
AUTOMATION & CONTROL INSTITUTE

INSTITUT FÜR AUTOMATISIERUNGS-

& REGELUNGSTECHNIK

A Service-Oriented Domain Specific Language

Programming Approach for Batch Processes

DIPLOMARBEIT

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs (Dipl.-Ing.)

unter der Leitung von

Univ.-Prof. Dr.sc.techn. Georg Schitter
Dipl.-Ing. Martin Melik-Merkumians

eingereicht an der

Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungs- und Regelungstechnik

von

Matthias Baierling
Matrikelnummer: 0826680

Wien, im August 2016

Gruppe für Industrielle Automationstechnik

Gußhausstraße 27-29, A-1040 Wien, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Abstract

Nowadays, major challenges of the manufacturing industry are the shortening of prod-
uct life-cycles and the trend towards personalized productions. This trend is a tremen-
dous turnaround in the industry, since the last decades were coined by mass produc-
tions at low costs. Although the demands of current products increased, the price level
should stay the same. Therefore, the improvement of flexibility of automation systems
is a current issue, in order to enable the implementation of product specific changes
with little effort.

This thesis targets this issue by developing and implementing a concept for a flexible
process control, based on a domain specific tool, which enables the creation of produc-
tion recipes by process engineers, without reconfiguring the plant. In order to control
the equipment, services in terms of a Service-Oriented Architecture are provided. Based
on the recipe, a recipe processing algorithm calls the corresponding services from the
equipment. For demonstrating purposes, this concept is evaluated on two linked lab-
oratory tank system plants, which enable process actions for pumping, heating, and
mixing. Furthermore, for improving the concept of a flexible process control even
more, a dynamic route finding algorithm is integrated, which finds the shortest path
for pumping processes based on a model of the plant.

i





Zusammenfassung

Die Verkürzung von Produktlebenszyklen sowie die kundenspezifische Nachfrage nach
individuellen Produkten stellt industrielle Produktionsbetriebe derzeit vor große Her-
ausforderungen. Waren früher noch hohe Produktmengen für niedrige Produktionskos-
ten entscheidend, wird derzeit und in Zukunft eine Individualisierung bei ähnlichem
Preisniveau von Kunden gefordert. Dies macht es in weiterer Folge notwendig, die
Steuerungssysteme der Produktionsanlagen hinsichtlich Flexibilität zu verbessern um
Änderungen mit möglichst wenig Aufwand und in kurzer Zeit implementieren zu kön-
nen.

Ziel dieser Diplomarbeit ist es, ein Konzept zu entwickeln und implementieren, welches
einem Anlagenbetreiber ermöglicht Produktionsrezepte zu erstellen, ohne die Anlage
selbst aufwendig umprogrammieren zu müssen. Dafür wird ein Tool entwickelt, welches
eine einfache Möglichkeit zur Definition von Produktionsrezepten bereitstellt und die-
se anschließend ohne weiteren Aufwand abgearbeitet werden können. Das zu steuernde
Equipment stellt dafür Services im Sinne einer serviceorientierten Architektur zur Ver-
fügung, die vom Abarbeitungsalgorithmus des Rezepts angesprochen werden. Dieses
Konzept wird anhand eines Labortanksystems gezeigt und evaluiert, mit dem Pump-,
Heiz- und Mixprozesse durchgeführt werden können. Zur Verbesserung der Flexibilität
wird außerdem ein dynamischer Pfadfindungsalgorithmus integriert, der für Pumppro-
zesse anhand des tatsächlichen Tanksystems den kürzesten Pfad ermittelt.

iii





Contents

1 Introduction 1
1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5
2.1 Batch Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 IEC 61512 - Batch Control . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Batch Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Messaging Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Message Exchange Patterns . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Message-Oriented Middleware . . . . . . . . . . . . . . . . . . . 16
2.3.3 Commonly used Messaging Methods in the Automation Industry 17

2.4 Domain Specific Language . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Classification of Domain Specific Languages (DSLs) . . . . . . . 23
2.4.2 Defining a Grammar of a Domain Specific Language . . . . . . . 24
2.4.3 Application Examples of Domain Specific Languages . . . . . . 26

2.5 Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Graph Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Shortest Path Algorithms . . . . . . . . . . . . . . . . . . . . . 32

2.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Concept of a Flexible Batch Process Control 35
3.1 General Overview of the Concept . . . . . . . . . . . . . . . . . . . . . 35
3.2 Batch Recipe Creation with a DSL . . . . . . . . . . . . . . . . . . . . 37
3.3 Path Planning Algorithms in Redundant Pipe Systems . . . . . . . . . 40

3.3.1 Modeling a Tank System . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Finding the Shortest Path . . . . . . . . . . . . . . . . . . . . . 42

v



Contents

3.3.3 Processing of the Add Phase . . . . . . . . . . . . . . . . . . . . 43

4 Implementation of the Flexible Batch Control Concept 45
4.1 Program Overview and Basic Design Decisions . . . . . . . . . . . . . . 45
4.2 Domain Specific Language Editors and Visualization . . . . . . . . . . 47

4.2.1 Procedural Recipe Language . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Visualizing a Textual Domain Specific Language with EuGENia 50
4.2.3 Tank System Language . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Path Planning for Add Processes . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Requirements for Finding the Shortest Path with GraphStream 55
4.3.2 Implementation of the Shortest Path Algorithm . . . . . . . . . 56

4.4 Supervising Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Communication with the MQTT Broker . . . . . . . . . . . . . 58
4.4.3 Recipe Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.4 Controller Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Implementation of the Services . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Mix, Valve, Pump Services . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 Tank Level Monitoring Service . . . . . . . . . . . . . . . . . . . 62
4.5.3 Heat Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.4 Emergency Service . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Read Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Evaluation of the Flexible Batch Process Control 67
5.1 Hardware Setup of the Demonstrator Plant . . . . . . . . . . . . . . . . 67
5.2 Evaluation of the Route Finding Algorithm . . . . . . . . . . . . . . . . 69
5.3 Evaluation of an Add process . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Evaluation of the Heat and Mix Phase . . . . . . . . . . . . . . . . . . 70

6 Conclusion and Outlook 73

vi



List of Figures

1.1 Production paradigm shift in the course of time . . . . . . . . . . . . . 2
1.2 Overview of the demonstrator plant . . . . . . . . . . . . . . . . . . . . 4

2.1 Recipe/equipment separation pattern of IEC 61512 . . . . . . . . . . . 6
2.2 IEC 61512 reference model . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Example of a Procedure Function Chart for a sulfurize process . . . . . 10
2.4 Procedure Function Chart symbols of IEC 61512-2 . . . . . . . . . . . 10
2.5 SOA communication model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Automation pyramid: traditional vs. SOA-based . . . . . . . . . . . . . 13
2.7 Comparison of the Request-Response and the One-Way message pattern 15
2.8 Example of a Publish-Subscribe communication . . . . . . . . . . . . . 16
2.9 Comparison between a communication system with and without MOM 17
2.10 Comparison of different QoS levels of MQTT . . . . . . . . . . . . . . . 20
2.11 Schematic overview of the data transfer in DDS . . . . . . . . . . . . . 22
2.12 Language recognition by a lexer and parser . . . . . . . . . . . . . . . . 24
2.13 Comparison of a wiring diagram and a ladder diagram of IEC 61131-3 . 27
2.14 Description of a IEC 61499 Function Block . . . . . . . . . . . . . . . . 28
2.15 Batch recipe in SIPN-notation . . . . . . . . . . . . . . . . . . . . . . . 30
2.16 Sample graph with negative edge weight . . . . . . . . . . . . . . . . . 32

3.1 Schematic overview of the concept . . . . . . . . . . . . . . . . . . . . . 36
3.2 Adapted version of the procedural state machine of IEC 61512 . . . . . 39
3.3 Path planing for different graphs. . . . . . . . . . . . . . . . . . . . . . 43
3.4 Schema of the bridge between the Phases of the recipe and the services 44

4.1 Schematic overview of the implementation concept . . . . . . . . . . . . 46
4.2 Class diagram of the Procedural Recipe Language . . . . . . . . . . . . 48
4.3 Visualization of the recipe with EuGENia . . . . . . . . . . . . . . . . 50

vii



List of Figures

4.4 Class diagram of the Tank System Language . . . . . . . . . . . . . . . 52
4.5 Visualization of the demonstrator plant in GraphStream . . . . . . . . 56
4.6 Graphical User Interface of the supervising program . . . . . . . . . . . 58
4.7 Class diagram of the recipe processing algorithm . . . . . . . . . . . . . 60
4.8 4diac System Configuration . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 4diac implementation of the Mix service . . . . . . . . . . . . . . . . . 62
4.10 4diac implementation of the Tank Level Monitoring service . . . . . . . 63
4.11 4diac implementation of the Heat service . . . . . . . . . . . . . . . . . 64
4.12 4diac implementation of the Emergency service . . . . . . . . . . . . . 65
4.13 4diac implementation of the Read service . . . . . . . . . . . . . . . . . 66

5.1 P&ID of the demonstrator plant . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Evaluation of the route finding algorithm . . . . . . . . . . . . . . . . . 69
5.3 Evaluation of the Add process . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Evaluation of a parallel execution of the Heat and Mix Phase . . . . . . 72

viii



List of Tables

2.1 IEC 61131-3 languages and typical applications . . . . . . . . . . . . . 27
2.2 Batch recipe in a tabular notation . . . . . . . . . . . . . . . . . . . . . 31

5.1 Components connected to the Beckhoff CX5010 PLCs . . . . . . . . . . 68

ix





Acronyms

4diac Framework for Industrial Automation & Control

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BNF Backus - Naur Form

CFB Composite Function Block

CM Control Module

CPS Cyber-Physical System

CSS Cascading Style Sheets

DCS Distributed Control System

DDS Data Distribution Service

DPWS Devices Profile for Web Services

DSL Domain Specific Language

EBNF Extended Backus - Naur Form

EM Equipment Module

xi



Acronyms

EMF Eclipse Modeling Framework

ERP Enterprise Resource Planning

FB Function Block

FBD Function Block Diagram

FIFO First-In First-Out

FMS Flexible Manufacturing System

FORTE 4diac Runtime Environment

GDS Global Data Space

GPL General Purpose Language

GUI Graphical User Interface

GVL Global Variable List

HMI Human Machine Interface

HMS Holonic Manufacturing System

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEC 61131 IEC 61131 – Programmable controllers

IEC 61499 IEC 61499 – Function Blocks

IEC 61512 IEC 61512 – Batch control

IEC 62264 IEC 62264 – Enterprise-control system integration

IEC 62541 IEC 62541 – OPC Unified Architecture

IL Instruction List

IMC-AESOP ArchitecturE for Service-Oriented Process - Monitoring and Control

IoT Internet of Things

xii



Acronyms

IPC Industrial PC

ISA International Society of Automation

ISO/IEC 14977 ISO/IEC 14977: Information technology – Syntactic metalanguage –
Extended BNF

IT Information Technology

LD Ladder Diagram

M2M Machine-to-Machine

MAS Multi-Agent System

MEP Message Exchange Pattern

MES Manufacturing Execution System

MOM Message-Oriented Middleware

MONACO MOdeling Notation for Automation COntrol

MQ Message Queue

MQTT Message Queue Telemetry Transport

OOP Object-Oriented Programming

OPC UA OPC Unified Architecture

P&ID Piping and Instrumentation Diagram

PFC Procedure Function Chart

PLC Programmable Logic Controller

QoS Quality of Service

RPC Remote Procedure Call

SCADA Supervisory Control and Data Acquisition

SFC Sequential Function Chart

SIFB Service Interface Function Block

xiii



Acronyms

SIPN Signal Interpreted Petri Net

SIRENA Service Infrastructure for Real-time Embedded Networked Applications

SOA Service-Oriented Architecture

SOCRADES Service-Oriented Cross-layer infRAstructure for Distributed smart Em-
bedded deviceS

SQL Structured Query Language

SSL Secure Sockets Layer

ST Structured Text

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

WSN Wireless Sensor Network

XML eXtensible Markup Language

xiv



CHAPTER 1

Introduction

In the last two centuries, production methods have fundamentally changed. Initiated
by the migration from the countryside as well as the invention of new machines (e. g. the
Flying-Shuttle-Loom by John Kay or the essential efficiency improvement of the steam-
engine by James Watt), resulted in the first industrial revolution. These machines
became an integral part of craft productions and characterized the production process
in the second half of the 19th century. [1]–[4]

At the beginning of the 20th century, electrification revolutionized the equipment in
factories and initiated the second industrial revolution. Some important changes were
the replacement of steam-engines by electrical machines, the development of a basic
automation control based on relay logic and the introduction of assembly lines. These
inventions enabled mass-productions with the potential to increase manufactured quan-
tities at low costs. [1]–[4]

The third industrial revolution (also called digital revolution) was introduced by an
invention of Richard Morley (Modicon) and Odo Struger (Allen Bradley), in the
late 1960’s and early 1970’s, respectively. In order to enhance flexibility and get rid
of the inflexible relay logic, they developed a digital programmable microcontroller,
which is used for controlling actions in industrial environments (e. g. exposed to dirt,
vibrations, or electromagnetic disturbances). Struger termed this device Programmable
Logic Controller (PLC). This novel type of controlling device initiated a shift of the
production paradigm from mass-productions to mass-customizations. It allowed an
expansion of the product variety based on consumer demands. However, this can only
be achieved economically, if the plant is reconfigurable without big effort. [1]–[4]

1



1 Introduction

Product Variety

P
ro
d
u
ct

V
ol
u
m
e
p
er

V
ar
ia
n
t

1850

1913

1955

1980

2000

Craft Production

Mass Production

Mass Customization

Personalized
Production

Regionalization

Figure 1.1: In the course of time, the production paradigm shifted due to technical
abilities and society needs, as presented by Koren [2]. The year dates
describe the shift in the automotive industry in the Western world.

In the year 1995, a next developmental step towards more flexible productions, was
made by the International Society of Automation (ISA). They introduced the standard
ISA-88, which was adopted as IEC 61512 – Batch control [5], in 1997. The major feature
of this standard is the separation of production equipment capabilities from process
recipe information. The standard describes a manufacturing method, called batch
processes, that produces finite output quantities. In contrast to discrete or continuous
productions, batch processes have a dedicated beginning and a defined end. However,
the design principles, described in the standard, can also be adapted to discrete or
continuous productions [6].

Figure 1.1 shows the paradigm shift of manufacturing methods over time, with approx-
imate year dates, that are explicitly valid for the automobile industry in the Western
world, but similar for other industries [2]. Customization is still in progress and cur-
rently turning into a personalized production, which means that the batch size shifts to-
wards one. Therefore, fast-reconfigurable automation systems are requested. However,
current systems have not been designed for personalized production, so an individual
reconfiguration would be too laborious and time intensive [7], [8]. Consequentially, one
of the most important features of current automation systems is flexibility. Systems
that are designed to be flexible, are termed Flexible Manufacturing System (FMS).
Since this keyword is used in different scopes, Browne [9] classified them concerning
their field of usage. Similar concepts, which are designed to handle complex automation
systems by a modular composition of intelligent components, are Multi-Agent System
(MAS) and Holonic Manufacturing System (HMS) [10]. These concepts are based on
distributed systems of autonomous components, that interact with each other to pro-
cess a specific task.

2



1.1 Scope of the Thesis

Currently, there is a trend towards a fourth industrial revolution, also termed Indus-
trie 4.0. This term was coined by the German government, in the context of the
High-Tech Strategy 2020 [11]. It describes the vision of industrial technologies of the
future. Major components of Industrie 4.0 are autonomously interacting physical de-
vices that are networked to a Internet of Things (IoT). Furthermore, this physical
world is fused with the virtual world by Cyber-Physical System (CPS). This is done
by the integration of smart devices into all technical environments, like smart factories,
smart grids, or smart mobility. Concerning to smart factories, Industrie 4.0 tries to en-
hance production processes and facilitate personalized productions by applying design
principles like modularization, decentralization, or service-orientation. [12]

1.1 Scope of the Thesis

This thesis focuses on a flexible, modular and fast-reconfigurable control system for
industrial batch processes, which aims to enhance productivity by reducing planned
downtimes. This shall be reached by using design principles of Industrie 4.0 (modular-
ization, decentralization, and service-orientation) in combination with a recipe based
controlling approach, similar to IEC 61512.

For this, in a first step, a recipe creation tool for describing batch processes is developed.
This tool targets to plant operators as users, and should therefore work without taking
a hand into the controlling program of the equipment. This requires a recipe creation
tool, which is specific to the domain of the plant and easy to handle. In order to execute
the single processing steps of the recipe, a PLC, where all the electrical equipment
of the plant is connected to, provides several services in terms of a Service-Oriented
Architecture, for reading sensor values and manipulating the actuators of the plant.

For demonstration purposes, this principle is evaluated on two linked laboratory tank
system plants with seven tanks connected by partially redundant pipes, illustrated in
Figure 1.2. Due to this redundancy, a second step towards a flexible batch control is a
dynamic route finding, based on a model of the plant.

3



1 Introduction

T102

T101

T
31

0

T
32

0

T
33

0

T
34

0

T
35

0

Figure 1.2: The equipment consists of two linked laboratory tank systems, a Festo
Didactic process industry demonstrator plant (left) with two tanks and a
custom built storage tank system (right) with five tanks. The overlaid labels
are referenced later in this work. Each system has a pump, several valves,
and all tanks but one have a level sensor. Additionally, the right tank of
the left plant (T101) has a heating element and a temperature sensor, as
well as an agitator.

1.2 Thesis Outline

In this thesis, a flexible and modular control for batch processes will be developed. In
the following chapter, an overview of the current state of research concerning this and
related subjects is presented. Afterwards, in Chapter 3, the concept of the system,
based on a Service-Oriented Architecture, is described. Basically, this architecture is
defined by providing services to other network components. Chapter 3 also introduces
an editor for creating batch recipes, which is targeted to be used by process engineers.
Since this work especially focuses on controlling tank systems, this concept also intro-
duces an approach for finding paths dynamically in redundant pipe systems, on the
basis of the actual tank system. For this, another domain specific editor for modeling
tank systems is introduced. The implementation of the developed system is given in
Chapter 4. First, this chapter gives an overview of the programming concept and the
applied tools. Next, the implementation of domain specific editors for creating batch
recipes and modeling tank systems as well as the path finding algorithm is described.
At the end of this chapter, the main program with its recipe processing algorithm and
the implementation of the services is presented. In Chapter 5 this implementation is
demonstrated and evaluated on two linked laboratory tank systems, as depicted in Fig-
ure 1.2. Finally, Chapter 6 gives a conclusion of the developed concept and proposes
future research topics.

4



CHAPTER 2

State of the Art

This chapter gives an analysis of currently available literature for concepts and imple-
mentations, related to the topic of creating flexible batch process control units. First,
an overview of batch processes and batch recipes is presented. Afterwards, the concept
of Service-Oriented Architectures (SOAs) is described, that can be utilized to achieve
a flexible implementation of batch processes. As some major characteristics of SOA
depend on the underlying messaging system, the following section will give a general
overview of different communication principles. Subsequently, a method is introduced,
that enables a domain specific recipe description and creation, just with the knowledge
of a process engineer and without the need of a programmer. In order to improve the
flexibility of industrial plants even more, in the last section, the shortest path prob-
lem is discussed, which addresses to dynamic route finding algorithms in systems with
multiple paths.

2.1 Batch Process Control

Industrial manufacturing processes are classified into three different types: continuous,
discrete, and batch productions. In the manufacturing industry, almost fifty percent
are batch processes [13]. However, most factories use combinations of them, e. g., a
batch production with a discrete packaging [14]. Since batch productions are in the
focus of this thesis, they will be explained in more detail.

A batch process is a cyclic manufacturing method. At every production cycle, which

5



2 State of the Art

Provides
instructions to

Provides production
capabilities for

Defines the processing
capability that can be used to

manufacture a product

Equipment

Defines the information
required to manufacture

a product

Recipe

Figure 2.1: The recipe/equipment separation pattern, as presented by Brandl [14].

is called batch, a finite amount of output material is produced using one or more
equipment components. For this, input material is transported, stored, or transformed.
The transformation can be achieved chemically, physically, or biologically. The exact
production procedure is specified in the batch recipe. It consists of an ordered set of
processing actions and is executed in a finite period of time. [5]

2.1.1 IEC 61512 - Batch Control

The standard IEC 61512 – Batch control [5] defines a terminology and reference models
for developing batch processes. It gives just an abstract overview, however, there
are resources, that give practical implementation details [13], [14], or [15]. A main
characterization of this standard is a strict separation of product definition information
from production equipment capabilities. This allows an independent development and
deployment of physical facilities and recipe creation. Therefore, equipment can be
used for different productions, just by changing the recipe. On the other hand, the
same recipe can be processed on several process cells or sites. In order to produce the
desired product, both, recipe information and physical facilities are linked together,
as illustrated in Figure 2.1. The equipment must provide its production capabilities
to the recipe and, for this, receives instructions to utilize appropriate equipment, the
exact amount of input materials, and the production procedure. This design pattern
of a recipe/equipment separation can be scaled up for any complex manufacturing
process. Especially, complex systems benefit from this, since changes of the recipe
can be performed in a matter of minutes or hours. In contrast to this, conventional
systems requires a reprogramming, which requests a programmer. This can take weeks
to months and has to be documented. [14]

Another integral part of IEC 61512 is the definition of three hierarchical models, the
Physical Model, Procedural Model, and the Process Model. These models provide an

6



2.1 Batch Process Control

abstract description of the physical facilities of a plant, the production procedure, and
the general manufacturing process. The standard proposes four hierarchical levels for
each of these three model, however, it also points out, that additional levels can be
added for complex processes [16]. An overview of the models and their relationships is
given in Figure 2.2.

Physical Model: The Physical Model describes the structure of the equipment. The
top of the hierarchy is formed by a Process Cell. It contains the entire equipment,
which is required to execute one or more batches. On the lower levels, the equip-
ment is subdivided into major and minor processing steps, which are called Units
and Equipment Modules (EMs), respectively. The bottom level of the hierarchy
is formed by Control Modules (CMs). They are responsible for basic control of
all kinds of actuators and sensors.

