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Abstract

The rapid improvement of laser technology in the last decades enables scientists to

explore ever shorter timescales of physical processes. Waveform controllable ultra-

short high-intensity laser pulses can be utilized to investigate electron motion on

the subfemtosecond timescale in atoms, molecules, and even solid matter.

A promising branch for new technologies of this so-called field of attosecond

physics is summarized by the term “lightwave electronics” based on the controlled

steering of electrons by light oscillations with the vision of realizing electronic

devices operating with clock speeds orders of magnitude faster than present con-

ventional semiconductor devices. By investigating the micro- and macroscopic

charge transfer occurring in bulk insulators this work aims at increasing the un-

derstanding of the underlying physics.

The involved quantum mechanical processes are modelled by ab-initio simula-

tions based on time-dependent density functional theory for two materials, dia-

mond and α-quartz. This microscopic model is coupled to the macroscopic regime

by combining time-dependent functional theory with Maxwell’s equations. Fur-

thermore, a semiclassical model, intended to support the interpretation of the

quantum mechanical results, is presented. Whereever possible, the results are

compared to existing experimental findings.



These models are applied to strong ultra-short laser pulses interacting with

α-quartz and diamond in single cell and macroscopic simulations. A strong de-

pendence of the amount of transferred charge on the carrier-envelope phase is

found and explained by the semiclassical model. Investigating effects of symmetry

breaking due to laser fields composed of two colors reveal strong variations of the

amount of transferred charge as a function of the phase relation of the two pulses

as well.

These results open the pathway to designing ultra-fast light-driven switching de-

vices for future petahertz electronics. Moreover, the applicability of time-dependent

density functional theory to obtain an accurate description of the involved process

can be confirmed.



Kurzfassung

Die rasante Verbesserung der Lasertechnologie in den letzten Jahrzehnten er-

möglicht es Wissenschaftern physikalische Prozesse auf immer kürzeren Zeitskalen

zu erforschen. Ultrakurze hochintensive Laserpulse, deren Wellenform kontrollier-

bar ist, können dazu verwendet werden Elektronenbewegungen auf der Subfem-

tosekundenzeitskala in Atomen, Molekülen bis hin zu Festkörpern zu untersuchen.

Ein vielversprechender Zweig für neue Technologien dieser sogenannten At-

tosekundenphysik wird zusammengefasst unter dem Begriff “Lichtwellenelektronik”,

der auf der kontrollierten Steuerbarkeit von Elektronen durch Lichtoszillationen

basiert und auf die Vision der Realisierung von elektronischen Geräten mit Größenord-

nungen höheren Taktraten als herkömmliche Halbleiterbauelemente hinweist. An-

hand der Untersuchung des in Isolatoren auftretenden mikro- und makroskopis-

chen Ladungstransfers versucht diese Arbeit das Verständnis the zugrundeliegen-

den Physik zu verbessern.

Die beteiligten quantenmechanischen Prozesse werden für zwei Materialien, Dia-

mant und α-Quarz, durch ab-initio Simulationen untersucht, die auf zeitabhängiger

Dichtefunktionaltheorie beruhen. Dieses mikroskopische Modell ist an das makro-

skopische Regime durch die Kombination mit den Maxwellgleichungen gekoppelt.

Weiters wird ein semiklassisches Modell präsentiert, das darauf abzielt die Inter-



pretation der quantenmechanischen Ergebnisse zu erleichtern. Soweit verfügbar,

werden die Resultate mit vorhandenen experimentellen Daten verglichen.

Die Modelle werden angewendet, um die Wechselwirkung von ultra-kurzen Laser-

pulsen mit den Materialen in einzelnen Elementarzellen und in makroskopisch aus-

gedehnten Kristallen zu beschreiben. Ein starke Abhängigkeit der transferierten

Ladung von der Träger-Einhüllenden-Phase wurde gefunden und kann anhand der

semiklassischen Simulation erklärt werden. Außerdem werden die durch Symme-

triebrechung mittels eines zweifarbigen Laserfeldes induzierten Effekte studiert.

Hier kann ebenso eine erhebliche Variation der transferierten Ladung als Funktion

der Phasenbeziehung der beiden Pulse gefunden werden.

Diese Resultate tragen zur Entwicklung von ultraschnellen lichtgesteuerten Schalt-

geräten für zukünftige Petahertzelektronik bei und untermauern die Anwend-

barkeit von zeitabhängiger Dichtefunktionaltheorie um eine präzise Beschreibung

der beteiligten Prozesse zu erlangen.
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Introduction

The advent of laser sources providing strong ultra-short few-cycle laser pulses

with intensities up to 1014 W/cm2 has opened up a completely new field of re-

search, the time-resolved spectroscopy of electronic processes on their natural

(sub-)femtosecond timescale. Experimental findings for solid dielectric targets

point to the possibility of designing ultrafast electro-optical switches aiming at

increasing the operation speeds of electronic signal processing up to the petaherz-

regime [1]. In this work laser-solid interactions are simulated using time-dependent

functional theory (TDDFT) and semiclassical simulations to add to the under-

standing of ultrafast electronic processes in dielectrics. In particular, the interest

lies in the effects induced by breaking the crystal symmetry with the laser elec-

tric field, i.e. by variation of the carrier-envelope phase for ultrashort pulses or by

adding a second phase-shifted laser pulse with different oscillation frequency.

Where available, experimental results are compared to the simulated results.

Semiclassical calculations performed within this work help to characterize the un-

derlying physical mechanisms at very low computational cost.

In the first chapter a brief overview of the theoretical framework is given.

Static density functional theory (DFT) will act as the starting point for all time-

dependent simulations based on TDDFT. The description of the macroscopic

1



Introduction 2

extension to couple TDDFT with Maxwell’s equations will finalize this chapter.

In chapter two the results of the ground-state calculations for both investigated

materials, diamond and α-quartz, are presented. The computed observables are

compared to experimental values to assess the accuracy of the presented meth-

ods. The third chapter discusses results of the time-dependent simulation of single

crystal unit cells. Starting with single color lasers, the dependence of the charge

transferred within the unit cell on the carrier-envelope phase and the intensity is

studied. Subsequently, a weak second color pulse is superimposed on the primary

laser pulse and the impact of varying the relative phase of these pulses is inves-

tigated. Finally, the previously mentioned semiclassical model is described and

its results are compared to the fully quantum mechanical data. At the end of

this thesis coupled micro- and macroscopic simulations are discussed in which the

charge deposition depending on the penetration depth of the electromagnetic field

is explored.

Unless stated differently, atomic units (e = ~ = me = 1) are used. All 2D and 3D

visualizations of crystal structures including charge density plots were performed

with VisIt [2]. This work used computational resources of the Vienna Scientific

Cluster (VSC) and the K computer provided by the RIKEN Advanced Institute

for Computational Science.



1 Theory

The simulation of highly intense short laser pulses irradiating solids requires var-

ious approximations which, however, must not obscure the detailed physical pro-

cesses behind the observed phenomena. For instance the motion of atomic nuclei

can be safely ignored since their oscillation periods around their ground-state po-

sitions are usually larger than the duration of the laser pulse. Another approxi-

mation valid at low laser intensities is linear response theory in which a response

linear in the exciting electric field is assumed. High intensity pulses, though,

drive strong nonlinear optical processes which are at the core of many of the top-

ics currently studied such as high harmonic generation, attosecond metrology, or

lightwave electronics [3].

In principle, the many-particle time-dependent Schrödinger equation has to be

solved numerically in order to describe such nonlinear processes. This approach

has been successfully followed for helium but is far from feasible for more than two

active electrons.

