous functional, bounded from below with proper effective domain dom u�. Assume
that u� and Φ, defined in (1.20), satisfy the following properties:

(COMP) The sublevel sets of u� are boundedly compact, i.e. every closed bounded subset of {u� ∈ u� : u�(u�) ≤ u�} is
compact for any u� ∈ ℝ;

(REG1) there exists u� > 0 such that Φ(u�, u�, ⋅) admits a minimum for every choice of u� ∈ (0, u�) and u� ∈ dom u�;
(REG2) the slope ∣∂u�∣ : dom u� → ℝ+

0 ∪ {+∞} is lower semicontinuous;
(REG3) for every sequence (u�u�)u�∈ℕ, converging to some u� ∈ u�, such that ∣∂u�∣(u�u�) and u�(u�u�) are bounded from

above for all u� ∈ ℕ, we have limu�→∞ u�(u�u�) = u�(u�).
Then the following statements hold:

(i) For every discrete initial datum u�0
u� = u�0 ∈ dom u� and every time step u� ∈ (0, u�), there exists a discrete

minimizing movement (u�u�
u�)u�∈ℕ in dom u�.

(ii) The corresponding discrete solutions u�u� are locally uniformly convergent to a curve u� ∈ u�u�loc(ℝ+, u�)
as (u� ↘ 0).

(iii) The limit curve u� is a gradient flow in EDI sense, starting from u�0.
We already saw in Fact 1.3.4.ii that geodesic u�-convexity of the functional u� implies that any EVI
gradient flow additionally satisfies (EDE). Moreover, assumptions (REG1) to (REG3) in Theorem
1.4.2 can be removed in favour of said u�-convexity.



EXISTENCE OF GRADIENT FLOWS IN METRIC SPACES 20

1.4.3 Theorem (Existence of EDI gradient flows) Let (u�, u�) be a Polish metric space and u� : u� → ℝ ∪ {+∞}
be a lower semicontinuous functional with proper effective domain dom u�. Assume that u� is u�-convex for
some u� ∈ ℝ and (COMP) is satisfied.
Then (REG1) to (REG3), as well as the following statements hold:

(i) For every discrete initial datum u�0
u� = u�0 ∈ dom u� and every time step u� ∈ (0, u�), there exists a discrete

minimizing movement (u�u�
u�)u�∈ℕ in dom u�.

(ii) The corresponding discrete solutions u�u� are locally uniformly convergent to a curve u� ∈ u�u�loc(ℝ+, u�)
as (u� ↘ 0).

(iii) The limit curve u� is a gradient flow in EDE sense, starting from u�0.
For the remainder of this section we are interested in the stronger notion of EVI gradient flows. We
have already observed in Section 1.3 (see Proposition 1.3.3) that gradient flows in the sense of (EVIu�)
are closely related to the u�-convexity of the underlying functional u�. However, in a general metric
setting the existence a EVI gradient flow does not only depend on u� but also on the geometrical
structure of the metric space (u�, u�). We cite the following result due to Ambrosio, Gigli, Savaré,
which assumes that the functional u� is u�-convex along a suitable class of curves in u�.

1.4.4 Theorem (Existence of EVI gradient flows) Let (u�, u�) be a Polish metric space and u� : u� → ℝ∪{+∞} be
a lower semicontinuous functional with proper effective domain dom u�. Assume that Φ, defined in (1.20),
satisfies the following property:

(GCON) For every triple of points u�, u�0, u�1 ∈ dom u� there exists a curve u� : [0, 1] → u� with end-points u�(0) =
u�0, u�(1) = u�1 such that Φ(u�, u�, ⋅) is (u�−1 + u�)-convex along u� for every u� > 0 with 1

u� > − min {0, u�}.
Then the following statements hold:

(i) For every discrete initial datum u�0
u� = u�0 ∈ dom u� and every time step u� > 0 with 1+ u�u� > 0 there exists

a discrete minimizing movement (u�u�
u�)u�∈ℕ in dom u�.

(ii) The corresponding discrete solutions u�u� converge locally uniformly to a limit curve u� ∈ u�u�loc(ℝ+, u�) as
(u� ↘ 0).

(iii) The limit curve u� is the unique gradient flow in EVI sense, starting from u�0.
(iv) For every u� ≥ 0 there exists a constant u�u�,u� > 0 such that the following error estimate holds:

u�(u�(u�), u�u�(u�)) ≤ u�u�,u� ∣∂u�∣(u�0)u� ∀u� ∈ [0, u�].

Finally, we mention a geometrical class of metric spaces in which the property (GCON) seems to
be very natural.

1.4.5 Remark (Non-positively curved geodesic spaces) We call a metric space (u�, u�) geodesic space if for
every pair of points u�0, u�1 ∈ u� there exists a constant-speed geodesic u� joining u�0 to u�1.
Then a geodesic space is said to be non-positively curved (NPC) in the sense of Alexandrov if for
every constant speed geodesic u� and every point u� ∈ u� the following inequality holds:

u�2(u�(u�), u�) ≤ (1 − u�)u�2(u�(0), u�) + u�u�2(u�(1), u�) − u�(1 − u�)u�2(u�(0), u�(1)) ∀u� ∈ [0, 1]. (1.21)

Clearly, above inequality holds precisely when the functional 1
2u�2(⋅, u�) is 1-convex along u�.

In Riemannian geometry, (1.21) may be also characterised by means of the sectional curvature: A
connected Riemmanian manifold (u�, u�) is an NPC space, precisely, when the sectional curvature
tensor u� is bounded from above by 0 on u�.

Now assume that a geodesically u�-convex functional u� : u� → ℝ ∪ {+∞} on an NPC space (u�, u�) is
given and fix u� > 0. Then for every pair of points u�0, u�1 ∈ u� there exists a geodesic u� : [0, 1] → u�,
connecting u�0 to u�1 such that (1.6) holds. Therefore, we may add the inequalities (1.21) multiplied
by 1

2u� and (1.6) up to obtain that the functional Φ(u�, u�, ⋅) is (u�−1 + u�)-convex along u�. Thus, in
NPC spaces geodesics seem to be the natural choice of curves required in (GCON).
However, it turns out that Wasserstein spaces over ℝu� do not satisfy (1.21). Hence, a different class
of curves has to be considered in such spaces.



21 GRADIENT FLOWS IN METRIC SPACES

1.5 Bibliographical Notes

The main reference for the content presented in this chapter is the first part in the monograph [4]
by Ambrosio, Gigli and Savaré, which gives a thorough account on abstract gradient flows in metric
spaces – with the exception of Proposition 1.3.5 which depicts a more recent result by Savaré [62].
For a proof of the characterisation of the evolution variational inequality (EVI) in Lemma 1.3.1 we
refer to Clément and Desch [18]. Proposition 1.2.5, describing gradient flows on manifolds, is taken
from chapter 23 in Villani’s text book [71].
Proofs for most results presented in the first three sections of this chapter may also be found in the
author’s work [33].
For a pedagogical introduction to this topic in the context of optimal transport we mention Am-
brosio and Gigli [3], Daneri and Savaré [20], Ambrosio [6]. In addition, chapters devoted to gradient
flows may be found in Villani’s and Santambrogio’s respective monographs [71] and [61] about opti-
mal transport theory.
The study of the geometry of abstract metric spaces goes back to the work [2] of Alexandrov and
is extensively covered by the monograph Burago, Burago and Ivanov [15]. An introduction which
focuses on non-positively curved spaces is provided by Papadopoulos [56].
Gradient flows in EDI/EDE sense dates back to a series of papers initiated by [22], [23] by De
Giorgi, Degiovanni, Marino and Tosques. This notion is commonly known in literature by the term
curves of maximal slope. The approach by evolution variational inequalities (EVI) was introduced
in the form of integral solutions to evolution equations in Banach spaces by Bénilan [9].
The minimising movements variational scheme was introduced by Di Giorgi [21] to provide a gen-
eral method of approximating gradient flows. Adapting the fundamental generation result [19] by
Crandall and Liggett, Mayer obtained a first existence result for non-positively curved spaces in [48].
In [4] a relaxation of geodesics to a more general class of curves (including generalised geodesics)
proved to be crucial to obtain an existence result which is applicable to Wasserstein spaces.
There are several extensions of above results; we mention Sturm [67] for a generation result in
metric measure spaces.





2 Gradient Flows in Wasserstein Spaces

2.1 The Kantorovich Transportation Problem

Our starting point in this chapter is the Kantorovich transportation problem.
Recall that for a finite family of measurable spaces (u�u�, u�u�)u�∈u�, the tensor-product u�-algebra ⨂u�∈u� u�u�
is generated by ⋃u�∈u�(π

u�)−1(u�u�). Then the set ( ⨉u�∈u� u�u�, ⨂u�∈u� u�u�) is called the product measurable
space of the family (u�u�, u�u�)u�∈u�.
Since the projection π u� : ⨉u�∈u� u� → u�u� is a measurable function by definition, we may consider
the pushforward π u�

#u� ∶= u� ∘ (π u�)−1 of an arbitrary measure u� on ( ⨉u�∈u� u�u�, ⨂u�∈u� u�u�), which then
induces a measure on (u�u�, u�u�).

Notation
For a finite family of probability measure spaces (u�u�, u�u�, u�u�)u�∈u�, we denote by Π(u�u�)u�∈u� the set of
all probability measures u� on ( ⨉u�∈u� u�u�, ⨂u�∈u� u�u�) such that π u�

#u� = u�u� for all u� ∈ u�.

2.1.1 Definition (Kantorovich transport problem) Let (u�1, u�1, u�1) and (u�2, u�2, u�2) be measure spaces
and assume that there is given a measurable map ℎ : u�1 × u�2 → ℝ+

0 ∪ {+∞}. The elements of
Π(u�1, u�2) are called admissible (transport) plans. We say that u�opt ∈ Π(u�1, u�2) is an optimal
(transport) plan if u�opt minimises the functional

u�(u�1, u�2, u�) ∶= ∫
u�1×u�2

ℎ du� ∈ ℝ0 ∪ {+∞} , (2.1)

i.e. u�(u�1, u�2, u�opt) = infu�∈Π(u�1,u�2) u�(u�1, u�2, u�). Πopt(u�1, u�2) denotes the subset of all optimal
transport plans in Π(u�1, u�2). The map ℎ is called cost function of the Kantorovich problem (2.1).

It is clear that there always exists an admissible plan for the Kantorovich problem since the product
measure u�1 × u�2 belongs to Π(u�1, u�2). However, note that infu�∈Π(u�1,u�2) u�(u�1, u�2, u�) need not be
finite. Nevertheless, the Kantorovich problem has a solution under rather general assumptions:

2.1.2 Theorem For any two Borel probability measures u�1 and u�2 on Polish spaces (u�1, u�1) and (u�2, u�2), and
any lower semicontinuous cost function ℎ : u�1 × u�2 → ℝ0 ∪ {+∞} the Kantorovich problem admits an
optimal plan.
Now we bring up an important relationship of the Kantorovich problem and its dual problem.

2.1.3 Definition (Kantorovich duality) In the setting of Definition 2.1.1, we formulate the related dual
problem as follows: Consider the functional

u�(u�, u�, u�, u�) ∶= ∫
u�1

u� du� + ∫
u�2

u� du� ∀(u�, u�) ∈ u�1(u�1, u�, ℝ) × u�1(u�2, u�, ℝ) .

Then a pair (ũ�, ũ�) in the set

Φℎ ∶= {(u�, u�) ∈ u�1(u�1, u�, ℝ) × u�1(u�2, u�, ℝ) : u�(u�1) + u�(u�2) ≤ ℎ(u�1, u�2)}

is called optimal if u�(u�, u�, ũ�, ũ�) = sup(u�,u�)∈Φℎ
u�(u�, u�, u�, u�).

Now the Kantorovich duality asserts that under certain conditions the optimal value of the func-
tional u� equals the optimal value of u�. Here we cite the following version.

2.1.4 Proposition (Kantorovich duality) Let ℎ : u�1 × u�2 → ℝ+
0 ∪ {+∞} be a lower semicontinuous cost

function. Then

minu�∈Π(u�1,u�2) u�(u�1, u�2, u�) = sup(u�,u�)∈Φℎ
u�(u�, u�, u�, u�). (2.2)
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Note that the value on the right-hand side of (2.2) need not be attained in Φℎ and the value +∞ is
not excluded.
The statement also holds for other function classes than Φℎ. For instance, one may consider

Ψℎ ∶= {(u�, u�) ∈ ℬb(u�1) × ℬb(u�2) : u�(u�1) + u�(u�2) ≤ ℎ(u�1, u�2)} ,

where ℬb(u�u�) denotes all bounded Borel measurable real-valued functions on u�u�, for u� ∈ {1, 2}.
Then one may invoke monotone convergence to obtain the following more general result.

2.1.5 Proposition Let ℎ : u�1 × u�2 → ℝ+
0 ∪ {+∞} be a lower semicontinuous cost function. Then

minu�∈Π(u�1,u�2) u�(u�1, u�2, u�) = sup(u�,u�)∈Ψℎ
u�(u�, u�, u�, u�). (2.3)

At the end of this section, we mention the Monge problem, a transportation problem closely related
to the one of Kantorovich.

2.1.6 Definition (Monge Problem) In the setting of the Kontorovich problem, consider two measure
spaces (u�1, u�1, u�1) and (u�2, u�2, u�2) and let ℎ : u�1 × u�2 → ℝ+

0 ∪ {+∞} be a measurable cost
function. We denote by Τ(u�1, u�2) the class of all measurable maps u� : u�1 → u�2 with pushforward
u�#u�1 = u�2. The elements in Τ(u�1, u�2) are called admissible (transport) maps.
A transport map u�opt ∈ Τ(u�1, u�2) is called optimal if it minimises the Monge problem

u�(u�1, u�2, u�) ∶= ∫
u�1

ℎ(u�, u�(u�)) du�1(u�) ∈ ℝ0 ∪ {+∞} , (2.4)

i.e. u�(u�1, u�2, u�opt) = infu�∈Τ(u�1,u�2) u�(u�1, u�2, u�). The subset of all optimal transport maps in
Τ(u�1, u�2) is denoted by Τopt(u�1, u�2).

It is clear, that every given transport map u�min ∈ Τ(u�1, u�2) induces an admissible plan in the
set Π(u�1, u�2) of the corresponding Kantorovich problem by means of the pushforward (Id, u�)#u�1.
However, unlike the Kantorovich problem, the Monge problem may not admit an optimal solution
in even very simple settings.

0

−1 1

u�

Figure 2.1 When u�1 charges single points,
a single-valued transport map u� may not exist.
This means that the Monge problem does not
admit any split of mass, whereas mass splitting
transport plans are generally admissible in the
corresponding Kantorovich problem.

For example, one may consider u�1 = u�2 = [−1, 1] with
the quadratic cost function ℎ(u�1, u�2) ∶= ∣u�1 − u�2∣2 and mea-
sures u�1 ∶= u�0, u�2 ∶= 2−1(u�−1 + u�1). Then Π(u�1, u�2) con-
sists only of one admissible plan u� = 2−1(u�(0,−1) + u�(0,1)).
Hence, the Kantorovich problem admits a unique solu-
tion.
On the other hand, there exists no admissible transport
map u� ∈ Τ(u�1, u�2) in the corresponding Monge problem
since u� would be required to take values at ±1 at the same
time (see Figure 2.1).
The key argument in the example given above is the fact
that the measure u�1 gives mass to a single point. If one
avoids such situations, one can expect results on the exis-
tence of an optimal transport map.
To this aim, recall that every convex function u� : ℝu� → ℝ
is locally Lipschitz continuous. In particular, the coordinate functions u�u�, u� ∈ {1, … u�} are ab-
solutely continuous on every compact interval [u�, u�] ⊂ ℝ. Therefore, the gradient ∇u� exists a.e. in
ℝu�. Moreover, we denote by u�⋆(u�) ∶= supu�∈ℝu� {⟨u�, u�⟩ − u�(u�)} the convex conjugate of u�.

2.1.7 Theorem (Brenier) Let u�1 and u�2 be Borel probability measures with finite second moment on ℝu�, i.e. |⋅|2
belongs to u�1(ℝu�, u�u�, ℝ) for u� ∈ {1, 2} and u�1(u�) = 0 for every Lebesgue null set u� ∈ u�(ℝu�). Consider
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the quadratic cost function ℎ : ℝu� × ℝu� → ℝ+
0 , ℎ(u�1, u�2) ∶= ∣u�1 − u�2∣2. Then the following statements

hold:
(i) There exists a Borel measurable transport map u� ∈ Τ(u�1, u�2), such that u� = ∇u� for some convex function

u� : ℝu� → ℝ. The transport map u� is uniquely determined up a u�1-null set in ℝu�.
(ii) u� = ∇u� is the unique optimal transport map of the corresponding Monge problem.
(iii) Under the additional assumption that u�2(u�) = 0 for every Lebesgue null set u� ∈ u�(ℝu�), there exists a

map u� ∈ Τ(u�2, u�1) with u� = ∇u�⋆ such that ∇u�⋆ ∘ ∇u� = Id u�1-a.e. in ℝu� and ∇u� ∘ ∇u�⋆ = Id u�2-a.e. in
ℝu�.

2.2 The Structure of Wasserstein Spaces

Consider a Borel probability measure u� on a Polish space (u�, u�) and set đu�(u�) ∶= u�(u�, u�) for u�, u� ∈ u�.
It is clear that in the case that đu�0

belongs to u�u�(u�, u�, ℝ) for some u�0 ∈ u�, the triangle inequality

đu�(u�) = u�(u�, u�) ≤ u�(u�, u�0) + u�(u�, u�0) ∀u�, u� ∈ u�

implies đu� ∈ u�u�(u�, u�, ℝ) for all u� ∈ u�. This justifies the following notation.

Notation
Given a metric space (u�, u�), u�u�(u�) denotes the set of all Borel probability measures u� such that
u� ↦ u�(u�, u�0) belongs to u�u�(u�, u�, ℝ) for some u�0 ∈ u�. The set u�u�(u�) does not depend on the choice
of u�0 ∈ u�.

The set u�u�(u�) can be equipped with a certain family of metrics. The idea is to consider the Kan-
torovich problem (2.1) with the metric u� or, more generally, u�u�, u� ≥ 1 as cost function.

2.2.1 Definition Let (u�, u�) be a Polish space. Then for every u� ≥ 1, the function

u�u�(u�, u�) ∶= infu�∈Π(u�,u�) (∫
u�×u�

u�u�(u�, u�) du�(u�, u�))
1/u�

∀u�, u� ∈ u�u�(u�) (2.5)

is called Wasserstein distance or sometimes also Kantorovich distance of order u� on u�u�(u�). The
space (u�u�(u�), u�u�) is called Wasserstein space of order u� over u�.

Let us verify that u�u� defines a metric on u�u�(u�) for all u� ≥ 1.
2.2.2 Proposition Let (u�, u�) be a Polish space. Then for every u� ≥ 1 the Wasserstein distance u�u� defines a

metric on u�u�(u�).
The proof of this result is not completely straightforward. Indeed, the verification that u�u� sat-
isfies the triangle inequality, is based on the following crucial lemma which assures that certain
compatible measures can be “glued together”.

2.2.3 Lemma (Coupling) Let u�1, u�2, u�3 be Polish spaces and assume, there are two Borel probability measures
u�1,2 and u�2,3 on the product spaces u�1 × u�2 and u�2 × u�3 with projections 1,2π2 : u�1 × u�2 → u�2 and
2,3π2 : u�2 × u�3 → u�2 such that

1,2π2
#u�1,2 = 2,3π2

#u�2,3.

Then on the product space u�1 × u�2 × u�3 there exists a Borel probability measure u� with projections π1,2 :
u�1 × u�2 × u�3 → u�1 × u�2 and π2,3 : u�1 × u�2 × u�3 → u�2 × u�3 such that

π1,2
# u� = u�1,2 and π2,3

# u� = u�2,3.

Next we show two important estimates for the Wasserstein distances.
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2.2.4 Proposition Let (u�, u�) be a Polish space. Then for every u� ≥ 1 and all u�, u� ∈ u�u�(u�) we have the
following inequalities:

(i) For every choice of u� ≤ u� the estimate u�u�(u�, u�) ≤ u�u�(u�, u�) holds.
(ii) For every u�0 ∈ u� we have

u�u�(u�, u�) ≤ 21/u� (∫
u�

u�u�(u�, u�0) d∣u� − u�∣(u�))
1/u�

∀u�, u� ∈ ℝ+ : 1
u� + 1

u� = 1.

Now we investigate a useful characterisation of the Wasserstein distance u�1. The following result
is closely related to the Kantorovich duality, introduced in Theorem 2.1.3.

2.2.5 Theorem (Kantorovich-Rubinstein) Let (u�, u�) be a Polish space. Then we have

u�1(u�, u�) = sup {∫
u�

u� d(u� − u�) : u� ∈ u�u�u�1(u�)} ∀u�, u� ∈ u�1(u�).

Wasserstein spaces inherit to a great extend the topological structure of the underlying metric
space:

2.2.6 Proposition Let (u�, u�) be a Polish space. Then for every u� ≥ 1 the Wasserstein space (u�u�(u�), u�u�)
inherits the following properties from u�:

(i) The space (u�u�(u�), u�u�) is Polish.
(ii) The space (u�u�(u�), u�u�) is compact if (u�, u�) is compact.

Finally, we illustrate the relation between the topology generated by the u�-Wasserstein distance
and the u�∗-topology on u�2(u�). In fact, the Wasserstein distances almost metrisise the u�∗-topology
in the following way.

2.2.7 Proposition Let (u�, u�) be a Polish space and fix u� ≥ 1. Then a sequence (u�u�)u�∈ℕ in u�u�(u�) converges
weakly to a Borel probability measure u� on u�, precisely, when

limu�→∞ u�u�(u�u�, u�) = 0 and lim sup
u�→∞

∫
u�

u�u�(u�, u�0) du�u�(u�) ≤ ∫
u�

u�u�(u�, u�0) du�(u�) (2.6)

for any u�0 ∈ u�.
In case, the metric space (u�, u�) is bounded, i.e. u� ↦ u�(u�, u�0) is a bounded function on u�, the
second condition in (2.6) is always satisfied. In other words, weak convergence of Borel probability
measures on a bounded Polish space is metrised by the Wasserstein distances.

2.3 Geodesics in the 2-Wasserstein Space

Notation
Throughout this section (u�, u�) denotes denotes a smooth, complete connected Riemannian mani-
fold u� of dimension u� ≥ 1, endowed with the metric tensor u� and the corresponding Riemannian
distance u�u�.

The following result gives a useful characterisation of geodesics in (u�2(u�), u�2) by means of the
exponential mapping on a Riemannian manifold (cf.Section B.3 in Appendix B). Recall that an ele-
ment of the tangent bundle u�u� may be thought as pair (u�, u�), consisting of a point u� ∈ u� and a
tangent vector u� ∈ u�u�u�.

2.3.1 Proposition (Geodesics in the 2-Wasserstein space over a Riemannian manifold) For every u� ∈ [0, 1]
define a mapping Exp(u�) : u�u� → u� via Exp(u�)(u�, u�) ∶= expu�(u�u�). A curve u� : [0, 1] → u�2(u�) is
a geodesic connecting u�0 to u�1 in (u�2(u�), u�2), precisely, when there exists a probability measure u� ∈
u�(u�u�) such that
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∫
u�u�

|u�|2u� du�(u�, u�) = u�2
2(u�0, u�1) and (Exp(u�))#u� = u�(u�) ∀u� ∈ [0, 1].

In particular, (u�2(u�), u�2) is a geodesic space.

On the contrary, we have the following analogous result for 2-Wasserstein spaces over Hilbert
spaces.

2.3.2 Proposition (Geodesics in the 2-Wasserstein space over a Hilbert space) Let u� be a (possibly infinite
dimensional) Hilbert space. A curve u� : [0, 1] → u�2(u�) is a geodesic connecting u�0 to u�1 in (u�2(u�), u�2),
precisely, when there exists an optimal plan u� ∈ Π(u�0, u�1) such that

u�(u�) = ((1 − u�)u�1 + u�u�2)#u� ∀u� ∈ [0, 1]. (2.7)

In case, u� is induced by a transport map u�, formula (2.7) reduces to

u�(u�) = ((1 − u�) Id +u�u�)#u�0 ∀u� ∈ [0, 1]. (2.8)

2.3.3 Theorem (Continuity equation) For every absolutely continuous curve u� : [0, 1] → u�2(u�), there
exists a Borel measurable family (u�u�)u�∈[0,1] of vector fields u�u� ∈ T(u�) such that ∥u�u�∥u�2(u�(u�)) ≤ ∣u̇�∣(u�) for
a.e. u� ∈ [0, 1] and the continuity equation

d
du�u�(u�) + div(u�u�u�(u�)) = 0 (2.9)

holds in the sense of distributions.
Conversely, if (u�(u�), u�u�)u�∈[0,1] is satisfying the continuity equation (2.9) in the sense of distributions and

∫1
0 ∥u�u�∥u�2(u�(u�)) du� < +∞, then there exists an absolutely continuous curve u� : [0, 1] → u�2(u�) such that

u� agrees with u� ℒ1-a.e. on [0, 1] and |u̇�| (u�) ≤ ∥u�u�∥u�2(u�(u�)) for a.e. u� ∈ [0, 1].

2.3.4 Corollary (Benamou-Brenier formula) For every pair of points u�0, u�1 ∈ u�2(u�), the 2-Wasserstein
distance between these two points is given by

u�2(u�0, u�1) = min {
1

∫
0

∥u�u�∥u�2(u�(u�)) du�} = min {
1

∫
0

∥u�u�∥
2
u�2(u�(u�)) du�}

1/2
, (2.10)

where the minimum is taken over all weakly continuous distributional solutions (u�(u�), u�u�)u�∈[0,1] of the
continuity equation (2.9) such that the curve u� is joining u�0 to u�1.

Recall from Remark 1.4.5 that the characterising inequality in (1.21), together with geodesic u�-con-
vexity of u�, immediately implies that geodesics satisfy (GCON). This is a key assumption for the
existence of gradient flows in EVI sense.
To clarify, to what extend the Wasserstein spaces inherit metric curvature properties like (1.21)
from the underlying metric space, we recall the definition of an NPC space from Remark 1.4.5 and
introduce its counterpart:

2.3.5 Definition A geodesic space (u�, u�) is called positively curved (PC) in the sense of Alexandrov if
for every constant speed geodesic u� : [0, 1] → u�, connecting u�0 and u�1, the following inequality
holds:

u�2(u�(u�), u�) ≥ (1 − u�)u�2(u�0, u�) + u�u�2(u�1, u�) − u�(1 − u�)u�2(u�0, u�1) ∀u� ∈ [0, 1], ∀u� ∈ u�. (2.11)

A geodesic space (u�, u�) is called non positively curved (NPC) in the sense of Alexandrov if for
every constant speed geodesic u� : [0, 1] → u�, connecting u�0 and u�1, the reverse inequality of (2.11)
holds.
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Euclidean space ℝu� is flat in the sense that ℝu� is both positively and non positively curved.

Let us investigate above definitions in the context of 2-Wasserstein spaces: For instance, it is
straightforward to obtain convexity of the mapping (u�, u�) ↦ u�2

2(u�, u�), due to the linearity of
the Kantorovich transport problem. Indeed, for measures u�0, u�1, u�0, u�1 ∈ u�2(u�), the convex com-
binations

u�u� = u�u�0 + (1 − u�)u�1 and u�u� = u�u�0 + (1 − u�)u�1 (2.12)

also belong to u�2(u�) and the corresponding transport plan

u�u� = u�u�0 + (1 − u�)u�1

with u�u� ∈ Πopt(u�u�, u�u�) is admissible with respect to u�u� and u�u� for all u� ∈ [0, 1]. Hence,

u�2
2(u�u�, u�u�) ≤ ∫

u�×u�
u�2(u�, u�) du�u�(u�, u�) = u�u�2

2(u�0, u�0) + (1 − u�)u�2
2(u�1, u�1) ∀u� ∈ [0, 1]. (2.13)

However, we already noticed in this section that geodesics in the 2-Wasserstein space over a Hilbert
space are given by (2.7), rather than convex combinations like in (2.12). In fact, it turns out that
more or less the converse of (2.13) is true if u� is a PC space and we use geodesics to connect the
measures instead.

2.3.6 Proposition Let (u�, u�) be a geodesic space. If (u�, u�) is positively curved, then (u�2(u�), u�2) is positively
curved as well.

Somewhat surprisingly, an analogous statement for NPC spaces does not hold true in general as
the following example shows.

2.3.7 Example The Wasserstein space (u�2(ℝ2), u�2) is not an NPC space.
Proof Define the probability measures

u�(1/2)

(1, 1)
(5, 3)

(−1, 1)
(−5, 3)

(0, 0)
(0, −4)

ℝ2

ℝ2

Figure 2.2 For u� = 1/2, the links between the atoms of the
measures u�(u�) and u� represent an optimal plan of transportation
with respect to quadratic costs |⋅|2. Note that the depicted optimal
plan is not uniquely determined, due to particular symmetry of
the transport problem at u� = 1/2.

u�0 ∶= 1
2(u�(1,1) + u�(5,3)),

u�1 ∶= 1
2(u�(−1,1) + u�(−5,3)),

u� ∶= 1
2(u�(0,0) + u�(0,−4)).

Clearly, u�u� belongs to u�2(ℝ2) for every u� ∈
{1, 2, 3}. Since all admissible plans in each
of the sets Π(u�0, u�1), Π(u�0, u�), Π(u�0, u�) are
concentrated on at most four points in ℝ4,
explicit computations of the distances are
elementary and one obtains

u�2
2(u�0, u�1) = 40, u�2

2(u�0, u�) = 30, u�2
2(u�1, u�) = 30.

Moreover, one easily shows that

u�(u�) ∶= 1
2(u�(1−6u�,1+2u�) + u�(5−6u�,3−2u�)) ∀u� ∈ [0, 1]

depicts a constant-speed geodesic with end-points u�(0) = u�0 and u�(1) = u�1 (see Figure 2.2). Now

u�2
2(u�(1/2), u�) = 40 > 20 = 30

2 + 30
2 − 40

4 =
u�2

2(u�0, u�)
2 +

u�2
2(u�1, u�)

2 −
u�2

2(u�0, u�1)
4

◀◀shows that inequality (1.21) does not hold.
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2.4 Potential Energy and Internal Energy Functionals

In this section we will study two classical classes of functionals, defined on the 2-Wasserstein space
over ℝu�.

2.4.1 Definition Let u� : ℝu� → ℝ ∪ {+∞} be proper, lower semicontinuous, and bounded from below.
Then the potential energy functional u� : u�2(ℝu�) → ℝ ∪ {+∞} associated to u� is defined as

u�(u�) ∶= ∫
ℝu�

u� du�.

Let u� : ℝ+
0 → ℝ∪{+∞} be a proper, convex lower semicontinuous function. Assume that u� satisfies

u� (0) = 0 and lim inf
u�↘0

u� (u�)
u�u� belongs to ℝ ∪ {+∞} for some u� > u�

u�+2 . Set u� ′(∞) ∶= limu�→∞
u� (u�)

u� . Then the
(lower semicontinuous envelope of the) internal energy functional u� : u�2(ℝu�) → ℝ ∪ {+∞}
associated to u� is defined as

u�(u�) ∶= ∫
ℝu�

u� (u�(u�)) du� + u� ′(∞)u�sing(ℝu�), (2.14)

where du�(u�) = u�(u�) du�+du�sing(u�) is the Lebesgue decomposition of u� in an absolutely continuous
part with density u� and a singular part u�sing with respect to the Lebesgue measure on ℝu�.

