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Kurzfassung

In dieser Diplomarbeit wird ein prozedurales System beschrieben, welches die Generie-
rung von 3-dimensionalen Gebäuden und ihren Innenräumen ermöglicht. Ich untersuche
bereits publizierte Arbeiten im Bereich der prozedualen Generierung von Inhalten ebenso,
wie Arbeiten aus dem Gebiet der prozeduralen Generierung von Gebäuden und ihren
Fassaden. Nützliche Konzepte aus diesen Arbeiten werden in dieser Arbeit mit Geome-
triegenerierungs Teckniken und den Möglichkeiten eines grafischen Regel-Editors vereint.
In diesem grafischen Regel-Editor werden komplexe prozedurale Systeme nicht durch
das Schreiben der einzelnen Regeln erstellt, sondern durch die Verwendung grafischer
Elemente, wodurch die Bedienung erleichtert wird.

Diese Regeln, welche in dieser Arbeit beschrieben werden, ermöglichen die Erschaffung
verschiedenster Arten von Gebäuden. Die Einführung von zwei neuen spezialisierten
Regeln in dieser Arbeit erleichtern das Generieren der komplexen Geometrien von Dächern
und Treppen erheblich.

Der Fokus dieser Diplomarbeit liegt in der Erschaffung eines prozeduralen Genera-
tors, aber es gibt eine Reihe weiterer Aspekte, welche in diese Arbeit eingeflossen sind.
Die Diplomarbeit kombiniert das geschaffene prozedurale System mit Echtzeitgrafik,
Raumplanung, Architektur und User-Interface-Design.
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Abstract

In this master thesis I describe a procedural system which makes it possible to generate
3-dimensional buildings including their interior. I investigate previous work in the field
of the procedural generation of content as well as the more specialized area of procedural
generation of buildings and façades. From the work that was already published, I
identify useful concepts and unify them in this work by merging the geometry generation
techniques with the possibilities of a visual rule editor, where no “code” has to be written
to generate a complex procedural system.

With the help of some so-called production rules, which I describe in the thesis, it is
possible to create a wide variety of different buildings. By introducing two specialized
production rules, the creation of the complex geometry of building related elements like
roofs or stairs is more comfortable and easier.

While the main focus of this thesis is the development of the procedural system itself,
there are quite a few different other scientific domains that have an influence on this
work. The thesis combines procedural systems with real-time computer graphics, floor
planning, architecture and user interface design.
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CHAPTER 1
Introduction

Computers nowadays are often used to create different kinds of digital content. The
type of content ranges from simple text contents to digital paintings to sound- and video
productions and to 3-dimensional content. For each type of content specialized tools that
make the process of creation of these contents as easy and fast as possible exist.

Traditional approaches to create 3-dimensional content involve the creation of the
desired objects or characters by modeling them manually. This modeling approach is
very time consuming and the designers and artists have to create every detail about the
resulting 3d objects manually. The more detailed the object should be, the more work
has to be put into the creation process and the more time is needed to create the desired
object.

1.1 Motivation
The digital content generation of 3-dimensional objects is addressed in this work because
the creation of this type of content is very time consuming and results in high investments
from the industry. By using a different approach for the generation of 3-dimensional
objects it is possible to enhance and to speed up the creation process a lot. The approach
for creating the objects is called procedural content generation.

The procedural generation of content is a very powerful technique to create many
different kinds of objects. The idea behind generating objects procedurally is that a user
just needs a relatively small set of so-called production rules or rules that define the
procedural system. The procedural system consists of the set of defined rules, i.e. the
rule set. With such a procedural system, it is possible to create many different types of
objects. Short descriptions of a rule and a rule set A.1 can be found in the Appendix.
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The possibilities for generating and creating objects with a procedural system range from
the creation of fractals and 2-dimensional graphics [PL90, 6-18, 46-50, 209] and art [Pea11]
to 3-dimensional objects like plants [PL90] and buildings [WWSR03,MWH+06,KW11].
Even the whole structure of a planet can be generated by using procedural generation
techniques [Cep10]. Many different cases can be handled and many different and realistic
results are possible by using randomly altered values in the generation process and by
the possibility of the rules to adapt to the environmental circumstances. Examples are
“self-sensitive L-Systems” [PM01] which adapt to geometric circumstances or simulated
chemical reactions [PL90, 40, 41]. Section 2 gives a short overview.

In this master thesis, the focus lies on the procedural generation of buildings. Some
quite powerful solutions already exist, the most well-known application using procedural
generation techniques is the “CityEngine” [PM01,MWH+06], but the abilities of those
solutions are limited. The CGA grammar1 is a complex extension of L-systems2 which
allows the user to create complex 3-dimensional objects. Applications like the CityEngine
use rules defined in the CGA grammar to create buildings and whole cities from GIS3

data or defined landscapes, but to achieve this, the user has to write a lot of code to
create the buildings of a city. A short example of the code needed to create a simple
scene can be found in the Appendix B.1.

The user has to write some kind of a program to create the procedural system in
applications like the CityEngine which is a major drawback of existing solutions. Many
users in creative industries do not know how to write a program which is a big problem
for procedural generation tools. By removing this critical requirement, almost anybody
can use these powerful tools. In the master thesis at hand a visual “rule editor” is
described and implemented. It allows the definition of rules in a visual manner and
makes it possible to create the complete procedural system without coding.

Using procedural generation techniques, combined with a visual rule editor to define the
production rules and to create detailed buildings enables us to create complex scenes in
a shorter time than before. The users do not have to use traditional modeling techniques
and do not need to write any kind of code to create the procedural system. The use
of these techniques facilitates the creation of the needed rule sets, i.e. the procedural
systems, described in section 2.4.

The generated buildings can be used for illustration purposes, in the movie industry
as well as in architectural fields. Another possible application for such a system is the
computer game industry, where a lot of content needs to be created to build the levels
and environments of the game. This manual creation of content is very time consuming
and therefore expensive. Reducing the amount of the time it takes to create those

1Computer-Generated-Architecture - grammar
2Lindenmayer - systems
3Geographic Information System
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environments leads to sceneries which can be created with less investment of time and
therefore money. Even really big environments with many different buildings of different
styles, sizes and levels of detail can be generated by such a procedural generation system.

1.2 Problem Definition
The task of creating realistic looking buildings is very complex and not solved yet. In
this master thesis I try to improve already existing solutions by combining a “no-code”
- visual rule editor with the advantages of procedural generators. The generation of
buildings by defining a procedural rule set visually is one of the main aspects I want to
work on.

To achieve a realistic look of the buildings, both the exterior as well as the interior,
i.e. the rooms of the building, have to be generated. The rooms have to be placed in a
realistic manner to create a plausible result. The positioning of the defined rooms is an
active field of research and no perfect solution was found yet. The application should be
able to create floor plans which look plausible and may be defined in a flexible manner.

The positioning and generation of the floor-connecting elements, i.e. the elevators or
stairs, is another problem that is worked on in the master thesis at hand. Since not
only the exterior, but also the interior of the buildings has to be generated, a need for
connections between the floors in the buildings exists.

Using the available applications in the field of procedural generation of buildings
requires writing a lot of code to generate buildings and whole cities [PM01,CEW+08].
However for most people this is not an easy task due to the fact that at least basic
knowledge in programming is required. This is a big problem because the number of
lines of code that have to be written explodes, when more details have to be added to
the buildings.

1.3 Aim of the Work
The purpose of this master thesis is to develop a usable application to create 3-dimensional
buildings. I try to improve the solutions for all the previously mentioned problems existing
in current applications. The most important part is to be able to generate 3-dimensional
buildings with the implemented application by implementing a procedural generator.
This generator has to be as flexible as possible and it should be possible to add more
different rules to the system later. The application should be able to work with any input
scene, i.e. property file that is loaded into the program.

The aim of the master thesis is to create a tool which uses a procedural generation
system to generate buildings. The generated buildings may be very detailed if the rules
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for all the desired building details are created in the visual rule editor. The buildings can
have different styles, like residential buildings, office buildings or contemporary luxury
houses etc. . A big advantage of using a procedural system is that there is no limit to the
level of detail of the generated buildings. The implemented tool should be able to allow
the creation of those details if they are wanted in the resulting building. By defining
the production rules in a hierarchical manner it is possible to generate every part of a
building, therefore it should be possible to just generate the simple hull of a building or
detailed façade elements, rooms, doors etc. if that level of detail is desired.

Another aim of the proposed master thesis is the possibility not only to generate the
3-dimensional geometry for the façades, but to actually generate the individual rooms of
each floor of the building. The problem of planning and distributing the rooms inside
the floors of the buildings is very complex and a lot of different approaches to solve the
problem exist. I want to implement an algorithm that is capable of subdividing the
available space of a floor into the individual rooms realistically.

The positioning of the vertical connectors should be handled in the implemented
procedural system. The assumption that every room in a floor has to be accessible is
made. This means, there has to be at least one room connection to another room for all
of the rooms at a floor. This assumption makes the positioning of the vertical connectors
more difficult because the areas of valid positions of the vertical connectors are reduced to
ensure each room connection is actually reachable and not positioned behind the vertical
connector. I want to create a positioning system for the vertical connectors which ensures
the room connectivity and also handles small rooms containing vertical connectors by
increasing their size until a valid position is found. Not all rooms are allowed to be
connected to each other, even if they are adjacent because the hierarchical definition
of the room structure implicitly defines the connectivity of the rooms. In Section 3.1.1
more information about why this is necessary, wanted and very useful, can be found.

The application works without writing a single line of code, there is not even the
possibility to do so. It is one goal of this master thesis to show that the previously very
complex task to write a procedural system can be substituted by creating rule nodes and
connecting them via connectors in a visual rule editor. To be able to create the procedural
system and all the CGA rules that are needed to create the buildings, I implemented a
visual rule editor which is based on the work [Dav12]. It is possible to create and connect
the rule nodes being the visual representation of the CGA rules of the procedural system.
The behavior of every rule in the procedural system can be changed as well.

4



1.4 Contributions
A visual rule editor was implemented to simplify the use of the procedural generator. It
serves the purpose of creating, modifying and connecting the different production rules4

to build the procedural system. [LWW08] and [Pat] presented methods to create rules
visually instead of creating them textually. The first work presents the created rules
in a tree view and allows the modification of the values though sliders and checkboxes.
The second work features a node-based editor for the rules to visualize the dependencies
between them but also does not fully utilize the power of the visual representations of the
rules because it is also necessary switch to another part of the user interface to change
values of the rule. The implemented rule editor in this work does not only increase the
understanding of the procedural system by visualizing their dependencies but also allows
modification of the rules directly through the nodes, i.e. all possible modifications to the
values of the rules are applied via the visual rule editor. The nodes in the editor serve as
an interface between the procedural system and the user. This graphical representation
enables non-programmers to use the application, because the complexity of the created
procedural systems is easier to handle compared to text-based applications.

The generation of the rooms of a building is essential to the generation of a realistic
building and therefore very important in this work. The second contribution of this work
is the implementation of a floor planning algorithm. It is based on the work of [LTS+10]
but adapted to fully utilize the features of the visual rule editor. Rooms can be created
just like the procedural rules and are represented by visual elements in the visual rule
editor. It is possible to define the rooms in a hierarchical manner which makes additional
properties like a “private / public” distinction for rooms unnecessary and therefore results
in a bigger degree of freedom in the definition process.

Another contribution of the thesis is the introduction of a few novel rules. The two
rules introduced in the work are the “VerticalConnection” rule and the “Roof” rule. They
allow the creation of the respective building elements in a simple manner.

The two rules can be seen as “shape generators” meaning that their sole purpose
is to create a set of shapes. Those created shapes are grouped into “elements” which
are graphically represented in the visual rule editor and can be used to attach other
basic CGA rules. The attachment of the CGA rules result e.g. in the subdivision of
the handrails of the stairs for example, but many more different manipulations can be
performed to change the look of the elements.

4See A.1 for more detailed information regarding rule / production rule
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CHAPTER 2
Related Work

Before describing the details of how the program works, which assumptions were made
during the development and how the application was implemented, I shortly want to
discuss some previously published papers that have influenced the master thesis at hand. I
begin with related works regarding procedural systems themselves and their development
with a few examples. A few works about fractals and a short description about how
they relate to the L-Systems and the procedural system I implemented in the application
follows. Some examples about the procedural nature of many objects are shown and the
benefits of using these techniques are outlined.

From the discussed works that form the foundation of this thesis, I further investigate
other approaches regarding the creation of procedural content itself. Papers that describe
how it is possible to use procedural generation methods for the creation of buildings,
façades and room layouts are discussed. Since there are a lot of different approaches that
cover the creation of façades of buildings, I will shortly discuss a few of them. One of the
most problematic and open topics of the procedural generation of buildings is the floor
planning of the buildings. I will give an overview of some simple ways to generate floor
plans of buildings and briefly describe the benefits and drawbacks of my solution.

The generation of cities and street networks is another very important related topic.
I will show how the L-Systems can be extended so that it is possible to create street
networks for cities. With a street network alone, it is not possible to create a realistic
city, because there are many different looking buildings in the city that serve a different
purpose. It is shown how it is possible to realistically distribute all the different buildings
that occur in a city.

6



2.1 Procedural Systems
In the master thesis at hand I implemented an application that works by using a procedural
generation system. L-Systems are procedural generation systems and were developed by
the biologist Aristid Lindenmayer and the computer scientist Przemyslaw Prusinkiewicz
in the work “The Algorithmic Beauty of Plants” in 1990 [PL90]. The motivation for the
development of the L-Systems was to be able to simulate and visualize the growth of
different plants.

L-Systems are essentially parallel rewriting systems. An L-System is defined by a tuple
of some elements, the complete alphabet, the axiom and the set of production rules.
The L-Systems are strings of characters and they can easily be interpreted e.g by using
so-called “turtle graphics”.

A simple L-System is shown in equation 2.1 below.

n : 5
δ : 20◦

ω : F
p1 : F → F [+F ]F [−F ][F ]

(2.1)

The meaning of the equation above is described in the following paragraphs. The
value of n defines the number of iterations for the procedural generator. This means that
in this case the string defining the L-System is processed five times. The rewriting, i.e.
the iterative processing, of the L-System is started by using the defined axiom ω which is
only the symbol F in this case. The axiom can be a lot more complex in other examples.

In the first step, the symbol F is replaced by the right hand side of the first fitting “pro-
duction rule”. In the above example that is the rule p1. The result of the first “rewriting” of
the symbol F is F [+F ]F [−F ][F ]. After the second iteration, the L-System looks like this:
F [+F ]F [−F ][F ][+F [+F ]F [−F ][F ]]F [+F ]F [−F ][F ][−F [+F ]F [−F ][F ]][F [+F ]F [−F ][F ]].
Even in this simple example that final result is a long string of characters which can be
interpreted graphically using turtle graphics. The value of δ defines the angle that is
used for the rotation of the turtle whenever the interpreter encounters one of the symbols
− or +. The interpretation of the two characters turn the turtle to the left or right.

Figure 2.1 displays the result of the L-System above. The figure shows a complex
representation of a plant which would probably take a lot of time to be drawn manually.
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Figure 2.1: The resulting graphical interpretation of the L-System defined in equation
(2.1) after five iterations. The visualization is created by the mentioned interpretation of
the symbols of the resulting L-System using turtle graphics.

The example from equation (2.1) and its visualization in figure 2.1 demonstrates
how simple it is to generate a complex structure with just one production rule. It is a
so-called deterministic and context free L-System. This means that the result is always
exactly the same, no matter how often the process of the generation is started with
the same variables. Possibilities to randomize the resulting L-System exist though. In
the work by Lindenmayer and Prusinkiewicz [PL90] stochastic- and context sensitive
L-Systems were introduced. Stochastic L-Systems use an assigned probability value for
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every production rule. It is possible to randomly select a fitting production rule from a
set of fitting rules that way. This means that there may be more than one production rule
applicable for the replacement of a symbol in a stochastic L-System. For simple L-Systems
there may only be exactly one production rule present in the L-System. The equation
(2.1) demonstrates a simple L-System. Context sensitive L-Systems were introduced to
simulate the propagation of nutrients through plants for example. A context sensitive
L-System produces more realistic results, because not only the local circumstances are
taken into account when one iteration step is performed but also its neighborhood. It
only is possible to apply a rule if there are enough nutrients present for example. A
context sensitive production rule might look like equation 2.2.

a < F > b→ F [F ]
(2.2)

The definition of the context sensitive production rule means that the symbol F
is replaced by F [F ] if and only if it is directly preceded by the symbol a and directly
followed by the symbol b.

Equation (2.1) already gives a hint about the possibilities that arise with the use
of L-Systems. There are a few more extensions presented in [PL90] like “parametric
L-Systems” and extensions for the 3-dimensional interpretation of the resulting string.
Parametric L-Systems enable us to define variables and use calculations to modify the
variables and thus the resulting system. Another possibility is to use conditions for the
production rules. This means that an optional condition is checked before the selection
of a production rule is performed. If the test is successful the production rule may be
selected, but if the condition is not satisfied the production rule cannot be applied and
another rule has to be selected. By using the mentioned conditions it is for example
possible to reduce the value of a variable that represents the amount of nutrients in
each iteration to simulate the aging of the plant or to restrict the growth of the plant to
realistic measures.

Symbol replacement systems are not limited to create plants, but they are usable to
create some famous fractals like the dragon curve visualized in figure 2.2 or a quadratic
Koch island displayed in figure 2.3.

Apart from the possibility to create plants many additional applications for the use of
the L-Systems are outlined in the work “L-systems and Beyond” by Prusinkiewicz et.
al. [FKMP03]. Possibilities to use L-Systems to solve partial differential equations are
shown for example [FKMP03, 2-39]. Context sensitive and parametric L-Systems are
used to perform the needed calculations and operations which lead to the solution that is
then visualized.
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Figure 2.2: Visualization of a dragon curve after a few iterations of the L-System (taken
from [PL90]).

Figure 2.3: Visualization of a quadratic Koch island produced with an L-System (taken
from [PL90]).

Another interesting application of L-Systems is the subdivision of curves [FKMP03, 3-1]
and 3-dimensional meshes [FKMP03, 3-31]. An example shows how it is easily possible
to create a subdivision scheme that leads to in the same subdivision results like the
“Chaikin’s Algorithm” [Cha74]. The algorithm subdivides the line segments that are
connected to “inner” points of the surface meshes. Since Chaikin’s Algorithm works
iteratively, it is a good candidate for the realization and calculation with an L-System. In
each iteration step each inner point of the curve or mesh is replaced by two new points.
The positions of the two new points are calculated by a simple formula which can easily
be expressed using an L-System. The formula is shown in equation 2.3.
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P (vl) < P (v) > P (vr)→ P (1
4 × vl + 3

4 × v)P (3
4 × v + 1

4 × vr)

(2.3)

The meaning of the production rule in equation (2.3) is that for every point P (v) both
neighboring points are also taken into account for the calculation of the two new points
that replace the point P (v) in the next iteration step. The production rule is context
sensitive and is therefore not only applicable to closed curves, but also to open ones.
The production rule is not applicable and therefore not executed for the two endpoints
of the curve because those points have a different context. The position of the points
are represented by the variables vl, v and vr and the two newly generated points are
calculated according to the Chaikin’s Algorithm.

2.2 Content Generation
L-Systems provide a great way to describe natural organisms like plants in a simple way
and with these L-Systems it is possible to create a wide variety of plants and flowers,
where each individual object may be different in size and shape compared to all the
other generated ones in a scene, even if they are created using the same production rules.
Procedural systems provide enough flexibility to create almost any type of object that
needs to be placed in a scenery and it is even possible to create the complete content of
a scenery procedurally, including all background objects like landscapes, floors etc. .

While it is possible to use procedural systems to perform a wide range of different
tasks such as for simulations, the main purpose of using them is the creation of content. I
want to introduce a few works that describe the possibilities of how to use the procedural
system for content creation purposes. Many industries benefit from being able to generate
content in a fast and easy way with procedural systems and a lot of work was already done
to research the abilities of dynamic content creation inter alia for the use in computer
games and in the movie industry.