The following sections provide a short introduction to the theoretical models

used to describe the investigated environments. At the core of these methods

is time dependent density functional theory (TDDFT) which will be explained

in section 1.2. A real-space, real-time implementation of TDDFT for the simulation

3



Chapter 1. Theory 4

of laser pulses irradiating solids has been developed by Yabana et al. [4]. This

implementation was used for all TDDFT calculations conducted in the context

of this thesis. At the end of each of the following sections, specific details and

extensions of the particular implementation are presented.

1.1 Density functional theory

A well-known and widely used approximation to overcome the limitations encoun-

tered by the many-body problem is density functional theory (DFT) developed by

Hohenberg and Kohn in 1964 [5]. Two theorems were proposed in this publica-

tion. The first Hohenberg-Kohn theorem establishes a one-to-one correspondence

between the external potential V (r) and the ground-state density n0(r) linking

all ground-state properties in a many-electron system to its ground-state particle

density. Furthermore, this theorem shows that the ground-state particle density

is associated with a unique ground-state wave function Ψ0, thereby reducing the

number of variables from 3N in Ψ(r1, . . . , rN) to 3 in n(r), where N is the number

of particles in the system.

Subsequently, in 1965, Kohn and Sham [6] were able to map the system of

N interacting electrons with wave function Ψ(r1, . . . , rN), described by the static

Schrödinger equation

HΨj(r1, . . . , rN) = EjΨj(r1, . . . , rN), (1.1)

onto a system of N non-interacting single-particle pseudo wave functions in an
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external potential. The resulting Kohn-Sham equations,

(
−∇

2

2
+ Vs[n](r)

)
ϕj(r) = εjϕj(r), (1.2)

provide a self-consistent method to obtain the density of a many electron system

from the solved Kohn-Sham orbitals ϕj(r) of Equation 1.2,

n0(r) =
N∑
j=1

|ϕj(r)|2. (1.3)

In Equation 1.2 the local external potential of the non-interacting system is defined

as

Vs[n](r) = V (r) +

∫
dr′

n(r)

|r− r′|
+ VXC [n], (1.4)

with the external potential V (r) of the interacting system, the Coulomb potential

and the exchange-correlation (XC) potential VXC [n]. The XC potential,

VXC [n] =
δEXC [n]

δn(r)
, (1.5)

is the functional derivative of the XC energy, which contains the electron-electron

interaction and the difference of the kinetic energies of the real interacting system

and the fictitious non-interacting system.

The Kohn-Sham equations provide a formally exact quantum mechanical de-

scription of the system but exact formulations of the exchange-correlation poten-

tial exist only for the free electron gas and therefore approximations are used to

describe the many particle interactions. In the widely used and oldest approxi-

mation, the local density approximation (LDA) [6, 7] the XC energy is expressed
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by

ELDA
XC [n] =

∫
dr n̄ εXC(n̄), (1.6)

valid for a free electron gas. Instead of the constant charge density n̄ one in-

serts the local electron density n(r). The XC potential is then obtained from

V LDA
XC [n] = δELDA

XC [n]/δn(r). For densities slowly varying in space, this approach

should give good results. It turns out, however, that also for systems with large

density gradients (e.g. atoms) LDA works well. For dielectrics, LDA is known to

underestimate band gap energies which are of major importance in many applica-

tions.

Better approximations for XC functionals depend not only on the local density

itself but also on its (higher order) gradients. Another popular choice are therefore

so-called generalized gradient approximations (GGA), heuristic approaches for the

dependence of VXC [n] on the density gradients. Their performance is judged by

how well they satisfy the exact properties of the XC energy density. For even higher

accuracy than GGA, meta-GGA potentials have been derived which additionally

include the Laplacians of the density and the orbital kinetic energy densities.

A recently proposed meta-GGA is the Tran-Blaha modified Becke-Johnson (TB-

mBJ) XC potential [8]. It reduces the error in the band gap energies and introduces

a free parameter c correlated with the band gap. This is achieved by using LDA

correlation [9] and a modification of the Becke-Johnson exchange potential [10],

V TB−mBJ
X (r) = V BR

X (r) + (3c− 2)
1

π

√
5

12

√
2 t(r)

n(r)
. (1.7)

Here, V BR
X (r) is the Becke-Roussel potential [11] and t(r) is the kinetic energy
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density. For c = 1 the original Becke-Johnson potential is recovered.

1.1.1 Adaption and implementation

The system under investigation in this thesis is a bulk solid target which is de-

scribed as an infinitely extended periodic crystal. To find the ground-state distri-

bution of electrons within this crystal the corresponding static Kohn-Sham equa-

tions,

εjϕj(r) =

(
1

2
p2 + Vion(r) +

∫
dr′

n(r)

|r− r′|
+ VXC [n]

)
︸ ︷︷ ︸

HKS

ϕj(r), (1.8)

have to be solved. In Equation 1.8 p is the momentum operator and Vion(r) is

the crystal lattice potential. Only valence band electrons are propagated, inter-

action with deeply bound core electrons is accounted for by a norm-conserving

pseudopotential Vion(r) of the Troullier and Martins form [12].

Due to the preserved lattice periodicity of the Hamiltonian, HKS(r + R) =

HKS(r) with R being a linear combination of the three unit cell vectors, the Bloch

theorem can be applied to the orbital wave functions. Accordingly, the wave

function can be split into a plane wave modulated by a periodic function,

ϕj(r) = eikrun,k(r), (1.9)

with n and k being the band index and the crystal momentum, respectively. The

combination of n and k is the orbital index j. This approach allows to only solve

the Kohn-Sham equations for a single crystal unit cell instead of the full solid.

The static Kohn-Sham equations are solved self-consistently by applying a con-

jugate gradient minimization for the total energy. Numerically, the derivatives of
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the orbital wave functions are computed using high-order finite difference formu-

las [13]. A nine point stencil is used for both the first and second derivatives.

1.2 Time-dependent density functional theory

The processes investigated in this work are obviously not static, requiring a theo-

retical method to describe the time evolution of the systems that are considered.

Time dependent density functional theory (TDDFT) was first introduced by Runge

and Gross in 1984 [14]. The Runge-Gross theorem is the time-dependent analogue

of the first Hohenberg-Kohn theorem and states that two densities n(r, t) and

n′(r, t) evolving from the same initial state ψ0 in two different potentials V (r, t)

and V ′(r, t) will become different immediately after the evolution starts. Hence,

for any initial state a one-to-one correspondence between time-dependent den-

sities and potentials exists. This very fundamental insight leads to the fact that

both the many-body Hamiltonian H(t) and the many-body wave function Ψ(t) are

functionals of the time-dependent density n(r, t). Later, the justification to rep-

resent the interacting system by a non-interacting equivalent (the time-dependent

Kohn-Sham approach) was given by van Leeuwen in 1999 [15]. This leads to the

time-dependent Kohn-Sham equations (TDKS),

(
−∇

2

2
+ Vs[n](r, t)

)
ϕj(r, t) = i∂tϕj(r, t), (1.10)

with the initial state

ϕj(r, t0) = ϕ0
j(r) (1.11)
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obtained from the solution of the static Kohn-Sham equations. The time-dependent

density is then given by

n(r, t) =
N∑
j=1

|ϕj(r, t)|2, (1.12)

which can be used to calculate the physical observables of interest which are also

functionals of this density.

As in DFT, the most important unknown in TDDFT is the time-dependent

XC potential VXC [n(r, t)]. To exploit the vast knowledge from DFT accumulated

over decades the static XC potential is also used with the time-dependent density

n(r, t) in most cases:

V A
XC [n] = V 0

XC [n0]|n0(r)→n(r,t) (1.13)

This approximation is known as the adiabatic approximation where the term “adi-

abatic” refers to the assumption of slowly varying changes in the external potential

and the induced change.