Let us check that the internal energy functional u� is well defined.

2.4.2 Facts

(i) The condition lim inf
u�↘0

u� (u�)
u�u� ∈ ℝ ∪ {+∞} assures that the integral in (2.14) does not attain the value

−∞: Indeed, we may assume without loss of generality that u� < 1 and then this condition implies
the lower bound u� (u�) ≥ u�u� + u�u�u� for some u�, u� ∈ ℝ. Hence, to show that (u�u� + u�u�u�)u� belongs to
u�1(ℝ+

0 , ℝ), it is enough to invoke Hölder’s inequality to find the estimate

∫
ℝu�

u�u�(u�) du� = ∫
ℝu�

u�u�(u�) (1 + |u�|
1 + |u�|)

2u�
du� ≤

≤ (∫
ℝu�

u�(u�)(1 + |u�| )2 du�)
u�

(∫
ℝu�

(1 + |u�| )− 2u�
1−u� du�)

1−u�
< +∞.

(ii) Regarding u� ′(∞), we need to verify that the limit limu�→∞
u� (u�)

u� exists and actually stays away from
−∞. The latter follows directly from the convexity of u� , while for the former we may use the
monotonicity of u� on some interval (u�, +∞), in case limu�→∞ u� (u�) = +∞.

The following result shows that the potential energy and the internal energy (or a linear combina-
tion of both) are lower semicontinuous functionals.

2.4.3 Proposition (Lower semicontinuity of the energy functionals) Both the potential energy functional u�
and the internal energy functional u� are lower semicontinuous on the 2-Wasserstein space(u�2(ℝu�), u�2).

Under additional assumptions one can show that both the potential energy and the internal energy
functional are geodesically convex on (u�2(ℝu�), u�2). However, this does not facilitate applying
the existence theory for EVI gradient flows from Section 1.4: Namely, to apply Theorem 1.4.4, we
need to consider an appropriate class of curves in (u�2(ℝu�), u�2) which satisfies (GCON). InRemark
1.4.5 we already noted that geodesics suit our needs in NPC spaces. Unfortunately, Example 2.3.7
shows that (u�2(ℝu�), u�2) does not inherit the non positive curvature from ℝu�. The remedy for
this dilemma consists in considering a broader class of interpolating curves which satisfy (GCON).
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2.4.4 Definition Let probability measures u�, u�0, u�1 ∈ u�2(ℝu�) be given. Then we call a curve u� :
[0, 1] → u�2(ℝu�), defined by

u�(u�) ∶= ((1 − u�)u�2 + u�u�3)#u� ∀u� ∈ [0, 1], (2.15)

where u� ∈ Π(u�, u�0, u�1) such that u�1,2
# u� ∈ Πopt(u�, u�0) and u�1,3

# u� ∈ Πopt(u�, u�1), a generalised
geodesic, connecting u�0 to u�1 with base point u�. The existence of the joint measure u� is guaranteed
by coupling (Lemma 2.2.3).
In case u� = u�0, (2.15) reduces to (2.7) which is the definition of a geodesic in the 2-Wasserstein
space over a Hilbert space.
In case, there exist optimal transport maps u�0 ∈ Τopt(u�, u�0) and u�1 ∈ Τopt(u�, u�1), (2.15) may be
also written in a more convenient form which avoids the joint measure u�:

u�(u�) = ((1 − u�)u�0 + u�u�1)#u� ∀u� ∈ [0, 1].

Generalised geodesics possess the following crucial convexity property as an advantage over or-
dinary geodesics.

2.4.5 Proposition Let a probability measure u� ∈ u�2(ℝu�) be given. Then the function 1
2u�2

2(u�, ⋅) is 1-convex
along generalised geodesics with base point u�. This means that every generalised geodesic u� : [0, 1] →
u�2(ℝu�), connecting u�0 to u�1 with base point u�, satisfies the inequality

u�2
2(u�(u�), u�) ≤ (1 − u�)u�2

2(u�0, u�) + u�u�2
2(u�1, u�) − u�(1 − u�)u�2

2(u�0, u�1) ∀u� ∈ [0, 1]. (2.16)

On the other hand, it turns out that the potential energy and the internal energy functional are
convex not only along geodesics in (u�2(ℝu�), u�2) but also along generalised geodesics.

2.4.6 Proposition (Convexity of the energy functionals)

(i) For u� ≥ 0, the potential energy functional u� associated to u� is u�-convex along generalised geodesics in
(u�2(ℝu�), u�2), precisely, when u� is u�-convex.

(ii) Assume that the mapping u� ↦ u�u�u� (u�−u�) is convex and non increasing on ℝ+. Then the internal energy
functional u� associated to u� is convex along generalised geodesics in (u�2(ℝu�), u�2).

Note that part (ii) of the result above depends on the dimension of the underlying Euclidean space
ℝu�.

Finally, we are in the position of putting the ideas of Remark 1.4.5 to use, despite (u�2(ℝu�), u�2) not
having the NPC property. To this aim, we recognise (2.16), as an analogue of (1.21) and combine
it with Proposition 2.4.5; thus, we arrive at the following existence result for EVI gradient flows for
the potential energy and the internal energy functional on the 2-Wasserstein space over ℝu�.

2.4.7 Theorem Consider the mixed energy functional u� = u� + u� where u� denotes the internal energy func-
tional and u� denotes the potential energy functional. Fix u� ≥ 0 such that u� is u�-convex along generalised
geodesics. Then for every u�0 ∈ u�2(ℝu�) there exists a curve u� ∈ u�u�loc(ℝ+, u�2(ℝu�)), starting from
lim
u�↘0

u�(u�) = u�0, which is the unique gradient flow in the EVI sense for u� .

Apparently, this result is still quite abstract. In order to reformulate the theorem above in more
tangible terms, we collect some estimates which guarantee, inter alia, that u� and u� are u�-convex
along generalised geodesics by Proposition 2.4.6.

2.4.8 Assumptions We make the following assumptions on the energy functionals defined in Def-
inition 2.4.1 for some u� ≥ 0:

(i) Re potential energy functional u� : u� is lower semicontinuous u�-convex for some u� ≥ 0 such that
dom u� has nonempty interior int dom u�.
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(ii) Re internal energy functional u� : u� is differentiable such that the function u� ↦ u�u�u� (u�−u�) is convex as
well and non increasing on ℝ+. In addition, there exists a constant u� > 0 such that u� satisfies the
doubling condition

u� (u� + u�) ≤ u�(u� (u�) + u� (u�) + 1) ∀u�, u� ∈ ℝu�.

Apparently, the notion of the metric slope introduced in Definition 1.2.3 does not appear in (EVIu�).
Nevertheless, the next result is not only useful for studying gradient flows in the EDI sense but
plays also a rôle in the identification of the gradient flow in Theorem 2.4.7 as solution of certain
partial differential equations.

2.4.9 Lemma (Slope of the mixed energy functional) Consider the mixed energy functional u� ∶= u� + u�. Let
the functions u� and u� associated to their respective energy functionals u� and u� satisfy Assumptions 2.4.8. Let
u� ∈ u�2(ℝu�) be absolutely continuous with density given by du� = u� du� such that u�(u�) < +∞.
Then ∣∂u�∣ (u�) < +∞, precisely, when u�u� (u�) ∶= u�u� ′(u�) − u� (u�) belongs to u�1,1

loc(Ω) where Ω ∶= int dom u�,
and there exists a function u� ∈ u�2(u�) such that

u�u� = ∇(u�u� (u�)) + u�∇u� and ∫
ℝu�

|u�|2 du� = ∣∂u�∣(u�). (2.17)

Let u� ∈ u�u�loc(ℝ+, u�2(ℝu�)) be the unique EVI gradient flow from Theorem 2.4.7. Then the reg-
ularising effects for EVI gradient flows obtained in Theorem 1.3.2.ii assure that u�(u�) belongs to
dom ∣∂u�∣ and dom u� for all u� > 0. In particular, u�(u�) < +∞ and u�(u�) < +∞, which implies that
u�(u�) is absolutely continuous with density given by du�(u�) = u�(u�) du� for every u� > 0, due to the
definition of the energy functionals u� and u�.
Hence, Lemma 2.4.9 implies the existence of a mapping u� : ℝ+ → u�2(u�) such that u�(u�) and u�(u�)
satisfy the identities in (2.17) at each time u� > 0. Using a notion of subdifferential calculus in the
2-Wasserstein space over ℝ, it turns out that the pair (u�, u�) satisfies the continuity equation (2.9) in
the sense of distributions. In other words, the curve u� is a distributional solution to the evolution
equation u̇� = div(u�u�) where u�u� is given by the first equation in (2.17).
We highlight this crucial observation in the following theorem.

2.4.10 Theorem Let the functions u� and u� associated to their respective energy functionals u� and u� satisfy
Assumptions 2.4.8. Then for every u�0 ∈ u�2(ℝu�) there exists a curve u� ∈ u�u�loc(ℝ+, u�2(ℝu�)), starting
from limu�↘0 u�(u�) = u�0, which is the unique gradient flow in the EVI sense for the mixed energy functional
u� ∶= u� + u� satisfying the following properties:

(i) At each time u� > 0, u�(u�) is absolutely continuous with density given by du�(u�) = u�(u�) du�;
(ii) the curve u� is locally Lipschitz and u�u� (u�(u�)), defined in Lemma 2.4.9, belongs to u�1,1

loc(ℝu�) for a.e. u� > 0;
(iii) the curve u� is a distributional solution of the evolution equation

d
du�u� = div(∇(u�u� (u�)) + u�∇u�) in ℝ+ × ℝu�, (2.18.a)

lim
u�↘0

u�(u�) du� = du�0 in u�2(ℝu�). (2.18.b)

At the end of this section we introduce an specific internal energy functional which plays a crucial
rôle in the following chapters of this thesis.

2.4.11 Definition For u� > 0 define

u�u�(u�) ∶=
⎧{
⎨{⎩

1
u� − 1u�u�, if u� ≠ 1, (2.19.a)

u� log u�, if u� = 1. (2.19.b)
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Then the internal energy functional associated to u�u� is called the (the lower semicontinuous en-
velope of the continuous) Rényi entropy functional and is denoted by u�u�. For u� > 1 the Rényi
entropy takes the form

u�u�(u�) =
⎧{
⎨{⎩

1
u� − 1 ∫

ℝu�

u�u�(u�) du�, if u� ≪ ℒu�, du�(u�) = u�(u�) du�, (2.20.a)

+∞, otherwise. (2.20.b)

For u� = 1, the functional is also called (continuous) Shannon entropy functional and is usually
written in the form

u�1(u�) =
⎧{
⎨{⎩

∫
ℝu�

u� log u�(u�) du�, if u� ≪ ℒu�, du� = u�(u�) du�, (2.21.a)

+∞, otherwise. (2.21.b)

For u� ≥ 1 the Rényi entropy functional u�u� has superlinear growth at infinity, i.e. u� ′
u�(∞) = +∞.

Therefore, u�u� is possibly finite only at probability measures which are absolutely continuous with
respect to the Lebesgue measure on ℝu�. This establishes equivalence between u�u� and the internal
energy functional associated to u�u� as given in (2.14).

2.4.12 Remark Apparently, the Shannon entropy functional u�1 cannot be obtained by simply passing
to the limit limu�→1 u�u�. However, it is still possible to recover u�1 from u�u� in the following way: Let
us assume for simplicity that u� is a probability density with respect to the Lebesgue measure on
ℝu�, which is essentially bounded and has compact support. Then u�(u�) takes finite values for all
u� > 0 and L’Hôpital’s rule implies

lim
u�→1

( 1
1 − u� log ∫

ℝu�

u�u�(u�) du�) = lim
u�→1

(−∫
ℝu�

u�u�(u�) du�)
−1

∫
ℝu�

u�u�(u�) log u�(u�) du� =

= − ∫
ℝu�

u�(u�) log u�(u�) du� = −u�1(u�).

The expression in the parenthesis on the left-hand side of this equation corresponds to a definition
of the Rényi entropy usually encountered in information theory. In a similar fashion, the continuous
Shannon entropy is usually defined with an negative sign in front of the functional u�1.
Another way of obtaining the Shannon entropy u�1 is to consider the limit

lim
u�→1

(u�u� − 1
u� − 1) = lim

u�→1
∫
ℝu�

u�u�(u�) − u�(u�)
u� − 1 du� = ∫

ℝu�

u�(u�) log u�(u�) du� = u�1(u�). (2.22)

Since the the correction term on the left-hand side of this equation is just a constant for fixed u� ≠ 1,
the term does not contribute to any of the considered gradient flow notions.

In the following proposition we apply the results, developed so far in this section, to the Rényi
entropy as defined in (2.20). It is straightforward to check whether the functional u�u� on u�2(ℝu�)
satisfies the Assumptions 2.4.8.ii for internal energy functionals. Indeed, let us assume for the mo-
ment that u� ≠ 1 . Then the mapping

u� ↦ u�u�u�u�(u�−u�) = 1
u� − 1u�u�(1−u�)

is convex and non increasing on ℝ+, precisely, when u� ≥ 1− 1
u� . Moreover, the doubling condition

follows easily from convexity and u�-homogeneity of u�u�. In case u� = 1, these properties hold, due
to the relation between u�1 and u�u� in (2.22).
With these considerations in mind, we are ready to identify EVI gradient flows for u�u� as solutions
to the homogeneous porous medium equation in ℝu�. However, we still may take a potential
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energy functional into account. Of particular interest is an infinite potential well in ℝu�, that is the
potential u� takes the form of the characteristic function u�Ω of a convex domain Ω ⊆ ℝu� in the
sense of convex analysis, i.e.

u�Ω(u�) ∶= { 0 if u� ∈ Ω,
+∞ otherwise.

Supposed that u� : ℝ+ → P2(ℝu�) is the gradient flow in EVI sense for such an infinite potential
well functional u�, then u� is necessarily concentrated on Ω since u�(u�) ∈ dom u� for all times u� > 0.
As a result, we obtain that EVI gradient flows for u�u� +u� are solutions to the homogeneous porous
medium equation in Ω. In this setting, homogeneous Neumann boundary conditions appear nat-
urally. Indeed, the fact that the solution at each time is a probability measure on Ω results in no
flux at the boundary.
Above considerations lead directly to the following corollary of Theorem 2.4.10.

2.4.13 Corollary (Gradient flow associated to the continuous porous medium equation)

Let Ω be convex domain in ⊆ ℝu�. Let u� = u� associated to the potential energy functional u� satisfy
Assumptions 2.4.8.i and assume that u�(u�) = +∞ for all u� ∈ ℝu� ∖ Ω. Then for every u�0 ∈ u�2(Ω) there
exists a curve u� ∈ u�u�loc(ℝ+, u�2(ℝu�)), starting from limu�↘0 u�(u�) = u�0, which is the unique gradient
flow in the EVI sense for the mixed energy functional u� ∶= u�u� + u� satisfying the following properties:

(i) At each time u� > 0, u�(u�) is absolutely continuous with density given by du�(u�) = u�(u�) du� such that
supp u�(u�) ⊆ Ω;

(ii) the curve u� is locally Lipschitz and u�u�(u�) belongs to u�1,1
loc(Ω) for a.e. u� > 0;

(iii) the curve u� is a distributional solution of the following porous medium equation with drift and non-flux
Neumann boundary condition:

d
du�u� = Δ(u�u�) + div(u�∇u�) in ℝ+ × Ω,

lim
u�↘0

u�(u�) du� = du�0 in u�2(ℝu�).

2.5 Bibliographical Notes

This chapter is mainly based on the second part of the monographs [4] by Ambrosio, Gigli and
Savaré and [71] by Villani. The former considers Wasserstein spaces over ℝu�, whereas the latter is
concerned about Wasserstein spaces over smooth manifolds as well. Proposition 2.3.1 is a slightly
more recent result which appeared first in [3] by Ambrosio and Gigli. Elementary proofs for the
Kantorovich duality (Proposition 2.1.4) and the Kantorovich-Rubinstein theorem (Theorem 2.2.5)
were obtained by Edwards in [26] and [27], respectively.
Most of those proofs are also presented in the author’s work [33].
Concise treatments of optimal transport are provided by the lecture notes [3] as well as the sur-
vey article [13] by Bogachev and Kolesnikov. Santambrogio’s recent text book [61] outlines several
applications in population dynamics, economics, image processing processing, amongst others.
In addition we mention Villani’s first book [70] on this topic and [59] by Rachev and Rüschendorf.
The definition of Wasserstein spaces in based on the problem of optimal transportation introduced
by Kantorovich in the seminal papers [40], [39]. The closely related transport problem of Monge [52]
is considerably older.
The term Wasserstein distance goes back to an influential paper [25] by Dobrushin who had wrongly
accredited the discovery of this metric to Vasershtein [68]. Henceforth, the term Kantorovich distance
which is used mainly in Russian literature, seems to be historically more accurate.
The dynamic characterisation of the 2-Wasserstein distance via Lemma 2.3.4 is due to Benamou and
Brenier [8].
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The investigation of geodesics in Wasserstein spaces over ℝu� and gedodesic convexity of the func-
tionals in Section 2.4 thereon goes back to McCann [49], who also coined the respective terms dis-
placement interpolation and displacement convexity.
The study of gradient flows in Wasserstein spaces started with the seminal paper [36] by Jordan,
Kinderlehrer and Otto, where gradient flows for the entropy on the 2-Wasserstein space were iden-
tified as solutons of Fokker-Plank equations. Later Otto extended this result in [54] to Wasserstein
gradient flows for the Rényi entropy which turn out to be solutions of the porous medium equa-
tion.
In the celebrated works [45], [46] of Lott and Villani on the one side, and [65], [66] of Sturm on the
other side, geodesic convexity of entropy functionals on Wasserstein spaces plays a crucial rôle in
the study of a synthetic notion of Ricci curvature for metric measure spaces.



3 Entropy Gradient Flows for Continuous-time Markov Chains

3.1 A Metric Structure Induced by Markov Chains

In this section we introduce a discrete counterpart to Wasserstein spaces. Instead of a metric space
we consider a finite discrete set Xu� with u� distinct elements, together with a Markov chain which
gives rise to a Wasserstein-like distance function on the class of probability measures on Xu�.
We start with some basic notation.

Notation
By Xu� we denote a finite set of cardinality u� ∈ ℕ. For simplicity, we will identify Xu� with the
well-ordered set {1, 2, …u�}.
The matrixQ ∈ ℝu�×u� denotes the infinitesimal generator of an continuous-time Markov chain on the
state spaceXu�. u� is the associated stationary distribution onXu�, determined by the equation u�Q =
0. We assume that the Markov chain is irreducible and reversible, i.e. the stationary distribution
satisfies the detailed balance condition u�u�Qu�u� = u�u�Qu�u� for all states u�, u� ∈ Xu� and it is possible to get
from any state to any state, respectively. In this thesis an irreducible and reversible continuous-time
Markov chain is always denoted by the triple (Xu�,Q, u�).
In this chapter we use three different notions of gradients: On a Riemannian manifold (u�, u�) we
denote the gradient of a smooth function u� ∈ u�∞(u�) by gradu� u� . On the discrete spaceXu� the discrete
gradient of a function u� : Xu� → ℝ is denoted by Δu�u�u� ∶= u�u� − u�u�. Finally, ∇u� denotes the usual
Euclidean gradient of a differentiable function u� : ℝu� → ℝ, which should not be confused with the
Levi-Civita connection ∇u�u� of vector fields u�, u� on a Riemannian manifold.
The Euclidean space ℝu� will be always endowed with the standard smooth structure and the
standard Euclidean scalar product.

3.1.1 Definition A function u� : ℝ+
0 × ℝ+

0 → ℝ+
0 is called weight function if u� has the following

properties:
(W1) u� is continuous and u�, restricted to ℝ+ × ℝ+, is infinitely differentiable;
(W2) u� is symmetric, i.e. u�(u�, u�) = u�(u�, u�) for all u�, u� ∈ ℝ+

0 ;
(W3) u� is strictly positive on ℝ+ × ℝ+;
(W4) u� is monotone in the following sense:

u�(u�, u�) ≤ u�(u�, u�) ∀u�, u�, u� ∈ ℝ+
0 : u� ≤ u�;

(W5) u� is concave.
Of later interest will be the following particular weight function

u�u�(u�, u�) ∶=
⎧{{
⎨{{⎩

u� − 1
u�

u�u� − u�u�

u�u�−1 − u�u�−1 , if u� ∈ ℝ+ ∖ {1}; (3.1.a)

u� − u�
log u� − log u� , if u� = 1. (3.1.b)

We collect some important properties of u�u�.
3.1.2 Facts

(i) For u� ≠ 1, the mapping u�u� admits the following integral representation:

u�u�(u�, u�) =
1

∫
0

((1 − u�)u�u�−1 + u�u�u�−1)
1/(u�−1)

du� ∀u�, u� ∈ ℝ+. (3.2)

This equation follows easily from the fact that an antiderivative of the integrand in (3.2) is given
by
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u� − 1
u�

(u�u�−1 − u�(u�u�−1 − u�u�−1))u�/(u�−1)

u�u�−1 − u�u�−1 .

(ii) In the case u� = 1, the equation in (3.2) becomes

u�1(u�, u�) =
1

∫
0

u�1−u�u�u� du� ∀u�, u� ∈ ℝ+
0 . (3.3)

In particular, we have

lim
u�→1

(u�, u�) = u�1(u�, u�) ∀u�, u� ∈ ℝ+
0 .

(iii) For 0 < u� ≤ 2 the mapping u�u� is a weight function. Indeed, u�u� satisfies (W1) to (W3) in Def-
inition 3.1.1 for every choice of u� ∈ ℝ+. To show (W3), we appeal to the integral representation in
(3.2).Denote by u�u� : ℝ+

0 × ℝ+
0 → ℝ+

0 the integrand of the representation given in (3.2), namely

u�u�(u�, u�) ∶= ((1 − u�)u�u�−1 + u�u�u�−1)
1/(u�−1)

. (3.4)

Then the Hessian of u�u� is given by

Hess u�u�(u�, u�) = (1 − u�)u�(2 − u�)((1 − u�)u�u�−1 + u�u�u�−1)
1/(u�−1)−2

u�u�−3u�u�−3( −u�2 u�u�
u�u� −u�2 ),

Assuming u� ≤ 2, all principal minors of Hess u�u� are nonpositive for all u�, u� ∈ ℝ+, as well as all
u� ∈ [0, 1]. Therefore, the matrix Hess u�u� is negative semi-definite by Sylvester’s criterion, and the
integrand u�u� is concave for all u� ∈ [0, 1]; the concavity of u�u� follows.
For u� = 1 the argument follows along similar lines.

Note that for u� > 2, Hess u�u� is positive semi-definite for all u�, u� ∈ ℝ+, u� ∈ [0, 1]. In this case, u�u� is
only convex and cannot depict a weight function.

(iv) Directly from (3.1) follows that u�u� is homogeneous, i.e.

u�u�(u�u�, u�u�) = u�u�u�(u�, u�) ∀u� > 0, ∀u�, u� ∈ ℝ+
0 .

(v) u�u� is monotonous in u�; more precisely, we have

u�u�(u�, u�) ≤ u�u�(u�, u�) ∀u�, u�, u�, u� ∈ ℝ+ : u� ≤ u�.

To see this, let u�u� be defined as in (3.4). It is enough to show that ↦ u�u� is monotonous for all
u� ∈ [0, 1]. However, this follows readily from Jensen’s inequality for two points if we additionally
assume that u� > 1 and u� ≠ 0:

u� u�−1
u� (u�, u�) = ((1 − u�)u�u�−1 + u�u�u�−1)

u�−1
u�−1 ≤ (1 − u�)u�u�−1 + u�u�u�−1 = u� u�−1

u� (u�, u�).

For u� < 1 we get a similar estimate applying the concave version of Jensen’s inequality. Finally, the
cases u� = 1 or u� = 1 follow by continuity.

(vi) The weight function u�u� vanishes at the boundary {0} × ℝ+
0 ∪ ℝ+

0 × {0} precisely when 0 < u� ≤ 1.

(vii) The homogeneity of u�u� implies the useful identity

(u�, u�) ⋅ ∇u�u�(u�, u�) = u�u�(u�, u�) ∀u�, u�, ∈ ℝ+,
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since the left-hand side equals d
du� ∣

u�=1
u�u�(u�u�, u�u�) = d

du� ∣
u�=1

u�u�u�(u�, u�) = u�u�(u�, u�).

(viii) For 0 < u� ≤ 2 the weight function u�u� satisfies the estimate

(u�, u�) ⋅ ∇u�u�(u�, u�) ≥ u�u�(u�, u�) ∀u�, u�, u�, u� ∈ ℝ+. (3.5)

Indeed, due to our assumption on u�, the gradient ∇u�u� is a monotonous function, i.e.

(u� − u�, u� − u�) ⋅ (∇u�u�(u�, u�) − ∇u�u�(u�, u�)) ≤ 0.

Now, taking (u�, u�) = u�(u�, u�) with u� > 0 and passing to the limit (u� ↘ 0) in the inequality above,
yields

(u�, u�) ⋅ (∇u�u�(u�, u�) − ∇u�u�(u�, u�)) ≤ 0,

where we used that ∇u�u�(u�u�, u�u�) = ∇u�u�(u�, u�). Finally, applying Fact 3.1.2.vii to this inequality results
in (3.5).

Notation
Let (Xu�,Q, u�) be an irreducible and reversible continuous-time Markov chain. Note that irre-
ducibility implies that the corresponding Markov semigroup u�u�Q has strictly positive entries for
all times u� > 0. Since the stationary distribution u� is invariant under u�u�Q, this means that the sta-
tionary distribution u� is strictly positive onXu� in this case. We will introduce a metric on the class
of all discrete probability densities with respect to a stationary distribution u� on Xu�, denoted by

Pu� ∶= {u� : Xu� → ℝ+
0 :

u�
∑
u�=1

u�u�u�u� = 1} .

Recalling the definition of the weight function u�u� in (3.1), we will also make use of the shorthand
notation û�u�u� ∶= u�u�(u�u�, u�u�) for a discrete probability density u� ∈ Pu�.

Since the stationary distribution u� has full support, the set Pu� represents an (u� − 1)-simplex with
vertices ((1/u�u�)u�u�)1≤u�≤u� in ℝu�. In this context, the probability measure corresponding to u� is also
known as barycentric coordinates of the point u� in the (u� − 1)-simplex Pu�.
Note that Pu� is a subset of an affine subspace in ℝu� which is orthogonal to u�⊤. Since u� is the sta-
tionary distribution of the infinitesimal generatorQ, this means that this particular affine subspace
is just ranQ+ u� for any u� ∈ Pu�.
Simplices like Pu� are simple examples of topological manifolds with boundary. However, Pu�

depicts no smooth manifold with boundary, due to neighbourhoods of the vertices in the simplex
being not diffeomorphic to the half-space ℝu�−1

+ . Here the closely related concept of a manifold
with corners provides a remedy.
Moreover, with the standard Euclidean scalar product at hand, it is not hard to endow intPu� with
the standard Riemannian structure. However, we will pursue a slightly different direction and
endow the interior of Pu� with a metric tensor which is induced by the underlying Markov chain
(Xu�,Q, u�). To this aim, it will be useful to identify tangent vectors with certain discrete gradients
by means of the following preliminary result.

3.1.3 Lemma Let (Xu�,Q, u�) be an irreducible and reversible continuous-time Markov chain and fix a weight
function u�. Let u� : (−u�, u�) → intPu� be a differentiable curve. Then there exists a unique family of discrete
gradients Δu�(u�) for some u� : (−u�, u�) → ℝu� such that the discrete continuity equation

u̇�u�(u�) + ∑
u�

Δu�u�u�(u�)û�u�u�(u�)Qu�u� = 0 (3.6)



A METRIC STRUCTURE INDUCED BY MARKOV CHAINS 38

is satisfied for all times u� ∈ (−u�, u�).

Proof We start by rewriting the discrete continuity equation in (3.6) in terms of the matrix-vector
formulation

u̇� = u�(u�)u�,

where we dropped the dependency of the terms on the time variable u� and the matrix u�(u�) ∈ ℝu�×u�

is given by

u�u�u�(u�) ∶=
⎧{
⎨{⎩

−Qu�u�û�u�u� if u� ≠ u�, (3.7.a)
∑u�≠u� Qu�u�û�u�u� if u� = u�. (3.7.b)

Using that u�Q = 0, it is straightforward to verify that u�u�(u�) = 0. This means that ran u�(u�) ⊆ u�⊥

where the subspace u�⊥ is spanned exactly by the shifted simplex Pu� − u�⊤. Since every vector
tangent to a curve in Pu� belongs to u�⊥, it remains to show that the range of u�(u�) agrees with u�⊥.
To this end, it is useful to work with the matrix u�(u�) ∶= diag u�u�(u�). Note that u�(u�) is symmetric
whilst u�(u�) need not be.
Now we use the trivial identity 2u�u�u�u� = u�2

u� +u�2
u� −(u�u�−u�u�)2 and the fact that ∑

u�
u�u�u�(u�) = ∑

u�
u�u�u�(u�) = 0

to compute

2u�⊤u�(u�)u� = ∑
u�,u�

2u�u�u�u�u�u�u�(u�) =

= ∑
u�,u�

u�2
u� u�u�u�(u�) + ∑

u�,u�
u�2

u� u�u�u�(u�) − ∑
u�,u�

(u�u� − u�u�)2u�u�u�(u�) = − ∑
u�,u�

(u�u� − u�u�)2u�u�u�(u�).

Since u�u�u�(u�) ≤ 0 for all u� ≠ u�, this equation shows that every u� ∈ ker u�(u�) belongs to the 1-
dimensional subspace span {(1, … 1)⊤} of ℝu�. It remains to note that ker u�(u�) agrees with ker u�(u�)

■■to prove the claim.

3.1.4 Proposition Let (Xu�,Q, u�) be an irreducible and reversible continuous-time Markov chain and fix a
weight function u�.

(i) The set Pu� is a compact and connected embedded hypersurface with corners in ℝu�.

(ii) The manifold Pu� admits a global trivialization of the tangent bundle, i.e. u�Pu� ≃ Pu� × ℝu�−1. For every
point u� ∈ intPu� we have

u�u�P
u� ≃ { Δu� : u� ∈ ℝu�} , (3.8)

by means of the following identification: Every tangent vector u̇�(0) of a smooth curve u� : (−u�, u�) → intPu�

with u� = u�(0) is uniquely identified with a discrete gradient Δu�(0) via the discrete continuity equation in
(3.6).
By slight abuse of notation, we will simply write Δu� ∈ u�u�P

u�.

(iii) Define a metric tensor u� : u�u�P
u� × u�u�P

u� → ℝ – using the identification (3.8) – by

⟨ Δu�, Δu�⟩u� ∶= 1
2 ∑

u�,u�

Δu�u�u�

Δu�u�u�û�u�u�Qu�u�u�u� ∀ Δu�, Δu� ∈ u�u�P
u�. (3.9)

Then (intPu�, u�) is a Riemannian manifold.