The generation of game levels is a complex and difficult task for example. I want to give
a small overview of two of the many published papers that propose methods and ideas of
how to generate game levels procedurally. The first work I want to discuss briefly is a work
by Andrew Doull “The Death of the Level Designer” [Dou]. In the series of blog posts
he mentions many different aspects and possibilities of how to use procedural content
creation for game development. The possibilities to create game content procedurally
range from the creation of the game levels e.g. for games like Diablo, Hellgate London
and Minecraft to almost all other types of content of a computer game. [Dou, 4] shows
that it is possible to even dynamically create faces for all occurring characters in a game
world. The game “Eve-Online” uses procedural generators to create unique faces for
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the characters for example, because it is important to be able to distinguish individual
persons easily in this game. Another possibility is the creation of big amounts of different
assets that are placed inside the levels of the games. A good example for a tool that
generates trees is the “Speedtree” [Spe] tool mentioned in [Dou, 4]. It is used to generate
flowers and trees in games but it is also used in the movie industry.

AI1 is also considered to be procedural content because the individual characters are
behaving differently, i.e. a randomly selected behavior from all the possible reactions to
an event is selected for each character. Other mentioned examples for procedural content
that can be created and used in games are the sound effects, which are used in the game
“Spore” for example, the changing weather situations and also puzzles and weapons.

In the published article “A Generic Approach to Challenge Modeling for the Procedural
Creation of Video Game Levels” by Sorenson et. al. [SPD11] the focus solely lies on the
automatic creation of levels for computer games. The authors use a top-down approach
for the modeling of the game levels by using a “fun” value that is calculated by taking
several aspects of the generated game level into account. This function is then used with
an evolutionary algorithm to alter the created game level. A game level is considered to
be an “individual”. By using the defined fitness function, i.e. the fun value, the level with
the best fun value is selected.

As mentioned before, a lot of games [Uni, Per, Sta, Eve,Hel] that use some kind of
procedural content generation technique have already been created. Apart from the
development of games, a lot of tools for the authoring and creation of 3-dimensional
scenes using procedural techniques have been developed [Spe,Reg].

2.3 Generating Façades of Buildings
A specialization of the generation of 3-dimensional content is the generation of façades
of buildings. Existing applications typically just produce a realistic looking hull for the
buildings that are generated because this level of detail is enough for many cases where
the generated buildings are used.

The previously mentioned L-Systems form the foundation of the procedural generation
of content and buildings. The generation is based on rules that define what happens to
previously generated intermediate elements and shapes. The work “Instant Architecture”
by Wonka et. al. [WWSR03] describes the use of a split-based shape grammar to model
the buildings for a city scene. It was the first approach to model façades of buildings
with the help of procedural modeling techniques.

1Artificial Intelligence
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With the development of the CGA grammar in the work “Procedural Modeling of
Buildings” by Pascal Müller et. al. [MWH+06] it became possible to easily create 3-
dimensional objects by the use of production rules. The CGA grammar is an extension
of L-Systems for 3-dimensional modeling purposes and is based on the before mentioned
work. It be discussed in more detail in Section 2.4.

Some papers that try to easily solve the problem of façade creation based on existing
images have been published in the past. The first paper I want to mention is titled
“Image-based Procedural Modeling of Façades” by Pascal Müller et. al from the year 2007
and uses pictures of façades to create a 3-dimensional representation of it. The different
elements of a façade are created by subdividing it into smaller elements in several steps.

The subdivisions are determined automatically and a resulting rule set is generated
from the input image. This approach leads to the creation of 3-dimensional façades which
adapt to different environmental circumstances. It is possible to use the derived rule set
that creates a façade with other geometric measures for example. Moreover, it allows to
generate façades for a building that contains more or less floors, than the building in the
input image. The derived production rules automatically adapt to the desired amount of
floors.

Another work that focuses on the semi automatic creation of high-quality façades of
buildings is “Image-based Façade Modeling” by Jianxiong Xiao et. al. [XFT+08]. A
sequence of images of a façade is used to determine the shapes and different depths for
the individual resulting elements. A complete texture of the façade is reconstructed from
the different input images at first and by detecting the horizontal and vertical lines in the
texture, a façade decomposition is performed to create the shapes of the façade. By using
the sequence of input images it is possible to calculate a point cloud for some prominent
façade points and by using a “Markov Random Field” the depth of the façade elements
is estimated [XFT+08, 6-7].

The article “Grammar-based Encoding of Façades” by Haegler et. al. [HWM+10]
introduces another grammar, i.e. a different set of possible production rules, to model the
façades. The F(açade)-shade grammar is introduced to provide a simple and compact
solution to be able to navigate and render very big scenes like the “Munich-scene” with
approx. 55Mio. triangles. By using texture atlases it is possible to reduce the amount
of the memory needed to store the information for all the textures in the scene. One
assumption made in the work is that a lot of similar elements of the façades occur in
the city and on a building. This means that the window elements of each floor may be
represented by only one shape if they are similar [HWM+10, 1, 4].

Another paper that describes a semi automatic creation of high-quality façades of
buildings from input images is the work “Interactive Coherence-Based Façade Modeling”
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by Musialski et. al. [MWW12]. The paper focuses on the creation of high-quality 3-
dimensional models of façades. Compared to other modeling tools, this work shows that
it is a better approach when “the human designer is in control of the modeling workflow”
[MWW12, 2]. Automatic splitting operations are implemented and the individual positions
of the splits are determined by a coherence-based decision process. Another contribution
of this work is the possibility to interactively modify a whole set of shapes at once. The
grouping of similar shapes is calculated automatically and e.g. split operations can be
used on the whole set of the grouped shapes in one step.

The work “Structure Completion for Facade Layouts” [FMLW14] by Fan et. al.
published in 2014 describes an approach for improving the quality of the captured façade
images. Occluded image parts are replaced by other parts of the captured image, so
that the resulting reconstructed façade image represents the captured façade as good as
possible with the incomplete data available through the input images. By using image
reconstruction techniques it is possible to create obstacle free façade images that can
then be used to actually model the façade as described in the above mentioned works
and papers.

The article “Layer-Based Procedural Design of Facades” [IMAW15] published in 2015
by Ilcik et. al. proposes the use of multiple layers for façade modeling. It is shown how
irregular façades can easily be created by using more than just one layer of different rule
sets. The layers may be applied only to a subregion of the desired complete façade and
are merged together to one 3-dimensional façade at the end.

2.4 The Generation of Buildings and Cities
The first work tackling the problem of generating whole cities was developed in 2001 by
Parish and Müller and is titled “Procedural Modeling of Cities” [PM01]. It describes
how it is possible to generate street networks with the use of L-Systems. Another
extension to the L-Systems is developed in that work. The so-called “self-sensitive”
L-Systems [PM01, 5] add an additional property that ensures that only non-overlapping
elements of the generated street network are allowed.

The work “Instant Architecture” by Wonka et. al. [WWSR03] describes the use of a
split-based shape grammar to model the buildings for a city scene. The CGA grammar
mentioned above extends the “production rules” of L-Systems to geometric operations
and was introduced in the work [MWH+06] and serves the purpose of creating the façades
of buildings. A big set of operations was developed in order to position and to modify
the generated 3-dimensional elements. The most important and most frequently used
rules are the transformation rules which move, rotate or scale the individual elements,
i.e. the generated geometry, as well as more sophisticated rules like the “split rule” which
creates many individual shapes from one base shape. Some more rules are described in
detail in the paper [MWH+06].
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In the work published in the year 2008 by Lipp et. al. [LWW08] an approach to avoid
the need to create the procedural systems to generate buildings manually is described.
A few ways of interactive editing of the rules in a 3-dimensional view of the created
buildings are developed. The possibility to create and edit the production rules visually
enables many more people to use the application. The work describes a system, where
no production rule has to be written by hand, but can instead be created visually by the
user input. This paper represents the first step of transitioning from a text based rule
creation process to a visual rule creation process. In my work I present a solution to a
mentioned shortcoming of the work of Lipp et. al., i.e. a node based rule editor.

Tom Kelly and Peter Wonka developed the paper “Interactive Architectural Modeling
with Procedural Extrusions” in 2011 [KW11]. It focuses on the modeling of exteriors of
buildings and it is also not necessary to manually write the code of the needed production
rules. It is possible to visually define “profiles” for the different sides of the buildings. A
lot of different styles of buildings, like temples, residential buildings etc. can be created
with this technique. Not all sides of the buildings need to be defined by the same profile,
but different profiles can be defined for the different sides, resulting in complex and
realistic buildings. An example of a generated building by using this technique can be
seen in figure 2.4.

Figure 2.4: A building that was generated by the use of the procedural modeling system
introduced in [KW11]. The image is taken from [KW11, 1].

All papers described previously in this Section are related to procedural building
and façade generation, but works presented in the following focus on the creation
of complete cities and enable us to bring the content generation to a bigger scale.
I will first introduce papers that describe how it is possible to generate the street
networks of cities and how the different buildings are placed in the generated spaces
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[PM01,CEW+08,VAW+09,LSWW11]. The work [WMWG09] describes the possibility
to simulate the development of a city over time.

The first work I present was developed in 2001 by Parish and Müller and is titled
“Procedural Modeling of Cities” [PM01]. It describes how it is possible to generate street
networks with the use of L-Systems. An extension to the already mentioned L-Systems
is developed in the work. The so-called “self-sensitive” L-Systems [PM01, 5] use an
additional property that ensures that only non-overlapping elements of the generated
street network are allowed.

The placement of the street network is controlled by some input images that define
intensity “values” for different variables. One of the input images is used to control where
the street networks should be positioned on the landscape for example. It is possible to
control the intensity of different street patterns that are used to create realistic results.
The street patterns are used to mimic different distributions of streets similar to real
cities. The typical look of the street networks of cities like Paris or Manhattan can be
reconstructed by using street patterns like the a “radial” pattern, a “raster” pattern or a
“branching” pattern.

The work also describes the procedure of creating all the individual “spaces” and
building areas in the city because the initial result of the procedural generation of the
street network only yields a connected graph representing the street elements in the
city. The spaces between the streets are reduced in size to account for the needed street
areas at first. A subdivision algorithm is used to create the allotments connected to the
streets in a second step and after that the buildings are placed. The generation of the
actual building geometry is again handled by using L-Systems. The work describes a
“pre version” of the later developed CGA [MWH+06].

A different approach for the generation of street networks is used in the work by Chen
et. al. [CEW+08]. The authors use tensor fields that can interactively be altered locally
to change the directions of the generated street elements. The tensor field defines the
directions of the streets and is visualized in real-time, so every modification of the values
is visible immediately.

A big advantage of this method is that no previously created textures to control
the street patterns are needed because there is no need for street patterns at all. An
initial tensor field which respects the directions of any water areas on the map is created
at the beginning of the creation process. It is possible to modify the directions of the
major and minor roads of the initial tensor field by e.g. adding a radial structure.

An approach that “combines the power of procedural modeling with the flexibility of
manual modeling” [LSWW11, 1] are presented in the work [LSWW11] by Lipp et. al.
Transforming- and merging operators are introduced in the work. The solution allows
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the manipulation of streets of the city as well as the modification of complete regions of
the network. Bigger areas of a city can be modified by using different layers for those
elements.

It is possible to translate and rotate a complete street interactively, while all affected
blocks and lots are automatically updated to fit the changed environmental circumstances.
Adding structures like a whole block from another source into the generated city layout
or to translate or rotate a big area of the generated street layout is another possible
interactive manipulation of the street network. All affected parts of the previously
generated layout are automatically updated. This means that all parts that are located
inside the newly positioned element, are cut out from the street network and the new
part in the new layer is automatically connected to the rest of the layout through new
street elements. The cut out lots are also regenerated to fill the gaps that were created.

City modeling is an interesting field of research and many other papers exist. When
modeling cities procedurally it is possible not only to generate a street network and the
buildings, but it is also possible to simulate the development and growth of a city over the
time of several years or even decades. Weber et. al. developed a system in [WMWG09]
that is able to simulate the development of a city not only on a regular grid, but using
the real geometric configurations [WMWG09, 1].

The simulation works with discrete time steps. At first some major streets are
selected for expansion by calculating a probability for each possible street depending on
the distance to the nearest “growth center” in the city. Whenever the street expansion
leads to the creation of new quarters or blocks it is determined if they are actually
generated or not. If the traffic simulation that is performed for each street element, yields
a value that is big enough, the previously “planned” new street elements are actually
generated. More and more buildings can be placed in the city when additional blocks
and lots are generated. The land use and type of the building is also simulated in the
application and can change over time. Defined value functions [WMWG09, 7-8] are
optimized to assign the different land uses to the existing and the newly generated lots
in the city.

2.5 Floor Layout Generation
With the previously mentioned and presented papers it is possible to create scenes with
a big scale, a great level of detail and a lot of variation of the generated buildings. It is
not enough to only create façades and roofs to establish really interesting and realistic
scenes though. If a scene should contain buildings with higher quality, e.g. including their
interior, additional generation steps need to be performed and the floor, which defines
the available space, has to be subdivided into the individual rooms. The creation of the
subspaces of a floor of a building is most of the time achieved by assigning the available
space to a specific room. Creating floor plans with a predefined outline is considered to
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be the hardest possible problem to solve and more complex than the creation of floor
plans with no predefined building outline. Currently some approaches to create the floor
plans of buildings that result in the creation of more or less realistic room distributions
and placements at the floor exist.

The work “Computer generated Residential Building Layouts” by Merrell et. al.
[MSK10] from 2010 describes an approach that is only applicable to the generation of a
residential buildings. A learning strategy is used to calculate the amount and types of
rooms needed in a building and its floors. The application developed in the paper uses
a “high level” input, e.g. “two bedrooms and one kitchen” are needed in the building.
An architectural program is then generated from the possibly incomplete list of rooms.
This means that all needed rooms, their sizes and adjacencies are defined in the created
architectural program. The generation of the full list of rooms is based on real-world
data and results in realistic room arrangements.

The works [HBW06] and [LTS+10] try to solve the problem of creating a realistic floor
plan for a building using mainly geometric properties and a given floor/building outline.
The first mentioned work “Persistent Realtime Building Interior Generation” by Hahn et.
al. from 2006 focuses on the generation of interior spaces only where they are needed. If
e.g. a player in a computer game walks through a big office building it is probably not
necessary to create every room inside this building. By exploiting the fact that most
rooms in buildings are connected through a kind of “portal” like a door and therefore
not all rooms can be seen from inside the building, only the current room has to be
generated (and probably the adjacent ones). To be able to only generate the needed
rooms, the work implements mechanisms that ensure that all the rooms are “independent”
from all other rooms in the building. The second mentioned paper “A CONSTRAINED
GROWTH METHOD FOR PROCEDURAL FLOOR PLAN GENERATION” by Lopes
et. al. influenced the work at hand a lot. It describes a simple algorithm which generates
the defined rooms in a floor by using a grid-based approach. The rooms are generated
by selecting start points for the rooms and then expanding the rooms from these start
points until there is no space left to be assigned to. A description of the algorithm can
be found in Sections 3.6.1 and 3.6.2, the pseudo code can be found in Appendix B.2.

In contrast to the previously mentioned papers which calculate the positioning of
the rooms using geometric properties, the paper [Mar06] and the previously mentioned
work [MSK10] are based on room graphs. While the work “Procedural House Generation:
A method for dynamically generating floor plans” by Martin describes a graph generation
algorithm in four steps [Mar06, 2], the generation of the graph in the second work is
based on previously added training data and a Bayesian network.

Another interesting work “Computing Layouts with Deformable Templates” by Peng
et. al. [PYW14] describes a system that can handle buildings with non-axis-aligned
layouts. The tiling and subdivision of the available space in a floor uses deformable “tile
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templates” that define the allowed shapes for the building spaces. At first the “problem
domain” [PYW14, 3] is used to create a quadrangulation. The quadrangulation results
in a set of quads that fill the space in the problem domain. After this operation, the
defined tile templates are used to fill the space. Different transformations to the tile
templates are allowed to create the needed tiles that fill the space. An error function is
used to calculate the total “error” of the proposed solution and “linear programming” is
employed to further enhance the solution, i.e. to reduce the calculated error.

2.6 Furniture Placement
When buildings including their floor plans should be generated, they are still empty
spaces and do not really represent a realistic result. To achieve the production of such a
realistic result, the furniture in the rooms of the buildings also needs be generated. Some
solutions that compute the placement of previously modeled furniture parts according to
design guidelines or by learning the placement by example exist [MSL+11,FRS+12].

In the work “Interactive Furniture Layout Using Interior Design Guidelines” by Merell
et. al. [MSL+11] some design guidelines are firstly identified and then used to calculate
the placements of the furniture in a room. The application works by creating a room and
then adding furniture to it. By using a “density function” some suggestions are generated
based on guidelines like “conversation”, “balance”, “alignment” and “emphasis”. The
user can then select a suggested arrangement of the furniture elements and interact with
them. Some new suggestions are then generated based on the user interactions and can
then be selected again until a good-looking arrangement with all furniture is achieved.

The work “Example-based Synthesis of 3D Object Arrangements” by Fisher et.
al. [FRS+12] on the other hand uses only a few input scenes to learn the spatial
relations between different furniture. The relations of the different parts and their
typical positioning are learned by the use of an “occurrence model” and an “arrangement
model” [MSL+11, 4, 5]. By using an additional larger database that contains additional
objects which are used to modify the input layouts and “fill in the gaps” of objects not
present in the input scenes [MSL+11, 3], a wide variety of possible new furniture layouts
can be generated.

2.7 User Interface
The mentioned work by Lipp et. al. [LWW08] allows the creation of rules by using drag
and drop techniques. The predefined rules, like “split” or “repeat”, can be arranged in a
tree view which is much simpler to understand than the text based rule definitions. It is
possible to attach rules and commands to created rules to build the needed procedural
system step by step. The different values that control the behavior of the rules can
also be set and modified in a visual manner by dragging a slider element or checking a
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checkbox for example, but those value editing options are located in a separate part of
the user interface. This approach to create and modify rules completely removes the need
for text based solutions because all interactions with the procedural system, i.e. creating
or changing production rules and their values, can be done without writing any code.

One shortcoming that was identified in the work [LWW08] is the inability to visualize
the dependencies between the individual rules. The paper “User-Friendly Graph Editing
for Procedural Modeling of Buildings” by Patov [Pat] uses a node-based visualization to
actually display those dependencies between the nodes of the procedural system. The
work is another step from the text-based utilization of procedural generation techniques
towards a simpler and faster way to handle them. My work uses many concepts of the
two papers presented above to build the visual rule editor. The main difference between
my application and the work of Patov [Pat] are outlined in Section 4.3.2.
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CHAPTER 3
Methodology and Approach

A description of the design of the application is provided in this Section. I will describe anpassenstartanpassenstart
how buildings are logically subdivided into simpler elements that can be generated in a
simple manner and give a short explanation of why this subdivision was introduced.

After this general description a short introduction how the rules work in the system
follows and a detailed look at the two novel production rules is presented in the Sections
3.4 and 3.5.

After introducing the two specialized rules, a Section covering the two main implemented
algorithms which were realized in the applications conclude this chapter. anpassenendanpassenend

3.1 The Building
A simple structural subdivision was developed for the buildings. The generated result
of the procedural generator consists of three main parts. Therefore, a short description
about those three parts of the buildings is provided in this Section followed by a much
more detailed description on how the parts work together in the generation process.

The first part of those three parts is the floor. A floor is defining a space, where the
rooms are placed and distributed. A building may contain only one floor in total, but
can also contain many differently defined floors.

The second important parts of buildings are the floor connecting elements, namely the
elevators and stairs. They connect adjacent floors in the building. Depending on the
definition of the floors the vertical connections, which are described in more detail in
Section 3.1.2, are only connecting two floors or if the floors are all defined equally they
range form the first to the last floor.
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The last and also very important main part of the buildings is their roof. They form
the top most elements of the buildings and may have a different look and type. The most
significant types of roofs are the simple flat roofs, the pent roof and the hipped roof.

3.1.1 Floors and Rooms

The most important element of a building is the floor. This floor contains at least one
room most of the time there will be a lot more rooms contained, though. If only one
room exists in a floor, the size of the room equals the size of the floor in this case.

To be able to generate a big range of types of buildings like a residential building or
an office building, a general approach for defining the rooms inside a floor had to be
created and developed. The ability to define all the differently sized rooms in a residential
building and using this same system to e.g. define several equally sized offices with only
a few differently defined other rooms was a desired feature of the application.

When searching for a solution to this problem it became clear that some kind of
hierarchy of the definitions of the rooms and room collections would be a simple solution
to the problem. I will describe how the system works in the following Section and outline
the benefits of using such a hierarchical system.

