
 

 

 

DISSERTATION 

 

Increased information to effort ratio through physiological 

bioprocess development 

 

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der 

technischen Wissenschaften unter der Leitung von 

 

Prof. Dr. Christoph Herwig 

E166 

Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften 

 

 

eingereicht an der Technischen Universität Wien, 

Fakultät für Technische Chemie 

 

von 

Wieland Reichelt 

0512551 

Thaliastraße 7/20, 1160 Wien 

 

 

 

Wien, am                                                                               eigenhändige Unterschrift 

  

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



 

Deutsche Kurzfassung 
Escherichia coli ist der am häufigsten genutzte Organismus für die rekombinante 
Proteinproduktion mit Bioprozessen [1, 2]. Während der Prozessentwicklung im Labor bis hin 
zum Produktionsmaßstab, werden kritische Prozessparameter identifiziert und anschließend 
untersucht. Das Ziel ist die Gernerierung von möglichst produktunabhängigem und damit 
transferierbarem Prozessverständnis um den Aufwand für die neuerliche Bioprozessentwicklung 
zu minimieren. Derzeitig werden Bioprozesse häufig anhand technischer Parameter entwickelt 
z.B. volumetrischer Fütterungsraten, was die Transferierbarkeit des Prozessverständnis limitiert. 
Nach Jahrzehnten der technologieorientierten Prozessentwicklung findet nun eine 
Umorientierung auf physiologische Parameter statt [3-6]. Unterteilt in einen analytischen und 
einen methodischen Teil, wird in dieser Dissertation der Mehrwert physiologischer 
Bioprozessentwicklung im Vergleich zu herkömmlichen Ansätzen analysiert und bewertet. 

1) Methodenentwicklung und Bewertung zur Quantifizierung physiologischer Prozesse und 
Phänomene bzgl. Robustheit und Sensitivität: 

 Als Begeleiterscheinung von Zelllyse werden zytosolische Proteine freigesetzt [7]. Der 
analytische Fehler der Proteinquantifizierung wurde auf Probenmatrixeffekte 
zurückgeführt und durch methodische Adaption von >200% auf <50% reduziert. 

 Protein Expression führt häufig zum physiologischen Phänomen der Inclusion body (IB) 
Bildung. Um das Wachstum der IBs als Auswirkung der Expressionsrate quantifizierbar 
zu machen, wurde Nano Particle Tracking Analysis als neue Methode für die 
Größenbestimmung von IBs etabliert und verifiziert.  

 Physiologische Bioprozesskontrolle bedarf einer akkuraten Bestimmung der Biomasse 
bereits in der frühen Phase der Bioprozessentwicklung. Für Biomasseschätzung in 
Echtzeit, hat sich die per gewichtetem Mittelwert kombinierte, massenbilanzbasierede 
Softsensorenschätzung als praktikabelste Methode (Information/Aufwand) erwiesen. 

2) Analyse der Vor und Nachteile physiologischer Bioprozessentwicklung anhand industriell 
relevanter Produktionsprozesse: 

 Physiologische Bioprozesentwicklung fußt auf numerischen, physiologischen 
Deskriptoren, spezifisch für definierte Prozessphasen. Eine neue 
substratverbrauchsbasierte Grundlage zur Phasendefinition wurde vorgestellt und ein 
Schema zur Integration von vorhandenem Prozesswissen in die Versuchsplanung 
anhand eines Beispiels illustriert. 

 Eine physiologische Fütterungsstrategie bedarf der präzisen Definition physiologischer 
Limits z.B. des kritischen qS (qScrit). Mit Hilfer kontrollierter Oszillationen von qs, konnte 
eine starke Abhängigkeit von der Zeit sowie von der metabolischen Aktivität gezeigt 
werden. Folglich bedarf es einer prozesstechnologischen Strategie um das dynamische 
Verhalten von qScrit auch in Echtzeit zu erkennen und abzufangen. 

 Basierend auf einer Kombination aus Softsensoren wurde eine Closed-Loop-Echtzeit 
Kontrollstrategie für qS etabliert. Mit dieser Kontrollstrategie war es möglich die sonst 
verbreitete Anhäufung von Substrat in der späten Induktionsphase zu vermeiden. 

In dieser Dissertation werden die Vor- und Nachteile physiologischer Bioprozessentwicklung 
umfassend analysiert und diskutiert. Physiologische Bioprozessentwicklung ermöglicht tiefe 
Einblicke in physiologische Prozesse und fördert das generelle Verständis für das Verhalten des 
Produktionsstammes unabhängig von einem Produktivitätsgewinn. Physiologische 
Bioprozesskontrolle stellt das Rückgrat für physiologische Prozessentwicklung dar und kann 
Experimente zur Stammcharakterisierung offenbar sogar ersetzen. Sie eröffnet neue 
Möglichkeiten in der Prozessentwicklung, möglicherweise auch eine Steigerung der 
Raum/Zeitausbeute. Physiologische Bioprozessentwicklung verlangt anfänglich nach einem 
erhöhten Aufwand für die Implementierung der Analytik sowie der Kontrollalgorithmen, doch 
nachhaltig lohnt sie sich und erhöht das Informations zu Aufwandsverhältnis substantiell. 
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Abstract 
Escherichia coli is one of the most exploited organisms for industrial production of recombinant 
proteins using bioprocesses [1, 2]. Within process development, critical process parameters are 
identified and consequently investigated from lab to production scale. In order to minimize 
process development effort the generation of product independent, transferable prior process 
knowledge is of utmost interest. Currently, bioprocesses are commonly developed based on 
technical process parameters as e.g. volumetric feeding rates, generating hardly transferable, 
technology oriented process knowledge. After decades of focusing on technical parameters, a 
more physiological approach has emerged [3-6]. Structured in two parts, this thesis aims to 
establish and assess physiological bioprocess development as well as to analyze whether it 
bears significant advantages compared to conventional approaches.  

1) Establishment and investigation of analytical methods to quantify and detect physiological 
processes and phenomena with respect to accuracy and robustness: 

 Cell lysis, as physiological event, features cytosolic protein release [7]. For protein 
quantification in complex sample matrixes the error of the method was reduced from 
>200% to <50%.  

 High titer expression of protein frequently features the physiological phenomena of 
inclusion body (IB) formation. To analyze the IB growth as an effect of expression rates, 
the novel method of nano particle tracking analysis for IB sizing was established and 
successfully verified. 

 Physiological bioprocess control requires accurate biomass estimation. In the context of 
early bioprocess development, a weighted average combination of first principle soft 
sensors was proven the most suitable approach for real time biomass estimation. 

2) Analysis of the advantages and challenges of physiological bioprocess development at hand 
of industrial relevant production processes. 

 Physiological bioprocess development requires single numerical descriptors of physiology 
representing distinct process phases. Therefore, a novel variable for physiological phase 
definition and a workflow to increase process knowledge integration was illustrated. 

 A physiological feeding strategy based on the specific substrate uptake rate (qS), in 
comparison to technological feeding profiles, was shown to be highly beneficial in terms of 
product titer. 

 Physiological process control requires the accurate definition of physiological limits e.g. the 
critical qS (qScrit). Using controlled oscillations of qS, qScrit was shown to be highly dependent 
on time after induction and on the average metabolic activity qSmean. The latter finding calls 
for technological strategies to cope with the dynamic nature of qScrit.  

 Using a combination of first principle softsensors a closed loop real time control approach 
of qS was established. Hereby, substrate accumulation in late process phases was 
effectively avoided. 

This thesis comprehensively discusses advantages and challenges of physiological bioprocess 
development. Physiologic process development grants deeper insights into relevant 
physiological processes and fosters the general understanding of the behavior of the production 
strain regardless of an associated titer increase. Physiological bioprocess control approaches, 
as the backbone of physiological bioprocess development are even able to substitute strain 
characterization experiments. It grants additional degrees of freedom and thereby potentially 
allows for higher time space yields. It can be concluded, that physiological bioprocess 
development asks for a one time effort investment for the establishment of sensitive analytics 
and physiological control approaches but on the long term it rewards with a substantial increase 
in information to effort ratio.   
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Introduction 
Biopharmaceuticals are defined as “A protein or nucleic acid based pharmaceutical 

substance used for therapeutic or in vivo diagnostic purposes, which is produced by means 

other than direct extraction from a native (non-engineered) biological source” [8]. Besides 

conventional, high volume drugs, as insulin, biopharmaceuticals are often key drugs for 

frequent and deleterious diseases as neurodegenerative diseases e.g. Alzheimer´s [9] or 

even cancer [10]. Biopharmaceutical drug production within bioprocesses is a growing, 

high-volume but also highly competitive market [2].  

Progressively expiring patent protection of conventional drugs brings forward generic drug 

industry and heats up competition for the most productive and robust bioprocesses [11]. 

While in the last decades products targeted high volume markets, more individualized 

products have been emerging. Despite a smaller market size per product, the demands 

regarding process knowledge for a robust and productive bioprocess remain constant or are 

even increasing.  

In contrast to the struggle for cost efficiency and productivity of the pharmaceutical industry, 

regulatory authorities are mainly motivated by safety concerns. High and constant product 

quality as well as process reproducibility [12] are the superimposed demands which 

pharmaceutical industry has to meet. In return, regulatory authorities reward sound science-

based bioprocess development and bioprocess understanding [13, 14] with greater 

manufacturing flexibility. Process understanding is commonly demonstrated at hand of 

mechanistic process knowledge i.e. information regarding the physiological basis of 

observed interrelations of process parameters and productivity/product quality. 

Summarizing, in an environment of decreasing market size for single products and 

intensifying competition, growing demands regarding process knowledge have to be met by 

manufacturers. This situation explains the crucial role of bioprocess development for 

pharmaceutical industry. 

Setup, host and product are the higher level variables common to every bioprocess and are 

usually defined prior to entering the bioprocess development phase. For the sake of cost 

efficiency, production units are commonly designed as host specific, multipurpose (different 

products) units rather than product dedicated. Escherichia coli is one of the most industrially 

exploited procaryotic production hosts for heterologous protein production [1, 15]. This is 

owned to E.coli inherent attributes of fast growth, simplistic genetic engineering, 

inexpensive media and the possibility of high cell density cultivations. 

 

 

Background 

For a novel drug, a product specific strain is generated and selected during strain 

engineering. Subsequently, the bioprocess development phase is entered. The main 

characteristic of early bioprocess development is commonly the lack of strain specific prior 

knowledge as e.g. biomass yield and physiological capacities. Within bioprocess 

development, process parameters are investigated as factors using a design of experiment 

approach (DoE). Prerequisite for the investigation is hereby the ability to control or to adjust 

the respective factor to a discrete level e.g. medium recipe, pH, temperature, substrate 
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supply [16]. Hereby, the respective factors are investigated regarding the response of 

productivity and product quality. Factor selection is commonly based on a risk assessment, 

which is merely of qualitative nature and commonly fully based on theoretical expert 

knowledge [17]. Using lab scale experiments within screening DoEs, the investigated 

factors are subsequently qualitatively categorized into critical and non-critical process 

parameters regarding their impact on productivity and product quality [18]. To optimize 

productivity, the quantitative relationship of process parameters and target responses is 

established by conducting additional experiments. Post lab scale process development, the 

process is up-scaled to industrial relevant scales.  

In bioprocess development, laborious experiments are the only source of information and 

consequently knowledge, necessary to satisfy industrial as well as regulatory demands 

regarding a specific product. These experiments are regarded as the main cost drivers in 

bioprocess development, since they evoke substantial investments in terms of time, 

equipment and human resources. Consequently, the reduction of experiments necessary for 

process development is of great interest, for the sake of cost efficiency and a competitive 

edge.  

While the regulatory demands are high product quality and reproducibility, the inherent 

demand of pharmaceutical industry is cost efficiency. Aligning these demands appears to 

constitute a contradiction. But the demand for increased process understanding might 

potentially turn out as synergistic in respect of the struggle for cost efficiency even despite 

the admittedly scarce reports on the benefits of mechanistic knowledge [19, 20]. The 

elucidation of the root cause of an observed phenomenon (mechanistic knowledge [19, 20]) 

generates a more general validity/scope than the mere correlation of process variables 

(technological knowledge [21, 22]), regardless of the field of science. 

Theoretically, the amount of information necessary to satisfy industrial and regulatory 

demands is independent of the higher level variables (host, setup, product). Consequently, 

the number of necessary experiments can be reduced by increasing the amount of available 

prior knowledge. To do so, the respective knowledge and conclusions derived from 

bioprocess development need to be transferable. The independency of one of the higher 

level variables of a bioprocess is regarded as the main characteristic of transferability of 

process knowledge. Transferability can consequently be achieved at different levels. 

Transferability of process knowledge in-between products is the most sought for type of 

transferability. Only product independent knowledge adds to the amount of prior knowledge 

which can help to reduce the amount of effort for process development of a consecutive 

product. Nevertheless, even transferable, product independent process knowledge remains 

dependent on the genetic background of the host. Consequently, the host is usually 

standardized for certain product categories, as in this case E.coli. As further measure, 

industry has adopted the use of highly engineered strains as production platforms for 

various products [23]. Hereby, the use of a standardized genetic background facilitates (e.g. 

BL21, K12) an increasingly predictable physiological behavior.   

Transferability of process knowledge in-between setups (up-scaling) can be regarded a pre-

requisite. This transferability of knowledge in between scales is commonly congruent with 

the demand of scalability of processes and correlated control approaches.  While setups 

change repeatedly during up-scaling throughout process development, the production strain 

remains constant. Rather than the reactor, the actual producers of the product in 
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bioprocesses are the cells, since product formation is generally regarded as physiological 

process. Consequently, in favor of transferability it appears logical to focus on the 

physiology of the cells during bioprocess development, rather than on setup specific 

technological variables. For the sake of information to effort ratio a shift from control of 

technology to control of physiology would be indicated, yet an alternative route for process 

development is needed. Physiologic process development targets the elucidation of 

physiologic interrelations using physiologic process control. Hereby, physiologic process 

control shall be defined as the control of biomass specific variables such as the specific 

substrate uptake rate, for the sake of robustness, preferably in real time.  

Regarding the aim of decreasing the amount of necessary effort for bioprocess development 

this thesis investigates the hypothesis that physiological bioprocess development grants a 

greater information to effort ratio than conventional approaches. 

Fundamental, physiological interrelations appear to feature a greater general scope and 

consequently transferability in-between products than e.g. the finding of a positive 

correlation of productivity and volumetric substrate supply. In this context, from a theoretical 

point of view the adoption of physiologic process development appears self-evident. 

Nevertheless, conventional technological process development still mainly focuses on the 

control of technological variables as the substrate feed rate [22] into the reactor system 

instead of focusing on the substrate uptake into the cells. Although a substantial amount of 

literature on physiologic bioprocess development approaches is available, reports of 

industrial adoption of physiological bioprocess development remain scarce.  

Instead, in an industrial environment, development approaches remain focused on technical 

variables [24]. The hesitant industrial adoption of physiological process development may 

be attributed to perceived gaps in (1) analytics for physiological process development and 

(2) evidence of feasibility of physiological control.  

Physiologic bioprocess development relies on the physiological variables which commonly 

comprise more data than technological variables (e.g. biomass concentration). In this 

context error propagation of individual input data amplifies the impact of measurement 

noise. Consequently, the demands regarding the sensitivity and robustness of analytical 

methods for physiological bioprocess development are substantial. In this context the 

challenge for bioprocess development is the establishment of sensitive analytical methods. 

This applies for process and product related responses (1a) as well as for real time 

estimation of e.g. biomass concentration (1b). While a lot of effort is commonly invested into 

timely resolved measurement e.g. by automation efforts, hardly any effort is invested into 

(re)assessment and de-novo establishment of analytical methods.  

Based on sensitive analytical methods, physiological process control becomes feasible, 

Subsequently generated large data sets renders physiological process evaluation is 

challenging (2a) and requires a clear roadmap to standardize data evaluation. Hereupon, 

following the same process development routine for different products can facilitate an 

assessment of the transferability of physiologic findings (2b) between different products. 

Additionally, being able to evaluate processes irrespective of their control strategies, the 

standardized data evaluation facilitates the direct comparison of technological and 

physiological control strategies (2c). Any type of DoE requires a definition of boundaries, 

which can be of technological as well as physiological nature. In this context, especially the 

quantification of the physiological feasible space, which is limited by physiological 
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capacities, is challenging and laborious (2d). Commonly physiological process development 

is perceived to be correlated to substantial additional effort for process control. These 

methods are commonly perceived as hardly robust but highly complex. The consequently 

unclear information to effort ratio (2e) appears to one of the main obstacles for the adoption 

of physiological bioprocess development approaches in industry. 

To overcome these hurdles, the goal of this thesis is the comprehensive discussion of the 

benefit and challenges of physiological bioprocess development using exemplary industrial 

processes. 

 

Goals 

 (1) Analytics for physiological process development 

a) Sensitive at-line analytics – product/process related 

b) Real time quantification of biomass 

 

(2) Feasibility of physiological control 

a) Workflow for physiological process evaluation 

b) Transferability of physiologic findings 

c) Benefit of physiological process control 

d) Definition of physiologic capacities/boundaries for DoE 

e) Information to effort ratio 

 

 

Roadmap 

(1) Analytics for physiological process development 

Physiological bioprocess development requires sensitive and accurate analytical methods 

as foundation for subsequent physiological conclusions. In addition to analytical methods for 

response evaluation, real time analysis is necessary to enable physiological control 

strategies. But physiological control strategies are often correlated to a substantial increase 

in effort compared to controlling a technical parameter as e.g. the volumetric feed rate. 

Consequently, analytical methods are re-assessed, verified or established to quantify and 

detect physiological phenomena as protein release, protein aggregation and biomass 

growth. 
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(2) Physiological process control 

To increase productivity in microbial bioprocesses one of the most promising factors, 

controlled and frequently investigated, is the substrate feed rate [25-27, 29-31]. In the 

context of physiological bioprocess control a lot of effort has been invested in order to 

develop generic control approaches to control the specific growth rate [3, 12, 32-34] as well 

as the specific substrate uptake [35-37] via the feeding rate. Nevertheless, comprehensive 

studies comparing technological to real time controlled physiological approaches with 

respect to productivity to this date missing in literature. To investigate the benefits and 

limitations of physiological bioprocess development, the physiological approach is 

compared to the state of the art process development routine in terms of process phase 

definition, workflow, information to effort ratio, physiological constraints and control 

approaches. 

 

To establish and to investigate the benefits/challenges of physiological process 

development this thesis is structured into the following subsections according to Figure 1. 

 

 

Figure 1: General structure of the thesis to assess physiological bioprocess development: 1) Analytics of 
product and process related variables, 2) Process control in terms of data evaluation, the impact of 
physiological feeding on productivity, the nature of physiological capacities and a control strategy 
independent of fixed strain specific variables besides the biomass composition; Discussion these aspects 
the challenges and the benefits of physiological bioprocess development shall be illustrated. 
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Results and discussion 
 

1) Analytics for physiological process development 

With limited exceptions [38], available literature in bioprocess development hardly ever 

investigates the physiological reason of the observed phenomena e.g. the strong impact of 

substrate supply on productivity [33]. This might be owned to a lack of sensitivity of analytical 

methods, utilized to detect and to quantify physiology and correlated phenomena. As outlined in 

the introduction, physiological bioprocess development relies on a greater amount of input 

data. In turn this makes the calculation of physiological variables increasingly sensitive to 

measurement noise since the noise is being amplified by error propagation. Within this section 

we address the respective challenges (Figure 1). The necessity for sensitive analytics applies 

for sensing major physiological events as protein secretion as well as for the formation of 

protein aggregates (inclusion bodies) as response to protein overexpression or simple biomass 

growth. Interestingly, although various methods are available, hardly any contribution assesses 

the sensitivity of published methods within the specific area of application. In this context 

comprehensive revision of analytical methods might potentially comprise the key to a sensitivity 

increase enabling to novel physiological or process relevant findings. 

 

 

Figure 1: Graphical representation of the structure of the analytical section: Analytical challenges as in 
protein quantification, real time biomass estimation and inclusion body analytics are investigated and 
discussed. 
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i. Protein quantification in complex sample matrices 

In biotechnology and numerous other scientific areas, a precise measurement of the protein 

concentration is of great relevance (Walker, 1994).Especially in the recombinant production of 

biopharmaceuticals and other high-value added compounds, the total protein concentration 

serves as a key variable for process development and quality control purposes (Han et al., 

2003; Jazini and Herwig, 2013, 2011). The total protein release into the culture supernatant can 

not only give a direct estimate of productivity in case of secreted proteins but also provides 

valuable information on the overall cell physiology during a bioprocess. This is owned to the 

putative source of soluble protein in the supernatant: cellular lysis or protein secretion. In both 

cases the onset of these major physiological events constitutes valuable information targeting 

sound science based understanding of the impact of feeding strategies on physiology. 

Consequently, we challenged the state of the art approach of wet chemical protein 

quantification in complex sample matrices and were able to reduce the analytical error 

significantly. 

Despite substantial efforts to identify and remove interfering substances (Schoel et al., 1995; 

Morton and Evans, 1992; Brown et al., 1989), complex sample matrices still greatly impair to 

the commonly used assays for total protein quantification. In contrast to existing literature the 

use of system relevant sample matrix instead of artificial sample matrix facilitated the 

identification of significant measurement bias. This finding highlights the sensitivity of 

underlying hypothesis if analytical assays are tested with artificial matrices – all occurring 

substances in the sample matrix have to be identified a priori. Using the sample matrix directly 

derived from the analytical area circumvents this threat. Unfortunately, the biasing influence of 

media components is often neglected in bioprocess monitoring and appropriate controls are not 

included. 
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conventional approach of compensating for interfering sub-
stances via a static offset. Hence, we evaluated the use of a 
correction factor based on an internal spike measurement 
for the respective samples. Using protein spikes, the accu-
racy of the BCA protein quantification could be improved 
fivefold, taking the BCA protein quantification to a level 
of accuracy comparable to other, more expensive methods. 
This will allow reducing expensive iterations in bioprocess 
development to due inaccurate total protein analytics.

Graphical abstract
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Introduction

In biotechnology and numerous other scientific areas, a 
precise measurement of the protein concentration is of 
great relevance [44]. Especially in the field of recombinant 
production of biopharmaceuticals and other high-value 
added compounds, the total protein concentration serves as 
a key variable for process development and quality control 

Abstract  Determining total protein content is a routine 
operation in many laboratories. Despite substantial work 
on assay optimization interferences, the widely used bicin-
choninic acid (BCA) assay remains widely recognized for 
its robustness. Especially in the field of bioprocess engi-
neering the inaccuracy caused by interfering substances 
remains hardly predictable and not well understood. Since 
the introduction of the assay, sample pre-treatment by 
trichloroacetic acid (TCA) precipitation has been indi-
cated as necessary and sufficient to minimize interfer-
ences. However, the sample matrix in cultivation media is 
not only highly complex but also dynamically changing 
over process time in terms of qualitative and quantitative 
composition. A significant misestimation of the total pro-
tein concentration of bioprocess samples is often observed 
when following standard work-up schemes such as TCA 
precipitation, indicating that this step alone is not an ade-
quate means to avoid measurement bias. Here, we propose 
a modification of the BCA assay, which is less influenced 
by sample complexity. The dynamically changing sample 
matrix composition of bioprocessing samples impairs the 
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purposes [16–18]. The total protein release into the culture 
supernatant can not only give a direct estimate of produc-
tivity in case of secreted proteins but also provides valu-
able information on the overall cell physiology during a 
bioprocess. As is the case for other critical variables, the 
strive for deeper bioprocess understanding calls for ana-
lytical methods that are accurate, sensitive, robust and cost 
efficient. Despite substantial efforts to identify and remove 
interfering substances, complex sample matrices still put 
limitations on the commonly used assays for total pro-
tein quantification. Unfortunately, the biasing influence of 
medium components is often neglected in bioprocess moni-
toring and appropriate controls are not included.

Commonly, two approaches for total protein quantifica-
tion are employed: non-colorimetric or colorimetric assays. 
Non-colorimetric measurements of the protein concentra-
tion, e.g. amino acid analysis [38], size exclusion chroma-
tography or mass spectrometry are usually linked to a high 
instrumental expense and effort in preparatory work [14]. 
The high protein specificity of the latter methods is advan-
tageous for target protein quantification. However, the 
same, high sensitivity towards different types of proteins 
and the associated need to use appropriate standards are 
significant drawbacks in the context of total protein quan-
tification. In case of methods that are less specific, e.g. UV/
Vis-based platform SoloVPE [30] instrumental advances 
have allowed for an increase in sensitivity and decrease of 
the sample volume. Nevertheless, protein quantification 
via UV/VIS absorption is often hindered by sample matri-
ces containing unsaturated fatty acids [47]. In colorimetric 
assays, lab-on-a-chip systems [2, 14, 35] have led to sub-
stantial progress in terms of sensitivity and reproducibility. 
These techniques combine a chromatographic separation 
phase to the colorimetric detection step, leading to good 
resolution and sensitive quantification. However, the chro-
matographic separation step has to be specifically adapted 
to the sample matrix. In case of bioprocess samples this 
sample matrix can be subjected to dynamical changes over 
process time. This requires case-by-case adaptations of 
the chromatographic separation step and makes total pro-
tein quantification via such systems tedious. Additionally, 
owing to the need for advanced microfluidics in the chip 
technology, these assays are linked to substantial invest-
ments and higher consumable expenses as compared to 
conventional colorimetric assays.

Wet-chemical assays are more cost efficient and, 
although involving several handling and preparation steps, 
usually allow for high-throughput analysis. The underly-
ing principle of a more or less uniform protein staining, 
based merely on amino acid residues, is an advantage in 
the context of total protein quantification. In combination 
with their simplicity the latter characteristics are the reason 
for the wide usage of these wet-chemical assays for total 

protein quantification [6, 13, 29, 32, 47]. Bradford, Lowry 
and the Bicinchoninic acid (BCA) assay are the most com-
monly used colorimetric assays. Especially in microbial 
bioprocesses the composition of the supernatant sample 
usually becomes increasingly complex throughout the fer-
mentation time course, mainly due to a gradual accumula-
tion of sugars, phospholipids, DNA and salts. Considerable 
research effort has been devoted to the direct comparison of 
the available colorimetric assays, leading to some general 
recommendations regarding assay usage [11, 22, 29, 37].

The Bradford or Coomassie Blue assay is based on a 
residue-specific stain, first described by Bradford [4]. Via 
hydrophobic interactions, Coomassie Brilliant Blue G-250 
[11] binds to arginine, histidine, phenylalanine, tryptophan 
and tyrosine residues [8] at acidic pH. Disadvantages of 
this assay include sensitivity to different reagent formula-
tions [33] as well as the high sensitivity to varying amino 
acid composition [8]. This sensitivity to the amino acid dis-
tribution renders the method less applicable for the generic 
quantification of the total protein content in biotechnology.

The Lowry assay is based on a two-step chemical reac-
tion: first, a reduction of cupric ions to cuprous ions under 
alkaline conditions, and second, a reduction of protein 
residues [24]. This reduction is followed by a reaction 
with the Folin–Ciocalteu reagent, resulting in a blue com-
plex absorbing at 750 nm [31]. Since the color formation 
is not only induced by cuprous ions, but also by chromo-
phoric amino acids such as tyrosine, tryptophan, phenyla-
lanine [48] as well as cysteine residues [10], differences 
in the content of the various amino acids can cause high 
protein-to-protein variation. Nonionic detergents have been 
reported to form a precipitate with the Folin–Ciocalteu 
reagent and the use of anionic detergents such as sodium 
dodecylsulphate (SDS) or sodium deoxycholate (DOC) has 
been proposed to counteract this problem [9]. Adopting the 
use of DOC without further investigation, a precipitation 
step has been found beneficial for the removal of interfer-
ing substances from artificial samples [3]. More advanced 
modifications of the Lowry assay have been developed to 
improve robustness against interfering substances, as well 
as linear range. Nevertheless, the assay is still being out-
matched by the BCA assay in terms of linear range and 
sensitivity [6].

In the BCA assay, the Folin–Ciocalteu reagent is 
replaced with bicinchoninic acid as described by Smith 
[40]. Unlike the Bradford and the Lowry, the BCA assay 
features a relatively small protein-to-protein variation [11, 
28], making it the most suitable assay for total protein 
quantification. As described in literature [12, 22, 44], the 
BCA assay is the best choice for samples with undefined 
protein content in the presence of detergents. Even in com-
bination with a DOC-TCA precipitation step, the Lowry 
assay is outmatched by the standard BCA assay in terms 
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of robustness towards interfering detergents [34]. This is 
of particular relevance when analyzing the supernatant of 
culture medium, which often contains significant amounts 
of biological (e.g. DNA and phospholipids of cellular ori-
gin) and synthetic surface-active compounds, e.g. nonionic 
detergents such as antifoam additives.

Several other substances are known to cause interference 
with the BCA measurement in bioprocess samples, includ-
ing medium components like ethylenediaminetetraacetic 
acid (EDTA) [45], reducing sugars [5, 43] like fructose or 
lactose [34] and metabolites as phospholipids [19] or bio-
genic amines. Already the work of Smith [40] highlighted 
the need to implement proper controls and, if necessary, 
pre-treatment steps to avoid interference. Efforts have been 
undertaken to remove interfering substances, e.g. by precip-
itation with TCA [5, 26, 39]. Hereby, DOC has occasion-
ally been used in combination with TCA [5, 39] referring 
to work based on the Folin–Ciocalteu reagent [3]. However, 
to our knowledge, up to now no statistical significant data 
has been provided in literature indicating the benefit of the 
additional use of DOC compared to the mere TCA precipi-
tation in the context of the BCA assay. To account for inter-
ference of the sample matrix, countermeasures have been 
described which aim at the identification of the interfering 
substances [27]. Once identified, the components can be 
accounted for during calibration. Unfortunately, bioprocess 
samples often are subjected to unpredictable changes in the 
amount and nature of the interfering components, leading 
to substantial bias. Despite multiple accounts in literature 
pointing out the risk and impact of sample matrix interfer-
ence for the BCA assay, many researchers are too confident 
regarding the universal applicability of this long-estab-
lished standard procedure [18, 20, 25, 36].

This work presents an application-oriented re-assess-
ment of the BCA assay as the current state-of-the-art 
method in bioprocess protein quantification. We demon-
strate the substantial bias caused in total protein quantifica-
tion when following standard protocols over the course of 
typical fed batch cultivations and demonstrate how simple 
adjustments to the method can lead to remarkable improve-
ments in measurement accuracy,

Materials and methods

Media

One industrially relevant complex and one synthetic cul-
ture medium were tested in a typical fed batch bioprocess 
[23]. Escherichia coli was cultivated at controlled pH (7), 
DO2 (>30  %) and temperature (30  °C) to high cell den-
sity (biomass concentration  >40  g/L). In the complex 
medium the E. coli strain K12 was grown with glycerol as 

C-source, producing a Fab antibody as soluble intracellular 
protein (~24 kDa) throughout an induction phase of 48 h. 
The complex medium was based on the formulation given 
in Wilms et al. [46], supplemented with complex medium 
components. In the synthetic medium, based on the formu-
lation of Korz et al. [21] the E. coli strain BL21 DE3 was 
grown on glucose as a C-source. During induction phase an 
intracellular protein (~30 kDa) was expressed which led to 
the formation of inclusion bodies.

Samples

Time-resolved fermentation samples were taken through-
out induction phase of the experiments and labeled from 
A-I. The samples were cleared from cells and other debris 
(10,000 rpm; 10 min, 4 °C). The clear supernatant served as 
sample for further investigation and was stored at −20 °C.

Trichloroacetic acid (TCA) precipitation

Prior to protein quantification by BCA assay, the protein 
was isolated via TCA precipitation [42]. 500 µL of 10 % 
TCA solution (Carl Roth, Austria, 8789) in MilliQ was 
added to 500 µl of sample. After 10 min incubation on ice 
the samples were centrifuged (10,000 rpm; 10 min, 4 °C). 
Subsequently, the supernatant was discarded and the pel-
let re-dissolved in 1  mL of the reference sample buffer 
0.1 M NaOH/1 % SDS (NaOH/SDS).

BCA assay

Using a commercial BCA assay kit (Sigma, Austria, 
B9643) assay according to [40] the samples were incubated 
at 60 °C for 15 min to ensure the lowest protein-to-protein 
variations. After incubation, the samples were equilibrated 
for 10 min at room temperature prior to absorbance meas-
urement within the linear range from 0.1 to 0.7 relative 
absorption units (rAU). The correlation between signal and 
protein concentration was established based on a separate 
calibration from 0.05 to 1  g/L BSA in NaOH/SDS. The 
limit of detection (LOD) was determined at 0.2 g/L.

Protein spiking

In contrast to “uncorrected” native samples the “spiked” 
samples were spiked with bovine serum albumin (BSA) 
(Carl Roth, Austria, 3737, >98 % purity, IgG and protease 
free) in a concentration range of 0–10  g/L. Two different 
spike levels were used to correct for matrix effects in the 
BCA assay (detailed below). In brief, each sample was 
diluted 1:1 with a BSA stock solution (1000 or 500 µg/mL) 
after the TCA precipitation step. Four different sample dilu-
tions (in NaOH/SDS 1:4, 1:8, 1:16 and 1:32) were analyzed 
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in each run. The protein concentrations were calculated 
from the mean values of the repetitive measurements. The 
number of replicates is indicated in each section. The quo-
tient of measured and theoretic spike concentration was 
calculated to serve as a correction factor. For quantitative 
evaluation of the method accuracy, the relative deviation of 
corrected/uncorrected protein concentrations from the ref-
erence protein concentration was determined. Reference 
protein quantification is described below (“Quantification 
of total nitrogen”).

Efficiency assessment of the TCA precipitation step

The BSA standard used for the spikes was supplemented 
(1:100) with FITC-labeled fBSA (Sigma, Austria, A9771). 
Fluorescence was measured with an Infinite M200 plate 
reader (Tecan Group Ltd) in a dilution of the sample 1:10 
with NaOH/SDS in 96 multiwell plates (M&B Stricker, 
Germany, GRE-655101) with an excitation wavelength of 
485 nm and an emission wavelength of 525 nm. The fluo-
rescence signal of the samples before precipitation was 
compared to the fluorescence signal of the precipitated and 
re-suspended sample.

BCA assay corrected with one spike level

All samples were spiked with 500 µg/mL BSA. The average 
was calculated from triplicate measurements within the lin-
ear range. To account for the effect of matrix components, 
the measured protein concentration of the unspiked samples 
was subtracted from the measured protein concentration 
of the spiked samples to determine the contribution of the 
added spike (Eq. 1). The quotient of theoretic and measured 
spike concentration served as correction factor (Eq. 2) of the 
measured protein concentration of each sample (Eq. 3).