Proof The statement in (i) follows from the fact that u� as stationary distribution of an irreducible
Markov chain is nowhere vanishing, whereas (ii) is a direct consequence of Lemma 3.1.3.
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It remains to prove that the metric tensor u� in (iii) defined by (3.9) is positive definite: This claim
can be shown easily by writing u� with respect to the standard scalar product on ℝu�:

⟨ Δu�, Δu�⟩u� = u�⊤u�(u�)u�,

where the symmetric matrix u�(u�) ∶= diag u�u�(u�) with u�(u�) as in (3.7) was already encountered in
the proof of Lemma 3.1.3. Alternatively, one can express u�(u�) more tangible as

u�u�u�(u�) =
⎧{
⎨{⎩

−Qu�u�û�u�u�u�u�, if u� ≠ u�; (3.10.a)
∑u�≠u� Qu�u�û�u�u�u�u�, if u� = u� (3.10.b)

Since

∑
u�≠u�

∣u�u�u�(u�)∣ = u�u�u�(u�) ≥ 0 ∀u� ∈ Xu�,

■■it becomes clear that u�(u�) is diagonally dominant and consequently also positive definite.

The following remark shows that the metric tensor u� defined by (3.9) degenerates at the boundary
of Pu�.

3.1.5 Remark (Degeneracy of the metric tensor at the boundary) Let (Xu�,Q, u�) be a Markov chain and
let the the weight function be given by u�u� as in (3.1). Then the metric tensor u� is degenerated at
a point u� ∈ Pu� precisely when the matrix u�(u�) ∈ ℝu�×u� defined in (3.10) has rank u�(u�) < u� − 1.
Clearly, Proposition 3.1.4.iii implies that this can only happen at the boundary ∂Pu�.
More precisely, u� is always degenerated at the vertices ((1/u�u�)u�u�)1≤u�≤u�. If for instance u� ≤ 1, then
û�u�u� vanishes at the boundary ∂Pu� for some u� ≠ u�, due to Fact 3.1.2.vi. Therefore, u� is degenerated at
the whole boundary ∂Pu� in this case.

The Riemannian manifold (intPu�, u�) is naturally equipped with a metric such that the metric
topology agrees with the topology corresponding to the smooth manifold intPu�. This metric
between two points u�0, u�1 ∈ intPu� is given by minimizing the length of all smooth curves u� :
[0, 1] → intPu� connecting u�0 to u�1, where the length of such a curve u�(u�) is given by

u�(u�) ∶=
1

∫
0

√u�(u̇�(u�), u̇�(u�)) du�. (3.11)

Equivalently, one may consider the energy functional

u�(u�) ∶=
1

∫
0

u�(u̇�(u�), u̇�(u�)) du� (3.12)

instead of the length functional u� since Jensen’s inequality implies u�(u�) ≤ √u�(u�) with equality of
u�(u�) and √u�(u�) precisely when the curve u� has constant speed.
This notion of the length or energy of a curve clearly depends on the metric tensor u� involved.
Therefore it comes to some surprise that it allows to defines a distance on the whole manifold
with corners.

3.1.6 Proposition For any two points u�0, u�1 ∈ Pu� define

W(u�0, u�1) ∶= inf(
1

∫
0

∣ Δu�(u�)∣2u� du�)
1/2

, (3.13)
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where the infimum is taken over all vector fields Δu� along (piecewise) smooth curves u� : [0, 1] → Pu�,
connecting u�0 to u�1 such that

(CE1)

Δu� : [0, 1] → ℝu� × ℝu� is Borel measurable;
(CE2) the pair (u�, Δu�) satisfies the discrete continuity equation

u̇�u�(u�) + ∑
u�

Δu�u�u�(u�)û�u�u�(u�)Qu�u� = 0 ∀u� ∈ (0, 1). (3.14)

Then (Pu�,W) is a Polish metric space. Moreover, (Pu�,W) is a geodesic space in the metric sense, i.e. for
every pair of points u�0, u�1 ∈ Pu� there exists a curve u� : [0, 1] → Pu�, connecting u�0 to u�1 in such a way
that

W(u�(u�), u�(u�)) = |u� − u�|W(u�0, u�1) ∀u�, u� ∈ [0, 1].

Sketch of proof We will only show thatW defines an extended metric onPu�, i.eW takes values in
[0, +∞]. The prove of the other claims is rather involved and requires a thorough analysis of the
two-point space P2.
The symmetry of W is clear from the definition. In order to show that that W is positive definite,
it is enough to establish an estimate of the form

∣u�0 − u�1∣ ≤ u�W(u�0, u�1) ∀u�0, u�1 ∈ Pu� (3.15)

for some constant u� > 0. Accordingly, let u�0, u�1 ∈ Pu� where we may assume that W(u�0, u�1) <
+∞. By definition of W, for every u� > 0 there exists a pair u�, Δu� satisfying the discrete continuity
equation (3.14) such that

1
∫
0

∣ Δu�(u�)∣2u� du� ≤ W2(u�0, u�1) + u�. (3.16)

Now we will again use the matrix notation from the proofs of Lemma 3.1.3 and Proposition 3.1.4:
Namely, dropping any dependency on u�, the discrete continuity equation takes the form u̇� = u�(u�)u�,
whereas the Riemannian metric may be written as ⟨ Δu�, Δu�⟩u� = u�⊤u�(u�)u� for matrices u�(u�) and
u�(u�) defined in (3.10) and (3.7), respectively. Thus, we can appeal to the relation u�(u�) = diag u�u�(u�)
to infer for any u� ∈ ℝu� the estimate

min
u�

u�u� ∣∑
u�

u�u�(u�0
u� − u�1

u� )∣ ≤ ∣∑
u�

u�u�(u�0
u� − u�1

u� )u�u�∣ = ∣
1

∫
0

u̇�⊤(diag u�)u� du�∣ =

= ∣
1

∫
0

(u�(u�)u�)⊤(diag u�)u� du�∣ = ∣
1

∫
0

u�⊤u�(u�)u� du�∣ ≤ (
1

∫
0

u�⊤u�(u�)u� du�)
1/2

(
1

∫
0

u�⊤u�(u�)u� du�)
1/2

,

where we used the Cauchy-Schwarz inequality for the positive bilinear form (u�, u�) ↦ u�⊤u�(u�)u� in
the last inequality above. Since we have the rough estimate

u�⊤u�(u�)u� = 1
2 ∑

u�,u�
(u�u� − u�u�)2Qu�u�û�u�u�u�u� ≤ 2 ∣u�∣∞ ∣u�∣2∞ ∑

u�,u�
u�≠u�

Qu�u�u�u�

and u� is strictly positive, we obtain

∣∑
u�

u�u�(u�0
u� − u�1

u� )∣ ≤ u� ∣u�∣∞ (
1

∫
0

u�⊤u�(u�)u� du�)
1/2

for a suitable constant u� > 0. Now taking (3.16) into account and letting (u� ↘ 0), this inequality
becomes
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∣∑
u�

u�u�(u�0
u� − u�1

u� )∣ ≤ u� ∣u�∣∞W(u�0, u�1). (3.17)

Choosing u�u� = sgn(u�0
u� − u�1

u� ) in (3.17), finally establishes (3.15).

It remains to show thatW satisfies the triangle inequality: Note that a reparametrisation à la Lemma
1.1.5 allows us to take the infimum in (3.13) only over pairs (ú�, Δú�) where the curve ú� has constant
speed. As a result, the energy functional u�(ú�) in (3.11) agrees with the length functional u�(ú�) in
(3.11). Thus, we may invoke the triangle inequality in u�1(0, 1) to obtain

1
∫
0

∣ Δú�1,2(u�)∣2u� du� =
1

∫
0

∣ Δú�1,2(u�)∣u� du� ≤
1

∫
0

∣ Δú�1(u�)∣u� du� +
1

∫
0

∣ Δú�2(u�)∣u� du�, (3.18)

where (ú�1,2, Δú�1,2) denotes the reparametrised composition of constant speed pairs (ú�1, Δú�1) and
(ú�2, Δú�2). Now taking the infimum in (3.18) over such curves ú�1 connecting points u�0 to u�1 and ú�2

connecting points u�1 to u�2, results in the sought triangle inequality

W(u�0, u�2) ≤ W(u�0, u�1) +W(u�1, u�2). ■■

The Riemannian nature of intPu� assures that intPu�W is a geodesic space by the Hopf-Rinow
theorem (see Theorem B.3.4 in Appendix B). Moreover, the constant-speed geodesics may be char-
acterised by a system of first-order equations as the following result shows.

3.1.7 Proposition (Geodesic equations) For every point u�0 ∈ intPu� and u�0 ∈ ℝu�, there exists a sufficiently
small u� > 0 such that the unique constant-speed geodesic u� : (−u�, u�) → intPu� f, starting from u�(0) = u�0
with initial tangent vector Δu�(0) = Δu�0 satisfies the following system of equations:

u̇�u�(u�) + ∑
u�

Δu�u�u�(u�)û�u�u�Qu�u� = 0, (3.19.a)

u̇�u�(u�) + 1
2 ∑

u�
( Δu�u�u�(u�))2∂1u�(u�u�(u�), u�u�(u�))Qu�u� = 0. (3.19.b)

Proof All statements are standard of results in Riemannian geometry summarised in Appendix B:
Existence and uniqueness of the constant-speed geodesic in intPu� follows by Proposition B.3.2 and
the fact that every geodesic may be reparametrised to constant speed such that u� = 1.
The characterisation of such a geodesic by (3.19) just corresponds to the geodesic equations in local

■■coordinates as given in Definition B.3.1.

In addition to the metric W, one can also consider Wasserstein distances on Pu�: To this end, it is
natural to endow Xu� with the graph distance induced by the infinitesimal generator Q, i.e. the
length of the shortest path in the graph with vertex set Xu� and edge set

{(u�, u�) ∈ Xu� ×Xu� : Qu�u� > 0} .

We will write u�gra
u� for the u�-Wasserstein distance with respect to the graph distance on (Xu�,Q, u�).

In the next result we provide lower and upper bounds for the discrete transportation metric W in
terms of u�gra

1 and u�gra
2 .

3.1.8 Proposition Let (Xu�,Q, u�) be a Markov chain and assume that the weight function u� vanishes on the
boundary {0} × ℝ+

0 . Then there exists a constant u� > 0 only dependent on the choice of u� such that we have
the bounds

√2u�gra
1 (u�0, u�1) ≤ W(u�0, u�1) ≤ u�( min

Qu�u�>0
Qu�u�)

−1/2u�gra
2 (u�0, u�1) ∀u�0, u�1 ∈ Pu�.
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3.2 The Discrete Porous Medium Equation as Entropy Gradient Flow

Notation
From this section onwards, the Riemannian and metric structure of intPu� and Pu�, respectively,
which were introduced in the last section, will be always induced by the weight function u�u�.

In this section we will develop a gradient flow structure which may be regarded as a discrete
analogue of the Wasserstein gradient flows. We will focus on a gradient flow structure for a mixed
energy functional which consists of the discrete Rényi entropy together with an discrete potential
energy functional.

3.2.1 Definition Let (Xu�,Q, u�) be an irreducible continuous-time Markov chain. For u� > 0 the (dis-
crete) Rényi entropy functionalF u�

u� : Pu� → ℝ associated to the stationary distribution u� is defined
by

F u�
u� (u�) ∶=

u�
∑
u�=1

u�u�(u�u�)u�u�,

where u�u� is given as in (2.19). For u� = 1 the Rényi entropy takes the particular form

F u�
1 (u�) ∶=

u�
∑
u�=1

u�u�u�u� log u�u�,

which is also known as (discrete) Shannon entropy functional associated to u�.
For u� ∈ ℝu�, the (discrete) potential energy functional Vu� : Pu� → ℝ associated with u� is defined
by

Vu�(u�) ∶=
u�

∑
u�=1

u�u�u�u�u�u�.

There are several possibilities to proceed with the smooth manifold Pu� or its interior: We may
consider (Pu�,W) as a metric space and follow along the lines of the purely metric theory developed
in Chapter 1, namely gradient flows in the sense of EDI, EDE, or EVI.
However, for now we will pursue a different approach which makes use of the underlying Rie-
mannian structure of intPu�. To this end, we invoke the fundamental theorem on flows stated in Ap-
pendix B, which – together with the compactness of Pu� – implies the existence of a global gradient
flow for the mixed energy functional Φu� = F u�

u� +Vu�. To characterises the flow curves in a fashion
similar to Theorem 2.4.10, we introduce the notions of discrete Laplacian and discrete divergence.

3.2.2 Definition Let (Xu�,Q, u�) be a Markov chain. Given a function u� : Xu� → ℝ,

Δ u�u� ∶=
u�

∑
u�=1

Qu�u�(u�u� − u�u�) =
u�

∑
u�=1

Qu�u�u�u�

denotes the discrete Laplacian of u� associated to Q. Given a function u� : Xu� ×Xu� → ℝ,

Δ⋅u�u� ∶= 1
2

u�
∑
u�=1

Qu�u�(u�u�u� − u�u�u�)

denotes the discrete divergence of u� associated to Q.

3.2.3 Proposition (Gradient flow associated to the discrete porous medium equation) Let an irreducible
continuous-time Markov chain (Xu�,Q, u�) and an discrete potential u� ∈ ℝu� be given; fix 0 < u� ≤ 2.
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Then for every u�0 ∈ intPu� there exists a unique differentiable curve u� : (−u�, u�) → intPu�, starting from
u�(0) = u�0, such that the following two equivalent statements hold:

(i) u� satisfies the gradient flow equation

d
du�u�(u�) = −(gradu�Φu�)u�(u�) (3.20)

for the functional Φu� = F u�
u� +Vu�;

(ii) u� satisfies the discrete porous medium equation with drift

d
du�u�(u�) = Δ⋅(û�(u�) Δu� ′(u�(u�)) + û�(u�) Δu�) = Δ (u�u�(u�)) + Δ⋅(û�(u�) Δu�) . (3.21)

If at least one of the following conditions is satisfied additionally:
⇝ u� ≤ 1 and the Markov chain allows only nearest-neighbour interactions, i.e. Qu�u� = 0 for all ∣u� − u�∣ > 1;
⇝ the porous medium equation is homogeneous, i.e. Δu� ≡ 0;
then for every u�0 ∈ Pu�, there exists a unique differentiable curve u� : ℝ+ → intPu�, starting from lim

u�↘0
u�(u�) =

u�0 such that (i) and (ii) hold.

Proof Let us start by showing that the equations (3.20) and (3.21) give rise to the same solution. To
this aim, pick a pair (u�, Δu�) satisfying the continuity equation (3.14). Then we may use summation
by parts and the detailed balance condition Qu�u�u�u� = Qu�u�u�u� to compute

d
du�Φu�(u�(u�)) = d

du� ∑
u�

( u�u�(u�u�(u�)) + u�u�u�u�(u�))u�u� = − ∑
u�,u�

( u� ′
u�(u�u�(u�)) + u�u�)

Δu�u�u�(u�)û�u�u�(u�)Qu�u�u�u� =

= −1
2 ∑

u�,u�
( u� ′

u�(u�u�(u�)) + u�u�)û�u�u�(u�)Qu�u�u�u�(

Δu�u�u�(u�) − Δu�u�u�(u�)) = ⟨ Δu� ′
u�(u�(u�)) + Δu�, Δu�(u�)⟩

u�
.

This means we have identified Δu� ′
u�(u�) + Δu� as gradient of the functional Φu� at the point u� in the

Riemannian manifold (intPu�, u�). Using the continuity equation (3.14) once again to identify

(gradu�Φu�)u�(u�) = Δu� ′
u�(u�(u�)) + Δu�

with the velocity of a curve u� in intPu�, to wit

d
du�u�u�(u�) = − ∑

u�
( Δu� ′

u�(u�(u�)) + Δu�)û�u�u�(u�)Qu�u� = − Δ⋅(û�u�u�(u�) Δu� ′
u�(u�(u�)) + û�u�u�(u�) Δu�). (3.22)

To verify the last equality in (3.21), it is enough to check that û�u�u�

Δu� ′
u�(u�) = Δ(u�u�) by definition of the

weight function u�u�.
To conclude the first part of the proof, we still need to infer existence and uniqueness of the curve
u� : (−u�, u�) → intPu� solving (3.22). However, this follows immediately from the fundamental
theorem on flows (cf.Theorem B.2.5), noting that (gradu�Φu�)u� is a smooth vector field on intPu�.

To prove the second part of the proposition, we appeal to Proposition B.2.8 to infer existence of a
global solution u� : [0, ∞) → Pu�. To this end, we have to verify that the vector field

u�u� ∶= Δ (u�u�) + Δ⋅(û� Δu�) ,

depicting the right-hand side of (3.21), is nowhere outward pointing for all boundary points u� ∈
∂Pu�. Let us assume for the moment that the potential u� , i.e. the vector field takes the form u�u� =
Δ (u�u�). If u� ∈ ∂Pu�, then we have u�u� = 0 for at least one u� ∈ Xu�. Therefore, we obtain for such
components that
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Δ(u�u�)u� = ∑
u�
Qu�u�u�u�

u� = ∑
u�≠u�

Qu�u�u�u�
u� ≥ 0. (3.23)

This proves the claim for all points in the boundary except the corner points with vanishing com-
ponents except u�u� = u�u� for one u� ∈ Xu�. Here the vector field takes the form

Δ(u�u�)u� = ∑
u�
Qu�u�u�u�

u� = Qu�u�u�u�
u� < 0.

Thus, u�u� is nowhere outward pointing for all u� ∈ ∂Pu�.
Finally, we investigate the vector field u�u� when there is given a nonvanishing potential u� for u� ≤ 1.
In this case, Fact 3.1.2.vi immediately implies that the term Δ⋅(û� Δu�) in (3.23) vanishes for all u� ∈

■■∂Pu�. Hence, this instance reduces the case already discussed.

3.3 Geodesic Convexity of the Entropy Functional

We already encountered the notion of convexity of a functional along geodesics in section Section
2.3. In the light of Proposition 3.1.6 it seems appropriate to investigate geodesic convexity of the
Rényi entropy functional F u�

u� in the metric space (Pu�,W).
Moreover, the Riemannian structure on intPu� provides us with additional tools which allow dif-
ferent characterisations of the synthetic definition (1.6) by means of second-order calculus like the
Hessian of F u�

u� .
We recall that the Hessian of the smooth functional F u�

u� on the Riemannian manifold (Pu�, u�) is a
tensor field HessF u�

u� ∈ u�0
2(intPu�), defined by HessF u�

u� (u�, u�) = ∇u�∇u�F
u�

u� . However, the compu-
tation of the Levi-Civita connection ∇ in coordinates requires the inverse of the coordinate matrix
u�u�u� of the metric tensor. The computation of this inverse may be avoided if we just consider the
quadratic form of the Hessian of F u�

u� along a geodesic u�(u�) since in this case we can exploit the
identity

HessF u�
u� (u�(u�))(u̇�(u�), u̇�(u�)) = d2

du�2F
u�

u� (u�(u�)). (3.24)

As every geodesic u�(u�) is uniquely characterised by its initial value u�(0) along with its initial speed
u̇�(0), we may use (3.24) to calculate the quadratic form of the Hessian of F u�

u� as follows:
3.3.1 Lemma At every point u� ∈ intPu� the quadratic form Δu� ↦ HessF u�

u� (u�)( Δu�, Δu�) is given by

Bu�(u�, Δu�) ∶= 1
4 ∑

u�,u�,u�
( Δu�u�u�)2Qu�u�u�u�(∂1u�u�(u�u�, u�u�)(u�u�

u� − u�u�
u� )Qu�u� + ∂2u�u�(u�u�, u�u�)(u�u�

u� − u�u�
u� )Qu�u�) − (3.25.a)

− u�
2 ∑

u�,u�,u�

Δu�u�u�û�u�u�Qu�u�u�u�(u�u�−1
u� Qu�u�

Δu�u�u� − u�u�−1
u� Qu�u�u� Δu�u�u�). (3.25.b)

Proof Let the pair (u�, u�) be a solution to to the geodesic equations (3.19). Following along the
lines of the first part of the proof for Proposition 3.2.3, we may use (3.19.a) and the definition of the
weight function u�u� to infer

d
du�F

u�
u� (u�(u�)) = ⟨ Δu� ′

u�(u�(u�)), Δu�(u�)⟩
u�

= 1
2 ∑

u�,u�

Δu�u�
u�u� (u�) Δu�u�u�(u�)Qu�u�u�u�.

Hence, the second derivative of the discrete Rényi entropy is given by

d2

du�2F
u�

u� (u�(u�)) = 1
2 ∑

u�,u�
( Δu�u�

u�u� (u�) Δu̇�u�u�(u�) + u� Δu̇�u�−1
u�u� (u�) Δu�u�u�(u�))Qu�u�u�u�.
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Using the geodesic equations to identify both u̇� and u̇�, we obtain in a somewhat unwieldy com-
putation

d2

du�2F
u�

u� (u�(u�)) = 1
4 ∑

u�,u�,u�
( Δu�u�u�)2Qu�u�u�u�(∂1u�u�(u�u�, u�u�)

Δu�u�
u�u�Qu�u� − ∂1u�u�(u�u�, u�u�)

Δu�u�
u�u�Qu�u�) −

− u�
2 ∑

u�,u�,u�

Δu�u�u�û�u�u�Qu�u�u�u�(u�u�−1
u� Qu�u�

Δu�u�u� − u�u�−1
u� Qu�u�u� Δu�u�u�).

Finally, applying the trivial identities ∂1u�u�(u�u�, u�u�) = ∂1u�u�(u�u�, u�u�) and Δu�u�
u�u� = − Δu�u�

u�u� to the first line
of this equation, establishes that

d2

du�2F
u�

u� (u�(u�)) = HessF u�
u� (u�(u�))( Δu�(u�), Δu�(u�)),

■■is given by (3.25).

The following result shows that HessF u�
u� may be used to characterise geodesic convexity of the

Rényi entropy functionalF u�
u� on the whole manifoldPu�, despite the metric tensor u� being possibly

degenerated at the boundary ∂Pu�.
3.3.2 Proposition For every u� ∈ ℝ then following statements are equivalent:

(i) F u�
u� is geodesically u�-convex in (Pu�,W);

(ii) for every given constant speed geodesic u� : [0, 1] → Pu�, the functional F u�
u� is geodesically u�-convex in

(Pu�,W);
(iii) for every initial value u�0 ∈ Pu�, the solution u�(u�) to the porous medium equation with u�(0) = u�0 from

Proposition 3.2.3 satisfies (EVIu�);
(iv) At every point u� ∈ intPu�, the linear operator HessF u�

u� (u�) − u� Id is positive semidefinite, i.e.

Bu�(u�, Δu�) ≥ u� ∣ Δu�∣2u� ∀u� ∈ intPu�, ∀ Δu� ∈ u�u�P
u�.

3.3.3 Example (Geodesic convexity of the entropy on the two-point space) Consider the two-point space
(Xu�u�2,Q, u�). Then the infinitesimal generator Q has the form

Q = ( −u� u�
u� −u� ),

for some u�, u� ∈ ℝ+, whereas the stationary distribution may be written as u� = 1
u�+u�(u�, u�). Due to

the particular simple structure of this Markov chain, one can give a tangible characterisation of
the largest possible u� ∈ ℝ such that the Rényi entropy functional F u�

u� is geodesically u�-convex.
For 0 < u� ≤ 2 and u� ≠ 1 this optimal value is given by

u�max = inf
−1<u�<1

{
u�u�
2 u�u�(1 − u�, 1 + u�)((1 − u�)u�−2 + (1 + u�)u�−2) + (1 − u�)u�−1 + (1 + u�)u�−1} .

(3.26)

◀◀For the particular case u� = 1, above formula simplifies to u�max = 2u�.

Above example suggests that for every irreducible and reversible continuous-time Markov chain
there may exist a constant u� ∈ ℝ such that the Rényi entropy functionalF u�

u� is u�-convex. However,
the following examples show that this is certainly not the case for every choice of u� ∈ ℝ+.
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3.3.4 Example Consider the discrete circle ℤ/u�ℤ ≃ Xu� of length u� ≥ 7, endowed with the normalised discrete
Laplacian

Qu�u� ∶=
⎧{
⎨{⎩

u� if ∣u� − u�∣ = 1,
−2u� if u� = u�,
0 otherwise,

where the stationary distribution takes the form u� = 1
u� .

Fix u� ∈ ℝ+∖(1/4, 7/4). Then the Rényi entropy functionalF u�
u� is not geodesically convex on (Xu�,Q, u�).

Additionally, there exists no constant u� ∈ ℝ such that F u�
u� is geodesically u�-convex for all u� ≥ 7.

Proof We start with evaluating the quadratic form Bu�(u�, Δu�) of the Hessian as given in Lemma
3.3.1. We compute the first expression (3.25.a) as

u�2

u� ∑
u�

∣u�u� − u�u�+1∣2 (∂1u�u�(u�u�+1, u�u�)(
u�u�

u� + u�u�
u�+2

2 − u�u�
u�+1) +

+ ∂2u�u�(u�u�+1, u�u�)(
u�u�

u�−1 + u�u�
u�+1

2 − u�u�
u� )),

whereas the second expression (3.25.b) becomes

u�2

u� ∑
u�

u�u�(u�u�+1, u�u�) ( ∣u�u� − u�u�+1∣2 (u�u�u�−1
u�+1 + u�u�u�−1

u� ) +

+ (u�u� − u�u�+1) ((u�u�+2 − u�u�+1)u�u�u�−1
u�+1 + (u�u� − u�u�−1)u�u�u�−1

u� )) .

On the other hand, the norm of a tangent vector Δu� ∈ u�u�(Pu�) is given by

∣ Δu�∣2u� =
u�
u� ∑

u�
∣u�u� − u�u�+1∣2 û�u�+1,u�.

Now we are ready to obtain estimates for Bu�(u�, Δu�) and ∣ Δu�∣2u�. To this aim, we discern between
different cases:

(i) The case u� ∈ [7/4, 2): Choosing u� = (0, 1, 2, 3, …3, 0, 0) and u� = (u�, u�u�, u�u�, u�, u�, …u�), u�, u�, u� > 0
results in (3.25.a) taking the form

∂1u�u�(u�u�, u�)(u�u� − (u�u�)u�) + ∂2u�u�(u�u�, u�)((u�u�)u� − 2u�u�) + 1
2(u�u� − (u�u�)u�) +O(u�) (3.27.a)

and (3.25.b) becoming

2u�u�(u�u�, u�)u�u�u�−1 +O(u�). (3.27.b)

Now using the identities

u�u�(u�u�, u�) = (u� − 1)
u�

u�u� − 1
u�u�−1 − 1

u�,

∂1u�u�(u�u�, u�) = u� − 1
u�

(u� − 1)u�u�−2 − u�u�u�−1 + u�2(u�−1)

(u�u�−1 − 1)2 ,

∂2u�u�(u�u�, u�) = u� − 1
u�

(u� − 1)u�u� − u�u�u�−1 + 1
(u�u�−1 − 1)2 ,

both (3.27.a) and (3.27.b) simplify to
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Bu�(u�, ∇u�) = (u�u�u�−1 − (u� − 1)u�u�−2 − u�2(u�−1) u�u� − 2
u�u� − 1((u� − 1)u�u� − u�u�u�−1 + 1) − (3.28.a)

− u�
2(u� − 1)(u�u�−1 − 1)2 + 2u�(u�u�−1 − 1)) u� − 1

u�
u�u� − 1

(u�u�−1 − 1)2
u�2

u� u�u� +O(u�). (3.28.b)

In particular, the sign in (3.28) does not depend on the choice of u�. Indeed, a numerical analysis of
(3.28) shows that there exist u�0 < 7

4 and u�u� > 1 such that (3.28) attains negative values for every
u� > u�0.
Since

∣ Δu�∣2u� = (2(u� − 1)
u�

u�u� − 1
u�u�−1 − 1

+ u�)
u�
u�u� +O(u�)

and u� = 2(1 + u�)u� + O(u�), this means that there exists no u� ∈ ℝ such that F u�
u� is u�-convex along

geodesics for all u� ≥ 7.

(ii) The case u� ∈ [2, +∞) : For u� ≥ 2 above argument can be simplified by choosing a vector u� =
(0, 1, 2, …2, 0) and u� = (u�, u�, u�, …u�). Then

∂1u�u�(u�, u�) = ∂2u�u�(u�, u�) =
⎧{
⎨{⎩

1
2 if u� = 2,
O(u�) if m > 2,

implies

Bu�(u�, ∇u�) = u�u�
u� − 1

u� u�2u�u�−1 +O(u�) and ∣ Δu�∣2u� = u� +O(u�),

where u�u� = 1 for u� = 2 and u�u� = 2 for u� > 2. This implies

u� ≤ −u�u�
u� − 1

u� u�u�u�−1

as a negative upper bound for semi-convexity along geodesics.

(iii) The case u� ∈ (0, 1/4): Consider u� = (0, 1, …1, 0, 0) and u� = (u�, u�, u�, …u�). Then, noting that
∂1u�u�(u�, u�) = ∂2u�u�(u�, u�) = 1

2 , one immediately obtains

Bu�(u�, Δu�) = (2u� − 1
2) u�2u�u�−1 +O(u�) and ∣ Δu�∣2u� = u� +O(u�).

This establishes the following negative upper bound for the semi-convexity along geodesics:

u� ≤ (2u� − 1
2) u�u�−1.

◀◀
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discrete gradient flow structures – in particular a synthetic notion of Ricci curvature in the spirit
of the works by Lott, Sturm and Villani – was investigated. In [30] the same two authors adapted
the notion to discrete entropic gradient flows for discrete porous medium equations. Essentially
all the content in this chapter is based on this article – with the exception of Example 3.3.4 which
appears here for the first time for cases apart from u� = 2.
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Independently, the essentially same gradient flow structure from an Onsager point of view was
discovered in [50] by Mielke. There a gradient system for the discrete Shannon entropy and re-
versible Markov chain with generator Q arises from the equation

u̇� = Q⊤u� = −u�(u�)∇F u�
1 (u�). (3.29)

Here F u�
1 denotes the standard Euclidean gradient of the discrete entropy functional and u� is an

corresponding Onsager matrix. Accordingly, the metric tensor given by the inverse of u� induces a
Riemannian structure on the space of discrete probability measures u� ∈ ℝu� with nowhere van-
ishing support. Criteria for geodesic convexity of the entropy functional for this gradient flow
structure was were obtained by the same author in [51] as well as by Liero and Mielke [44] and by
Erbar and Maas [29].
In the related work [17] a similar gradient flow structure for Fokker-Plank equations on graphs
was proposed by Chow et al.

As seen in the recent work [32] by Ferreira, Santos and Valencia-Guevara, the weight function u�u� as-
sociated to the discrete Rényi entropy in this chapter also appears naturally in a weak formulation
of the fractional porous medium equation in a periodic setting. In this paper the authors propose
a minimising movements scheme related the the Rényi entropy to obtain a gradient flow structure
for the fractional porous medium equation on the higher dimensional torus.
Recently, non-local transportation distances related to the discrete entropy gradient flow structures
above were considered by Solomon et al. [64] for applications to computational problems of graph
theoretical nature.



4 Stability Results for Gradient Flows under u�-Convergence
In this chapter we return to the general metric setting of Chapter 1 and investigate the stability
of gradient flows with respect to perturbations of the underlying functional. To be more precise,
assume that (u�u�)u�∈ℕ is a sequence of functionals u�u� : u� → ℝ ∪ {+∞}, each admitting a gradient
flow either in the EDE or EVI metric sense. Then, under suitable conditions, we expect a limit
functional u� : u� → ℝ ∪ {+∞} to inherit the gradient flow property from the u�u�.