The Room-Hierarchy

When a floor is defined in the application, it describes the whole available area for rooms
that should be placed in this floor, i.e. inside the space it is assigned to. It is possible
to create a separate node for each room in the visual rule editor. This feature is often
useful for irregularly planned floors like they occur in residential buildings.

If more than one room or room collection is attached to a floor, the first attached
room becomes a “connector room”. This means that all sibling rooms, i.e. all rooms or
room collections that are located within the same parent’s subspace will be connected
through an opening, e.g. with a door, to it. By using this approach, it is always ensured
that every defined room is connected to each other. The main benefit of this approach
though is that it is not only possible to define “flat” room hierarchies, but also deeper
one’s described in the following examples.

Example One If e.g. a residential building should be created and the sleeping room
should be connected to the corridor, but also to a “private toilet” that is only accessible
through the sleeping room, this is easily achievable. In this case a new “private” room
needs to be attached to the corridor, then the sleeping room and a toilet need to be
attached to this new room collection. The room collections are just “containers” for their
child rooms. The sleeping room is the “connector room” for this new room collection
including the private toilet. The sleeping room has indeed two room connections in this
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example. It is connected to the corridor and it is also connected to the private toilet.
This is also a good example on why the connections between rooms are restricted to only
a subset of the neighboring rooms. An example of the result of a definition of rooms as
described can be seen in figure 3.1.

Figure 3.1: Screenshot of the rooms of a building from above. The private rooms are
highlighted with a colorful floor definition. The sleeping room’s floor appears yellow and
the floor of the private toilet is colored red. This is an example of the benefits of using
a hierarchy for the definition of rooms, rather than just a flat structure and randomly
chose connections between the defined rooms.

Example Two Another example of using these deep hierarchies in the definition
process of the floors is the ability to e.g. create an apartment building. If six equally
defined apartments are desired in one floor for example this is easily possible. An equal
definition means that they are almost equal in size and they all should contain the same
set of rooms. Two rooms need to be added to the floor. The first one represents the
corridor which connects all apartments with the outside of the building. The second
room represents the apartments. In this case the “count” needs to be set to six. All the
rooms that are included in one apartment need to be attached to the apartment node in
the visual rule editor.

In the visualization of the second example in figure 3.2 the six defined apartments are
connected by a corridor (white floor). The apartments consist of five individual rooms,
namely the entrance room (light gray floor), the toilet (medium gray floor), the kitchen
(dark gray floor), the living room (light yellow floor) and the sleeping room (medium
yellow floor).

Example Three A similar approach is also useful for the generation of office buildings.
A floor of the office building may consist of two or more different “regions”, i.e. room
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Figure 3.2: Screenshot of a building from above. There is a corridor connecting all six
equally defined apartments. They all consist of the same amount of rooms with the same
size definitions. To highlight the different rooms, all rooms have a different floor color.

collections. For example a region that includes only a few big single office rooms and a
region containing many smaller ones. An example of this technique can be seen in figure
3.3.

Figure 3.3: Screenshot of a building from above. The bigger rooms are displayed with a
yellow floor, the smaller ones are displayed with a dark floor color.

The possibilities with the approach of using room hierarchies are almost limitless
and the system is really flexible. The user of the application just needs to define the
hierarchies of the rooms e.g. a sleeping room and private toilet.
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The Room Connection

By using these hierarchies of rooms and room collections, which directly correlate to
the structure of room nodes in the visual rule editor, the connectivity is always ensured.
The definition also restricts which room is connected to which other room, but this is a
desired property.

Let us have a look at the example one from before (figure 3.1). When the generation
process of the room connections starts there is only one room available to be connected to
the private toilet. The exact position of the connection is not defined, but it is guaranteed
that the private toilet will always be connected to the sleeping room.

The room connection generation process is started after the rooms were positioned
at the floor. The exact positions of those connections are calculated randomly, but it is
always defined to which other room a room is connected.

The Room Planning

The generation process for the rooms themselves is executed before the room connections
are generated. I would like to discuss which method is used to calculate the needed
positions and shapes of the defined rooms in a floor. A more detailed description of the
floor planning algorithm can be found in Sections 3.1.1 and 3.6.1 and a simple pseudo
code of the algorithm can be found in Appendix B.2.

I decided to keep the things as simple as possible, while generating realistic and
good-looking results. To reach these goals different possibilities to create a floor plan
were researched. A simple solution by Lopes et. al. [LTS+10] uses a grid structure to
calculate and position the rooms in the floor.

The application works with a hierarchical definition of rooms, therefore a modification
of the algorithm described in the work [LTS+10] was necessary. The algorithm basically
starts from the root element of the floor which is the floor element itself. The desired
sizes for all attached room definitions are determined and a “start position” inside the
floor is calculated. Starting from this position all rooms grow/expand until all available
space of the floor is assigned to a room. If one of the planned rooms is a room collection,
the whole process starts again, but this time just for the subspace this room was assigned
to in the first step. By using this recursive approach of distributing the rooms of the
floor, the mentioned deep hierarchies of rooms are possible. All details are described in
the Section 3.6.2.

3.1.2 The Vertical Connection

The creation of the vertical connections is not an easy task. I decided to simplify the
generation process by creating the additional vertical connection - rule. The geometry

25



setup is handled in the rule, so this part of the creation of the vertical connections is
nicely handled. If more than one vertical connection from one floor to another exists, the
generation process is executed for each of them separately. For a more detailed insight
at the design decisions please refer to Section 3.4 and for an explanation of how the
implementation works please see Section 4.11.12.

The real problem that arises with the definition of vertical connections is the positioning
of them inside the rooms. Since the positioning process is started after the rooms are
planned on a floor in the current implementation, sometimes no valid possible position
exists and the connection cannot be placed properly. To overcome this issue the amount
of needed space for the vertical connector is initially added to the floor planning stages,
hence it is more probable for the room to be big enough to position the connector in a
valid manner.

The main reason for the positioning problem of the vertical connectors is not the size
though. Since it is an additional requirement for each room to be connected to another
room, a validity check is performed. The connection room is implicitly defined for each
room as mentioned in Section 3.1.1. This test determines if there is enough space to
create a connection for each room. If a potentially valid position for a vertical connector
inside a room is found with regards to the spatial circumstances, this “connection check”
is performed and may fail. In this case another possible solution for the placement is
searched and tested until a valid position is found or none of the checks were successful.
In the latter case the vertical connection is not created.

Types of Connections

Two types of vertical connections exist in the application. The first type is the stairs
which may have different predefined shapes. It is possible to create straight, L-Shaped,
U-Shaped and spiral stairs. A more detailed description about the stairs can be found in
Section 3.4.2.

The elevators are the second type of vertical connections. They are described in more
depth in the Section 3.4.1.

3.1.3 The Roof

The roof of the building is the last very important element. A special rule for the handling
of the generation of the roof, like for the vertical connectors mentioned before, was defined
and implemented. The creation of the roofs should be possible in an easy way while
maintaining a maximum of flexibility which is ensured with the implemented rule.

Since the generation of the roof is the last step of the building creation, all defined
floors and rooms, including all the connections, and even the façade elements already
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exist. The system is defined in a way, so that the generation of the roof does not interfere
with any other elements of the building.

Roof Types

A requirement for the application is to be as flexible as possible which means that it
should be possible to create different looking roofs for the buildings. Therefore simple
flat roofs, pent roofs and hipped roofs are available in the application. The hipped roofs
are the most complex roof type because there is more than one roof part present in the
resulting geometry and the shapes of those parts of the roof need to be calculated and
generated.

As described in Section 3.6.3 in detail, a straight skeleton algorithm is used to generate
the individual parts of the hipped roofs. The pseudo code of the implementation can be
found in Appendix B.3. The algorithm is modified and adapted to the needs of a roof
generation application. It works for all building shapes that only consist of straight lines
and the algorithm ensures that courtyards of building are handles correctly. Different
slopes as well as extents may be defined for individual parts of the generated roof.

The straight skeleton algorithm is modified in a way, so that it allows the handling of
different slopes of the individual roof parts. More realistic roof definitions can be created
this way and another (a fourth) type of roofs is made available: the saddle roof. It is
just necessary to assign a slope of 90◦ to the respective roof parts. For more information
on how assigning different slopes to roof parts is working please see 3.5.3.

The handling of the roof extent is dealt with in a post generation step of the roof
parts. The points defining the eaves of all the individual roof parts are modified in their
position and height.

When a building contains a definition of a pent- or a hipped roof, it is possible to add
more details to the roof. One aspect is the automatic handling of the defined 90◦ roof
parts resulting in additional wall parts of the building, i.e. not only roof parts themselves
are generated in the roof generation step. Furthermore the roof rule may be used to
create a lot more shapes than just the mentioned roof parts themselves. These parts
are the purlin- and the rafter elements as well as an additional “ceiling” element. With
the last mentioned element it is possible to define a vertical closure for all the rooms
that are positioned in the top most generated floor. The other two mentioned elements
are part of the roof’s substructure and lead to a much more detailed visual appearance
of the roof by adding a lot more geometry to it. The generation of the additional and
optional elements is handled by the use of other existing basic CGA rules in the system
as described in Section 3.5.3.
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3.2 How the Rules Work
The whole procedural system is based on the mentioned production rules. These rules
are used to generate and modify the geometry of the building, its walls, roof parts, stairs
etc. . The rules are set in the visual rule editor and they use the defined settings to alter
a shape.

Each of the rules developed in the system implements a function which is executed
for every production step in the generation process. The signature of the function is the
same for all the rules and always it uses a “Shape”, a “PolygonShape” or a “PathShape”
as an argument and returns an Array of shapes as a result. More information about the
shapes can be found in the Section 4.2.4.

In each generation step a predefined or precalculated scope or shape with its size,
rotation and translation is used with the rules. After the application of a rule to a shape,
the execution yields one or more new and modified shapes as a result. Those results
are then used as input for the next production rules that are defined in the procedural
system.

3.3 The Specialized Rules
First of all an introduction of two new rules that are implemented in the application
is provided. Those two rules are more specialized than the default CGA rules applied
in procedural generators. The usage of both of those two rules results in the simple
generation of complex geometry.

Apart from the standard CGA rules like split, resize, translate, rotate etc. I decided to
implement two more specialized rules that simplify the generation process of 3-dimensional
buildings drastically. The first rule connects two or more floors of the building and is
called “vertical connector”. The second new rule is used for the generation of the roofs of
the buildings is named “roof rule”.

Both rules do not derive from the basic rule viewmodel and are also not handled like the
other implemented rules because they are not applied to a shape. The assumption that a
building can only have one roof is made. Even though this is a simplification it works
for most buildings very well. The generation of the roof is executed after the geometry
of the rooms and façades is calculated. As described in Section 3.1 the generation of
the roofs is in fact the last step of the individual generation steps in the current state
of the application. The vertical connectors are also treated specially because the room
planning partly depends on the presence of a vertical connector inside a room. The
connectors might need a big area of the room in which they are placed. Additionally, the
connectivity to the rooms that are adjacent to those containing the vertical connector
has to be ensured, see Section 3.4.2 for a description.

28



The simple idea behind the two introduced rules is that they just serve the purpose of
shape generation. This means that the resulting geometry is generated exactly the same
way like all other shapes and elements are generated. The most important reason and
the main benefit of just using the three implemented shape types described in Section
4.2.4 as a result of the two production rules is that they are all modifiable by the use of
the other implemented CGA rules. It is possible e.g. to split up the railing of a stairs
into many more shapes to be able to add a lot more detail to it. The modified railing
is not just a big and complex path shape, but instead it is split up into more different
looking path shapes. Each and every single one of those created elements can be seen e.g.
as a Section of the railing consisting of a glass panel and a handrail.

To be able to modify these generated elements, they have to be able to be connected
to other CGA rules. I decided to implement “elements” for the two rules. These elements
are different for the two rules, but they work in the exact same way. For a description of
the elements please refer to figure 3.4. All implemented elements are represented in the
user interface by a label and a connector. The connector is used to modify the elements
by assigning other production rules to it, i.e. by connecting them.

Figure 3.4: This figure shows the implemented elements of stairs. All elements are
grouped at the bottom of the visual representation of the stairs rule. Each element is
a combination of a label and a connector. The individual shapes of the elements are
calculated automatically and can be modified by attaching rules to the connectors.

I implement several different elements for the vertical connections as well as for the
roofs. If the user adds one of these rules, some rules will automatically be attached to
the vertical connector rule and to the roof rule. By changing e.g. the type of the roof in
the visual rule editor the elements will change to fit the type of the selected roof. The
elements can be modified by attaching other rules.

3.4 The Vertical Connector / Stairs Rule
The vertical connector is the first specialized rule implemented in the application. It
serves the purpose of connecting two or more floors of a building, thus the name of
the rule. The most commonly realized types of vertical connectors were chosen and
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implemented. The connectors can be used to create elevators, which are the simplest
vertical connectors, and stairs, being much more complex. If a stairs should be generated
to connect two vertically adjacent floors, four different types of stairs can be selected.
The default “straight” stairs, a “U-shaped” stairs, the “L-shaped” stairs and at last there
are the “spiral” stairs all of which are implemented in the application. The stairs can
be seen in figure 3.5. An example for a straight stairs is shown in the top left region, a
U-shaped stairs in the top right region, an L-shaped stairs in the bottom left region and
a spiral stairs in the bottom right region of the image.

Types of vertical connectors Some different types of vertical connectors exist in the
system. In the following Sections a description of all their special elements and behavior
is given.

Figure 3.5: Top left: example of a straight stairs. Top right: L-shaped stairs. Bottom
left: U-shaped stairs. Bottom right: spiral stairs. Only the default stairs definitions are
used in the visualizations.

3.4.1 The Elevator

The elevator is the simplest vertical connector present in the system. It occurs in a
wide variety of different buildings so it was decided to implement it in the procedural
generator. Elevators may be located in an apartment building, but they are usually
also present in office buildings, when there are a lot of floors. The positioning of these
elevators is relatively simple and almost always succeeds compared to the stairs because
an elevator uses less space in a room which makes the positioning easier. Finding a valid
position inside a room is easy because it is more probable for the adjacent rooms to still
be accessible, even in case the elevator is positioned at a wall that contains the desired
room connection.

30



When the elevator is positioned by the application only its position has to be defined.
The “rotation” of the elevator is determined after a good position was found for it. The
placement is valid in case the needed space of the elevator lies completely inside the room
defining outline and only if enough space for all rooms that need to be connected to the
elevator-containing room exists.

After a valid position of the elevator was found, the sides of the elevator doors are
calculated. The side of the doors may be different for the individual connected floors
because their layout may be different. An example for this case can be seen in figure 3.6.
The elevator door is typically headed to the room center. Therefore, if the room center is
positioned in such a way that the elevator door would be positioned at a wall, another
fitting side is selected for the elevator door.

Figure 3.6: Visualization of an elevator. The floor setup at the top most floor is different
than the ones below. The doors of the elevator are positioned at another direction of the
elevator because of the different shapes of the rooms.

The Elements of an Elevator

When a vertical connection is added and the type is changed to an elevator some elements
that can be modified and worked with are created. The default setting including the
attached element rules consists of four rules.

The first element is called “wall elements”. It represents all the shapes that are created
for the walls surrounding the elevator. A scale rule named wall elements attached to
the elevator element is available in order to scale the wall elements to the needed sizes
because by default all simple shapes have a side length of 1m. It scales the shapes in
a way so that the walls of the elevator are 0.1m thick. There is another rule attached
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to this scale rule which is used to actually generate the geometry for the created shape
scopes.

The second and last element present in an elevator vertical connector are the “entrance
elements”. As the name suggests, they are used to generate the shapes for the wall side
that contains the elevator doors. A simple split rule is attached to the element and
leads to two simple shapes at the side of the door. Those side elements are connected
to the definition of the other wall elements for the elevator, thus they will be generated
the same way. The middle element is not connected to anything by default, but any
user-defined rule or set of rules may be attached to model and generate the actual doors
of the elevator. Figure 3.6 is an example for additionally modeled elevator doors (green).

3.4.2 The Stairs

The second type of the vertical connectors are the stairs. There are four implemented
types of stairs available in the system to provide flexibility in the generation of the
buildings.

The process of the positioning of the stairs is significantly more complicated than the
positioning of elevators. The main reason being the bigger space consumption of the
stairs. While an elevator only has a constant space requirement, regardless the height
of the rooms, the stairs space requirement rises as the height of the floors rises. The
taller the floor the more size is required by the stairs that connects the floor with its
top adjacent floor. The reason behind this is that more steps are needed to connect the
floors.

The amount of steps needed to create a stairs is dependent on the floor height. The
rules that define the maximum step height and minimum step width are taken from the
ÖNORM. This approach leads to realistic stairs, which are not too steep or flat, and
also implements a realistic size constraint to the stairs. The restrictions taken from the
ÖNORM are used to ensure that the stairs consists of enough steps. A maximum height
of 0.18m per step is used in the system. The steps also need to be wide enough. Therfore,
each step has a length of at least 0.27m measured 0.45m from the “inner” side of the step.
The last constraint that is implemented in the system is that according to the ÖNORM,
the average human step length is measured at 0.63m. The formula 2 ∗ h+ b = steplength
is the reason for the maximum of 0.18m height and minimum of 0.27m length of a step
(2 ∗ 0.18 + 0.27 = 0.63).

An additional aspect of the positioning of stairs is that it must be ensured that
people can actually access it. This means that there is the need for an additional free
space at the start and at the end of each stairs. This space is added to the stairs, when
the positioning process starts for the vertical connector. For simplification reasons this
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space requirement at the start and at the end is assumed to match the width of the stairs
and is a square. Figure 3.7 visualizes the additional space needed.

Figure 3.7: Visualization of the additional space requirements for placing a straight stairs
inside a room. The reddish areas are the added spaces that also need to fit in the room.
Between those areas the actual stairs is positioned, which is cut off in the visualization.

The Straight Stairs

The straight stairs are the simplest type of the stairs, but a lot more complex than the
elevator. Figure 3.5 (top left) visualizes an example of a straight stairs. The outer shape
of a straight stairs is a rectangle and all steps are aligned in one direction.

This circumstance leads to a big space requirement in one direction of the stairs, i.e. the
stairs is quite long. If we assume a floor height of 3m and apply the previously mentioned
rules taken from the ÖNORM, 17 steps would be needed in total. This number is applicable
for all different types of stairs as described later. The 17 steps needed to connect the two
imagined floors “consume” a length of at least 4.32m ((number_of_steps− 1) ∗ 0.27m)
which may be a problem for the positioning of this stairs in a small room. In fact the
length is not only 4.32m but a little bit more because of the step length rule where
2∗height_of_step+ length_of_step always equals 0.63m to ensure a comfortable usage
of the stairs.

The total size needed to be able to position this straight stairs is 1.5m (default stairs
width and not changeable in the system) by 5.94m (4.44m plus 1.5m because of the
additional space to access the stairs).

The L-Shaped Stairs

The next and slightly more complex type of stairs is the “L-shaped” stairs. The main
difference to the straight stairs is that this type of stairs is not just heading in one
direction, but it has a turn in the middle as demonstrated in the top right area of figure
3.5. In the system it is assumed for both parts before and after the turn to be the same
size and to have the same amount of steps. Therefore, an additional step is generated for
an odd number of minimum steps.

33



The U-Shaped Stairs

A U-shaped stairs is again a slightly more complex type of stairs than the previously
mentioned L-shaped stairs. However, if there is an odd number of steps that are needed to
connect two floors, an additional step is generated similarly to the process of calculating
the number of steps of the L-shaped stairs. This is done to simplify the generation of the
geometry as well as the positioning of the stairs because the outline of the stairs remains
a rectangle and is therefore easier to position inside a room.

Compared to an L-shaped stairs a U-shapes stairs does not only have one, but two
turns into the same direction, forming a “U”-shape. The two turns, i.e. the platform,
do not contain any steps, which is also a simplification in the system. The required
additional space for entering and exiting the stairs are added again, when the system
tries to position the U-shaped stairs inside a generated room. An example of a U-shaped
stairs can be seen in the bottom left area of figure 3.5.

The Spiral Stairs

The last and most complex type of stairs in the system are the spiral stairs displayed in
the bottom right area of figure 3.5. The positioning of those stairs is not more complicated
than the previously mentioned types of stairs, but the shapes that are generated using
this type of stairs are a lot more complex than the shapes that are created for the other
stairs. Spiral stairs, like the other types of stairs, also take the height of the floor into
account when the needed size is calculated. If e.g. a floor is 3m tall, the diameter of the
spiral stairs is smaller than when a floor is 5m tall. See figure 3.8 for a comparison of the
space needed to create a spiral stairs for the different floor heights mentioned.