For a thorough introduction to the methods of TDDFT see, e.g., [16].

1.2.1 Adaption and implementation

The crystal is exposed to a spatially uniform but time dependent electric field F(t)

derived from the vector potential A(t) = −c
∫ t
−∞F(t′)dt′. The side lengths of unit

cells in solids are several orders smaller than typical laser wavelengths of a few

hundreds of nanometers. Therefore, the long wavelength limit is applicable in this

case which justifies the approximation of a spatially uniform electric field within

a unit cell.

After the ground-state calculation is converged the electronic system is propa-
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gated according to the TDKS equations which are given in the length gauge via

i∂tϕj(r, t) =

(
1

2
p2 + Vion(r) +

∫
dr′

n(r, t)

|r− r′|

+VXC(r, t) + F(t) r

)
ϕj(r, t),

(1.14)

where the last term of the Hamiltonian describes the electron-laser field interaction

in dipole approximation.

The linear laser field term on the right-hand side of Equation 1.14, however,

destroys the spatial periodicity of the orbitals. To circumvent this problem, the

Kohn-Sham equations are transformed to the velocity gauge by

ϕ̃j(r, t) = exp

[
i

1

c
A(t) r

]
ψj(r, t). (1.15)

Inserting Equation 1.15 into Equation 1.14 gives the Kohn-Sham equations in the

velocity gauge,

HKS =
1

2

(
p +

1

c
A(t)

)2

+ Vion(r) +

∫
dr′

n(r, t)

|r− r′|
+ VXC(r, t) (1.16)

i∂tψj(r, t) = HKSψj(r, t), (1.17)

which conserves the lattice periodicity and allows to model the time evolution

within one single unit cell by solving the TDKS equations with periodic boundary

conditions. The resulting TDKS Equations 1.17 are solved using a fourth-order

Taylor expansion of the time evolution operator [4, 17],

exp−iHKS∆t ≈
4∑

n=0

(i∆t)n

n!
Hn
KS (1.18)
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with very small time steps of ∆t ≈ 0.01 a.u.

1.3 Multiscale model (Maxwell+TDDFT)

Although the single crystal cell simulations are able to explain many experimental

observations fairly well, (macroscopic) propagation effects appearing in real solids

are neglected. For for high intensities the propagation of the laser pulse inside the

material is strongly influenced by the non-linear response of the electronic system.

The feedback of the electron dynamics to the electric field involves phenomena

on two different spatial and temporal scales: The carrier wavelength of the laser

pulse is on the order of a few hundreds of nanometers whereas the motion of

electrons inside a crystal cell induced by this pulse happens on the nanometer

scale. Therefore, a distinct treatment is necessary and leads to the multiscale

approach [4] explained in the following.

While the principle TDDFT method described previously is kept for the descrip-

tion of the microscopic electron dynamics a coupling to the macroscopic Maxwell

equations is introduced. As a consequence two different spatial grids have to be

employed using a one-dimensional macroscopic coordinate R and microscopic co-

ordinates R around each macroscopic position R.

In Fig. 1.1 the basic geometry of the simulation is sketched. It illustrates the

macroscopic system with a laser pulse irradiating a crystalline material. Outside

the crystal the pulse is assumed to travel through vacuum. At each of the macro-

scopic grid points within the solid a single cell TDDFT calculation is performed

(see the inset in Fig. 1.1). The grid points are coupled by Maxwell’s equations. For

the sake of simplicity the propagation is limited to one dimension along the surface
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nanometer scale

vacuum solid

a.u. scale

Figure 1.1: Geometry of the multiscale simulation.

normal of the bulk solid. The vector potential AR(t) at each point R follows the

one-dimensional wave equation,

(
1

c2

∂2

∂t2
− ∂2

∂R2

)
AR(t) = −4π

c
JR(t), (1.19)

where JR(t) is the macroscopic current at point R. Due to the restriction to one

dimension the macroscopic simulation works only for symmetric targets. There-

fore, orientations of materials which induce currents in directions other than the

laser polarization direction cannot be treated at the moment. The current JR(t) is

typically non-zero for points inside the crystal and its magnitude is determined by

the solution of the time-dependent Kohn-Sham equations at each site. An index

R indicating the macroscopic coordinate is added to the TDKS,

i∂tψj,R(r, t) =

(
1

2

[
p +

1

c
êAR(t)

]2

+ Vion(r)

+

∫
dr′

nR(r, t)

|r− r′|
+ VXC(r, t)

)
ψj,R(r, t),

(1.20)
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with ê being the laser polarization direction. From the microscopic density,

nR(r, t) =
N∑
j=1

|ψj,R(r, t)|2, (1.21)

the micro- and macroscopic currents can be obtained,

jR(r, t) =
N∑
j=1

1

2

[
ψ∗j,R(r, t)

(
−i∇r +

1

c
êAR(t)

)
ψj,R(r, t) + c.c.

]
(1.22)

JR(t) =
1

Ω

∫
Ω

dr ê jR(r, t). (1.23)

The vector potentials AR(t) at the macroscopic grid points R inside the crystal

are calculated from Equation 1.19 and then used in Equation 1.20 to obtain the

currents JR(t) which are eventually fed back to Equation 1.19 where they are used

in the calculation of the next time step. As described in subsection 1.2.1 the vector

potential AR(t) is treated as spatially uniform within a microscopic cell.

In order to solve the macroscopic wave equation, both, the spatial and the time

derivatives are approximated using a three-point approximation,

AR(t+ ∆t) = 2AR(t)− AR(t−∆t)

+

(
c∆t

∆R

)2

[AR+∆R(t)− 2AR(t) + AR−∆R(t)]

− 4πc∆t2JR(t)

(1.24)

1.4 Semiclassical model

Since single cell TDDFT calculations can only be performed on supercomput-

ers, computationally cheaper estimates are desired. In order to capture the most
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important quantum-mechanical processes a semiclassical trajectory Monte-Carlo

simulation was set up and is described in the following.

For atoms two regimes of dominating ionization processes can be distinguished:

multi-photon and tunneling ionization. The transition from the multi-photon ex-

citation regime to the tunnel excitation regime is governed by the Keldysh param-

eter [18]

γ =
ω

F0

√
2∆, (1.25)

where ω is the laser frequency, F0 denotes the peak laser field and ∆ the width of

the band gap. For γ � 1 multi-photon excitation dominates while γ � 1 indicates

tunnel ionization.

At low intensities (γ � 1) photoionization can occur if the atom absorbs N

photons of energy ~ω from the laser pulse with a total energy large enough to

cover the band gap ∆, N~ω ≥ ∆ (Fig. 1.2). The ionization rate for N -photon

ionization is given by

ΓN(t) ∝ I(t)N , (1.26)

where I is the intensity of the laser field envelope.

At high intensities (γ � 1) tunnel ionization dominates. The tunneling process

can be outlined as follows: The presence of an alternating electric field distorts

the potential landscape of an atom (Fig. 1.3). Alternately, one side of the atomic

potential well is lowered and electrons from the highest occupied state may tunnel

through the barrier. As long as the Keldysh parameter is sufficiently small (γ <

1/2, [19]) the so-called ADK model (Ammosov-Delone-Krainov) [20] is applicable
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Figure 1.2: With small probability ∝ I(t)N the atom may absorb N photons from
the laser pulse leading to ionization in (a) the atomic case, (b) the solid
case.

and gives an expression for the tunnel ionization rate,

ΓADK(t) ∝ |F (t)|
3
2
−2n∗

exp

(
−2(2∆)

3
2

3|F (t)|

)
, (1.27)

where F (t) is the time-dependent electric field strength and n∗ = Z/
√

2W is the

effective quantum number with the charge Z of the atomic residue.

