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Abstract

Soil moisture is an important variable in the hydrological and meteorological cycle of the earth.

It can have profound impacts on the planet’s climate system and also influences processes such

as flooding and runoff generation or drought developments. Hence, the knowledge of the distri-

bution and amount of water in the soil is of great interest for many applications.

The Remote Sensing Research Group at TU Wien developed a method to retrieve soil moisture

from backscatter measurements obtained from active microwave sensors. This method was ini-

tially developed for scatterometer data, but was then also adapted for the Advanced Synthetic

Aperture Radar (ASAR) on board of the Envisat satellite. In 2014, the first of two Sentinel-1

satellites was launched into its orbit, carrying a synthetic aperture radar (SAR) that is similar

to the ASAR instrument. Consequently, a transfer of the ASAR soil moisture algorithm to

Sentinel-1 was expected to be straight forward.

The aim of this thesis is to investigate if the ASAR soil moisture algorithm can be transferred to

Sentinel-1 using retrieval parameters calculated from ASAR Wide Swath (WS) data. Due to the

lack of historical data, it is not yet feasible to derive the model parameters that are needed in the

retrieval from Sentinel-1 data itself. Therefore the Sentinel-1 surface soil moisture (SSM) was

calculated with ASAR WS parameters and compared to the ASAR SSM products using coarse

spatial resolution soil moisture acquisitions from the Advanced Scatterometer (ASCAT) and

from the Global Land and Data Assimilation System (GLDAS). The evaluation of the different

products was performed over central Europe by calculation standard performance metrics, i.e.

the temporal correlation and the root mean square difference (RMSD) of the SSM time series.

Furthermore, the correlation and the RMSD were determined for different land cover types.

The results show a better correlation and RMSD performance for ASAR WS than for Sentinel-

1, which can be explained with the smaller sample size and shorter period of Sentinel-1 data-

set. Furthermore, if one wants to realise the full potential of Sentinel-1 for soil moisture re-

trieval, then (i) an adaptation of the model and (ii) the calibration of the model parameters with

Sentinel-1 data should be considered.
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Kurzfassung

Bodenfeuchte übernimmt eine wichtige Rolle im hydrologischen und meterologischen Zyklus

der Erde. Sie kann tiefgreifende Auswirkungen auf das Klimasystem des Planeten haben und

beeiflusst auch Prozesse wie Hochwasser und Dürre oder auch den Wasserabfluss. Daher ist die

Kenntnis über die Verteilung und der Menge an Wasser im Boden von großem Interesse für viele

Anwendungen.

Die Forschungsgruppe für Fernerkundung an der TU Wien hat eine Methode entwickelt, die

Bodenfeuchteinformationen aus Rückstreuungsmessungen von aktiven Mikrowellensensoren

gewinnt. Dieses Verfahren wurde zuerst für Scatterometerdaten entwickelt, danach aber auch

für das Advanced Synthetic Aperture Radar (ASAR) an Bord des Satelliten Envisat angepasst.

2014 wurde der erste von zwei Sentinel-1 Satelliten in seine Umlaufbahn gebracht, der ein Syn-

thetic Aperture Radar an Bord hat, das sehr ähnlich dem ASAR instrument ist. Folglich wurde

ein Transfer des ASAR Bodenfeuchte-Algorithmus zu Sentinel-1 für möglich gehalten.

Das Ziel dieser Arbeit ist zu untersuchen, ob der für ASAR angepasste Bodenfeuchte-

Algorithmus mit Hilfe der ASAR Wide Swath (WS) Modellparameter auf Sentinel-1 übertra-

gen werden kann. Aufgrund fehlender historischer Daten ist es noch nicht möglich die im Al-

gorithmus gebrauchten Parameter nur von Sentinel-1 Daten zu berechnen. Daher wurde die

Sentinel-1 Oberflächenbodenfeuchte mit ASAR WS Parametern berechnet und mit Hilfe von

räumlich grob augfelösten Daten von Advanced Scatterometer (ASCAT) und Global Land and

Data Assimilation System (GLDAS) mit der ASAR Bodenfeuchte verglichen. Der Vergleich der

verschiedenen Produkte wurde über einem Gebiet in Mitteleuropa durchgefüht. Zur Berechnung

herangezogen wurden die zeitliche Korrelation, sowie die mittlere quadratische Abweichung der

Bodenfeuchtezeitserien. Des Weiteren sind die Korrelationen und mittleren quadratischen Ab-

weichungen auch speziell für verschiedene Bodenbedeckungsarten bestimmt worden.

Die wichtigsten Ergebnisse zeigen bessere Korrelations- und RMSD Werte für ASAR WS als für

Sentinel-1. Dies kann mit der geringeren Anzahl an Daten, sowie mit dem kürzeren Zeitraum

der Sentinel-1 Daten erklärt werden. Falls man das gesamte Potential von Sentinel-1 für die
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Bodenfeuchtebestimmung ausnützen möchte, sollte (i) eine Anpassung des Modells und (ii) die

Kalibrierung der Modellparameter mit Sentinel-1 Daten berücksichtigt werden.
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Chapter 1

Introduction

Water is the Earth’s most important resource for the life of humans, flora and fauna and the

circulation and distribution of water has an essential impact on our climate system. Soil moisture

is only a percentage of 0.001% - 0.005% of this total amount of water, but it plays a very

important role in the environment and our climate system. In general, soil moisture is defined as

the water contained in the unsaturated soil zone (see Figure 1.1). While roughly one half of the

soil’s volume is composted of mineral and organic content, the other half consists of pores. Soil

moisture refers to the amount of water contained in these pores [Hillel, 1998].

Figure 1.1: The saturated and unsaturated soil zones [Seneviratne et al., 2010].

There are various reasons why the knowledge of the soil moisture content is of great interest. Soil

moisture controls the partitioning between infiltration and runoff. For instance, during precipit-

ation events, the infiltration rate is controlled by soil moisture, which consequently determines
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Chapter 1. Introduction

the amount of runoff produced. Also the degree of prior saturation is an important control on

river catchment response to rainfall or snowmelt and subsequent flood generation. Overland

flow will be larger and will occur more quickly on wetter soils and in catchments, where the soil

is more saturated [Petropoulos et al., 2013].

As an essential water source for vegetation, soil moisture determines the growth and healthi-

ness of the plants, because in contrast to precipitation, which is only available at short notice,

soil moisture serves as a longer preserved water reservoir for plants. All in all, soil moisture

is a key parameter in the global water, energy and carbon cycles and plays an important role in

hydrology, meteorology, climatology and agronomy.

The large spatial and temporal heterogeneity of soil moisture makes it a difficult parameter to

measure on a routine basis over large areas. However, there are several measurement techniques

for retrieving information about the soil moisture content (see Chapter 2). Some of these tech-

niques are able to measure soil moisture very accurate and with a high temporal resolution but

they are only representative for a small area. That is, these techniques are not able to capture

soil moisture on a large scale. On the other hand, satellite remote sensing has the capability to

monitor soil moisture conditions over large areas and at regular time intervals.

Most remote sensing satellites circle the Earth in a polar orbit with altitudes ranging from 300

km to 800 km. At these altitudes, the satellites must orbit at a very high speed, which allows

them to complete one orbit in about 90 minutes. Consequently they are able to cover almost the

entire Earth in a short period of time. In 1991 the European Space Agency (ESA) started its first

Earth-observing satellite program. The European Remote Sensing (ERS) satellites, ERS-1 and

ERS-2, were launched into the same polar orbit in 1991 and 1995, respectively. Among others,

each satellite carried a scatterometer, which scans the Earth’s surface by transmitting a pulse of

microwave energy and measuring the backscattered signal. It is this backscattered signal, which

is, among others, dependent on the water content of the soil.

Wagner et al. (1999) developed a soil moisture retrieval algorithm for the ERS scatterometer.

This algorithm, which will in the following be referred to as the TU-Wien model, estimates

the soil moisture by relating the backscatter value to dry and wet soil conditions. Dry and wet

conditions refer to a completely dry soil and a saturated soil, respectively. The references for dry

and wet soil conditions, as well as a parameter accounting for vegetation effects, are the main

parameters in the TU-Wien model. These parameters can solely be derived from historical data

from the instrument itself. Based on the existing algorithm, Naeimi et al. (2009) presented an

improved TU-Wien model for ERS and MetOp scatterometers. Those sensors deliver surface

soil moisture (SSM) with a spatial resolution of about 25-50 km, which is sufficient for many

2



Chapter 1. Introduction

applications, e.g. numerical weather predictions or climate research. But there is also a need

for observations at finer scale, e.g. for hydrological applications or agricultural monitoring and

irrigation management [Loew et al., 2006].

High-resolution soil moisture can be obtained from Synthetic Aperture Radar (SAR) instru-

ments. Hence, Pathe et al. (2009) used an adapted version of the soil moisture retrieval al-

gorithm to retrieve soil moisture from Envisat Advanced Synthetic Aperture Radar (ASAR)

measurements. Due to the acquisition strategy of ASAR, only an irregular and much reduced

coverage of the earth’s surface was reached, which is not beneficial for the above applications.

In April 2014, the first of two Sentinel-1 satellites, Sentinel-1A, was launched into space.

Sentinel-1 is the first mission that provides high-resolution SAR data on an operational basis

using a fixed acquisition strategy [Torres et al., 2012]. The Sentinel-1 sensor is an active mi-

crowave system operating at a central frequency (5.405 GHz) that is very close to that of ASAR

(5.331 GHz). Therefore, the transfer of the SSM retrieval algorithm to Sentinel-1 has been fore-

seen in several studies [Wagner et al. (2009); Gruber et al. (2013); Hornacek et al. (2012)].

The Remote Sensing Research Group at the TU Wien already realised the transfer of the Envisat

SSM algorithm to Sentinel-1. Due to lack of historical data for Sentinel-1 (data is only available

for the short period of October 2014 to January 2016) it is not yet possible to derive the model

parameters of the retrieval algorithm from Sentinel-1 data itself. However, because of the similar

sensor design of Envisat ASAR and Sentinel-1, the parameters derived from ASAR Wide Swath

data are used for the soil moisture retrieval with Sentinel-1.