One example for the more complex shapes are the steps. For the other types of stairs
the generated step geometries are simple shapes because the shape of those steps are
simple cuboids that can be modified. The geometry of steps in a spiral stairs are polygon
shapes though. The polygon for each step looks like a part of a ring-shaped geometry.
Other complex shapes are the railings that follow path around at the inner side as well
as the outer side of the spiral stairs.

In addition to the more complex geometries that are generated for the spiral stairs,
also their positioning and rotations are determined in a more complex manner. The
steps and risers have to be positioned around the center of the spiral stairs and rotated
accordingly.

While the geometries and the transformations of the individual elements of the spiral
stairs are more complex than they are for all the other stairs and the elevator, it is still
possible to modify each and every generated shape. This fact is the main reason for the
the vertical connectors to be designed and implemented as shape generators. The shapes
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Figure 3.8: Comparison of the size and the space needed by a spiral stairs which are
created for a floor height of 3m (bottom) and for a floor height of 5m (top).

are always either simple shapes, polygon shapes or path shapes and can therefore be
modified in all ways by using the CGA rules.

The Elements of the Stairs

When a stairs is added to the procedural system, some shapes are generated if the stairs
is connected to the building somehow. Some elements that can be modified when a stairs
rule is added exist in the visual rule editor. By default the stairs rule looks like depicted
in figure 3.9. The displayed rules constitute the rule set used for the generation of the
spiral stairs in figure 3.5. A difference to the elevator vertical connection is the fact that
there is no axiom rule needed for the actual geometry generation. In figure 3.9 there is
no axiom rule attached.
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Figure 3.9: The rules that are automatically attached to the stairs rule for each added
stairs in the visual rule editor are shown in this figure.

The wall elements represent the shapes that are generated for the railings of the stairs.
The wall elements of the stairs consist of both handrails along the stairs unified with the
outline of the stairs on the top floor. Please refer to figure 3.8 (top) for a good example
of the wall element. The whole element consists of the inner handrail, the top part that
connects the inner and the outer handrail and the outer handrail. The wall elements
are the most complex shapes that are generated for stairs. They are always pathshapes,
since the generated outline represents the path of the shape by default and the cross
section is defined as a square with the side length of 1m. By default there is a path rule
attached to the wall elements connector. It defines the mentioned cross section of the
railing shapes. Not scaling the wall element of the stairs would result in a 1m by 1m
cross section of the railing. To change such an unrealistic size of the railings another rule
is attached to the path rule. This scale rule is used to bring the railing into a realistic
shape by scaling the “thickness” of the shape down.

The steps are probably the most important elements of the stairs. The “steps element”
is used for the geometry generation of the shapes representing the steps. In most cases
the generated shapes are simple shapes, which means that they are just cuboids. Only
when a spiral stairs should be generated, the shapes created for the steps of the stairs
are polygon shapes. A simple cuboid does not fit the geometric needs in that case. By
default a simple scale rule is attached to the steps element connector. It changes the
default size to a more realistic value for the thickness of the shape.

The last elements that can be changed, when working with the stairs rule, are the
risers. Unlike the steps, those risers are always just simple shapes, i.e. cuboids. The
risers are the step-connecting elements that do not really need to but may exist at a
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stairs. The risers are by default connected to a scale rule to bring the generated shapes
into a more usable and more realistic size.

3.5 The Roof Rule
The second specialized rule introduced in this application and master thesis at hand is
the roof rule. Similarly to the vertical connections, I tried to keep the usage of the rule as
simple as possible while allowing as many manipulations as possible. These manipulations
can be done by the use of the other simpler CGA rules implemented. Generating the
roof is the last of the generation steps performed by the application. The roof represents
the top most element of the buildings and are therefore handled at the end of the process.
All previous stages have already been handled at this stage. The decision about how
many floors should be generated, which rooms should be positioned and how they should
be connected has been made before.

Types of Roofs The three most commonly used types of roofs were implemented in
the application and will be described in the following Sections. The first and simplest
type of the roofs is the flat roof depicted in figure 3.13 (top). The flat roof basically just
generates a horizontal roof that only consists of a polygon shape and some surrounding
shapes which are used to form the boundaries of the roof. The second implemented
roof type is the pent roof as seen in figure 3.13 (middle). When a pent roof should be
generated there are a lot more elements available to connect other rules to. Also, an
additional value that defines the direction of where the roof is higher and where it is lower
exists. The third and last roof type is the hipped roof being the default setting when
adding a roof rule to the visual rule editor see 3.13 (bottom) for an example. I decided
to add these three roof types because many realistic scenarios of generated buildings can
be created merely with those three roof types.

3.5.1 Flat Roof

The simplest variant of the roofs that can be generated using the procedural system
are the flat roofs. These flat roofs are sometimes used in contemporary architecture for
modern residential houses, but they are also the most common type of roofs for bigger
buildings like factories and office buildings. Since this roof type is commonly used, I
decided to integrate it into the presented procedural system.

A flat roof consists of two main parts which both can be modified by using the
implemented basic CGA rules. The first elements are the wall elements representing the
possible wall elements that enclose the entire roof. After adding a flat roof to the visual
rule editor, a rule that scales the wall shapes is attached to the wall elements connector.
This scale rule is used to resize the default-sized wall shapes to a useful and more realistic,
but still changeable size. In order to see the actual geometry of the generated wall shapes,
an additional axiom rule is attached to the output connector of the scale rule.
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The second element that can be used to modify the look of the roof is the “roof element”
itself. By default there is a polygon rule attached to the element’s connector. This
polygon rule is used to define the “thickness” of the roof geometry and can be changed
to other values.

3.5.2 Pent Roof

Pent roofs are a popular type of roofs nowadays. They are mostly used for residential
buildings and frequently seen in suburban and rural areas. One advantage of the pent
roofs is that they are cheaper to build and construct than the more expensive hipped
roofs and flat roofs. When a pent roof is created in the visual rule editor, the available
elements change and another set of attached rules appears in the editor. The five elements
are described in the following Sections.

When a pent roof is defined in the visual rule editor, three main values for the roof
may be modified. The first value “default slope” controls how steep the roof should
be. A smaller value, which may be more realistic, leads to a roof that is almost flat,
while a higher value (the maximum value is 89◦) leads to very steep roofs. The second
modifiable value “default extent” determines how much the generated roof extends the
building layout, i.e. the outline of the building. The third value represents the angle of
the pent roof. A value of 0 represents a roof with the lowest parts “in the west” and
the highest parts “in the east”. It is a virtual value corresponding to an arrow at the
origin of a coordinate system pointing in the specified direction. A value of 0 defines an
arrow that points from the origin “to the right”, whereas 90 would result in an arrow
pointing from the origin “to the top” etc. . The imaginary arrow defines the direction of
the slope of the pent roof. Of course all values are possible not only the two mentioned
ones. Values that lie between the two mentioned examples (0, 90) result in the creation
of quite interestingly generated roofs.

The wall elements for pent roofs serve a slightly different purpose than those for the
flat roofs. To understand the need for a wall element, when working with pent roofs
please see figure 3.10 (top), where a visualization of the wall elements can be seen. The
wall element is handled in a special manner both for pent roofs as well as for hipped roofs.
By default there are two rules attached to the wall element connector. This approach is
used to be able to control the size and behavior of the complex shapes by just using the
existing rules. The first rule attached to the wall elements is a scale rule named “wall
added height”. This rule simply serves the purpose of being able to add a certain height
to the roof. If the z-value stays zero, no height will be added to the roof, but if a higher
value is inserted the roof will be positioned at a higher height. Additionally, the wall
elements will also be taller in order to connect the roof with the top most generated
floor. In figure 3.10 a comparison of two different values for this wall added height can
be observed.
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Figure 3.10: Comparison of the different values for the “wall added height” value. The
top image does not have any height added to the walls, while the bottom image uses an
added height of one meter. The wall elements are highlighted. This feature could be
used to create an attic for example.

The second rule that may be attached is used for handling the wall thickness of the
generated shapes. Since the roof has a slope bigger than zero by default, the resulting
wall shapes are not just simple shapes represented by cuboids, but polygonshapes and
they need to be handled accordingly by using the polygonshape.

The second element for pent roofs is the roof element. By default there is another
polygon rule attached to the connector. It defines the thickness of the generated pent
roof and works similarly to the roof element of the flat roofs.

The ceiling element is the next available element to modify the roof. There is no rule
attached to the connector by default, but it is possible to attach a polygon rule to it.
When such a rule is added to the ceiling element connector, an additional ceiling will be
generated. This ceiling consists of a polygon shape which can also be modified.

The fourth element for pent roofs are the purlins. The purlins are part of the roof and
are distributed automatically if a “lines in polygon” rule is attached to the element’s
connector. The process of the purlin distribution can be modified as well. For more
information on how the “lines in polygon” rule works please refer to Section 4.11.9. The
shapes created from this rule can subsequently be resized and modified in all possible
ways.

The last modifiable elements available are the rafter elements. To generate the shapes
representing the rafters, a lines in polygon rule has to be attached to the element’s
connector. This element works like the purlins described before, but when they are
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generated, it affects the wall added height value because there always needs to be a
wall element between the rafter shapes which is an assumption that was made in the
application. This decision was made to keep the resulting buildings as realistic as possible.

3.5.3 Hipped Roof

The roof parts of the hipped roofs are calculated by using a modified “straight skeleton”
algorithm I implemented. An example of the individual roof parts can be seen in figure
3.11 and a description of the implemented algorithm can be found in Section 3.6.3. It
allows the modification of the slope and the extent of individual roof parts which is very
useful if one or more sides of the building should not have an eave for example. By
setting the respective slopes of the roof part to 90◦ it is possible to generate saddle roofs
with the help of the hipped roof system. An example of a saddle roof can be seen in
figure 3.12.

Figure 3.11: A generated hipped roof from above. Some complex roof parts are generated
due to the defined different slopes and extents of some roof parts. The shape of the roof
parts is highlighted with a border to demonstrate the complex shapes.

Figure 3.12: By setting the slopes of some roof parts to 90◦ it is possible to create
saddle-like roofs for the buildings.

It is possible to set two default values for a hipped roof. The two values control
the default slope and the default extent of all roof parts. Since more than just one
roof part exists when a hipped roof is generated, the default values are assigned to all
the generated roof parts. The angle, i.e. the pent direction, is not needed here and is
implicitly determined by the “base points” of the roof parts. These two points of the
roof part have the lowest height and define the eave.
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The elements that can be modified work exactly the same as they do with the pent roofs.
A description about them can be found in the previous Section 3.4.2. One exception are
the purlin shapes. Those are calculated for every roof part and since adjacent roof parts
share common “outlines”, two purlins would be created at the exact same position if no
special handling would be performed. Purlins, which are generated for a single roof part,
are always located “at the outline” of the roof part-defining polygon. One exception to
this are roof parts with an extent bigger than zero. In case of a roof part with a certain
extent which is bigger than zero, the lowest generated purlin is not located at the lowest
possible part of the roof part, but instead it is located above the building wall to ensure
a realistic look of the generated roof parts.

A specific feature of the hipped roofs is the possibility to change the slope and extent
values for each roof part separately. The assignment of individual values to a roof part
is possible by double-clicking the roof part in the 3-dimensional view. A small context
menu opens for the selected roof part in the 3-d view. After clicking the “OK” button
the values are assigned to the roof part. The selected part is calculated by a hit test
check. The values of the individual roof parts can then be modified in the same way,
i.e. by double-clicking it, or by opening the added “roof parts” section in the roof rule.
The possibilities that arise by defining different slopes and extents for all roof parts are
enormous and result in distinct styles of the buildings. Combining the possibility of
defining those values with the option of defining randomly distributed values gives the
generated building a completely different look when a new version is generated. Please
have a look at figure 3.14 to see an example of completely different roof styles which were
generated by using the exact same definitions in the procedural system.

3.6 Important Integrated Algorithms
A short introduction regarding the most frequently algorithms which were implemented in
the application is provided in the next Section. There are many implemented algorithms
that were modified to fit the needs and to be easily integrated into the procedural system.
In the following Sections a description on how the algorithms work is provided. For
details on how the presented algorithms work and on how the algorithms are implemented
and integrated into the procedural system please see Sections 4.11.11 and Section 4.11.12.

3.6.1 The Floor Planning Algorithm

The algorithm for the floor planning probably constitutes the most interesting and also
most important algorithm implemented in the application. Since not only detailed façades
need to be generated in the work at hand, but also the creation and distribution of all
the rooms inside the floors of a building is included this is a major part of this work.
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Figure 3.13: Comparison of the three available roof types in the application. From top to
bottom: flat roof, pent roof, hipped roof. No additional rules are attached to the default
roof rules.

Figure 3.14: Two simple hipped roofs created by the exact same procedural system
definition. The random values for two roof parts (slope and extent) result in very different
roof shapes.

General Description

The floor planning algorithm of my program basically works like the one described in the
paper “A constrained growth method for procedural floor plan generation” by Lopes et.
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al. [LTS+10], but some modifications were made to the algorithm to ensure that it works
percectly with the developed system. One of the reasons for some of the modifications in
the algorithm is the ability to better generate floor plans and provide a more realistic
distribution of the defined rooms. Other parts of the algorithm presented in [LTS+10]
had to be adapted to fit the desired properties of the procedural system. A definition of
the deep hierarchies of rooms and room collections needs to be provided by the algorithm.

The Pseudo Code

The pseudo code for the subdivision algorithm can be found in the Appendix B.2. It
describes the steps that are performed in the algorithm to solve the problem of realistically
distributing the defined rooms and room collections within the available space of the
floor. A short description of the distinct steps follows below.

The Steps of the Floor Planning

The algorithm for subdividing a given floor is based on the work [LTS+10] but modified
and extended to fit the needs of this application. Since a hierarchical structure of rooms
and room collections is given by the user input, there is no need for a distinction between
“public” and “private” rooms for example, whereas this is the case in the mentioned
work [LTS+10].

The algorithm my algorithm relies on uses a “building node” as input. This building
node represents the information of the complete building and contains the “building rule”
amongst other important objects. The building rule is always considered to be the “root
rule” of the procedural system.

At first all floor rules that are attached to the building rule are used to define how
often the loop at the very outside of the algorithm should be executed. This means the
following steps are performed for all different floor definitions, i.e. for each attached floor
rule.

The first step in the algorithm is the initialization step for the layouter grid. The grid
constitutes a very useful class that allows some simple operations like assigning a “room
node” to a grid cell. From this basic operation more elaborate possibilities of modifying
the grid exist.

After the grid was initialized with the fitting amount of cells, the subdivision of the
provided floor plan itself begins. The process works almost exactly like the algorithm
shown in the paper [LTS+10] and will be discussed in the following Section 3.6.2.

When the subdivision step itself is finished, a few more steps in the generation process
follow. At first all generated rooms are determined and using the defined rule set from
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the visual rule editor, all attached rules are added to the corresponding generated room
nodes.

The next step in the generation process is the generation of the “initial” wall objects for
the current handled floor. Subsequently, the actual floor nodes are created. Depending on
the amount of floors that were defined in the user interface only one or many floor nodes
are generated. All defined rules are attached to the floor node meaning that the default
definitions for the doors, the façade and the floor elements themselves are attached. The
floor nodes are then attached to the building node.

At this stage all the floors have been generated, the wall elements exist and the rooms,
the floors and the building itself contain all defined rules. The next steps of the generation
algorithm position the vertical connectors between the floors.

For each floor that was generated with a “new” floor rule, i.e. the first or lowest of
possibly many equally subdivided floors, all defined vertical connectors are positioned.
After the positioning step, the modified objects are updated because it is possible that
rooms change their shapes for example.

3.6.2 The Subdivision Algorithm

One important part of the floor planning algorithm is the subdivision of the available
space in the floor. To provide an overview of the chosen solution the basic steps of the
algorithm are described in the following parts of this work.

The subdivision algorithm is always executed after the layouter grid was initialized.
The input into the subdivision algorithm is always a room or a room collection in case
the room contains more than one subspace. The initial subdivision step in the algorithm
is to create the actual child room nodes for the generation graph.

If the current input room node is a room collection, at first the start positions for
the room expansion on the floor are calculated. Those start positions are located next
to the outer border of the floor outline and the distances between the start points
correspond to the relative size definitions of the rooms. This means that two big rooms
have start positions that are located farther away from each other, than two smaller
rooms because the resulting sizes of the rooms will be affected by the start positions of
the room expansion.

After all the start positions were calculated, the affected grid cells, i.e. the grid cells at
the start positions, are determined and assigned to the corresponding room. To ensure
that the rooms are never too small, even if there are many rooms defined at one floor,
the initial assignment does not only assign one grid cell, but also its neighbors to the
room. The size of the start area depends on the room because in the application the
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“connector room” starts with an area of 2m× 2m , while the “normal rooms”, i.e. the
connector room’s siblings, start with an area of 1.5m× 1.5m. See figure 3.15, subfigure
1, for a visual explanation about the start points. This distinction of different start areas
is useful to ensure the connectivity of the rooms with the connector room (a minimum
width of 2m is assumed to be enough for corridors).

The next step is the expansion step for the rooms. The expansion strategy randomly
selects a room and a direction out of the possible expansion directions for that room to
grow the rooms iteratively. See figure 3.15, subfigure 2, for visualization of one expansion
step of a room. The possible expansion directions for all the rooms are determined
between the expansion iterations by checking if the expanded room is already located
next to another room on one of the four sides. If the room was expanded until it is
adjacent to the floor outline or another room, the affected direction is removed from
the possible expansion directions. The selection of the rooms to be expanded is done
randomly respecting the current size of the room and the desired relative sizes of all
rooms. The expansion is randomized but still respects the desired size constraints this
way. When no room has an allowed expansion direction left, see figure 3.15, subfigure
3 for an example, all the remaining areas are assigned to neighboring rooms in a way
that minimizes the quotient of the outline of the room and the area of the room, i.e. the
rooms are as square as possible. See figure 3.15, subfigure 4 for a visualization.

When the room expansion step is finished, all the available space of the floor is
assigned to one of the defined rooms in the floor. Since one of the design decisions of
this application was to define the room hierarchy in the visual rule editor, one of the
child rooms of a “parent room” is considered to be a “connector room”. This means
that all “siblings” of this room need to be connected to this room. This decision ensures
connectivity throughout all rooms in a building as well as the possibility of implicitly
defining the hierarchy of the rooms in the visual rule editor.

To ensure the mentioned connectivity between the connector room and its siblings, an
additional step is performed in the generation process. This step calculates the adjacency,
i.e. the neighbor information between the generated rooms. For all rooms not being
adjacent to the connector room, i.e. there is no possibility to create a connection between
the two rooms, the shortest path existing between them is searched. This shortest
connection path is always located at the borders between the rooms to avoid splitting
a room into two parts. The shortest path is then expanded until a minimum width is
reached which ensures the possibility to create a room connection. The path is assigned
to the connector room. This step adds “corridors” to the connector room until all sibling
rooms can be reached from the connector room. After this step the layout is complete and
two more steps follow. Please refer to figure 3.15, subfigure 5, to see how the described
connection creation looks like in an example.
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Then the actual layouts of the generated rooms are calculated. This layout stores
information about the room’s outline. The last step in the subdivision algorithm is the
computation of the connection positions. These connection positions are used later on to
generate the connections between the rooms.

For all child rooms the subdivision algorithm is then executed again in order to create
a further subdivision of the areas of the floor see 3.15, subfigure 6 for an example. The
grid cells assigned to the room collection are reset before the child rooms are distributed
in the area.

Figure 3.15: Visualization of the most important steps in the floor planning algorithm.
Yellow areas represent connector rooms, gray areas other rooms and green areas show
fixed rooms from previous subdivision steps. In this example the definition of the floor
contains four rooms one of which contains two child rooms. Subfigure 1 demonstrates
the situation in the layouter grid, after the start positions of the defined rooms were
calculated and expanded. One room was placed outside the actual floor due to numerical
errors, but this is not a problem. Subfigure 2 shows a step of the room expansion. One
of the rooms is selected and expanded in an allowed direction. Subfigure 3 shows the
layouter grid after all expansion steps were performed, whereas not all areas were assigned
to a room yet. Subfigure 4 depicts the complete assignment of grid cells to rooms after all
unused areas were also assigned to adjacent rooms. Subfigure 5 demonstrates the room
distribution, after all rooms were made accessible from the connector room. The last
subfigure shows the subdivision of one of the previously generated rooms into two child
rooms. The room that is connected to the first connector room is the connector room in
this subdivision step, while the other room can therefore only be accessed through this
room.
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3.6.3 The Hipped Roof Generation Algorithm

The second very important algorithm that is implemented in the application is the
creation of the roof, specifically the hipped roof. This roof type results in the most
complex roof geometry and also creates more than just one roof part. The subdivision of
the area of the roof into the roof’s individual segments, i.e. the individual polygons, can
be achieved with a “straight skeleton” algorithm. A description about how the algorithm
works and how it was modified to fit the needs of creating actual hipped roofs is shown
below.