Procedural Model: The Procedural Model describes the recipe, consisting of the in-
dividual recipe steps. The Recipe Procedure forms the top of the hierarchy. It
provides the instructions of the batch to the Process Cell. The Recipe Procedure
consists of an ordered set of Unit Procedures, which, in turn, consist of an or-
dered set of Operations. Equivalent to the structure of the physical model, they
provide instructions for major and minor processing stages. The bottom level
of the procedural hierarchy is formed by Phases. They instruct the equipment
to perform a distinct task, like adding a specific amount of a liquid to a specific
tank. In IEC 61512, EMs are the lowest level of the Physical Model, which can
be addressed by a Phase.

Process Model: The Process Model gives a conceptual description of the production
process. The structure is similar to the Procedural Model, however, the Process
Model is not linked to any equipment and therefore, it does not contain any plant
specific information and conditions [17].

The Physical Model, described in IEC 61512, can also be generalized to higher hi-
erarchical levels, representing the area, the site, and the whole enterprise on top of
the hierarchy. IEC 61512 indicates that structure, however, it is not explained in de-
tail. Since these levels are not specific to batch productions, it is sourced out into
IEC 62264 – Enterprise-control system integration [18]. It describes the hierarchy from
the viewpoint of operations control technology, by integrating Manufacturing Execu-
tion System (MES) and Enterprise Resource Planning (ERP) functionality.

Although the IEC 61512 reference model is defined for whole Process Cells, it is not
necessary to implement all levels of the hierarchy. Since many processes are small
and simple, Case [19] gives an overview of how this principle can be applied to such
processes. Depending on the process, it may not be economical to implement all
levels, for example, due to fast changing recipes, or an excessive programming effort.
However, every implementation level reduces the required interactions of the operator,
and increases reusability. The minimum implementation refers to the bottom level of
the Physical Model. CMs form the fundament for basic control. They enable a certain

7



2 State of the Art

Process

Process
Stage

Process
Operation

Process
Action

Recipe
Procedure

Unit
Procedure

Operation

Phase

Process
Cell

Unit

Equipment
Module

Control
Module

consists of an
ordered set of

consists of an
ordered set of

consists of an
ordered set of

consists of an
ordered set of

consists of an
ordered set of

consists of an
ordered set of

must contain

may contain

may contain may contain

may contain

Process Model Procedural Model Physical Model

Figure 2.2: The IEC 61512 reference model, consisting of the Process Model, Procedu-
ral Model, and Physical Model [17]. Each of these three hierarchical models
is composed of four levels. The elements of these levels are related to other
elements, which is indicated by black arrows. The relations between Pro-
cess and Procedural Model describe the mapping from the process elements
to procedural elements, which contains additional equipment specific infor-
mation. The relations between the Procedural and Physical Model describe,
where the procedural elements are executed.

8



2.1 Batch Process Control

degree of process safety, for example, by providing failure notifications of exceeded
threshold values. The next step is to implement EMs. They allow a coordination of
associated groups of CMs. The third developmental step is to create Phases in terms
of the Procedural Model, which address the EMs and initiate the corresponding actions.
Finally, these single Phases can be coordinated by formula editors and batch sequencers.
This enables the creation of complete batch recipes and automated processing.

2.1.2 Batch Recipes

Usually, batch recipes are illustrated graphically. For this, the standard IEC 61512-2 –
Batch control – Part 2: Data structures and guidelines for languages [16] defines guide-
lines for a uniform visualization, by using Procedure Function Charts (PFCs), which are
an adaption of the Programmable Logic Controller (PLC) language Sequential Func-
tion Chart (SFC). According to the structure of the Procedural Model with Procedures,
Unit Procedures, Operations, and Phases (see Figure 2.2), PFCs are created for each
level, however, as mentioned above, not all of them have to be implemented.

An example of a PFC with three levels is illustrated in Figure 2.3. Independent of the
hierarchical level, every procedure has to consist of at least one starting symbol and
one end symbol, which are indicated by a triangle. The procedural elements of the
recipes are illustrated by rectangles. As the example shows, there are identification
marks at the corners of the rectangles. These marks describe the belonging to the
hierarchical level, as illustrated in Figure 2.4. The plus marking (+) at the top right
corner indicates an encapsulation of other procedural elements of the next lower level.
IEC 61512-2 also defines a minus sign (-) at the top right corner, which is used, if the
next lower procedure recipe is directly painted inside the rectangle.

The general execution direction of PFCs is from top to bottom and left to right. The
left to right direction is necessary for determining the evaluation order of conditional
branches. This can be useful, e. g., for cooling or heating procedures, if a certain
target temperature has to be reached. In addition to the conditional execution of
branches, IEC 61512-2 also allows concurrent execution of parallel procedures. In the
PFC, this is indicated with two horizontal lines that connect the procedural elements
(see Figure 2.3).

The execution of procedure elements starts, if all preconditions are satisfied. This
is immediately the case after a start symbol, or if the previous procedure element is
completed. However, IEC 61512-2 also allows defining explicit transition conditions,
which are indicated by two short bars below a procedure element. These conditions
imply, that the equipment is asked, if it is safe to complete the previous procedure
element. Just if these conditions are satisfied, the next procedure element can be
started.

Godena et al. [20] propose an alternative approach to complete procedure elements.
Instead of using explicit transitions, they introduce the term dominant phase and

9



2 State of the Art

Add A Complete

Charge.state

= complete

TRUE

React1.state

= complete

Transfer.state

= complete

Add A

Phase

Add B

Phase

Heat

Phase

Mix

Phase

Sulfurize.state

= complete

Sulfurize

Unit Procedure

Charge

Operation

React1

Operation

MoveToStorage

Operation

Initialize

Sulfurize

Operation

Add B Complete

Temperature at 50°C

Figure 2.3: Example of a Procedure Function Chart (PFC) for a sulfurize process. The
figure is adapted from Brandl [14] and identification marks at the corners,
in terms of IEC 61512-2, are added.

label

Procedure

label

Unit Procedure

label

Operation

label

Phase

Figure 2.4: In IEC 61512-2, the PFC symbol of a procedural element depends on the
level of the hierarchy.

distinguish between dominant and nondominant phases. The difference between them
is, that only dominant phases have an end condition. In a parallel execution of a
dominant and nondominant phase, both are complete, if the end condition of the
dominant phase is fulfilled. This can be useful, for example, if a tank has to be heated
up to a specific temperature and concurrently be mixed for an even dispersion of the
heat. In this example, both phases are complete, if the desired temperature is reached.

2.2 Service Oriented Architecture

Service-Oriented Architecture (SOA) is a design pattern, which is used to describe
distributed systems and tasks. It is a term of the Information Technology (IT) and
presently used twofold. On the one hand, it describes web services and on the other
hand, it used to describe business processes. Due to these different applications, a

10



2.2 Service Oriented Architecture

major issue of SOA is, that there are too many similar definitions of what SOA really
is [21]. However, all of them share the same meaning to the central component of the
pattern, which is called service. The following listing gives a brief overview of the key
features of a service [22].

• A service is self-contained and can be modularly composed of other services.

• A service is a distributed component and available over a network via a published
interface.

• Services are interoperable, therefore service providers and clients can use different
implementation platforms and languages.

• Services are discoverable. They are registered in a directory service, which is
accessible for the user.

• Services are dynamically-bounded to the user application. They are located and
bounded at runtime, thus they can be developed temporally independent from
the user application.

In theory a service is described by all these principles, but usually the practice shows
that not all of them are implemented, especially the principles of a discoverable and
dynamically-bounded service are often omitted. [22]

A service is defined by its inputs, outputs, and a service contract. The service con-
tract specifies a set of preconditions, which have to be fulfilled in order to execute the
corresponding action. If the preconditions are satisfied, the contract guarantees post-
conditions. This principle is called Hoare triple [23], [24]. The information, defined in
the service contract is sufficient for a user to consume this service, so it is not necessary
to know any implementation details of the service itself.

Basically, the communication concept of SOA consists of three different types of partic-
ipants. A service provider provides functionalities, which are executed, when they are
requested by the service consumer. In order to inform the consumer about the service
contract and conditions, the service provider registers the service at a service broker.
This is a central directory, where all available services are listed. After registration, the
service consumer can locate the services and call it directly from the provider. These
relations are illustrated in Figure 2.5. However, as mentioned above, the functionality
of the discoverability are often omitted, which means, that the service consumer has a
priori knowledge of the service contract. In this case, a service broker is not required.

These service properties enable the development of flexible systems, based on a com-
position of loosely coupled components. Since this is also an important requirement
in the automation industry, SOA is handled as a promising candidate for future in-
dustrial automation [25]. Several EU projects, like SIRENA [26], SOCRADES [27],
or IMC-AESOP [28] proved the feasibility and pointed out the potential of enhancing

11



2 State of the Art

Service
provider

Service
consumer

Service
broker

1. register
service

2. discover
service

3. call
service

Figure 2.5: The process of a SOA communication is built up of three steps. First, the
service provider registers his services at the broker, which can, in the second
step, be discovered by the service consumer. Finally, the consumer can call
the service from the provider. Figure adapted from Josuttis [21, p. 218].

processes, by implementing SOA in industrial plants. In this context, SOA is used as
the communication technology between different layers in the hierarchy of an indus-
trial plant. Figure 2.6a shows the traditional layered automation pyramid. A main
characterization of this hierarchy is, that each layer only communicates with its neigh-
boring layers. Virta et al. [29] showed an approach of SOA between the MES and
Supervisory Control and Data Acquisition (SCADA) layer. For this, they use OPC
Unified Architecture (OPC UA) as communication protocol. Since the communication
is requested to be bidirectional, both, the MES and SCADA layers run an OPC UA
server, which provides their services. A SOA-based middleware hosts OPC UA clients
using the services provided by the OPC UA servers.

In contrast to this hierarchy with a vertical integration, SOA can also be used in a flat
hierarchy approach, as shown in Figure 2.6b. Therefore, a monitoring functionality is
provided to business layers (MES and ERP), which gives information about current
production capabilities, or stock levels. In dependence of current orders, this infor-
mation can, in turn, be used to send new production instructions to the control level
[30].

The concept of a SOA-based middleware (see Figure 2.6b) can also be extended to
all layers, as presented by Karnouskos et al. [31], which was also the goal of IMC-
AESOP. In this approach, all layers provide their services in a so-called cloud of services.
However, this leads to several challenges due to very large heterogeneous networks.
All layers have individual requirements in network specifications, like transfer rates,
timings, reliability, or Quality of Service (QoS), which have to be supported by the
SOA-based middleware. Even though this is a tremendous overhead, compared to
legacy systems, it enables to manage complex factories of the future and be fit for
the era of Internet of Things (IoT), infrastructure virtualization and real-time high
performance solutions [31].

12



2.3 Messaging Systems

Production process

I/Os, Fieldbusses

IPC/PAC/PLC

SCADA

MES

ERP

Process

Field level

Control level

Process control level

Operations level

Enterprise level
Comm layer

Communication layer

Communication layer

Communication layer

(a) traditional layered automation pyramid

Production process

I/Os, Fieldbusses

IPC/PAC/PLC

SCADAMESERP

Communication layer

Middleware

(b) SOA-based approach

Figure 2.6: The automation pyramid represents the hierarchy of an industrial plant
as standardized in IEC 62264 and IEC 61512. The communication path
of the traditional layered pyramid, on the left hand side, is, from a layer
to a neighboring layer. The graphic on the right hand side illustrates a
SOA-based approach [24], where business layers on top of the hierarchy
(ERP, MES) can directly access data of the control level. The graphics are
adapted from Melik-Merkumians et al. [24].

Cândido et al. [32] used SOA at the device level. They compared OPC UA to Devices
Profile for Web Services (DPWS), which are two commonly used communication pro-
tocols in the automation industry and analyzed their strengths and weaknesses. They
concluded, that none of them can entirely cope with the requirements of SOA at the
device level alone. However, a combined approach allows utilizing the benefits of both
of them.

2.3 Messaging Systems

The complexity of today’s automation system usually demands for distributed systems
[33]. Thus, the requirements for reliable communication between a high amount of
devices is a major challenge for messaging systems. For this, most messaging protocols
specify a QoS, which describes the capabilities of message delivery, e. g., concerning
reliability, or in-order delivery. In the automation industry, usually, it is necessary to
send messages exactly once, since if, for example, a toggling command is sent twice to a
switch, the switch position would immediately be turned back to the original position.
However, this can also be handled by idempotent messages. This means, that the func-
tion does not depend on the current state and an instruction, sent multiple, would not
change the result. This can be expressed mathematically as f(f(x)) = f(x). Therefore,
the message has to be unambiguous, e. g., turning on or turning off, instead of toggling.
By using this, the requirements to QoS can be reduced to an at least once delivery,
which reduces the amount of messages. Besides to a reliable and secure communica-
tion, a modern messaging system must also manage a high throughput of messages and

13



2 State of the Art

be independent from hardware platform, operating system and programming language
[33].

A fundamental feature of a messaging system is the interaction model, which can either
be synchronous or asynchronous. The following section describes messaging patterns,
which are based on these two interaction models.

2.3.1 Message Exchange Patterns

Josuttis [21] uses the idea of synchronous and asynchronous communication to dis-
tinguish two basic Message Exchange Patterns (MEPs). These patterns are general
concepts to describe the communication between two or more participants. Since they
will be explained in the context of SOA, the participants, which are usually called
sender and receiver, will be called (service) consumer and (service) provider. However,
these patterns are universally usable and not limited to SOA. The following sections
will give a short overview of two basic and, on the basis of them, two advanced MEPs.

Request/Response

The Request/Response (also called Request/Reply) pattern is, as Josuttis says [21, p.
124], probably the most important pattern for SOA. For calling a specific service, the
consumer sends a request, which is routed to the provider. Subsequently, the provider
processes the request, executes the corresponding service, and sends a response. This
situation is illustrated in Figure 2.7a. From a programmer’s view, this principle is
easy to implement, since the service call can be handled as a Remote Procedure Call
(RPC). A big benefit of this RPC structure is, that a specific sequence of events can
easily be handled. However, as this process is based on a synchronous communication
model, program execution of the service consumer is blocked for all other actions,
until the response arrives. The response time depends on various parameters, like
transmission speed, the load of the provider, and the execution time of the requested
service. Therefore, a synchronous communication may decrease the overall performance
of the complete system and can, at worst, end up in a mutual deadlock of applications
[34], if, for example, the provider is not available or the request gets lost. Consequently,
such cases have to be considered and handled by the programmer.

One-Way

The second basic MEP is the One-Way MEP. As the name says, the consumer sends a
request to the provider, which processes the request and executes the corresponding ac-
tion. However, the provider does not send any confirm or response message. Therefore,
this pattern is also called fire and forget. The message flow, as illustrated in Figure 2.7b,
equals an asynchronous message. Since no response is expected, a blocking state cannot
occur and the problems of performance losses or deadlocks are avoided. However, this

14



2.3 Messaging Systems

Consumer ESB Provider

Send request
Route request

Route response
Send response

Process

request

(a) Request-Response MEP

Consumer ESB Provider

Send request
Route request Process

request

(b) One-Way MEP

Figure 2.7: Comparison of the two basic Message Exchange Patterns (MEPs), as pre-
sented by Hohpe and Woolf [35]. The vertical red arrow line indicates
the program flow of the consumer program. Figure (a) shows the Request-
Response pattern with its major flaw of a program blocking, while sending a
request, indicated by an interruption of the red line. In the case of the non-
blocking One-Way pattern in (b), the program flow continues immediately
after sending the request, so the red line is not interrupted, however, there
is no response to the consumer. The intermediate station of the Enterprise
Service Bus (ESB) represents the SOA infrastructure, which is responsible
for data transfer.

causes a more complex message handling, since the messages have to be administrated
for a correct assignment and in the correct order to the receiver. A Message Queue
(MQ) is a program, which implements the One-Way pattern and manages the exchange
of messages with other applications. The queue buffers the messages until the receiver
retrieves them.

Request-Callback

The Request-Callback MEP is an advanced messaging pattern, composed of two asyn-
chronous One-Way messages. This pattern is usually used, if a confirmation or response
message is required, but a blocking state must be avoided. Therefore, it is also called
nonblocking Request-Response, or asynchronous Request-Response. Triggered by a
One-Way request of the consumer, the provider answers with another One-Way mes-
sage, which is delivered to the callback function of the calling process. In dependence
of the message, the callback function executes the corresponding actions. In order to
achieve this, all messages must be identifiable for a correct delivery. It is obvious, that
this MEP is much more complex compared to the basic Request-Response pattern,
however, this kind of communication leads to a loose coupling of the services, which is
a major requirement of SOA.

Publish-Subscribe

A commonality of all previously described MEPs is the one-to-one nature with one
sender and one receiver. However, there are scenarios, where one-to-one communica-

15



2 State of the Art

Subscriber 1 Subscriber 2 Publisher

subscribe to Event 1

subscribe to Event 2

subscribe to Event 2

Event 1

publish Event 1 to Subscriber 1

Event 2

publish Event 2 to Subscriber 1

publish Event 2 to Subscriber 2

Figure 2.8: Example of a Publish-Subscribe communication with two subscribers and
one publisher. Subscriber 1 registers for Event 1 and Event 2, whereas
Subscriber 2 just registers for Event 2. Once an event occurs, all subscribers
are notified. On the basis of Unified Modeling Language (UML) syntax,
the open arrowhead of the messages indicate asynchronous messages. For a
better clarity, the Enterprise Service Bus (ESB) is omitted in this graphic.

tions are not well-suited. Such a case could be, if several receivers expect the same mes-
sages, usually for notification purposes, or several components send data to the same
receiver. Therefore, one-to-many, many-to-one, or many-to-many communications fit
much better. The Publish-Subscribe MEP, which is, in the domain of Object-Oriented
Programming (OOP), also known as Observer pattern [36], addresses primarily to such
communications with multiple senders and/or receivers. The pattern is designed to act
very dynamically. The publisher does not need any a priori knowledge of the number or
addresses of the subscribers. However, as a consequence, an additional step is required
for a communication process. In order to receive messages, the subscriber has to be
registered at the publisher. After occurrence of the corresponding event, the publisher
sends messages to all subscribers, which are registered for this event. Figure 2.8 illus-
trates an example of this process. Compared to other MEPs, the Publish-Subscribe
pattern has a better scalability for larger networks with many devices.

In order to give a summary of all mentioned MEPs, there is no universally usable
MEP, since each of these approaches has it benefits and drawbacks. It depends on the
application of which should to be chosen.

2.3.2 Message-Oriented Middleware

The significant increase of message transfer in modern systems with distributed de-
vices, necessitates another form of a messaging system to handle the high amount of
messages reliably [33]. Therefore, a common approach is to source out all messaging
tasks, which are responsible for delivery, to an additional component in the network.
This messaging component is called Message-Oriented Middleware (MOM). The entire

16



2.3 Messaging Systems

Appl. 1

Appl. 2

Appl. 3

Appl. 4

Appl. 5

Appl. 6

(a) Fully connected mesh topology without
MOM

MOM

Appl. 1

Appl. 2

Appl. 3

Appl. 4

Appl. 5

Appl. 6

(b) Star topology with MOM in the center

Figure 2.9: Comparison between a communication system without (a) and with (b)
Message-Oriented Middleware (MOM), adapted from Curry [33]. In a com-
munication system with MOM, each application just communicates with
the MOM and there are no point-to-point connections between applications
to each other. Furthermore, the MOM is responsible for reliable message
delivery.

network transfer is routed from the source application to the MOM, which forwards it
to the target application. As a consequence, there are no point-to-point connections
between applications, since every application just communicates with the MOM. Fig-
ure 2.9 gives a schematic overview of the communication between traditional RPC and
MOM deployments. For distributed systems, the MOM approach has several benefits.
First, the nature of loosely coupled components simply allows to “tap into” an existing
environment, without disturbing it [37]. This leads to a high degree of flexibility and
scalability. Secondly, the source needs not care about a successful delivery, since this is
a task of the MOM. This can be a crucial factor, if the target application is currently
not available or something went wrong at the delivery.

2.3.3 Commonly used Messaging Methods in the Automation

Industry

Based on the different MEPs and the opportunity of integrating MOM, there are several
messaging technologies and protocols. This section gives an overview of some commonly
used protocols in the automation industry.

OPC Unified Architecture

OPC UA is a standard (IEC 62541 – OPC Unified Architecture [38]) for Machine-
to-Machine (M2M) communications in industrial applications. However, it is much

17



2 State of the Art

more than just a communication protocol, since it provides an entire infrastructure to
store data and share it with other participants. The extensive integration of specifica-
tions and features, like accessing (historic) data or providing alarm notifications, offers
a manifold usage. OPC UA is designed for SOA communications, especially at the
process control level (see Figure 2.6), for exchanging data between SCADA systems,
Human Machine Interfaces (HMIs), and other gateways [32]. Since OPC UA is an
industry driven standard, it copes with the requirements for SOA-based automation
systems, as analyzed by Melik-Merkumians et al. [24]. The message exchange bases
on an eXtensible Markup Language (XML) structure, which enables a platform inde-
pendence between participants. Another benefit of OPC UA, is the potential of using
a secure communication channel.

OPC UA is based on a Client-Server architecture, that stores all data in a common
address space, which is usually maintained by a superior control unit, e. g., an Industrial
PC (IPC), or Distributed Control System (DCS). The address space, for example
of a sensor, need not just contain the sensor value, but can also contain additional
information, like sensor type, engineering unit, or the tolerance of the sensor. In
systems with several OPC UA servers, it is possible to implement a discovery server,
where all OPC UA servers can be registered and found by OPC UA clients. In order to
get data out of the address space, or write into it, there are two options [39]. First, the
clients can navigate through the address space of the servers and request the desired
data, or second, if the unique NodeID, which is the identification of the desired data,
is previously known, the client can directly access these data.

