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Abstract

Propositional interpolation has become the corner stone of many contemporary model
checking algorithms. Consequently, the construction of interpolants has received ample
of attention, resulting in a range of interpolation algorithms which derive interpolants
from proofs. One such approch is to generate interpolants from proofs of a special form,
i.e. from local proofs.
As first contribution of this thesis, we give a new interpolation algorithm for local proofs
in an arbitrary sound proof system in first-order logic, which improves the state of the art
by generating smaller and simpler interpolants using an arguably more intuitive approach
than existing algorithms.
Afterwards we look at propositional interpolation: As second contribution, we state a
proof transformation, which transforms an arbitrary propositional resolution into a special
local proof, from which we can trivially extract an interpolant. Finally we derive an
interpolation system as abstraction of the transformation, which enables us to e�ciently
compute the interpolant by avoiding to explicitly perform the proof transformation.

vii





Kurzfassung

In den letzten Jahren hat sich Propositionale Interpolation als einer der Hauptbestandteile
der Modellprüfung etabliert. Aus diesem Grund wurde der Konstruktion von Interpolan-
ten große Aufmerksamkeit gewidmet, wodurch eine Vielzahl an Algorithmen, welche
Interpolanten aus Beweisen extrahieren, entstand.
Einer dieser Ansätze beruht auf der Idee, Interpolanten aus lokalen Beweisen zu konstru-
ieren.
Der erste Beitrag dieser Masterarbeit besteht darin, dass wir einen neuen Interpolati-
onsalgorithmus beschreiben, der Interpolanten aus lokalen Beweisen, die in beliebigen
korrekten Beweissystemen in Prädikatenlogik formuliert sind, extrahiert. Der neue Algo-
rithmus verbessert den Stand der Technik, indem er kleinere und strukturell einfachere
Interpolanten als bestehende Algorithmen generiert und dabei einen intuitiveren Ansatz
verwendet.
Danach wenden wir uns der Interpolation in Propositionaler Logik zu: Als zweiten Beitrag
beschreiben wir eine Beweistransformation, die einen propositionalen Resolutionsbeweis
in einen derartigen lokalen Beweisen transformiert, dass wir auf triviale Weise einen
Interpolanten extrahieren können. Weiters leiten wir aus der Transformation ein Inter-
polationssystem ab, das es ermöglicht, den Interpolanten e�zient zu berechnen, indem
durch Abstraktion die explizite Berechnung der Transformation vermieden wird.
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CHAPTER 1
Introduction

1.1 Problem Description
Starting with the pioneering work of McMillan [1], interpolation became a powerful
approach in verification thanks to its use in predicate abstraction and model checking [2,
3, 4, 5]. A number of techniques have been proposed to compute interpolants in various
logical theories, such as propositional logic [6, 7, 8, 9], quantifier-free fragments of first-
order logic [10, 11, 12, 13] or first-order logic with theories [14, 15].

Despite the big interest in interpolation, the connections between those algorithms are
not well understood. This causes several problems:

• it is not clear which interpolation algorithm to use in applications of model checking,
since comparing the existing interpolation algorithms is at least very involved.

• reading into the rich literature on interpolation is complicated, since similarities
and di�erences are not worked out already.

• many optimizations on proofs and interpolants are discovered independently multiple
times, since knowledge transfer is limited due to the di�erent representations of
interpolants and proof calculi.

• the state-of-the-art stagnates, since improvements become very involved due to the
overcomplicated presentation of the interpolation algorithms.

It is therefore desirable to express the current state-of-the-art algorithms using an intuitive,
simple, but nonetheless general framework. The claim of this master thesis is that so
called local proofs [15, 3] can be used as such a framework. In order to substantiate this
claim, we give a new interpolation algorithm, which implicitly constructs local proofs
and show afterwards how to derive an interpolation system from it. We have strong
evidence that the same idea can be applied to McMillan’s interpolation algorithm [1],
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1. Introduction

which implies that we can merge the previously separated research lines of interpolation
systems and local proofs into a unified theory of interpolation.
In order to yield a strong and useful framework, the extraction of interpolants from local
proofs should be both e�cient and intuitive. This master thesis therefore also improves
the state-of-the-art by proposing a new interpolation algorithm, which is conceptually
simpler than the current state-of-the-art-algorithm from [15], but nonetheless yields
smaller interpolants.

1.2 Structure of the thesis
This thesis is organised as follows: We start with recalling background material and
fixing notations in chapter 2. Then we study interpolation from local proofs in chapter 3,
where we present an intuitive introduction, our interpolation algorithm, an optimization
of the stated algorithm and finally a general framework based on local proofs. We
turn to propositional interpolation in chapter 4 and state a proof transformation which
transforms arbitrary propositional resolution refutations into a special local proof, from
which we can trivially extract the interpolant. Afterwards we use an abstraction to derive
an interpolation system from the transformation, which e�ciently computes the resulting
interpolant of the algorithm. We discuss related work in chapter 5 and finally conclude
in chapter 6.
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CHAPTER 2
Preliminaries

2.1 Graphs
2.1.1. Definition A labelled directed graph G is a pair (V, E), where V is a finite set of
objects and E is a set of triples (e

1

, e
2

, l), such that e
1

œ V , e
2

œ V and l œ N.
For an edge (e

1

, e
2

, i), we call e
1

the start node of e, e
2

the end node of e and l the
labelling of e.
A source is a node v such that there is no edge which has v as end node, a sink is a node
v such that there is no edge which has v as start node.
A labelled directed acyclic graph (LDAG) is a labelled directed graph without cycles.

2.2 Formulas
We work in the standard setting of propositional logic over a set V of propositional
variables. We allow the standard boolean connectives and assume that the language
contains the logical constants € and ‹. A literal is either a variable v œ V or its negation
v. A clause is a disjunction of literals.
We denote literals by small letters a, b, x, y, z and clauses by C, possibly with indices. We
write clauses as set of literals. Throughout the thesis, arbitrary formulas will be denoted
by F, G, possibly with indices.
We write F

1

· · · · · Fn ✏ F to denote that the formula F
1

· · · · · Fn ∆ F is a tautology.
Given formulas F, G

1

, G
2

, we define the result of substituting G
1

in F by G
2

recursively
by

F [G
1

Ω G
2

] =

Y

_

_

_

_

_

]

_

_

_

_

_

[

G
2

if F = G
1

w

iœI(Fi[G1

Ω G
2

]) if F ”= G
1

· F =
w

iœI Fi
x

iœI(Fi[G1

Ω G
2

]) if F ”= G
1

· F =
x

iœI Fi

F otherwise
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2. Preliminaries

2.3 Inferences
2.3.1. Definition An n-ary inference r (where n Ø 0) is a tuple (F

1

, . . . , Fn, F, id), where
F

1

, . . . , Fn, F are formulas and id œ N. It is usually written as

F
1

. . . Fn
id

F
.

The formulas F
1

, . . . , Fn are called the premises, F is called the conclusion and id is called
the identifier of r. Note that we use the identifier in order to being able to distinguish
between two inferences having the same premises and conclusion.
An axiom is an inference with zero premises. An inference rule is a set of inferences. An
inference system is a set of inference rules.

2.3.2. Definition Let IS be an inference system. Let further T be a set. An IS-
derivation P in T is a nonempty LDAG with the following properties:

• Each node is an inference, which is contained in IS or an axiom with conclusion
F œ T .

• For each edge e = (r, rÕ, i) the conclusion of r is equal to the i-th premise of rÕ

• For each rÕ œ V and i œ N, there is at most one edge with both end node rÕ and
labelling i.

• F is contained in A i� there is a node rÕ with i-th premise F , such that there is no
edge which has both end node rÕ and labelling i.

• F is contained in B i� there is a sink with conclusion F .
Let A be the set of formulas, such that F is contained in A i� there is a node rÕ with
i-th premise F , such that there is no edge which has both end node rÕ and labelling i.
Then A is called the set of leaves of P .
Let further B consist of all formulas F , such that there is a sink with conclusion F . Then
B is called the set of roots of P .
An IS-proof of F in T is an IS-derivation having no leaves and a single root F . An
IS-refutation in T is a proof of ‹ in T .
We write A „T B to denote that there is a derivation P in T with leaves A and roots B.
In such case we call P a witness for A „T B.