BCA assay corrected with two spike levels

All samples were spiked (see “Protein spiking”) sepa-
rately with 250 and 500  µg/mL BSA. All measurements 
(incl. dilutions) were measured in triplicates. The correc-
tion factor k corresponds to the slope of the correlation of 
measured and theoretic concentrations of 0/250/500  µg/
mL spikes. k was calculated separately for each sample and 
for each dilution (Eq. 2). Finally, the mean of the corrected 
protein concentration calculated over all dilutions within 
the linear range, yielded the final protein concentration.

The measured spike concentration (csm) is derived from the 
measured protein concentration of the spiked sample (cps) 
and the measured protein concentration of the unspiked 
sample (cp).

(1)Csm = Cps − Cp

Accounting for matrix effects with two spike levels. The 
theoretic spike concentration (cst) correlates to the meas-
ured spike concentration (csm) by the factor (k). In case of 
one spike (k) is simple a proportionality factor. In case of 
two spikes (k) corresponds to the slope of the correlation 
(0/250/500 µg/mL BSA) of cst and csm for the utilized spike 
concentrations.

The corrected protein concentration (cpc) is calculated from 
the measured protein concentration of the unspiked sample 
(cp) and the correction factor (k).

Quantification of total nitrogen (TN)

For verification purposes, measurements of the total nitro-
gen bound (TN) were conducted. The total nitrogen content 
was quantified by an adapted method based on peroxodi-
sulfate oxidation of nitrogen compounds in water to nitrate, 
with consequent detection with copperized cadmium 
according to DIN EN ISO 11905-1 (Technical Committee 
ISO/TC 147 [41]. Samples were pre-diluted to an approxi-
mate concentration of 5–50.00 mg/mL total nitrogen. The 
LOD of the method was determined at 5.27  mg/L total 
nitrogen. Data below the LOD were set to 0 mg/L. Accord-
ing to a calibration (Supplemental 1) with BSA as standard 
protein the total protein content of the sample was calcu-
lated based on the TN content of each sample.

Statistical data analysis

Data were subjected to statistical analysis (2 sample F test, 
2 sample t test, Welch test) Datalab Version 3.5 (distributed 
by Epina http://datalab.epina.at/). Based on an α = 0.05 the 
significance of the correlation was evaluated at hand of the 
p value.

Results

BCA‑based protein quantification is significantly 
impacted by sample matrix composition

To demonstrate the impact of sample matrix interference, a 
dilution row of bovine serum albumin (BSA) was prepared 
in reference buffer NaOH/SDS (Fig. 1a) and in fermenta-
tion supernatant (Fig. 1b). Measuring the concentrations of 
BSA in the background of NaOH/SDS via the BCA assay 
yielded highly accurate results. This confirms the general 
capability of the BCA method to quantify total protein with 

(2)
Cst

Csm

= k

(3)Cpc = Cp × k
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high reproducibility under ideal conditions. However, if 
synthetic E. coli culture medium from actual process sam-
ples was used as matrix, it was not possible to resolve dif-
ferences in protein concentration up to 10 g/L.

Quantitative protein precipitation by TCA

The lack in sensitivity of the BCA protein quantifica-
tion method in complex sample matrixes (Fig.  1) may be 
improved by removal of the interfering substances and error 
compensation. The basic aim of introducing a precipitation 
step is to remove interfering substances from the sample 
matrix. While interfering substances should be retained in 
the supernatant, protein shall be quantitatively precipitated 
in the pellet. Commonly, such matrix replacement is per-
formed by TCA precipitation, followed by re-suspension in 
a defined reference buffer such as NaOH/SDS. However, to 
reliably exclude measurement bias caused by the precipi-
tation step itself, the efficiency of the TCA precipitation 
procedure first has to be evaluated. To this end, a dilution 
row of BSA in fermentation supernatant was additionally 

supplemented with a defined amount of fBSA, which 
allows for identifying potential protein loss during the 
workup procedure via direct fluorescence readout. Samples 
were precipitated, the pellets dissolved in fresh buffer and 
all resulting fractions were analyzed for fluorescence inten-
sity (Supplemental 2). 99.7–97.5 % of the added fBSA was 
recovered after precipitation in the reference buffer (Fig. 2) 
from culture medium supernatant 48  h post-induction. 
Native medium and medium 24 h post-induction gave the 
same results (data not shown). Based on the results it can 
be concluded that the precipitation of protein by TCA is 
highly efficient and unlikely to cause significant measure-
ment bias due to uncontrolled loss of protein.

Interfering substances accumulate in the culture 
medium

After substantiating the quantitative precipitation of protein 
by TCA (Fig. 2) the potential origin of the observed inter-
ference on BCA assay readout was investigated in further 
detail. In principle interfering substances may originate 
from the biomass or be contained in the medium formu-
lation. To elucidate the basic root cause of the interfer-
ence, the supernatant of precipitated culture medium from 
0/24/48  h after induction was subjected to total protein 
determination. Equal dilution rows of BSA were prepared 
in the supernatant of TCA-precipitated culture medium. As 
shown in Fig. 3, no interfering substances seemed to accu-
mulate in the supernatant over the first 24 h of the process, 

Fig. 1   Protein quantification by BCA assay is highly sensitive to 
sample matrix composition; protein quantification of BSA dilution 
rows in reference buffer versus spent synthetic culture medium as 
sample matrix. The standard deviations for each sample (n = 5) are 
indicated as whiskers; a dilution row of BSA measured in the back-
ground NaOH/SDS yielding a R2 of 0.995 and a mean relative stand-
ard deviation of 5.43 %. b Dilution row of BSA standards measured 
in synthetic culture medium yielding a R2 of 0.255 and a mean rela-
tive standard deviation of 12.6 %. In fermentation medium the 10 g/L 
spike signal is not significantly larger than the 1  g/L spike level 
(Welch test: p(t) = 0.0796)

Fig. 2   Protein precipitation by TCA is quantitative; fluorescence 
measurements of BSA dilution rows of TCA-precipitated, synthetic 
process media supplemented with fBSA are displayed. All samples 
were measured in quadruplicates (n = 4); the standard deviations are 
indicated as whiskers. 99.7–97.5 % of the added fBSA was recovered 
in the reference buffer (after precipitation), and only 0.3–2.5 % of the 
initial fluorescence was found in the supernatant (remaining superna-
tant). The fluorescence intensity before precipitation (before precipi-
tation) and after precipitation (after precipitation) correlated with the 
nominal concentration of the stock solution (R2 > 0.99). The fluores-
cence intensity found in the supernatant is almost negligible and not 
correlated with the spike concentration (R2 = 0.24)
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since the signal-to-protein correlation was not significantly 
altered in comparison to the reference buffer. However, a 
clear change in signal correlation became visible after a 
process time of 48 h. Regardless of the identity of the inter-
fering substances present in spent culture medium, their 
persistent biasing effect has to be accounted for.

TCA precipitation alone is not sufficient to avoid 
interference

A constant impact of the interfering substances, without 
changes over process time, would permit straightforward 
correction of the BCA measurements via a given, pre-
defined factor. It was thus important to check in how far 
the distortion of the signal-to-protein ratio changes over 
process time (B–F). The BCA analysis was compared to 
total nitrogen measurements (TN) as an orthogonal method 
for protein quantification (Fig. 4). However, the correlation 
between the uncorrected protein concentration obtained via 
the BCA measurement and the protein concentration deter-
mined via TN changed over process time, substantiating 
the need for a sample-specific compensation strategy. The 
direct comparison of the uncorrected protein concentrations 
derived from TCA-precipitated samples to the reference 
protein concentration (TN) yielded an enormous average 
relative deviation of 212 % (Figs. 4, 5, 6).

It can thus be concluded that TCA precipitation only 
is an insufficient strategy to avoid sample matrix inter-
ferences in bioprocess analysis and additional corrective 
actions are required to avoid misestimation of total protein 
content. By individual spiking of each sample the process 

time-dependent impact of matrix components on TCA-pre-
cipitated samples can be corrected (Fig.  4). Despite over-
compensation, the correction led to a substantial increase in 
convergence of the BCA assay derived protein concentra-
tions and the actual protein concentration (TN).

Having established the qualitative benefit of corrections 
via spike addition (Fig. 4), a quantitative evaluation was the 
next step to conclude on the practical usability of the modi-
fied protocol. In order to prove the generic applicability, 
we tested the approach for two different medium formula-
tions. Interestingly, in complex medium the apparent total 
protein concentration in [g/L] was found to be in average 
two- to threefolds higher as compared to synthetic medium 
(data not shown). Figure  5 displays the deviation of the 
uncorrected and corrected protein concentrations from the 
protein concentrations derived from TN measurement. By 
correcting the values of the unknown samples according to 
Eq. 3, the deviance was substantially reduced from 212 to 
41 % for synthetic medium as well as for complex medium. 
Moreover, the method error became significantly more 
systematic, with the variance in deviation decreasing from 
127 % to 14 % for both options.

Fig. 3   The impact of interferences increases over process time and 
traces back to cell-related processes: BSA spikes (concentrations 
0–10 g/L) were added to precipitated fermentation samples obtained 
from different time points of a cultivation performed in synthetic 
medium. Comparison to BSA concentrations measured in reference 
buffer NaOH/SDS. For late time points (48 h) of the fermentation, the 
correlation of signal-to-protein is altered substantially. All samples 
were measured in quadruplicates (n = 4); the standard deviations are 
indicated as whiskers

Fig. 4   Correction of protein determination based on spike addi-
tion leads to an increase in accuracy: samples from consecutive time 
points during the fermentation in synthetic medium between 0 and 
24  h after induction (B–F). All measurements were performed after 
TCA precipitation. uncorrected measured protein concentration of 
native samples; spiked measured protein concentration of samples 
with spike (500  µg/mL); TN measured reference protein concentra-
tion derived from TN based protein quantification; corrected calcu-
lated protein concentrations calculated according to Eq.  3. Lines 
between measurement points have been included to ease orienta-
tion. The relative differences of the corrected protein concentra-
tion from the TN derived protein concentrations are significantly 
smaller than the respective relative differences of the uncorrected 
concentrations [p(t) = 0.008]. The relative standard deviation of the 
respective differences is for the corrected values (16 %) significantly 
[p(F) = 0.004] smaller than of the relative uncorrected protein con-
centration (85 %). BCA protein quantification was performed in trip-
licates (n = 3); the mean values were used for calculation. The stand-
ard deviation is indicated as whiskers
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The results shown in Fig. 5 led to the question whether 
assay accuracy could be further improved by the use of an 
additional spike level. The benefit of measuring two inter-
nal spike levels per sample is exemplified in Fig. 6. Using 
two spikes, the deviation was reduced to 45 % in respect to 
the uncorrected values. However, in case of the synthetic 
medium the relative deviations of the uncorrected protein 
quantification declined over time in contrast to the tra-
jectory of the deviations for one spike level. This may be 
attributed to the generally low protein concentrations for 
the strain grown in synthetic medium. Especially samples 
B and C displayed protein concentrations close to the limit 
of detection of the BCA assay.

The overestimation of protein content for the corrected 
values can presumably be attributed to dilution effects, 
which may in this case be more severe owing to the gen-
uinely higher protein concentrations in complex medium. 
In comparison to one spike level, the dynamic range of the 
assay did not allow the measurement of the native sam-
ple and the two different spike levels within one dilution. 
Two spikes yielded a variance of deviation not significantly 
smaller [p(F)  =  0.207] than for one spike. Concluding, 
the use of two spike levels does not lead to any significant 
improvements in terms of measurement accuracy.

Discussion

Far too often, a widely used standard procedure like 
the BCA or Bradford assay is adopted in the erroneous 
assumption that straightforward method transfer between 
different applications is possible. Bioprocess samples are 
especially challenging in this regard. Routine biotechno-
logical monitoring strategies typically cover a time series 
analysis of multiple consecutive samples over the dura-
tion of the process. A plethora of uptake and secretion and 
release processes related to metabolic turnover, as well as 
time-dependent cellular lysis can lead to substantial, yet 
gradually evolving changes in the chemical composition 
of the culture supernatant. If one or several of the chang-
ing factors happen(s) to have an impact on measurement 
accuracy, this biasing effect(s) too will evolve gradually 
without brisk steps being visible in the signal-over-time-
curve. Many researchers tend to focus on the smoothness 
of measurement values over time as a primary indicator for 
data quality and hence will fail to detect such errors. The 
required, thorough method qualification is frequently omit-
ted for sake of time, regardless of the important role of total 
protein determination in bioprocess engineering. Total pro-
tein often serves as the key variable to conclude on culture 
physiology, and critical decisions in process development 

Fig. 5   Relative error of measurement is reduced from 212 to 41 % 
in average by the use of one spike: samples from consecutive time 
points during the fermentation in a complex and a synthetic culture 
medium. The letters B–I refer to different time points during the fer-
mentation. Differences of protein concentrations derived from BCA 
measurements (corrected/uncorrected) compared to protein concen-
trations according to TN method are plotted on the y axis [deviation 
from ref. conc. (%)]. The relative differences of the corrected protein 
concentration (41 %) from the TN derived protein concentrations are 
significantly smaller [p(t) = 0.0001] than the respective relative dif-
ferences of the uncorrected concentrations. The standard deviation 
of these respective differences is for the corrected values (14 %) sig-
nificantly smaller [p(F) = 0.0000] than the standard deviation for the 
uncorrected protein concentration (127 %). All values under the LOD 
of the TN measurement of 5.27  mg/L were set to zero and are not 
displayed. All samples were measured in triplicates (n = 3), the mean 
values were used for calculation

Fig. 6   Relative error of measurement is reduced from 212 to 46 % 
in average by the use of two spikes: Samples from consecutive time 
points during the fermentation in a complex and a synthetic culture 
medium. The letters B–I refer to different time points during the fer-
mentation. Differences of protein concentrations derived from BCA 
measurements (corrected/uncorrected) compared to protein concen-
trations according to TN method are plotted on the y axis [deviation 
from ref. conc. (%)]. The relative differences of the corrected protein 
concentration (46 %) from the TN derived protein concentrations are 
significantly smaller than the respective relative differences of the 
uncorrected concentrations [p(t) =  0.0001]. The standard deviation 
of these respective differences is for the corrected values (17 %) sig-
nificantly smaller [p(F) = 0.0001] than the standard deviation for the 
uncorrected protein concentration (112 %). All values under the limit 
of detection (LOD) of the TN measurement of 5.27 mg/L were set to 
zero and are not displayed. All samples were measured in triplicates 
(n = 3) and the mean values were used for calculation

19/167



	 J Ind Microbiol Biotechnol

1 3

as well as strain screening are based on the protein data. In 
at-line process monitoring, the determination of the ideal 
point of harvest or detection of unintended cell lysis events 
rely on a robust method for protein quantification.

Unfortunately, even if respective controls at early and 
late process times are being included, a negative check for 
interfering substances has to be repeated as soon as any 
major change is brought to the process setup that may lead 
to a change in matrix composition. This would lead to sig-
nificant complications in the usual, iterative workflow of 
process optimization. There is thus a substantial need for 
refined analytical protocols that allow for taking such fac-
tors into account, yet without increasing operator workload 
beyond a reasonable extent. Against this backdrop, the aim 
of this study was to evaluate and to illustrate the impact of 
matrix components on protein quantification by the means 
of the BCA assay, as well as the elaboration of a rapid and 
generally applicable method to compensate for the biasing 
effects.

In our studies, the original BCA assay was found inca-
pable of resolving an addition of up to 10 g/L BSA in com-
plex sample matrices. This substantial loss in sensitivity 
underlines the necessity to remove interfering substances, 
as it has been advised in the past [5, 8]. This shortcoming 
of the standard BCA assay has also been reported recently 
in other context [47], albeit in this case assay performance 
could be remarkably improved via TCA precipitation. This 
was not the case for the systems investigated here, as well 
as for several other bioprocess setups that were evaluated in 
our and other laboratories (personal communication to the 
authors). We hence speculate that a considerable number of 
biotechnology R&D projects will experience similar prob-
lems, often without being aware of it.

One potential cause for the failure of the TCA protocol 
to improve measurement consistency in case of the investi-
gated bioprocess media could lie in a changing efficiency 
of the protein denaturation, precipitation or re-solubilisa-
tion step. We were, however, able to show that the loss of 
protein is far too low to account for the observed bias. Also 
a standardization of the pH value after TCA precipitation, 
which is a known cause for variations in the dye-protein 
reaction [40], was found to remain without consequences 
for signal quality in the present case. Several modifica-
tions and fine-adjustments of the TCA protocol, including 
wash or solubilization steps with pH-stabilizing reagents 
such as NaOH or HCl, that were successfully employed in 
other settings [5], evidently could not remove the source of 
bias in complex culture medium. It should be noted in this 
regard that an interplay of multiple biasing substances, may 
account for the observed interference, which is why wash 
protocols from more defined applications may fail. Also 
others have reported such continuing interference after 

TCA precipitation, but in this case acid wash let to a sub-
stantial reduction of interferences [39].

The dynamically changing impact of sample matrix 
components, illustrated in this work, is indicative of a 
highly complex matrix composition, presumably not only 
in terms of concentration but also regarding the chemi-
cal nature of the individual agents. Given the complete 
lack of knowledge on type and amount of the interfering 
agents, it would be risky and probably counterproduc-
tive to include time-intensive purification protocols (e.g. 
by dialysis) in the workup chain, as was proposed for 
BCA assays when applied to bioprocess monitoring [27]. 
In direct comparison to TN quantification as a reference 
method, the spike-corrected BCA measurement protocol 
led to a systematic underestimation of the protein concen-
tration. Although the correction leads to an underestima-
tion of the protein concentration, it yields more accurate 
and reproducible values for all tested strains in all tested 
media. The systematic underestimation may partially 
trace back to differences in both methods, regarding the 
sensitivity for the BSA standard, since, depending on the 
molecular weight, the average nitrogen content in pro-
teins found in the culture supernatant may differ from the 
nitrogen content of BSA [7]. Principally, such deviations 
could be corrected for via an error offset that could be 
determined for each fermentation run by parallel analysis 
of chosen samples via the TN method. However, a pre-
requisite for this correction approach would be a constant 
nitrogen level in the supernatant, which may be critical 
especially in processes where NH4 is used for pH correc-
tion after acetate production.

Other methodological alternatives proposed for total 
protein quantification in fresh and complex cell culture 
media include fluorescence anisotropy as proposed by 
Groza et  al. [15]. However, sensitivity of the method in 
the dynamic environment of microbial bioprocesses was 
not investigated up to now and remains to be demon-
strated. In comparison to the relative standard deviation 
of 15–46  % in BSA protein quantification achieved with 
a bioanalyzer© system [1], the relative standard deviation 
of 41 % for process samples obtained via the herein pro-
posed improved measurement protocol is within an attrac-
tive range. Especially with regard to the limited effort for 
data processing and instrumental costs, the BCA assay 
appears highly suited for a broad range of applications. In 
conclusion, the proposed method of compensation renders 
the BCA assay a highly cost- and time-efficient method for 
total protein quantification in complex sample matrices. In 
the context of bioprocess monitoring and development, the 
refined approach can be expected to help to improve exist-
ing control strategies and reduce the effort in development 
iterations.
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i. Inclusion body analytics 

Heterologous protein expression in the cytosol of E.coli facilitates protein titers of up to 10 

g/l[24]. The high expression rate facilitates high titers but results in high amounts of unfolded 

protein. Thereby, high titer expression often triggers aggregation of unfolded protein as biologic 

nano particles also known as inclusion bodies (IB). Owned to the generally presumed close 

correlation of IB size to expression rates and consequently physiology, the quantification of IB 

size has been of interest in literature for some time [39-42]. Consequently, a lot of effort has 

been invested into the characterization of IBs in general and especially in the quantification of 

IB size [43-45]. Despite the substantial effort the analysis of IB size, described methods mostly 

lack verification by an orthogonal method sizing a significant amount of IBs. A final conclusion 

concerning the information content of IB size analysis is still not available. We have addressed 

this topic introducing a novel method for IB sizing, using an orthogonal verification method 

based on transmission electron microscopy.  

Using transmission electron microscopy in combination with a highly sensitive fixation method 

the shape of IBs was found to be of sponge like nature rather than the dense structure of IBs 

propagated elsewhere in literature. Hereby, we have been able to establish nano particle 

tracking analysis as valid method for the analysis of IB size. Interestingly, the impact of high 

pressure homogenization has been identified to substantially interfere with the size of IBs. 

Consequently, the basic hypothesis that measuring the IB size post homogenization contains 

DSP relevant information had to be questioned. But the ratio of fixated and non - fixated 

particles might offer a measure of relative stickiness and therefore an industrial relevant 

analytical parameter. 
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Abstract 

The expression of pharmaceutical relevant proteins in E.coli frequently triggers inclusion body 
(IB) formation caused by protein aggregation. In literature substantial effort has been invested 
into the quantification of IB size. But the lack of particle based methods to size representative 
numbers of IBs in combination with the lack of an orthogonal verification method impaired 
profound method assessment and establishment. 
Using high pressure freezing and automated freeze substitution the native, cytosolic inclusion 
body structure was preserved for transmission electron microscopy (TEM). TEM imaging in 
combination with grey scale image segmentation allowed the quantification of relative areas 
covered by the inclusion body within the cytosol. As high throughput method nano particle 
tracking analysis (NTA) derives the hydrodynamic diameter of particles, based on a 
measurement of the Brownian motion. Using the NTA with TEM as orthogonal method we were 
able to illustrate that chemical fixation leads to a condensation of the native poriferous IB shape. 
Comparing the NTA results of fixated and native IBs it can be concluded that high pressure 
homogenization annihilates the native physiological shape of IBs. Nevertheless, the ratio of 
particle counts of native and fixated samples could potentially serve as factor for particle 
stickiness. 
Concluding, with the image segmentation of TEM pictures we have established an orthogonal 
method to size biologic particles in the cytosol of cells. Moreover, NTA has been established as 
high throughput method for analysis of 1000-3000 particles within 20 min, facilitating a much 
more representative analysis than currently available methods 
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1. Introduction 

The production of bio-similars is one of the main growth markets in pharmaceutical industry 

[cite]. Especially Escherichia Coli, as well characterized expression host, has been established 

as easy accessible host for fast and efficient, high titer protein production. Hereby, high titer 

expression of heterologous protein frequently leads to inclusion body (IB) formation. This 

protein aggregation either coincides with high cytosolic concentrations of unfolded protein or is 

induced using a protein tag in order to produce an otherwise toxic protein. But while USP is 

hardly affected by IB formation, DSP constitutes the bottleneck in IB related production 

processes [1] and causes the bigger share of the total production costs.  

Integrated bioprocess development [2] targets an efficiency increase is by addressing the 

impact and interrelation of USP on DSP [3, 4]. This calls for sensitive response parameters 

describing the characteristics of IBs as intermediate product of USP and DSP. A lot of effort has 

been invested especially into the quantification of IB size, but until now i) the methods have 

hardly been challenged by an orthogonal verification method, ii) the number of analyzed IBs 

was comparably low iii) presented methods lacked sensitivity. Within this contribution we aim to 

establish an orthogonal verification method to analyze the size of an inclusion body, and we 

assess sensitivity and information content of the nano particle tracking analysis (NTA) as 

automated method to analyze large numbers of IBs. 

As end product of USP, IBs are isolated from the cell during cell disruption in DSP. Industrial 

cell disruption is commonly conducted using high pressure homogenization [5] and a 

continuous centrifuge. Hereby, the continuous addition of washing buffer allows the 

combination of cell disruption and the removal of cellular debris. Post isolation IBs are 

commonly solubilized in a chaotropic solubilisation buffer prior to refolding of the protein into 

the native and therefore active protein conformation. In comparison to the high yield protein 

production during USP, DSP is challenged by comparably low and moreover variable product 

yields. In this context especially refolding and its efficiency has been investigated 

comprehensively. But besides refolding the laborious isolation process prior solubilisation might 

potentially play a critical role as well. Given the duration of several hours of IB release and 

isolation, high solubility of IBs in the washing buffer as well as a tendency to adhere to surfaces 

(stickiness) could cause significant product loss. Consequently, high solubility and a tendency 

to stickiness could directly impact process efficiency, which substantiates the necessity of a 

sensitive characterization of IB particle properties. To this date, a lot of effort has been invested 

into the challenging topic of characterizing IBs as biologic nanoparticles to provide sensitive 

response parameters for integrated bioprocess development.  
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1.1 State of the Art: Inclusion body analytics 

Various methods have been investigated in order to characterize IBs, addressing different 

physical or chemical properties of IBs. IB purity directly affects the necessary effort for further 

purification post refolding and can be easily analyzed by SDS-PAGE [6]. Furthermore, IB 

solubility is critical for DSP performance, since highly soluble IBs would dissolve during 

washing steps. In contrast, hardly soluble IBs require high amounts of chaotrope reagents 

during solubilisation, which increases buffer volume for refolding [7]. The increased volume in 

turn calls for bigger column diameters of economically expensive DSP purification columns [8]. 

Recent developments have enabled the concise measurement of solubility in respect to time [3, 

9] as well as in respect to the concentration of chaotrope reagents [10]. Size and stickiness of 

IBs presumably determines yields especially during IB release. But despite substantial effort, 

analytical methods to quantify physical properties like size and shape of IBs are up to date less 

developed. 

 

1.2 Inclusion body analytics: Size 

Besides sensitivity, a suitable method for the characterization of the physical properties of IBs 

needs to be robust and reproducible. But only if the method is sufficiently simplistic, method 

adoption in academic and industrial labs becomes probable. Highly sophisticated methods 

often lack transferability and comparability owned to a certain degree of operator dependency. 

Early studies used centrifugation techniques as centrifugal disc photo sedimentation [11] or 

cumulative sedimentation analysis [12] but require a particle density for the calculation of a size 

distribution of IBs. The more recently discussed approach of using an analytical centrifuge for 

IB Sizing also relies on the density [13] calling for additional analytical method and sample 

processing which makes the method a less direct method to analyze the size of IBs. 

Dynamic light scattering (DLS) has extensively been utilized to size biological nano particles [7, 

10, 14-17]. Nevertheless, since this method only measures one variable its sensitivity is limited 

by multimodal distributions as well as by background particles [12]. Addressing this 

shortcoming, the samples have been purified by serial washing steps [7, 10] or combined with 

full-grown purification techniques as ultracentrifugation [14]. 

Field flow fractionation (FFF) as separation or purification technique, as described elsewhere 

[18], has a wide dynamic range from 0.3-100 µm of particle separation capacity. The separation 

mechanism is a combination of Brownian motion, sedimentation and hydrodynamic lift forces 

[18] and facilitates bulk separation of nano particles according to the respective size and mass. 

Luo et al used asymmetrical FFF in combination with multi angel light scattering in order to 
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analyze the size distribution of GFP inclusion bodies in response to induction time and 

temperature [15]. Using a UV-Vis detector Margreiter et al used a sedimentation FFF to 

investigate the impact of inducer concentration and induction time on IB size [19]. Hereby, an 

increase in the median spherical diameter of up to 140 nm over induction time was observed. 

 

1.3 Imaging/TEM 

The majority of the previously described methods and contributions feature transmission 

electron microscopy in an attempt to verify made conclusions based on the respective method. 

TEM facilitates conclusions based on single particle analysis by making single IBs visible. 

Given the overall goal of IB analytics of characterizing IBs as product of USP, the IBs should be 

analyzed in the most native conformation possible. Hereby, imaging in of IBs in the cytosol 

would exclude most of the otherwise necessary sample preparation and therefore a potential 

analytical bias. Sizing IBs using TEM of the respective IB sample is commonly based on a 

manual image analysis based on the TEM image [19, 20]. Nevertheless the effort for sample 

preparation the analytical technique, and image evaluation is substantial and basically denies 

the usage of the state of the art TEM method as routine analytical technique.  

Within this contribution we introduce nano particle tracking analysis (NTA) as method to 

analyze and size a large number of biologic nano particles individually. For biologic particles the 

dynamic range of NTA spans 100-1500 nm; which fits the reported size range of IBs from 170 

to 1300 nm [10, 11, 19, 20]. NTA uses a laser as light source, which passes through the sample 

particle suspension and illuminates the particles. In scatter mode the scattered light, in 

fluorescence mode the emitted light is recorded by a high speed camera through a microscope. 

Owned to the angle between light beam and the camera axis individual particles can be tracked 

and analyzed. At a constant temperature and a constant viscosity of the liquid, the size of each 

particle correlates to the particle movement. Using the Stokes-Einstein equation the individual 

particle size can consequently be calculated resulting in a histogram of the particle size 

distribution of the particles in suspension.  

 

1.4 Goals 

The overall goal of this contribution is to provide a cost and time efficient method to quantify IB 

size. Firstly, for method verification, we aim to establish grey scale image segmentation of 

transmission electron microscopy pictures as orthogonal method to assess IB size. Secondly, 

as easily transferable, cost and time efficient method NTA is assessed as method to quantify 
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IBs and their size in the background of cell debris. Finally, as an exemplary application the 

growth of IBs is illustrated over process time. 

 

 

2. Materials and methods 

2.1 Bioreactor system 

The fermentations were conducted in a DASGIP multi-bioreactor system (4Force; Eppendorf; 

Germany) with a working volume of 2 L each. The DASGIP control software v4.5 revision 230 

was used for data logging and control: pH (Hamilton, Reno, USA), pO2 (Mettler Toledo; 

Greifensee, Switzerland; module DASGIP PH4PO4), temperature and stirrer speed (module 

DASGIP TC4SC4), aeration (module DASGIP MX4/4) and pH (module DASGIP MP8). CO2, 

O2 concentrations in the off-gas were quantified by a gas analyzer (module DASGIP GA4) 

using the non-dispersive infrared and zircon dioxide detection principle, respectively.  

 

2.2 Cultivations 

A recombinant BL21 DE3 E.coli strain was cultured, producing an intracellular protein (~30 

kDa) in form of inclusion bodies, after a one-time induction with IPTG (1 mM). The synthetic 

media was based on the recipe of Korz, Rinas et al. [21], where the limiting C-source was 

glucose. 

Pre cultures were grown to a OD600 of approx. 1.5 in 150 mL batch media. 2.5% of the batch 

volume was added as pre-culture for inoculation. The stain was cultivated at controlled pH, 

dissolved oxygen DO2 (>30%) and temperature. The DO2 was kept over 30% by 

supplementing oxygen to the air. After depletion of the C-source in an initial batch phase, the 

pre-induction fed-batch was started. The pre-induction feeding strategy was based on an 

exponential feed forward profile to maintain a predefined growth rate [22]. Upon induction 

stirrer speed was set to 1400 rpm and aeration to 1.4 v/v/m for the whole process. The pH was 

maintained by adding 12.5% NH4OH, which also served as nitrogen source.  

 

2.3 Imaging 

For High pressure freezing (HPF) E.coli samples were pelleted and re-suspended in 5% BSA. 

After a second centrifugation step the pellet was immediately frozen in a high-pressure freezer 

(HPF Compact 01; Wohlwend; Switzerland). The samples were then transferred into a freeze 

substitution unit (EM AFS2; Leica Microsystems; Germany) for water substitution with 2% 

uranyl acetate in anhydrous acetone over 5 days.  
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For chemical fixation the supernatant of the pelleted E.coli samples was carefully aspirated and 

cells were fixed using 2.5% glutaraldehyde in 100mM cacodylate buffer at pH 7.4 for 1 h at 

room temperature. After washing in the same buffer samples were post-fixed in 2% osmium 

tetroxide in cacodylate buffer, washed and dehydrated in a graded series of ethanols.  

The dehydrated specimens were embedded in agar 100 resin (AGR10131; Agar Scientific Ltd) 

and after hardening ultrathin sections (70 nm) were prepared. Sections were post-stained with 

2% aqueous uranyl acetate, followed by incubation with Reynold’s lead citrate. Images were 

collected using a transmission electron microscope (Morgagni 268D; FEI; The Netherlands) 

operated at 80 kV and equipped with an 11 megapixel camera (Morada CCD; Olympus-SIS; 

Germany).  

 

2.4 Image segmentation 

To quantify the inclusion body size, the relative area of IB per cell was quantified based on grey 

scale image segmentation. The thresholds for background and IBs were selected manually by 

the operator, specific for each picture. The difference in area of the background and total image 

area corresponds to the area covered by cells. A pre-test with a larger number of operators 

substantiated that the image segmentation is insignificantly impacted by the operator and can 

be regarded as transferable in-between operators. Image segmentation of the 17 different 

samples and one negative sample with 3-6 images for each sample was conducted in Image 

Lab. 160-380 individual cells were repetitively analyzed per sample. 

 

2.5 Cell disruption 

Two mL of the fresh culture broth were centrifuged (4500 x g; 10 min; 4°C). The cell pellets 

were re-suspended in 20 mL 0.1 M Tris-buffer; 10 mM EDTA (pH 7.4) buffer and were disrupted 

in a high-pressure homogenizer (Avestin EmulsiFlex; Canada) at 1400 ±100 bar in 6 passages. 

For chemical fixation 0.2% Glutaraldehyde (G7776; Sigma Aldrich) was added dropwise to the 

re-suspended pellet and incubated 1 h at 4°C prior to homogenization.  

 

2.6 Fluorescence stain 

To discriminate cell debris from inclusion bodies the homogenized cell pellet (5 min 5000 g) 

was re-suspended and incubated 30min in a 1xPBS solution containing 1% BSA and 2.2 mg/l 

of a product specific biotinylated primary antibody (courtesy of Sandoz GmbH). After washing 

with 1x PBS 1% BSA once, the pellet was re-suspended and incubated for 30 min in 1x PBS 

1% BSA containing 10 µg/ml secondary IgG antibody labelled with Alexa 488 (AT11001; 
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Invitrogen Life Technologies). Prior to measurement the suspension was washed and re-

suspended in 1xPBS. 

 

2.7 Nano particle tracking (NTA) 

An NS500 (Malvern, UK) software release (Nano Sight 3.0) equipped with a 488 nm laser and 

a CMOS camera (Hamamatsu Photonics, Japan) was used for the conducted NTA 

measurements. Most of the software settings are proprietary and are not known to the authors. 

The measurement chamber was primed prior to each measurement with 1x PBS to minimized 

particle drift. In-between measurements the chamber was flushed twice to avoid sample 

carryover. All samples were sonicated 1 min prior to measurement and diluted 1:10 in PBS. The 

focus level was set automatically a standardized camera level of 16 was used in combination 

with a detection threshold of 20. 6 replicates, 90 sec each were conducted with a 5 sec time 

delay at a controlled temperature of 25°.  

 

2.8 Titer quantification 

Product titer was measured using RP-HPLC after solubilizing the washed pellet of disrupted 

cells in guanidine hydrochloride. Biomass concentrations were gravimetrically quantified after 

drying at 105°C for min. 72 h. Therefore 2 mL of culture broth were centrifuged (4500g, 10 min, 

4°C) in a pre-weighted glass tube and the pellet was washed once with 5 mL RO water. The 

determination was done in duplicates. After drying in the drying oven the biomass dry weight 

was measured on a scale.  

