
Towards a Light-weight Distributed

Software Development Process:

Empirically Driven Design of the Agile Distributed

Adaptable Process Toolkit (ADAPT)

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

DDipl.-Ing. Raoul Vallon, BSc

Matrikelnummer 0525496

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Diese Dissertation haben begutachtet:

(Prof. Dr. Thomas Grechenig) (Prof. Dr. Rafael Prikladnicki)

Wien, 18.04.2016
(DDipl.-Ing. Raoul Vallon, BSc)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Towards a Light-weight Distributed

Software Development Process:

Empirically Driven Design of the Agile Distributed

Adaptable Process Toolkit (ADAPT)

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

DDipl.-Ing. Raoul Vallon, BSc

Registration Number 0525496

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Thomas Grechenig

The dissertation has been reviewed by:

(Prof. Dr. Thomas Grechenig) (Prof. Dr. Rafael Prikladnicki)

Wien, 18.04.2016
(DDipl.-Ing. Raoul Vallon, BSc)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

I’m not a great programmer; I’m just a good programmer with great habits.

Kent Beck, creator of XP and TDD

Deklaration

DDipl.-Ing. Raoul Vallon, BSc
Hernalser Hauptstraße 14/9, 1170 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbil-
dungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

I hereby declare that I am the sole author of this thesis, that I have completely
indicated all sources and aids used, and that all parts of this work - including
tables, maps and figures - if taken from other work or from the internet,
whether copied literally or by sense, have been labeled including a citation of
the source.

Wien, 18.04.2016
Unterschrift Verfasser

ii

Acknowledgment

First, I would like to thank Prof. Dr. Thomas Grechenig for his guidance,
advice and support in this grand research adventure, making it possible to
enter the world of academia, attend international research conferences and go
on the research leave to Stanford.
Second, I would like to thank Prof. Dr. Larry Leifer and the whole designX
lab of the Center for Design Research at Stanford University for the invitation
to become a part of their lab for four months as a visiting researcher. It was a
wonderful experience, both on a research-related and personal level and their
input certainly enriched this dissertation. I greatly value and appreciate their
advice on keeping the ADAPT framework tangible and accessible to both the
researcher and the practitioner. I would also like to thank the Austrian Mar-
shall Plan Foundation for making this research leave financially feasible.
I owe a great debt of gratitude to my fiancée Christiane for allowing me the
time to concentrate on my dissertation, including many evenings, weekends
and even some vacations, for providing motivation and support and also for
proof-reading the thesis. I would also like to thank my family for enabling me
to pursue my studies at TU Wien in the first place.
Furthermore, I would like to thank Dr. Brigitte Brem for her scientific sup-
port throughout the years and Dr. Alexander Zapletal for reviewing the final
thesis draft and providing valuable feedback. I would also like to thank the
anonymous reviewers who provided feedback to my submissions to various
journals and conferences, especially those who also dedicated time to provide
suggestions for improvement, thus making an impact on this research. On a
related note, I am also thankful having been able to meet research leaders and
colleagues from around the globe at international conferences, whose feedback
also had an impact on this thesis.
Last but not least, I would also like to explicitly extend my gratitude to all
participants of the multiple-case study, providing the empirical basis to the
ADAPT framework, and to the experts who participated in focus groups or
one-on-one interviews to evaluate the results of this dissertation and provided
valuable and much appreciated feedback.

iv

Abstract

Developing software in distributed environments is more complex as communi-
cation, coordination and control challenges arise. Adaptations to process mod-
els for collocated teams become necessary. There has been a growing interest
in the past years in transferring agile values to distributed software develop-
ment (DSD) to mitigate those challenges. However, while there are numerous
empirical studies that report successful applications, there is to date no pro-
cess framework providing a holistic approach for implementing agile practices
in DSD environments. This thesis strives to fill that research gap by creating
the ADAPT (Agile Distributed Adaptable Process Toolkit) framework. The
design theory behind the framework includes five testable propositions to de-
scribe the nature of ADAPT. Related work is systematically analyzed in a
mapping study, covering the 15-year time span of 1999 to 2014. The mapping
study shows that - although the research field matured - empirical context
of a case is rarely described to a full extent. This finding calls for a check-
list to report empirical context in agile DSD. Based on the mapping study,
a checklist is designed and then applied to drive the data extraction in this
thesis’ multiple-case study, which features three cases of varying distribution
scenarios: cross town, no timeshift and continental. Using a grounded theory
approach, 49 guidelines and 94 practice candidates are extracted in total from
single-case analysis. These candidates are then compared cross-case to see
common patterns emerge, which results in 10 guidelines and 29 full practices
as well as 7 conceptual practices, together forming the first full iteration of
the ADAPT framework as the output of this thesis. Two focus groups and
ten expert interviews are held to evaluate both the design and the resulting
ADAPT framework. Experts agree that the current state of the framework
contributes to the grand challenge of applying agile values to DSD, and that
it is worthwhile to continue with further iterations of the framework in future
work, both growing the empirical basis and testing the current utility of the
framework in a real-world implementation study.

Keywords. Agile, Scrum, Distributed Software Development, Process Frame-
work, Case Study, Systematic Mapping, Grounded Theory

vi

Kurzfassung

Verteilte Softwareentwicklung zeichnet sich durch größere Komplexität aus,
da sowohl Kommunikation, Koordination als auch Kontrolle schwieriger zu
bewältigen sind und bekannte Vorgehensmodelle adaptiert werden müssen.
In den vergangenen Jahren haben sich daher Forschung und Praxis vermehrt
mit der Problemstellung befasst, agile Prozesse auch für verteilte Standorte
zu etablieren. Es gibt bereits mehrfach empirische Studien, die Erfolge ver-
melden, jedoch noch kein Prozess-Framework für eine gesamtheitliche Herange-
hensweise. Diese Arbeit will das vorliegende Forschungsproblem durch die Er-
stellung des ADAPT (Agile Distributed Adaptable Process Toolkit) Frame-
work lösen. Der Designprozess des Frameworks leitet fünf testbare Aussagen
her, die den Kern des Frameworks beschreiben. Weiters wird ein Systematic
Mapping verwandter Arbeiten von 1999 bis 2014 durchgeführt. Die Ergeb-
nisse des Mappings zeigen unter anderem, dass sich das Forschungsfeld zwar
deutlich weiterentwickelt hat, aber der empirische Kontext in den meisten Stu-
dien nicht ausreichend beschrieben wird. Diese Erkenntnis führt dazu, das im
Rahmen der Arbeit eine Checkliste erstellt wird, die die Datenextraktion für
empirische Studien in verteilter agiler Softwareentwicklung definiert. Diese
wird für die drei im Rahmen der Arbeit durchgeführten Fallstudien in den
folgenden Verteilungsszenarien genutzt: innerhalb einer Stadt, keine Zeitver-
schiebung und kontinental. Durch Anwendung von Grounded Theory wer-
den 49 Richtlinien und 94 Praktiken insgesamt als Kandidaten der einzelnen
Fallanalyse extrahiert. Die weiterführende gesamtheitliche Analyse über alle
drei Szenarien resultiert in insgesamt 10 Richtlinien und 29 vollumfänglichen
Praktiken sowie 7 weiteren konzeptuellen Praktiken, die zusammen die erste
volle Iteration des ADAPT Frameworks als Ergebnis dieser Arbeit darstellen.
Zur Evaluierung von Design und Ergebnissen wurden zwei Fokusgruppen und
zehn Experteninterviews durchgeführt, die sowohl den Beitrag des Lernframe-
works für Forschung und Praxis als auch den in zukünftigen Iterationen leicht
erweiterbaren modularen Aufbau unterstreichen.

Keywords. Agil, Scrum, Verteilte Softwareentwicklung, Prozess-Framework,
Case Study, Systematic Mapping, Grounded Theory

viii

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Research Challenges and Objective 3
1.3 Research Framework and Outline 5
1.4 Contributions . 6
1.5 Publications . 6

2 Theoretical Background 8
2.1 Agile Software Development . 8

2.1.1 Scrum . 9
2.1.2 Extreme Programming (XP) 15
2.1.3 XP@Scrum . 17
2.1.4 Lean Software Development and Kanban 17

2.2 Distributed Software Development and Agile Practices 21
2.2.1 Distributed Software Development 22
2.2.2 Benefits . 22
2.2.3 Challenges . 22
2.2.4 Why Agile DSD? . 22

2.3 Conclusion . 23

3 Design Theory 26
3.1 Design Research . 27
3.2 Framework Design . 28

3.2.1 Software Process Tailoring 30
3.2.2 DSD Challenge Categories 31
3.2.3 Design Guidelines . 32
3.2.4 E↵ective Practices based on Context 32

3.3 Process Design . 34
3.4 Design Components . 35
3.5 Conclusion . 35

4 Agile Practices in DSD: Systematic Mapping of Fifteen Years 38
4.1 Related Systematic Literature Reviews and Mappings 39

x

4.1.1 General Remarks on Systematic Mapping and Litera-
ture Reviews in SE . 39

4.1.2 Agile Practices in DSD 40
4.2 Study Design . 41

4.2.1 Research Steps . 41
4.2.2 Search Terms . 42
4.2.3 Resources Searched . 42
4.2.4 Study Selection Criteria 43
4.2.5 Study Selection Process 43
4.2.6 Study Quality Assessment Criteria 44
4.2.7 Data Extraction and Synthesis 46

4.3 Results . 48
4.3.1 Research Settings . 48
4.3.2 Empirical Background 53
4.3.3 DSD and Agile . 54
4.3.4 Summary . 57

4.4 Implications for Research and Practice 61
4.5 Conclusion . 63

5 Single-Case Analysis 66
5.1 Research Design . 67

5.1.1 Related Multiple-Case Studies 68
5.1.2 Multiple-Case Study . 69
5.1.3 Conceptual Framework 70
5.1.4 Case Organizations . 70
5.1.5 Data Collection . 72
5.1.6 Data Analysis . 74

5.2 Case CrossTown . 79
5.2.1 Background . 79
5.2.2 Challenges . 80
5.2.3 Agile Practices . 81
5.2.4 ADAPT Framework Input 83

5.3 Case NoTimeshift . 86
5.3.1 Background . 86
5.3.2 Challenges . 86
5.3.3 Agile Practices . 87
5.3.4 ADAPT Framework Input 88

5.4 Case Continental . 91
5.4.1 Background . 91
5.4.2 Challenges . 91
5.4.3 Agile Practices . 92
5.4.4 ADAPT Framework Input 92

5.5 Conclusion . 94

xi

6 Cross-Case Analysis: Building the ADAPT Framework v1.0 96
6.1 Cross-Case Summary . 97
6.2 Practices . 98

6.2.1 Full Practices . 101
6.2.2 Conceptual Practices . 114

6.3 Guidelines . 117
6.4 ADAPT Framework v1.0 . 125
6.5 Conclusion . 128

7 Evaluation and Discussion of Results 130
7.1 Focus Groups . 131

7.1.1 XP 2014 Conference, Rome 131
7.1.2 Center for Design Research, Stanford University 132

7.2 Expert Interviews . 133
7.3 Related Work . 136
7.4 Propositions revisited . 138
7.5 Research Questions revisited 140
7.6 Limitations . 144
7.7 Future Work . 146

8 Conclusion 150

List of Figures 152

List of Tables 156

Bibliography 158

A Appendix 178
A.1 Glossary . 178
A.2 Final Set of 95 Included Studies in Systematic Mapping 179
A.3 Proposed Data Extraction Checklist for Reporting Empirical

Studies on Agile Distributed Software Development 182
A.4 Semi-structured Interview Guide for Evaluation Interviews . . . 183
A.5 Tools Used . 184
A.6 Curriculum Vitae . 185

xii

CHAPTER 1
Introduction

The research motivation, challenges, objective, framework and out-
line have been presented and discussed at the 15th International
Conference on Agile Software Development (XP 2014) in Rome
and published as part of the joint PhD symposium report in the
ACM SIGSOFT Software Engineering Notes. (Falessi et al., 2014)

Contents

1.1 Motivation . 2

1.2 Research Challenges and Objective 3

1.3 Research Framework and Outline 5

1.4 Contributions . 6

1.5 Publications . 6

1.1 Motivation

Agile software development has gained widespread popularity over the last
decade in very di↵erent domains such as embedded software projects (Xie
et al., 2012), mobile application development (Schar↵ and Verma, 2010) or
aerospace (VanderLeest and Buter, 2009) and has found its way into global
organizations and thus in multi-team and multi-site corporate environments
on the scale of Intel (Chen et al., 2007), Microsoft (Begel and Nagappan,
2007), Yahoo! (Chung and Drummond, 2009) or SAP (Schnitter and Mackert,
2011). It is built around empowered and self-organizing teams with a strong
focus on collaboration and communication supported by various agile practices
including pairing, customer collaboration, stand-ups, reviews, retrospectives
and the planning game (Šmite et al., 2010b).

Introduction 2

Developing software in distributed environments has become a daily reality
for many organizations as it o↵ers benefits such as cost savings, access to
large multi-skilled work forces and reduced time to market (Ó Conchúir et al.,
2009). Agile software development may potentially improve collaboration in
distributed environments as it relies strongly on frequent communication (Hos-
sain et al., 2011b). Hence, agile practices have gained ground on distributed
software development (DSD), e.g. (Sutherland et al., 2007; Paasivaara et al.,
2009; Bannerman et al., 2012; Hildenbrand et al., 2008), and even global soft-
ware development environments (GSD), e.g. (Hossain et al., 2011b; Cristal
et al., 2008), in the last decade (Jalali and Wohlin, 2010, 2012a).

Distributed environments are more complex and several adaptations to pro-
cess models for collocated teams are necessary (Hossain et al., 2011b; Batra,
2009), e.g. communication between team members needs other mechanisms
(Dorairaj et al., 2012b; Korkala and Abrahamsson, 2007) and technical tool
support plays a bigger role in the process (Dullemond et al., 2009; Niinimaki,
2011) as well as knowledge management and transfer (Dorairaj et al., 2012b).
In general we can see a growing interest in transferring agile practices to dis-
tributed software development both as an active research field (Hossain et al.,
2009; Jalali and Wohlin, 2010) and in practice, as the usage of distributed
agile teams has more than doubled from 2012 to 2014: while 2012 35% of
the respondents reported to work in geographically distributed agile teams, in
2014 (the latest available survey at the time of writing) the number increased
to 80% (VersionOne, 2014).

Yet, although there are numerous empirical studies in the field, there has been
no comprehensive framework for applying agile practices in DSD environments
before the conduction of this thesis.