4.1 u�-Convergence of Gradient Flows in the EDE sense

Before we state a stability result for EDE gradient flows, we first need to clarify the meaning of
convergence of a sequence (u�u�)u�∈ℕ of functionals.

4.1.1 Definition Let (u�u�, u�u�)u�∈ℕ be a sequence of topological spaces u�u� together with (not necessarily
continuous) mappings u�u� : u�u� → u� where the codomain of all u�u� is another topological space u� .
Then a sequence (u�u�)u�∈ℕ of functionals u�u� : u� → ℝ ∪ {+∞} is said to be sequentially u�-u�u�u� u�u�u�
convergent to a functional u� : u� → ℝ ∪ {+∞} if for every sequence (u�u�)u�∈ℕ of points u�u� ∈ u�u�
such that limu�→∞ u�u�(u�u�) = u� for some u� ∈ dom u�, one has

lim infu�→∞ u�u�(u�u�) ≥ u�(u�). (4.1)

(u�u�)u�∈ℕ is said to be sequentially u�-u�u�u� u�u�u� convergent to u� : u� → ℝ ∪ {+∞} if for every u� ∈
dom u� there exists a sequence (u�u�)u�∈ℕ of points u�u� ∈ u�u� such that limu�→∞ u�u�(u�u�) = u� and

lim sup
u�→∞

u�u�(u�u�) ≤ u�(u�). (4.2)

If (u�u�)u�∈ℕ is sequentially Γ-lim inf convergent and sequentially Γ-lim sup convergent to u�, then
(u�u�)u�∈ℕ is just called sequentially u�-convergent to u�.

Typically, one encounters the notation of Γ-convergence in the situation when u�u� = u� and u�u� is the
identity mapping for all u� ∈ ℕ. In the context of Gromov-Hausdorff convergence, however, the
u�u� are usually chosen to be u�u�-isometries for some null sequence (u�u�)u�∈ℕ.

Concerning the next result, recall that a slope ∣∂u�∣ is a strong upper gradient for a functional u� on a
metric space (u�, u�) if for every absolutely continuous curve u� : (u�, u�) → u� the function ∣∂u�∣ ∘ u� is
Borel measurable and satisfies (1.7).

4.1.2 Proposition (Stability of EDE gradient flows) For every u� ∈ ℕ let u�u� : u�u� → u� be a mapping between
complete metric spaces (u�u�, u�u�) and (u�, u�). Let u� be a topology (not necessarily generated by u�) on u�. Let
u�u� : u�u� → ℝ ∪ {+∞} and u� : u� → ℝ ∪ {+∞} be functionals such that the slopes ∣∂u�u�∣ and ∣∂u�∣ are
strong upper gradients for all u� ∈ ℕ. Let (u�u�)u�∈ℕ be a sequence of locally absolutely continuous curves
u�u� : ℝ+ → u�u�, each satisfying (EDE), such that (u�u�∘u�u�)u�∈ℕ is pointwise convergent to a limit curve
u� : ℝ+ → u� with respect to u�.
Assume that the following prerequisites are satisfied:

⇝ The functionals (u�u�)u�∈ℕ and u� satisfy the Γ-lim inf bound

lim infu�→∞ u�u�(u�u�(u�)) ≥ u�(u�(u�)) ∀u� ∈ ℝ+. (4.3)

⇝ The initial value lim
u�↘0

u�(u�) = u�0 ∈ u� of the limit curve u� exists and satisfies

lim sup
u�→∞

u�u�(u�u�
0) ≤ u�(u�0), (4.4)

where u�u�
0 = lim

u�↘0
u�u�(u�) for u� ∈ ℕ;

⇝ the metric derivative and the slope satisfy the following lower bound:
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lim infu�→∞

u�
∫
0

∣u̇�u�∣2(u�) + ∣∂u�u�∣2(u�u�(u�)) du� ≥
u�

∫
0

∣u̇�u�∣2(u�) + ∣∂u�∣2(u�(u�)) du� ∀u� ∈ ℝ+. (4.5)

Then the limit curve u� is a gradient flow in the EDE sense and satisfies the following properties:

⇝ (u�u�)u�∈ℕ is a recovery sequence for u�, i.e.

limu�→∞ u�u�(u�u�(u�)) = u�(u�(u�)) ∀u� ∈ ℝ+;

⇝ If the metric derivative and the slope satisfy the reinforced Γ-lim inf bounds

lim infu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� ≥
u�

∫
0

|u̇�|2(u�) du� and lim infu�→∞

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� ≥
u�

∫
0

∣∂u�∣2(u�(u�)) du� (4.6)

for all u� > 0, then the slope ∣∂u�u�∣ ∘ u�u� and the metric derivative ∣u̇�u�∣ converge in u�2
loc(ℝ+) to their

respective limits ∣∂u�∣ ∘ u� and |u̇�| as (u� → ∞).

Note that (4.3) is actually a weaker assumption than sequential Γ-lim inf convergence of (u�u�)u�∈ℕ
to u�.

Proof First note that (4.5) implies that |u̇�|2 is locally integrable and therefore the limit curve u�
belongs to u�u�2

loc(ℝ+, u�). Moreover, we may invoke (1.7) together with the AM-GM inequality to
obtain

u�(u�(u�)) − u�(u�(u�)) ≤
u�

∫
u�

|u̇�|(u�) ∣∂u�∣(u�(u�)) du� ≤ 1
2

u�
∫
u�

|u̇�|2(u�) + ∣∂u�∣2(u�(u�)) du� ∀u�, u� ∈ ℝ+ : u� ≤ u�.

(4.7)

We need to show the converse inequality of (4.7), which means precisely that u� satisfies (EDI). To
this aim, it suffices to show that

u�(u�0) − u�(u�(u�)) = 1
2

u�
∫
0

|u̇�|2(u�) + ∣∂u�∣2(u�(u�)) du� ∀u� ∈ ℝ+. (4.8)

Then the fact that u� is a solution to (EDE) for arbitrary u� ≤ u� follows by additivity of the integral.
To show (4.8), we recall that each u�u� satisfies the energy dissipation equality

u�u�(u�0) − u�u�(u�u�(u�)) = 1
2

u�
∫
0

∣u̇�u�∣2(u�) du� + 1
2

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� ∀u� ∈ ℝ+, (4.9)

where we already let (u� ↘ 0). Now taking the limit inferior as (u� → ∞) in above equality results
in the following estimates:
For the left-hand side, we may use (4.4) to obtain

u�(u�0) − lim sup
u�→∞

u�u�(u�u�(u�)) = lim infu�→∞ (u�u�(u�u�
0) − u�u�(u�u�(u�))). (4.10)

Note that (4.7) with (u� ↘ 0) gives an upper bound for the right-hand side of (4.5), which results in
the inequality

lim infu�→∞
1
2

u�
∫
0

∣u̇�u�∣2(u�) + ∣∂u�u�∣2(u�u�(u�)) du� ≥ u�(u�0) − u�(u�(u�)).

Together with (4.10), this inequality gives us the following estimate as we take the limit inferior
(u� → ∞) in (4.9):
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u�(u�0) − lim sup
u�→∞

u�u�(u�u�(u�)) ≥ 1
2

u�
∫
0

∣u̇�u�∣2(u�) + ∣∂u�u�∣2(u�u�(u�)) du� ≥ u�(u�0) − u�(u�(u�)), (4.11)

which corresponds to the inequality lim supu�→∞ u�u�(u�u�(u�)) ≤ u�(u�(u�)). Now sequential Γ-lim inf
convergence of (u�u�)u�∈ℕ comes into play, i.e. we have lim infu�→∞ u�u�(u�u�(u�)) ≥ u�(u�(u�)). Together,
both inequalities imply limu�→∞ u�u�(u�u�(u�)) = u�(u�(u�)) for all u� ∈ ℝ+. In particular, there is actually
equality in (4.11), which shows that u� satisfies (EDE).

It remains to show that ∣u̇�u�∣ and ∣∂u�u�∣ ∘ u�u� converge in u�2
loc to their respective limits as (u� → ∞):

Using the energy dissipation equality (4.9) and the corresponding equality for the limit curve u�,
we infer that

limu�→∞

u�
∫
0

∣u̇�u�∣2(u�) + ∣∂u�u�∣2(u�u�(u�)) du� =
u�

∫
0

|u̇�|2(u�) + ∣∂u�∣2(u�(u�)) du� ∀u� ∈ ℝ+. (4.12)

Consequently, (4.6) implies

u�
∫
0

|u̇�|2(u�) + ∣∂u�∣2(u�(u�)) du� ≤ lim infu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� + lim infu�→∞

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� =

= limu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� + ∣∂u�u�∣2(u�u�(u�)) du� =
u�

∫
0

|u̇�|2(u�) + ∣∂u�∣2(u�(u�)) du�,

which means that

limu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� + ∣∂u�u�∣2(u�u�(u�)) du� = lim infu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� + lim infu�→∞

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� ∀u� ∈ ℝ+.

Therefore, we obtain that

limu�→∞

u�
∫
0

∣u̇�u�∣2(u�) du� =
u�

∫
0

|u̇�|2(u�) du� and limu�→∞

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� =
u�

∫
0

∣∂u�∣2(u�(u�)) du� ∀u� ∈ ℝ+,

■■which in turn implies that ∣u̇�u�∣ and ∣∂u�u�∣ ∘ u�u� converge in u�2
loc to |u̇�| and ∣∂u�∣ ∘ u�, respectively.

In the the following example we sketch briefly how above stability result for gradient flows may
be applied to a family of Cahn-Hillard equations with increasingly sharp phase transition.

4.1.3 Example (Convergence of Cahn-Hillard equations) We consider the the one-dimensional Cahn-
Hillard equation

u̇�u� = Δ(u�′(u�u�) − u�2Δu�u�) in ℝ+ × u�, (4.13.a)

u�u� = u�0 on {0} × u�, (4.13.b)

where u�(u�) ∶= 1
4(1−u�2)2 is the double-well potential and u� ∶= ℝ/ℤ is the 1-torus. Equation (4.13)

is used to model phase-separation of two components of a fluid with u� ∈ (0, 1] corresponding to
length of the transition region.
It is possible to identify the solution u�u� to (4.13) as a gradient flow in the homogeneous negative
Sobolev space

u̇�−1(u�) ∶= {u� ∈ u�−1(u�) : ⟨u�, 1⟩ = 0} ,

where ⟨⋅, ⋅⟩ denotes the dual pairing between u�1(u�) and u�−1(u�). When endowed with the norm
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‖u�‖2
−1 ∶= sup

u�∈u�1(u�)
{2⟨u�, u�⟩ − ∥∇u�∥2

u�2(u�)} ∀u� ∈ u̇�−1(u�),

the space u̇�−1(u�) becomes a Banach space.
Now (4.13) corresponds to the u̇�−1-gradient flow for the Allen-Cahn energy functional

u�u�(u�) ∶=
⎧{{
⎨{{⎩

∫
u�

u�2

2 |∇u�|2(u�) + u�(u�(u�)) du� if ∇u� ∈ u�2(u�) and u�(u�) ∈ u�1(u�),

+∞ otherwise.

Supposed that we are given suitable initial data u�0 ∈ u̇�−1(u�) such that u�u�(u�0) < +∞, the energy
dissipation equality, which characterises the u̇�−1-gradient flow for u�u�, takes the form

1
2

u�
∫
0

∣u̇�u�∣2(u�) du� + 1
2

u�
∫
0

∣∂u�u�∣2(u�u�(u�)) du� = u�u�(u�0) − u�u�(u�(u�)) ∀u� ∈ ℝ+
0 , (4.14)

where we assume that the curve u�u� belongs to u�u�2(ℝ+
0 , u̇�−1(u�)). Note that (4.14) corresponds to

(EDE) by additivity of the integral.
As (u� ↘ 0), the phase-transition in (4.13) becomes a sharp interface and one would naïvely expect
the limit equation (4.13) with u� = 0 to correspond to the internal energy functional

u�0(u�) = ∫
u�

u�(u�(u�)) du� if u�(u�) ∈ u�1(u�).

However, since the double-well potential u� is not convex, the functional u�0 is not convex nor
lower semicontinuous in the u̇�−1-topology and the gradient flow dynamics is not well-posed (cf.
also with Section 2.4 where internal energy functionals are discussed in the context of Wasserstein
spaces).
A more sensible alternative is given by the lower semicontinuous envelope of u�0 defined as

u�∗∗(u�) ∶=
⎧{
⎨{⎩

∫
u�

u�∗∗(u�(u�)) du� if u�∗∗(u�) ∈ u�1(u�),

+∞ otherwise,

where u�∗∗ denotes the convex envelope of u�. It is not difficult to prove that u�u� is sequentially
Γ-convergent to u�∗∗. For instance, the Γ-lim inf bound follows from the fact that the lower semi-
continuity of u�∗∗, together with u�u� ≥ u�∗∗, implies

lim inf
u�↘0

u�u�(u�u�) ≥ lim inf
u�↘0

u�∗∗(u�u�) ≥ u�∗∗(u�)

for all u�u� convergent to some u� in u̇�−1(u�) as (u� ↘ 0).
Provided that the initial data is well-prepared in the sense that limu�↘0 u�u�(u�0) = u�∗∗(u�0), one can
invoke the stability result Proposition 4.1.2 to show that the limit curve given by

lim
u�↘0

u�u� = u� in u�([0, u�], u̇�−1(u�)) (4.15)

for all u� > 0, belongs to u�u�2(ℝ+
0 , u̇�−1(u�)) and satisfies the energy dissipation equality

1
2

u�
∫
0

|u̇�|2(u�) du� + 1
2

u�
∫
0

∣∂u�∗∗∣2(u�(u�)) du� = u�∗∗(u�0) − u�∗∗(u�(u�)) ∀u� ∈ ℝ+
0 .

Moreover, u� is a solution in the sense sense of distributions to

u̇� = Δ(∇u�∗∗(u�)) in ℝ+ × u�,

u� = u�0 on {0} × u�.
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In order to apply the ideas of Proposition 4.1.2, one has first to establish convergence in the form
of (4.15). Then it easy to show that the metric derivatives ∣u̇�u�∣ satisfy (4.5). Indeed, we may use
the Banach space structure of u̇�−1(u�) to write the metric derivative ∣u̇�u�∣ as moduli of the Fréchet
derivative u̇�u� (cf. also Example 1.1.3). Therefore, Fatou’s lemma implies the estimate

lim inf
u�↘0

u�
∫
0

∣u̇�u�∣2(u�) du� = lim inf
u�↘0

u�
∫
0

∥u̇�u�(u�)∥2
−1 du� ≥

u�
∫
0

‖u̇�(u�)‖2
−1 du� =

u�
∫
0

|u̇�|2(u�) du� ∀u� ∈ ℝ+.

However, considerable work is involved to prove that the slope ∣∂u�u�∣∘u�u� satisfies the lim inf-bound
◀◀of (4.6). We omit the details.

4.2 u�-Convergence of Gradient Flows in the EVI sense

Usually, the existence of a strong upper gradient required to apply Proposition 4.1.2 is established
via geodesic u�-convexity of the functional (see Proposition 1.2.4). In this u�-convex setting, however,
the stronger notion of a gradient flow in EVI sense may be applicable.
In the following stability result for EVI gradient flows the specific boundedness assumptions (4.3)
and (4.4) are replaced by the stronger concepts of Gromov-Hausdorff convergence of metric spaces
and Γ-convergence of the functionals.

For convenience, we introduce Gromov-Hausdorff convergence via the notion of u�-isometries.

4.2.1 Definition Let (u�, u�u�) and (u�, u�u�) be metric spaces. A mapping u� : u� → u� is called u�-isometry
for u� > 0 if

∣u�u�(u�(u�1), u�(u�2)) − u�u�(u�1, u�2)∣ ≤ u� ∀u�1, u�2 ∈ u�,

and for every u� ∈ u� there exists a point u� ∈ u� such that u�u�(u�(u�), u�) ≤ u�.
A sequence(u�u�)u�∈ℕ of compact metric spaces u�u� is called convergent in the Gromov-Hausdorff
sense to a compact metric space u� if there exist u�u�-isometries u�u� : u�u� → u� for some null sequence
(u�u�)u�∈ℕ.

4.2.2 Proposition (Stability of EVI gradient flows) Let (u�u�, u�u�)u�∈ℕ be s a sequence of complete metric spaces,
converging in the Gromov-Hausdorff sense to a complete metric space (u�, u�), i.e. there exists a sequence
(u�u�)u�∈ℕ of u�u�-isometries u�u� : u�u� → u� for some null sequence (u�u�)u�∈ℕ. Let (u�u�)u�∈ℕ be a sequence of
functionals u�u� : u�u� → ℝ ∪ {+∞}, sequentially Γ-convergent to some u� : u� → ℝ ∪ {+∞}. For a fixed
constant u� ∈ ℝ, let (u�u�)u�∈ℕ be a sequence of locally absolutely continuous curves u�u� : ℝ+ → u�u�, each
satisfying (EVIu�), such that (u�u�∘u�u�)u�∈ℕ is pointwise convergent to a limit curve u� : ℝ+ → u� with respect
to u�. Assume that the initial values limu�↘0 u�u�(u�) = u�u�

0 ∈ dom u�u� satisfy limu�→∞ u�u�(u�u�
0) = u�0 ∈ dom u�.

Then the limit curve u� is a gradient flow in the EVI sense. In addition, (u�u�)u�∈ℕ is a recovery sequence for
u�, i.e.

limu�→∞ u�u�(u�u�(u�)) = u�(u�(u�)) ∀u� ∈ ℝ+. (4.16)

Proof The proof is arranged into two steps: First, we will check that u� satisfies the EVI. In the
second step, we will prove that (u�u�)u�∈ℕ is actually a recovery sequence for u�.
Throughout the proof we will use the shorthand notations u�u�

u� ∶= u�u� ∘ u�u� and u�u�
u� ∶= u�u� ∘ u�u�.

(i) Identification of the limit curve: Fix a point u� ∈ dom u�. Then the sequential Γ-convergence of
(u�u�)u�∈ℕ implies that there exists a sequence (u�u�

u� )u�∈ℕ which converges to u� such that limu�→∞ u�u�(u�u�) =
u�(u�). We invoke the alternative characterisation of the EVI as given in Lemma 1.3.1: In particular,
choosing u� = u�u� results in
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1
2u�u�u�u�2

u�(u�u�(u�), u�u�) − 1
2u�u�u�u�2

u�(u�u�(u�), u�u�) ≤ ((u�u�(u�u�) − u�u�(u�u�(u�)))
u�

∫
u�

u�u�u� du� ∀u�, u� ∈ ℝ+ : u� ≤ u�.

Using the fact that each u�u� is an u�-isometry, above inequality yields

1
2u�u�u�u�2(u�u�

u� (u�), u�u�
u� ) − 1

2u�u�u�u�2(u�u�
u� (u�), u�u�

u� ) ≤ (u�u�(u�u�) − u�u�(u�u�(u�)))
u�

∫
u�

u�u�u� du� + u�u�
u� ∀u�, u� ∈ ℝ+ : u� ≤ u�.

(4.17)

for some u�u�
u� > 0 such that limu�→∞u�u�

u� = 0 for all u� > 0. Recall that the Γ-convergence of (u�u�)u�∈ℕ implies

lim infu�→∞ u�u�(u�u�(u�)) ≥ u�(u�(u�)) ∀u� ∈ ℝ+.

Therefore, we can pass to the limit inferior in (4.17) as (u� → ∞) to obtain

1
2u�u�u�u�2(u�(u�), u�) − 1

2u�u�u�u�2(u�(u�), u�) ≤ (u�(u�) − u�(u�(u�)))
u�

∫
u�

u�u�u� du� ∀u� ∈ dom u�, ∀u�, u� ∈ ℝ+ : u� ≤ u�.

(4.18)

Thus the limit curve u� belongs to u�u�loc(ℝ+, u�) and is a solution to the EVI with respect to u�. For
u� to satisfy (EVIu�), it only remains to show that limu�↘0 u�(u�) = u�0. However, this follows readily if
we let (4.17) first attain (u� ↘ 0), and afterwards pass to the limit inferior as (u� → ∞); thus, arriving
at

1
2u�u�u�u�2(u�(u�), u�) − 1

2u�2(u�0, u�) ≤ (u�(u�) − u�(u�(u�)))
u�

∫
0

u�u�u� du� ∀u� ∈ dom u�, ∀u� ∈ ℝ+. (4.19)

Now we can pass to the limit superior in (4.19) as (u� ↘ 0), where we use the lower semicontinuity
of u� to arrive at

lim sup
u�↘0

u�2(u�(u�), u�) ≤ u�2(u�0, u�) ∀u� ∈ dom u�.

Letting (u� → u�0) in this inequality, shows that u�0 is the initial datum for the limit curve u�.

(ii) Establishing the recovery sequence: The sequential Γ-convergence of (u�u�)u�∈ℕ yields for every fixed
time u� > 0 a sequence (u�u�

u� )u�∈ℕ such that (u�u�(u�u�
u� ) is convergent to u�(u�) and limu�→∞ u�u�(u�u�

u� ) = u�(u�(u�)).
Therefore, setting u� = u�u�

u� , the pointwise variant of the EVI, which was derived in (1.17), takes the
form

1
2

d+

du� u�2
u�(u�u�(u�), u�u�

u� ) ≤ u�u�(u�u�
u� ) − u�u�(u�u�(u�)) − u�

2 u�2
u�(u�u�(u�), u�u�

u� ) ∀u� ∈ ℕ, ∀u� ∈ ℝ+. (4.20)

To take a meaningful limit for the inequality above, we first need to ensure that the left-hand side
is bounded from below by 0 as (u� ↘ 0). To this aim, we use the reverse triangle inequality to obtain

u�u�(u�u�(u� + ℎ), u�) − u�u�(u�u�(u�), u�)
ℎ ≥ −

u�u�(u�u�(u� + ℎ), u�u�(u�))
ℎ ∀u� ∈ u�, ∀u� ∈ ℝ+.

for all ℎ > 0. Hence, by passing to the limit superior in the inequality above as (ℎ ↘ 0), we infer
that

1
2

d+

du� u�2
u�(u�u�(u�), u�) = u�u�(u�u�(u�), u�) d+

du� u�u�(u�u�(u�), u�) ≥ −u�u�(u�u�(u�), u�) ∣u̇�u�∣(u�+) ∀u� ∈ u�, ∀u� ∈ ℝ+,

(4.21)

where we used the product rule in the first equality above.
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The energy identity of Theorem 1.3.2.iii, together with (4.28), implies that ∣u̇�u�∣(u�+) ≤ u�2(u�, u�) for all
u� ∈ ℕ u� ∈ [u�, u�]. Therefore, we can set again u� = u�u�

u� in (4.21) which, together with (4.20), implies
the inequality

u�u�(u�u�(u�)) ≤ u�u�(u�u�
u� ) − u�

2 u�2
u�(u�u�(u�), u�u�

u� ) + u�2(u�, u�)u�u�(u�u�(u�), u�u�
u� ) ∀u� ∈ ℕ, ∀u� ∈ [u�, u�].

Utilizing the u�u�-isometries u�u�, we can replace the metric u�u� in above inequality by u� and a small
error:

u�u�((u�u�(u�)) ≤ u�u�(u�u�
u� ) + |u�|

2 (u�(u�u�
u� (u�), u�(u�u�

u� )) + u�u�) + u�2(u�, u�)(u�(u�u�
u� (u�), u�(u�u�

u� )) + u�u�)2.

Now, passing to the limit superior as (u� → ∞), yields the estimate

lim sup
u�→∞

u�(u�u�(u�)) ≤ u�(u�(u�)) ∀u� ∈ ℝ+.

Since the sequential Γ-convergence of (u�u�)u�∈ℕ gives us the converse inequality

u�(u�(u�)) ≤ lim infu�→∞ u�(u�u�(u�)) ∀u� ∈ ℝ+,

■■we finally arrive at (4.16).

In the result above we required (u�u�)u�∈ℕ to be pointwise convergent to a limit curve. This require-
ment is unneeded, however, when all functionals u�u� are coercive. We will see in the following
corollary that in such a case (EVIu�) actually provides uniform bounds for (u�u�)u�∈ℕ which are strong
enough to deduce the existence of a limit curve by means of an Arzelà-Ascoli argument.

4.2.3 Definition Let (u�, u�) be a metric space. We say that a functional u� : u� → ℝ ∪ {+∞} is coercive
if all sublevel sets {u� ∈ u� : u�(u�) ≤ u�} , u� ∈ ℝ are relative compact.

To keep the formulation of the following result simple, we restrict ourselves to the situation when
u�u� = u� and u�u� is the identity mapping for all u� ∈ ℕ.

4.2.4 Corollary Let (u�, u�) be a complete and separable metric space and fix u� ∈ ℝ. Let (u�u�)u�∈ℕ be a sequence
of coercive functionals u�u� : u� → ℝ ∪ {+∞}, sequentially Γ-convergent to u� : u� → ℝ ∪ {+∞}. Assume
that the u�u� are uniformly bounded from below, i.e. there exists a constant u� ∈ ℝ such that

u�u�(u�) ≥ u� ∀u� ∈ u�, ∀u� ∈ ℕ. (4.22)

Let (u�u�)u�∈ℕ be a sequence of locally absolutely continuous curves u�u� : ℝ+ → u�, each satisfying (EVIu�).
Assume that the initial values limu�↘0 u�u�(u�) = u�u�

0 ∈ dom u�u� converge to u�0 ∈ dom u�. Then there exists
a limit curve u� : ℝ+ → u�, starting from limu�↘0 u�(u�) = u�0, which is a gradient flow in the EVI sense.
Additionally, (u�u�)u�∈ℕ is a recovery sequence for u�, i.e. (4.16) holds.

limu�→∞ u�u�(u�u�(u�)) = u�(u�(u�)) ∀u� ∈ ℝ+. (4.23)

For the proof we will need the following version of the Arzelà-Ascoli theorem.
4.2.5 Lemma (Metric variant of the Arzelà-Ascoli theorem) Let (u�, u�) be a metric space and assume that

u� : [u�, u�] × [u�, u�] → ℝ+
0 is a symmetric function which satisfies

lim
(u�,u�)→(u�,u�)

u�(u�, u�) = 0 ∀u� ∈ [u�, u�].

Let (u�u�)u�∈ℕ be a sequence of curves u�u� : [u�, u�] → u� such that for every u� ∈ [u�, u�] the set {u�u�(u�) : u� ∈ ℕ}
is relatively compact in u�. Then following statements hold:
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(i) If (u�u�)u�∈ℕ satisfies

lim sup
u�→∞

u�(u�u�(u�), u�u�(u�)) ≤ u�(u�, u�) ∀u�, u� ∈ [u�, u�], (4.24)

then there exists a subsequence (u�u�u�)u�∈ℕ, converging pointwise to a continuous limit curve u� : [u�, u�] → u�
such that u�(u�(u�), u�(u�)) ≤ u�(u�, u�) for all u�, u� ∈ [u�, u�].

(ii) If (u�u�)u�∈ℕ satisfies

sup
u�∈ℕ

u�(u�u�(u�), u�u�(u�)) ≤ u�(u�, u�) ∀u�, u� ∈ [u�, u�], (4.25)

then there exists a subsequence (u�u�u�)u�∈ℕ, converging uniformly to a continuous limit curve u� : [u�, u�] → u�
such that u�(u�(u�), u�(u�)) ≤ u�(u�, u�) for all u�, u� ∈ [u�, u�].

Proof of Corollary 4.2.4 We will only prove the corollary for u� ≤ 0 and u� ≥ 0.
In the first part of the proof we show the existence of the limit curve u�. In order to apply Lemma
4.2.5.ii, we need to establish uniform bounds for (u�u�)u�∈ℕ: Fix a point u� ∈ dom u�. Then the sequen-
tial Γ-convergence of (u�u�)u�∈ℕ that there exists a sequence (u�u�)u�∈ℕ which converges to u� such that
limu�→∞ u�u�(u�u�) = u�(u�). We invoke the alternative characterisation of the EVI as given in Lemma 1.3.1.
Choosing u� = u�u� results in

1
2u�u�u�u�2(u�u�(u�), u�u�) − 1

2u�u�u�u�2(u�u�(u�), u�u�) ≤ (u�(u�u�) − u�(u�u�(u�)))
u�

∫
u�

u�u�u� du� ∀u�, u� ∈ ℝ+ : u� ≤ u�.

(4.26)

In particular, this implies the estimate

u�2(u�u�(u�), u�u�) ≤ (u�2(u�u�
0 , u�u�) + 2u�u�(u�u�)

u�
∫
0

u�u�u� du�) u�−u�u� ∀u� ∈ ℕ, ∀u� ∈ ℝ+.

Since (u�u�
0)u�∈ℕ and (u�u�(u�u�))u�∈ℕ are convergent, for every positive time u� > 0 there exists a con-

stant u�1(u�) > 0, independent of u�, such that

u�(u�u�(u�), u�u�) ≤ u�1(u�) ∀u� ∈ ℕ, ∀u� ∈ [0, u�]. (4.27)

Now the regularising estimate of Theorem 1.3.2.ii comes into play: Choosing again u� = u�u� in (1.18)
yields

1
2u�u�u�u�2(u�u�(u�), u�u�) + u�(u�u�(u�))

u�
∫
0

u�u�u� du� + 1
2 ∣∂u�∣2(u�u�(u�)) (

u�
∫
0

u�u�u� du�)
2
≤

≤ 1
2u�2(u�0, u�u�) + u�(u�u�)

u�
∫
0

u�u�u� du� ≤ 1
2u�1(u�) + u�(u�u�)

u�
∫
0

u�u�u� du�

for all u� ∈ ℕ and all u� ∈ [0, u�]. As before, the convergence of (u�u�(u�u�))u�∈ℕ implies that for every
choice of 0 < u� < u� there exists a constant u�2(u�, u�) > 0 such that

u�u�(u�u�(u�)) ≤ u�2(u�, u�) and ∣∂u�u�∣(u�u�(u�)) ≤ u�2(u�, u�) ∀u� ∈ [0, u�]. (4.28)

In particular, the coercivity of each u�u�, together with the first bound in (4.28), shows that the set
u�u�(u�) : u� ∈ ℕ is relative compact in u� for every time u� > 0.
Furthermore, the energy identity (1.19), together with the second bound in (4.28) results in

u�(u�u�(u�), u�u�(u�)) ≤
u�

∫
u�

∣u̇�u�∣(u�) du� =
u�

∫
u�

∣∂u�u�∣ (u�u�(u�)) du� ≤ u�2(u�, u�) |u� − u�| ∀u�, u� ∈ [u�, u�] : u� ≤ u�
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for all u� ∈ ℕ. Hence, (u�u�)u�∈ℕ is uniformly Lipschitz on each compact interval [u�, u�] ⊂ ℝ+.
Hence, we may apply Lemma 4.2.5.ii with u�(u�, u�) = u�3(u�) |u� − u�| to obtain a subsequence (u�u�u�)u�∈ℕ,
converging locally uniformly to a limit curve u� : ℝ+ → u� which is locally Lipschitz.
Now we are in the position to invoke Proposition 4.2.2 to infer that u� is a gradient flow in the EVI
sense. Moreover, the u�-contraction property given in Theorem 1.3.2.i implies that the the whole
sequence (u�u�)u�∈ℕ converges locally uniformly to u� as (u� → ∞).

■■Finally, we apply Proposition 4.2.2 once again to establish a recovery sequence as in (4.16).