 

Statistical data analysis 

Data were subjected to statistical analysis using Datalab Version 3.5 (distributed by Epina 

http://datalab.epina.at/). Based on an α = 0.05 the significance of the correlation was evaluated 

at hand of the p-value.  
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3. Results  

3.1 TEM+HPF as gentle method for IB visualization 

Currently there is no verified method available to quantitatively size a representative number of 

IBs. This circumstance hinders the establishment of a high throughput method for quantitative 

IB sizing. Consequently, method assessment can only be based on relative confirmation by 

comparing result of two otherwise orthogonal methods (Figure 1). Since an absolute measure 

of the size of a distribution of biologic nanoparticles is not available, a relative verification is 

targeted by comparing the relative area [%] derived from TEM and the hydrodynamic diameter 

[nm] derived from NTA. To avoid measuring artefacts it is of utmost importance to minimize the 

impact of sample preparation in order to preserve the most native IB form. While TEM is 

capable of visualizing IBs even in the cytosol, NTA can only measure particles in suspension. 

For this reason HPF has been used as fixation approach for TEM, owned to the gentle fixation 

properties. Supplemental 1 illustrates the conservation of cellular structures for different 

induction time points of two representative experiments. In contrast, sample preparation for 

NTA requires cell homogenization and a consequent FL stain in order to facilitate IB analysis 

even in the background of cell debris.  

 

 

Figure 1 Method assessment by relative method verification: Flow chart of the targeted relative 
verification of NTA and TEM derived quantification of IB size, Independent IB process samples are 
analyzed by NTA as well as by TEM, NTA yields the hydrodynamic particle diameter distribution which 
corresponds to the IB size [nm] owned to the utilized specific FL stain, TEM derived images of process 
samples are segmented according to the grey scale; 
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3.2 Grey scale image segmentation for quantitative IB sizing not significantly operator 

dependent 

Qualitative IB growth over time can be deducted from the images from Supplemental 1. But for 

a quantitative assessment of IB size/growth over time, a standardized approach of IB sizing is 

necessary. Using grey scale image segmentation from TEM images the relative IB size was 

quantified as IB area per cell [%]. Basal grey values of TEM images have been found to be 

highly variable owned to background particles. This impairs a uniform background definition 

and correction. This circumstance impairs fully automated image segmentation. Targeting a 

sound science method to reproducibly quantify cytosolic IB size 17 independent samples were 

analyzed by image segmentation (Figure 2). Using this software based approach, operated by 

individuals, the time per operator and image decreased below 10 sec. For each sample 3-6 

TEM images were recorded and segmented by the individual operator in random order at least 

3 times. In Figure 2 A-C the variance induced by the different operators is indicated. The 

respective results are not statistically significant operator dependent, rendering the method 

transferable for IB sizing and suitable for method verification. Using HPF as gentle fixation 

method for IBs as biologic nano particles the software aided image segmentation approach 

was evaluated as suitable orthogonal verification method.  

In order to minimize artefacts sample preparation was simplified as far as possible. While mere 

homogenization and direct NTA measurement did not lead to satisfying results the 

implementation of a FL stain increased sensitivity of the method (data not shown). 

Consequently, the samples were measured post homogenization and FL stain without any 

fixative (native). To illustrate the data basis for a size measurement by NTA, Figure 2 A displays 

a histogram of tracked and sized particles of an exemplary fluorescence stained sample. 

Although the particles were tracked in high number, NTA results and the relative IB areas from 

TEM-HPF were not significantly correlated Figure 2 D. Judging from the TEM-HPF images 

(Supplemental 1) as well as from the image segmentation (Figure 2 D) a significant difference/ 

growth over time in size of IBs can be observed. Nevertheless, this trend was not represented 

by NTA results. Additional test indicated that standard FL beads were identified with high 

precision even in the background of stained homogenate (data not shown).  
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Figure 2 grey scale image segmentation of TEM images for IB sizing is not significantly operator 
dependent:  
The relative area (rel. area [%]) corresponds to the area covered by IBs per cell background, 17 induced 
samples and one negative sample (C-1), of each sample 3-6 individual TEM images were segmented in 
random order (n>3), each letter corresponds to an individual experiment, for samples with the same 
letter (2) indicates a later time point than (1); (A-C) Grey scale image segmentation results operator 
specific, each subpanel corresponds to one individual operator; (D) all segmentations( > 550) results 
pooled, whiskers indicate 75% interval; (E) Filtered data of the size distribution of fixated IBs by NTA in 
the background of cell debris, all tracked particles of one sample measurement including the 6 replicate 
measurements, filtered by intensity and track length. (F) The correlation of relative IB area [%] to the 
hydrodynamic diameter derived from NTA [nm], data does not allow was not found to be significant 
p(t)=0.18; 
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3.2 Particle fixation for Nano particle tracking analysis (NTA) increases method sensitivity 

To investigate the impact of sample preparation on IB sizing by NTA additional tests were 

conducted using a chemical fixative prior to cell homogenization. The IB sizing results of native 

IBs and chemical fixated IBs are compared in Figure 3. Figure 3 A/B illustrate the massive 

improvement of NTA raw data quality by sample fixation prior to homogenization. The standard 

deviation drops and displays significantly less variance (Figure 3 E). Highly interesting is the 

observation that fixated samples displayed quantitatively more particles than native samples 

(Figure 3 F). This is especially interesting in respect to the cross linking properties of 

glutaraldehyde which should lead to generally bigger and less particles. Presumably, the 

addition of a fixative prior to homogenization prevents IBs from aggregating post 

homogenization during sample preparation.  
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Figure 3 The positive impact of fixation prior to homogenization on NTA particle measurement:   
(A) raw data of particle size distribution of FL stained native IBs; (B) raw data of particle size distribution 
of FL stained fixated IB of the same sample as in A; (C) Fixation prior to homogenization decreases 
standard deviation of the median size and boosts reproducibility, comparison of the standard deviation 
of the median of the particle size distribution of the 6 replicate measurements per sample, for not 
fixated (native) n= 37 and fixated (fixated) n=26 samples, p(t) < 0.001; (D) total particle counts of NTA 
raw data, A-I correspond to sample names from various fermentations and time points, the observed 
trajectory in the particle count of fixated samples is presumably of coincidental nature. 

 

Besides increasing measurement sensitivity, sample fixation impacts the intensity per particle 

(Figure 4 A). In order to put the IB size obtained from fixated samples into perspective, Figure 4 

B illustrates the correlation of all measured TEM and NTA samples. Based on a p value of 

0.002 it can be concluded that the rel. IB area [%] and the hydrodynamic diameter [nm] are 
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correlated. To illustrate that the measure IB size is not a redundant measure of a simple titer 

quantification the TEM areas as well as the IB diameters derived from NTA are compared to the 

respective specific titers Figure 4 B/C. Based on the assumption of a uniform particle density 

the size of IBs should be tightly correlated to the amount of product contained in the particle. 

Nevertheless, the specific product titer does not display a highly significant correlation to the 

particle size, neither for particle sizes derived from TEM (Figure 4 C) nor from NTA (Figure 4 

D). 

 

Figure 4 NTA size of fixated samples is significantly correlated to the relative IB area derived from TEM  
(A) Filtered data of the size distribution of fixated IBs by NTA in the background of cell debris, all 
particles of one sample measurement including the 6 replicate measurements, filtered by intensity and 
track length; (B) significant correlation of relative area (rel. area TEM [%]) and particle size derived from 
NTA (size [NTA]),n=15, R2=0.69, p(f)= 0.002; (C) correlation of relative area (rel. area TEM [%]) and 
specific product titer (spec. titer [g/g]), n=15, R2=0.33, p(f)= 0.026, no serial correlation; (C) correlation 
of particle size derived from NTA (size [NTA]) and specific product titer (spec. titer [g/g]), n=15, R2=0.42, 
p(f)= 0.009, no serial correlation; 
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The analysis of early and late time points of induction of different sets of experiments increases 

the observable differences in IB size. In comparison the timely resolution of size over induction 

time is a greater challenge in regard of method sensitivity. In this respect Figure 5 A illustrates 

the growth of IB size as well as the progression of specific product titer [g/g] over induction 

time. In accordance to Figure 4 D the IB size and product titer were not found to be correlated 

closely. The increase in size (+10-12%) was found to be comparably small given the substantial 

increase in specific titer (+300-400%).  

To investigate the impact of homogenization and correlated sample preparation on sensitivity of 

the NTA measurement additional samples after homogenization were analyzed Figure 5. It can 

be observed that in case of HPF (Figure 5 C) the IBs are released into the supernatant while 

the IBs appear to maintain a more segregated state. The structure of these protein aggregates 

appeared poriferous and fragile. In contrast the chemical fixation of the same sample prior to 

homogenization led to denser particles (Figure 5 B). Based on these images it can be inferred 

that chemical fixation helps to maintain the IB conformation. This conclusion is also in 

accordance with the previously found positive impact of fixation on NTA sensitivity. 

 

38/167



 

 

Figure 5 IB sizing by NTA features sufficient sensitivity to resolve IB growth over time;  
(A) The specific titer (spec. titer [g/g] and IB size (median of size [nm])over process time since induction 
(Time after induction [h], as indicated before size and titer are correlated significantly, n=8, p(f)= 0.015, 
including a serial correlation over time (B) Fixation leads to particle condensation in the homogenate as 
well as in the cells, TEM image of IBs after homogenization (700 bar, 6 passages) of chemically fixated 
cells, 1:36 000; (C) TEM image of IBs after homogenization (700 bar, 6 passages) of native cells, 1:36 
000; 
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4. Discussion 

 

To investigation of the interrelation of USP and DSP requires sensitive characteristics of the 

USP end product– the inclusion bodies. Accordingly, the goal of this contribution was to 

establish and to verify a method to size of a representative number of IBs with high sensitivity 

and high efficiency. 

 

4.1 grey scale segmentation of TEM images is a sensitive method for IB characterization 

For method verification a second, orthogonal method to assess IB size has been established, 

since up to date available methods are not particle based, lack efficacy and/or sensitivity to size 

a representative number of biologic nanoparticles. To minimize the effect of sample preparation 

and correlated artefacts it was indicated to analyze the IBs in the most native conformation 

possible. Using only centrifugation prior to HPF, sample preparation was reduced to a 

minimum. Besides sample preparation the method of sample fixation has been a topic of vivid 

discussion. A common approach for sample fixation of IBs is chemical fixation [7, 10, 13, 20] or 

air drying of the specimen on a copper grid [14, 19]. Despite the wide usage of these methods 

the specimen is altered, subcellular structures are condensed and shrinkage occurs. In contrast 

to the general opinion regarding the shape of IBs [10], using HPF-AFS the native structure of 

IBs was found to be far more loose and sensitive than reported before.,  

Regardless of the sample preparation, microscopy simplifies the shape of 3D specimen to 2D 

images. To compensate this drawback of image based solutions a representative number of 

particles need to be analyzed. Especially since the IBs do not appear to have a fully 

symmetrical, spherical shape, different orientations need to be accounted for by sizing a larger 

number of IBs. Peternel et al [20] addressed the problem of the statistical significance and 

sized 250-350 IBs in order to obtain a histogram of IB size distribution of isolated and washed 

IBs. In accordance to the latter contribution 160-380 individual cells (containing IBs) were 

analyzed repetitively by each of the three operators for every sample. But in contrast to the 

chemical fixation used by Peternel et al [20] AFS was used as highly gentle method, renowned 

for the ability to preserve cellular substructures. Hereby, we established HPF-AFS-TEM 

imaging of IBs in the cytosol in combination with grey scale image segmentation as valuable 

method to reproducibly and independent of an operator quantify a representative number of 

IBs. 

 

4.2 NTA is a sensitive method to size a representative number of IBs 
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IB sizing by NTA allows the characterization of a representative number of particles (>1000) per 

sample. In the context of NTA measurement the chemical fixation of the cells prior to 

homogenization yielded an increase in sensitivity as well as a substantial increase in total 

particle count. Although, the total amount of recognized particles was increased (Figure 3 D), 

the amount of relevant particles was decreased (Figure 3 A/B). This observation might be 

owned to a certain aggregation tendency of native particles. This tendency could lead to an 

aggregation of the IBs with cell debris, especially in combination with a disintegration of the IBs 

triggered by shear stress during homogenization. Cellular debris after high pressure 

homogenization is about 0.5 µm in size [12]. In combination with IB fragments the resulting size 

would theoretically overlap with the expected size of native IBs. Fixation impairs this 

aggregation as well as it putatively decreases the probability of IB disintegration during 

homogenization, which in turn would lead to an increase in total number of particles but 

decreases the number of product specific particles. 

Despite using a product specific FL stain in combination with a chemical fixation of the cells, 

background particles were found to bias the sizing of the standard beads in the background of 

homogenate. The observed strong background signal might be attributed to a bleed through of 

scattered light through the long pass fluorescence filter, which decreases the method 

specificity. For future measurements it is advised to circumvent such issues be increasing the 

distance between excitation wavelength and fluorescence filter. Remaining measurement 

noise, might be owned to an unspecific FL stain in combination with the possibility of a 

changing IB density. Particle size calculation in the NTA algorithm assumes a constant or 

particle density. As a result a potential increase in particle density would lead to an assumed 

increase in particle diameter in the NTA result.  

Besides the methodological advances for sizing IBs by NTA and TEM the results indicate that 

high pressure homogenization greatly impacts IB properties. Even if different process 

parameters in USP elicit differences in IB size, it is highly unlikely that these differences are 

preserved throughout high pressure homogenization. Although chemical fixation impairs the 

particle aggregation tendency the approach is regarded as not feasible in an industrial 

production process. Chemical fixation would greatly hinder solubilisation and consequent 

product recovery. Nevertheless, the ratio of particle count of native and fixated IB samples 

could potentially be used as measure of stickiness. In this context IB sizing by NTA could help 

to understand the molecular processes which lead to different aggregation tendencies and in 

turn impact DSP efficiency. Consequently, NTA could be used to derive an additional response 

parameter on the basis of which integrated bioprocess development might succeed in 

investigating the interlink of USP and DSP.  
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5. Conclusions 

The overall goal of this contribution was the establishment and assessment of an simplistic and 

transferable method for high throughput IB sizing.  

 

 TEM in combination with grey scale image segmentation is a sensitive and reproducible 

method to quantify the size of native, cytosolic IBs which can be used for method 

verification. 

 NTA is a particle based method allowing to size a great number (>1000) of fluorescence 

labelled IBs. 

 Chemical fixation of IBs prior to homogenization decreases standard deviation and 

particle count but increases reproducibility of IB sizing with NTA. 

 Based on the observed effect of fixation it can be hypothesized that high pressure 

homogenization annihilates differences in IB size caused by USP. Nevertheless, the ratio 

in particle count of native homogenate and fixated homogenate offers a measure for IB 

stickiness. 
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ii. Biomass sensing 

Physiological control strategies rely on a real time biomass estimation which is often based on 

large amounts of data and challenging model setups [32].The choice of the appropriate real 

time biomass estimation approach depends on the demands towards the respective field of 

application. Bioprocess control in production stage can rely on vast amounts of historic process 

data and process knowledge to establish control strategies. But in order to benefit from 

physiological process control in production stage, physiological process control has to be 

realized as early as in process development. In bioprocess development stage process 

knowledge and historic data is scarce, which constricts applicable real time biomass estimation 

methods. A comprehensive comparison of generic BM sensing methods in the context of early 

bioprocess development, for industrially relevant high cell density fermentations is to our 

knowledge not available. Literature suggests mainly data driven models for real time BM 

estimation [46, 47]. But the necessary amount of training data is usually not available in early 

stage bioprocess development [12], which calls for less data dependent hard type sensors and 

first principle soft sensors. 

While the error of the investigated methods did not display a significant correlation to strain or 

metabolic activity, the combination of the employed methods yielded a surprising reduction of 

error. Hereby, we were able to illustrate a highly accurate method of real time biomass 

estimation merely based on first principle mass balances and a hard type sensor. 
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Practical application 

Within this contribution we have outlined and compared four generic applicable methods for biomass 

estimation in early bioprocess development. The accuracy and robustness of a hard sensor, soft-

sensor and hybrid sensor were discussed based on the coefficient of variation of the root mean 

squared error (cvRMSE) for two strains and three different levels of metabolic activity. This 

comparison facilitates a comprehensive overview of appropriate methods for biomass estimation in 

bioprocess development. Depending on the scope of the planned experiments as well as on the 

available infrastructure and historic data, the outlined data ease method selection. Hereby, we aim to 

alleviate physiologic bioprocess development requiring physiological process control which is 

necessarily based on real time biomass estimation. 
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Abstract 

Advanced bioprocess development strategies focus on the control of physiological entities which rely 

on accurate real time determination of biomass concentration. Various methods have been proposed 

in literature but up to this date a comprehensive and differentiated comparison of biomass estimation 

approaches for early stage bioprocess development is missing. In this contribution, we compared hard 

sensor, soft-sensor and data-driven approaches for real-time biomass estimation in respect to 

accuracy, transferability and costs. The outlined methods were tested with two different microbial 

strains and recombinant products using E. coli. To investigate the applicability of the outlined 

methods, method performance was assessed in correspondence to metabolic activity. Based on 

statistical descriptors the methods were compared and discussed. The results indicate no significant 

impact of strain or biomass estimation approach on the measurement quality. The average relative 

error of 11-13% can be greatly reduced by over 85% combining the outlined methods by the means of 

weighted average. This approach proved to be highly robust even during highly dynamic process 

conditions of oscillating specific substrate uptake rates. Concluding, the combination of low cost first 

principle soft-sensor approaches in combination with a hybrid soft-sensor yields the best information 

to effort ratio.  

 

Introduction 

The governmental regulatory demand regarding biotechnological production of pharmaceuticals has 

been growing, not only since the Quality by Design (QbD) initiative [1]. Regulatory authorities 

recommend the use of the latest scientific advances for process control in order to demonstrate 

process understanding and assure constant product quality [2]. Driven by simplicity, bioprocesses are 

conventionally developed based on technical process parameters as the volumetric feeding rate [3, 

4]. But merely controlling the technical variables, as volumetric feed rates, is ignoring the physiology 

of the actual product manufacturer – the cells. Consequently, literature has started addressing 

physiology as by the control of specific rates throughout induction phase [5-7]. Physiological control of 

cellular factories, independent of the specific rate of interest, relies on the precise real time estimation 

of one of the most important, yet one of the most challenging variables to measure in real time- the 

biomass (BM) [8]. 

 

The choice of the appropriate real time biomass estimation approach for industrially relevant high cell 

density fermentations depends on the demands of the respective field of application. Robustness and 

accuracy are the main demands of production stage towards bioprocess control strategies, while 

costs and transferability are of limited concern. Commonly, bioprocess control in production stage can 

rely on vast amounts of historic process data and process knowledge for control purposes. These 

datasets allow the use of data driven models, as widely discussed and favored in literature [9, 10]. In 

bioprocess development stage the demands towards the control strategy are transferability, high 

information to effort ratio and costs. In early bioprocess development stage process knowledge and 
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historic data is scarce [11], which constricts real time biomass estimation methods and points towards 

mechanistic or hard type approaches. These different constraints for real time BM sensing methods in 

development in comparison to production stage in combination with the limited literature on this topic 

calls for a comprehensive comparison. In this context, there is a clear need for a comprehensive 

comparison of real time BM estimation methods for early bioprocess development at hand of: (1) cost, 

(2) transferability, (3) accuracy, (4) information to effort ratio. 

 

Biomass estimation approaches 

In a non-induced state the biomass yield can be regarded as constant. But upon induction the 

triggered protein overexpression causes alterations in the energy metabolism and consequently 

variations of the yield coefficients [12, 13]. Therefore, various approaches for real time biomass 

estimation have been reported [10, 11, 13-17]. These real time approaches can generally be 

categorized by the underlying principle of biomass estimation: hard type sensor and model based. 

 

Hard type sensor  

Probes using light absorption/ scattering are limited to a relatively low biomass concentrations since 

accuracy is impaired by suspended solids such as cellular debris [18]. Fluorescence probes on the 

other hand rely on a constant amount of absorbing compounds as NAD(P)H per cell, unless 2D 

fluorescence spectroscopy is used. Hereby 2D fluorescence spectroscopy requires substantial effort 

for data evaluation, making the implementation and data interpretation laborious [8]. Similarly near 

infrared (NIR) measurements can be used for biomass estimation, in case spectra of NIR are 

recorded and subjected to a model based data evaluation [19]. In case of 2D fluorescence 

spectroscopy as well as in the case of NIR spectroscopy data evaluation requires substantial training 

data sets for model building which is hardly available in early stage bioprocess development. 

Dielectric spectroscopy has a higher dynamic range of biomass concentration and does not require 

complex data treatment. The method relies on the fact that viable cells act as capacitors upon 

polarization in an electric field. The measured signal is a function of volume fraction of the cells and 

cell size [18]. Since the measurement relies on a transmembrane potential only intact/ living cells are 

detected [20]. The relative permittivity (pF/cm) from the culture broth can be easily correlated to 

biomass offering a highly informative online signal for mammalian, yeast and bacterial processes [21-

23], although it has been reported to be sensitive to gas holdup [24]. 

 

Model based biomass estimation 

Mostly mechanistic and data driven models are utilized, although categorization is difficult due to the 

gradually overlapping definitions [25-27]. To the authors understanding both types generally differ 

mainly in transparency and the requirement of process data. Mechanistic models feature a higher 

degree of transparency (white box) in comparison to data driven (black box) models. Mechanistic 

models are largely based on a priori knowledge which is generally applicable and independent of 

47/167



www.els-journal.com Page 4 Engineering in Life Sciences 

 

 
This article is protected by copyright. All rights reserved. 

4 

strain and product. Necessary parameters are of fixed quantity and measurable e.g. comprise a 

meaning as material or energy balances but are generally applicable and are hardly dependent on 

process data. 

Data driven or black box models rely mainly on strain specific training process data sets in order to 

obtain values for the model parameters [26]. Parametrized models are based on a fixed number of 

parameters (e.g. linear, ordinary differential equations) arising from prior knowledge, while 

nonparametrized models (e.g. artificial neuronal networks) are based on a variable number of 

parameters arising from historic process data. Model accuracy consequently depends on the quality 

and the quantity of available training data sets. Several model algorithms as fuzzy rule systems, 

multivariate regression, artificial neuronal networks or simple correlations have been proposed in 

literature for microbial biomass estimation [6, 13, 28-30]. In a setting of early bioprocess development 

first principle models appear most feasible from the category of mechanistic models, while owned to 

the limited necessity of training data the use of a hybrid model as representative of data driven 

models, data appears most promising. 

 First principle soft-sensor 

First principle soft-sensors use transparent elemental balances/ mass balances to derive target 

variable estimations from real-time measured culture outputs [31]. In case of redundancies, 

reconciliation procedures can help to detect gross measurement errors [32], also the metabolic state 

of the culture can be inferred [33]. Owned to the nature of first principle balances these soft-sensors 

do not rely on historic process data since the underlying principles are generally applicable. 

 Hybrid model soft-sensor 

In the stage of early bioprocess development training data usually is scarce, limiting the options for 

data driven models. In hybrid soft-sensors, mechanistic a priori knowledge of the system facilitates a 

reduction of model parameters, which in turn minimizes the amount of required training data for 

parameter estimation of the data driven part. Hybrid models facilitate the use of data driven 

approaches even in early stage process development. Nevertheless extrapolation over the 

boundaries of the training data set influences the accuracy negatively. 

 

 

Goals 

This contribution provides a comprehensive comparison of generic methods for high cell density 

biomass estimation approaches in the context of early bioprocess development for induced E. coli 

cultures for recombinant protein production. Targeting process development, we selected permittivity 

measurement as a representative hard type sensor and two first principle approaches as well as one 

hybrid soft-sensor approach as representative of model based approaches in order to facilitate a 

comprehensive overview. 

The application, benefits and limitations of the respective real time biomass estimation methods shall 

be illustrated and will be analyzed qualitatively and quantitatively. 
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Using two industrial relevant E. coli strains, yielding a periplasmic and a cytosolic product, the 

performance of the BM estimation approaches will be illustrated at hand of different levels of 

metabolic activity. Owned to the representative number of experiments used for quantification of the 

estimation error this contribution features an unpreceded scope of biomass estimation approaches for 

bioprocess development. 

 

 

Materials and methods 

Bioreactor system 

Fed-batch experiments conducted in a DASGIP multi-bioreactor system with a working volume of 2 L 

each (Eppendorf; Hamburg, Germany). The reactors are equipped with baffles and three disk impeller 

stirrers. The DASGIP control software v4.5 revision 230 was used for control: pH (Hamilton, Reno, 

USA), pO2 (Mettler Toledo; Greifensee, Switzerland; module DASGIP PH4PO4), temperature and 

stirrer speed (module DASGIP TC4SC4), aeration (module DASGIP MX4/4) and pH (module DASGIP 

MP8). CO2, O2 concentrations in the off-gas were quantified by a gas analyzer (module DASGIP 

GA4) using the non-dispersive infrared and zircon dioxide detection principle, respectively.  

 

Cultivations 

The experiments were based on two industrially relevant Escherichia coli strains. Strain A refers to a 

modified E. coli K12 featuring a rhamnose-inducible expression system (rhaBad promoter). A one-

time addition of L-rhamnose (1.5 g/L) induced the production of the soluble protein (~24 kDa). The 

complex media was based on the recipe from Wilms et al. [34] and supplemented with additional 

components. The limiting C-source was glycerol. 

Strain B refers to a recombinant BL21 DE3, producing an intracellular protein (~30 kDa) in form of 

inclusion bodies, after a one-time induction with IPTG (1 mM). The synthetic media was based on the 

recipe of Korz, Rinas et al. [35]. Glucose was used as limiting C-source. 

Pre-cultures were incubated at 30°C and 170 rpm to an OD600 of approx. 1.5 in 150 mL batch media 

and 2.5% batch volume aliquots were used for inoculation. Both strains were cultivated at controlled 

pH (7), dissolved oxygen DO2 (>30%) and temperature (A = 30°C and B = 35°C). The pre-induction 

feeding strategy was based on an exponential feed forward profile to maintain a predefined growth 

rate until induction [36]. On attainment of the predefined biomass (~30 g/L) the end of pre-induction 

fed-batch (EFB) was reached and the cultures were induced after 30 min adaption time (post-

induction phase). Stirrer speed was set to 1400 rpm and aeration to 1.4 v/v/m for the whole process. 

The pH was maintained by adding 12.5% NH4OH, which also served as nitrogen source. The DO2 

was kept over 30% by supplementing oxygen to the air.  

 

Metabolic activity 
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The post-induction phase featured different levels of metabolic activity realized by control of the 

biomass specific substrate uptake rate (qs). For real time qs control the feed rate F(t) is dynamically 

adjusted during the post induction phase. F(t) is calculated via the feed concentration cs and the 

biomass X(t) and a defined qs(t) at the corresponding time point (Equation 1). 

 
 

   

S

  * 
t t

t

qs X
F

c
  

 

Equation 1: substrate feed rate F(t) [l/h] corresponds to the specific substrate uptake rate qs times 

actual biomass content X(t) [g] divided by the feed concentration cs [g/l].  

 

As physiological descriptor th average qs (qsmean) was calculated over a defined amount of 

cumulatively metabolized substrate (dSn; Equation 2) to categorize the different feeding profiles 

according to their physiologic characteristics, into low (<0.15 g/g/h), mid (0.15-0.25 g/g/h) and high 

(>0.25 g/g/h) qsmean. To trigger qs, feed rates where adapted according to the results of biomass 

estimation in function of the qs set point. 

 

 
 

  EFB

EFB

 S
 

X

t

t

S
dSn


  

Equation 2: biomass specific amount of fed substrate since induction dSn, dSn is calculated by the 

substrate added since EFB (
  EFBt

S  S ), normalized by the biomass content at induction (XEFB); 

S(t) refers to Substrate in [g] fed since EFB, SEFB refers to the total amount of substrate fed from 

batch to EFB. 

 

Biomass Sensing 

Hardtype sensor: Dielectric spectroscopy 

The permittivity sensor (Hamilton Bonaduz, Switzerland) signal was recorded using the Evobox 

software (Hamilton Bonaduz, Switzerland) in dual frequency mode. Probe and strain specific 

calibration parameters were used for the online BM estimation (referred to as Perm), which were 

obtained from training fermentations (strain A n = 4; strain B n = 5).  

 

Model based: First principle soft-sensor 

For mass balancing the following stoichiometric equation for an oxidative metabolism was assumed 

under the prerequisite that no substrate/ by-product accumulation occurs (Equation 3). 

 

 S α β γ 02 2 N 4 X δ ε θ CO2 2 2r C H O  r O  r NH    r C H O N  r CO rH O      
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Equation 3: stoichiometric equation for an oxidative metabolism, where a C- and N-source is 

metabolized under the usage of oxygen and incorporated into biomass. rS [cmol/h] rate of substrate 

feed; rO2 [cmol/h] and rCO2 [cmol/h] are the rates of oxygen/carbon dioxide consumption derived from 

offgas analysis; rN [cmol/h] rate of base feed; rX [cmol/h] rate of biomass growth, rH2O [cmol/h] water as 

byproduct of oxidation. 

The elemental composition (α through θ) of the substrate (
α β γC H O ) and the biomass ( δ ε θC H O N )  

are known. The C-balance (referred to as C-bal) Equation 5 and N-balance (referred to as N-bal) was 

established by considering the C/N- contents and based on to the law of conservation the sum of all 

rates is zero as long as flows are quantified correctly. For both cases the biomass accumulation rate 

can be determined independently (Equation 5, Equation 6). 

 

 S x CO2r r r   0    

Equation 4: sum of C-mole conversion rates [cmol/h], enables the estimation of the unknown biomass 

formation rate rx. 

 

 N xr r   0   

Equation 5: sum of nitrogen conversion rates [cmol/h], enables the direct calculation of the unknown 

biomass accumulation rate rx  

 

Model based: Data driven - Hybrid soft-sensor 

An exponential function with only two model parameters (k, d) was found sufficient to minimize the 

distance between process data (n = 6) of cumulative biomass yield over dSn. The biomass estimation 

in pre-induction fed batch phase was obtained by the first principle soft-sensor (C-bal). This highly 

simplistic model enabled to describe the yield trajectory with an exponential function independent of 

the feed dynamics. 

 

    k dSn t

xsY t d e
 

   

Equation 6: exponential function for the cumulative biomass yield coefficient Yxs in induced cultures 

described by dSn which is fitted to historic process data to obtain values for the strain and product 

specific parameters k and d. 

 

Data processing and Data Analysis 

Metabolic rates and yield coefficients were calculated with MATLAB R2013 b (Mathworks, Natick, 

USA). Software was used for the calculation of specific rates and yield coefficients, as we described 

elsewhere [37].  
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For quantitative analysis of estimation accuracy the coefficient of variation of the root mean squared 

error (cvRMSE) was used [38]. Analysis of variance (Anova) was used to analyze the significance of 

the differences in the average cvRMSE from experimental sets. Biomass estimations were combined 

by calculating an average weighted by the error of each methodology [39]. 

 

Analytics:  

Biomass dry weight (CDW) 

Biomass concentrations were gravimetrically quantified after drying at 105°C for min. 72 h. Therefore 

2 mL of culture broth were centrifuged (4500 g, 10 min, 4°C) in a pre-weighted glass tube and the 

pellet was washed once with 5 mL RO water. The determination was done in duplicates. After drying 

the biomass dry weight was measured on an analytical scale.  

 

Substrate conc. and small metabolites 

The C-source concentration in the feed media was calculated using the gravimetrically determined 

density. NH4OH concentration was determined by titration with 1 M HCl, equivalent point was derived 

by using bromothymol blue as indicator [40]. Acetate concentrations were quantified from the 

supernatant by enzymatic photometric principle in a robotic system (Cedex BioHT, Roche, 

Switzerland). The analysis was used as a quality control to exclude possible acetate production due 

to oxygen limitation or overflow metabolism.  

 

 

List of Symbols 

α β γC H O   substrate composition  

δ ε θC H O N   biomass composition  

CDWEFB …  biomass at the end fed batch [g] 
cs …   substrate concentration in feed [g/L] 
dSn(t) …   fed substrate normalized by the CDW at the end exp. fed-batch [g/g] 
F(t) …    feed flow rate [L/h] after time (t) 
qs(t)…   biomass specific substrate uptake rate [g/g] at time point (t) 
qsmean   average qs within a predefined window of dSn [g/g/h] 
rCO2   CER, carbon dioxide evolution rate [mol/h] 
rn   nitrogen consumption rate [c-mol/h] 
rs   substrate consumption rate [c-mol/h]  
rx   biomass conversion rate [c-mol/h]  
S(t)…   added substrate after time t [g] 
SEFB …   fed substrate at the end fed batch (g) 
X(t)…   CDW [g] at time point (t) 
EFB…   time point of induction [h] 
t…    process time [h] 
DCW…   Dry cell weight 
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Results  

 

Dynamic biomass yield decline  

At hand of the experiments in FIGURE 1 we want to raise awareness that the stoichiometry of cellular 

metabolism changes throughout induction time. Whereas feeding profiles based on technical aspects 

feature a volumetric constant feeding rate (FIGURE 1 A), physiologic feeding profiles target constancy 

of specific physiologic variables as qs (FIGURE 1 B). Physiologic feeding profiles consequently 

require the adaptation of the feeding rate according to the growth of biomass. Despite this difference 

the dynamic decline of Yxs in induction phase can be observed for volumetric constant feeding 

profiles as well as for physiologic feeding profile. In accordance to literature it can be concluded that 

with the decline of Yxs in induction phase the stoichiometry of the metabolism is changing.  
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Biomass yield prediction based on consumed substrate 

Constrained by the availability of training data sets (n=6) the establishment of a fully data driven 

model did not appear feasible. Constraints in form of a priori knowledge were used to simplify the 

otherwise undirected approach of model establishment, to compensate the lack of comprehensive 

training data: upon induction the increasing metabolic load term decreases the biomass yield over 

time [12, 13]. An exponential function featuring only two parameters k and d (Equation 6) was found 

to depict the trajectory of the cumulative biomass yield versus time after induction (FIGURE 2 A). But 

commonly, metabolic activity is closer correlated to substrate availability rather than to time. Using 

dSn as independent variable (FIGURE 2 B) the distance to process data could be further decreased. 

dSn appears to be a physiological more significant independent variable than time. This can be 

explained: the cumulative metabolic activity of a high qs experiment in a window of time is significantly 

different compared to a low qs experiment (Supplemental 1). The established correlation (FIGURE 2 

B) facilitates a biomass estimation based on dSn but requires strain and product specific training data 

sets. 

 

 

 

 

 

Biomass sensing: Hard-type vs Hybrid vs First principle Soft-sensor 

Within the subsequent experiments the general applicability of the outlined biomass sensing 

approaches is demonstrated and illustrated on a qualitative level (FIGURE 3, Supplemental 5). The 

comparison was based on a common window of dSn to assure the comparability of the method 

performance across different levels of metabolic activity. The hard type probe features noise with a 

low frequency but relatively high amplitude, nevertheless the overall trajectory of biomass grwoth is 

reproduced. Neverthelexx, the high amplitude noise of estimation is hindering real-time estimation of 

(specific) rates greatly, since error propagation would lead to substantial error amplification. Although 

the hard type probe is influenced by gas holdup as well as by electromagnetic fields (stirrer) the 

approach shows satisfactory results.  