2.3.3. Remark From now on, we use the following notational conventions:
• We omit to denote IS, if it is clear from the context.
• We omit to denote the identifiers of edges if they are clear from the context.
• We use the usual presentation of derivations.
• If A = ÿ, we write „T B instead of ÿ „T B and if A = {A

0

}, we write A
0

„T B
instead of {A

0

} „T B. Analogously for B and T .

2.3.4. Example Let A := {x
1

‚ x
2

, x
1

, x
2

}. Consider the following derivation
P

1

= (V
1

, E
1

), which is a witness for A „ ‹: Let V
1

= {v
1

, v
2

}, where v
1

= x
1

‚ x
2

x
1

x
2

and v
2

= x
2

x
2

‹ .
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2.3. Inferences

Let E
1

= {e}, where e = (v
1

, v
2

, 1).

We will usually present P
1

by
x

1

‚ x
2

x
1

x
2

x
2

‹
.

Now consider the following proof P
2

= (V
2

, E
2

), which is a witness for „A B: Let
V

2

= {v
1

, v
2

, v
3

, v
4

, v
5

}, where v
1

is an axiom with conclusion x
1

‚ x
2

, v
2

is an axiom
with conclusion x

1

, v
3

is an axiom with conclusion x
2

, v
4

= x
1

‚ x
2

x
1

x
2

and v
5

=
x

2

x
2

‹ .
Let E

2

= {e
1

, e
2

, e
3

, e
4

}, where e
1

= (v
1

, v
4

, 1), e
2

= (v
2

, v
4

, 2), e
3

= (v
4

, v
5

, 1), e
4

=
(v

3

, v
5

, 2).

We will usually present P
1

by
x

1

‚ x
2

x
1

x
2

x
2

‹
.

If we compare those two derivations, we see that we can transform a witness P
1

of A „T B
to a witness of „T fiA B by adding for each leaf A

0

an axiom with conclusion A
0

and the
corresponding edges to P

1

. Vice versa, we can transform a witness P
2

of „T fiA B into a
witness of A „T B by deleting all those axioms and corresponding edges from P

2

.

2.3.5. Definition An inference (F
1

, . . . , Fn, F ) is called sound, i� F
1

· · · · · Fn ✏ F . An
inference rule is called sound, i� it consists only of sound inferences, and an inference
system is called sound, i� it consists only of sound inference rules.

2.3.6. Theorem Let IS be a sound inference system. Let P be a witness for A „T B.
Then we have

T ✏
fi

F œA

æ
fi

F œB

.

2.3.7. Remark There are two possible ways to show ✏ A æ B: Either use

(A · ¬B) „ ‹
implies ✏ (A · ¬B) æ ‹
implies ✏ A æ B

or alternatively use

„
(A·¬B)

‹
implies (A · ¬B) ✏ ‹
implies ✏ (A · ¬B) æ ‹
implies ✏ A æ B

Note the usage of the deduction theorem in the second variant.
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2. Preliminaries

2.3.8. Definition We use a strict ordering ª on inferences, which is induced by the
LDAG, as follows: for any inferences r, rÕ, we define r ª rÕ i� there is a non-empty path
in the DAG from r to rÕ. If r ª rÕ we say that r is above rÕ and rÕ is below r. We will
traverse proofs topologically and while doing so we will sometimes identify a conclusion
of an inference with the inference itself, resulting in visiting the conclusions topologically.
Note that this identification is possible, since each formula in a proof is a conclusion of
an inference (in contrast to arbitrary derivations).

2.3.9. Definition Let P = (V, E) be an IS-derivation in T . Let P Õ = (V Õ, E) be an
LDAG, such that V Õ ™ V and let EÕ = {(v

1

, v
2

, i) œ E | v
1

œ V Õ · v
2

œ V Õ}. Then the
derivation P Õ in T is called a subderivation of P .

2.3.10. Remark Note that a subderivation P Õ = (V Õ, EÕ) of a proof P = (V, E) is not
necessarily a proof itself (if not all axioms of V are included in V Õ).

2.3.11. Definition Let P = (V, E) be a derivation and let S be a unary predicate on
inferences. Then the set of maximal subderivations M(P, S) of P with respect to S
consists of the smallest set of subderivations, such that we have:

• For each inference v œ V with S(v) = 1, there exists a subderivation M
0

=
(V

0

, E
0

) œ M(V, V Õ) such that v œ V
0

• For each subderivation M
0

= (V
0

, E
0

) œ M(V, V Õ) we have:
– For each inference v

0

œ V
0

, we have S(v
0

) = 1.
– For all v

1

œ V we have v
0

œ V
0

· (v
0

, v
1

) œ E · S(v
1

) = 1 implies v
1

œ V
0

.

2.3.12. Definition Let P = (V, E) be a derivation containing sinks R = (r
1

, . . . , rn)
with conclusions F

1

, . . . , Fn and let r be an inference with premises F
1

, . . . , Fn.
The result of adding r to P , written P +R r, is defined as (V Õ, EÕ), where

V Õ = V fi {r}
EÕ = E fi {(r

1

, r, 1), . . . , (rn, r, n)}

2.3.13. Definition Let P
1

= (V
1

, E
1

) be a proof with roots B
1

and let P
2

= (V
2

, E
2

) be
a derivation with roots B

2

. Let P
1

contain sinks R = {r
1

, . . . , rn} with conclusions G =
{G

1

, . . . , Gn}. Let P
2

have leaves G
1

, . . . , Gn. For each such leaf Gi, let ei = (v
1

, v
2

, j)
be a triple, such that v

1

œ R, the conclusion of v
1

is Gi, v
2

œ V
2

and v
2

has Gi as j-th
leaf.
The concatenation of P

1

and P
2

on G, written as P
1

+G P
2

is defined as P = (V, E),
where

V = V
1

fi (V
2

)
E = E

1

fi E
2

fi {ei|Gi œ G}

Note that P
1

+R P
2

is a proof with roots (B
1

\ G) fi B
2

.
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2.4. Normal Forms and Resolution

2.3.14. Definition Let P = (V, E) be a derivation containing inferences R = r
1

, . . . , rn

whose conclusions are respectively F
1

, . . . , Fn, such that the elements of R are pairwise
incomparable regarding ª. The subderivation ending in R is defined as the derivation
P Õ = (V Õ, EÕ), where

V Õ = R fi {j | ÷ri œ R : j ª ri}
EÕ = {(j, jÕ, i) | j œ V Õ · jÕ œ V Õ · (j, jÕ, i) œ E}

The subderivation starting in R is defined as the derivation P Õ = (V Õ, EÕ), where

V Õ = {j | ÷ri œ R : ri ª j}
EÕ = {(j, jÕ) | j œ V Õ · jÕ œ V Õ · (j, jÕ) œ E}

2.3.15. Definition Let P be a derivation. We write P [G
1

Ω G
2

] to mean the derivation
obtained from P by replacing each inference

F
1

. . . Fn

F

in P with a new inference

. F
1

[G
1

Ω G
2

] . . . Fn[G
1

Ω G
2

]
F [G

1

Ω G
2

]

2.4 Normal Forms and Resolution
A formula F is in conjunctive normal form (CNF) if it is a conjunction of clauses. We
represent CNF formulas as a set of clauses. A formula F is in negation normal form (NNF)
if it contains only conjunctions, disjunctions, and negations, and negation in F is only
applied on literals. For simplicity, throughout this thesis we assume that conjunctions
(respectively, disjunctions) have arity greater than 2 and no conjunction (respectively,
disjunction) in an NNF formula F has a conjunction (respectively, disjunction) as
an immediate subformula. Given a formula F in NNF, the alternation level of F is
1 + max·,‚, where max·,‚ is the number of maximal alternations between conjunctions
and disjunctions in F . Note that every formula F can be translated into an equivalent
formula F Õ such that F Õ is in CNF, respectively in NNF.

We next introduce the resolution inference system first for formulas in CNF, and then
for NNF formulas.