1.2 Research Challenges and Objective

Agile processes have been originally designed for collocated teams collaborat-
ing closely on a single site (Schwaber and Beedle, 2001). Distributed software
development challenges one of agile software development’s core strengths:
team members need to interact and communicate on a daily basis to form self-
organizing teams. However neither the leading agile process scrum (Schwaber
and Beedle, 2001) nor Extreme Programming (XP) (Beck, 2000) were de-
signed for teams working in distributed environments. Hence adaptations to
the original process are necessary (Batra, 2009), but to date there is no stan-
dard process for applying agile practices to DSD (Alqahtani et al., 2013). The
goal of these process adaptations is to transfer agile values, which produced
excellent results in the last decade for collocated teams (Dingsøyr et al., 2012),

3 Chapter One

to DSD environments. This problem statement exhibits the following research
challenges, formulated as research questions (RQ):

• RQ1. Why would distributed software development benefit from agile
practices?1

• RQ2. What are suitable design components for building a distributed
agile process framework?

• RQ3.

a) What does the research landscape in the field look like in the 15
years of 1999 to 2014?

b) What has changed in the later five years 2010 to 2014 in comparison
to the former ten-year period of 1999-2009?

c) What are common agile practices and distribution scenarios?

• RQ4.

a) Which process design guidelines and practices can increase the
chances of a successful agile process implementation in distributed
environments?

b) Do the di↵erent distribution scenarios a↵ect the implementation of
agile practices?

The research questions can be regarded, in the stated order, as a step-by-step
road map to completing the research objective of this thesis, which reads:

Although numerous empirical studies have reported on the application of ag-
ile practices in di↵erent distribution scenarios, to date there has been no
significant research e↵ort to create a single comprehensive framework. To
this end, the scientific achievement lies in designing such a framework called
ADAPT (Adaptable Distributed Agile Process Toolkit) based on a multiple-
case study to be conducted featuring di↵erent distribution scenarios (cross-
town, no timeshift and continental) and discussed with regard to an extensive
research on related work. The global scenario is explicitly out of scope for this
thesis but the framework shall be designed to allow adding practices (from the
global scenario, as well as others) in future work as well. Furthermore design
guidelines will be provided to lead the tailoring of agile process implementa-
tions using the ADAPT framework and strengths and weaknesses evaluated by
experts from both academia and industry.

1RQ1 is considered an introductory research question because many empirical studies
already exist to analyze the matter, but it is still posed to guide the analysis of the theoretical
background in Chapter 2 and also to be in line with the remainder of the thesis’ chapter
design (cf. Table 1.1).

Introduction 4

The framework is intended to be used by researchers to expand upon and
practitioners to drive their process implementation. The framework is explic-
itly not considered to be an all-entailing ”best practice guide” but a learning
framework prepared for future iterations.

1.3 Research Framework and Outline

Based on the research challenges and objective, the following research frame-
work in Table 1.1 was designed to carry out the research in this thesis. It also
serves as a chapter outline to the remainder of this thesis.

Research Stage Chapter RQs Output
Research Design 1 - Research motivation, challenges,

objective, framework, outline and
contributions

Theoretical Background 2 RQ1 Definitions and explanations
Design Theory 3 RQ2 Design theory behind ADAPT,

description of design compo-
nents, 5 testable propositions

Systematic Mapping 4 RQ3 Overview of the 15-year period of
1999-2014, checklist for reporting
empirical context in agile DSD

Single-Case Analysis 5 RQ4 Guideline and practice concepts
from each respective case

Cross-Case Analysis 6 RQ4 (cont.) ADAPT v1.0 (final set of cross-
case guidelines and practices,
connected to the challenge types)

Evaluation & Discussion 7 RQ1-RQ4 Discussion of results, evaluated in
two focus groups and ten expert
interviews, future work

Conclusion 8 - Summarized conclusions

Table 1.1 – The research framework and chapter outline.

Chapter 2 explores the theoretical background behind the thesis, namely ag-
ile software development and distributed software development. The design
theory behind the ADAPT framework is described in Chapter 3. Chapter 4
presents the systematic mapping study conducted to systematically analyze
related work in the 15-year-period of 1999-2014 and also describes the checklist
for reporting empirical context that is later applied in the multiple case study.
For the case reports, first the three cases have been analyzed individually in
Chapter 5 and then cross-case in Chapter 6 leading to the first full iteration
of the ADAPT framework as the output of this thesis. The detailed research
design for the multi-case study, including the steps for arriving at the final set
of the ADAPT framework’s guidelines and practices, can be found in Section
5.1. The discussion in Chapter 7 presents the evaluation of results from two

5 Chapter One

focus groups and 10 expert interviews and provides the final answers to the
research questions within this thesis. Chapter 8 concludes the thesis.

1.4 Contributions

This thesis o↵ers the following contributions to the research field of agile DSD.

• Empirical evidence from a long-term multiple-case study

• Cross-case analysis among di↵erent distribution scenarios

• A new learning framework for improving the implementation of agile
practices in DSD that other researchers can expand upon and that can
be used by practitioners to drive their distributed agile process imple-
mentation

• A systematic mapping of agile practices in DSD for years 2010-2014 in
continuation of work by Jalali and Wohlin (2010) and thus covering the
15-year period of 1999-2014

• A checklist for researchers on reporting empirical context in agile DSD
based on the results from the systematic mapping study

• Evaluation of research design and results by both research and industry
experts in two focus groups, 10 expert interviews and several presenta-
tions at dedicated scientific international conferences

1.5 Publications

The following work has been published, or is in preparation to be published,
during the course of this dissertation.

1. Vallon, Raoul and Grechenig, Thomas. Empirically Driven Design of
the Agile Distributed Adaptable Process Toolkit (ADAPT): A Learning
Framework. In preparation

2. Vallon, Raoul and Grechenig, Thomas. Trends and Directions of Apply-
ing Agile Practices in Distributed Software Development: A Systematic
Mapping. In preparation

3. Vallon, R. and Grechenig, T. Ten Heuristics from Applying Agile Prac-
tices across Di↵erent Distribution Scenarios: A Multiple-Case Study.
Computer and Information Science, 9(2):Online–First, May 2016

4. Vallon, R. Empirically Driven Design of the Agile Distributed Adaptable
Process Toolkit (ADAPT). Technical report, Austrian Marshall Plan,
2015

Introduction 6

5. Vallon, R., Wenzel, L., Brüggemann, M. E. and Grechenig, T. An Agile
and Lean Process Model for Mobile App Development: Case Study into
Austrian Industry. Journal of Software, 10(11):1245–1264, 2015

6. Vallon, R., Dräger, C., Zapletal, A. and Grechenig, T. Adapting to
Changes in a Project’s DNA: A Descriptive Case Study on the E↵ects
of Transforming Agile Single-Site to Distributed Software Development.
In Agile Conference (AGILE), 2014, pp. 52–60. IEEE, 2014

7. Vallon, R., Strobl, S., Bernhart, M. and Grechenig, T. Inter-
organizational Co-development with Scrum: Experiences and Lessons
Learned from a Distributed Corporate Development Environment. In
Agile Processes in Software Engineering and Extreme Programming.
14th International Conference, XP 2013, Vienna, Austria, June 3-7,
2013. Proceedings., volume 149 of Lecture Notes in Business Informa-
tion Processing, pp. 150–164. Springer Berlin Heidelberg, 2013b

8. Vallon, R., Bayrhammer, K., Strobl, S., Bernhart, M. and Grechenig,
T. Identifying Critical Areas for Improvement in Agile Multi-site Co-
development. In 8th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 165–172. SciTePress,
2013a

9. Vallon, R., Müller-Wernhart, M., Schramm, W. and Grechenig, T. Kom-
bination von Agil und Lean in der Softwareentwicklung. Springer
Informatik-Spektrum, In-Print 37(1):28–35, 2014, Online–First, 2012

10. Falessi, D., Oliveira, R., Taylor, K., Fontana, R. M., Power, K., Vallon,
R., Giardino, C., Rejab, M. M. and Wang, X. Trends and emerging
areas of agile research: the report on XP2014 PhD symposium. ACM
SIGSOFT Software Engineering Notes, 39(5):26–29, 2014

7 Chapter One

CHAPTER 2
Theoretical Background

Contents

2.1 Agile Software Development 8

2.2 Distributed Software Development and Agile Practices . . 21

2.3 Conclusion . 23

This chapter investigates definitions and theoretical background of this thesis.
Section 2.2 tackles RQ1. Why would distributed software development benefit
from agile practices? by investigating related work.

2.1 Agile Software Development

The content of this section has already been presented in (Vallon, 2012). Agile
software development is regarded as an answer to the problem that even with
exhaustive planning, the resulting software is seldom of high quality. One
of the reasons is constantly changing requirements that are part of most of
today’s projects (Dogs and Klimmer, 2005). Hence agile processes try to use
a more lightweight approach in planning to cope with changing requirements.
Furthermore, to establish a common ground for all agile followers, the Ag-
ile Manifesto (Fowler and Highsmith, 2001) has been negotiated among 17
American software engineering thought leaders in 2001. The main part reads:

”We are uncovering better ways of developing software by doing
it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Theoretical Background 8

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.” (Fowler and Highsmith, 2001, p. 35)

The Agile Manifesto points out that individuals and interactions are one of
the key issues of software engineering from a process’ perspective. This also
implies that hierarchies are loosened compared to more traditional approaches
(e.g. Rational Unified Process, cf. (Kruchten, 2004)) and planning needs to be
done on a regular basis instead of following a strict plan in the (still frequently
used) Waterfall Model (Royce, 1970). Flexibility and customer collaboration
is increased and documentation kept to a minimum (Schatten et al., 2010),
because it should not be used as a substitute for interaction (Highsmith, 2004).

Among the most widely used agile methodologies are scrum (cf. Section 2.1.1),
Extreme Programming (XP) (cf. Section 2.1.2) or a combination of the two,
such as XP@Scrum (cf. Section 2.1.3). However, it is important to truly adopt
agile principles rather than strictly follow one of the agile methods or it will
lead to ”constant struggles and many other old school problems” (Fraser et al.,
2006, p. 938). Although originally intended only for small-scale and not life-
critical application (Cockburn andWilliams, 2003), agile methodologies can be
used in all kinds of software projects; they have even been applied successfully
to disaster management after a terrorist attack (Nawaz and Zualkernan, 2009).
Lean software development and its most famous follower kanban (cf. Section
2.1.4) also share many similarities with agile methods (Kniberg and Skarin,
2010) and are regarded as a process under the agile umbrella (Jalali and
Wohlin, 2010), which is why they are discussed within this section. Kanban
and scrum can also be successfully combined to a hybrid process in its own
right (Vallon et al., 2012).

2.1.1 Scrum

The first presentation of scrum was held by Ken Schwaber (Schwaber, 1997)
during a workshop at OOPSLA conference in 1995 (Sutherland, 1995). The
name scrum originates from ”the strategy used in rugby for getting an out-
of-play ball back into play” (Schwaber and Beedle, 2001, p. 1). It has been
chosen because ”both [the game rugby and scrum] are adaptive, quick, self-
organizing, and have few rests” (Schwaber and Beedle, 2001, p. 1). The most
important properties of scrum can be derived from these similarities: high pro-
ductivity, adaptivity, low risk and uncertainty resulting in increased comfort
for practitioners (Grechenig et al., 2010). A summary of scrum history and
papers by the co-creators Sutherland and Schwaber can be found in (Suther-
land and Schwaber, 2007). The scrum overview in this section is based on

9 Chapter Two

Figure 2.1 – Scrum process overview (Mountain Goat Software, 2005).

the sources (Schwaber and Beedle, 2001; Dogs and Klimmer, 2005; Pichler,
2008; Gloger, 2011). Figure 2.1 provides a quick overview of the scrum process.

Requirements in scrum are defined as user stories. A user story is a require-
ment written from the user’s point of view (in a specific role), e.g. ”As standard
user I want to be able to create a new meeting” (Pichler, 2008). Phrasing user
stories correctly is a very important issue as books have been written focusing
explicitly on the matter (Cohn, 2004; Wirdemann, 2011). The product backlog
is the collection of all user stories of the product to be developed. Scrum works
with sprints, i.e. iterations of typically 2-4 weeks. At the beginning of each
sprint, user stories of the product backlog are pulled into the sprint backlog
by the team during the sprint planning meeting. The team commits to devel-
oping all the selected user stories within the sprint. Furthermore, there is the
daily scrum meeting in which current progress and impediments are discussed
in a very short manner. At the end of each sprint a product increment has to
be created including all the user stories that have been developed during the
sprint. The team and stakeholders will then reflect on the current product
increment (sprint review meeting) as well as on the scrum process itself (sprint
retrospective), which shall help improve the next sprint iteration.

Roles

Scrum defines three types of roles, product owner (PO), scrum master (SM)
and the team. However, none of the three is a project manager in a tradi-
tional sense. The question is whether or not managers are needed and, if so,
what they can or should do in agile environments. Anderson et al. (2003)
argue that managers are definitely needed in agile environments, but their
tasks may change. Ward Cunningham concludes that ”a manager [in agile
methods] does more oversight than day-to-day ’managing’ of the program-
ming activities” (Anderson et al., 2003, p. 276), which gives managers in agile
environments more time to focus on the important administrative matters due

Theoretical Background 10

to self-organizing development teams. The following description shows how
management tasks are divided among the three roles.

The product owner takes over some of the traditional management tasks but
without leading the team (Pichler, 2008):

• Definition and management of requirements

• Release management and return on investment

• Close collaboration with the team

• Stakeholder management

He also serves as the link between the team and the customer, i.e. he communi-
cates with the development team and represents the customer’s interests, e.g.
when defining user stories of the product backlog and setting their priorities.
Regular meetings with the customer are absolutely necessary. The product
owner works with the team during the whole project, i.e. requirements are con-
stantly being refined and product increments are being reviewed at the end
of each sprint. Yahoo! states that the product owner is the ”single wringable
neck” (Pichler, 2008), so he is solely responsible for the success or failure of a
project. Thus the product owner needs to take many di↵erent interests into
account (customer, marketing, service, etc.) and update the product backlog
accordingly, i.e. add, refine or delete requirements during the course of the
whole project, not just in the beginning. In bigger projects with multiple
scrum teams the product owner role can be very complex and demanding,
which is why Pichler (2008) advises to have one product owner for each team.
The various product owners then form another team: the product owner team
that may also include marketing, service or other representatives and one chief
product owner. Gloger (2011) also states that in complex project situations
several product owners are possible and that coordination among them needs
to be done one level above the teams.

While the product owner is responsible for the success of the project, the scrum
master is responsible for a working scrum process (Schwaber and Beedle,
2001). Pichler (2008) identifies the following tasks for a scrum master:

• Establish scrum as the process model in the team

• Support the team

• Ensure direct collaboration between product owner and team

• Remove impediments

• Help improve development methods

11 Chapter Two

• Lead by serving

Greenleaf (2002) characterizes a servant leader, i.e. a leader without authority
that supports the team. Gloger (2011) defines the scrum master as a pow-
erless change manager, because he does not have any authority, yet needs to
create and sustain a working scrum process. This di�cult task must be taken
seriously because ”A dead scrum master is a useless scrum master!” (Ken
Schwaber in (Gloger, 2011, p. 26)). Furthermore, the scrum master has to as-
sure that the team does not trade quality for productivity (Schwaber, 2007).
In conclusion, the scrum master has influence, but no power or authority
regarding the team’s organization (Pichler, 2008).

