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Abstract

This paper analyzes a security market with sequential trade and a specialist dealer. I

study how heterogeneous Bayes-rational agents with private signals interact if allowed to

decide multiple times. I show that in this setting, informational cascades can occur. That

is, all agents choose to follow public information over their private signal. I introduce a

shortselling constraint on the dealer side, i.e. finite supply of the traded asset. When this

constraint binds, cascades can be terminated endogenously in the model.



1 Introduction

Within the last two decades, the literature on rational models of herding and cascades

has provided intuitive insights into market outcomes that at first glance might seem

anomalous. The authors Bikhchandani, Hirshleifer and Welch, from now on BHW,

were the first to put forth the notion of informational cascades (Bikhchandani et al.,

1992). Banerjee independently introduced similar mechanisms under the label of herd

behavior (Banerjee, 1992). The structure of their models is the same: a countable

sequence of agents must make a once-in-a-lifetime decision, given some exogenous

order. The common result of BHW and Banerjee was that it is possible that the publicly

available information on actions of past agents can overrule the incentives given by

private signals.

Glosten and Milgrom, henceforth GM, proposed that under endogenous prices, such

results would not occur. They introduced a seminal sequential trading model with

Bayes-rational agents (Glosten et Milgrom, 1985); (Glosten, 1989). GM concluded

that under their price mechanism, full learning would occur in the sense that all private

information got would be incorporated in the price. This is often referred to as the

“price critique”, a notion coined by Chari and Kehoe (Chari et Kehoe, 2004). How-

ever, by the end of the 90s, articles emerged pointing towards the other direction: Lee

presented a model with endogenous prices and continuous choice in which cascades

may indeed occur (Lee, 1998). Many other models followed, adapting the GM frame-

work and incorporating cascades: Avery and Zemsky, Décamps and Lovo, Cipriani

and Guarino are only some authors working in that field. They came to similar conclu-

sions: even with endogenous prices, cascades and herding behavior can occur (Avery

et Zemsky, 1998); (Decamps et Lovo, 2002); (Cipriani et Guarino, 2008).

All of these models have in common the fact that as soon as a cascade arises, it never

ends: see for example “Corollary 1 (Cascades last for ever)” Cipriani et Guarino (2008,

pg.14). Although Lee actually makes way for the possibility of ending the cascade, he

only uses an exogenously arriving signal, which trivially breaks down the cascade by

introducing a large amount of new information (Lee, 1998). Should it not be possible to

find a simple, but intuitive way to incorporate a cascade that terminates endogenously?

In reality, we do not observe cascades and herding behavior that goes on forever -

there are a lot of constraints one could think of that would impede such events from

happening. The first one was already touched: it is not plausible that throughout an

infinite amount of time, no new and unexpected amount of information would enter a

certain market, say a stock market. As discussed, such an event would likely destroy a
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cascade, but is unsatisfactory for a theorist since its incorporation is ad hoc.

Another constraint is finite supply: a herd can only endure as long as the action that is

being executed again and again is actually feasible. This paper analyzes the implica-

tions of relaxing this crucial simplification. The GM framework as well as the model

defined by Cipriani and Guarino (2008) might be seen as a basis for the model that I

present, however many important changes are introduced. As a motivation and real life

example of my model, I study the NYSE. Its structure is indeed nested in the abstract

GM scheme. The literature on cascades in trading models was mainly introduced to

rationally explain behavior on stock markets that could not be explained by fundamen-

tals. The bubble behavior that led to many of the recent financial crises in the 90s and

the Dot-com Bubble in the early 2000s can be interpreted as having arisen due to herd-

ing and cascades. My model presents a simple framework that rationally explains the

development of a price bubble and its bursting, just as it has been observed multiple

times in history.

The structure of the paper is as follows: Sections 2 and 3 present the model and its

solution, Section 4 deals with informational cascades in the model, Section 5 shows

how finite supply of the asset can affect cascades and Section 6 concludes.

2 The Model

The model analyzes the trading behavior of individuals sequentially arriving at the

market for a risky asset. Prices will be determined endogenously by a market maker.

Contrary to most of the herding and cascades literature, I study not once-in-a-lifetime

decisions. Individuals are allowed to reevaluate their position at every point in time at

which they are in the market and state new orders. They are endowed with differing

preferences for discounting and a private signal on the terminal value of the risky asset.

Agents trade two assets, a risky asset with ex post liquidation value V ∈ {V ,V̄} and

a riskless asset, called cash. At each trading round the final value of the risky asset

becomes known with probability β and at the last period, T + 1, it becomes known

with certainty. Agents are risk neutral and maximize expected utility conditional on

the information available at the time of the decision. At every period t, traders are

allowed to sell, buy or hold out: z ∈ {−1,0,1}. The discrete choice set will prove a

crucial part of the model. Additionally, since the focus of this paper is the description

of bubble schemes in sequential trade settings, concentrating the analysis on whether

an agent buys or sells is sufficient. At every period in the game traders reevaluate their

planned trading schedule and are allowed to change it. As in the GM model, agents act
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as price takers.

Traders maximize u(W ), where W is their final cash holding which depends on the

vector z ∈ {−1,0,1}T−t , if the trader had entered the market at t. They start out with

different initial wealth levels W i ∈ Z. Different private signals θ i ∈ {θ , θ̄} correlated

with the liquidation value of the risky asset such that their precision is q = Pr(θ = θ̄ |
V = V̄ ) = Pr(θ = θ | V = V ) with 0.5 < q < 1 are assigned to every trader. Further-

more, a factor ki ∈ {k, k̄} denoting a discount factor on the final value of the asset for

agent i, distributed symmetrically around 1 is allotted to each agent. Thus, types are

fully described by (W i,θ i,ki). When considering future events, agents take into ac-

count all public information ht = {{zi
τ}ti,τ=1,x

M
t }, where xM

t is the risky asset holding

of the market maker, plus their private signal. Let µt = Pr(V = V̄ | ht) be the public

belief on the liquidation value of the asset being the higher one, with µ0 = 0.5. Agents

trade the asset against a single market maker with discount factor kM normalized to

1 and a shortselling constraint on his asset holding xM
t ≥ 0 ∀t. The game evolves

over trading rounds t = 1, ...,T + 1, where T is the total number of agents (the trader

entering last is allowed to reevaluate his position once).

2.1 Traders

Traders are indexed by the period in which they entered the market, i.e. zi
t corresponds

to the order posted at period t by the agent who entered at period i≤ t. At every trading

round t, all incumbent traders plus the newly entered trader are allowed to post trading

orders, which are executed at the same time. The ordering of agents arriving at the

market is exogenously given. Formally, agent i’s decision problem at period t is given

by:

max
z

E i
t [u(W

i
t + kiV xi

t +
T+1

∑
τ=t

(kiV − pτ)zi
τ ]

s.t.: W i
t+1 =W i

t − ptzi
t xi

t+1 = xi
t + zi

t

Where E i
t is the expectation operator conditional on i’s information available at t, W i

t

is the agent’s cash holding, xi
t is their risky asset holding, pt is the price of the risky

asset and zi
t is i’s trading decision at t. From now on, let E i

t ≡ Et as long as the agent

taking the expectation is clearly identifiable.

2.2 Market Maker

The market maker does not hold a signal or any other additional private information.