For this semiclassical model only relative ionization rates are important and

therefore normalized rates are used in both cases. Although being derived for

electron ionization in atoms, the ionization process in solids is assumed to follow

the same rate equations (Fig. 1.3 and Fig. 1.2).

In Fig. 1.4 the two possible rates along with their integrals and the electric field

are shown for a strong laser pulse. Using these ionization rates a large number of

electrons is simulated. The time of creation t0 of each ionized electron is selected
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from the probability distributions for tunneling or multi-photon ionization. In the

case of high intensities, the starting location of the electron propagation is given

by the tunneling distance r0 = W/F (t0). For multi-photon excitations the starting

location is r0 = 0. The simulation is performed in one dimension and the crystal

potential is approximated as

Vion(r) = ∆V cos

(
2π

λion
r

)
, (1.28)

where ∆V and λion are extracted from the TDDFT simulations. For periodic

crystal directions λion is given by the spacing of atoms. ∆V characterizes the re-

maining screened potential that the ionized electron experiences while propagating

through the crystal. Possible upper limits for the choice of ∆V are the average of

the Kohn-Sham potential Vs (Equation 1.4) or the band gap energy ∆.

The electrons are then propagated within the remaining laser field and the ionic

potential by an adaptive stepsize fourth-order Runge-Kutta method according to

the Newtonian equation of motion,

r̈(t) = F (t)− ∂Vion(r)

∂r
, (1.29)

with an initial velocity of v0 = 0.

To estimate the net amount of charge transferred within the crystal the direc-

tions of propagation of the electrons after the conclusion of the laser pulse can be

used (left/right asymmetry). The ratio of electrons moving in positive direction

to those moving in negative direction, Q = N+/N− , is a direct indication of the

amount of transferred charge.





2 Materials

Prior to the description of the main investigations, a brief overview of the mate-

rials used in the calculations and the static DFT results is given. In this study

the focus lies on two materials, diamond and SiO2 in the form of α-quartz. As

diamond requires much less computational resources due to its high symmetry,

most of the results presented in the subsequent chapters were acquired for this

material. SiO2, however, has been studied many times before and more experi-

mental results are available for comparison. In addition, the asymmetric crystal

structure of SiO2 causes interesting physical phenomena such as, e.g., the nonlinear

photogalvanic effect [21]. In the following, the ground-state properties of diamond

and SiO2 as well as computational details important for the interpretation of the

time-dependent results presented in chapter 3 and chapter 4 are introduced. All

calculations were performed on the Vienna Scientific Cluster.

2.1 Diamond

As diamond was the first known example of a face-centered cubic Bravais lattice

with two basis atoms at (0, 0, 0) and (a0
4
, a0

4
, a0

4
), its crystal structure has been

named the “diamond structure” Other known materials with diamond structure

19
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Figure 2.1: Diamond crystal structure. The 4 carbon atoms in the unit cell are
highlighted in green.

like zinc selenide have two different atoms in their basis. In this case the structural

pattern is called the “zincblende structure”.

Apart from translational symmetry which reduces the information of the recip-

rocal space to the first Brillouin zone, the diamond structure also features sym-

metries under rotations, inversions, and reflections. The first Brillouin zone shows

in total 48 point symmetries (space group Fd3̄m). In the presence of an exter-

nal electromagnetic field, however, symmetries involving the polarization direction

break. Therefore a total of 8 symmetry operations are left which together with

the requirement of the TDDFT code for a cuboid unit cell lead to the choice of

the unit cell atoms depicted in Fig. 2.1.

The size of the unit cell is 2.52Å × 2.52Å × 3.57Å [22]. Each of the 4 unit

cell atoms has 4 valence electrons and therefore a total of 16 valence electrons are
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considered in the calculations. In order to achieve the full possible occupancy of 2

electrons per valence band, 16 bands are included in the simulation to account for

the known lowering of the occupancy of the energetically highest bands. In real

space a 16 × 16 × 20 grid is used, whereas the reciprocal grid has 20 × 20 × 16

points. These settings were used throughout all diamond calculations unless stated

differently. The results of the ground-state simulation are described in the following

section.

2.1.1 Ground state properties

For diamond two different XC potential approximations were tested and evaluated.

The first and computationally cheaper choice was LDA [7]. This potential is known

to underestimate the bandgap energies of insulators. The calculations yielded a

band gap energy of ∆LDA = 4.33 eV. Secondly, the TB-mBJ XC potential was

employed. The free parameter c was varied until a band gap value close to the

experimental value was reached. With c = 1.28 a band gap of ∆TB−mBJ = 5.46 eV

was found which is close to the experimental value of ∆ ≈ 5.4 eV [23]. As many

investigated observables sensitively depend on the precise value of the excitation

gap only results using the TB-mBJ XC potential are discussed in the following.

Typically, a conjugate gradient minimization is performed to obtain the ground

state, converging after approximately 150 iterations with a ground state energy of

EGS = −618.9 eV. The computation was performed using 5 computational nodes

(each having 2 processors with 8 cores) with a total computation time of less

than 2min. In Fig. 2.2 an example for the convergence process during the ground

state calculation is depicted. After about 80 iterations approximate convergence is
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Figure 2.2: Ground state convergence process for diamond showing the per-
iteration change of the charge density as well as the average and the
maximum change of the energy per k-point.

reached. The procedure stops as soon as the relative change in charge density and

energy stays below a predefined threshold for 4 iterations. Nevertheless, significant

variations at the end of the calculation may still remain due to the finite grid

spacing in real and reciprocal space.

In Fig. 2.3 the occupied and unoccupied ground-state densities of states as com-

pared to experimental results [24] are shown. Excellent agreement over the com-

plete valence band is achieved. The agreement in the conduction band is reduced

due to the smaller band gap of ∆ ≈ 4.1 eV in the experimental data.

Figure 2.4 shows the ground state electron density extracted from the Kohn-

Sham orbitals ψi(r, t)

n(r, t) =
∑
i

|ψi(r, t)|2. (2.1)

As expected, the formation of bondings between carbon atoms is observable. The
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Figure 2.4: Ground state electron density of diamond. (a) 3-dimensional. (b) Pro-
jection onto the yz-plane (z is the laser pulse polarization direction).
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four valence electrons (2s22p2) of each C atom form new 2(sp3) hybrid orbitals

with equal energy when placed in the diamond structure. The resulting covalent

bonds show largely overlapping orbitals and are therefore very strong. This is the

reason for diamond being so hard.

2.1.2 Linear response

The response to optical excitation of diamond was studied by applying a weak

delta-shaped field impulse to the material.

The dielectric function can be derived from the induced microscopic current

density j(r, t) defined as

j(r, t) =
∑
i

1

2

[
ψ∗i (r, t)

(
−i∇+

1

c
A(t)

)
ψi(r, t) + c.c.