CNF resolution. The resolution inference system on propositional CNF formulas,
referred to as CNF resolution, consists of the following inference rule:

C
1

‚ v C
2

‚ v
v [resolution]

C
1

‚ C
2

7



2. Preliminaries

Given a clause C and a propositional variable v œ V , we write Cv to denote the clause
C ‚v. Let F = {C

1

v, . . . , Cnv} be a set of clauses containing v and F Õ = {C Õ
1

v, . . . , C Õ
mv}

be a set of clauses containing v. We define the pairwise resolution of F and F Õ, denoted
as F ¢v F Õ, as the formula:

fi

{Ci ‚ C Õ
j : 1 Æ i Æ n, 1 Æ j Æ m}.

We now introduce a modification of the CNF resolution inference system, called CNF
resolution with redundancy (rCNF). For doing so, we replace the resolution rule of CNF
resolution with inference rules whose conclusions are redundant but ensure that rCNF
is closed under substitution of clauses. The (modified resolution) rules of the rCNF
resolution system are as follows:

C
1

C
2 v

(C
1

\ {v}) ‚ (C
2

\ {v})
C

1

C
2 v

(C
1

\ {v}) ‚ C
2

C
1

C
2 v

C
1

‚ (C
2

\ {v})
C

1

C
2 v

C
1

‚ C
2

Note that rCNF is sound and the following holds.

2.4.1. Lemma Let a be a literal and C be an arbitrary clause. Let further P be some
derivation in the rCNF resolution system, which contains no resolution inference on a.
Then P [a Ω C] is also a derivation in the rCNF resolution system.

2.5 Interpolation
2.5.1. Definition Given an arbitrary propositional formula F , let Var(F ) denote the
set of propositional variables occuring in F . Let A, B be two propositional formulas
such that A ∆ B. In the sequel we assume A and B to be fixed and give all definitions
relative to A and B. A variable v œ Var(A ∆ B) is called A-local, i� v œ Var(A)\Var(B),
B-local, i� v œ Var(B) \ Var(A) and global otherwise. In the following, we denote A-local
variables by a, B-local variables by b and global variables by x, possibly with indices.

We now recall the definition of an interpolant:

2.5.2. Definition (Interpolant) An interpolant for A, B is a formula I such that A ∆ I,
I ∆ B and I contains only global variables.

Craig’s interpolation theorem [16] guarantees the existence of an interpolant.

2.5.3. Definition (A-axiom, B-axiom) Let A and ¬B be given as set of clauses CA and
CB. For a refutation in CA fi CB, an A-axiom (respectively, B-axiom) is an axiom C
such that C œ CA (respectively, C œ CB).

8



CHAPTER 3
Interpolants from refutations

In this chapter, we want to motivate interpolants and show how to derive them from
refutations. We will see that we are actually interested in splitting a given proof into two
parts and that interpolants are exactly the formulas corresponding to the boundaries
induced by splittings of a special form, which arise very naturally.

3.1 Splits

We start with intuitively motivating splitting a proof: Consider the situation where we
repeatedly want to show the validity of implications, e.g. model checking. Assume we
first want to show A æ B. We do this by asking a prover to find a proof of A æ B. If the
prover finds such a proof, it returns the fact that there is a proof and we conclude that
the implication is valid. Note that by doing so we actually only remember the existence
of the proof, but discard the proof itself. When we later want to prove an implication
AÕ æ B, we do the same procedure again.
The main idea of proof-splitting is now that we could do better in such a situation by
remembering some part of the proof of the first implication in order to simplify the proof
of the second implication: If we split the proof of A æ B into two lemmas, i.e we prove
A æ I and I æ B for some I, which corresponds to an intermediate stage in the proof
(which we call split), forget about the proofs itself, but remember their existence and
furthermore I, then proving AÕ æ B is simplified, since we either can prove AÕ æ B or
prove AÕ æ I, which we can then concatenate with the second half of the first proof in
order to get a proof of AÕ æ B. Actually it is even su�cient to prove AÕ æ (I ‚ B) and
this is usually easier than proving AÕ æ B.

9



3. Interpolants from refutations

A

B

AÕ A

B

I

AÕ

Note that a similar approach is very common in mathematics: after generating any proof
one tries to factor out useful parts of the proof into lemmas in order to be able to use
them in later proofs.

We now show how to combine this ideas with refutations: For the rest of this chapter, let
again A and B be two fixed formulas with A ∆ B and let CA and CB denote clause sets
corresponding to A and ¬B. Let further P be a refutation in CA fi CB.
It is important to note that splitting a proof into two parts means assigning each inference
to one of the parts. In the other direction, each such assignment induces a splitting of
the proof into two parts.

It is natural to assign the A-axioms to the A-part and the B-axioms to the B-part,
therefore we only consider assignments of this form from now. All other inferences can
be performed by both parts, so we can choose freely how to assign them.

3.1.1. Definition Let P be a sound refutation in CA fi CB.
• A splitting function is a function assigning each of the inferences of P to either

the A-part or the B-part, such that each A-axiom is assigned to A-part and each
B-axiom is assigned to the B-part.

• For a given splitting function f , let S denote the predicate which returns 1 i�
f(r) = A. Now let M(P, S) denote the set of maximal subderivations and call each
element of M(P, S) an A-subderivation.

Each splitting function naturally induces a formula describing the boundaries between
the A-part and the B-part, the so called splitting formula: for each A-subderivation, we
construct the formula ’the conjunction of the premises implies the conjunction of the
conclusions’ and then conjoin all those formulas.

3.1.2. Definition Let P be some refutation in a sound proof system and let f be a
splitting function for P . For each A-subderivation Mi, let Ini denote the set of leaves of
Mi

1 and Outi denote the set of roots of Mi. Let

I :=
n

fi

i=1

((
fi

CœIni

C) æ (
fi

CœOuti

C)).

Then I is called splitting formula of P .
1
note again that axioms don’t have premises!
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3.1. Splits

3.1.3. Example Consider the following proof: We choose the splitting function, which is
induced by the colors of the inferences: red inferences are assigned to the A-part and blue
inferences are assigned to the B-part. We have only one A-subderivation, with leaves
b

1

‚ x
1

, b
1

‚ x
2

and root x
2

. Therefore the induced split is ((b ‚ x) · (b
1

‚ x
2

)) æ x
2

.

‹
b

2

b
2

x
2

b
2

x
2

a
1

x
2

a
1

x
2

a
1

b
1

b
1

x
2

b
1

x
1

a
1

x
1

3.1.4. Example In this example we have three A-subderivations. The A-subderivation
in the left part of the proof has no premises and conclusion x

1

‚ x
3

, the A-subderivation
in the middle has no premises and conclusion x

2

and the A-subderivation at the right has
no premises and conclusion x

4

. Therefore the induced split is (‹ æ (x
1

‚ x
3

)) · (‹ æ
x

2

) · (‹ æ x
4

), which is equivalent to (x
1

‚ x
3

) · x
2

· x
4

‹
b

1

b
1

b
1

x
4

x
4

b
1

x
3

x
4

b
1

x
3

x
4

x
1

x
3

b
1

x
1

x
4

a
1

x
1

a
1

x
3

x
2

b
1

x
2

x
3

x
4

a
2

x
2

a
2

x
2

a
3

x
4

a
3

3.1.5. Example In this example we have two A-subderivations. The left A-subderivation
has premises x

1

, x
2

and conclusion x
3

, the right A-subderivation has x
5

as premise and
conclusion x

4

. Therefore the induced split is ((x
1

· x
2

) æ x
3

) · (x
5

æ x
4

)

‹
b

3

b
3

x
3

b
3

x
3

a
2

x
3

a
2

a
1

a
2

a
1

x
3

x
1

a
1

a
2

x
1

b
1

x
1

b
1

x
1

x
2

a
2

x
2

b
2

x
2

b
2

x
2

b
3

x
3

x
4

x
4

a
3

a
3

x
4

x
5

a
3

x
5

b
4

x
5

b
4

x
5

Note that the splitting formula I encodes the use of the A-subderivations in the proof,
so on the one hand A implies I and on the other hand we can use I to replace the
A-subderivations, so we know that using I and B we can proof ‹:
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3. Interpolants from refutations

3.1.6. Theorem Let P be a refutation in CA fi CB in a sound proof system and let f
be a splitting function for P . Let further I be the splitting formula induced by f . Then
we have both

A ✏ I and I ✏ B.

