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Kurzfassung

In der heutigen Zeit, in der die Menge an gesammelten und generierten Daten stetig an-
steigt, ist das Sicherstellen einer ausreichenden Datenqualität ein entscheidendes Thema.
Abhängig von der gegebenen Aufgabenstellung können sogar aufwändige Analyseme-
thoden fehlschlagen oder irreführende Ergebnisse liefern, wenn der gegebene Datensatz
eine unzureichende Qualität aufweist. Um Datenprobleme, wie zum Beispiel fehlende
Werte oder Anomalien zu entdecken, werden häufig automatische Plausibilitätschecks
verwendet, die auf definierten Regeln basieren.

Die Definition und Verwendung solcher Regeln und deren Ergebnisse stellt jedoch
eine große Herausforderung dar. Visualisierung ist dabei ein mächtiges Tool, um un-
erwartete Datenqualitätsprobleme aufzudecken und die Ergebnisse der angewandten
Regeln zu validieren. Visual Analytics schließt dabei die Lücke zwischen automatischer
Datenanalyse und Visualisierung und hilft bei der Definition und Optimierung der Plausi-
bilitätschecks, damit sie für eine wiederkehrende Analyse und Validierung der entdeckten
Datenqualitätsprobleme verwendet werden können.

Diese Diplomarbeit besteht aus einer Design Study des Data Quality Overview, einem
Visual Analytics Ansatz, der eine detaillierte und trotzdem skalierbare Übersicht über
die Ergebnisse der definierten Plausibilitätschecks liefert, die über mehrere Detailstufen
validiert und untersucht werden können. Der Ansatz basiert auf einer detaillierten
Aufgabenanalyse, und wurde mithilfe einer Fallstudie basierend auf Sensordaten aus dem
Energiebereich validiert. Zusätzlich wurden die Ergebnisse durch Expertenrückmeldungen
bestätigt.
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Abstract

Ensuring an appropriate data quality is a critical topic when analyzing the ever increasing
amounts of data collected and generated in today’s world. Depending on the given task,
even sophisticated analysis methods may cause misleading results due to an insufficient
quality of the data set at hand. In this case, automated plausibility checks based
on defined rules are frequently used to detect data problems such as missing data or
anomalies.

However, defining such rules and using their results for an efficient data quality
assessment is a challenging topic. Visualization is powerful to reveal unexpected problems
in the data, and can additionally be used to validate results of applied automated
plausibility checks. Visual Analytics closes the gap between automated data analysis and
visualization by providing means to guide the definition and optimization of plausibility
checks in order to use them for a continuous detection and validation of problems detected
in the data.

This diploma thesis provides a design study of a Visual Analytics approach, called
Data Quality Overview, which provides a detailed, yet scalable summary of the results of
defined plausibility checks, and includes means for validation and investigation of these
results at various levels of detail. The approach is based on a detailed task analysis of
data quality assessment, and is validated using a case study based on sensor data from
the energy sector in addition to feedback collected from domain experts.
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CHAPTER 1
Introduction

We are living in a world where data is collected and generated at an incredible rate. As
the progress in computing power and storage capacities continues (Moore’s law [Moo65]),
the amount of data to be dealt with increases on a daily basis. For example, worldwide,
up to 210 billion emails, four billion SMS messages and 500 million tweets are sent each
day [KKEM10, Twi]. An increasing amount of data is also generated in many areas of
science and industry, examples are simulation results in engineering, physics or climate
research. The problem is: the possibilities to collect and store data increase at a faster
rate than the human ability to use that data for making decisions [KKEM10].

This problem, referred to as “information overload”, bears the danger of getting lost
in the data: extracted information may be irrelevant to the current task at hand, or it
may be processed or presented in an inappropriate way. As a consequence, time and
money are wasted, and scientific and industrial opportunities are lost [Kei02]. Therefore,
effective methods are needed to make use of the enormous potential that lies in the sheer
vast amount of unexplored data, and to extract the hidden knowledge and opportunities
that rest inside of it.

Even though powerful methods and tools for automated data analysis are developed,
all face the same problem: they only work reliably for well-defined and well-understood
problems. This is where Visual Analytics comes into play. Instead of just visualizing the
results from automated data analysis techniques, Visual Analytics recognizes the potential
of integrating the user in the whole analytical process through effective and interactive
visualization techniques, aiming to make the way of how the data and information
is processed transparent to the user [KKEM10]. The key of Visual Analytics is to
enable a discourse between the human and the computer, both using their respective,
distinct capabilities for the most effective results. Visual Analytics allows for using
human knowledge, intuition and decision-making – which can not be automated – in
combination with automatic methods from statistics or mathematics. Thomas et al.
describe Visual Analytics as the “science of analytical reasoning facilitated by interactive
visual interfaces” [Tho05].
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Figure 1.1: Integration of various research areas into visual analytics [KKEM10].

In many cases, analysis problems are ill specified, and data analysts sometimes
do not even know which questions to ask in advance [Mun14]. Visual Analytics tools
and techniques may provide insights in the vast amounts of data that are generated
every day – to “detect the expected and discover the unexpected” [Tho05]. The field
combines and integrates several research areas such as visualization, data mining, data
management, data fusion, statistics and cognitive science and depends on the availability
of the appropriate infrastructure and evaluation facilities [KKEM10] (Figure 1.1).

The Visual Analytics process tightly couples automated data analysis methods with
interactive visualizations [KKEM10]. Figure 1.2 shows an overview of the process –
the different stages (ovals) and their transactions (arrows). Before applying visual or
automated data analysis methods, data may be transformed first, as it may originate from
heterogeneous data sources or it may not be well formatted. After applying all needed
transformations, the analyst can alternate between visual data exploration and automated
data analysis methods. Models can interactively be built, evaluated and refined using
interactive visualizations, which allow the analyst to interact with the automatic methods,
by modifying parameters or by trying different analysis algorithms. This feedback loop is
characteristic for the Visual Analytics process and leads to a continuous refinement and
evaluation of the results [KKEM10].

However, even the most sophisticated analysis methods may fail due to an insufficient
data quality. Problems like missing data, wrong data and duplicates may cause useless
or misleading results or may even prevent the application of analytical methods in the
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Figure 1.2: The Visual Analytics process. The figure displays the interaction between
automated data analysis and visual data exploration by the user enabled through
interactive visualization [KKEM10].

first place [GGAM12]. It is therefore essential to ensure a sufficient data quality for
data-driven tasks like analysis, modeling or reporting in order to use the results to make
correct decisions. The main problem, however, is that assessing the quality of a data
set is a time-consuming task, even if domain experts are involved [KHP+11, Hel08].
For example, data quality may account for up to 80% of the time and cost in data
warehousing projects [DJ03]. Ensuring an appropriate data quality is a recurring task in
most operational settings and, as a result, domain experts regularly spend a large part
of their time assessing the quality of the data instead of using this time to analyze the
data for decision making or giving new insights. In the energy sector, for example, sensor
measurements are continuously acquired and need to be processed at regular intervals, in
order to be used for tasks such as forecasting. For these purposes, it is common practice
to support an efficient detection of data quality problems by maintaining plausibility
checks, and to apply them regularly to the incoming data.

The definition of automated plausibility checks has long been a topic of research
in statistics and database management. There exist a variety of routines for detecting
simple problems such as missing values, but also more sophisticated approaches to
detect anomalies in a data set [Hel08, CBK09]. However, even if domain experts have
a general idea about the variety of possible data problems that may arise in their area
of expertise, actual data problems and their structure are not always evident when
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analyzing a data set. In this regard, visualization is powerful in revealing unexpected
data quality problems of different kind and structure, in addition to detecting expected
issues in the data [Tho05, War12, Kei02, GAM+14]. Some of the most common insights
gained by visualization are actually about data errors and outliers [KHP+11]. In this
sense, visualizations can be used to find problems in the data and subsequently used as
guidance to create plausibility checks for the detected issues. Furthermore, interactive
visualizations may also allow for an iterative refinement of parameters of the identified
plausibility checks, in order to reduce false positives and false negatives. Speaking in
terms of the Visual Analytics process as seen in Figure 1.2, plausibility checks define
models on the underlying data, which can be built and refined using suitable visualization
approaches, in order to gain knowledge about the data in form of detected data quality
issues.

Using the results of the plausibility checks for an efficient data quality assessment
involves several challenges. As already mentioned, automated anomaly detection may not
always be credible as results may contain false positives and/or false negatives. Another
issue is the possibly large number of plausibility checks, data attributes and data records
of a given data set. Assessing the data quality of a single time series, for example, seems
to be a manageable task, but what if we need to check the plausibility of hundreds or
thousands of time series? In addition, there may exist thousands of plausibility checks for
a given data set. How can we manage to keep an overview of the overall data quality of
the data set while simultaneously being able to examine the results of single plausibility
checks for their credibility? Another scalability issue may arise with a high number of
data records: How to cope with plausibility checks operating on millions of records, in
order to validate data quality issues detected in single records as well as in a collection of
related records?

So far, the visualization literature has not answered these questions sufficiently.
Kandel et al. [KHP+11] describe dirty and ill-formatted data as an “elephant in the
room” of visualization research, as most visualization research simply assumes that the
data arrives in a clean state. They declare the design of visualizations for assessing data
quality as an important research challenge in order to communicate the results of applied
analytical techniques as well as to find possible reasons for detected quality issues in the
data.
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1.1 Contributions
The main contribution of this diploma thesis is a design study of the Data Quality
Overview, a visualization approach that addresses the previously stated challenges.
The goal of the Data Quality Overview is to support a routine quality assessment of
multivariate data by visualizing the results of automated plausibility checks. Specifically,
the visualization provides:

1. a scalable summary of plausibility check results,

2. drill-down features regarding plausibility checks, data attributes, and data records,
and

3. an efficient quality-aware selection of data, e.g., for validating errors or defining
suitable subsets for downstream processing.

Additional contributions of this thesis include:

• A task analysis of data quality assessment based on the collaboration with companies
from different application sectors.

• An implementation illustrating aspects for integrating the Data Quality Overview
into comprehensive systems for data quality management.

• A case study based on sensor data from the energy sector.

• Feedback from domain experts using a deployed version, and from a demonstration
at Europe’s premier energy fair.

• A reflection of the design process for stating lessons learned.

• An extraction of implementation details of the approach for understanding how
the overview is integrated into the used framework.

1.2 Structure of the thesis
Chapter 2 discusses related work relevant to this thesis, and introduces the visual
analytics framework Visplore, which was used for the implementation of the Data
Quality Overview. Chapter 3 defines relevant tasks and extracts requirements for a
Visual Analytics system to support data quality assessment. A data abstraction is given
in chapter 4, explaining the underlying data model of the visualization, and also including
a short explanation of the data set which is used for all examples throughout this thesis.
The visualization approach called the Data Quality Overview is explained in Chapter 5,
while the integration of the approach into the used framework Visplore is covered in
Chapter 6. Chapter 7 provides a case study and feedback from domain experts using a
deployed version of the Data Quality Overview. The design process of the visualization
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approach is discussed in Chapter 8 by looking at intermediate iterations of the prototype
and stating the pros and cons of each implementation. Chapter 9 summarizes some
aspects of the system architecture and its implementation. A critical reflection is given
in Chapter 10, along with a discussion of future work. Chapter 11 concludes this thesis.
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CHAPTER 2
Related Work

This chapter provides an analysis of state-of-the-art methods and other existing approaches
regarding Visual Analytics of data quality assessment. First, an overview to the topics
Visualization and Visual Analytics is given, including a short history of Visualization
and basic concepts which are frequently used in Visual Analytics systems, focusing on
the concepts used in the design of the Data Quality Overview. Then, the topic data
quality itself is addressed, by stating existing characterizations of data quality problems
and related work regarding the detection of anomalies in a data set. Existing approaches
concerning visual data quality assessment are discussed, and an introduction to Visplore
is given, a Visual Analytics system which is used as a framework for the implementation
of this diploma thesis.

2.1 Visualization
“We acquire more information through vision than through all of the other
senses combined.” [War12]

This quote by Colin Ware summarizes the role of visualization as an interface between
the computer and the human: Visualizations combine the cognitive and perceptual
abilities of the human visual system with the computational power of the computer. In
the time before graphical displays existed, the term visualization referred to the “process
of forming a mental image of something” [Dic15]. However, the understanding of the
term has changed, as today it could be summarized as a “graphical representation of
data or concepts” [War12]. According to Keim et al. [KMS+08], there exist three major
goals of visualization:

1. Presentation - to efficiently and effectively communicate results of an analysis to a
user. The choice of the appropriate visualization technique depends on the user as
well as on the facts which are fixed a priori.
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2. Confirmatory analysis - to visually examine hypotheses about the data, and the
visualization either confirms or rejects these hypotheses.

3. Exploratory analysis - to search and analyze data to gain new insights and find
potentially useful information about the data through visualization, without prior
hypotheses.

The first visualizations - mainly used for presentation purposes - date back several
thousand years, and range from cave paintings that were used as hunting guides, to
plots of the movement of the stars or maps for navigation purposes [Fri06]. However,
documentations of using visualization to not only display already known information
did not appear until the 19th century. A well documented example for such a type of
visualization can be seen in Figure 2.1: In the mid-19th century, many people died from
a cholera epidemic in Great Britain, but the cause of the disease was long unknown.
However, in 1855, Dr. John Snow created a map of a district of London displaying
the locations of water pumps along with bars indicating the number of deaths in each
household [Sno55]. The result was a visible cluster of deaths around a specific water
pump, which confirmed the water-borne cause of the epidemic.

By the mid-19th century, many of the nowadays widely used visualization techniques
such as bar charts, histograms and scatterplots were already invented in the context of
statistical data analysis. However, all visualizations of that time were limited to printed
graphics, which changed when the age of electronic computers began. Computers opened
new possibilities, as they allowed fast image generation and therefore enabled to develop
interactive visualizations.

“Interaction enables a discourse between the human brain and the data that,
for example, allows to focus on interesting structures and to rapidly try many
what-if scenarios in an ad-hoc fashion.” [Pir11]

Interactive visualization opens new possibilities for the user to focus on specific
information by filtering data or zooming into an interesting part of the visualization, as
well as to change its parameters at run-time. A new research area was born, which can
roughly be subdivided into scientific and information visualization [KKEM10]. Scientific
visualization deals with data which can directly be mapped to a 2D or 3D virtual
environment. An example is the visualization of a computer tomography (CT) scan. On
the other hand, information visualization mostly deals with data without an inherent
spatial mapping. Examples are categorical or textual data from a survey. Visual
metaphors are needed to display this kind of data.

2.2 Visual Analytics
“Overview first, zoom and filter, then details-on-demand.” [Shn96]

The “Visual Information Seeking Mantra” as identified by Ben Shneiderman [Shn96]
is often followed when designing a Visual Analytics system. By providing an overview
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Figure 2.1: Dr. John Snow’s map of the distribution of the cholera deaths of a district
of London, 1855. Each bar represents the number of deaths in a household, revealing a
cluster of deaths around the water pump located in broad street [Sno55].

the user gets a picture of the entire data set, zooming and filtering allows the user to
focus on specific interesting parts of the data, by zooming in on items of interest or by
filtering out uninteresting items. Then, the user may select data records of interest to get
details-on-demand. However, Visual Analytics is more than just visualizing a given data
set as described by the Visual Information Seeking Mantra. Data sets may be complex
and too large to be visualized in a straightforward way. As the amount of generated
and collected data continuously increases [KKEM10], combining and integrating data
analysis techniques with visualization is becoming more and more important.
Keim et al. [KMS+08] therefore extend the Information Seeking Mantra, and identified
the “Visual Analytics Mantra”:
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“Analyze first, show important, zoom, filter and analyze further, details on
demand.” [KMS+08]

In order to avoid unimportant information to conceal important parts of the data,
large data sets may need to be analyzed first before being able to show an overview of the
important parts of the data. For example, in the context of this diploma thesis, the given
data set is first analyzed using automated plausibility checks (see Section 4.2), and the
important information in form of detected indications is visualized (see Chapter 5). Based
on this initial visualization, further steps such as zooming, filtering or additional analysis
may follow. Details on demand enable to examine the visualized data in more detail, in
order to extract insights sought-after, or to identify further analysis steps or interesting
parts to zoom or filter. For example, the Data Quality Overview provides details on
demand by selecting detected data quality problems and visualizing the temporal context
of the affected data records in a linked time series view (see Section 5.4).
The following sections include frequently used techniques and concepts of Visual Analytics.
The focus in these sections primarily lies on techniques used for the implementation of
the Data Quality Overview.