The message transfer of OPC UA is based on the Request-Response MEP with an asyn-
chronous message exchange [40, p. 126]. However, most OPC UA Stack Application
Programming Interfaces (APIs) wrap them into synchronous calls. The communica-
tion via OPC UA requires several request-response queries for opening a secure channel,
finding servers, getting end points, creating a session, activating it, reading or writing
the desired data, closing the session, and closing the secure channel [39]. Compared to
other protocols, that will be explained later in this section, this is much protocol over-
head, which results in a corresponding transmission time. However, if a high amount
of data is to be transmitted and the connection is established, OPC UA is very efficient
[41].

OPC UA also provides the feature of subscribing to an event. If this event occurs, the
subscribed client gets notified. Anyhow, this requires a resource intensive permanent
established connection between Client and Server. Due to that reason, in March 2016,
the OPC Foundation, which is the maintainer of OPC UA, announced an additional
OPC UA specification for Publish-Subscribe functionality in replacement of the Client-
Server architecture, which sends data connectionless from the publisher to subscribers.
This Publish-Subscribe architecture suits very well for frequent transmissions of small
amounts of data, which is often the case between well-known participants like PLCs.
[42]

18



2.3 Messaging Systems

Devices Profile for Web Services

DPWS is another SOA-based M2M communication protocol, which was in the focus of
the previously mentioned EU projects SIRENA and SOCRADES. Originally, DPWS
comes from the high level IT, focusing on communication with resource limited embed-
ded devices of the lowest device level [32]. Therefore, DPWS uses network protocols,
which are well-known in the IT, like Hypertext Transfer Protocol (HTTP) with Trans-
mission Control Protocol (TCP) or User Datagram Protocol (UDP) as underlying data
transfer protocol. DPWS is build on top of the synchronous message exchange protocol
SOAP, and relies on additional Web Service (WS-*) specifications [27], [43]:

• WS-Addressing defines a transport-protocol independent message transfer. For
this, different protocols, as the aforementioned ones, can be used. Supplementary
to the synchronous message exchange of SOAP, WS-Addressing provides a way
for asynchronous One-Way messages.

• WS-Eventing specifies an event handling, based on a Publish-Subscribe architec-
ture, that allows subscriptions to events.

• WS-Discovery defines a discovery protocol, based on a network multicast, for
searching and locating other devices in the network.

• The WS-Security specification describes an optional set of functions for ensuring
end-to-end message integrity, message confidentiality, and authentication of the
participants. For a secure communication, Transport Layer Security (TLS) can
be integrated.

Similar to OPC UA, an interoperability and platform independence can be achieved by
an XML-based message exchange. However, DPWS is less efficient as OPC UA, since
there is no optimization of the XML data, which results in an even higher data traffic.
Furthermore, the data structure of DPWS is not related to real-world objects with all
its variables, attributes, and relations, as it is in OPC UA with the address space [32].
However, DPWS benefits of the usage of generic open web standards [32], whereas a
drawback of OPC UA is, that there is no open reference implementation available, that
can be used in research for free [44].

Message Queue Telemetry Transport

Compared to service-oriented messaging protocols, like OPC UA or DPWS, there is
another group of messaging protocols, that is not designed for executing a service, but
focuses on the message transfer. A prominent representative of these message-oriented
communication protocols, is Message Queue Telemetry Transport (MQTT). It is a
simple and lightweight messaging protocol, designed for use in constrained networks
with low bandwidth, high latency, data limits and fragile connections [45]. Due to the
low requirements and just a little protocol overhead with a fixed header of only 2 bytes,

19



2 State of the Art

Publisher Broker

PUBLISH

(a) QoS 0

Publisher Broker

PUBLISH

PUBACK

(b) QoS 1

Publisher Broker

PUBREC

PUBLISH

PUBREL

PUBCOMP

(c) QoS 2

Figure 2.10: Comparison of different Quality of Service (QoS) levels of the Message
Queue Telemetry Transport (MQTT) protocol. These figures illustrate
the message transfer from the Publisher to the Broker. In Figure (a) with
QoS 0, the message is published without any confirmation. In Figure (b)
with QoS 1, an acknowledgment is sent back to the Publisher, in order to
confirm the reception of the message. In a failure case, where the message
is not confirmed, the Publisher resends the message. In addition to the
message transfer of QoS 1, in Figure (c) with QoS 2, the reception of the
acknowledgment is confirmed to the Broker with an additional publish
release (PUBREL) and publish complete (PUBCOMP) message. This is
the only way to guarantee a delivery, which is sent exactly-once. The same
principle is applied for the Broker to Subscriber communication.

MQTT is well-suited for distributed systems, consisting of many devices with limited
resources, like in Wireless Sensor Networks (WSNs) or IoT applications.

MQTT is based on a Publish-Subscribe architecture with a message broker, which is
responsible for message delivery. In order to achieve a reliable communication, MQTT
specifies three QoS levels. The QoS level describes whether a message must be delivered
at most once (QoS 0), at least once (QoS 1), or exactly once (QoS 2). The message
transfer of these QoS levels is illustrated in Figure 2.10. However, the higher the
QoS level, the higher the necessary amount of transmitted messages, since the arrival
of the notification at the sender has to be confirmed to the receiver. Due to this
additional confirmation messages and the need of an additional message broker, the
latency of message delivery for MQTT is higher, compared to other protocols without
an intermediate station.

For MQTT, there are several open-source implementations available, on both sides, for
brokers and clients, as well as for different platforms and programming languages. In
order to achieve secure communications, TLS, or its predecessor Secure Sockets Layer
(SSL) can be used. However, this requires more computing power for encryption/de-
cryption and increases the transmission overhead [45]

20



2.3 Messaging Systems

Zero MQ

ZeroMQ is a lightweight message-oriented messaging library for various sorts of commu-
nications, like in-process, or intra-process communication, as well as between different
devices in distributed networks. Compared to other message-oriented protocols, the
major difference is, that ZeroMQ is designed to work without a message broker. This
is also indicated by the term Zero in ZeroMQ, which means, that no message broker is
required and therefore latencies can be reduced to (almost) zero [46]. Hence, messages
are directly sent to the receiver. For this, several MEPs, like a synchronous Request-
Response or asynchronous Publish-Subscribe pattern can be used. Concerning reliable
message delivery, ZeroMQ has no features for a guaranteed delivery implemented, how-
ever, the official ZeroMQ Guide [47] proposes several patterns to implement reliability.
There are also source code examples available for implementing these patterns [46].
Despite of the major characteristic of ZeroMQ, in fact that it works brokerless, most of
these pattern require a message broker, which can still be implemented with ZeroMQ.
Anyway, it is obvious, that an additional broker influences the latency of message
delivery negatively.

Data Distribution Service

Data Distribution Service (DDS) is a M2M protocol designed for real-time communi-
cations between embedded devices in distributed systems. A major feature of DDS is
the concept of data transfer, which is different, compared to other protocols with a
message-oriented or service-oriented approach, since data is not exchanged by sending
messages or requesting services. It bases on a data-centric Publish-Subscribe approach,
which uses a Global Data Space (GDS) that is accessible for all interested applications
[48]. Publishers can post new data to the GDS and send notifications to all subscribing
applications, that are registered for this specific topic. Subsequently, these applications
can directly access these data from the GDS, which is different from message-oriented
protocols, where the data is directly sent. Figure 2.11 illustrates this communication
process.

Due to this data-centric approach, that utilizes a Publish-Subscribe architecture, DDS
is a very flexible and scalable communication protocol, since the GDS is not restricted
to one physical device, but can also utilize several local data spaces of distributed
devices and combine them to one logical GDS. DDS is designed for low latency applica-
tions with a high throughput, therefore, there are not intermediate servers, as in OPC
UA, and DDS also supports multicasts, so that all subscribers are addressed at once.
For providing and accessing data, DDS features finely controllable QoS functionality
with different modes, ranging from best-effort to reliable in-order delivery [49]. DDS
can be used on different platforms independent of the programming language and oper-
ating system. For this, there are several proprietary and open-source implementations
available covering those platforms.

Similar to message-oriented messaging protocols, like MQTT, DDS is not designed for

21



2 State of the Art

Publisher

DataWriter

Subscriber

DataReader

data values

data values

Subscriber

DataReader

data values

dissemination

Data-Object

Identified by means
of the TOPIC

Identified by means
of the TOPIC

1

3

3

2

Publishing
Application

Subscribing
Application 1

Subscribing
Application 2

Figure 2.11: Schematic overview of the data transfer in a Data Distribution Service
(DDS) configuration, as presented by the Object Management Group
[48]. The communication process is as follows: first, data is written via
DataWriter methods by the publishing application to a Data-Object. Sec-
ondly, the publisher notifies all subscribers, which can, thirdly, access the
data via DataReader methods.

executing services in terms of SOA. If these functionalities are required, they have to
be implemented additionally.

2.4 Domain Specific Language

As mentioned in Chapter 1, personalized production is a major challenge of current au-
tomation systems. A way to handle this challenge is to use fast changeable production
recipes, which, in turn, requires flexible recipe creation tools. The major task of such
a tool is to represent all possible actions with an easy to handle user interface. At best,
the process engineer can create a program just with domain specific process knowledge
and process specific keywords. Domain Specific Languages (DSLs) addresses exactly
to such problems.

A DSL is a language, that is tailored to one specific application area. It models a
problem just at the same level of abstraction and uses common notations of the do-
main. The opposite of a DSLs are General Purpose Languages (GPLs), which are
universally usable across domains. Some commonly used GPLs are Java, C/C++, and
Python. The major characterization of GPLs is a clear Turing completeness [50]. This

22



2.4 Domain Specific Language

means simplified, that anything, which is capable to be computed on a computer, can
be expressed with the language [51]. Since DSLs are an abstraction of one specific
domain, they are usually not Turing complete [52]. This, on the other hand, reduces
the program complexity of the DSL and keeps it compact. An example of a textual
DSL, that points out the potential of compactness of a DSL, is presented in Listing 2.1.
It shows a simple database query in Structured Query Language (SQL) syntax. The
code is reduced to the minimum of essential components without unnecessary overhead.

1 SELECT ∗
2 FROM Account l i s t
3 WHERE ID = 5 ;

Listing 2.1: SQL Example: The query responses all (*) entries from the database named
Accountlist for the account with ID = 5

2.4.1 Classification of DSLs

DSLs are classified into two basic types, internal and external DSLs. The former one
depend on a host language, whereas the latter one is independent of any other lan-
guage. For developing a DSL, nowadays, all necessary tools are packed into Integrated
Development Environments (IDEs).

Internal DSLs

Internal DSLs are build on the basis of an existing GPL (also called host language)
and utilize their infrastructure [53]. Thus, the DSL is bound to the underlying GPL,
which brings its benefits and drawbacks. On the one hand, building an internal DSL
enables the usage of a working environment and features. This can be benefiting, if the
programmer is used to the GPL, but an obstacle if not. On the other hand, internal
DSLs are limited to the host language. If something has to be expressed that does
not map well with the host language, it is getting complicated to achieve the desired
functionality [54]. Usually, internal DSLs are syntactically and structurally oriented
on the host language [54].

External DSLs

An external DSL enables the development of a language, which is exactly required
with as little as possible but as much as necessary features. In contrast to internal
DSLs, external DSLs are build from scratch with their own syntax and semantics [53].
Therefore, they do not require infrastructure of a GPL. However, in order to execute
a program, separate infrastructure is required for lexical analysis and parsing as well
as code interpretation or code generation. Figure 2.12 shows a standard process of
language recognition, by using a lexer and parser. The lexical analysis converts a

23



2 State of the Art

sp=100; sp  =  100  ;LEXER PARSER

chars tokens

Language recognizer

statement

assign

parse tree

sp   =   expr  ;

100

Figure 2.12: Language recognition by a lexer and parser, adapted from Parr [56]. The
lexer analyses the input sentence, that consists of single characters, and
combines them into syntactically associated tokens. In the next step, the
parser analyses these tokens and put them into a parsing tree, which
is also termed Abstract Syntax Tree (AST). The AST is the basis for
semantical correctness checks and also the basis for code generation or
code interpretation [55].

sequence of characters into a sequence of tokens, which are single atomic elements of
the language, like keywords, identifiers, or symbol names [55]. Subsequently, these
tokens are syntactically analyzed and put into context by a parser. Finally, there are
two ways to execute the desired DSL program, via an interpreter or code generator
[52, p. 29]. An interpreter is running directly on the target platform. It loads the DSL
program and executes the desired actions. A code generator requires an additional step,
since it just creates the source code for another language, like a GPL. This generated
code can now be compiled or interpreted with common tools of the corresponding
language.

However, for a comfortable DSL development and usage several additional features
are required. For this, Fowler coined the term Language Workbench [54], [57]. It inte-
grates all necessary tools into an IDE, starting from the definition of language specific
keywords up to running the DSL program. For an easy development, supplementary
features for, e. g., testing, debugging, syntax highlighting, code completion, or symbolic
integration between all developmental steps should also be integrated.

2.4.2 Defining a Grammar of a Domain Specific Language

A grammar is the basis of every language, independent whether it is a DSL or GPL.
It describes all production rules, that define how a valid textual input, which is called
sentence, should look like [52]. A common notation for describing grammars is the
Backus - Naur Form (BNF) [58], named after John Backus and Peter Naur. In order to
write sentences in BNF notation, two different types of symbols are required. Terminal
symbols form the basis and can not be fragmented into other symbols. Non-terminal
symbols, on the other hand, can consist of terminal and non-terminal symbols. A
sentence in BNF looks as follows: S ::= P1 . . . Pn, where S is the non-terminal symbol,
which is defined by a series of pattern expressions P1 . . . Pn [52]. Pattern expressions, in
turn, consist of keywords and other terminal or non-terminal symbols. In Listing 2.2,

24



2.4 Domain Specific Language

an example in BNF notation is presented.

1 <d ig i t > : := ’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’
2 <uint> : := <d i g i t >|<uint><d i g i t >
3 <int> : := <uint >|( ’− ’<uint >)

Listing 2.2: Definition of an integer in BNF-notation. In the first sentence, digits are
defined. A digit can either be 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The or
statement is indicated by a vertical bar “|”. The second sentence describes
the grammar rule for unsigned intergers (uint), consisting, either of only
one digit, or another uint followed by a digit. In the third sentence, signed
integers (int) are defined, which consist either of a uint or a minus sign
and a uint.

This example shows, that the definition of a signed integer requires three rules. If
the explicit definition of an unsigned integer is not necessary, the grammar rule of the
signed integer can also be written in two lines, as illustrated in Listing 2.3

1 <d ig i t > : := ’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’
2 <int> : := (<d i g i t >|<int><d i g i t >) | ( ’− ’ (<d i g i t >|<int><d i g i t >))

Listing 2.3: Another integer definition in BNF-notation, with only two grammar rules.

However, this example is quite complicated to read. In order to shorten grammar defini-
tions and even enhance the readability of the grammar, there are several improvements
of the BNF [52]. One of these improved notations is the Extended Backus - Naur Form
(EBNF), which is standardized in ISO/IEC 14977: Information technology – Syntactic
metalanguage – Extended BNF [59]. The advantage of using the EBNF for grammar
definition is the additional support for several convenience operators. As illustrated in
Listing 2.4, the grammar rule for a signed integer in EBNF-notation can be shortened
to only one line.

1 i n t = [ ’− ’ ] { ’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’ } ;

Listing 2.4: Definition of an integer in EBNF-notation. The square brackets describe
an optional expression. In this example, the minus sign can, but need
not be used. Furthermore the curly brackets describe a repetition. The
bracketed rule can be repeated as often as desired. In EBNF-notation,
every sentence is terminated with a semicolon.

A commonly used tool for actually defining DSL grammars is the Xtext framework [60]
of the Eclipse Foundation. Xtext is a language workbench (see Section 2.4.1) for devel-
oping textual DSLs. It bases on a EBNF-like notation, however, some symbols vary. In
Xtext, optional expressions are marked with parenthesis followed by a question mark
sign “(optional expression)?”, instead of square brackets “[optional expression]”
of the standard EBNF-notation. Furthermore, in Xtext, repetitions of rules are marked
with a plus sign “(rule)+” or an asterisk “(rule)*”, for describing one or more or zero
or more occurrences of the rule, respectively. Listing 2.5 gives an example of the signed
integer definition in Xtext nomenclature.

25



2 State of the Art

1 grammar org . xtext . example . mydsl .MyDsl hidden (WS)
2 import " http : //www. e c l i p s e . org /emf/2002/ Ecore " as ecore
3 generate myDsl " http : //www. x t e x t . org /example/mydsl/MyDsl "
4

5 Model : i n t e g e r L i s t+=in t ∗ ;
6 i n t : ( ’− ’ ) ? (DIGIT)+;
7

8 terminal DIGIT : ( ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’ | ’ 0 ’ ) ;
9 terminal WS: ( ’ ␣ ’ | ’ \ t ’ | ’ \ r ’ | ’ \n ’ )+;

Listing 2.5: DSL example based on the Xtext framework. The Model contains a list of
zero or more integers. The characteristic of a list is indicated by the “+=”
symbol.

The first three lines of this example are necessary to define the workbench of the
language and importing the required ecore metamodel. The grammar of the DSL itself
starts with the definition of the Model, which describes a list of zero or more integers.
In the next line, these integers are actually defined, with an optional minus prefix “(’-
’)?”, followed by one or more DIGIT symbols. The definition of the DIGIT represents
a terminal rule, as described above, since it cannot be fragmented into other symbols.
In order to ignore whitespace characters, another terminal rule is required. As defined
in the first line (hidden(WS)), all these characters will be ignored by the parser.

2.4.3 Application Examples of Domain Specific Languages

In the following sections, typical examples of DSLs are described. Although DSLs are
used in various domains, these sections just cover the domains of programming PLCs
and creating batch recipes in terms of IEC 61512.

IEC 61131-3

IEC 61131-3 – Programmable controllers - Part 3: Programming languages [61] is a well-
established standard, that defines five languages for programming PLCs. Two of them,
Instruction List (IL) and Structured Text (ST), are textual languages, and the other
ones, Ladder Diagram (LD), Function Block Diagram (FBD), and SFC, are graphical
DSLs. IL and ST cannot exactly be termed DSLs or GPLs, since although they are
just used for PLC programming, they are very similar to the assembler language and
the GPL PASCAL, respectively. All five IEC 61131-3 languages are used to develop
PLC programs, however, every language covers a different environment where it is most
suitable (see Table 2.1).

An example of the PLC language LD is illustrated in Figure 2.13. It shows a tradi-
tional wiring diagram in Figure 2.13a and the equivalent implementation of a DSL,
which is defined in IEC 61131-3 and called Ladder Diagram, in Figure 2.13b. As can

26



2.4 Domain Specific Language

Table 2.1: IEC 61131-3 languages and typical applications, adapted from Vogel-Heuser
[62].

Name / Functionality Application

Ladder Diagram / circuit diagram On/off, lamps

Instruction List / assembler type Time-critical modules

Function Block Diagram / Boolean Interlocking, controller, reusable
operations and functions functions, communication

Sequential Function Chart / state diagram Sequences

Structured Text / higher programming language Controller, technological functions

A1

E1 E2

A1

(a) Wiring Diagram

A1E1

E2 A1

(b) Ladder Diagram
(IEC 61131-3)

Figure 2.13: Comparison of a traditional wiring diagram with a DSL implementation of
IEC 61131-3, called Ladder Diagram. The DSL represents almost a one-to-
one mapping of the wiring diagram and therefore it is very easy to create
for electrical engineers. The circuit shows a simple latched contactor/relay.

be seen, the Ladder Diagram is almost a one to one representation of the wiring di-
agram. Therefore, every electrical engineer with its domain specific knowledge can
create Ladder Diagrams, which can be executed on PLCs.

IEC 61499

Another example for using a DSLs for programming PLCs and DCSs, is defined in
the standard IEC 61499. In the industry, it is regarded as a possible successor of the
well-established standard IEC 61131 – Programmable controllers [65] [66]. Compared
to IEC 61131, IEC 61499 is distinguished by two major differences, first, a direct
support for distributed systems, and second, an event-driven execution process [24].
The support for programming distributed systems addresses exactly to the demands

27



2 State of the Art

Event flow

Data flow

Event flow

Data flow

Data inputs Data outputs

Event inputs Event outputs

Execution control

(hidden within block)

Encapsulated
functionality

(hidden within block)

Instance name

FB Type name

Resource capabilities
(scheduling, communications and

process mapping)

Figure 2.14: Description of an IEC 61499 – Function Blocks [63] Function Block (FB),
adapted from Zoitl and Lewis [64]. A Function Block (FB) consists of an
event part on the top and data part at the bottom of the block. Inputs
are placed on the left side of the block, and outputs on the right side.
The small rectangles indicate the relation for each event input/output to
the data inputs/outputs. For incoming events: if an event is triggered,
the corresponding data inputs are read. For outgoing events: if an event
is sent, all corresponding data outputs are valid. The functionality of
the block itself, is hidden inside the block and usually programmed in
Structured Text or C/C++.

of current and future automation systems, as described in Chapter 1. IEC 61499
is a graphical DSL with FBs as its basic component, that is exemplary illustrated
in Figure 2.14. The representation of FBs is similar to the IEC 61131-3 language
FBD, however, as mentioned earlier, a major characterization of the standard is its
event-driven process execution. Therefore, additional to a typical FBs of IEC 61131-
3, an IEC 61499 FB has, on the top of the block, an event execution control with
incoming and outgoing event junctions. If an event is triggered, the associated data
inputs, which have to be valid at triggering, are read, the corresponding functionality
is executed, data outputs are written, and finally, the output event(s) are sent [64].
In IEC 61499, there are four different types of FBs defined. Basic FBs are used for
simple tasks, Service Interface Function Blocks (SIFBs) for communication with other
resources, Composite Function Blocks (CFBs) for combining several other FBs into a
clear new block, and Adapter FBs as a structured interface for data and event signals
with no other functionality. Due to this modular concept of IEC 61499, a major benefit
of the standard is the reusability.