Proof :
• We start by proving A ✏ I: For each Mi œ M(P, f) we know that all axioms of

Mi are A-axioms, so we have Ini „CA
Outi. Since the proof system is sound, we

therefore get CA ✏ (
w

CœIni
C) æ (

w

CœOuti
C), which by definition of CA implies

A ✏ (
w

CœIni
C) æ (

w

CœOuti
C). Repeating this argument for each Mi œ M(P, f),

we get A ✏ wn
i=1

(
w

CœIni
C) æ (

w

CœOuti
C).

• We now prove I ✏ B: We enrich the proof system by modus ponens (and get
again a sound proof system), and then replace each Mi by an application of
modus ponens with premises

w

CœIni
C, (

w

CœIni
C) æ (

w

CœOuti
C) and conclusion

w

CœOuti
C. If we replace all Mi in this way, we get a proof using only B-axioms

and axioms of the form (
w

CœIni
C) æ (

w

CœOuti
C) for some Mi. In other words,

we have „CBfi{(

w

CœIni
C)æ(

w

CœOuti
C)|1ÆiÆn} ‹. Using the soundness of the enriched

proof system, we get (
w

CœCB
C) ·

wn
i=1

((
w

CœIni
C) æ (

w

CœOuti
C)) ✏ ‹, which

by construction of CB implies ¬B ·
wn

i=1

((
w

CœIni
C) æ (

w

CœOuti
C)) ✏ ‹. From

this we finally get
wn

i=1

((
w

CœIni
C) æ (

w

CœOuti
C)) ✏ B by using the deduction

theorem.

3.1.7. Algorithm Assume we have a proof and a corresponding splitting function. We
now want to find the subderivations which are maximal with respect to the property that
each inference is assigned to A. We traverse the proof bottom up and use the idea of
union-find to e�ciently compute those maximal subderivations. When we have found
the subderivations, we again traverse the proof in order to compute the split-formulas
associated with each A-subderivation. Implementing this idea results in Algorithm 1.

3.1.8. Theorem Let P be some refutation. Then Algorithm 1 computes a splitting
formula.

Proof
We only have to show that the algorithm correctly computes the In- and Out-sets of the
maximal A-subproofs:

• In the first traversel, the algorithm computes for each subproof a unique root-clause
by using standard ideas of union-find.

• In the second traversel, it adds to each subproof all the In- and Out-clauses: A
clause is in the In-set of a maximal A-subproof, if it both is the premise of an
inference assigned to the A-subproof and has a parent-inference, which is assigned
to the B-subproof.
A clause is in the Out-set of a maximal A-subproof, if it is the conclusion of an
inference having a child-inference, which is assigned to the B-part or if it is ‹. For
the first case, it su�ces to go through all inferences assigned to the B-part and for

12



3.1. Splits

Algorithm 1 extractSplit(Proof P )
init int-array parent with parent[i] = i
init mapping int æ List of ints called In
init mapping int æ List of ints called Out
v = partitionizeProof(P )
for each inference i of P (bottom-up) do

if v[i] then
for each parent j of i do

if v[j] then
rep = root of parent[j] (optimization: apply path compression)
parent[rep] = i (optimization: weighted)

end if
end for

end if
end for
for each inference i of P (bottom up) do

if v[i] then
rep = root of parent[i]
for each parent j of i do

if ¬v[j] then
append conclusion[j] to In[rep] if not already there

end if
end for

else
for each parent j of i do

if v[j] then
rep = root of parent[j]
append conclusion[j] to Out[rep] if not already there

end if
end for

end if
if conclusion[i] = ‹ then

if v[i] then
rep = root of i
append ‹ to Out[rep]

end if
end if

end for
init empty List of formulas called Interpolant
for each entry i of In/Out do

F
1

= makeAnd(In)
F

2

= makeAnd(Out)
F

3

= makeImplication(F
1

, F
2

)
add F

3

to interpolant
end for
return makeAnd(Interpolant)

13



3. Interpolants from refutations

each such inference to check if it has a parent inference, which is assigned to the
A-part, in which case we add the conclusion of that parent inference to the Out-set
of the corresponding A-subproof. For the second case, we trivially have to check if
the unique inference with conclusion ‹ is assigned to A and in that case add ‹ to
the Out-set of the corresponding A-subproof.

3.2 Interpolants as nice splits

We now know how to construct splits given a splitting function. Since there are usually
many possible splitting functions, the question is which of them to use. We want the
split to be as useful as possible for further proofs, so we want to assign all inferences
which are done ’because of A’ to the A-part and all inferences which are done ’because
of B’ to the B-part. Note that this is a very vague description. On the other hand,
there are inferences which can syntactically be determined to correspond to A or B: We
already added the axioms to the corresponding parts, since they naturally belong to
them. The main idea is now that we should also add those inferences which contain local
symbols to the corresponding parts. This implies that we need proofs, where no inference
contains both A-local and B-local symbols, since otherwise we would be forced to assign
an inference to two parts, which is not possible. We call proofs of this form local proofs:

3.2.1. Definition (Local Proof) A proof P in CA fi CB is called a local proof if the
following condition2. hold:

(L) For every inference

C
1

. . . Cn

C

we have either:
• V ar(C

1

) fi . . . fi V ar(Cn) fi V ar(C) ™ V ar(A) or
• V ar(C

1

) fi . . . fi V ar(Cn) fi V ar(C) ™ V ar(B)

Note that not all proofs are local, for instance example 3.1.3 is not local, since there
exists an inference step containing both a

1

and b
1

.

The definition of local proofs ensures that we can get an assignment, such that all A-local
symbols are in the A-part and all B-local symbols are in the B-part: assign all A-axioms
and inferences containing A-local symbols to the A-part, all B-axioms and inferences
containing B-local symbols to the B-part and all other inferences arbitrarily:

2
note that we don’t need the second condition from [15]
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3.2. Interpolants as nice splits

Algorithm 2 partitionizeProofSimple(Proof P )
for each inference i of P (any order) do

if i is an A-axiom or i contains an A-local symbol then
v[i] = 1

else
v[i] = 0

end if
end for
return v

3.2.2. Definition A local splitting function is a splitting function f , such that f(r) = A
(f(r) = B) for all inferences r having as premise or conclusion a formula containing an
A-local (a B-local) symbol.

3.2.3. Lemma Let P be a refutation in CA fi CB , let f be a local splitting function and
let I be the corresponding splitting formula.

i) Each subproof Mi œ M(P, S) has only clauses without local symbols as leaves and
roots.

ii) The splitting formula contains only global symbols.

Proof
i) Let C be a leaf of some Mi and let r be the inference of Mi with premise Mi.

Since r is part of Mi, we can conclude f(r) = A. By the locality of f we then
get that C contains no B-local symbol. By the maximality of Mi, we know that
there is an inference rÕ with conclusion C, such that f(rÕ) = B. By the locality of
f we then get that C contains no A-local symbol. This concludes the proof that
no leaf contains a local symbol. Now let C be a root of some Mi. If C is ‹, it
trivially contains no local symbol, otherwise we can use an argument analogous to
the leaf-case.

ii) Follows immediately from i) and the definition of the splitting formula.

3.2.4. Corollary Let P be a refutation, let f be a local splitting function for P and let
I be the corresponding splitting formula.

i) I is an interpolant for A, B.
ii) Algorithm 1 parameterised by algorithm 2 yields an interpolant for A, B.

Proof
i) Follows directly from theorem 3.1.6 and lemma 3.2.3 ii).
ii) Follows directly from i) and theorem 3.1.8.
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3. Interpolants from refutations

3.3 Splitting the grey area

In practice it does make a di�erence how to assign the inferences, which are neither
axioms nor contain local symbols, so we have to find a good strategy how to split them.
There are three approaches:

1. assign all A-axioms and inferences containing A-local symbols to the A-part and
assign all other inferences to the B-part. This is usually not optimal, but simple
and therefore used by many interpolation algorithms.