He posts the price of the risky asset and buys and sells at any trading order arriving
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at the market. Following a simple rule, he sets the price as the expected liquidation

value of the asset conditional on all past trading orders, i.e. conditional on all public

information ht = {{zi
τ}ti,τ=1,x

M
t }. The risky asset is not available in abundant amounts.

The holding xM
t is therefore accompanied by a shortselling constraint: xM

t ≥ c∀ t, where

c is a non positive constant. Without loss of generality, c = 0 for the rest of the paper.

This will prohibit the market maker from always being able to post the price as stated

in the rule above, which will play an important role in the termination of cascades later

in the paper. The market maker’s inventory evolves in the following way:

xM
t −Zt = xM

t+1 ≥ 0 Zt=
t

∑
i=1

zi
t

3 Solution

Due to their knowledge of the market maker’s inventory, traders don’t expect the price

to be different from the expected value conditional on public information except if the

shortselling constraint is binding. The more traders (buyers) are in the market, the

more probable is it that the market maker’s constraint will bind. This could lead to

complex adjustments in the expectation of future prices, which is however simplified

by the assumption of risk neutrality of the traders.

The trader’s optimization problem can be defined recursively as:

t = T +1:

Vt(π
i
t , pt ,W i

t ,x
i
t) = max

zt
Et [W i

t + kiV xi
t +(kiV − pt)zi

t ]

Setting Et [V ]≡ v, the optimal choice is

zi
t =


1 ⇔ kiv > pt

0 ⇔ kiv = pt

−1⇔ kiv < pt

and for t ≤ T

Vt(π
i
t , pt ,W i

t ,x
i
t)=max

zt
Et [β (W i

t +kiV xi
t +(kiV− pt)zi

t)+(1−β )Vt+1(π
i
t+1, pt+1,W i

t+1,x
i
t+1)]

s.t.: W i
t − zi

t pt =W i
t+1 xi

t + zi
t = xi

t+1
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pt+1 = E[V | ht+1] π i
t+1 = Pr(V = V̄ | ht+1,θ

i)

In every period t, traders solve their decision problem recursively, conditional on their

expectation of future prices. Given an optimal decision for the last period, T + 1, the

value function for period t = T can be written as follows:

Vt(π
i
t , pt ,W i

t ,x
i
t) = max

zt
Et [β (W i

t + kiV xi
t +(kiV − pt)zi

t)+

+(1−β )(W i
t+1 + kiV xi

t+1 +(kiV − pt+1)zi
t+1)]

= max
zt

Et [(W i
t + kiV xi

t +(kiV − pt)zi
t)+(1−β )(kiV − pt+1)zi

t+1]

For an arbitrary t then, the decision is:

Vt(π
i
t , pt ,W i

t ,x
i
t)=max

zt
Et [(W i

t +kiV xi
t +(kiV− pt)zi

t)+
T+1−t

∑
m=1

(1−β )m(kiV− pt+m)zi
t+m]

The additive separability between the trading choice to be executed today against those

of the future implies that every trader in the market faces a static decision at any given

period, just as in the final period T + 1. By the linearity of the problem and since

traders don’t face any shortselling constraints, they do not change their behavior as

their cash endowment changes. Thus, an agent’s type is fully described by the pair

(k,θ).

4 Informational Cascades and Expectation Formation

An informational cascade is defined as a situation in which traders disregard their

private signal θ i and act on public information ht only (Bikhchandani et al., 1992).

Definition 1. In an informational cascade, Pr(zt = y | ht ,θ) = Pr(zt = y | ht) holds for

all y ∈ {−1,0,1}, all signals θ and all traders.

Agents thus trade independently of their private signal. From this point on, no informa-

tion can be inferred from an agent’s trades and the price remains constant throughout

the duration of the cascade. Here it would mean that there is so much public infor-

mation already accumulated in the market (i.e. in the set of public information) that
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the additional incentive given by the private signal is less than the incentive to trade

given by the subjective discount factor. It is important to observe that this behavior is

not herding as defined by Banerjee: in his model, action convergence (all agents end

up choosing the same option) is observed for the whole realm of all partaking indi-

viduals (Banerjee, 1992). Here, this is not the case, since agents do not only differ by

their signal, but also by their discount factor. Still, informational cascades and herding

behavior are two sides of the same coin, as already observed by Smith and Sorensen

(2000). The cascade leads to all individuals ignoring their signal, which in turn leads

to herd behavior for all agents with the same discount factor (but possibly differing

signals!). Given Definition 1 and optimal behavior of traders described in the previous

section, Lemma 1 can be introduced:

Lemma 1. As long as there is no informational cascade, every trader reveals his signal

with his first nonzero trade.

Proof. When there is no cascade, newly entering traders use their private signal as

incentive to trade, no matter their discount factor. Thus if at t there is no cascade, it

holds that

Et [V | ht ,θ ]< Et [V | ht ]< Et [V | ht , θ̄ ]

Which means that upon observation of this traders action, one can undoubtedly infer

his signal.

This implies that their second action will reveal their discount factor k, as it represents

their only motive to trade from that time on. Thus, signals and discounting of traders

already in the market are common knowledge and will be taken into account by the

market maker. Given Definition 1 and the characterization of optimal behavior of

traders given in Section 3, the only incentive to trade that remains for agents in a

cascade is their individual discount factor. Since the market maker’s discount factor

is normalized to one with respect to the trader’s discount factors, their decision is

governed by having either a high or low discount factor. A cascade can therefore

equivalently be characterized by two inequalities:

Definition 2. An informational cascade is reached if and only if one of the following

two inequalities hold:

kEt [V | ht , θ̄ ]< Et [V | ht ]
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k̄Et [V | ht ,θ ]> Et [V | ht ]

The set of expected values fulfilling these two inequalities will from now on be called

the “cascade region”. The model is only meaningful if at the beginning of the game,

agents have incentives to trade based on their signal. Thus, some parameter restrictions

are needed, which are introduced as Assumption 1:

k >
(V̄ +V )

2(qV̄ +(1−q)V )
k̄ <

(V̄ +V )

2((1−q)V̄ +qV )
(1)

The assumption is a function of the uninformed average of the liquidation value of the

risky asset in comparison to what can be inferred from having obtained a signal. The

more precise the signal, the more extreme the allowable discount factors can be, since

the incentive to trade on a signal increases in its precision.