The balancing approaches in general display little noise and follow the trajectories smoothly. 

Inaccuracies of the input data e.g. concentration of base, off gas concentrations impact the overall 

estimation accuracy. Accumulation of substrate or metabolites also imposes a significant threat to 

balance based approaches (data not shown). The increasing divergence in case of FIGURE 3 B can 

be attributed to process dynamics resulting from the high metabolic activity. Small relative errors of 

the real time data impact the biomass estimation to a greater extend at higher process dynamics. The 

estimation based on Yxs displayed a good correlation, since the performed experiments did not 

extrapolate from the training data sets in terms of qs and dSn. Nevertheless for a statistical 

representative recommendation quantitative analysis of the data is necessary. 
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Impacting variables for biomass sensing 

The impact of the method of estimation and metabolic activity shall be brought to attention by the 

means of Table 1 (Supplemental 4). Therefore, the methods are compared based on the cvRMSE of 

biomass estimation in respect to the offline reference measurement. It should be noted that the total 

quantification across a uniform window of dSn does not reflect the frequency of the correlated error. 

The biomass estimation accuracy was not significantly influenced by the method of estimation (strain 

A p = 0.115; strain B p = 0.116). Similarly the average specific substrate uptake rate had no 

significant impact on estimation accuracy. This finding applies for all estimation approaches and is 

independent of strain and product (strain A p = 0.597; strain B p = 0.722). The biomass estimation of 

the hybrid soft-sensor features the highest cvRMSE independent of the strain. In general, the average 

cvRMSE of biomass estimation is greater for strain B. With an average relative error of 11.7% (strain 

A) and 13.1% (strain B) the analyzed methods are uniformly applicable. 

 

 

Significant reduction of noise through combinatory approach 

After substantiating that the error of measurement is not correlated to strain or metabolic activity the 

question of the most accurate method remains elusive. For a clear recommendation the average 

deviation of the biomass estimation from offline verification measurements was quantified across all 

levels of metabolic activity. FIGURE 4 A and C illustrate the average error of estimation differentiated 

according to the methods of estimation.  

System perturbations and the noise of measurement can affect the real time estimation of 

physiological variables; this noise is usually amplified by error propagation. Consequently, an 

increase in estimation accuracy is highly desirable and obligatory targeting robust physiological 

process control. FIGURE 4 B/D illustrates the effect of combination of biomass estimation approaches 

exemplary for one experiment. Hereby i-iii refer to combinations of biomass estimation approaches 

according to the nature of estimation method. While (i) contains all estimates, (ii) only contains hard 

and soft-sensor based estimates and (iii) only soft-sensor based estimates. (iv) corresponds to 

biomass estimation based on the N-balance. The latter combinations i-iv in B/D are based on a 

weighted average approach using the cvRMSE values of the single BM estimation approaches. The 

weighted average approach leads to a significant reduction of measurement noise. The combination 

of all outline biomass estimation methods decreases the cvRMSE significantly by >85%, compared to 

the estimation approach based on a single elemental balance (N-balance) for both strains.  
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Superior robustness of combinatory biomass sensing approaches 

To stress the robustness of combinatory methods in dynamic conditions the qs was controlled on 

oscillating set points in a separate experiment (FIGURE 5 A). In this experiment discreetly different 

levels of qs were targeted to induce dynamically changing process conditions. Willingly physiological 

bottlenecks are exceeded leading to an accumulation of substrate in the fermentation broth (post 24 

h). Usually undesired substrate accumulation violates a prerequisite of the first principle balancing 

approach (FIGURE 5 A). In case of accumulation the first principle balancing approaches 

consequently contribute to a comparably greater error. Therefore, the cvRMSE is decreased by the 

removal of the accumulation sensitive C-balance (FIGURE 5 C).  

 

 

 

 

 

 

Discussion 

The pronounced decline of the biomass yield coefficient (FIGURE 1); as also reported elsewhere [41]; 

highlights the necessity of real time biomass estimation methods. An approach employing a fixed 

biomass yield as found in literature [11, 42, 43], cannot account for the changes in physiology 

triggered by induction. 

Regarding the hybrid model there is a clear differentiation to hybrid semi-parametric models, which 

refer to a mixture of parametrized models and nonparamatrized models [26]. Hybrid semi-parametric 

models usually show a superior accuracy if trained with substantial amounts of training data sets. 

Concerning our hybrid model the limited number of experiments and variance of metabolic activity 

presumably affect the quality of fit (FIGURE 2) as well as model performance in general. Model 

iterations, a greater basis of process data and fewer constraints would have definitely improved the 

performance of the hybrid model. It can be concluded that unlike in production stage in early 

bioprocess development data driven approaches are significantly impaired owned to the lack of 

process data.  

The closer correlation of the cumulative biomass yield to dSn in comparison to process time (FIGURE 

2) can be attributed to the difference in metabolic activity. The substrate uptake rate determines 

growth (replication) and often even productivity [44]. The link between substrate uptake and metabolic 

load has been substantiated in literature [12, 45]. Hereby, especially protein aggregation, as result of 

recombinant production and/or replicative aging, has been identified as major causes of cellular stress 
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and consequent cell death [46, 47]. In this respect data evaluation based on consumed substrate 

(dSn) appears more feasible in order to enable physiologically valid conclusions from process data.  

We have illustrated the performance of three different types of biomass estimation approaches. The 

criteria for selection and assessment were hereby cost, transferability, accuracy, information/ effort 

(Table 2). In this respect accuracy was the reason to exclude the otherwise commonly used electron 

balance based on the degree of reduction (DoR). Since the frequent controller actions necessary in 

HCD to maintain DO2 would cause substantial noise in real time biomass estimation. Nevertheless, in 

the context of bioprocess development first principle soft-sensor methods as N-bal and C-bal appear 

to be the most effective choice.  

Unlike the hybrid soft-sensor the first principle softs sensor does not require training data sets for 

sensor setup and can consequently be directly employed. These methods feature a high degree of 

transferability, a sufficient accuracy at a low effort in combination with extremely low investment costs. 

The tested hard type sensor facilitates an overall low cvRMSE but the signal underlies a low frequent 

noise, which hinders the online estimation of physiological rates by error propagation. 

The presented, highly simplistic, combination of biomass estimations based on a weighted average 

greatly improves signal quality and enables the user to employ advanced physiological process 

control routines. Regarding error propagation, the observed noise reduction is of great value for the 

real time estimation of specific rates and yields [22]. Hereby, neither strain nor product displayed a 

significant impact on estimation accuracy. The transfer of the presented approaches to other 

organisms depends merely on adequate adaptations to consider the difference in physiology. 

Consequently, the outlined methodology facilitates already in early process development an accurate 

real time biomass estimation, which enables development to put the cells in center of attention by 

physiological bioprocess development. 
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Conclusions 

The goal of this contribution was the application and the comprehensive comparison of suitable 

methods for real time biomass estimation in the context of bioprocess development. 

 

 Balancing approaches constitute the most simplistic, transferable and cost efficient method 

for biomass estimation. Owned to the underlying general applicable principles this approach 

can be used for other microbial cultures for recombinant protein production. By accounting for 

all relevant reactions the principle can be even transferred to mammalian cell culture. 

 The cumulative consumed substrate (dSn) represents a physiological highly relevant 

substitute for time on the x-axis. In case of highly limited process data, dSn used in a hybrid 

model allows predicting the biomass yield accurately.   

 Especially in bioprocess development, a combination of biomass estimations approaches 

greatly benefits robustness and accuracy. We recommend using this approach independent 

of the employed methods to maximize robustness of biomass sensing. 

 

 

Acknowledgements 

We are grateful for the financial support of Sandoz GmbH. 

 

Conflicts of Interest  

The authors declare no conflict of interest. 

 

 

References 

 
[1] FDA, Guidance for Industry Q9 Quality Risk Management, 2006. 
[2] FDA, Guidance for Industry PAT — A Framework for Innovative Pharmaceutical Development, 

Manufacturing, and Quality Assurance, 2004. 
[3] Ramalingam, S., Gautam, P., Mukherjee, K. J., and Jayaraman, G., Effects of post-induction feed 

strategies on secretory production of recombinant streptokinase in Escherichia coli, 
Biochemical Engineering Journal, vol. 33, 2007, pp. 34-41. 

[4] Wong, H. H., Kim, Y. C., Lee, S. Y., and Chang, H. N., Effect of post-induction nutrient feeding 
strategies on the production of bioadhesive protein in Escherichia coli, Biotechnology and 
Bioengineering, vol. 60, 1998, pp. 271-276. 

[5] Levisauskas, D., Simutis, R., Borvitz, D., and Lübbert, A., Automatic control of the specific growth 
rate in fed-batch cultivation processes based on an exhaust gas analysis, Bioprocess 
Engineering, vol. 15, 1996, pp. 145-150. 

[6] Gnoth, S., Jenzsch, M., Simutis, R., and Lubbert, A., Control of cultivation processes for 
recombinant protein production: a review, Bioprocess Biosyst Eng, vol. 31, 2008, pp. 21-39. 

[7] Levisauskas, D., Inferential control of the specific growth rate in fed-batch cultivation processes, 
Biotechnology Letters, vol. 23, 2001, pp. 1189-1195. 

58/167



www.els-journal.com Page 15 Engineering in Life Sciences 

 

 
This article is protected by copyright. All rights reserved. 

15 

[8] Olsson, L., and Nielsen, J., On-line and in situ monitoring of biomass in submerged cultivations, 
Trends in Biotechnology, vol. 15, 1997, pp. 517-522. 

[9] Jenzsch, M., Simutis, R., Eisbrenner, G., Stuckrath, I. et al., Estimation of biomass concentrations 
in fermentation processes for recombinant protein production, Bioprocess Biosyst Eng, vol. 
29, 2006, pp. 19-27. 

[10] de Assis, A. J., and Filho, R. M., Soft-sensors development for on-line bioreactor state estimation, 
Computers & Chemical Engineering, vol. 24, 2000, pp. 1099-1103. 

[11] Dabros, M., Schuler, M., and Marison, I., Simple control of specific growth rate in biotechnological 
fed-batch processes based on enhanced online measurements of biomass, Bioprocess and 
Biosystems Engineering, vol. 33, 2010, pp. 1109-1118. 

[12] Schaepe, S., Kuprijanov, A., Simutis, R., and Lübbert, A., Avoiding overfeeding in high cell density 
fed-batch cultures of E. coli during the production of heterologous proteins, Journal of 
Biotechnology, vol. 192, Part A, 2014, pp. 146-153. 

[13] Jenzsch, M., Simutis, R., and Luebbert, A., Generic model control of the specific growth rate in 
recombinant Escherichia coli cultivations, J Biotechnol, vol. 122, 2006, pp. 483-93. 

[14] Jenzsch, M., Gnoth, S., Beck, M., Kleinschmidt, M. et al., Open-loop control of the biomass 
concentration within the growth phase of recombinant protein production processes, J 
Biotechnol, vol. 127, 2006, pp. 84-94. 

[15] Riesenberg, D., Schulz, V., Knorre, W. A., Pohl, H. D. et al., High cell density cultivation of 
Escherichia coli at controlled specific growth rate, Journal of Biotechnology, vol. 20, 1991, pp. 
17-27. 

[16] Passrinha, L. A., Bonifacio, M. J., and Queiroz, J. A., Application of a fed-batch bioprocess for the 
heterologous production of hSCOMT in Escherichia coli, J Microbiol Biotechnol, vol. 19, 2009, 
pp. 972-81. 

[17] Jobe, A. M., Herwig, C., Surzyn, M., Walker, B. et al., Generally applicable fed-batch culture 
concept based on the detection of metabolic state by on-line balancing, Biotechnol Bioeng, 
vol. 82, 2003, pp. 627-39. 

[18] Kiviharju, K., Salonen, K., Moilanen, U., and Eerikäinen, T., Biomass measurement online: the 
performance of in situ measurements and software sensors, Journal of Industrial Microbiology 
& Biotechnology, vol. 35, 2008, pp. 657-665. 

[19] Arnold, S. A., Gaensakoo, R., Harvey, L. M., and McNeil, B., Use of at-line and in-situ near-
infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process, 
Biotechnology and Bioengineering, vol. 80, 2002, pp. 405-413. 

[20] Markx, G. H., and Davey, C. L., The dielectric properties of biological cells at radiofrequencies: 
applications in biotechnology, Enzyme and Microbial Technology, vol. 25, 1999, pp. 161-171. 

[21] Dabros, M., Dennewald, D., Currie, D., Lee, M. et al., Cole–Cole, linear and multivariate modeling 
of capacitance data for on-line monitoring of biomass, Bioprocess and Biosystems 
Engineering, vol. 32, 2009, pp. 161-173. 

[22] Ehgartner, D., Sagmeister, P., Herwig, C., and Wechselberger, P., A novel real-time method to 
estimate volumetric mass biodensity based on the combination of dielectric spectroscopy and 
soft-sensors, Journal of Chemical Technology & Biotechnology, vol. 90, 2015, pp. 262-272. 

[23] Vojinović, V., Cabral, J. M. S., and Fonseca, L. P., Real-time bioprocess monitoring: Part I: In situ 
sensors, Sensors and Actuators B: Chemical, vol. 114, 2006, pp. 1083-1091. 

[24] Lübbert, A., "Gas Hold-up," Encyclopedia of Bioprocess Technology: John Wiley & Sons, Inc., 
2002. 

[25] Thompson, M. L., and Kramer, M. A., Modeling chemical processes using prior knowledge and 
neural networks, AIChE Journal, vol. 40, 1994, pp. 1328-1340. 

[26] von Stosch, M., Oliveira, R., Peres, J., and Feyo de Azevedo, S., Hybrid semi-parametric 
modeling in process systems engineering: Past, present and future, Computers & Chemical 
Engineering, vol. 60, 2014, pp. 86-101. 

[27] Günther, M., and Velten, K., Mathematische Modellbildung und Simulation: Eine Einführung für 
Wissenschaftler, Ingenieure und Ökonomen: Wiley, 2014. 

[28] Shimizu, K., A tutorial review on bioprocess systems engineering, Computers & Chemical 
Engineering, vol. 20, 1996, pp. 915-941. 

[29] Komives, C., and Parker, R. S., Bioreactor state estimation and control, Curr Opin Biotechnol, vol. 
14, 2003, pp. 468-74. 

[30] Sagmeister, P., Wechselberger, P., Jazini, M., Meitz, A. et al., Soft-sensor assisted dynamic 
bioprocess control: Efficient tools for bioprocess development, Chemical Engineering 
Science, vol. 96, 2013, pp. 190-198. 

59/167



www.els-journal.com Page 16 Engineering in Life Sciences 

 

 
This article is protected by copyright. All rights reserved. 

16 

[31] Kadlec, P., Gabrys, B., and Strandt, S., Data-driven Soft-sensors in the process industry, 
Computers & Chemical Engineering, vol. 33, 2009, pp. 795-814. 

[32] van der Heijden, R. T. J. M., Heijnen, J. J., Hellinga, C., Romein, B. et al., Linear constraint 
relations in biochemical reaction systems: I. Classification of the calculability and the 
balanceability of conversion rates, Biotechnology and Bioengineering, vol. 43, 1994, pp. 3-10. 

[33] Herwig, C., Marison, I., and von Stockar, U., On-line stoichiometry and identification of metabolic 
state under dynamic process conditions, Biotechnology and Bioengineering, vol. 75, 2001, pp. 
345-354. 

[34] Wilms, B., Hauck, A., Reuss, M., Syldatk, C. et al., High-cell-density fermentation for production 
of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD 
promoter, Biotechnology and Bioengineering, vol. 73, 2001, pp. 95-103. 

[35] Korz, D. J., Rinas, U., Hellmuth, K., Sanders, E. A. et al., Simple fed-batch technique for high cell 
density cultivation of Escherichia coli, Journal of Biotechnology, vol. 39, 1995, pp. 59-65. 

[36] Lee, S. Y., High cell-density culture of Escherichia coli, Trends in Biotechnology, vol. 14, 1996, pp. 
98-105. 

[37] Sagmeister, P., Wechselberger, P., and Herwig, C., Information Processing: Rate-Based 
Investigation of Cell Physiological Changes along Design Space Development, PDA J Pharm 
Sci Technol, vol. 66, 2012, pp. 526-41. 

[38] Willmott, C. J., On the validation of models, Physical geography, vol. 2, 1981, pp. 184-194. 
[39] Aehle, M., Simutis, R., and Lubbert, A., Comparison of viable cell concentration estimation 

methods for a mammalian cell cultivation process, Cytotechnology, vol. 62, 2010, pp. 413-22. 
[40] De Meyer, T., Hemelsoet, K., Van Speybroeck, V., and De Clerck, K., Substituent effects on 

absorption spectra of pH indicators: An experimental and computational study of 
sulfonphthaleine dyes, Dyes and Pigments, vol. 102, 2014, pp. 241-250. 

[41] Fan, D. D., Luo, Y., Mi, Y., Ma, X. X. et al., Characteristics of fed-batch cultures of recombinant 
Escherichia coli containing human-like collagen cDNA at different specific growth rates, 
Biotechnol Lett, vol. 27, 2005, pp. 865-70. 

[42] Henes, B., and Sonnleitner, B., Controlled fed-batch by tracking the maximal culture capacity, 
Journal of Biotechnology, vol. 132, 2007, pp. 118-126. 

[43] Akesson, M., Karlsson, E. N., Hagander, P., Axelsson, J. P. et al., On-line detection of acetate 
formation in Escherichia coli cultures using dissolved oxygen responses to feed transients, 
Biotechnol Bioeng, vol. 64, 1999, pp. 590-8. 

[44] de Hollander, J. A., Kinetics of microbial product formation and its consequences for the 
optimization of fermentation processes, Antonie Van Leeuwenhoek, vol. 63, 1993, pp. 375-81. 

[45] Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M. et al., Protein folding and conformational 
stress in microbial cells producing recombinant proteins: a host comparative overview, Microb 
Cell Fact, vol. 7, 2008, pp. 11. 

[46] Lindner, A. B., and Demarez, A., Protein aggregation as a paradigm of aging, Biochim Biophys 
Acta, vol. 1790, 2009, pp. 980-96. 

[47] Wang, P., Robert, L., Pelletier, J., Dang, W. L. et al., Robust growth of Escherichia coli, Curr Biol, 
vol. 20, 2010, pp. 1099-103. 

 
 

 

 

 

 

 

 

 

 

60/167



www.els-journal.com Page 17 Engineering in Life Sciences 

 

 
This article is protected by copyright. All rights reserved. 

17 

FIGURE 1: Dynamic biomass yield decline substantiates the dynamic metabolic stoichiometry in 

induction phase:  

Experiments using strain A with different substrate feeding profiles (Feedrate [g/h]): (A) constant 

volumetric feeding rate, (B) constant physiology based on a real time biomass sensing approach. 

Both experiments share a common average metabolic activity in terms of the specific substrate 

uptake rate (qs [g/g/h]) and illustrate the decline of the biomass yield (Yxs [g/g]) over time.  
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FIGURE 2: dSn is a more feasible common denominator for biomass yield trajectories than time: 

Cumulative biomass yield (Yxs) trajectories over time/dSn for 6 independent experiments of strain A 

(Strain B Supplemental 2); every class of symbols represents an independent experiment (A): Yxs 

[g/g] over time after induction [h] displays a low quality (R2 = 0.45); (B): Yxs [g/g] over dSn [g/g] 

displays a better quality of fit (R2 = 0.70)]; Experiments were conducted at different levels of specific 

substrate uptake rate to maximize the range of contained metabolic activity in terms of qsmean 
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FIGURE 3: Performance of biomass sensing methods appears qualitatively impacted by process 

dynamics:  

Data of strain A, further data as well as data on strain B can be found in Supplemental 5; 

Experiments differ in the physiological descriptor of the physiologic substrate uptake rate qsmean 

[g/g/h]; (A) low qs < 0.15 [g/g/h]; (B) high qs >0.25 [g/g/h]. The offline biomass quantification is 

depicted as asterisks (DCW) as point of reference for the comparison of the biomass estimation 

approaches. The continuous lines are the result of the biomass estimation based on the method as 

indicated: first principle soft-sensor C balance (C-bal) and N-balance (N-bal), hybrid soft-sensor (Yxs), 

and hard type sensor (Perm). For the sake of comparability experiments are displayed within a 

common window of the cumulative and normalized fed substrate (dSn [g/g]). 
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FIGURE 4: Combinatory approaches for biomass sensing allow an extensive reduction of noise:  

Error of estimation in respect of the estimation, (A) cvRMSE of biomass estimation methods: first 

principle soft-sensor C balance features an error of 12.6 % (C-bal) and N-balance features an error of 

8.6 % (N-bal), hybrid soft-sensor features an error of 15.9 % (Yxs), and hard type sensor based 

features an error of 9.8 % (Perm) of strain A, n=9; (B) cvRMSE of biomass estimation methods: first 

principle soft-sensor C balance features an error of 10.1 % (C-bal) and N-balance features an error of 

15.9 % (N-Bal), hybrid soft-sensor features an error of 18.8 % (Yxs), and hard type sensor based 

features an error of 7.7 % (Perm) of strain B, n=9 ; (B), (D); Combinations of biomass estimation 

approaches by weighted average according the error of each method for one exemplary experiment 

n=1 (qs=0,34), all biomass estimation methods (i), soft-sensor and hard type sensor estimation 

methods (ii), weighted average soft-sensor methods (iii), first principle soft-sensor N-balance (iv); (B) 

strain A (D) strain B; 
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FIGURE 5: Process dynamics for robustness testing substantiate the robustness of the weighted 

average approach: All data from strain B; (A) Different levels of qs (0.4 g/g/h for high and 0.2 g/g/h 

low level) are targeted to challenge the biomass estimation methods by process dynamics. 

Accumulation at 5.5 h after induction constitutes a significant process event which consequently 

impacts biomass estimation; (B) Biomass offline verification (DCW [g/l]) and weighted average 

estimations according to the error of each method, all biomass estimation methods (i), soft-sensor 

and hard type sensor estimation methods (ii), weighted average soft-sensor methods (iii), first 

principle soft-sensor N-balance (iv). (C) cvRMSE of weighted average combinations according to the 

error of each method, all biomass estimation methods (i), soft-sensor and hard type sensor 

estimation methods (ii), weighted average soft-sensor methods (iii), first principle soft-sensor N-

balance (iv); 
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Table 1 quantification of noise of real time biomass estimation does not indicate a significant impact of 

strain/metabolic activity. Comparison of cvRMSE of different biomass sensing approaches (n=3): C-

balance (C-bal); cumulative biomass yield trajectory (Yxs); Hard Type Sensor (Perm); N-balance (N-

bal); Strain A: the impact of qs level (low/mid/high) was insignificant (p = 0.597, α = 0,05), the method 

of biomass estimation insignificantly influence estimation accuracy (p = 0.115, α = 0,05); Strain B:, the 

impact of qs level (low/mid/high) was insignificant (p = 0.722, α = 0,05), the method of biomass 

estimation insignificantly influence estimation accuracy (p = 0.116, α = 0,05); 

Biomass estimation: Strain A 

 
high qs mid qs low qs  

 
Biomass 

range [g/L] 
cvRMSE 

[%] 
Biomass range 

[g/L] 
cvRMSE 

[%] 
Biomass range 

[g/L] 
cvRMSE 

[%] 

C-bal 

42.8-85.2 

16.9 

39.8-76.8 

13.0 

34.7-57.9 

7.8 

Yxs  19.0 11.5 17.0 

Perm 7.6 8.9 13.2 

N-bal 7.4 8.4 10.0 

Biomass estimation: Strain B 

C-bal 

29.1-76.1 

11.8 

22.9-49.3 

7.8 

28.7-49.8 

10.9 

Yxs 29.9 10.8 15.6 

Perm 9.2 8.7 5.3 

N-bal 13.2 18.5 16.2 
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Table 2: Assessment table of the illustrated biomass sensing approaches; Evaluation ranges from not 

applicable (-) over limited performance (+); good performance (++) to superior performance (+++); 

Cost of investment for installation (Cost); Effort and necessary adaptions to transfer the approach to 

another strain (Transferability); accuracy in terms of the average cvRMSE (Accuracy); Ratio of 

information to effort in terms of method complexity and data treatment (Information/effort); First 

principle soft-sensor based on the C balance (C-bal); First principle soft-sensor based on the N-

balance (N-bal), hybrid soft-sensor (Yxs), hard type sensor (Perm); combination of soft-sensor, hard 

type and hybrid soft-sensor (i) combination of soft-sensor and hard type sensor estimation (ii), 

combination of soft-sensor methods (iii) 

 
Cost Transferability Accuracy Information/effort 

C-bal - +++ ++ ++ 

N-bal - +++ ++ ++ 

Yxs - + + + 

Perm +++ ++ + ++ 

i +++ + +++ + 

ii +++ ++ +++ +++ 

iii + +++ + ++ 
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Discussion 

As analytics constitute the backbone of every physiological conclusion, the accuracy and 

information content of analytical methods used for the quantification of physiology and its 

phenomena is of utmost importance. In this section, analytical methods have been re-

assessed, verified or established to quantify and detect physiological phenomena as protein 

release, protein aggregation and biomass growth.  

In the context of protein quantification we demonstrated a massive error of measurement for a 

commonly applied method. Regarding information content, an error greater than 200 % renders 

a method basically worthless. This example highlights the necessity to implement proper 

controls and to assess method sensitivity and accuracy under conditions as close as possible 

to the final application (1a).  

As second example of the importance of sensitive analytical methods we addressed the 

analytical topic of sizing cytosolic protein aggregates (inclusion bodies). Using transmission 

electron microscopy as orthogonal verification method is was possible to substantiate nano 

particle tracking analysis as method for high throughput IB sizing (1a). Based on the results it 

was concluded that by using industrial relevant cell disruption technologies, as high pressure 

homogenization, native inclusion body properties as e.g. size are not preserved. Also in this 

example the thorough assessment of the capabilities of the analytical method led to far 

reaching conclusions which actually lead to a revision of the basic hypothesis.  

The elucidation of the role of physiology in the context of substrate supply and protein 

expression requires precise control of physiological variables throughout induction phase. 

Since physiological variables are normalized by the biomass content, this approach requires 

real time biomass estimation. In this context a combination of the first principle mass balances 

and a hard type sensor facilitated a reduction of biomass estimation error by 85 % (1b). This 

finding is especially relevant for early bioprocess development since this state is mainly 

characterized by the lack of strain specific knowledge. Hereby, the proposed method meets all 

needs of early bioprocess development as transferability and simplicity while granting a high 

level of accuracy. 

The demands towards analytical accuracy are higher in the context of physiological bioprocess 

development as compared to technological bioprocess development. Technological bioprocess 

development does simply rely on less analytical input data. In contrast physiologic variables 

comprise by definition higher amounts of information but are in turn based on a greater deal of 

analytics. Despite the perceived gap of analytical requirements for physiological bioprocess 

development, established methods can mostly be employed if the sensitivity has been 

assessed within the final environment of application.   
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2) Effectivity of physiological control 

 

Various approaches of process control have been illustrated in literature, whereas especially 

the control of the substrate supply has been proven as highly promising targeting maximum 

productivity [31, 48-50]. Technological as well as physiological feeding strategies have been 

widely employed, but a sound science comparison and investigation of the pros and cons is still 

missing. To foster the adoption of physiological bioprocess development we illustrate the 

transition from technological to physiological control approaches, investigating the process step 

by step (Figure 1). 

 

The following section outlines how to quantify physiology within well-defined process phases 

and investigates physiological process evaluation and its benefit for technologically controlled 

processes. Consequently, physiologically controlled experiments are directly compared to 

technologically controlled processes in order to assess the benefit of physiological control. The 

use of physiological variables as factors for design of experiments requires boundaries called 

physiological capacities. The quantification of such physiological capacities requires additional 

strain characterization experiments, which increase the perceived effort for physiological 

bioprocess development. Nevertheless, substrate accumulation is common in late induction 

phases, especially in the context of physiologically controlled processes. Since such a, 

currently unpredictable, event does not represent thorough bioprocess understanding, the 

physiological reason of substrate accumulation must be investigated. And finally, a novel 

control approach is introduced to increase robustness and efficiently avoid substrate 

accumulation within induction phase to substitute laborious strain characterization experiments.  

 

In a nutshell, volumetric constant and physiological feeding profiles are compared by 

transformation of raw process data into physiological data. Additionally, the impact of substrate 

supply on productivity as well as the nature of physiological capacities in respect to metabolic 

activity is analyzed. On the basis of this analysis the effectivity of physiological control 

approaches and physiological bioprocess development shall be evaluated. 
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Figure 1: Structure of the process control section: The interrelation of the pre and post induction phase is 
investigated in respect to the substrate supply. In the subsection of Physiological Feeding volumetric 
constant feeding strategies are compared to physiologically constant approaches. Subsequently the 
dependency of the physiological capacity to metabolize substrate is discussed. Before the pieces are 
brought together in a physiological closed loop approach for online sensing of physiological capacities 

 

i. Pre and Post induction Phase 

Early process development is characterized by the lack of strain specific knowledge. As a 

consequence process development is strongly dependent on expert knowledge. The selection 

of process parameters for investigation is commonly based on a risk assessment approach 

[51]. The initially unclassified process parameters are consequently categorized into critical and 

non-critical process parameters [18] by empirical investigation within an DoE. The majority of 

DoEs is using product related variables as solely response for data evaluation. To facilitate 

knowledge feedback for subsequent bioprocess development routines it is indicated to include 

more product independent variables e.g. physiological variables. Physiological variables 

condensed to a single numeric value within a well-defined process phase, might display a 

higher degree of transferability. Only a sound science based phase definition for data 

evaluation would facilitate physiologically transferable conclusions. Comparing various 

technical (volumetric constant) feeding profiles, within a physiological meaningful phase 

definition, the approach and a workflow of information feedback is illustrated and the benefits of 

the approach are discussed. 
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Abstract 

Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between 

setups. Although substantial effort is invested to control technological parameters, usually the only true constant 

parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process 

parameters the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a 

workflow of data life cycle management with special focus on physiology. Information processing condenses data 

into physiological variables, while information mining condenses the variables further into physiological descriptors. 

This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity.  

Targeting transferability we demonstrate this workflow using an industrially relevant E. coli process for recombinant 

protein production and were able to substantiate the following three points: 1) The post-induction phase is 

independent in terms of productivity and physiology from the pre- induction variables specific growth rate and 

specific biomass. 2) The specific substrate uptake rate during induction phase was found to significantly impact the 

maximum specific product titer. 3) The time point of maximum specific titer can be predicted by an easy accessible 

physiological variable: While the maximum specific titers were reached at different time points (19.8 +/- 7.6 h), 

those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 +/- 0.3 

g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and 

illustrates potential benefits. 
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Introduction 

Extensive effort is invested into bioprocess development of recombinant protein production in Escherichia coli. 

Owned to E. coli inherent attributes of fast growth, simplistic genetic engineering, inexpensive media and the 

possibility of high cell density cultivations, E. coli is one of the most intensively characterized and industrially 

exploited prokaryotic production platforms for heterologous protein production 
1,2

. 

Progressively expiring patent protection brings forward generic drug industry and heats up competition for the most 

efficient and robust bioprocesses 
3
. While competition is intensifying, the quality by design (QbD) initiative 

additionally increases the demands concerning bioprocess development 
4
. This cumulates in the necessity for highly 

efficient bioprocess development routines with maximized information to effort ratio. In bioprocess development 

investigated but insignificant factors, strain specific but hardly transferable correlations as well as sampling in areas 

other than of the maximum productivity consequently are highly undesirable scenarios. Within this contribution we 

illustrate a generic applicable workflow for bioprocess development which aims to maximize the information to 

effort ratio. This workflow is exemplified addressing three topics: (1) The establishment of bioprocess platform 

knowledge to minimize relevant factors for investigation; (2) A physiological explanation for observed variance to 

allow greater transferability between setups. (3) Prediction of area of maximum specific titer to minimize sampling 

effort. 

(1) Establishment of bioprocess platform knowledge 

Within bioprocess development the number of investigated process parameters is the biggest cost driver in terms of 

effort for bioprocess development. The selection of eligible factors for further investigation is commonly based on a 

risk assessment approach based on expert and theoretic literature knowledge 
5,6

. Hereby, the establishment of 

bioprocess platform knowledge would facilitate omitting otherwise routinely tested factors for consecutive products. 

The establishment of platform knowledge is demanding 
7
 but facilitates effort reduction in case of product 

changeover. Based on platform specific prior knowledge the number of factors eligible for investigation can be 

greatly reduced.  

Industrial bioprocesses are commonly subdivided into the phase of biomass accumulation (pre-induction phase) and 

the phase of product formation (post-induction phase) 
8
. In pre-induction phase the most relevant variables from a 

process technological point of view, are the specific growth rate and biomass concentration at induction 
9
. The 

dependency of the pre-induction phase on the post-induction phase was postulated 
10-12

, whereas other authors did 

not find a dependency 
9,13

. Since literature remains inconclusive in this point, the investigation of the respective 

interrelation remains an obligation. By the means of the obligatory investigation of the interrelation of pre- and post-

induction phase an exemplary but generally applicable workflow for platform knowledge generation shall be 

demonstrated. Using In this work, we investigate another product in the same strain background as in the work of 

Wechselberger et al. 
9
, which will aid to extend individual findings to platform knowledge 

14
.  

(2) A physiological explanation for observed variance 

Bioprocess data evaluation routines conventionally correlate factor set points of technological process parameters as 

pH or temperature with product related variables as response 
15,16

. During process transfer or scale up the reactor 
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system is usually altered, while the actual cellular producers remain constant. Hereby, the focus on cell physiology 

promises greater transferability than the focus on technical process parameters. Nevertheless, although data is 

sufficiently available, data exploitation rarely addresses physiologic interrelations especially in an industrial process 

development environment.  

Literature has outlined an information processing approach within which data is condensed into physiologic 

variables to describe the physiologic state of the cell 
17

. In a context of bioprocesses the term “information mining” 

defines the approach of describing physiology by single numeric values, corresponding to the average of a time 

dependent physiologic variable within a defined process phase - physiological descriptors. To increase knowledge 

transferability, information mining targets the use of physiology descriptors rather than to technological process 

parameters to explain observed variance in productivity. Data evaluation routine is commonly conducted to finalize a 

cycle of process development, but within a platform system this routine can be used initially for factor selection. 

Similarly to upcycling this re-assessment of historic process data may supplement or even replace conventional risk 

assessments, and highlights the relevance of historic process data for process development. 