28



2.4 Domain Specific Language

MONACO

Prähofer et al. [67] developed a textual DSL for hierarchical, event-based machine
automation programming. They termed it MOdeling Notation for Automation COntrol
(MONACO). The syntax is similar to the GPL PASCAL (e. g., it supports subroutines,
loops, local variables), however, it’s targeted to domain experts. Due to the event-
driven structure, procedures can react to specific events, for example, if a certain
target temperature is reached, the heater shall be turned off. In addition to the textual
editor, they also implemented a visual programming environment, that bases on the
same source.

Procedural Function Chart

The PFC is a graphical DSL for creating batch recipes and is standardized in IEC 61512-
2. Please see Section 2.1.2 for a detailed description.

Petri nets

Petri nets are another graphical method for describing procedures of batch processes
[68]. Initially, they were created as a general purpose mathematical and graphical tool
to describe relationships between conditions and events in computer systems. However,
due to their event-driven structure, they also comply with the requirements of industrial
manufacturing systems, since they are suitable for modeling system states and their
transitions into other states, based on external events [69]. With Petri nets, sequential
and parallel processes can be modeled. By adding the concept of time to Petri nets, it
is also possible to derive and evaluate quantitative performance indices, like the cycle
time of batches, production rates, or resource utilization [68].

Basically, Petri nets consist of four fundamental symbols. In batch processes, they are
depicted and used as follows:

• place nodes are depicted as circles and formulate the status of resources or
conditions,

• transitions are depicted as boxes or vertical bars and are used to model events,

• directed arcs connect place nodes with transitions and define specific actions,
and

• a discrete number of tokens, depicted as small solid dots, are used as indicator
for active places. [68]

Figure 2.15 illustrates an example of a batch process, that is modeled as a Petri net. A
basic design rule of Petri nets is, that there is always a change of places and transitions.

29



2 State of the Art

Init S
ta

rt
E

ve
nt

Add A L
ev

el
re

ac
h
ed

Add B

Mix

L
ev

el
re

ac
h
ed

Heat

T
em

p
.

re
ac

h
ed

Complete

Figure 2.15: Batch recipe defined as a Signal Interpreted Petri Net, applied to the Phase
procedure of Figure 2.3. The small solid dot at the Init Node indicates the
currently active state and is forwarded to the next state if the following
transition, which is Start Event in this case, is triggered.

This means, that a transition must be followed by a place and vice versa. At the
beginning of the example, there is just one token, which indicates the initial state.
This state is followed by a start event transition. Generally, if all previous places are
marked with a token, all these tokens from previous places are taken and one token is
put into all following places, that are directly connected to the transition. Therefore,
the number of tokens in a Petri is not necessarily constant. At transitions, additional
tokens can be created or destroyed. If Petri nets are used to describe batch processes,
the principle of transitions is extended. In addition to the condition, that all previous
places must be marked with a token, an external event-based condition, like the reaching
of a specific fluid level or temperature, can be added. This kind of Petri nets is called
Signal Interpreted Petri Net (SIPN).

Tabular Batch Recipe Description

In contrast to these graphical representations of batch recipes, Godena et al. [20]
proposes a tabular notation, which is probably easier to implement. As an example,
the Phase procedure of Figure 2.3 is mapped to a tabular batch recipe and illustrated
in Table 2.2. Phases are represented as cells of the table. An additional asterisk (*)
indicates a dominant Phase with an end condition, e. g., a certain filling amount or end
temperature, as described in Section 2.1.2. All Phases of the same row are executed
simultaneously. If all dominant Phases of the active row are completed, the phases of
the next row are started.

30



2.5 Shortest Path Problem

Table 2.2: Batch recipe in a tabular notation of Godena et al. [20], applied to the Phase
procedure of Figure 2.3. The asterisks indicate dominant Phases with an
end condition.

Add A*

Add B* Mix

Heat* Mix

2.5 Shortest Path Problem

Transport systems are widely used in the industry, like for pumping liquids through
pipes. It is very beneficial to add redundancy to such systems, since this enables to
execute multiple transporting actions. Another benefit of redundant transport paths is,
that scheduled and unscheduled events can be handled with less downtimes. However,
this requires dynamic path planing algorithms, which are able to react to such events
and calculate the shortest path depending on the current situation.

2.5.1 Graph Fundamentals

A graph describes a set of Nodes (also called Vertices), which are connected via Edges.
Depending on the application of the graph, it features specific properties. Basically,
graphs are classified in directed or undirected and weighted or unweighted graphs. The
weight of edges can, for example, be used to describe the distance of the route. This
information enables to find the shortest path between two nodes in a graph, which is
called shortest path problem. Weighted graphs can further be distinguished, whether a
negative edge weight is allowed, or not. However, a major problem of negative edges
is, that negative cycles can occur, where the total edge weight of a path from a node
over one or more edges back to the original node is less than zero. In such a graph, the
shortest path is not defined. This problem is illustrated in Figure 2.16. In Figure 2.16a,
the possible paths from node A to node C are:

weight(A → C) = 4 (2.1)

weight(A → B → C) = 3 (2.2)

weight(A → B → D → C) = 1. (2.3)

Therefore, A → B → D → C is the shortest path. However, in Figure 2.16b, where
just the weight of the edge from node C to node B has changed, it is not possible to
determine a shortest path, since this would yield

weight(A → B → D → C → B → D → C → B → ...) → −∞. (2.4)

31



2 State of the Art

A

B

C

D

3

4

1

-3

05

(a) no negative cycle

A

B

C

D

3

4

1

-3

01

(b) negative cycle between nodes B →
D → C

Figure 2.16: Sample graph with negative edge weight. Figure (a) has no negative cycle,
whereas in Figure (b) there is a negative cycle.

To prevent such negative cycles, it is obvious, that the sum of every cycle must be
greater or equal to zero.

2.5.2 Shortest Path Algorithms

In order to find the shortest path in a graph, there are two different kinds of algorithm
classes, single-source and all-pair shortest path algorithms [70]. Single-source algo-
rithms, on the one hand, are designed for calculating one shortest path between two
nodes. On the other hand, all-pair shortest path algorithms calculate shortest paths
between any two nodes in a graph. Since the latter ones are designed for calculating all
paths at once, they are much more efficient for such situations. However, in a dynamic
scenario, where the graph changes, e. g., due to blocked transport routes, they are not
as efficient.

In the following sections, some commonly used shortest path algorithms are described.
Due to the target of implementation, only single-source shortest path algorithms for
weighted and directed graphs are handled.

Dijkstra’s Algorithm

Dijkstra’s algorithm [71] is one of the best-known shortest path algorithms in graph
theory [70]. It determines the shortest path for directed or undirected graphs with non-
negative edge weights. At first, the algorithm starts with an initializing phase. In this
phase, the distance of the source node is set to zero and the distance of all other nodes
to the source node is set to infinity. The algorithm stores two values for every node, the
distance to the source node and the previous node. After initialization, the algorithm
starts analyzing all neighboring nodes of the source node and updates their stored
distance, based on the weight of the edge, that connects them. Now, the algorithm
takes the node with the shortest distance and analyzes all reachable neighboring nodes.
If a node can be reached in various ways, of course, the shortest possible distance and

32



2.5 Shortest Path Problem

the corresponding previous node is stored. Therefore, while computing, the algorithm
always stores valid paths of visited nodes, however, they are not necessarily the shortest.
The shortest path is just known at the end of the algorithm. This procedure is repeated,
until all nodes are analyzed once, and therefore, the shortest path is found.

A* Search Algorithm

The A* (A Star) Search algorithm [72] is another algorithm for determining the short-
est path in a non-negative weighted graph. It is a variation of Dijkstra’s algorithm,
that adds heuristic information for finding the shortest path [70]. This heuristic is
used to estimate the distance between source and target node. However, this requires
additional information of the graph, like the representation of the graph in a coordinate
system, where the distances can be determined from the coordinates. A typical field
of application of the A* Search algorithm is route planning in road networks. In such
a case, the heuristic information is given by the beeline between start point and target.
The initializing phase is similar to Dijkstra. After this phase, the algorithm starts
analyzing all neighboring nodes of the source node. A* Search also stores a distance
value and the previous node, however, the stored distance value is not just the distance
from the source node to the currently analyzed one, but the estimated distance to the
target is added. Based on this distance, the node with the shortest value is the starting
point of the next step. This procedure is continued until the target node is reached.
Since the estimated distance to the target represents the absolute minimal distance,
unfavorable nodes with a higher distance need not be analyzed. Therefore, the A*
Search algorithm is usually much faster than Dijkstra’s algorithm.

Bellman-Ford Algorithm

The shortest path algorithm of Bellman-Ford [73] (also known as Bellman-Ford-Moore
algorithm) can handle directed graphs with negative edge weights, however, not with
negative cycles, which can just be detected. But for all that, the running time of
Bellman-Ford’s algorithm is longer, than for Dijkstra’s algorithm [74]. At first, there
is, similar to Dijkstra’s algorithm, an initializing phase, where the distance of the source
node is set to zero and the distance of all other nodes to the source node is set to infinity.
After initializing, the algorithm iteratively tries to reduce this distance. This iteration
takes as many cycles as nodes exist in the graph. In every iteration cycle, every edge
e(nprev → nfollowing) is analyzed, if the distance to the following node nfollowing can be
reduced. The new distance of the following node is defined as:

δnew(nfollowing) = min{δold(nfollowing), δ(nprevious) + ωedge}, (2.5)

where ω equates to the weight of the edge. However, the actual distance to the source
node is just known at the end of the algorithm. This procedure is repeated in each cycle.
Finally, a negative cycle exists, if any distance can be reduced in the last iteration cycle.
Otherwise, the shortest path is found.

33



2 State of the Art

2.6 Research Questions

An emerging challenge of industrial production systems is the increased customer de-
mand of personalized productions. The best way for meeting this requirement is the
development of flexible automation systems, where the production procedure can easily
be adapted to the demanded goods.

For this, the current state-of-the-art concerning the issue of improving the flexibility of
batch productions was analyzed and several concepts and applications were presented
in this chapter. As described, the standard IEC 61512 defines a good basis for batch
process control. The major characterization of this standard is a strict separation
between physical equipment and product definition information, however, it does not
give any guidelines, of how this can be implemented. An eligible candidate for this
interface is the usage of services in terms of a Service-Oriented Architecture, as already
shown by Melik-Merkumians et al. [24]. They define services for heating, cooling,
agitating, and adding liquids. These services correspond to typical Phases, as described
in IEC 61512. Therefore, two questions arise:

Research Question 1

Can the flexibility of batch productions be improved by breaking these typical
services/phases down to more atomic services?

Research Question 2

Is a flexible and modular approach reasonable for systems with low or no changes
in the recipes?

34



CHAPTER 3

Concept of a Flexible Batch Process Control

In this chapter, a concept for a flexible and modular batch process control is pre-
sented. Basically, the concept can be used in any batch process domain, like brewery,
oil industry, or pharmaceutical drugs productions, however, the following sections con-
centrates on the domain of tank systems with redundant piping, since this concept will
be demonstrated on such a system in the next chapter.

3.1 General Overview of the Concept

The fundament of this concept is the standard for batch processes, IEC 61512 – Batch
control [5], which describes a strict separation of the physical equipment and the pro-
duction instructions, that are defined in the batch recipe. This separation is the first
step of a flexible batch process control. However, the standard just gives guidelines, but
no instructions, on how this separation can be applied. As indicated in the last chapter,
Service-Oriented Architecture (SOA) fits very well for these requirements, although it
is not especially designed for using it as a middleware for batch processes. The ser-
vice itself represents the action, that the recipe processing algorithm requests from the
equipment. Such a service request must contain all parameters, that are required to
perform the corresponding action. In order to define a batch recipe, which calls these
services, an input method for recipe is required. Conceptual details about a Domain
Specific Language (DSL) based recipe creation tool and recipe processing will be ex-
plained later, in Section 3.2. Due to the SOA characteristic independence of service
provider (the equipment) and service consumer (the recipe processing algorithm), both

35



3 Concept of a Flexible Batch Process Control
PSfrag • recipe creation

• recipe processing
• route calculation
• service calling
• hosting a message broker
• GUI (for user interactions and visualiza-

tion)

• reading sensor values
• control actuators
• provide them as services

Supervising
Computer

Ethernet

PLCPLC

sensor,
actuators

sensor,
actuators

Figure 3.1: Schematic overview of the concept, consisting of a supervising computer
and several PLCs with attached sensors and actuators. Furthermore, this
figure specifies the tasks of the supervising computer and PLCs.

participants can be developed autonomously, e. g., on different platforms or with differ-
ent programming languages. The architecture also allows to enhance the flexibility by
extending the structure to a distributed system with several service providers, where
every provider offers a certain set of services. In order to cope with the requirements
of an industrial system, where Programmable Logic Controllers (PLCs) are usually
used, the functionality of the service providers are implemented as a program, that is
running on a PLCs and controlling the sensors and actuators of the plant. All other
tasks, like the recipe processing algorithm, are sourced out into a supervising computer
in the same physical network. The tasks of both, the supervising computer and the
PLCs are summarized and illustrated in Figure 3.1.

In this concept of a flexible batch process control, it is desirable, that the supervising
computer does not need any information of which PLC executes which service. This can
just be achieved by using appropriate Message Exchange Patterns (MEPs). First, the
structure of the service requests suggests a non-blocking, asynchronous messages with
a confirmation notification for service completion. The major benefit of asynchronous
messages is, that all service requests can be sent to the providers almost immediately,
without waiting for a response. Second, the MEP should handle one-to-many messages,
for which the Publish-Subscribe patterns suits perfectly. After subscribing, all service
providers receive the service request and just act if they are responsible for this certain
action. Additionally, the messaging protocol must also provide the functionality of a
reliable message delivery.

As mentioned in the last chapter, in the domain of pipe systems with redundant pipes,
dynamic path planing algorithms can also be used for enhancing flexibility. Section 3.3
devotes on this challenge. The usage of a dynamic path planing algorithm has two
essential benefits. First, model changes can be implemented quickly without modifying

36



3.2 Batch Recipe Creation with a DSL

the program, and second, unavailable equipment (e. g., due to usage or maintenance
reasons) will not be requested for a route and alternative routes will be found, if
available. However, for this, the path planing algorithm must know a model of the
actual plant with all its tanks, pipes, valves, and other components. Section 3.3.1
addresses to this issue and presents a method to model a tank system, based on another
DSL.

In order to recap the following sections, Section 3.2 proposes a method for creating
batch recipes, based on a Domain Specific Language (DSL). For this, the required
grammar of the DSL is derived from a proposed example recipe description. After-
wards, in Section 3.3, another DSL is proposed, for modeling tank systems. This DSL
provides the tank system information for the path finding algorithm, as described in
Section 3.3.2.

3.2 Batch Recipe Creation with a DSL

The domain of batch processes is analyzed for implementing service actions for batch
processes. IEC 61512 names just a few examples of process actions, as there are add,
heat, and hold. There are several other references [13], [14], that name other actions,
e. g., cool or mix (also called agitate) to cope the typically required actions of batch
productions. In this concept, and with respect to the abilities of the demonstration
plant that is used the next chapter, three basic processing actions are used. These
actions are

• add: for pumping a certain amount of liquid from one tank into another,

• heat: for heating up a tank content to a specific temperature, and

• mix : for mixing the content of a specific tank.

The mix action can either be used to mix two different liquids or for a uniform heat
distribution in a heating tank. Each process action expects specific input parameters,
which are defined by the process expert in the procedural recipe.

As analyzed in the last chapter, DSLs are a simple way to create batch recipes in
a specific domain. Although graphical DSLs probably give a better overview of the
entire recipe, textual DSLs are much easier to implement. Due to this reason, this
concept uses a textual representation of the batch recipe. In order to describe tank
systems as assumed above, three processing actions (add, heat, and agitate) as well
as a start and stop action have to be made accessible to the recipe creating process
engineer. Additionally, all required parameters as well as the processing sequence must
be representable. A proposed description of batch recipes is presented in Listing 3.1.

37



3 Concept of a Flexible Batch Process Control

1 start Star t
2 add AddA amount 2000 ml from T310 to T101 after Star t
3 mix Mix1 tank T101 after AddA nondominant

4 add AddB amount 2000 ml from T320 to T101 after AddA
5 heat Heat1 tank T101 up to 50 .0 ◦C after AddB
6 stop Stop after AddB Mix1

Listing 3.1: Proposed description of the batch recipe of Figure 2.3. Each line describes
a recipe step (Phase). Additionally, as defined in IEC 61512, every
recipe needs a dedicated start and stop. In order to identify a Phase
unambiguously, every Phase requires a unique name, e. g., Start, AddA,
or Mix1 in this example. The recipe processing order is specified with the
keyword after, followed the ID of the corresponding Phase. The recipe also
contains all parameters, that are required to process the Phases. Bold and
non-bold words describe keywords and parameters/identifiers, respectively.

With this recipe convention, the heat and add Phase have an implicit end condition,
the target temperature or fluid level, respectively. However, the mix Phase does not
require an end condition, since it is terminated, when the parallel Phase, which is
Heat1 in this example, is completed. For this, the concept of dominant phases [20], as
described in Section 2.1.2, is applied. Thus, the mix Phase is marked with the keyword
nondominant, in order to specify the absence of an end condition. This information
is important for recipe execution.

Based on this example recipe, a DSL grammar can be defined, which enables to create
such recipes. An appropriate grammar in Xtext notation is presented in Listing 3.2.

1 Model : s t ep s += Step ∗ ;
2 Step : Add | Heat | Mix | Stop | Sta r t ;
3 Star t : ’ s t a r t ’ name=ID ;
4 Stop : ’ stop ’ name=ID ’ a f t e r ’ formerStep+=[Step ] ∗ ;
5 Add : ’ add ’ name=ID ’ amount ’ amount=INT ’mL’ ’ from ’ source=ID ’ to

’ t a r g e t=ID ’ a f t e r ’ formerStep+=[Step ] ∗ ;
6 Heat : ’ heat ’ name=ID ’ tank ’ tank=ID ’up␣ to ’ temp=DOUBLE ’ ◦C ’ ’

a f t e r ’ formerStep+=[Step ] ∗ ;
7 Mix : ’mix ’ name=ID ’ tank ’ tank=ID ’ a f t e r ’ formerStep+=[Step ]∗

dominant=’ nondominant ’ ;
8

9 terminal INT returns ecore : : EInt : ( ’ 0 ’ . . ’ 9 ’ )+;
10 terminal DOUBLE returns ecore : : EFloat : INT ’ . ’ INT ;
11 terminal WS: ( ’ ␣ ’ | ’ \ t ’ | ’ \ r ’ | ’ \n ’ )+;
12 terminal ID : ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’_ ’ | ’ 0 ’ . . ’ 9 ’ )+;

Listing 3.2: Proposed grammar for developing recipes in Xtext notation. The Model
consists of a list of steps, which can either be an Add, Heat, or Mix Phase
or a Start or Stop element. In order to cross-reference former steps, the
square bracket notation of Xtext is applied. For conciseness, the Xtext
preamble is omitted in this example (see Section 2.4.2).

38



3.2 Batch Recipe Creation with a DSL

Init/Idle starting running holding

heldrestartingaborting

completing

aborted

complete

aborted

complete

held

start

restart

reset

reset

abort

hold

abort

Transient States

Quiescent States

Final States

Figure 3.2: Modified version of the procedural state machine of IEC 61512 [5]. User
interactions are indicated by arrow labels between the states.

After a recipe is created with the recipe editor, it has to be semantically analyzed and
executed. The analysis of the recipe is done by a DSL interpreter. It translates the
recipe into a recipe model, which is, in the next step, processed by another algorithm.
This algorithm is responsible for a correct execution of the batch recipe. If a Phase has
a several preceding Phases, IEC 61512-2 – Batch control – Part 2: Data structures and
guidelines for languages [16] says, that all of them must be completed, before this Phase
is started. The only exception is a nondominant Phase, which is set to be complete, if
all other parallel Phases are completed.

In order to implement user interactions with the process, e. g., for starting, pausing,
or stopping the process, IEC 61512 defines a state machine, that describes the current
process state and proposes some nonobligatory system states. Brandl [14] recommends
implementing at least the states idle, running, held, complete, and aborted. Based on
these states, in this concept, it is useful to add some additional transient states, in
order to describe the transitions between the states. This results in a procedural state
machine as illustrated in Figure 3.2. Additionally, it shows user initiated and automatic
state transitions.

39



3 Concept of a Flexible Batch Process Control

3.3 Path Planning Algorithms in Redundant Pipe

Systems

In the last section, a recipe editor was introduced, which enables the creation of batch
recipes, based on Heat, Mix and Add Phases. In addition to the parameters of the
recipe, the Add Phase requires extra information, since, as proposed in Section 3.1,
an algorithm for finding a path shall be implemented. However, this requires the
information of the actual plant. For this, in the following section another DSL is
presented, in order to model tank systems. Afterwards, the shortest path problem is
handled with respect to the problem of implementing a required intermediate point
into the path.

3.3.1 Modeling a Tank System

In this concept, there are two essential causes for modeling tank systems. It is necessary
for the path planing algorithm to find an available path and to provide all additional
information to the Phases, in order to translate them into services. If, for example,
tank T101 should be heated up to 50.0 ◦C, the model provides the information about
the identifiers of the heating and sensing element in tank T101. An input method
for the model can be created in the same way as the batch recipe, with an DSL. In
Listing 3.3, a proposed description for tank system models is presented.

1 tank T101 { heater actuator E104 sensor B104
2 mixer E105
3 directedConnectionPoint (T101C01 , bi )
4 directedConnectionPoint (T101C02 , in ) }
5

6 valve V101 { connenctionPoint1 V101C01
7 connenctionPoint2 V101C02
8 flowDirection bi }
9

10 pump P101 { input P101C01 output P101C02 }
11

12 pipe P1001 { length 6 endPoint1 T101C01 endPoint2 V101C01 }

Listing 3.3: Proposed description for modeling a tank system. In this example, the
required attributes for tanks, valves, pumps, and pipes are defined. A tank
requires the information of an optional heater and mixer. Furthermore,
a tank requires directed connection points, in order to describe inputs,
output, or bidirectional usable connection points. A valve needs the
information of two connection points and a flow direction. Pumps are
designed with only two connection points, since the flow direction is usually
unidirectional. Finally, a pipe is defined by its length and two connection
points.