4.1 Expectation Formation

By Lemma 1 and since there are only two possible private signals, the updating on the

public belief given a revealed signal amounts to counting the number of good revealed

signals in excess of bad signals or vice versa. Suppose in period t, the incoming trader

reveals his signal θ̄ , so the public belief on the value of the risky asset is updated to

E[V | ht , θ̄ ]. Since there are only two possible values for the risky asset, it suffices

to consider Pr(V = V̄ | ht) in order to fully characterize the expectation given the

information ht . The Bayesian updating scheme given a new signal is then formalized

as follows:

Pr(V = V̄ | ht , θ̄) =
qPr(V = V̄ | ht)

qPr(V = V̄ | ht)+(1−Pr(V = V̄ | ht))(1−q)

=
Pr(V = V̄ | ht)

Pr(V = V̄ | ht)+
(1−q)

q (1−Pr(V = V̄ | ht))

Suppose now that in the next period a buy order reveals another signal θ̄ :

Pr(V = V̄ | ht+1, θ̄) =
qPr(V = V̄ | ht)

qPr(V = V̄ | ht)+(1−q) (1−q)
q (1−Pr(V = V̄ | ht))

=
Pr(V = V̄ | ht)

Pr(V = V̄ | ht)+(1−q
q )2(1−Pr(V = V̄ | ht))

Iterating this scheme supposing a longer sequence of signals shows that the number of
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good revealed signals in excess of bad signals will become important in the analysis. I

therefore introduce the variable νs
t , the net number of revealed signals. It denotes the

difference between the number of good and bad signals that have been revealed in the

market between period t and s, with s > t. As long as it is clear by context, I will drop

the starting period t. By Lemma 1, νs =
∣∣{zt+i

t+i | z
t+i
t+i = 1}s−t

i=0

∣∣−∣∣{zt+i
t+i | z

t+i
t+i =−1}s−t

i=0

∣∣.
The following two lemmata will be integral in the upcoming proof of Proposition 1.

Lemma 2. The updating of the public belief µs = Pr(V = V̄ | hs) is a function of νs

and can be formulated in terms of the belief at t < s and the integer νs:

µs = Pr(V = V̄ | ht ,ν
s = m) =

Pr(V = V̄ | ht)

Pr(V = V̄ | ht)+(1−q
q )m(1−Pr(V = V̄ | ht))

Where m is positive if there are more good than bad signals, and negative if not.

Proof. The updating after a bad signal simply multiplies the likelihood ratio 1−q
q in the

denominator by its inverse, thus decreasing its exponent by one. To illustrate, suppose

by period t + 1, two good signals have been revealed and let the signal revealed in

period t +2 be θ :

Pr(V = V̄ | ht+2,θ) =
(1−q)Pr(V = V̄ | ht)

(1−q)Pr(V = V̄ | ht)+q(1−q
q )2(1−Pr(V = V̄ | ht))

=
Pr(V = V̄ | ht)

Pr(V = V̄ | ht)+(1−q
q )(1−Pr(V = V̄ | ht))

This shows that in the updating process every revealed good signal can be canceled out

by a bad signal, which completes the proof.

Since 1−q
q < 1, as m increases (decreases) the belief gets more and more concentrated

on the higher (lower) value of the asset. The orders of other agents are the only channel

which conveys information to the traders other than their own private signal. Since

outside the cascade region traders fully reveal their signal by their order, these revealed

signals are the only additional information available about the risky asset, which leads

to the following remark:

Remark 1. From t = 1 on, all that governs the public belief are the net revealed signals

ν .
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Applying the insights of Remark 1 to Definition 2, the cascade region, shows that the

characterizing inequalities are actually functions of ν t . The cascade region only de-

pends on the beliefs of traders and the market maker (i.e. the public belief), and as

was stated above, beliefs ultimately only depend on the net revealed signals. There-

fore, define Φ(ν)< 0 and Θ(ν)> 0 as representing the first and second inequality of

Definition 2, respectively. Lemma 3 follows naturally:

Lemma 3. At any trading period t, the cascade region is characterized by

Φ(ν)< 0 and Θ(ν)> 0

with ν denoting the difference between the number of revealed good and bad signals.

Proof. Without loss of generality, I consider period t = 0 as the period of reference for

νs, with s > 0. Let ν t
0 ≡ ν t then be the net number of signals revealed from period

0 up until period t. First recall that at any t, the public belief on the asset having the

high liquidation value is µt = Pr(V = V̄ | ht). The expected value of the asset can be

reformalized as follows:

E[V | ht ] = µtV̄ +(1−µt)V = (V̄ −V )µt +V

Then the cascade region at period t can be rewritten as:

k(V̄ −V )
µt

µt +
(1−q)

q (1−µt)
+ kV < (V̄ −V )µt +V

k̄(V̄ −V )
µt

µt +
q

(1−q)(1−µt)
+ k̄V > (V̄ −V )µt +V

Using Lemma 2, the above inequalities can be analyzed as the belief varies due to

changes in ν t . For a fixed t, ν t ∈ {−t,−t +1, ..., t−1, t}. Thus, −T +1≤ ν t ≤ T +1

holds for all t. Keeping these bounds in mind, we can abstract from t when considering

the number of revealed net signals. Further, let µ0≡ µ . Then, for a given ν , the cascade

region can be restated as follows:

k(V̄ −V )
µ

µ +(1−q
q )ν+1(1−µ)

+ kV − (V̄ −V )
µ

µ +(1−q
q )ν(1−µ)

−V < 0

k̄(V̄ −V )
µ

µ +( q
1−q)

−ν+1(1−µ)
+ k̄V − (V̄ −V )

µ

µ +( q
1−q)

−ν(1−µ)
−V > 0
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Referring to the left hand side of the first inequality as Φ(ν) and the left hand side of

the second inequality as Θ(ν) completes the proof of Lemma 2.

Under this formulation, Assumption 1 ensures that Φ(0) > 0 and Θ(0) < 0. The two

functions thus act as an accounting device that shows at any trading period if the market

is in an informational cascade or not. Since all past trades are public information, the

knowledge of being in a cascade is as well. Proposition 1 ensures the existence of

cascades after a finite number of trading rounds.

Proposition 1. There exists an initial value for the market maker’s inventory xM
0 , a

minimum number of trading periods τ and a sequence of traders such that for any

T ≥ τ , after a finite number of trading rounds t, Φ(ν t)< 0 and Θ(ν t)> 0 hold.

Proof. Using Lemmas 2 and 3, I reformulate the cascade region as a function of ν t

and find that the underlying inequalities indeed hold for finite values of ν t . Since all

agents update their beliefs in the same way, if one trader enters the cascade region,

all do, which will complete the proof. Throughout the proof I assume that the market

maker’s inventory xM
0 is large enough such that the constraint never becomes binding.

I begin by considering Φ(ν), the left hand side of the first inequality. Recall that

Φ(ν) < 0 is a necessary condition describing the cascade region. I prove now that

there exist two roots r̄1,r1 such that for all ν satisfying ν > r̄1 or ν < r1, Φ(ν) < 0

holds.

Without loss of generality, let µ = 0.5, as it is an uninformative prior in period t = 0.

Taking the first derivative of Φ with respect to ν yields:

Φ ′

(V̄ −V )
=−k

(1−q
q )ν+1log(1−q

q )

(1+(1−q
q )ν+1)2

+
(1−q

q )ν log(1−q
q )

(1+(1−q
q )ν)2

To find an extremum, set Φ ′ = 0 and solve for ν .

√
k(

1−q
q

)(1+(
1−q

q
)ν) = 1+(

1−q
q

)ν+1

(
1−q

q
)ν =

1−
√

k(1−q
q )√

k(1−q
q )− (1−q

q )

ν
? =

log(
1−
√

k( 1−q
q )√

k( 1−q
q )−( 1−q

q )
)

log(1−q
q )
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ν? exists under mild conditions: 1−q
q < k < 1, turning the argument of the logarithm in

the numerator non negative, and the argument of the one in the denominator nonzero.