2.2.1 Data Aggregation

In order to cope with the ever-increasing size of data sets, data aggregation covers a set
of transformations which can be used to reduce the amount of data to be displayed. This
allows for a manageable overview of the data, while still preserving important information
about the data set [EF10]. In the context of this diploma thesis, data aggregation allows
the proposed visualization to scale regarding the number of data records in the data set,
as well as regarding the number of data attributes and plausibility checks (see Sections 4.2
and 4.3).

Hierarchical aggregation Hierarchical aggregation techniques iteratively build a tree
of aggregate items, each one consisting of one or more children, which are either original
data records, representing the leaves of the tree, or aggregates of data records, representing
the intermediate nodes [EF10]. The root node is an aggregate item representing the
whole data set. In order to support hierarchical aggregation, visualization techniques
have to provide visual representations for original data records as well as for the aggregate
items.
Elmqvist and Fekete [EF10] state that the hierarchical aggregation “turns any visualization
into a multi-scale structure that can be rendered at any desired level-of-detail”. The user
is provided a manageable overview of the data, while visual aggregates still indicate the
data size, extents, or distribution. Hierarchically aggregated visualization techniques
typically support the Visual Information Seeking Mantra stated before, as the user gets
an overview of the data, basic interaction techniques allow the user to drill down in
the hierarchy and retrieve details-on-demand. Figure 2.2 shows hierarchical aggregation
techniques in the example of a 2D scatterplot visualization.
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Figure 2.2: An example of hierarchical visual aggregation of a 2D scatterplot visualiza-
tion [EF10].

Binning Binning is a process where a continuous data space is divided into a set of bins
defined by intervals in the underlying data space. The data records are then categorized
by the created bins, and for each one the number of data records is determined. When
visualizing a data set with a large number of data records, binning is useful to reduce
the visual clutter, while preserving the distribution of the data. For example, most
implementations of histograms use univariate binning with equally sized bins in order
to estimate the density of a given data dimension [Sil86]. The height of each bar in the
histogram represents the number of data records that fall into each bin.
Depending on the data type and use case, different binning types may be appropriate.
Hao et al. [HDS+10] for example use a variable (non-uniform) binning approach to
reduce visual clutter of overlapping points in scatter plots. In their approach, each bin
is represented by a square area in the scatter plot, and the areas are scaled, so that
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Figure 2.3: Variable Binned Scatter Plot as proposed by Hao et al. [HDS+10]. Each bin
(visible as square area in the visualization) is scaled to show each contained data point
without overlap [HDS+10].

each data point of the plot is shown without overlap. Figure 2.3 shows the approach
visualizing credit card fraud data.

2.2.2 Filtering

By applying a filter to a data set, the set of data items to be visualized is reduced,
based on specified conditions. Filtering irrelevant parts of the data may reduce the
computational and visual complexity of a visualization [Pir11].
Although filtering can be applied statically at the beginning of the visualization pipeline,
for example when importing a data set, interactive filtering approaches are more interesting
in the context of Visual Analytics, and are considered as a basic type of interaction [Shn96,
Kei02]. In the case of filtering categorical data attributes, interaction concepts range
from check boxes to dragging categories onto a dedicated panel [AS94, STH02]. In order
to control the displayed range for continuous data, range sliders are a frequently used
element [TSDS96, ARP14]. A filter may be defined globally for the entire visualization
of multiple views, or only for a part of the visualization.
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2.2.3 Multiple Coordinated Views

As a result of the complexity and diversity of available data, there exist various visualiza-
tions that are great for a specific task, but inappropriate for others. Combining views
has been established as a suitable method that allows to explore the data by viewing it
through different representations and simultaneously enabling an interaction between
them [Rob07]. Operations in the views are automatically coordinated, making it possible
to perceive new and insightful relationships that lie in the data.

Designing effective systems supporting multiple coordinated views is challenging,
as often a sophisticated coordination mechanism and layout are needed. Baldonado et
al. [WBWK00] define guidelines for when multiple views should be considered and how
they should be used. They identified a set of design rules to help designers and users
whether or not multiple coordinated views are appropriate:

• Rule of Diversity
Multiple coordinated views can be used when “there is a diversity of attributes,
models, user profiles, levels of abstraction, or genres”. Using a single view for
many different needs may not be optimal for any of those needs, resulting in a
“least-common-denominator” view. Diversity may require to simultaneously display
a multitude of diverse data, creating a cognitive overhead for the user.

• Rule of Complementarity
Visual comparison is easier to accomplish than memory-based comparison. There-
fore, multiple views support possibilities to improve the understanding of complex
relationships in a data set, to bring out correlations and/or disparities. Using a
single view, the user has to memorize aspects of the visualization, before comparing
it to another view on the data by switching between the provided views, which can
be cognitively demanding.

• Rule of Decomposition
A partitioning of a complex data set and displaying manageable parts of the data
help the user to reduce the amount of data they need to consider at a time (“divide
and conquer”). Multiple coordinated views can display multiple dimensions of the
data, providing insight into the interaction between those dimensions.

• Rule of Parsimony
Multiple views may introduce additional system complexity and computational
costs, and take more display space. A single view provides a more stable context
for the analysis, simultaneously requiring less learning costs for the user. Therefore,
multiple views should be used minimally.

The interaction with and between the views plays a key role for systems supporting
multiple coordinated views. Interaction techniques can either be indirect, when the
interaction happens outside of the visualization (e.g., defining a global filter), or direct,
when the interaction is performed within the visualization, such as brushing [Rob07].
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Figure 2.4: An example of multiple coordinated views in Visplore (see Section 2.5),
including a time-series visualization (a), a data table (b) and a parallel coodinates
view (c) [ID91]. The axis-aligned region brush as seen in the time-series visualization
selects the underlying data items, whose individual data values are shown in the connected
table. Additionally, the selected records are also highlighted in the linked parallel
coordinates view.
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Brushing is the most common type of direct interaction technique, where different degrees
of interest are defined in the data [Pir11]. Brushing techniques range from simple
approaches such as selecting individual data items by clicking on them, to selecting axis-
aligned regions in scatterplots [BC87] or angular brushes in parallel coordinates [HLD02].
Figure 2.4 shows brushing in multiple coordinated views in an example of Visplore (see
Section 2.5 for more details to Visplore).

2.2.4 Overview and Detail

When displaying all records of a data set in one image, it is typically not possible to
visualize all details of the data simultaneously. Although traditional interface mechanisms
such as paging, scrolling or panning allow for a navigation in the displayed data set, using
these mechanisms introduces a discontinuity between the information which is displayed
at different times and places [CKB09]. The user is burdened with mentally assimilating
the overall structure of the data set, based on his navigation through parts of the data.
In order to solve these problems, there exist several approaches to combine an overview
visualization of a data set with a more detailed visualization of a subset of the data. This
allows the user to examine interesting parts of the data in more detail without losing the
overview of the data set as context information.
Existing approaches can be classified as follows [CKB09, KHG03]:

Figure 2.5: An example of an overview + detail visualization from Google Street View.
The image shows the Upper Belvedere palace in Vienna (detail) as well as a map of the
surroundings in the lower left corner (overview) [Goo].
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• Overview + detail
The visualization simultaneously displays the overview and the detail information,
spatially separated into two views. The user can interact with both views separately,
however, the interaction in one view often immediately also affects the other one.
Beard and Walker [BI90], for example, describe techniques to navigate in large
two-dimensional spaces using map windows - miniature visualizations of the entire
space - which are used as an overview and navigation aid for a linked detail view
displaying only a part of the data space. Figure 2.5 shows such an example from
Google Street View [Goo], where the picture of a place (detail) is shown together
with the map of the location (overview) - representing the map window as described
by Beard and Walker [BI90].

• Zooming
The zooming interaction technique allows for a temporal separation between depict-
ing the overview and a detail visualization. The level of detail can be adjusted by
magnifying (zoom in to focus) or by demagnifying (zoom out for context) a data set,
instead of showing both views at the same time. Design issues arising when design-
ing zoomable interfaces include the coupling between panning and zooming [FB95]
or the transition between zoom states such as choosing between continuous and
discrete zoom levels or creating animated transitions [vWN04, BB99].

• Distortion-oriented focus + context
The image of a view is distorted geometrically, so that both overview and detail
are integrated into a single visualization. An example is shown in figure 2.6,
which displays a geometrically distorted temperature time-series in Visplore. The
distortion is achieved by zooming into the interesting area using the slider visible
in the bottom area [ARP14]. Possible problems when distorting an image include
misinterpretation of the underlying data and difficulties in selecting parts of the
distorted view [CKB09].

• In-place focus + context
In-place focus + context techniques, instead of distorting the image, employ visual
cues to discriminate focus from context. A subset of the data is highlighted by
modifying visual attributes such as the color or the size of glyphs. Figure 2.7 shows
an example where a depth-of-field effect is used to distinguish between objects in
focus (sharp) and in context (blurred) [KMH01].
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Figure 2.6: Distortion-oriented focus + context in an example from Visplore. Using
the slider in the bottom part of the view, the user can zoom into interesting areas of
the time-series, distorting the image to show the zoomed area in more detail, while still
maintaining the context.

Figure 2.7: Semantic Depth of Field visualization of a chess tutoring system. Pieces in
focus are depicted sharply, the pieces in the context are blurred [KMH01].

2.3 Data Quality

Data quality has long been the target of intensive research in multiple fields, for example
by business analysts, solution architects, database experts, or statisticians [SYI11]. From
the consumer’s point of view, the term fitness for use is taken as a widely agreed definition
of the term “data quality” [WS96].

2.3.1 Characterization

There are different approaches to characterize data quality. Multiple researchers focus
on the dimensions of data quality, other work focuses on the classification of specific
data quality problems. Pipino et al. [PLW02], as well as Batini et al. [BS16] identified
dimensions of data quality such as accessibility, completeness, or consistency (among
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others). Accessibility addresses the extent to which data is available, or easily and quickly
retrievable, completeness refers to the amount of missing data as well as to the sufficient
breadth and depth of the data needed for a specific task, while consistency refers to the
extent to which data is represented in the same format.

Rahm and Do [RD00] focus on the classification of data problems by their sources.
They distinguish between single-source and multi-source problems and further between
schema- and instance-related problems (see Figure 2.8). Multi-source problems arise
when multiple data sources need to be integrated: the sources typically are maintained
independently from each other, resulting in different representations of the data as well
as overlaps or contradictions. The problems are additionally aggravated as each of the
sources may contain dirty data themselves. Schema-related problems refer to problems
regarding the design of the schema itself such as wrong integrity constraints, or, in the
case of multiple data sources, schema design differences between the different sources.
Instance-related problems refer to errors that cannot be prevented at the schema level,
such as misspellings.

Kim et al. [KCH+03] provide a comprehensive classification of dirty data, beginning
with a simple subdivision of dirty data into missing and not-missing, and continuing by
further refining these two categories into finally 33 primitive dirty data types, adopting
the standard “successive hierarchical refinement” approach. The fan-out factor is kept
at a small level to make it intuitively obvious that no other meaningful child-nodes are
possible at any given node.

Müller and Freytag [MF05] roughly classify data anomalies into syntactical, semantic,
and coverage anomalies. Syntactical anomalies describe anomalies concerning the format
and values of the representation of the data records. Semantic anomalies characterize

Data quality problems

Single-source problems

Schema level
(lack of integrity con-

straints, poor schema

design)

-Uniqueness

-Referential integrity

...

Instance level
(data entry errors)

-Misspellings

-Redundancy/duplicates

-Contradictory values

...

Multi-source problems

Schema level
(heterogeneous data

models and schema

designs)

-Naming conflicts

-Structural conflicts

...

Instance level
(overlapping, contra-

dicting, and inconsis-

tent data)

-Inconsistent aggregating

-Inconsistent timing

...

Figure 2.8: Classification of data problems by Rahm and Do [RD00]
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Figure 2.9: Subset of the taxonomy of dirty time-oriented data by Gschwandtner et
al. [GGAM12]
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inconsistencies of the data set itself or when multiple data sets are merged. Examples
are integrity-constraint violations or duplicates. Coverage anomalies describe missing
entities or entity properties.

Gschwandtner et al. [GGAM12] summarize and compare a set of existing taxonomies
and address the special characteristics of dirty time-oriented data in an own taxonomy.
The concept of distinguishing data quality problems by single-source and multi-sources
was adapted from Rahm and Do [RD00], some categories were re-arranged, refined and
extended. The considered data types were categorized into non-rastered and rastered data
types, with each category containing the temporal units “point in time” and “interval”
(defined by a start- and end-point or a duration). With respect to the defined categories,
it is outlined which data quality problems arise for which data type. Figure 2.9 shows a
subset of the taxonomy defined by Gschwandtner et al. [GGAM12].

2.3.2 Anomaly Detection

Anomalies in a data set describe patterns which do not conform to expected behaviour,
such as values lying outside of an expected range or sudden unplausible value changes.
The automated detection of anomalies has long been a key topic in statistics and database
management [Hel08, CBK09] and finds use in many application domains such as credit
card fraud detection or intrusion detection for cyber-security. There exist various anomaly
detection techniques that have been specifically developed for certain applications, as
well as other techniques which are more generic.
Chandola et al. [CBK09] provide a survey of anomaly detection techniques, including a
discussion of advantages, disadvantages and the computational complexity. Additionally,
different aspects of anomaly detection problems are identified, such as the nature of
input data, the type of anomaly, data labels and the output of the anomaly detection.
Chandola et al. classify anomalies into three different types:

• Point Anomalies refer to data values which can individually be considered as
anomalous with respect to the rest of the data. An example is shown in Figure 2.10,
which depicts two normal regions N1 and N2, where most of observations lie. In
this case, the points o1 and o2 as well as the points of O3 depict point anomalies,
as all those points lie outside of the normal regions.

• Contextual anomalies refer to data instances which are anomalous only in a
specific context. Figure 2.11 shows an example of a temperature time series, where
the temperature at time t1 is considered as normal for winter time, whereas the
context of the temperature at time t2 indicates an anomaly.

• Collective anomalies refer to a collection of related data records that are anoma-
lous regarding the entire data set. An example can be seen in Figure 2.12, which
shows a time series of the production of a photovoltaic power plant. In this case,
for a longer time period, all production values seem to have an offset to where the
values would lie normally.
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Figure 2.10: Point anomalies in an example of a two-dimensional data set. Most
observations lie in the two regions N1 and N2. The points o1, o2 and the points in O3 lie
outside of these normal regions [CBK09].
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Figure 2.11: An example of a contextual anomaly in a temperature time series. The
value at t2 is considered as an anomaly, as the temperature at this point is not plausible
with regard to its context (summer). The same value at t1, however, is not considered as
anomaly, as it occurs in a different context (winter) [CBK09].

Figure 2.12: Collective anomalies shown in a time-series of the production of a photovoltaic
power plant.
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Another aspect is the output of the techniques for anomaly detection. Typically, the
output is either defined by scores, where an anomaly score is assigned to each instance in
the data, or binary labels. Scores state to which degree the entry is considered an anomaly,
while binary labels do a classification of records into normal or anomalous. Anomaly
detection techniques based on scores can produce binary labels using a domain-specific
threshold to select only the most relevant anomalies [CBK09].