(3) Prediction of area of maximum specific titer  

The process analytical technology (PAT) in the framework of the QbD initiative is calling for timely measurements 

and consequently time-resolved offline sampling 
4
. Time resolved sampling features increased sampling effort but 

offers deeper insight into physiologic and product formation kinetics. In contrast, end-point sampling bears the risk 

of missing the maximum product concentration, since product degradation processes during the fermentation are 

common 
18,19

. However, in an industrial process development setting it is hardly feasible to continuously sample in 

high frequently. Hence, it is necessary to predict the important phases in order to maximize the information per 

sample ratio, preferably based on an easily accessible physiologic relevant variable.  

Roadmap 

Investigating the relationship of independent pre- and post-induction phase, we illustrated the establishment of 

platform knowledge exemplarily. Using the same strain but different product, the comparison of the main 

conclusions to the work of Wechselberger et al. 
9
 will extend the scope of findings to platform knowledge. A two 

factor screening design was conducted to investigate the impact of pre-induction specific growth rate and the 

biomass concentration at the point of induction on post-induction phase.  

The information processing approach condenses data to information. Subsequently information mining condenses the 

information into physiological descriptors to facilitate in-depth physiological process understanding (Figure 1). The 

physiological descriptor most significant to explain observed variance in titers is investigated further. Additionally a 

physiological variable determining the area of maximum titer shall be identified within subsequent data analysis. 
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Materials and methods 

Host 

A modified K12 E. coli strain (kindly provided by Lonza Ltd., Visp, Switzerland) was used as a model expression 

system for the project. The strain features a rhamnose-inducible expression system (rhaBAD promoter). The 

recombinant protein product was a Fab antibody. Since the strain is unable to utilize rhamnose as a C-source, a one-

time addition of inducer was sufficient. 

Media 

For fermentation a predefined media was used 
20

. 

Bioreactor setup  

Fed-batch experiments conducted out in a DASGIP multi-bioreactor system consisting of four glass bioreactors with 

a working volume of 2 l each (Eppendorf; Hamburg, Germany). The reactors are equipped with baffles and three 

disk impeller stirrers. The DASGIP control software v4.5 revision 230 was used to control the process parameters: 

pH (Hamilton, Reno, USA) and pO2 (Mettler Toledo; Greifensee, Switzerland; module DASGIP PH4PO4), 

temperature and stirrer speed (module DASGIP TC4SC4) and aeration (module DASGIP MX4/4). The pH control 

was facilitated by 12.5% NH4OH base addition by the pump module DASGIP MP8. Feed was added using the same 

pump module. The reactors were sterilized at 121°C for 20 min. CO2, O2 concentrations in the off-gas were 

quantified by a gas analyzer (module DASGIP GA4) using the non-dispersive infrared and zircon dioxide detection 

principle, respectively. The gas flow was controlled by the gas mixing module DASGIP GA4. 

Fermentation parameters 

The pre-culture was inoculated in shake flasks from frozen stocks (100 ml in 1 l flasks). After approx. 17 h at 30°C 

and 200 rpm, a volume equivalent of pre-culture of 2.5% of the batch volume was used to inoculate the batch media. 

After inoculation of the batch medium (20 g/l C-source), the C-source in the batch medium was consumed within 12 

h. The pre-induction feeding strategy was based on an exponential feed forward profile according to Equation 1. It 

describes the exponential increase of the timely feed flow rate F(t) in dependence of the initial flow rate F0 and the 

specific growth rate µ. 

 Equation 1 Feed profile of pre-induction phase: F(t) [ml/h] is increased exponentially dependent on time t [h] and the specific 

growth rate µ [1/h]. 

𝑭(𝒕) =  𝑭𝟎 ∗ 𝒆µ 𝒕  

Hereby the start flow rate F0 depends on the amount of biomass present in the reactor and the targeted specific 

growth rate. The substrate concentration in the feed cS and the biomass yield YXS is used to transform the biomass 

growth into a feed flow rate F0. 
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Equation 2 Initial feed flow rate F0 [ml/h] at the start of pre-induction phase: depends on biomass (x0*V0) present in the 

reactor the specific growth rate µ [1/h] and the substrate concentration cS [g/l] as well as on the biomass yield YXS [g/g]. The 

biomass yield YXS [g/g] was derived from dry cell weight measurements at the end of several batch fermentations. 

𝑭𝟎 =
µ ∗ 𝑿𝟎

𝒄𝑺  ∗  𝒀𝑿𝑺 
 

After the fed-batch, the culture was induced with rhamnose. Upon induction the volumetric constant feed rate F(t) 

[ml/h] is scaled based on the initial specific substrate uptake rate qsinit [g/g/h] and the amount of biomass at the end 

of fed batch XEFB [g] (Equation 3). The post-induction feed rate was calculated according to equation 3 at the end of 

pre-induction 
9
. The volumetric feed rate was left constant throughout induction phase. Dissolved oxygen levels 

(pO2) were controlled over 25% by supplementing pure oxygen to the air. The pH was kept constant at 7 by adding 

12.5% NH4OH, which also served as nitrogen source. Temperature was set to 35°C for the whole process. 

 

Equation 3 initial substrate uptake rate qsinit [g/g/h] calculated at the start post-induction phase: qsinit as setpoint serves as 

basis for calculating the volumetric constant feed rate F(t) [ml/h]depending on the feed concentration and the total biomass XEFB 

[g] 

𝒒𝒔𝑖𝑛𝑖𝑡 =
𝑭(𝒕) ∗  𝒄𝒔

𝑿𝑬𝑭𝑩
 

 

Offline analysis 

 Biomass dry cell weight 

Biomass dry cell weight concentrations were gravimetrically quantified after drying for 72 h at 105°C. The 

initial biomass concentration, which was required for the calculation of F0 (Eq. 2) was measured by 

photometric principle (OD 600 nm). Samples were diluted to the linear range of OD measurement < 0.8 and 

consequently converted to a biomass concentration by the use of an established linear regression. Given the 

better reproducibility, process data evaluation was based on dry cell weight measurements. 

 Titer measurement 

Offline samples were centrifuged (4300 rcf, 10 min) and pellets were washed with distilled water and then 

stored at -20°C. Frozen pellets were re-suspended in 100 mM Tris, 10 mM Na-EDTA, pH 7.4 to a final 

volume of 20 ml and homogenized at 1400 ± 100 bar for 6 passages (Avestin EmulsiFlex, Ottawa, Canada). 

The product quantity was determined via a proprietary industrial protein G affinity chromatography method 

using a pH gradient. Since only correctly folded product is bound the measurement of product quantity is 

also regarded as a measure of product quality. 
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Data processing and evaluation 

Calculation of metabolic rates and yield coefficients was conducted with Matlab 2012 b (Mathworks, Natick, 

Massachusetts, USA). Software was used for the information processing in terms of calculation of specific rates 

(Equations 8 and 9) and yield coefficients, as described elsewhere 
9
.  

Information mining yields a physiological descriptor as single numerical value, which corresponds to the average of 

the timely variable calculated for all variables and experiments compared within the same window of calculation 

(tEFB – t)  

Equation 4 calculation of physiological desrciptors expemplary for qs. Within a defined window of calculation which is kept 

constant for all experiments of interest e.g. the average is calculated of a physiological variable of interest to yield a single 

numerical value – a physiological descriptor. 

𝑞𝑠 =
𝟏

𝒏
∑ 𝑞𝑠(𝑡)

𝑛

𝑡𝐸𝐹𝐵

 

 

Statistical analysis 

Since common DoE evaluation is based on the set points of the respective factors it does not take usual process 

deviation into account potentially masking effects triggered by potential set point deviations. To ensure the most 

realistic response to factor correlation, we used the actual met process variable as input instead of its mere set point.  

Variables were tested for co-linearity with Datalab Version 3.5 (distributed by Epina http://datalab.epina.at/ ). Multi-

linear regression models were fitted and analyzed via the statistics software MODDE
®
 (Umetrics, Umeå, Sweden). 
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Results 

Figure 1 outlines the proposed workflow for bioprocess development, aiming to increase the information to effort 

ratio. Usually, a risk assessment is conducted to select process parameters for further investigation. In our case, 

targeting the establishment of platform knowledge, the interrelation of pre- and post-induction phase was selected. A 

two factor screening design was designed to investigate the impact of pre-induction specific growth rate and the 

biomass concentration at the point of induction on post-induction phase (1a). By Information processing the process 

data is condensed into information – timely resolved physiological variables (1b). Consequently, information mining 

(2a) is utilized for further data condensation by calculating physiological descriptors within a given process phase 

(e.g. constant time window). The resulting descriptors are investigated concerning correlations to process parameters 

as well as to productivity for hypothesis generation. The identified descriptors can consequently be used as factors 

for subsequent experiments (2b). Another cycle of information processing (2c) and information mining (3) follows, 

to deepen the physiological bioprocess understanding and to verify or to refuse generated hypothesis. The following 

results and discussion will be structured according to the presented approach (Figure 1). 

 

 

Figure 1: Flow chart of proposed method for efficient bioprocess development: The obtained data set resulting from the 

obligatory investigation of interrelation of pre- and post-induction phase (1a) is condensed by information processing (1b) and 

evaluated by information mining (2a). Consequently the most influential physiological descriptors are selected and investigated 

for their impact on product related variables (2b). In case the physiological descriptor is not directly accessible, for instance the 

biomass yield, a controllable correlated process parameter should be investigated instead. Established platform knowledge 

triggers the transition from platform characterization (1a, 1b) via 2a to bioprocess development (2a-2b). Consecutive 

experimentation within 2b generates data for the information processing approach. Information mining facilitates a continuous 

information based hypothesis generation to identify variables for consequent design of experiment and hypothesis verification  
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 Step 1a: Investigation of interrelation of pre- and post-induction phase  

To elucidate the impact of the pre-induction on the post-induction phase a DoE-screening design was conducted with 

a pre-induction specific growth rate of 0.08- 0.16 [1/h] and a biomass at induction of 20.7-44.6 [g/l] as factors 

(Figure 2 A). The post-induction volumetric constant feeding profile was based on qsinit (Equation 3), in all 

experiments (0.22 +/- 0.027 [g/g/h]).  

 

 Step 1b: Information processing 

Using the achieved process values instead of the mere DoE set points as input variables for the evaluation no 

significant correlation was observed. Although significant variance was observed within the maximum specific titer 

(Figure 2 B) the observed variance could not be explained by the variance in biomass at induction (Figure 2 C) and 

pre-induction specific growth rate (Figure 2 D) (p=0.685, α=0.1).  

In accordance with the work of 
9
 no interrelation of pre- and post-induction was detected for this expression system. 

This confirmation of previous findings substantiates the prior knowledge. Upon further confirmation with other 

products, the finding can be regarded platform knowledge within the investigated system.  

However, although the original DoE factors are not significant (Figure 2), variance in the maximum specific product 

titer was observed (0.0189 +/– 0.0037 [g/g]). This raises the question of a physiologic explanation. 
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Figure 2 Biomass at induction and pre-induction specific growth rate do not impact maximum specific titers; (A) 

Exemplary feeding profiles with different pre-induction specific growth rates and different biomass concentrations at point of 

induction; (B) maximum specific titer [g/g] plotted for each experiment, continuous line indicates mean value (0.0189 g/g), 

dashed lines indicate the area covered by two times the standard deviation of the center points (+/- 0,001 g/g) ; (C) maximum 

specific titer [g/g] plotted over biomass concentration [g/l] at induction; (D) maximum specific titer plotted over the pre-induction 

specific growth rate [1/h], two experiments are highly congruent and optically appear as one experiment 

 

 Step 2a: Information mining  

The observed variance in the specific titer is likely to have a physiological cause. An information mining approach is 

used to identify the physiological trigger for the variance in specific product titer. Using a PCA based on the 

physiological descriptors the majority of the observed variance (73 %) was analyzed.  

Based on the PCA a strong negative correlation of the post-induction specific growth rate (µ) and the specific 

substrate uptake rate (qs) is inferred.  
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Figure 3 Specific rates as source of variance in the maximum specific product titer; Principal component analysis with scaled 

and centered values (n=7): µ specific growth rate [1/h]; qs specific substrate uptake rate [g/g/h]; PSPel maximum specific titer 

[g/g]; timemax time until maximum specific titer [h]; dSnmax amount of normalized substrate metabolized until maximum specific 

titer [g/g]; qco2 specific carbon dioxide excretion rate [g/g/h]; Yco2s carbon dioxide yield per substrate [g/g]; Ypps product yield 

per substrate [g/g]; Yxs biomass yield [g/g];  

 

 Step 2b: Data based Design of Experiment  

Aiming to leverage productivity, the information mining approach facilitates factor selection based on empirical 

data, rather than on a theoretical risk assessment. According to the PCA (Figure 3) Yco2s appears most promising. But 

of all correlated variables the specific substrate uptake rate is directly accessible via the feeding rate. Nevertheless, 

an industrial environment usually limits the feeding strategy to a constant volumetric flow rate in favor of simplicity 

and robustness. As a consequence the feeding rate is calculated based on qsinit and kept constant throughout the 

process. Calculating the appropriate feeding flow rate based on a specific variable requires knowledge of the 

respective biomass concentration at the point of induction. Given the greater mathematical dependency of µ on 

biomass measurements, using µ as basis for calculation bears a greater tendency to error propagation, than basing the 

calculation on qsinit. Given the importance of robustness it appears more reasonable to base the feeding strategy on qs 

than on µ. qsinit was investigated in the range of 0.088 – 0.323 [g/g/h] featuring 3 center points. 
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 Step 2c: Information processing 

In correspondence to the workflow (Figure 1) again information processing is applied to evaluate the impact of the 

physiological DoE factors. As illustrated in Figure 4 , a significant negative correlation of maximal specific titers and 

qsinit (p(f) = 0.0225, α=0.05) is indicated. This finding also holds true if all 12 conducted experiments are included 

(Figure 6 B). The highest specific titers were found at the lowest achieved qsinit . 

 

 

Figure 4 Negative correlation of µ and maximum specific titers; (A) The maximum specific titer [g/g] and mean post-

induction specific growth rate [1/h] are highly significantly negatively correlated (p(f)=0.0214, α=0.05); (B) The maximum 

specific titer [g/g] and qsinit the specific substrate uptake rate at induction [g/g/h] are highly significantly negatively correlated. 

(p(f)=0.0225, α=0.05) 

 

 Step 3: Information mining 

Following the information mining approach we investigated the influence physiology on productivity in order to find 

a possible physiological descriptor or predictor to explain the increase in titer. 

Plotting the specific titer against time (Figure 5 C) visualizes the difference in the time point of reaching maximum 

specific titers. Maximum specific titers are reached much later in low qsinit experiments than in qsinit high 

experiments.  

Hereby, the question is raised whether the substrate or time is the most relevant variable to describe productivity. For 

this reason the time was substituted with the cumulated amount of fed substrate on the x-axis (Figure 5 B). For the 

sake of transferability the amount of fed substrate was normalized on the amount of biomass at the end of pre-

induction phase (xEFB) yielding the variable dSn [g/g]. 

Equation 5 dSn corresponds to the integral of the feeding rate rS [g/h] since the end of fed batch tEFB normalized on the biomass 

concentration at the end of fed batch xEFB 

∆𝑆𝑛(𝑡) =
∫ 𝑟𝑆

𝑡

𝑡𝐸𝐹𝐵
𝑑𝑡

𝑥EFB
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Interestingly, plotting the maximum specific titers against dSn (Figure 5 D) nicely aligns the product formation 

trajectories and the maximum specific titers can be found at similar dSn (3.1 +/- 0.3 g/g). The different physiological 

relevance is nicely illustrated by the experiment featuring the highest qs. While the decline in specific titer appears 

irritating over time around 11 h the trajectory appears plausible plotted against dSn, since all experiments appear 

enter a phase of declining specific titer at high dSn. 

While maximum specific titers are reached at significantly different time points (Figure 5 C) (p(f) = 0.0022, α=0.05) 

they are reached at insignificantly different values of dSn (Figure 5 D) (p(f) = 0.7886, α=0.05). Consequently, 

insignificantly different amounts of substrate result in different amounts of product, featuring a significant difference 

in yield of product per substrate [g/g] (p(f)=0.0285, α=0.05) (data not shown). These findings establish dSn as a 

readily accessible parameter for prediction of maximum specific titers.  

 

  

Figure 5 Maximum specific titers are reached insignificantly different dSn. (A) trajectories of specific titer [g/g cumulated 

fed substrate dSn [g/g] and specific substrate uptake rate qs [g/g/h] plotted against time after induction [h]; (B) trajectories of 

specific titer [g/g], cumulatively metabolized substrate dSn [g/g] and specific substrate uptake rate qs [g/g/h] plotted against dSn 

cumulated fed substrate normalized on the amount of biomass at induction [g/g]; (C) time points of maximum specific titer are 

significantly different; continuous line indicates mean value, dashed line indicates the area covered by two times the standard 

deviation of the center points; (D) dSn at maximum specific titer are insignificantly different; continuous line indicates mean 

value, dashed line indicates the area covered by two times the standard deviation of the center points 
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In terms of information mining all conducted experiments are used to reassess previous findings (Figure 6 A/B). It 

can be observed that using all available data sets substantiates the hypothesis of the negative correlation of qsinit as 

well as qs and the maximum specific titer. In this context Figure 6 C-E shall bring the difference of evaluating 

average and initial substrate uptake rates to the reader’s attention. 

Figure 6 compares the set of experiments for constant qsinit with the set of experiments targeting high variance in 

qsinit. Initially the different values of qsinit lead to strongly diverging amounts of available substrate per cell. But this 

difference in qs(t) fades as the trajectories converge increasingly. Due to the increase of biomass the amount of 

available substrate per cell and time declines (qs(t)) (Supplemental 1) owned to the volumetric constant feeding 

profile (Figure 5 A). Although the initial difference in qsinit at (t=0) is substantial, the difference in the physiological 

descriptor qs over the whole experiment is only minor (Figure 6 C/D). While the process value of qsinit is based on a 

one point calculation at induction qs refers to the physiological descriptor, calculated over the whole process phase 

(Equation 4). Given the intention to maximize productivity on modulated the most influential variable e.g. qsinit. But 

as a matter of fact the induced variance in the factor qsinit (Figure 6 C qs_init variation vs. qs_init constant) lead to a 

comparably low amount of observed variance in the response of maximum specific titer (Figure 6 E qs_init variation 

vs. qs_init constant) .  
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Figure 6 The specific substrate uptake rate impacts maximum specific titers in all experiments significantly; All 

calculations have been conducted based on a common window of calculation based on dSn. (A) shows the correalation of initial 

substrate uptake rate and maximum specific titers; (B) shows the correalation of mean substrate uptake rate and maximum 

specific titers; (C-E) comparison of observed and induced variance within the conducted experiments (n=12) qs_init-constant 

labels the group of experiments conducted with an equal qsinit; qs_init variation labels the group of experiments conducted to 

investigate the impact of different volumetric constant feeding regimes; (C) shows the induced variance in qsinit [g/g/h]; (D) shows 

the calculated variance in qs [g/g/h]; (E) shows the resulting variance in maximum specific titers [g/g];  
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Discussion 

The goal of this contribution was to outline a workflow on how to expand the scope and to leverage transferability of 

strain specific findings. In general the workflow emphasizes the necessity of profound data evaluation beyond the 

conventional DoE factor set point and response evaluation. Data reduction within information processing and 

information mining is necessary but a delicate step. Single numerical process values descriptors of DoE factors as 

well as for physiological variables are only comparable if calculated within a defined process phase. Nevertheless, 

this approach requires a standardized evaluation routine as well as standards for information processing and 

information mining. It is important to assess experiments as close to cell physiology as possible by focusing on 

process values but it shall be noted that without quality control of the input data error propagation can significantly 

impact the final evaluation. Nevertheless, focusing on physiology instead of technological interrelations, the 

generated process knowledge is better transferable. Using the outlined approach we were able to substantiate the 

following three findings: 

Information mining facilitates a continuous information based hypothesis generation to identify variables for 

consequent design of experiment and hypothesis verification. 

(1) The establishment of bioprocess platform knowledge to minimize relevant factors for investigation 

On the basis of the work of Wechselberger et al. 
9
 the interrelation of pre- and post- induction phase for the same 

strain but a different product for further investigation (Figure 1 1a-1b) were selected. In accordance to the findings of 

Wechselberger et al. no significant interrelation of pre- and post-induction phase was found. This fact increases the 

degree of freedom for optimization and scheduling of equipment occupancy especially in production stage. By 

repeatedly testing the found interrelations with different products and consequently even with different expression 

systems, the scope of the initially strain and product specific finding can be extended to platform knowledge.  

(2) A physiological explanation for observed variance to allow greater transferability between setups  

Despite the insignificance of the investigated factors of pre-induction phase, significant variance was observed in the 

DoE response, the maximum specific titer. The consequent search for a trigger was based on the condensed 

information of physiological descriptors and pointed strongly towards an implication of qs. Nevertheless, instead of 

starting from scratch this circumstance facilitated subsequent factor selection (Figure 1, 2 a-c). The following 

experiments based on the modulation of qsinit successfully increased the variance in titer further. This result 

substantiates the illustrated approach of factor selection based on historic data. Nevertheless, process development 

approach based on qsinit is strictly limited by the maximum substrate uptake rate especially at the point of induction. 

Judging from the ratio of induced variance of the factor and observed variance in the response, the modulation of qs 

appears to facilitate greater variance in the response but requires dynamic feed rate adaptation. 
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(3) Prediction of area of maximum specific titer to minimize sampling effort 

To maximize information to effort ratio sampling should be focused on areas of highest interest – the area of highest 

specific titers. This substantiates the need for a transferable predictor to identify sampling points of highest 

relevance, for example concerning time by considering the biological activity 
21

 or alternatively less time dependent 

variables, as the consumed substrate. The point of maximum specific titer is reached at different time points but at 

insignificantly different points of consumed substrate dSn. Since the future of bioprocess development lies within 

small scale bioreactors 
22,23

 continuous time resolved sampling is additionally limited by the volume of small scale 

parallel bioreactors. In this setting sampling point selection is of additional interest and greatly eased by sampling 

according to dSn. 

Although the volumetric constant feeding rate is industrial standard, the growth in biomass quickly decreases the real 

time qs. Therefore, the direct manipulation of physiology by a real time control of qs for bioprocess development 

appears far more promising. Recently, novel strategies for the control of the specific substrate uptake rate (qs) were 

reported 
24-26

. The scientific community has been employing the control of physiological variables for bioprocess 

development purposes in open loop control 
27-29

 as well as in closed loop control mode 
30,31

. Real time control of a 

major physiologic variable as qs will render this variable a process parameter, which in turn facilitates physiological 

bioprocess development based on physiological parameters.  

 

Conclusions 

The illustrated workflow outlines a roadmap for cost efficient bioprocess development in respect to i) reducing 

experimental effort in case of product changeover, ii) developing transferable platform knowledge by focusing on 

physiology and iii) reducing sampling effort. Physiological data interpretation by the means of information 

processing and information mining makes findings more product and setup-independent and therefore better 

transferable. Using the illustrated workflow we were able to substantiate the following points: 

 A route to platform knowledge has been illustrated by the repeated investigation of the effect of pre-

induction on post-induction.  

 Based on the data of the insignificant interrelation of pre- and post-induction phase qsinit was pinpointed as 

influential parameter for maximum product titers. This interrelation was substantiated with subsequent 

experiments. The overall picture of the data strongly points towards a real time control approach to elicit 

maximum productivity. 

 The descriptor of dSn has been found to be powerful predictor for the area of maximum specific titers. 

Sampling according to dSn focusses the effort on the area of highest interest – the area of greatest titers. 
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ii. Physiological Feeding 

More satisfying than mere physiological data evaluation of volumetric constant feeding profiles 

is direct physiological process control. Hereby, physiological process control focuses on the 

control of a biomass specific variable and requires online biomass estimation. In the context of 

substrate supply the physiological variable of choice would be the specific substrate uptake 

rate (qS). For microbial bioprocesses controlling the substrate supply technologically (i.e. by a 

volumetric constant feeding rate) is state of the art in industry [24]. Technical feed control is a 

simplistic approach and highly robust but hardly transferable between strains. Technological 

bioprocess development mainly controls technical variables as the (constant) volumetric 

substrate feed rate [21, 22, 52]. In contrast physiological bioprocess development controls and 

investigates physiological variables, as the biomass specific substrate uptake rate (qs). An 

increasing number of scientific contributions have been using physiological feeding profiles for 

the control of specific rates [3-5, 53]. This approach circumvents the impact of underlying 

trajectories but requires real time biomass estimation. This raises the question whether the 

increased effort for physiological control in comparison to technical control can be justified in 

terms of productivity. To address this topic the impact of substrate supply on productivity was 

studied and compared by conducting technical and physiological feed profiles. 
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Abstract 

Background 

Industrial bioprocesses for pharmaceutical products are engineered to yield high productivity and product 

quality while being robust and transferable. Especially in microbial bioprocess development, feeding 

strategies have widely been used to optimize productivity. Hereby, conventional bioprocess development 

commonly focusses on the maintenance of technical variables as the volumetric substrate feed rate. In 

contrast, physiologic bioprocess development focusses on the maintenance of physiologic variables, as the 

biomass specific substrate uptake rate (qS). Although physiological process development has been 

discussed before and control strategies are abundantly available, the associated increased effort as for 

biomass sensing and feed control hasn´t been reviewed critically. The goal of this study was to elucidate 

whether the additional effort for physiologic bioprocess development is justified by a gain in productivity 

and process understanding (information to effort ratio).   

Results 

Using E.coli we compared the industrial standard feeding strategy of constant volumetric feeding with a 

physiological feeding strategy of dynamic feeding. While the industrial standard feeding strategy 

maintains a technologic variable - the feed rate, the physiologic variable of qS is in uncontrolled and in 

free flow. In comparison, the physiological feeding strategy maintains qS by dynamically adapting the feed 

rate. Firstly, independent of the feeding strategy we found a generally negative correlation of the average 

qS (qSmean) and the maximum specific product titer (+131 %). This finding substantiates qS as potent 

candidate based on which maximum specific titers can greatly be increased. But more importantly, in 

comparison to the industrial standard, physiologic feeding experiments displayed a generally higher 

product titer (max. +92 %) even for a comparable qSmean.  

Conclusions 

In this contribution we demonstrated the benefit of physiological feeding and process control by achieving 

an increase in maximum specific titers in comparison to the more simplistic, technological control 

approach. Concluding, physiological bioprocess control can be regarded as valuable tool, featuring a 

desirable information to effort ratio. 
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Background 

The requirements of pharmaceutical industry towards bioprocesses are demanding and include high 

transferability, high productivity and product quality as well as robustness [1]. In this context, the quality 

by design (QbD) initiative [2, 3], emphasizes the need for science- and risk based pharmaceutical process 

development [4, 5]. The main aim of these guidelines is to replace the heuristic approach by more 

systematic, mechanistic bioprocess understanding [6]. In the lifecycle of a bioprocess setups and scales 

change frequently, while the cell-line remains constant. Conventional, technological bioprocess 

development mainly addresses technical, setup specific variables as the volumetric substrate feed rate. In 

contrast, physiologic bioprocess development controls and investigates physiologic variables, as the 

biomass specific substrate uptake rate (qS) or the specific growth rate (µ). Although physiological process 

development has been discussed before [7-11] and control strategies are abundantly available [12], the 

associated increased effort as for biomass sensing and feed control hasn´t been reviewed critically. Within 

this contribution, we address the question if this increase in effort compared to conventional feeding 

strategies can be justified by the gain in productivity and process understanding. 

Post-induction phase is triggered by inducing the culture, which devotes cellular metabolism to product 

formation. Especially in post-induction phase the substrate feeding rate or the inducer concentration are 

known as key process parameters regarding the productivity of recombinant microorganisms [13, 14]. 

Numerous studies reported a clear dependency between productivity and the post induction feed rate [8, 

15, 16]. Accordingly, various strategies have been introduced to tailor the feeding rate to the physiological 

status of the culture while to avoiding detrimental acetate accumulation [17]. Generally, post-induction 

feed profiles can be categorized by the mode of control of the feeding rate (Table 1). This control can 

either be technologically controlled focusing on a constant feed rate or physiologically controlled targeting 

constant physiology.  

Table 1 Overview of induction phase feed profiles  

Feed profile control strategy Advantage Disadvantage 

constant volumetric 

feed 

PID  

constant flow rate 

simple, no extra knowledge/ 

equipment needed 
Scope of conclusions is limited 

dynamic volumetric 

feed 

open loop;  

constant physiologic variable 

Constant physiology, scope of 

conclusions 
Increased effort 

 

The simplest post-induction feed profile controls the technological variable of the feed flow rate at a 

volumetric constant level [18-20] – the “technological feeding strategy”. Offering a simplistic 

implementation the latter strategy defines today’s industrial standard [21]. Occasionally the post-induction 
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feed flow rate is tailored to the fed batch phase, e.g. by calculating qsinit at the point of induction [9]. 

Nevertheless, the growth of biomass leads to an inevitable and uncontrolled decrease of e.g. qS [20]. While 

technological the process appears well controlled, physiology underlies great dynamics. The volumetric 

constant feeding strategy is per definition incapable of reacting to variations in culture physiology [11]. 

Additionally, this feeding strategy is highly setup specific, since large scale in-homogeneities trigger 

biomass yield changes which cause differences in culture physiology. In this contribution we refer to this 

feeding strategy as ”qS free flow”.  

Substantial effort has been invested in developing generic control approaches to control cell physiology. 

In this context the scale independent physiological entities like µ [h
-1

] [10, 11] and qS [g/g/h] [7-9] have 

evolved as promising process parameters impacting productivity. Hereby, the physiological variable is 

maintained by adapting the feed rate in response to the estimated biomass while avoiding substrate 

accumulation – the “physiological feeding strategy”. Concerning the choice of physiologic variable to 

control literature remains indecisive despite the following two arguments: i) Since the biomass estimation 

underlies a greater error than substrate feeding rate, the control of µ comprises a greater error [1, 22] than 

the control of qS. ii) The specific growth rate can only be altered by modulating the substrate availability. 

Consequently it appears more feasible to directly control qS, being an actor on cellular metabolism and in 

turn on the specific growth rate (Figure 1).  

 

 

Figure 2 Metabolic relations between qs, µ, qp and qCO2, which represents the energy supply, biomass increase, 

productivity and cell metabolism of a cell. 
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Owned to variations of the biomass yield coefficient during induction phase [23, 24] the control of 

biomass specific variables requires real time biomass estimation. Accordingly, biomass yield independent 

biomass estimations feature a higher degree of transferability. Various approaches for biomass estimation 

have been introduced and discussed in literature. Especially in early bioprocess development the biomass 

estimation is usually obtained from a real time accessible signal using hard type sensors (e.g. permittivity) 

or soft sensors [12], which estimate biomass based on first principle mass balances [25, 26]. Based on the 

biomass estimation the trajectory of the physiological variable qS can be controlled in contrast to the 

technological feeding strategy. In this contribution the approach of a dynamically adapted feed rate 

targeting a constant physiology (qS) along the process is referred to as “qS control”. 

To facilitate the comparison of the technologic and physiologic feeding strategy the physiology of the 

cells has to be put focus throughout data evaluation. The combination of information processing [27] and 

mining [28] facilitates data condensation and consequent data analysis for transferable, physiological 

interrelations - for mechanistic knowledge. In accordance with the QbD initiative, the benefit of 

mechanistic knowledge lies within the transferability of the found interrelations [29], even in case of 

product changeover [28, 30]. Concluding, only based on mechanistic process knowledge the benefit of 

physiological bioprocess development and bioprocess control can be identified. 

Although physiological bioprocess control is widely discussed in literature [1, 8, 24, 31-34] the 

applications in industrial-scale remain extremely rare [11]. This circumstance can mainly be attributed to 

the lack of evidence whether the additional effort for process control is worth its effects. To date, no study 

was published comparing technological and physiological feeding strategies in terms of effort and benefit. 

 

Goals 

Rather than the introduction of another feeding strategy we firstly investigate i) the general impact of 

substrate availability on productivity to illustrate the differences of the two feeding strategies. 

Subsequently, for the first time ii) the impact of the qS trajectory on productivity is analyzed to answer the 

question whether the increased effort for the physiological feeding strategy can be justified.  

 

 

 

95/167



 

Roadmap  

The substrate supply has been identified previously [9, 28] as highly influential variable to optimize 

productivity. On the basis of two sets of experiments “qS free flow” and “qS control” at different levels of 

substrate supply the impact of the feeding strategy is investigated. To quantify the impact of these 

variables, obtained experimental data is condensed to physiologic variable (information processing) and 

consequently to physiological descriptors on a common basis of comparison (information mining). 

Hereby, data evaluation is focused on physiology in order to increase the transferability of findings even 

in-between rather different sets of experiments. A flow chart of the methodology is depicted in Figure 2. 

 

Figure 3: Flow chart of the evaluation methodology with prior process knowledge. The substrate supply has been 

identified as influential previously [28] and is analyzed within two sets of experiments (1/2); The impact of average 

substrate supply and the feed strategy shall be analyzed (3). By information mining (4) a physiological conclusion 

regarding the feeding strategies shall be derived in order to help to replace variable selection within a risk assessment 

merely based on expert knowledge and to provide the basis for subsequent design of experiments. 
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Material and Methods 

Host 

A modified K12 E. coli strain (kindly provided by Lonza Ltd., Visp, Switzerland) was used as a model 

expression system. The strain features a Rhamnose-inducible expression system (rhaBAD promoter). The 

recombinant protein product was a Fab antibody.  

 

Media 

A modified defined media [14] was used for fermentation. 

Bioreactor system 

Fermentations were conducted in a DASGIP multi-bioreactor system with 4 parallel reactors with 2L of 

working volume each (Eppendorf; Hamburg, Germany). The reactors were equipped with baffles and 

three disk impeller stirrers. The DASGIP control software v4.5 revision 230 was used for control: pH 

(Hamilton, Reno, USA), pO2 (Mettler Toledo; Greifensee, Switzerland; module DASGIP PH4PO4), 

temperature and stirrer speed (module DASGIP TC4SC4), aeration (module DASGIP MX4/4) and pH 

(module DASGIP MP8). CO2, O2 concentrations in the off-gas were quantified by a gas analyzer (module 

DASGIP GA4) using the non-dispersive infrared and zircon dioxide detection principle, respectively. The 

permittivity sensor (Fogale Nanotech; Nimes, France) signal was recorded using the Evobox software 

(Fogale Nanotech; Nimes, France).  

Process parameters 

The pre-culture was incubated at 30°C and 170 rpm for approx.17h (OD600 = 1.5). A volume equivalent 

of pre-culture of 2.5% of the Batch volume was used to inoculate the reactors. After depletion of the C-

source, after approx. 12h, the pre-induction fed-batch was started. The pre-induction feeding strategy was 

based on an exponential feed forward profile (equation 4 and 5) to maintain a predefined growth rate.  