The objective of this work is to investigate if and how the transfer of the Envisat algorithm to

Sentinel-1 and also the usage of the Envisat model parameters affects the retrieved Sentinel-1 soil

moisture data. The differences in the observing frequency and observing geometry, the highly

improved radiometric resolution for Sentinel-1, the different temporal resolutions or a possible

different sensor calibration may influence the Sentinel-1 retrieval algorithm performance.

The structure of the work is as follows: The second chapter will give an overview of the

theoretical basis of remote sensing of soil moisture, also the soil moisture retrieval algorithm

for Envisat ASAR and Sentinel-1 is explained in greater detail, including the already mentioned

parameters.

Chapter 3 describes the properties of Envisat ASAR and Sentinel-1 and their soil moisture

datasets, also the reference datasets for the evaluation are introduced here.

Chapter 4 introduces the different methods that are used to perform the validation of the

Sentinel-1 and ASAR SSM data. A correlation analysis, as well as a root mean squared

3



Chapter 1. Introduction

difference analysis, including the analysis of different land cover types, are the main subject of

this chapter.

Then, Chapter 5 describes the results of the in chapter 4 introduced methods and also visually

compares the different datasets. At the end of this chapter, the results are discussed.

Chapter 6 provides a summary of the study, the obtained results and looks into possible future

developments.

4



Chapter 2

Soil moisture and Remote Sensing

Soil moisture is generally defined as the water contained in the unsaturated soil surface of

the Earth, fed by rainfall, snowmelt, or capillary attraction from groundwater. Soil moisture

is affected by the soil texture, topography, land cover and climate, and as a result, it is highly

variable both in space and time [Petropoulos et al., 2013]. Besides, soil moisture can also be

separated into surface soil moisture (defined as the water contained within the first 5 cm of

the soil depth) and root zone soil moisture (defined as the water content below 5 cm of soil

depth, [Seneviratne et al., 2010], see Figure 1.1). One measure commonly used to define the

water content in the soil volume V is the volumetric soil moisture θ (e.g. volumes A or B in

Figure 1.1), which is defined as follows:

θ =
volume of water in V

V
[m3

H2O/m
3
soil] (2.1)

Measurement Techniques There are several different ways to measure the water content

in the soil: (1) In laboratory, for example the thermogravimetric method requires oven dying

of a known volume of soil and determining the weight loss. This method is very precise, but

bears the disadvantage that it is destructive to the sample (cannot be used for more than one

measurement) and the samples must be obtained manually [Walker et al., 2004]. (2) In situ,

soil moisture can be measured using measurement techniques, which measure for instance the

dielectric properties of the soil, which are highly depended on the water content. (3) Another

method is remote sensing of the surface with a microwave sensor on board of Earth observation

satellites or airplanes. In the above order, these three methods have a decreasing measurement

accuracy, but an increasing spatial coverage. While the soil sample only represents one certain

spot of the surface and the in-situ measurements also the small surrounding area, remote sensing
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offers an alternative to measure soil moisture at a variety of scales. Another difference of these

three methods is the temporal resolution. In this regard the in-situ measurements are more or

less constantly providing data, whereas satellite sensors are depended on the orbit configuration

[Bauer-Marschallinger et al., 2015].

2.1 Microwave Remote Sensing

The microwave region of the electromagnetic spectrum extends over the frequency range

of 0.3 to 300 GHz (or 1 m to 1 mm in wavelength). There are several reasons for using mi-

crowaves for remote sensing: microwave sensors provide their own illumination, they can be

used day and night, without the necessity of the sun as a source of illumination. Another ad-

vantage is that microwaves can not only penetrate the atmosphere (Figure 2.1), but especially at

longer wavelengths they are also able to penetrate clouds and rain, which makes them suitable

to observe regions of the Earth, which are covered by clouds. They are also, to some extend,

able to penetrate deeply into vegetation and also into the ground beneath. The interactions of

Figure 2.1: Transmission of microwaves through the earth’s atmosphere under clear sky condi-
tions [Ulaby et al., 1981]
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microwaves with media are governed by different physical parameters, which makes them a use-

ful tool for retrieving physical properties of the soil as for example soil moisture [Ulaby et al.,

2014]. The theory behind using microwaves for remote sensing of soil moisture is based on the

large contrast between the dielectric properties of liquid water and dry soil in the microwave

region, which results in a high dependency of the soil on volumetric soil moisture [Barrett and

Petropoulos, 2013]. In short, microwaves show a high sensitivity to the water content in the soil

surface layer and are therefore highly suited for measuring soil moisture. Greater detail of the

soil dielectric properties is given in section 2.1.3.

2.1.1 Radar Equation

The monostatic radar equation describes the process of a radar antenna emitting an electromag-

netic wave which is scattered back from the earth’s surface and detected at the same antenna

again [Woodhouse, 2005]. The received power Pr of the backscattered signal can be written as:

Pr =
PtGtAr
(4π)2R4

σ (2.2)

Pt is the emitted power from the radar antenna, Gt is the gain of the antenna, which describes

the power that is emitted into target direction, 1
(4π)3R4 is the two-way spreading loss with

the slant range R, Ar is the effective receiving area of the antenna and σ0 is the radar cross

section of the illuminated target. The radar cross section is a measure for the interaction of the

incidence wave with the target and is highly dependent on the target’s geometry and dielectric

properties [Ulaby et al., 2014]. In general, an antenna footprint is usually a combination of many

single targets with different shapes, which each contribute to σ. Therefore, the backscattering

coefficient is defined in order to get a quantity that is independent of the areal extent of the

target. The backscattering coefficient is the radar cross section normalized with the area:

σ0 =
dσ

dA
(2.3)

The dimensions of σ0 is m2m−2, but normally it is expressed on a logarithmic scale in decibels:

σ0dB = 10 log σ0 (2.4)

The radar equation for an extensive area then yields to:
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Pr =

∫
A

PtG
2
tλ

2

(4π)3R4
σ0dA (2.5)

The received power Pr is normally converted to the backscattering coefficient in order to obtain

information about the target.

2.1.2 Microwave Scattering Mechanisms

When a radar wave impinges on a surface at a specific incidence angle, a portion of the incidence

wave is transmitted into the lower surface layer and another one is scattered back. The scattering

component can be split into a portion which is scattered into all directions, this is referred to as

diffuse scattering, and the rest is reflected in specular direction. Some of the diffuse scattering

component returns to the sensor as backscatter [Ulaby et al., 2014]. There are two different

scattering mechanisms.

Surface scattering appears at a sharp boundary between two media, with different dielectric

properties (e.g. air and soil). If an electromagnetic wave impinges on a smooth surface, one part

of the wave is reflected back into the upper medium and the other part is transmitted into the

lower medium. If a surface is rough (compared to the wavelength), also a diffuse scattering

term is present. As the roughness of the surface increases, the specular refraction component

decreases and the diffuse scattering component increases, which also increases the amount of

backscatter, that returns to the sensor.

Volume scattering occurs within the medium itself, in the case of an inhomogeneous me-

dium. Small particles such as leaves, twigs or in general vegetation canopies can be such in-

homogeneities, which diffusely scatter the wave back or attenuate or absorb the incoming wave.

The surface scattering and volume scattering phenomena are illustrated in Figure 2.2.

Wet soils, for instance, act predominantly like a rough surface, which results in an increased

backscatter coefficient, whereas very dry soils will act as volume scatters with microwaves

scattered within the upper layers of the soil, which results in an attenuation of the signal [Wood-

house, 2005].

8



Chapter 2. Soil moisture and Remote Sensing

Figure 2.2: Conceptual scattering of an incident radar signal by a rough and vegetated surface
[Kornelsen and Coulibaly, 2013].

Vegetation Effects Over vegetated surfaces the total acquired backscatter σ0 consists of

three scattering mechanisms:

• Volume scattering: direct backscatter of the incoming wave by vegetation canopy

• Surface scattering: scattering from the soil surface attenuated from the overlying vegeta-

tion

• Surface-Volume interaction: incoming wave, which is scattered downwards by the veget-

ation canopy and then scattered back from the soil surface, or vice versa

Compared to the surface and volume scattering term, the interaction term is usually assumed to

be much smaller providing no significant contribution to the total backscatter value. As already

mentioned above, bare soil scattering, with exception of very rough surfaces, is strongly depend-

ent on the incidence angle. An increasing incidence angle results in a decreasing backscatter

value. In contrast, the scattering from fully grown vegetation is quite uniform across a large

incidence angle range. At smaller incidence angles, most of the radiation can penetrate through

the vegetation so that the total backscatter is dominated by the surface scattering term. How-

ever, with an increasing incidence angle the incoming signal has a longer travel path through the

canopy, so it gets more attenuated and the total reflected wave is dominated by the vegetation

scattering term. In other words, at small incidence angles the overall backscatter from vegetated

surfaces tends to be dominated by the surface scattering term, whereas at larger incidence angles

volume scattering is the dominating term.
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2.1.3 Soil Dielectric Properties

Microwave remote sensing is strongly influenced by the dielectric properties of soil. Amongst

all natural media, water has the highest dielectric constant and as water is added to the soil,

its dielectric constant increases. Due to its structure, water has a dipole character and in the

presence of an electromagnetic field, the water molecules adjust their orientation to the electric

field vector direction, which results in a high dielectric constant. The dielectric constant is also

frequency depended. Especially the lower frequency domain from 1 to 10 GHz is dominated by

high dielectric constants. Microwave sensors operate exactly in this region of the spectrum and

therefore hold the largest potential for the retrieval of soil moisture [Pathe et al., 2009].

2.1.4 Active Microwave Sensors

Compared to passive sensors, which measure the microwave energy that is radiated (by thermal

emission) or reflected (e.g. from the sun) by the earth’s surface or atmosphere, active sensors

generate their own illumination by transmitting microwave pulses and then measure the scattered

signal. Spaceborne radar (radio detection and ranging) systems are generally classified in three

categories: Altimeter, Scatterometer and Synthetic Aperture Radar (SAR). Altimeters focus on

measuring the time delay of the returned signal which provides distance information, whereas

scatterometer and SAR are designed to accurately measure the properties of the echo (such as

radar cross-sections, [Woodhouse, 2005]).