Pre-defined labels associated with the data records, which mark them as normal or
anomalous, provide opportunities for supervised or semi-supervised anomaly detection
instead of unsupervised anomaly detection [CBK09]. Supervised anomaly detection
techniques use an available training data set with labeled instances for both the normal
and the anomaly class. Based on this training set a model is built, and new data instances
then are compared against the model to classify them. Semi-supervised anomaly detection
techniques on the contrary have a training data set where only normal data records are
labeled. Unsupervised techniques do not require training data, and are therefore easier
to apply. These techniques simply assume that normal data records are far more frequent
than anomalous ones. However, if this assumption is not true, unsupervised techniques
suffer from a high number of false positives and false negatives.

2.4 Visual Data Quality Assessment

2.4.1 Data Wrangling

Kandel et al. [KHP+11] describe visual data quality assessment as an opportunity in
the broader context of data wrangling, which they define as a “process of iterative data
exploration and transformation that enables analysis” or simpler, “the process of making
data useful”. The output of this process should not only comprise a usable data set for a
specific application context, but additionally include the set of transformations which led
to the cleaned data set. An important requirement for a system to support data wrangling
therefore is to provide the given set of transformations in an interactive transformation
history, allowing users to insert additional transformations at every moment in the history,
as well as to edit or remove existing transformations. In order for such a system to be
successful, the transformations and their history must be represented in a comprehensible
way so that they are understandable for auditors. [KHP+11]

Figure 2.13 shows the iterative process of wrangling and analysis, as identified by
Kandel et al., including a typical trajectory of the process. A tool for data wrangling
ideally should combine wrangling and analysis (indicated by the light yellow square in
the figure), as data wrangling may take place at all the stages of the analysis: before
loading a data set into visualization and analysis tools, during analysis itself, as well as
when data is updated or additional data is added. As the analysis of the data may reveal
unexpected data quality problems, users may have to iteratively switch between data
wrangling and analysis. However, wrangling tools tend to be separated from the visual
analysis tools, rending the iterative process cumbersome, as tools have to be switched
frequently.
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Figure 2.13: The iterative process of wrangling and analysis [KHP+11].

There exist several visualization tools that address aspects of data wrangling such as
data cleansing or data transformation. For example, Kandel et al. provide a system called
“Wrangler” [KPHH11], which implements the previously stated requirements, and allows
users to interactively specify data transformations by combining direct manipulation
of visualized data with an automatic suggestion of relevant transformations. Wrangler
includes an interactive history viewer to support review, refinement, and annotation of
the applied transformations. However, Wrangler restricts the visualization of the data to
a simple data table, without providing further visualizations of the data, which limits
the possibilities to explore the data for potential data quality problems and to visually
verify found problems. Figure 2.14 shows the interface of Wrangler, the left panel giving
a history of the applied transformations, the right panel displays the data records in an
interactive data table.

Raman and Hellerstein introduced “Potter’s Wheel” [RH01], an interactive data
cleansing system. It supports defining transformations to clean the data graphically, and
their effects are immediately shown on the visible records. If the effects of a transformation
are not as desired, it can be undone. The detection of data quality problems is done in
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Figure 2.14: The Wrangler user interface [KPHH11].

the background, on the latest version of the data modified by the current transformations.
Additionally, publicly and commercially available tools such as OpenRefine [Ope]

and Trifacta [Tri] support the user in defining data transformations intuitively and in
creating scripts for a repeated application – similar to “Wrangler” and “Potter’s Wheel”.
The goal of all these tools is to support data quality management on a regular basis,
which is similar to ours. However, we address a different stage of the workflow, i.e., the
inspection of automated check results, while modifying data is outside of the scope of
this diploma thesis.

2.4.2 Visualization of Dirty Data

Once data problems are identified, and dirty data records are found, it is not always
clear how or whether the records should be modified. In some cases, it could be useful
to proceed with the analysis in the presence of inconsistencies such as missing data or
outliers [KHP+11], and to include such data in the visualization. The challenge is to
encode dirty data records in the visualization without distracting from an analysis of the
rest of the data.

There exist several approaches to explicitly convey data quality aspects during visual
analysis. For example, Ward et al. [WXYR11] describe how data quality aspects can
be measured, displayed and utilized in visualizations, subsequently helping to raise the
awareness of analysts of the accuracy and completeness of the visualized information. In
the approach of Sulo et al. [SEG05] data quality problems such as duplicates or missing
values are highlighted in a tabular reduced visualization on a data-record level. However,
the scalability of the proposed visualization is limited, due to the lack of aggregation.

The visualization of missing data in particular is repeatedly mentioned as important
to consider in visual analytics systems [WV12, KHP+11] and there exist several studies
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on displaying and dealing with missing data [EPD05, TAF12, HHSU97, FG14]. On
the other hand, some visualization techniques try to convey uncertainty information,
arising from possible measurement errors, missing data, and sampling [KHP+11]. These
techniques encode the uncertainty in the data values using, e.g., transparency, blur, error
bars, or error ellipses [GS06, CCM09, OM02, PWL97].

2.4.3 Visual Data Profiling

Exploratory visualization is considered as suitable in order to get an intuition of the
data and possibly arising data quality problems [War12, Kei02]. There exist several
well-known systems such as Tableau [Tab], Spotfire [TIB], GGobi [SLBC03] and many
others, which provide means to visually explore the properties of a given data set and
subsequently be used for data quality profiling.

In order to assess the quality of a data set, several approaches focus on specific
domains. As an example, there exists a series of visualization systems to support anomaly
detection within sensor networks. In the approach of Shi et al. [SLH+11], topological,
correlational, and dimensional views of anomalies enable expert users to facilitate sensor
failure diagnosis. Steiger et al. [SBM+14] try to identify anomalous patterns in time
series data in sensor networks using dimension reduction. More related to our goals,
Janetzko et al. [JSMK14] apply anomaly detection techniques to power consumption
data and visualize the results in a pixel-based time series and anomaly visualization.
While their pixel-based approach provides many details, it is specific to the data and
lacks summary values for non-experts.

In contrast, there exist several commercial systems which provide coarse summaries
of data quality indicators also for non-expert users, without focusing on any specific
domain. The Talend Open Studio for Data Quality [Tal] highlights data quality problems
in corresponding tables, using the results of data quality indicators, which are either
pre-defined or user-defined. IBM Watson Analytics [IBM] assigns an overall data quality
score to a data set and to individual data attributes. The main drawback of both
Talend and IBM Watson is that their visualization is limited to mostly static diagrams,
which reduces the possibilities for an interactive identification of plausibility checks or an
exploration of the respective results.

Gschwandtner et al. support the cleansing of time-oriented data with an interactive
visual analytics system called “TimeCleanser” [GAM+14]. Issues in the data are detected
by predefined as well as user-defined checks, and corrected using a wizard-like guide
through different cleansing steps. Figure 2.15 shows one of the cleaning steps, in this case
correcting the syntax of of data entries. A bar chart (Figure 2.15a) shows the types of
identified syntax errors and the number of detected errors. Corrections of date, number
or text entries can be selected and executed as seen in Figure 2.15b. A table showing
erroneous values (Figure 2.15c) is provided to manually correct the raw values of the
data entries. A wizard-like navigation through the different cleansing steps is provided
by the interface elements as seen in Figure 2.15d.

We regard Profiler [KPP+12] as most related system to this diploma thesis. Prob-
lematic data is automatically detected using data mining methods for a visual summary
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of the overall data quality. Based on an analysis of mutual information between table
columns and the detected anomalies, sets of binned views are suggested, indicating
possible sources of found problems. Figure 2.16 shows this system with an example
of movie data. Depending on the selection of the anomaly in the anomaly browser,
the system automatically recommends relevant visual summaries that may explain the
selected anomaly found in the data set. In the example, possible causes of missing
MPAA movie ratings are investigated. The first (primary) view of the linked summary
visualizations always shows the set of columns that contain the anomaly, in this case a
chart of the MPAA rating itself. All other views are recommended using a model based
on mutual information, which “quantifies how much knowing the value of one variable
reduces the uncertainty in predicting a second variable”. A grey bar above the MPAA
rating chart indicates the number of missing values of this column, and can be selected
to highlight matching records in other recommended views. Selecting the missing values
indicates a correlation with early release dates, which is shown in the second view.

Although Profiler offers numerous detection routines, it does not support an in-situ
identification or optimization of user-defined plausibility checks. Moreover, our approach
provides more flexibility for hierarchically structuring and aggregating check results
than the anomaly browser of Profiler. Moreover, the linear layout of the Data Quality
Overview enables a direct comparison of results and their distribution.

Figure 2.16: The Profiler user interface [KPP+12].
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Figure 2.17: An example configuration of Visplore as used in the energy sector. The use
case in this example is to identify dependencies of a data attribute (“Gas Consumption”).

2.5 Visplore
The implementation of this diploma thesis was developed as a plugin for Visplore,
which is an existing visual analytics software developed at the VRVis Research Center
in Vienna1. Visplore focuses on the visual exploration of large and complex data in
various application scenarios, and is used as a framework for basic research projects along
with application-oriented research in cooperation with industrial partners. The software
supports a variety of visualization techniques and incorporates basic methodologies
such as multiple coordinated views (see Section 2.2.3). Figure 2.17 shows an example
visualization setup.

Visualization techniques provided by Visplore range from simple techniques such as
2D scatterplots [GTC01] or histograms to more complex visualizations such as Rank by
Feature View [SS05], which has been extended to a partition-based framework for building

1VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, www.vrvis.at
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and validating regression models [MP13]. The following list gives a short overview of the
variety of available visualization techniques:

• 2D and 3D Scatterplot
For the visualization of two- and three-dimensional data, a scatterplot is a well-
known technique, where each data entry is represented by a glyph, aligned by two
respectively three orthogonal axes [GTC01, PKH04].

• Histogram
A Histogram provides a quick overview of the distribution of a data attribute
by applying univariate binning to the value range of the assigned attribute and
displaying the number of contained entries for each bin (see Section 2.2.1).

• Parallel Coordinates
Parallel Coordinates is a visualization technique frequently used for the visualization
of multivariate data. The visualization consists of parallel lines representing the
assigned data attributes, and a polyline is drawn for each entry in the data set [ID91].

• Aggregate View
The Aggregate View allows for a partitioning of the data set into cells using
categorical dimensions assigned by the user. The main feature of the view, also
giving it its name, is the possibility to assign an aggregate function such as average,
min, max or a simple count (but also more sophisticated functions) to one of the
two axes, or to visual attributes such as size or colors. The aggregate is applied
to each cell of the configuration, the overall visualization resulting in a bar chart,
heatmap, line graph or scatterplot, depending on the given configuration.

• TableLens View
The Table Lens is a technique introduced by Rao and Card [RC94] for the visual-
ization of large data tables. It uses a distortion-oriented focus+context technique
(see Section 2.2.4), where the zoomed area (“lens”) displays the full information
provided by the data entries in this area, whereas entries in the context are mapped
to less space.

• 1D Rank By Feature View
This view provides a set of common statistical measures for assigned data attributes
such as min, max, average or standard deviation (among others) [SS05, PBH08], as
well as a histogram combined with a box plot, providing a comprehensive statistical
overview of the attributes. The attributes can further be ranked by a selected
statistical measure.

• 2D Rank By Feature View
The 2D Rank By Feature View provides a bivariate analysis instead of the univariate
analysis supported by the 1D counterpart. Statistical measures are applied to each
pair of assigned data attributes, displaying a scatterplot-matrix containing all
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combinations of the attributes. One of the main features of this view is the
partition-based framework for building and validating regression models [MP13].

• Function View
In order to visually validate regression models for real-time simulations, the Function
View provides the visualization of n-dimensional functions in combination with
known validation data [PBK10].

In order to support interactive visual exploration, the system is based on a multi-
threading architecture [PTMB09], which ensures immediate visual feedback to interactions
as well as scalability to very large data sets. This architecture is designed to guarantee
responsiveness to the user at all times, and to provide visual feedback as much and
as quickly as possible. Visplore further supports a Focus+Context system (see Sec-
tion 2.2.4), directly connected to interactive brushing. In this regard, four data layers
are defined:

• Focus
The focus layer contains all data entries currently hovered by the user. The
implemented brushing technique called Peek Brush [BP10] ensures scalability and
interactivity of this layer.

• Current Selection
This layer contains the entries of all applied selections. Selections can be defined
by interactively brushing data entries, and can be combined by logical operations
such as AND, OR and SUBSTRACT.

• Context
In some cases, not only the selected data entries are important for an analysis, but
also their context. The context layer contains data entries which may be relevant to
the selection. In the example of a temperature time series, where the temperature
around midday is selected, the context may include the whole day of the selected
data entries.

• All Entries
This layer simply contains all entries loaded into the system.

As only a small subset of available statistical methods or data transformations are
implemented in Visplore directly, an integration of scripting frameworks and languages
such as Matlab, R or Python allows for much more advanced data operations. Regarding
the implementation of the diploma thesis, this integration provides the foundation for
defining more sophisticated data checks, as implementing all needed data checks directly
in the software would be impracticable.
Kehrer et al. [KBFP12] provided a generic model for the integration of the statistical
computation package R in a visual analytics system, which is implemented as a plugin
in Visplore. Figure 2.18 shows the basic workflow of the integration (a) and the how
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it is implemented in Visplore (b). The interaction loop enables for an interactive
creation and evaluation of statistical models, by combining the comprehensive collection
of statistical methods and calculations provided by R with the dynamic graphics generated
by Visplore. On the part of Visplore, the R object browser ensures the synchronization
between both environments by showing the objects of the R workspace, whereas the R
console is used to write R commands and scripts.
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CHAPTER 3
Task and Requirement Analysis

This chapter gives a characterization of the problems which arise when dealing with data
quality issues, along with a definition of the key tasks and requirements for visual data
quality assessment.

3.1 Methodology

In order to extract all the requirements for a visualization system supporting data
quality assessment, collaborations with partners in the energy sector (since 2012) and
the Austrian healthcare system (since 2010) helped to understand sub-tasks of data
quality assessment in the context of the respective domains. In the energy sector, time
series data including power supply and demand, prices, and meteorological measurements
support tasks like power grid control and risk management [MP13]. Frequent data quality
problems include missing or outlying values caused by sensor malfunction. In healthcare,
routinely collected accounting data is increasingly used as a basis for decision making and
planning [PMZ+13]. In this context, typical data quality problems include inconsistencies
in names, duplicate entries, missing values, and anomalies introduced by the integration
of data from multiple sources. In both domains, data is acquired on a regular basis
and must be processed in intervals ranging from days to months. The routine quality
assessment of newly acquired data based on automated plausibility checks is thus an
important, frequent, and time-critical activity in both domains.
The tasks and requirements, as defined in the following sections, were identified dur-
ing collaborations with the previously stated partners, based on insights gained from
interviews, contextual inquiries [HJ93], and data analysis sessions with domain and data
management experts.
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3.2 Problem Characterization and Task Analysis

To find out whether a data value is plausible or not, can often only be determined by
examining the context of the value. Let us have a look at the example temperature time
series as seen in Figure 3.1. A value of 0 ◦C may be plausible if it was measured in winter,
however, the context of the measured value clearly reveals the value as implausible. The
value not only is uncommon in the context of August, but it also diverges by a large
amount from the values measured immediately before and after, thus possibly indicating
a temporary sensor failure.