After reaching the predefined Biomass (~30 g/L) the culture was induced with rhamnose. Temperature 

was set to 35°C, Stirrer speed to 1400 rpm and aeration to 1.4 vvm for the whole process. The pH was 

controlled at 7 with NH4OH. The dissolved oxygen (DO2) was kept over 25% by supplementing pure 

oxygen to the air. As post-induction feeding strategy two methods were compared: i) a constant 

volumetric feed flow rate was applied referred to as “qS free flow” (Equation 1) ii) a volumetric dynamic 

feed rate adapted according to (Equation 2) based on a real time biomass estimation to keep qS constant, 

referred to as “controlled qS”. 
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Equation 1 initial substrate uptake rate qsinit [g/g/h]: qsinit as setpoint serves as basis for calculating the volumetric 

constant feed rate 𝐅̇𝐄𝐅𝐁 [L/h] depending on the feed concentration 𝐜𝐬 [g/L] and the total biomass 𝐗𝐄𝐅𝐁 [g] at the point of 

induction 

𝑞𝑠𝑖𝑛𝑖𝑡 =
𝐹̇𝐸𝐹𝐵 ∗  𝑐𝑠

𝑋𝐸𝐹𝐵

 

 

Equation 2: substrate uptake rate qS(t) [g/g/h]: qS as setpoint serves as basis for calculating the volumetric dynamic feed 

rate F(t) [L/h] depending on the real time estimation/offline measurement of the total biomass XEFB [g] 

𝑞𝑠(𝑡) =
𝐹̇(𝑡) ∗  𝑐𝑆

𝑋(𝑡)
 

 

Biomass estimation 

Real time biomass estimation was based on an in line permittivity sensor. The measured signal is the 

relative permittivity of the fermentation broth in picofarad per centimeter (pF/cm). The difference of the 

two frequencies (~ 10 MHz high, ~ 1MHz low - dual frequency mode) correlates linearly with the 

membrane enclosed volume fraction of cells, which corresponds with the assumption of a constant cell 

density to the biomass dry weight concentration [35]. The signal to biomass correlation was calibrated 

during the exponential fed-batch phase by correlating the feed forward biomass profile with the 

permittivity signal.  

Offline analysis 

 Biomass dry weight 

Biomass concentrations were gravimetrically quantified after drying at 105 °C for min. 72 h. Therefore 2 

mL of culture broth were centrifuged (4500 x g, 10 min, 4 °C) in a pre-weighted glass tube and the pellet 

was washed once with 5 mL RO water. The determination was done in duplicates.  

 Product analytics  

Two mL of the fresh culture broth was centrifuged (4500 x g, 10 min, 4 °C). The supernatant was 

analyzed without pre-treatment to determine the CFM titer (cell free media). The pellet samples need to be 

disrupted and re-buffered before determining the SCF titer (soluble cell fraction). The cell pellets were re-

suspended in 20 mL of 0,1 M Tris-buffer (pH 7,4) and were disrupted in a high-pressure homogenizer 

(Avestin EmulsiFlex; Canada) at 1400 ±100 bar in 6 passages. 500 µL of the homogenate were then 

applied on gel filtration columns (PD MiniTrap g-25, GE Healthcare, USA) and eluted with 1 mL Eluent 

A (20mM phosphate-buffer, pH 7,4). 
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The product titers were measured by a protein G affinity chromatography using a pH gradient on a HPLC 

system (Thermo Scientific Dionex Ultimate 3000; USA). The column was a HiTrap ProtG (GE 

Healthcare; USA) with a flow rate of 2 ml/min at 25°C. The Detection was at 390 nm and the elution was 

forced by changing the pH from 7.4 to 2.5 (20mM phosphate-buffer). 

 Substrate conc. and small metabolites 

Acetate concentrations were quantified from the supernatant by enzymatic photometric principle in a 

roboting system (CuBiAn XC; Optocell, Germany). The analysis was used as a quality control to exclude 

possible acetate production due to oxygen limitation or overflow metabolism. Feed substrate concentration 

was determined by a density/feed concentration correlation. The feed density was determined 

gravimetrically. 

 

Data processing & reduction  

Calculation of metabolic rates and yield coefficients was conducted with Matlab r2012 b (Mathworks; 

Natick, Massachusetts, USA). Software was used for the calculation of specific rates and yield 

coefficients, as we described elsewhere [9]. For further data reduction physiological descriptors where 

calculated [28] before subsequent statistical data analysis. The utilized window for data comparison was 

equal for all experiments and determined by the normalized amount of consumed substrate dSn (Equation 

3). 

Equation 3 dSn corresponds to the integral of the feeding rate rS [g/h] since the end of fed batch tEFB normalized on the 

biomass concentration at the end of fed batch xEFB 

∆𝑆𝑛(𝑡) =
∫ 𝑟𝑆

𝑡

𝑡𝐸𝐹𝐵
𝑑𝑡

𝑥EFB
 

Statistical analysis 

Since common DoE evaluation is based on the set points of the respective factors it does not take usual 

process deviation into account potentially masking effects triggered by potential set point deviations. To 

ensure the most realistic response to factor correlation, we used the averagely met process variable as 

input instead of its mere set point. Statistical tests were performed with Datalab Version 3.5 (distributed 

by Epina http://datalab.epina.at)  
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Results 

In order to examine the physiological differences of qS free flow and qS control experiments, 15 qS free 

flow experiments and 9 qS control experiments were conducted. To highlight the differences of the two 

feeding strategies exemplary experiments are displayed in Figure 3. While in qS free flow experiments the 

volumetric flow rate remains constant over the whole process, in case of qS control experiments the feed 

rate is dynamically adapted to account for the increase in biomass (Figure 3 A, C). Figure 3 F illustrates 

displays the progression of the biomass yield, emphasizing the necessity of real time biomass estimation. 

The obviously decreasing biomass yield renders an on fixed yield based qS control approach unfeasible. 

(i) General impact of substrate availability on productivity 

To facilitate a conclusion on the benefit of qS control in comparison to qS free flow the respective 

experiments have to be compared by statistical means. Following an information mining approach 

physiological descriptors must be calculated within a physiologically relevant window of calculation. 

Especially for dynamically changing rates/ yield/ specific rates (Figure 3 A/F) the window of calculation 

is of utmost importance. This raises the question of the most relevant dimension for calculation 

considering physiology and productivity especially in the context of dynamically adapted feeding rates. 

To account for the different amounts of fed substrate per biomass in dependence of the feeding strategy a 

different variable is required to serve physiological relevant common ground for comparison. To serve as 

physiologically more relevant variable than time we substituted time on the x-axis with the cumulative but 

normalized consumed substrate since induction: dSn [g/g] (Figure 3 B/D). Irrespective of the feeding 

strategy the experiments were categorized according to the average qS achieved within a common window 

of dSn into qSmean high (> 0.2 g/g/h), mid (0.2-0.12 g/g/h) low (< 0.12 g/g/h). 
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Figure 4: Exemplary experiments of qS free flow and qS control differ in substrate supply:   

Experiments with comparable levels of qSmean are shown. (A) Glycerol feed rate [g/h] over time after induction [h]; (B) 

Glycerol feed rate [g/h] over dSn [g/g]; (C) biomass BM [g] over time after induction [h]; (D) biomass BM [g] over dSn 

[g/g]; (E) cumulative biomass yield Yxscum [g/g] over time after induction [h], the rectangle highlights the highest common 

value of dSn shared by all experiments used for phase definition and data evaluation; (F) progression of dSn [g/g] over 

time after induction [h]; qS: high (> 0,2 g/g/h), mid (0,2-0,12 g/g/h) low (< 0,12 g/g/h)  

 

Figure 4 illustrates the usefulness of plotting the maximum specific titer over dSn [g/g] in comparison of 

plotting over time since induction [h] for physiological data interpretation. By aligning the product data 

over dSn, the induction period can be characterized by three distinct phases. In the first phase (P1) the 

specific titer in the soluble cell fraction (SCF) is sharply increasing until it reaches the maximum specific 
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titer until dSn of approx. 2.5 [g/g] (Figure 4 B). The subsequent second phase (P2) is characterized by the 

increase of specific product concentration in the cell free media (CFM) (Figure 4 D). In this phase product 

appears to be leaked or transported into the media since the specific intracellular product titer decreases 

(Figure 4 B). The final stage (P3) is marked by product degradation, in which the absolute amount of 

product decreases regardless of the localization.  

 

Figure 5: progression of specific product titers over time and consumed substrate.  

 (A) specific product [g/g] in the soluble cell fraction over time after induction ; (B) specific product [g/g] in the soluble cell 

fraction over dSn [g/g]; (C) specific product [g/g] in the cell free media over time after induction; D specific product [g/g] in 

the cell free media over dSn [g/g]; qS: high (> 0,2 g/g/h), mid (0,2-0,12 g/g/h) low (< 0,12 g/g/h) 

Regarding the productivity qp [g/g/h] the same three distinct phases can be observed in the SCF as well as 

in the CFM (Figure 5). A sharp increase of the qp in the SCF until a dSn of approx. 1 g/g (P1) is followed 

by a rise of qp in the CFM reaching the maximum value at a dSn of approx. 3.5 g/g (P2). Consequently 

the overall productivity of CFM starts to decrease, making P3 a phase of less interest from an economic 

point of view. 
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This alignment over dSn eases physiological interpretation since it aligns experimental data independent 

of qSmean and the trajectory of qS. The greatest common denominator of all conducted experiments was 

determined at a dSn of 4.5 [g/g]. Consequently physiological descriptors were calculated within an dSn of 

0-4.5 [g/g]. This window of comparison includes > 90% of the max specific titers and makes the 

technologically very different experiments of qS free flow and qS control physiologically comparable. 

 

Figure 6: specific productivity over fermentation time in soluble cell fraction (SCF) and cell free media (CFM);  

(A) specific productivity [g/g/h] in SCF over dSn [g/g]; (B) specific productivity [g/g/h] in the CFM over dSn [g/g]; qS: high 

(> 0,2 g/g/h), mid (0,2-0,12 g/g/h) low (< 0,12 g/g/h) 

 

Regarding the feeding strategy within the illustrated experiments different maximum specific were 

observed. To investigate the role of physiology in the observed variance the maximum specific titers were 

plotted against the two physiological descriptors qSmean and µmean. A strong negative correlation can be 

observed for qSmean (Figure 6 A) as well as for µmean (Figure 6 B). The phenomena of high titers at low 

feeding rated could be interpreted as shift in energy distribution from growth to product triggered 

induction and subsequent substrate availability. The observed correlation of max specific titers and qSmean 

(Figure 6 A) is statistically significant (R2 = 0.718/Q2 = 0.619) for all 24 conducted experiments. 
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More importantly, qS control experiments achieve an overall higher specific titer than qS free flow 

experiments. At comparable qSmean levels maximum specific titers in qS control experiments are higher. 

Based on this observation it can be concluded that the trajectory of the physiologic state (e.g. qS) has an 

overall impact on maximum specific titers. 

 

Figure 7 maximum specific titers are negatively correlated to qSmean and µmean  

(A) maximum specific cytosolic titers [g/g] plotted against the average specific substrate uptake rate [g/g/h] calculated in 

the specified window of dSn; (B) maximum specific cytosolic titers [g/g] plotted against the average specific grwoth rate 

[1/h] calculated in the specified window of dSn;  

 

(ii) Technological vs physiological control: the impact of trajectories 

To investigate the cause for the general tendency of qS control experiments to display a higher max. 

specific titer the trajectories of qS were compared in detail. Within a dSn of 4.5 [g/g], Figure 7 A illustrates 

the difference in feed rate [g/h] whereas the trajectory of qS is displayed in Figure 7 B. While qS control 

experiments maintain a constant qS throughout induction, qS free flow experiments display a steep decline 

in qS. This decline in qS for qS free flow experiments is owned to the fast increase of biomass as a result of 

the initially high biomass yield. 
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Figure 8 Physiologic feeding requires a dynamic feed profile but keeps qS constant: (A) substrate feed rate [g/h] 

over dSn [g/g]; (B) specific substrate uptake rate qS [g/g/h] over dSn [g/g]; qS: high (> 0.2 g/g/h), mid (0.2-0.12 g/g/h) low 

(< 0.12 g/g/h);  

 

To differentiate the impact of qSmean and the trajectory of qS throughout induction the productivity increase 

has been evaluated separately (Figure 8). The effect of the feed mode is illustrated by the comparison of qS 

free flow and controlled experiments grouped by the achieved qS mean (Figure 8 A). Generally, low qSmean 

experiments of qS free flow experiments display 68% higher maximum specific titers than the maximum 

specific titer of a qS free flow experiment with a high qS mean. Regarding qS control experiments low 

qSmean displayed up to 131% more product than high qSmean experiments (Figure 8 A). In comparison to the 

group of qS free flow experiments with a comparable qS mean, the qS control experiments display an up to 

92% higher maximum specific titer. Concluding constant substrate availability and consequently the 

underlying trajectory of qS appears to have an additionally beneficial effect independent of the qS level. In 

Figure 8 B the feeding strategies have a clear significant effect in addition to the strong negative impact of 

qSmean on maximum specific titers. This findings constitutes a substantial benefit for physiological 

bioprocess control since qS control experiments feature a generally higher titer than qS free flow 

experiments. 
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Figure 9 Box Plot comparing the two classes of experiments: (A) qS free flow (n=15) and controlled qS (n=9), 

experiments grouped by level of qS: high (> 0.2 g/g/h), mid (0.2-0.12 g/g/h) low (< 0.12 g/g/h); (B) multilinear regression 

model : qS free flow (FM Free Flow), controlled qS (FM controlled) and the mean specific substrate uptake rates 

correlated with the maximum specific titer. 
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Discussion 

Within this contribution we addressed the question if the increase in effort for physiological process 

control is worth its effects. To answer this question we firstly investigated the overall role of substrate 

supply on physiology and productivity (i). Secondly, we analyzed the impact of the substrate feed strategy 

and the correlated trajectory of qS on productivity (ii). 

(i) General impact of substrate availability on productivity 

In order to facilitate an objective comparison of qS free flow and qS control experiments the data was 

processed by the means of information processing and information mining. Rather than over time since 

induction dSn [g/g] (Equation 3) was found to increase comparability. dSn has proven a valuable variable 

for phase definition of production and degradation phases in SCF as well as in CFM. and to feature a 

useful predictive power of determining the phase of highest titers (Figure 3).  

Numerous publications studied the proportionality of the interrelation of substrate supply and productivity. 

While some contributions stated a direct proportional relation [8, 11, 36] others stated an indirectly 

proportionality [16, 37]. Obviously the nature of the interrelation appears to be dependent on physiology 

and/or product. In this contribution the examined expression system displays a clear negative correlation 

of qSmean and the maximum specific titer (Figure 8, Figure 6 ). It can be hypothesized that substrate 

availability has an impact on the energy distribution. The additional metabolic load of anabolism, imposed 

by induction, affects the energy household of the host organism severely, leading to a shift in metabolism 

[38]. This hypothesis goes hand in hand with the observed decrease of the biomass yield coefficient 

(Figure 3 F). Obviously upon induction of the rhaBAD promotor a major part of metabolic energy is 

directed from biomass growth to product formation [14]. This might lead to an increasing metabolic load, 

eventually triggering the observed sharp decline in productivity (Figure 5). The highly complex and non-

linear nature of bioprocesses burdens great challenges on bioprocess monitoring and bioprocess control 

approaches [39] and denies fixed yield approaches for real time biomass estimation. 

(ii) Technological vs physiological control: the impact of trajectories 

The hallmark difference between qS free flow and qS control experiments is the substrate availability for 

each cell. While in qS free flow experiments initially un-proportionally much substrate is available for a 

given qSmean, the specific substrate availability towards the end of fermentation declines severely. 

Underlying trajectories of investigated physiological variables can severely compromise conclusions. 

Consequently, the effect of physiological variables and correlated trajectories can only be investigated 

using physiological control which renders the variable a parameter. Independent of strain or product the 

accessible range of qSmean is broadened by controlling qS. To achieve the same qSmean as in a qS control 

setting, a significantly higher qS free flow has to be set due to the decline of qS throughout induction phase 
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(Figure 7 B). Under the constraint of avoiding acetate production the latter circumstance grants a greater 

range of accessible qSmean by dynamically adapting the federate (qS control). 

Besides the scientific arguments we have shown that there is a substantial economic implication in 

physiological control, since specific titers can greatly benefit from the constant physiological state (Figure 

6, Figure 8). Although the technological control approach of a volumetric constant feed rate throughout 

post-induction [9, 18-20, 34] is very simplistic the gained mechanistic knowledge remains scarce due to 

underlying trajectories. Physiological feeding strategies on the other hand require higher effort but offer 

deeper insights into mechanistic interrelations. Understanding the respective bioprocess by 

comprehending the effects of physiological variables fosters bioprocess understanding and ultimately 

process robustness. Hereby, the industrial need for robustness overlaps with the demand of the FDA 

quality by design (QbD) initiative [3, 40] for increased process understanding [4].  

 

Conclusions 

In this contribution the benefits of physiological processes control were investigated and discussed in 

direct comparison to technological controlled processes. The goal of this contribution was to answer the 

question if the increase in effort for physiological process control is worth its effects.  

Methodological achievements 

 Based on the calculation of qSmean within a constant window of dSn we established the general 

correlation of qSmean and maximum specific product titers.  

 Only by controlling physiological variables the impact of trajectory and mean level can be 

discriminated ultimately leading to mechanistic process understanding 

Physiological Achievements 

 The trajectory of the physiological variable of qS throughout the process greatly impacts 

productivity justifying the effort for physiological control 

 The working hypothesis concerning a mechanistic explanation points toward a shift of energy 

distribution from biomass production to product formation, triggered by substrate 

availability/energy input.  

The most surprising finding within this contribution was the great impact of the trajectory of the examined 

physiological variable (qS) on the productivity. This great impact of the trajectory does not only justify 

physiological control, it points out the necessity of controlling physiological variables to gain true 

mechanistic process understanding and to discriminate the effect of level and trajectory of a given 

physiologic variable.  
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iii. qScrit – physiological capacities 

Targeting physiological bioprocess development physiological variables can be used as factors 

in a respective DoE. In this case, the design of experiment calls for a clear definition of 

physiological constraints (i.e. limits) for each physiological variable. In the context of the 

definition of the physiological feasible space rather than minima, physiological maxima are of 

concern. Exceeding physiological capacities leads to unwanted accumulation of substrate or 

metabolites, which inhibits growth [54] and protein production [55]. Physiological capacities 

feature two definitions: qSmax defines the total cellular capacity to metabolize substrate and qScrit 

is defined as the cellular capacity of anabolism and oxidative catabolism, metabolism without 

accumulation (Åkesson, Hagander, & Axelsson, 1999).  

To quantify maximum physiological capacities, various approaches have been outlined; all 

aiming to generate a perturbation of C-source availability in an otherwise C-source limited 

process [5, 33-35]. Targeting a physiological DoE the state of the art approach was followed for 

quantifying physiological capacities. Within a verification experiment the feasibility of the state 

of the art is discussed and an alternative method is introduced using an industrial relevant 

production strain. 
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ABSTRACT 

During the cultivation of E. coli for recombinant protein production, substrate accumulation is often observed in induction 

phase. Uncontrolled substrate accumulation leads to difficulties in transferring or scaling processes and even to fail 

batches. The phenomena of metabolite/substrate accumulation is triggered by exceeding the physiological capacity to 

metabolize substrate (qScrit). In contrast to the common understanding of qScrit as “static” value we hypothesized that qScrit is 

of dynamic nature.  

Following the state of the art approach of physiological strain characterization, substrate pulse experiments were used to 

quantify qScrit in induction phase. The observed, temperature dependent and timely declining qScrit was expressed through a 

linear equation to serve as boundary for physiologically controlled experiments. Nevertheless, within a physiologically 

controlled verification experiment accumulation was observed, although the qScrit boundary was not exceeded. A second set 

of experiments was conducted, oscillating qS physiologically between discrete plateaus physiologically controlled. 

Hereupon, we were able to deduct a significant interrelation of the metabolic activity and the timely decline of the qScrit. 

This finding highlights the necessity of a comprehensive but laborious physiological characterization for each strain or, 

alternatively, of physiologic feedback control to facilitate real time analysis of qScrit in order to effectively avoid substrate 

accumulation. 
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physiological capacity; substrate accumulation; physiologic bioprocess development; dynamic experiments; 

bioprocess control; balancing approach 
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Background 

Escherichia coli is one of the most exploited organisms for industrial production of recombinant proteins [1, 2]. 

Although E. coli has been characterized comprehensively, substrate accumulation is a frequently observed 

phenomena in induction phase. This substrate accumulation is counterproductive [3] owned to the associated 

negative effects on physiology [4]. Moreover, substrate accumulation impairs controllability and even causes fail 

batches. In literature substrate and metabolite accumulation is commonly regarded as a consequence of exceeding the 

physiologic capacity to metabolize substrate (qScrit). Given the importance of qScrit for experimental design, regardless 

of the utilized substrate feeding strategy, a quantification of qScrit appears obligatory. Consequently, various 

approaches for strain characterization have been outlined to firstly quantify qScrit [5-8] and consequently constrain the 

experimental design according to physiologic capacities. While the latter contributions regard qScrit as a static 

physiologic parameter, within this contribution the hypothesis that qScrit is a variable rather than static was tested. 

Furthermore, the aim was to investigate and to identify correlated physiological variables which trigger the putative 

dynamics in qScrit.  

Physiology can be described in time dependent manner using physiological variables e.g. (specific) rates and 

yields, or process phase specific using physiological descriptors [9]. Of all physiological variables, specific rates are 

of highest interest, since specific rates assure biomass independent comparability and transferability. Consequently, 

an increasing number of scientific contributions has addressed the topic of controlling specific rates for physiologic 

bioprocess development [6, 10-12]. Such physiological process development approaches, targeting the control of 

specific rates e.g. the specific substrate uptake rate (qS) or specific growth rate (µ), requires a robust control strategy 

as well as a concise definition of physiological constraints for experimental design. 

For accurate control of specific rates during induction phase, real time biomass estimation is obligatory. Especially 

in industrial relevant high cell density fermentations, real time biomass estimation is challenging. In general, 

literature favors data driven models or hybrid models for real time biomass estimation [13, 14]. Nevertheless, in the 

setting of bioprocess development, historic process data is scarce, which impairs the use of data based algorithms. 

Consequently, hard type sensor or first principle mass balance based approaches are regarded as more feasible, 

especially in early bioprocess development [15].  

To ensure feasibility of the experimental design, experiments are commonly designed within the congruent region 

of the technical and physiological feasible space. Commonly the technical feasible space is defined by maximum 

mass/energy transfer but also by temperature/pH stability of the setup. The physiological feasible space is defined by 

strain specific physiological capacities e.g. to metabolize substrate. While the technical feasible space is setup 

specific, the physiological feasible space is strain specific and has to be characterized individually for every strain to 

provide the constraints for the experimental design. Additionally, technical process parameters (e.g. pH, temperature) 

can be interlinked with physiologic capacities and therefore impact the physiologic feasible space. Consequently, the 

quantification of physiologic capacities in response to technical process parameters constitutes the basis for the 

definition of the constraints for experimental design. 

In regard of circumventing substrate accumulation physiological maxima, rather than minima, are of concern. 

Exceeding physiologic capacities leads to accumulation of substrate or metabolites, which impairs reproducibility, 

transferability, inhibits growth [4] as well as protein production [3]. The physiologic capacity to metabolize substrate 

114/167



 

is commonly described by two variables: qSmax defines the total cellular capacity to metabolize substrate and qScrit is 

defined as the cellular capacity of anabolism and oxidative catabolism without accumulation of metabolites [5].  

To quantify physiologic capacities, various approaches have been outlined, all aiming to generate a perturbation of 

C-source availability in an otherwise C-source limited process [6-8, 16]. Ultimately, the question of the molecular 

cause of the observed physiologic limitations is of less concern, than the timely resolution of the trajectory and the 

interrelation with other process parameters. Introduced as process control strategy Åkesson et al. used periodical “up-

pulsing” by temporarily modulating the otherwise exponential substrate feed rate to trigger a transient surplus of C-

source. On the basis of the response of the DO2 signal the exponential feed rate was adapted to avoid qScrit throughout 

the process [5]. But according to more recent literature the amplitude of up-pulsing was too low and did not yield a 

saturation of the glucose uptake system [7], which consequently only allows qualitative conclusions towards qScrit. 

Still relying on the DO2 signal and also designed as process control strategy, Lin et al. achieved metabolic saturation 

using concentrated C-source shots in addition to an otherwise volumetric constant substrate feed rate [7]. A recently 

introduced more explorative approach from Schaepe et al. is based on a highly dynamic feeding profile with 

periodical up-pulsing of the substrate feed rate. Also relying on the DO2 signal this approach illustrated a decline of 

qScrit over induction time [17]. In contrast Henes et al. introduced “down-pulsing” as control strategy, an exponential 

feed strategy with a fixed yield, which is intermitted periodically. If the DO2 signal does not react simultaneously to 

the substrate feed intermittence, qScrit has been exceeded, which in turn triggers a controller action. [6]. 

Summarizing, published work on the quantification of physiologic capacities relies widely on the highly sensitive 

DO2 signal as response. However, the DO2 signal is highly sensitive given the absolute low solubility of oxygen in 

aqueous media. Additionally the DO2 level is commonly regarded as critical process parameter and has to be kept 

above a certain threshold. If the DO2 signal is used as response to quantify qScrit as well as for DO2 controller action, 

definite signal interpretation becomes challenging. Concluding, given the importance of qScrit an alternative 

experimental approach to quantify qScrit independent of the DO2 signal is required.  

In accordance to the state of the art, the first approach was based on highly concentrated, repetitive substrate pulses 

to quantify the qScrit in response to the technical process parameters temperature as well as time. Having quantified 

the qScrit trajectory in pulse experiments, we attempted and failed to verify the maximum physiologic capacity by a 

physiologically controlled experiment. Consequently, in a third set of experiments, we investigated the physiological 

feasible space and its dependency on the average physiologic activity (qSmean) by physiologically controlled 

oscillations of qS. Based on the obtained results the hypothesis of a variable qScrit and its interrelations to physiologic 

descriptors shall be evaluated to answer the question of the physiologic root cause of substrate accumulation in late 

process phases. 
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Materials and methods 

2.1 Cultivations 

2.1.1 Bioreactor system 

Fermentations were conducted in a DASGIP multi-bioreactor system with four parallel reactors with 2 L of 

working volume each (Eppendorf; Hamburg, Germany). The reactors were equipped with baffles and three disk 

impeller stirrers. The DASGIP control software v4.5 revision 230 was used for control: pH (Hamilton, Reno, USA), 

pO2 (Mettler Toledo; Greifensee, Switzerland; module DASGIP PH4PO4), temperature and stirrer speed (module 

DASGIP TC4SC4), aeration (module DASGIP MX4/4) and pH (module DASGIP MP8). CO2, O2 concentrations in 

the off-gas were quantified by a gas analyzer (module DASGIP GA4) using the non-dispersive infrared and zircon 

dioxide detection principle, respectively.  

2.1.2 Strain & media 

A recombinant BL21 DE3 E. coli strain was cultivated, producing an intracellular protein (~30 kDa) in form of 

inclusion bodies. The synthetic media was based on the recipe of Korz, Rinas et al. [18], where the limiting C-source 

was glucose. 

2.1.3 Process parameters 

Pre-cultures were incubated at 30°C and 170 rpm to an OD600 of approx. 1.5 in 150 mL batch media and 2.5% 

batch volume aliquots were used for inoculation. After depletion of the C-source in an initial batch phase, the pre-

induction fed-batch was started. The pre-induction feeding strategy was based on an exponential feed forward profile 

to maintain a predefined growth rate. On attainment of the predefined biomass the cultures were induced after 30 min 

adaption time. Stirrer speed was set to 1400 rpm and aeration to 1.4 v/v/m for the whole process. The pH was 

maintained by adding 12.5% NH4OH, which also served as nitrogen source. The dissolved oxygen (DO2) was kept 

over 30% by supplementing oxygen to the air.  

2.1.4 Pre induction: exponential feed forward profile 

The starting feed rate in L/h (F0) was calculated using a gravimetrical biomass yield in g/g (YX/S,g), the starting 

biomass in g (X0), the concentration of the feed solution in g/L (cS,g) as well as the specific biomass growth rate as 

described elsewhere [19]. 

2.1.5 Post induction feeding strategies 

After the depletion of C-source in the batch phase the culture was induced with IPTG (1 mM). Upon induction 

either one of three types of experiments were performed: Pulse, qS control and qS oscillation experiments. 

Pulse experiments: Upon induction substrate pulses were applied for the determination of qScrit, comprising 3 

consecutive glucose pulses (20 g/L). The next pulse was applied upon depletion of glucose from the preceding pulses 

after a 30 min recovery phase. Within this contribution two pulse experiments were performed at different 

temperatures. 

qS control experiments: For real time qS control the substrate feed rate is dynamically adjusted during the post 

induction phase. The timely variable of the feed flow rate is calculated via the feed concentration cs,m and the biomass 

Xg,(t) at the corresponding time point (Equation 1). The necessary real time biomass quantification in g was 

conducted using a first principle soft-sensor as described elsewhere [20]. Based on the biomass estimation and qS(t) 

was controlled within a verification experiment on a qS trajectory to maximize the average metabolic activity. 
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𝑞𝑆(𝑡) =
𝐹̇(𝑡) ∗  𝑐𝑆,𝑔

𝑋𝑔,(𝑡)
 

Equation 1: Specific substrate uptake rate at timepoint t 

qS oscillation experiments: Using the latter described control approach, oscillations in post induction qS were 

performed at different average qS levels (qSmean) levels, qS amplitudes and oscillation frequencies. The qS mean set 

points ranged from 0.23 – 0.4 g/g/h. Based on these qSmean values, amplitude levels quantified as changes in qS of 0.1 

– 0.2 g/g/h were used as set points. In simplified terms, for a qS oscillation with a qSmean of 0.23 g/g/h and an 

amplitude of 0.2 g/g/h the qS was timely changed from 0.03 – 0.43 g/g/h throughout the induction phase of an 

experiment. Additionally different frequencies of 0.25 – 1 1/h for complete qS oscillations were used. In total nine 

oscillation experiments were conducted to resolve the dependency of qScrit on qSmean. 

2.2 Process evaluation and data analysis 

Metabolic rates and yield coefficients were calculated with Matlab r2013 b (Mathworks; Natick, Massachusetts, 

USA). The calculation of specific rates and yield coefficients was conducted as described elsewhere [21].  

The here used qSbal is the specific substrate uptake rate in g/g/h calculated by substitution of rS with the term 

𝑟𝑂2
× 𝑅𝑄 + 𝑟𝑋 in C-mol/h via the DoR-Balance and the carbon balance (Equation 3, further details in supplemental). 

The biomass formation rate 𝑟𝑋 in C-mol/h was derived from DCW measurements, the other necessary rates from off 

gas measurement. The C-molar molar mass of glucose in g/C-mol was used to obtain suitable units of rS. 

Subsequently the division of rs by the offline BM in g 𝑋𝑚,(𝑡) qSbal was obtained in g/g/h. 

𝑞𝑠𝑏𝑎𝑙 =
𝑟𝑂2

× 𝑅𝑄 + 𝑟𝑋

𝑋𝑚,(𝑡)

 

Equation 3: Molar specific substrate uptake rate from oxygen uptake, respiratory quotient and biomass 

 

2.3 Offline analytics:  

2.3.1 Biomass dry weight (DCW) 

Biomass concentrations were gravimetrically quantified after drying at 105°C for min. 72 h. Therefore 2 mL of 

culture broth were centrifuged (4,500 x g, 10 min, 4°C) in a pre-weighted glass tube and the pellet was washed once 

with 5 mL deionized water. The determination was done in duplicates. After drying in the drying oven, the biomass 

dry weight was measured on a scale.  

2.3.2 Substrate conc. and small metabolites 

The C-source concentration in the feed media was calculated using the gravimetrically determined density. 

NH4OH concentration was determined by titration with 1 M HCl. Acetate concentrations were quantified from the 

supernatant by enzymatic photometric principle in a robotic system (Cedex BioHT, Roche, Switzerland). The 

analysis was used as a quality control to exclude possible acetate production due to oxygen limitation or overflow 

metabolism.  
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Results 

Physiological maxima for physiologic DoE design 

To define the physiological feasible space qScrit has to be quantified in response to the technical process parameters 

(e.g. T). Representing the experimental state of the art, substrate up-pulsing for qScrit quantification was used. 

Following an explorative approach rather than a control approach with the pulse experiments, qScrit was quantified 

based on the offline data. FIGURE 1 displays the residual glucose concentration in the supernatant of repetitive pulse 

experiments as well as the calculated qScrit derived from the glucose and biomass (DCW) quantification. Regarding a 

qScrit trajectory over time the temporal resolution is of great concern. In a system of growing biomass and excess 

substrate the calculation of qScrit requires offline analytics of substrate concentration and biomass and can 

consequently be correlated to analytical error. This necessity for offline quantification of the substrate concentration 

and biomass constitutes the major bottle neck for temporal resolution and causes noise in qScrit by error propagation. 

Nevertheless, an overall dependency of qScrit on process time can be concluded, judging from the qualitative decline 

over time. At the start of induction the results indicate a qScrit of 0.55 [g/g/h] at 35°C (FIGURE 1 A), while for 20°C 

qScrit is reached at 0.33 [g/g/h] (FIGURE 1 B). These results indicate a substantial impact of process temperature on 

qScrit, which is congruent with the theoretic metabolic point of view. This finding illustrates the interlink of the 

technological and physiological parameters and highlights the importance of investigating critical physiological 

parameters in response of technical variables. Summarizing, the maximum physiological capacity of the oxidative 

metabolism appears to be a function of time and dependent on the technical process parameter - temperature.  

FIGURE 1: qScrit declines as function of time and temperature qScrit=f(t,T);  

Repetitive substrate pulses (n=3) of 20 g/L were administered to fully saturate the oxidative metabolism and to investigate qScrit 

over time; in between pulses a time delay of 30 min was scheduled to facilitate full clearance of accumulated substrate and 

metabolites; offline samples are indicated by symbols, lines in-between the symbols are meant as guide for the eye. The 

calculation of qScrit [g/g/h] requires the rate of the decline in glucose concentration in g/L/h calculated from the timely resolved 

glucose concentrations in g/L, as well as the offline DCW in g/L measurements as inputs; acetate accumulation was at all times 

below 0.3 g/L (data not shown); the linear function represents a linear fit of qScrit values over time. A: 35°C (qScrit = -

0.0066*t+0.55) indicating a maximum qScrit at start of induction of 0.55 [g/g/h]; B: 20°C (qScrit = -0.004*t+0.33) indicating a 

maximum qScrit at start of induction of 0.33 [g/g/h]; Hereupon a trajectory for 29°C was deducted mathematically: qScrit= -

0.0056*t+0.46 (not shown) 
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Sample interval independent data evaluation of oxidative metabolism based on off gas signal 

Based on a positive correlation of qS and productivity (data not shown), the maximization of qS is of great interest. 