Scatterometer and SAR are side-looking radars, i.e. their antennas point to the side with a beam

that is wide vertically and narrow horizontally. The spatial resolution of a side-looking radar is

defined in two perpendicular dimensions: range direction is the direction perpendicular to the

satellite flight track and azimuth direction is parallel to the orbit (Figure 2.3). The resolution in

range direction is dependent on the length of the radar pulse - the shorter the pulse, the higher

the resolution. One has to keep in mind that a shorter pulse length decreases the signal-to-noise

ratio, which results in a lower radiometric resolution. Therefore most radar use combined pulse

and frequency modulation techniques to obtain a higher resolution in range direction without

a decreasing signal-to-noise ration. For real-aperture radar the spatial resolution in azimuth

direction is dependent on the wavelength of the signal λ, the size of the antenna l and the height

above the ground h:

ra =
λh

l cos(θ)
(2.6)
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Figure 2.3: Geometry of a side-looking aperture radar (after Ulaby et al. (1982)).

Hence, to get a higher spatial resolution in azimuth direction when using the same frequency,

a larger antenna is needed. In the spaceborne microwave domain this is an important limiting

factor for the resolution of the sensor.

2.1.4.1 Scatterometers

Scatterometers are designed to measure the normalized radar cross section σ0 (see Section 2.1.1)

with high radiometric accuracy. To achieve such a high radiometric accuracy it is necessary to

average the received pulses over a wide area, since single return pulses are typically noisy. This

results in a relatively coarse spatial resolution of 25 - 50 km, but it does have the advantage of

covering larger areas of the earth on a more frequent basis. Figure 2.4 shows for example the

configuration of the antenna footprint of the Advanced Scatterometer (ASCAT) on board of a

series of METOP satellites. This scatterometer uses a fan-beam antenna technology, where two

sets of three antennas are arranged on each side broadside and +- 45◦ of broadside with respect to

the satellite flight direction. With incidence angles ranging from 25◦ to 65◦, ASCAT covers two

550km wide swaths to the left and right of the satellite ground. Considering this configuration,

the daily global coverage of ASCAT is about 82% [Wagner et al., 2013].
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Figure 2.4: Geometry of the Advanced Scatterometer (ASCAT) on board Metop satellites
[Bartalis, 2009].

2.1.4.2 Synthetic Aperture Radar

SAR sensors overcome the limitations to the resolution in azimuth direction by simulating one

large antenna by the movement of one small antenna. The synthetic aperture technique is based

on the fact that a target stays in the beam for a significant amount of time and is observed by

the radar from different locations along track direction (Figure 2.5). As the SAR sensor is

continuously moving, the return signal from the target will change in frequency as it passes

through the radar beam, so that Doppler-shift processing can be used to locate from which part

of the beam the echo returns from [Woodhouse, 2005]. The echoes returning from the front

part of the beam are Doppler shifted to higher frequencies, while echoes from the aft part of the

beam are Doppler shifted to lower frequencies. The change in frequency is given by:

fD =
Vrel
λ

[s−1] (2.7)
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where Vrel is the relative motion between the transmitter and receiver and λ is the wavelength

of the signal. Note that the antenna beam is now designed to be very wide in order to make the

Figure 2.5: Geometry of a SAR system [Woodhouse, 2005]. The beam is designed to be very
wide, in order to have many overlapping footprints.

footprints overlap. An increasing footprint size is caused by an decreasing antenna size and this

also causes a wider range of available Doppler frequencies (Doppler bandwidth). The azimuthal

spatial resolution of a SAR system is determined by the Doppler bandwidth as in:

ra =
Vs
BD

=
Vsλ2D

4Vsλ
=
D

2
(2.8)

where Vs is the relative velocity, D is the length of the real antenna and BD is the Doppler

bandwidth. This result implies that the azimuthal resolution is equal to half of the length of

the antenna, so in contrast to real-aperture radar (equation 2.6) the resolution improves with

decreasing antenna length. It is independent of the the distance of the sensor to the target and

also independent of the wavelength of the signal. However, the high spatial resolution of SAR

systems usually comes at the expense of a low-temporal resolution, because the these systems

are typically limited by the power supply.

In short, scatterometers measure the radar cross section with a high radiometric accuracy by
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averaging the returned signals, but this results in a low spatial resolution. In contrast, SAR

achieves a very high spatial resolution in order of meters to hundreds of meters, but this comes

at the expense of temporal and radiometric resolution as well as geographic coverage when

compared to scatterometers.

2.2 Soil Moisture Retrieval Algorithm

Wagner et al. (1999) used the unique sensor design of the ERS scatterometer to develop a

change detection method for retrieving soil moisture from radar measurements, the TU-Wien

method. Later Naeimi et al. (2009) presented an improved soil moisture retrieval algorithm

for ERS and MetOp scatterometers, based on the existing TU-Wien method, but with new

parametrization as well as a series of modifications. Pathe et al. (2009) investigated if the SAR

system onboard of Envisat can be used for retrieving soil moisture using a change detection

approach, therefore the developed and later improved TU-Wien method was adapted for ASAR

GM.

The TU-Wien method is a physically motivated empirical change detection method, that relates

backscatter measurements σ0(θ, t) to the highest and lowest values of σ0(θ) that have ever been

recorded. The highest and lowest values are references for the wettest and driest condition of

the soil surface. The relative surface soil moisture ms, in degree of saturation, can be calculated

with the following equation:

σ0(θ, t) = σ0dry(θ, t) +ms(t)[σ
0
wet(θ, t) − σ0dry(θ, t)] (2.9)

where θ is the incidence angle, t is the time, σ0dry is the dry reference, that is the backscatter that

one would obtain under completely dry soil conditions in decibels, σ0wet is the wet reference,

which is the equivalent to the dry reference, but for saturated soil conditions. The term in

brackets is referred to as sensitivity S of the backscattering coefficient σ0 to changes in soil

moisture:

S = σ0wet(θ, t) − σ0dry(θ, t) (2.10)

Hereafter, the determination of the different parameters in equation 2.9 will be outlined. In each

subsection, first an overview of the original TU-Wien method developed for scatterometers is

given and in an additional paragraph the adapted version of the algorithm for Envisat ASAR and

Sentinel-1 is explained.
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2.2.1 Incidence Angle Normalization of Backscatter Measurements

Microwave sensors usually scan the Earth’s surface in a certain incidence angle range. Hence,

the backscatter measurements σ0 at different locations are taken at different incidence angles.

The intensity of the backscatter signal strongly depends on the incidence angle, which results

in decreasing backscatter values for increasing incidence angels and vice versa. Thus, σ0

measurements taken at different incidence angles cannot be compared directly and need to be

normalized to a certain reference angle.

In the TU-Wien method for scatterometers, all σ0 are therefore transformed to a reference angle

of 40◦. Equation (2.11) shows a second order polynomial, which was found to be adequate to

model the incidence angle behaviour of σ0 [Wagner, 1998].

σ0(40, t) = σ0(θ, t) − σ′(40, t)(θ − 40) − 1

2
σ′′(40, t)(θ − 40)2 (2.11)

The parameters of this model, referred to as slope σ′(40, t) and curvature σ′′(40, t), are the first

and second derivative of σ0(θ). Due to the special antenna arrangement of ERS and Metop

(see 3.3.1) it is possible to determine the slope and curvature values from simultaneous multi-

incidence angle observations. These two parameters are very sensitive to surface structure and

vegetation growth. For a smooth surface with no vegetation, σ0 decreases faster with increasing

θ (specular reflection, see 2.1.2), which results in low negative σ′ values. Rough surfaces and

vegetation have higher σ′ values (diffuse scattering), which results in a not so steep decline of σ0

with respect to θ (see Figure 2.6). Hence, the slope values represent the variations of vegetation

canopies within a year, therefore vegetation growth/decay has to be taken into account when

normalizing σ0 values.

SAR Due to the missing capability to measure backscatter at different incidence angles

instantaneously, modelling of seasonal slope effects is not easily possible in the case of ASAR

and Sentinel-1. During each overpass, they acquire only one backscatter measurement at a time

for one location, hence it is not possible to detect changes in the slope parameter, which refers

to vegetation changes. However, for the incidence angle range of ASAR GM (20◦ to 40◦), Pathe

et al. (2009) showed that the slope parameter is constant in time, because in this incidence angle

range changes in backscatter due to vegetation growth are much smaller, than changes due to

soil moisture. Hence, a linear model is sufficient to describe the incidence angle variation. Due

to the similar incidence angle range, a constant slope parameter is also adapted to ASAR WS

and Sentinel-1. The following equation is the adapted equation for modelling the incidence
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Figure 2.6: Incidence angle dependency of backscatter over three different surfaces, high veget-
ation growth results in higher slope value [Scipal, 2002].

angle behaviour in the SAR algorithm. The σ0 measurements are extrapolated to a reference

angle of 30◦ using the constant slope parameter β.

σ0(30, t) = σ0(θ, t) − β(θ − 30) (2.12)

Figure Figure 2.7 shows the slope parameters calculated from ASAR WS data. It is noted that

here the value range of the WS slope parameter is between 0 and -0.3. Green represents areas

with slightly higher values, which indicates areas with dense vegetation (see figure Figure 3.9)

or diffuse scattering mechanisms. Bright green areas represent lower slope values and smooth

surfaces where specular reflection dominates.
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Figure 2.7: Slope parameter calculated from ASAR WS data.

2.2.2 Dry and Wet Reference Determination

Before one can determine the dry and wet reference, it has to be stated once again that fully

grown vegetation has a large impact on the measured backscatter and furthermore on the soil

moisture retrieval. At larger incidence angles, the total backscatter is dominated by vegeta-

tion scattering, whereas at smaller incidence angles radiation may penetrate through the dense

vegetation and the total acquired backscatter is influenced by the surface scattering term (see

Section 2.1.2).