Due to the monotonicity of the logarithm and because log(1−q
q ) < 0, it holds that

ν < ν? =⇒ Φ ′(ν)> 0 and ν > ν? =⇒ Φ ′(ν)< 0. This shows that the extremum is

a unique maximum to Φ(.). Using that by assumption 1, Φ(0)> 0, this shows that ν?

is a positive global maximum to Φ . Next I prove that as ν approaches its negative and

positive limits, Φ < 0 will hold. Solving for the limits:

lim
ν→∞

Φ(ν) = k−1− (1− k)V
(V̄ −V )

< 0 lim
ν→−∞

Φ(ν) =−(1− k)V
(V̄ −V )

< 0

As Φ is continuous, I conclude that the function has two roots ν̄ ,ν . To complete the

proof of the proposition, it remains to show that the second inequality behaves in a

similar way.

Recall that

Θ(ν) = k̄(V̄ −V )
µ

µ +( q
1−q)

−ν+1(1−µ)
+ k̄V − (V̄ −V )

µ

µ +( q
1−q)

−ν(1−µ)
−V

describes the second inequality of the cascade region as a function Θ(ν) of the number

of net signals. Since ν describes the difference between revealed good and bad signals

and the ratio 1−q
q is inverted in Θ(ν), we need to use −ν instead of ν . Θ(ν) < 0 is a

necessary condition for the cascade region to be reached. Again I set µ = 0.5 as it is an

uninformative prior in period t = 0. The procedure is similar to the one before: I will

find an extremum to Θ(ν) and, taking limits, show that there are two roots. Setting

Θ ′(ν) = 0 and solving for ν :

ν
? =−

log(
1−
√

k̄( q
1−q )√

k̄( q
1−q )−(

q
1−q )

)

log( q
1−q)

which exists under the assumption 1 < k̄ < q
1−q . Further, we have that ν > ν? =⇒

Θ ′(ν) < 0 and ν < ν? =⇒ Θ ′(ν) > 0, which shows that the extremum is a unique

minimum. Assumption 1 ensures that the minimum yields Θ(ν?) < 0. Considering

the limits:

lim
ν→∞

Θ(ν) = k̄−1+
(k̄−1)V
(V̄ −V )

> 0 lim
ν→−∞

Φ(ν) =
(k̄−1)V
(V̄ −V )

> 0

11



This proves by continuity that Θ(ν) has two roots. Of course, the roots of the two

inequalities will not necessarily be the same, but since to the left and right of their

extrema the two functions are monotone, one only needs to take the larger (smaller)

value in order for both inequalities to be satisfied. Specifically, let r̄1,r1 be the roots

of Φ , and r̄2,r2 be the roots of Θ . Then for ν̄ = max{r̄1, r̄2} and ν = min{r1,r2} it

is true that for all ν satisfying ν > ν̄ or ν < ν , Φ(ν) < 0 and Θ(ν) > 0 hold. Given

that ν̄ ,ν are both finite and −T + 1 ≤ ν ≤ T + 1 always holds, the minimal number

of trading periods τ needed for the cascade to happen is τ = ν̄ =
∣∣{zi

i | zi
i = 1}τ

i=0

∣∣ or

τ = ν =
∣∣{zi

i | zi
i =−1}τ

i=0

∣∣.
Cipriani and Guarino introduce a model with the same choice set and discount fac-

tor structure for their traders, however no dynamic choices or shortselling constraints

(Cipriani et Guarino, 2008). They proof the emergence of cascades using the public

belief and looking for upper and lower bounds. Here this is done differently, since

the actual knowledge of the necessary values of ν for a cascade will prove useful in

upcoming issues. Since only net revealed signals matter, it could be the case that only

high-signal types entered the market until ν̄ was reached, which amounts to ν being

equal to the number of high signals revealed in the market. This then is the minimum

number of trading periods in order for the cascade region to be reached. Similarly for

ν . Proposition 1 shows that in this model, after some finite amount of periods, it can

happen that traders will not act on their signal anymore. The probability of such events

will depend on the precision of the private signals as they are integral in the emergence

of cascades, which is discussed in the next subsection. Before that, it is insightful to

consider the market situation as the number of revealed net signals reaches one of the

roots. Suppose the root is an integer. Then, at the root, it could happen that a zero-order

will be posted, but only a newly arriving agent would do so. This is the case since all

incumbent agents have already revealed their signal, thus for them the two functions

Φ(ν) and Θ(ν) by definition can not be equal to zero at that point. The zero-order

of the newly arrived agent can be caused by him having both a high and a low signal.

However, buy-orders (sell-orders) can still be unambiguously associated with a high

(low) signal. Thus it could be that as one of the roots is reached, information gets

more slowly revealed in the market, but it still does so. Indeed, only if the number

of revealed net signals is large (small) enough such that both roots are “passed”, the

cascade starts.

Corollary 1. Throughout the duration of a cascade, the number of net revealed signals

12



ν remains constant at

ν =

ν̄ +1∨ν−1 i f ν̄ ,ν ∈ Z

dν̄e∨bνc otherwise

Proof. By the above discussion, at the roots ν̄ and ν , signals can still get revealed.

However, as soon as one more net signal in the right direction (i.e. a high signal if

ν = ν̄ and a low signal otherwise) is revealed, the cascade starts and the believe cannot

be updated any longer. As no more signals are revealed, the number of revealed net

signals stays constant.

4.2 Probability of a Cascade

Proposition 1 provided evidence that in this model, and given that the market maker

has enough inventory, cascades can happen. In the upcoming formulations, I will again

assume a market maker who never faces a binding shortselling constraint. This greatly

simplifies the expressions characterizing the probability of a cascade happening, how-

ever the argument does generalize. By Corollary 1, the number of net revealed signals

remains constant at a certain level during a cascade. For ease of notation, let m̄≡ dν̄e
and m≡ bνc, abstracting from integer roots. Knowing the roots, expressing the prob-

ability of a cascade is a combinatorial problem. One has to consider the amount of

possible sequences of signals that traders could reveal such that a cascade is reached.

Let the variable B ∈ Z denote this amount. Furthermore, since this is just a combi-

natorial exercise of distributing the right amount of high or low signals, only positive

values of m can be considered, and that without loss of generality. Thus, in a slight

abuse of notation, throughout this subsection: m =| m | holds.

Remark 2. A necessary condition for a cascade to be reached at period t > m̄ is that

the number of revealed low signals is t−m̄
2 , implying that the number of revealed good

ones is t+m̄
2 . For a cascade at m, t−m

2 high signals and t+m
2 low signals are required.

This condition ensures that the difference of the revealed signals results in the required

number.

Remark 3. Caution has to be taken, since after a cascade is reached, no signals are

revealed anymore. This implies that by considering the number of possible combina-

tions of t−m̄
2 low signals in a given set of t signals, too many possibilities are included.