4.3 Bibliographical Notes

The EDE stability result Proposition 4.1.2 is due to Serfaty [63]. In [60] the same author together with
Sandier had already applied this framework in a Hilbert space setting to the Ginzburg-Landau heat
flow. A stability result, closely related to the one in [63], was already obtained by Ortner [53]. The
application to Cahn-Hillard equations, outlined in Example 4.1.3 also taken from [63], was done in
a formal manner by Le [41]. Independently, Gigli used an abstract Γ-convergence result in the same
spirit to to study the heat flow on compact metric measure spaces in [34].
The EVI stability result Proposition 4.2.2 is an adaptation of an Γ-convergence result by Daneri and
Savaré [20] (stated there in the form ofCorollary 4.2.4) to an abstract Gromov-Hausdorff framework.
For a comprehensive view on Γ-convergence and its application, we refer to Braides’ survey [14].
For a proof of the metric varant of the Arzelà-Ascoli theorem (Lemma 4.2.5) see section 3.3 in [4]
by Ambrosio, Gigli and Savaré and chapter 27 of Villani’s monograph [71]. In the same chapter of the
latter reference a thorough discussion of the notion of Gromov-Hausdorff convergence may be
found as well.





5 Limit Passage of EDE Gradient Flows for Discrete Porous

Medium Equations

5.1 Finite-Volume Discretisation

Notation
In this chapter we will slightly abuse the notation in the following way: Any probability measure
u� ∈ u�2(Ω) which is absolutely continuous with respect to the Lebesgue measure ℒ1, will be
identified with its density u�. For instance, we will also write u�u�(u�) instead of u�u�(u�) for the
continuous Rényi entropy functional u�u�.
Likewise, we will use a similar notation for functionals which are defined on Pu�: Every discrete
probability measure u�u�

u� = u�u�u�u� ∈ Pu� will be identified with its density u�u� and instead of e.g.F u�
u� (u�),

we will also write F u�
u� (u�u�).

In addition, we will drop the dependence of functions on the spatial variable u� or the time variable
u� to keep equations neat.

In this section we will introduce a discretisation for the continuous one-dimensional porous med-
ium equation with drift

d
du�u�(u�, u�) = Δu�u�(u�, u�) + div(u�(u�, u�)∇u�(u�)) ∀(u�, u�) ∈ (0, u�) × [0, 1], u� > 0. (5.1)

subject to the non-flux Neumann boundary condition

∇u�u�(u�, 0) + u�(u�, 0)∇u�(0) = ∇u�u�(u�, 1) + u�(u�, 1)∇u�(1) = 0 ∀u� ∈ (0, u�).

Note that we encountered this type of equation already in the more general form of (2.18). Here,
however, the internal energy functional is given by the Rényi entropy introduced in Definition
2.4.11.
In the first part of this chapter we introduce a finite volume scheme for (5.1), which then is recog-
nised as a gradient flow for the discrete Rényi entropy.

5.1.1 Definition (Finite volume scheme) Given a partition 0 = u�u�
1 < u�u�

2 < … < u�u�
u� = 1 of Ω ∶= (0, 1),

define u� + 1 midpoints between the u�u�
u� via

u�u�
0 ∶= 0 u�u�

u� ∶=
u�u�

u�+1 + u�u�
u�

2 for u� ∈ {1, …u� − 1} , u�u�
u� ∶= 1.

Moreover, we introduce control volumes u�u�
u� ∶= [u�u�

u�−1, u�u�
u� ) and denote their length by ℎu�

u� .
Integrating the porous medium equation (5.1) over a control volume u�u�

u� results in

d
du� ∫

u�u�
u�

u�(u�, u�) du� = ∇(u�u�)(u�, u�u�
u� ) − ∇(u�u�)(u�, u�u�

u�−1) + u�(u�, u�u�
u� )∇u�(u�u�

u� ) − u�(u�, u�u�
u�−1)∇u�(u�u�

u�−1)

for all u� ∈ {1, … u� − 1}. In the finite-volume scheme the integral ∫u�u�
u�

u�(u�, u�) du� is approximated by
u�u�

u� (u�) and the flux ∇(u�u�)(u�, u�u�
u� ) is to be approximated by by finite differences.

Introduce the rate coefficients

u�u� ∶= 1
(u�u�

u�+1 − u�u�
u� )ℎu�

u�
and u�u� ∶= 1

(u�u�
u�+1 − u�u�

u� )ℎu�
u�+1

∀u� ∈ {1, … u� − 1} , (5.2)

in the interior and u�0 = u�0 = u�u� = u�u� ∶= 0 at the boundary. Then, provided that we change over
from u�u�

u� : (0, u�) → ℝ to the density curves u�u� ∶= u�u�
u� /ℎu�

u� : (0, u�) → ℝ, we may write the finite
volume discretisation of the porous medium equation with drift in the form
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u̇�u�(u�) = u�u�−1u�u�
u�−1(u�) − (u�u� + u�u�−1)u�u�

u� (u�) + u�u�u�u�
u�+1(u�) + (5.3.a)

+ u�u�−1û�u�−1,u�(u�)(u�u�−1 − u�u�) + u�u�û�u�,u�+1(u�)(u�+1 − u�u�) (5.3.b)

for all u� ∈ {1, … u�} and u� ∈ (0, u�), where û�u�,u� denotes the weight u�u� between u�u� and u�u� as already
defined in (3.1).
The rate coefficients give rise to a birth-death process, defined by the infinitesimal generator

Q ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−u�1 u�1 0 0 … 0
u�1 −u�2 − u�1 u�2 0 … ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ … 0 u�u�−2 −u�u�−1 − u�u�−2 u�u�−1
0 … 0 0 u�u�−1 −u�u�−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.4)

Using the notation from Section 3.2, we may use the particular structure of Q to write (5.3) in the
compact form

u̇�u�(u�) =
u�

∑
u�=1

Qu�u�(u�u�
u� (u�) + û�u�u�(u�) Δu�u�u�) ∀u� ∈ (0, u�).

The stationary distribution of this continuous-time Markov chain is characterised by the equation
u�Q = 0, which can be also written more concisely as u�u�u�u� = u�u�u�u�+1; thus is given by u�u� = ℎu�

u� .

The next step on the towards a gradient flow which is a solution to (5.1) is as follows: We need
to relate the spatial finite volume discretisation described above to the gradient flow for a linear
combination of two functionals introduced in Section 3.2: the discrete Rényi entropy functionalF u�

u�
and the discrete potential energy functional Vu�. Basically, the existence of such a gradient flow
was already shown in Proposition 3.2.3. However, in order to obtain a global flow, we either need
to assume that u� ≤ 1 or that the potential energy functional Vu� vanishes.

5.1.2 Assumptions We make the following assumptions on the porous medium equation in (5.1):
(i) Re Rényi entropy and potential energy functionals: The bound 0 < u� ≤ 3/2 is satisfied. In case u� > 1,

we additionally require the porous medium equation to be homogeneous, i.e. ∇u� ≡ 0. Otherwise,
u� is required to be a bounded convex function in u�1(Ω). Then the discretisation of u� is given by

u�u�
u� = 1

ℎu�
u�

∫
u�u�

u�

u�(u�) du�. (5.5)

(ii) Re initial condition: Let u�0 be a probability density with respect to the Lebesgue measure on Ω
such that u�0 ∈ u�u�(Ω) for u� ≠ 1 or u�0 log u�0 ∈ u�1(Ω) for u� = 1. Then the initial value of the
finite-volume scheme is given by

u�u�
u� (0) = ∫

u�u�
u�

u�0(u�) du�. (5.6)

Note that the Riemannian structure on intXu� introduced in Proposition 3.1.4 in general does not
extend to boundary of Xu�. However, as already noticed in the proof of Proposition 3.2.3, Assump-
tions 5.1.2 assures that u�(u�) stays inside intPu� for all times u� > 0. Hence, we have the following
result.

5.1.3 Proposition Let (u�u�
u� )1≤u�≤u� be the spatial finite volume discretisation given by (5.3) such that Assumptions

5.1.2 are satisfied. Let (Xu�,Q, ℎu�
u� ) be the irreducible continuous-time Markov chain corresponding to (5.4).

Then u� ↦ u�u�
u� (u�) is a discrete probability measure on Xu� for any time u� > 0, which induces a gradient flow
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u� : (0, u�) → intPu� in the Riemannian sense for the mixed energy functional Φu� = F u�
u� + Vu� via the

relation u�u� = ℎu�
u� u�u�, starting from lim

u�↘0
u�u�(u�) = u�u�

u� (0)/ℎu�
u� .

In particular, u� is continuously differentiable and satisfies the energy dissipation equality (EDE)

1
2

u�
∫
u�

∣u�′(u�)∣2u� du� + 1
2

u�
∫
u�

∣∂Φu�∣2(u�(u�)) du� = Φu�(u�(u�)) − Φu�(u�(u�)) ∀u�, u� ∈ (0, u�) : u� ≤ u�. (5.7)

Proof The first part of this proposition is an immediate consequence of Proposition 3.2.3. The
■■energy dissipation equality (5.7) follows due to Proposition 1.2.5.

The particularly simple structure of Q allows to give an explicit characterisation of the velocity of
a smooth curve.

5.1.4 Lemma Under Assumptions 5.1.2, let u� : (0, u�) → intPu� be the smooth gradient flow induced by the
finite volume discretisation u�u� via the relation u�u�

u� = ℎu�
u� u�u�. Then the velocity u̇� may be identified via the

discrete continuity equation (3.7) with the discrete vector field Δu� : (0, u�) → Xu� ×Xu� given by

Δu�u�,u� = u�u� − u�u� =
u�−1
∑
u�=u�

u�u�
u�u�ℎu�

u� û�u�+1,u�
with u�u� ∶=

u�
∑
u�=1

u̇�u�
u� , for u� < u�. (5.8)

Proof For our choice of the infinitesimal generator Q the continuity equation in the interior of u�
reads

u̇�u� = (u�u� − u�u�−1)û�u�,u�−1u�u�−1 + (u�u� − u�u�+1)û�u�,u�+1u�u� ∀u� ∈ {2, …u� − 1} , (5.9)

while at the boundary we have

u̇�1 = (u�1 − u�2)û�1,2u�1 and u̇�u� = (u�u� − u�u�−1)û�u�,u�−1u�u�−1.

Solving for u�u� − u�u�+1 in (5.9), we arrive at

u�u� − u�u�+1 = 1
û�u�,u�+1

u�
∑
u�=1

u̇�u�
u�u�

u�
∏

u�=u�+1

u�u�−1
u�u�

∀u� ∈ {1, …u� − 1} . (5.10)

Invoking the detailed balance equation u�u�ℎu�
u� = u�u�ℎu�

u�+1, (5.10) may be also written in the form

u�u� − u�u�+1 = 1
û�u�,u�+1

u�
∑
u�=1

u̇�u�
u�u�ℎu�

u�

u�
∏

u�=u�+1

u�u�−1
u�u�

= 1
û�u�,u�+1

u�
∑
u�=1

u̇�u�
u�u�ℎu�

u�+1

u�−1
∏

u�=u�+1

u�u�
u�u�

= 1
û�u�,u�+1

u�
∑
u�=1

u̇�u�
u�u�ℎu�

u�
. (5.11)

■■Now, for u� < u� the general expression u�u� − u�u� arises just as telescopic sum over (5.11).

Now we are ready to introduce the following functionals:

5.1.5 Definition Let u� : (0, u�) → intPu� be the smooth gradient flow induced by the finite volume
discretisation u�u� via the relation u�u�

u� = ℎu�
u� u�u�. Then the discrete dissipation potential is defined as

Ru�(u�u�, u̇�u�) ∶= 1
2⟨u̇�u�, u̇�u�⟩u� = 1

2
u�−1
∑
u�=1

u�2
u�

u�u�ℎu�
u� û�u�,u�+1

with u�u� ∶=
u�

∑
u�=1

u̇�u�
u� ,

whereas the (generalised) discrete Fisher information of the functional Φu� = F u�
u� +Vu� is given by

Iu�(u�u�) ∶= 1
2⟨gradu�Φu�(u�u�), gradu�Φu�(u�u�)⟩u� = 1

2
u�−1
∑
u�=1

û�u�+1,u�
u�u�

u�+1 − u�u�
u�

∣
u�u�

u�+1 − u�u�
u�

û�u�+1,u�
+ u�u�

u�+1 − u�u�
u� ∣

2

.
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5.2 Interpolation of the Discrete State Space

In this section we will investigate the embedding of the discrete state space into a continuous
Wasserstein space. To this aim, one has to construct suitable interpolants on Ω, which converge
weakly to limits in such a way that estimates for the dissipation functional and the Fisher infor-
mation are obtainable.

5.2.1 Definition We introduce the piecewise constant interpolant u�u� : Ω → ℝ of the control volume
u�u�

u� by

u�u�(u�) ∶= u�u� =
u�u�

u�
ℎu�

u�
for u� ∈ u�u�

u� . (5.12)

Note that max {u�, u�} and min {u�, u�} are respective upper and lower bounds for the weight function
u�u�(u�, u�). This gives rise to the following upper and lower interpolants of u�u�

u� , also involving the
adjacent control volumes:

U

̂

u�(u�) ∶=
⎧{
⎨{⎩

max {u�1, u�2} for u� ∈ u�u�
1 ,

max {u�u�−1, u�u�, u�u�+1} for u� ∈ u�u�
u� , u� ∈ {2, …u� − 1},

max {u�u�−1, u�u�} for u� ∈ u�u�
u�.

u�u�(u�) ∶=
⎧{
⎨{⎩

min {u�1, u�2} for u� ∈ u�u�
1 ,

min {u�u�−1, u�u�, u�u�+1} for u� ∈ u�u�
u� , u� ∈ {2, …u� − 1},

min {u�u�−1, u�u�} for u� ∈ u�u�
u�.

Note that U

̂

u� and u�u� are respective upper and lower bounds for û�, i.e.

u�u�(u�) ≤ û�u�±1,u� = u�u� (
u�u�±1
ℎu�

u�±1
,
u�u�

u�
ℎu�

u�
) ≤ U

̂

u�(u�) ∀u� ∈ u�u�
u� , u� ∈ {2, …u� − 1} . (5.13)

We introduce yet another interpolant of u�u�
u� which is constant on intervals (u�u�

u� , u�u�
u�+1):

ũ�u�(u�) ∶= û�u�+1,u� for u� ∈ (u�u�
u� , u�u�

u�+1), u� ∈ {1, …u� − 1} .

Note that (5.13) implies that the interpolants are related in the way u�u� ≤ ũ�u� ≤ U

̂

u�.
It remains to define piecewise constant interpolants for the discrete gradient of the density u�u� and
for the discrete fluxes u�u� via

u�u�(u�) ∶=
u�u�

u�+1 − u�u�
u�

u�u�
u�+1 − u�u�

u�
, u�u�(u�) ∶=

u�u�
u�+1 − u�u�

u�
u�u�

u�+1 − u�u�
u�

, u�u�(u�) ∶= u�u� for u� ∈ (u�u�
u� , u�u�

u�+1), u� ∈ {1, …u� − 1} ,

whereas at the boundary one sets u�u�(u�0) ∶= u�u�(u�u�) ∶= 0. Here the u�u�
u� denote the partition of our

finite volume scheme and the u�u�
u� denote the corresponding midpoints.

5.2.2 Facts Let the interpolants u�u�, u�u� and u�u� be given as above.
(i) The interpolant u�u� is defined in a way such that an evaluation of the Rényi entropy functional u�u�

corresponds to

u�u�(u�u�) = ∫
Ω

u�u�(u�u�) du� =
u�

∑
u�=1

u�u�(u�u�)ℎu�
u� = F u�

u� (u�).

In the same vain, the evaluation of the potential energy functional u� results in

u�(u�u�) = ∫
Ω

u� ⋅ u�u� du� =
u�

∑
u�=1

u�u�
u� u�u�ℎu�

u� = Vu�(u�).
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(ii) Recalling the definition of u�u� in (5.8), we immediately obtain the following relation between the
interpolants u�u� and u�u�:

u̇�u�(u�, u�u�
u� ) = u�u�(u�, u�u�) − u�u�(u�, u�u�−1)

ℎu�
u�

∀u� ∈ {1, …u� − 1} . (5.14)

The following lemma provides first estimates for the dissipation functional Ru� and the Fisher
information Iu� with respect to the interpolants defined above.

5.2.3 Lemma For every smooth gradient flow u� : (0, u�) → intPu�, induced by the finite volume discretisation
u�u� via u�u� = ℎu�

u� u�u�, the following lower estimates hold for all times u� ∈ [0, u�]:

Ru�(u�u�(u�), u̇�u�(u�)) ≥ 1
2 ∫

Ω

∣u�u�(u�)∣2

U

̂

u�(u�)
du� and Iu�(u�u�(u�)) ≥ 1

2 ∫
Ω

u�u�(u�) ∣ u�
u�(u�)

ũ�u�(u�)
+ u�u�(u�)∣

2
du�.

Proof We start with the estimate for the dissipation functional Ru�: By recalling the definition of
the rate coefficient u�u� in (5.2), we obtain

u�u� ∶= u�u�ℎu�
u� û�u�+1,u� =

u�u�(u�u�+1, u�u�)
u�u�

u�+1 − u�u�
u�

≤
max{u�u�+1, u�u�}

u�u�
u�+1 − u�u�

u�
. (5.15)

Now we have to compare the interpolant u�u� which is constant of every interval (u�u�
u� , u�u�

u�+1) with
U

̂

u� which is constant on every u�u�
u� . To this end, we count each control volume u�u�

u� twice in the
definition of Ru� and apply the estimate from (5.15), which results in

Ru�(u�u�, u̇�u�) = 1
4

u�2
1

u�1
+ 1

4

u�−1
∑
u�=2

(
u�2

u�−1
u�u�−1

+
u�2

u�
u�u�

) + 1
4

u�2
u�−1

u�u�−1
≥

u�u�
2 − u�u�

1
4

u�2
1

max{u�2, u�1} +

+
u�−1
∑
u�=2

(
u�u�

u� − u�u�
u�−1

4
u�2

u�−1
max{u�u�, u�u�−1} +

u�u�
u�+1 − u�u�

u�
4

u�2
u�

max{u�u�+1, u�u�}
) +

u�u�
u� − u�u�

u�−1
4

u�2
u�−1

max{u�u�−1, u�u�} .

Now using that u�u�
u� − u�u�

u�−1 = 1
2(u�u�

u� − u�u�
u�−1) and u�u�

u� − u�u�
u� = 1

2(u�u�
u�+1 − u�u�

u� ), we eventually arrive at

Ru�(u�, u̇�) ≥ 1
2

u�
∑
u�=1

( 1
U

̂

u�
∫
u�u�

u�

∣u�u�∣2 du�) = 1
2 ∫

Ω

∣u�u�∣2

U

̂

u�
du�,

which shows the first inequality.

The proof of the inequality for the discrete Fisher information Iu� follows along the lines of the first
part. Indeed, we have the elementary estimate (5.13) can be used to obtain

Iu�(u�u�) = 1
2

u�−1
∑
u�=1

û�u�+1,u�
u�u�

u�+1 − u�u�
u�

∣
u�u�

u�+1 − u�u�
u�

û�u�+1,u�
+ u�u�

u�+1 − u�u�
u� ∣

2

=

= 1
2

u�−1
∑
u�=1

((u�u�
u� − u�u�

u� )û�u�+1,u� + (u�u�
u�+1 − u�u�

u� )û�u�+1,u�)
∣∣∣∣

1
ũ�u�(u�u�

u� )
u�u�

u�+1 − u�u�
u�

u�u�
u�+1 − u�u�

u�
+

u�u�
u�+1 − u�u�

u�
u�u�

u�+1 − u�u�
u�

∣∣∣∣

2

≥

≥ 1
2

u�
∑
u�=1

(u�u� ∫
u�u�

u�

∣ u�
u�

ũ�u�
+ u�u�∣

2
du�) = 1

2 ∫
Ω

u�u� ∣ u�
u�

ũ�u�
+ u�u�∣

2
du�.

■■This establishes the second inequality.

With above lemma at hand, the following main result of this section is obvious.
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5.2.4 Proposition Let u� : (0, u�) → intPu� be the smooth gradient flow induced by the finite volume discretisa-
tion u�u� via u�u� = ℎu�

u� u�u� such that Assumptions 5.1.2 are fulfilled. Then the continuous functional u� = u�u� +u�
satisfies the following inequality for the interpolants introduced in Definition 5.2.1:

u�(u�u�(u�)) + 1
2

u�
∫
0

∫
Ω

∣u�u�∣2

U

̂

u�
+ u�u� ∣ u�

u�

ũ�u�
+ u�u�∣

2
du� du� ≤ u�(u�u�(0)). (5.16)

5.3 Passage to the Limit

In this section we will show that the sequence (u�u�)u�∈ℕ of interpolants admits a subsequence
which weakly converges to an absolutely continuous limit curve u� taking values in the 2-Wasser-
stein space u�2(Ω). Assuming 0 < u� ≤ 3/2, we will then identify u� as EDE gradient flow for the
mixed energy functional u� = u�u� + u�.
To archive these goals, we will follow the ideas of Proposition 4.1.2. However, we will first need
to establish the prerequisites of aforementioned stability result. We start with the extraction of a
converging subsequence.

5.3.1 Proposition Let (u�u�)u�∈ℕ be a sequence of interpolants u�u� satisfying (5.16). Then there exists a subse-
quence (u�u�u�)u�∈ℕ and a continuous curve u� : (0, u�) → u�2(Ω) such that

u�u�u�(u�) →→→→→→
u�∗

u�(u�) ∀u� ∈ (0, u�).

Moreover, the discrete functional Φu�u� = F u�u�
u� +Vu�u� and the continuous functional u� = u�u� + u� are related

by the inequality

lim inf
u�→∞

Φu�u�(u�u�u�(u�)) ≥ u�(u�(u�)) ∀u� ∈ (0, u�), (5.17)

and the limit measure u�(u�) has again a density u�(u�) with respect to the Lebesgue measure ℒ for all times
u� ∈ (0, u�).
Note that (5.17) is actually weaker than sequential Γ-lim inf convergence as defined in Definition
4.1.1.

Proof The aim of this proof is to apply the Arzelà-Ascoli theorem in the version of Lemma 4.2.5.i
to extract a weakly converging subsequence out of (u�u�)u�∈ℕ. To this end, we need to show that the
familiy of interpolants satisfies (4.24) with respect to the 1-Wasserstein distance. Here comes the
Kantorovich-Rubinshtein theorem (Theorem 2.2.5) into play, which gives a useful characterisation
of the u�1-distance:

u�1(u�1, u�2) = sup {∫
Ω

u� du�1 − ∫
Ω

u� du�2 : u� ∈ u�u�u�1(Ω)} ∀u�1, u�2 ∈ u�2(u�). (5.18)

We may invoke (5.18) to estimate the u�1-distance between u�1 = u�u�(u�1) and u�2 = u�u�(u�2) for two
different times 0 < u�1 < u�2 < u�. Therefore, let (u�u�)u�∈ℕ be a sequence in u�u�u�1(Ω) such that the
supremum in (5.18) is attained over (u�u�)u�∈ℕ. As usual, we define the piecewise constant inter-
polant for every u�u� to be Ψu�

u� (u�) = u�u�(u�u�
u� ) for each u� ∈ u�u�

u� . Thus, we obtain

u�1(u�u�(u�1), u�u�(u�2)) ≤ (5.19.a)

≤ ∫
Ω

Ψu�
u� (u�)u�u�(u�1, u�) du� − ∫

Ω
Ψu�

u� (u�)u�u�(u�2, u�) du� + 2 ∥u�u� − Ψu�
u� ∥∞ + u�u� = (5.19.b)

=
u�2

∫
u�1

∫
Ω

Ψu�
u� (u�)u̇�u�(u�, u�) du� du� + 2 ∥u�u� − Ψu�

u� ∥∞ + u�u� (5.19.c)
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where the error term u�u� vanishes as (u� → ∞). To estimate the integral in (5.19.c) we may use
summation by parts to infer

u�2

∫
u�1

∫
Ω

Ψu�
u� (u�)u̇�u�(u�, u�) du� du� =

u�2

∫
u�1

u�
∑
u�=1

∫
u�u�

u�

u�u�(u�u�
u� )u�u�(u�, u�u�) − u�u�(u�, u�u�−1)

ℎu�
u�

du� du� = (5.20.a)

= −
u�2

∫
u�1

u�
∑
u�=1

(u�u�(u�u�
u� ) − u�u�(u�u�

u�−1))u�u�(u�, u�u�) du� = −
u�2

∫
u�1

∫
Ω

u�′
u�(u�)u�u�(u�, u�) du� du� ≤ (5.20.b)

≤
u�

∫
0

u�(u�1,u�2)(u�)
u�−1
∑
u�=1

(u�u�
u�+1 − u�u�

u� ) ∣u�u�(u�)∣ du� ≤ (u�2 − u�1)1/2(
u�

∫
0

u�−1
∑
u�=1

(u�u�
u�+1 − u�u�

u� )2 ∣u�u�(u�)∣2 du�)
1/2
, (5.20.c)

where we used Hölder’s inequality in the last line above. It remains to find an estimate for the
expression in the rightmost parentheses in (5.20.c) which is uniform with respect to all u� ∈ ℕ. To
this aim, we may exploit the trivial bounds ℎu�

u�+1 ≥ (u�u�
u�+1 − u�u�

u� )/2 and ℎu�
u� ≥ (u�u�

u�+1 − u�u�
u� )/2, as well as

the 1-homogeneity of u�u� to obtain

(u�u�
u�+1 − u�u�

u� )u�u�(u�u�+1, u�1) = u�u�(
u�u�

u�+1 − u�u�
u�

ℎu�
u�

u�u�
u� ,

u�u�
u�+1 − u�u�

u�
ℎu�

u�+1
u�u�

u�+1) ≤ 2 max {u�u�
u� , u�u�

u�+1} ≤ 2. (5.21)

Now plugging this estimate into (5.20.c) gives

u�2

∫
u�1

∫
Ω

Ψu�
u� (u�)u̇�u�(u�, u�) du� du� ≤ 2(u�2 − u�1)1/2(

u�
∫
0

u�−1
∑
u�=1

(u�u�
u�+1 − u�u�

u� ) ∣u�u�(u�)∣2

û�u�+1,u�
du�)

1/2
=

= 4(u�2 − u�1)1/2(
u�

∫
0
Ru�(u�u�, u̇�u�) du�)

1/2
.

Note that Ru�(u�u�, u̇�u�) is uniformly bounded in u�1(0, u�) for all u� ∈ ℕ, due to the fact that each
u�u� = u�u�

u� /ℎu�
u� is a solution to the corresponding EDE (5.7) with initial condition (5.6).

Finally, combining the estimate above with (5.19) shows that the family (u�u�)u�∈ℕ satisfies (4.24)

with respect to the function u�(u�, u�) = 4 |u� − u�| (∫u�
0 Ru�(u�u�, u̇�u�) du�)1/2.

Next, we come to the proof of (5.17): Indeed, this inequality follows from the lower semi-continuity
of the Rényi entropy functional u�u� and the potential energy functional u� (cf. Proposition 2.4.3) and
the fact that Φu�(u�u�) = u�(u�u�).

For the last statement in Proposition 5.3.1, namely the existence of a density u�(u�) for u�(u�), it is
enough to invoke the definition of the Rényi entropy u�u� and show that u�u�(u�(u�)) < +∞ for all
times u� ∈ (0, u�). Note that this follows already from the bound u�(u�(u�)) < +∞. Since the discrete
functional Φu�(u�u�(u�)) is uniformly bounded in u� by Φu�(u�0) as a consequence of u�u� satisfying the

■■EDE (5.7), we may invoke (5.17) to arrive at the result.

In the next result we show that along with u�u� all the other interpolants introduced in Definition
5.2.1 admit a converging subsequence as well.

5.3.2 Lemma Let (U

̂

u�u�)u�∈ℕ, (u�u�u�)u�∈ℕ, and (ũ�u�u�)u�∈ℕ be the sequences of interpolants associated with the
converging subsequence (u�u�u�)u�∈ℕ of Proposition 5.3.1. Then each of the three sequences converges weakly
to u� on Ω × (0, u�), i.e.

lim
u�→∞

∫
Ω×(0,u�)

u�(u�, u�)Υu�u�(u�, u�) d(u�, u�) = ∫
Ω×(0,u�)

u�(u�, u�)u�(u�, u�) d(u�, u�) ∀u� ∈ u�u�(Ω × (0, u�)), (5.22)

where Υu�u� corresponds to one of the interpolants U

̂

u�u� , u�u�u� , or ũ�u�u� .
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Proof Supposed, we show first that limu�→∞(u�u�u� − Υu�u�) = 0 in u�1(Ω × [0, u�]), then the estimate

∫
Ω×[0,u�]

u� |u� − Υu�u� | d(u�, u�) ≤ ∫
Ω×[0,u�]

u� ∣u� − u�u�u� ∣ d(u�, u�) + ∥u�∥∞ ∫
Ω×[0,u�]

∣u�u�u� − Υu�u�∣ d(u�, u�),

implies (5.22) as (u� → ∞).
In the following, we argue for Υu�u� = U

̂

u�u� ; the proof for u�u�u� follows in a similar fashion, whereas
weak convergence of ũ�u�u� follows by the elementary bound U

̂

u�u� ≤ ũ�u�u� ≤ u�u�u� .
It remains to compute

∥u�u�u� − U

̂

u�u�∥u�1(Ω×[0,u�]) =
u�

∑
u�=1

ℎu�u�
u� ∣u�u� − U

̂

u�u�(u�u�)∣ = ∑
u�∈u�+

ℎu�u�
u� ∣u�u� − u�u�+1∣ + ∑

u�∈u�−

ℎu�u�
u� ∣u�u� − u�u�−1∣ , (5.23)

where the sets u�− and u�+ consist of all indices in {1, …u�} where the maximum in ∣u�u� − U

̂

u�u�(u�u�)∣ is
attained for the leftmost element U

̂

u�u�(u�u�) = u�u�−1 and rightmost element U

̂

u�u�(u�u�) = u�u�+1 in the
definition of U

̂

u�u� , respectively.
Now we just argue for the sum over the index set u�+, the other case being analogue. Note that we
may invoke Hölder’s inequality to infer

∑
u�∈u�+

ℎu�u�
u� ∣u�u� − u�u�+1∣ = ∑

u�∈u�+

⎛⎜⎜
⎝

∣u�u�
u� − u�u�

u�+1∣

((u�u�u�
u�+1 − u�u�u�

u� )û�u�+1,u�)
1/2

⎞⎟⎟
⎠

⎛⎜
⎝

ℎu�u�
u� ((u�u�u�

u�+1 − u�u�u�
u� )û�u�+1,u�)

1/2 ∣u�u�
u� − u�u�

u�+1∣
∣u�u�

u� − u�u�
u�+1∣

⎞⎟
⎠

≤

≤ ⎛⎜⎜
⎝

∑
u�∈u�+

∣u�u�
u� − u�u�

u�+1∣2

(u�u�u�
u�+1 − u�u�u�

u� )û�u�+1,u�

⎞⎟⎟
⎠

1/2

⎛⎜
⎝

∑
u�∈u�+

(ℎu�u�
u� )2(u�u�u�

u�+1 − u�u�u�
u� )û�u�+1,u� ∣

u�u� − u�u�+1
u�u�

u� − u�u�
u�+1

∣
2
⎞⎟
⎠

1/2

. (5.24)

The first term in (5.24) is just the square root of the discrete Fisher information Iu�u�(u�u�u�), which is
uniformly bounded in u�2(0, u�).
On the other hand, we may invoke the bound u�u�u�

u�+1 − u�u�u�
u� ≤ 2ℎu�u�

u� and expand the definition of û�u�+1,u�
to estimate the second term in (5.24) as

∑
u�∈u�+

(ℎu�u�
u� )2(u�u�u�

u�+1 − u�u�u�
u� )û�u�+1,u� ∣

u�u� − u�u�+1
u�u�

u� − u�u�
u�+1

∣
2

≤ ∑
u�∈u�+

2(ℎu�u�
u� )3 ũ�u�(u�u�, u�+1),

where ũ�u� is a weight function defined for every 0 < u� ≤ 3/2 by

ũ�u�(u�, u�) ∶= u� − 1
u�

(u� − u�)2

(u�u� − u�u�)(u�u�−1 − u�u�−1)
.

it is easy to check that ũ�u� satisfies (W1) to (W5) in Definition 3.1.1. In particular, we have the bound
ũ�u�(u�, u�) ≤ u�u� max {u�, u�}3−2u� for some constant u�u� > 0. Therefore, we obtain the estimate

∑
u�∈u�+

(ℎu�u�
u� )2(u�u�u�

u�+1 − u�u�u�
u� )û�u�+1,u� ∣

u�u� − u�u�+1
u�u�

u� − u�u�
u�+1

∣
2

≤ ∑
u�∈u�+

2u�u�(ℎu�u�
u� )3 max {u�u�, u�u�+1}3−2u� , (5.25)

■■where the right-hand side converges to zero as (u� → ∞).