For scatterometers and their incidence angle range, Wagner (1998) stated that there exist so-

called "crossover" angles, one for dry and one for wet conditions (dry crossover angle θdry can

be found at 25◦ and the wet crossover angle θwet at 40◦, Wagner et al. (1999)). At these angles, it

is assumed that the vegetation effect in the total backscatter is minimal and backscatter changes

are only caused by soil moisture changes. Referring to scatterometers, this can be exploited to

get the historically driest and wettest reference of soil moisture. Vegetation is assumed to have

no impact on the total backscatter at these angles, therefore the normalized backscatter meas-

urements are extrapolated to the dry crossover angle θdry and furthermore the dry reference is

determined by calculating the mean of the n-lowest backscatter values. Due to the fact that the

reference angle θref and the wet crossover angle θwet are both equal 40◦, there is no need to

extrapolate the σ0 values to get the wet reference.
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SAR Due to the simplification that for the incidence angle range of ASAR, changes in

backscatter are mainly due to soil moisture changes, it is not possible to extrapolate the σ0

measurements to the dry and wet crossover angle. According to Pathe et al. (2009), the dry

reference σ0dry and the wet reference σ0wet can be calculated with following equations:

σ0dry(30) ≈ 1

Ndry

Ndry∑
i=1

σ0i (30) (2.13)

σ0i (30) are sorted in ascending order and the average of the Ndry-lowest σ0i (30) values is the

dry backscatter reference. Correspondingly for the wet backscatter reference, by averaging the

Nwet-highest σ0i (30) values:

σ0wet(30) ≈ 1

Nwet

N∑
i=N−Nwet

σ0i (30) (2.14)

Ndry and Nwet are calculated for each pixel from historical scatterometer SSM data:

Ndry ≈ NGM
N(ms < 5%)

NSCAT
(2.15)

Nwet ≈ NGM
N(ms > 95%)

NSCAT
(2.16)

Where NGM is the total number of ASAR GM measurements at that specific pixel location,

NSCAT is the total number of ERS soil moisture values ms at the same location, N(ms < 5%)

is the number of ERS soil moisture data below 5% and N(ms > 95%) is the number of soil

moisture data above 95%. The dry and wet reference determination is adapted in the same way

to Sentinel-1. Figure 2.8 illustrates the dry and wet references (in [dB]) over the study area

calculated from ASAR WS data.
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(a) Dry reference (b) Wet reference

Figure 2.8: Dry and wet reference calculated from ASAR WS data.

2.2.3 Soil Moisture Retrieval

For ASAR and Sentinel-1 equation 2.9 can be simplified to following change detection model:

σ0(θ, t) = σ0dry(30) + β(θ − 30) +ms(t) · S (2.17)

S = σ0wet(30) − σ0dry(30) (2.18)

Using the estimated model parameters σ0dry and σ0wet, the constant slope value β and the

extrapolated backscatter measurements σ0(30, t) (see eq. 2.12), a relative surface soil moisture

is retrieved by simply inverting equation 2.17

ms(t) =
σ0(30, t) − σ0dry(30)

S
(2.19)

ms is scaled to the driest and wettest reference ever recorded, therefore its unit is degree of

saturation. Hence, the relative soil moisture content ranges from 0% in a completely dry soil, to

100% in a completely saturated soil.
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Study Area and Data Sets

Spatial reference In order to handle the high resolution SAR data from Envisat and

Sentintel-1, Bauer-Marschallinger et al. (2014) designed a new spatial grid, the Equi7 Grid,

to manage efficiently the archiving, processing and display of high resolution raster data. It is a

spatial reference system for the entire Earth, that consists of seven planar subgrids, one for each

continent. The coordinates are defined by individual realisations of the Equidistant Azimuthal

projection and are referenced to the ellipsoidal World Geodetic System (WGS) 84 datum. Each

of the seven subgrids is independently divided into square tiles. To meet the different require-

ments of low and high spatial resolution, three different levels of tilings are available. For this

study the tiling level ’T6’ was used, with an tile extend of 600 km and a pixel sampling of 500

m, resulting in 1200 x 1200 pixel.

Study Area Due to the current availability of Sentinel-1 data at the TU-Wien archive, it was

only possible to do a proper evaluation over the ’E048N012T6’ tile in central Europe (red square

in Figure 3.1). As already mentioned, this tile has a spatial coverage of 600 km x 600 km and

extends from approximately 10◦ to 18◦ of eastern longitude and from 40◦ to 50◦ of northern

latitude. So it almost covers whole Austria, Slovenia, the north of Italy, the south of Germany

and some parts of the Czech Republic, Hungary, Slovakia and Croatia. Regarding topography,

great parts of this study area is dominated by the Alps, which cover the whole eastern and central

part. In the south-west is the Po Valley, which is broadly divided into a upper, drier part, and

a lower, very fertile and well irrigated part. Hence, it is mostly used for agricultural purposes.

Also the eastern and south-eastern part of the study area is dominated by agricultural areas,

which is called the Pannonian Basin. The Alpine foothills and the highlands of the Bohemian

Massif dominate in the north. The land cover types are shown in greater detail in Figure 3.9.

The climate in the south-eastern part of the study area is mainly of Mediterranean type, whereas
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Figure 3.1: The red square represents the study area (in Pseudo Mercator projection,
EPSG:3857)

the rest is predominated by continental climate. The high-altitude areas in the Alps have a high

average rainfall of 2000 mm per year. In the Po Valley precipitation is moderate, with an average

of 650 to 1000 mm per year, typically with two maxima in spring and autumn and two relative

minima in winter and summer. Figure 3.2 shows the mean precipitation in Austria from 1971 -

2000 and also gives a good impresion of how the Alps influence the climate in this area.

Figure 3.2: Mean yearly rainfall over Austria (from Hiebl et al. (2011))
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3.1 Envisat ASAR

On March 1, 2002, the European Space Agency (ESA) launched the satellite Envisat into a sun-

synchronous polar orbit. Until the unexpected loss of contact with the satellite on April 8, 2012,

Envisat circled the Earth at an altitude of about 800 km with a nominal repeat rate of 35 days.

With 10 instruments aboard and eight tons it was the largest civilian Earth observation mission

so far. One of the instruments was the Advanced Synthetic Aperture Radar (ASAR), an active

microwave system operating in C-band at a central frequency of 5.331 GHz. ASAR was able to

acquire backscatter data in five different imaging modes with different settings, with respect to

spatial resolution, radiometric accuracy and polarizations. To meet the needs of the user, ASAR

modes were exclusive modes, which operated on user requests. However, if no other mode was

requested, than the global monitoring mode is activated by default. This acquisition strategy

led to a quasi arbitrary coverage in the different modes during different times [Wagner et al.,

2012].

Global Monitoring Mode (GM) The GM mode is the so-called background mode, which

means it is only active when no data from other modes are requested. Thus, the GM mode

provides a higher temporal coverage on a global scale, than other modes. It provides low resol-

ution (1 km) images over a 405 km swath at HH or VV polarization.

Wide Swath Mode (WS) The WS mode is used for medium resolution (150 m) images over

a 405 km swath also in HH or VV polarization. When compared with the GM mode, the WS

mode offers a better performance in terms of radiometric resolution, but at the costs of a lower

temporal resolution and reduced spatial coverage [Gruber et al., 2013]. On a global scale, GM

surpasses WS in terms of temporal resolution and spatial coverage, but if one considers the study

area in central Europe, than the WS mode provides data almost as often as the GM mode.

Figure 3.3 shows all available images from ASAR GM (Figure 3.3a) and WS (Figure 4.4a)

over the study area from 2004 until 2012. Although the GM mode was the background mode

of ASAR, the number of available images for GM and WS is almost even over the study area.

Table 3.1 summarizes the characteristics of the ASAR WS and GM mode.
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(a) ASAR GM coverage (b) ASAR WS coverage

Figure 3.3: Number of available images of ASAR GM and WS (2004 - 2012)

3.1.1 ASAR SSM

For both modes, the global monitoring mode and the wide swath mode, SSM datasets were

retrieved using the adapted TU-Wien change detection algorithm from Pathe et al. (2009). It

represents the surface soil moisture in the upper layer of the soil (0 - 3 cm) at a spatial resolution

of 1 km (with a 500 m sampling). For the GM mode, 898 images are available from December,

2004 till April, 2012, for the WS mode, 986 images from July, 2005 till April, 2012. Figure 3.4

shows the soil moisture of GM and WS for two different days in September, 2009, illustrating

the different noise level of the GM and WS data.

(a) Global Monitoring SSM (18-09-2009) (b) Wide Swath SSM (15-09-2009)

Figure 3.4: Surface Soil Moisture of Envisat ASAR GM and WS mode
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3.2 Sentinel-1

The Sentinel-1 mission is a part of the Copernicus program of ESA and the European Comission

(EC). The Sentinel-1 mission consists of two-satellites sharing the same orbit, each at 693 km

mean altitude and with a 180 degree phasing difference [Torres et al., 2012]. Each satellite

carries a C-band SAR instrument (5.405 GHz), providing continuous all-weather and day-and-

night imagery. The first satellite, Sentinel-1A, was launched into its sun-synchronous, near polar

orbit in April, 2014. One single satellite provides full coverage over Canada and Europe every

four days and a global coverage every 12 days [Dostálová et al., 2014]. Sentinel-1 offers four

different modes for data acquisition, but only the Interferometric Wide Swath (IW) mode is the

operational mode and most of the time used, the others are available for emergency requests.

The IW mode supports operation in different polarizations (HH, VV, HH + HV, VV + VH) with

a spatial resolution of 5 x 20 m over a swath width of 250 km (see also Table 3.1). On April

25, 2016 ESA launched the second Satellite, Sentinel-1B, into its orbit. Both satellites together

are expected to cover the Land Masses globally every six days, with almost daily coverage over

Europe and Canada [Snoeij et al., 2011]. The number of available images for Sentinel-1 is plottet

in Figure 3.5.

Figure 3.5: Available Sentinel-1 images from October 2014 until January 2016
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3.2.1 Sentinel-1 SSM

Due to the similar sensor characteristics of ASAR and Senintel-1, the adapted TU-Wien change

detection method from Pathe et al. (2009) was also used for the SSM retrieval with Sentinel-1.