Lemma 4 elucidates this observation:

Lemma 4. The number of possible sequences of signals Bt leading to a cascade at

(and not before) period t is characterized by:

13



B̄t =

(
t−2
t−m̄

2

)
−

t−m̄
2

∑
l=1

(
t− m̄−2l
t−m̄−2(l−1)

2

)
B̄m̄+2(l−1)−

−1t≥2m+m̄

b t+m̄
2(m̄+m)

c

∑
i=1

(
t− (2i−1)(m̄+m)
t−m̄

2 − im− (i−1)m̄

)
+1t≥2m+3m̄

b t−m̄
2(m̄+m)

c

∑
j=1

(
t−2 j(m̄+m)

t−m̄
2 − j(m̄+m)

)

∀t ≥ m̄, where B̄m̄ = 1 and bxc gives the largest integer less or equal to x. For a cascade

at m, the expression is similar:

Bt =

(
t−2
t−m

2

)
−

t−m
2

∑
l=1

(
t−m−2l
t−m−2(l−1)

2

)
Bm+2(l−1)−

−1t≥m+2m̄

b t+m
2(m̄+m)

c

∑
i=1

(
t− (2i−1)(m̄+m)
t−m

2 − (i−1)m− im̄

)
+1t≥3m+2m̄

b t−m
2(m̄+m)

c

∑
j=1

(
t−2 j(m̄+m)

t−m
2 − j(m̄+m)

)

∀t ≥ m, where Bm = 1.

Proof. The expressions follow directly from the requirement that in order to reach a

cascade at a specific period, no cascade must have been reached in any preceding point

in time. The last two signals of a sequence are fixed, since each high signal cancels

with a low signal. In order to reach the required level of ν , the difference between

revealed high and low signals, the last two signals must be of the kind that exists in

excess of the other kind. That is, for a cascade at m̄ it is necessary that the last two

signals of the sequence be positive and conversely for the cascade at m.

From now on, only the first expression, i.e. the expression treating a cascade at m̄, will

be discussed, since all arguments apply symmetrically to the latter one. The expression

will be analyzed term by term in order to fully characterize it. To make references

clearer, enumerate the four terms in the expression:(
t−2
t−m̄

2

)
(2)

t−m̄
2

∑
l=1

(
t− m̄−2l
t−m̄−2(l−1)

2

)
B̄m̄+2(l−1) (3)

1t≥2m+m̄

b t+m̄
2(m̄+m)

c

∑
i=1

(
t− (2i−1)(m̄+m)
t−m̄

2 − im− (i−1)m̄

)
(4)
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1t≥2m+3m̄

b t−m̄
2(m̄+m)

c

∑
j=1

(
t−2 j(m̄+m)

t−m̄
2 − j(m̄+m)

)
(5)

By the above remark, the total number of ways to distribute the required negative

signals such that ν = m̄, is given by
(t−2

t−m̄
2

)
at any t ≥ m̄. However, this number includes

also all combinations of such signals that, for a high enough t, could have already

reached a cascade at some point l < t. This fact is incorporated by (3). It is the number

of all cascade events that are incorporated in the total amount of combinations
(t−2

t−m̄
2

)
but would have led to a cascade at some earlier point in the sequence. To be exact,

B̄m̄+2(l−1) gives the number of possible signals that would lead to a cascade at period

m̄+2(l−1)< t−2, while
( t−m̄−2l

t−m̄−2(l−1)
2

)
counts all combinations of the remaining signals

of the sequence in the time periods from m̄+2(l−1) to t−2.

This term only subtracts possible cascades at the same level as the one which is sought,

in this case m̄. Recall that at t, in order to arrive at the right root, t−m̄
2 negative signals

are needed. For high enough t, this number can be larger than m - which means that by

counting
(t−2

t−m̄
2

)
, also some sequences with cascade at the low level are incorporated.

These need to be subtracted. The argument extends to these subtracted possibilities:

for even higher t, a lot of positive signals are necessary for a cascade to happen at m,

such that they have to be subtracted as well, which explains the occurrence of (4) and

(5) in the expression for Bt . These terms arise only at time horizons for t ≥ 2m+ m̄

and t ≥ 2m + 3m̄, respectively. This is so because as soon as t−m̄
2 = m, there are

enough negative signals such that also a cascade at the lower root is possible. Then, the

number of positive signals required to arrive at m is given by t−m̄
2 −m. If this number is

greater or equal to m̄, the possibility for a positive cascade has to be subtracted as well,

which leads to the two conditions. The form of these two terms is given by a simple

relationship. First consider (4) : suppose that 2m+ m̄ ≤ t. That means, that cascades

at level m are counted in the combinations
(t−2

t−m̄
2

)
, which need to be subtracted. One

simply needs to find all such possible “unwanted” cascades. As the number of negative

signals available is t−m̄
2 , the number of positive signals required such that level m is

reached equals t−m̄
2 −m. Thus, the number of combinations of cascades at the lower

root is given by all ways of incorporating the amount of positive signals within the

sum of required positive and available negative signals:
(t−m̄+m

t−m̄
2 −m

)
. This is the first term

in (4) . Should the number of required positive signals be high enough, one needs to

subtract all possible combinations leading to an “unwanted” cascade at the high level

from the aforementioned term, which gives the first term of (5) :
( t−2(m̄+m)

t−m̄
2 −(m̄+m)

)
. Again,

if the required negative signals in this case are numerous enough, one would need to

subtract another term, leading to the second term of the first sum, and so on. This
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comes to an end as soon as there are not enough signals anymore to distribute such

that an “unwanted” cascade would be reached. Thus, the last term in the sum is given

by the one which has k ∈ {0,1, ...,m− 1} signals to distribute, for m ∈ {m, m̄}. The

endpoints of the two sums are characterized by this argument: t+m̄
2(m̄+m) is the value

of i which solves t−m̄
2 − im− (i− 1)m̄ = 0. Should this not be an integer, the largest

integer smaller than this value applies. It is intuitive to observe that b t+m̄
2(m̄+m)c ≥ 1 for

t ≥ 2m+ m̄. A similar argument holds for (5) .

The proof of Lemma 4 shows that there are certain subtleties linked to the emergence

of cascades. A striking one is given in the following Corollary:

Corollary 2. For all t ≥ m, a cascade can only happen at periods t with the same

parity as m, where m ∈ {m, m̄}.

Proof. The proof is done for cascades at m̄, but applies in a similar argument to m. For

a cascade at period t, t−m̄
2 low signals are required such that the difference between

high and low signals gives the root. However, only if t and m̄ have the same parity, will

the number of required low signals be divisible by 2, i.e. an integer. Since signals only

exist in integer amounts, the result follows.

Now, using the insights given by Lemma 4, the probability of cascades can be formu-

lated:

Lemma 5. Suppose that the market maker’s inventory xM
t is such that the constraint is

never binding. Then at t = 0, given any horizon of coming periods s, the probability of

a cascade at root m is

Pr(cascade | s,m) =
1
2
(q

s
2 (1−q)

s
2

(
q

1−q
)

m
2 +(

1−q
q

)
m
2 )

s−m
2

∑
j=0

q
− j
(1−q)

− j
Bs−2 j


Where m ∈ {m, m̄} and B ∈ {B, B̄} are as defined in Lemma 4.

Proof. Since Bt gives the number of possible combinations of signals leading to a

cascade at t and all such terms are mutually exclusive as was shown in the proof for

Lemma 4, one simply needs to sum up all possibilities of cascades for all t ≤ s, and

multiply each such term by the respective probability of observing the required amount

of high and low signals. Integrating the uninformative prior over the two possible

values of the risky asset and rearranging terms yields the result.
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Proposition 2. Suppose that the market maker’s inventory xM
t is such that the con-

straint is never binding. Then at t = 0, given any horizon of coming periods s, the

probability of a cascade is

Pr(cascade | s) = Pr(cascade | s, m̄)+Pr(cascade | s,m)

Where Pr(cascade | s,m) is as defined in Lemma 5.