5.3.3 Remark In Assumptions 5.1.2.i the condition u� ≤ 3/2 was stated. This upper bound on u� was
needed for the proof of Lemma 5.3.2 to go through. Indeed, the the right-hand side of the estimate
in (5.25) need not be bounded any more for u� > 3/2. Actually, this turns out to be the only point
in this section where we have to make this restriction on u�. Otherwise, it suffices to assume that
u�u� is a concave weight function which is true for u� ≤ 2.
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5.3.4 Proposition Let (u�u�u�)u�∈ℕ be a weakly converging sequence as in Proposition 5.3.1. Then the limit mea-
sure u�(u�, du�) = u�(u�, u�)du� satisfies

lim inf
u�→∞

u�
∫
0
Ru�u�(u�u�u� , u̇�u�u�) + Iu�(u�u�) du� ≥ 1

2 ∫
Ω×[0,u�]

u� ∣u�∣2 + |∇(u�u�)|2
u� + u� |∇u�|2 d(u�, u�), (5.26)

where u� and u� are connected via the continuity equation (2.9) in the sense of distributions.

Before starting with the proof of the result above, we are going to obtain uniform estimates for
F u�u�

u� (u�u�u�(0)) and V(u�u�u�(0)): For the discrete Rényi entropy F u�u�
u� we invoke Jensen’s inequality to

infer

F u�u�
u� (u�u�u�(0)) = u�u�(u�u�u�(0)) = 1

(u� − 1)

u�u�

∑
u�=1

ℎu�u�
u� ( ∫

u�u�u�
u�

u�0(u�)
ℎu�u�

u�
du�)

u�
≤ (5.27.a)

≤ 1
(u� − 1)

u�u�

∑
u�=1

∫
u�u�u�

u�

(u�0(u�))u� du� = u�u�(u�0). (5.27.b)

For the discrete potential energy Vu�u� we have

Vu�u�(u�u�u�(0)) =
u�u�

∑
u�=1

u�(0) ∫
u�u�u�

u�

u� du� = ∫
Ω

u�u�u�u�(0) du� = u�(u�u�u�
0 ), (5.28)

where u�u�u�(0) is weakly converging to u�0. Since u� is a bounded continuous function on Ω, this
means that lim

u�→∞
Vu�u�(u�u�u�(0)) = u�(u�0). In particular, Vu�u�(u�u�u�(0)) is uniformly bounded for all

u� ∈ ℕ.

Proof of Proposition 5.3.4 The following proof is arranged in 4 steps. We start with introducing
the velocity fields

u�u�u� ∶= u�u�u�

U

̂

u�u�
and u�u�u� ∶= u�u�u�

ũ�u�u�
+ u�u�u� .

Note that (5.16), together with (5.27) and (5.28), implies that

1
2 ∫

Ω×[0,u�]
( ∣u�u�u� ∣2 + |u�u�u� |2 )u�u�u� d(u�, u�) ≤ 1

2 ∫
Ω×[0,u�]

∣u�u�u� ∣2

U

̂

u�u�
+ u�u�u� ∣ u�

u�u�

ũ�u�u�
+ u�u�u� ∣

2
d(u�, u�) ≤ (5.29.a)

≤ Vu�u�(u�u�u�(0)) +Vu�u�(u�u�u�(0)) ≤ u�u�(u�0) + u�(u�u�u�
0 ), (5.29.b)

which is uniformly bounded for all u� ∈ ℕ.
(i) Extraction of a converging subsequence: We first consider the sequence (u�u�u�)u�∈ℕ.

Consider the push-forward measures u�u�u�
∶= (Id ×u�u�u�)#U

̂

u�u� . We already observed that the pro-
jection u�1

#u�u�u�
= U

̂

u�u� onto Ω × [0, u�] is weakly convergent. Hence, (u�1
#u�u�u�

)u�∈ℕ is uniformly tight
by Prokhorov’s theorem (Theorem A.1.10). Moreover, due to the uniform bound in (5.29), every
projection u�2u�u�u�

onto ℝ satisfies

sup
u�∈ℕ

∫
ℝ

∣u�∣2 du�2u�u�u�(u�) = sup
u�∈ℕ

∫
Ω×(0,u�)

∣u�u�u�(u�, u�)∣2 U

̂

u�u�(u�, u�) d(u�, u�) < +∞.

Thus, we can apply the results obtained in Facts A.1.9: The sequence (u�2
#u�u�u�

)u�∈ℕ is uniformly tight
by the integral criterion for tightness; hence, (u�u�u�

)u�∈ℕ is uniformly tight as well. Now we may
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again invoke Prokhorov’s theorem to conclude that there exists a subsequence, also denoted by
(u�u�u�

)u�∈ℕ, weakly convergent to some Borel probability measure u� on Ω × [0, u�] × ℝ.
Furthermore, (A.2) implies that the map (u�, u�, u�) ↦ ∣u�∣ is uniformly integrable with respect to
(u�u�u�

)u�∈ℕ since (5.29) gives us the uniform bound

∫
ℝ×Ω×[0,u�]

∣u�∣2 du�u�u�
(u�, u�, u�) = ∫

Ω×[0,u�]
∣u�u�u�(u�, u�)∣2 U

̂

u�u�(u�, u�) d(u�, u�) < u� ∀u� ∈ ℕ.

Therefore, we may invoke Lemma A.1.7.i to obtain

lim
u�→∞

∫
ℝ×Ω×[0,u�]

u�(u�, u�)u� du�u�u�
(u�, u�, u�) = ∫

ℝ×Ω×[0,u�]
u�(u�, u�)u� du�(u�, u�, u�) ∀u� ∈ u�u�(Ω × [0, u�]). (5.30)

Note that Theorem A.2.1 guarantees the existence of disintegration measures u�(u�,u�) of u� on ℝ with
respect to u�(u�, u�)d(u�, u�). In particular, for every non-negative Borel function u� : ℝ×Ω×(0, u�) → ℝ+

0
we have

∫
ℝ×Ω×(0,u�)

u�(u�, u�, u�) du�(u�, u�, u�) = ∫
Ω×(0,u�)

(∫
ℝ

u�(u�, u�, u�) du�(u�,u�)(u�)) u�(u�, u�) d(u�, u�).

Together with (5.30), we arrive at

lim
u�→∞

∫
Ω×(0,u�)

u�(u�, u�)u�u�u�(u�, u�)U

̂

u�u�(u�, u�) d(u�, u�) = ∫
Ω×(0,u�)

u�(u�, u�)u�(u�, u�)u�(u�, u�) d(u�, u�) ∀u� ∈ u�u�(Ω × [0, u�]),

where u�(u�, u�) ∶= ∫ℝu� du�(u�,u�)(u�) is the barycentric projection of u�.

The argument for (u�u�u�)u�∈ℕ follows along the same lines considering the respective push-forward
measures u�u�u�

∶= (Id ×u�u�u�)#u�u�u� instead; thus, extracting a subsequence of (u�u�u�
)u�∈ℕ, which is

weakly convergent to some Borel probability measure u� on Ω × [0, u�] × ℝ. In the spirit of the
argument above, one obtains disintegration measures u�(u�,u�) of u� with respect to u�(u�, u�)d(u�, u�) such
that

lim
u�→∞

∫
Ω×(0,u�)

u�(u�, u�)u�u�u�(u�, u�)u�u�u�(u�, u�) d(u�, u�) = ∫
Ω×(0,u�)

u�(u�, u�)u�(u�, u�)u�(u�, u�) d(u�, u�) ∀u� ∈ u�u�(Ω × [0, u�]),

where u�(u�, u�) ∶= ∫ℝu� du�(u�,u�)(u�).

(ii) Lower estimate for the limit inferior: We invoke Lemma A.1.7.ii and Jensens’ inequality for the convex
function u� ↦ ∣u�∣2 to obtain

lim inf
u�→∞

∫
Ω×(0,u�)

∣u�u�u�(u�, u�)∣2 U

̂

u�u�(u�, u�) d(u�, u�) = lim infu�→∞ ∫
ℝ×Ω×(0,u�)

∣u�∣2 du�u�u�
(u�, u�, u�) ≥

≥ ∫
ℝ×Ω×(0,u�)

∣u�∣2 du�(u�, u�, u�) = ∫
Ω×(0,u�)

(∫
ℝ

∣u�∣2 du�(u�,u�)(u�)) u�(u�, u�) d(u�, u�) ≥

≥ ∫
Ω×(0,u�)

∣∫
ℝ

u� du�(u�,u�)(u�)∣
2

u�(u�, u�) d(u�, u�) = ∫
Ω×(0,u�)

∣u�(u�, u�)∣2 u�(u�, u�) d(u�, u�).

Since an analogous estimate holds for u�u�u� in place of u�u�u� , we can use the inequalities obtained in
Lemma 5.2.3 to arrive at

lim inf
u�→∞

u�
∫
0
Ru�u�(u�u�u� , u̇�u�u�) +F u�u�

u� (u�u�u�) du� ≥ 1
2 ∫

Ω×(0,u�)
( ∣u�(u�, u�)∣2 + |u�(u�, u�)|2 )u�(u�, u�) d(u�, u�).
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(iii) Identification of the limit u�: Let u� ∈ u�∞
u� ((0, u�) × Ω) be a test function and let Ψu�u�(u�, u�) ∶= u�(u�, u�u�u�

u� )
for u� ∈ u�u�u�

u� be the corresponding interpolant. Then integration by parts and summation by parts
imply

u�
∫
0

∫
Ω

u�u�u�(u�, u�)u̇�(u�, u�) u�u� du� = −
u�

∫
0

u�u�

∑
u�=1

u�(u�, u�u�u�
u� )(u�u�u�(u�u�, u�) − u�u�u�(u�u�−1, u�)) du� + u�u�u�

= (5.31.a)

=
u�

∫
0

u�u�−1
∑
u�=1

u�u�u�(u�, u�u�)(u�(u�, u�u�u�
u� ) − u�(u�, u�u�u�

u�+1)) du� + u�u�u�
= (5.31.b)

= −
u�

∫
0

∫
Ω

u�u�u�(u�, u�)∇u�u�(u�, u�)U

̂

u�u�(u�, u�) du� du� + u�u�u�
(5.31.c)

where the error term u�u�u�
∈ O(‖u̇� −Ψ̇u�u�‖∞) goes to zero as (u� → ∞). Since the sequences (u�u�u�)u�∈ℕ,

(U

̂

u�u�)u�∈ℕ, and (u�u�u�)u�∈ℕ are weakly convergent, we may pass to the limit in (5.31) as (u� → ∞) and,
therefore, arrive at

∫
Ω×(0,u�)

u�(u�, u�)u̇�(u�, u�) d(u�, u�) = − ∫
Ω×(0,u�)

u�(u�, u�)∇u�u�(u�, u�)u�(u�, u�) d(u�, u�),

which is precisely the continuity equation introduced in Theorem 2.3.3 relating u� to u�.

(iv) Identification of the limit u�: As before, let u� ∈ u�∞
u� ((0, u�) × Ω) be a test function. We compute

u�
∫
0

∫
Ω

u�u�u�(u�, u�)u�(u�, u�)ũ�u�u�(u�, u�) u�u� du� = (5.32.a)

=
u�

∫
0

u�u�−1
∑
u�=1

(
u�u�

u�+1 − u�u�
u�

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1

∫
u�u�u�

u�

u�(u�, u�) du� +
u�u�u�

u�+1 − u�u�u�
u�

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1

∫
u�u�u�

u�

u�(u�, u�)ũ�u�u�(u�, u�) du�) du�. (5.32.b)

Note that the Lebesgue differentiation formula implies

lim
u�→∞

(u�(u�, u�u�u�
u� ) − 1

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1

∫
u�u�u�

u�

u�(u�, u�) du�) = 0. (5.33)

Hence, by summation by parts we obtain for the first term in the sum of (5.32.b) that

u�
∫
0

u�u�−1
∑
u�=1

u�u�
u�+1 − u�u�

u�

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1

∫
u�u�u�

u�

u�(u�, u�) du� du� = −
u�

∫
0

u�u�

∑
u�=1

u�u�
u� (u�)(u�(u�, u�u�u�

u� ) − u�(u�, u�u�u�
u�−1)) du� + u�u�u�

= (5.34.a)

= −
u�

∫
0

∫
Ω

(u�u�u�(u�, u�))u�∇u�u�(u�, u�) du� du� + u�u�u�
(5.34.b)

where u�u�u�
goes to zero as (u� → ∞).

In addition to (5.34), we also have

lim
u�→∞

(u�(u�u�u�
u� ) − u�u�u�

u� ) = lim
u�→∞

(u�(u�u�u�
u�+1) − 1

ℎu�u�
u�

∫
u�u�u�

u�

u�(u�) du�) = 0.

In particular, this implies that

lim
u�→∞

(∇u�u�(u�u�u�
u� ) −

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1 − u�u�u�

u�
) = 0.
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Therefore, the potential energy term in (5.32.b) may be computed as

u�
∫
0

u�u�−1
∑
u�=1

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1 − u�u�u�

u�

u�u�u�
u�+1

∫
u�u�u�

u�

u�(u�, u�)ũ�u�u�(u�, u�) du� du� = (5.35.a)

=
u�

∫
0

∫
Ω

∇u�u�(u�)u�(u�, u�)ũ�u�u�(u�, u�) du� du� + u�u�u�
(5.35.b)

where again u�u�u�
goes to zero as (u� → ∞).

Now weak convergence of (u�u�u�)u�∈ℕ, (ũ�u�u�)u�∈ℕ, and (u�u�u�)u�∈ℕ allows us to pass to the limit in (5.34)
and in (5.35) as (u� → ∞); in other words, we arrive at

∫
Ω×(0,u�)

u�u�u� d(u�, u�) = − ∫
Ω×(0,u�)

u�u�∇u�u� d(u�, u�) − ∫
Ω×(0,u�)

u�∇u�u� d(u�, u�).

This means that we can identify u� with ∇(u�u�)/u� + ∇u� . ■■

With the estimates developed so far, we are finally in the position to proof our main result.
5.3.5 Theorem Let (u�u�)u�∈ℕ be a sequence of spatial finite-volume discretisations (u�u�

u� )1≤u�≤u� as in (5.3) such
that Assumptions 5.1.2 are satisfied. Let (u�u�)u�∈ℕ be the corresponding piecewise constant interpolants given
by (5.12). Then there exists a subsequence (u�u�u�)u�∈ℕ and a curve u� ∈ u�u�(ℝ+

0 , u�2(Ω)), independent of
u� > 0, with initial value u�(0) = u�0, such that the following statements hold:

(i) For all times u� ∈ (0, u�) the interpolant u�u�u�(u�) converges weakly to u�(u�) as (u� → ∞);
(ii) the limit curve u� is a gradient flow in the EDE sense for u� = u�u� + u�.

Proof In this proof we collect all the prerequisites of Proposition 4.1.2 which in turn implies above
theorem. To this aim, we may invoke Proposition 5.1.3 for every u� > 0 to obtain a sequence
(u�u�)u�∈ℕ of continuously differentiable curves (0, u�) → Pu� which satisfy the energy dissipation
equality (5.7).
In the next step, we set u�u� = Pu� and u� = u�2(Ω) and denote by u�u� : Pu� → u�2(Ω) the mapping,
induced by (5.12), which maps each u�u� to its corresponding interpolant u�u�.
Let us verify that the slope ∣∂u�u�∣ is a strong upper gradient. Indeed, Proposition 2.4.6.i implies that
the Rényi entropy functional u�u� is convex along (generalised) geodesics in (u�2(ℝu�), u�2). Hence,
we can invoke Proposition 1.2.4.ii to obtain that ∣∂u�u�∣ is a strong upper gradient.
The limit curve is constructed by successively invoking Proposition 5.3.1 for increasing times u� >
0. In this way we can extract a suitable subsequence u�u�u�

u�∈ℕ, pointwise weakly convergent to a
continuous limit curve u� : ℝ+

0 → u�2(Ω) such that (4.3) is satisfied. Note that Theorem 2.3.3
implies that u� belongs to u�u�((0, u�), u�2(Ω)) and the metric derivative of u� satisfies the following
estimate

∣u̇�∣ (u�) ≤ ∫
Ω

|u�(u�, u�)|2 u�(u�, u�) du� ℒ1-a.e. u� ∈ (0, u�). (5.36)

On the other hand, we may identify the metric slope ∣∂u�u�∣ with the continuous Fisher information
by Lemma 2.4.9, i.e. the following identity holds:

∣∂u�u�∣2(u�) = ∫
Ω

|∇(u�u�)|
u� du�. (5.37)

Recalling Proposition 5.3.4, both (5.36) and (5.37) imply
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1
2

u�
∫
0

∣u̇�∣2 + ∣∂u�u�∣2 (u�) du� ≤ lim inf
u�→∞

u�
∫
0
Ru�u�(u�u�u� , u̇�u�u�) + Iu�u�(u�u�u�) du�.

Recalling that the metric derivative and the slope in the space intPu� correspond to the discrete
dissipation potentialRu� and the discrete Fisher information Iu�, respectively, we have shown (4.5).

■■Finally, to obtain the Γ-lim sup bound (4.4), we simply invoke (5.27).

In general, one cannot identify the limit curve u� obtained in above theorem as a solution of the
corresponding porous medium equation by properties of abstract EDE gradient flows alone. To
overcome this issue, one may for instance appeal to convergence results of the underlying finite-
volume scheme.
In the context of gradient flows, is also possible to invoke the results of Section 2.4, usually ob-
tained by subdifferential calculus in the 2-Wasserstein space over ℝu�. Indeed, combining the the
statement of Theorem 5.3.5 with Corollary 2.4.13 results directly in the following corollary.

5.3.6 Corollary Let u� be the limit curve of Theorem 5.3.5. Then u� is the unique EVI gradient flow for u�u�.
Additionally, u� is a solution in the sense of distributions to the following porous medium equation with
drift and non-flux Neumann boundary condition:

d
du�u� = Δ(u�u�) + div(u�∇u�) in ℝ+ × Ω.

5.4 Bibliographical Notes

This chapter is heavily inspired by the approach of Disser and Liero in [24] where a gradient flows
for the one-dimensional Fokker-Plank equation with drift was approximated by their discrete rela-
tive entropy counterparts. To this aim, they use a simple finite-volume discretisation of the Fokker-
Plank equation equation

u̇� = div(∇u� + u�∇u�) in Ω (5.38)

to induce a discrete relative entropy gradient flow structure from the Onsager point of view (3.29).
Note that the mixed energy functional u� = u�1 + u� corresponding to the Wasserstein gradient flow
for (5.38) may be written as relative entropy in the form

u�(u�) = ∫
Ω

u� log u� du� + ∫
Ω

u� u� du� = ∫
Ω

u� log(u�/u�) du�, (5.39)

whenever u� is absolutely continuous with density u� on Ω. Here u�(u�) = u�−u�(u�) is the steady state
of (5.38). There are several choices for approximating the flux in the corresponding finite-volume
discretisation, which heavily influence the numerical stability of the scheme. See Bessemoulin-
Chatard and Filbet [10] for a general finite-volume scheme corresponding to entropy functionals
of of type (5.39), or Carrillo, Chertock and Huang [16] for another finite-volume scheme suited for
nonlinear evolution equations possessing more general Wasserstein gradient flow structures. A
recent survey for an overview on finite-volume methods is provided by Barth and Ohlberger [7].
In the recent article [28], Erbar et al. follow along lines, similar to the ones in this chapter, to inves-
tigate the limit of energy gradient flow structures for discrete McKean-Vlasov equations. Essen-
tially the same approach, relying on convergence of discrete gradient structures as in Chapter 3,
was taken by Fathi and Simon in [31] to study macroscopic hydrodynamic behaviour of interacting
particle systems by passing to the limit in gradient flow structures related to the particle systems.





6 Limit Passage of EVI Gradient Flows for Discrete Heat Equa-

tions

6.1 Finite-Volume Discretisation Revisited

The aim of this chapter is to establish the limit curve of the spatial finite-volume discretisations
as gradient flow in the much stronger EVI sense by reinforcing the main result of the previous
chapter, Theorem 5.3.5. To actually obtain such a result we will use Proposition 4.2.2 as abstract
backbone. To this end, we will need to exploit geodesic convexity of the underlying functional.
However, we already saw in Example 3.3.4 that the discrete Rényi entropy functional F u�

u� need not
be geodesically u�-convex for every u� ∈ (0, 2]. Nevertheless, we will see that geodesic convexity
of F u�

u� can be obtained at least in the homogeneous case when u� = 1.
We begin by recalling the finite-volume scheme introduced in Section 5.1 for u� = 1 and vanishing
potential u� ≡ 0. In this case, the porous medium equation (5.1) becomes the homogeneous heat
equation

d
du�u�(u�, u�) = Δu�(u�, u�) ∀(u�, u�) ∈ (0, u�) × [0, 1]. (6.1)

Again, we assume that (6.1) is subject to the non-flux Neumann boundary condition

∇u�(u�, 0) = ∇u�u�(u�, 1) = 0 ∀u� ∈ (0, u�).

For simplicity, we will work with an equidistant spatial finite-volume discretisation in this chapter.
Furthermore, it is convenient to swap the rôles of the u�u�

u� and the u�u�
u� : First we set u�u�

u� = u�/u� for
u� ∈ {0, …u�} to obtain an equidistant partition of Ω ∶= (0, 1). Then we assume that u�u�

u� is a midpoint
between u�u�

u�−1 and u�u�
u� ; thus, arriving at

u�u�
u� =

u�u�
u�−1 + u�u�

u�
2 = u� − 1/2

u� ∀u� ∈ {0, … u�} .

As usual, u�u�
u� = [u�u�

u�−1, u�u�
u� ) denotes a control volume with length ℎu�

u� = 1/u�.
Given (6.1) in the integrated form

d
du� ∫

u�u�
u�

u�(u�, u�) du� = u�′(u�, u�u�
u� ) − u�′(u�, u�u�

u�−1),

the finite-volume scheme is supposed to approximate the integral ∫u�u�
u�

u�(u�, u�) du� by u�u�
u� (u�), and the

flux ∇u�u�(u�, u�u�u�
u� ) by

1
u�u�

u�+1 − u�u�
u�

(
u�u�

u�+1
ℎu�

u�+1
−

u�u�
u�

ℎu�
u�

) .

Since ℎu�
u� = ℎu�

u�+1 = u�u�
u�+1 − u�u�

u� = 1/u�, this means that the rate coefficients take the form

u�0 = u�0 = 0, u�u� = u�u� = u�2 for u� ∈ {1, … u� − 1} , u�u� = u�u� = 0.

With this notation, we may write (6.1) as

u̇�u�
u� = u�u�−1u�u�

u�−1 − (u�u� + u�u�−1)u�u�
u� + u�u�u�u�

u�+1 ∀u� ∈ {1, … u�} . (6.2)

Introducing the infinitesimal generator
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Q = u�2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 … 0
1 −2 1 0 … ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ … 0 1 −2 1
0 … 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6.3)

the equation in (6.2) may be written in even more compact matrix-vector form u̇�u� = Qu�u�.
We consider the same piecewise constant interpolant u�u� : Ω → ℝ was already introduced in
Section 5.2:

u�u�(u�) = u�u� =
u�u�

u�
ℎu�

u�
for u� ∈ u�u�

u� . (6.4)

Finally, since u� = 1 and u� ≡ 0, the assumptions we required in Section 5.1 simplify to the following
conditions on the initial condition for the spatial finite-volume scheme.

6.1.1 Assumptions We make the following assumptions on the homogeneous heat equation in (6.1):
Re initial condition: Let u�0 be a probability density with respect to the Lebesgue measure on Ω
such that u�0 log u�0 ∈ u�1(Ω). Then the initial value of the finite-volume scheme is given by

u�u�
u� (0) = ∫

u�u�
u�

u�0(u�) du�. (6.5)

6.2 Gromov-Hausdorff Convergence of the Discrete Transportation Metrics

In this section we are going to establish compatibility between the discrete transportation metrics
W and the 2-Wasserstein metric u�2 for infinitesimal generators of the specific form (6.3). To this
aim, we will use the notion of Gromov-Hausdorff convergence in the form of u�-isometries which
were already introduced in Section 4.2. Indeed, it turns out that the piecewise constant discreti-
sation, used to discretise the initial condition (6.5), is an appropriate candidate for an u�-isometry
from u�2(Ω) to Pu� as long as the probability measure in u�2(Ω) has a suitable density.
In order to remove such restrictions on the domain of such prospective u�-isometries, we will first
regularise any probability measures in u�2(Ω) before applying the piecewise constant discretisa-
tion. Regularisation will be provided by convolution with a rescaled version of the heat kernel on
ℝ.
Let us recall that that the heat kernel on the real line is a Gaussian function defined by

hu�(u�) ∶= 1
√4u�u�

u�−u�2/(4u�) ∀(u�, u�) ∈ ℝ+ × ℝ.

The heat semigroup with respect to a Borel measure u� with finite total variation on ℝ is then given
by convolution with with the heat kernel, to wit

Hu�u�(u�) ∶= (hu� ∗ u�)(u�) = ∫
ℝ

hu�(u� − u�) du�(u�).

In order to put those definitions into our framework of probability measures on Ω, we also in-
troduce the following rescaled variant of the heat semigroup: Every u� ∈ u�2(Ω) can be trivially
extended to a probability measure (also denoted by u�) on ℝ with supp u� ⊆ Ω. Therefore, we
may write Ħu�u� ∶= ħu� ∗ u�, where ħu� ∶= ¢u�,u�hu� is the rescaled heat kernel with ¢u�,u� > 0 such that
Ħu�u�(u�) du� belongs to u�2(Ω). To keep the notation simple, we will identify the density Ħu�u� with the
corresponding probability measure.
Now we are in the position to formulate the main result of this section.
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6.2.1 Theorem Let (Xu�,Q, u�) be an irreducible continuous-time Markov chain with infinitesimal generator
Q of the form (6.3). Then for 0 < u� ≤ 2, the metric spaces (Pu�,W) induced by the weight function u�1
converge to (u�2(Ω), u�2) in the following sense:
For every u� > 0 there exist u� ∈ ℕ and u� > 0 such that the map from u�2(Ω) to Pu� given by

u� ↦ 1
ℎu�

u�
∫
u�u�

u�

Ħu�u�(u�) du� (6.6)

is an u�-isometry.
The proof of the result above essentially follows along the lines of the argument in [35]. There
Gromov-Hausdorff convergence of the u�-dimensional discrete torus endowed with corresponding
discrete transportation metrics was considered instead of (Pu�,W). Here we will just give a sketch
to point out the main alterations needed to make the argument in [35] go through in our case as
well.
We start by restating some well known facts about the heat semigroup on the real line for (Ħu�)u�≥0.

6.2.2 Facts (Rescaled heat semigroup)

(i) Given a rescaled heat semigroup (Ħu�u�)u�≥0, the probability measure u� ∈ u�2(Ω) can be recovered
in the sense that Ħu�u� −→u�∗ u� as (u� ↘ 0). This follows from the fact that u� ↦ ¢u�,u� is a strictly increasing
function with limu�↘0 ¢u�,u� = 1. In addition, we have the equality ∥Ħu�u�∥1 = ∥ħu�∥1 ∥u�∥TV = ∥ħu�∥1 = ¢u�,u�
with respect to the Lebesgue measure on ℝ.
Note that if we set ¢u� ∶= 1/∥hu�u�[0,1]∥1, then we have found a constant independent of u� such that
¢u�,u� ≤ ¢u� and lim

u�↘0
¢u� = 1

(ii) For any positive time u� > 0, the rescaled heat flow Ħu�u� is nowhere vanishing on ℝ, i.e.

Ħu�u�(u�) ≥ inf
u�∈ℝ

ħu�(u�) > 0 ∀(u�, u�) ∈ ℝ+ × ℝ. (6.7)

This property is also known as infinite speed of propagation of the heat semigroup.
Another property which follows immediately from the definition of Ħu�u� as convolution is Lipschitz
continuity with respect to the spatial variable:

∣Ħu�u�(u�) − Ħu�u�(u�)∣ ≤ u�u� ∣u� − u�∣ ∀u�, u� ∈ ℝ (6.8)

with u�u� = sup
u�∈ℝ

∇u�ħu�(u�) < +∞ for all times u� > 0.

(iii) The flow curve u� ↦ Ħu�u� is 1/2-Hölder continuous with respect to the 2-Wasserstein distance. To
see this, one can exploit the convexity of (u�, u�) ↦ u�2

2(u�, u�) – a property already noticed in (2.13)
– to apply the following version of the Jensen inequality for random elements taking values in
(ℳ(Ω), ‖⋅‖TV), the Banach space of signed measures with finite total variation on Ω:

u� (∫
Ω

u� du�) ≤ ∫
Ω

u� ∘ u� du�, (6.9)

where u� ∈ u�2(Ω), u� is an integrable random element on (Ω, u�), u�-a.s. taking values in a convex
subset u� ⊆ ℳ(Ω) × ℳ(Ω), and u� : u� → ℝ is a measurable convex function.
Now setting u� = u�2

2 and u�(u�) = (Ħu�u�u�, u�u�) in (6.9) and using the fact that the 2-Wasserstein distance
to a Dirac measure can be expressed explicitly, implies the desired inequality

u�2
2(Ħu�u�, u�) = u�2

2 (∫
Ω

Ħu�u�u� du�(u�), ∫
Ω

u�u� du�(u�)) ≤ ∫
Ω

u�2
2(Ħu�u�u�, u�u�) du�(u�) ≤ (6.10.a)

≤ u�u� ∫
Ω

∫
ℝ

∣u� − u�∣2 hu�(u� − u�) du� du�(u�) = u�u� ∫
Ω

∫
ℝ

u�u�2h1(u�) du� du�(u�) = û�2
u�u� (6.10.b)
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with a constant û�2
u� ∶= u�u� ∫ℝ u�2h1(u�) du� for all u� ∈ [0, u�].