40



3.3 Path Planning Algorithms in Redundant Pipe Systems

Based on this proposed description of tank systems, a grammar can be developed.
For this, again, the Xtext notation is used. The resulting grammar is presented in
Listing 3.4.

1 grammar tanksystem . Tanksystem hidden (WS)
2 import " http : //www. e c l i p s e . org /emf/2002/ Ecore " as ecore
3 generate tanksystem " http : //www. Tanksystem . tanksystem "
4

5 Model : e n t i t i e s += Entity ∗ ;
6 Entity : Tank | Valve | Pump | Pipe ;
7 Tank : ’ tank ’ name = ID ’ { ’
8 ( ’ heate r ’ ’ ac tuator ’ heaterActuator=ID ’ s enso r ’

heate rSensor=ID) ?
9 ( ’ mixer ’ mixer=ID) ?

10 di rectedConnect ionPoint += DirectedConnect ionPoint+ ’ } ’ ;
11 Valve : ’ va lve ’ name=ID ’ { ’
12 ’ connenct ionPoint1 ’ connect ionPoint1 = ID
13 ’ connenct ionPoint2 ’ connect ionPoint2 = ID
14 ’ f l owDi r e c t i on ’ f l owDi r e c t i on = FlowDirect ion ’ } ’ ;
15 Pump: ’pump ’ name=ID ’ { ’
16 ’ input ’ input = ID
17 ’ output ’ output = ID ’ } ’ ;
18 Pipe : ’ p ipe ’ name = ID ’ { ’
19 ’ l ength ’ l ength=INT
20 ’ endPoint1 ’ po int1 = ID
21 ’ endPoint2 ’ po int2 = ID ’ } ’ ;
22 Dir e c t i on : typeName=( ’ in ’ | ’ out ’ | ’ b i ’ ) ;
23 FlowDirect ion : f l owDi r e c t i on = ( ’ 1 to2 ’ | ’ 2 to1 ’ | ’ b i ’ ) ;
24 DirectedConnect ionPoint : ’ d i r ec tedConnect ionPoint ’ ’ ( ’

connect ionPoint = ID ’ , ’ d i r e c t i o n=Di r e c t i on ’ ) ’ ;
25

26 terminal INT returns ecore : : EInt : ( ’ 0 ’ . . ’ 9 ’ )+;
27 terminal WS : ( ’ ␣ ’ | ’ \ t ’ | ’ \ r ’ | ’ \n ’ )+;
28 terminal ID : ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’_ ’ | ’ 0 ’ . . ’ 9 ’ ) ∗ ;

Listing 3.4: Proposed Xtext grammar for describing tank system models. The Model
consists of a list of Entities, which can either be a Tank, Valve, Pump, or
Pipe.

After analyzing the developed tank system model, a directed weighted graph consisting
of nodes and edges can be created. The keyword directed relates to a predefined
flow direction of valves, pumps, and connection points of tanks, since, for example, a
connection point at the top of a tank can just be an input connection. In order to be
able to calculate the shortest available path, it is necessary to describe the system with
a weighted graph. The weight itself represents the length of the pipes. By manipulating
this length, it is also easily possible to set a pipe in use, so that it will not be used for
other parallel processes.

41



3 Concept of a Flexible Batch Process Control

3.3.2 Finding the Shortest Path

Based on a graph with nodes and edges in a directed weighted graph, there are several
algorithms to find the shortest path between two nodes, as described in Section 2.5.2.
However, in the domain of tank systems, an additional constraint is, that add processes
usually require a pump, which is not necessarily part of the shortest path between
source and target tank. Therefore, the algorithm must be able to handle an intermedi-
ate point. Additionally, it has to be considered, that edges must not be taken twice. An
easy way to deal with that problem is to set the weight of the pump to a relatively big
negative number, compared to the weight of the other edges in the graph. With this,
it is ensured, that the pump is used. This requires an algorithm, like Bellmand-Ford,
which can handle such a negative weight. However, as pointed out in Section 2.5.1,
this would probably lead to negative cycles, in which the shortest path is not defined.

An alternative way to find the shortest path is to solve the problem in a directed graph
with just positive weights and calculate two subpaths. For this, Dijkstra’s algorithm
can be used, since it is more efficient than Bellman-Ford [74]. The first subpath ranges
from the source tank to the input connection point of the pump, and the second ranges
from the output connection point of the pump to the target tank. In this case, the
weight of the pump is irrelevant. As an example, three similar graphs are illustrated
in Figure 3.3 with two tanks T1 and T2, a pump Pump1, and some pipes Px with their
weight. For conciseness, valves are omitted in this example. In Figure 3.3a, the shortest
path from tank 1 to tank 2, with Pump1 as intermediate point, utilizes the subpaths

Subpath 1: T1 → P1 → P4 → P7 → Pump1.1 and (3.1)

Subpath 2: Pump1.2 → P8 → P6 → P3 → T2. (3.2)

Based on this graph, a path planning algorithm can easily find the shortest path, since
the subpaths are not in trouble with each other. However, this is not the case in
Figure 3.3b, where the weight of P4 is modified to a much higher number. The first
subpath from tank 1 to the pump would now use the route

Subpath 1: T1 → P1 → P2 → P6 → P5 → P7 → Pump1.1 (3.3)

and the second subpath could not find a route, since pipes cannot be used twice.
However, this can be bypassed, if, in a second step, the second subpath (from the
pump to the target) is evaluated primarily and the first subpath (from source tank to
the pump) afterwards. If two valid paths with different total weights are found, the
shorter one is used. In graphs with more than one pump, this must be evaluated for
every pump.

This path planning concept can find the shortest path in almost every graph, however,
there are some special cases, like in Figure 3.3c, where this algorithm fails, although a
path from T1 to T2 would be possible. Anyway, this algorithm is sufficient in the gross
of typical cases.

42



3.3 Path Planning Algorithms in Redundant Pipe Systems

P1=5

P =54

P =107

P =53

P =56

P =108

P2=5

Pump1

T1 T2

P .1ump1 P .2ump1

P5=5

(a) Graph 1

P1=5

P =504

P =107

P =53

P =56

P =108

P2=5

Pump1

T1 T2

P .1ump1 P .2ump1

P5=5

(b) Graph 2

P1=5

P =504

P =107

P =53

P =506

P =108

P2=5

P5=5

Pump1

T1 T2

P .1ump1 P .2ump1

P =59 P =512

P =510

P =511

P13=5 P14=5

(c) Graph 3

Figure 3.3: Path planing for different graphs. The shortest path is always highlighted
in red. In Figure (a), the presented algorithm can easily find the shortest
path. In Figure (b), where the weight of P4 is modified, the first subpath
from the source to the pump would utilize P6 and therefore, the second
subpath from the pump to the target is not possible without using pipes of
the first subpath. However, if the order is inverted and the second subpath
is evaluated first, the algorithm finds the shortest path. Anyway, there are
pathological graphs, like in (c), that are specially constructed, so that they
cannot be handled by this algorithm, since for both orders of evaluation,
the first subpath would claim pipes of the second subpath.

3.3.3 Processing of the Add Phase

With the knowledge of the shortest path and the current tank system model, all re-
quired components, which are part of the path are now specified. The Add Phase is
broken down into its single valves, a pump, and a control unit, which is responsible
for monitoring the filling state. For this, the Procedural Model of IEC 61512 (see Fig-
ure 2.2) is extended with an additional level for these elementary components beneath
the Phase level, as it is proposed by Lepuschitz and Zoitl [66]. In order to call the phys-
ical components, the PLCs must offer them as services. Therefore, for the Add Phase,
three services are required, for switching a valve, controlling a pump, and monitor the
fluid level of a tank. The valve and pump service requires only the name of the target
component and the desired switching state. The service for monitoring the fluid level
requires the name of the level sensor and the target filling amount.

Summarizing, an overview of the entire mapping from the Phases to the services is
presented in Figure 3.4.

43



3 Concept of a Flexible Batch Process Control

dynamically created subrecipe

Heat

Mix

LevelMonitoring

Valve

Pump

Heat

Mix

LevelMonitoring

Valve

Pump

PLC 1

U 1nit

PLC 2

U 2nit

Message Broker

Valve 1 Valve 2
Level

Monit. *
Pump 1Mix

Add *A

Heat *

Phases Subphases

Services

Recipe

Equipment

Figure 3.4: Schema of the bridge between the Phases of the procedural recipe and the
services, that are executed on the PLCs. It also shows the break down of the
Add process to a parallel execution of the required valves and pump services
as well as the dominant SubPhase Level Monitoring for checking if the
desired filling amount is reached. The internal structure of the subrecipe of
the add process is dynamically created, based on the shortest path from the
source to the target tank. An asterisk inside a Phase/SubPhase indicates
a dominant Phase/SubPhase with an end condition, as defined by Godena
[20].

44



CHAPTER 4

Implementation of the Flexible Batch Control Concept

In this chapter, the implementation of the previously described concept for a flexible
batch process control is described in detail. For demonstrating purposes, the implemen-
tation is shown on two linked laboratory tank system plants, a Festo Didactic process
industry demonstrator plant, and a custom built storage tank system, as depicted in
Figure 1.2.

4.1 Program Overview and Basic Design Decisions

In the previous chapter in Figure 3.1, a schematic overview of the hardware of this
concept was already illustrated. Based on this concept, in this section, an overview
of the implementation and its software components is presented and illustrated in
Figure 4.1.

The concept consists of two different types of computing components, PLCs and a
supervising computer. Typically, PLCs are programmed with programming languages
of IEC 61131-3 – Programmable controllers - Part 3: Programming languages [61] or
IEC 61499 – Function Blocks [63]. Due to this concept of distributed units, IEC 61499
is the first choice. The event-driven execution model of this standard is also very
beneficial, since if the computer requests a service from a PLC, the corresponding event
is directly triggered and need not be polled all the time, as in the cycle execution model
IEC 61131-3. A convenient IEC 61499 programming tool is Framework for Industrial
Automation & Control (4diac) [75], which is an Integrated Development Environment

45



4 Implementation of the Flexible Batch Control Concept

Supervising

Computer

PLCs

Supervising
Program

Message
Client

Recipe-
processing

Path
finding

GUI

Database
storage

DSL
Application

Recipe
Visualization

Recipe
DSL editor

Tankmodel
DSL editor

Message
Broker

Message
Client

PLC
Application

Hardware
interaction

Service
processing

tank model
recipe

tank model

service calls

recipe

service responses

Figure 4.1: Schematic overview of the required tools (highlighted dark-blue), their
tasks (highlighted light-blue) and communication interfaces (depicted as
red paths).

(IDE) for creating IEC 61499 based distributed control applications. These programs
are executed on the 4diac Runtime Environment (FORTE), which is a lightweight C++
program, that can be compiled for almost any platform. By embedding vendor specific
Application Programming Interfaces (APIs), like Beckhoff’s ADS protocol, the access
to hardware components, as sensors and actuators, can be integrated into IEC 61499
Function Blocks (FBs).

The communication between supervising computer and PLCs requires a reliable mes-
saging system. As analyzed in Section 3.1, for this, a messaging system based on the
Publish-Subscribe pattern is preferred, since messages can be sent to all PLCs, that are
subscribed to a specific topic. In Section 2.3.3, some commonly used examples of mes-
saging methods are described. Although the OPC Foundation announced support for
this pattern, currently, there is no implementation available. Devices Profile for Web
Services (DPWS), could be used, however, due to the expected high amount of small
data packages for all service requests, it is not very suitable, since the message overhead
is too high. The major characteristic of ZeroMQ is, that typically no message broker
is integrated. However, since a reliable communication is necessary, this functionality

46



4.2 Domain Specific Language Editors and Visualization

must be implemented additionally. Finally, both, Message Queue Telemetry Transport
(MQTT) and Data Distribution Service (DDS) are based on a Publish-Subscribe ar-
chitecture and meet the demands of a reliable communication protocol. Since 4diac
provides native support for MQTT, this protocol is used.

On the supervising computer, there are three programs running. The first program is
the Recipe and Tank System DSL Application, which is used as front-end for creating
batch recipes and tank system models. Both DSLs are created with the open-source
framework Xtext [55], which is a powerful language workbench (see Section 2.4.1) for
developing textual DSLs. However, since textual DSLs are not as illustrative as graph-
ical DSLs, the visualization tool EuGENia [76] is used. It is another Eclipse tool and
works well with Xtext. This tool enables to visualize the recipe and highlight currently
active processing steps. Section 4.2 describes the process for creating and visualizing
DSLs, utilizing these tools.

The second and central program is a supervising Java application, which acts as the
controlling component. It handles the user interactions of the Graphical User Interface
(GUI), the recipe processing algorithm, and the path finding algorithm based on the
current tank system model. For accessing the recipe and tank system model, a common
database is used as communication interface.

Since MQTT is used as platform for communication between the supervising computer
and PLCs, the third task of the supervising computer is to host an MQTT broker. For
this purpose, the open-source message broker Mosquitto [77] was used. This broker can
be configured individually, e. g., for a reliable in-order message delivery. By configuring
the Quality of Service (QoS) level of the communication, the broker can guarantee, that
messages are delivered exactly once.

4.2 Domain Specific Language Editors and

Visualization

In this section, the implementation of the aforementioned DSLs for creating procedural
batch recipes and modeling tank systems in Xtext is described. The development of a
new language with Xtext consists of two steps. The first one is to define the grammar
of the language in a Extended Backus - Naur Form (EBNF)-like notation. Afterwards,
the language has to be created, based on this grammar. When this is done, an Eclipse
Application with the new language can be started. Within this application, a user can
write sentences based on the grammatical rules, as defined before. These sentences are
stored in an Eclipse Modeling Framework (EMF)-metamodel. However, actually, there
is no functionality assigned, so, in the second step of language creation, a code gener-
ator or interpreter has to be developed, in order to analyze the EMF-metamodel and
create or execute the desired program. Code generators just create code for a specific
target language, whereas interpreters directly execute a program, with the base data

47



4 Implementation of the Flexible Batch Control Concept

name : EString

amount_L : EInt

amount_mL : EInt

dominant : EString

temp : EString

dominant : EString

dominant : EString

name : EString

Model

Step

Start StopAdd Heat Mix

Tank

tanks

0..*

steps

0..*

formerStep

0..*
source

0..1 target

0..1

tank

0..1

tank

0..1

Figure 4.2: Class diagram of the Procedural Recipe Language.

of the EMF-metamodel. In this implementation, both, the procedural recipe language
and the tank system language, use an interpreter. Xtext directly executes the code
generator/interpreter, when the user-created content is stored. The recommended [60]
programming language for code generation/interpretation is Xtend [78], which is based
on Java. In addition to the Java main functionality, it provides some useful features for
language creation, like, multi-line template expressions, extension methods, type-based
switch statements, or lambda expressions [55], [79]. By utilizing these features, Xtend
programs are more compact than Java programs and the code is easier to read.

4.2.1 Procedural Recipe Language

A major benefit of using Xtext is the integration of several features for an easy language
development, like, a syntactic and semantic coloring, cross referencing to existing ob-
jects, error checking, auto-completion, formatting, or hover information with quick fix
proposals [60]. By leveraging these features, batch process experts can easily develop
batch recipes.

Grammar Definition of the Procedural Recipe Language

Basically, as illustrated in Listing 4.1 and visualized in Figure 4.2, the grammar of
the Procedural Recipe Language corresponds with the recipe design of Section 3.2.
However, in order to simplify the recipe creation and prevent typing errors, the Xtext
feature of cross-referencing to existing object is integrated. For this, all tanks are
defined at the beginning of the recipe, and can afterwards be used in the actual recipe.
When the editor expects a tank, all available tanks are proposed in a list, and the user
can easily choose the desired one. Furthermore, the transfer amount for Add processes
can be specified in liter or milliliter. Based on these grammatical rules, an example of
a batch recipe is illustrated in Listing 4.2.

48



4.2 Domain Specific Language Editors and Visualization

1 grammar tanksystem . r e c i p e . Recipe with org . e c l i p s e . xtext . common .
Terminals

2 generate r e c i p e " http : //www. r e c i p e . tanksystem / Recipe "
3 import " http : //www. e c l i p s e . org /emf/2002/ Ecore " as ecore
4

5 Model : {Model}
6 ’ Tanks ’
7 tanks+=Tank∗
8 ’ Recipe ’
9 s t ep s += Step ∗ ;

10 Tank : name=ID ;
11 Step : Add | Heat | Mix | Stop | Sta r t ( ’ ; ’ ) ? ;
12 Star t : ’ s t a r t ’ name=ID ( ’ a f t e r ’ formerStep+=[Step ]∗ ) ? ;
13 Stop : ’ stop ’ name=ID ’ a f t e r ’ formerStep+=[Step ] ∗ ;
14 Add : ’ add ’ name=ID ’ amount ’ ( ( amount_l=INT ’ l ’ ) | (amount_ml=INT

’ml ’ ) ) ’ from ’ source=[Tank ] ’ to ’ t a r g e t =[Tank ] ’ a f t e r ’
formerStep+=[Step ]∗ ( dominant=’ nondominant ’ ) ? ;

15 Heat : ’ heat ’ name=ID ’ tank ’ tank=[Tank ] ’ up␣ to ’ temp=DOUBLE ’ ◦C ’
’ a f t e r ’ formerStep+=[Step ]∗ ( dominant=’ nondominant ’ ) ? ;

16 Mix : ’mix ’ name=ID ’ tank ’ tank=[Tank ] ’ a f t e r ’ formerStep+=[Step
]∗ ( dominant=’ nondominant ’ ) ? ;

17

18 terminal DOUBLE returns ecore : : EFloat : INT ’ . ’ INT ;

Listing 4.1: Xtext grammar definition of the Procedural Recipe Language.

1 Tanks

2 T101 T102 T310 T320 T330 T340 T350
3 Recipe

4 start Star t
5 add Add1 amount 2000 ml from T310 to T101 after Star t
6 mix Mix1 tank T101 after Add1 nondominant

7 heat Heat1 tank T101 up to 50 .0 ◦C after Add1
8 add Add2 amount 2000 ml from T101 to T102 after Heat1 Mix1
9 stop Stop after Add2

Listing 4.2: Example of the Procedural Recipe Language.

49



4 Implementation of the Flexible Batch Control Concept

Interpretation of the Procedural Recipe Language

While creating a DSL file, like the example of Listing 4.2, Xtext automatically puts
the content into an EMF-model, based on the grammatical rules. Now, an interpreter,
which is immediately started when the recipe is saved, analyzes this EMF-model and,
in this case, stores the content into a database. As database system, the lightweight
SQLite library is used. Another task of the interpreter is to analyze the processing
order of the single procedural steps of the recipe. This is necessary, since in the editor,
there are just the previous elements referenced, but the recipe processing algorithm
requires the linkage to the following elements.

4.2.2 Visualizing a Textual Domain Specific Language with

EuGENia

In a textual editor, the current processing step and already processed steps cannot
be easily indicated. Due to this reason, the Eclipse tool EuGENia is used, which
addresses to this issue. It extends the automatically generated EMF-metamodel of
the Xtext grammar. The visualization can be developed, just with some annotations
of this model. Listing 4.3 illustrates the EMF-metamodel of the grammar with the
annotations for EuGENia, which are indicated with an At-symbol (@). Note, that
an annotation always concerns to the next line, or block. The visualization can also
be illustrated in the same Eclipse Application, as the recipe and tank system editor.
Based on the annotations of Listing 4.3 and the recipe of Listing 4.2, the output looks
as in Figure 4.3. The boxes, Start, Add1, Mix1, and Heat1 are colored by the recipe
processing algorithm, which is described in Section 4.4.3. Boxes, that are colored green,
indicate a completed processing step and orange boxes indicates a currently active step.
Additionally, gray and red boxes indicate steps in a hold and abort state, respectively.

Mix1

Add2

Start

Add1

Add2

Stop

Heat1

Figure 4.3: Visualization of the recipe of Listing 4.2, created with EuGENia. The colors
indicate the actual state of the phases.

50



4.2 Domain Specific Language Editors and Visualization

1 @namespace ( u r i="http ://www. r e c i p e . tanksystem/Recipe " , p r e f i x="
r e c i p e " )

2 package r e c i p e ;
3

4 @gmf . diagram
5 class Model {
6 val Tank [ ∗ ] tanks ;
7 val Step [ ∗ ] s t ep s ;
8 }
9

10 class Step {
11 attr St r ing name ;
12 @gmf . l i n k ( width="2" , c o l o r ="183 ,18 ,52" , source . deco rat i on="arrow " ,

s t y l e ="dash " )
13 ref Step [ ∗ ] formerStep ;
14 }
15

16 @gmf . node ( l a b e l ="name " , l a b e l . i con=" f a l s e " )
17 class Star t extends Step {}
18

19 @gmf . node ( l a b e l ="name " , l a b e l . i con=" f a l s e " )
20 class Stop extends Step {}
21

22 @gmf . node ( l a b e l ="name " , l a b e l . i con=" f a l s e " )
23 class Add extends Step {
24 attr i n t amount_L ;
25 attr i n t amount_mL ;
26 ref Tank source ;
27 ref Tank ta r g e t ;
28 attr St r ing dominant ;
29 }
30

31 @gmf . node ( l a b e l ="name " , l a b e l . i con=" f a l s e " )
32 class Heat extends Step {
33 ref Tank tank ;
34 attr St r ing temp ;
35 attr St r ing dominant ;
36 }
37

38 @gmf . node ( l a b e l ="name " , l a b e l . i con=" f a l s e " )
39 class Mix extends Step {
40 ref Tank tank ;
41 attr St r ing dominant ;
42 }
43

44 class Tank {
45 attr St r ing name ;
46 }

Listing 4.3: Annotated EMF model for visualization with EuGENia. The EMF-
metamodel is automatically generated by Xtext, however, just the red
highlighted annotations have to be added.