Proof. Due to their structure, B̄t and Bt count mutually exclusive events of cascades at

either the high or the low root. Therefore, their occurrence is independent, which leads

to the result above.

A numerical example will provide insight into the magnitude of these probabilities:

Example 1. Let k ∈ {0.95,1.05}, V ∈ {1,5} and q = 0.8. It is straightforward to

check that these priors abide by the constraints set by Assumption 1 and in the proof of

Proposition 1. Then, using a root finding algorithm, one finds that m̄ = 3 and m =−4.

For a cascade with belief concentrated at the higher value of the risky asset, there have

to be 3 more high signals revealed in the market than low ones, and vice versa for

the low belief cascade. Using the formula given by Proposition 2, the probability of a

cascade can be plotted against an increasing sequence of future horizons s. For s = 3,

which is the minimum number of trading periods needed in order for the cascade to

arise with belief concentrated at the high level, the probability is Pr(cascade | ν =

m̄,s = m̄) = 0.26. I plot the probability that a cascade happens as a function of how

long the market will operate:

5 10 15 20 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

s= Future Horizon

Pr
(C

as
ca

de
; s

)

Figure 1: Probability of a Cascade
Figure rendered using R Software: (R Core Team, 2016)
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It is shown how with increasing s the probability of a cascade gradually approaches 1.

This is an intuitive result due to the fact that as the future horizon increases, the amount

of possible sequences of signals increases exponentially. Thus, it becomes more and

more unlikely that one does not observe a cascade in this model. The wiggles in the

plot are due to the fact that depending on the parity of the roots, cascades at say m̄ can

only happen at time periods of parity equal to that of m̄, as shown in Corollary 2.

5 The Market Maker’s Constraint

Up until now I was assuming that the market maker had enough inventory to maintain

an orderly market. As stated in the Introduction, cascades seemed to be unstoppable

once they started, which is a somewhat unsatisfactory outcome. This model allows for

the incorporation of finite supply of the asset of interest, a quite realistic extension.

Now I will discuss what happens in the case that the market maker’s constraint starts

to bind. As defined in the beginning, the market maker faces a shortselling constraint

at all t:

xM
t −Zt = xM

t+1 ≥ 0 Zt =
t

∑
i=1

zi
t

Additionally, recall that the market maker’s price setting rule gives that pt = E[V |
ht ]. However, when the market maker’s constraint becomes binding, this is no longer

possible. Suppose that at period t, after all orders have been satisfied, it holds that

xM
t = 0. As the market maker knows the optimal strategies of the traders as well as

either the whole type of incumbent traders (if no cascade) or their discount factor (if

in a cascade), he can always correctly expect the orders he will face in the coming

period, for all traders but the newly arriving one. There is no information as to which

type this trader might have. Thus, should the market maker’s constraint bind in period

t, he has to make sure that the incoming trader of period t + 1 has no incentive to

buy, because he will not be able to cater to such an order. The market maker will set

pt+1 ≡ pbd
t+1 = k̄E[V | ht , θ̄ ]. Given this price, no possible type of trader will want to

buy. Remark 4 summarizes this observation:

Remark 4. Suppose at t, xM
t = 0. Then, pbd

t+1 = k̄E[V | ht , θ̄ ]

That is, no trader will buy: only traders with high signal and discount factor set zi
t = 0,

all others sell. The content of the information conveyed by these orders is not as

unambiguous as is the case if the market maker has no binding constraint. For zi
t = 0

the high signal can immediately be concluded. However, nonzero trades are not as
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easily understandable to the public as before (the public is to be understood as all

incumbent traders plus the market maker).

Suppose that the market maker’s constraint binds during a cascade. Since the cascade

has started, no trader has revealed his private information. All their orders were gov-

erned by them having a high or low discount factor, thus this is the only information

that the market maker (and also the public) then has on any trader who entered during

the cascade. Upon observing the amount of negative orders at t, it cannot be discerned

by the public which trader is the newly arrived one, which entered during the cascade

and which before the cascade. The public will update their belief on the value of the

risky asset in a similar, but more complicated way than was shown in Lemma 2. Up

until now, at most one new piece of information (signal) was revealed in every trad-

ing round. In the current situation, a lot of incumbent traders have not revealed their

signal yet, and some information on their signals is revealed by their trades given pbd
t .

Let us consider the information conveyed by trades of the newly arrived agent. If he

set zt
t = 0, his high signal is perfectly revealed. Suppose for a moment that the newly

entered trader posted a negative trading order and that the public can observe who he

is. Then, all that incumbent agents can infer is that this trader was not of type (k̄, θ̄).

Lemma 6 describes how this information will be incorporated in the public’s belief:

Lemma 6. Suppose at t the market has been in a cascade and pt = pbd
t . If zt

t = −1,

the market maker’s belief gets updated in the following way:

Pr(V = V̄ | ht ,zt
t =−1) =

µt(
1
3q+ 2

3(1−q))

µt(
1
3q+ 2

3(1−q))+(1−µt)(
1
3 +

1
3q)

=
µt

µt +(1+q
2−q)(1−µt)

Proof. As stated before, if zt
t = −1 there are three types who could have posted the

order: (k̄,θ), (k, θ̄) and (k,θ). Then we have: Pr[θ t = θ̄ ] = 1
3 , and Pr[θ t = θ ] = 2

3 .

Thus,

Pr(zt
t =−1 |V = V̄ ) =

1
3

q+
2
3
(1−q)

Then applying Bayes Rule similarly as in Lemma 2 to the belief Pr(V = V̄ | ht) = µt

yields the result.

In order to fully characterize the updating of the market maker’s belief given trades at

the boundary price, we are left with analyzing what else gets revealed by the orders
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taken at t. It is helpful to list what exactly the market maker knows at t, given that the

cascade started at period s < t:

1.
∣∣{zi

t | zi
t = 0}ti=0

∣∣ and
∣∣{zi

t | zi
t =−1}ti=0

∣∣ , the number of zero and negative orders

at t.

2. The exact number of zero and negative orders taken by traders who entered be-

fore period s, since they fully revealed their types (k,θ).

3. The exact number of high and low discount factors of traders who entered in

periods τ , where s≤ τ < t, since these governed their trades during the cascade.

Using this knowledge the market maker can infer the following about the incumbent

traders, apart from the newly entered one: He can set aside the identified trades done

by agents who entered before s, since their information has already been incorporated

in his belief. Then for all traders who entered during the cascade and revealed low

discount factors it holds that they will have posted negative orders. They are, equally

likely to have had high or low signals, so no information can be revealed by their

trades. The market maker can thus concentrate his analysis on the traders who entered

during the cascade and revealed a high discount factor. For them, every negative order

reveals a low signal, and every zero order reveals a high signal. There remains one

problem: by reducing the number of orders to those that are of interest for him, the

market maker will be left with a number of orders equal to the number of traders who

entered during the cascade and revealed a high signal plus one, since the order done

by the newly arrived agent cannot be assigned to any group. It is not possible for the

market maker to infer the type of the agent who arrived in t by his first trade. Given

this argument, Lemma 7 characterizes the updating given a boundary price during a

cascade.