]
(2.2)

and evaluated at every time step. The macroscopic current density J(t) within the

whole unit cell is then given by the average over the unit cell volume Ω,

J(t) =
1

Ω

∫
Ω

dr j(r, t). (2.3)

In order to compute the dielectric function along the laser polarization direction

only the component of the macroscopic current density J(t) along this direction is

required,

J(t) = J(t) · F0/|F0|. (2.4)

According to Ohm’s law, the frequency dependent conductivity σ(ω) is given by

the ratio of the Fourier transforms of the macroscopic current density and the
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Figure 2.5: Real (a) and imaginary (b) part of the dielectric function of diamond.
Purple: calculated; green: experiment [25].

electric field,

σ(ω) =

∫∞
−∞ dt e

iωtJ(t)∫∞
−∞ dt e

iωtF (t)
. (2.5)

Finally, the dielectric function ε(ω) follows from its direct relationship to the con-

ductivity σ(ω),

ε(ω) = 1 +
4πiσ(ω)

ω
. (2.6)

The calculated real and imaginary parts of the dielectric function of diamond are

presented in Fig. 2.5 (purple line) along with experimental results (green crosses

and lines). The overall agreement is good for energies larger than 1 eV. Also

the excitation gap matches the experimental value. Towards very small energies,

both the real and imaginary parts show a singularity. This is probably related

to the discretization of the real space that reduces the translational symmetry as
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Figure 2.6: Unit cell of SiO2 as used in the calculations. The silicon atoms are
shown yellow whereas the oxygen atoms are blue.

compared to the continuous space [26]. This effect may lead to a small constant

offset in the current density of time-dependent calculations.

2.2 α-Quartz (SiO2)

Similarly, SiO2 in the form of α-quartz was studied. This material crystallizes

in the trigonal crystal system and belongs to the P3121 space group. α-quartz

shows both a threefold and a twofold rotational symmetry. However, none of the

appearing symmetries can be utilized in the simulations due to the polarization

direction of the laser pulse which breaks those rotational symmetries.

In α-quartz each Si atom is surrounded by 4 O atoms in a tetrahedron. The

corner O atoms are shared between two adjacent tetrahedra. The cuboid unit cell

used in the simulations is shown in Fig. 2.6. It contains a total of 18 atoms, 6

Si atoms and 12 O atoms, with a volume of 4.91Å × 8.51Å × 5.41Å [27]. Each

of the 6 SiO2 units has 16 valence electrons. In total, the unit cell contains 96
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electrons with 52 bands taken into account. 20 × 36 × 50 spatial grid points are

used whereas at least 4 × 4 × 4 reciprocal grid points are needed. These settings

turned out to be the best compromise between numerical cost and accuracy for

the TDDFT calculations.

2.2.1 Ground state properties

Employing the TB-mBJ XC potential allows for an accurate reproduction of the

band gap in SiO2. The prescription by Tran and Blaha [8] to set c = 1.00 for

the TB-mBJ functional was followed. The calculated excitation gap energy was

∆TB−mBJ = 7.78 eV and is in reasonable agreement with experimental values [28]

(∆exp = 8.9 eV) and other calculations [29, 30] (∆calc = 9.2 eV and 6.3 eV respec-

tively). The calculated band gap value was extracted from the energy eigenvalues

of the Kohn-Sham orbitals ψj(r, t). A different method to obtain the excitation

gap energy is to take the optical energy at which the imaginary part of the di-

electric function becomes larger than zero. This value (see subsection 2.2.2) was

∆ε = 8.9 eV, supporting the choice of c = 1.00.

The 4× 4× 4 k-grid was the coarsest grid to allow for convergence for most of

the observables. Using 4 computational nodes with a total of 64 cores convergence

of the ground state was reached after about 150 iterations of minimization within

less than 10min. Fig. 2.7 shows the convergence process for SiO2. Convergence

of both the energy and the electron density was slower than for diamond and

was accomplished after about 130 iterations. The final ground state energy was

EGS = −5890.4 eV.

Furthermore, the occupied and unoccupied densities of states are illustrated in
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Figure 2.7: Ground state convergence process for SiO2 showing the per-iteration
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change of the energy per k-point.

Fig. 2.8. For energies close to the Fermi energy the agreement with the experiment

in [29, 30] is good, yet shifts of about 3 eV, 2 eV, and 1 eV appear in the calculations

for the three bands below the Fermi energy. This is a consequence of using the TB-

mBJ XC potential which increases the band gap energy at the cost of spreading

out the whole band structure leaving only the Fermi energy unchanged.

The density of states of SiO2 can be split into several regions:

• Deeply bound O (2s) states from −19 to −16 eV (experimental maximum

near −21 eV).

• Si s states around −8 eV (experimental maximum near −11 eV).

• p states of O and Si around −6 eV (experimental maximum near −8 eV).

• The top of the valence band is formed predominantly by non-bonding p-like

O orbitals around −2 eV (experimental maximum near −3 eV).
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Figure 2.8: Ground state density of states (calculated and occupied experimen-
tal [29]) and integrated density of states for SiO2. The zero-point on
the energy scale is defined as the top of the valence band.

• The lowest conduction band levels appear at around 8 eV.

The ground state electron density is shown in Fig. 2.9 and reveals that the

highest density inside the unit cell is located around the oxygen atoms due to the

larger number of electronic orbitals contained in the simulation (6 vs. 4 for Si)

and the high electron affinity of oxygen attracting charge from the Si core towards

the O core.

2.2.2 Linear response

As described in subsection 2.1.2 the dielectric function for SiO2 was calculated and

compared to experimental data (Fig. 2.10). The agreement of the calculated and

the experimental values is reasonable. The band gap is correctly reproduced but

equally to diamond a singularity at very low energies appears.
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(a)

(b)

Figure 2.9: Ground state electron density of SiO2. (a) 3-dimensional. (b) Projec-
tion onto the yz-plane. The charge is located almost symmetrically
around the oxygen atoms with slight deformations towards the silicon
atoms.
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Purple: calculated; green: experiment [31].





3 Single crystal unit cells

Due to the periodicity of the crystal lattice the study of electron dynamics within

solids can be spatially limited to the smallest unit of periodicity. Propagation

effects, e.g. surface polarization or polarization along the laser propagation direc-

tion, are neglected in the simulations of single crystal unit cells. All calculations

were performed on the Vienna Scientific Cluster. The TDDFT time step was set

to ∆t = 0.02 a.u. ≈ 0.5 as for all the single cell calculations. For a typical total

pulse duration used in the simulations of τp = 20 fs the calculation time for the

time evolution of the system was approximately 4 h 45min on 5 computational

nodes.

3.1 Single color laser pulses

In order to investigate the primary effects of ultra-short high-intensity laser pulses

on bulk solids a time-dependent laser field determined by the vector potential

A(t) =


F0

ω
sin2

(
π
τp
t
)

cos
(
ωt− ω τp

2
+ φCE

)
, if 0 < t < τp

0, otherwise
(3.1)

33



Chapter 3. Single crystal unit cells 34

-0.2

-0.1

 0

 0.1

 0.2

 0  5  10  15  20

ve
ct

or
 p

ot
en

tia
l

A z
(t

) [
a.

u.
]

el
ec

tr
ic

 fi
el

d
E z

(t
) [

ar
b.

 u
.]

time [fs]

Az(t)
Ez(t)

Figure 3.1: Time-dependent vector potential and electric field of a 800 nm laser
pulse for medium intensity (1× 1013 W/cm2) and φCE = 0.

was applied. This vector potential employs a sin2 envelope where F0 indicates the

amplitude and the polarization direction, ω is the laser carrier frequency, τp the

total pulse duration (FWHM of the field is τp/2), and φCE the carrier-envelope

phase. For φCE = 0 the maximum of the potential coincides with the maximum

of the envelope function at τp/2 in positive field direction (Fig. 3.1).

In this thesis the interaction of single color laser pulses with diamond was inves-

tigated, following similar studies performed earlier by Wachter et al. for SiO2 [32].