(iv) Let u� : [0, 1] → u�2(Ω) be a geodesic connecting u�0 to u�1 with corresponding Borel vector fields
u�u� ∈ T(Ω) such that ∫1

0 ∥u�u�∥u�2(u�(u�)) du� < +∞ and the continuity equation (2.9) holds in the sense
of distributions. Then (u�u�,u�, u�u�,u�)u�∈[0,1] with u�u�,u� = Ħu�u�(u�) and u�u�,u� = Ħu�(u�u�u�(u�)) provides a solution
to the following variant of the continuity equation:

d
du�u�u�,u� + divu�u�,u� = 0 ∀u� ≥ 0.

This follows directly from

divu�u�,u� = div(ħu� ∗ (u�u�u�(u�))) = ħu� ∗ div(u�u�u�(u�)) = Ħu�div(u�u�u�(u�))

in the sense of distributions.

If in addition the vector fields u�u� archive the minimum in the Benamou-Brennier formula (2.10),
then we have the following inequality which – despite being less sharp than the corresponding
counterpart in [35] – is sufficient for our purpose:

1
∫
0

∫
Ω

u�2
u�,u�(u�)

u�u�,u�(u�) du� du� ≤ ¢u�u�2
2(u�0, u�1). (6.11)

To see this, we use the convexity of the mapping u� (u�, u�) ∶= u�2/u� on ℝ × ℝ+ to invoke the Jensen
inequality with respect to the measure du�u�(u�) = ħu�(u� − u�) du�u�(u�) in the computation

u�2
u�,u�(u�)

u�u�,u�(u�) = u� (∫
ℝ

u�u�(u�) du�u�(u�), ∫
ℝ

1 du�u�(u�)) ≤

≤ ∫
ℝ

u� (u�u�(u�), 1) du�u�(u�) = ∫
ℝ

u�u�(u�)ħu�(u� − u�) du�u�(u�).

Now an integration with respect to u� over Ω in the inequality above, followed by an application of
Fubini’s theorem leads to the following estimate

∫
Ω

u�2
u�,u�(u�)

u�u�,u�(u�) du� ≤ ∫
ℝ

u�2
u� (u�) ∫

Ω

ħu�(u� − u�) du� du�u�(u�) ≤ ¢u�u�,u� ∫
ℝ

u�2
u� (u�) du�u�(u�).

Finally, another integration with respect to u� over [0, 1] and using the fact that u�u� archives the
minimum in the Benamou-Brennier formula (2.10) establish the sought inequality.

In addition to the rescaled heat semigroup (Ħu�)u�≥0, we also introduce its discrete counterpart on
(Pu�,Q, ℎu�): The discrete heat semigroup acting on functions u� : Xu� → ℝ is defined by

Hu�
u� u�u� ∶=

u�
∑
u�=1

exp(u�Q)u�−u�,u�u�u�, (6.12)

where we assume that u� ↦ exp(u�Q)u�u� is extended periodically to ℤ. Let us collect some facts about
the discrete heat semigroup (Hu�

u� )u�≥0.
6.2.3 Facts (Discrete heat semigroup)

(i) It can be shown that the eigenvalues and the corresponding eigenvectors of the infinitesimal gen-
erator Q are given by

u�u� = 2u�2 (cos ( u�u�
u� + 1/2) − 1) and u�u�

u� =
⎧{
⎨{⎩

sin ( u�(u�−1/2)u�
u� ) if u� < u�,

1 if u� = 1,
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respectively. As a result, we may express the the matrix exponential in (6.12) more concisely as

exp(u�Q)u�u� =
u�

∑
u�=1

u�u�u�u�u�u�
u� .

Simple consequences of this representation are the Lipschitz estimates

∣Hu�
u� u�u� −Hu�

u� u�u�∣ ≤ ǔ�u�
u� ∣u� − u�∣ and ∣Hu�

u� u�u� −Hu�
u� u�u�∣ ≤ ∣u�u� − u�u�∣ ∀u� ∈ Pu�

for a constant ǔ�u� > 0.

(ii) It is possible to obtain a discrete counterpart to the estimate in (6.11). For a probability density
u� ∈ Pu� and a momentum vector field u�u� : Xu� ×Xu� → ℝ define the following action functional:

Au�(u�, u�u�) ∶= ∑
u�,u�

∣u�u�
u�u� ∣

2

û�u�u�
Qu�u�ℎu�

u� . (6.13)

Now using how the semigroup (Hu�
u� )u�≥0 acts on u�u�, namely

Hu�
u� u�u�

u�,u�±1 ∶=
u�

∑
u�=1

exp(u�Q)u�−u�,u�u�u�
u�,u�±1,

yields the inequality

Au�(Hu�
u� u�,Hu�

u� u�u�) ≤ Au�(u�, u�u�) ∀u� ≥ 0. (6.14)

Indeed, the infinitesimal generatorQu�u� vanishes except for u� = u� ±1. Therefore, the Jensen inequal-
ity for the 1-homogeneous convex mapping (u�, u�, u�) ↦ u�2/u�1(u�, u�) on ℝ × ℝ+ × ℝ+ implies

∣∑
u�

exp(u�Q)u�−u�,u�u�u�
u�,u�±1∣

2
u�1(∑

u�
exp(u�Q)u�−u�,u�u�u�, 1/u� ∑

u�
exp(u�Q)u�±1−u�,u�u�u�)

−1
≤

≤ ∑
u�

∣u�u�
u�,u�±1∣2

u�1(u�u�, u�u�±1) exp(u�Q)u�−u�,u�

Then, using that the Markov semigroup satisfies ∑
u�

exp(u�Q)u�−u�,u� = 1, the inequality in (6.14) is
immanent.

The facts stated above provide all the tools necessary to carry out the proof of Theorem 6.2.1 in
our setting adapted from the original argument for convergence of transportation metrics on the
discrete torus. We will give only a condensed sketch thereafter; the reader may consult [35] for
further details.

Sketch of proof of Theorem 6.2.1 To be in line with the notation used in [35], we write

u�u�(u�)u� ∶= u�u�(u�u�
u� )

for the discrete approximation of a probability measure u� ∈ u�u�(Ω), whereas

u�u�(u�)(u�) ∶= u�u� for u� ∈ u�u�
u�

denotes the piecewise constant interpolant of a discrete probability density u� ∈ Pu�.
In order to proof convergence of the spaces (Pu�,W) to the 2-Wasserstein space over Ω in the sense
of Gromov-Hausdorff, we will compare the 2-Wasserstein distance with the discrete transportation
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distance W on Pu�. To this aim, we will collect some useful estimates in the first part of the sketch,
before we are going to show that the mapping (6.6) is an u�-isometry in the second part.

(i) Estimates for the transportation distances: First, we need a suitable upper bound for W in terms of
the 2-Wasserstein distance. Indeed, a rather straightforward argument shows that there exists a
constant u�u� > 0 such that

W(u�u�(Ħu�u�0), u�u�(Ħu�u�1)) ≤ ¢u�u�2(u�0, u�1) + u�u�
√u�

∀u�0, u�1 ∈ u�2(Ω), (6.15)

with the constant ¢u� > 0 coming from (6.11). In fact, the most involving part of the proof is to
establish a converse bound of u�2 by means of W. To this aim, it is convenient to work instead
with the harmonic mean

u�−1(u�, u�) = 2u�u�
u� + u� ,

being related to u�1 by the elementary inequalities

u�−1(u�, u�) ≤ u�1(u�, u�) and 1 − u�−1(u�, u�)
u�1(u�, u�) ≤ |u� − u�|2

u�u� .

Using these relations between those two weight functions, one can establish the following estimate
as an intermediate step: For all densities u�0, u�1 in

Pu�
u� ∶= {u� ∈ Pu� : u�u� ≥ u� and ∣u�u� − u�u�∣ = (u�u�)−1 ∣u� − u�∣ ∀u�, u� ∈ Xu�}

we have the inequality

u�2(u�u�(u�0), u�u�(u�1)) ≤ (1 − 1
u�4u�2 )

−1/2
Wu�(u�0, u�1). (6.16)

Here the distance function Wu� on Pu�
u� is defined by the Benamou-Brenier formula

W2
u� (u�0, u�1) ∶= inf {

1
∫
0
Au�(u�(u�), u�u�(u�)) du�}

with the infimum being taken amongst all pairs of continuous curves u� : [0, 1] → Pu�
u� connecting u�0

to u�1 and integrable momentum fields u� ↦ u�u�(u�) ∶= Δu�u�u�(u�)/û�u�u�(u�), being distributional solutions
to the discrete continuity equation in the form of

d
du�u�u�(u�) + ∑

u�
u�u�

u�u�(u�)Qu�u� = 0 ∀u� ∈ (0, 1). (6.17)

Finally, a comparison of the distancesWu� andWu� – the most involved part of the argument – yields
that given u�0, u� > 0, there exists u� > 0 such that

Wu�(u�0, u�1) ≤ W(u�0, u�1) + u�0. (6.18)

(ii) Constructing the u�-isometry: Having collected all the estimates necessary, we are in the position
to sketch that the mapping given in (6.6), namely u� ↦ u�u�(Ħu�u�) is an u�-isometry from u�2(Ω) to Pu�:
Note that we may combine the inequalities in (6.16) and (6.18) to obtain

u�2(u�u�(u�0), u�u�(u�1)) ≤ (1 − 1
u�(u�0, u�)4u�2

)
−1/2

(W(u�0, u�1) + u�0), (6.19)

which is valid only for probability densities in u�0, u�1 ∈ Pu�
u� . Here the regularising properties of the

rescaled heat semigroup (Ħu�)u�≥0 come into play. Moreover, both (6.7) and (6.8) are preserved by the
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discretisation mappings u�u�; thus, ensuring that the probability densities u�0 = u�u�(Ħu�u�0) and u�1 =
u�u�(Ħu�u�1) belong to Pu�

u� without need for further assumptions on the measures u�0, u�1 ∈ u�2(Ω).
In addition, Proposition 2.2.4.ii allows us to control the error of the approximation u�u� ∘ u�u� in terms
of the 2-Wasserstein distance, to wit

u�2
2(u�u� ∘ u�u�(Ħu�u�u�), Ħu�u�u�) ≤

u�
∑
u�=1

Ħu�u�u�(u�u�
u� ) diam u�u�

u� ≤ 1
u�2 ∀u� ∈ {0, 1} , (6.20)

where we used that ∣Ħu�u�u� − u�∣(u�u�
u� ) ≤ Ħu�u�u�(u�u�

u� ), due to the fact that both measures agree for each
control volume u�u�

u� .
Combining this inequality with (6.19) and the Hölder estimate in (6.10) for our particular choices
for u�0 and u�1, we arrive at

u�2(u�0, u�1) ≤ (1 − 1
u�(u�0, u�)4u�2

)
−1/2

(W(u�u�(Ħu�u�0), u�u�(Ħu�u�1))+u�0)+2û�u�√u�+ 2
u� ∀u�0, u�1 ∈ u�2(Ω).

(6.21)

Now using the fact that the diameter of the spaces (Pu�,W) is uniformly bounded for all u� ∈ ℕ,
both (6.15) and (6.21) yield for every u� > 0 the desired estimate

∣u�2(u�), u�1) −W(u�u�(Ħu�u�0), u�u�(Ħu�u�1))∣ ≤ u� ∀u�0, u�1 ∈ u�2(Ω)

for u� ∈ ℕ > 0 sufficiently large and u�0 > 0 sufficiently small.

It remains to show that given u� > 0, for every u� ∈ Pu� there exists u� ∈ u�2(Ω) such that

W(u�, u�u�(Ħu�u�)) ≤ u�.

In order to see this, set u� = u�u�(u�). Then we may use the fact that u�u� ∘u�u� = Id onPu� together with
Proposition 3.1.8 to obtain the following bound in terms of the 2-Wasserstein distance with respect
to |⋅| on Xu� for some constant u� > 0:

W(u�, u�u�(Ħu�u�)) = W(u�u� ∘ u�u�(u�), u�u�(Ħu�u�)) ≤ u�
u� u�gra

2 (u�u� ∘ u�u�(u�), u�u�(Ħu�u�)).

To proceed, we need to compare the right-hand side of this estimate with the 2-Wasserstein dis-
tance on u�2(Ω): Define a mapping u�u� : Ω → Xu� by setting u�u�(u�) ∶= u� whenever u� ∈ u�u�

u� . Then we
have the obvious inequality

∣u�u�(u�) − u�u�(u�)∣ ≤ u� ∣u� − u�∣ + 1 ∀u�, u� ∈ Ω.

Now we may fix an optimal plan u� ∈ Πopt(u�u�(u�), Ħu�u�) with respect to the 2-Wasserstein distance
on u�2(Ω) to infer that (u�u�, u�u�)#u� is an admissible plan in Π(u�u� ∘ u�u�(u�), u�u�(Ħu�u�)). As a conse-
quence, the triangle inequality in u�2(u�) implies

u�gra
2 (u�u� ∘ u�u�(u�), u�u�(Ħu�u�))2 ≤ ∫

Ω×Ω

∣u�u�(u�) − u�u�(u�)∣2 du�(u�, u�) ≤

≤ u�2 ∫
Ω×Ω

∣u� − u�∣2 du�(u�, u�) + 1 = u�2u�2(u�u�(u�), Ħu�u�)2 + 1.

Using this estimate and (6.10), we conclude that

W(u�, u�u�(Ħu�u�)) ≤ u�u�2(u�u�(u�), Ħu�u�) + u�
u� ≤ u� (û�u�√u� + 1

u�) ≤ u� (6.22)

for u� ∈ ℕ > 0 sufficiently large and u� > 0 sufficiently small. ■■
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Note that the maps in (6.6) are defined from u�2(Ω) to Pu�, whereas in order to apply Proposition
4.2.2, we require u�-isometries from Pu� to u�2(Ω). This leads to the following concept of almost
inverse mappings.

6.2.4 Definition Let u� : u� → u� be an u�-isometry between metric spaces (u�, u�u�) and (u�, u�u�). Then a
mapping u�′ : u� → u� is called an u�-inverse of u� if

u�u�(u� ∘ u�′(u�), u�) ≤ u� ∀u� ∈ u� and u�u�(u�′ ∘ u�(u�), u�) ≤ 3u� ∀u� ∈ u�.

It follows directly from the definitions above that every u�-inverse is a 4u�-isometry as well.
The next corollary shows that it is straightforward to obtain an u�-inverse of (6.6) with Theorem 6.2.1
already being established.

6.2.5 Corollary Let (Xu�,Q, u�) be an irreducible continuous-time Markov chain with infinitesimal generator
Q of the form (6.3) and weight function u�u� for 0 < u� ≤ 2. Then there exist u� ∈ ℕ and u� > 0 such that the
map

(u�u�)u�≤u� ↦ u�u�, (6.23)

where u�u� : Ω → ℝ is the piecewise constant interpolant of u�u� as in (5.12), defines an u�-inverse of (6.6). In
particular, (6.23) is a 4u�-isometry from Pu� to u�2(Ω).

Proof For every given u� > 0, we have to verify that both inequalities in Definition 6.2.4 hold: The
first inequality takes the form

W(u�u�(Ħu�u�u�(u�)), u�) ≤ u� ∀u� ∈ Pu�

for u� ∈ ℕ > 0 sufficiently large and u� > 0 sufficiently small, which means that we can just follow
along the same lines we used to show (6.22).
On the other hand, in order to prove the second inequality

u�2(u�u� ∘ u�u�(Ħu�u�), u�) ≤ u� ∀u� ∈ u�2(Ω),

■■it is enough to invoke (6.20) and (6.10).

6.3 The Limit Passage in the EVI Case

6.3.1 Proposition (Geodesic convexity for tridiagonal generators) Provided that the discrete transportation
metric W is induced by the weight function u�1 with an infinitesimal generator Q of the form (6.3), the
discrete Shannon entropy F u�

1 is geodesically convex.

Proof The strategy of the proof is to show that HessF u�
1 (u�) is positive semidefinite for every point

u� in the interior of Pu�. Then we can invoke Proposition 3.3.2 to deduce that F u�
1 is geodesically

convex in (Pu�,W). To this aim, we make use of the explicit expression of the Hessian of F u�
1 in

form of the quadratic form B1 as given in Lemma 3.3.1.
To compute B1, we use the symmetry of Q together with Fact 3.1.2.vii to arrive at

B1(u�, Δu�) = 1
u�

u�−1
∑
u�=1

(u�u� − u�u�+1)2 (∂1u�1(u�u�+1, u�u�)
u�u� + u�u�+2

2 + ∂2u�1(u�u�+1, u�u�)
u�u�−1 + u�u�+1

2 ) + (6.24.a)

+ 1
u�

u�−1
∑
u�=1

û�u�+1,u� ((u�u� − u�u�+1)2 + (u�u� − u�u�+1)(u�u�+2 − u�u�+1 + u�u� − u�u�−1)) , (6.24.b)
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where we have to set u�0 = u�1, u�u�+1 = u�u� and u�0 = u�1, u�u�+1 = u�u� to obtain correct boundary
terms.
It remains to show thatB1(u�, Δu�) is non-negative for all u� ∈ intPu� and Δu� ∈ u�u�P

u�: The only possi-
bly negative terms are the mixed products of discrete gradients in (6.24.b), which can be estimated
as

(u�u� − u�u�+1)(u�u�+2 − u�u�+1 + u�u� − u�u�−1) ≥ −(u�u� − u�u�+1)2 − 1
2(u�u�+2 − u�u�+1)2 − 1

2(u�u� − u�u�−1)2 (6.25)

by means of the AM-GM inequality. The first term on the right-hand side of this inequality cancels
out with the corresponding non-negative term in (6.24.b). To control the other two terms, we may
invoke Fact 3.1.2.viii to infer

∂1u�1(u�u�+1, u�u�)u�u� + ∂2u�1(u�u�+1, u�u�)u�u�−1 ≥ û�u�,u�−1

and

∂1u�1(u�u�+1, u�u�)u�u�+2 + ∂2u�1(u�u�+1, u�u�)u�u�+1 ≥ û�u�+1,u�+2

which in turn, after some index shifts, imply for the terms in (6.24.a) the estimates

(u�u�+1 − u�u�+2)2 (∂1u�1(u�u�+2, u�u�+1)
u�u�+1

2 + ∂2u�1(u�u�+2, u�u�+1)
u�u�
2 ) ≥ 1

2(u�u�+1 − u�u�+2)2û�u�+1,u� (6.26.a)

and

(u�u� − u�u�−1)2 (∂1u�1(u�u�, u�u�−1)
u�u�+1

2 + ∂2u�1(u�u�, u�u�−1)
u�u�
2 ) ≥ 1

2(u�u� − u�u�−1)2û�u�+1,u� (6.26.b)

respectively. For the right-hand sides of (6.26) cancelling out with the remaining two terms on the
■■right-hand side of (6.25), we conclude.

In Section 5.3 we already exploited Γ-convergence of the discrete Rényi entropy to some extend.
More precisely, we showed that F u�

u� satisfies the lim inf-bound (5.17) for a specific sequence of
discrete measures u�u� given by the spatial finite-volume scheme. Indeed, it is not hard to establish
full-fledged Γ-convergence of this functional as the following result shows.

6.3.2 Proposition (Sequential Γ-convergence of the functionals) The discrete Shannon entropyF u�
1 is sequen-

tially Γ-convergent to the continuous counterpart u�1 as (u� → ∞).

Proof In Proposition 2.4.3 we we showed that the functional u�1 is lower semicontinuous with re-
spect to the 2-Wasserstein distance; whereas we noticed in Fact 5.2.2.i that the interpolants are
chosen in such a way that F u�

u� (u�u�) = u�1(u�u�). Combining those two results immediately gives the
lim inf-bound in Definition 4.1.1.
On the other hand, by definition of the the continuous functional u�1, it does not pose any restric-
tion to assume that a given probability measure on Ω is absolutely continuous with density ú�.
Therefore, we can use the elementary estimates (5.27) and (5.28) to obtain the bound

lim sup
u�→∞

F u�
1 (ú�u�) ≤ u�u�(ú�)

■■for discretisations ú�u�
u� ∶= ∫u�u�

u�
ú�(u�) du� which are weakly convergent to ú�.

6.3.3 Theorem Let (u�u�)u�∈ℕ be a sequence of spatial finite-volume discretisations (u�u�
u� )1≤u�≤u� as in (6.2) such

that Assumptions 6.1.1 are satisfied. Let (u�u�)u�∈ℕ be the corresponding piecewise constant interpolants given
by (6.4). Then there exists a subsequence (u�u�u�)u�∈ℕ and a curve u� ∈ u�u�(ℝ+

0 , u�2(Ω)), independent of
u� > 0, with initial value u�(0) = u�0, such that the following statements hold:
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(i) For all times u� ∈ (0, u�) the interpolant u�u�u�(u�) converges weakly to u�(u�) as (u� → ∞);
(ii) for u� = 0, the limit curve u� is the unique gradient flow in the EVI sense with respect to the Shannon entropy

functional u�1;
(iii) the limit curve u� is a solution in the distributional sense to the linear heat equation with non-flux Neumann

boundary condition:

d
du�u� = Δu� in ℝ+ × Ω. (6.27)

Proof In the first part of the proof we show that the density u� of each finite-volume discretisation
(u�u�

u� )1≤u�≤u� forms an EVI gradient flow in the space (Pu�,W): We already observed in Proposition
5.1.3 that the curve u� is a gradient flow in the Riemannian sense for the discrete functional F u�

u� .
Now is enough to recall that we established geodesic convexity of F u�

u� in Proposition 6.3.1. There-
fore, Proposition 1.2.5 implies that u� is a gradient flow in the EVI sense as well.
The existence of the limit curve u� follows along the same lines of the previous chapter: We in-
voke Proposition 5.1.3 for increasing times u� > 0 to extract a suitable subsequence (u�u�u�)u�∈ℕ being
pointwise weakly convergent to a continuous limit curve u� : ℝ+

0 → u�2(Ω). Note that pointwise
convergence of (u�u�u�)u�∈ℕ to u� can also be expressed in terms of the 2-Wasserstein distance since
Ω is bounded.
To check that the limit curve u� is a gradient flow in the EVI sense for u� = 0, we apply Proposi-
tion 4.2.2 with the following prerequisites: Corollary 6.2.5 ensures that the interpolation mappings
defined by (6.23) form 4u�-isometries from (Pu�,W) to (u�2(Ω), u�2). Moreover, Proposition 6.3.2
guarantees that the sequence (F u�u�

1 )u�∈ℕ is sequentially Γ-convergent to the continuous Shannon
entropy u�1.
Finally, we already observed in Corollary 2.4.13 that the limit curve u� may be identified as distri-

■■butional solution to the linear heat equation (6.27), in case u� = 1.

6.4 Bibliographical Notes

Section 6.2, discussing the Gromov-Hausdorff convergence of the discrete transportation metrics
for Markov chains with nearest-neighbour transitions, is based on the work [35] of Gigli and Maas,
where a periodic setting is considered. Note that in this article the discrete Laplacian is induced
by a Markov kernel u�u� instead which is related to the infinitesimal generator in this thesis by the
identity Q = 2u�2(u�u� − Id). indexinequality+Jensen+for locally convex real TVS The variant of
the Jensen inequality used in Fact 6.2.2.iii is due to Perlman [57] and holds in locally convex real
topological vector spaces. The spectral decomposition of the generator used in Fact 6.2.3.i was
obtained by Yueh [72].
Actually, the geodesic convexity of the discrete Shannon entropy F u�

u� obtained Proposition 6.3.1
holds for more general tridiagonal generators than the Toeplitz-like structure in (6.3). See Mielke’s
article [50] for several results in this direction.
In order to extend the scope of this chapter a Fokker-Plank equation with drift, one may consider
a relative entropy functional of the form (5.39) as done by Disser and Liero [24]. With this approach,
the resulting infinitesimal generator is still of tridiagonal form but looses the structure of a Toeplitz
matrix needed to make the argument in [35] go through.
Fairly recently, Al Reda and Maury proposed in [1] a generalisation of the entropic gradient flow
structures induced by a finite-volume discretisation for Fokker-Plank equations to higher dimen-
sions. Indeed, this is in line with the Gromov-Hausdorff convergence result in [35] which consid-
ered higher dimensions as well. However, a convergence result still needs to be obtained for this
generalised setting.



Appendix A

In this appendix we summarise some topics of probability theory which are needed in the main
text. The first section is devoted to results about weak convergence of Borel measures on metric
spaces. Essentially, we follow along the lines of section 5.1 of [4] by Ambrosio, Gigli, Savaré. A more
detailed account on this topic may be found in Billingsley’s classic text book [11]. For a modern
approach of weak convergence of measures on general topological spaces see for instance chapter 8
in Bogachev’s text book [12].
In the second section we take a brief look at the disintegration of probability measures, where we
follow the brief overview given in section 5.3 of [4]. For the relation to conditional expectations
and conditional measures see sections 10.6 and 10.10(ii) in [12].

A.1 Weak Convergence of Borel Measures

A topological spaces carries a natural u�-algebra which is closely related to the topology of the
space.

A.1.1 Definition The Borel u�-algebra u�(u�) of a Hausdorff space (u�,T ) is the smallest u�-algebra which
contains all open sets of u�. The elements of u�(u�) are called the Borel sets in u�.
A mapping u� : u� → u� between topological spaces (u�,T ) and (u�,O) is called Borel measurable or
simply Borel if u� −1(u�(u�)) ⊆ u�(u�). For instance, every continuous function u� : u� → u� is Borel.
A countably additive signed measure on the Borel u�-algebra u�(u�) is called a Borel measure on u�.

From now on we restrict ourselves to the case where the Borel u�-algebra u�(u�) is generated by
a metric space (u�, u�). Recall that the weak-∗ topology on the continuous dual space u�′

b(u�) is the
weak topology u�(u�′

b(u�), u�b(u�)), i.e. the initial topology on u�′
b(u�) with respect to u�(u�b(u�)), where

u� : u�b(u�) → u�∗∗
b (u�) is the canonical embedding of u�b(u�) into the bidual space u�∗∗

b (u�).
Denote by u�u�(u�) the linear space of all Borel measures on (u�,T ) with finite variation. Then we
can identify u�u�(u�) with a subspace of u�′

b(u�) by means of functionals of the form

u�(u� ) ∶= ∫
u�

u� du� ∀u� ∈ u�b(u�)

for all u� ∈ u�u�(u�). Hence, we may consider convergence of Borel measures on u� with respect to
u�(u�′

b(u�), u�b(u�)).
A.1.2 Definition Let (u�, u�) be a metric space. A sequence (u�u�)u�∈ℕ of Borel measures in u�u�(u�) is called

weakly convergent to a measure u� ∈ u�u�(u�) if (u�u�)u�∈u� converges to u� with respect to the weak-∗

topology u�(u�′
b(u�), u�b(u�)). In this case we write u�u� −→u�∗ u�.

A.1.3 Facts Let (u�, u�) be a metric space and consider a sequence (u�u�)u�∈ℕ of Borel measures in u�u�(u�).
(i) A more concise characterisation of weak convergence can be given as follows: For every u� ∈

u�u�(u�) we have

u�u� −→u�∗ u� iff limu�→∞ ∫
u�

u� du�u� = ∫
u�

u� du� ∀u� ∈ u�b(u�) . (A.1)

(ii) A stronger notion of convergence of measures is given by the total variation ∣u�∣(u�) of a measure
u� on u�. Indeed, the space of all signed measures on u� with finite variation forms a Banach space
with respect to |⋅|(u�).
If (u�u�)u�∈ℕ converges in the total variation to a measure u� ∈ u�u�(u�), then (u�u�)u�∈ℕ converges
weakly to u� as well.

The following elementary example shows that weak convergence is actually a weaker notion than
convergence in total variation.
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A.1.4 Example Let u� ∈ u�1(ℝ, ℝ) be a probability density and define probability measures u�u� with
densities u�u� ∶= u�u�(u�u�), u� ∈ ℕ. Then we infer that (u�u�)ℕ is weakly convergent to the Dirac measure
u�0 by means of dominated convergence applied to

limu�→∞ ∫
ℝ

u� (u�)u�u�(u�) dℒ(u�) = limu�→∞ ∫
ℝ

u� (u�/u�)u�(u�) dℒ(u�) = u� (0) = ∫
ℝ

u� du�0 ∀u� ∈ u�b(ℝ) .

On the other hand, we have ∣u�u� − u�0∣(ℝ) = 2 for all u� ∈ ℕ. Hence, (u�u�)u�∈ℕ does not converge in
◀◀total variation.

In case, a given function on u� is only semicontinuous, (A.1) need not hold any more. However, we
have the following result for weakly converging nets of probability measures.

A.1.5 Proposition Let (u�u�)u�∈ℕ be a sequence of Borel probability measures on a metric space (u�, u�), weakly
converging to a Borel probability measure u�. Then for every bounded function u� : u� → ℝ the following
statements hold:

(i) If u� is upper semicontinuous, then

lim sup
u�→∞

∫
u�

u� du�u� ≤ ∫
u�

u� du�.

(ii) If u� is lower semicontinuous, then

lim infu�→∞ ∫
u�

u� du�u� ≥ ∫
u�

u� du�.

Supposed that a net (u�u�)u�∈ℕ of Borel measures is weakly convergent to some limit measure u�, can
we find a suitable class of functions u� such that the net (u� ⋅ u�u�)u�∈ℕ is weakly convergent to u� ⋅ u�?
The answer is given by the notion of uniform integrability.

A.1.6 Definition Let let u� be a family of Borel probability measures on a metric space (u�, u�). Then we
say that a Borel function u� : u� → ℝ+

0 ∪{= ∞} is uniformly integrable with respect to u� if for every
u� > 0 there exists an integer u� ∈ ℕ such that

∫
[u� ≥u�]

u� du� < u� ∀u� ∈ u�.

In particular, u� is uniformly integrable with respect to u� when there exists some u� > 1 such that
the norm ∥ u� ∥u�u�(u�) is uniformly bounded for all u� ∈ u� . Indeed, this is immediately implied by
integration of the elementary inequality u� (u�)u�u�−1 ≤ u� u�(u�) for all u� ∈ [u� ≥ u�], which results in

∫
[u� ≥u�]

u� du� < u�1−u� ∫
u�

u� u� du� ∀u� ∈ u�. (A.2)

A.1.7 Lemma For a sequence (u�u�)u�∈ℕ of Borel probability measures on a metric space (u�, u�), converging
weakly to a Borel probability measure u�, the following statements hold:

(i) If u� : u� → ℝ is a continuous function such that |u� | is uniformly integrable with respect to (u�u�)u�∈ℕ, then

limu�→∞ ∫
u�

u� du�u� = ∫
u�

u� du�.

(ii) If u� : u� → ℝ ∪ {+∞} is a lower semicontinuous function such that (u�)− is uniformly integrable with
respect to (u�u�)u�∈ℕ, then
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lim infu�→∞ ∫
u�

u� du�u� ≥ ∫
u�

u� du� > −∞.

Now we turn to one of the central results in the theory of weakly convergent measures, which
relates weak convergence of measures to the concept of uniformly tightness of measures.

A.1.8 Definition A family u� of finite Borel measures on a metric space (u�,T ) is called uniformly tight
if for every u� > 0 there exists a compact set u�u� such that

∣u�∣(u� ∖ u�u�) < u� ∀u� ∈ u�.

In particular, every finite family u� of Borel measures is uniformly tight since the finite union of
compact sets is again compact in u�.