2. also assign those inferences to A, which only have parent-inferences, which are
assigned to A. The intuition for this approach is that splits tend to be smaller at
the bottom of a proof.

3. encode the problem of finding an optimal assignment as minimization problem and
pass it to a solver. This yields the optimal assignment, but is computationally
expensive.

The following example shows that the approach 1 is not always a good choice:

3.3.1. Example We want to find a splitting for the given refutation. In (1) we have
colored the inferences which have to be in the corresponding partitions because they are
axioms or contain local symbols. The question is how to assign the other inferences. In
(2) we use approach 1 to assign those inferences, i.e. we assign all of them to the B-part.
In (3), we use approach 3 to find an optimal splitting (in this example, we use the size of
the split as quality measurement). The induced split of (2) is x

1

· (x
1

‚ x
2

) · (x
2

‚ x
3

),
the induced split of (3) is x

3

, which is much smaller.

‹
x

3

x
3

x
2

x
2

x
3

x
1

x
1

x
2

ax
1 a

‹
x

3

x
3

x
2

x
2

x
3

x
1

x
1

x
2

ax
1 a

‹
x

3

x
3

x
2

x
2

x
3

x
1

x
1

x
2

ax
1 a

(1) (2) (3)

We now give a detailed description of approach 3:

Let wi be weights based on some quality measurement of the clauses (e.g. size, number of
quantifiers, . . . ). We use propositional variables xi to denote that inference i is assigned
to A and use propositional variables Li to denote that the conclusion of i occurs in
the interpolant. Note that a conclusion C ”= ‹ of an inference i will be added to the
interpolant, i� there exists an inference j, which has C as premise and is assigned to a
di�erent part than i. Therefore, by the definition of A-subproofs, each clause will be
added to the interpolant at most once, so we get interpolants linear in the size of the
proof.
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3.4. Forward local proofs

Algorithm 3 partitionizeProofOptimized(Proof P )
for each inference i of P (bottom-up) do

if i is an A-axiom or i contains an A-local symbol then
assert xi

else if i is a B-axiom or i contains a B-local symbol then
assert ¬xi

end if
for each parent inference j of i do

assert (xi ”¡ xj) æ L(j)
end for

end for
minimize w

1

· L
1

+ · · · + wn · Ln

return vector of values of xi

3.4 Forward local proofs

We now state a simple special case of local proofs, called forward local proof, which
was introduced in [17]. Those are interesting, since they are implicitly used by many
propositional interpolation algorithms.

3.4.1. Definition
• A proof is called forward local, if it is local and for any inference r

1

, which is an
A-axiom or contains an A-local symbol and for any inference r

2

, which is a B-axiom
or contains a B-local symbol, we have r

2

⌃ r
1

.
• A splitting function f of a proof P is called forward local, if it is local and for any

two inferences r
1

, r
2

of P with f(r
1

) = A and f(r
2

) = B, we have r
2

⌃ r
1

.

3.4.2. Corollary Let P be a forward local refutation, let f be a forward local splitting
function for P and let I be the corresponding splitting formula. Let furthermore
M(P, S) = A

1

, . . . , An be the A-maximal subproofs and let Outi,j be the j-th output
clause of Ai. Then

n
fi

i=1

(
fi

j

Outi,j)

is an interpolant of A, B.

3.4.3. Example We already encountered a forward local proof in example 3.1.4.
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3. Interpolants from refutations

3.5 Framework for interpolation

generate read o� Interpolant

We now propose the following approach to interpolation:
1. Construct a local refutation in any sound proof system using some proof generating

algorithm.
2. Extract an interpolant from this local refutation using the ideas from above.

Since there are cases, where it is not known how to e�ciently construct local proofs (e.g.
propositional resolution based on Conflict-Driven Clause Learning), we need to expand
this approach to the following one:

generate transform read o� Interpolant

1. Construct a suitable (not necessarily local) refutation using some proof generating
algorithm.

2. Transform the refutation into a local refutation in any sound proof system.
3. Extract an interpolant from this local refutation using the ideas from above.

It is very important to note that the proof system, in which the proof is constructed,
is not necessarily the same as the proof system, in which the transformed proof is in.
Usually the first system is very restricted in order to e�ciently find a proof. This property
is not needed for the second proof system, which in contrast should be very expressive
in order to being able to transform the first proof into a local proof, which is not much
bigger than the first proof.

Since proof transformations are usually computationally expensive, explicitly constructing
the transformed proof is problematic. On the other hand, we actually don’t need the
whole local proof, but only enough information in order to extract the interpolant from it.
We therefore can use the idea of only implicitly performing the proof transformation by
merging the last two steps together. There is strong evidence, that this idea is applied by
the most used propositional interpolation algorithms [1, 18]. We call algorithms, which
merge the last two steps, interpolation systems, reusing the name from [19].

The stated approach has the following main advantages:

18



3.5. Framework for interpolation

• it is very modular, i.e. we can separately optimize the generation of local proofs
and the extraction of interpolants from local proofs.

• We can compare di�erent interpolation algorithms by the local proofs they construct
and not only by the interpolants they compute.

• there is strong evidence that every proof-based state-of-the-art interpolation algo-
rithm is expressible using this framework.

• correctness proofs of interpolation algorithms reduce to showing that the proofs,
which are generated in the second step, are valid and local.
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CHAPTER 4
Propositional Interpolation -

literal-reordering

4.1 Ordered resolution proofs

We now apply the ideas from chapter 3 to propositional logic: At first we will introduce
the notion of ordered proofs and show that ordered refutations are always forward local.
Afterwards we show how to iteratively transform an arbitrary CNF-resolution refutation
into an ordered refutation. At the end we show how to perform the transformation
implicitly by only keeping track of the so called frontiers while iteratively transforming
the proof.

generate

CNF-refutation

transform

ordered rCNF-refutation

read o� Interpolant

We start with the notion of ordered proofs:

4.1.1. Definition (Ordered rCNF Proof)
Let P be a derivation in CA fi CB in the rCNF-resolution inference system. We say that
P is ordered if the following condition holds:
(CO) For any resolution inference ra on an A-local variable a, there exists no resolution

inference r on a B-local or global variable such that r ª ra.
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4. Propositional Interpolation - literal-reordering

In other words, condition (CO) imposes that no resolution inference on a B-local or
global variable happens above any resolution inference on an A-local variable. We now
introduce some further vocabulary on ordered derivations:

4.1.2. Definition (Frontier)
Let P be an ordered derivation. An inference of P is called an A-inference if it is an
A-axiom or a resolution inference on an A-local variable.
Now let SA be the following set of A-inferences of P :

SA =
Ó

r|
r is an A-inference and
for every inference rÕ in P with r ª rÕ:

rÕ is not an A-inference

Ô

.

We call {C | C is the conclusion of r œ SA} the frontier of P and denote it by
frontier(P ).

In other words, frontier(P ) contains the conclusions of the last A-inferences of P .

4.1.3. Definition (A-part, B-part)
We define the largest subderivation P Õ of P ending in the clauses of frontier(P ) to be
the A-part of P , and denote P Õ by A(P ). We furthermore define the largest subderivation
P Õ of P starting in the clauses of frontier(P ) to be the B-part of P , and denote P Õ by
B(P ).

Let us illustrate the structure of an ordered proof in Figure 4.1. Note that the A-part of
the proof contains only resolution inferences over the A-local variables a

1

, a
2

, a
3

. The
B-part of the proof contains resolution inferences over B-local variables b

1

, b
2

and global
variables x

1

, x
2

. The frontier of the proof consists of the clauses C
1

, . . . , Cn, separating
the A-part and B-part of the proof.