General Description

The creation of roofs is achieved in a few steps that do not really change, no matter what
type of roof should be generated. The hipped roof generation is slightly more complicated
but is discussed in more detail in the following Sections.

The first step in creating a roof is to to retrieve information about the roof shape. It
equals the outline of the building and any modification to it will be added later, e.g.
through the extent of roof parts. In the next steps, the roof part setup is performed.
This setup is not really needed for flat roofs and pent roofs, but essential for the hipped
roofs where it is possible to assign different slopes and extents for every roof part.

After the setup is complete, a distinction between the desired roof type that needs to
be generated is performed and different further calculations are used to create the roof.
The basic steps are the same for all types though. At first the geometry of the ceiling of
the top floor is generated in case fitting rules are attached to the ceiling element of the
roof node in the visual rule editor. This geometry equals the actual roof geometry if a
flat roof is generated.

After generating the ceiling geometry, the roof geometry is created. Pent roofs use
the building outline for creating the roof outline. This roof outline can be bigger in
size because a defined extent value for the roof is taken into account in this step. The
outline is then stretched according to the “roof direction”. The higher the slope the
bigger the stretching of the base outline. By calculating the rotation of the roof by using
the defined direction and slope the generated geometry is positioned. The calculation of
the geometry of hipped roofs is discussed in more detail in the following Section.

Additional geometry for the roofs is generated as a last step. For flat roofs this can be
an outer wall geometry surrounding the roof. Please see figure 3.13 (top) for an example.
For pent roofs and hipped roofs more optional geometries exist. These additional roof
parts are the purlins and the rafters. The base purlins are always located exactly above
the lowest parts of the roof or roof part that is positioned inside the building outline.
Pent roofs only have one base purlin and one top purlin located at the top most parts of
the roof above the building outline. Purlins in between are distributed according to the
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attached rules. The base purlins and top purlins for hipped roofs work exactly the same
way, but there are additional purlins created for all roof parts at locations where the roof
part is adjacent to another roof part. This means that except for the base purlins the
outline of a roof part is surrounded by purlins leading to realistic structures below the
roof. See the black highlights in figure 3.16 for a complex example of the created purlins.
The rafters of the roofs are positioned perpendicular to the purlins and are distributed
across the width of the roof part according to the attached production rules. These are
highlighted in red in the same figure.

Figure 3.16: Complex additional roof geometries. The purlins are highlighted in black
for one roof part and the rafters are colored red.

Straight Skeleton

The straight skeleton algorithm was developed to create a subdivision for a polygon
which only contains straight boundary elements. This subdivision does not use a distance
metric compared to Voronoi diagrams, but it uses a shrinking process to calculate the
polygons. See [AAAG95] for a description. This shrinking process contracts the boundary
of the polygon by moving the vertices of the boundary along the angular bisector of its
incident edges. This shrinking process continues until a change in the topology of the
boundary occurs.

One modification in the application compared to the original algorithm is the use of
different directions for the vertex movements in the shrinking process. If two adjacent
roof part’s slopes of a boundary vertex are equal, the calculated direction of the vertex
movement, i.e. the “ridge direction”, equals the angular bisector. However, if the two
roof parts have different defined slopes, the ridge direction is different. Figure 3.17
demonstrates the effect different slopes defined for adjacent roof parts have on the
direction of a ridge of the roof.
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Figure 3.17: Different slopes result in a ridge direction (black line) which is not equal
to the angular bisector for the boundary vertex. The angular bisector is laid over for a
better comparison (red line).

Two types of possible events causing a change in topology exist when shrinking the
boundary of the building outline. The first type of event is a so-called “edge event”.
Edge events occur when an edge of the shrunk boundary shrinks to length zero, meaning
it does not exist for further shrinking operations any more. This means that the two
neighboring edges of the affected edge become adjacent themselves. The second event
that can occur are the “split events”. A split event is the event when a reflex vertex
“splits” an edge, thus splitting the polygon into two or more subpolygons.

The straight skeleton algorithm is useful only for roofs with equal slopes defined for
all roof parts. The application allows different slopes for all roof parts to improve the
abilities though. A change in how the algorithm works was developed to account for the
different slope definitions. The generation of the roof parts in the application starts with
the calculation of the actual ridge directions. These ridge directions are accounting for
the different slopes of the adjacent roof parts. The directions are represented by two-
dimensional vectors and the length of those vectors are different depending on the slopes.
The length of the ridge direction vectors represent the needed projected two-dimensional
movement of the corresponding boundary vertex along the ridge, so that the boundary
vertex of the shrunk boundary would be positioned 1m above the previous boundary.
This means that the values of the ridge direction vectors are bigger if the slopes are
smaller and vice versa.

49



The calculation of the straight skeleton in the application is explained next please
also refer to Appendix B.3 for the pseudo code of the algorithm. The input for the
calculations is the building object containing the building layout and all defined values
for the individual roof parts, i.e. the slopes and extents.

The algorithm starts by iterating through the steps discussed next and stops when
no shrunk layout, i.e. no boundary, exists any more. Each iteration starts by choosing
the next boundary to shrink in the current iteration of the calculation.

After the roof parts were set up and the ridge directions were calculated, all events
for the current boundary are calculated. This calculation is performed in two steps. At
first all edge events are calculated and saved including the height of their occurrence.
The height of the occurrence is important later on to be able to sort the events. The
height calculation is easily performed due to the special ridge direction vector properties.
The second part calculates the split events for the current boundary and is a little bit
more complex. Split events can only occur for reflex vertices, i.e. for vertices that cause
the boundary to be non convex, so at first a check for reflexivity is performed. The reflex
vertex is then tested for an intersection with all non-adjacent edges of the boundary
and the possible positions and heights are again stored as possible split events. Since
the application allows roof parts with a defined slope of 90◦, this special case leads to
another small rise in the complexity for the split event calculations. After all events were
calculated, they are all sorted with respect to the height of their occurrence from lowest
to highest.

The events with the lowest value of the height of occurrence are used in the current
iteration of calculation. Those events are stored in the roof part objects for the generation
of the geometry that follows later. The height of the active events is then used to shrink
the boundary using the ridge directions. This can also be done easily because of the
special ridge direction vector properties.

The next step to calculate the straight skeleton for the building is to actually
handle all the active events, i.e. all events of the current boundary that occur at the same
minimal height. At first the split events are handled by splitting up the current layout
into more separate layouts if necessary. The separate layouts all share one common vertex,
i.e. the vertex where the split event occurs. The active edge events are handled after
that. Two vertices of the shrunk boundary become one vertex for the further iterations
of the calculation.

All remaining shrunk boundaries that have an area of zero are removed from the
set of boundaries that need to be handled in the next loop iteration. This is done because
all calculations for those boundaries were performed already and no more events can
occur, i.e. the roof parts reached the maximum height in that building area.

50



After all the events were calculated and stored for all roof parts, the actual
generation of the roof part geometries starts. This geometry generation basically works
by creating a polygon for each roof part by using the calculated events and then stretching
the two-dimensional representation of the resulting geometry according to the slope of
the roof part. This stretched polygon is then used to create the final polygon shapes that
are subsequently rendered to the screen.

51



CHAPTER 4
Implementation

This chapter focuses on the created application and especially the procedural system
itself. I will describe some important properties of the system as well as the steps that
are needed to create a nice building from the start, i.e. from the base floor to the end, i.e.
the roof. The following descriptions start with an overview of how the application was
designed followed by how it is organized.

Some file formats used for importing or exporting a “scene” are described next. In
this context I would like to mention again that it is possible to save a “scene” completely
with the property and the whole created procedural system. A brief description of how
the application can also export the generated building in a widely used file format is also
provided in this Section.

After the file formats Section, an explanation of the main and most important data
structures follows. It gives an overview of how the data is structured and how it is used
in the procedural generation process.

In the next Section some details about the implementation of the user interface are
outlined. An explanation of how the created visual elements relate to the rules of the
procedural system and how some of the main features regarding the visual rule editor
and other user interface parts is presented.

A description about the procedural system and how it is used in the application follows.
The derivation process as well as the hierarchical nature of the system is also discussed.
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4.1 Application Organization
The application consists of many small parts that need to work together well to provide
the desired results. To avoid a big and hard to manage application the individual parts
were split into several projects. The grouping of the many classes into those projects was
achieved by grouping together classes that serve a similar purpose and work together.

There are ten different projects in the solution not counting the external libraries used
to perform special computations. Those ten projects are again grouped into four main
application parts. Each application part only contains projects which mainly use the
other contained projects.

4.1.1 Core Program

The core program consists of five projects. One of them being the main project which is
compiled to an executable file. The other projects are working together with the main
project a lot and are described in the following Sections.

Constraints

This project is not used widely throughout the application. One exception are the
RoomViewModels which contain a set of “RoomConstraints”. The RoomConstraint class
is used to create the individual elements for RoomNodes that can be edited in the visual
rule editor. Examples of constraints are e.g. the size of the rooms, the amount of rooms
to generate and the indicator if the room is a “ConnectorRoom”. Since RoomViewModels
are also used to create the “FloorNodes” some other constraints are attached to the rule
when it is directly attached to the property node. The constraints have an “Argument”
of a certain type. Some basic types like the “BooleanArgument”, the “NumericArgument”
or the “RangeArgument” exist.

Generator

All the different classes that perform generative calculations in the application are
implemented in this project. Some very important types of classes are grouped in this
project and are discussed below.

The node classes are used to automatically build and iterate through the procedural
system. The abstract base class “GeneratorNode” basically only defines some properties
that should be usable no matter what real subclass the procedural system is actually
dealing with. The different subclasses of the base class extend the available properties
that are needed for the special types of nodes and implement some helper functions that
are e.g. needed for positioning purposes.
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When the generation of a part of the building is started the needed parts of the
visual representation of the procedural system, i.e. the viewmodels, are used to create
the actual GeneratorNodes which are then used to process the procedural system. The
floor planning is a good example for this approach. In the defined procedural system
some floor- and room nodes and some other rules that may affect the results are typically
defined, but only the floor- and the room nodes are attached to the building node. This
approach creates a smaller tree than if all attached rules, i.e. including the CGA rules,
were added to the floors and rooms at the beginning of the generation process. In later
generation steps fitting rules like a new façade definition or an individual floor definition
are attached to the floor- and room nodes.

All the CGA rules are handled with the RuleNode objects. This rule node class
defines some additional properties which are necessary inter alia to be able to access the
rule it represents. Moreover, the rule node class implements an “ApplyRule” function.
This function basically represents the procedural generator because it takes a shape as an
input and applies its rule to it. The function is then recursively called for all generated
shapes that were created by the application of the rule to the shape. All generated shapes
from the recursive function calls are added to the renderer and to the rule node if an
axiom rule is attached somewhere in the generation process.

The floor planning classes are used to generate the layout of the floor and position
the vertical connectors. The most important class of this type is the “GeneratorManager”
as it is the main generator class. It is used to start the building generation process and
calls the individual functions which handle the different parts of the generation of the
building. It uses all the other classes that are part of the floor planning classes and uses
other generators as well.

At first it uses the “BuildingLayouter” to generate the distribution and the base
geometries of the floors and walls of the building. The next step is the placement of
the room connections and the modification of the affected geometry followed by the
application of all façade manipulations and the generation of the roof.

Manipulators and geometry generators. The geometry generation is executed in
different stages of the building generation process. The first generation of geometry is
performed after the floor planning and the positioning of the vertical connectors. Those
initial geometries are refined and modified in the later steps of the generation process
and those changes and modifications of the geometry are performed by the rest of the
classes in the generator project.

Models

The classes in this project are used for handling the data for the several different
types of objects used in the generator project. The “WallModel” is used for all basic
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generated walls along the outline of the rooms for example. The “RoomModel” holds
data needed for the creation and modification of the rooms and the “LayoutModel” and
“LayoutViewModel” classes are used to store the layout information for the rooms and
implement some useful functions and properties.

Procedural Buildings

This is the main project of the application and is compiled to an executable file. The
definition of the look and the behavior of the main window of the application is defined
in this project as well as the “RenderViewModel” and the “ViewportViewModel”.

The MainWindow classes define the user interface of the application, the menu and
event handlers for all user interactions. The ViewportViewModel is the base class for the
RenderViewModel and is used to store information about the scene of the 3-dimensional
view by defining some needed properties. The RenderViewModel is the subclass and
again extends the base class with many additional properties like the collection of the
3-dimensional objects to render. The RenderViewModel is used in the MainViewModel
and serves as the DataContext for many of the individual parts of the MainViewModel
like the 3-dimensional view. It implements a lot of functions that are needed e.g. to add
a shape to or remove a shape from the visual output.

Rules

The last project in the core program part is also one of the most important one’s. The
classes implemented in this project are all directly related to the production rules of the
procedural system. The three types of shapes are implemented in the shape file and are
used in the generation processes of the application for example.

The condition classes are not used in the application yet. As previously mentioned
in the work of Prusinkiewicz and Lindenmayer [PL90] “conditional production rules”
were developed. They check if the rule is applicable to the shape before it is executed.
The two implemented classes demonstrate how an implementation of this functionality
could be used in future releases of the application. In the abstract base rule class the
conditional is checked at first when the “ApplyRule” function is called.

The rule classes are the most important classes implemented in this project. They are
described in more detail in the Sections 4.7.3 and 4.8.

4.1.2 Helper

The helper application part contains only one project also called helper.
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Helper

The helper project is used to implement some of the widely used base classes and includes
some static classes that are used to implement extension functions for several classes as
well. The helper project has no dependencies on any other implemented project except
some external libraries which are used for complex calculations.

Base classes like the “ValueElement” are defined here. These objects are used in the
user interface as well as in the rule classes for example. Another implemented class is the
RNG, i.e. the RandomNumberGenerator which is a static class used in many different
other classes. The “BaseViewModel” is implemented in the project as well as all special
enumerations and value converters that are used in the user interface.

Extensions are implemented in this project as well to support the use throughout
the application. There are four classes that implement extensions such as the external
“ClipperLibrary” [Joh10], the “HelixToolkit’s” [Oys12] meshes, converters for colors and
other extensions that e.g. add functionality to the HelixToolkit’s vectors.

4.1.3 IO

The IO1 part of the application currently also only consists of only one project. This
project is used to save and load the scene information to and from XML files.

ProjectIO

The ProjectIO enables the application to load and save project files. The “SaveProject”
function in the static IOCore class saves all the scene information and all defined rules
including their settings and connections to the specified file. The scene information
consists of the current RandomNumber of the scene, the information about the camera
position and the direction it is pointing to. The procedural system is saved by calling
the “SaveToXML” function which is implemented by every node and at last saving the
connectors and nodes for each connection so that they can be restored when the file is
loaded again. The “LoadProject” function makes use of reflection techniques to create
the different types of viewmodels from the saved information of the scene file. At first
the scene information is loaded, followed by the information about the viewmodels and
the connections.

4.1.4 NetworkView

The network view part of the application consists of three very important projects
working closely together to create the visual rule editor. This network view is based
on the work [Dav12] by Ashley Davis. It provides the basic mechanisms of the visual
rule editor and was extended and modified to fit the needs of the developed application.

1Input-Output
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A visualization of the hierarchy of the viewmodels in this project augmented with the
BaseViewModel from the Helper project can be found in figure 4.1.

NetworkModel

The network model project consists of a number of classes that all implement the view
model component of all the MVVM elements in the application. The “NetworkViewModel”
class implements the viewmodel for the visual rule editor and contains collections of all
the viewmodels that form the procedural system. The other viewmodels that directly
derive from the base viewmodel define the logic for some additional user controls. The
“NodeViewModel” also derives from the “BaseViewModel” class and it defines several
variables and properties that are used by the subclasses and the procedural generator.
The NodeViewModel classes are visualized in the top right of the figure 4.1.

The most important subclass of the NodeViewModel class is the “RuleViewModel”
class which itself is the base class for all other rule related viewmodels. They are grouped
together at the bottom right of the figure. The rule viewmodels additionally contain logic
which makes it possible to interact with the actual rules that are used in the procedural
generation steps.

NetworkUI

Several existing classes are found in this project. The appearance of the connections
between the nodes of the visual rule editor is defined in the “Arrow” class for example,
but also the node’s appearance is defined here. The classes defined in the “Views” folder
all define the user controls mentioned in the NetworkModel project. The viewmodels
serve as the DataContexts for the user controls and DataBindings are defined in the view
classes in this project. By utilizing DataBindings it is possible to automatically update a
value in a viewmodel if it is changed for example. The views defined in this subfolder are
used to represent the viewmodels in the visual rule editor.

NetworkUtils

This is an assisting project for the two other mentioned network projects before. One class
to mention is the “ImpObserveableCollection” defining a collection that makes it possible
to add and remove a whole range of elements for example. It automatically notifies all
event handlers about the changes of the collection and allows the proper handling of
these events. Another important helper class is the “WpfUtils” class implemented in
this project. It facilitates the retrieval of information about the visual parent of a child
element and to perform a hit testing for the nodes in the visual rule editor. This hit test
is used for the selection of nodes in the visual rule editor for example.
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Figure 4.1: Visualization of the hierarchy of the viewmodel classes implemented in the
system. The base class is located at the top of the figure. Some classes that directly
derive from it are grouped together at the left side of the figure. The group at the top
right are the node viewmodels which are all represented visually in the visual rule editor.
Another derived class from the node viewmodel is the RuleViewModel. It is the base
class for all other rule viewmodels and the classes are grouped together at the bottom
right of the figure.

4.2 Data Formats
A variety of file- and data structures are used in the implemented application. Some
of the most important data formats used are described in the following Sections. At
first a Section about all the used file formats in the application and then an overview
of the most important data structures is given. Some of the most helpful features and
properties of those data structures are discussed as well.

4.2.1 Property Input File Format

Before the application can be used to generate buildings a previously created “scene”
needs to be loaded, i.e. the property that should contain the building. This input is
created by one of the many available 3d modeling tools and applications. I used the tool
“Cinema4D” from “MAXON”, but any other application that is able to save a DAE file
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is working. Since the “Collada” file format is open source there are a lot of free tools
available to create such a property file for the application.

There are two important assumptions that were made to simplify the import of those
DAE files into the application. The first one is that there must be two objects present in
the import file. One object must be the child of the other object defining the area of the
building while the other element represents the surrounding. The second assumption is
that the positive Y-directions of the imported objects have to point downwards.

If both of those assumptions and simplifications are met there is no limit on the shape
or size of the scene. A few rather big scenes were tested.

4.2.2 Project Scene File

To be able to store a created procedural system completely a simple XML file format is
used. This file only saves the properties of the elements shown in the visual rule editor
which is equal to saving the procedural system itself.

At the beginning of the XML document there is the basic information about the project.
This basic information consists only of the value of the random number generator at the
moment of saving the scene and the information about the camera, i.e. its position and
view direction. After the basic scene information all the “nodes” in the visual rule editor
follow. These nodes represent everything that was defined previously. A node definition
exists for every rule in the procedural system and additionally a property node which
does not relate to a rule in the procedural system is added. After the description of
all the nodes in the system a list of “connections” follows. These connections are very
important because they create the hierarchy of the nodes. A connection is defined by the
information about the two nodes it connects, the source node and its connector element
as well as the destination node and its connector element. The source node relates to the
predecessor and the destination node relates to the successor of a production rule.

The XML file was developed in a way it facilitates the readability by humans. When
such a file is loaded into the application at first the random number generator is set to
the stored “SeedNumber” and then all nodes are inserted. By loading the property node
the defined scene file (a Collada file) is also loaded automatically.