Implausible data values such as the one from the previous example can be detected
by plausibility checks, which are used as key entities in this thesis. A detailed explanation
of the form and structure of such checks is given in Section 4.2. Plausibility checks can
be defined for a variety of possible data quality problems ranging from a rather simple
detection of missing values to complex outlier detection algorithms. Identifying and
creating a suitable set of plausibility checks for a given data set is a challenging task.
After identifying possible data quality issues by domain experts or data analysts, who
have a special knowledge of the properties of the data, an initial set of checks for a data
set may be defined. However, even the most sophisticated checks may not detect all
data problems and suffer from false negatives and/or false positives. As an example,
even a straightforward check, which is based on a region representing “normal” values,
marking any data entry outside of this region as implausible or anomalous can be very

Figure 3.1: An example of an implausible value in a temperature time series.
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challenging. The boundary between normal and anomalous behavior may not be precise,
resulting in anomalous observations close to the boundary actually appearing as normal,
and vice-versa. Another challenge is noise in the data which may be similar to anomalous
behavior [CBK09]. In most cases, the domain expert can only make an initial guess for
the value of a parameter like the boundary of such a region. Oftentimes, the number
of false negatives and/or false positives exceeds an acceptable value, or, on the other
hand, not all occurring anomalies are detected by the correspondingly defined check.
The parameters of the checks therefore need to be optimized to reduce these errors. In
order to support this task, a visualization system for data quality assessment should
support the exploration and refinement of the values of plausibility check parameters
for better results. Providing immediate visual feedback after parameter changes enables
such an exploration along with an access to the distribution of the results at various
levels-of-detail.

Analyzing the data quality of a large data set with dozens of attributes may soon
end up in a large number of plausibility checks, caused by the diversity of possible data
quality issues. Just to name a few, there may exist plausibility checks for missing values,
local or global outliers, or sudden value changes as seen in Figure 3.1, and each of these
checks may be applied to each attribute in the data set. From this resulting large number
of plausibility checks arises the risk of losing track of all computed check results. To
address this issue, it is important for a visualization system for data quality assessment
to provide a simple and easy to understand overview of the overall analysis result, as well
as to provide access to multiple levels-of-detail facilitated by drill-down possibilities to
single or a subset of plausibility check results. This includes a flexible summarization of
check results, for example by problem types, involved data attributes, or the severity of
detected issues. The challenge for the visualization in this case is to work independently
of the number of visualized checks and detected indications. A sub-task in this case is
to use the overview of the overall analysis result to generate reports of the quality of a
given data set for project managers, stakeholders, or collaborating departments. For such
reports it is additionally important for the complexity of the visualization to support
also non-expert users.

One of the most important tasks, identified during interviews with domain and data
management experts, is to identify whether the data quality is sufficient for the data set
to be used for the current task at hand, ultimately increasing the confidence in the results
of the performed task. In some cases, the data quality may be sufficient for certain tasks,
but insufficient for others. Equally important for the experts performing a specific task is
to identify potentially needed preprocessing steps such as a selection of a “good enough”
data subset or a cleansing of implausible data values. A visual overview needs to be
designed in a way that the expert immediately can identify whether the data can be used
as-is, and additionally providing means to select data subsets without data quality issues.
Enabling the access to details of detected data quality issues allows experts to determine
whether and how implausible values may be cleansed in a further step before using them
for the current task at hand.

Another important task is to generate hypotheses about possible causes of indicated
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data quality issues. Finding causes of implausible values helps data providers to improve
the overall quality of their data sets and further reduce the costs of data analysis and
cleansing steps. In order to generating hypotheses, a user for example may want to identify
data attributes related to detected data quality problems. Considering the photovoltaic
example set, which is used throughout this thesis (see Section 4.1), detected missing
values of a sensor, measuring the photovoltaic production of a power plant, may correlate
with low temperature values measured by another sensor, as the given sensor may only
work in a certain temperature span. Another example could be a correlation between
missing values of a sensor with a certain day of month where all sensors are turned off
for maintainance. To support the generation of hypotheses about possible causes, the
visualization may directly include information about the distribution of the affected data
records over time or other attributes of the data set. For the previous example, the
visualization may provide means to explore the temporal distribution of the indicated
data records, in order to see a possible correlation between data entries with indications
and the time at which they occurred. This further facilitates the communication of found
hypotheses to data providers.

3.3 Requirements

Based on the previous problem characterization and the task analysis, the following list
presents requirements for the design of a visualization system to support data quality
assessment:

• Requirement 1: Overview of the overall data quality by summarizing the propor-
tion of data indicated by plausibility checks.

• Requirement 2: Flexible summarization of check results, for example by problem
types and involved data attributes.

• Requirement 3: Characterization of data quality problems in terms of properties
of affected data records, including their distributions over time and regarding
quantitative and qualitative data attributes.

• Requirement 4: Efficient selection of data subsets based on check results.

• Requirement 5: Fast access to details of affected data records, data attributes,
and plausibility checks.

• Requirement 6: Suitable visual analysis and validation of indicated data quality
problems in the context of data without indications.

• Requirement 7: Export of data subsets to external data sources.

• Requirement 8: Scalability for up to millions of data records, hundreds of data
attributes, and thousands of plausibility checks.
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• Requirement 9: Scalable visual complexity supporting non-expert as well as
expert users.

• Requirement 10: Flexible in-situ identification, definition, and modification of
plausibility checks with immediate visual feedback.
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CHAPTER 4
Data Model

The following sections describe the underlying data model of the Data Quality Overview.
The data used for data quality assessment in this diploma thesis is assumed to be a
generic multivariate data table consisting of n data records (i.e., rows), p data attributes
(i.e., columns) and n × p data values (i.e., cells). The data attributes may be of arbitrary
type such as quantitative, categorical, or time stamps. This includes, e.g., time series data
and event logs. The data model of the visualization approach consists of a hierarchically
structured set of plausibility checks, which are applied to a set of data attributes.

4.1 Example Data: Photovoltaic Production

In all examples throughout this thesis, a real, but anonymized data set from the energy
sector is used. The data set consists of the production data of 95 photovoltaic power
plants (data attributes PV01 - PV95), hourly measurements of global radiation and
temperatures from 20 weather stations as well as humidity, wind speed, gust speed, wind
direction, air pressure, and dew point for four weather stations, from May 2010 to April
2011. This data is a typical example of sensor measurements that require a regular data
quality assessment prior to tasks such as forecasting or statistical modeling.
We chose this data set for the examples in this thesis, as it contains data quality issues such
as missing data (Figure 4.1a and b) or anomalies as classified by Chandola et al. [CBK09]:
point anomalies (Figure 4.1b), contextual anomalies such as sudden implausible drops in
temperature as seen in Figure 4.1c, or collective anomalies (Figure 4.1d).

4.2 Plausibility Checks

Plausibility checks (subsequently also simply called “checks”) are the key entities in the
context of this diploma thesis. In order to detect data quality problems such as missing
values, syntactical errors, constraint violations, or anomalies, plausibility checks are
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Figure 4.1: Anomalies contained in the example data set, including (a) missing data, (b)
point anomalies, (c) contextual anomalies and (d) collective anomalies.
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applied to the values of one or multiple data attributes of a data set, in order to produce
boolean- or real-valued results. A simple check for missing values, for example, produces
a boolean result for each value of a given data attribute, whereas more sophisticated
checks, e.g., advanced anomaly detection algorithms, may produce a real-valued result
for each data record. Plausibility checks frequently also consider multiple independent
variables for determining the plausibility of one dependent variable. In the context of
photovoltaic production, an example could be a check to detect non-zero production
values at nighttime. In addition to the production value of a photovoltaic power plant
(dependent variable), a time stamp is needed as additional input variable (independent
variable) in order to assess the plausibility of the production value.

Each plausibility check consists of a rule implementation along with attributes such
as a classification (for example “constraint violation” or “anomaly”, see Section 4.2.1),
implementation-specific parameters (for example the value of a threshold), and meta-
information such as user-defined tags. The system currently supports four built-in rules
and a user-defined rule based on scripting. The built-in rules comprise:

• a check for missing values which are explicitly supported by the multivariate data
model in Visplore,

• checks for boundary violations defined by one or two thresholds (a lower and/or an
upper boundary),

• selection-based checks defined by interactively brushing data in one of the provided
visualizations of Visplore, and

• model-based anomaly detections operating on regression models, which can be built
interactively in the system [MP13].

By defining script-based checks, users may apply any check on the data by using the
scripting languages R, Matlab or Python. For more information about the integration of
these scripting frameworks and languages in Visplore, see Section 2.5. The case study
(Section 7.1) describes specific examples for script-based checks for the example data set.
Parameters of each plausibility check, such as thresholds in the case of a check for
boundary violations, or the script text, in the case of script-based checks, can be modified
at any time and immediately trigger a re-computation of the check, ultimately resulting
in an update of the visualization.

4.2.1 Classification

The classification of a check refers to the semantic class of data quality problem it detects.
Motivated by existing data quality taxonomies (see Section 2.3.1), the classification is
defined hierarchically, where class denotes the category of the first level, while sub-class
denotes a second level category. The employed classification scheme can be defined
as suitable for a particular application context and can even be extended by users at
run-time. In the context of the data which is used throughout this thesis, useful first-level
classes include
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1. “missing”, e.g., for NULL values,

2. “syntactic error”, e.g., for unknown time stamp formats,

3. “constraint violation” for impossible values or relations between values, and

4. “anomaly” for suspicious yet potentially correct values.

A check for univariate outliers, for example, could be classified by the class “anomaly”
and a sub-class “outlier”. This classification scheme was defined for the examples in
this diploma thesis, however, depending on the data and application context, also other
classification schemes can be used. The visualization (see Chapter 5) does not rely on any
particular scheme. However, using an appropriate classification scheme for the application
context at hand is an important aspect for the visualization.

4.2.2 Plausibility Check Results

The output of a plausibility check may either be boolean-valued or real-valued. However,
in order to enable a unified visual representation, real-valued checks discretize the output
of their evaluations by one or more thresholds to obtain boolean-valued outputs. A
single check, such as the previously mentioned check for outlier detection, may thus have
multiple boolean-valued outputs for each data record, discriminating increasing tolerance
thresholds. In order to support these thresholds, each output is labeled by an associated
severity level. Throughout this thesis, three severity levels called uncritical, warning, and
critical, are used, which can be modified and extended by users at run-time for specific
application scenarios. In the case of real-valued outputs, this enables for a comparison of
defined thresholds, e.g., for a sensitivity analysis. For boolean-valued checks, severity
levels are useful to, e.g., mark missing values for some data attributes as critical and
uncritical for others, for example “comment” fields of survey data.

Within the data values of the target data attributes, a check may produce an output
per single data record, per data category, i.e., a meaningful subset of data records, or for
all data records. This definition generalizes the granularity levels of the quality space
defined by Ward et al. [WXYR11]. For a consistent treatment of all checks and their
combinations, however, we break down the results of all checks on a record level. For
example, each result of a per-category check is assigned to all data values within the
target data attribute of the respective category.

In subsequent sections, in order to simplify the terminology, we refer to each set of
boolean-valued outputs of a check as plausibility check result (or simply “check result”).
Using this terminology, the previously mentioned check for outlier detection may have
multiple check results, one for each severity level.

In addition, we refer to the subset of data values marked by a check result as
check indications. We decided for this term because it is neutral and does not forestall
assessments about correctness, e.g., in contrast to “error”.
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4.3 Hierarchy of Plausibility Check Results
A hierarchical structure is a key concept in order to ensure scalability of the visualiza-
tion [EF10] (see Section 2.2.1), which is one of the requirements specified for the design
of the system (Requirement 8, as defined in Section 3.3). The data model of the Data
Quality Overview structures the set of plausibility check results in a hierarchy, each node
consisting of a set of check results. The root node of the hierarchy contains the set of all
existing check results, while adding a hierarchy level refines the set of results by one of
the following properties of a check:

1. The class of a check result such as “missing” or “constraint violation”

2. The sub-class(es), i.e., further levels of the hierarchical classification such as “outlier”

3. The target data attributes (dependent variables)

4. The severity level of check results (e.g., uncritical, warning and critical)

5. User-defined tags on the checks

6. The indication occurrence as distinction of checks with and without indications

7. Groups of checks defined by identical indication patterns

Figure 4.2 shows a schematic representation of an example hierarchy of the Data
Quality Overview. For an easier illustration of the concept, the example consists of 10
check results operating on a table with only 8 data records per data attribute. The root
node simply consists of all 10 check results. The hierarchy is refined by two additional
hierarchy levels, where L1 refines the set of check results by their check class, which

Figure 4.2: Schematic representation of an example hierarchy of plausibility check results.
The root node contains an aggregation of all plausibility check results. Additional
hierarchy levels refine the hierarchy by a property such as the check class (L1) or the
severity level (L2).
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results in a node for “Missing”, one for “Constraint Violation”, and one for “Anomaly”.
The level L2 further refines these nodes and their set of check results by the respective
severity level. Nodes are only created for properties which occur in the given set of check
results, for example when refining the node “Missing” by the severity level, only one node
for “Critical” is created, as both checks in the node have this severity level. Nodes for
“Warning” and “Uncritical” are omitted in this case.

As one design decision, the hierarchical definition does not imply disjoint check result
sets. For example, a subdivision by the target data attributes defines one hierarchy node
per data attribute. Check results with more than one target data attribute will thus be
referred to by multiple hierarchy nodes. Depending on the definition of the subdivision,
enforcing a disjoint partitioning of check results would be possible. For example, a
subdivision by target data attributes could define a node for each occurring combination
of data attributes. However, user feedback suggested to favor understandable nodes.
Moreover, no aspect of the Data Quality Overview relies on a disjoint subdivision of
check results.

4.3.1 Check Result Aggregation

In order to compute measures such as the relative frequency of check indications, each
node aggregates the set of underlying check results. Per default, the check results within
each node are aggregated on a record-level (record-based aggregation), marking those
data records as implausible which are indicated in at least one of the underlying check
results (a logical OR-combination). Following the example of Figure 4.2, the root node,
containing all results, shows check indications in 5 of the 8 data records. Each one of
these indications emerges from at least one of the underlying check results. Moving
further down in the hierarchy shows how the indications are distributed between check
classes and severity levels.

However, if the checks of a node target multiple data attributes, the distribution of
values with data quality problems may not be visible due to potential masking between
the data attributes. Therefore it is possible to aggregate check results in terms of data
values instead of data records (value-based aggregation). In this case, the results of the
plausibility checks are first aggregated on a record level for each data attribute, and the
overall number of check indications is then computed by adding the resulting number of
indications of each target attribute.

Let us explain the difference between the aggregations in a simple example as seen in
Figure 4.3. In the example, we see results of two checks (“Missing” and “Boundary”)
applied to the data attributes “Temp01” and “Temp02”, which represent two temperature
time series in the example data set. In order to compute the relative frequency of check
indications for an aggregation of the four given check results, in record-based aggregation,
all results are combined on a record-level, resulting in check indications in 6 out of 8
data records (75%). However, when using value-based aggregation, the results are first
aggregated on a record-level for each data attribute, and the overall number of check
indications is computed by adding the number of indications for each data attribute. In
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this case, we obtain 9 indications out of 16 total entries (2 ∗ 8, as the indications of 2
data attributes are aggregated), which results in a relative frequency of 56, 25%.

Figure 4.3: Schematic representation of the difference between record-based and value-
based aggregation.
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CHAPTER 5
Visualization

Figure 5.1: The Data Quality Overview as used for data quality assessment in the energy
sector. (a) Hierarchical aggregation of plausibility check results by their properties. The
columns display information for each row such as (b) the number of checks, (c) the
percentage of check indications, (d) the distribution of check indications over time, (e)
the overlap of check results in each row, and (f) the severity of the data quality problems.
(g, h) Linked views provide details of the selected indications.
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This chapter describes the Data Quality Overview, a novel visualization method for
check-based data quality assessment. The key idea of the visualization is to structure
the overview of data quality problems as a hierarchical table of plausibility check results
(see Figure 5.1). Each hierarchy level is defined by a check attribute like the class or
involved data attributes, which partitions the set of plausibility check results in each
level (see Section 4.3). The table rows thus correspond to results of single checks or
the aggregation of the results of multiple checks. The level-of-detail can be adjusted
by adding or removing hierarchy levels, and by expanding or collapsing nodes in the
hierarchy. The table columns provide information about the check results, including the
relative frequency of indications per class, the distribution of indications over time or
other data attributes, and the overlap of indications by multiple checks. The table can
hence be interpreted as an intersection of the check-space and the multivariate data-space.