4.1.4. Example Let {a
2

x
1

, a
1

a
2

, a
1

a
4

, a
1

x
1

, a
1

x
3

, x
3

x
4

} be A-axioms and {x
4

x
5

} a B-
axiom. The following proof is an ordered proof in the rCNF inference system:

a
4

x
5

a
4

x
4

x
4

x
5x

4

a
4

x
1

x
1

x
4x

1

a
2

x
1

a
2

a
4a

2

a
1

a
2

a
1

a
4a

1

x
1

x
3

x
3

x
4x

3

a
1

x
1

a
1

x
3a

1

For each resolution step, the proof also displays the resolved variable. The frontier of the
proof consists of a

4

x
1

, x
1

x
3

, x
3

x
4

. Note that clauses of the frontier can contain A-local
variables (which then also appear in the root of the proof).
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4.1. Ordered resolution proofs

C
1

C
2

. . . Cn

a
1

a
3

a
2

a
2

a
1a

3

x
1

b
1

b
2

x
2

A(P )

B(P )

frontier(P)

Figure 4.1: Structure of an Ordered Proof.

We will now show that in the propositional resolution inference system, condition
(CO) implies that inferences in ordered refutations do not use both A-local and B-local
variables. This means, that ordered refutations are (forward) local proofs.

4.1.5. Theorem Let P be an ordered rCNF refutation, such that for each resolution
inference on an A-local symbol a both premises contain a. Then P is forward local.

Proof
i) We show that any resolution-inference i with a conclusion containing an A-local

symbol a must already have as premises only clauses containing an A-local symbol:
Consider any resolution-inference i with a conclusion containing an A-local symbol.
We make a case distinction on the resolution literal of i:

• i resolves on an A-local literal: By the assumptions, both premises must
contain an A-local symbol.

• i resolves on a global or B-local literal: Since the conclusion of i contains an
A-local literal a, there must be some other inference j on the way to the root,
which resolves on a (since a is not contained in the root, which is ‹), so i ª j,
which contradicts the fact that all resolution steps on A-local literals occur
before any other steps.

ii) Any clause, which contains an A-local symbol, is derived solely from A: We can
conclude this fact by a simple induction, the base case for conclusions of axioms is
trivial and the inductive step trivially follows from i).

iii) By the definition of resolution-inferences we know that only clauses which are
derived using at least one B-axiom contain a B-local symbol. Therefore we can
use the invariant from (ii) to conclude that no clause, which contains an A-local
symbol, contains also a B-local symbol. Therefore P is local.

iv) Since all clauses containing A-local symbols are derived solely from A, we know
that also the conclusions of A-symbol elimininating clauses are derived solely from
A. Therefore all maximal A-subproofs are derived without any B-parents, so P is
not only local, but even forward local.
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4. Propositional Interpolation - literal-reordering

As shown in [3], interpolants constructed from local proofs are boolean combinations
of clauses in the proof. The following corollary improves this result when working with
ordered rCNF-refutations instead of arbitrary local refutations by showing that the
interpolant is a conjunction of clauses from the frontier of the proof.

4.1.6. Corollary Let P be an ordered rCNF refutation in CAfiCB , such that for each res-
olution inference on an A-local symbol a both premises contain a. Then

w

Cœfrontier(P )

C
is an interpolant for A, B.

4.2 Transforming Arbitrary Refutations into Ordered
Refutations

In the following section, we present a proof transformation, which allows us to reorder the
literals by shifting an inference above one or both parent inferences. In [20] it was shown
that such a transformation is always possible1 for propositional resolution refutations. We
give a description of a quite similar transformation (which already implicitly occured in
[21]). Note that all the di�erent cases described in [20](Fig.5) can be obtained as special
cases of our transformation. Furthermore, our transformation can perform multiple
reordering steps at once, which allows us to preserve more of the structure of the original
proof (cf. the following examples) and also enables our intuitive connection to interpo-
lation systems. Finally our transformation also highlights the connection to the idea
of variable elimination, which was introduced in the seminal paper of Putnam & Davis [22].

Before stating the transformation, we give some examples, which highlight the challenges
of designing such a proof transformation.

4.2.1. Example Consider the following proofs: The left proof corresponds to the original
proof and the right one to the proof after the transformation. Since the resolution on a
happens below the resolution on x, we have to shift the resolution on a upwards: We
move the resolution with the clause a to the top, such that the resolution on a happens
before the resolution on x.

‹
b b

ab a

ax xb

‹
b b

x xb

ax a

1
contrary to the statement in [21], which wrongly attributes the claim to [19], where only a transfor-

mation for the case of non-merge-literals is proposed
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4.2. Transforming Arbitrary Refutations into Ordered Refutations

4.2.2. Example As in the previous example, we have to shift the resolution on a upwards.
Note that in contrast to the previous example, there are actually two occurences of a
which flow into one of the premises of the inference on a. We therefore have to push
the clause a both to ax

1

and to ax
2

. This implies that we have to copy a. Note that
such copying can be the source for a blowup, in the worst case the resulting proofs are
exponentially bigger.

‹
b b

ab a

abx
2

ax
2

bx
1

x
2

ax
1

‹
b b

bx
2

x
2

bx
1

x
2

x
1

ax
1

a
ax

2

a

4.2.3. Example As in the previous example, we have to shift the resolution on a
upwards. Note that this example is more involved than the previous one, since not only
the subproof rooted in ab has to be transformed, but also the subproof rooted in ab
has to be transformed. This was not necessary in the previous examples, where the
second subproof consisted of the single clause a. Note that the transformation should be
understood as: resolve the clauses containing a and a, then perform the resolution steps
from the subproof rooted in ab, then perform the resolution steps from the subproof
rooted in ab (the rest of the proof stays the same).

‹
b b

ab ab

ax
1

x
1

b ax
2

x
2

b

‹
b b

x
2

b x
2

b

x
1

x
2

x
1

b

ax
1

ax
2

4.2.4. Example This example contains both previously discussed complications. Note
again the emerging pattern: We resolve pairwise all clauses containing a with all clauses
containing a. Then, for each clause in the original proof, which contains a, we perform
the resolution steps from the subproof rooted in ab (i.e. for each of those clauses, we
add a copy of the whole subproof) and finally we perform the resolution steps from the
subproof rooted in ab. The rest of the proof stays the same.

‹
b b

ab ab

abx
2

ax
2

bx
1

x
2

ax
1

abx
4

ax
4

bx
3

x
4

ax
3

‹
b b

bx
4

bx
4

bx
3

x
4

bx
3

bx
2

x
3

x
2

x
3

bx
1

x
2

x
1

x
3

ax
1

ax
3

ax
2

ax
3

bx
2

x
4

x
2

x
4

bx
1

x
2

x
1

x
4

ax
1

ax
4

ax
2

ax
4
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Figure 4.2: Visualization of the proof transformations of Algorithm 4 in the case when
resolution on A-local variables is applied after resolution on B-local or global variables.
(the A-parts of trans(P

1

) and trans(P
2

) are omitted in the transformed proof)

4.2.5. Example In this example we have to shift multiple steps. At first we have to
shift a

1

to the top, afterwards we have to shift a
2

to the top.

‹
b b

bx
3

x
3

a
2

b a
2

x
3

a
2

bx
2

a
2

x
2

a
1

a
2
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a
1

a
1

x
1

x
2

a
1

a
2
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a
1

a
2

x
4
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1

x
4

‹
b b
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a
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a
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2
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‹
b b
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a
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x
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1

a
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a
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a
2

x
2

a
2

x
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We now formally present our construction for translating P into an ordered refutation: In
a nutshell, algorithm 4 recursively goes through the refutation and whenever a resolution
inference r on an A-local variable is encountered, the algorithm uses a proof transforma-
tion to shift r over all inferences above r, which resolve on non-A-local variables. Our
construction therefore guarantees that, after visiting a clause C in P , we have constructed
an ordered proof with root C. The proof transformation used in algorithm 4 is visualized
in Figure 4.2.
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Algorithm 4 Trans(P ) - Transforming P into an ordered Proof
Input: Refutation P in CA fi CB in rCNF resolution system
Output: Ordered refutation P̃ of CA fi CB s.t. P̃ = trans(P )
1: if sink of P is axiom then
2: trans(P ) := P
3: else
4: sink of P is resolution inference r on v with premises Cv, Dv and conclusion CD
5: P