Another reason for the choice of diamond is the low computational cost due to the

high symmetry of the crystal structure allowing for a large number of parameters

to be varied in this study. Wachter et al. have shown that a finite amount of charge

is transferred by nonlinear polarization currents during the laser pulse which can

be associated with a field-induced conductivity. This can be viewed as a reversible

(sub)femtosecond-scale insulator to metal transition where the conductivity in-
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Figure 3.2: Polarization density, macroscopic current density and laser field for a
20 fs laser pulse with carrier envelope phase φCE = π and intensity
1× 1012 W/cm2.

creases by more than 20 orders of magnitude on a femtosecond timescale. The

amount of charge transferred by the laser pulse is found to be strongly dependent

on the laser intensity, the pulse shape (especially the carrier-envelope phase φCE)

and the laser polarization direction.

To calculate the polarization P(t) of the unit cell the macroscopic current den-

sity (Equation 2.3) is integrated,

P(t) =

∫ t

0

dt′ J(t′), (3.2)

where t′ = 0 indicates the start of the simulation. Figure 3.2 shows the macroscopic

current density and the polarization along the laser polarization direction for a laser

pulse with an intensity of 1× 1012 W/cm2 and φCE = 0.5π. The current density

follows the laser field with a phase shift of π/2 while the polarization density is

in phase with the field except for a sign flip due to the negative charge of the

electrons. After the conclusion of the pulse the current density goes back to zero

while the polarization density becomes very small but stays finite due to non-linear
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Figure 3.3: Intensity and carrier-envelope phase dependence of the transferred
charge normalized to the maximum charge transferred in positive or
negative direction along the polarization axis. Vertical black lines in-
dicate calculated values, in between the values are interpolated bilin-
early. A phase shift as a function of the intensity is observed between
I

(1)
c ≈ 5× 1012 W/cm2 and I(2)

c ≈ 5× 1013 W/cm2.

polarization currents induced during the pulse.

The total macroscopic charge transferred along the laser polarization axis is

given by

Q = Aeff
F0/|F0|

∆t

∫ τp+∆t

τp

dt′P(t′), (3.3)

where the polarization is averaged over a time span ∆t = 8 fs after the conclusion

of the pulse before major damping effects would set in. The factor Aeff has to be

obtained by comparison with experiments and is a measure of the effective charge

collecting surface area orthogonal to the polarization direction.

Due to the crystal symmetry of diamond laser pulses with φCE = (n + 1/2)π,

n ∈ Z do not result in an effective charge transfer in the linear regime, as can

be seen in Fig. 3.3. Asymmetric pulses with the peak vector potential pointing

in positive or negative laser polarization direction (φCE = nπ, n ∈ Z) result in
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Figure 3.4: Total transferred charge within the diamond unit cell as function of the
laser intensity for wavelength λ = 800 nm (ω ≈ 1.55 eV), pulse length
τp = 20 fs and carrier envelope phase φCE = π.

charge transfer. As expected, the transferred charge follows a cosine curve in the

linear regime, but only for very short laser pulses, τp . 15 fs (compare [33, 34]).

For longer laser pulse durations, with a rising number of laser cycles n = τp ω/(2π)

underneath the envelope, the influence of φCE gradually decreases as observed for

many time-dependent phenomena.

At an intensity of about I(1)
c ≈ 5× 1012 W/cm2 the transition from the linear to

the non-linear regime is observed. A strong non-linear increase of Q is predicted

(Fig. 3.4) together with a phase shift increasing as a function of the laser intensity.

Above I(2)
c ≈ 5× 1013 W/cm2 the phase dependence of Q stabilizes again at a

phase shift of ∆φCE = π with respect to the linear regime and with 4 orders

of magnitude more charge transferred (Fig. 3.3 and 3.4) in good agreement with

previous investigations [35].

The onset of non-linearities also becomes visible when looking at other observ-
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Figure 3.5: Comparison of polarization densities for two intensities: below (I =
1× 1012 W/cm2) and around (I = 3× 1013 W/cm2) the non-linearity
threshold including a zoom into the polarization density of the weaker
laser pulse after the pulse conclusion.

ables, e.g., the polarization density within the unit cell. In Fig. 3.5 Pz(t) is shown

for an intensity in the linear regime (I = 1012 W/cm2, light blue line) and an

intensity in the non-linear regime (I = 3× 1013 W/cm2, green line) together with

the electric field (purple line). While Pz(t) closely follows −Fz(t) over the whole

propagation time, strong non-linearities appear around the maximum of the pulse,

leading to polarization remaining in the system even after conclusion of the pulse.

This is equivalent to a constant current flowing in the system as it was observed for

SiO2 excited by strong laser pulses [32]. This current can be associated with a field-

induced conductivity σ(ω) and leads to a reversible transition of the insulator to

a metal on the fs-timescale. So far, dissipative processes such as electron-phonon

or electron-electron scattering are not yet accounted for in our simulations but

would lead to a quick reduction σ(ω) after the conclusion of the pulse instead of

the remaining oscillating offset in the zoomed part of Fig. 3.5.

The situation changes again when the laser intensity or, equivalently, the peak

electric field reaches the tunnel regime. In this regime valence band electrons may
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tunnel through the band gap to the strongly deformed conduction band (horizontal

transition). Excited electrons create a macroscopic current flowing even after the

laser pulse. As explained before, for a Keldysh parameter of γ � 1 multi-photon

excitation dominates while γ � 1 indicates tunnel ionization. For diamond with a

band gap of about ∆ ≈ 5.5 eV and a laser energy of ~ω = 1.55 eV the intensity to

reach γ = 1 is I = 4.57× 1013 W/cm2. Even higher intensities result in an optical

breakdown of the material.

To depict the impact of a strong laser pulse (I = 3× 1013 W/cm2, τp = 20 fs)

on the charge distribution Fig. 3.6 and Fig. 3.7 show the induced charge density

δn(r, t) = n(r, t)− n0(r) (3.4)

for two different times. In Fig. 3.6 the induced charge density at the maximum

electric field peak (t = 10 fs) is shown. The density is displaced along the laser

polarization direction. After the conclusion of the pulse (Fig. 3.7) the density does

not return to its ground-state distribution. Delocalized conduction band states in

the interstitial regions of the carbon atoms are populated, leading to an increased

electron density between adjacent atoms.

3.2 Two-color laser pulses

So far, the left/right asymmetry of the transferred charge was induced into the

system by modulation of the carrier-envelope phase of ultra-short laser pulses.

However, this is difficult to achieve and to control experimentally. For longer

pulses (τp & 15 fs) carrier-envelope phase effects disappear.
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Figure 3.6: Projection of the induced charge density onto the yz-plane for a strong
pulse (I = 3× 1013 W/cm2, τp = 20 fs) at t = 10 fs (positive maximum
of electric field). The laser polarization direction is from left to right
(z-axis).

Figure 3.7: Projection of the induced charge density onto the yz-plane for a strong
pulse (I = 3× 1013 W/cm2, τp = 20 fs) 4 fs after the conclusion of the
laser pulse. The laser polarization direction is from left to right (z-
axis). The color scale is more than one order of magnitude smaller
compared to Fig. 3.6.
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Alternatively, asymmetries of the field can be induced by adding a second, su-

perimposed laser pulse with controlled relative phase locked to the phase of the

primary pulse. This is usually achieved by generating the secondary pulse using

part of the primary pulse and selectively shifting the relative phase by insertion

of fused silica wedges. Equations 3.5 describe both vector potentials of the laser

pulses.

A1(t) =
F01

ω1

sin2

(
π

τp1
t

)
cos
(
ω1t− ω1

τp1
2

+ φCE1

)
, if 0 < t < τp1. (3.5a)

A2(t) =
F02

ω2

sin2

(
π

τp2
t

)
cos
(
ω2t− ω2

τp2
2

+ φCE2

)
, if τ12 < t < τ12 + τp2. (3.5b)

In general, the amplitudes F0j, the pulse lengths τpj, the carrier frequencies ωj

and the carrier-envelope phases φCEj can be different for both laser pulses. A

possible time shift between the two pulses is not considered by setting τ12 = 0 fs.