Due to the lack of historical data (Sentinel-1A is only operating for 18 months), the paramet-

ers (slope, dry and wet reference), derived from historical ASAR WS data, were used for the

retrieval. Again the soil moisture represents the upper layer of the soil (0 - 3 cm) at a spatial

resolution of 1 km, with a 500 m sampling. In total, 1542 Sentinel-1 images were processed

over the study area from October 2014 till January 2016. Figure 3.6 shows the Sentinel-1 SSM,

it was composed from 5 single images.

Figure 3.6: Sentinel-1 SSM (20-09-2015)

Global Wide Swath Sentinel-1
Monitoring IW

Frequency [GHz] 5.331 5.331 5.405

Spatial resolution [m] 1000 150 20

Radiometric resolution [dB] 1.2 0.6 0.3

Temporal Resolution Irregular, typically Irregular, dependent 3-6 days Europe,
4 to 7 days on acquisition plan Global 6-12 days (1 satellite)

Spatial coverage Global Global Global

Polarization HH VV (HH) VV, VH

Table 3.1: The characteristics of the ASAR Global Monitoring mode and Wide Swath mode data
and Sentinel-1 IW Swath data.
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3.3 Ancillary Datasets

As mentioned above Envisat had an operational lifetime from 2002 till 2012. In 2014, two

years after the end of the Envisat mission, Sentinel-1 was launched into its orbit. So there is no

overlapping period to compare the performance of both satellites directly. Hence some reference

datasets are needed in order to perform an evaluation of the soil moisture datasets of both SAR

systems.

3.3.1 Metop ASCAT SSM

ESA and EUMETSAT jointly developed three sun-synchronous Meteorological Operational

Platforms (Metop-A, Metop-B, Metop-C). Each satellite has a nominal lifetime in orbit of about

five years [Figa-Saldaña et al., 2002]. Metop-A, launched in 2006, is still in orbit and will oper-

ate in parallel to Metop-B (launched in 2012) as long as the available capacities bring benefits to

the user. Metop-C is planned to be launched in 2018. The Metop satellites are flying in 29 day

repeat cycle orbit with a minimum orbit height of 822 km. The Advanced SCATterometer (AS-

CAT) is an active microwave sensor operating at 5.255 GHz (C-band) on board of the MetOp

satellites. The antenna configuration of ASCAT (see section Section 2.1.4.1) results in high tem-

poral resolution (daily coverage) and in a relative coarse spatial resolution of 25 km, which is

sampled to a 12,5 km grid. Due to the different spatial resolution of ASCAT and SAR datasets,

all ASCAT SSM data from beginning of 2007 till end of 2015 was resampled to the Equi7 grid.

Figure 3.7 shows one ASCAT surface soil moisture swath over the study area.

Figure 3.7: Surface soil moisture from ASCAT in Equi7 grid (21-09-2009)
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3.3.2 GLDAS NOAH SSM

The GLDAS Noah model [Rodell et al., 2004] contains land surface parameters modelled from

the Noah model in the Global Land Data Assimilation System (GLDAS). Among others it

provides modelled soil moisture information from 1948 till the end of 2015, so it covers the

whole lifetime of Envisat and also more than one year of Sentinel-1. The SSM data used, rep-

resents the modelled soil moisture in the upper layer of the soil (approximately 0 - 10cm). The

data is stored in a regular grid with a spatial resolution of 0.25◦ . The temporal resolution is 3

hours, which results in 8 soil moisture values per day, stored in [kg/m2]. After the calculation

of the daily mean, all GLDAS SSM data with beginning of the Envisat lifetime was resampled

to the Equi7 grid. Figure 3.8 shows the GLDAS soil moisture of the upper layer of the soil.

Figure 3.8: GLDAS soil moisture (0-10cm) in Equi7 grid (21-09-2009)

3.3.3 Land Cover Information

The land cover information consulted in this study is retrieved from the Corine Land Cover

(CLC) dataset. It is part of the CORINE (Coordination of Information on the Environment)

program of the European Union. The objective of the CLC is the provision of a unique and

comparable dataset of land cover for Europe. All in all there are 44 classes provided with

different land use information. The dataset used in this thesis is the updated version from 2006

with a spatial resolution of 100 m x 100 m. CLC was also resampled to the ’E048N012T6’ tile
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of the Equi7 grid (Figure 3.9). The different land cover classes are summarized in appendix A.1.

Figure 3.9: Corine Land Cover resampled to the Equi7 grid
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Methodology

Due to the different observation periods of Envisat ASAR (2004-2012) and Sentinel-1 (2014-

ongoing) it is not possible to compare the data of these two sensors directly to each other. Hence,

to perform an evaluation of the SSM datasets of the two sensors, the reference datasets described

in section Section 3.3 are taken. Furthermore, the different lengths of the observation periods,

especially the short Sentinel-1 period, and the different number of images per pixel (see Fig-

ure 3.3, Figure 3.5)do not allow a direct comparison.

4.1 Visual Inspection

To give a first impression of the data investigated in this study, the different SSM datasets are

displayed together with the reference datasets as time series. For all time series a 12 day mean

value is calculated. Furthermore for one certain day the available SSM data for the study area is

plotted and visually compared to the reference datasets at the same day.

Percentiles are calculated to show the data in a comprehensive way. Percentile is a measure

used to indicate the value below which a given percentage of observations of all observations fall

[Schönwiese, 2000]. The SSM data are sorted from lowest to highest value and for instance, the

20 percentile represents the value that separates the lowest 20% of the values from the highest

80%. In order to get a deeper impression of the data, different percentiles are calculated per

pixel of the SSM time series. For each SAR SSM time series nine percentiles are calculated -

also called decile. It is any of the nine values that divide the sorted data into ten equal parts, so

that each value represents 1/10 of the sample.

29



Chapter 4. Methodology

4.2 Time Series Analysis

There are various statistical metrics to quantify the agreement between two datasets. In this

study two common bivariate error measures were used: the Spearman correleation coefficient

to characterize the temporal agreement of two datasets and the root mean square difference

(RMSD) as a measure of the closeness of the SAR SSM datasets to the reference datasets.

4.2.1 Correlation Coefficient

Correlation characterizes a statistical relationship between two datasets. Positive correlation

means that if the values of one dataset increase (or decrease), then the values of the second

dataset also increase (or decrease). Negative correlation means that the values of one dataset

increase and the values of the second dataset decrease and vice versa. However, zero correlation

describes two datasets that have no statistical linkage at all. Generally, the correlation between

two samples X and Y can be describes as

ρ(X,Y ) =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

[−1,+1] (4.1)

where Cov() donates the covariance and Var() the variance of the two samples. It represents the

covariance between the two samples normalized with their respective standard deviation. This

coefficient is called Pearson’s Correlation Coefficient and measures the degree of the linear

relationship between X and Y [Von Storch and Zwiers, 2001]. For the variable soil moisture, a

normal distribution can not be assumed, thus Pearson’s ρX,Y is not suited. Another correlation

coefficients is the Spearman’s Rank Correlation Coefficient, which estimates the degree of the

monotonic relationship and does not require assumptions about the probability distribution

of the samples [Mudelsee, 2013]. Spearman’s correlation coefficient is calculated similar to

Pearson’s, but instead of using the actual values, Spearman’s uses the rank of the values.

ρ =
∑
i=1

(xi − x̄)(yi − ȳ)

(xi − x̄)2(yi − ȳ)2
(4.2)

xi, yi and their means x̄, ȳ do not represent the actual values and their means, instead they

represent the ranks (i.e., the sort order index when sorting the data after increasing values) of the

values of the samples. That means, the rank correlation coefficient between X and Y is equal to

the correlation coefficient between the rank of X and the rank of Y [Mudelsee, 2013].
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There exists the probability that the calculated correlation was achieved by coincidence and not

by a statistical relationship between the two samples. Such a correlation is called being not

significant. The significance of a ρ-value can be tested by computing the test value t in the

Student’s t-distribution

t = ρ ·
√
N − 2

1 − ρ2
(4.3)

where ρ is the correlation coefficient and N is the number of data pairs. Common thresholds for

considering a correlation value to be significant are 0.05 or 0.01, that is, there is a 5% or 1%

probability that the correlation is a coincidence [Schönwiese, 2000].

4.2.2 Correlation Layer

Before the correlation coefficient can be calculated, each of the SAR datasets - ASAR GM and

WS, Sentinel-1 - have to be temporally matched with each of the two reference datasets - ASCAT

and GLDAS. That is, within a 12 hour window before and after the SAR timestamp, the nearest

timestamp of the reference dataset, which also has a spatial matching, is searched and selected.

For those temporally matched time series the Spearman correlation coefficient was computed at

each pixel location of the study area (1200 x 1200 pixel). This results in six correlation layers

(CL), three per reference dataset that are plotted as maps. Furthermore, the significance value

and the number of temporally matched timestamps are stored in separate layers.

It is known that the SSM retrieval algorithm behaves different over certain land cover types.

Therefore, the CL is separated into five layers containing different classes from the Corine Land

Cover map:

• Agricultural areas and open soils

• Artificial surfaces

• Forests

• Mountains

• Water bodies and wetlands

The detailed sub-classification can be seen in the appendix A.1. These five sub-classes are shown

in Figure 4.1. The agricultural areas and open soil class is the largest class, it covers exactly

half of the study area (50.1%). Among the other four classes, which cover almost the rest of the

area (2.5% are within the Adriatic Sea and not assigned to any class), the forest sub-class is the
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Figure 4.1: Sub classes derived from Corine Land Cover
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largest one (see Table 4.2). For each of the six correlation layers, the correlation coefficients of

these sub-classes are derived and displayed as boxplots.

Number of Pixels Percentage of all Pixels

Agriculture 721 681 50.1%

Artificial 64 632 4.5%

Forest 495 414 34.4%

Mountain 20 432 1.4%

Water 102 006 7.0%

Not Classified 36 030 2.5%

Table 4.1: Number of pixel in sub-classes

4.2.3 Root Mean Square Difference

The RMSD is the square root of the averaged squared differences between two datasets. To

remove bias and to overcome the problem of different units (SSM from remote sensing satellites

is stored in %, GLDAS in kg/m2), the mean standard deviation transformation of the reference

dataset to ASAR and Sentinel-1 SSM was applied. The resulting RMSD highlights the random

errors between the datasets.