The team is fully self-organizing. While the product owner prioritizes the user
stories, the team itself selects the user stories that it can commit to in the
next sprint (following the product owner’s prioritization). The team needs
to be interdisciplinary (from architecture to testing) and work autonomously,
i.e. it needs to be able to reach the sprint objectives without major external
dependencies. If a user story is not ready for deployment at the end of the
sprint, then it is neither the developer’s nor the tester’s fault. The whole team
is held responsible. Lencioni and Schieberle (2014) argue that in good teams
its members need to call each other to account to achieve goals and show their
mutual respect.

Meetings

Scrum prescribes a variety of meetings that reflect the agile character of ”indi-
viduals and interactions” (cf. Agile Manifesto (Fowler and Highsmith, 2001)).

At the beginning of each scrum project there is a project planning session
where the vision, project sta↵ and conventions (e.g. programming language,
tools, etc.) are set. The product owner defines the first version of the product
backlog and sets priorities for the user stories.

The product owner needs to have an updated and estimated backlog for the
sprint planning meeting. The estimation meeting should be held at least
once each sprint and should not exceed a total length of 90 minutes. The
product owner can also use this meeting to present new backlog items to
the team (Gloger, 2011). In contrast to traditional approaches, estimation is
done on a team level (Wirdemann, 2011), i.e. ”What can the team accomplish
in one sprint?” instead of ”How much can developer X implement or tester
Y test in one sprint?”. Moreover, estimations are conducted in reference to
other user stories and by using story points, which is an abstract unit that
the agile community has agreed upon (Gloger, 2011). The most widely used
agile estimation method is Grenning’s 2002 Planning Poker. Gloger (2011)

Theoretical Background 12

also introduced a new estimation method called magic estimation, because he
argues that planning poker does not work well with bigger teams and backlogs.
More on agile estimating can be found in (Cohn, 2005).

The sprint planning meeting takes place at the beginning of each sprint to
decide on the sprint goal, i.e. which user stories from the product backlog
will be put into the sprint backlog to be developed within this sprint. The
team discusses possible ways of implementation, which improves the teams’
understanding of the user stories similar to a requirements workshop (Gloger,
2011). The defined sprint goals are then kept in the sprint backlog.

The daily scrum is a daily stand up meeting that should take no longer than
15 minutes. The meeting is held standing up to enforce the short nature of
the meeting. Every team member should state his status and problems (if
any) shortly. More precisely, the scrum master will ask each team member
the following three simple questions (Dogs and Klimmer, 2005):

1. What did you do yesterday?

2. What will you do today?

3. Are there any impediments in your way?

The scrum master takes notes of impediments (see impediment chart in Section
2.1.1) and will try to eliminate them as quickly as possible (Pichler, 2008).
In bigger scrum teams it may help to focus the questions on individual user
stories rather than individual team members to keep the meeting short and
to the point (Davies and Sedley, 2010).

For larger projects with several scrum teams, the scrum of scrums meeting can
be held daily as a project-wide stand up meeting that improves communication
and coordination among several teams. Each team sends one team member to
the scrum of scrums meeting. However, the scrum master should not be sent
there too frequently in order for the team to remain self-organizing (Larman
and Vodde, 2009).

The following questions need to be answered by each participant of the scrum
of scrums (Pichler, 2008):

1. What did your scrum team do since the last scrum of scrums?

2. What will your scrum team do until the next scrum of scrums?

3. Are there any impediments in your scrum team’s way?

13 Chapter Two

In the sprint review meeting at the end of each sprint the developed product
increment is presented. Participants of this meeting should be members of
the management, the customer, user(s) and the product owner (Schwaber and
Beedle, 2001). The scrum master moderates the meeting. However, it is an
informal meeting and therefore it is not allowed to prepare presentations. The
product increment is the main issue. Participants should collect information
for the next sprint planning meeting by identifying strengths and weaknesses
of the current product increment. Furthermore, it is reviewed, which user
stories have been implemented during this sprint (ideally, all that have been
selected for the sprint backlog). The product owner decides if they have been
implemented adequately.

Without a sprint retrospective, teams would make the same mistakes over and
over again (Kniberg and Skarin, 2010). The sprint retrospective should be
held immediately after the sprint review meeting. It is dedicated to reflecting
on the scrum process itself during the last sprint, e.g. level of collaboration
within the team and room for improvement in general (Schwaber, 2004). The
objective is to increase productivity and e�ciency of the team as well as overall
software quality (Derby et al., 2006). After the sprint retrospective the sprint
is formally completed.

Artifacts

The following artifacts support the scrum process. Product backlog and sprint
backlog are the core components of every scrum implementation. Additionally,
the burndown chart is an important tool to track progress within a sprint. The
impediment chart is a valuable optional utility (Pichler, 2008).

The product backlog is created during project planning at the beginning of
a scrum project. It is a list of user stories that should become part of the
product. However, in contrast to traditional product specifications, it is in-
tentionally kept incomplete (Schwaber and Beedle, 2001). This is part of agile
thinking because the product backlog needs to be under constant development
and refinement by the product owner. New user stories can be added or old
ones deleted in every phase of the project. User stories are usually not only
written by the product owner (but also by the team itself or other stakeholders
e.g.), especially in bigger projects (Gloger, 2011). It is very important that the
product owner keeps an updated prioritization of the items (i.e. user stories)
in the product backlog at all times.

At the beginning of each sprint the team selects user stories from the product
backlog to be added to the sprint backlog. The team then divides the user
stories into tasks that will be worked on during the sprint. The sprint backlog

Theoretical Background 14

Figure 2.2 – Scrum burndown chart (Kniberg and Skarin, 2010).

may not change during the sprint with exception of new subtasks being added
(Schwaber and Beedle, 2001), because the team has committed to completing
all tasks in the sprint backlog within the sprint’s duration.

The burndown chart is a tool to keep track of activities within a sprint (Dogs
and Klimmer, 2005). More precisely, it shows the day-to-day progress of the
sprint (Schwaber and Beedle, 2001) by comparing estimated and actual e↵ort
over time. Figure 2.2 shows an exemplary burndown chart. The ideal burn-
down describes the ideal (linear) sprint progress (Pichler, 2008). By summing
up e↵orts (see y-axis of Figure 2.2), it is possible to check if the actual burn-
down of work is above or below the estimated burndown that is shown as a
straight line in Figure 2.2. This way actual progress (burndown) is compared
to the estimated one.

The impediment chart contains a short description of impediments as well as
the date of first occurrence and removal (Pichler, 2008). The scrum master
should update it at the end of each daily scrum meeting. It is the scrum
master’s duty to deal with the removal of impediments.

2.1.2 Extreme Programming (XP)

Extreme Programming goes back to Kent Beck with (Beck, 2000). He de-
scribes it as:

”What is XP? XP is a lightweight, e�cient, low-risk, flexible,
predictable, scientific, and fun way to develop software. It is

distinguished from other methodologies by

• Its early, concrete, and continuing feedback from short cycles.

15 Chapter Two

• Its incremental planning approach, which quickly comes up
with an overall plan that is expected to evolve through the
life of the project.

• Its ability to flexibly schedule the implementation of func-
tionality, responding to changing business needs.

• Its reliance on automated tests written by programmers and
customers to monitor the progress of development, to allow
the system to evolve, and to catch defects early.

• Its reliance on oral communication, tests, and source code to
communicate system structure and intent.

• Its reliance on an evolutionary design process that lasts as
long as the system lasts.

• Its reliance on the close collaboration of programmers with
ordinary skills.

• Its reliance on practices that work with both the short-term
instincts of programmers and the long-term interests of the
project.”

(Beck, 2000, Preface p. X)

Figure 2.3 – The 12 Extreme Programming (XP) practices (Beck, 1999).

Figure 2.3 shows the 12 XP practices in a nutshell. The practices were not
new at the time and go back to a diverse set of authors: Wood and Sil-
ver (1995); Martin (1991); Stapleton (1997); Alexander (1979); Takeuchi and
Nonaka (1986); Cunningham (1996); Jacobson (1994); Gilb and Finzi (1988);
Boehm (1988); Thomas (1998); Lako↵ and Johnson (1998); Coyne (1995);
Coplien (1998); DeMarco and Lister (1999). However, the combination of the
practices to a new best practice process with short iterations to cope with

Theoretical Background 16

Figure 2.4 – XP@Scrum process (Mar and Schwaber, 2002)

changing requirements was novel and paved the way for the Agile Manifesto
(Fowler and Highsmith, 2001) and other agile methodologies such as scrum
(cf. Section 2.1.1).

2.1.3 XP@Scrum

Nowadays, it is quite common (cf. Chapter 4) to find a scrum process com-
bined with XP development practices. The concept is simple: ”XP focuses
on engineering practices, and scrum on managerial and organizational aspect”
(Vriens, 2003, p. 122). The term XP@Scrum was coined by Mar and Schwaber
in 2002. Other work on combining scrum and XP include the experience report
from at Philips (Vriens, 2003) and the book (Kniberg, 2007). Figure 2.4 shows
the first published combination of XP and scrum. The XP@Scrum processes
uses a general scrum process (cf. Section 2.1.1 extended by XP engineering
practices (cf. Section 2.1.2)).

2.1.4 Lean Software Development and Kanban

To understand lean software development, its origins need to be investigated
first. Lean production (also lean management or just-in-time production) orig-
inates from automobile industry, namely Taiichi Ohno’s Toyota Production
System in (Ohno, 1978). Toyota developed the new production model after
World War II in the 1950s. The new lean production approach stood in stark
contrast to commonly found mass production among competitors in automo-
bile industry that started to stagnate in both the US and Europe at the time
(Jones et al., 1990). The central assumption of lean production is to align
production to what provides value for the customer and thus avoid rework.
Everything that does not provide value to the customer is waste and needs
to be eliminated (Ohno, 1988; Womack and Jones, 1996). Toyota observed
that costs per unit were lower at smaller production levels than in bigger ones,
which provided a competitive edge over mass production (Jones et al., 1990):

17 Chapter Two

• Enormous inventory levels of mass production were diminished (begin-
ning of just-in-time production)

• Defects could be spotted more easily at smaller production levels and
be dealt with immediately

However, this new lean approach demanded highly qualified and motivated
personnel, since the anticipation and correction of defects requires one’s ini-
tiative before a blockage in the workflow occurred. Otherwise the whole pro-
duction flow may stall (Jones et al., 1990). The lean production approach that
revolutionized automobile industry can also be applied to software develop-
ment. Anderson (2003) and Poppendieck and Poppendieck (2003) pioneered
in the field in 2003 by putting great e↵ort into introducing lean principles to
software development.

The underlying lean principles in the Toyota Production System are (Womack
and Jones, 1996):

1. Precisely specify value by specific product.

2. Identify the value stream for each product.

3. Make value flow without interruptions.

4. Let the customer pull value from the producer.

5. Pursue perfection.

However, the goal is not to bring manufacturing or the Toyota Production
System to software engineering: ”The Toyota Production System is Lean,
but Lean is not the Toyota Production System. We are not trying to make
software development look more like manufacturing, because Lean is not about
manufacturing. Lean is about value streams.” (Ladas, 2008, p. 13).

These principles have been incorporated into software engineering by means
of the process kanban (see following chapter). Still, kanban is not the only
lean software development process. Janes and Succi (2009) point out that two
other known approaches to software development are also based on the lean
pull principle (in contrast to traditional push approaches):

• Test Driven Development (TDD) by Beck (2003), i.e. writing test cases
before code

• Goal-driven Software Development by Schnabel and Pizka (2006), i.e.
defining goals before setting requirements and using these goals to pull
requirements and their priorities

Theoretical Background 18

Kanban

The word kanban is Japanese for signal card and originates from the Toyota
Production System (Ohno, 1988), in which kanban cards (also called kanbans,
i.e. single work pieces) have been used to signal demand in the production flow.
The function of kanban in software development is very similar: ”Within soft-
ware development, kanbans are used to ’pull’ user stories into development. By
limiting the amount of kanbans that are available one can limit the amount of
user stories currently developed, i.e., the ’work-in-progress’ or in other words,
the amount of code that is not finished yet.” (Janes and Succi, 2009, p. 2).
That is the kanban process in a nutshell. A more precise definition follows.
David J. Anderson has introduced kanban to software development in 2007
at the Lean New Product Development conference (Anderson, 2010). One
year later, already six presentations have been held at the 2008 IEEE Ag-
ile conference (Anderson, 2010), which shows the growing interest and need
for kanban in software development. Kanban’s recipe for success includes six
steps (Anderson, 2010):

• Focus on quality

• Reduce work-in-progress

• Deliver often

• Balance demand against throughput

• Prioritize

• Attack sources of variability to improve predictability

Nevertheless kanban can be broken down into only three simple rules. The
following description is based on (Kniberg and Skarin, 2010) and (Vallon,
2011).

Visualize the Workflow: Work is split into pieces and each item is written
on a card and put on a kanban board that is divided into named columns
to illustrate the workflow (Kniberg and Skarin, 2010). The kanban board is
used to visualize the workflow that each item has to run through (Vallon,
2011). There are both physical and electronic kanban boards. Anderson
(2010) argues that both have their right to exist, i.e. physical boards provide
a better psychological e↵ect while electronically ones simplify the creation of
metrics and reports. An example kanban board and workflow is shown in
Figure 2.5.

Limit Work In Progress (WiP): Limiting the work in progress (or WiP)
means to ”assign explicit limits to how many items may be in progress at

19 Chapter Two

Figure 2.5 – Example kanban board (Kniberg and Skarin, 2010).

each workflow state” (Kniberg and Skarin, 2010, p. 4). By setting WiP lim-
its, bottlenecks as well as idle time within the workflow can be identified
and visualized on the kanban board. Furthermore, one has to actively work
on solutions for staying within WiP limits and thus try to anticipate future
blockages to improve the overall flow rate (i.e. lead time) (Vallon, 2011). The
usage of WiP limits is demonstrated in Figure 2.5.

Measure the Lead Time: The lead time (also cycle time) is the average
time to complete one work item (Kniberg and Skarin, 2010), i.e. it is the time
that is needed for one item to complete all steps of the workflow. It is the
most important metric in kanban, because the goal is ”to optimize the process
to make lead time as small and predictable as possible” (Kniberg and Skarin,
2010, p. 5). Figure 2.5 illustrates the application of all three rules by means
of a kanban board that visualizes the following simple workflow:

Backlog) Selected) Develop (Ongoing/Done)) Deploy) Live

Each work item (illustrated as kanban cards) runs through the whole workflow
from Backlog to Live in a certain time. The average time of all completed
kanban cards, i.e. work items, is the lead time. The numbers in Figure 2.5
are WiP limits. The number ”2” in the Selected column denotes that only
two work items at a time may be pulled into that step of the workflow. In
case of Develop we have a shared column and thus shared WiP limit of ”3”
for Ongoing and Done. This forces developers to care for deployment of
developed items because otherwise they cannot start with new items due to
the WiP limit. Thus deployment on a regular basis comes naturally, which
usually helps to improve the overall quality of the product.