Furthermore, the analysis was restricted to pulses of equal duration, τp1 = τp2 = τp,

and frequency doubled secondary pulses, ω2 = 2ω1. The 2ω laser pulse is only a

small perturbation to break the symmetry of the electric field. Hence, the ampli-

tude F02 was chosen to have the same polarization direction and a small fraction

of the first pulse’s field strength, F02 = ξ F01 with ξ � 1. As for longer laser

pulses, the carrier-envelope phase does not have any influence on the asymmetry

of the results. Only the relative phase ∆φ, defined by

φCE1 = φCE, (3.6a)

φCE2 = 2φCE + ∆φ, (3.6b)
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Figure 3.8: Time-dependent vector potential and electric field of two superim-
posed 800 nm and 400 nm laser pulses (τp = 30 fs) for medium intensity
(1× 1013 W/cm2), carrier-envelope phases φCE1 = 0 and φCE2 = π/2,
and mixing ratio ξ = 0.3.

is important. The carrier-envelope phase φCE shifts both pulses equally in time

with respect to the envelope function whereas the two-color phase ∆φ only shifts

the second, weaker pulse against the first, stronger one.

With these restrictions 6 free parameters, F01, ξ, ω1, τp, and the phases φCE

and ∆φ remain to be varied. The total vector potential is given by the sum of the

two individual pulses,

A(t) = A1(t) + A2(t). (3.7)

Figure 3.8 shows the vector potential of a two-color laser pulse and its two com-

ponents together with the electric field. With φCE = ∆φ = 0 and mixing ratio

ξ = 0.3 the resulting vector potential and the electric field are asymmetric despite

the long pulse duration.

To observe the asymmetric charge transfer introduced by the two-color field

first its dependence on the phases φCE and ∆φ is investigated. The primary field

strength is in the non-linear regime (I1 = 5× 1013 W/cm2) while the second color’s

intensity (ξ = 0.2, I2 = 2× 1012 W/cm2) lies in the linear regime.
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Figure 3.9: Transferred charge dependence on the carrier-envelope φCE and two-
color phase ∆φ for primary laser pulse intensity I1 = 5× 1013 W/cm2,
mixing ratio ξ = 0.2, and pulse length τp = 20 fs. The two-color
phase variation is about one order of magnitude larger than the carrier-
envelope phase variation. The insets show the electric field of the laser
pulse near the maximum amplitude for 3 different two-color phases
∆φ ∈ {0, π/2, π}.

Figure 3.9 shows the transferred charge as a function of φCE and ∆φ. Due to the

long pulse length of τp = 20 fs an almost vanishing variation with φCE is found. On

the other hand, variation of the two-color phase induces a sinusoidal variation of

the charge transferred to the positive or the negative laser polarization direction.

For a primary intensity below I
(1)
c , adding a weak two-color field may drive the

system into the non-linear regime, I1 + I2 > I
(1)
c . Therefore, an even stronger

dependence of the transferred charge on the relative phase ∆φ is expected. First

calculations for a primary laser intensity of I1 = 5× 1012 W/cm2 and secondary

intensity I2 = 5× 1011 W/cm2 (ξ =
√

0.1) showed that the kink appearing around
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5× 1012 W/cm2 in Fig. 3.4 needs to be resolved better in order to tune the inten-

sities of the two pulses in such that the total intensity varies around the kink.

3.3 Semiclassical estimate

As described in section 1.4 semiclassical simulations were performed for diamond.

The parameters extracted from the TDDFT calculations are: ∆V = 5 eV, λion =

178.33 pm and ∆ = 5.46 eV. ∆V is estimated with an upper boundary of the band

gap ∆ and λion is the periodic distance of carbon atoms along the z-direction which

is the laser polarization direction. Figure 3.10 shows the trajectories of 6 electrons

simulated with a laser intensity of I = 5× 1013 W/cm2 in the tunnel ionization

regime.

For this parameter set the carrier-envelope and two-color phase dependent charge

asymmetry is shown in Fig. 3.11a. For every combination of carrier-envelope phase

φCE and two-color phase ∆φ a total of 5000 electron trajectories were simulated.

The magnitude of the introduced ionic potential is responsible for the visible arte-

facts and fluctuations when compared to Fig. 3.9. Setting ∆V = 0 eV and thus

simulating quasi free electrons in the conduction band the results turn out to be in

better agreement with the TDDFT calcuations (Fig. 3.11b). This indicates that

the strong-field approximation is applicable in the case of laser-solid interactions.

All further simulations were therefore executed without ionic potential.

Another characteristic that can be reproduced by the semiclassical model is the

phase shift of the carrier-envelope depence on the laser intensity (see Fig. 3.3).

The intensity dependence of the phase shift is calculated with both the ADK

rate and the multi-photon ionization rate. The results are shown in Fig. 3.13.
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Figure 3.10: Electron trajectories in a laser field and a crystal potential. The
colored lines show the trajectories, the black line indicates the laser
field strength. The black crosses illustrate the ionization times and
positions.
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(a) With ionic potential ∆V = 5 eV.
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Figure 3.11: Semiclassically calculated transferred charge dependence on the
carrier-envelope phase φCE and two-color phase ∆φ for primary laser
pulse intensity I1 = 5× 1013 W/cm2, mixing ratio ξ = 0.2, and pulse
length τp = 20 fs.
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Figure 3.12: Intensity and carrier-envelope phase dependence of the transferred
charge normalized to the maximum charge transferred in positive or
negative direction along the polarization axis for employing the multi-
photon ionization rate (a) and the ADK ionization rate (b).
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Figure 3.13: (a) Phase dependence of multi-photon (left) and tunneling ionization
(right) for γ � 1 and γ � 1. Dominant features of the TDDFT
simulation (b) are well reproduced by the semiclassical estimate.

Both models agree with the TDDFT calculation in the weak and strong field

regimes (γ = 1 for I = 4.57× 1013 W/cm2) as can be seen in Fig. 3.13. Only

the intensity range from 7× 1012 W/cm2 to 2× 1013 W/cm2 where both processes

contribute to the total ionization cannot be modelled with this simple simulation.

Therefore computationally demanding TDDFT calculations can be restricted to

this transition regime rendering the semiclassical model an important tool to study

the phase dependence of charge transfer in dielectrics at low computational cost.



4 Multiscale coupled dynamics

The physical description in the previous sections holds true only in the case of

perfectly flawless, infinitely extended crystals in which laser pulses can propagate

freely and do not couple to the electron dynamics induced inside the unit cells.

Real crystals, however, show surface effects caused by the phase transition from

vacuum to the insulator. Furthermore, the laser pulse experiences a chirp caused

by chromatic dispersion or non-linearities and the induced currents couple to the

electric field.

In order to account for these effects and investigate their impact on the charge

transfer, multiscale simulations were performed. Since at each macroscopic grid

point a full single cell calculation has to be completed,the computational effort

is significantly higher for multiscale simulations. The required computational

resources were provided on the K computer, a supercomputer located at Kobe,

Japan, with approximately 20 times more cores than the local Vienna Scientific

Cluster. To illustrate the differences in computational workload between single

cell and multiscale simulations the total number of cores used and the runtime can

be compared. A typical microscopic TDDFT calculation for SiO2 takes 17.5 h on

64 cores (corresponding to 4 nodes) on the Vienna Scientific Cluster. Applying

the same parameters in a multiscale calculation that employs 280 macroscopic grid

47
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Figure 4.1: Laser pulse at t = 0 fs.

points (with a spacing of 13.2 nm and a total material thickness of 3.7 μm) and

performing it on 71680 cores (corresponding to 8960 of the approximately 80000

available nodes at the K computer) results in a computing time of 10 h on the K

computer. Although each core at the Vienna Scientific Cluster operates at a faster

clock speed of 2.7GHz compared to the 2.0GHz cores at the K computer, it is

obvious that multiscale simulations for structurally complex materials like SiO2

are feasible only on supercomputers of a size similar to the K computer.