RMSD =

√√√√ 1

N

N∑
i=1

(Xi − Yi)2 (4.4)

Similar to the correlation layer, the RMSD is calculated between the reference datasets and

ASAR and Sentinel-1, respectively. Furthermore, the RMSDs are plottet as boxplots for each

sub-class as described in the previous section.

4.2.4 Correlation Mask

The idea is to generate a mask which only shows locations, where the algorithm for soil moisture

retrieval from radar observations is robust, i.e. areas that are sensitive to soil moisture. Assuming

that ASCAT is a true reference, setting different thresholds for the CL allows the generation of

a logical mask, named Correlation Mask (CMASK). This mask only shows pixel that have a

33



Chapter 4. Methodology

correlation coefficient higher than the certain threshold. This indicates locations where the SSM

datasets show a high (depending on the threshold) temporal agreement with the reference dataset

and locations where the algorithm should be robust. Furthermore, the derived CMASK can be

compared with the Corine Land Cover dataset. Therefore, the Corine Land Cover is consolidated

into two major classes (see Figure 4.2):

• Class 1: Soil Moisture Sensitive Areas (SMSA)

• Class 2: Non Soil Moisture Sensitive Areas (Non-SMSA)

The first class equals the agriculture class from Section 4.2.2. It includes agricultural areas and

open soils without dense forests. The second class contains the other four classes from above,

it includes artificial surfaces, water bodies, dense forests, mountains, bare lands and rocks. In

short, areas that are most likely to be not sensitive to the soil moisture retrieval algorithm. The

major assumption is that soil moisture can only be retrieved correctly over open soils and not

densely vegetated areas. In this case the CMASK should contain the areas from Class 1, whereas

the pixel from Class 2 should be masked out. The amount of correctly masked and unmasked

pixel is computed and the quantitative results are presented as confusion matrices.

(a) Class 1 for soil moisture sensitive areas (b) Class 2 for non soil moisture sensitive areas

Figure 4.2: Classification for the examination of the sensitivity of retrieval algorithm.

Confusion Matrix allows the visualization of the performance of the correlation mask

against the two classes from above. The confusion matrix set up for this study is shown in

Figure 4.3. Box 1 and box 5 show the amount of correctly unmasked (Class 1) or correctly
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masked (Class 2) pixels, respectively. Box 2 shows the amount of erroneously unmasked pixels

from Class 2, although they should be masked and box 4 shows the amount of masked pixels

from Class 1, although they should be unmasked. The three lower boxes (7, 8 and 9) show the

total amount of pixels in Class 1, the total amount of pixels in Class 2 and the total correctly

masked or unmasked pixels (sum of the two green squares), from left to right. Figure 4.3. For

Figure 4.3: Confusion matrix design

each correlation layer, CMASKs with thresholds of 0.2, 0.3, 0.4, 0.5, 0.6 are computed. Further-

more, to gather information about the location of the false masked and false unmasked pixels, a

confusion map is plotted, which shows the location of the pixels from the boxes 1, 2, 4 and 5 in

a map.

4.2.5 Additional Subset Study

As already mentioned at the beginning of this chapter, not only the period for the three sensors

is different, also the number of images per pixel area quite different. Table 4.2 shows the mean

number of images per pixel, or in other words, the sample size per location of the three sensors.

In Figure 4.4, the coverage of the study area for ASAR WS and Sentinel-1 are plotted again.

The red square shows a smaller subset of the study area, where both sensors have a similar

coverage (second column in Table 4.2). So it seems reasonable to make a subset study for this

area, yielding comparable statistics.
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(a) ASAR WS coverage (b) Sentinel-1 coverage

Figure 4.4: ASAR WS and Sentinel-1 coverage with narrowed study area to get similar sample
size.

Study area South-east sub-area

Sentinel-1 72 79

ASAR WS 161 88

ASAR GM 125 130

Table 4.2: Mean number of images per pixel for the whole study area and for a smaller subset
in the south east.
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Results and Discussion

5.1 Visual Inspection of Datasets

5.1.1 Time Series Representation

The following plots display soil moisture time series of Sentinel-1, ASAR WS and ASAR GM,

as well as ASCAT soil moisture as a reference dataset. Four different locations are examined

for the comparison of the time series which are displayed in Figure 5.1. Location 1, 2 and 3 are

all located in soil moisture sensitive areas, whereas location 4 is located in a densely vegetated

area.

Figure 5.1: Locations of the examined time series within the Corine Land Cover map. Locations
1, 2 and 3 are soil moisture sensitive areas. Location 4 is a densely vegetated area.
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Figure 5.3, Figure 5.2 and Figure 5.4 all show soil moisture time series of an agricultural

area without dense vegetation (locations 1, 2 and 3). Areas like these are very sensitive to

soil moisture, which is also very well displayed in these figures. Overall, a good agreement

of the different time series is visible. ASAR WS and also Sentinel-1 SSM both follow rather

accurately the ASCAT SSM time series, whereas ASAR GM SSM seems to jump back and forth

(particularly in Figure 5.3 and Figure 5.2). Especially Sentinel-1 and ASAR WS SSM show

the seasonal circles dominating at the study area quite well, with drier periods during summer

and wetter periods during winter. Furthermore the different acquisition periods are visible. The

ASAR GM and WS mission started in 2005 and ended in 2012, whereas Sentinel-1 acquires

data since 2014. Table 5.1 shows the correlation coefficients and RMSD values between the

three SAR time series and the ASCAT time series at the different locations. The high correlation

values for the soil moisture sensitive areas reflect the visually good agreement of the time series.

Also the noisy behaviour of ASAR GM is reflected in Table 5.1. The RMSD values for ASAR

GM are always clearly higher than for ASAR WS and Sentinel-1.

(a) Sentinel-1, ASAR WS and ASCAT time series

(b) Sentinel-1, ASAR GM and ASCAT time series

Figure 5.2: Soil moisture of different sensors at location 1, ASCAT as a reference.

38



Chapter 5. Results and Discussion

(a) Sentinel-1, ASAR WS and ASCAT time series

(b) Sentinel-1, ASAR GM and ASCAT time series

Figure 5.3: Soil moisture of different sensors at location 2, ASCAT as a reference.

(a) Sentinel-1, ASAR WS and ASCAT time series

(b) Sentinel-1, ASAR GM and ASCAT time series

Figure 5.4: Soil moisture of different sensors at location 3, ASCAT as a reference.
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Correlation Coefficient RMSD [%]

WS 0.73 16

Location 1 S1 0.69 14

GM 0.56 36

WS 0.81 14

Location 2 S1 0.70 17

GM 0.65 35

WS 0.77 18

Location 3 S1 0.74 20

GM 0.72 25

WS 0.39 26

Location 4 S1 0.10 37

GM 0.12 51

Table 5.1: Correlation coefficients and RMSD values for different locations and sensors with
ASCAT as a reference.

Figure 5.5 shows soil moisture time series of a densely vegetated area (location 4). At vegetated

areas, it is usually difficult to retrieve the moisture content from the soil, due to the high influence

of vegetation in the backscattered signal. ASCAT SSM, and to some extent also ASAR WS SSM

time series are still able to show a soil moisture signal, whereas Sentinel-1 SSM and especially

ASAR GM SSM show no reasonable soil moisture signal any more, both are strongly jumping

back and forth. This noisy behaviour for ASAR GM soil moisture was also observed in other

studies (e.g. Doubková et al. (2012), Dostálová et al. (2014)). Correlation coefficients and

RMSD values are displayed in Table 5.1. It has to be noted that the correlation coefficient

for Sentinel-1 and ASAR GM are not significant (p-value higher than 5%), hence no statistical

relationship can be assumed for the time series.
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(a) Sentinel-1, ASAR WS and ASCAT time series

(b) Sentinel-1, ASAR GM and ASCAT time series

Figure 5.5: Soil moisture of different sensors at location 4, ASCAT as a reference.

5.1.2 Spatial Representation

Figure 5.6, Figure 5.7 and Figure 5.8 show spatial soil moisture patterns from Sentinel-1, ASAR

WS and ASAR GM, respectively, compared to ASCAT SSM and GLDAS SSM. The different

spatial resolutions of the SSM datasets are clearly visible. The coarse scale ASCAT and GLDAS

images only show large-scale trends, whereas especially the ASAR WS and also the Sentinel-1

product clearly resolve distinct dry and wet patterns at the 1 km scale. In the ASAR GM image

the large scale patterns from ASCAT and GLDAS can also be seen but are blurred due to the

very high noise level.

Figure 5.9, Figure 5.10 and Figure 5.11 show the percentiles of the three SSM datasets at the

study area. For all three figures the colour-scale ranges from completely dry (black) to com-

pletely wet (white). Sentinel-1 shows a clearly higher contrast in the data, which corresponds to

a higher spatial variability, compared to ASAR WS and ASAR GM. It has a much higher skill

in resolving spatial patterns, like for instance transitions from urban to rural areas or forests to

fields. Again, ASAR GM seems to be blurred when compared to ASAR WS, which is again due

to the high noise level of the data.
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(a) Sentinel-1 SSM (b) ASCAT SSM (c) GLDAS SSM

Figure 5.6: Sentinel-1, ASCAT and GLDAS SSM (19-06-2015)

(a) ASAR WS SSM (b) ASCAT SSM (c) GLDAS SSM

Figure 5.7: ASAR WS, ASCAT and GLDAS SSM (21-06-2009)

42



Chapter 5. Results and Discussion

(a) ASAR GM SSM (b) ASCAT SSM (c) GLDAS SSM

Figure 5.8: ASAR GM, ASCAT and GLDAS SSM (09-09-2009)

(a) P-10 (b) P-20 (c) P-30 (d) P-40 (e) P-50

(f) P-60 (g) P-70 (h) P-80 (i) P-90

Figure 5.9: Percentiles of Sentinel-1 SSM.
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(a) P-10 (b) P-20 (c) P-30 (d) P-40 (e) P-50

(f) P-60 (g) P-70 (h) P-80 (i) P-90

Figure 5.10: Percentiles of ASAR WS SSM.