The reader might have expected that a bit of new notation will be convenient: Let

nh and nl be the number of traders who entered the market during the cascade, have

high discount factors and posted zero and negative orders, respectively. Specifically,

if the cascade started at period s < t, then nh =
∣∣{zi

t | zi
t = 0,ki = k̄}t−1

i=s

∣∣ and nl =∣∣{zi
t | zi

t =−1,ki = k̄}t−1
i=s

∣∣. Let m = bνc, respectively m̄ = dν̄e be the level of revealed

signals that prevails during a cascade by Corollary 1. Without loss of generality, I ab-

stract from the case where ν̄ or ν are integers. The following two Lemmata describe

the beliefs of the market maker and the traders upon observing the orders as pt = pbd
t .

Lemma 7. Suppose at t, the market has been in a cascade since period s < t and

pt = pbd
t . Then, given all trading orders posted in t, the market maker’s belief is

updated in the following way:
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Pr(V = V̄ | ht+1) = µ
M
t+1 =

1
4

1

1+(1−q
q )nh−nl+m+1

+
3
4

1

1+(1−q
q )nh−nl+m+1(1+q

2−q)

where

nh =
∣∣{zi

t | zi
t = 0,ki = k̄}t−1

i=s

∣∣ , nl =
∣∣{zi

t | zi
t =−1,ki = k̄}t−1

i=s

∣∣ and m = m̄ if the belief

is concentrated at the high value of the asset and m if it is concentrated at the low level.

Proof. As stated above, the market maker cannot observe which of the orders was

posted by the newly arrived agent. He only knows that Pr(zt
t = 0) = 1

4 and Pr(zt
t =

−1) = 3
4 since the agent can have four possible types and only the type (k̄, θ̄) would

post a zero-order. Given these two possibilities, he will have two possible updating

schemes:

If zt
t = 0, the newly arrived trader’s signal is fully revealed, and for all other traders

with high discount factor the signal is revealed as well. Recall that during the cascade

the belief was stuck at

µt =
1

1+(1−q
q )m

with m = m̄ if the belief is concentrated at the high value of the asset and m if it is

concentrated at the low level. I used the fact that ν = ν t
0 constitutes all information

available to form the expectation, and that at t = 0 the public starts out with an un-

informative prior µ0 =
1
2 . Then using the revealed signals with probability 1

4 it holds

that

µt+1 =
1

1+(1−q
q )nh−nl+m+1

where nh =
∣∣{zi

t | zi
t = 0,ki = k̄}t−1

i=s

∣∣ and nl =
∣∣{zi

t | zi
t =−1,ki = k̄}t−1

i=s

∣∣
If zt

t =−1, the newly arrived trader could have had a high or a low signal, but not with

equal probabilities. As for all types with high discount factor who entered during the

cascade their signal is revealed, subtracting one (the trade done by the newly arrived

trader) from nl gives exactly the number of revealed low signals. Then, using Lemma

6, with probability 3
4 it holds that

µt+1 =
1

1+(1−q
q )nh−nl+m+1(1+q

2−q)

Taking expectations over the type of the newly arrived trader completes the proof.
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Here, traders will not in general hold the same belief as the market maker: except for

those who entered before the cascade started traders may still hold private information

on their type. Lemma 8 gives a characterization of the updated beliefs of all incumbent

traders observing the orders at the boundary price:

Lemma 8. Suppose at t, the market has been in a cascade since period s < t and

pt = pbd
t . Then, given all trading orders posted in t, the incumbent trader’s beliefs are

characterized by the following:

Equal to the market maker’s belief, for trades with index τ < s:

Pr(V = V̄ | hτ
t+1) = µ

M
t+1 =

1
4

1

1+(1−q
q )nh−nl+m

+
3
4

1

1+(1−q
q )nh−nl+m+1(1+q

2−q)

For traders with index s≤ τ < t :

Pr(V = V̄ | hτ
t+1) =

µM
t+1 i f kτ = k̄

µM
t+1

µM
t+1+(1−µM

t+1)λθ

i f kτ = k

For the trader with index t (the newly arrived trader):

Pr(V = V̄ | ht
t+1) =


1

1+( 1−q
q )nh−nl+m+1 i f type = (k̄, θ̄)

1
1+( 1−q

q )nh−nl+m
λθ

otherwise

Where nh =
∣∣{zi

t | zi
t = 0,ki = k̄}t−1

i=s

∣∣ and nl =
∣∣{zi

t | zi
t =−1,ki = k̄}t−1

i=s

∣∣ , λθ = 1−q
q if

the trader had a high signal, and q
1−q if he had a low signal.

Proof. For τ < s, the proof goes exactly as the proof for Lemma 7. Traders who entered

before the cascade started fully revealed their signal. For traders with index s≤ τ < t

and high discount factor, we have shown that their trade fully reveals their signal.

Therefore, they also do not hold any informational advantage over the market maker.

Nothing can be inferred from traders who arrived during the cascade and revealed

a low discount factor, as was stated before Lemma 7. Therefore, their information

encompasses the information held by the market maker plus the information they hold

via their private signal. By Lemma 2, this information is incorporated in λθ . Finally,

the newly arrived trader will, if he has a high signal and a high discount factor, fully

reveal his type and hold the same information the market maker does. In any other case,

his signal will not be revealed and thus also enters his belief using the term λθ .
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Using the above characterizations of the more complicated updating schemes at a bind-

ing constraint for the market maker, Proposition 3 can be proven. It shows that due to

the implications of the finite supply of the risky asset, the model carries some intrigu-

ing possibilities. At any period of time, if a cascade prevails, it may terminate, given

sufficiently low inventory for the market maker.

Proposition 3. Given a cascade, there exists a finite number of newly arriving traders

such that the market maker’s constraint binds and the number of newly revealed net

signals ν is such that Φ(ν t) < 0 and Θ(ν t) > 0 both don’t hold anymore, so the

cascade region is left.

Proof. Suppose that in t the market is in a cascade and the belief is concentrated around

V (existence was shown in Proposition 1). Further, suppose that pt = pbd
t . Recall from

Corollary 1 that this means that ν t = bνc, where ν is the smaller one of the negative

roots of Φ(ν) and Θ(ν) (and w.l.o.g. abstract from the case where ν is an integer).

Furthermore, given the monotonicity of both Φ(ν) and Θ(ν) around the root, it is

implied that for an amount of positive information large enough, the cascade region

can be left again. However, as argued in Lemma 7, the updating at the boundary of

the market maker’s constraint is not as obvious as it was in the usual case. In the now

supposed situation, the public belief on the high value of the asset is

Pr(V = V̄ | ht) =
1

1+(1−q
q )m

With m = bνc. I exploit the fact that ν = ν t
0 constitutes all information available and

is used to form the expectation, and that at t = 0 the public starts out with an uninfor-

mative prior µ0 = 1
2 . Given that the belief on the high value of the asset is very low

in this situation, we need to find that due to the newly available information the mass

allocated toV̄ by the belief increases sufficiently such that the cascade region is left. I

will show that possibly the market maker’s belief after incorporating all information as

in Lemma 7 is larger than the belief that prevailed throughout the cascade. First, after

some algebra it is possible to reformulate the market maker’s belief in the following

way:

Pr[V = V̄ | ht+1] =
1
4

1

1+(1−q
q )nh−nl+m

+
3
4

1

1+(1−q
q )nh−nl+m+1(1+q

2−q)
=

=
4+(1−q

q )nh−nl+m(3+(1−q
q )(1+q

2−q))