4.2.3 3d Output File

It is also possible to export the generated building to a 3d object file to save the generated
geometry. Since I wanted to be able to work with the files in a wide variety of tools it
was decided to use the simple and well-supported OBJ file format. I use a framework
that already implements such an exporter, but some of the code had to be rewritten to
actually work.
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4.2.4 Important Data Structures

In this Section I will discuss some details of how the most important data structures are
working and what the benefits of those discussed data structures are. Starting with how
the grid for the room planning part of the application is structured and how it works. A
description of how the nodes in the visual rule editor are implemented follows.

The Grid Data Structure

The room planning algorithm is one of the most important implementations in the master
thesis at hand. It determines how realistic the distribution of the rooms in the building
and the floors is. For the algorithm “A constrained growth method for procedural floor
plan generation” developed by Lopes et. al. [LTS+10] to work properly a special data
structure had be be implemented. Since the room planning algorithm is grid based I
chose to implement the grid itself by using an array of grid cells. A description can be
found in Section 3.6.1 and 3.6.2. The decision to use the mentioned technique was made
to keep things as simple as possible and to allow the definition of a modified indexer
for the grid cells of the grid. This modified indexer uses two indices, one for the x-index
of the grid cell that should be read or set and one for the y-index. It ensures that all
indices stay in a valid range from zero to the maximum allowed value. The maximum
valid values are determined at run time and depend on the size of the building layout.

Some other important features of the grid itself are special variables mentioned
in Section 4.13 and the fact that the grid itself is responsible for the assignment of the
rooms to the grid cells. The algorithm is described in detail in Section 3.6.2.

The “grid cell” is the basic data structure used in the “grid”. Each cell of the grid holds
information about the assigned room, i.e. the room the cell belongs to and information
if the grid cell is even “inside” positioned the layout at all. It is possible that the grid
cell is inside the “axis-aligned bounding box” without being located inside the building
because not only rectangular building layouts are allowed. Some more information about
the grid cell is stored like if the grid cell is part of a room border or if the grid cell is
part of the grid border or both. The grid cell is part of the room border if there is an
adjacent grid cell that does not belong to the same room as the current grid cell itself.

The most important feature of the grid cell, other than holding the previously
mentioned data, is the “Neighbors4” method. It returns the “4-neighborhood” of the
current grid cell which means that the result is a list of usually four grid cells. The
function returns the top, right, bottom and left neighbor (in this order) if they exist. If
the optional argument for the function call is set to true only the diagonal neighbors
are returned making it possible to check the complete “8-neighborhood”, i.e. all eight
adjacent grid cells, of the current grid cell.
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The Nodes

As mentioned in Section 4.7 I decided to implement the MVVM design pattern to be
able to structure the classes and their data in an easy to manage manner.

The nodes, i.e. the elements that are visible in the visual rule editor, are basically
the views of the depending viewmodels. The views are created on the fly by the theming
system of the WPF. It basically works by predefining a so called “UserControl” in the
XAML language [Smi09]. In this XAML file it is possible to define all data bindings for
values and other elements displayed in the UserControl. By using data binding every
time a value is changed by code the element that is bound to that value is updated
automatically. The other way also works meaning that if the user changes a value by
inserting another value string or by changing the selection of a combo box the new values
of the node are used to update the procedural system automatically. If the user changes
a value that defines a size in the procedural system and the node is actually connected to
the procedural system, which is not necessarily the case, the generation process will be
started again and the changed value triggers an update of the 3-dimensional view as well.
By using this technique it is always ensured that the two views of the procedural system
are synchronized, i.e. the view of the rules of the procedural system and the 3d-view of
the generated building.

Each viewmodel of all the available nodes implement an interface which defines the
two basic methods for loading and saving the viewmodel. All viewmodels are arranged
in a hierarchical manner meaning that there is a base viewmodel class for the nodes
of the visual rule editor. This base class is also responsible to save and load the basic
information of each viewmodel like the node’s name and its position on the 2d-canvas
of the visual rule editor. All other values of the derived viewmodels are handled by the
respective viewmodel classes. The viewmodels themselves are the main parts of the data
side of all the nodes. They provide all the properties needed for the view to create a data
binding to.

A derived class from the base viewmodel class that serves the purpose to represent
the base class for all explicitly implemented rule view models exists. It provides a few
additional variables and properties like the rule that is handled by this view model and a
list of shapes that were generated by applying this rule in the generation process. This
list of shapes supports the regeneration of parts of the building when a value change in
this rule occurs.

The Rules

The rules that are used in all derived rule viewmodels serve as models in the MVVM
design pattern. All values and settings that are set by the user are stored there. The
rules themselves are arranged in a hierarchical manner which means that a base rule class
defining the basic information of a rule in the procedural system exists. This base class
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also defines a virtual function that is used to apply the defined rule to a given shape. All
deriving classes of rules implement this function and handle the shapes differently, i.e.
split the shape, transform the shape, add additional attributes to the shape etc. .

The Shapes

The shapes that are used in the derivation steps are also defined as a base class and
derivations of this class. The base class is only a wrapper for a “GeometryModel3D”
object that was already implemented in the HelixToolkit. See Section 4.9 for more
information. The basic shape class is used for most of the 3-dimensional objects that
are generated and is also the simplest one. The shapes are just container objects at
the beginning of the generation process. It contains a transformation matrix and initial
settings for its appearance, but no geometry information is added by default. If the
previously “empty” shape gets assigned to an axiom rule, which adds the actual geometry
to the shape, the result is a cuboid positioned somewhere in the scene.

Since the simple shapes are not sufficient for all building elements the so-called
“PolygonShape” class is implemented which derives from the base “Shape” class. They are
needed in the system because not only cuboids, but also more complex geometries occur
in buildings. A PolygonShape uses two additional informations to define the objects,
namely a “PolygonOutline” and a “Thickness”. The outline is used to store information
about the shape of the object to while the thickness is used to define the object’s thickness.
With just these two additional values it is e.g. possible to define the geometry needed for
the roof parts and other non-cuboid elements and objects of building parts like the room
floors. They are not simple cuboids in most cases. Since PolygonShapes can contain
any kind of polygon for the shape outline a triangulation of the outline is needed to
be able to render the shape. The triangulation is performed using the “Triangle.Net”
library [Wol12].

The third implemented type of shapes are the “PathShape” objects which are derived
from the PolygonShape class. A PathShape also introduces a new attribute that is
used to generate a much more complex geometry than it is possible with the previously
described shape types. The additional attribute is called “Path”. A given cross section
“follows” this path, thereby creating a complex geometry. The cross section of the object
is defined using the PolygonOutline property from its base class and a list of 3d vectors
form the “Path” of this PathShape. The PathShape objects are mostly used by and were
introduced for the stairs of the buildings. See Section 3.4.2 for more information about
the stairs.
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4.3 The User Interface
The user interface is designed and implemented via the WPF and empowers the user
to influence a lot of elements of the UI2 using the mouse and the keyboard. All the
individual windows and window parts are dockable and the layout of the user interface
is customizable. An external library called “AvalonDock” [Xce09] is used to create the
dockable UI elements.

4.3.1 The Menu

The menu makes it possible to interact with the program directly. The most important
commands that are available in the main menu are the possibility to load scenes and
properties and to save created 3-dimensional buildings and the created scenes. Addition-
ally, some values which influence the rendering output of the scene and the generated
building in the 3d-viewer can be changed. One example is the possibility to change the
amount of samples and the size of the PCF3 filtering function used to improve the shadow
mapping. The intensity of the shadows can also be adjusted and is another example of
the modifiable values.

4.3.2 The Visual rule editor

The application is defined to be usable without the need to write a single line of code. A
visual rule editor to create the rule nodes is used to achieve the goal of creating complex
procedural systems without writing any kind of program. It facilitates the creation of
all building elements and rules. The editor is the main interaction point between the
user and the procedural generator and therefore one of the most important parts of the
application. A screenshot of an example of a procedural system defined in the visual rule
editor can be seen in figure 4.2.

Figure 4.2 also shows a major difference to the previously developed rule editor by
Patov [Pat]. In my application all nodes in the visual rule editor allow the modification
of the available values for each rule, whereas this is not possible in the mentioned work
of Patov. One shortcoming of my approach is the necessity of implementing a visual
representation for each type of rule. However, the advantage of presenting all possible
interactions with the rules inside the node-based editor disturbs the workflow of the artist
as little as possible. Another difference of the visual rule editor in my work compared to
Patov’s lies in the fact that it is the main interaction point between the users and the
procedural system. Apart from being able to define the procedural system, the visual
rule editor in my application also allows to define the rooms of the building in it.

In the following Sections the structure of the different parts of the application which
work together when the user works with the editor is presented. An overview of the main

2User-Interface
3Percentage-Closer-Filtering
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Figure 4.2: Screenshot of the visual rule editor. There are many defined rules in the
procedural system which represents a medium complex example. Not all rules are shown
in the screenshot. They can be hidden to maintain a better overview.

functions of the editor needed to simplify the creation of the complex procedural systems
is discussed next.

Nodes

The nodes in the visual rule editor are templated elements that are rendered inside a
WPF canvas. Through data binding and the use of data templates they are automatically
created when a new rule is added to the procedural system. The look of the nodes is
defined in the “View” classes which were created for each rule of the procedural system.
Section 4.8 provides an explanation of how the rules work and how they are implemented.
Each rule is created and modified through its corresponding view- and viewmodel classes.
This structure is used to realize the MVVM pattern as described in Sections 4.7 and 4.7.

Connections

The connections in the visual rule editor serve an important task. They visualize and
define the hierarchy of the procedural system and are characterized by their start- and
end connectors. Those two connectors always belong to two different nodes. Each node
defines one or more connectors that can be used to connect the node to other nodes. The
system is designed to only allow one “child” node attached to each connector by default.
If a new connection should be created between two nodes some checks are performed to
ensure the procedural system is valid and the derivation steps do not result in an infinite
loop. The connections are represented by arrows in the visual rule editor. The start of
the arrow is always located at the center of the “source” connector and the end of the
arrow is always located at the center of the “destination” connector. The connection line
itself is implemented with Bezier curve through the WPF. A double click on a connection
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removes it from the procedural generator and therefore possibly changes the created
procedural system. A change only occurs if the connection connects nodes being part of
the procedural system, i.e. nodes that are connected directly or indirectly to the property
node.

Design of the Editor

The visual rule editor is based on an existing custom WPF4 control published in [Dav12].
The available code is already structured using the MVVM design pattern, which was
introduced in Section 4.7 and did not has to be changed. More information about how
the editor is structured into the individual classes and how they work together can be
found in Section 4.3.2.

Features of the Editor

The editor needed some broadly used and well-known features to interact with the nodes
to be really useful and easy to use. The nodes are displayed in the visual rule editor. Since
this editor is one of the main parts of this application, a lot of effort went into defining
and implementing the needed features, which were continuously identified throughout
the implementation process. A short list of possible additions to the features of the rule
editor can be found in Section 6.2.1 showing how the editor could be enhanced in the
future.

Add and delete nodes It was clear from the beginning that the editor has to be able
to create and delete the nodes in a graphical and actually useful manner. The creation
and the removal of those nodes of the visual rule editor is designed to be as easy and
straight forward as possible.

Adding a node to the procedural system is possible by using the right mouse button
and then selecting the desired node type. Another possibility is to simply start dragging
a connection out from a node connector using the mouse. If the start node e.g. is a
room-defining node, i.e. a room or a room collection, and there is no other node present
at the position where the user releases the mouse button again another new room node is
attached to the start node automatically. If the start node is a different type of node the
best fitting options to attach a new node are displayed automatically when the mouse
button is released. More details on how the implementation of this feature works can be
found in Section 4.3.3.

It is also easily possible to remove nodes that are not needed in the system anymore.
The decision to support and use keyboard input in the visual rule editor where it is
helpful enables the user to remove the selected nodes by simply hitting the Del-key.

4Windows-Presentation-Foundation
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Move nodes To create a really valuable editor it is also necessary to be able to move
existing nodes so that they can be grouped together visually in an easy way. This feature
is actually one of the most important implemented features of the editor because it would
be impossible to keep an overview of the created procedural system without the support
to move the nodes. When the created procedural system gets bigger and more complex
because there are many rules in the system, moving connected rules next to each other
drastically improves the overview of the system. Moving the nodes is performed with the
mouse. One or more nodes, i.e. room nodes or rule nodes, are selected in the editor at
first. When one or more nodes are selected, they can easily be moved by using a drag
operation with the mouse. When the drag operation starts the cursor of the mouse needs
to be located above one of the selected nodes to work.

Hide nodes As mentioned keeping an overview of the procedural system is a critical
requirement for the editor. The possibility to hide nodes is very important and can
help keep the procedural system visually simple. When a building gets more and more
complex and detailed, more rules, i.e. more nodes, are needed to define these details.
Not all parts of the procedural system need to be visible at every time throughout the
definition process because if the user e.g. is working on the definitions of the doors in the
building, there is no need to display all other nodes representing the other production
rules. This means that it is possible to hide parts of the procedural system by simply
clicking a toggle button which is present at every node that has attached child nodes.

Multiple selection of nodes is possible in the rule editor. This feature allows a
fast and smooth arrangement of the nodes in the editor as well as the ability to easily
delete the selected nodes. This feature is important in combination with the possibility to
hide subsets of nodes, i.e. the child nodes. If a selected node that contains invisible child
nodes should be moved in the rule editor, not only the selected parent node is moved,
but all hidden child- and descendent nodes are selected and moved to the new position
as well. The selection of multiple nodes is achieved by clicking on a node with the left
mouse button in the visual rule editor. A colored border around the node is shown to
visualize the “selected” state of the node. It is also possible to click on a node while
holding down the Shift-key on the keyboard. In this case not only the currently selected
node is chosen, but also all child- and descendent nodes. This feature is used to easily
move around a whole subset of nodes at once which helps to structure the procedural
system and to maintain an overview. Another possibility to select multiple nodes is
available by holding down the Ctrl-key while drawing a rectangle around nodes in the
visual rule editor. All nodes that are positioned completely inside the drawn rectangle
are then choesen and can be moved around or copied.

Pan and zoom the visible area of the editor. This is another main feature to keep
an overview of the created procedural system. It allows a fast and easy change of the
visible part of the complete procedural system. With this feature it is possible to use
an “infinite” canvas to place the rule nodes. The feature is very important to effortlessly
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add more and more rule nodes into the system. The panning feature is performed by
left-clicking over an empty space with the mouse. While not releasing the mouse button,
but instead dragging the mouse around the visual rule editor, the visible area of the
visualization of the procedural system is updated accordingly. The moving of the area
is in fact created by inversely moving around all nodes of the procedural system. The
zoom feature on the other hand is very useful when a subset of the system should be
edited and modified. Zooming into and out of the visualization of the procedural system
can be performed by using the mouse wheel. The zooming operation takes the position
of the mouse on the visual rule editor into account, as a result it is possible to zoom to
the focused nodes in the rule editor, i.e. the zooming operation is always relative to the
current mouse position.

Fit all displayed, i.e. not hidden nodes of the created procedural system, into the
visible area of the visual rule editor. As previously mentioned, it is possible to zoom into
the procedural system. Zooming into the procedural system is useful, but when only a
part of the system is shown in the visual rule editor it is hard to maintain an overview of
the complete system. To be able to switch back to a view providing a good overview of
the procedural system is therefore really valuable. This feature can be applied by using
the keyboard shortcut Ctrl+F . The feature fits all visible nodes in the area of the visual
rule editor.

Copy and paste is a beneficial feature that almost everyone uses on a PC regularly.
The visual rule editor allows the users to simply copy and paste nodes and complete
parts of the procedural system, so parts of an already created system can be reused
and then modified. Selected nodes can be copied by the use of the well-known shortcut
Ctrl+C and can be pasted in again with the shortcut Ctrl+V . The nodes are placed
at the current mouse position and are exact copies of the previously copied rule nodes.
All connections that connect the selected nodes are also copied and inserted between the
newly pasted rule nodes.

4.3.3 Suggestions for Adding New Rules

When the user drags out a new connection from an existing connector element in the
rule editor and later releases the mouse over an empty space in the rule editor a new
context window opens up. Dragging out a new connection is done by pressing the left
mouse button and holding it down while dragging the mouse. Empty space in the rule
editor means that no “destination” connector is found near the mouse position when the
button is released.

The context window is created dynamically. This dynamic creation of a user control
works in a few stages. At first the type of the source node is used to create a list of
“tuples” containing two string objects. A short description of a tuple is given in Appendix
A.1. The first string of the tuple contains the name of the button that is generated for
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the selection of the rule that should be added and the second string of the tuple contains
a function name which is executed when the button is clicked.

The list of tuples is then used for the creation of the context menu object. By using
“reflection” techniques for the creation of the context menu, the second string, i.e. the
function name of the tuple is used to define the function that is executed when the user
clicks on the button. A “click” event handler is also set up to actually handle the user
interaction.

When the context window is closed a check distinguishes between the click on a rule
creation button and the abortion of the action which is possible by pressing the Esc-key
on the keyboard or by clicking the “Cancel” button of the context menu. If a rule creation
button is clicked the attached information about the function to be executed is restored
and then used to actually create the selected rule at the current mouse position.

The last step in the creation process is the removal of the context menu from the
user interface again and actually connecting the source node to the newly created node
that represents the new rule in the procedural system.

4.4 The 3-Dimensional View
The generated building and the loaded scene can be viewed in a 3d viewport. This
viewport is implemented with the HelixToolkit described briefly in Section 4.9. It allows
easy navigation in the created scene and features a fast and robust 3d renderer. The
handling of the separate render passes as well as performing all needed render calls are
handled by the renderer. Some modifications to the default shaders were made to ensure
a good visual quality of the resulting buildings and scenes. The geometry drawn in the
3-dimensional view is precomputed, i.e. geometries with the same attached material are
merged together, to reduce the number of render calls to ensure a good performance.

4.5 Graphs
A procedural system can contain many production rules. Those connected rules form
a graph. In this application the graph is a directed acyclic graph because there are no
loops allowed. The nodes in the visual rule editor represent the graph that is implicitly
defined by connecting the nodes and is one of the “tree” graphs present in the program.
The second tree graph is generated from the defined nodes and is used for the generation
process of the procedural system. The second tree is more complex than the tree of
nodes mentioned first because e.g. a shape is split into more smaller shapes which results
in many more leaves in the graph. The result of the splitting operation are many new
shapes and there might be a connection from the resulting shapes to another rule in
the visual rule editor. For each generated shape the next attached rule is executed
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meaning that the simple representation of the depending rule in the rule editor is applied
and therefore attached to each shape. This second tree is used to perform the actual
procedural generation and the generated intermediate shapes correspond to the different
stages, i.e. nodes, defined in the visual rule editor. The tree is iteratively created in each
generation step of the procedural generation.

4.6 Step by Step Building Generation
In this Section I want to discuss how the application is able to generate buildings that
fit to the given floor plan and produce a realistic distribution of rooms on each floor. A
base “scene” containing a property and a defined building area is needed.

After loading the previously created scene the render view displays the loaded 3-
dimensional data of the property as well as the area where the building should be placed.
The visual rule editor automatically adds a “property” node and attaches and connects
some default production rules to it. An example of how the application may look like
after loading a property file is shown in figure 4.3.

Figure 4.3: Screenshot of the application when a previously modeled property file is
loaded.

When the loading of a property was successful the application is prepared to add more
and more nodes to the procedural system. At first a definition of the building itself is
needed. This definition consists of the floors and the rooms that are placed inside the
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defined floors. “Vertical connections” can be added to connect the defined floors and a
roof rule defines the top most element of the building.

When all desired floors and rooms are placed and connected it is possible to modify
the previously mentioned default rules. Those rules are “global” and are used for all
floors and walls of the building. It is possible to define specialized rules for a floor or even
for an individual room by simply attaching a properly named rule to the corresponding
room or floor. This opportunity to define the rules for individual parts of the buildings
makes it e.g. possible to change the width of a door connecting two rooms or to define a
completely different kind of façade. An example of different façade style definitions is
shown in figure 4.4.

Figure 4.4: The application contains a simple scene. A building featuring more than just
one façade definition is displayed. The second façade style is emphasized by the use of a
reddish material.

By adding more and more production rules it is easily possible to enhance the level
of detail of the generated building because the generation process uses all connected
nodes, i.e. rules, to modify the generated geometry. All nodes in the visual rule editor
are implemented in such a way that they allow modifications through the usage of other
attached rules. Two examples are the specialized rules, i.e. the roof rule and the vertical
connector rule. Both rules create complex geometry and are easy to use. The two
mentioned rules use “elements” which are created automatically. Those elements are
visible in the visual rule editor at the bottom of the rule. Each element has a name like
“Purlin” for roofs or “Steps” for the vertical connections if the vertical connector is a
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stairs. The mentioned elements contain a connector to allow the attachment of one of the
implemented rules. By adding a rule, the default results of the shape generation steps
are modified. Some elements use rules which are automatically added to the element
connector at the time of creation of the rule.