The design of the Data Quality Overview is guided and motivated by the identified
tasks and the resulting requirements defined in Chapter 3 for an application to the data
and plausibility checks as described in Chapter 4. The decision for a table-based layout
was made because it is a familiar concept to users and enables independent encodings
of multiple structurally different properties of checks as columns [LGS+14]. Moreover,
control matrices for data quality assessment are suggested by the literature [Pie04].

5.1 Rows: Hierarchically Structured Checks

Each row in the tabular layout of the Data Quality Overview is the representation
of a node in the hierarchical structure as defined in Section 4.3. The level-of-detail
of the hierarchy can be chosen interactively: it is possible to add check properties as
additional hierarchy level, and to remove and reorder existing levels. Each node can
individually be expanded or collapsed. Following the example in Figure 5.2, initially, all
check results are aggregated as a single row, which corresponds to the root node of the
hierarchy (Figure 5.2a). To investigate check results by their target data attributes, the
user can add a hierarchy level for this check property (Figure 5.2b). Adding a further
refinement by check class or sub-class (see Section 4.2.1) enables the user to drill down
on data attributes, which are affected by indications in multiple classes (Figure 5.2c).
The order of the two hierarchy levels can be switched by drag-and-drop, which re-defines
the hierarchy by discriminating checks first by sub-class, and then by the target data
attributes (Figure 5.2d). This concept is similar to interactive approaches for pivotizing
categorical data [Tab] and is essential to meet Requirement 2 (flexible summarization of
check results) and Requirement 8 (scalability for the number of attributes and checks,
see Section 3.3).

Visually, the hierarchical subdivision of checks is located in the left-hand part of the
layout. The table header shows one segment per hierarchy level, and is labeled with the
name of the check property, which defines the subdivision in the level. The root level of
the hierarchy, which is always visible as the left-most column, is labeled by “All”. This
level simply consists of the root node of the hierarchy, containing the set of all currently
available plausibility check results. The set of available checks can be restricted by a filter
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Figure 5.2: The frequency of check indications at four stages of a drill-down scenario. (a)
Aggregation of all checks, (b) drill-down by targeted data attribute, (c) a local drill-down
on the attribute “PV_55” by check classification, and (d) another local drill-down after
swapping the hierarchy levels.

(see Section 5.3.2), and the root node is named accordingly. In the example of Figure 5.2,
the Data Quality Overview only shows checks which resulted in indications in at least
one data record, and therefore the root node is named “Checks with indications”.

The width of each segment can be adjusted, and all segments, except for the “All”
segment, can be re-ordered by drag and drop, which re-defines the hierarchy accordingly
(see the example in Figure 5.2). Hovering a segment overlays temporary controls (Hover
Triggered Controls – see Section 5.3.3) which allow to replace one check property by
another one, to remove hierarchy levels, or to globally expand or collapse all nodes of the
hovered hierarchy level.

For controlling the visible set of table rows, each hierarchy node can individually
be expanded or collapsed, which simply shows or hides its child nodes. This provides
additional flexibility in specifying the level-of-detail of the visualization, in addition to
the definition of the hierarchy levels. Table rows are displayed for all nodes including
intermediate nodes and the root node. This was different for early design stages (see
Chapter 8), where table rows were only displayed for leaf nodes, and intermediate
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nodes were replaced when expanded. However, user feedback indicated a preference
for extending rather than replacing rows at drill-down, as they are more familiar with
this concept, which is frequently used in the graphical user interfaces of file explorers in
operating systems. Another advantage of this approach is that the context of each node
in the form of the parent or sibling nodes is preserved. In order to examine the results
of each check individually, each leaf node containing more than one check result can be
expanded, showing a table row for each of the check results. As a result, the Data Quality
Overview can optionally be configured as a non-hierarchical table of check results, by
simply expanding the root node of the hierarchy (“All”) without adding further hierarchy
levels.

The visualization of table rows reflects their hierarchical definition by an indentation
according to the user-defined width of the header segments and is additionally enhanced
by a gray background, whose intensity is reduced for each hierarchy level (see Figures 5.1
and 5.2). Each node displays the respective check property, which defines the partition in
the according hierarchy level, as horizontal text. Expanded nodes additionally show their
name as vertical text in order to provide the context for their child nodes. Intermediate
nodes display arrows for expanding or collapsing the respective sub-tree. Leaf-nodes
containing more than one plausibility check result provide a click-able “+” sign for
specifying an additional hierarchy level and expanding the node as local drill-down.
Horizontal lines support the perception of the hierarchical structure of table rows across
all columns of the Data Quality Overview, however, lines are only drawn between rows
with different parent nodes in order to facilitate the perception of siblings (see Figure 5.2).

5.2 Columns: Aspects of Check Indications

The Data Quality Overview supports multiple types of columns. Each column provides
information for the subset of check results in each row. In order to support a flexible
data quality assessment for multiple scenarios and target user groups, columns can be
added, removed or replaced at all times, similar to hierarchy levels. The complexity of
the visualization can therefore be steered by configuring the number and type of visible
columns, thus supporting expert users as well as non-expert users (Requirement 9 ).

As a general design decision, hue consistently encodes the class of data quality
problems in all columns, as user feedback revealed that the class of detected indications
should be visible regardless of the drill-down of rows. Using hue as visual attribute to
encode qualitative information is suitable for at most 12 categories [War12], which in the
case of “class” is typically the case. For some columns, this scheme is extended by brown
indicating “multiple classes”, and green for representing “no indications” (see Chapter 8
for more details about this design decision).

5.2.1 Indication Frequency

The relative frequency of data records with indications is essential information, and
also represents the first of our defined requirements for visual data quality assessment
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(Requirement 1 ). The Indication Frequency column displays this information for each
row of the hierarchy by computing the percentage of data records having indications in
one or more of the contained check results. The main challenge for the visualization in
this column is the largely varying scale of the percentages. Indicating a few anomalous
data records for one data attribute is often as important as conveying large percentages
of, e.g., missing values for another one. Using bars with linear scaling may be suitable for
displaying large percentages of data indications, however, checks frequently result only in
a small percentage of indications, which may not be perceptible, as (depending on the
width of the column) the size of the bar may even fall below one pixel in screen space.
In such a case, the respective cells may fail to display the relative frequency, even if the
underlying set of check results contains indications. Using bars with logarithmic scaling
would solve this problem, however such a scaling is much harder to interpret, as it makes
it difficult to quantitatively compare different values across the visible rows [HSBW13].

As a solution, the concept of scale-stacked bar charts [HSBW13] is adopted. The
key idea of scale-stacked bar charts is to use multiple scales to cover a large value range,
while simultaneously preserving the ability to compare values using a linear mapping
within each scale. In the case of the Indication Frequency column (see Figures 5.1 or 5.2
for examples), each order of magnitude is represented as a sub-column in decimal steps,
i.e., 0 − 100%, 0 − 10%, 0 − 1%, 0 − 0.1%, and so on. The smallest order of magnitude is
determined by 1/N . The main advantage of this concept is that it allows to compare the
computed percentages with linear scaling, while small percentages still remain perceptible.

For each table row, the smallest scale containing the percentage of indicated data
problems displays the stacked bar in full height. This supports an immediate perception of
the magnitude of the percentage, even in case of little horizontal space for the Indication
Frequency column. Scales of higher magnitudes still show the indications in full height,
as by definition they cover at most 10% of their width, and for the rest of the sub-column
a thin line in the color of “no indications” is drawn. Hence, all orders of magnitude – and
particularly the 100% sub-column – can still be read as linear bar charts, and therefore
allow for a comparison across all rows. Cells of sub-columns, whose order of magnitude is
smaller than the percentage to be displayed, show a thin line in the color for indications.
For an easier understanding, let us follow the example depicted in Figure 5.2b, where
the percent of data records with indications of the photovoltaic power plant PV_43
lies at approximately 9%. As the 0 − 10% sub-column is the smallest scale containing
this percentage, it is displayed in full height, while sub-columns with smaller magnitude
display a thin line in the color of the class of the underlying checks (in this case purple for
anomaly). The 0 − 100% sub-column, however, still displays the percentage of indications
at full height, in order to allow for an easier comparison over all rows, and additionally
displays a thin green line for “no indications”.

If all indications of a row share a single class (as in the previous example), by chance
or by hierarchy definition, their encoding uses the hue of that class. Otherwise, the hue
for “multiple classes” is applied for all indications. This was different in previous versions
of the Indication Frequency column, where the percentages of the classes were stacked in
each cell. However, this concept posed difficulties in comparing the percentages between
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each class, as well as over each row. Additionally, a problem was again the visibility
of small percentage values in higher orders of magnitude. In order to prevent the loss
of information by introducing a color for “multiple classes”, small triangles encode the
percentage of data records with indications for each individual class, colored by the
hue of the respective class (see Figure 5.2). Again, for an immediate perception of the
magnitude of the percentage and to avoid visual clutter and redundancy, the triangles
are only displayed in the smallest order of magnitude containing the percentage. This
technique enables users to quickly perceive the overall percentage of data with indications
in each row by considering the drawn bar, as well as to get an idea which classes the
percentage is composed of and how it is distributed among those classes. The displayed
triangles also enable the selection of all data records with indications of the respective
class (see Section 5.4). In order to magnify the percentages of a specific class for a quick
comparison over all rows, a class can be hovered in the color legend of the Data Quality
Overview, overlaying bars of the hovered class in each row.

Expressing the relative frequency in terms of data records is appropriate for many
downstream analysis steps and is used as default. In this case, the results of the plausibility
checks within each row are aggregated using record-based aggregation (see Section 4.3.1).
Alternatively, we support to express the indication frequency in terms of data values
instead of data records (value-based aggregation). The visualization itself is independent
of the chosen aggregation, as only the computation of the percentages is changed. For
a better understanding of the difference between the two aggregation techniques, let
us consider a simple example where we have a row containing two checks, each one
assessing the data quality of a different data attribute. Now just for explanation, if one
of the checks results in no indication, and the other results in indications in all entries
of the target data attribute, the resulting percentage would lie at 100 % in the case of
record-based aggregation, as the overall result is a simple OR-combination of both check
results. However, in the case of value-based aggregation, the percentage would lie at
50 %, indicating that half of the data entries of the target attributes are records with
indications.

5.2.2 Indication Distribution

The distribution of records with indications is important information in order to assess
the quality of a data set. Check indications may follow a specific pattern, examples could
be indications only occurring at a certain time of the day, or a correlation of indications
with the corresponding value of a given data attribute. For example, missing values
of a sensor may directly correlate with a change in temperature measured by another
sensor, as the sensor may only work in a certain temperature range. In order to display
such information about the distribution of check indications, with respect to temporal,
quantitative, or categorical data attributes (Requirement 3 ), the Data Quality Overview
provides the Indication Distribution column, which is based on a disjoint partitioning of
data records (see Figure 5.3).

Partitioning enhances the scalability regarding data size [LJH13] (Requirement 8 ) and
supports an analysis in terms of semantically meaningful categories. In the Indication
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Figure 5.3: Four examples of check indication distributions. (a) Linear temporal partition-
ing in steps of month-thirds, (b) Temporal partitioning in daily cycles, (c) domain-based
quantitative partitioning of Gust Speed 03, and (d) frequency-based quantitative parti-
tioning.
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Distribution column, the number of partitions always adapts to the column width and the
underlying value range. Users may thus define a level of detail by resizing the column or
by restricting the value range using a range slider (see Figure 5.4). During the interaction,
the column header showing the partitioning scheme is immediately updated for instant
feedback while the table rows are redrawn upon completion of the computation. If the
underlying data attribute of the column contains missing values, all partitioning schemes
add a partition for these values, which is always shown as right-most partition with
fixed size (see Figure 5.3c and d). As a requirement for all data types, user feedback
stressed the importance of interpretable partitions, such as months or days in the case of
time-based partitions or steps of 5 or 10 in the case of quantitative partitions.

Linear temporal partitioning refers to a time-typed data attribute, e.g., a time
stamp (Figure 5.3a). Partitions correspond to the temporal units year, quarter, month,
third of month, day of month, quarter of day, hour, minute, and second. Depending on
the specified data range and the column width, an actual partitioning could, for example,
include two years, refined as quarters and months. The column header hierarchically
displays these temporal units. A hover-triggered slider [ARP14] enables to restrict the
shown range and to optionally define a focal range with more fine-grained partitions [LA94]
(see Figure 5.4).

Cyclic temporal partitioning also refers to a time-typed data attribute, but defines
partitions as cycles of years, months, weeks, or days [AMM+07] (Figure 5.3b). A cyclic
distribution supports, for example, a detection of seasons, days of the week, or times of
the day with an over-proportional number of data quality problems. Depending on the
column width, the chosen cycle is hierarchically sub-divided by appropriate temporal
units. A weekly cycle, for example, is refined in terms of days of the week, hours per day,
and so on.

Quantitative partitioning may reveal relationships between check indications and a
quantitative data attribute, e.g., sensor measurements. Depending on the distribution of
the data attribute, meaningful partitions can be defined as domain-based (Figure 5.3c) or
frequency-based (Figure 5.3d) [MP13]. Domain-based partitions have intuitive boundaries
and an equal size in terms of the value domain, e.g., in steps of 10. Frequency-based
partitions contain a roughly equal number of values, e.g., 5% of the data. A domain-based
partitioning is easier to interpret if the quantitative data attribute is approximately
uniformly distributed, while a frequency-based partitioning is more robust in case of skew,
peaks, and outliers. For both schemes, the partition boundaries are ultimately defined
as thresholds within the data attributes. This ensures that identical values of a data
attribute are assigned to the same partition. It also enables a consistent visualization
of the partitions as bars of a histogram in the column header. Each bar encodes the
position and width in domain space of the underlying quantitative data attribute, and
the frequency as area. Taking the vertical space as maximum uniquely defines the height
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Figure 5.4: Restricting the temporal range for increasing the level of detail. The first
step drills down on December 2010, the second one uses distortion for inspecting single
hours of December 15th in the context of the rest.

of each bar. As for temporal partitioning, a hover-triggered slider [ARP14] may restrict
and refine the shown range.

Categorical partitioning refers to a nominal or ordinal data attribute, e.g., a political
district. The categories directly define the partitions. Nominal categories are ordered
descendingly by their frequency, while ordinal data preserves the order. If the number of
categories exceeds the possible number of partitions for a given column width, nominal
data attributes group the tail as one partition called “rest” while ordinal data combine
consecutive categories.
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For visualizing the indication distribution, each table row represents the partitions as
equally-sized segments, except for when a focal range is defined (see Figure 5.4). Hovering
a segment with the mouse cursor highlights the corresponding partition in the column
header. Each segment linearly encodes the percentage of contained data records with
indications by the area of a centered rectangle. A minimal area of 2x2 pixels ensures
the visibility of small percentages. The main reason for this design was that we found
centered rectangles as most suitable for supporting comparisons along rows and columns
at the same time. Moreover they generate a disconnected pattern that stresses the
discontinuous occurrence of indications more intuitively than for example continuous bar
charts.
If all indications per segment share a single class, the rectangle is drawn in the hue of
that class. Otherwise, the color for “multiple classes” is applied. In order to increase
the perceptual discrimination of segments with and without indications, a desaturated
background is drawn in partitions with at least one indication. Hovering a class in the
color legend of the Data Quality Overview temporarily filters each cell to display the
percentage of contained check indications for the hovered class. This allows for a quick
overview of the distribution of check indications of a specific class.