4(1+(1−q
q )nh−nl+m(1+(1−q

q )(1+q
2−q)(1+(1−q

q )nh−nl+m)))
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It remains to show that for certain values of nh−nl , this belief allocates more weight

to the high value of the asset than the belief that has prevailed during the cascade:

4+(1−q
q )nh−nl+m(3+(1−q

q )(1+q
2−q))

4(1+(1−q
q )nh−nl+m(1+(1−q

q )(1+q
2−q)(1+(1−q

q )nh−nl+m)))
>

1

1+(1−q
q )m

⇔ (3+(
1−q

q
)(

1+q
2−q

))((
1−q

q
)nh−nl+m +(

1−q
q

)nh−nl+2m)+4(
1−q

q
)m >

> 4(
1−q

q
)nh−nl+m(1+(

1−q
q

)(
1+q
2−q

))(1+(
1−q

q
)nh−nl+m)

⇔ 4(
1−q

q
)−(nh−nl)+(

1−q
q

)m(3+(
1−q

q
)(

1+q
2−q

))>

> 1+(
1−q

q
)(

1+q
2−q

)(3+4(
1−q

q
)nh−nl)

As (1−q
q )< 1, the left hand side increases the larger nh−nl gets, while the right hand

side decreases with nh− nl . Thus, for nh− nl large enough, the above inequality will

hold, which proves the statement for ν t = bνc. Even more, the above relationship

holds just as well for ν t = dν̄e. The belief is concentrated around the high value of the

risky asset, thus in order to leave the cascade region, it must be decreased. Using the

above argument, for a small enough nh−nl , the above inequality will be reversed and

the cascade region is left. For every trader who enters after this event, their belief will

be governed by all that the market maker can infer (this is public knowledge) plus their

own signal, and the updating scheme outlined by Lemma 2 applies. This proves that for

every trader arriving at least one period after the boundary price was posted, they will

trade on their signal and not on their discount factor, so their signal is revealed.

The insights of Proposition 3 can be used to create some interesting dynamics in this

model. Essentially, we observe that this structure allows for a sequence of traders that

at first engage in an informational cascade, but due to the shortselling constraint of the

market maker something changes: enough information is released into the market such

that the cascade ends. An example will illuminate this intuition.

Example 2. I reuse the priors from Example 1: k ∈ {0.95,1.05}, V ∈ {1,5} and q =

0.8. Then, m̄ = 3 and m =−4. Furthermore, let xM
1 = 82. In order to exactly illustrate

what happens, assume the following sequence of traders arrive from t = 1 to t = 11 at

the market:
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t Enter pt xM
t

1 (k̄,θ) 3 82

2 (k̄, θ̄) 1.8 83

3 (k̄,θ) 3 83

4 (k̄,θ) 1.8 80

5 (k, θ̄) 1.24 78

6 (k,θ) 1.8 75

7 (k, θ̄) 1.24 75

8 (k̄, θ̄) 1.8 76

9 (k, θ̄) 3 74

10 (k, θ̄) 4.2 71

11 (k̄, θ̄) 4.77 69

Table 1: Sequence of Traders, 1≤ t ≤ 11

The assumed priors make sure that from t = 1 on, the market starts from outside the

cascade region. That is, traders reveal their signals by their trading behavior. When

checking the sequence, it becomes clear that while the trader arriving at t = 11 still

reveals his high signal, his trade is the one that sets ν11 = m̄ = 3. Sufficiently many

traders with high signals have arrived in the market such that the resulting positive

public belief is overwhelming: the incentive to trade based on private signals is less

important than the information already disseminated in the market. From the next

period onwards, the market is in a cascade. Starting from an uninformative prior, the

price of the risky asset at the first period is p1 = 3. At t = 12, the price of the asset has

risen to p12 = 4.94 since the public belief on the high value of the asset has increased

to µ12 = 0.985. Let the sequence of traders arriving from t = 12 be the following:

t Enter pt xM
t

12 (k̄,θ) 4.94 68

13 (k̄, θ̄) 4.94 66

14 (k̄,θ) 4.94 63

15 (k̄,θ) 4.94 59

16 (k̄,θ) 4.94 54

17 (k̄, θ̄) 4.94 48

18 (k, θ̄) 4.94 41

19 (k, θ̄) 4.94 35

20 (k,θ) 4.94 30

21 (k̄,θ) 4.94 26

22 (k̄,θ) 4.94 21

23 (k̄,θ) 4.94 15

24 (k̄,θ) 4.94 8

25 (k̄,θ) 5.23 0

26 any 1.14 17

Table 2: Sequence of Traders, 12≤ t ≤ 26
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I am listing the values of xM
t as well, to check if at some point, the market maker’s

shortselling constraint becomes binding. Indeed, this happens after the trades of t =

24. The market maker will therefore have to set the boundary price at t = 25, which

amounts to pbd
25 = 5.23. It is higher than the possible high value of the asset because

the market maker needs to impede a potential new trader with high discount factor and

signal. It is interesting to observe that at this point, the price of the asset cannot be

explained by the fundamentals of the risky asset anymore. As outlined by Proposition

3 and the preceding Lemmata, new information is conveyed to the public by the actions

taken by incumbent traders at t = 25. Only traders with high discount factor and high

signal will order zero, while all other traders want to sell. That is, at t = 25, the market

maker is faced with a cumulative order of −∑
25
i=1 zi

t = 17, so four zero-orders have

been made. Recall that inference can only be made on the signals held by traders who

entered during the cascade and have a high discount factor. There are ten traders of this

kind in the market. The market maker can assign two of the four zero-orders to traders

who fully revealed their type before the cascade had started. Thus, of the ten traders

interesting to him due to the possible inference of new information, at least one has

made a zero-order, depending on the type of the newly arrived trader. In the notation

adopted in Proposition 3 and its preceding Lemmata, nh = 2 and nl = 8. Applying

Lemma 7 yields the belief of the market maker given the trades done after having set

the boundary price. Due to the overwhelming number of negative signals that have

accumulated during the cascade, the market maker decreases his belief drastically:

µM
26 = 0.034. This sudden pessimism drops the price to p26 = 1.14. The following

figure shows the development of the price (left axis) and inventory (right axis) as the

sequence of traders above enters the market. It is clearly visible how from periods 1

to 11, the price changes as different signals get revealed. The cascade is highlighted

by the time points between the two dashed red lines. At t = 25 the boundary price is

posted, which explains the upward spike in the price sequence. Afterward the price

drops as the cascade is terminated and a lot of low signals are revealed.
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Figure 2: Price and Inventory
Figure rendered using R Software: (R Core Team, 2016)

6 Conclusion

In a sequential trading model with risk neutral agents, I show that under endogenous

prices, cascades emerge even if traders are allowed to act more than once. The model

introduces a shortselling constraint for the market maker which becomes crucial in

the termination of cascades. The constraint endogenously defines a point such that a

cascade, which under other circumstances would last forever, has to end. This is due

to the dissemination not of new information, but of information about traders who are

already in the market but have not revealed their private signal yet. Additionally, the

probability of cascades in this model is formalized and explored. The assumption of

risk neutrality should be seen as a first approximation, opening the field for analysis of

similar models under more general specifications of preferences.
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