4.7 The MVVM Pattern
To create a complex system like the application at hand it is necessary to split up
the project into small pieces to avoid “coupling” between the individual parts of the
application as much as possible. The approach used in the application is the realization
of the Model - View - ViewModel design pattern. The three parts of the pattern name
describe the three elements that are used. All the rules and other nodes, which can be
created in the visual rule editor, are implemented using the MVVM design pattern.

A small downside of using the MVVM design pattern is the need to create of a lot
of classes that work together. A single rule and the visual representation of this rule
in the visual rule editor consists of at least three classes that have to be implemented.
This might seem to be unnecessarily complex, but the benefits of using this structure
are bigger than the drawbacks. If only a small part of the behavior of a rule, which is
implemented with the MVVM pattern, needs to be changed, only the viewmodel class of
the rule has to be adapted. The graphical representation of the rule node, i.e. the view,
and the data of the rule, i.e. the model, do not need to be changed.

In figure 4.5 the simple structure of the MVVM design pattern is visualized.

BaseViewModel

ViewModelModel View

Inherits

Figure 4.5: The MVVM basic scheme used in the implemented application.

4.7.1 The Model

The model is used to store all the data of the object and most of the time not really a
complex class. Typically there are no functions or methods that are called in the model
of the object and all access to the data stored within the class is handled through the
viewmodel. The model classes do not have any dependencies on other classes and are
therefore usable even if no “view” class for the object exists. In the presented application
mostly no real model classes for all the different objects exist because the data needed
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to be stored is handled directly in the “rule” classes, i.e. they can be seen as the model
classes.

4.7.2 The View

The view defines the visual appearance of the objects and rules in the system. In the
application a “. . . View.xaml” file was developed for all the usable nodes and rules in the
visual rule editor. A view is automatically created in the visual rule editor whenever a
viewmodel of a rule or node is added to the procedural system. This automatic creation
of the views for the added elements works by using “DataTemplates” in the WPF. The
viewnodel classes do not know about the view classes which represent the viewnodels
visually in the rule editor. The data transfer between the views and the viewnodels is
defined inside the view classes by using the “DataBinding” possibilities of WPF.

4.7.3 The Viewmodel

The viewmodel is the most important part of the MVVM design pattern. It uses the
data stored in the model class of an object and performs operations on the data when
the view changes e.g. because the user interacted with it. The viewmodel is the linking
class that uses the data from the model and the input from the view to change or update
its behavior or produce a new output. In the WPF it is easily possible to create and
use the viewmodel class because the WPF provides mechanisms like DataBinding and
DataTemplates. Every change of a value in the user interface, i.e. via the view class, is
directly propagated to the model class via the viewmodel. The use of DataTemplates is
very comfortable because every time a new element is added to the procedural system a
corresponding view is created for the viewmodel. Through DataBinding the view always
displays the values of the object and the object holds the values defined or changed in
the view.

4.8 Organization of the Rule Classes
Figure 4.6 shows how the different classes of the rules work together. An abstract base
class “Rule” that derives from the abstract base class “BaseViewModel” exists. It defines
the most important method “ApplyRule” solely being a simple basic implementation
that just packs the argument shape into a list of shapes which it then returns. An always
succeeding check of the condition is used to show the extensibility of the application. It
would be possible to actually use this condition test in the future, but it is not used at
the moment of writing this thesis. The hierarchy of rules makes it easy to create a set
of rule objects and always just call the “ApplyRule” method without the need to cast
the rule to the actual instance class. Each deriving class overrides the basic method and
implements the details of how the rule should work.
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Figure 4.6: Visualization of the rules classes. The abstract rule class derives from the
BaseViewModel class and defines a virtual method “ApplyRule” which is overridden by
every deriving rule class. The derived classes are clustered to visualize the implementation
file they are implemented in.

4.8.1 Interactions with the Other Parts of the Application

After showing how the rules are structured hierarchically another important aspect is to
understand how the rule classes are actually used in the application. To give an overview
please see the schematic visualization in figure 4.7. When the generation process for the
building is started at first all basic building elements are generated. These generated
elements are represented by simple shapes (see 4.2.4 and 4.10.1), PolygonShapes (4.2.4 and
4.10.2) or PathShapes (see 4.2.4 and 4.10.3) which can be modified with the procedural
rules.

Figure 4.7: Simplified visualization of the interactions between rule related classes. The
rule (bottom) defines the “ApplyRule” method which performs changes to the shape and
returns one or more new shapes. The RuleViewModel is used to interact with the rules
through the visual rule editor and is assigned to the RuleNodes in the generation process.

73



In figure 4.7 the main actors of the generation process are shown. The rule object is
created by and assigned to a RuleViewModel object. The RuleViewModel uses the rule
as its model. They are created in the VisualRuleEditor and the view is automatically
generated through a DataTemplate. The DataBinding between the view and the Rule-
ViewModel ensures synchronized values for the individual settings of the rule displayed
in the view.

When the procedural generation is started for a rule, i.e. if it is attached to e.g. a
RoomNode in the VisualRuleEditor, the RuleNode is attached to its parent node at
first. The RoomNode as well as the RuleNode classes are derived from the abstract
GeneratorNode base class. The class implements a method called ApplyRule. The method
calls the rule’s “ApplyRule” method and stores the returned list of shapes. In the next
step it is determined if there is a RuleViewModel attached to the current RuleViewModel
and a new RuleNode for the attached RuleViewModel is generated if this is true. For
each generated shape the AppyRule method is called from the new RuleNode child. This
process is recursively performed until no RuleViewModel child is attached anymore.

4.9 HelixToolkit
The 3-dimensional viewport in the application uses the HelixToolkit to display the
generated content. The HelixToolkit [Oys12] is based on SharpDX [Mut10] which is an
open source managed wrapper for the DirectX API. The HelixToolkit implements a lot
of different 3-dimensional objects and their models.

The HelixToolkit implements an easy-to-use WPF control, as only a few lines of code
have to be written. Some predefined objects like the grid, which is used to visualize
the base plane in the application, exist. Adding and removing 3-dimensional objects is
easy and interactivity is provided as well because keyboard and mouse input is handled
automatically. Setting up and updating the camera projection matrix according to the
user input is also automatically handled by the toolkit.

A few details of the toolkit were changed because they did not work as expected.
For example the code for saving a 3d-scene had to be updated to work properly. Some
changes in the VertexShader were made to improve the shadow mapping, which is also
included in the toolkit, as well as the method for merging more objects to one object was
also updated. This feature is used to merge shape’s geometries for all shapes with the
same defined material to speed up the rendering.

The toolkit handles the rendering of the scene and the camera updates when the view
changes. It is also used to load property scenes into the application and for saving a result
of the generation process so the building can then be loaded into another application e.g.
for visualization purposes or for rendering the building.
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4.10 Shape Implementation
The generated elements in the application are shapes. The shapes are the results from
the different steps in the building generation processes as well as from the application of
a rule to a previously generated shape. Shapes are results of a generation step as well as
the input for the following generation steps. There are three different kinds of shapes
implemented and used in the application.

4.10.1 Basic Shapes

The simplest type of shape is just called “Shape” and is just a wrapper for the “Geome-
tryModel3D” object implemented in the HelixToolkit. The GeometryModel3D contains
a lot of information of the 3-dimensional object and is always used for polygonal objects,
i.e. it has a geometry. Apart from the geometry it contains a “ModelMatrix”, which
defines the position, orientation and size in the scene, as well as methods to pop and
push new transformations to and from the object. A hit test that is used for the picking
of objects through the mouse is also implemented in the GeometryModel3D.

4.10.2 PolygonShapes

The PolygonShape directly derives from the shape class and adds two properties to the
object. It is used whenever a 3-dimensional object has a “base shape” and a thickness like
roof parts or the floor geometries. The first additional information is the “PolygonOutline”
which is used to define the shape of the 3d object. The second property is the “Thickness”
value. It defines the height of the object measured perpendicular to the base of the object.
With the polygonal shapes it is possible to create a lot more complex shapes which would
be hard to model with the basic shapes mentioned before. Examples for PolygonShapes
are the individual roof parts, the floor elements and the steps for the spiral stairs.

4.10.3 PathShapes

The most complex shapes in the application are the PathShapes. They derive from the
polygonal shapes and use an additional property for the definition of the shape. The
polygon shapes have a base shape which is extruded along a line to create the geometry,
i.e. along its path. The difference to the path shapes is that the path shapes define not
only a thickness value for the extrusion, but a path. This path can be very complex
and the geometry generation results in objects that are impossible to model with the
previously mentioned types of shapes. The path shape was mainly introduced for the
use with stairs where complex objects are needed. The path shapes are currently only
used in combination with stairs, but when new rules would be added to the system more
complex geometries could be generated. It would be possible to create a ’tree’ rule and
use the path shapes for the individual branches of the trees for example.
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4.11 Implemented Rules
A lot of information about the rules was already given. In figure 4.6 a small overview
of how the rules are related to each other and in figure 4.7 the role of the rules in the
procedural generator is shown. It follows a short explanation of how the individual rules
are implemented.

4.11.1 Axiom Rule

The axiom rule is used to actually add a geometry to a shape. A shape has no attached
geometry without the use of this rule by default. Exceptions exist for the more complex
shape types and for the two implemented special rules. The rule checks the defined type
of geometry that should be added to the input shape. If the type is “Cube” a cubic
geometry definition is generated using the HelixToolkit. The geometry is added to the
shape and the result is returned. It is also possible to remove any attached geometry
by selecting the “Empty” type in the visual rule editor. An extension to cylindrical
geometries would be possible, changes in some existing rules would have to be made,
though. For example it has to be defined how the “Split” rule works in combination with
a cylindrical object.

4.11.2 Polygon Rule

The “PolygonRule” only works with PolygonShapes. If any other shape is used for the
rule application, an empty shape is returned. The PolygonRule equals the Axiom rule
for PolygonShapes. It just adds the defined geometry to the shape by using the defined
polygon of the shape as well as the thickness.

4.11.3 Path Rule

The “PathRule” is equivalent to both before mentioned rules it just works with the
PathShapes. The rule uses the defined polygon as cross section definition and the path
for the extrusion of the cross section to generate the geometry. The actual generation is
performed by the HelixToolkit.

4.11.4 Material Rule

The “MaterialRule” is the simplest of the rules and just adds material information to the
shape independent of their type.

4.11.5 Translate Rule

The “Translate” rule is a transformation rule only affecting the position of the object
in the scene. A translation matrix is calculated depending if the translation should be
performed with respect to the object’s local coordinate system, i.e. local, or if it should
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be relative to the scene, i.e. global. The calculated translation matrix is then pushed
onto the shape’s model stack to update the model matrix of the shape.

4.11.6 Scale Rule

The “Scale” rule is another transformation rule. It is used to create a different scaling of
the shape. If the input shape is a PathShape the scaling only affects the PathShape’s
cross section, i.e. the polygon definition, by assumption, but not the path of the shape. If
another shape should be affected by the Scale rule a scaling matrix is calculated with the
HelixToolkit and is then applied to the shape. If the Scaling should be performed with
respect to the center of the shape, additional calculations for the translation matrices are
used to achieve the desired result.

4.11.7 Rotate Rule

The “Rotate” rule is the last rule that only affects the model matrix of a shape. A rotation
matrix is calculated and applied to the shape to create a global or a local transformation.
The rotation is always performed relative to a defined rotation center. By respecting a
rotation center it is possible to rotate an object around its origin or around a special
point e.g. the center of the shape. This possibility to define the rotation point is very
useful e.g. for the creation of doors or windows.

4.11.8 Split Rule

The “Split” rule is one of the most complex rules implemented in the application. It
distinguishes between the three different types of shapes to create a meaningful result. If
the input shape is a basic shape only a few calculations are performed. Since it is possible
to define absolute or relative values for the individual parts that should be generated
from the input shape the resulting sizes are determined at first. For each definition of a
split part its final size is calculated and the new shapes are positioned next to the other
split parts. If one split definition defines more than one resulting shape e.g. by selecting
to create five equally sized resulting shapes the calculations are automatically adapted.

If a PolygonShape is split a distinction between “split the ground shape” and “split
along the extrusion” is made to create the desired results. If the shape is split in the
direction of the the extrusion, i.e. split along the axis “Z”, some new polygon shapes
are created by using the same polygon outline as the input shape and changing only
the thickness value and the model matrices of the resulting shapes. If the polygon
outline should be split on the other hand a very useful clipping library [Joh10] is used. It
performs the polygon clipping operations and is used to split up the polygon outline into
the defined subpolygons. The calculated subpolygons and the existing thickness value
from the input shape are used to create the new split part objects that are then returned.
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Another distinction is made if a PathShape is split. If the cross section of the path
shape should be split calculations similar to the polygon shape split are performed to
create the new split parts. The path of the path shape remains the same for all generated
split parts, but the PolygonOutline which defines the cross section is split up according
to the split definitions. If the path should be split a few other steps have to be performed
to create the wanted results. All the newly created split parts are in turn again path
shapes and share the same cross section as the input shape. In this case the path of
the path shape is split into several parts. To be able to split up a 3-dimensional open
polygon, i.e. the path of the PathShape, it is necessary to calculate the length of the
path first. Additional points at the defined lengths are calculated on the existing path to
create the paths for the split parts with the exact defined length.

4.11.9 LinesInPolygon Rule

The “LinesInPolygon” rule is used to create new basic shapes that are positioned along
imaginary lines splitting a polygon. This rule is best used with PolygonShapes because
with this combination it is possible to create a lot of detail for complex elements like the
rafter- and the purlin elements of a roof. It works similar to the above Split rule, but
this rule does not create real splits of the polygon, but only the split lines, hence the
name. The clipper library [Joh10] is used in combination with an extension method to
perform the split operations and calculate the lines inside the polygon. In fact the lines
are precalculated at their final positions, but they may be longer than the desired result
at first. Consequently, they are then clipped against the polygon to shorten them. As a
last step the clipped lines, positioned inside the polygon, are used to create new shapes
that range from the start point to the end point of each line.

4.11.10 OffsetPath Rule

The “OffsetPath” rule is only used to offset the path of a path shape. This rule behaves
like a “geometry aware” translation of the cross section of a path shape. In fact the
rule does not move the cross section of the path shape, but recalculates the path with
translated positions of the path defining points. This operation is only defined for path
shapes so for all other types of input shapes an empty result is returned. The rule is
kind of specialized because in the current state of the application it is only useful in
combination with the precalculated elements of the stairs, the only existing path shapes
in the building. One important aspect of this rule is that using the OffsetPath rule always
keeps the original shape and additionally creates a second shape.

As mentioned before this rule only affects the path of a path shape. To be able
to transform the path, the normals, tangents and binormals are calculated before the
changes are made. The offset of the path is defined always in the direction of the normal
of the path. The clipper library, which was mentioned in the previous rules, is able
to perform exactly this operation, but not in the 3-dimensional room. Before actually
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translating the points of the path a check is performed to avoid “overlapping paths” at
reflex vertices when the offset is too big.

The angles between the previous and the next line segments are calculated for each
path point. This angle value is used for the generation of the new path shapes with
the “Cut” or “Round” corner types defined. An additional use for the angle values is
the stretching of the cross sections. In figure 4.8 a visualization of the stretching of the
cross sections is shown and why this stretching of the cross sections is needed to ensure a
constant cross section size along the path of the path shape.

If the offset should be performed with an “OffsetCornerType” of type “Simple”, the
normals and the remaining points of the path are used to create the offset path and the
new resulting shape. A last step in the generation process is the removal of path points
which are positioned near to each other.

If the OffsetCornerType is set to “Cut” or “Round” some additional path points are
inserted for sharp corners. In the case of the Cut type only one additional point is
inserted, but when the Round type is defined in the rule more points are added to the
path, depending on the angle at the corner.

Figure 4.8: Top: the two circles mark the positions with big changes in the direction of
the path. The cross sections, which are positioned in the plane of the angle bisectors, are
all exactly the same size resulting in weird looking and distorted objects. Bottom: the
cross sections are stretched so that the resulting object has a constant cross section size
everywhere if measured perpendicular to the path.

4.11.11 Roof Rule

The “Roof” rule is not a classic CGA rule because it cannot be attached to any other
rule, i.e. it does not have an effect everywhere. It is only possible to attach a roof rule
to the building node. This restriction is introduced because not more that one roof
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rule makes sense at the current state of development. The roof generation is actually a
separate generation step in the building generation process and the ApplyRule method
does nothing. It is safe to use everywhere, it just will not change any shape if not attached
to the building node. The roof rule stores all defined information about the roof. The
default slope of the roof is stored as well as the roof angle and the default extent. Not all
values are needed for all the different types of rules only the needed one’s are respected
in the generation process. If different values for slope and extent are defined for the
individual roof parts of a hipped roof those additional values are also stored in the roof
rule.

4.11.12 VerticalConnection Rule

The rule for creating vertical connections is also not a rule in the classical sense. Attaching
this rule to anything other than a room node in the visual rule editor will have no effect.
Only if the rule is attached to a room node a vertical connection will be positioned in the
floor and the individual parts will be generated. This results in the fact that the rule is
not deriving from the base rule class but the generation is performed by using a separate
generation step in the procedural system.

4.12 How to Add a Rule
The system of the implementation of the rules might seem very complicated at first, but
in a few steps it is possible to add a new rule to the system. This facilitates the extension
of the developed system with new useful rules.

The first step of adding a rule to the system is to define its behavior and decide a
name which is meaningful and describes what the rule does in the procedural system.
After the name and the behavior is defined the possible user interactions with the rule
have to be defined as well, i.e. which values should be changeable in the view and which
ones should be fixed.

In the next phase the rule implementation starts. This implementation consists of
implementing at least three classes. The most important class to implement is creating a
new subclass of the rule base class. This new subclass needs to implement the “ApplyRule”
function to be actually useful and which defines what the rule does in the procedural
system. The second class that has to be implemented is a subclass of the “RuleViewModel”
base class. The base class implements the needed functionality and properties. It serves
as the viewmodel in the MVVM design pattern and uses input from the view class to
pass on to the rule class which performs the procedural calculations. The third class is
the view of the new rule. It is defined in WPF and uses the properties of the viewmodel
class to display values and other controls. The data binding is defined in the XAML file
of the view class.
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To make use of the new rule two more steps need to be done. Since the visual rule editor
uses a collection of viewmodel objects to display the nodes and not the views themselves,
it is necessary to define the data template for the new viewmodel of the procedural
system. This can be done by adding another data template in the “NetworkControl.xaml”
file. After the steps are finished the rule can actually be used. The rule needs to be
added to the system somehow so the last step for adding a new rule to the procedural
system is to add a new context menu entry and a click event handler for the context
menu. This event handler is used when the new rule is added to the procedural system by
right-clicking on an empty space in the visual rule editor and then clicking at the newly
added context menu entry. The event handler actually creates the wanted viewmodel
and sets some values if needed e.g. setting up additional event handlers.

If additional event handlers are needed for the new rule, it is also necessary to add
special event handlers when a scene is loaded which contains this new rule. This is easily
achieved by adding a new condition for the rule in the “IOCore” file’s “LoadProject”
function.

4.13 Important Variables and Fixed Values
The creation of the buildings is implemented as flexible as possible, but some values
are fixed in the current stage of development. The layouter grid class contains some
examples. The first fixed value present in the layouter class is the size of a grid cell of
the layouter grid. If the value gets smaller more grid cells are used to calculate the floor
layout. Another fixed value in the grid are the widths of the start areas for the rooms
that are distributed and planned in the floor. The width of the corridor is also fixed to
two meters to ensure a realistic result in the created floor layouts.

Other fixed values are used for the positioning of vertical connectors in a room. The
fixed value controls the maximum amount of tries to position the vertical connector in
the room because it is possible that no valid position can be found.

4.14 Limitations of the Created Procedural System
The application is designed to be able to handle a wide variety of different possible
settings like different shapes of the buildings, different floor- and room configurations
and many different roof- and vertical connector options. The following Sections describe
the most important aspects which cannot be realized with the application in its current
state of development.