51



4 Implementation of the Flexible Batch Control Concept

Model

Entity

Tank

DirectedConnectionPoint

ConnectionPoint

Pump Pipe

Direction

Valve

ValveType

FlowDirection

Point

Node

entities points
0..*

directedConnectionPoint

0..*
connectionPoint

0..1
direction

0..1

input
0..1

output

0..1

point1

0..1

point2

0..1

type
0..1

connectionPoint1
0..1

connectionPoint2

0..1

flowDirection0..1

0..*

name : EString

tankLevel : EInt

heaterActuator : EString

heaterSensor : EString

mixer : EString

levelSwitchTop : EString

levelSwitchBottom : EString

levelSwitchHeat : EString

length : EInt

typeName : EString

type : EString

flowDirection : EString

name : EString

Figure 4.4: Class diagram of the Tank System Language.

4.2.3 Tank System Language

Similar to the editor for creating a procedural batch recipes, the editor for modeling
tank systems is also implemented in Xtext. As described in Section 3.3.1, the path
planing algorithm and the transition from recipe Phases to services require the actual
model of the tank system. For this, a DSL is developed, that can model all these
required information.

Grammar Definition of the Tank System Language

In order to model tank systems, a general overview of required components with their
properties are specified in Section 3.3.1. The proposed grammar is used as a draft for ac-
tually implementing the language. Additionally, the Xtext feature of cross-referencing
is implemented for Points. A Point, can either be a Node or ConnectionPoint. Fur-
thermore, the implemented grammar, which is illustrated in Listing 4.4, also enables to
add level switches to tanks. Based on this grammar, a class diagram, which illustrates
all components, their attributes, and links to each other, is depicted in Figure 4.4.

Based on this grammar file, the demonstration plant of Figure 1.2 can be modeled.
For conciseness, just a short excerpt of this created tank system file is illustrated in
Listing 4.5. In the next section, the evaluation of this file is described.

52



4.2 Domain Specific Language Editors and Visualization

1 grammar tanksystem . Tanksystem with org . e c l i p s e . xtext . common .
Terminals

2 generate tanksystem " http : //www. Tanksystem . tanksystem "
3

4 Model : e n t i t i e s += Entity ∗
5 po in t s += Point∗
6 Entity : Tank | Pipe | Valve | Pump ;
7 Tank : ’ tank ’ name = ID ’ { ’
8 ( ’ heate r ’ ’ ac tuator ’ heaterActuator=ID ’ s enso r ’

heate rSensor=ID) ?
9 ( ’ mixer ’ mixer=ID) ?

10 ( ’ l eve lSwitchTop ’ leve lSwitchTop=ID) ?
11 ( ’ leve lSwitchBottom ’ levelSwitchBottom=ID) ?
12 ( ’ l eve lSwi tchHeat ’ l eve lSwi tchHeat=ID) ?
13 di rectedConnect ionPoint += DirectedConnect ionPoint+ ’ } ’ ;
14 DirectedConnect ionPoint : ’ d i r ec tedConnect ionPoint ’ ’ ( ’

connect ionPoint = [ ConnectionPoint ] ’ , ’ d i r e c t i o n=Di r e c t i on ’ ) ’ ;
15 ConnectionPoint : ’ connect ionPoint ’ name=ID ;
16 Pump: ’pump ’ name=ID ’ { ’
17 ’ input ’ input = [ ConnectionPoint ]
18 ’ output ’ output = [ ConnectionPoint ] ’ } ’ ;
19 Pipe : ’ p ipe ’ name = ID ’ { ’
20 ’ l ength ’ l ength=INT
21 ’ endPoint1 ’ po int1 = [ Point ]
22 ’ endPoint2 ’ po int2 = [ Point ] ’ } ’ ;
23 Dir e c t i on : typeName=( ’ in ’ | ’ out ’ | ’ b i ’ ) ;
24 Valve : ’ va lve ’ name=ID ’ { ’
25 ’ type ’ type = ValveType
26 ’ connenct ionPoint1 ’ connect ionPoint1 = [ ConnectionPoint ]
27 ’ connenct ionPoint2 ’ connect ionPoint2 = [ ConnectionPoint ]
28 ’ f l owDi r e c t i on ’ f l owDi r e c t i on = FlowDirect ion ’ } ’ ;
29 ValveType : type = ( ’ cont inuous ’ | ’OnOff ’ ) ;
30 FlowDirect ion : f l owDi r e c t i on = ( ’ 1 to2 ’ | ’ 2 to1 ’ | ’ b i ’ ) ;
31 Point : Node | ConnectionPoint ;
32 Node : ’ node ’ name = ID ;

Listing 4.4: Xtext grammar definition, used to define the process domain plant system
DSL.

53



4 Implementation of the Flexible Batch Control Concept

1 tank T101 {
2 heater actuator E104 sensor B104
3 mixer E105
4 levelSwitchTop S111
5 levelSwitchBottom B113
6 levelSwitchHeat B114
7 directedConnectionPoint (T101C01 , bi )
8 directedConnectionPoint (T101C02 , in )
9 directedConnectionPoint (T101C03 , in ) }

10

11 tank T102 {
12 levelSwitchBottom S112
13 directedConnectionPoint (T102C01 , bi )
14 directedConnectionPoint (T102C02 , bi ) }
15

...
16 tank T350 {
17 directedConnectionPoint (T350C01 , bi ) }
18

19 valve V101 { type OnOff

20 connenctionPoint1 V101C01
21 connenctionPoint2 V101C02
22 flowDirection bi }
23

...
24 valve V3R8{ type OnOff

25 connenctionPoint1 V3R8C01
26 connenctionPoint2 V3R8C02
27 flowDirection bi }
28

29 pump P101 { input P101C01 output P101C02 }
30 pump P301 { input P301C01 output P301C02 }
31

32 pipe P1001 { length 6 endPoint1 T101C01 endPoint2 V103C01 }
33

...
34 pipe P3P04 { length 8 endPoint1 N342 endPoint2 N334 }
35

36 connectionPoint P101C01
37

...
38 connectionPoint T350C01
39

40 node N101
41

...
42 node N342

Listing 4.5: Excerpt of the Tank System Language of the demonstration plant.

54



4.3 Path Planning for Add Processes

Interpretation of the Tank System Language

Similar to the interpretation of the Procedural Recipe Language, also the Tank System
Language is interpreted and put into several lists of the same SQLite database. The
database is organized with lists for every kind of component. Therefore, there is a list
for tanks, valves, pumps, pipes, and nodes. Every list has its type specific parameters,
that are stored in columns.

In particular, the process of creating list entries goes in three steps. When the in-
terpreter is started, first, all five lists are deleted if they already exist. Even if the
model has just changed slightly, this is procedure is much more efficient, than iterating
through all tables and search for differences. In a second step, new lists are created.
For four of these five lists, the quantity of columns are predefined, in dependence of
the parameters, however, just for the tanklist, the quantity of columns is dynamically
adapted, depending on the highest number of connection points of all tanks, which is
a priori not known, since it is defined by the user. At last, the EMF-model is analyzed
and put into these lists.

4.3 Path Planning for Add Processes

In this section, the implementation of the shortest path algorithm is described. This
implementation utilizes the powerful Java library GraphStream [80], which is able to
model dynamic graphs, find paths, and visualize them.

4.3.1 Requirements for Finding the Shortest Path with

GraphStream

In order to use GraphStream, first of all, it requires the graph, which represents the
tank system plants, in a special description format, stored as a .dgs file. For this, the
tank model, which is stored in the SQLite database, must be read out and translated
into this .dgs structure. This procedure is executed at the start of the Java main
program. The .dgs file is structured in an introducing header, where the file format
version and the name of the graph are defined, and a body, where all edges and nodes
of the graph are described. Nodes are used for mixing tee nodes, connection points,
and tanks. Edges, on the other hand, are used for valves, pumps, pipes, and directed
connections in order to model input and output connections of tanks. By adding
specific attributes, like the length of a pipe, nodes and edges can be specified. There
are no limitations in naming as well as quantities and they can easily be accessed
by their name. Additionally, there are also some common attributes, like, ui.class,
which can be used to classify a node or edge. In the visualization, all elements of a
class, e. g., all tanks or valves, can be put into the same look, by specifying it in a
standard Cascading Style Sheets (CSS) notation. Later, by changing the ui.class

55



4 Implementation of the Flexible Batch Control Concept

T350

T101

T102
T340

T310

T330
T320

P301

V3P1
V313

V3R4

V312

V3R3

V311

V3R2

V3R1

P101

V333

V332

V331

V3R8

V3R7

V3R6

V3R5

V323

V322

V321

V109

V107

V106

V353

V352

V351

V3L6

V3L5

V3L4

V3L3

V3L2

V3L1

V104

V103 V102

V101

V343

V342

V341

Figure 4.5: Visualization of the demonstrator plant in GraphStream. This graph shows
all components, that are required to model the graph, with all seven tanks,
that are painted as gray boxes, valves as blue connections, pumps as green
connections, and pipes as black connections. The arrangement of the com-
ponents is automatically created by GraphStream.

this functionality is also used for highlighting active routes in the visualization. The
visualization of demonstrator plant via GraphStream is depicted in Figure 4.5.

4.3.2 Implementation of the Shortest Path Algorithm

As described in Section 3.3.2, the demand of a pump necessitates a separation of
the shortest path between source and target tank into two subpaths with the pump
as intermediate station. Based on the length attribute of each edge, GraphStream
can be used for find the shortest path between two nodes. For this, GraphStream
supports several well-known algorithms, like Dijkstra, Ford-Bellman, or A-Star search.
As analyzed in Sections 2.5.2 and 3.3.2, Dijkstra’s algorithm is the most suitable, and
therefore it was chosen.

The easiest way for finding the shortest path occurs, if the source tank is mounted on
a higher level, than the target tank, where the gravity is sufficient to transfer liquids.
In this case there are no problems with Dijkstra’s algorithm. In order to describe the
mounting level of the tanks, the grammar of the Tank System Language is extended
with an additional attribute tankLevel for every tank, which contains this information.

On the other hand, if the source tank is not higher mounted, the algorithm consists of
two parts, first, finding the shortest subpath from the source node to the intermediate
node plus the subpath from the intermediate node to the target, and second, the
intermediate node to the target node plus the source node to the intermediate node, as
described in Section 3.3.2. Since edges cannot be used twice, the length is manipulated
and set to a high number. Therefore, the actual length of the pipe must be stored in
the defaultLength attribute. Afterwards, the total length of both parts is compared

56



4.4 Supervising Program

and the shorter one is buffered. This procedure is repeated for each pump and finally,
the shortest path is chosen. If any problem occurs, e. g., if the algorithm cannot find a
route, an error is saved in a variable.

Since there are pathological graphs, where this algorithm fails (see Section 3.3.2), the
entire algorithm is implemented as a self-contained module with the shortest path and
error message as required getter methods. Just these two methods are called from the
main program. Therefore, the algorithm itself can easily be replaced, without affecting
the surrounding program.

4.4 Supervising Program

As introduced in Section 4.1 and Figure 4.1, the supervising program has several tasks:

• offering a path planning algorithm for finding the shortest path for Add processes,
as already described in the last section,

• providing a GUI for user interactions,

• enabling communication with the MQTT broker, and

• processing the recipe.

Furthermore, a central program component is required, which combines these tasks
into a program. In the following sections, the functionality of these tasks is described
in more detail.

4.4.1 Graphical User Interface

The GUI, as depicted in Figure 4.6, is created with the Java library Swing. For this,
the class GUIview.java provides two basic functions for user interaction with the
program. First, it visualizes tank levels and one temperature of the demonstrator
plant, and second, it allows to take action into the recipe processing. For this, all
user interactions, that are defined in the concept (see Figure 3.2) are implemented:
start, hold, restart, abort, and reset. Since the restart action depends on the hold

action, both share the same button and the functionality is switched, depending on
the current state. As Figure 3.2 shows, the state machine does not allow all state
transitions, hence, all buttons of illegal state transitions are disabled and just valid
transitions are enabled. Additionally, there is a button for updating all sensor values.
All of these button actions are forwarded to the central class Controller.java, which
initiates all further actions.

57



4 Implementation of the Flexible Batch Control Concept

Figure 4.6: The Graphical User Interface indicates all available tank levels and tank
temperatures. Furthermore, it provides buttons for user interactions.

4.4.2 Communication with the MQTT Broker

In order to send MQTT messages between Java and other applications, an MQTT-
Client implementation is necessary. For this, the open-source tool Paho was integrated
into the Java program. The implemented program itself consists of two Java classes,
Executable.java for establishing a connection with the message broker as well as
sending messages and Callback.java for receiving messages. The Callback class im-
plements a Paho interface with the corresponding method messageArrived(Topic,

Message), that is called, when messages are received. Additionally, there is another
simple Java class MqttMsg.java, which combines message and topic into a structure.

All messages, that are sent or received, have to be encoded or decoded, respectively,
with Abstract Syntax Notation One (ASN.1) [81], since the MQTT-Client of FORTE
uses this format. This notation allows to send messages over heterogeneous systems
and still distinguish different data types uniformly. In the Java program, there is
just the String data type implemented, since other data types are not required. For
Strings, a message looks as follows: the first two bytes of the message 80 00 define
the data type String, followed by the length of the String, and the actual String itself.
When messages arrive, they are decoded and forwarded to Controller.java, which
interprets them and perform, depending on the topic, the corresponding actions.

MQTT is able to send several messages almost simultaneously. However, this could
not be realized, since there is a malfunction in the MQTT-Client implementation of
FORTE. If too many messages are sent in a short interval, every message is immediately
confirmed to the message broker, even though, they are not just fully forwarded to
the next FB. Hence, messages can overwrite other messages, and therefore they are
lost. Since reliability is a strict requirement of automation systems, this issue was
bypassed in Executable.java by storing messages locally in a queue and just send
the next message, when the queue is empty or the previous message is confirmed by
an additional MQTT message of the receiver.

58



4.4 Supervising Program

4.4.3 Recipe Processing

The recipe processing algorithm consists of several Java classes. In Figure 4.7 an
overview of them is illustrated.

Recipe.java: is the base class of the recipe processing algorithm. First of all, the
recipe is read out from the SQLite database. For every Phase a new object of
Phase.java is created and all attributes, like the following Phases and Phase
specific parameters, are stored into it. Additionally, Recipe.java is also respon-
sible for a correct processing of the recipe. If there are just sequential Phases, the
next Phase is started, when the previous one is complete. However, if a Phase
has several dominant former Phases, all of them have to be completed, until the
following Phase/Phases is/are started. If there is a dominant and one or more
non-dominant Phases, all non-dominant Phases are set complete.

Phase.java is the abstract structure, which is handled by Recipe.java. Therefore,
it has a uniform appearance and common interfaces to the actual classes with the
specific actions, like methods for state transitions, or callback actions. Depending
on the current state, this class calls a method of Colorize.java in order to
indicate the actual state of the recipe visualization of EuGENia by changing the
background color of the Phase (see Figure 4.3).

Steps_Phase.java is an abstract class, which is just responsible for generalizing all
specific classes, that perform the actual actions. This class helps to simplify
method calls, since objects of the Phase.java need not check, which kind of
subclass is required.

Steps_Phase_Mix, Steps_Phase_Heat, Steps_Phase_Add define the actual actions,
that are performed if, for example, the Phase is started. For every action, these
classes generate the MQTT message strings, which are, subsequently, put into
the sending queue of the Executable.java object.

Steps_Phase_Add.java has an additional functionality implemented, since this class
is responsible for transferring liquids from one tank into another and the required
components are unknown at this point. When the corresponding Phase is started,
this class requests the path from the path finding algorithm and creates a sub-
recipe with all valves, an optional pump and the monitoring of the tank level. If
available, the level sensor of the target tank is chosen, if not, the level sensor of the
source tank. The structure of the subrecipe corresponds exactly to the structure
of the recipe and so they are not described again. These corresponding classes
are SubPhaseRecipe, SubPhase, and Steps_SubPhase. The actual actions are
defined in Steps_SubPhase_TankFillingWatch, Steps_SubPhase_Valve, and
Steps_SubPhase_Pump.

59



4 Implementation of the Flexible Batch Control Concept

<<Java Class>>

SubPhase

tanksystem.batch

<<Java Class>>

SubPhaseRecipe

tanksystem.batch

<<Java Class>>

Recipe

tanksystem.batch

<<Java Class>>

Phase

tanksystem.batch

<<Java Class>>

Steps_Phase_Add

tanksystem.batchsteps

<<Java Class>>

Steps_Phase_Heat

tanksystem.batchsteps

<<Java Class>>

Steps_SubPhase_TankFillingWatch

tanksystem.batchsteps

<<Java Class>>

Steps_SubPhase
tanksystem.batchsteps

<<Java Class>>

Steps_Phase
tanksystem.batchsteps

<<Java Class>>

Steps_SubPhase_Pump

tanksystem.batchsteps

<<Java Class>>

Steps_Phase_Mix

tanksystem.batchsteps

<<Java Class>>

Steps_SubPhase_Valve

tanksystem.batchsteps

-stepsPump

0..1

-stepsValve

0..1

-stepsFillingWatch 0..1

-subPhaseRecipe

0..*

-subPhaseRecipe
0..1

-stepsHeat

0..1

-stepsMix

0..1

-stepsAdd
0..1

-recipe
0..*

Figure 4.7: Class diagram of the recipe processing algorithm. Due to clarity, just the
most important references are illustrated.

4.4.4 Controller Class

Primarily, Controller.java is responsible for administrative functionality of the Java
program, like instantiation of objects, subscribing to MQTT topics, or starting the
GUI. It also implements the main method, which is called at program start. Since, as
described in Section 4.4.2, MQTT callbacks are forwarded to this class, there is a list
(procedureCallbackList) of all Phases and SubPhases, which are registered for call-
backs, in order to forward receiving messages to the corresponding object. Depending
on the topic of the MQTT message, the Controller.java class initiates corresponding
actions.

Another task of this class is an emergency handling, if tanks are almost empty or full.
In both cases, the PLC sends messages to the emergency topic, in order to prevent the
pump to run idle if the source tank is empty, or a flooding, if the target tank is full.
Another emergency state occurs, if the liquid level of a tank is lower than the mounting
level of the heating element. If such an undesired state occurs, the recipe is aborted,
and therefore, all components are turned off. However, this is just implemented for the
level switches, and not for the level sensors, since if a tank has a level sensor integrated,
the level is displayed in the GUI and the user can react in case of emergency.

4.5 Implementation of the Services

As announced in Section 4.1, the services are implemented as IEC 61499 FB networks
in 4diac, which are afterwards executed in FORTE on the PLCs. Figure 4.8 shows
the system configuration of the 4diac system. It describes the distributed system
with all devices and their inter-device communication links [64]. In IEC 61499, this
representation of the devices is termed System model. Since the demonstrator plant
contains of two PLCs, there are also two devices defined in the configuration, which
are integrated into the same Ethernet as the MQTT broker and supervising computer.
The naming of the devices, PLC1 and PLC3, is justified in view of the fact, that the

60



4.5 Implementation of the Services

PLC1

"128.131.186.49:61499"

RMT_DEV

V0.4

MGR_ID

RES_VALVE (EMB_RES)

RES_PUMP (EMB_RES)

RES_TANKFILLINGWATCH (EMB_RES)

RES_EMERGENCY (EMB_RES)

RES_READOUTPUT (EMB_RES)

RES_MIX (EMB_RES)

RES_HEAT (EMB_RES)

MGR (RMT_RES)

PLC3

"128.131.186.207:61499"

RMT_DEV

V0.4

MGR_ID

RES_VALVE (EMB_RES)

RES_PUMP (EMB_RES)

RES_TANKFILLINGWATCH (EMB_RES)

RES_EMERGENCY (EMB_RES)

RES_READOUTPUT (EMB_RES)

RES_MIX (EMB_RES)

MGR (RMT_RES)

Ethernet : Ethernet

Figure 4.8: 4diac System Configuration consisting of two, via Ethernet connected, de-
vices.

naming of the components of the demonstrator plants also start with one and three
(see Figure 5.1).

As defined in the Device model of IEC 61499, a device consists of several resources.
In this implementation, all services are implemented as applications into separate re-
sources. Summarizing the concept of Chapter 3, five services are specified, for heating,
mixing, monitoring a tank level, and switching a valve, or pump. However, due to ad-
ditional features for emergency handling, and the graphical visualization of the levels
and temperatures in the GUI, two more are implemented. Since there are no heating
and mixing elements integrated into the subsystem with PLC3, these services and fur-
thermore the corresponding resources are omitted on these devices. All other services
are provided on both devices. The applications of these equal services is also equal,
however, just the client identification, that is required for the communication with the
MQTT broker, is obviously different, in order to address the correct device. In the
following sections, the implementation of the single applications is described in more
detail.

In order to access the hardware components, as sensors and actuators, Beckhoff pro-
vides the ADS protocol. However, this can just be used, when the inputs and outputs of
the PLCs are mapped to variables, which are defined in a Global Variable List (GVL).
This was done in TwinCAT, which is the official programming tool of Beckhoff PLCs,
and uploaded to the PLCs. Additionally, in the main program of the PLCs, the sensor
values are converted from a digitization value between 0 and 32767 into a physically
interpretable value in milliliters and degree Celsius for the tank levels and temperature,
respectively.

61



4 Implementation of the Flexible Batch Control Concept

FIFO

PUSH

POP

CNF

FIFO

DATA_I DATA_O

Publish_Error

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Publish_Success

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Write_Beckhoff

INIT

REQ

INITO

CNF

WRITE_BECKHOFF

QI

ADS_PORT

VARNAME

VALUE

QO

Label2PLCName

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

E_PERMIT

EI EO

E_PERMIT

PERMIT

LabelValueSeparator

REQ CNF

ERROR

LblVal_Seperator

MSG Label

Value

Subscribe

INIT

RSP

INITO

IND

SUBSCRIBE_1

QI

ID

QO

STATUS

RD_1

fbdk[].mqtt[%ip%,PLC1, Error]Mix

fbdk[].mqtt[%ip%,PLC1, ]MixSuccess

1

851

Lbl2PLC.txt

1

fbdk[].mqtt[%ip%,PLC1, ]Mix

Figure 4.9: Function Block network of the Mix service in 4diac. Disregarding the
MQTT topics, this network is equal to the service implementation for the
valve and pump service. In the ID of the MQTT topic, %ip% is placeholder
for the IP address of the MQTT broker.