Given the timely decline of qScrit (FIGURE 1 A/B) it is indicated to control qS on a steadily declining trajectory to 

follow qScrit without exceeding it. Consequently, the subsequent experiment was designed to control qS on a 

predefined trajectory, based on the previously defined qScrit trajectory (qScrit= -0.0056*t+0.46), to achieve the highest 

qSmean possible, while avoiding substrate accumulation. To achieve this goal, real time biomass sensing and dynamic 

substrate feed adaptation were implemented to realize the predefined qS trajectory. Despite a carefully designed 

experiment and a tightly controlled qS accumulation occurred 6 hours after induction unexpectedly (FIGURE 2 A). 

This observation challenges the result and the approach illustrated in FIGURE 1, raises the question of transferability 

and infers additional underlying variables impacting the qScrit trajectory besides time after induction and T.  

The observed substrate accumulation (> 5g/L) renders the supernatant measurements again the bottle neck for high 

temporal resolution of qScrit. This becomes obvious comparing the C-balance calculated with (FIGURE 2 B) and 

without supernatant sampling (FIGURE 2 A). Using the available high resolution off gas data to calculate the rate of 

oxidative metabolism (rSox), data processing is less dependent on offline sampling and consequently reduces the 

noise inflicted by analytical errors (refer to supplemental for further information). Subsequently, the calculation of rox 

via the DoR facilitated a higher temporal resolution of qSbal (Equation 3) as well as a qualitatively better closing mass 

balances (FIGURE 2 B). Nevertheless, this observation requires statistical analysis before a final conclusion can be 

drawn. 

FIGURE 2: Physiological control of qs supposedly beneath the qScrit displays accumulation;  

The appendices w SN and w/o SN indicate the correction (w), or the absence of the correction (w/o) of fed substrate with total 

glucose measured in the supernatant in g. “from OUR” indicates the use of the balancing approach which uses the C-balance and 

the DoR-balance as described for the variable qSbal and explained in more detail in the supplemental. A: Physiological control of 

qs (qS-PV w/o SN) along a qs set point trajectory: qS-SP = -0.009*t+0.4 derived from the pulse experiments; qS – PV refers to the 

process value of qS calculated with the feeding rate in g/L/h, the substrate concentration in the feed solution in g/L, the offline 

DCW in g/L as well as the reactor volume V as inputs. qS and cumulative carbon balance (C-balance w/o SN) were calculated 
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without taking supernatant measurements (SN) into account only based on the substrate feed rate; Glucose is accumulating 

ongoing from 6 hours after induction (Glucose in SN); Acetate accumulation throughout the process was below 0.3 g/L (data not 

shown); B: qS (qSbal) and cumulative C-balance are calculated with the balancing approach (C-balance from OUR) in comparison 

to the offline analytics depending approach taking SN measurements into account (qS-PV w SN and C-balance w SN); symbols 

correspond to offline samples while lines in-between are meant as guide for the eye. 

Since the qScrit trajectory did not hold true in the experiment for the maximization of qSmean, the role of qSmean in the 

decline of qScrit appears intriguing, but remains to be investigated. To achieve different levels of qSmean and to assess 

qScrit controlled while minimize substrate accumulation, alternating phases of excess and limited substrate availability 

are necessary - controlled qS oscillations. But in the context of dynamically changing conditions a precise 

quantification of qScrit requires high frequency data, which is especially challenging in case of supernatant substrate 

analytics. Reaching the goal of a robust and temporally resolved quantification of qScrit, the here introduced qSbal 

approach assessed regarding benefit and robustness. 

 

Better closing C-balances substantiate qSbal approach 

Since the analytical data is often correlated to noise, the benefit of reducing the necessity of analytical offline 

measurements was investigated by comparing the conventional approach of including supernatant measurements to 

the qSbal approach. Consequently, the average level as well as the noise of C-balance were analyzed and compared by 

statistical means. Using the induction phase as window of calculation, the mean level of C-balance (FIGURE 3 A) as 

well as the average standard deviation (FIGURE 3 B) were calculated and compared. It can be clearly observed that 

the mean C-balance value of the qSbal approach (from OUR) is significantly increased (p(t) = <0.001), indicating a 

better defined system. Additionally the standard deviation was significantly decreased (p(t) = 0.0023) which 

indicates a lower level of noise and consequently substantiates the benefit of the qSbal approach. Although it appears 

obvious, that by excluding the noise originating from the analytical offline data, data quality is improved, Figure 3 

nicely illustrates the benefit of using the qSbal approach. Nevertheless, it has to be mentioned, that this approach is 

highly dependent on the quality of the offgas measurement data. 
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FIGURE 3 Cumulatively mass balance calculation based on qSbal yields a better defined system;  

A: The boxplots show the mean values of the C-balance calculated at every offline BM (n=10); (from OUR) corresponds to the 

variable derived from the qSbal approach; (w SN) corresponds to the C-balance including SN measurements. The means for latter 

is significantly (p(t) = <0.001) lower than for the model based approach. This can be explained by not quantified components in 

the SN (refer to Supplemental 1). B: Comparison of noise: the average standard deviation of each experiment compared over the 

two balancing approaches; the averaged STD is significantly (p(t)=0.0023) lower for the balancing approach (from OUR) 

compared to the C-balance including SN measurements (w SN). This can potentially be attributed to analytical error of offline 

measurements which impact the conventional calculation to a greater extend. 

 

Offgas data quality is critical for qSbal 

Shifting the focus from offline measurements to online offgas data comprises risks as well. To test and to illustrate 

the correlated risks the consecutive set of experiments was designed to challenge the robustness of the outlined 

approach (qSbal) by real time controlling qS on a steady trajectory in comparison to oscillating qS between discrete 

plateaus. The experiments illustrated in FIGURE 4 underline the sensitivity of the qSbal approach to highly dynamic 

process conditions. The comparison of a steady feeding profile (FIGURE 4 A) to the oscillatory feeding profile 

(FIGURE 4 B) shows a substantial difference in noise of the C-balance. This phenomenon can be attributed to 

controller actions to maintain DO2 within bounds (FIGURE 4 C/D). The regulation of the oxygen partial pressure 

leads to spikes in the OUR. This technical cause would hinder the correct estimation of rox in real time since it leads 

to increased noise in the DoR and via qSbal in the C-balance. In case the DO2 controller actions only affect O2 partial 

pressure of gassing, it would be indicated to focus on the CER instead for the qSbal approach. Nevertheless, the CER 

would be largely affected by pH fluctuations e.g. in case of overflow metabolism. To minimize such DO2 controller 

actions the OTR should outweigh the OUR. This can be achieved by reducing the biomass concentration in the 

experimental design or by utilizing a system allowing a higher kLa value. 
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FIGURE 4 Process dynamics calling for frequent DO2 controller action cause noise in C-balance in real time 

A/B: C-balance calculated with balancing approach (left y-axis) in real time, qSbal and CER (right y-axis) for two different 

processes showing the limitations of the balancing approach, offline sampling points are indicated as symbols and resemble the 

verification measurements; C/D: The oxygen uptake rate (OUR) as well as the change in partial pressure of O2 by the DO2 step 

controller (O2 gassing gradient) is displayed. A/C: qS profile of low dynamics calls for less controller actions and consequently 

displays less noise in the C-balance; B/D: A highly dynamic process (oscillatory qS profile) shows spikes in OUR, that directly 

affect the real time C-balance. The respective spikes in the C-balance coincident with the step controller actions, further data 

regarding these experiments is provided in Supplemental 3. 

 

 

 

 

 

 

 

122/167



 

 

qSbal can predict accumulation of unknown metabolites 

Since the C-balance based on qSbal displays a better closing C-balance and less correlated noise, the prediction of 

substrate accumulation in a real time context is of great interest. Besides the reduced need for identification of 

components, the estimation of the oxidative metabolism allows a higher temporal resolution and eases the 

quantification of accumulated C-source. Offline metabolite quantification is limited in temporal resolution by the 

sampling interval of supernatant. In case of supernatant sampling the separation of cells and supernatant is a highly 

time critical step which can greatly interfere with the data quality. Biomass sampling is less sensitive consequently 

automation is less challenging which in turn generally allows for a higher sampling frequency than for supernatant.  

In this context, estimating the oxidative metabolism using high resolution biomass sampling an offgas data via qSbal 

reduces the importance of the supernatant sampling and grants a higher temporal resolution (FIGURE 5 A/B). Within 

a qS controlled experiment the use of the qSbal approach consistently predicted a higher level of accumulation than 

substantiated by measuring the expected metabolites as acetate and accumulating substrate (FIGURE 5 A). Only 

further going analysis of the supernatant revealed the release of additional C-sources as organic acids (Supplemental 

1). A bias introduced by sample handling in combination with release of unquantified organic compounds are the 

presumed reasons for the difference of the average level of the C-balances. Owned to the higher level of estimated 

accumulation rox is smaller, which in turn affects the yields of biomass and of CO2 (FIGURE 5 B). To sum it up, 

using the qSbal approach allows the estimation of accumulated C-source based on offgas data and biomass sampling. 

Since biomass sampling and quantification is less sensitive than supernatant sampling and C-source quantification 

data quality is increased. 
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FIGURE 5: Model based data evaluation leads to an overall improvement of data quality and indicates accumulation of a not 

quantified metabolite  

Points indicate the time point of calculation which is based on offgas measurement and biomass quantification and as indicated 

the metabolite/substrate quantification in the supernatant, lines in-between the symbols are meant as guide for the eye; A: 

Comparison of the theoretical accumulation (estimated) calculated using the cumulative balancing approach and actual measured 

accumulation (measured) in the SN, symbols depict the offline sampling points; the estimated accumulation in C-mol is calculated 

as the difference in the metabolized substrate deduced from both, the rS from DoR- and C-balance and the rS calculated from the 

feeding rate but without supernatant measurements. The calculated accumulation is constantly higher than the actual measured 

total accumulation of C-source; this can be attributed to the non-quantified compounds in the SN (see Supplemental 1). B: (from 

OUR) corresponds to the variable derived from the qSbal approach; (with SN measurements) corresponds to the C-balance 

including SN measurements. Cumulative molar yields (YX/S; YCO2/S; YX/S from OUR; YCO2/S from OUR) as well as C-balance 

calculated cumulatively with both methods (Cbalance w SN; Cbalance from OUR).  

 

qSbal displays dependency on metabolic activity 

The outlined approach of qSbal grants a high temporal resolution only dependent on biomass sampling which finally 

allows to assess the trajectory of qScrit over time in response to the average level of physiological activity (qSmean) 

within qS oscillations experiments. Various physiologically controlled qS oscillation experiments were conducted 

(n=9) to investigate the interrelation of qSmean and qSbal. On the basis of FIGURE 6, the dependency of qScrit on time 

and moreover on metabolic activity (qSmean) shall be brought to the reader’s attention. Based on the outlined strategy 

of quantifying the oxidative metabolism, the qS-SP (set point) can be put in relation to a qS-PV (process value) 

(FIGURE 6 A/C). If the PV of qS does not equal the SP, the metabolic state of the culture is not under control which 

can have two reasons: i) If the SP is smaller than the PV, accumulated C-source is being oxidized. ii) If the SP is 

greater than the PV qScrit is being exceeded. Consequently substrate/metabolites are being accumulated until the SP is 

reduced in the consequent phase of low qs-SP. By fitting a linear function, a time dependent decline of qScrit becomes 

apparent (FIGURE 6 A/C; Supplemental 3). Nevertheless, this time dependent decline does not appear to be 

transferable in-between experiments (FIGURE 6 A/C), indicating a further significant but underlying variable. 

FIGURE 6 B illustrates the significant (p< 0.001) correlation of the qScrit slope in dependency of qSmean.  
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FIGURE 6: The critical specific substrate uptake rate is a function of time and average metabolic activity (qSmean) 

A & C: Two exemplary qS oscillation profiles of total nine experiments (Supplemental 3) to determine the qScrit trajectories; the 

symbols depict the offline samples used for calculation of the qScrit trajectories. The lines in-between correspond to the real time 

calculations. qS calculated from the balancing approach (qSbal), qS which was calculated from the substrate feeding rate (qS). A 

linear curve was fitted into these data points describing the decline of qScrit (qScrit trajectory); B: Dependency of the decline of the 

slope of the qScrit trajectory on the qSmean for 9 different oscillation experiments (with different qS means). The slope of the qScrit 

trajectories (qScrit trajectory slope) in [g/g/h2] is negatively correlated to qSmean [g/g/h];  
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Discussion 

Within this contribution we challenged the common understanding of qScrit as a “constant” and tested our 

hypothesis of it being a variable. Furthermore, we investigated the state of the art approach of quantifying qScrit and 

aimed to establish a approach to quantify the qScrit independent of qSmean. On the basis of the exemplary investigation 

of the physiological feasible space we want to raise awareness concerning the dynamic nature of the physiological 

capacity of qScrit. 

Maximum productivity is more often correlated to high specific growth rates [22, 23]. High specific growth rates 

in turn require high substrate supply [24]. So while the maximization of the substrate supply and therefore qSmean is in 

favor of productivity it increases the risk of exceeding the physiologic capacities and to consequently accumulate 

substrate. To quantify the qScrit repetitive up-pulsing were used. In differentiation to literature [5], a higher final pulse 

concentration of 20 g/L glucose was utilized. Nevertheless the pulse concentration was 50% lower in comparison to 

Phue et al. [25] to assure saturation while minimizing pulse duration.  

The pulse experiments (FIGURE 1) substantiated the impact of time of induction as well as the impact of the 

process parameter temperature on qScrit. This correlation of metabolism and temperature is regarded as common 

knowledge from a theoretic metabolic point of view but has not been quantified up this point. Using repetitive up-

pulsing it was possible to deduct a qScrit trajectory. 

For verification of the deducted qScrit trajectory a verification experiment was designed to maximize qSmean while 

avoiding qScrit. Nevertheless, the conducted experiment to real time control qS on a trajectory following qScrit has led 

to substrate accumulation 4 h earlier than predicted by the trajectory. Presumably, the continuously high metabolic 

activity during the steady qS experiment (FIGURE 2) led to a faster decline in qScrit, in comparison to the repetitive 

pulse experiments, which comprise phases of recovery in-between pulses (30 min). In this context the investigation 

of correlated process parameters is highly challenging and has been attempted previously. But using a volumetric 

constant feeding rate the inherent time dependent decline of µ can compromise conclusions regarding the inferred 

correlation of µ and qScrit [7].  

Periodic up-pulsing of the feeding rate has been used to timely resolve the trajectory of the maximum physiologic 

capacity of the respective strain, but this approach is technologically highly demanding regarding DO2 control [17]. 

The widespread dependency on the DO2 signal as response for process control and/or data evaluation [5-8, 17] 

constitutes a major drawback to the opinion of the author. DO2 levels below 30% have been reported to alter 

transcription and to impact the metabolism [25]. This fragile metabolic state in-between glucose saturation [5] and 

oxygen limitation [7] questions the experimental setup of up-pulsing in general as well as relying on DO2 for control 

purposes. This problem can be avoided by down pulsing [6] or by decoupling control and data analysis from DO2. 

Controlling the physiological rate of interest, avoids the question whether the observed decline in e.g µcrit is 

actually correlated to time or actually to an overestimation of produced biomass as a result of the assumption of a 

constant biomass yield as concluded by Henes et al. [6]. Summarizing, published work on the quantification of 

physiologic capacities as qScrit widely underappreciates real time biomass estimation, while relying on the highly 

sensitive DO2 signal as response. 
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Since the state of the art of quantifying qScrit led to an unsatisfactory result an alternative workflow is required, 

which includes physiological control and decreases the dependency on DO2 as response signal. In this context a 

controlled qS oscillation experiment, as approach to quantify qScrit , was introduced. Regarding a workflow of 

quantifying the physiologic capacities, the subsequent step of data evaluation is crucial for accuracy and highly 

dependent on data quality. Especially in high cell density (HCD) bioprocesses, transitions from growth to limitation 

can occur within 15-30 s [17], which emphasizes the necessity of high frequency sampling. In contrast to biomass 

quantification, the volatility of metabolites and substrates in the supernatant constitutes a significant risk for 

metabolite/substrate quantification. By basing data evaluation on biomass and offgas data as inputs for the here 

introduced qSbal model approach, only verified by analytical data, noise is reduced and overall data quality can be 

increased (FIGURE 3). Since the model approach provides an estimation of the total accumulation of C-source, the 

necessity of identification and quantification of each metabolite is reduced. 

In a subsequent set of experiments of nine qS controlled oscillations in-between discrete levels, the correlation of 

qScrit decline and qSmean could be illustrated. A positive correlation of qScrit and µ has been suggested before [7]. 

However, in the latter contribution, the C-source was provided by a constant feeding rate. Consequently, the growth 

in biomass leads to an inevitable time correlated decline in µ. Not controlling the physiology in terms of µ hereby 

impairs the differentiated identification of the cause of qScrit decline between time and µ. The in this contribution 

established impact of the physiologic descriptor of qSmean on qScrit during induction phase could be interpreted as the 

cumulating impact of the metabolic stress imposed by protein expression. This theory would align with literature 

reporting the high level of metabolic stress inferred by the IPTG induction system [26, 27]. Upon induction with 

IPTG the metabolic focus is directed towards target protein expression. Consequently, the average level of metabolic 

activity described by qSmean translates into energy invested into protein expression and therefore stress. Also, such an 

cumulating impact has been widely discussed for higher organisms as metabolic memory effect [28]. For microbials 

the correlation of qSmean and qScrit infers a descriptive function of qSmean towards a memory effect.  

Summarizing, a sound science based identification of the cause requires the control of one of the two variables of 

interest, as presented in this contribution. This generally applicable principle emphasizes the necessity for 

physiological process control in the context of physiological process development. 
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Conclusions 

The goal of this paper was to analyze the root causes of observed substrate accumulation during the induction 

phase for recombinant protein production using E. coli as a host. We hypothesized that qScrit is variable and 

dependent on time as well as on physiology. Based on the presented data following conclusions were deducted 

concerning the latter hypothesis 

1. The conducted up-pulsing experiments revealed that qScrit is dependent on induction time and on the process 

parameter temperature. 

2. We found for the first time that the decline of qScrit is closely correlated to metabolic activity as qSmean, 

suggesting a cumulating impact of substrate metabolization during induction phase.  

3. Based on the impact of qSmean on the decline of qScrit, we propose to utilize qSmean as descriptor for the 

metabolic memory effect. 

The illustrated time dependency of qScrit requires a time resolved qScrit trajectory instead of a static numeric value. 

However, since this trajectory is additionally dependent on process parameters and on memory effects, a large 

number of experiments is required in order to avoid accumulation. As an alternative, we propose to utilize the 

outlined model for a real time feedback control on physiological variables was. Hereby, the model would require real 

biomass estimation and offgas analysis as input variables and deliver a process value of the current qS as output. 

Thereby, a simple step controller would facilitate the feedback control of qS, while sensing qScrit in real time. This 

online detection of qScrit could eliminate the need for experiments to determine the qScrit trajectory for each setting of 

process parameters and strains. 

 

 

ABBREVIATIONS 

CH2O   c-molar substrate composition 

CH1,82O0,5  c-molar biomass composition without nitrogen 

cfeed …   substrate concentration in feed [g/L] 

dSn(t) …   fed substrate normalized by the CDW at the end exp. fed-batch [g/g] 

F(t) …    feed flow rate [L/h] after time (t) 

FS,V …   flow rate of feed solution [L/h] 

Sin…   substrate inflow [c-mol/h] 

qS…   biomass specific substrate uptake rate [c-mol/c-mol/h] or [g/g/h] 

qS(t)…   biomass specific substrate uptake rate [g/g/h] at time point (t) 

qSmean …   average qS within a predefined window of dSn or time [g/g/h] 

qSbal … biomass specific substrate uptake rate calculated with C-balance and DoR-Balance [c-mol/c-

mol/h] 

qScrit ... the critical specific substrate uptake rate as defined by Åkesson, Hagander, & Axelsson, 1999 

[g/g/h] 

qSglc specific substrate uptake rate calculated from the glucose concentration gradients in the pulse 

experiments [g/g/h] 
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qSglc fit linear fit to determine the slope of the decline in qS glc of the pulse experiments 

RQ … respiratory quotient [mol/mol] 

racc … rate of accumulating substrate and acetate [c-mol/h] 

rCO2   CER, carbon dioxide evolution rate [mol/ h] 

rS   substrate conversion rate [c-mol/h] or [g/h] 

rO2 …   OUR, oxygen uptake rate [mol/h] 

rX   biomass conversion rate [c-mol/h] 

γS …   Degree of Reduction (DoR) of substrate [mol/mol] 

γX …   Degree of Reduction (DoR) of biomass [mol/mol] 

µ …   specific biomass growth rate [1/h] 

V0 …   volume at t = 0 [L] 

X…   CDW [g] at (0) batch end or after time (t) 

Xm…   Biomass [c-mol] 

x…   CDW concentration [g/L] at (0) batch end or after time (t) 

YX/S…   biomass yield on substrate [g/g] or [c-mol/c-mol] 

YCO2/S…   carbon dioxide yield on substrate [c-mol/c-mol] 

YO2/S…   oxygen yield on substrate [c-mol/c-mol]  

YH2O/S…   water yield on substrate [mol/c-mol]  

 

indices: 

g…   gravimetrical entity 

m…   c-molar entity 

t…    process time [h] 

SP …   set point; the intended value of a given process parameter 

PV …   process value; the actual value of a given process parameter based on measured quantities 

w SN … addition of w SN indicates values calculated with taking glucose and acetate measurements in 

supernatant into account 

w/o SN … addition of w/o SN indicates values calculated without taking glucose and acetate 

measurements in 

supernatant into account 

bal …   denotes values calculated with the balancing approach (Equation 5 - Equation 12) 
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Supplemental 

 

Supplemental 1: Supernatant chromatogram using a HPLC method for determination of organic acids. Various organic 

acids/intermediates of metabolism are present in the SN: 1: Oxalic acid, 2: Oxaloacetic acid, 3: Ketoglutaric acid, 4: Glyceric 

acid, 5: Methyl-Succinic acid. 
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Supplemental 2: (A) Biomass dry cell weight (DCW) in g/L; (B) metabolized substrate calculated from the feeding rate and 

supernatant measurements (black line) and from DoR- and C-Balance (blue dotted line) with marks representing the offline 

measurement points for biomass (o) and supernatant (+); (C) RQ (red line) calculated with the cumulative biomass yield and 

cumulative CO2/S Yield, the oxygen uptake rate in mol/L/h (black line) and the biomass formation rate rX in mol/h, marks show 

the offline measurement points for biomass (triangles) and supernatant (x); The data corresponds to the experiment shown in 

FIGURE 4 B/D & FIGURE 5 A/B. 

 

Supplemental 3: decline of qScrit over time (all included experiments); The data points correspond to offline sampling points for 

which the qS , calculated from the qSbal balancing approach (red), is lower than the qS which was calculated from the feeding 

rate (black). A linear curve was fitted into these data points describing the decline of qScrit (blue) – quality criteria for this fit was 

R2 > 0.8. B 
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Supplemental 

CALCULATIONS 

The textbook approach for calculation of qS (Equation 4) requires the feed flow rate 𝐹̇(𝑡)(L/h), the substrate 

concentration in the feed solution 𝑐𝑆,𝑚(c-mol/L), and the biomass 𝑋𝑚,(𝑡) (c-mol) as input. 

𝑞𝑆(𝑡) =
𝑟𝑆

𝑋𝑚,(𝑡)

=
𝑆̇𝑖𝑛

𝑋𝑚,(𝑡)

=
𝐹̇(𝑡) ×  𝑐𝑆,𝑚

𝑋𝑚,(𝑡)

 

Equation 4: Specific substrate uptake rate from feed flow rate 

Equation 4 is based on the assumption that the fed substrate is fully metabolized (
dS

dt
= 0). In the latter case the 

substrate conversion rate rS [C-mol/h] corresponds to the feed flow rate 𝑆̇𝑖𝑛 [C-mol/h] . In case physiological maxima 

(e.g. qScrit) are exceeded and accumulation occurs (
dS

dt
≠ 0) rs follows Equation 5.  

𝑆̇𝑖𝑛 = r𝑆 +
dS

dt
 

Equation 5: Partition of the molar feed rate into metabolized substrate and accumulation 

For the offline calculation of qS and metabolized substrate an approach based on material balancing [27] was used 

which relies on the availability of high quality offline biomass data. In general, below qScrit growth of E. coli is fully 

oxidative on glucose as carbon source (
dS

dt
= 0) and follows the C-balance specified by Equation 6 [28].  

𝐶𝐻2𝑂 + 𝑌𝑂2 𝑆⁄ ∙ 𝑂2
←
→ 𝑌𝐶𝑂2 𝑆⁄ ∙ 𝐶𝑂2 + 𝑌𝑋 𝑆⁄ ∙ 𝐶𝐻1,82𝑂0,5 + 𝑌𝐻2𝑂 𝑆⁄ ∙ 𝐻2𝑂 

Equation 6: E. coli growth equation for carbon 

But physiological maxima qScrit(t) is variable and a function of time and qSmean (FIGURE 6). Exceeding qScrit 

consequently constitutes an increasing risk of substrate accumulation (
dS

dt
 ≠ 0) during fermentation. In order to 

respect qScrit(t) the variable has to be quantified. But the risk of substrate accumulation close to qScrit(t) prohibits a 

direct correlation of the molar substrate (Equation 5). To avoid the necessity of laborious offline supernatant 

analytics to quantify  
dS

dt
, rCO2 and rX for the estimation of the substrate conversion rate rS according to Equation 7 was 

used. To quantify the oxidative substrate conversion rate rs only the oxidation to carbon dioxide (rCO2) and biomass 

growth (rX) have to be considered, making the quantification of 
dS

dt
  irrelevant.  

𝑟𝑆 = 𝑟𝐶𝑂2
+ 𝑟𝑋 

Equation 7: Partition of the substrate conversion rate into carbon dioxide production and biomass growth 

The ratios between biomass growth and carbon dioxide production are defined by the yield coefficients (Yxs/YCO2). 

From Equation 7 follows, that the sum of CO2 (YCO2/S) and biomass yield (YX/S) equals 1(Equation 8). 

1 = 𝑌𝐶𝑂2
𝑆

,𝑚
+ 𝑌𝑋

𝑆
,𝑚

  

Equation 8: Sum of the yield coefficients according to the carbon balance 
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So even if the yields are dynamically changing, rS can be calculated from the sum of rCO2 and rX. Consequently qSbal 

is calculated from dividing (Equation 9) by biomass (Xm).  

𝑞𝑆𝑏𝑎𝑙 =
𝑟𝐶𝑂2

+ 𝑟𝑋

𝑋𝑚,(𝑡)

 

Equation 9: Molar specific substrate uptake rate from balancing approach 

As the CO2 equilibrium between the liquid and the gas phase changes with pH, the rCO2 is prone to error under 

highly dynamic experimental conditions that lead to pH changes. To make the system more robust, rS is calculated 

from rO2 under consideration of RQ. The RQ (Equation 10) as the ratio between CO2 production and O2 consumption 

and can be expressed by the rates rCO2 and rO2 as well as by the corresponding molar yields (YCO2/S, YO2/S). 

𝑅𝑄 =̂
𝑟𝐶𝑂2

𝑟𝑂2

=

𝑌𝐶𝑂2
𝑆

,𝑚

𝑌𝑂2
𝑆

,𝑚

 

Equation 10: Respiratory quotient from rates and from yields 

As the oxygen yield on substrate in mol/C-mol (YO2/S) is calculated from the DoR balance with the degree of 

reduction of substrate (𝛾S) and biomass (𝛾X) the molar biomass yield in C-mol/C-mol (YX/S) (Equation 11) the 

robustness of the calculation approach against changes in pH is increased. The molar biomass yield is known from 

offline biomass and supernatant measurements. 

𝑌𝑂2
𝑆

,𝑚
=

γ
𝑆

− 𝑌𝑋
𝑆

,𝑚
× γ

𝑋

4
 

Equation 11: Correlation of the biomass yield with the oxygen yield on basis of the DoR balance 

C-Balance w SN / C-balance w/o SN represent the carbon balance (Supplemental Equation 7) where the substrate 

conversion rate rS [C-mol/h] is calculated from the feeding rate in L/h using the substrate concentration in the feed 

solution cS,g [C-mol/L] and the carbon dioxide evolution rate is calculated with offgas analysis data. All carbon 

balances shown in the figures are normalized by dividing Equation 7 by rS. 

C-balance from OUR is the normalized carbon balance after Equation 7 whereas rS in C-mol/h is calculated via the 

DoR-balance (Equation 11) and the carbon balance (Equation 7). 

Molar yields in C-mol/C-mol with the appendix “from OUR” used the metabolized substrate in C-mol calculated 

via DoR-/C-Balance in C-mol as denominator. Yields without the appendix from OUR had the metabolized substrate 

in C-mol calculated from the cumulated feed solution in L, the concentration of the feed solution in C-mol/L and the 

total glucose in the supernatant from glucose measurements (g/L) and the reaction volume (L) in g. 
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iv. Closed loop qs control 

Although, characterization of physiological capacities prior to process development is critical for 

physiological process development and experimental design, the procedure of quantification is 

cumbersome. Given the significant decline in qScrit over time in dependency of the metabolic 

activity (qSmean) denies a one-time quantification of physiological capacities as being propagated 

in literature. As a response the physiological feasible space can be further limited which 

potentially might exclude the optimum, or alternatively more information is required in order to 

predict the decline of qScrit. Instead of tighter limitations or additional effort in form of 

experiments a real time control strategy would be preferable. To effectively avoid substrate 

accumulation a real time sensing of physiological capacities would be required. In the following 

contribution the feasibility of real time physiological capacity sensing is assessed by decoupling 

real time biomass estimation and estimation of the oxidative metabolism. The establishment of 

a physiological feedback control strategy would eventually complete the development and 

assessment of physiological process control approaches.  
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ABSTRACT 

Producing pharmaceutically relevant proteins in microbial bioprocesses, substrate accumulation has to be avoided for the 

sake of productivity and controllability. But during late induction phase unexpected substrate accumulation is a phenomena 

often observed in microbial bioprocesses. Despite comprehensive strain characterization and quantification of the 

physiological capacity to metabolize substrate without accumulation of substrate or metabolites (qScrit) e.g. by pulse 

experiments, substrate is found to accumulate in the supernatant. This accumulation is especially pronounced in the context 

of controlling a physiological variable e.g. the specific substrate uptake rate (qS).   

Recent literature has illustrated a clear dependency of qScrit not only on induction time but also on the level of metabolic 

activity. In other words in addition to time after induction the rate of substrate metabolization severely impacts the decline 

in qScrit. To effectively avoid substrate accumulation, the dynamics and dependencies of the qScrit highlight the necessity to 

sense this physiological capacity in real time. In this contribution a combination of mass balances was used to estimate the 

current oxidative substrate uptake rate independent of the concurrent biomass estimation, accurately in real time. These 

biomass yield independent estimations allow the calculation of a real time process value of the physiological variable qS. In 

the context of physiological control of qS the latter approach allowed for the first time physiological feedback control by 

the comparison of qS setpoint and qS process value. Moreover, using a simple algorithm exceedance of qScrit was detected 

real time in order to react upon such a breach by qS setpoint adaptation. By successfully avoiding substrate an metabolite 

accumulation throughout induction phase of an industrial relevant production process, we were able to illustrate the 

feasibility of the physiological feedback control.  

 

KEYWORDS 

Physiological feedback control; critical physiological capacity; substrate accumulation; real time biomass estimation; 

oxidative metabolism 
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Background 

Bioprocesses are increasingly employed for the production of pharmaceuticals owned to correlated cost efficacy. 

Given the simple genetic accessibility, high growth rates and low demands concerning media composition, 

Escherichia coli is one of the most exploited hosts for industrial production of recombinant proteins (Terpe, 2006; 

Walsh, 2010). To optimize productivity of a given bioprocess, process parameters and their interrelations are 

investigated during process development within a given range – the characterization space (Rathore & Winkle, 

2009). One of the most promising factors used frequently to increase productivity - the substrate feed rate 

(Babaeipour, Shojaosadati, Khalilzadeh, Maghsoudi, & Tabandeh, 2008; Kavanagh & Barton, 2008; Levisauskas et 

al., 2003; Ramalingam, Gautam, Mukherjee, & Jayaraman, 2007; P. Sagmeister, Schimek, Meitz, Herwig, & Spadiut, 

2014; Sanden et al., 2003) is also the most challenging one. Overfeeding the physiological capacity to metabolize 

substrate (qScrit) impairs productivity (Jensen & Carlsen, 1990) and leads to unwanted overflow metabolism or even 

substrate accumulation. But rather than being a constant qScrit, is dynamically changing in response to process 

parameters e.g. pH, temperature and induction time qScrit=f(t,pH,T,…). This dependency of qScrit makes the 

quantification of qScrit especially laborious but necessary to avoid overflow metabolism and substrate accumulation.  

Conventional process development investigates the impact of process parameters on productivity within a design of 

experiment (DoE). To ensure feasibility of the experiments the DoE is commonly be designed within the 

technological and physiological feasible space. While technologic constraints (e.g. kLa, heat transfer rate) are setup 

specific and therefore commonly known, physiological constraints have to be assessed strain and product specific. 

Especially in respect of the substrate feeding rate the definition of the physiological feasible space is of great 

concern. Exceeding the physiological feasible space leads to metabolite formation and substrate accumulation, which 

negatively affect physiology (Luli & Strohl, 1990). Moreover substrate accumulation has been shown to negatively 

affect productivity (Jensen & Carlsen, 1990) as well as controllability of the respective bioprocess. Consequently, 

qScrit constitutes the main constraint to the physiologic feasible space. Given the importance of qScrit various 

approaches for the quantification of qScrit have been discussed in literature (Åkesson, Hagander, & Axelsson, 1999; 

Akesson, Karlsson, Hagander, Axelsson, & Tocaj, 1999; Henes & Sonnleitner, 2007; Lin, Mathiszik, Xu, Enfors, & 

Neubauer, 2001).  

Other factors investigated within the respective DoE can potentially impact qScrit e.g. temperature and pH. 