4.14.1 Building Limitations

Currently it is not possible to create new properties for the buildings inside the application.
The properties have to be modeled in an external application saved in the defined format
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and then loaded into the implemented application. An editor can be implemented into
the application to automate not only the generation of the buildings, but also the creation
of the properties that define the size and shape of the buildings.

It is possible to only generate one building at a time in the current implementation of
the procedural generator. If a bigger scenery with more buildings is needed this can only
be realized in an external application that use the created buildings from the presented
application. It is possible to overcome this limitation by modifying some parts of the
program like the scene loading and the generation process.

The generated rooms are limited to only contain axis aligned inner walls. This limitation
is a result of the use of a grid in the room layout process. Most real buildings only
contain such axis aligned walls so this is not an immediately noticeable limitation, but
contemporary architecture often results in the creation of buildings which include other
wall directions as well. It is possible e.g. to allow 45◦- and 135◦- oriented walls as well,
but the room layout algorithm has to be modified for this change. Using another room
planning algorithm is also possible if more complex wall geometries are wanted.

Currently there is also no way to create rooms that are taller than one floor in height.
Taller rooms are needed e.g. if a factory or a mall should be modeled with the application.
By modifying the existing rooms, i.e. adding a floor height value, or adding a new rule
for those special rooms it would be possible to add the generation of higher rooms to the
procedural system.

A floor is always located at one height level. This means it is not possible to create
rooms of a floor with a different height level even though it is sometimes necessary for
buildings located at a hillside for example.

No rules for modifying the layout of a floor exist at the moment. Especially residential
buildings and office buildings use different shapes and sizes of floors in the upper levels
compared to the lower levels. Modeling a multilevel office building containing smaller
and smaller floor plans from bottom to the top is currently not possible. It is possible
to implement a whole “class” of new rules that affect the shape and size of the floor for
example.

In relation to the last mentioned limitation, another limitation regarding the roofs
exists. If a floor would e.g. be reduced in size some parts of the size-reduced floor change
to be roof areas. The handling of this situation is not needed at the moment and therefore
it is not implemented in the system. Currently always the whole size of the floor is used
to generate the roof.

82



The property areas are currently always empty. It is possible to modify the “Proper-
tyNode” to allow attaching rules to the “yard part” of the property, but additional rules
need to implemented in that case.

4.14.2 Other Limitations

If the procedural system gets very complex, i.e. it contains many rule nodes, the visual
rule editor becomes slower a bit when the view is dragged and panned because in fact all
the nodes are inversely moved to fake this panning.

The visual output of the generated buildings has limited quality because only the direct
lighting is taken into account for the rendering. More beautiful and realistic results can
be achieved by exporting the generated building into a professional rendering application.

Currently there is only one export format available, but most of the available 3D
modelers and rendering applications are able to load this simple file format.
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CHAPTER 5
Results

After the description of the implementation details the following Section will provide
some examples of buildings generated by means of the designed application. Therefore,
the results of the program are displayed graphically and complemented by short verbal
explanations describing individual aspects of the capabilities of the application.

Figure 5.1: The first image demonstrates the possibility of creating multiple vertical
connections between floors. The presented floor plan contains two courtyards that are
taken into account in the floor planning steps. In the lower left area of the image the
two different floor plans of the building can be observed. The differing orange façade
elements indicate a distinct room layout in the floors below.
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Figure 5.2: This is an example for a big apartment building. A big floor plan is utilized
to create this result. The façade definition is used to create balconies with a random size.
There is no special handling of balconies, the creation is achieved by applying the default
production rules.

Figure 5.3: A wooden building with a complex roof consisting of many individual roof
parts is shown in this image. Some of the roof parts have varying slope definitions. The
building consists of two differently defined floors and two distinct façade definitions for
some of the rooms.
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Figure 5.4: A simple bungalow building with a corridor and two visible rooms is displayed
in this image. The CGA rules that control the façade generation are used to fake some
furniture elements at the wall inside the rooms of the building.

Figure 5.5: This is an example for a more complex building with two floors and two
façade definitions. One of the two façade types is not rendered in the screenshot and the
displayed part has reflective glass elements. A straight stairs connects the two floors. In
this case the previously created rooms adapt to fit the stairs positioned afterwards. This
fitting of the stairs in the room can be observed in the upper floor, where the back side
of the stairs “extends” the room to completely fit inside the room.
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Figure 5.6: This image uses the same example as seen in the figure before, but with a
more complex definition of the doors. The door handles as well as the doors themselves
could be defined in a more precise way to further increase the level of detail.

Figure 5.7: This figure shows a partly textured example of the interior of a building. The
geometry of the spiral stairs is generated by one of the two specialized rules introduced
in this work. Some elements of the stairs use a glassy material to improve the visual
quality of the generated result.
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CHAPTER 6
Conclusion and Future Work

6.1 Conclusion
With the implementation of the procedural generator at hand another small step towards
the simplification of the usage of procedural generators is made. While the procedural
systems used in the CityEngine are quite complex and contain a lot of code, the process of
creating the procedural system in the implemented application is almost self explanatory.
Examples for the definitions of the procedural rules used in the CityEngine can be
downloaded from [Cit13]. The variety of buildings which can be generated with the
application is quite high considering the fact that only basic CGA rules are implemented
in the system with the exception of the VerticalConnectors and the Roof.

Creating a system that is easy to use and that generates believable buildings is not
an easy task, but some of the used techniques, like the visual rule editor may impact
future developments of other applications. The implemented solution does of course not
tackle all the problems, but it is shown that it is possible to create complex definitions of
a procedural system without the need to write a single line of code.

Compared to the work of Lipp et. al. [LWW08] this work uses a different approach
to the creation of the rules visually. While they are created without writing any code,
the structure of the complete system remains “hidden” in the mentioned work. The
implemented visual rule editor facilitates the understanding of the structure of the created
procedural system which in turn further simplifies the use of the application a lot. A
visualization technique that displays the rules of the procedural system as connected
nodes in a directed acyclic graph is used in the work of Patov [Pat] which is very similar
to the approach of the visual rule editor employed in my work. While Patov’s application
uses a node based rule editor mainly to support the understanding of the dependencies
between the created rules, the rule editor implemented in my program serves the purpose

88



of being the main interaction interface between the artist and the application. Therefore,
it also facilitates the process of attaching and modifying the rules of the procedural
system.

Some issues had to be dealt with when the application was developed. It was not
easy to create the visual rule editor at first. The used base control [Dav12] consists of
a lot of classes and getting an overview of the implementation took quite some time. I
managed to realize all the functionality into the editor, but a working solution could have
been accomplished with a simpler approach as well. Also, it would probably have been a
better decision to implement a visual rule editor using the Direct2D or OpenGL APIs1.

While the solution works quite well, potential restrictions exist to a minor extent,
as the application could be further optimized in some parts. One example is changing
the visible area of the visual rule editor, i.e. panning the nodes. When many nodes are
present in the visual rule editor and the view is panned, many recalculations for the
nodes and connections are performed, thus slowing down the speed of the editor.

The visual “highlighting” of selected elements of the building in the 3-dimensional
view is slow sometimes. When working with more complex buildings, consisting of
more than 20.000 individual geometric elements for example, the raycasting algorithm,
which performs the checks to identify the hit element, takes quite some time to finish
its calculations. Using an acceleration data structure like an Octree would enhance the
raycasting algorithm a lot.

The application uses the HelixToolkit which was helpful at the beginning of the
development because the library implements a lot of functionality that is used in the
application. Some functions like the saving functionality for the building geometry and
their materials had to be rewritten though. Some changes to the shaders and the blend
functions were made as well as other small changes.

The result of the master thesis is a good-working application that is able to create
nice-looking and realistic buildings with a procedural generator. The visual rule editor
makes the creation of the procedural systems easy. Also, connecting the rules with
connectors instead of using distinct rule names additionally simplifies the process a lot.
The application is extendable with new rules that can be added quite easily. Additional
functionality can also be added which could further improve the results.

6.2 Future Work
Many possibilities to improve this application exist, however most of the limitations from
Section 4.14 can be solved by just adding some more rules to the procedural system.

1Application Programming Interface
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6.2.1 Editor Improvements

The visual rule editor already features some useful functionality to navigate the procedural
system, add and remove rules and more, but after using the application for some time
it became clear that a feature to automate the distribution of the created rules would
be very useful, i.e. a “grouping” functionality. Placing connected rules next to each
other automatically would further simplify the creation of the procedural system. An
implementation may be non-trivial because the connections should minimize the number
of intersections between each other to enhance the overview of the procedural system.

A second improvement for the visual rule editor would be to move from the current
implementation using default WPF components to an OpenGL or DirectX based system
for example making it easy to even work with hundreds of rules present in the visual
system without any slowdown.

Other possible extensions to the application and the editor could be the option to
create “new” grouped rules from a set of existing ones. This way a gallery of saved rule
sets could be implemented. An example is inter alia a 2d-split rule consisting of two
default split rules that can be added to the procedural system to further speedup the
design process of the procedural buildings [Pat].

6.2.2 Room Layout Improvements

The implemented room planning algorithm is limited to axis aligned inner walls. Therefore,
the implementation of another algorithm allowing more general directions of walls would
improve the quality of the resulting buildings a lot. Another aspect worth mentioning is the
positioning of the vertical connections between the floors. In the current implementation
it is not guaranteed that a vertical connection is generated when there is too little space
to position it properly. A change in the order of the creation of the rooms and the
positioning of the vertical connectors might improve this behavior.

6.2.3 Generator Improvements

It is also possible to improve the generator itself by avoiding intermediate geometry
generation steps for example. By determining the complete generation tree before the
actual geometry generation step it would be possible to actually only generate geometry
which is rendered in the final result.

Updates of the procedural system currently often result in the recalculation of the
whole building. By tweaking the update behavior, it would be possible to apply those
changes faster and therefore result in an application that reacts more quickly to the user
input.
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Adding whole new classes of rules to the generator is possible as well. There could be
mesh-modifying rules like “subdivide”, “merge”, “random point-wise transformations” of
the mesh and so on. Using such mesh-modifying rules would allow to create much more
complex geometries than it is possible at the moment.

Extending the generator also to work with other 3-dimensional object definitions is
another possibility to enhance and extend the application. For example it is would be
feasible to use volumetric data to model objects. In addition a side effect would be
the possibility to implement Boolean operators easily that way. Other ways to define
3-dimensional objects could be added as well.
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APPENDIX A
List of Terms

Some definitions which might prove useful in the reading process of this master thesis
are shown below. The definitions will cover some computer graphics related terms as
well as some architectural ones.

A.1 List of Used Terms
• Building - They are the main part of the master thesis and the BuildingNode
represents the root of the procedural generator. Buildings consist of one or more
floors.

• Child Node - The procedural system forms a hierarchy of rules. A child node is
therefore a “child” of another node in this hierarchy.

• Connection - The connection connects the nodes in the visual rule editor. The
procedural system as well as the hierarchy of rooms is defined by the use of the
connections.

• Connector - The connector is a special room inside a room collection or a floor.
A connector always connects all the rooms in the same hierarchy level inside a
room collection, i.e. it is adjacent to all its siblings.

• Connectivity - All rooms of a building have to be connected to each other somehow
and the floor planning algorithm ensures the connectivity of all rooms.

• Design pattern - A design pattern is a pattern that describes how to structure
classes in an application. Many different design patterns exist which are useful
for different purposes like minimizing the dependency between classes.
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• Floor - A floor is part of a building and consists of one or more rooms. In the
application a floor is restricted to one height throughout the whole floor. This
means all rooms in the floor start from the same height and end at the same height.

• L-system - Lindenmayer-system, introduced in 1990 by Aristid Lindenmayer
[PL90] to simulate the growth of plants.

• Node - A node is a visual element that is displayed in the visual rule editor and
represents some sort of information. This can be a property, a room definition or a
rule. Nodes are connected to each other by connections.

• Procedural content generation - The process of content generation using pro-
cedural techniques, i.e. not creating the content manually, but by defining some
procedures.

• Procedural system - The procedural system consists of the rule set and is
used to generate some content procedurally.

• Room - A room is part of a floor. Many rooms can be positioned in a floor while
the connectivity is always guaranteed.

• Room connection - This mainly refers to doors, but by changing the rules, a
room connection could also be an completely open part of a wall as well. The
possibility to create room connections every time is ensured by using a connector
room.

• Room collection - Basically this is the same as a room, but it has “subrooms”
defined, i.e. attached to it in the visual rule editor. A room collection always
consists of at least two rooms. All rooms of the room collection are connected to
each other locally. An example for a room collection is an apartment definition
inside an apartment building.

• Rule/Procedure - A rule/procedure is part of the procedural system. It is
used in the generation process and is applied to the shapes thus manipulating the
shape. In the developed application the rules are visually represented by nodes in
the visual rule editor.

• Rule set - The set of all rules in the procedural system.

• Shape - A shape is a basic element in the generation process. Rules are applied
to shapes and modify them in a defined manner. There are three types of shapes
implemented in the application, see Section 4.2.4.

• Tuple - A tuple is an object that can store more than one value. These tuples are
useful to combine information without the need to implement a class for it.

• Vertical connection - A vertical connection can be an elevator or some types
of stairs. It refers to something connecting two or more floors of the building.
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• Visual rule editor - The implementation of the visual rule editor is a contri-
bution of the master thesis at hand. It allows the creation and modification of the
available rules in a visual manner. No code has to be written and the nodes can be
connected easily in the visual rule editor.
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APPENDIX B
Pseudo Codes

B.1 Procedural System Example Code
The following code is taken from a scene created in the CityEngine 2015. The scene
“Philadelphia example”, downloaded from [Cit13], uses a lot of different code files to create
the whole scene. The following code is taken from the file “Generic Modern Facades.cga”
and represents only about 10% of the code in this single file. This small part of code
is displayed here to demonstrate the complexity of procedural systems. The code was
reformatted for easier reading.

B.2 The Floor Planning Algorithm
In the following pseudo code example the basic structure of the algorithm is shown. The
“GenerateRooms” function is used to handle the complete generation of all rooms of a
building. A loop for each floor containing a new room definition is used to generate all
different floor layouts. For each floor, the layouter grid is initialized first and used in the
“SubdivideRoom” function. After the available space of the floor is assigned to rooms, all
generated rooms are determined with the use of the layouter grid. If procedural rules
are attached to rooms in the visual rule editor, they are then attached to the created
RoomNodes. The walls are created before any other step of the generation process is
performed. Those next steps may change the size and positions of the created walls for
example. The last step inside the first loop is the creation of the basic geometric objects
for all floors and walls.

In the next step of the algorithm all vertical connections are placed inside the defined
rooms. Subsequently modified walls and rooms are updated.

95



The SubdivideRoom function is used to subdivide a given “space” into subspaces.
Please see figure 3.15 for a visual description of the process. If the room has child rooms,
those child nodes are attached to the current room to be able to recursively subdivide
those child rooms if needed. If child rooms exist, the space of the current room is then
subdivided. At first the current room is completely removed from the layouter grid
to create free space in the grid. The start positions for the child rooms are calculated
and those start positions are then used to expand the child rooms until no more free
space is left. To ensure the defined connectivity between the rooms, the connector room
is expanded, so that all other rooms are adjacent to it. After that room outlines are
calculated by using the grid cells assigned to the rooms. Then the possible connection
positions between the rooms are calculated.

B.3 The Straight Skeleton Algorithm
The pseudo code is part of the creation of the hipped roofs for the buildings. The
“CalculateHippedRoofPolygons” function uses the outline of the floor definition to calculate
a straight skeleton. The straight skeleton for the polygon is then used to create the
individual roof parts in the function “BuildPolygons” at the end. The straight skeleton
algorithm allows different angles of the individual roof parts to create realistic buildings.
The first step in the algorithm is the calculation of the ridge directions of the remaining
layout. The remaining layout is becoming smaller in each iteration of the “repeat” loop.
Next, all socalled “events” are calculated, i.e. all possible edge events and split events, as
well as their height of occurrence are stored. The next two loops are executed for events
with the lowest stored height. A split event possibly splits the current remaining layout
into smaller ones, the edge events usually just create new simpler remaining layouts. If
no remaining layout exists anymore, the next steps in the creation process are executed.

96



Algorithm B.1: Part of the code of a CityEngine example scene
1 FloorMass –>
2 FloorMass(1, 2)
3 FloorMass(idx, n) –>
4 set(floorIdx, idx) set(nFloors, n)
5 comp(f){ side: FloorSide }
6 Ceilings
7 FloorSide –>
8 setupProjection(0, scope.xy, ~4, ~4, 1)
9 split(y){ getWallBottom: Wall | ~1: FloorPattern | Wall_Top: Wall }

10 FloorPattern –>
11 case scope.sx < winW+walW:
12 Wall
13 case front && Balconies == "On Front" || rear && Balconies == "On

Rear":
14 BalconyPattern
15 case Side_Pattern != "Same as Main":
16 case left || right: SidePattern else: MainPattern
17 else:
18 MainPattern
19 MainPattern –>
20 case adjacentToBalconiesOnRight:
21 split(x){ ~1: MainPatternDispatcher | windowsOnCorners*walW: Wall

| balconyOnCorners*(balW+walW)/2: BalconyTile }
22 case adjacentToBalconiesOnLeft:
23 split(x){ balconyOnCorners*(balW+walW)/2: BalconyTile |

windowsOnCorners*walW: Wall | ~1: MainPatternDispatcher }
24 else:
25 MainPatternDispatcher
26 MainPatternDispatcher –>
27 case mainPattern == "[WO]*W":
28 split(x){ { ~walW: Wall | winW: Tile }* | ~walW: Wall }
29 case mainPattern == "o[WO]*Wo":
30 split(x){ winW/2+walW/2: Tile | { ~walW: Wall | winW: Tile }* |

~walW: Wall | winW/2+walW/2: Tile }
31 case mainPattern == "O[Wo]*WO":
32 //split(x){ winW+walW/2: Tile | { ~walW: Wall | winW/2: Tile }* |

~walW: Wall | winW+walW/2: Tile }
33 split(x){ winW+walW/2: Tile | { ~walW: Wall | panW: Tile }* |

~walW: Wall | winW+walW/2: Tile }
34 case mainPattern == "wo[WO]*Wow":
35 //split(x){ ~walW/2: Wall | winW/2: Tile | { ~walW: Wall | winW:

Tile }* | ~walW: Wall | winW/2: Tile | ~walW/2: Wall }
36 split(x){ ~walW/2: Wall | panW: Tile | { ~walW: Wall | winW: Tile }*

| ~walW: Wall | panW: Tile | ~walW/2: Wall }
37 case mainPattern == "Wo[WO]*WoW":
38 . . .
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Algorithm B.2: Floor layout algorithm
1 function GenerateRooms(building object)

Data: room definitions, room hierarchies
Result: Floor layout, defined rooms, vertical connectors

2 foreach existing floor definition do
3 Initialize the layouter grid
4 SubdivideRoom (floor)
5 Get all generated rooms
6 foreach generated room do
7 Attach defined procedural rules to room
8 end
9 CreateWallsForRooms (generated rooms)

10 for number of floors with same room definition do
11 Generate new floor object
12 Add rules to new floor
13 Add floor to building
14 end
15 end
16 Get all floors with different room definitions
17 foreach floor with new room definition do
18 PlaceVerticalConnections (floor)
19 Update the walls of the rooms where needed
20 Update the room neighbors where needed
21 end
22 function SubdivideRoom(room)
23 foreach child room do
24 Attach room to current room
25 end
26 if room should be subdivided then
27 Remove room from layouter grid
28 Calculate start points of child rooms inside current room
29 Fill current room space with child rooms
30 Ensure connectivity to child connector room
31 Calculate room outlines
32 Calculate possible room connection positions
33 foreach child room do
34 SubdivideRoom(child room)
35 end
36 end
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Algorithm B.3: Straight skeleton algorithm
1 function CalculateHippedRoofPolygons(building object)

Data: building layout, roof part definitions
Result: roof parts

2 Get layout of the building
3 repeat
4 Get remaining boundary
5 Create basic roof parts from outline
6 if not first iteration then
7 Search for parent roof part
8 Attach current roof part to parent
9 end

10 Calculate the directions of all ridges
11 CalculateEventsForLayout(remaining boundary, roof parts)
12 Shrink current boundary according to minimal event height
13 foreach active calculated split event do
14 Use split event to split the current layout into sublayouts
15 end
16 foreach active calculated edge event do
17 Use edge event to merge the vertices and create new layout
18 end
19 Remove empty layouts
20 until no boundary exists
21 BuildPolygons(roof parts)
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