(a) P-10 (b) P-20 (c) P-30 (d) P-40 (e) P-50

(f) P-60 (g) P-70 (h) P-80 (i) P-90

Figure 5.11: Percentiles of ASAR GM.
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5.2 Correlation Analysis

The correlation coefficient between ASCAT SSM and Sentinel-1 SSM, ranging from 0 to 1, is

displayed in Figure 5.12. The darker the green gets, the higher is the agreement of ASCAT and

Sentinel-1 SSM time series at the individual locations. Only correlation values with a p-value

lower than 5% are displayed. Figure 5.13 shows the correlation coefficient between ASCAT

SSM and ASAR WS SSM with the same color range. The correlation coefficient between AS-

CAT SSM and ASAR GM SSM is displayed in Figure 5.14.

Figure 5.12: Correlation Coefficients of ASCAT and Sentinel-1

The correlation coefficient for ASAR GM (Figure 5.14) is clearly lower than for ASAR WS

(Figure 5.13), due to an improved spatial as well as radiometric resolution of ASAR WS, which

is also caused by the different acquisition strategies (see Table 3.1). Furthermore, the ASAR

GM correlation coefficient shows a slightly weaker performance than Sentinel-1 (Figure 5.12).

Sentinel-1 only delivers data for 16 months, compared to 8 years of ASAR GM, but still, with

respect to quality, the soil moisture data can already compete with ASAR GM SSM. Again, this

suggests that the low radiometric resolution of ASAR GM is decreasing the quality of the SSM

data.
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Figure 5.13: Correlation Coefficients of ASCAT and ASAR WS

Figure 5.14: Correlation Coefficients of ASCAT and ASAR GM
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Furthermore the overall pattern of the correlation maps reflects the land cover structures dis-

played in Figure 3.9. Therefore the correlation results can be interpreted by means of different

land cover types (Figure 4.1 shows the five different sub classes). Figure 5.15 shows a box-

plot representation of the correlation results for all three sensors stratified by land cover types

from the Corine Land Cover. The boxes show the median, 25th and 75th percentiles, the lines

represent the minimum and maximum values after outlier removal. For all three sensors the

highest correlation coefficients can be found in the ’agriculture’ class, which represents agricul-

tural areas and grasslands, i.e. areas without dense vegetation. This class represents exactly half

of all pixels of the study area. Especially the large agricultural areas in the Po Valley, in the Pan-

nonian Basin and also in the Alpine Foothills show the highest correlations. The ’forest’ class

shows a different spectrum of correlation coefficients for the three sensors. Whereas ASAR WS

still shows a medium high correlation, ASAR GM and especially Sentinel-1 show a low mean

correlation of around 0.3 and 0.2, respectively. The other three classes all show a lower correl-

ation between ASCAT and the three sensors, but due to the low sensitivity to soil moisture in

these areas, they are of lower interest.

Figure 5.15: Boxplot showing correlations of the different sub classes with ASCAT as a refer-
ence.
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Figure 5.17 shows the correlation coefficients between GLDAS SSM and Sentinel-1, ASAR WS

and ASAR GM, respectively. Compared to the correlation layer for ASCAT, they show gener-

ally lower correlations between the different time series. Only for ASAR WS, there are slightly

higher correlation coefficients in the Po Valley area and for Sentinel-1 to some extent in the

south-east. Also the boxplot representation of the correlation coefficients in Figure 5.16 shows a

low correlation level in all five sub classes. This is probably due to the coarse spatial resolution

of around 27 km for GLDAS compared to 1 km for the satellite SSM data. This large discrep-

ancy in the spatial resolution assumes that the coarse resolution GLDAS data describes different

hydrological signals than the high resolution SAR data. Whereas satellites allow the monitoring

of dynamic processes on a regional scale, GLDAS can only capture large-scale events. Due

to the low significance of the comparison with GLDAS SSM data, the subsequent experiments

were only performed with ASCAT as a reference dataset. Furthermore, Sentinel-1 is only com-

pared to ASAR WS and ASAR GM is neglected in further analyses due to the high noise level

in the soil moisture dataset.

Figure 5.16: Boxplot showing correlations of the different sub classes with GLDAS as a refer-
ence.
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Figure 5.17: Correlation layers with GLDAS as a reference
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5.3 RMSD Results Analysis

The RMSD maps for Sentinel-1 (Figure 5.18), ASAR WS (Figure 5.19) and their overall

pattern correspond quite well to the correlation maps from the previous section (Figure 5.12

and Figure 5.13). In areas with high correlation coefficients between the datasets, the RMSD

values remain lower and in areas with low correlation coefficients the RMSD values are higher.

If the two RSMD maps are compared to each other, a clearly better performance of ASAR

WS is visible. However, both maps show high RMSD values in the Alpine region, which also

corresponds to low correlation coefficients in the correlation maps. Figure 5.19 shows again a

boxplot representation of the RMSD values for five different land cover types. The ’agriculture’

class shows slightly lower RMSD values for ASAR WS than for Sentinel-1, whereas for the

’forest’ class the differences in the RMSD performance are again notable.

Figure 5.18: RMSD of ASCAT and Sentinel-1
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Figure 5.19: RMSD of ASCAT and ASAR WS

Figure 5.20: Boxplot showing ASCAT RMSD of the different sub classes.
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5.4 Discussion of Correlation and RMSD Results

The RMSD and correlation results already suggest that the adaption of the ASAR soil moisture

retrieval algorithm to Sentinel-1 is feasible. However, due to the highly improved radiometric

resolution of Sentinel-1 it was expected that the soil moisture product already shows a good

agreement with the reference dataset. In agricultural and not densely vegetated areas, the cor-

relation of Sentinel-1 is already higher than for ASAR GM but is still not reaching the ASAR

WS level. In densely vegetated areas, Sentinel-1 SSM is still not satisfactory. One reason for the

weaker performance of Sentinel-1 compared to ASAR WS is the current poor spatial coverage

of Sentinel-1 (Figure 3.5). However, as soon as a better Sentinel-1 coverage is established and

thus more images are available per pixel location, the performance of Sentinel-1 SSM data is

likely to improve. Furthermore, the second Sentinel-1 satellite is going to further increase the

data availability and will in order lead to an improved Sentinel-1 SSM product.

5.5 Correlation Mask Results

Various correlation masks with different thresholds were calculated and compared to areas that

are sensitive to soil moisture (should be unmasked) and to areas that are not sensitive to soil

moisture (should be masked). The major assumption is that soil moisture can only be retrieved

correctly over open soils and not densely vegetated areas. It has to be stressed that the CLC map

cannot be regarded as the ground truth, because one compares optical data with microwave data.

Figure 5.21 shows the confusion matrices, featuring the percentages of the true and false as-

signings. For Sentinel-1, a minimum threshold of 0.3 delivers the best results and for ASAR

WS, a minimum threshold of 0.5. For Sentinel-1, 33.6% of the pixels are correctly unmasked

and 37.5% are correctly masked. 12.3% of the pixels are erroneously unmasked although they

should be masked and 16.5% are erroneously masked although they should be unmasked. All in

all, the share of true assigned pixels is 71.1%. For ASAR WS, 36.5% of the pixels are correctly

unmasked and 38.5% are correctly masked. 15.4% of the pixels are erroneously unmasked and

14.6% are erroneously masked. All together, the share of true assigned pixels is 70%. Although

the results seem to be similar for both sensors, it must be kept in mind that the chosen thresholds

differ, because of the higher correlation level of ASAR WS compared to Sentinel-1. Obviously,

the higher the threshold, the higher the share of masked areas and the lower the relative error in

the unmasked section, but the higher the relative error in the masked section.
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(a) Sentinel-1, with rho = 0.3 (b) ASAR WS, with rho = 0.5

Figure 5.21: Confusion matrix for Sentinel-1 and ASAR WS vs. ASCAT. For Sentinel-1 the
underlying correlation mask was created with a minimum threshold of 0.3 and for ASAR WS
with a minimum threshold of 0.5.

In Figure 5.22 and Figure 5.23, the correctly masked and unmasked pixels as well as the erro-

neously unmasked and masked (errors of commission or ’SMSA false’ and omission or ’Non-

SMSA false’) are plotted to give an impression where the the correlation mask works well, and

where it seems to fail. The correctly masked and unmasked pixels are displayed the colors cyan

and dark yellow, respectively. Dark brown and dark green colors represent the erroneously un-

masked and masked pixels.

In both maps, an overall good agreement with the classes ’SMSA’ and ’Non-SMSA’ is vis-

ible, having a large share of ’Non-SMSA true’ and ’SMSA true’ (equivalent to 71.1% of all the

pixels for Sentinel-1 and 70% for ASAR WS, as in Figure 5.21). The ASAR WS map appears

to be more homogeneous than the Sentinel-1 map, especially the light brown areas represent-

ing the ’SMSA’ class. For both maps, most errors of commission (dark brown) appear in hilly

and mountainous areas, where it is known that the SSM retrieval is prone to errors, but also in

densely vegetated areas along the border between the Czech Republic and Germany.

Along the transition zone of the northern Alps (central-west) in the ASAR WS image, the mask-

ing appears to be too rigid, which results in errors of omission (dark green). Of course, a big

share contributing to ’Non-SMSA true’ comes from the Adriatic Sea (central south), which

counterbalances the negative impact of the Alps on the statistics in Figure 5.21 to some extent.

All in all, the Sentinel-1 map appears to distribute the errors of commission and omission more
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randomly across the study area, which could be explained by the low data density of Sentinel-1

and consequently with a lower significance of correlation.

Figure 5.22: Confusion map ASCAT and Sentinel-1
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Figure 5.23: Confusion map ASCAT and ASAR WS

5.6 Results of Subset Study

In the previous sections, it is supposed that the smaller sample size of Sentinel-1 compared to

ASAR WS (Table 4.2) influences the correlation and RMSD performance. As already mentioned

in Section 4.2.5, there is a region in the south-east of the study area where the mean number of

available images per pixel for both sensors is similar. It would be expected that in an area

with a similar coverage, Sentinel-1 SSM improves due to the improved radiometric resolution.