5.2.3 Indication Overlap

For table rows comprising multiple check results, the overlap of check indications is
often relevant to assess on a summary level already if indications originate from a single,
multiple, or all underlying check results (see Figures 5.1e and 5.5). The idea of this
column is to represent different degrees of overlap as partitions, e.g., for records with
indications by a single check result (no overlap), by two results, by three results, and so
on. The number of partitions is determined independently for each row, as it depends
on the number of check results that lie in a specific row, where each partition comprises
data records with indications overlapping in the corresponding number of check results.
The horizontal space of each row is then equally subdivided by the respective partitions.
The first partition, which contains indications with no overlap in other check results, and
the last partition, which contains indications that overlap in all check results of the row,
may be of special importance to the user: indications with no overlap may indicate false
positives of a check, as they are unique over all check results, whereas indications that
overlap in all check results may confirm an apparent data quality problem.

The visual representation of the Indication Overlap column is analogous to the Indi-
cation Distribution columns (Section 5.2.2), however, each row of the table is partitioned
depending on the number of underlying checks, and therefore may result in a different
number of partitions for each row. The column width again determines the level of
detail: While the partitions for no overlap (i.e., indication by a single check) and full
overlap are always preserved, consecutive intermediate partitions may be combined (e.g.,
“2 - 5 checks”). A centric rectangle encodes the percentage of indications per partition
by its relative area size, the rectangles of all partitions per row thus accumulate to
100%. Additionally, the background supports to discriminate partitions with and without
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Figure 5.5: Example of a Data Quality Overview including an Indication Overlap column.

indications, whereas a gray background indicates that the column is not applicable
because the row contains only a single check result.

Let us have a look at the example as seen in Figure 5.5. If we consider the node for
all plausibility checks, we can see that for most check indications, there is no overlap
with check indications of other check results in the node, or an overlap in a small number
of check results. There are no data records which are marked as check indications in
all checks. However, looking at the node including only check results for “Missing”, we
can see that there exist some missing entries overlapping in nearly all underlying check
results.

5.2.4 Check Property Coverage

A discrimination by check properties such as the class, target data attributes, or severity
levels may either be accomplished via the hierarchical definition of the table rows
(Section 5.1), or via dedicated columns. A row-based drill-down provides more details,
while a column-based discrimination offers a compact overview of the coverage per check
property and table row.

For visualization, the space is split into one partition per specific property, e.g., per
severity level (Figure 5.1f). The idea is to represent the distribution of data records with
indications over these partitions. Each partition of a cell therefore encodes the relative
number of indications over all check indications in the underlying row using the area of a
centered rectangle (as in the Indication Distribution columns, see Section 5.2.2). The
background again discriminates partitions with and without indications.

5.2.5 Check Subset Characteristics

Additional columns characterize the subset of checks per table row in terms of the
numbers of checks, targeted data attributes, and involved data attributes. For simplicity,
the visual encoding uses bar charts (see, e.g., Figure 5.1b). The scaling ensures that
steps of one remain perceptible, while the right part is cropped for bars exceeding the
column width. Based on user feedback, these columns also display the numbers as text.
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5.3 Configuration

The Data Quality Overview offers multiple options for configuring the visualization to
specific needs and target user groups (Requirement 9 ).

5.3.1 Layout

All columns of the Data Quality Overview can be reordered and resized by drag and drop.
Based on user requests, we support two layout modes. Per default, the shown columns
fully cover the width of the view and are resized proportionally upon, e.g., the addition
of new columns. However, as the view has limited horizontal space, which particularly
is an issue if a large number of columns are displayed, the view alternatively supports
horizontal scrolling. In this case, a user-defined number of left-hand columns is kept
visible to preserve context for scrolled columns.

5.3.2 Filtering

Check Filter Checks can be filtered in terms of check properties. For example, checks
may be restricted to those with indications, which is the default, or to certain data
attributes, check classes or severity levels. Figure 5.6 shows an example application of
a check filter. First, the Data Quality Overview shows all checks which have at least
one indication (Figure 5.6a). As the yellow triangle in the first row of the Indication
Frequency column indicates the presence of checks of the class “Constraint Violation”,
the user may want to investigate indications of this class, and therefore applies a filter
for this class. Applying the filter reveals all data attributes with constraint violations,
where “Temperature 17” stands out in particular (Figure 5.6b). Selecting the indications
of the respective row immediately shows the corresponding data records in the linked
time series view for further investigation (Figure 5.6c). Hover-triggered buttons support
modifications by either hiding or keeping selected properties, i.e., filtering the selected
or all but the selected ones. These buttons also serve as drop targets to which check
properties can be dragged from, e.g., the hierarchy or the color legend. Additionally,
hovering a class within the color legend applies a temporary filter to the visualization,
overlaying bars for that class in the Indication Frequency column, and restricting all
other columns to display only the indications of the hovered class. This temporarily
reduces the visual complexity, by showing the result of a possible applied filtering.

Data Record Filter Another possibility is a global data record filter, where all data
records are restricted to one or more categories of a categorical data attribute. An
example would be to consider only data records of weekends. The filter is applied when
computing the plausibility check results, where only the entries matching the defined
filter may result in check indications. The definition of a data record filter provides
even more flexibility in configuring the Data Quality Overview for the exploration of the
plausibility check results.
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Figure 5.6: Filtering checks in the Data Quality Overview by the class “Constraint
Violation”. (a) Shows the view containing all checks with indications, in (b) the filter is
applied, which reveals “Temperature 17” with most indications. (c) Shows the selected
violations in a linked time series view.

61



5.3.3 Hover-Triggered Controls

A frequently used concept in the Data Quality Overview are hover-triggered control
elements. In order to reduce the number of simultaneously visible control elements, the
controls for a specific part of the visualization are only shown when the respective area is
hovered with the mouse cursor. Figure 5.7 shows the concept in context of a temporal
Indication Distribution column. Controls are provided for removing (Figure 5.7a),
replacing (Figure 5.7b) or adding columns (Figure 5.7c), as well as for the configuration
of parameters of the hovered column (Figure 5.7d), which in this example comprises a
combo-box for switching between linear and cyclic partitioning as well as a slider [ARP14]
for controlling the target range and the granularity of partitions in a defined focal
range [LA94]. The controls for configuring parameters of the column usually take a
lot of screen space, but don’t need to be visible at all times. Therefore, these controls
are hidden by default, but can be accessed by the hover-triggered button as seen in
Figure 5.7e.
Hover-triggered controls are also provided for each segment in the hierarchy. Hovering
such a segment overlays controls for removing the segment or replacing the underlying
check property, and expanding or collapsing all visible nodes of the respective hierarchy
level.

Figure 5.7: Hover-triggered control elements in the context of a temporal Indication
Distribution column. Each column provides controls for (a) removing the column,
(b) replacing it with another one or (c) adding a new column right of the current column.
Some columns may provide controls for parameters of the view, which can be seen in (d)
and (e) can be accessed by a button.

5.3.4 Sorting

In order to sort table rows, most columns offer upward and downward arrow buttons in
their header. Columns in the hierarchy part of the visualization, for example, sort the
nodes in the respective hierarchy level in alphabetical order, while columns, which display
aspects of check indications, use the underlying value such as the indication frequency
as sorting criterion. For partitioned columns (i.e., Indication Distribution, Indication
Overlap, and Check Property Coverage), the arrows also serve as drop targets for sorting
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rows by particular partitions via drag and drop, e.g., the indication frequency within a
particular month. The order of rows still preserves their hierarchical structure, i.e., each
node sorts its child nodes separately.

5.4 Selection
The Data Quality Overview supports the selection of checks, data attributes, and data
records (Requirement 4 ). This is important for integrating the Data Quality Overview
on a system- and workflow-level (see Chapter 6) and enables access to details (Require-
ment 5 ), a validation of indications (Requirement 6 ), and the export for downstream
steps (Requirement 7 ).

Clicking on a table row selects all contained checks, including all child-rows, a multi-
selection of table rows is possible via common modifier keys. A blue background in the
hierarchy representation marks selected table rows. Selecting checks also selects the
involved target data attributes, e.g., for assignment to linked views (Chapter 6). Hovering
a row temporarily desaturates all but the selected row and its child rows, in order to
emphasize the currently hovered plausibility checks.

Most columns support a selection of data records. Within the Indication Frequency
column, a click on a bar selects data records with or without indications in the underlying
plausibility check results (see Figure 5.6b), while triangles select indications of the
corresponding class. For partition-based columns, clicking a partition selects data records
with indications in that partition. Hovering any of these trigger areas temporarily
highlights the data subset in linked views [BP10].

A global selection mode defines if selected data records replace, extend, refine, or
are subtracted from any previous selection. This concept applies to selections within
the Data Quality Overview as well as to linked views. See Sections 2.5 and 6.2 for more
details of this concept.
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CHAPTER 6
Integration in Visplore

The Data Quality Overview, as described in the previous section, focuses on a scalable
summary and selection of check results, which complies with some of the defined re-
quirements in Section 3.3 (Requirements 1, 2, 3, 4, 8 and 9 ), but does not attempt
to fully cover the other requirements. Instead, the widely-accepted concept of linked
views [WBWK00] (see Section 2.2.3) is used for access to details (Requirement 5 ), as
well as a visual validation and identification of checks (Requirement 6, Requirement 10 ).

In order to fulfill the remaining requirements, the implementation of the Data Quality
Overview is based on an integration in the visual analytics system Visplore. Section 2.5
describes Visplore in more detail, including available visualization techniques and used
concepts. In short, Visplore provides the needed tools to fulfill all defined requirements,
which are not covered by the Data Quality Overview itself: data import and export
(Requirement 7 ), the management of checks (Requirement 10 ), a multitude of visualization
techniques, the support of scripting languages and tools, the definition of statistical
models and selections on data attributes and data records.

6.1 Linked Views

For the purpose of accessing details of affected data records and their underlying data
attributes (Requirement 5 ) as well as the validation of check results (Requirement 6 ),
expert users may create and parametrize new linked views of any type at any time.
In order to support non-expert users (Requirement 9 ), pre-defined configurations of
views have proven necessary for acceptance. In case of energy sensor data, for example,
a common configuration includes a time series view and a table for details as seen
in Figure 6.1. To minimize the interaction effort, most views support an automated
assignment of selected data attributes to visual attributes. In the case of the previously
mentioned configuration, the data attributes targeted by a selected set of check results
are automatically assigned to the Y axis of the linked time series view, which enables
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Figure 6.1: The concept of linked views in an example including a data quality view with
a linked time-series and data table view. Selecting check indications in the Data Quality
Overview highlights the corresponding data records in the linked time-series and shows
the corresponding values in the table view. The time-series view is further configured so
that the view zooms to the selected records of the time-series.

users to quickly access details of the selected check results. Subsequently, the selection of
check indications in the Data Quality Overview immediately highlights those records in
the linked time series view (see Section 6.2). The user instantly can investigate whether
the selected plausibility check indications pose real data quality problems, or just indicate
false positives or false negatives. A configuration including such a time series view may be
helpful when assessing the quality of time series data, but it may prove unusable regarding
other data types. The variety of views provided by Visplore enables configurations for
many data types and scenarios, as well as the possibility to look at data quality problems
from many different points of view.

6.2 Selection

In Visplore, the supported Focus+Context system (see Sections 2.2.4 and 2.5) allows
for linking views through interactive brushing. Selecting or hovering plausibility check
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indications in the Data Quality Overview highlights the corresponding set of data records
in the hue of the class of the detected data quality problem in most of the linked views.
The Focus+Context system defines layers such as: a temporary subset of hovered data
records [BP10], persistently selected data via brushing, and an optional context as an
extension of the persistent selection. In case of time series data, the context may contain
all data records within a certain time-period of the selected records, such as an hour or a
day. It is useful for preserving the context of data quality problems, e.g., when listing
affected values in a table, or for automatically zooming to the selected data in the time
series view. Figure 6.1 shows an example of this system in combination with the Data
Quality Overview. The selected data records with indications are highlighted in the hue
of the selected class, in this case purple for “anomaly”, while the context of the selection
is highlighted in gray, using an increased point size.

6.3 Export
The data matrix as defined by the selection of data attributes and data records can be
exported (Requirement 7 ) to a data base, a CSV file, or via the clipboard to spreadsheet
software such as Excel. A common use-case is the export of the set of data records
without plausibility check indications, and is supported by performing an export after
selecting the green bar of a row in the indication frequency column (see Use case 3 in
Section 7.1).
Visplore also supports exporting views as images, where either a single view or the
set of visible views as a whole can be exported. This may be useful for reporting found
issues in the data to other users or the management.

6.4 Plausibility Check Management
In order to manage the created plausibility checks, a GUI component in Visplore
(subsequently called “Check Manager”) lists all defined checks (see Figure 6.2). It
displays a scrollable table containing all checks (Figure 6.2a), which may be filtered using
the text entries above the table (Figure 6.2b). The visible set of checks is reduced to
checks containing the specified filter-text in one of its attributes (e.g., the name of the data
attribute as in the figure). Selecting one or more checks in the table displays controls for
implementation-specific parameters of the selected checks (Figure 6.2c). Independent of
the implementation-specific parameters, the controls additionally include means to define
user-defined tags (Figure 6.2d), which, in a second step, may be used for an additional
hierarchy level in the Data Quality Overview, allowing to partition the available checks
by the defined tags. Modifying parameters of the selected plausibility checks immediately
triggers a re-computation of the checks, which also updates the visualization. As checks
may share the same parameter, the GUI always displays the controls of parameters shared
by all checks of the current selection. The selection of checks itself is linked between the
Data Quality Overview and the Check Manager, allowing for a selection of checks in the
view and immediately providing means to modify their parameters in the respective GUI
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component. The Check Manager further provides means to create new checks, and clone
or delete existing checks (Figure 6.2e).

In combination with linked views and the Focus+Context system, the plausibility
check management system enables the user to identify new plausibility checks as well as
to optimize the checks regarding their parameters (Requirement 10 ).
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Figure 6.2: The user interface of the Plausibility Check Manager, providing (a) the list
of current plausibility checks, (b) means to filter the list using substrings of attributes
of the checks, (c) controls for changing parameters for the currently selected checks, (d)
control elements for user-defined tags and (e) means to create, clone or delete existing
checks.
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CHAPTER 7
Case Study and User Feedback

This chapter contains a set of use cases which are derived from tasks as identified in
the Task Analysis (see Section 3.2). The given examples are based on the example
photovoltaic production data set (Section 4.1). The chapter further includes a summary
of user feedback from deployments at project partners from the energy and healthcare
sector.

7.1 Case Study
Section 3.2 identified a comprehensive set of tasks for data quality assessment based on
insights from collaborations with project partners - during interviews, joint data analysis
sessions, and contextual inquiries with domain experts. In this section, the Data Quality
Overview is applied to the example data set as described in Section 4.1. All use cases are
based on a pre-defined set of checks for detecting missing values, boundary violations,
duplicates, gaps of time stamps, and various anomalies, i.e.,

• successive identical non-zero values,

• local peaks,

• outliers exceeding some standard deviations from the mean,

• and a photovoltaic production of zero at daytime or non-zero at nighttime.

Use case 1 In the first use case the goal is to assess the quality of a data set for
data-driven tasks like modeling or clustering. Figures 5.1 and 5.2 depict the Data Quality
Overview for this use case. Initially, the aggregation of all checks with indications shows
that ∼ 30% of data records has indications in one or more data attributes (Figure 5.2a).
A drill-down by data attributes reveals that four photovoltaic power plants (abbreviated
PVs) have anomalies or missing values in more than 4% of their data (Figure 5.2b)

71



and can be inspected in more detail by further drill-downs (Figure 5.2c). Swapping
the hierarchy levels shows zero values at daytime as most frequent problem overall,
and non-zero duplicates rank second (Figure 5.2d). An additional column displays the
temporal distribution of the indicated data quality problems (Figure 5.1d), where the user
is able to determine months with a high concentration of plausibility check indications. It
shows that most check indications occur during the colder months of the year (December
to February). Additionally, missing values occur in all months except February and
March, while most boundary violations occur during September.

As another drill-down, two PVs have non-zero production at nighttime. Selecting
the check indications of PV_94 for January, for example (see Figure 6.1), shows the
respective data records in the linked time series view. In this case, the user is able to
validate the found indications, as they present a set of collective anomalies in the time
series. Furthermore, the user is able to view the raw values of selected indications in a
linked data table view. Concluding use case 1, the data quality seems sufficient overall,
but some parts of the data must be excluded for certain downstream tasks.