4.5.1 Mix, Valve, Pump Services

Disregarding the MQTT topics, the FB network of the services for mixing and switching
valves as well as pumps are equal. As an example, the application for the mixing service
is illustrated in Figure 4.9. On the left side of the FB network, there is a Subscribe
FB, which is the receiving station of MQTT messages for the corresponding topic. If
a message is published to the corresponding topic, this FB sends an output event on
the IND channel with the actual message in RD_1. Subsequently, the event with the
message data is forwarded to a First-In First-Out (FIFO) queue, that buffers incoming
messages, if there are more messages, than the remaining program can handle. The
message for all these three topics, mix, valve, and pump, consists of the component
label, and the desired value, separated by a semicolon, e. g., E105;true for turning on
the mixer. Now, the LabelValueSeparator FB splits this message into the component
name and the value. Since the component name need not necessarily be equal to the,
in the GVL of TwinCAT defined, name, the Label2PLCName FB translates it into
this addressable name. The translation table is stored in the file, as specified in the
Filename data input with a syntax: label;PLC-identifier, e. g., E105;GVL.E105.
Afterwards, the PLC specific FB Write_Beckhoff initializes the variable and, in a
second step, writes the value. For this, Beckhoff’s ADS protocol was used at port
851. If the operation is successful, a message is published to the topic MixSuccess
(ValveSuccess, PumpSuccess), otherwise, in case of a failure, a message is published to
the topic MixError (ValveError, PumpError).

4.5.2 Tank Level Monitoring Service

As Figure 4.10 illustrates, the implementation of the Tank Level Monitoring service
contains several FBs, that were already described in the previous section. However,
this service has a central controlling component implemented, which is responsible
for reading the liquid level of the desired tank, and publishes a message, if it is
reached. The service is initialized with a MQTT message, that follows the pattern

62



4.5 Implementation of the Services

Subscribe_TankFilling

INIT

RSP

INITO

IND

SUBSCRIBE_1

QI

ID

QO

STATUS

RD_1

Publish_Tank_Success

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Publish_Tank_Error

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Label2PLCName

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

Read_Beckhoff

INIT

REQ

INITO

CNF

READ_BECKHOFF

QI

ADS_PORT

VARNAME

QO

VALUE

VALUE_UINT

VALUE_STR

E_Cycle

START

STOP

EO

E_CYCLE

DT

FIFO

PUSH

POP

CNF

FIFO

DATA_I DATA_O

FIFO

PUSH

POP

CNF

FIFO

DATA_I DATA_O

E_Permit

EI EO

E_PERMIT

PERMIT

Publish_Tank_Warning

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Publish_Tank_Confirm

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

TankController

INIT

REQ_MSG

PollingTick

RspReadSensor

INITO

CNF_MSG

ReqReadSensor

PollingStart

PollingStop

CNF_TANK

SUCCESS

WARNING

ERROR

LevelUpdate

TankController

TanklistFile

Msg

Value

Sensor

ConfirmMsg

SuccessMsg

WarningMsg

ErrorMsg

LevelUpdateMsg

Publish_Tank_LevelUpdate

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

1

fbdk[].mqtt[% %, 1,TankFilling]ip PLC fbdk[].mqtt[%ip%,PLC1,TankFillingSuccess]

fbdk[].mqtt[%ip%,PLC1,TankFillingError]

Label2PLCNameList.txt

1

851

T#500ms

fbdk[].mqtt[%ip%,PLC1,TankFillingWarning]

fbdk[].mqtt[%ip%,PLC1,TankFillingConfirm]

tanklist.txt

fbdk[].mqtt[%ip%,PLC1,LevelUpdate]

Figure 4.10: Implementation of the Tank Level Monitoring service in 4diac.

phaseID;tankname;filling;amount, where phaseID is a unique identification of the
recipe Phase, tankname defines the desired tank, which is to be monitored, filling is a
boolean value, that describes, whether the tank is to be filled (true), or drained (false),
and amount specifies the transfer amount in milliliters. Via the TanklistFile data
input, a file can be specified, where the corresponding level sensor and the conversion
factor are stored. When a valid message is received, either, in case of the tank has a
level sensor integrated, a confirmation message is published to the TankFillingConfirm
topic, or, if not, a message is published to the TankFillingWarning topic. Afterwards,
a cyclic event trigger E_Cycle is started, which generates output events, for polling
the level sensor. With the first polling event, the controller stores the current level
and calculates the target level. If this is reached, a success message is published. Ad-
ditionally, at every polling tick, the current level is published to the LevelUpdate topic,
which is used for updating the GUI. In case of an error, an error message is published
to the TankFillingError topic.

Since there is not just one service per level sensor, but one service per device, it is
also possible, that several Tank Level Monitoring services are requested concurrently.
Therefore, the controller contains a list, that stores all transfer jobs and polls each level
sensor alternatively. If all transfer processes are finished, the cyclic event generator for
polling the level sensors is stopped.

63



4 Implementation of the Flexible Batch Control Concept

Subscribe_Heat

INIT

RSP

INITO

IND

SUBSCRIBE_1

QI

ID

QO

STATUS

RD_1

Publish_Heat_Success

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Publish_Heat_Error

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Label2PLCName_2

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

Read_Beckhoff

INIT

REQ

INITO

CNF

READ_BECKHOFF

QI

ADS_PORT

VARNAME

QO

VALUE

VALUE_UINT

VALUE_STR

E_CYCLE

START

STOP

EO

E_CYCLE

DT

FIFO_1

PUSH

POP

CNF

FIFO

DATA_I DATA_O

FIFO_3

PUSH

POP

CNF

FIFO

DATA_I DATA_O

E_Permit_2

EI EO

E_PERMIT

PERMIT

Publish_Heat_Confirm

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Label2PLCName_1

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

FIFO_2

PUSH

POP

CNF

FIFO

DATA_I DATA_O

E_Permit_1

EI EO

E_PERMIT

PERMIT

Write_Beckhoff

INIT

REQ

INITO

CNF

WRITE_BECKHOFF

QI

ADS_PORT

VARNAME

VALUE

QO

HeatController

ReqMsg

PollingTick

RspReadSensor

ReadSensor

WriteValue

PollingStart

PollingStop

CnfHeat

Success

Error

TempUpdate

HeatController

Msg

ValueRead

ConfirmMsg

SuccessMsg

ErrorMsg

Sensor

Actuator

ValueWrite

TempUpdateMsg

Publish_Temp_Update

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

1

fbdk[].mqtt[%ip%,PLC1,Heat]

fbdk[].mqtt[%ip%,PLC1,HeatSuccess]

fbdk[].mqtt[%ip%,PLC1,HeatError]

Label2PLCNameList.txt 1

851

T#500ms

fbdk[].mqtt[% %ip ,PLC1,HeatConfirm]

Label2PLCNameList.txt

1

851

fbdk[].mqtt[%ip%,PLC1,TempUpdate]

Figure 4.11: Implementation of the Heat service in 4diac.

4.5.3 Heat Service

As Figure 4.11 shows, the FB network of this service implementation consists of almost
the same FBs, as the previously explained services. The Subscribe FB of this service
listens to the MQTT topic Heat, which expects a message, based on the template
phaseID;tankname;actuatorname;sensorname;targetTemp. All of these parameters
are either defined in the recipe or tank model. Similar to the Tank Level Monitoring
application, there is also a central controlling component, termed HeatController, which
controls the polling of the temperature sensors and sends events to turn the heating
element on/off. There is just a simple control algorithm implemented, which turns on
the heating element at service start and turns it off, when the desired temperature is
reached. When a special command, like hold, restart, or abort, is triggered by the
user, the supervising computer forwards the command to the, in this case, Heat topic,
with the message abort;tankname and this application is now responsible for turning
on/off the corresponding heating element.

64



4.5 Implementation of the Services

Publish_Emergency_Confirm

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

E_Cycle

START

STOP

EO

E_CYCLE

DT

Label2PLCName

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

Read_Beckhoff

INIT

REQ

INITO

CNF

READ_BECKHOFF

QI

ADS_PORT

VARNAME

QO

VALUE

VALUE_UINT

VALUE_STR

Subscribe_EmergencyInit

INIT

RSP

INITO

IND

SUBSCRIBE_1

QI

ID

QO

STATUS

RD_1

Publish_Emergency

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

FIFO_2

PUSH

POP

CNF

FIFO

DATA_I DATA_O

E_PERMIT

EI EO

E_PERMIT

PERMIT

FIFO_1

PUSH

POP

CNF

FIFO

DATA_I DATA_O

Publish_Emergency_Error

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

EmergencyController

Init

ReqMsg

PollingTick

RspReadSenor

CnfMsg

PollingStart

PollingStop

ReqReadSensor

Emergency

EmergencyOver

EmergencyController

Msg

Value

ResendFactor

LabelFile

ConfirmMsg

Sensor

EmergencyMsg

EmergencyOverMsg

Publish_Emergency_Over

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

fbdk[].mqtt[%ip%, 1,EmergencyInitConfirm]PLC

T#500ms

Label2PLCNameList.txt 1

851

1

fbdk[].mqtt[%ip%,PLC1,EmergencyInit]

fbdk[].mqtt[%ip%,PLC1,Emergency]

fbdk[].mqtt[%ip%,PLC1,EmergencyReadError]

10

Label2PLCNameList.txt

fbdk[].mqtt[%ip%,PLC1,EmergencyOver]

Figure 4.12: Implementation of the Emergency service in 4diac.

4.5.4 Emergency Service

As described in Section 4.4.4, an emergency function is implemented, in order to pre-
vent the pump to run idle, overfilling of the tanks, and heating if there is too little liquid
inside a tank. These precaution mechanisms were put into an emergency service, which
is depicted in Figure 4.12. It looks similar to the Tank Level Monitoring and Heat ser-
vice, with a central controlling unit. This service is initialized with the EmergencyInit
topic, based on a template sensorname;emergency_condition, where the emergency
condition can either be a boolean condition, like, true/false, or a numeric condition,
like greater/lower than a numerical value. As an example, the EmergencyInit message
of a level switch at the top of tank T101 is S111;true, so, if sensor S111 becomes
true, an emergency message is published to the topic Emergency. This message is
repeated, until the emergency state is over. However, in order to prevent a flooding
of emergency messages, the ResendFactor defines the ratio between polling ticks to
published messages. If, for example, the ResendFactor is ten, just every tenth polling
tick is published. When the undesired system state is over, a message is published to
the EmergencyOver topic.

4.5.5 Read Service

In order to illustrate the sensor values of the plant, the read service was implemented.
The only objective of this service is to read a sensor value from the PLC and publish it

65



4 Implementation of the Flexible Batch Control Concept

Subscribe_Read

INIT

RSP

INITO

IND

SUBSCRIBE_1

QI

ID

QO

STATUS

RD_1

Publish_ReadConfirm

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Label2PLCName

INIT

REQ

INITO

CNF

ERROR

Label2PLCName

Filename

Label

PLC_Identifier

FIFO

PUSH

POP

CNF

FIFO

DATA_I DATA_O

E_Permit

EI EO

E_PERMIT

PERMIT

Read_Beckhoff

INIT

REQ

INITO

CNF

READ_BECKHOFF

QI

ADS_PORT

VARNAME

QO

VALUE

VALUE_UINT

VALUE_STR
Publish_Read_Error

INIT

REQ

INITO

CNF

PUBLISH_1

QI

ID

SD_1

QO

STATUS

Compose_Strings

REQ CNF

STRCAT

STRING1

DELIMITER

STRING2

STRING_O

1

fbdk[].mqtt[%ip%, 1,Read]PLC

fbdk[].mqtt[%ip%,PLC1,ReadSuccess]
Label2PLCNameList.txt

1

851

fbdk[].mqtt[%ip%,PLC1,ReadError]

;

Figure 4.13: Implementation of the Read service in 4diac.

as a composition of the label and the actual value. In Figure 4.13, the FB network of
this service is depicted. The subscribe FB of this service listens to the topic Read. The
message only contains the name of the component. Compared to the other applications,
this FB network is similarly constructed, there is just an additional FB, which composes
the component name with the value, separated by a semicolon.

66



CHAPTER 5

Evaluation of the Flexible Batch Process Control

In this chapter, the SOA-based flexible batch process control for two linked Festo
demonstrator plants is evaluated. For this, first, the demonstrator plants and their
hardware setup is described. Afterwards, the functioning of the add process with its
components for finding the shortest path and creation of the subrecipe is presented.
At last, the functioning of the parallel processing of the heating and mixing Phases is
demonstrated.

5.1 Hardware Setup of the Demonstrator Plant

The demonstrator plant of Figure 1.2 consists of a Festo Didactic process industry
plant with two tanks and a custom built storage tank system with five tanks. These
subsystems have two paths connecting them, which can be used bidirectionally, in
order to enable several ways for transfer processes. The Piping and Instrumentation
Diagram (P&ID) of the demonstrator plant is depicted in Figure 5.1. Both subsystems
are controlled via a separate off-the-shelf Beckhoff CX5010 PLC with several input and
output terminal modules. A full list of all modules and their attached components is
given in Table 5.1.

All but one tank have level sensors integrated for measuring the liquid level of the tanks.
Tank T101 of the Festo Didactic demonstrator subsystem has no level sensor, however,
there are level switches at the bottom and top of the tank in order to recognize a full or
empty tank. Additionally, tank T101 has a heating element with a temperature sensor

67



5 Evaluation of the Flexible Batch Process Control

x1 x2

T101

T102

M

M

M

E104

E105

YS

YSYS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS

YS YS

YSYSYS

YS

YS

YS

LI

LILILILILI

NC

NC

FI

FI

TI

LS-

LS-

LAS+

LAS-

T310 T320 T330 T340 T350
B101

S112

V101

V102

B104

B114

B113

S111

V104

B102

V103

P101

V3L3

V3L2

V3L1

V3L6 V3L5 V3L4

B311

V313

V312

V311

B321

V323

V322

V321

B331

V333

V332

V331

B301

B341

V343

V342

V341

V3P1

B351

V353

V352

V351

V3R4

V3R5

V3R6

V3R3

V3R2

V3R1

V3R8

V3R7

P301

1

1

1

1

1

1

1

11111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

2

2

2
2

2

2
3

Figure 5.1: P&ID of the demonstrator plant.

Table 5.1: Components connected to the Beckhoff CX5010 PLCs.

Plant Module Specification Attached components

Festo Didactic EL2008 DO 24V valves, pump, mixer, heating element

EL4004 AO 0 V to 10 V pump speed

EL3064 AI 0 V to 10 V ultrasonic level sensor, temperature
sensor, flow sensor

EL1018 DI 24V level switches, capacitive proximity
sensors

Custom Build EL2008 DO 24V valves, pump

EL4004 AO 0 V to 10 V pump speed

EL3064 AI 0 V to 10 V guided wave radar level sensor, flow
sensor

68



5.2 Evaluation of the Route Finding Algorithm

and a mixer integrated. Since the heating element is mounted about ten centimeters
above the base of the tank and below the heater, there is a capacitive proximity sensor,
which is mounted a few centimeters higher, in order to prevent heating, when there
is too little liquid inside the tank. Furthermore, in both subsystem, a unidirectional
centrifugal pump and several 2/2 way solenoid valves are integrated. Since the custom
built subsystem consists of a redundant pipe system, these valves are required to define
a path between two nodes.

5.2 Evaluation of the Route Finding Algorithm

Just before the transfer processes are evaluated, in this section, the evaluation of the
shortest path problem is presented. An evaluation example of the route finding algo-
rithm is depicted in Figure 5.2, where the shortest path from tank T101 to T102 is
calculated. Since both tanks are mounted on the same level, the algorithm recognizes,

T350

T101

T102
T340

T310

T330
T320

P301

V3P1
V313

V3R4

V312

V3R3

V311

V3R2

V3R1

P101

V333

V332

V331

V3R8

V3R7

V3R6

V3R5

V323

V322

V321

V109

V107

V106

V353

V352

V351

V3L6

V3L5

V3L4

V3L3

V3L2

V3L1

V104

V103 V102

V101

V343

V342

V341

(a) Route 1 with P101: length = 112cm

T350

T101

T102
T340

T310

T330
T320

P301

V3P1
V313

V3R4

V312

V3R3

V311

V3R2

V3R1

P101

V333

V332

V331

V3R8

V3R7

V3R6

V3R5

V323

V322

V321

V109

V107

V106

V353

V352

V351

V3L6

V3L5

V3L4

V3L3

V3L2

V3L1

V104

V103 V102

V101

V343

V342

V341

(b) Route 2 with P301: length = 296cm

Figure 5.2: Route finding example for a transfer process from T101 to T102 using the
pumps P101 or P301. The first subpath from the source tank to the pump
and the second subpath from the pump to the target tank are highlighted,
in yellow and orange, respectively. Since the path of figure (a) is shorter,
the algorithm chooses this one.

69



5 Evaluation of the Flexible Batch Process Control

that a pump is required for the transfer operation. Therefore, the graph is analyzed
and all pumps are filtered. Now, the algorithm calculates the shortest path via each
pump consecutively. In Figures 5.2a and 5.2b the shortest path and its length is eval-
uated for pumps P101 and P301, respectively. The comparison of the lengths of both
paths yields, that the route via P101 is shorter and therefore this route is chosen for
the transfer operation.

5.3 Evaluation of an Add process

When the route is calculated, the corresponding services for the valves, the pump, and
the tank level monitoring are requested. The MQTT message correspondence between
supervising computer and PLC is depicted at the bottom of Figure 5.3. It shows a
zoomed-in view of the starting and end of the transfer process. As the diagram shows,
the entire process for turning on all valves, the pump, and the level monitoring takes
about half a second. In Section 4.4.2, it was mentioned, that there is a malfunction in
the MQTT-Client implementation of FORTE. Due to this problem, a reliable message
transfer requires, that the next message is not sent until the last message is confirmed.
Basically, MQTT would also allow to send them immediately, which would also increase
the turning on/off process, however, since a drop of one or more messages can not be
ruled out, the reliable, but more time consuming, method was chosen. Figure 5.3 also
shows the sensor values of the level sensor B101 of tank T102, and the flow sensor
B102, that is mounted at the output of the pump. After turning off the pump and
valves, the flow sensor, that bases on an axial paddle wheel turbine, still measures a
flow. This is caused by the sensor principle itself, since, for a moment, the turbine
continues turning and therefore the sensor outputs a signal different from zero.

5.4 Evaluation of the Heat and Mix Phase

The Heat Phase was evaluated in combination with the Mix Phase, in order to get a
uniform heat distribution inside a tank. Since the recipe creation editor and the recipe
processing algorithm allows the execution parallel Phases, this can easily be achieved
by specifying the same previous Phase. Each of these two Phases correspond to a
single service, which is requested from the PLC. Figure 5.4 shows the progression of
the temperature of tank T101 while heating and mixing. The Heat service itself is just
implemented with a simple control algorithm, which turns on the heating element at
service start and turns it off, when the desired temperature is reached. At the desired
target temperature of 35 ◦C, it is noticeable, that the temperature still rises, although
the heater is turned off. This phenomenon is caused by the residual heat of the heating
element. In order to minimize the error between desired and actual temperature, for
example a PI controller can be implemented, which requires a linear controllable heater,
or a pulsing of the control signal.

70



5.4 Evaluation of the Heat and Mix Phase

PLC
time
in
ms

PC
time
in
ms

0 10 20 30 40 50 60

time in s

4000

5000

6000

7000

le
v
el

in
m
l

B101

0 10 20 30 40 50 60

time in s

off

on

V
a
lv
es
,
P
u
m
p

V101
V103
P101

0 10 20 30 40 50 60

time in s

0

20

40

60

fl
ow

in
m
l/
s

B102

0

0

100

100

200

200

300

300

400

400

500

500

C
o
n

fi
rm

P
u

m
p

(P
1
0
1
;t

ru
e)

P
u

m
p

(P
1
0
1
;t

ru
e)

C
o
n

fi
rm

V
a
lv

e(
V

1
0
1
;t

ru
e)

V
a
lv

e(
V

1
0
1
;t

ru
e)

C
o
n

fi
rm

V
a
lv

e(
V

1
0
3
;t

ru
e)

V
a
lv

e(
V

1
0
3
;t

ru
e)

C
o
n

fi
rm

T
a
n

k
F

il
li

n
g

(T
1
0
2
,2

L
)

T
a
n

k
F

il
li

n
g

(T
1
0
2
,2

L
)

PLC
time
in
ms

PC
time
in
ms0

0

100

100

200

200

300

300

400

400

500

500

600

600

T
a
n

k
F

il
li

n
g

C
o
m

p
le

te
(T

1
0
2
)

V
a
lv

e
(V

1
0
3
;f

a
ls

e)

C
o
n

fi
rm

V
a
lv

e
(V

1
0
3
;f

a
ls

e)

V
a
lv

e
(V

1
0
1
;f

a
ls

e)

C
o
n

fi
rm

V
a
lv

e
(V

1
0
1
;f

a
ls

e)

P
u

m
p

(P
1
0
1
;f

a
ls

e)

C
o
n

fi
rm

P
u

m
p

(P
1
0
1
;f

a
ls

e)

Figure 5.3: Add Process from T101 to T102. The diagrams show the level of tank
T102, the state of the required valves and pump, as well as the flow. At
the bottom of the figure, the message correspondence between PLC and
supervising computer are depicted in a zoomed-in view.

71



5 Evaluation of the Flexible Batch Process Control

0 50 100 150 200 250 300 350 400 450

time in s

26

28

30

32

34

36

38

T
em

p
er
a
tu
re

in
◦
C

B104

0 50 100 150 200 250 300 350 400 450

time in s

off

on

Heater

Mixer

Figure 5.4: Evaluation of a parallel execution of the Heat and Mix Phase. Tank T101
is heated up to 35 ◦C. However, although the heating element is turned
off when the desired temperature is reached, the actual temperature is still
rising, which is caused by the residual heat of the heating element.