Roles, Meetings and Artifacts

Kanban does not specify any roles, meetings or document types. This does
not mean that kanban works without any roles but that it remains free to add
whatever roles seem to fit. However, ”the general mindset in both scrum and

Theoretical Background 20

Figure 2.6 – Kanban cumulative flow diagram (Kniberg and Skarin, 2010).

kanban is ’less is more’. So when in doubt, start with less.” (Kniberg and
Skarin, 2010, p. 11). Scrum’s daily stand up meeting may also be found in
kanban teams, although it is not obligatory (Vallon, 2011).

One instrument that deserves to be mentioned is the cumulative flow diagram
(CFD). It is also not prescribed by kanban, but can help to present the corre-
lation of WiP limits and lead time. An example is provided in Figure 2.6. The
horizontal yellow arrow in Figure 2.6 shows the amount of time that the work
item needed in each phase of the workflow, i.e. each column of the kanban
board, until it reached production. The vertical yellow arrow in Figure 2.6
shows the number of work items in each phase. Thus the correlation of WiP
and lead time can be identified at any given moment in time using the CFD,
which may help to find the right WiP limits in order to reduce lead time.

The only artifact that really needs to be part of every kanban process is the
kanban board, because it is its very central component.

2.2 Distributed Software Development and Agile
Practices

This section first covers background on DSD in general and then concludes
with the rationale behind adding agile practices to DSD in Section 2.2.4.
The coverage is very compact, as the systematic mapping study of Chapter 4
provides an extensive overview of the application of agile practices in DSD in
related work over the 15-year-period of 1999-2014.

21 Chapter Two

2.2.1 Distributed Software Development

Distributed software development (DSD) has become a daily reality in today’s
software engineering (VersionOne, 2014) and has been an evolving research
field for more than a decade (Carmel, 1999). In 2006 a conference was pre-
miered to focus exclusively on the subject: IEEE International Conference on
Global Software Engineering (ICGSE). Global software engineering deals with
all kinds of geographically distributed software development teams, not only
globally distributed ones, as defined by Šmite et al.:

”Global software engineering: development of a software artifact
across more than one location” (Šmite et al., 2014, p. 122)

Hence the terms DSD (distributed software development) and GSD (global
software development) can be used interchangeably. This thesis uses the term
DSD exclusively.

2.2.2 Benefits

Benefits include cost savings (sometimes actively asked for by the client (Klimpke
et al., 2011)), access to large multi-skilled work forces, reduced time to mar-
ket (Ó Conchúir et al., 2009) and the possibility to follow critical-path tasks
around the clock (Herbsleb and Moitra, 2001) as well as the possibility to lo-
cate the development closer to the customer (Damian and Moitra, 2006) and
also higher flexibility (Klimpke et al., 2011).

2.2.3 Challenges

Several challenges emerge in developing software with distributed teams in a
multi-site environment. The flow of information across sites is more restricted
and there is a lack of informal conversation (Herbsleb and Mockus, 2003)
and group chat and instant messaging may not be for everybody (Herbsleb
et al., 2002). Further issues include physical distances and time zones, loss of
”teamness”, culture di↵erences (Battin et al., 2001), strategic issues, process
di↵erences, knowledge management and technical ones (Sengupta et al., 2006).
Ågerfalk et al. (2005) have presented a framework for clustering DSD issues
in communication, coordination and control in the three dimensions of tem-
poral, geographical and socio-cultural distance. Mitigation strategies include
reducing intensive collaboration, cultural and temporal distance (Carmel and
Agarwal, 2001) and also the application of agile practices (cf. Section 2.2.4).

2.2.4 Why Agile DSD?

Section 2.2.3 showed that working in distributed development environments
exhibits several challenges. Figure 2.7 lists DSD challenges and shows, how
they can possibly be mitigated with the help of agile practices.

Theoretical Background 22

Figure 2.7 – Characteristics of DSD and agile practices compared (Ramesh et al.,
2006).

In fact, several authors have pointed out that agile practices potentially mit-
igate the challenges faced in DSD environments. Since 2004 we can see an
increasing research interest in applying agile practices to DSD (Jalali and
Wohlin, 2010). Schwaber (2004) presented mechanisms of scaling scrum,
which also touched geographically distributed environments. Early studies
include e.g. Ramesh et al. (2006), who conducted a multiple-case study and
concluded that ”careful incorporation of agility in distributed software devel-
opment environments is essential in addressing several challenges to commu-
nication, control, and trust across distributed teams” (Ramesh et al., 2006,
p. 46). Paasivaara and Lassenius (2006) argue that the strong emphasis on
frequent communication can also in DSD be regarded as a strength and that
”the short iterations, frequent builds, and continuous integration [...] bring
transparency of work progress to all partners” (Paasivaara and Lassenius,
2006, p. 112). A notable finding by Hossain et al. (2009) was that scrum, the
most popular agile process, can be used to mitigate DSD risks, but it needs
to be extended. In later work, Hossain et al. (2011b) also investigated in their
multiple-case study how scrum practices have been successfully applied to dis-
tributed environments. There are also several books (Eckstein, 2010; Šmite
et al., 2010b; Woodward et al., 2010) focusing exclusively on the application
of agile practices in DSD environments.

2.3 Conclusion

This chapter presented the theoretical background of this thesis, namely of
agile software development, distributed software development and the combi-
nation of the two. In conclusion to this chapter, the first research question of
this thesis is answered:

23 Chapter Two

RQ1. Why would distributed software development benefit from agile prac-
tices?

Based on the investigation of related work in this chapter, it can be concluded
that typical challenges found in distributed software development environ-
ments such as communication, coordination and control challenges (cf. Section
2.2.3) can be mitigated by the implementation of agile practices (cf. Section
2.2.4) due to the focus on frequent communication and short iterations, among
others, which potentially increases transparency for all partners involved and
allows organizations to make better use of the benefits in distributed software
development (cf. Section 2.2.2).

Theoretical Background 24

CHAPTER 3
Design Theory

The design theory has been finalized during a research visit at Stan-
ford University at the Center for Design Research of Professor Dr.
Larry Leifer and has been published in a report for the Austrian
Marshall Plan Foundation (Vallon, 2015).

Contents

3.1 Design Research . 27

3.2 Framework Design . 28

3.3 Process Design . 34

3.4 Design Components . 35

3.5 Conclusion . 35

Before diving into the design theory for the ADAPT framework, the status
quo of frameworks in the field is presented. Damian and Zowghi (2003) devel-
oped an issue-based model focusing on requirements engineering in distributed
environments. Ågerfalk et al. (2005) worked on a framework of distributed
development issues (which also appeared in (Ågerfalk and Fitzgerald, 2006)).
Hossain et al. (2011a) presented a research framework which maps DSD chal-
lenges and mitigation strategies and discusses how scrum practices could be
implemented in practice based on a systematic literature review. However,
past frameworks are described at a high level of abstraction, giving only ex-
emplary advise on how to implement the practices. The authors also conclude
that ”there is a substantial need for research to ’catch up’ and support the
needs of practice” (Hossain et al., 2011a, p. 100). The ADAPT framework
aims to provide detailed advice on how to implement agile practices success-
fully based on empirical evidence gathered from a multiple-case study (cf.
Chapters 5 and 6).

Design Theory 26

Section 3.1 investigates suitable design research theory to achieve that goal.
Section 3.2 looks at how related papers have dealt with framework design
and development and derives essential aspects for the creation of the ADAPT
framework. The process for implementing the ADAPT framework is drafted
in Section 3.3. Section 3.4 concludes the report by presenting the design
components based on the former investigation to tackle the research question:

RQ2. What are suitable design components for building a distributed agile
process framework?

3.1 Design Research

Developing the ADAPT framework is a constructivist approach in the sense
that the developed artifact is the chief output to the research (Gregor and
Jones, 2007). According to Gregg et al. (2001), the ADAPT framework would
be classified as an incremental extension and/or generalization of an existing
concept (applying agile to DSD), based on descriptive details (practices and
guidelines extracted from multiple-case study) and is without implementation
at this stage (subject of future work, cf. Section 7.7). The design theory is
described with the components developed by Gregor and Jones (2007), which
build on top of Aristotle’s writing on the four explanations of any thing ex-
planation (Falcon, 2014) (literal translation from Greek, see (Hooker, 1996)):

• The material cause: ”that out of which”, e.g., the bronze of a statue.

• The formal cause: ”the form”, ”the account of what-it-is-to-be”, e.g.,
the shape of a statue.

• The e�cient cause: ”the primary source of the change or rest”, e.g., the
artisan, the art of bronze-casting the statue, the man who gives advice,
the father of the child.

• The final cause: ”the end, that for the sake of which a thing is done”,
e.g., health is the end of walking, losing weight, purging, drugs, and
surgical tools.

The four causes apply ”to everything that requires an explanation, including
artistic production and human action” (Falcon, 2014). Gregor and Jones
(2007) expand on the four causes and define eight components as essential to
the anatomy of design theory (six core and two additional ones, cf. Table 3.1).

27 Chapter Three

Component Description
Core components
1) Purpose and scope (the causa
finalis)

”What the system is for”, the set of meta-
requirements or goals that specifies the type of arti-
fact to which the theory applies and in conjunction
also defines the scope, or boundaries, of the theory.

2) Constructs (the causa materi-
alis)

Representations of the entities of interest in the the-
ory.

3) Principle of form and function
(the causa formalis)

The abstract ”blueprint” or architecture that
describes an IS artifact, either product or
method/intervention.

4) Artifact mutability The changes in state of the artifact anticipated in
the theory, that is, what degree of artifact change
is encompassed by the theory.

5) Testable propositions Truth statements about the design theory.
6) Justificatory knowledge The underlying knowledge or theory from the nat-

ural or social or design sciences that gives a basis
and explanation for the design (kernel theories).

Additional components
7) Principles of implementation
(the causa e�ciens)

A description of processes for implementing the the-
ory (either product or method) in specific contexts.

8) Expository instantiation A physical implementation of the artifact that can
assist in representing the theory both as an exposi-
tory device and for purposes of testing.

Table 3.1 – The eight components of design theory as defined by Gregor and Jones
(2007).

3.2 Framework Design

In the introduction of this chapter known frameworks to combine agile and
DSD have been discussed with the result that there is only one in (Hossain
et al., 2011a), which lacks design methodology, detailed and ready-to-use in-
sight. This section investigates related design research on building frameworks
in general to deduct knowledge for building the ADAPT framework.

The term framework within this thesis is understood as defined by Wild et al.:

”A framework can be seen to be a general set of concepts [...]. It is
not tightly organized enough to be a predictive theory. It aims to
sketch out the general concepts of a field of enquiry & the possible
relationships between them.” (Wild et al., 2009, p. 147)

More specifically, the ADAPT framework is a process framework, understood
within this thesis as defined by Sorathia et al.:

”[...] it integrates various elements involved in di↵erent phases
of the software development life-cycle. Once the process is well
defined, the individual teams can utilize required process subsets or

Design Theory 28

the entire process and also may customize these to meet individual
requirements.” (Sorathia et al., 2010, p. 297)

Table 3.2 illustrates that the ADAPT framework is designed to support a
process instantiation (Gregor and Jones, 2007), i.e. to allow the practitioner
to derive a concrete process implementation for his specific DSD environment
based on and guided by the information provided within the ADAPT frame-
work.

ADAPT Framework Process Instantiation
Artifact type Abstract artifact Material artifact (instantiation)
Description A framework for driving agile

DSD process implementations in-
cluding challenges, guidelines and
practices

The concrete instantiated process
implementation, led by ADAPT’s
guidelines and utilizing a subset
of the ADAPT’s practices

Table 3.2 – ADAPT framework vs. a concrete process instantiation (inspired by
(Gregor and Jones, 2007)).

The framework consists of challenges (cf. Section 3.2.2), guidelines (cf. Sec-
tion 3.2.3) and e↵ective practices (cf. Section 3.2.4). The ADAPT framework
is by design similar to (Soundararajan et al., 2012) in the way that it uses
a three-layered setup and links principles (ADAPT uses guidelines) to prac-
tices. The framework is based on empirical evidence only. As such it provides
an overview of what worked in which distribution scenarios in a description-
oriented fashion (in contrast to being prescription-oriented) (Van Aken, 2005).
Future research may include the development of prescription-driven practices
(cf. Section 7.7).

Figure 3.1 shows the schematic outline of the ADAPT framework. The three
challenge types (cf. Section 3.2.2) are linked to several guidelines, which in
turn cover several practices that help accomplish a guideline’s objective and
thus mitigate the challenges.

Grounded theory, more specifically a combination of open coding and axial
coding by Strauss et al. (1998), is used for theory building from the case
study research in this thesis. Conceptual practices and guidelines are derived
from coding the three case studies (cf. Chapters 5 and 6) to ensure empirical
grounding of all elements within the ADAPT framework. The guidelines and
practices are only considered for the ADAPT framework if they have empirical
evidence in at least two of the analyzed three cases. Additionally further
support from related empirical studies is sought (cf. Chapter 4) and discussed
(cf. Chapter 7) to strengthen the emerging theory. The framework is thus
designed iteratively: preliminary concepts, i.e. guidelines and practices, are
extracted after each respective case analysis and then aggregated cross-case
to find emerging patterns. The design and results are evaluated in two focus

29 Chapter Three

Figure 3.1 – Schematic outline of the ADAPT framework: challenges, guidelines
and practices.

groups and 10 expert interviews (cf. Chapter 7). The in-depth explanation of
the used approach to theory building is presented in the research design of the
multiple-case study in Section 5.1.

3.2.1 Software Process Tailoring

Research e↵orts in software process tailoring go back to the 1980s (Akbar
et al., 2011b), but it is still a topic that has not been extensively researched
(Mart́ınez-Ruiz et al., 2012). It is a necessity in both traditional processes,
e.g. Rational Unified Process (Hanssen et al., 2005), and agile ones, e.g. XP
(Mirakhorli et al., 2008) or scrum (Kniberg, 2007; Kniberg and Skarin, 2010).
Pedreira et al. (2007) distinguish between formal and informal approaches to
software process tailoring and argue that formal approaches may be better
for large organizations with a planned and strictly managed process, while
small and medium-sized organizations may benefit from a simple and prag-
matic process. The informal process tailoring approach suits lightweight agile
thinking better and is part of the process tailoring using the ADAPT frame-
work. Software process tailoring can be done at di↵erent levels such as e.g.
the organizational and project level (Pedreira et al., 2007). Although it is
acknowledged that context consists of both organizational and project-based
parts (Xu and Ramesh, 2003), the ADAPT framework will focus on project-
based tailoring due to the argument that each project is unique even within
the same organization.