Use case 2 A drill-down shows that the checks for zero photovoltaic production values
at daytime reveal indications in roughly 15 of the data records (Figure 7.1a). The goal is
now to generate hypotheses about possible causes of the detected data quality problems.
The linked “Rank by Feature view” provided by Visplore (see Section 2.5 for further
details) may reveal if any meteorological quantity can explain this data quality problem.
After selecting the indications of all checks of “Zero at day” in the Indication Frequency
Column of the overview, the linked view ranks all meteorological data attributes by their
relevance for this selection as quantified by mutual information. Gust Speed of weather

Figure 7.1: Use case 2 : Selecting detected indications for the sub-class “Zero at day”
(a) reveals the gust speed of weather station 3 as possible cause in a linked “Rank by
Feature view” (c), which ranks meteorological quantities by their relevance for the current
selection of data records. (b) Confirms that the indications mainly occur at times with
high gust speed.
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Figure 7.2: Use case 3 : Excluding photovoltaic power plants with too many data quality
problems (a) and high severity (b). The selection of data records without check indications
(c) supports a quick definition of clean data subsets for further processing.

station 3 ranks first (Figure 7.1c). Adding it to the Data Quality Overview in the form
of a quantitative distribution column, enables the user to have a look at the indication
distribution via domain-uniform partitioning (Figure 7.1b). Apparently, zero values at
daytime of photovoltaic power production occur more frequently at times of high gust
speed. The visualization supports communicating the found problems and their possible
causes to the data providers.
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Use case 3 The goal is to select data subsets with a sufficient quality for a subsequent
clustering of photovoltaic power plants. A user-defined tag “Powerplants” enables to
drill-down on all photovoltaic production data attributes (Figure 7.2). After sorting the
table rows by indication frequency, the user is able to select the plants with most check
indications, in this case a selection of PVs with indications in roughly more than 3%
of their data (Figure 7.2a). Another column of the Data Quality Overview indicates
that the severity of most of their data quality problems was classified as warning or
critical (Figure 7.2b). The user decides to exclude the selected power plants from further
processing steps by applying a plausibility check filter. The clean data subset is then
selected by a click on the green bar in the aggregation of the remaining power plants
(Figure 7.2c). The resulting data matrix can then be exported, e.g., via the clipboard to
Excel.

Use case 4 A visual exploration of the data attributes as overlaid curves per day
reveals an unusual value at 8 pm for global radiation at weather station 1 (Figure 7.3a).
Selecting all check indications in the Data Quality Overview confirms that this anomaly
is not yet covered by any existing check. The goal is thus to create and parametrize an
appropriate check.

The system Visplore enables to define a new rule called “Radiation after Sunset”
based on a script. For demonstration purposes, we provide an intentionally simple Python
script that selects non-zero values after 7 pm for classification by multiple thresholds
(Figure 7.3b). Applying this rule to “Global Radiation 01” creates an according check,
which appears instantly in the Data Quality Overview, and can be seen in Figure 7.3c.
Selecting the initial plausiblility check indications allows for a validation of the indications
in the linked view, which reveals many false positives (Figure 7.3d). For check optimization,
a property window enables to modify the thresholds (Figure 7.3e), which updates the
results in the Data Quality Overview (Figure 7.3f). After identifying an appropriate
threshold and validating it again in the linked view (Figure 7.3g), the rule can be applied
to the global radiation of all other weather stations. The Data Quality Overview displays
similar anomalies for multiple weather stations at multiple days. In the future, the
identified checks can be applied to newly acquired data.
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7.2 User Feedback

From the beginning of the development of the Data Quality Overview, domain experts
have been involved in the design process for a continuous improvement and validation of
the design choices. Additionally, a close-to-final iteration of the view has been deployed
for one month to five domain experts from two companies, one being a power grid
operator, which provided the example data set (see Section 4.1) and the other one being
an IT-solution provider. Currently, the Data Quality Overview is deployed to a company
in the industry, in order to monitor quality issues in their data of the production process
of their products.

The experts from the energy sector confirmed that data quality assessment is one of
their most time-consuming tasks, as observed by Kandel et al. in previous work [KHP+11].
Previously, in order to assess the data quality of a data set, the workflow of the users
consisted of inspecting raw data tables or static graphs of single time series, in addition
to an inspection of sums of indications by user-defined plausibility checks in tools like
Excel. In some cases, violations were detected by formulae similar to our plausibility
checks, and for each time series the sum of violations was computed and inspected.
However, validating the detected indications was a cumbersome task, as the tools lacked
the possibilities to quickly examine single indications in the context of time or other
attributes. Additionally, it proved difficult and time-consuming to improve these formulae
for a more accurate performance (i.e., to reduce false positives and/or false negatives),
as the results of each update of a formula could not be validated in a short time. As a
result, in several cases, the high effort for a detailed data quality assessment was not
considered to be justified and therefore was only carried out for the most important and
critical analyses.

All five domain experts evaluating the deployed close-to-final iteration had previous
experience with Visplore. This was essential for the validation, as the users were
already familiar with the framework and the Visual Analytics concepts such as multiple
coordinated views, therefore reducing distortions of the results by difficulties in using
the framework and its basic interactions. After two hours of initial training for the Data
Quality Overview, which also included the training for the definition of plausibility checks,
the experts used the Data Quality Overview as part of Visplore in their day-to-day
workflows, for example, prior to statistical modeling. Using the Data Quality Overview,
the involved experts were soon able to perform a thorough data quality assessment within
1/4 to 1/5 of the time previously necessary. After initially defining and optimizing a
suitable set of plausibility checks, consulting the Data Quality Overview was fast enough
to precede any analysis. This enabled the user to assess the quality of data sets, which
previously would not have been inspected in detail due to the amount of time needed
for the investigation, ultimately increasing the confidence in the data quality and the
following analyses. One expert even pointed out that, for the first time, the Data Quality
Overview enabled him an efficient data quality assessment of five million data records
and dozens of data attributes.

Even though the experts initially were not familiar with the concept of scale-stacked
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bars in the case of the Indication Frequency column (see Section 5.2.1), they quickly saw
the advantages of the visualization and claimed that it is easier to interpret as frequently
used logarithmic scalings. Overall, the experts consider the visualization as easy to
interpret and suitable for presenting data quality problems to the management and other
stakeholders. Especially the efficient drill-down possibilities for checks in the hierarchy
in combination with columns for displaying the distribution of indications over time,
quantitative, or categorical attributes allowed the experts to communicate detected data
quality problems to data providers.

The experts particularly liked the selection of data subsets with indications as well
as “clean” subsets without indications for downstream processing, which was not as
easily possible with their previous tools. Surprisingly, the users soon used the Data
Quality Overview not only for inspecting data quality problems, but also for overviews
of script-based indicators in contexts outside of data quality assessment. Some experts
tuned the selection of representative training data by an interactive sensitivity analysis
of thresholds before feeding the resulting subset to a forecasting tool. According to
these experts, the tight integration of check modification and result inspection means a
speed-up by a factor of ten over previous approaches for this task.

In addition to the deployment of the Data Quality Overview to companies, feedback
was also collected from a broader audience by showcasing the Data Quality Overview for
three days at “E-World 2015”, Europe’s premier energy fair (≈ 24,000 visitors). Around
50 experts from 12 companies including managers and technical directors, gave feedback
after private demonstrations of 20-30 minutes. During these short demonstrations, many
of them could immediately compare the Data Quality Overview with respect to their own
needs, and even asked about its commercial availability. Although most of the experts
had no prior experience with concepts such as linked views, they claimed to be able
to follow our demonstration well. They were fascinated by the drill-down possibilities,
however, they also imagined using fixed configurations of the Data Quality Overview as
a monitoring tool for everyday use.
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CHAPTER 8
Design Process

The design of the proposed visualization approach was an iterative process. After an
initial task analysis (see Chapter 3), we first used parallel prototyping [DGK+12] of hand-
drawn sketches, before iteratively refining software prototypes. In meetings at irregular
intervals, experts from both energy and healthcare domains were prompted to give
positive, negative, and prospective feedback using the rose-bud-thorn method [LUM14].
This refined our understanding of tasks and requirements, and inspired new iterations.
The following sections summarize some key iterations from the initial sketch to the final
design of the Data Quality Overview, comparing intermediate prototype implementations
with the final result by stating drawbacks of rejected implementations and advantages of
kept design concepts. At the end a summary of “lessons learned” from the intermediate
software prototypes is given.

8.1 Initial Sketch
The hand-drawn sketch as seen in Figure 8.1 served as starting point for the implementa-
tion of the Data Quality Overview. The final implementation still resembles the early
design concept, however, multiple concepts proved as impractical during development or
are considered as future work of this diploma thesis (see Chapter 10).

8.1.1 Hierarchy

The initial design of the Data Quality Overview already structured the set of plausibility
check results in a hierarchy, similar to an icicle plot [MR10], where only the leaf-nodes
of the hierarchy are displayed (see Figure 8.1). This concept, in which the root node
and intermediate nodes are replaced upon expansion, was, however, rejected after the
implementation and evaluation of a first prototype, as it turned out to have several
drawbacks (see Section 8.2.1).
Additionally, the initial design sketch includes first ideas for columns to define hierarchy
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levels, such as “Type”, “Hierarchical Clustering” and “Variation”. The “Type” column
was designed to partition check results depending on the type of the detected data quality
problem. The idea of a “Hierarchical Clustering” column was to group check-results
based on similar indication patterns, in order to find checks whose results may correlate.
The “Variation” column was intended to discriminate between check results only differing
in the value of a check parameter, such as a threshold or, as in the example of the sketch,
the number of neighbors of a K-nearest-neighbor-based plausibility check.

8.1.2 Columns: Aspects of Check Indications

The initial sketch contained a comprehensive set of columns to provide information about
check indications. This includes columns to display properties of each row such as the
number of underlying check results and data columns, but also columns to indicate the
frequency of indications, their consistency or distribution.

Number of Anomalous Entries In order to provide information about the indication
frequency for the set of plausibility check results in each row, a column named “Number
of Anomalous Entries” was contemplated. For each row, the column was designed to
show a bar indicating the percentage of detected data quality problems.

Consistency The “Consistency” column was intended to give the user an idea of how
consistent detected data quality problems are over all checks of a row. Again, for each row,
the column shows a bar, indicating the percent of detected entries which are consistent
in the underlying check results.

Percent false Positives This column, provided that the underlying data set has
information about the validity of each data record, gives information about the presence
of data records with indications which in reality are valid values (false positives). Similarly,
another column was designed to provide information about false negatives, which are
data records without indications in one of the underlying plausibility checks, but in
reality would be invalid. This information can be useful to optimize plausibility checks
in order to minimize an incorrect classification of data records. Currently, pre-defined
labels (Section 2.3.2) are not yet supported by the Data Quality Overview, and therefore
this column remains future work.

Indication distribution The initial design sketch also contemplated columns to
provide information about the distribution of data records with indications. Looking at
Figure 8.1, two columns were designed for this task. The column “Number of Anomalies
by Day of Week” was designed to display the temporal distribution of indicated data
quality problems, by partitioning the underlying temporal space into units such as years,
months, or in this case the day of the week. In order to display the maximum detail, each
partition ultimately covers the range defined by one pixel. For each of the partitions, the
percent of data records with indication is encoded with a colored quad, using transparency
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to indicate the percentage. The column “Num. Anomalies by Temp.“ is an example for
displaying the distribution of indications with respect to a given data attribute (in this
case temperature). The domain space of the underlying data attribute is divided into
equally-sized partitions, similar to the temporal distribution column, also using the same
visual encoding.

Mutual Information The goal of the “Mutual Information” column was to suggest
data attributes which correlate to the data indications of the underlying checks of a
row in one way or another. The idea is similar to the concept of mutual information
introduced by Kandel et al. in Profiler [KPP+12] (see Section 2.4.3), where a set of
visualizations are automatically suggested which may explain a data quality problem at
hand.

8.1.3 Column Group Separators

The separators visible in the initial design sketch were intended to provide further
flexibility in the configuration of the visualization. Using this concept, the user is
provided with the possibility to split the table into multiple parts (column groups), where
each corresponding row is connected by a line (column group separators). The idea
behind such a scheme is to enable to sort each part independently by one of the contained
columns, enabling a comparison of the ranks of rows in different columns. However,
this feature was later rejected, as users considered it overly complex in the application
context.

8.2 First Prototype

Figure 8.2: A first prototype of the Data Quality Overview.
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8.2.1 Hierarchy

The implementation of a first prototype of the Data Quality Overview included the
hierarchy as designed in the initial sketch (see Figure 8.2). However, own evaluations
of this prototype as well as user feedback allowed us to identify several drawbacks of
this concept of replacing nodes upon expansion, ultimately resulting in our decision
to abandon it. First of all, the replacement of intermediate nodes resulted in a loss
of overview of the overall data quality, as the root node, containing a summary of
the results of all checks, was replaced in order to drill down to additional hierarchy
levels or single checks. This information is important and should to be visible at all
times. It is defined as the first requirement of our system (Requirement 1 ). Secondly,
hiding intermediate nodes upon expansion made it difficult to compare visible nodes
with their parent and sibling nodes. This replacement of information violates the “Rule
of Complementary” [WBWK00], which states that a visual comparison is easier to
accomplish than memory-based comparison (see Section 2.2.3). User feedback also
suggested that expanding nodes instead of replacing them was more familiar to users, as
it is a frequently used concept, for instance in graphical user interfaces of file systems.
With the first prototype, the possibility to create user-defined tags to a plausibility check
was added, in order to be able to compose user-defined groups of checks. Subsequently,
the hierarchy could now partition the set of check results by their tags. This provided
even more flexibility in defining the hierarchy of check results, in order to configure the
visualization for specific tasks.

8.2.2 Indication Frequency

The Indication Frequency Column (see Section 5.2.1) is one of the central components
of the visualization, as it is used to fulfill one of the main requirements of our approach
(Requirement 1 ). The appearance of the column underwent many iterations, caused by
difficulties arising due to the varying scale of percentages, as well as design decisions
such as a global encoding of the semantic class with hue, which immediately affected the
design of this column.
Initially, each cell displayed a simple bar to show the percentage of data records with
indications. Even if this approach was simple and easy to read, it proved impractical
when dealing with very small values. To deal with this issue, the concept of scale-stacked
bar charts [HSBW13] was adopted (see Section 5.2.1 for more details).
After user feedback suggested that the semantic class of data problems was important
information to be displayed at all times, we decided to encode the semantic class as hue
in the entire visualization. This decision posed a challenge for the design of the Indication
Frequency Column. In a first iteration, we simply stacked the bars of each check class to
encode this additional information, however, it was possible that small percentage values
could not be perceived.
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8.2.3 Indication Distribution

In the first prototype, each partition of an Indication Distribution Column displayed the
percentage of data records with indications encoded by hue, using a different color for
defined magnitudes of the percentage. Figure 8.2 shows this initial encoding, which has
several drawbacks. One of the main drawbacks of the approach was that differences in
the percentage values were only comparable in the specified orders of magnitudes such
as < 1%, < 10%, < 50% and >= 50%. The idea behind such a logarithmic coloring
scheme was to ensure the visibility of small percentage values, as well as, a perception
of higher orders of magnitude. However, the differences between the magnitudes were
not comprehensible without a second glance at the color legend. Additionally, after we
decided to encode the check class by hue in all parts of the visualization, we finally decided
to switch to another encoding, as we did not want to overuse color as visual attribute.
Encoding the percentages using glyphs of different sizes turned out to be the attribute to
go for. The percentage values were directly mapped to this attribute, allowing for an
easy comparison of the values – horizontally and vertically (see Section 5.2.2).