A.1.9 Facts Let u� be a family of finite Borel measures on a metric space (u�, u�).
(i) The family u� is uniformly tight, precisely, when there exists a nonnegative function u� : u� →

ℝ+
0 ∪ {+∞} such that all sublevel sets {u� ∈ u� : u�(u�) ≤ u�} are compact in u� and

sup
u�∈u�

∫
u�

u� du� < +∞. (A.3)

Indeed, if u� is uniformly tight, then there exists an exhaustion (u�u�)u�∈ℕ by compact sets u�u� such
that u�(u� ∖ u�u�) ≤ 2−u� for all u� ∈ ℕ and all u� ∈ u� . This means that the function

u�(u�) ∶= inf {u� ∈ ℕ : u� ∈ u�u�} =
∞
∑
u�=1

u�u�∖u�u�
(u�)

has compact sublevel sets and satisfies (A.3) by monotone convergence since we have the estimate

∫
u�

u� du� =
∞
∑
u�=1

u�(u� ∖ u�u�) ≤ 2.

Conversely, if there exists a nonnegative function u� such that (A.3) holds, then Chebyshev’s in-
equality implies

u�[u� > u�] ≤ 1
u� ∫

u�
u� du� ∀u� ∈ u�.

Thus, the family u� is uniformly tight, provided that all sublevel sets of u� are compact.

(ii) Assume that u� is a product space of the form u� = u�1 × u�2 where u�1 and u�2 are metric spaces.
Then for all compact sets u�1 ⊆ u�1 andu�2 ⊆ u�2 we have the estimate

u�((u�1 × u�2) ∖ (u�1 × u�2)) ≤ π1
#u�(u�1 ∖ u�1) + π2

#u�(u�2 ∖ u�2) ∀u� ∈ u�.

This means if both the marginal families (π1
#u�)u�∈u� and (π2

#u�)u�∈u� are uniformly tight, then u� is
uniformly tight as well.

Now we are ready to formulate the aforementioned result which relates weak convergence to uni-
form tightness.

A.1.10 Theorem (Prokhorov) Let let u� be a family of Borel measures on a Polish metric space (u�, u�). Then the
following conditions are equivalent:

(i) Every sequence (u�u�)u�∈ℕ in u� contains a weakly convergent subsequence.
(ii) The family u� is uniformly tight and uniformly bounded in total variation norm |⋅|(u�).
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A.2 Disintegration of Probability Measures

Let u� be a Polish space and let (u�u�)u�∈u� be a family of Borel probability measures on another Polish
space u�. Let us assume that the mapping u� ↦ u�u�(u�) is Borel measurable for each Borel set u� ⊆ u�.
Then every Borel probability measure u� on u� induces a Borel probability measure u� on u� by the
formula

u�(u�) = ∫
u�

u�u�(u�) du�(u�) ∀u� ∈ u�(u�). (A.4)

The following theorem shows that for every Borel probability measure u� on u�, there exists a family
(u�u�)u�∈u� such that u� is represented by (A.4), as long as u� is a pushforward measure of u�.

A.2.1 Theorem (Disintegration) Let π : u� → u� be a Borel mapping between Polish spaces u� and u�. For
every Borel probability measure u� on u�, there exists a π#u�-a.e. uniquely determined family (u�u�)u�∈u� of
Borel probability measures u�u� on u� such that the following statements hold:

(i) The function u� ↦ u�u�(u�) is Borel measurable for each Borel set u� ⊆ u�.
(ii) π#u�-almost surely the measure u�u� is concentrated on the level set π−1(u�), i.e.

u�u�(u� ∖ π−1(u�)) = 0 π#u�-a.e. u� ∈ u�.

(iii) For every nonnegative Borel function u� : u� → ℝ+
0 ∪ {+∞} the following identity holds:

∫
u�

u� du� = ∫
u�

(∫
[π=u�]

u� (u�) du�u�(u�)) dπ#u�(u�).

In particular, the measure u� is given by

u�(u�) = ∫
u�

u�u�(u�) dπ#u�(u�) ∀u� ∈ u�(u�). (A.5)

The measures u�u� are called disintegration measures of u� with respect to π#u�.
Typically, above theorem is applied to the case where u� is a product space of the form u� = u�1 ×u�2
and the the Borel mapping is given by the projection π1 : u�1 × u�2 → u�1. Then on the generator
{u� × u� : u� ∈ u�(u�), u� ∈ u�(u�)} of the product u�-algebra u�(u�) ⊗ u�(u�), (A.5) takes the form

u�(u� × u�) = ∫
u�

u�(u�|π1 = u�) dπ1
#u�(u�) ∀u� ∈ u�(u�), u� ∈ u�(u�),

where u�( ⋅ |π1 = u�) is the conditional measure of u� under π1 = u�.



Appendix B

Here we provide some background material on smooth and Riemannian manifolds. In the first
section we recall the basic framework used in the main text. Amongst the abundance of literature
on manifold theory we just mention the classic text books [42] and [58] by J.M. Lee and Petersen,
respectively. More on the notion of smooth manifolds with corners may be found for instance in J.M.
Lee [43].
In the second section we summarise some existence results regarding flows on smooth manifolds.
We refer to Chapter 9 of [43] for a more detailed treatment of this topic.
The final section of this appendix is devoted to geodesics Riemannian manifolds. The results stated
there may be found in any standard reference on Riemannian geometry, a.e. Jost [37] or the already
mentioned reference [58].

B.1 Topological, Smooth, and Riemannian Manifolds

We start with definitions for various types of manifolds.

B.1.1 Definition An u�-dimensional topological manifold is a second-countable Hausdorff space u�
together with homeomorphisms u�u� : u�u� → u�u� for open sets u�u� ⊆ ℝu� such that all u�u� provide an
open cover of u�. The pairs (u�u�, u�u�) are called local coordinate charts for u�.
The definition of an u�-dimensional topological manifold with boundary follows along the same
lines with the charts u� taking values in the u�-dimensional closed upper half-space

ℍu� ∶= {(u�1, … u�u�) ∈ ℝu� : u�u� ≥ 0}

instead. In this context, we call (u�u�, u�u�) an interior chart if u�u�(u�u�) is an open subset of ℝu� or a
boundary chart if u�u�(u�u�) is an open subset of ℍu� such that u�u�(u�u�) ∩ ∂ℍu� ≠ ∅. We say that a point
u� ∈ u� belongs to the boundary ∂u� if there exists a chart (u�u�, u�u�) such that u� ∈ u�u� and u�u� sends u� to
∂ℍu�. Otherwise, we say that the point u� belong to the interior int u�. One can show that ∂u� and
int u� are disjoint sets whose union is u�.
We say that a topological manifold (with or without boundary) is smooth, provided that all the
mappings of the form u�u� ∘ u�−1

u� are u�∞-smooth.
Geometric objects like simplices are topological manifolds with boundary which do not admit a
smooth structure, due to ‘having corners’. A remedy is provided by restricting the codomain of
the boundary charts to the subset

ℝu�
+ ∶= {(u�1, … u�u�) ∈ ℝu� : u�1 ≥ 0, … u�u� ≥ 0} .

Note that ℝu�
+ is homeomorphic but not diffeomorphic to ℍu�. This leads to the following more

general notion: A chart with corners for a topological manifold with boundary u� is a pair (u�u�, u�u�)
such that u�u� : u�u� → u�u� is an homeomorphism for some relative open set u�u� ⊆ ℝu�

+. Now a smooth
manifolds with corners is a topological manifold with boundary u� together with a collection of
interior and boundary charts (u�u�, u�u�) such that all composite mappings u�u� ∘ u�−1

u� are u�∞-smooth.
Finally, we call a smooth symmetric covariant 2-tensor field u� : u�u�u� × u�u�u� → ℝ Riemannian
metric for a smooth manifold u�, provided that u� is positive definite at each point. Then the pair
(u�, u�) is called Riemannian manifold.

B.2 Flows on Smooth Manifolds

In this section we give a brief review about flows on smooth manifolds. At the beginning we
consider only smooth manifolds without boundary.
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B.2.1 Definition Denote by u� an interval in ℝ. Given a vector field u� on u�, we call a differentiable
curve u� : u� → u� an integral curve of u� if the velocity field of u� satisfies u̇�(u�) = u�u�(u�) for all u� ∈ u�.

The nice thing about integrals is that they always exist at least locally.

B.2.2 Proposition Let u� be a smooth vector field on a smooth manifold u�. Then for each point u� ∈ u�, there
exists a smooth curve u� : (−u�, u�) → u� that is an integral curve of u� starting at u�(0) = u�.

Let us turn to flows on manifolds which is a concept closely related to integral curves.

B.2.3 Definition Let u� be a smooth manifold. A flow domain for u� is an open subsetD ⊆ ℝ×u� such
that for each point u� ∈ u�, the setD(u�) ∶= {u� ∈ ℝ : (u�, u�) ∈ D} is an interval containing 0. A (local)
flow on u� is a continuous mapping u� : D → u� such that D is a flow domain and u�u�(u�) ∶= u�(u�, u�)
satisfies the following group laws for all points u� ∈ u�:

u�0(u�) = u� and u�u�(u�u�(u�)) = u�u�+u�(u�) ∀u� ∈ D(u�), u� ∈ D(u�u�(u�)) : u� + u� ∈ Du�. (B.1)

Provided that D(u�) = ℝ for all u� ∈ u�, u� is called global flow on u�.

B.2.4 Proposition If the flow u� : D → u� is smooth, then each curve u�(⋅, u�) is an integral curve of the smooth
vector field

u̇�0(u�) ∶= d
du�u�u�(u�)∣

u�=0
.

The vector field u̇�0 is called the infinitesimal generator of u�.
The next theorem represents the central result of this section. To formulate the statement, we intro-
duce the following notion: An integral curve is called maximal if it does not admit any extension
to an integral curve on a larger open interval. Likewise, a flow is maximal if there does not exist
any extension to a flow on a larger flow domain.

B.2.5 Theorem (Fundamental theorem on flows) Let u� be a smooth vector field on a smooth manifold u�. There
exists a unique smooth maximal flow u� : D → u� whose infinitesimal generator is given by u�. This flow
satisfies the following properties:

(i) For each point u� ∈ u� the curve u�(⋅, u�) : D(u�) → u� is the unique maximal integral curve of u� starting at
u�0(u�) = u�;

(ii) if u� ∈ D(u�), then D(u�u�(u�)) is the shifted interval D(u�) − u�;
(iii) for each u� ∈ ℝ, the set

u�u� ∶= {u� ∈ u� : (u�, u�) ∈ D}

is open in u� and the mapping u�u� : u�u� → u�−u� is a diffeomorphism with inverse given by u�−u�.
Above theorem does not give answer to the question whether a vector field gives rise to a global
flow; such vector fields are called complete. In case the smooth manifold (without boundary) is
compact, the answer is positive.

B.2.6 Proposition On a compact smooth manifold every smooth vector field is complete. In particular, each of
its maximal integral curves is defined for all times u� ∈ ℝ.

For smooth manifolds with corners the existence of global flows is a more delicate issue. Indeed, if
a smooth vector field is not tangent to the boundary, then some integral curves starting at boundary
points may not exist at all.
However, it is still possible to state some existence results for the weaker notion of semiflows.
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B.2.7 Definition Let u� be a smooth manifold with corners. A global semiflow on u� is a continuous
mapping u� : ℝ+

0 × u� → u� with the properties that the group laws in (B.1) are satisfied for all
u� ∈ u� and D(u�) = ℝ+

0 .

Contrary to flows on manifolds without boundary, it is not enough to assume that a smooth man-
ifold with corners is compact, in order to ensure existence of a global semiflow. In addition, we
need to make sure that the vector field is nowhere outward pointing on the boundary. Recall that
for a smooth manifold with corners u� and a point u� ∈ ∂u�, a vector u� ∈ u�u�u� ∖ u�u�∂u� is said to be
outward pointing if there exists a smooth curve u� : (−u�, 0] → u� such that u�(0) = u� and u̇�(0) = u�.

B.2.8 Proposition Let u� be a compact smooth manifold with corners and let u� be a smooth vector field on u�
that is nowhere outward pointing on the boundary ∂u�. Then there exists a unique smooth global semiflow
on u�, whose infinitesimal generator is given by u�. In particular, each of its integral curves is defined for all
times u� ∈ ℝ+

0 .

B.3 Geodesics on Riemannian manifolds

In this section we will only consider a Riemannian manifold (u�, u�) without boundary. With the
Levi-Civita connection ∇ at hand, we may introduce geodesics in a notion slightly different from the
the definition of metric geometry given in Section 1.2.

B.3.1 Definition A smooth curve u� on a Riemannian manifold (u�, u�) is called geodesic if ∇u̇�u̇� = 0 at
each point along the curve u�. In local coordinates the condition is equivalent to the system of
geodesic equations (cf. a.e. Theorem 2.2.3 in [37])

u̇�u� − ∑
u�

u�u�u�u�u� = 0,

u̇�u� + 1
2 ∑

u�,u�

∂
∂u�u� u�u�u�u�u�u�u� = 0,

where u�u�u� denote the local coordinates of the inverse metric of u�.

We remark that a geodesic in this sense need not be be a shortest path; i.e. a geodesic joining points
u�, u� ∈ u� may have length more than u�(u�, u�). Here the metric u�u�(u�, u�), called Riemannian distance
function between points u�, u� ∈ u�, is given by the infimum of the length functional

u�(u�) ∶=
1

∫
0

∣u̇�(u�)∣u� du�

over all piecewise smooth curves u� : [0, 1] → u� connecting u� to u�. Nevertheless, sufficiently short
curve segments of geodesics are minimisers for the length functional u�. Equivalently, one may
consider the following energy functional instead of u�, in order to overcome smoothness issues:

u�(u�) ∶= 1
2

1
∫
0

∣u̇�(u�)∣2u� du�.

Let u� : (−u�, u�) × [0, 1] → u� be a smooth mapping and introduce for u�u�(u�) ∶= u�(u�, u�) the notation

u̇�u�(u�) ∶= ∂
∂u�u�u�(u�) and u�′

u�(u�) ∶= ∂
∂u�u�u�(u�).

Then the energy functional u� satisfies the first variation formula
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d
du�u�(u�u�) = −

1
∫
0

⟨∇u̇�u�(u�)u̇�u�(u�), u�′
u�(u�)⟩

u�
du� + ⟨u̇�u�(1), u�′

u�(1)⟩
u�

− ⟨u̇�u�(0), u�′
u�(0)⟩

u�
. (B.2)

One can show that for any two points u�, u� ∈ u�, every local minimum of the energy functional u�
(or equivalently of the length functional u�) over all smooth curves u� : [0, 1] → u� between u� and u�
is a geodesic in u�. Indeed, this follows from the fact that any stationary point u�0 of u�, i.e.

d
du�u�(u�u�)∣u�=0

= 0

for some smooth mapping u� : (−u�, u�) × [0, 1] → u� with u�u�(0) = u� and u�u�(1) = u�, turns out to be a
geodesic connecting u� to u�.
The following result shows that a geodesic are already uniquely determined by an initial point
together with an initial tangent vector.

B.3.2 Proposition Let (u�, u�) be a Riemannian manifold. Then for every choice of u� ∈ u� and u� ∈ u�u�u�, there
exists a unique geodesic u� : [0, u�] → u� with u�(0) = u� and u̇�(0) = u�. This curve u� depends smoothly on u�
and u�.
This proposition justifies the following definition.

B.3.3 Definition For every tangent vector u� ∈ u�u�u�, let u�u� the unique geodesic u�u�(0) = u� and u̇�u�(0) = u�.
Denote by u�u� ⊆ u�u�u� be the set such that u�u� is defined on at least the interval [0, 1]. Now the
exponential map at u� is a function expu� : u�u� → u� defined by expu�(u�) ∶= u�u�(1).

Note that the uniqueness of u�u� implies the following homogeneity property for the exponential
map:

expu�(u�u�) = u�u�(u�) ∀u� > 0 : u�u� ∈ u�u�.

Moreover, it can be shown that the exponential map is a local diffeomorphism around the origin,
i.e. expu� maps a neighbourhood of 0 ∈ u�u�u� diffeomorphically onto a neighbourhood of u� ∈ u�.
At the end of this brief section, we state one of the foundational centrepieces of Riemannian geom-
etry.

B.3.4 Theorem (Hopf-Rinow) For a connected Riemannian manifold (u�, u�) the following statements a equiv-
alent:

(i) u� is a complete metric space;
(ii) u� satisfies the Heine-Borel property, i.e. every closed bounded set in u� is compact;
(iii) u� is geodesically compete, i.e. for every point u� ∈ u�, expu� is defined on the entire tangent space u�u�u�;
(iv) there exists a point u� ∈ u� where expu� is defined on the entire tangent space u�u�u�.

In particular, any of the above statements implies that (u�, u�u�) is a geodesic space, i.e. any two points u�, u� ∈
u� can be joined by a geodesic of length u�u�(u�, u�).
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u�1 continuous Shannon entropy functional 32
F u�

1 (u�) ∶= ∑u�
u�=1 u�u�u�u� log u�u� discrete Shannon entropy functional 42

u�u�(u�) ∶= 1
u�−1u�u� integrand associated to the Rényi entropy functional 32

Δu�u�u� ∶= u�u� − u�u� discrete gradient of a function u� : Xu� → ℝ 35
∇u� Euclidean gradient of a differentiable function u� : ℝu� → ℝ 35
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(Hu�)u�≥0 heat semigroup 74
(Hu�

u� )u�≥0 discrete heat semigroup 76
(Ħu�)u�≥0 rescaled heat semigroup 74
ℍu� u�-dimensional closed upper half-space 87
u�u�(Ω) Sobolev space over Ω ⊆ ℝu� 51
u�u�(Ω) homogeneous Sobolev space over Ω ⊆ ℝu� 51
hu�(u�) ∶= 1

√4u�u�
u�−u�2/(4u�) heat kernel on ℝ 74

ħu� rescaled heat kernel 74
Iu�(u�u�) discrete Fisher information 62
u�u�
u� ∶= ((u� − 1)u�, u�u�], u� ∈ ℕ 19

ℒ Lebesgue measure on ℝ 94
ℒu� u�-dimensional Lebesgue measure on ℝu� 94
u�u� (u�) ∶= u�u� ′′(u�) − u� (u�) 31

u�u�u�u�(u�) space of Lipschitz continuous functions with Lipschitz constant at
most u� on u�

98

u�(u�) ∶= ∫1
0 √u�(u̇�(u�), u̇�(u�)) du� length of a smooth curve u� : [0, 1] → u� 39

|u̇�|(u�+) right-hand derivative of a curve u� : (u�, u�) → u� 17
|u̇�| metric differential of a curve u� : (u�, u�) → u� 11
ℳ(u�) space of signed measures with finite total variation on u� 75
u�u�(u�) space of Borel measures with finite variation on (u�, u� ) 83
u�u� discrete solution 19
u�0

u� discrete initial datum 19
u�u�

u� u�-discrete minimizing movement 19
Δ⋅u�u� ∶= 1

2 ∑u�
u�=1Qu�u�(u�u�u� − u�u�u�) discrete divergence for a function u� : Xu� ×Xu� → ℝ 42

O(u�) big O notation 98
Ω ∶= (0, 1) spatial domain of the finite volume scheme 59
( u� )+∶= max{u� , 0} positive part of u� 13
( u� )−∶= − min{u� , 0} negative part of u� 13
Φℎ 23
Π(u�1, u�2) class of admissible plans 23
Πopt(u�1, u�2 class of optimal plans 23
Pu�

u� 78
u�u�(u�) 25

Pu� class of all discrete probability densities with respect to a proba-
bility measure u� onXu�

37

Ψℎ 24
u�u� uniform partition of (0, +∞) with size u� > 0 19
π u�, π u�,u� projection 23
Ru�(u�u�, u̇�u�) ∶= 1

2⟨u̇�u�, u̇�u�⟩u� discrete dissipation potential 61

ℝu�
+ 87

û�u�u� ∶= u�u�(u�u�, u�u�) 37
∣∂u�∣ slope of u� 13
u�(u�, u�) weak topology on u� with respect to u� ⊆ u�′ 98

u�u�
u� ∶= u�u�

u�+1+u�u�
u�

2 midpoints of the partition 0 = u�u�
1 < u�u�

2 < … < u�u�
u� = 1 59
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Τ(u�1, u�2) class of admissible transport maps 24
Τopt(u�1, u�2) class of all optimal transport maps 24
u� weight function 35
u�u�(u�, u�) ∶= u�−1

u�
u�u�−u�u�

u�u�−1−u�u�−1 35

u�u� ∶= {u� ∩ u� : u� ∈ u� } subspace topology on u� ⊆ u� with respect to (u�, u� ) 98
‖⋅‖TV total variation norm of a signed measure 98
ũ�u� pseudo-weight function 66
u�(u�) neighborhood filter at point u� of a topological space (u�, u� ) 94
u�u�

u� : (0, u�) → ℝ finite volume discretisation 60
u� potential energy functional 29
V(u�) ∶= ∑u�

u�=1 u�u�u�u�u�u� discrete potential energy functional 42
u�u�

u� = ∫u�u�
u�
u�(u�) du� discretisation of drift potential u� 60

u�∗∗ convex envelope of u� 52
u�gra

u� u�-Wasserstein distance onPu� with respect to the graph distance induced
by Q 41

Wu� 78
u�u�(u�, u�) Wasserstein distance of order u� 25
u�u�

u� ∶= [u�u�
u�−1, u�u�

u� ) control volume 59
u�∗ algebraic dual space of u� 98
u�∗∗ double dual space of u� 98
u�′ topological dual space of u� 98
Xu� ≃ {1, 2, …u�} set of cardinality u� ∈ ℕ 35
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A
Allen-Cahn energy functional 52
Arzelà-Ascoli theorem 55
a priori estimate 17
absolutely continuous
curve 11

action functional 77
admissible
transport map 24
transport plan 23

algebra
tensor-product 23

arc-length
reparametrisation
of an absolutely continuous curve 12

arc-length reparametrisation
of an absolutely continuous curve 12

B
Benamou-Brenier formula 27
Borel measurable 83
Borel measure 83
weak convergence 83

Borel set 83
barycentric coordinates 37
base point 30
boundary
chart 87
of a manifold 87

boundary condition
Neumann 33, 59

C
Cahn-Hillard equation 51
characteristic function (convex analysis) 33
chart
boundary 87
coordinate 87
interior 87

coefficient
rate 59

coercive functional 55
condition
detailed balance 35
doubling 31

constant-speed geodesic 16
continuity equation 27
discrete 37

continuous porous medium equation 33
continuous Rényi entropy functional 32
continuous Shannon entropy functional 32
contraction property 17
control volume 59

convergence
Gromov-Hausdorff 53

convex
displacement 34

convex conjugate 24
convex functional

along a curve 13
geodesically 13
on a manifold 12

coordinate chart 87
coordinates

barycentric 37
corners

manifold with 87
cost function 23

quadratic 24
coupling lemma 25
curve

absolutely continuous 11
integral 88
maximal 88

locally absolutely continuous 11

D
Dini derivative

upper left-hand 14
upper right-hand 14

derivative
Dini

upper left-hand 14
upper right-hand 14

Fréchet 11
metric 11
right-hand 17
metric 17

detailed balance condition 35
differential

Fréchet 11
metric 11

discrete
continuity equation 37
dissipation potential 61
divergence 42
Fisher information 61
heat flow 76
heat semigroup 76
Laplacian 42
potential energy functional 42
Rényi entropy functional 42
Shannon entropy functional 42
transportation metric 39

discrete initial datum 19
discrete minimizing movement 19
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discrete porous medium equation 43
with drift 43

discrete solution 19
discretisation
finite volume 59

disintegration theorem 86
displacement
convexity 34
interpolation 34

dissipation potential
discrete 61

distance
function
Riemannian 89

graph 41
Kantorovich 25
Wasserstein 25

divergence
discrete 42

domain
flow 88

double-well potential 51
doubling condition 31
dual transport problem 23

E
effective domain 12
proper 12

effects
regularising 17

energy
of a curve in a Riemannian manifold 39, 89

energy dissipation equality
of a gradient flow on a metric space 16

energy dissipation inequality
of a gradient flow on a metric space 16

energy functional
Allen-Cahn 52
internal 29
slope 31

mixed 30
slope 31

potential 29
discrete 42
slope 31

energy identity 17
entropy functional
Rényi
continuous 32
discrete 42

Shannon
continuous 32
discrete 42

envelope
lower semicontinuous

of the continuous Rényi entropy functional
see continuous Rényi entropy functional

of the internal energy functional see internal
energy functional

u�-inverse 80
u�-isometry 53
equation

Cahn-Hillard 51
continuity 27
detailed balance see detailed balance condition
evolution 31
geodesic 41, 89
gradient flow 12
heat 73
porous medium

continuous 33
discrete 43

estimate=a priori 17
evolution equation 31
evolution variational inequality

of a gradient flow on a metric space 16
exponential map 90

F
Fisher information

discrete 61
Fréchet derivative 11
Fréchet differential see Fréchet derivative
finite volume discretisation 59
finite volume scheme 59
first variation formula 89
flow 88

complete 88
domain 88
global 88
gradient

equation 12
heat 74
discrete 76

maximal 88
semi- see semiflow

flows
fundamental theorem on 88

flux 59
formula

Benamou-Brenier 27
first variation 89

function
characteristic (convex analysis) 33
limit inferior of a 11
metrically differentiable 11
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Riemannian distance 89
weight 35

functional
Allen-Cahn energy 52
action 77
coercive 55
internal energy 29
slope 31

mixed energy 30
slope 31

potential energy 29
discrete 42
slope 31

Rényi entropy
continuous 32
discrete 42

Shannon entropy
continuous 32
discrete 42

fundamental theorem
on flows 88

G
Gromov-Hausdorff convergence 53
Γ-convergence
sequential

lim inf 49
lim sup 49, 49

generalised geodesic 30
generator
infinitesimal
of a flow 88

geodesic
constant-speed 16
equations 41, 89
generalised 30
on a Riemannian manifold 89
space 16

geodesic space
non positively curved
in the sense of Alexandrov 27

positively curved
in the sense of Alexandrov 27

geodesically
convex functional 13

global
flow 88
semiflow 89

gluing 25
gradient
upper
strong 13
weak 13

gradient flow
on a metric space

in the sense of EDE 16
in the sense of EDI 16

equation 12
on a metric space

in the sense of EVI 16
graph

distance 41

H
Hopf-Rinow

theorem 90
half-space

closed upper 87
harmonic mean 78
heat

equation 73
flow 74

discrete 76
kernel 74
rescaled 74

semigroup 74
discrete 76
rescaled 74

homogeneous Sobolev space see Sobolev space

I
identity

energy 17
infinite potential well 33
infinite speed propagation see heat semigroup
infinitesimal generator

of a flow 88
information

Fisher
discrete 61

initial datum
discrete 19

integrable
uniformly 84

integral
curve 88

maximal 88
interior

chart 87
internal energy functional 29

slope 31
interpolation

displacement 34
inverse

u�-inverse 80
irreducible Markov chain 35
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isometry
u�-isometry 53

J
Jensen inequality
for locally convex real TVS 82

K
Kantorovich distance 25
Kantorovich duality 23
Kantorovich transport problem 23
Kantorovich-Rubinstein theorem 26
κ-contraction property 17
u�-convex functional
along a curve 13
geodesically 13
on a manifold 12

kernel
heat 74
rescaled 74

Markov 82

L
Laplacian
discrete 42

Lipschitz continuous
reparametrisation
of an absolutely continuous curve 12

Lipschitz reparametrisation
of an absolutely continuous curve 12

left-hand Dini derivative
upper 14

lemma
Arzelà-Ascoli 55
coupling 25

length
of a curve in a Riemannian manifold 39, 89

limit inferior
of a function 11

local
flow 88

local coordinate chart 87
locally absolutely continuous
curve 11

lower semicontinuous envelope
of the continuous Rényi entropy functional see
continuous Rényi entropy functional

of the internal energy functional see internal
energy functional

M
Markov
kernel 82

Markov chain
irreducible 35
reversible 35
with nearest-neighbour interactions 43

Monge transport problem 24
manifold

boundary 87
Riemannian 87
smooth 87
topological 87
with boundary 87
with corners 87

map
admissible 24
exponential 90
optimal 24

matrix
Onsager 48

maximal
flow 88
integral curve 88

mean
harmonic 78

measurable
Borel 83

measurable space
product 23

measure
Borel 83
pushforward 23

metric
Kantorovich 25
on a Riemannian manifold 89
Riemannian 87
Wasserstein 25

metric derivative 11
right-hand 17

metric differential see metric derivative
metrically differentiable function 11
minimizing movement 19
mixed energy functional 30
slope 31

momentum vector field 77

N
Neumann boundary condition 33, 59
NPC space see non positively curved geodesic space
nearest-neighbour interactions

Markov chain with 43
negative Sobolev space see Sobolev space
non positively curved geodesic space

in the sense of Alexandrov 27
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O
Onsager matrix 48
optimal
transport map 24
transport plan 23

optimal pair
of the dual transport problem 23

outward pointing
vector field 89

P
PC space see positively curved geodesic space
Prokhorov
theorem 86

plan
admissible 23
optimal 23

point
base 30

porous medium equation
continuous 33
discrete 43
with drift 43

positively curved geodesic space
in the sense of Alexandrov 27

potential
dissipation
discrete 61

double-well 51
potential energy functional 29

discrete 42
slope 31

potential well
infinite 33

product measurable space 23
projection 23
propagation see heat semigroup
proper effective domain 12
pushforward 23

R
Rényi entropy functional
continuous 32
discrete 42

Riemanian
metric 87

Riemannian
distance function 89
manifold 87

energy of a curve 39, 89
length of a curve 39, 89

rate coefficient 59
recovery sequence 50

regularising effects 17
reparametrisation

of an absolutely continuous curve 12
arc-length 12
Lipschitz continuous 12

rescaled
heat kernel 74
heat semigroup 74

reversible Markov chain 35
right-hand Dini derivative

upper 14
right-hand derivative 17

metric 17

S
Shannon entropy functional

continuous 32
discrete 42

Sobolev space
homogeneous

negative 51
scheme

finite volume 59
semiflow

global 89
semigroup

heat 74
discrete 76
rescaled 74

sequence
recovery 50

sequential
Γ-convergence 49
Γ-lim inf convergence 49
Γ-lim sup convergence 49

set
Borel 83

u�-algebra
Borel 83
tensor-product 23

slope 13
of the internal energy functional 31
of the mixed energy functional 31
of the potential energy functional 31

smooth manifold 87
with corners 87

solution
discrete 19

space
geodesic 16
measurable

product 23
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Sobolev
homogeneous negative 51

strong upper gradient 13

T
u�-discrete minimizing movement 19
tensor-product algebra 23
theorem
Arzelà-Ascoli 55
disintegration 86
fundamental
on flows 88

Hopf-Rinow 90
Kantorovich-Rubinstein 26
Prokhorov 86

tight
uniformly 85

time step 19
topological manifold 87

with boundary 87
transport plan
admissible 23
optimal 23

transport problem
Kantorovich 23
Monge 24

transportation metric
continuous see Wasserstein distance
discrete 39

U
uniform integrability 84

uniforml tightness 85
upper

half-space
closed 87

upper gradient
strong 13
weak 13

upper left-hand Dini derivative 14
upper right-hand Dini derivative 14

V
variation formula

first 89
vector field

momentum 77
outward pointing 89

volume
control 59

W
Wasserstein distance 25
Wasserstein space 25
weak convergence

of Borel measures 83
weak topology 83
weak upper gradient 13
weak-∗ topology on u�′

b(u�) 83
weight function 35
well

infinite potential 33
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