Applying agile practices to DSD is no silver bullet solution, the process im-
plementation has to be tailored iteratively and correctly to the individual

Design Theory 30

project’s needs. Failure to do so will not produce better results, as Alqah-
tani et al. (2013) showed: 75% of the studies report a lack of communication
and collaboration in agile DSD. Dumitriu et al. (2011) argue that DSD and
agile software development are two extremes (distribution and collocation)
that are not easy to integrate, so tailoring must be seen as finding an opti-
mal compromise between the two in order to allow agile practices to reduce
the consequences of geographical, temporal and socio-cultural distance. It is
also very important that the rationale behind the practice is understood for a
successful process tailoring (Šmite et al., 2010b).

3.2.2 DSD Challenge Categories

There have been di↵erent categorizations of challenges in distributed software
development in related work such as (Kajko-Mattsson et al., 2010; Mudumba
and Lee, 2010; Sriram and Mathew, 2012). The ADAPT framework follows
the most established approach in the field of DSD to classify challenges in cat-
egories coordination, control and communication (Carmel, 1999; Carmel and
Agarwal, 2001; Ågerfalk et al., 2005; Ågerfalk and Fitzgerald, 2006; Holm-
ström et al., 2006; Pries-Heje and Pries-Heje, 2011; Hossain et al., 2011a).
The categories are described as follows.

”Coordination is the act of integrating each task with each orga-
nizational unit, so the unit contributes to the overall objective.
Orchestrating the integration often requires intense and ongoing
communication.

Control is the process of adhering to goals, policies, standards,
or quality levels. Controls can be formal (such as budgets and ex-
plicit guidelines) or informal (such as peer pressure). We recognize
today that, for knowledge workers, coordination and control have
in many ways blended together.

Communication is a mediating factor a↵ecting both coordination
and control. It is the exchange of complete and unambiguous
information-that is, the sender and receiver can reach a common
understanding.” (Carmel and Agarwal, 2001, p. 23)

Carmel and Agarwal (2001, p. 23) state that ”coordination and control have
in many ways blended together”. Hence, for disambiguation of the two terms
within this thesis, further elaboration is required: coordination and control
can be seen as two sides of the same coin (Nurmi et al., 2005), which is the
process of managing dependencies among activities (Malone and Crowston,
1994). The extreme of each side would be organic coordination (cooperative,
informal and decentralized) and mechanistic control (controlling, formal and

31 Chapter Three

Figure 3.2 – Challenge categories by Carmel and Agarwal (2001): Impacts of
distance in distributed software development.

centralized) (McCann and Galbraith, 1981). Another important distinction
is that coordination is the work of dependent parts towards a common goal
(Nurmi et al., 2005), while control is needed when the goals of individual
stakeholders di↵er from those of the larger overall entity (Sabherwal, 2003).
Figure 3.2 shows the original draft of the challenge types by Carmel and
Agarwal (2001). It illustrates well that communication is a mediating factor
for both coordination and control.

These three challenge types are the top layer in the ADAPT framework (cf.
Figure 3.1), overspanning guidelines (cf. Section 3.2.3) and practices (cf. Sec-
tion 3.2.4). Pries-Heje and Pries-Heje (2011) and Hossain et al. (2011a) have
both worked with the CCC model (coordination, control, communication) in
distributed agile environments, which underlines its applicability and relevance
to the ADAPT framework.

3.2.3 Design Guidelines

Design guidelines are the second layer in the ADAPT framework (cf. Figure
3.1) and overarch the practices. Similar to (Soundararajan et al., 2012), the
relationship between guidelines and practices is N to M, which means that a
guideline can be linked to multiple practices and vice versa. The guidelines
are treated as constructive heuristics (Heeager and Rose, 2014) and emerge
from case study research. The design guidelines specifically aim at guiding
the practitioner to build and improve his individual process instantiation.

3.2.4 E↵ective Practices based on Context

The goal of this framework is to provide e↵ective practices that have a suc-
cessful empirical grounding. The identified practices will not be called best

Design Theory 32

practices as no practice can be ”best” in every context (Ambler, 2011). In-
spired by (Ambler, 2002), the practices to be identified are called e↵ective
practices. They are regarded as e↵ective because they rely on successful em-
pirical implementations as evidence and are thus seen to meet a goal with
higher probability and fewer risks involved (Schatten et al., 2010). The prac-
tices can be regarded as method fragments (Baskerville and Pries-Heje, 2013).
It is a major concern that the practices are detailed enough and not too sim-
ple in their description in order to be of practical usability (Baskerville and
Pries-Heje, 2013).

It seems to be agreed within the research community that context is a major
concern for every type of case study research, although di↵erent ways of re-
porting context have been proposed (Kitchenham et al., 1995; Runeson and
Höst, 2009; Petersen and Wohlin, 2009; Jalali and Wohlin, 2010, 2012a). This
thesis follows and expands on the checklist for reporting context by Jalali and
Wohlin (2010, 2012a) as it has already been applied in an extensive system-
atic review of empirical studies. Practices within the ADAPT framework will
be reported including their context of application. This criterion leads to the
constraint that no theoretical practices will be part of the ADAPT framework,
a successful empirical application is the minimum requirement (sine qua non)
for being considered for inclusion in the framework. A practice is the smallest
element of the ADAPT framework in the hierarchy of challenges, guidelines
and practices. The focus is on providing e↵ective and tangible (i.e. detailed)
practices to be used by the practitioner. The practices may evolve into a pat-
tern language (Alexander et al., 1977) in future work based on the ADAPT
framework, once a significant amount of good empirical research (including a
rich description of the study context and background) has been done on the
subject.

The practices are sought to emerge from varying distribution scenarios (Prik-
ladnicki et al., 2003), which are:

• Cross Town Scenario (case 1 of the multi-case study, cf. Section 5.2)

• No Time Shift Scenario (case 2 of the multi-case study, cf. Section 5.3)

• Continental Scenario (case 3 of the multi-case study, cf. Section 5.4)

• Global Scenario (out of scope for this thesis)

As has been stated in Section 1.2, the global scenario is out of scope for this
thesis, but the framework shall be designed to allow future extension for this
scenario. The rationale behind this decision is that the global scenario adds
another layer of complexity to the research problem with massive distance,
time and socio-cultural di↵erences between the development sites. Following

33 Chapter Three

agile values, the ADAPT framework will evolve iteratively, with this thesis
describing the first full iteration of the framework. The global scenario may
be added in a future iteration (cf. Section 7.7).

3.3 Process Design

Process design (Aken, 2004) is necessary because ”professionals need to know
how to apply the knowledge in their own unique and specific cases” (Gregor
and Jones, 2007, p. 322). The practices presented in the ADAPT framework
can be consumed in a ”supermarket approach” (Baskerville and Pries-Heje,
2013), i.e. it is advised to implement a minimal set to satisfy all guidelines,
but the framework users, i.e. the practitioners, decide which of the practices
to select. The term process design within this thesis is regarded as the way of
arriving from the general ADAPT framework at the concrete process instanti-
ation. It is an iterative process, where practices should be evaluated and then
modified or replaced in regular retrospective-type meetings after each sprint.
In order to maintain the self-organization of teams, the decision on what prac-
tices to select should be a majority vote (bottom up) rather than a (top down)
management decision to achieve a better level of acceptance and motivation
to change. Figure 3.3 illustrates the proposed iterative agile process design:

Figure 3.3 – Using the ADAPT framework for process design.

1. Refer to the ADAPT guidelines to find suitable (linked) practices to add
for the next sprint such that all guidelines are covered (i.e. at least one
practice per guideline is part of the process implementation2).

2. Conduct the sprint iteration and collect data to evaluate the practices3

by means of e.g. burndown charts, bug counts or lead time.

2It is good agile practice to start with less and add more later in the following sprints.
3Naturally this would be a typical task for the scrum master or an agile coach, if available.

Design Theory 34

3. Evaluate data and reflect on the process implementation as a team e↵ort
(e.g. during retrospective): start over with the first step but now consider
not only adding, but also modifying or removing practices while trying
to find a balance between the CCC challenge types coordination, control
and communication.

3.4 Design Components

This final section builds on top of the prior discussion in this chapter and
defines the design components in Table 3.3 to complete the presentation of
the design theory for the development of the ADAPT framework within this
thesis. Five testable propositions (TP) are also part of the design components
and are described in Table 3.4. Each TP features a rationale and a means
of verification, as each TP is regarded a truth statement according to the
definition by Gregor and Jones (2007). The objective of the verification in
this context is understood as in software testing to verify if the ”product”
(in this case the ADAPT framework) is built right according to this chapter’s
design theory, in contrast to validation, i.e. if it is the right product (Boehm,
1989), which is also partly covered due to the extensive research of related work
(cf. Chapter 4) and the fact that some of the interviewed experts (cf. Chapter
7) are practitioners and thus possible future end users. This definition is also
in line with the IEEE Standard 610.12-1990 (IEEE, 1990, p. 81), stating that
verification is the ”process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase”. So the verification column of Table
3.4 describes the intended means of verification to verify if this chapter’s up-
front design theory is in fact implemented in the first full iteration of the
ADAPT framework as the outcome of this thesis. The discussion of testable
propositions is presented in Chapter 7.

3.5 Conclusion

This chapter defined the design theory behind the construction of the ADAPT
framework and answers:

RQ2. What are suitable design components for building a distributed agile
process framework?.

35 Chapter Three

Component Description
1) Purpose and scope The aim is to develop a framework for applying agile

practices e↵ectively to distributed software develop-
ment.

2) Constructs The framework is represented by a three-layered hi-
erarchy of challenge types (CCC), design guidelines
and e↵ective practices.

3) Principles of form and function A process framework is provided to aid practitioners
and researchers in tailoring agile practices to the
respective unique distributed environment.

4) Artifact mutability The design process supports continuous construc-
tion cycles, allowing the practitioners to add, mod-
ify or remove practices as the project (and thus
empirical feedback) progresses. The framework is
designed to be open for integrating additional ef-
fective practices and guidelines as the research field
evolves over time, possibly introducing a more pre-
scriptive nature in future work, that allows the ad-
dition of the out-scoped global scenario. Hence, it
is regarded as a learning framework, designed with
future iterations in mind.

5) Testable propositions The ADAPT framework should satisfy the five
propositions TP1 to TP5, which are presented in
Table 3.4.

6) Justificatory knowledge The framework is grounded in current research on
agile software development and distributed software
development. The design theory has been presented
and improved during a four-month research visit at
the Center for Design Research at Stanford Univer-
sity and is evaluated in two focus groups and ten
expert interviews (cf. Chapter 7).

7) Principles of implementation The process design (how to arrive from the generic
ADAPT framework at the concrete process instanti-
ation) is an iterative process utilizing agile feedback
loops at the process level and is described in detail
in Section 3.3.

8) Expository instantiation The printed Table 6.3 as well as the practice cards
in Section 7.7 serve as a physical implementation
of the artifact to represent the theory and can be
used as an expository device and for purposes of
testing. However, actual real-world testing (an im-
plementation study) is out of scope for this thesis
and planned for future work.

Table 3.3 – The eight design components of the ADAPT framework’s design theory.

Design Theory 36

Propositions Rationale Verification
TP1 (empiric). Each
practice of the ADAPT
framework is grounded in
empirical evidence.

The ADAPT framework is
not a silver bullet solution,
but it is a set of tools based
on empirical evidence show-
ing what worked in which
context.

The empirical context of
all practices and guidelines
must be fully specified ac-
cording to the checklist de-
fined in Chapter 4.

TP2 (iterative process
tailoring). The
ADAPT framework allows
a simple, pragmatic and
iterative process tailoring
(rather than planned and
strictly managed).

Process tailoring should be
part of any agile implemen-
tation.

Evaluation of the process
design (cf. Section 3.3) is
conducted through two fo-
cus groups and ten expert
interviews.

TP3 (accessible to dif-
ferent scenarios). The
ADAPT framework sup-
ports project-based pro-
cess tailoring (rather than
organization-based).

Even within the same or-
ganization each project is
unique.

The multiple-case study
needs to feature di↵erent
distribution scenarios (out-
scoped: global scenario)
and thus di↵erent project-
based environments.

TP4 (tangible). The
ADAPT framework pro-
vides tangible and detailed
advice to the practitioner.

In order to be of practical
use the practices must pro-
vide enough detail.

Evaluation is conducted
through two focus groups
and ten expert interviews.

TP5 (easily extensible).
The ADAPT framework is
easily extensible.

In order for the ADAPT
framework to further evolve
and improve, practices and
guidelines need to be exten-
sible.

Evaluation is conducted
through two focus groups
and ten expert interviews.
At least one possible way of
expanding the framework
must be scheduled for
future work.

Table 3.4 – Testable propositions for the design theory of the ADAPT framework.

Table 3.3 shows the design components purpose and scope, constructs, prin-
ciples of form and function, artifact mutability, testable propositions, justifi-
catory knowledge, principles of implementation and expository instantiation.
At the heart of it five testable propositions have been derived (cf. Table 3.4)
covering the following attributes of the ADAPT learning framework: empiric
(TP1), iterative process tailoring (TP2), accessible to di↵erent distribution
scenarios (TP3), tangible (TP4) and easily extensible (TP5).

37 Chapter Three

CHAPTER 4
Agile Practices in DSD:
Systematic Mapping of

Fifteen Years

At the time of finalizing this dissertation, this chapter’s work was
in preparation for publication (to appear, cf. Section 1.5).

Contents

4.1 Related Systematic Literature Reviews and Mappings . . . 39

4.2 Study Design . 41

4.3 Results . 48

4.4 Implications for Research and Practice 61

4.5 Conclusion . 63

This chapter presents the results of a systematic mapping study on the use of
agile practices in distributed software development (DSD) over the fifteen year
period of 1999-2014. The mapping study is built on top of research by Jalali
and Wohlin (2010, 2012a), who investigated studies published between 1999
and 2009 and their analysis is extended to years 2010-2014 in this chapter and
thus also following the call of Hanssen et al. (2011) who identified the need
for systematic reviews covering agile DSD for years 2008 and newer in their
tertiary study.

Up-to-date maps and trends are provided with regard to the research pre-
viously conducted. A special focus is put on comparing the progress in the
five-year period of 2010 to 2014 to the results of Jalali and Wohlin (2010,

Systematic Mapping 38

2012a). This approach allows covering a full fifteen year time span and inves-
tigates how agile practices may or may not have evolved in DSD environments.
The systematic search led to 95 included relevant studies (cf. Appendix A.2)
for the extended analysis to years 2010-2014, for which a full-text analysis is
conducted.

The remainder of the chapter is organized as follows. Section 4.1 provides
an overview of related systematic mapping studies. Section 4.2 explains the
detailed study design and procedure. Section 4.3 presents the results of the
systematic mapping, also in comparison with previous research by Jalali and
Wohlin (2010, 2012a). A summary is presented in Section 4.3.4 and Section
4.4 discusses implications for research and practice and Section 4.5 provides
the conclusion.