Additionally, qScrit has been shown to be dependent on induction time (Reichelt, Brillmann, et al., 2016; Schaepe, 

Kuprijanov, Simutis, & Lübbert, 2014) as well as on the level of metabolic activity (Reichelt, Brillmann, et al., 

2016). Concluding, qScrit comprises a highly dynamic nature which boosts the necessary effort for strain 

characterization regardless of the experimental approach utilized for quantification of qScrit. To reduce dependencies 

and to increase transferability bioprocess development has increasingly focused on specific physiological rates 

(Gnoth, Jenzsch, Simutis, & Lubbert, 2008; Henes & Sonnleitner, 2007; Levisauskas, 2001; Levisauskas, Simutis, 

Borvitz, & Lübbert, 1996) rather than on volumetric feeding rates. To overcome the challenge of a dynamically 

changing qScrit and to avoid substrate accumulation a closed loop control approach of a physiological variable is 

necessary. Focusing on specific physiological rates for process physiological development requires real time biomass 

estimation and physiological bioprocess control.  
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Various approaches have been outlined to overcome the challenge of biomass estimation and consequently facilitate 

the control specific physiological variables. For biomass estimation in general, literature favors data driven models or 

hybrid models (de Assis & Filho, 2000; Jenzsch, Simutis, & Luebbert, 2006). But for bioprocess development 

available historic process data is commonly scarce, which restricts the use of data based algorithms. In this context 

hard type sensor and first principle mass balance based approaches for biomass estimation are regarded as more 

feasible than data driven approaches. A weighted average based combination of redundant biomass estimations has 

been shown as highly beneficial to increase accuracy and robustness of the biomass estimation (Reichelt, Thurrold, et 

al., 2016).  

Besides biomass estimation approach physiological control approaches can be discriminated by the controller 

category. 

Two main categories of controllers are employed for physiological process control. While open loop controllers (feed 

forward) do not measure or estimate the current state of the controlled variable closed loop (feedback) controllers 

derive the current state of the controlled variable as process value from a direct or indirect measurement. Direct 

measurements refer to online measurements of e.g. pH, temperature, DO2 and off gas. Indirect measurements or 

estimations refer to computational values derived from direct measurements. For physiological process control the 

biggest challenge is the estimation of the variable of interest, since it commonly cannot be measured directly. 

Consequently the quality of the primary data as basis for subsequent computations is of often underestimated 

importance. In respect of transferability to industrial scale the number of necessary direct measurements is crucial, 

since manufactures tend to minimize of measurement device ports to avoid contamination sites.  

Open loop controllers are most commonly employed for physiological process control . The high level of simplicity 

and its robustness concerning measurement errors are the main reasons for the common use. 

While technological feedback controllers are widely used e.g. for temperature and pH, examples of closed loop 

control of physiological variables are extremely scarce. The reason for the limited examples for feedback control is 

the necessity to determine the variable of interest with sufficient accuracy. Only if the variable of interest can be 

determined fast enough and with a sufficient signal to noise ratio closed loop control is feasible. Nevertheless, closed 

loop control is of great interest as real-time quality insurance (Gnoth et al., 2008), owned to its capability to react on 

process perturbations constitutes the basis of the attributed robustness of closed loop control approaches. 

In the stage of bioprocess development strain specific historic process data is commonly scarce the accuracy of 

multivariate approaches (e.g. artificial neuronal networks) which commonly feature a high degree of accuracy does 

not appear feasible. An light data driven example, merely using a set of three experiments, Jenzsch et al used an 

extended kalman filter for biomass estimation in combination with generic model control (Jenzsch et al., 2006) for 

closed loop control of the specific growth rate. Examples of algorithms independent of apriori information and 

complex mathematical models have been introduced (Levisauskas, 2001; Rocha, Veloso, Carneiro, Costa, & Ferreira, 

2008) although provided experimental data is scarce.  

Given the frequent correlation of substrate uptake rate and productivity a control objective can be to run a bioprocess 

at the highest possible substrate level below qScrit. These control approaches do not necessarily qualify as closed loop 

control approaches since the system response used for controller actions is of qualitative nature and not directly 
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correlated to the controlled variable. Hereby usually a basic open loop control approach is combined with a probing 

technique e.g. in order to assess the reaction of the culture to sudden substrate starvation or excess. Monitoring the 

DO2 as response to short substrate up-pulsing it can be determined whether the culture is being overfed or if the 

open loop feed profile can continue increasing the volumetric feed flow rate (Åkesson et al., 1999; Velut, de Maré, & 

Hagander, 2007). Based on the same principle also down pulsing by temporary intermittence of the substrate feed 

rate can be utilized to assess the substrate supply situation in order to maximize the substrate uptake during induction 

phase (Henes & Sonnleitner, 2007).  

More advanced techniques target a quantitative assessment of the metabolic state and substrate accumulation. Since 

the direct sensing of metabolites and substrate is only possible with substantial analytical effort using an online 

HPLC or FTIR this approach is commonly not regarded as feasible to pilot or even production scale. Merely based 

on offgas analysis the respiratory quotient (RQ) can provide valuable insight into the metabolism of the cell (Jobe et 

al., 2003). But sensing overflow metabolism based on the RQ is only feasible if the metabolite has a different degree 

of reduction as the substrate. In case of glucose as substrate and acetate as metabolite this approach is consequently 

not feasible. Nevertheless, using first principle mass balances the approach of Jobe et al. (Jobe et al., 2003) was 

capable of differentiating between oxidative and oxireductive metabolic states. 

We target an independent estimation of biomass and the oxidative metabolism of the culture using first principle 

mass balances. Since this approach requires off gas analysis besides a volume balance and merely the biomass 

composition as strain specific information this approach shall feature a high degree of transferability. Using a simple 

algorithm the controller shall facilitate avoiding substrate accumulation rather than mere sensing of the latter. 

Goals 

The goal of this contribution is the introduction of a transferable control concept independent of historic process 

data. Thereby the approach shall be employable even in early bioprocess development. Given the relevance of 

physiological bioprocess development this approach shall facilitate a reduction in necessary strain characterization 

experiments, by sensing qScrit in real time. The feasibility of the introduced approach to effectively avoid substrate 

accumulation, despite a rapidly declining qScrit , shall assessed within a fermentation. 

 

Materials and methods 

2.1 Cultivations 

2.1.1 Bioreactor system 

Fermentations were conducted in a DASGIP multi-bioreactor system with 4 parallel reactors with 2L of working 

volume each (Eppendorf; Hamburg, Germany). The reactors were equipped with baffles and three disk impeller 

stirrers. The DASGIP control software v4.5 revision 230 was used for control: pH (Hamilton, Reno, USA), pO2 

(Mettler Toledo; Greifensee, Switzerland; module DASGIP PH4PO4), temperature and stirrer speed (module 

DASGIP TC4SC4), aeration (module DASGIP MX4/4) and pH (module DASGIP MP8). CO2, O2 concentrations in 
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the off-gas were quantified by a gas analyzer (module DASGIP GA4) using the non-dispersive infrared and zircon 

dioxide detection principle, respectively.  

2.1.2 Strain & media 

A recombinant BL21 DE3 E.coli strain was cultivated, producing an intracellular protein (~30 kDa) in form of 

inclusion bodies, after a one-time induction with IPTG (1 mM). The synthetic media was based on the recipe of 

Korz, Rinas et al. (Korz, Rinas, Hellmuth, Sanders, & Deckwer, 1995), where the limiting C-source was glucose. 

 

2.1.3 Process parameters 

Pre-cultures were incubated at 30°C and 170 rpm to an OD600 of approx. 1.5 in 150 mL batch media and 2.5% batch 

volume aliquots were used for inoculation. After depletion of the C-source in an initial batch phase, the pre-induction 

fed-batch was started. The pre-induction feeding strategy was based on an exponential feed forward profile to 

maintain a predefined growth rate. On attainment of the predefined biomass the cultures were induced after 30 min 

adaption time. Stirrer speed was set to 1400 rpm and aeration to 1.4 v/v/m for the whole process. The pH was 

maintained at 6.9 by adding 12.5% NH4OH, which also served as nitrogen source. The dissolved oxygen (DO2) was 

kept over 30% by supplementing oxygen to the air.  

2.1.4 Pre induction: exponential feed forward profile 

The starting feed rate in L/h (F0) was calculated using a gravimetrical biomass yield in g/g (YX/S,g), the starting 

biomass in g (X0), the concentration of the feed solution in g/L (cS,g) as well as the specific biomass growth rate as 

described elsewhere (Wechselberger et al., 2012) 

2.1.4 Post induction feeding strategy: 

After the depletion of C-source in the batch phase the culture was induced with IPTG (1 mM). A step controller 

was used for real time qS feedback control during the post induction phase. Therefore the feed rate is dynamically 

adjusted every 20 minutes, which is calculated with the base load (calculated with the setpoint) and the adjustment 

term (calculated with the difference between the setpoint and the process value) to actually reach the given set-point 

of qS. 

𝐹̇𝑖+1 =
𝑞𝑠𝑆𝑃𝑖+1 ∙ 𝑋𝑖

𝑐𝑆

+
(𝑞𝑠𝑆𝑃𝑖 − 𝑞𝑠𝑃𝑉𝑖) ∙ 𝑋𝑖

𝑐𝑆

 

Equation 1: Feed rate for next control interval 

Two fermentations with qSSP = 0.2 g/g/h were performed parallel. In one reactor the setpoint was kept constant, 

while in the other one the automated setpoint adaption was activated. 

2.2 Process evaluation and data analysis 

Metabolic rates and yield coefficients were calculated with Matlab r2013 b (Mathworks; Natick, Massachusetts, 

USA). The calculation of specific rates and yield coefficients was conducted as described elsewhere (P. Sagmeister, 

Wechselberger, & Herwig, 2012).  
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2.3 Offline analytics:  

2.3.1 Biomass dry weight (CDW) 

Biomass concentrations were gravimetrically quantified after drying at 105°C for min. 72 h. Therefore 2 mL of 

culture broth were centrifuged (4500 x g, 10 min, 4°C) in a pre-weighted glass tube and the pellet was washed once 

with 5 mL RO water. The determination was done in duplicates. After drying in the drying oven, the biomass dry 

weight was measured on a scale.  

2.3.2 Substrate conc. and small metabolites 

The C-source concentration in the feed media was calculated using the gravimetrically determined density. NH4OH 

concentration was determined by titration with 1 M HCl. Acetate concentrations were quantified from the 

supernatant by enzymatic photometric principle in a robotic system (Cedex BioHT, Roche, Switzerland). The 

analysis was used as a quality control to exclude possible acetate production due to oxygen limitation or overflow 

metabolism.  

ABBREVIATIONS 

 

𝐵𝑀̂𝑚𝑒𝑎𝑛   [g] estimated biomass based on the N-balance, the DoR balance and a permittivity measurement 

𝐵𝑀̂𝐶−𝐵𝑎𝑙   [g] estimated biomass based on the assumption that the accumulation term in the C-balance equals 

zero 

𝑟𝑥   [g/h] biomass growth rate in g/h and is calculated offline with the biomass dry weight in g/L and 

the reactor volume in L as inputs 

𝑟𝑥̂   [g/h] real-time estimated biomass growth rate 

𝑟𝑠   [g/h] is calculated offline with the feeding rate in g/h and the glucose accumulation rate in g/h as 

inputs 

𝑟𝑠̂  [g/h] real-time estimated substrate conversion rate 

𝑞𝑠  [g/g/h] the specific substrate uptake is calculated offline with the biomass dry weight and 𝑟𝑠 as 

inputs 

𝑞𝑠𝑆𝑉  [g/g/h] setpoint of 𝑞𝑠 

𝑞𝑠𝑃𝑉  [g/g/h] the process value of 𝑞𝑠, calculated with the estimated substrate conversion rate rs in g/h, the 

real-time estimated biomass in g as inputs 

∆𝑞𝑠𝑃𝑉𝑖   [g/g/h] the change of 𝑞𝑠𝑃𝑉 within the last control interval (20min), calculated with qSPVi and with 

qSPVi-1 

cs  [g/L] substrate concentration in feed  

F0  [L/h] starting feed rate in  

qS  [c-mol/c-mol/h] or [g/g/h] biomass specific substrate uptake rate 

racc [c-mol/h] rate of accumulating substrate and acetate  

rCO2  [mol/ h] CER, carbon dioxide evolution rate 

rs  [c-mol/h] or [g/h] substrate conversion rate in  

rO2   [mol/h] OUR, oxygen uptake rate 

rx  [c-mol/h] biomass conversion rate in  

142/167



 

µ   [1/h] specific biomass growth rate in  

V0   [L] volume at t = 0  

Xi  [g] biomass dry cell weight at t = 0 batch end or at time point t = i 

YX/S  [g/g] or [c-mol/c-mol] biomass yield on substrate   
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Results 

Physiological maxima for physiologic DoE design 

Rather than controlling a technological variable at a constant level, physiological process control targets maintaining 

a physiological variable. To illustrate the goal of physiological bioprocess control Figure 1 illustrates biomass growth 

and the accordingly increased substrate flow rate. The most common approach for physiological control is based on a 

fixed biomass yield, neglecting the dynamics of the biomass yield for the sake of simplicity. Figure 1 a shows a more 

advanced control approach, including a real time biomass estimation from a softsensor. Following the control scheme 

of Figure 1 B, despite real time biomass estimation no estimate of the controlled variable is made. Instead of 

following a predefined substrate flow profile, the substrate flow rate is calculated incrementally via softsensor 

biomass estimation.  

 

Figure 1 State of the art physiological open loop process control does not provide quantitative real-time information about 
the controlled variable:  
(A) Open loop control including real time biomass estimation based on a softsensor with incremental calculations of the suitable 
substrate flow rate. (B) open loop controller design for incremental feed forward calculations. 
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In order to bring the limitations of the previously described controller setup to the reader’s attention Figure 2 outlines 

a fed batch process including substrate accumulation. Upon glucose accumulation due to overfeeding, the biomass 

estimation of the softsensor clearly deviates from the offline verification data. This is owned to the fact that the used 

softsensor was based on the assumption that the accumulation term in the C-balance equals zero. Accordingly 

biomass estimation works well until substrate accumulation. 

 

Figure 2 BM estimation based on C-balance is impaired by substrate accumulation;  
BM real-time estimations (○,X) and accumulation of glucose (♦). The BM estimation via the C balance (X) shows a increasing 
error upon glucose accumulation and is not suitable for high qS fermentations due to the possibility of qScrit exceedance. The BM 
estimation via weighted average of permittivity, DOR- & N balance (○) provides a more reliable estimation during glucose 
accumulation and was therefore chosen for the experiments. 

 

Given the sensitivity of the C-balance based softsensor an alternative approach for biomass estimation is necessary. 

Altering the softsensor setup can greatly benefit the quality of estimation as well as the robustness of estimation. 

Figure 3 shows the result of using balancing approaches in combination with a permittivity measurement in order to 

obtain reliable estimates of the biomass rate (rx) and the oxidative substrate metabolization rate (rSox). Using a 

weighted average approach, the biomass estimations based on the N-balance, the DoR balance and a permittivity 

measurement are combined to make the approach robust against accumulation. Including the DoR balance is in this 

case straight forward since the primary metabolite (acetate) shares the same degree of reduction as the substrate. 

Figure 3 illustrates the correlated noise on the estimation of the most crucial rates: the biomass rate (Figure 3 A) and 

the oxidative substrate uptake rate (Figure 3 B). In case of substrate accumulation (data not shown) the C-balance 

based estimation quickly deviates from the rate derived from offline references biomass analytics. In comparison to 

the estimations merely based on the C-balance the noise on the rates of the weighted estimations lies within the order 

of magnitude of noise observed for the verification data. 
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Figure 3 Biomass and substrate uptake rate estimation vs. verification;  
(A) Biomass growth rate estimation (dashed line) based on N and DoR balance and permittivity is congruent to offline data (solid 
line). The BM accumulation rate rX is one of three needed values to estimate the actual substrate conversion rate and 
furthermore the specific substrate uptake rate qS. The biomass growth rate based on C balance (dotted line) shows large 
deviations due to glucose accumulation. (B) Estimation of substrate conversion rate (dashed line) reconciled from rX, CER and 
OUR shows great congruence to offline data (solid line). The actual substrate conversion rate rS in combination with the biomass 
is needed to estimate the actual specific substrate uptake rate qS. The substrate conversion rate based on C balance (dotted 
line) shows large deviations due to glucose accumulation. 

 

Upon the proof of principle for the real time estimation of rx and rsox the calculation of a process value of qS, as 

controlled variable, becomes possible. Figure 4 A explains the controller design to close the loop for the controlled 

variable qS by incorporating the obtained values into the previously introduced controller scheme. In contrast now a 

process value for qS can be calculated and used for controller action. To increase robustness only the feedback of the 

process value of qS impacts the controller action. The basal substrate flow rate is being calculated in time increments 

based on the biomass estimation, as explained previously (Figure 1 B). Nevertheless, despite closing the loop the qS 

setpoint is not maintained and glucose accumulation occurs quickly during induction phase. 
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Figure 4 closed loop control approach and its limitations;   
(A) Closed loop control provides the possibility of comparing the wanted setpoint with the actually achieved process value. 
Therefore an interference of the process can improved the quality of the control strategy. (B) Closed loop control of qS is 
insufficient without adapting the setpoint, if qScrit is exceeded. Significant deviation from the qS setpoint (solid line) due to qS-max 
decline. Real time estimation of qS process value (dotted line) compared to actually achieved qS PV (dashed line) is within 25% 
error. High glucose accumulation (blue dots) due to qSmax exceedance. 

 

Owned to the physiological decelline of qScrit the setpoint of qS cannot be maintained without substrate accumulation. 

The cells are simply not capable of metabolizing the amount of substrate defined by the setpoint. As a consequence 

the setpoint has to be adapted according to the decline in qScrit. Given the target of reducing the effort for strain 

characterization, using a predefined qSSP limitation is not viable. Instead a simple algorithm is required to assess 

whether qScrit is reached or not. 
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Figure 5 illustrates the underlying principle of the qScrit controlled. By comparing the behavior of the culture upon 

controller action to previous behavior qScrit becomes obvious. If the process value of qS does not increase after an 

increase in substrate flow the setpoint of qS needs to be decreased since qScrit has been reached. Figure 5 A displays 

the in cooperation of the step controller displayed in Figure 5 B.  

 

Figure 5 Closed loop control with setpoint adaptation;  
(A) A logical query to adapt qS setpoint (qSSP), if qScrit is reached was implemented. Three conditions need to be true to adapt the 
qSSP: i) The qSSP from time point t(i-1) 20 minutes ago was larger than last qSPV, ii) The qSSP from time point t(i) is larger than 
the current qSPV, iii) the change of the qSPV within the last 20 minutes (∆qSPV) was negative. In case of all three conditions, qSSP 
is be reduced by 10%. Since in case of substrate limitation qSPV should always increase upon a qSSP (federate) increase, if qSPV is 
smaller than qSSP and qScrit is not reached, this logical query provides a simple method to detect qScrit. (B) If the system hits its 
natural limit, a setpoint higher than this limit cannot be achieved and therefore has to be adapted. 

 

The benefit of the introduced control approach is displayed in Figure 6. Although the same qS setpoint as in Figure 4 

has been used, no accumulation occurs upon decline of qScrit. The controller effectively avoids substrate accumulation 

throughout the whole induction phase by reducing the qS setpoint in case qScrit is being reached by the culture.  
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Figure 6 Closed loop control of qS with adaption of qSSP (solid line) helps to avoid a breach of qScrit and facilitates an accurate 
control of qS;   
Real-time estimation of qS process value (dotted line) compared to actually achieved qS process value (dashed line). No significant 
glucose accumulation (blue dots) due to adaption of qSSP. 

 

Owned to the fact that this controller is merely based on first principle balances and a permittivity probe, the 

analytical as well as the computational effort is relatively lean. Consequently the introduced concept appears highly 

transferable even to an industrial environment. 
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Discussion 

Within this contribution we introduced a process control approach capable of physiological feed back control and 

real time sensing of the physiological capacity to metabolize substrate (qScrit).  

 

Closed loop control approaches are highly challenging and require a high accuracy of estimation. Only if a viable 

signal to noise ratio can be obtained a physiological closed loop approach becomes feasible. Nevertheless, various 

contributions have claimed closed loop control up to this date. 

In the contribution of Sagmeister et al., using a first principle softsensor, closed loop control of qS was claimed. A 

real time estimation of biomass was used to control the substrate feed rate in order maintain qS throughout induction 

by (Patrick Sagmeister et al., 2013). Although real time process data was utilized for the estimation of biomass, no 

process value of qS or other physiological variables was obtained. Since actually the feed rate is being controlled this 

approach potentially qualifies as technical closed loop but lacking the calculation of the process value of any 

physiological variable not as physiological closed loop control approach. 

A very similar concept has been introduced by Jobe et al to sense the metabolic status of the cell in real time. 

Nevertheless, this approach did not fulfill the requirements of a closed loop control, since no process value of 

controlled physiological variable was calculated. Calculating an oxidative and an oxireductive metabolic model 

every 4 min a statistical test was used for the evaluation of the current metabolic state. The substrate feed rate was 

controlled by an exponential feeding profile, of which the exponent was subjected to controller actions based on the 

decision concerning the statistical test. Hereby, no process value of the controlled variable µ was calculated and 

consequently the prerequisites for a closed loop control approach not met. Besides the nomenclature, although the 

acetic acid was being accumulated the approach of Jobe et al. lacked the sensitivity to take action. The accumulation 

of acetate was not pronounced enough to trigger controller action; instead the µ controller remained idle. The growth 

in biomass subsequently decreased the specific growth rate to a level which allowed the uptake of acetate. In contrast 

the approach presented within this contribution did effectively circumvent the accumulation of acetate and substrate.  

Dabros et al (Dabros, Schuler, & Marison, 2010) introduced an algorithm for physiological closed loop control and 

illustrated its feasibility in non-induced E.coli cultures. Using an exponential feed profile a basic substrate feed rate 

was calculated. The deviation of the process value of µ from µ setpoints triggered an additional PI controller action. 

Although accumulation was measured using FTIR, the data was only used for reconciliation to improve biomass 

estimation. If the decline in qScrit leads to an inevitable decrease in specific growth rate, despite substrate 

accumulation the controller action would lead to a continuous feed rate increase.  

As physiological closed loop controller Jenzsch et al. (Jenzsch et al., 2006) used an extended Kalman filter for 

biomass estimation in combination with generic model control. Merely using a set of three experiments the model 

was trained and verified with an additional experiment prior the utilization for process control. This approach was 

shown to accurately achieve different distinct µsp in induction phase of a microbial bioprocess producing GFP. 

Despite the good performance the generic model control was based on a constant value for the qScrit as well as a static 
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value of the biomass yield. Owned to the underlying hypothesis of a constant biomass Yxs and qScrit this approach 

appears sensitive to reaching the physiological capacity qScrit.  

Conclusions 

The goal of this paper was the introduction of a transferable control concept capable of effectively avoiding substrate 

accumulation as well as the illustration of the feasibility of the introduced approach. In respect of the state of the art 

we were able to establish the following points: 

 Using a combination of first principle mass balances we were able illustrate a transferable concept to 

independently estimate biomass concentration as well as the rate of oxidative substrate metabolization. 

 Physiological feedback control makes a process value of the physiologic variable accessible but is not 

sufficient in order to avoid substrate accumulation. This circumstance is owned to the fact that physiologic 

capacity to metabolize substrate declines over time, making it impossible to maintain the setpoint. 

 Using a simple step controller substrate accumulation can be effectively avoided by setpoint adaptation in 

response to the violation of physiologic capacities. 

The illustrated approach facilitates robust process development without relying on comprehensive strain 

characterization. This concept is theoretically not limited to the specific substrate uptake rate. Owned to the 

underlying first principle mass balances this concept appears highly transferable in comparison to data driven 

alternatives. Furthermore, physiologic feedback control including the introduced controller could be used to 

complete replace conventional strain characterization in terms of physiological capacities. This will ultimately 

decrease the effort for process development significantly since not only the effort for strain characterization can be 

minimized but also number of fail batches owned to substrate accumulation can be greatly reduced. 
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Discussion 

The goal of this section was the analysis and discussion of the efficiency of physiological 

bioprocess control approaches in the context of bioprocess development. For physiological 

process development, physiology must be made available as single numerical value which can 

be utilized as response for DoE evaluation. Such a workflow of data processing requires a clear 

and strict but transferable definition of process phases of high physiological relevance. We 

introduced variable of the cumulative normalized substrate (dSn) as substitute for time with a 

higher physiological relevance for process phase definition. Based on dSn various 

physiological descriptors (e.g. qSmean) can be derived within information mining to increase 

comparability of experiments and consequently ease physiological conclusions (2a). 

Additionally, by repeatedly testing the involvement of qs within the same strain but with different 

products provided great evidence concerning the transferability of the impact of qs (2b).   

The introduced workflow consequently facilitates the direct comparison of physiological and 

technological feeding strategies. In this context it was of great importance to assess whether 

the employment of physiological feeding strategies is justifiable in terms of productivity. 

Therefore, the impact of substrate supply on productivity was studied and compared by 

conducting technical and physiological feeding profiles. Hereby, a substantial increase in titer 

was found for all levels of substrate supply investigated employing the physiological feeding 

strategy (2c). This finding highlights the potential of physiological process control and 

substantiates the physiological process development approach.  

After substantiating the benefit of physiologic feeding strategies, physiological bioprocess 

development was demonstrated from scratch. Physiological process development and 

correlated physiological process control require a clear definition of the physiological design 

space in terms of qScrit. In contrast to literature qScrit was found to be dependent on time as well 

as on physiologic activity (qSmean). This finding was only possible owned to the high degree of 

information mining. Without the great amount of accurate analytical data this finding would not 

have been possible. Although, data evaluation consumed a substantial amount of time, the 

relevance of the finding is high and presumably transferable to other products and even strains. 

This observed substantial decline in qScrit in dependence of time and qSmean constitutes a 

substantial challenge for process control since substrate accumulation needs to be avoided 

(2d).  

In the context of a dynamically declining qScrit, using a combination of first principle soft sensors 

and a hard type sensor we established a physiological feedback control loop. Based on a 

simple algorithm the qs set point was adapted in response to a violation of qScrit. Using this 

approach to avoid substrate accumulation strain characterization experiments become obsolete 

since the introduced control approach is merely based on the biomass composition as strain 

specific process parameter (2e). 
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Overall scientific Novelty and Author 

contributions 
 

 

Table 2: Review contribution summarizing the state of the art of the scientific disciplines in focus 

Review contributions Topics discussed and reviewed Author contribution 

Ex-situ on-line monitoring 

and data processing [56] 

State of the art of ex-situ on-line 

monitoring for process design-, analysis- 

and control purposes 

Review of the state of the art 

Online-HPLC approaches; text 

revision 

 

Table 3: Scientific contributions addressing (process) analytical approaches. 

Analytical 

Method 
Main Findings Author contribution (WR) 

Protein 

quantification 

[57] 

The error of protein quantification by BCA in 

complex sample matrices exceeds 200% but can 

be reduced significantly using internal standard 

addition. 

WR conceptualized the study 

and conducted it in cooperation 

with the co-authors. WR 

supervised Data analysis and 

drafted the manuscript. 

Inclusion body 

analytics [58] 

TEM image segmentation is established as 

quantitative method for IB sizing in the cytosol. 

The results are used for verification of NTA sizing 

results. By comparing the size of fixated to non-

fixated IBs the impact of high pressure 

homogenization is demonstrated 

WR conducted parts of the 

analytics, conceptualized the 

paper and drafted the 

manuscript. 

Real time 

Biomass sensing 

[59] 

Methods for real time biomass sensing are 

compared for different levels of metabolic 

activity. While the single methods do not differ in 

cvRMSE the combination of methods can reduce 

estimation error by over 85%. 

WR conducted parts of the 

experimental work and the data 

analysis. He established the 

underlying database and 

drafted the manuscript. 

CedexBioHT for 

high throughput 

analysis  

The use of CedexHT for hight throughput 

enzymatic metabolite quantification is 

demonstrated and assessed for dynamic E.coli 

processes. 

WR conducted the experiments 

and reviewed the manuscript. 
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Table 4: Scientific contributions addressing process controls 

Process control 

Method 
Main Findings Author contribution (WR) 

Improved 

fermentation 

process (Patent) 

The use of low feeding rates, surprisingly led to an 

significant increase in specific product titer.  

WR largely drafted and 

iterated the patent draft with 

industrial partners. 

Pre and Post 

Induction Phase 

[60] 

We were able to substantiate the cumulative 

consumed substrate dSn as highly relevant scale for 

the investigation of physiological effects. And 

substantiated the benefitial effect of low qs for 

productivity. 

WR conducted the 

experimental work in 

cooperation. WR conducted 

the data analysis and drafted 

the manuscript. 

Physiological 

Feeding [61] 

By controlling the physiological substrate uptake 

rate on a constant level, productivities were 

significantly increased. Independent of the qs level 

physiological control positively impacted 

productivity.  

WR conducted parts of the 

experimental work and the 

data analysis. Additionally he 

drafted the manuscript. 

qscrit – 

physiological 

capacities [62] 

Addressing physiology in bioprocess development 

the physiological capacities have to be known. Here 

we show that the qscrit is not only a timely variable 

but moreover dependent on the level of metabolic 

activity. 

WR planned and organized 

the experiments and drafted 

the manuscript. 

Closed loop qs 

control [63] 

The variability of the physiological capacity to 

metabolize substrate highlights the necessity to 

sense this capacity in real time. We illustrate the 

feasibility of this approach by avoiding substrate 

accumulation throughout induction phase by closed 

loop physiological control. 

WR planned and supervised 

the experiments and helped 

setting up the control 

algorithm. Moreover, WR 

drafted the manuscript. 
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Discussion and Conclusions 
Given the current situation in biopharmaceutical industry, bioprocess development is facing 

seemingly contradicting demands. While regulatory authorities are calling for increased process 

understanding, industry is mainly interested in productivity and cost efficiency. To meet both 

demands bioprocess development should put physiology into the center of attention. The 

underlying hypothesis of this statement and this contribution was that physiological bioprocess 

development features a better information to effort ratio. For industrial application of 

physiological bioprocess development two gaps and correlated challenges have been identified 

within the introduction and discussed in detail in the previous sections. 

 

Analytics for physiological process development 

In technological process development, process analytical methods e.g. offline biomass 

measurement or total protein quantification merely serves a minor role and is hardly used as 

response. In contrast, physiological process variables are based on a greater deal of analytical 

data (e.g. qS). In the context of error propagation it appears logical that the relevance of 

analytical data is of greater concern for physiological bioprocess development. Although 

analytical methods are commonly widely available and being employed for decades, it is 

important to establish and to assess method performance under condition as close as possible 

to the application reality. Although this conclusion appears obvious, the relevance of orthogonal 

methods for method verification if often underestimated. Only using orthogonal methods we 

have been able to quantify the correlated error of measurement, to elucidate the impact of high 

pressure homogenization on IB size and illustrate the substantial benefit of redundant biomass 

estimation.  

 

Process Control 

But the bottleneck is not exclusively of analytical nature, as general shortcoming data 

evaluation can be identified. Although especially established contract manufacturers possess 

process data in abundance, they often lack generalized process evaluation routines. Lacking 

general applicable routines or definitions makes data comparison across laboratories and even 

across operators risky and prone to error. In this context, a general applicable software for 

process data management and process data analytics solution would greatly foster 

comparability as well as interpretability. Although various solutions have been introduced into 

the market, they often fail to offer an intuitive operator interface and an easy to use data 

management solution. This heterogenic approach of data evaluation is not only an industrial 

phenomenon but also an academic, since data evaluation routines are hardly published or 

discussed in combination with experimental data. Although most of the know-how can be 

considered textbook knowledge, the abundancy of possibilities to define systems and reactions 

constitutes the challenge. Only by uniform system and phase definitions data evaluations 

become comparable across operators and laboratories. 

Physiological bioprocess development clearly fosters transferability of findings (interrelation of 

qs) and has been shown in this contribution to boost productivity. Only by using physiological 

process control the effect of level and trajectory of substrate supply could be distinguished, This 
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finding introduced a novel degree of freedom for bioprocess development. Although 

physiological bioprocess development is associated with an increase in effort for data analysis 

as well as fundamental analytics, the information content is higher, which in turn makes 

conclusions better transferable. As a consequence, the information to effort ratio is improved by 

the fact that the discussed physiological control approaches operate widely product and even 

strain independent and can consequently be readily employed . 

Throughout induction phase, owned to the growth in biomass, volumetric constant feeding 

profiles hardly ever lead to overfeeding by time. In contrast, the dynamic feed rate adaption for 

physiological feeding profiles bear a greater risk of substrate accumulation by exceeding a 

timely declining qScrit. Despite this risk physiological feeding strategies offer accessibility to a 

greater area of physiological activity in terms of qSmean. Although, this physiological activity is 

limited by the decline in qScrit over time, the state of continuously high metabolic activity would 

not be accessible with a volumetric constant feeding rate. Hereby, physiologic process control 

is challenging in terms of robustness especially in respect of the decline in qScrit. On the other 

hand the elucidation of the decline in the qScrit is a dedicated benefit of physiological bioprocess 

development. This interrelation of metabolic activity and metabolic capacity is a critical piece of 

information regarding DoE, but on the other hand makes DoE much more complex. Various 

contributions in literature have investigated similar effects based on volumetric substrate 

addition, which in turn did not facilitate this far-reaching revelation. Despite the increase in 

complexity for the DoE the introduction of an appropriate closed loop control approach was 

demonstrated to be a viable approach to effectively circumvent substrate accumulation. In this 

context, physiological closed loop systems grant a real time reaction upon changes in 

physiology, making physiological process control more robust. This approach could eventually 

help to overcome scale-up issues such as e.g. inhomogeneity which lead to an altered biomass 

yield and consequently to a different physiological status of the culture. Since the employed 

control approaches are merely based on first principle soft sensors and a hard type sensor, the 

physiological bioprocess development approach becomes independent of fixed strain specific 

variables besides the elemental biomass composition. Thereby the necessary effort for 

bioprocess development is greatly reduced since no additional strain characterization 

experiments are necessary. This reduces the decision concerning the feeding profile 

optimization merely to a decision of favorable high or low metabolic activity. 

To put it in a nutshell, physiologic process development grants deeper insights into relevant 

physiological processes and fosters the general understanding of the behavior of the 

production strain regardless of an associated titer increase. It grants additional degrees of 

freedom and thereby theoretically allows for higher time space yields. Physiological bioprocess 

control approaches, as the backbone of physiological bioprocess development are even able to 

substitute strain characterization experiments. Physiologic bioprocess development grants a 

deeper insight into physiology, which resembles a significant gain of information but requires 

the setup of more complex physiological control approaches. Nevertheless, this effort is 

conserved since the illustrated approaches are widely product and strain independent. 

Especially the discussed methods for bioprocess control can be employed for every strain 

fulfilling the underlying metabolic hypothesis. Within this contribution the benefit of physiological 

bioprocess development has been demonstrated merely for E.coli. Nevertheless, the 

underlying principles (e.g. mass balances) are independent of the organism of interest. But for 
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more complex organisms e.g. fungi, mammalians the control strategies would require a higher 

degree of complexity.  

It can be concluded that physiological bioprocess development asks for a one time effort 

investment for the establishment of sensitive analytics and physiological control approaches 

but rewards the effort with a significant and continuous increase information to effort ratio. 

Although further proof is necessary this comprehensive analysis of physiological bioprocess 

development already provides clear evidence to initiate a change in paradigm: putting the 

actual producers into the center of attention – the cells. 
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