1

:= largest subproof of P ending in Cv.
6: P

2

:= largest subproof of P ending in Dv.
7: P̃

1

= trans(P
1

)
8: P̃

2

= trans(P
2

)
9: if v is not A-local then

10: r
1

:= root of P̃
1

11: r
2

:= root of P̃
2

12: P̃ := (P̃
1

+ÿ P̃
2

) +{r1,r2} r
13: trans(P ) := P̃
14: else
15: v is A-local
16: frontier(P̃

1

) := {C
1

v, . . . , Cnv, E
1

, . . . , Ek},
17: where E1, . . . , Ek do not contain v

18: frontier(P̃
2

) := {D
1

v, . . . , Dmv, F
1

, . . . , Fl}
19: where F1, . . . , Fl do not contain v

20: for i = 1 to n do
21: si := inference of SA(P̃

1

) with conclusion Civ
22: end for
23: for j = 1 to m do
24: tj := inference of SA(P̃

2

) with conclusion Djv
25: end for
26: R

1

:= {r | r œ SA(P̃
1

), r has conclusion Ei}
27: R

2

:= {r | r œ SA(P̃
2

), r has conclusion Fi}
28: ÃP1 :=A(P̃

1

)
29: ÃP2 :=A(P̃

2

)
30: P̃ = ÃP1 +ÿ ÃP2
31: for i = 1 to n and j = 1 to m do
32: Resolution inference rij := Civ Djv

CiDj

33: P̃ = P̃ +{si,tj} rij

34: end for
35: for j = 1 to m do
36: B̃j

P1 :=B(P̃
1

)[v Ω Dj ]
37: uj := root of B̃j

P1
38: P̃ := P̃ +{r1j ,...,rnj}fiR1 B̃i

P1
39: end for
40: B̃P2 :=B(P̃

2

)[v Ω C]
41: P̃ := P̃ +{u1,...,um}fiR2 B̃P2
42: end if
43: end if
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4. Propositional Interpolation - literal-reordering

Next, we explain algorithm 4 in more detail: The algorithm takes as input an arbitrary
proof P of C in CA fi CB in the CNF resolution inference system, and returns an ordered
proof P̃ of C in CA fi CB in the rCNF resolution inference system. For doing so, the
algorithm recursively iterates over the size of P . In the base case, when the sink of P is
an axiom, then P is already ordered (line 1). Otherwise, the sink of P is a resolution
inference r on a variable v. The subderivations of P ending in the premises of r are
denoted by P

1

and P
2

and the algorithm respectively computes the ordered versions P̃
1

and P̃
2

of P
1

and P
2

. If v is a B-local or global variable, then r does not violate the
property of ordered proofs; in this case, Algorithm 4 respectively replaces P

1

and P
2

by
their ordered versions P̃

1

and P̃
2

, changing P this way into an ordered proof (lines 10-13).
However, if v is an A-local variable, r contradicts the property of ordered proofs. In
this case, Algorithm 4 first determines the frontier clauses of the ordered subderivations
P̃

1

and P̃
2

. Next, the pairwise resolution inferences rij on v of the frontier clauses P̃
1

and P̃
2

are moved above all resolutions inferences over B-local and global variables
(lines 15-41), as follows: Variable v is replaced by C in the B-part of P̃

2

, resulting in
an ordered derivation B̃P2 with leaves CD

1

, . . . , CDm, F
1

, . . . , Fl; these clauses are the
clauses obtained by replacing v by C in the frontier clauses of P̃

2

. Next, the B-part of the
ordered version of P is computed by replacing the leaves CDi of B̃P2 with the ordered
derivations B̃i

P1 (line 36). The leaves of B̃i
P1 , and hence of the B-part of trans(P ), are the

clauses E
1

, . . . , Ek from the frontier of P̃
1

and the conclusions of the pairwise resolution
inferences rij on v. The frontier of trans(P ) consists of the frontier clauses of P̃

1

and
P̃

2

.

We now turn to proving correctness of Algorithm 4 using both the following lemma and
theorem:

4.2.6. Lemma Let P be an rCNF-resolution proof whose sink is given by the resolution
inference

Cv Dv v
CD

on an A-local variable v.
Then applying Algorithm 4 on P returns an ordered rCNF-resolution proof trans(P )
whose root is CD.

Proof We use the notations of Algorithm 4. Using Lemma 2.4.1, we conclude that the
derivations B̃i

P1 :=B(trans(P
1

))[v Ω Di] and B̃P2 :=B(trans(P
2

))[v Ω C] are rCNF-
derivations and B̃P2 ends in CD. It remains to show that each leaf of P occurs as a
conclusion of an inference in trans(P ) (without introducing cycles). We do as follows:

• Each premise of the pairwise resolution inferences rij is a conclusion of an inference
of either A(trans(P

1

)) or A(trans(P
2

)).
• Each subderivation B̃i

P1 has leaves C
1

Di, . . . , CnDi, E
1

, . . . , Ek and root CDj ,
since C

1

v, . . . , Cnv are by definition the only leaves of trans(P
1

) which contain
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4.3. Implicit Proof Transformations and Interpolation Systems

v. Therefore each of the leaves is also a conclusion either of one of the pairwise
resolution inferences or of an inference of A(P

1

).
• The subderivation B̃P2 has leaves CD

1

, . . . , CDm, F
1

, . . . , Fl and root CD, since
D

1

v, . . . , Dmv are by definition the only leaves of trans(P
2

) which contain v.
Therefore each leaf is also a conclusion either of an inference of one of the derivations
B̃i

P1 or of an inference of A(trans(P
2

)).

4.2.7. Theorem Algorithm 4 is correct. That is, for an arbitrary CNF-resolution
refutation P in CA fi CB , trans(P ) is an ordered rCNF-resolution refutation in CA fi CB .

Proof We apply structural induction on P and use the induction hypothesis that for
any subproof P with root C, trans(P ) is an ordered rCNF-resolution proof with root C.
Base case: If P is a proof consisting of a single axiom r, then P contains no resolution
inferences. Hence, P is ordered and so is trans(P ).
Inductive case: If P is a proof whose sink is a resolution inference on v with premises
Cv and Dv, let P

1

and P
2

be the subproofs ending respectively in Cv and Dv. By the
induction hypothesis, trans(P

1

) and trans(P
2

) are ordered and rooted in Cv respectively.
Dv. We make a case distinction over the resolution variable v of r.

• If v is not an A-local literal, then trans(P ) is ordered as trans(P
1

) and trans(P
2

)
are ordered and r does not violate the properties of ordered proofs.

• If v is an A-local variable, then using Lemma 4.2.6 we conclude that trans(P ) is
also an r-CNF proof, rooted in CD. Note however that, while computing trans(P ),
Algorithm 4 removes the resolution inference r of P from trans(P ) and adds to
trans(P ) resolution inferences on A-local variables only below the lowest inferences
on A-local variables of P . In other words, no newly introduced inference in trans(P )
has an inference above that resolves on a B-local or global literal. By the induction
hypothesis, we then conclude that trans(P ) is ordered.

4.3 Implicit Proof Transformations and Interpolation
Systems

Although Algorithm 4 always yields ordered refutations and therefore interpolants,
applying it to big refutations P is too expensive: the proof transformations of Algorithm 4
cause in general an exponential blowup in the size of trans(P ). Note however that for
computing interpolants we do not need to construct the entire proof trans(P ); all we need
is the frontier of trans(P ). In our interpolation approach we are therefore interested in
computing explicitly only the frontier of trans(P ). Note that while computing trans(P )
in Algorithm 4, we push the resolution step on an A-local variable v exactly below the
A-parts of the ordered subproofs of P

1

and P
2

. This way, the frontier of trans(P ) only
depends on the frontiers of the two immediate subproofs P

1

and P
2

and the resolution
variable v we push upwards. We are therefore able to compute the frontiers for each
transformed proof trans(P ) without explicitly computing the transformed proof trans(P ),
as presented below.
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4. Propositional Interpolation - literal-reordering

4.3.1. Theorem Let P be an rCNF-resolution proof.
1. Let P consist of a single A-axiom r with conclusion C. Then

frontier(trans(P )) = frontier(P ) = {C}.

2. Let P consist of a single B-hypothesis r, then

frontier(trans(P )) = frontier(P ) = ÿ.