4.1 Related Systematic Literature Reviews and
Mappings

VersionOne publishes a state of agile survey each year, the latest 2014 edition
(VersionOne, 2014) shows that the usage of distributed agile teams has more
than doubled from 2012 to 2014: while 2012 35% of the respondents reported
to work in distributed agile teams, in 2014 the number increased to 80%. This
shows that the use of agile practices in DSD is a very recent, relevant and fast-
evolving challenge to both the researcher and the practitioner and deserves
further research attention. This section explores the history of systematic
mappings and literature reviews in software engineering (SE), previous studies
on DSD and on agile practices in DSD in particular.

4.1.1 General Remarks on Systematic Mapping and
Literature Reviews in SE

When a research area reaches a certain level of maturity it becomes more
important to summarize the growing amount of past findings and provide
overviews (Petersen et al., 2008). Systematic literature reviews (SLR) have
gained attention earlier than systematic mapping studies in SE research, such
as in (Kitchenham and Charters, 2007; Dyb̊a et al., 2006; Hannay et al., 2007;
Kampenes et al., 2007), while systematic mappings had been widely neglected
until (Bailey et al., 2007). Both systematic mappings and SLR aim to aggre-
gate knowledge from previous research. Systematic mapping studies provide
a coarse-grained overview. Full-text analysis is not required; the mapping can
be done based on abstracts or by also studying further parts of the full text
such as introduction and conclusion (Petersen et al., 2008). However, for this
systematic mapping study full-text analysis was necessary to extract all of the
agile practices.

39 Chapter Four

4.1.2 Agile Practices in DSD

Distributed software development is a growing research field as several sys-
tematic reviews account for (Verner et al., 2012; Marques et al., 2012; Raza
et al., 2013) and all seem to agree that there is a need for more primary studies
in DSD research. Most relevant to this thesis’ line of research are systematic
mapping and review studies focusing on the application of agile practices in
DSD, which is covered in this section.

Jiménez et al. (2009) conducted an SLR on challenges and improvements in
distributed software development. Agile methodologies were identified as one
success factor in DSD. However, agile is neither a focus of the study nor
are any concrete practices listed. Hossain et al. (2009) conducted an SLR
on scrum and DSD. To the best of the author’s knowledge it is the first
SLR addressing agile practices in DSD, although the focus is limited solely to
scrum. Hossain et al. (2011a) also formulated a research framework for scrum
in DSD. Jalali and Wohlin were the first to deliver an extensive overview of
agile DSD by conducting a systematic mapping study (Jalali and Wohlin,
2010) and a systematic review (Jalali and Wohlin, 2012a). Both studies cover
years 1999-2009 and serve as the base to be extended for recent years in
this thesis’ systematic mapping study. Sriram and Mathew (2012) give an
overview of agile and DSD. However, the short paper does not explain the
research design nor provide details about the execution of the study. Hence it
does not classify as a systematic review. Kuhrmann et al. (2013) researched
the use of agile artifacts in DSD and conducted a systematic mapping study.
It can be seen that XP and scrum artifacts have been almost exclusively
used in DSD within the studies analyzed by the authors, followed by Agile
Unified Process and Kanban. There is also an agile-related tertiary study by
Hanssen et al. (2011) summarizing twelve SLRs in DSD by looking through
an agile lens. The authors conclude that agile is a frequent topic in DSD, but
many publications lack proper research design and rather have the character
of industrial reports. Furthermore the authors call for a new SLR for agile
in DSD to cover publications of 2008 and newer, which is addressed in this
thesis’ systematic mapping study. One of the newer published studies in the
area of agile DSD is by Yin and Ma (2013), who conducted a thematic review.
However, the short paper does either not follow a systematic approach or it is
not explained in the paper. It also does not list referenced studies, but rather
summarizes trends without referencing specific studies. The newest systematic
review on the matter is, to best of the author’s knowledge, by Rizvi et al.
(2015) and covers literature until 2012. However, in contrast to this thesis’
systematic mapping study, it does not focus on actual agile practices.

In conclusion, there have been a number of studies dealing with reviewing
agile methods in DSD. However, systematic mapping and literature review

Systematic Mapping 40

studies specific to the application of agile practices and DSD are limited to
only (Hossain et al., 2009) and (Jalali and Wohlin, 2010, 2012a), which only
cover literature up to the year of 2009. Hence the identified research gap is
to investigate the drastically increasing usage of agile practices in distributed
environments (VersionOne, 2014) in the last years and research is built on
top of (Jalali and Wohlin, 2010, 2012a) to be able to provide a mapping of a
fifteen-year period, e↵ectively covering agile back to its origins. Implicitly, the
call of Hanssen et al. (2011) is answered for the need to study years of 2008
and newer in the area.

4.2 Study Design

Since this thesis’ systematic mapping study expands on (Jalali and Wohlin,
2010, 2012a), a similar research design is followed. The detailed design in-
cluding minor changes to the original one of Jalali and Wohlin (2010, 2012a)
is presented in the remainder of this section. The guidelines for systematic
mapping study design by Petersen et al. (2008) and Kitchenham and Charters
(2007) were consulted as well as experiences drawn from (da Silva et al., 2010)
for study design, in which two other supporting researchers participated. The
supporting researchers assisted in the execution of this thesis’ systematic map-
ping study and the author appreciates their contribution. All work which is
not explicitly designated in the following sections as being attributed to the
supporting researchers has been conducted solely by the author of this thesis
(about 90%).

4.2.1 Research Steps

1. Planning

• Identification of the need for a systematic mapping (Section 4.1)

• Specifying the research questions (Section 1.2)

• Developing a review protocol (Section A.3)

• Evaluating the review protocol (carried out by supporting researcher)

2. Conducting

• Identification of primary studies (Sections 4.2.2 and 4.2.3)

• Selection of primary studies (Sections 4.2.4 and 4.2.5)

• Study quality assessment (Section 4.2.6)

• Data extraction (Section 4.2.7)

• Data synthesis (Section 4.2.7)

3. Reporting

41 Chapter Four

• Formatting the main report

• Specifying publication mechanisms

4.2.2 Search Terms

To achieve comparable results to (Jalali and Wohlin, 2010, 2012a), the same
search terms and constraints were used except for the term ”open source”,
which produced a lot of irrelevant results during the pilot search in IEEE
Xplore (http://ieeexplore.ieee.org/) and was dropped. The publication year
was set to 2010-2014 (e↵ectively 08/2014 as the final search has been con-
ducted that time) and the written language to English. Search was limited
to abstract, keywords and title. Although there are some books touching the
area such as (Eckstein, 2013; Šmite et al., 2010b; Woodward et al., 2010),
books were excluded on all database searches as they are generally not peer-
reviewed and also in alignment with (Jalali and Wohlin, 2010, 2012a). The
search string basically looks for agile AND distributed software development,
with synonyms or variants of both terms separated by an OR-operator, as
follows:

(agile OR scrum OR ”extreme programming” OR ”pair program-
ming” OR ”lean development” OR ”lean software development”)

AND

(”distributed software development” OR ”distributed software
engineering” OR ”global software development” OR ”global

software engineering” OR gse OR gsd OR ”dispersed team” OR
”spread team” OR ”virtual team” OR o↵shore OR outsource)

4.2.3 Resources Searched

All databases of (Jalali and Wohlin, 2012a) were searched, which includes one
more database compared to (Jalali and Wohlin, 2010):

• ACM Digital Library (http://dl.acm.org/)

• AIS (http://aisel.aisnet.org)

• Compendex (http://www.engineeringvillage.com)

• IEEE Xplore (http://ieeexplore.ieee.org/)

• INSPEC (http://apps.webofknowledge.com)

• Scopus (http://www.scopus.com)

Systematic Mapping 42

Additionally to the six databases, the most relevant conferences were double-
checked manually, Agile Conference (AGILE 2010 to 2014), International Con-
ference on Agile Software Development (XP 2010 to 2014) and International
Conference on Global Software Engineering (ICGSE 2010 to 2014) to make
sure that nothing is missed from these venues.

4.2.4 Study Selection Criteria

Primary studies were selected according to the following criteria:

1. Inclusion Criteria

• The study directly relates to the research questions, i.e. addresses
agile practices in DSD

• The study is available via Vienna University of Technology library
service, Stanford University library service (both accessible to the
author) or is freely available on the web

2. Exclusion Criteria

• Duplicated or repeated studies

• Studies not presenting results or work in progress papers

• Experience reports

• Books

• Theses

• Workshop papers

4.2.5 Study Selection Process

The selection process is illustrated in Figure 4.1. The author searched all six
databases with the pre-defined search string and the noted limitations. For
databases that allowed exporting the search results in CSV-format, the au-
thor wrote a small program to automatically aggregate the findings with the
existing spreadsheet base of potentially relevant studies. The program’s logic
followed the pseudo code in Algorithm 1 and had to be adjusted to the varying
format of the CSV-file of the respective database.

With that semi-automatic procedure results of all six databases plus a manual
search of conferences AGILE, XP and ICGSE (cf. Section 4.2.3) were aggre-
gated in a single spreadsheet. This final search resulted in 288 entries. In
the second step, the author excluded theses, workshop papers and experience
reports. It was however unlikely to filter all experience reports at this point
of the process, the final decision had to be made after the full-text analysis.
The author then classified the papers with regard to their relevance to the

43 Chapter Four

Algorithm 1 Search Helper in Pseudo Code

1: for each search entry of the CSV exported from database do
2: if search entry does not exist in spreadsheet then
3: add new row for the search entry in spreadsheet
4: end if
5: append database-name to database-column of search entry
6: end for

research questions based on title, keywords and abstract. The categories used
for the classification were relevant, maybe relevant and irrelevant. In the next
step one of the supporting researchers double-checked all papers in categories
maybe relevant and irrelevant and formed his own decision. An agreement
was sought using the following logic described in Table 4.1.

Author’s Decision Supporting Researcher’s
Decision

Resulting Action

irrelevant irrelevant exclude study
maybe relevant irrelevant exclude study
irrelevant maybe relevant exclude study
maybe relevant maybe relevant include study (for further anal-

ysis in step 6)

Table 4.1 – Steps 5 of the six step inclusion process.

The agreement resulted in 152 potentially included studies. The next step was
to download all studies through the university library services. The final step,
the full-text analysis, resulted in the exclusion of another 57 studies. 90% of
the full-text analysis has been conducted by the author and the remaining 10%
by a supporting researcher in order to review the final extraction procedure.
These 10% have been double-checked by the author to ensure a consistent
handling of all studies. Copies of the spreadsheet have been saved after all
stages for verification purposes. The final set comprised 95 included studies
for the five-year period of 2010 to 2014 (cf. Appendix A.2), which is a greater
amount than before in Jalali and Wohlin (2012a) with 81 included studies for
the ten-year period of 1999-2009.

4.2.6 Study Quality Assessment Criteria

To ensure quality of studies only peer-reviewed conference papers and jour-
nal articles are included, i.e. no books, theses, workshop papers, experience
reports and work in progress papers with incomplete results. Some of these
criteria, however, could only be fully applied during the full-text analysis.

Systematic Mapping 44

Figure 4.1 – Six step inclusion process: Nyes/Nmb/Nno show the amount of
relevant/maybe relevant/irrelevant studies after each respective step.

The classification of included studies was done with regard to the following
research types, inspired by Wieringa et al. (2006):

Solution Proposal: Proposal of a novel solution technique without a full-
blown validation, but may o↵er a proof of concept or a small example
Validation Research: Investigation of the properties of a solution that has
not yet been implemented in practice, methods may include e.g. experiments,
simulation or prototyping
Evaluation Research: Analysis of a problem or the implementation of a
technique in practice by means of e.g. a case study, field study or a survey
Philosophical Papers: Sketch of a new way of looking at things, e.g. a new
conceptual framework
Opinion Paper: Statement of the author’s personal opinion
Experience Paper: Listing of the author’s personal experience in an anec-
dotal way, may also be often written by industry practitioners

Experience reports were excluded from the final set of included studies for
further analysis, but still tracked to provide a systematic map of all research
types, since they were included in (Jalali and Wohlin, 2012a).

45 Chapter Four

4.2.7 Data Extraction and Synthesis

Data extraction and synthesis was initially done based on title, keywords and
abstract and then continued with a full-text analysis for the final set of 95
included studies (cf. Appendix A.2). The Appendix A.3 shows the complete
layout of the data extraction spreadsheet. All geographically distributed soft-
ware development teams were included, not only globally distributed ones.
This aligns with (Jalali and Wohlin, 2010, 2012a) and also with the defini-
tion of global software engineering by Šmite et al. (2014): ”development of a
software artifact across more than one location”. The classification of Jalali
and Wohlin (2010, 2012a) was extended for the distribution types, which was
inspired by (Šmite et al., 2014) to the following definition:

Location: O↵shore (di↵erent countries) > Onshore (same country) or Un-
clear
Legal entity: Outsourcing (di↵erent organizations) > Insourcing (same or-
ganization) or Unclear
Geographic distance: Far (flight time 2 hours and more) > Near (flight
time less than 2 hours) or Unclear
Temporal distance: Large (more than 4 hours) > Small (4 hours or less) or
Unclear

If a study falls into several distribution types, e.g. a multi-site environment
with two sites involved in onshoring and one site in o↵shoring, the most com-
plex category will be assigned (as denoted by the ”>” sign), i.e. ”o↵shoring”
for that example. Šmite et al. (2014) propose to have di↵erent notions for
geographic and temporal distance regarding o↵shoring and onshoring. While
there is clear benefit to specify contextual information more accurately that
way for a specific case, it is considered su�cient for this systematic mapping
to use the more coarse-grained view, as defined for o↵shoring in (Šmite et al.,
2014), for both o↵shoring and onshoring.

Furthermore, there is also a distinction between distributed team and virtual
team in the study of Jalali and Wohlin (2010). The distinction made is that
distributed teams work on independent tasks while virtual teams work jointly
on the same tasks. Since no reference is cited for this definition, support was
sought in literature and found in a recognized literature work by Lipnack and
Stamps (1997) on virtual teams: ”A virtual team, like every team, is a group
of people who interact through interdependent tasks guided by common pur-
pose. Unlike conventional teams, a virtual team works across space, time, and
organizational boundaries with links strengthened by webs of communication
technologies”. Hence there is support for the definition of a virtual team, but
not for the noted distinction to distributed teams. The terms distributed and
virtual were used interchangeably, alongside dispersed, in both the work of

Systematic Mapping 46

Figure 4.2 – A snippet of the implemented web form that has been used, showing
parts of the empirical data extraction for distributed software development.

Lipnack and Stamps (1997) and other related ones (cf. Section 4.1). It is ac-
knowledged that there is a necessary distinction between the two as inspired
by Sutherland et al. (2007) and in this systematic mapping they are defined
as follows.