However, Figure 5.24 shows a boxplot representation of the correlation coefficients and RMSD

of this area. Although the number of images is now comparable, the correlation coefficients

and RMSD values still show no improvement for Sentinel-1 when compared to Figure 5.15 and

Figure 5.20. Therefore, one can say that it is not only the different number of available images

per location, but may also be the longer period of ASAR WS of 8 years compared to 16 months

for Sentinel-1 that influences the performance of Sentinel-1 SSM.

55



Chapter 5. Results and Discussion

(a) Correlation Coefficient

(b) RMSD

Figure 5.24: Boxplot representation of correlation coefficient and RMSD for south-eastern part
of the study area.
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5.7 Discussion

Due to the highly improved radiometric resolution of Sentinel-1, it was expected that the soil

moisture product already shows a good agreement with the reference datasets. The visual rep-

resentation of Sentinel-1 SSM shows a good performance in soil moisture sensitive areas like

agricultural areas and grasslands without dense vegetation (Figure 5.2, Figure 5.3, Figure 5.4),

but still has problems to deliver satisfactory results over more densely vegetated areas (Fig-

ure 5.5).

This assumption was also supported by the correlation and RMSD results analysis. Especially in

soil moisture sensitive areas, Sentinel-1 SSM already shows a high correlation to ASCAT SSM,

but again there are still problems concerning densely vegetated areas (Figure 5.15).

One reason for the overall weaker performance of Sentinel-1 compared to ASAR WS is the

currently low spatial coverage of Sentinel-1, resulting in a low number of images per pixel.

However, also a subset study in an area where the number of images per pixel is similar for both,

no notable improvement was reached for Sentinel-1 (Figure 5.24). Therefore, it is not only the

spatial coverage, but also the short period of 16 months compared to the 8 years of ASAR WS

that need to be considered when analysing the correlation coefficient and the RMSD results.

Another reason could be that the Sentinel-1 SAR sensor is calibrated in a different way than

the ASAR sensor, resulting in problems when transferring the ASAR WS parameters to the

Sentinel-1 soil moisture retrieval algorithm. Although ASAR and Sentinel-1 have a very similar

sensor configuration and observe at similar frequencies, it could be the case that the usage of

ASAR WS parameters in the Sentinel-1 algorithm results in noisy or biased SSM data. There-

fore, a backscatter analysis was performed, where the backscatter coefficients of both sensors

were compared to ASCAT as a reference (ASCAT delivers data with high radiometric accuracy

due to the averaging of multiple received pulses, see Section 2.1.4.1).

Figure 5.25 and Figure 5.26 show scatterplots with the backscatter coefficients plotted per time

stamp for ASCAT and Sentinel-1 and ASCAT and ASAR WS. The green line represents the

ASCAT backscatter data plotted against itself. The mean values of the different backscatter time

series are represented by the horizontal and vertical lines. After the temporal matching of the

datasets, the mean value of all Sentinel-1 and ASAR WS pixels within this ASCAT pixel was

taken per time stamp. The averaging of the backscatter datasets was done in the linear domain

and the results are expressed on a logarithmic scale. If the two regression lines for ASAR WS

and Sentinel-1 would be congruent, then a one to one transfer of the ASAR WS parameters to

Sentinel-1 would be feasible without any decline in SSM data quality. However, this was not the

case in this study.

Figure 5.25 shows the backscatter analysis of an agricultural area (location 3 from Sec-

57



Chapter 5. Results and Discussion

tion 5.1.1). It can be seen that a bias is evident between Sentinel-1 and ASAR WS, resulting in

values that are an average 2 dB lower than for Sentinel-1. Also, the wider range of backscatter

values on the x-axis for ASAR WS corresponds to a higher sensitivity. Figure 5.26 shows the

backscatter analysis of a densely vegetated area (location 4 from Section 5.1.1. Here it seems

that Sentinel-1 cannot detect a reasonable backscatter signal anyway, showing a more or less

random distribution, which also reflects the weak correlation and RMSD performances in these

areas.

The results of this backscatter analysis show that the usage of ASAR WS parameters in the

Sentinel-1 algorithm is problematic. However, in order to realise the full potential of Sentinel-

1 for soil moisture retrieval, one should revert to parameters calculated from Sentinel-1 data,

which will soon be possible thanks to the incoming stream of Sentinel-1 data.

Figure 5.25: Analysis of Sentinel-1 and ASAR WS backscatter measurements at a soil moisture
sensitive area. Sentinel-1 and WS backscatter averaged to 25 km and compared to ASCAT. The
green line represents the ASCAT backscatter data plotted against itself.
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Figure 5.26: Analysis of Sentinel-1 and ASAR WS backscatter measurements at a densely ve-
getated area. Sentinel-1 and WS backscatter averaged to 25 km and compared to ASCAT. The
green line represents the ASCAT backscatter data plotted against itself.
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Conclusion and Outlook

The knowledge of the spatial and temporal distribution of soil moisture is of great importance

in several hydrological applications. These include, among others, hydrological models and

weather forecasts, furthermore information about the soil moisture state provides important de-

tails for disaster management in flooding and drought situations.

The TU-Wien model is a method that uses active microwave measurements from satellites to

retrieve information about the water content of the soil. There are already different soil moisture

datasets available for scientific and operational use, providing resolutions of about 25-50 km

(e.g. ASCAT, ERS). However, a much larger number of applications could be addressed if soil

moisture data at a resolution of 1 km or finer becomes available [Wagner et al., 2009]. Such a

high spatial resolution can only be achieved by synthetic aperture radars (SAR).

This study offered an insight into soil moisture retrieval from Envisat ASAR and Sentinel-1

backscatter data. The different acquisition strategies of ASAR result in inhomogeneous data

archives which made it impossible for an operational use, in contrast the Sentinel-1 mission

with its two satellites will soon be able to cover whole Europe every 1-3 days. Currently the

Remote Sensing research group at TU-Wien retrieves soil moisture from Sentinel-1 data using

TU-Wien model parameters that are calculated from ASAR Wide Swath data. In this study, an

evaluation of the ASAR SSM datasets and the Sentinel-1 SSM datasets was performed in order

to investigate if the transfer of the ASAR retrieval algorithm including the WS parameters to

Sentinel-1 is feasible. Due to the lack of historical data (Sentinel-1A was launched in 2014) it is

yet not possible to calculate reasonable parameters from Sentinel-1 data itself.

Due to the different observation periods of Envisat ASAR and Sentinel-1, it was not possible

to compare their SSM products directly to each other. Hence, coarse resolution SSM data from

ASCAT and GLDAS was used as reference datasets to perform the evaluation over a 600 km
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x 600 km area in central Europe. The correlation coefficients as well as the root mean square

differences were calculated between the SAR- and the reference-datasets.

A visual interpretation of the datasets showed that ASAR GM SSM has a higher noise level

when compared to ASAR WS and Sentinel-1 which mostly results from lower radiometric resol-

ution. This was also reflected in the time series analysis, featuring lower correlation coefficients

for ASAR GM. The correlation and RMSD results show a better performance for ASAR WS

than for Sentinel-1, which can be explained with the smaller sample size and shorter period of

Sentinel-1 dataset. The overall pattern of the correlation and RMSD maps reflect the land cover

structures in the study area. Therefore, the analysis was split up into several sub-classes using

the Corine Land Cover map. Sentinel-1 did not yet reach the results from ASAR WS but already

shows high correlation in areas without dense vegetation like grasslands or agricultural areas,

whereas in densely vegetated areas Sentinel-1 SSM still seems to have problems.

Furthermore, the correlation layer was used to derive a mask that shows only pixels with a cor-

relation coefficient higher than a certain threshold. Here, a high agreement of the masked and

unmasked pixels to land cover was found and therefore locations can be detected where the SSM

retrieval algorithm is capable to deliver valid results.

Additionally, backscatter comparisons between ASAR WS and Sentinel-1 for a soil moisture

sensitive area and a densely vegetated area with ASCAT as a reference dataset showed a differ-

ent behaviour of the backscatter measurements. This can be the result of a different calibration of

the sensors and hence, the usage of ASAR WS parameters in the Sentinel-1 algorithm introduces

errors and is not desirable.

Recently, the Remote Sensing Research Group at TU Wien performed first promising experi-

ments using retrieval parameters solely calculated from Sentinel-1 data, which is important if

one wants to realise the full potential of Sentinel-1 for soil moisture retrieval. In April 2016

also the second Sentinel-1 satellite was launched into space and both satellites together will

provide data with almost daily coverage over Europe. This superior temporal coverage and ra-

diometric accuracy, together with the high spatial resolution bear the great potential to capture

spatio-temporal soil moisture patterns which were not observable from space before.
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Additional Figures

A.1 Corine Land Cover Classification

Figure A.1 shows the different land cover types displayed in the Corine Land Cover map.
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Figure A.1: Corine Land Cover Classification
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Table A.1 shows the different land cover type IDs from Figure A.1 that correspond to the various

classes from Section 4.2.2.

Land Cover Types ID

Agriculture 211, 212, 213, 221, 222, 223, 231, 241, 242, 243, 244, 321

Artificial 111, 112, 121, 122, 123, 124, 131, 132, 133, 141, 142

Forest 311, 312, 313, 323, 324, 333

Mountain 332, 334, 335

Water 322, 331, 411, 412, 421, 422, 423, 511, 512, 521, 522, 523

Table A.1: Classification of different Land Cover Classes

A.2 Additional Confusion Matrices

Figure A.2 and Figure A.3 show confusion matrices complementing Section 5.5.
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(a) Rho=0.20 (b) Rho=0.30

(c) Rho=0.40 (d) Rho=0.50

(e) Rho=0.60

Figure A.2: Confusion Matrices Sentinel-1 65
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(a) Rho=0.20 (b) Rho=0.30

(c) Rho=0.40 (d) Rho=0.50

(e) Rho=0.60

Figure A.3: Confusion Matrices ASAR WS 66
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