Coupled simulations based on this framework have been performed previously [36,

37] to calculate the optical response, the energy deposition inside the material, and

the ablation threshold. The results presented in this thesis aim at extending these

preceding investigations. Previous results for SiO2 exist and thus the study is re-

stricted to this material. The simulated experimental setup was realized with the

following parameters:

The laser pulse

• Pulse length τp = 12 fs



49

• Intensity I = 8.125× 1013 W/cm2 (→ Iinside =
√

2
1+n

I ≈ 5× 1013 W/cm2)

• Carrier wavelength λ = 730 nm

• Carrier-envelope phase φCE = π/2

• Polarization direction F0/|F0| = ẑ (compare Fig. 2.9)

The microscopic SiO2 crystal cell

• Real space grid size NL = 20× 36× 50

• Reciprocal space grid size NK ≤ 4× 4× 4

• Type of XC potential: TB-mBJ

The macroscopic setting

• 1D grid spacing ∆x = 250 a.u. ≈ 13.23 nm

• 1D grid size N = 280 (→ total material thickness of d ≈ 3.7 μm)

In Fig. 4.1 the situation at the beginning of the simulation is depicted. As the

charge transfer induced by the laser pulse along the laser polarization direction

is investigated, the depth of the α-quartz layer must at least accommodate the

complete laser pulse (τpc = 3.6 μm), thereby avoiding the influence of reflections

at the boundaries of the slab.

Figure 4.2 shows the electric field at t = τp. While the reflected wave is a

weak mirrored copy of the initial laser pulse travelling in the opposite direction,

propagation of the pulse inside the material leads to a carrier-envelope phase shift

and a compression of the pulse length due to chromatic dispersion originating from
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Figure 4.2: Electric field at t = τp = 12 fs. Part of the laser pulse is reflected at
the crystal surface. The transmitted wave shows a small phase shift
towards the front of the pulse envelope and is compressed in length
due to chromatic dispersion.

the frequency dependent refractive index. The spatial pulse length within the

solid can be estimated with the help of the refractive index of SiO2, n(730 nm) =

1.54 [38], τpc/n = 2.34 μm.

Deviations from the analytic solution of the Maxwell equations are only seen

when analyzing the detailed structure of electric field F (t) and polarization density

P (t) Fig. 4.3a in unit cells along the propagation direction. As expected, the

amplitude of F (t) is reduced as a function of penetration depth because the effects

of coupling become more pronounced with increasing depth. Near the conclusion

of the laser pulse (zoomed part of Fig. 4.3a) the electric field is distorted and

does not vanish after the conclusion of the pulse but shows remaining fluctuations.

While the maximum field strength is reduced at x = 2 μm (yellow line) propagation

effects induce a chirp of the pulse yielding an increase of the field strength during

the last oscillation.

Figure 4.3b shows the polarization density for depths up to 2 μm. Similar
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Figure 4.3: (a) Time-dependent electric field and (b) polarization density at dif-
ferent penetration depths. For better comparability t = 0 fs is shifted
for each macroscopic point according to t′ = t+ xn/c.
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Figure 4.4: Macroscopic charge transfer within SiO2 along the laser polarization
direction z (green line) and an orthogonal direction y (purple line; x is
the laser propagation direction).

to Fig. 3.5 the polarization density oscillates after the conclusion of the laser pulse

for all positions but around a depth-dependent offset. Close to the surface of the

crystal (purple and green lines) the polarization shows an average positive offset

indicating a total charge transfer. This offset decreases with increasing depth.

For each macroscopic grid point the transferred charge can be calculated. Due

to the various asymmetries of SiO2, not only currents in the polarization direction

of the laser are induced but also in the two remaining spatial directions. In princi-

ple, currents in all directions should enter the solution of the Maxwell equations.

However, such terms are not yet accounted for in our simulation and are regarded

as vanishingly small contributions. That this condition is not always fulfilled can

be clearly seen in Fig. 4.4 where the amount of transferred charge perpendicular to

the polarization direction as function of the penetration depth is shown. Another
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approximation employed in order to save computing time is the coarse grid in k-

space. Grids with 2×2×2, 2×2×4, 2×2×8, and 4×4×4 points were tested and

showed qualitatively completely different charge deposition characteristics. This

is a strong hint that convergence was not yet reached for the finest employed grid

and calls for further investigations. Either of these unsolved problems may fur-

thermore be the reason for a small residual vector potential after the conclusion of

the pulse which increases linearly with the penetration depth. Therefore, reliable

results can not be presented so far but the problems have been identified and the

following solutions can be proposed:

• Use only symmetric crystals (e.g. diamond) to circumvent the missing treat-

ment of currents in the laser propagation direction and/or implement a full

3D solution of the Maxwell equations.

• Increase of the reciprocal grid size until convergence is reached.





5 Conclusions and outlook

In this thesis the effects appearing in bulk insulators due to irradiation with ultra-

short high-intensity laser pulses were investigated. In particular, the electron dy-

namics on the (sub-)femtosecond timescale resulting in effective charge transfer

inside the examined materials (α-quartz, diamond) were studied. Achieving con-

trol of this charge transfer by means of adjustable laser pulse parameters is of high

interest for the development of new optically driven electronic signal processing

devices.

The main method to achieve the presented results was time-dependent density

functional theory. Comparison with experimental data has shown that TDDFT

turned out to be a suitable method to describe microscopic processes within bulk

insulators. Macroscopic transport phenomena were modeled based on coupling be-

tween models created for different scales, TDDFT and Maxwell’s equations. This

method turns out to be a powerful tool to investigate and understand surface

and propagation effects. Complex systems, though, are very demanding in terms

of computational resources. Therefore, semiclassical models for laser-matter in-

teractions have been set up and have shown to enable qualitative predictions to

facilitate estimations of the benefit of planned calculations.

As for silicon dioxide, an intensity dependent exponential increase of the trans-
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ferred charge in laser polarization direction was found for diamond for ultra-short

phase-stabilized laser pulses [32]. This increase appears due to a transition of

the excitation mechanism from the multiphoton regime to the tunnel ionization

regime. Along with the increasing transferred charge, a phase shift of the depen-

dence on the carrier-envelope phase was confirmed, similar to former discoveries

for electron emission from metal surfaces [35].

Asymmetries by the electric field can not only be introduced in the system

employing carrier-envelope phase controlled ultra-short laser pulses but also by

irradiating the target with two-color laser fields with controlled realtive two-color

phase or, equivalently, the easily controlled delay between the two components.

For such systems an enhancement of the charge transfer by approximately one

order of magnitude by variation of the two-color phase and the admixture of the

second component was found.

Although the theoretical results of the simulations for diamond agree qualita-

tively with previously performed calculations for other materials, confirmation by

comparison with experimental data is not yet possible due to a lack of results. The

potential of two-color lasers to control the charge transfer has not yet been fully

exploited. Further and more extensive studies of the parameter dependencies such

as the mixing ratio have to be conducted and possibilities to improve the phase-

dependent contrast of the transferred charge should be explored. Moreover, the

multiscale approach is still in its infancy and allows for a rich amount of processes

and phenomena to be studied. Challenges that have to be faced in order to enable

further progress are the high demand in computational power and efficiency.
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