Team distribution type: Isolated distributed teams> Integrated distributed
teams or Unclear. Isolated distributed team: Team members are spread in dif-
ferent locations and work remotely on independent tasks, i.e. one team does
not span across more than one site. This is regarded as the corresponding
term to Jalali and Wohlin’s (2010) distributed team. Integrated distributed
team: Team members are spread in di↵erent locations and work jointly on
the same tasks, i.e. the team is integrated over multiple (2+) sites. This is
regarded as the corresponding term to Jalali and Wohlin’s (2010) virtual team.

Other than that, similar data was extracted from each paper as Jalali and
Wohlin did to be able to compare results: The overall project size is also
defined as in (Jalali and Wohlin, 2010) with: Large > 50 persons � Medium
> 20 persons � Small or Unclear. Project duration was defined as: Long
(more than 7 months) > Medium > Short (less than 1 month) or Unclear.
Like (Jalali and Wohlin, 2010), the knowledge areas are based on SWEBOK
(Abran et al., 2004). If a study featured multiple cases, the agile practices
have been extracted separately for each case.

The full data extraction scheme is listed in the Appendix A.3. The author
implemented a web form via Google forms (https://docs.google.com/forms)
which facilitated and improved the data extraction process. Figure 4.2 shows
a small sample of the web form implementation.

47 Chapter Four

4.3 Results

The final search based on abstracts, keyword and title led to 152 papers.
After the full-text analysis another 57 studies had to be excluded due to
the following reasons: replicate study (17), no agile DSD focus (16), study
not available (13), experience report (5), no results (2), book (2) and not in
English (2). This resulted in 95 included studies for the period of 01/2010
to 08/2014 (cf. Appendix A.2). Without looking at the full text, as many as
57 (37.5%) false positives would have been part of the set of 152 potentially
included studies. It is thus argued that even a systematic mapping study is
not feasible without doing either a complete full-text analysis or studying the
full text adaptively.

4.3.1 Research Settings

Table 4.2 shows the trend of publications for the five-year period 2010-2014
and Figure 4.3 covers the trend in paper count for the total time span of
1999-2014. Compared to years 1999-2009 (Jalali and Wohlin, 2012a), there
is an increase in total paper count, which indicates bigger interest in the
subject of combining agile with DSD. There is also a trend evolving of around
20 publications on the subject per year, which started in 2008 and seems to
continue. This thesis’ systematic mapping study ends with 08/2014, so the
data point for 2014 cannot be considered accurate, since the remainder of 2014
(09/2014-12/2014) is missing. However, since the most prominent conferences
have been searched manually for the full year of 2014 (ICGSE, XP and AGILE
conferences), the data point indicates that 2014 indeed had less publications
on the subject.

The analysis also included the publication coverage in the respective databases.
It is noteworthy that 84.21% of the included studies could be covered using
solely the Scopus database and a manual search of ICGSE, XP and AG-
ILE conferences. When additionally extending the search to the Compendex
database even 94.74% of included studies can be found. This shows that close
to 95% of this thesis’ systematic mapping study’s included papers could have
been found using only two databases, Scopus and Compendex, instead of six.
The remaining four (ACM, INSPEC, IEEE and AIS) only added another 5%.
Scopus also had the highest count (11) of unique studies which could not be
found in any of the other databases. The least performing database regarding
the used search terms was AIS, which only resulted in a single unique study,
yet in a lot of false positives regarding the term agile (not concerning agile
SE, but the regular English word ”agile” in other contexts).

Figure 4.4 provides an overview of the most active researchers on agile DSD
by country and university. The top three countries are USA (13 publications),

Systematic Mapping 48

Figure 4.3 – Total paper count and a trend line for agile practices in DSD for the
fifteen years of 1999-2014. Data from 1999 to 2009 is from (Jalali and Wohlin,
2012a). Year 2014 does not account for the full year as the search has been

conducted in 08/2014 (plus AGILE2014 and ICGSE2014 conferences).

Figure 4.4 – Researchers’ a�liations (country and university): Only counts of 3
and more are included in this overview. Only years 2010 to 2014 are covered

because this type of mapping was not covered in (Jalali and Wohlin, 2010, 2012a).

Finland (10) and Germany (8). The top three universities are Aalto University
(7 publications), University Teknologi PETRONAS (5) and Blekinge Institute
of Technology (4). In general, 86.82% of authors in the included studies were
a�liated with universities and 13.18% with external research centers or in-
dustry, which can be reasoned with the fact that experience reports, which
are mostly written by practitioners, were not included in the final set of papers.

Figure 4.5 shows the primary publication targets for agile DSD with ICGSE
(16 publications), XP (9) and AGILE (5) conferences taking the lead. Both
author a�liations (Figure 4.4) and publication targets (Figure 4.5) have not
been analyzed for years 1999-2009 in (Jalali and Wohlin, 2010, 2012a), so no

49 Chapter Four

Databases 2010 2011 2012 2013 2014 Sum
ACM 1 1
ACM, IEEE 1 1
AIS 1 1
Compendex 1 1 2
Compendex, IEEE 1 1 1 3
Compendex, INSPEC, ACM 2 2
Compendex, INSPEC, ACM, IEEE 2 2
Compendex, INSPEC, IEEE 1 1
Manual Search 4 1 2 4 11
INSPEC 1 1 2
Scopus 1 4 1 2 3 11
Scopus, Compendex 3 3 3 2 1 12
Scopus, Compendex, ACM 1 4 1 3 9
Scopus, Compendex, ACM, IEEE 1 1 1 3
Scopus, Compendex, INSPEC 3 1 1 5
Scopus, Compendex, INSPEC, ACM 1 1 1 3
Scopus, Compendex, INSPEC, ACM, IEEE 3 5 4 4 16
Scopus, Compendex, INSPEC, IEEE 3 4 2 9
Scopus, INSPEC 1 1
Sum 24 23 20 16 12 95

Table 4.2 – Coverage of included studies by the databases over the studied years
2010-2014. ”Compendex, IEEE” e.g. means that the same paper has been found in

both Compendex and IEEE databases, while e.g. ”Compendex” denotes an
exclusive hit in only this respective database.

comparison is o↵ered.

Figure 4.6 shows the mapping of research types over the whole fifteen-year
period including data from (Jalali and Wohlin, 2012a). In years 1999 to 2001
there was no publication regarding agile practices in DSD. Compared to 1999-
2009 (Jalali and Wohlin, 2010, 2012a) the research field is starting to mature
with a shift from experience reports, which was the most frequent paper type
by far from 1999 to 2009, to evaluation studies in 2010 to 2014. It should
be noted that experience papers were not included in this thesis’ systematic
mapping study for further analysis in the final set of 95 papers but they were
added to Figure 4.6 to achieve comparison. Also, the amount of studies pub-
lished on the subject in the five-year period of 2010-2014 (95 included papers
without experience reports, cf. Appendix A.2) is higher than for the ten-year
period of 1999 to 2009 before (81 papers including experience reports (Jalali
and Wohlin, 2012a)). This shows that research interest has significantly in-
creased in applying agile practices to DSD.

As Figure 4.7 shows, out of 95 included studies, about half used a qualita-
tive approach and the rest is almost equally split between quantitative, mixed
method or a not properly specified methodology. This shows a notable shift to

Systematic Mapping 50

Figure 4.5 – Conferences and journals: Conferences show a clear lead of ICGSE,
XP and AGILE, while journal publications are more widespread with many journals
featuring just one included study. Only targets with more than one publication are

included in this overview. Only years 2010 to 2014 are covered because the
information was not available in (Jalali and Wohlin, 2010, 2012a).

Figure 4.6 – Distribution of research types over the studied years 2010-2014 and
data added from (Jalali and Wohlin, 2012a) for 2002-2009. There is a notable shift
from experience papers towards evaluation papers. The total sum of studied papers
for 2010-2014 is 111 papers here, because experience reports are not part of the

included studies (N=95) for further analysis.

51 Chapter Four

Figure 4.7 – Research methods and sub-methods for 2010-2014 and data added
from (Jalali and Wohlin, 2012a) for 1999-2009.

Figure 4.8 – Overview of the means of analysis and contributions of the studies for
2010-2014 and data added from (Jalali and Wohlin, 2012a) for 1999-2009.

more diverse research approaches compared to 1999-2009 with 88% qualitative
studies. The most used research approach in 1999-2014 was the case study.
Otherwise there is a rise in literature reviews, which can be explained by a
maturing research field, and fewer studies with an unclear approach possibly
due to experience reports being excluded in 2010 to 2014. Figure 4.8 shows
that descriptive means of analysis are still widely used (45%) but not as much
as before 2010 (83%). Contributions in the form of lessons learned (70%) are
now lesser used in favor of case study analysis (31%) and model or framework
development (32%) (cf. Figure 4.8). Only one paper (Vallon et al., 2014) in
the fifteen years of 1999-2014 employed an action research approach.

Systematic Mapping 52

4.3.2 Empirical Background

The majority (66 publications) of the 95 included studies (cf. Appendix A.2)
in the years of 2010-2014 had an empirical background. If a study analyzed
several cases, i.e. a multi-case study, each case was treated individually for
extracting empirical information. However, a study featuring a survey has an
empirical background but cannot be used to extract single-case characteristics.
The deeper analysis thus continues for 62 reported cases (either from single-
case or multiple-case studies and not taking into account e.g. surveys that
could not be used for single-case extraction) from the 66 empirically based
publications.

Table 4.3 shows case characteristics for all of the 62 reported cases between
2010-2014. Numbers in parentheses also show data from Jalali and Wohlin
(2010) for the years of 1999-2009. Most cases (47) focus on the SE process
as a whole rather than on a specific part of the workflow which indicates
that research on agile practices in DSD is still quite holistic rather than in-
depth. Certain context details were missing more frequently than others such
as project duration (29 times), application domain (17), project size (15) or
even whether distributed development was global or onshoring in the study
(7). 45 cases explicitly reported success and only 3 reported failure, which
shows that empirical publications in the field are drastically more solution-
centric than problem-centric. Consistent with results from (Jalali and Wohlin,
2010), project size, project duration and application domain is still frequently
not reported. In contrast to (Jalali and Wohlin, 2010), most studies targeted
the whole SE process rather than a specific knowledge area.

Project Size Domain Knowledge Area

Large 16 (6) Unclear 17 (34) SE Process 47 (5)
Small 16 (10) Web 12 (8) SE Management 6 (7)
Medium 15 (7) Telecommunications 6 (3) Tools & methods 5 (4)
Unclear 15 (18) Service Provider 6 (1) Requirements 2 (2)
Project Duration Enterprise Software 6 Testing 1 (3)
Unclear 29 (35) Finance 4 (1) Design 1 (2)
Long 21 (11) Open Source 3 Successful

Medium 11 (6) Automation 2 Yes 45 (49.5)
Short 1 (0) Mobile 2 Unclear 14 (8)
Global Development Industrial Products 1 No 3 (2.5)
O↵shore 47 (37) Energy 1 Participants

Onshore 8 (1) Supply Chain 1 Industry 54
Unclear 7 (14) Risk Management 1 Students 8

Table 4.3 – Overview of the characteristics from 62 reported empirical cases for
years 2010-2014. Numbers in parentheses is data added from (Jalali and Wohlin,

2010) for years 1999-2009.

53 Chapter Four

4.3.3 DSD and Agile

Figure 4.9 provides an overview of distribution settings and the agile processes
in use in a bubble chart diagram. The numbers in the bubbles of each block
Agility, Sites, Teams, Time, Distance, Sourcing and Shoring sum up to 62,
i.e. the total number of empirical cases analyzed. Since Jalali and Wohlin
(2012a) use a more coarse-grained taxonomy, results cannot be compared to
years 1999-2009.

Scrum is used in the majority of studies (37 out of the 62 cases) followed by
mixed approaches (11 cases) and unspecified ones (10 cases). Compared to
the years 1999-2009 studied in (Jalali and Wohlin, 2012a), two observations
are apparent. First, the category agile was not used in this thesis’ systematic
mapping study. If it was obvious that scrum practices are mainly applied then
the category scrum was assigned. If it was not obvious then the process was
unclear rather than agile. The second observation is that Figure 4.9 does not
show any Extreme Programming (XP) studies. The explanation is that in no
case XP was used exclusively, but rather a combination with scrum, which
falls under category mixed. Lean software development was only reported as
process of choice in 3 cases, so it does either not get applied in DSD settings
or is not reported by researchers, which indicates a research gap that requires
further attention.

The majority of reported studies had the following characteristics: o↵shore
(43 cases), far distance (29), large time gap (23), all-agile teams (23), two
site environment (22) and insourcing (16) but closely followed by outsourcing
(14), i.e. complex global cases. It also has to be noted that context is very
seldom reported to a full extent, thus limiting the generalizability of results
of a study. The most often skipped context details are team structure (36
cases), sourcing type (32), level of agility within the project/organizational
environment (27), geographic distance (25) and temporal distance (25), which
are in the 40% to almost 60% range of the total of 62 empirical cases.

Table 4.4 shows the supplier and customer countries involved in agile DSD.
To achieve comparison to (Jalali and Wohlin, 2012a), cases with multiple
countries were counted in a supplier-customer relationship as 1

N where N is
the number of suppliers. In the studied years of 2010-2014, even more apparent
than in the findings of Jalali and Wohlin (2012a), in many customer-supplier
relationships (63.42% 2010-2014 vs. 32.86% 1999-2009) the customer’s country
was not reported in the analyzed cases. In alignment to (Jalali and Wohlin,
2012a), the reported main customers were the United States, followed by the
UK and Denmark. Suppliers were reported more often than customers but
still 39.61% remained in the dark. Jalali and Wohlin (2012a) found a similar
behavior for the years of 1999-2009 with 41.55% undisclosed suppliers. The

Systematic Mapping 54

Figure 4.9 – Mapping the usage of agile processes against the reported DSD
characteristics in the 62 reported cases in years 2010-2014.

most reported suppliers were Finland, India and the United States. For years
1999-2009 (Jalali and Wohlin, 2012a), India was the leading reported supplier
country. Compared to the years of 1999-2009 (Jalali and Wohlin, 2012a) there
is a stable amount of customers being reported (10 now compared to 11 then),
but a significant increase in reported suppliers (29 now compared to 20 then)
indicating the coverage of a greater variety of cases.