72



CHAPTER 6

Conclusion and Outlook

In this thesis, a concept for a flexible batch process control based on a Service-Oriented
Architecture (SOA) as well as a domain specific recipe editor for batch processes was
developed, implemented, and successfully demonstrated on two linked laboratory tank
system plants. The concept enables an easy method for creating and executing pro-
duction recipes without reconfiguring the actual controlling system, which is usually
required in traditional monolithic control systems. The tool for creating production
recipes is tailored to the domain of the manufacturing plant, hence, the plant operator
with his process specific knowledge is able to handle this tool and create or modify pro-
duction recipes. Since the controlling system does not change, when the recipe changes,
an automation engineer is not required. This reduces a plenty of possible error sources,
like, misunderstandings between plant operator and automation engineer, or program
inconsistencies due to the intervention into the control program. Furthermore, testing
phases can also be reduced, which also minimizes the modification time.

The system design bases on a separation of plant specific implementation details from
the actual batch recipes, so that both parts can be developed and modified indepen-
dently from each other. Therefore, the same batch recipe can be executed on several
plants without knowing of how the implementation of the actual processing actions
looks like and even where these actions are processed. The concept also allows to
distribute these processing actions over several control units, which is very beneficial
for larger plants. The independence between the physical equipment and the produc-
tion procedure is achieved by utilizing services in terms of a SOA. One participant
provides a service, which is called by another participant. All services are accessed
via public interface. For calling a service, it is not necessary to know any implemen-

73



6 Conclusion and Outlook

tation details.All controlling units, which are usually Programmable Logic Controllers,
act as service providers, that offer their controllable actions as services, like switching
actuators or reading sensor values.

In addition to the PLCs, there is also a supervising computer, which has several func-
tions. First, in order to create production recipes, it provides an easy to handle editor,
which is developed exactly for the domain of the process plant. Thus, process experts
of this domain can easily create or modify production recipes. A second task of the
supervising computer is the processing of the recipe and service calling from the control
system (PLCs). Furthermore, a visualization of the recipe enables the process engineer
to determine the current state of the recipe, including already completed and currently
active operations.

Research Questions

Since the implementation of this concept for a flexible batch process control was demon-
strated on a tank system plant, Research Question 1 asked, if the flexibility of batch
productions can be improved by breaking down the typical processing actions, like Add
or Heat, into more atomic services. This question can be answered with yes. In tank
systems, the Add process typically consists of switching valves as well as pumps, and
monitor the fluid level. Usually, these single tasks are combined into one operation,
where the specific components are pre-defined. However, by breaking them down into
single components, that are all ible from outside and with the knowledge of the current
plant, a dynamic route finding algorithm can be implemented, which accesses these
components separately. By using such an algorithm, the flexibility of batch produc-
tions can be improved, since in the case of changes of the plant, the model can easily
be adapted and new paths are calculated automatically. In order to be able to imple-
ment a dynamic route finding algorithm, the plant was modeled with another editor,
where all components of the plant and the piping are described. A major challenge
of the route finding algorithm itself was the integration of a pump, which is required
for pumping liquids from one tank into another. Typical shortest-path algorithms, like
Dijkstra’s algorithm, can only find the shortest path from one node to another, without
intermediate point. Therefore, the route was split into two subroutes with the pump
as intermediate node, in consideration of not using a component twice.

In Research Question 2, it was asked, if this concept is also reasonable for systems
with low or no changes in the recipe. This can also be answered with yes. Even if the
recipe does not change, this concept enables to reduce plant downtimes due to planned
or unplanned events, e. g., for maintenance or due to malfunctions, respectively. If,
for example, a pump breaks down and there is another pump available in the system,
the dynamic route finding algorithm can find an alternative path with a functioning
pump without modifying the production recipe or reconfiguring the control program.
Furthermore, if similar plants are available, the execution of the entire recipe can also
be executed on this plant, without modifying any controlling units.

74



Outlook

This thesis offers a good basis for a flexible batch process control, however, there are
still some issues left for improvements in future projects. If the functionality of by-
passing unavailable equipment is required, an interface must be provided to the user,
in order to define, which components must not be used. Furthermore, the work can
also be extended, by improving the structuring of the recipe based on the standard for
batch process control IEC 61512. It defines hierarchical models in order to structure
the physical equipment and the production information as described in the recipe. Con-
cerning the recipe editor, this hierarchy could be integrated, which would be beneficial
for larger projects.

75





Bibliography

[1] T. Bauernhansl, M. Ten Hompel, and B. Vogel-Heuser, Industrie 4.0 in Pro-
duktion, Automatisierung und Logistik: Anwendung - Technologien - Migration.
Springer-Verlag, 2014.

[2] Y. Koren, The Global Manufacturing Revolution: Product-Process-Business Inte-
gration and Reconfigurable Systems. John Wiley & Sons, 2010.

[3] S. Y. Nof, „Automation: What It Means to Us Around the World“, in Springer
Handbook of Automation, Springer, 2009, pp. 13–52.

[4] C. Bissell, „A History of Automatic Control“, in Springer Handbook of Automa-
tion, Springer, 2009, pp. 53–69.

[5] IEC 61512-1 Batch Control - Part 1: Models and Terminology, International
Electrotechnical Commission (IEC), 1997.

[6] W. Hawkins, D. Brandl, and W. Boyes, Applying ISA-88 in Discrete and Con-
tinuous Manufacturing. Momentum Press, 2011, vol. 2.

[7] K. Thramboulidis, „Model Integrated Mechatronics: An Architecture for the
Model Driven Development of Manufacturing Systems“, in ICM ’04. Proceed-
ings of the IEEE International Conference on Mechatronics, Jun. 2004, pp. 497–
502.

[8] M. Wenger, M. Melik-Merkumians, I. Hegny, R. Hametner, and A. Zoitl, „Uti-
lizing IEC 61499 in an MDA Control Application Development Approach“, in
IEEE Conference on Automation Science and Engineering (CASE), Aug. 2011,
pp. 495–500.

[9] J. Browne, D. Dubois, K. Rathmill, S. P. Sethi, and K. E. Stecke, „Classification
of Flexible Manufacturing Systems“, The FMS magazine, vol. 2, no. 2, pp. 114–
117, 1984.

77



Bibliography

[10] V. Botti and A. Giret, ANEMONA: A Mulit-agent Methodology for Holonic Man-
ufacturing Systems, D. Pham, Ed. Springer London, 2008.

[11] Bundesministerium für Bildung und Forschung, Deutschland. (2012). Zukunft-
sprojekte der Hightech-Strategie, [Online]. Available: https : //www.bmbf.de/

pub/HTS-Aktionsplan.pdf (visited on 07/13/2016).

[12] H. Kagermann, W. Wahlster, and J. Helbig, Recommendations for implementing
the strategic initiative INDUSTRIE 4.0, 2013.

[13] M. Barker and J. Rawtani, Practical Batch Process Management. Elsevier, 2005.

[14] D. Brandl, Design Patterns for Flexible Manufacturing. ISA, 2006.

[15] J. Parshall and L. Lamb, Applying S88: Batch Control from a User’s Perspective.
ISA, 1999.

[16] IEC 61512-2 Batch Control Part 2: Data Structures and Guidelines for Lan-
guages, International Electrotechnical Commission (IEC), 2001.

[17] M. De Minicis, F. Giordano, F. Poli, and M. M. Schiraldi, „Recipe Development
Process Re-Design with ANSI/ISA-88 Batch Control Standard in the Pharma-
ceutical Industry“, International Journal of Engineering Business Management,
vol. 6, 2014.

[18] IEC 62264-1: Enterprise-Control System Integration Part 1: Models and Termi-
nology, International Electrotechnical Commission (IEC), 2003.

[19] C. L. Case, „Applying ISA 88.01 to Small, Simple Processes“, in The WBF BOOK
SERIES–ISA 88 Implementation Experiences, W. Hawkins, WBF, D. Brandl, and
W. Boyes, Eds., Momentum Press, 2010, ch. 3, pp. 21–33.

[20] G. Godena, I. Steiner, J. Tancek, and M. Svetina, „Design of a Batch Process
Control Tool on the Programmable Logic Controller Platform“, in The WBF
BOOK SERIES–ISA 88 Implementation Experiences, ser. WBF book series, W.
Hawkins, WBF, D. Brandl, and W. Boyes, Eds., Momentum Press, 2010, ch. 14,
pp. 157–173.

[21] N. M. Josuttis, SOA in Practice, 1. ed. O’Reilly Media, Inc., 2007.

[22] P. Bianco, R. Kotermanski, and P. Merson, „Evaluating a Service-Oriented Archi-
tecture“, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Tech. Rep. CMU/SEI-2007-TR-015, 2007.

[23] C. A. R. Hoare, „An Axiomatic Basis for Computer Programming“, Commun.
ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[24] M. Melik-Merkumians, T. Baier, M. Steinegger, W. Lepuschitz, I. Hegny, and A.
Zoitl, „Towards OPC UA as portable SOA Middleware between Control Software
and External Added Value Applications“, in IEEE 17th Conference on Emerging
Technologies & Factory Automation (ETFA), 2012, pp. 1–8.

[25] W. Dai, J. Peltola, V. Vyatkin, and C. Pang, „Service-Oriented Distributed Con-
trol Software Design for Process Automation Systems“, in IEEE International
Conference on Systems, Man and Cybernetics (SMC), Oct. 2014, pp. 3637–3642.

78

https://www.bmbf.de/pub/HTS-Aktionsplan.pdf
https://www.bmbf.de/pub/HTS-Aktionsplan.pdf


Bibliography

[26] H. Bohn, A. Bobek, and F. Golatowski, „SIRENA - Service Infrastructure for
Real-time Embedded Networked Devices: A service oriented framework for differ-
ent domains“, in International Conference on Networking, International Confer-
ence on Systems and International Conference on Mobile Communications and
Learning Technologies (ICNICONSMCL’06), Apr. 2006, pp. 43–43.

[27] A. Cannata, M. Gerosa, and M. Taisch, „SOCRADES: A Framework for Devel-
oping Intelligent Systems in Manufacturing“, in 2008 IEEE International Confer-
ence on Industrial Engineering and Engineering Management, Dec. 2008, pp. 1904–
1908.

[28] S. Karnouskos, A. W. Colombo, F. Jammes, J. Delsing, and T. Bangemann,
„Towards an Architecture for Service-Oriented Process Monitoring and Control“,
in 36th Annual Conference on IEEE Industrial Electronics Society (IECON),
2010, pp. 1385–1391.

[29] J. Virta, I. Seilonen, A. Tuomi, and K. Koskinen, „SOA-Based Integration for
Batch Process Management with OPC UA and ISA-88/95“, in IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), Sep. 2010, pp. 1–8.

[30] A.-W. Colombo, S. Karnouskos, and J.-M. Mendes, „Artificial Intelligence Tech-
niques for Networked Manufacturing Enterprises Management“, in, L. Benyoucef
and B. Grabot, Eds. London: Springer London, 2010, ch. Factory of the Future: A
Service-oriented System of Modular, Dynamic Reconfigurable and Collaborative
Systems, pp. 459–481.

[31] S. Karnouskos, A. W. Colombo, T. Bangemann, K. Manninen, R. Camp, M. Tilly,
P. Stluka, F. Jammes, J. Delsing, and J. Eliasson, „A SOA-based architecture
for empowering future collaborative cloud-based industrial automation“, in 38th
Annual Conference on IEEE Industrial Electronics Society (IECON), IEEE, 2012,
pp. 5766–5772.

[32] G. Cândido, F. Jammes, J. B. de Oliveira, and A. W. Colombo, „SOA at Device
level in the Industrial domain: Assessment of OPC UA and DPWS specifications“,
in 8th IEEE International Conference on Industrial Informatics (INDIN), Jul.
2010, pp. 598–603.

[33] E. Curry, „Message-Oriented Middleware“, in Middleware for Communications,
John Wiley & Sons, Ltd, 2004, pp. 1–28.

[34] D. R. Ferreira, „Messaging Systems“, in Enterprise Systems Integration, Springer
Berlin Heidelberg, 2013, pp. 32–92.

[35] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional, 2004.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[37] G. Banavar, T. Chandra, R. Strom, and D. Sturman, „Distributed Computing:
13th International Symposium (DISC’99)“, in, P. Jayanti, Ed. Springer Berlin
Heidelberg, 1999, ch. A Case for Message Oriented Middleware, pp. 1–17.

79



Bibliography

[38] IEC 62541: OPC Unified Architecture, International Electrotechnical Commis-
sion (IEC), 2010.

[39] J. Imtiaz and J. Jasperneite, „Scalability of OPC-UA Down to the Chip Level En-
ables “Internet of Things”“, in 11th IEEE International Conference on Industrial
Informatics (INDIN), Jul. 2013, pp. 500–505.

[40] W. Mahnke and S.-H. Leitner, „OPC Unified Architecture“, in. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, ch. Services, pp. 125–190.

[41] L. Dürkop, B. Czybik, and J. Jasperneite, „Performance Evaluation of M2M Pro-
tocols Over Cellular Networks in a Lab Environment“, in 18th International Con-
ference on Intelligence in Next Generation Networks (ICIN), Feb. 2015, pp. 70–
75.

[42] OPC Foundation. (2016). OPC UA is Enhanced for Publish-Subscribe, [Online].
Available: https://opcfoundation.org/opc-connect/2016/03/opc-ua-is-e

nhanced-for-publish-subscribe-pubsub/ (visited on 04/11/2016).

[43] F. Jammes, A. Mensch, and H. Smit, „Service-Oriented Device Communications
using the Devices Profile for Web Services“, in Proceedings of the 3rd Interna-
tional Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC),
ACM, 2005, pp. 1–8.

[44] F. Palm, S. Grüner, J. Pfrommer, M. Graube, and L. Urbas, „Open Source as
Enabler for OPC UA in Industrial Automation“, in IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA), Sep. 2015, pp. 1–6.

[45] V. Lampkin, W. Leong, L. Olivera, S. Rawat, N. Subrahmanyam, R. Xiang,
G. Kallas, N. Krishna, S. Fassmann, M. Keen, et al., Building Smarter Planet
Solutions with MQTT and IBM WebSphere MQ Telemetry, ser. IBM redbooks.
IBM Redbooks, 2012.

[46] P. Hintjens, ZeroMQ: Messaging for Many Applications, A. Oram and M. Gulick,
Eds. O’Reilly Media, Inc., 2013.

[47] iMatix Corporation. (2014). ZeroMQ - The Guide, [Online]. Available: http://

zguide.zeromq.org/ (visited on 04/15/2016).

[48] Object Management Group. (Apr. 2015). Data Distribution Service. Version 1.4,
[Online]. Available: http://www.omg.org/spec/DDS/1.4 (visited on 07/12/2016).

[49] S. Schneider and B. Farabaugh, „Is DDS for You?“, A Whitepaper by Real-Time
Innovations, 2009.

[50] A. Møller and M. I. Schwartzbach, „10th International Conference on Database
Theory (ICDT)“, in, T. Eiter and L. Libkin, Eds. Springer Berlin Heidelberg,
2005, ch. The Design Space of Type Checkers for XML Transformation Languages,
pp. 17–36.

[51] S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, 3rd revised
edition. Prentice Hall, 2010.

[52] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats, E.
Visser, and G. Wachsmuth, DSL Engineering: Designing, Implementing and Us-
ing Domain-Specific Languages. dslbook.org, 2013.

80

https://opcfoundation.org/opc-connect/2016/03/opc-ua-is-enhanced-for-publish-subscribe-pubsub/
http://zguide.zeromq.org/
http://zguide.zeromq.org/
http://www.omg.org/spec/DDS/1.4


Bibliography

[53] D. Ghosh, DSLs in Action. Manning Publications Co., 2010.

[54] M. Fowler, „Language Workbenches: The Killer-App for Domain Specific Lan-
guages?“, 2005.

[55] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd, 2013.

[56] T. Parr, The Definitive ANTLR 4 Reference, S. Pfalzer, Ed. Pragmatic Bookshelf,
2013.

[57] M. Fowler, Domain-Specific Languages, ser. Addison-Wesley Signature Series.
Pearson Education, 2010.

[58] J. W. Backus, F. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. Perlis, H.
Rutishauser, K. Samelson, B. Vauquois, et al., „Revised Report on the Algorith-
mic Language ALGOL 60“, The Computer Journal, vol. 5, no. 4, pp. 349–367,
1963.

[59] ISO/IEC 14977: Information technology - Syntactic metalanguage - Extended
BNF, International Organization for Standardization, 1996.

[60] Eclipse Foundation. (2016). Xtext - Framework for Development of Programming
Languages and Domain-Specific Languages, [Online]. Available: http://www.ec

lipse.org/Xtext/ (visited on 06/06/2016).

[61] IEC 61131-3: Programmable controllers - Part 3: Programming languages, Inter-
national Electrotechnical Commission (IEC), 2013.

[62] B. Vogel-Heuser, „Springer Handbook of Automation“, in, Y. S. Nof, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, ch. Automation in the Wood and
Paper Industry, pp. 1015–1026.

[63] IEC 61499: Function Blocks, International Electrotechnical Commission (IEC),
2012-2013.

[64] A. Zoitl and R. W. Lewis, Modelling Control Systems Using IEC 61499, 2. ed.,
ser. IET Control engineering series ; 95. London: IET, 2014.

[65] IEC 61131: Programmable controllers, International Electrotechnical Commis-
sion (IEC), 2001-2014.

[66] W. Lepuschitz and A. Zoitl, „An Engineering Method for Batch Process Automa-
tion using a Component Oriented Design based on IEC 61499“, in IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2008, pp. 207–214.

[67] H. Prähofer, D. Hurnaus, C. Wirth, and H. Mössenböck, „The Domain-Specific
Language Monaco and its Visual Interactive Programming Environment“, in
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Sep. 2007, pp. 104–110.

[68] T. Gu and P. A. Bahri, „A survey of Petri net applications in batch processes“,
Computers in Industry, vol. 47, no. 1, pp. 99–111, 2002.

[69] B. Favre-Bulle, Automatisierung komplexer Industrieprozesse: Systeme, Verfahren
und Informationsmanagement. Springer-Verlag, 2013.

81

http://www.eclipse.org/Xtext/


Bibliography

[70] G. T. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell. O’Reilly
Media, Inc., 2008.

[71] E. W. Dijkstra, „A Note on Two Problems in Connexion with Graphs“, Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[72] P. E. Hart, N. J. Nilsson, and B. Raphael, „A Formal Basis for the Heuristic
Determination of Minimum Cost Paths“, IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, Jul. 1968.

[73] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications,
2nd. Springer Publishing Company, Incorporated, 2008.

[74] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 3rd Edition. MIT Press, 2009.

[75] Eclipse Foundation. (2016). 4diac - Framework for Industrial Automation & Con-
trol, [Online]. Available: http://www.eclipse.org/4diac (visited on 06/17/2016).

[76] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C. Polack, and G.
Botterweck, „Taming EMF and GMF Using Model Transformation“, in Model
Driven Engineering Languages and Systems (MODELS): 13th International Con-
ference, Part I, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds., Springer Berlin
Heidelberg, 2010, pp. 211–225.

[77] Eclipse Foundation. (). Mosquitto - Open-Source MQTT Message Broker, [On-
line]. Available: http://mosquitto.org/ (visited on 06/23/2016).

[78] ——, (2016). Xtend - Programming Language, [Online]. Available: http://www.

eclipse.org/xtend/ (visited on 06/21/2016).

[79] K. Birken, „Building Code Generators for DSLs Using a Partial Evaluator for the
Xtend Language“, in Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change: 6th International Sympo-
sium, ISoLA 2014, T. Margaria and B. Steffen, Eds., Springer Berlin Heidelberg,
2014, pp. 407–424.

[80] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, „GraphStream: A Tool for
bridging the gap between Complex Systems and Dynamic Graphs“, in Emergent
Properties in Natural and Artificial Complex Systems. Satellite Conference within
the 4th European Conference on Complex Systems (ECCS), Oct. 2007.

[81] O. Dubuisson, ASN. 1: Communication between heterogeneous systems. Morgan
Kaufmann, 2001.

82

http://www.eclipse.org/4diac
http://mosquitto.org/
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/


Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher
Form in anderen Prüfungsverfahren vorgelegt.

Wien, im August 2016 Matthias Baierling




	Introduction
	Scope of the Thesis
	Thesis Outline

	State of the Art
	Batch Process Control
	IEC 61512 - Batch Control
	Batch Recipes

	Service Oriented Architecture
	Messaging Systems
	Message Exchange Patterns
	Message-Oriented Middleware
	Commonly used Messaging Methods in the Automation Industry

	Domain Specific Language
	Classification of dsl
	Defining a Grammar of a Domain Specific Language
	Application Examples of Domain Specific Languages

	Shortest Path Problem
	Graph Fundamentals
	Shortest Path Algorithms

	Research Questions

	Concept of a Flexible Batch Process Control
	General Overview of the Concept
	Batch Recipe Creation with a DSL
	Path Planning Algorithms in Redundant Pipe Systems
	Modeling a Tank System
	Finding the Shortest Path
	Processing of the Add Phase


	Implementation of the Flexible Batch Control Concept
	Program Overview and Basic Design Decisions
	Domain Specific Language Editors and Visualization
	Procedural Recipe Language
	Visualizing a Textual Domain Specific Language with EuGENia
	Tank System Language

	Path Planning for Add Processes
	Requirements for Finding the Shortest Path with GraphStream
	Implementation of the Shortest Path Algorithm

	Supervising Program
	Graphical User Interface
	Communication with the MQTT Broker
	Recipe Processing
	Controller Class

	Implementation of the Services
	Mix, Valve, Pump Services
	Tank Level Monitoring Service
	Heat Service
	Emergency Service
	Read Service


	Evaluation of the Flexible Batch Process Control
	Hardware Setup of the Demonstrator Plant
	Evaluation of the Route Finding Algorithm
	Evaluation of an Add process
	Evaluation of the Heat and Mix Phase

	Conclusion and Outlook