3. Let P be a proof where the sink is a resolution inference r on v with premises Cv
and Dv and let P

1

and P
2

be the subproofs ending in Cv resp. Dv. Let further P Õ

be the proof consisting of trans(P
1

), trans(P
2

) and r.
We use a case distinction on the properties of r:
If v is a B-local or global symbol, we have

frontier(trans(P )) = frontier(P Õ) = frontier(P
1

) fi frontier(P
2

).

Otherwise v is an A-local literal, so the transformation adds at least one inference
on a below each lowest inference on A-local literals of trans(P

1

), which has a
conclusion containing a, and each lowest inference on A-local literals of trans(P

2

),
which has a conclusion containing a, but adds no other A-inferences anywhere
else. We therefore can conclude that frontier(trans(P )) consists of the pairwise
resolvents of frontier clauses of trans(P

1

) containing a and frontier clauses of
trans(P

2

) containing a and furthermore of all other clauses of frontier(trans(P
1

))
and frontier(trans(P

2

)).

We can now use Theorem 4.3.1 to trivially extract rules which describe how to recur-
sively compute the frontier of the transformed proof without explicitly computing the
transformation.
We formulate these rules in the style of interpolation approaches where clauses in proofs
are annotated by their so-called partial interpolants, see e.g. [23, 8]. Consider an arbitrary
rCNF resolution proof P . For any clause C of P , let PC denote the largest subderivation
of P rooted in C. From Theorem 4.2.7, we conclude that trans(PC) is ordered. For
each clause C of P we set its partial interpolant to be

w

CÕœfrontier(trans(PC))

C Õ. Using
Theorem 4.3.1, we have the following representation of our interpolation system, where
clauses are labelled by their partial interpolants using [.]:
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4.3.2. Definition Let P be an rCNF refutation in CA fi CB . We define the interpolation
system ItpCNF to be the interpolation system that maps vertices of P to their partial
interpolants as follows:

For a hypothesis with conclusion C:

if C œ A
C [C]

if C œ B
C [€]

For a resolution inference on a B-local or global
variable v:

Cv [I
1

] Dv [I
2

]
CD [I

1

· I
2

]

where I
1

= frontier_itp(PI1) and I
2

=
frontier_itp(PI2).

For a resolution inference on an A-local variable v:

Cv [I
1

] Dv [I
2

]
CD [I Õ

1

¢v I Õ
2

· I ÕÕ
1

· I ÕÕ
2

]

where
• I

1

= frontier_itp(PI1) and I
2

=
frontier_itp(PI2);

• I Õ
1

and I Õ
2

contain respectively all clauses of I
1

and I
2

which contain v, respectively v;
• I ÕÕ

1

and I ÕÕ
2

contain respectively all clauses of I
1

and I
2

which do not contain v, respectively v.

Using Theorem 4.3.1, we conclude the following result.

4.3.3. Theorem Let P be an arbitrary refutation in CA fi CB. Then ItpCNF computes
an interpolant of A and B as the partial interpolant of the root of P .
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CHAPTER 5
State of the art

Proof-based interpolation algorithms use the idea to extract an interpolant from a refuta-
tion in a sound proof system. There are two approaches:

For propositional interpolation, there is the idea of interpolation systems: Such algo-
rithms require a propositional resolution refutation as input (which can be produced by
SAT-solvers which implement proof-logging, e.g. MiniSat [24]) and recursively attach to
each node of that proof a formula, so that the formula, which is finally attached to the
root, is an interpolant. In contrast to designing an interpolation systems without further
guideline, we use the approach to first design a proof transformation, which transforms
the propositional resolution refutation into a local proof and then use the transformation
to extract an interpolation system from it by figuring out how the splitting formulas
change during the recursive computation. We therefore achieve a design which is more
constructive in comparison to coming up with an interpolation system without further
guideline. Furthermore, it is much easier to get variations of interpolation systems, since
one can use proof theoretic ideas to vary the proof transformation and therefore easily
get di�erent interpolation systems. We think that each interpolation system is induced
by some proof transformation using the stated approach.

We now give an overview of important interpolation systems:
The first interpolation system has been independently discovered in [18, 25, 26]. Then
the seminal paper [1] introduced an improved version of the algorithm, which is nowadays
the most used interpolation approach. We have strong evidence that there exists a
proof transformation, which takes a CNF-resolution refutation as input and produces an
NNF-resolution proof, which induces McMillan’s algorithm as interpolation system.
Afterwards [19] generalized [18, 25, 26] and [1] to a system of interpolation algorithms
and also coined the name interpolation systems. Note that any instance of the generalized
algorithm from [19] generates interpolants with the property that the alternation between
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conjunctions and disjunctions is unbounded. In contrast to this, our algorithm always
produces CNF-interpolants.
Then [6] showed how to apply the algorithm from [1] to compressed resolution proofs
(i.e. clausal / DRUP-proofs) in order to avoid an explicit representation of resolution
proofs, which can be infeasible. It is easy to see that extracting interpolants from such
a compressed representation is also applicable to our interpolation system and all the
interpolation systems from [19].
Finally our interpolation system is most similar to the second interpolation algorithm
described in [7], but our transformation always produces interpolants in the first place,
while their algorithm needs further SAT-calls in some cases.

For general first-order logic, there are interpolation algorithms based on the idea of
extracting interpolants from proofs of a special form, i.e. from local proofs. Such proofs
can for instance be generated by the world-leading theorem prover Vampire [27].
The idea of using local proofs for interpolation already occured implicitly in [28] and
was explicitly stated in [3]. Afterwards, [15] showed that one can extract interpolants
from local refutations independently from the proof system. Our algorithm is arguably
more intuitive and yields simpler interpolants than [15]. Furthermore, our construction
guarantees that the generated interpolants are linear in the size of the proof, whereas the
interpolants from [15] are quadratic in the size of the proof in the worst-case, as pointed
out by [29].

The algorithm from [15] was further optimized in [30]. Note that the algorithm stated
in [15] unnecessary restricts itself to always use a splitting function, which traverses
the proof bottom-up and assigns as many steps as possible to the current partition. In
contrast to this, our algorithm allows to freely choose how to assign inferences, which are
no axioms and don’t contain any local symbols.
In order to be able to generate di�erent splitting functions even under presence of the
stated restriction, [30] introduced a proof transformation, which collapses some of the
inferences in the grey area. Then they express the locality of the resulting proof as a set
of propositional formulas and use an SMT solver to find a model of this formula, i.e. a
specific instance of the transformation, which produces a proof, such that the extracted
interpolant is optimal with regard to some quality measurement. Since our approach is
less restricted, we are able to encode the optimal interpolant in a much simpler way and
without an implicit proof transformation.

From a more general view our framework connects the research lines of interpolation
systems and local proofs by arguing that interpolation systems can be seen as implicitly
constructing (forward) local proofs.
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CHAPTER 6
Conclusion

At first, we provided an intuitive introduction to craig interpolation, which motivates the
central notion of local proofs. From this, we derived a new interpolation algorithm for
arbitrary local proofs in first-order-logic, which advances the state of the art. Furthermore
we emphasized that instead of directly generating local proofs it is sometimes better to
use the strategy generate-arbitrary-proof, transform-into-local-proof, read-o�-interpolant.
Finally, we connected the strategy to interpolation systems.

Afterwards we used the stated strategy to develop a new interpolation algorithm for
propositional logic, which generates interpolants in CNF. We emphasized the idea that
instead of directly developing an interpolation system it should be easier to develop a
proof transformation, which generates a (forward) local proof, and use this transformation
to extract rules for an interpolation systems. We therefore reduce the amount of trial
and error and get a more constructive way to develop interpolation systems.

As future work we want to work out a proof transformation, which is similar to our
transformation and induces as interpolation system McMillan’s algorithm. Furthermore
there is strong evidence that this enables us to generalize both our interpolation system
and McMillan’s algorithm in order to get a wide range of interpolants di�ering in logical
strength.
Furthermore we think that the process of developing and understanding interpolation
algorithms crucially depends on understanding the proofs and induced splits. Deep
inference systems and especially the functorial calculus seem to be a natural choice for a
clean framework, so another direction to head in would be to state our current framework
in the functorial calculus.
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