8.3 Final Iterations

Figure 8.3: Close-to-final Prototype of the Data Quality Overview.

8.3.1 Indication Frequency

Using stacked bars to encode the frequency of check indications for each class again
introduced the problem of the visibility of small percentage values, especially in the
0 − 100% sub-column, as the perception of each class could not be guaranteed when
multiple classes had smaller orders of magnitudes than their sum. The solution was the
introduction of a color for “multiple classes”, while a glyph was added to display the
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percentage of indications for each class individually. Figure 8.4 shows several intermediate
iterations to encode the percentage of data records with their semantic class as hue.

Figure 8.4: Alternate implementations of the Indication Frequency column in later stages
of the design process.

8.3.2 Indication Distribution

Figure 8.3 already shows the final implementation of the Indication Distribution column.
The percentage values of each row are directly mapped to the size of each glyph, which
makes it possible to compare each glyph horizontally and vertically.

8.3.3 Indication Overlap

The sketch in Figure 8.1 contemplated the representation of the Indication Overlap
(Section 5.2.3) as a simple column with a bar for each cell, displaying the consistency
of the indications of plausibility checks inside of a row. However, such an approach has
several disadvantages. By using a bar for each cell it was only possible to encode the
number of data indications overlapping in all checks, without further information whether
there were data entries with partial or no overlap in other checks. Additionally, the
approach limited the possibilities in selecting the data entries depending on the amount
of overlap between the respective plausibility checks. Having this in mind, the column
was first changed to display the percentage of data indications with no, partial, and full
overlap in the underlying checks of a row. However, this approach proved to be insufficient
especially in a cell with a large number of plausibility checks, as there was no distinction
between indications overlapping in all but one checks, and indications overlapping in
only two checks. Therefore, we decided to partition each cell depending on the number
of plausibility checks of the row. Section 5.2.3 describes this final representation in more
detail.
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8.4 Lessons Learned
In this section, some lessons learned from mistakes and user feedback during the design
of the Data Quality Overview are summarized. Even if the following findings are only
based on reflections on the design process of the proposed approach, some aspects also
may be valid in a more general context.

Confusion of “overview first” with “overwhelm first”. In order to convey much
information at one glance, initial designs of the Data Quality Overview already showed
a pre-defined hierarchy along with multiple columns at startup. The resulting visual
complexity asked too much from most users who had only been familiar with simple
diagrams before. Having a simple and highly aggregated starting point (Figure 5.2a) and
providing further information only at explicit drill-down stages, received a much better
acceptance, e.g., at the demonstrations at the “E-World 2015” event.

Expand rather than replace at drill-down. Initially, the table rows were hier-
archically structured similar to an icicle plot [MR10], i.e., intermediate nodes had no
representations as rows. The users preferred the indented layout as the context in the
form of the parent node, which was not lost when expanding a node. Additionally, such a
layout is more familiar to well-known concepts such as the folder hierarchy in file browsers.
Also, the indented layout required less space than the version similar to an icicle plot.

Meaningful partitions rather than maximal detail. For indication distribution
columns, initial designs defined partitions as the range covered by one pixel for maximal
detail. However, users preferred meaningful partitions instead of maximal detail, allowing
for an easier implementation (for example months or days for temporal partitioning and
steps of 10 for quantitative partitioning).

Increased simplicity by a dedicated “multiple class” category. At first, the
scale-stacked bars of the Indication Frequency column was subdivided into one segment
for each class. However, this suffered from multiple problems. For example, the perception
of each class could not be guaranteed when multiple classes had smaller orders of
magnitudes than their sum, and users where overwhelmed by the complexity of the
visualization. Using a dedicated category for “multiple class” and relying on a drill-down
for disambiguation was seen as the better option by our users.

Integration as important as visualization. Despite the positive feedback on the
Data Quality Overview, most users stressed that it would mean much less benefit for
them without the possibility to define and to re-use own checks in scripting languages
such as Python.
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CHAPTER 9
System Architecture and

Implementation

The Data Quality Overview was implemented as a plugin into the existing framework
Visplore (see Section 2.5), which is implemented in C++ and uses OpenGL for rendering.
The multithreading architecture of Visplore [PTMB09] provides the means to ensure
responsiveness of the visualizations implemented in the system, allowing for immediate
visual feedback to interactions. The plausibility checks and their results are seamlessly
integrated into the multivariate data model of Visplore.

9.1 Plausibility Check Results

In order to support an efficient hierarchical aggregation of plausibility check results (see
Sections 2.2.1 and 4.3), each result in the Data Quality Overview is represented as a
binary mask, for which the implementation is already provided by the data model of
Visplore. Each mask simply marks the indications of a check result for each entry of the
underlying data attribute(s). Visplore supports an efficient combination of such masks,
which is frequently needed when aggregating check results and subsequently computing
measures for columns in the overview.

When aggregating the check results for a node in the hierarchy (see Section 4.3.1),
different combinations of masks have to be computed, depending on the classes of the
underlying check results and the used aggregation level. Most columns of the Data
Quality Overview display information about the class of data quality problems. In the
example of the Indication Frequency column (see Section 5.2.1), the relative frequency of
check indications for each class is displayed. Therefore, an aggregation of check results of
each class is needed, i.e., a combination of binary masks per check class.

When using record-based aggregation, the binary masks of the check results can be
combined with a simple binary OR-combination, resulting in a single binary mask per
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check class. Using value-based aggregation, however, is more expensive, as we need to
combine the check results for each underlying target data attribute, before being able to
compute measures such as the relative frequency of indications (see Section 4.3 for more
information).

9.2 Multithreading

In addition to the main thread, handling user inputs, visualizations in Visplore use
an own visualization thread for updating their data model and rendering, in order to
ensure responsiveness of the system and to provide feedback as much and as soon as
possible. Each time data records are selected or parameters such as the point size of a 2D
scatterplot are changed, the thread of the affected visualization is restarted, updating the
data model and rendering the components of the visualization according to the applied
changes.

In order to make full use of the architecture ofVisplore, the Data Quality Overview
maintains multiple threads to update the visualization. A schematic representation can
be seen in Figure 9.1. The Data Quality Overview frequently needs to do expensive
computations, for example when creating and adding new plausibility checks, changing
parameters of existing checks, or expanding nodes in the hierarchy, where the aggregations
for subnodes need to be computed. In this case, using one thread for the visualization
would not guarantee responsiveness at all times, as an interaction with the visualization
would not easily be possible during expensive computations. This led us to the design
decision to use two threads, one for updating the data model of the Data Quality Overview,
and one for the rendering of the visualization.

9.2.1 The Data Model Thread

As previously mentioned, the main reason, the data model thread was introduced, was to
reduce the load of the visualization thread. It computes all needed costly computations,
while the overview still allows to be responsive for interactions of the user. Each time
the data model thread finishes its computation, the computed state is forwarded to
the visualization thread, which then redraws the relevant parts of the Data Quality
Overview. During computation of the data model, the visualization thread still renders
the last valid state. The architecture would also allow for an animated transition from
the old to the new state, which is however still future work. Currently, in some cases,
the visualization simply indicates ongoing expensive computations by providing text
messages. An example would be when initially computing the results of all existing
checks, which usually takes some time, depending on the number and complexity of the
plausibility checks. In this case, a simple text consisting of the name of the currently
computed check result along with the progress in percent of overall checks is shown.

After computing all plausibility check results, the hierarchy of the Data Quality
Overview needs to be updated. Nodes of the hierarchy are created, deleted or updated,
depending on changes in check results or in the hierarchy structure. Changes in the
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Figure 9.1: Schematic representation of the multithreading architecture of the Data
Quality Overview.

hierarchy structure include expanding or collapsing nodes, or adding or removing hierarchy
levels. In some cases, the definition of nodes of a hierarchy level may depend on the results
of underlying plausibility checks. An example would be a hierarchy level which creates
nodes for results with the same or similar indication patterns. An optional user-defined
check result filter (Section 2.2.2) is also applied in this stage, and needs to be considered
when creating nodes of a hierarchy level.

As a next step, the aggregated binary masks for each node are updated. Depending
on the column configuration, different types of check result aggregations are needed,
such as aggregations per check class or per severity level, in order to provide the needed
information for a column to compute its measures and create its cells.

However, in addition to the binary masks provided by each node, some columns may
need additional information before finally being able to create a cell for each node in the
hierarchy. This includes simple information such as the number of underlying checks
or data attributes of a node, or more complex computations such as the creation of
partitions for a temporal partitioning column (see Section 5.2.2). In the case of such a
column, the partitioning of the column itself is first computed, depending on the type
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of partitioning and considering modifications using the provided hover-triggered slider
(Figure 5.7). For each partition a binary mask is created, marking all records of the data
table which belong to the respective partition. In order to retrieve the check indications
of a node in a given partition, we use a simple binary AND-combination of the aggregated
node mask and the partition mask.

9.2.2 The Visualization Thread

The visualization thread uses the state computed by the data model thread to render
the Data Quality Overview. This includes drawing the hierarchy nodes, column headers
and cell contents of each column, but also the highlighting of selected or hovered nodes,
as well as selection rectangles created by the user. This thread is limited to these tasks
in order to allow the user to interact with the visualization, even if there are still some
ongoing computations in the background.

In the example as seen in Figure 9.1, when creating the Data Quality Overview, the
data model thread first has to compute the initial state. During this initial computation,
the visualization thread only displays a text showing the current computation process.
After the computed state is forwarded to the visualization thread, it renders the corre-
sponding information, and updates it accordingly every time it receives a new state from
the data model thread. In the example depicted in Figure 9.1, the first action the user
does is to expand the “All” node, which triggers an update in the data model thread.
During this computation, the visualization thread still displays the last complete state,
and the user is immediately able to do further interactions, and receives feedback from
the visualization. After expanding the node, the user resizes one of the columns of the
Data Quality Overview, without the need to restart the ongoing computation. The visu-
alization thread updates the visualization accordingly. After the data model thread has
finished its computation, the new state is again forwarded and rendered. Afterwards, the
user selects a set of check indications in the visualization, and the selection is highlighted
in the visualization by the respective thread.

90



CHAPTER 10
Reflection and Future Work

Literature and own experience confirmed that the assessment of data quality is an
important topic with a high practical relevance. Dasu et al. [DJ03] state that data
quality may account for up to 80% of the time and cost in data warehousing projects.
Besides, data quality assessment is not just a one-time task, but is a recurring task in
most operational settings. In visualization research, dirty and ill-formatted data is still
an “elephant in the room”, and Kandel et al. [KHP+11] describe that most visualization
research simply assumes that the data arrives in a clean state. While research repeatedly
mentions visualization as suitable for the detection of data quality problems, not much
previous work has been done regarding the routine assessment of data quality problems
and their validation for regularly acquired data. The Data Quality Overview, as proposed
in this diploma thesis, fills this gap by supporting a variety of user tasks for visual data
quality assessment (Section 3.2).

While the visual encoding of the Data Quality Overview is considered as the main
contribution of this diploma thesis, the design of the concept complies with the Visual
Analytics Mantra as defined by Keim et al. [KMS+08]: The evaluation of plausibility
checks enables to analyze first, visual summaries of check indications allow users to show
the important, while the hierarchy and a various set of columns support to zoom and
filter. Providing means to modify parameters of checks combined with immediate visual
feedback enables to analyze further. Multiple coordinated views in combination with
selecting plausibility check indications allow users to access details on demand.

10.1 Abstraction

User feedback by domain experts indicated a potential of the Data Quality Overview
outside the context of data quality assessment. In fact, the data abstraction of plausibility
check results (see Chapter 4) is general and not limited to data quality problems. On an
abstract level, the Data Quality Overview provides an aggregated visualization of many

91



indicators. It relies on meta-information about these indicators like a classification, while
specific reasons of indications are abstracted from the visualization. In the context of
linked views, the Data Quality Overview thus supports guidance to data subsets which
are of some interest.

This generalization opens many potential fields of applications. For example, experts
from a partner in the healthcare sector suggested to use the Data Quality Overview
in the context of business intelligence as an overview of key performance indicators
(KPIs). On the other hand, experts in automotive engineering with whom we have
collaborated for years [PBK10] imagined the Data Quality Overview to be used in the
context of multi-objective optimization as an effective overview of violations of user-
defined constraints based on parameter studies. In this case, columns showing the
quantitative indication distribution would allow to evaluate the distribution of constraint
violations over parameter variations. The investigation of such applications outside the
context of data quality will be an important topic for future work.

10.2 Scalability

Using a hierarchy for structuring plausibility check results ensures the scalability for a
possibly large number of checks and underlying data attributes. The flexible definition of
the hierarchy by grouping check results, for example by problem types or data attributes,
allows the user to drill down to results important to the current task at hand. However,
this could still result in a rather large number of table rows, where the implementation
currently allows vertical scrolling of the table when exceeding the available screen space.
Even if scrolling is a familiar concept, where feedback revealed that users did not even
consider this as a drawback, it violates the rule of complementarity as specified by Bal-
donado et al. [WBWK00], which states that a visual comparison is easier to accomplish
than a memory-based comparison. For future work, an implementation based on row-wise
focus and context is intended, similar to a table lens visualization [RC94].
Regarding the scalability to a large number of data records, partition-based columns
avoid clutter in the visualization, while preserving the distribution of plausibility check
indications. Showing the overall frequency of check indications using scale-stacked bars
(Section 5.2.1) allows the visualization to show relative numbers of indications of varying
scales, and therefore not to lose track of single indications in a row even if the data set
has a large number of data records.
As the execution of complex anomaly detection algorithms can be very expensive, the
multi-threading implementation of the Data Quality Overview ensures that the visual-
ization remains responsible at all times [PTMB09] (see Section 9.2). However, future
work includes the integration of displaying intermediate results in order to support fast
visual feedback [MPG+14], for example, when tuning parameters of plausibility checks.
Additionally, animated transitions for interactions, like drill-down and filtering, could
help to communicate the progress of intermediate results in an understandable way to
the user.
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10.3 Granularity Levels
The Data Quality Overview currently shows check indications only for single data values
and data records. In some cases, other granularity levels may be needed, for example
when checking for implausible daily patterns in the data. In this case, check indications
may be specified in terms of days instead of the granularity level of the records, which
may be hours or minutes. Future extensions may include a support to discriminate such
granularity levels in the hierarchical structure.

10.4 Data Cleansing
Another big topic for future work is the support of data cleansing. Allowing to impute
detected check indications to plausible values, such as interpolating missing values, is
a logical next step to the data quality assessment. One of the main advantages of the
abstraction of plausibility checks (Section 10.1) is that resulting information about data
modifications could easily be integrated in the Data Quality Overview. For example, an
imputation of data records may add an additional check class (see Section 4.2.1) to the
classification of plausibility checks called “Imputed”, and could seamlessly be integrated
in the visualization. Additionally, the cleansing of data values could provide a ground
truth to be used when evaluating plausibility checks, and further be used to include
information about false positives and false negatives of an applied check.
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CHAPTER 11
Conclusion

This diploma thesis describes the Data Quality Overview, a new visualization approach,
which addresses a routine data quality assessment based on automated plausibility checks.
The overview provides a scalable summary of plausibility check results, with extensive
drill-down possibilities regarding checks, data attributes, and data records. The thesis
includes a task and requirement analysis based on collaborations with industry partners.
It is shown how the Data Quality Overview and its integration within the comprehensive
Visual Analytics framework Visplore can support the identified tasks. In addition
to the explanation of the visualization and the underlying data model, the thesis also
includes a reflection of the design process in order to provide insight into the development
process of the thesis, as well as some implementation details.

Additionally to fulfilling the requirements regarding the context of data quality
assessment, user feedback suggested an application of the implemented overview also
outside of this context for other kinds of indicators. Such an application is left to future
work. Another topic for future work is the integration of data cleansing, which was out of
scope for this diploma thesis. Motivated by the positive user feedback, the Data Quality
Overview can be an important approach for increasing the confidence in the data by
enabling an efficient data quality assessment.
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