55 Chapter Four

Suppliers
Customers

Unclear US UK DK DE FI BR NL RU IN NZ Sum

Unclear 18.33 (14) 2 (3.2) 2 1 1 (0.5) 24.33 (17.7)
Finland 5.83 (0.2) 0.83 (1) 6.66 (1.2)
India 1.33 1.5 (10.5) 2 (1) 1 (1) 0.5 (1) 6.33 (13.5)
USA 1.86 1.16 (3) (0.5) 0.33 3.35 (3.5)
UK 0.78 0.33 0.5 0.5 2.11
Norway 2 (0.5) 2 (0.5)
Denmark 1 0.5 1.5
Russia 0.33 (0.5) 0.5 (1) (0.2) 0.5 1.33 (1.7)
Argentina 1.2 1.2
Canada 0.2 0.33 (0.5) 0.5 1.03 (0.5)
Republic of Korea 1 1
Germany 0.5 0.5 1
Austria 1 1
The Netherlands 0.45 0.5 0.95
Hungary 0.5 0.33 0.83
Brazil 0.25 0.5 0.75
Ireland 0.33 0.33 (2) 0.66 (2)
Senegal 0.58 0.58
New Zealand 0.5 0.5
Malaysia 0.5 0.5
Sudan 0.5 0.5
Pakistan 0.5 0.5
Poland (1) 0.5 0.5 (1)
Australia 0.5 0.5
Israel 0.33 (0.5) 0.33 (0.5)
Romania 0.33 (0.5) 0.33 (0.5)
Belgium 0.33 0.33
Bangladesh 0.33 0.33
Greece 0.25 0.25
Cambodia 0.25 0.25
Sum 38.96 (14) 5.98 (21.7) 5 (2) 2.5 (1) 2 (1.4) 1.99 (1) 1 1 (1) 1 1 1 (0.5) 61.43 (42.6)

Table 4.4 – Supplier to customer relationships between the countries involved in agile DSD in the studied papers. Numbers in
parentheses is data added from (Jalali and Wohlin, 2012a).

S
y
st

e
m
a
t
ic

M
a
p
p
in
g

56

Figure 4.10 shows the extraction of all agile practices that have been reported
in more than one case. Out of all studied papers successful practices have
been extracted 309 times in the five-year period of 2010-2014 and 444 in total
for the fifteen years of 1999-2014. For years 2010-2014, there is a strong
support for the successful implementation of the most basic scrum practices
such as standup meeting (32 cases), product owner (32, including variations of
proxy product owner and product owner teams), backlog (31), sprint planning
(25), retrospective (23), scrum master (21), user stories and sprint reviews (18
cases each). Neglected scrum practices (or ones that did not receive explicit
attention in reports) were estimation meetings (2 cases), self-organizing teams
(2) and burndown charts (2). Also, the scrum of scrums (6) has been seldom
reported in DSD environments, although it is a practice to support scaling in
agile processes.

Compared to years 1999-2009 (cf. Figure 4.10) the main scrum practices are
still in the center of agile DSD implementations. XP practices seem to have
been lesser used (or lesser reported), which can be explained by the fact that
many cases use a mixed approach such as XP@Scrum (Vriens, 2003) with
scrum for the general SE process and XP for development practices also in
distributed development settings, which is also one of the results of this the-
sis’ systematic mapping study (cf. mixed approach in Figure 4.9). Figure
4.11 shows which means have been used to overcome distance in agile pro-
cesses, which are of general nature and not related to agile methods as such:
video/audio conference meetings (27 cases), contact visits (11), instant mes-
saging (10), wiki (9), screen sharing (3), ambassador (2) and chat (2). While
these means do not qualify as agile practices, they are still important for the
ADAPT framework as at least some of them (or related tools not covered in
this systematic mapping) are needed to be part of any distributed process
implementation to overcome distance.

4.3.4 Summary

This section answers the research questions RQ3a, RQ3b and RQ3c, which
haven been addressed in this chapter’s systematic mapping study.

RQ3a. What does the research landscape in the field look like in the 15 years
of 1999 to 2014?

As Table 4.2 illustrates, the systematic search showed that 94.74% of the in-
cluded studies could have been found using only the Scopus and Compendex
databases (or 84.21% using only Scopus). The numbers also incorporate an
additional manual screening of the proceedings of ICGSE, XP and AGILE
conferences because these are the most prominent venues to publish papers
on agile DSD. Journals received lesser attention as targets for publication with

57 Chapter Four

Figure 4.10 – Frequencies (>2) of successful application of agile practices for the
studied years 2010-2014 and also years 1999-2009 by Jalali and Wohlin (2012a).

Information and Software Technology, Journal of Systems and Software and
Journal of Software: Evolution and Process being the top three (cf. Figure 4.5).
As Figure 4.4 shows, the most active countries interested in researching agile
DSD were the United States, Finland and Germany, and the most active uni-
versities in the field were Aalto University, Universiti Teknologi PETRONAS
and Blekinge Institute of Technology. The most involved countries in agile
DSD were Finland and India as suppliers, UK and Denmark as customers and
the United States in both categories (cf. Table 4.4).

Figure 4.6 draws a map of research types, showing that agile practices in DSD
is an active research field with a variety of research types, most prominently
evaluation studies with an empirical background. Figure 4.7 shows that out

Systematic Mapping 58

Figure 4.11 – Frequencies (>2) of successful application of means to overcome
distance in agile processes for the studied years 2010-2014, which was not covered

by Jalali and Wohlin (2012a) for years 1999-2009.

of 95 included studies about half used a qualitative approach and the rest is
almost equally split between quantitative, mixed method or a not properly
specified methodology. The most used research approach in 1999-2014 was
the case study. Otherwise there is a rise in literature reviews, which indicates
a maturing research field.

As Table 4.3 showed, most reported cases in years 2010-2014 (47 out of 62) fo-
cus on the SE process as a whole rather than on a specific part of the workflow
which indicates that research on agile practices in DSD is still quite holistic
rather than in-depth. Context details were often not stated clearly such as
project duration (29 cases), application domain (17) and project size (15). 45
studies explicitly stated success and only 3 reported failure, which leads to the
assumption that publications are more solution-centric than problem-centric.

RQ3b. What has changed in the later five years 2010 to 2014 in comparison
to the former ten-year period of 1999-2009?

Figure 4.1 summarizes the whole study inclusion process, which led to the final
set of 95 included studies (cf. Appendix A.2). As Figure 4.6 shows, there is a
major increase in frequency of evaluation papers in the studied five-year period
as a natural evolvement to the experience papers that were most frequent in
the years up to 2009 (Jalali and Wohlin, 2010, 2012a). This finding indicates
increasing research attention and interest to mature the field, which is also
supported by a shift to more mixed and quantitative approaches, from close to
90% qualitative research 1999-2009 down to close to 50% 2010-2014 (cf. Figure
4.7). There is notably greater e↵ort towards the evolvement of frameworks
and models (cf. Figure 4.8) rather than mostly lessons learned before (Jalali
and Wohlin, 2012a).

59 Chapter Four

The greatest change of directions compared to 1999-2009 is the predominance
of scrum, more frequent application of mixed methods and the neglecting of
XP as a standalone process in agile DSD (Figure 4.9). Figure 4.10 supports
that observation regarding a lack of XP processes by showing that XP practices
have been applied fewer times successfully in 2010-2014 compared to the years
of 1999 to 2009.

In general underspecified context had been an issue in previous research (Jalali
and Wohlin, 2010, 2012a) already. However while the issue is definitely not re-
solved, as e.g. Figure 4.9 or Table 4.3 point out, most studies in the 2010-2014
studied time period at least painted a better picture for case characteristics
than just ”distributed teams” or ”agile”, which was frequent in years 1999-
2009.

RQ3c. What are common agile practices and distribution scenarios?

Table 4.3 gives an extensive overview of empirical background data and Figure
4.9 maps global distribution scenarios against agile processes. The majority
of reported studies had the following characteristics: o↵shore (43 cases), far
distance (29), large time gap (23), all-agile teams (23), two site environment
(22) and insourcing (16) but closely followed by outsourcing (14), i.e. complex
global cases.

Scrum is by far the most used agile process across all distribution scenarios
(37 cases), followed by mixed methods (11), most notably the combination of
scrum methodology with XP development practices. Figure 4.10 also supports
that observation since scrum practices are the most frequent ones.

As Figure 4.10 shows, out of all studied papers successful practices have been
extracted 309 times in the five-year period of 2010-2014 and 444 in total
for the fifteen years of 1999-2014. For years 2010-2014, there is a strong
support for the successful implementation of the most basic scrum practices
such as standup meeting (32 cases), product owner (32, including variations of
proxy product owner and product owner teams), backlog (31), sprint planning
(25), retrospective (23), scrum master (21), user stories and sprint reviews (18
cases each). Neglected scrum practices (or ones that did not receive explicit
attention in reports) were estimation meetings (2 cases), self-organizing teams
(2) and burndown charts (2). Also, the scrum of scrums (6) has been seldom
reported in DSD environments, although it is a practice to support scaling in
agile processes.

Agile practices are often supported by means to overcome distance as shown
in Figure 4.11. These means are of general nature and not related to agile
methods as such: video/audio conference meetings (27 cases), contact visits

Systematic Mapping 60

(11), instant messaging (10), wiki (9), screen sharing (3), ambassador (2) and
chat (2), but they are still important for the ADAPT framework as these or
similar means are needed in any distributed process implementation, including
agile ones.

4.4 Implications for Research and Practice

Replicating a systematic mapping study. Due to the detailed documen-
tation of the process used by Jalali and Wohlin (2010, 2012a), it was possible
to set up a procedure similar to the original one. Some adaptations have been
made such as reporting the distribution context in alignment to the taxonomy
of (Šmite et al., 2014), a natural improvement given the fact that one of the
authors of the original study (Jalali and Wohlin, 2012a), Claes Wohlin, has
been involved in the creation of that taxonomy in the meantime. By expand-
ing on the former results, it was possible to cover a full fifteen-year time span
of 1999-2014.
Insu�cient abstract quality. As has been noted in (Jalali and Wohlin,
2012a) and other systematic reviews such as (Petersen et al., 2008), it is often
not enough to judge studies based on abstracts due to low quality and miss-
ing structure, not even for simple systematic maps. It this thesis’ systematic
mapping many studies had to be excluded after full-text analysis although
having been originally included based on abstract, title and keywords. This
proved especially true for judging whether agile or DSD was a focus in the
full text of the study despite of what has been stated in the abstract. If the
systematic mapping had been based only on abstract, title and keyword, as
many as one third of false positives would have been included, substantially
distorting results. Hence this thesis’ systematic mapping study’s results show
that a systematic mapping is hardly feasible without full-text analysis or at
least not without studying the full text adaptively as suggested in (Petersen
et al., 2008).
Maturing research field. In the five years of 2010-2014 there was a dras-
tic shift from experience papers to evaluation ones indicating increasing re-
searchers’ attention to investigate the application of agile practices in DSD.
Given the amount of empirical studies, the analysis of experience papers was
skipped in this thesis’ systematic mapping, because they usually lack a rigor-
ous approach and are thus subject to bias. Nevertheless this thesis’ mapping
study still comprised a larger final set over five years (2010 to 2014) than the
previous studies over a ten-year period (1999 to 2009).
Widely used scrum and ”XP@Scrum”. Scrum and XP@Scrum (scrum
combined with XP development techniques) have been by far the most used
processes across di↵erent kinds of distribution scenarios, which makes the ap-
plication of agile practices more specific compared to years 1999 to 2009, where
many studies just reported being ”agile”.

61 Chapter Four

Neglected research approaches. The trend up to 2010 (Šmite et al., 2010c)
is continued that the most empirical evidence is based on case studies with
interviews being the primary data source. A possible variation could be to
employ more action research as has been pointed out by Sjøberg et al. (2007).
There was only a single study (Vallon et al., 2014) in the fifteen years of 1999-
2014 that has adopted action research in agile DSD, although it is arguably
the most realistic research setting and enables the researcher to gain an in-
depth and first-hand understanding (Sjøberg et al., 2007).
No lean processes in agile DSD. Lean software development is getting
used in many di↵erent environments in software development (Wang et al.,
2012), but as this thesis’ systematic mapping study shows its application in
DSD is close to non-existent, although lean was a designated keyword in the
search. Thus little is known about the application of lean tools to DSD, hence
requiring further research attention.
High-level studies covering the whole process. Although description of
study context has improved over (Jalali and Wohlin, 2012a), the majority of
studies focuses on the whole process. As such a study often cannot cover the
implementation of agile practices in great detail leaving out important infor-
mation for use by practitioners. Hence it would be interesting to see more
in-depth studies covering specific parts of the agile value chain in DSD. It
often seemed that agile practices have been described rather vaguely, along
the notion of ”scrum practices like backlog and sprints have been used” rather
than naming all used practices and also elaborating more on how the practice
has been applied. For example if sprint planning is used in DSD, it will make a
huge di↵erence which sites were involved, whether it was held on site or virtu-
ally and which specific techniques and procedure was used. It does not really
add any value to just name an agile practice in a DSD environment that has
been designed for use in collocated environments without further elaboration.
Solution-centric publications. While the results show many successful ag-
ile practices, the report of challenges with agile practices is rather scarce and
requires further attention. Still, this thesis’ systematic mapping study identi-
fied several practices that were not used frequently in a DSD context or have
not received much attention: estimation meeting, self-organizing team, code
review, burndown charts or requirements workshop. If these practices do not
get used, it would be interesting to investigate why and which practices are
used instead.
No comprehensive agile DSD framework. Although there is an increas-
ing amount of studies contributing models and frameworks, there is still no
process framework to present a comprehensive approach to applying agile
practices in DSD. This has been pointed out by Jalali and Wohlin (2012a),
but the gap still exists after having analyzed years 2010 to 2014. This thesis’
ADAPT framework strives to fill this research gap (cf. following Chapters 5
and 6).
Checklist for reporting context in agile DSD. The data extraction plan

Systematic Mapping 62

(cf. Appendix A.3) has been improved from (Jalali and Wohlin, 2010) and
there were almost no studies which managed to satisfy all inquired context
details. Missing context details in general make it di�cult to make use of the
findings (Šmite et al., 2008). Serious gaps were found in the presentation of
context in years 2010 to 2014 such as: the distribution type was not prop-
erly specified in 40% to 60% (depending on the criterion) of the cases (cf.
Figure 4.9). Crucial information such as project duration was not reported
in 50% of the cases. Project size and application domain were not reported
in 25% of the cases, respectively. Furthermore, the customer country (60%)
and the supplier country (40%) were frequently not reported. When context
information was reported it also often had to be carefully extracted from the
full paper text rather than being stated at one point or a table. The author
encourages other researchers to use the updated checklist of Jalali and Wohlin
(2010), which also incorporates the DSD taxonomy of Šmite et al. (2014) and
is fully presented in Appendix A.3.

4.5 Conclusion

This chapter presented a systematic mapping of the application of agile prac-
tices in distributed software development for the five-year period of 2010 to
2014, and also in comparison to the results of studies (Jalali and Wohlin, 2010,
2012a) for years 1999 to 2009, e↵ectively covering a fifteen-year period and as
such enriches the body of knowledge for applying agile practices in distributed
software development. On top of the previous work 95 papers for the years of
2010-2014 (cf. Appendix A.2) were analyzed and it was found that agile prac-
tices have been used 309 times successfully (total for 1999-2014: 444 times).
The top three successful practices have been standup meeting, sprint iterations
and backlog and in the fifteen years of 1999-2014. A serious shortcoming was
identified in the presentation of context details in about 50% of the empirical
cases studied, depending on the criterion, which limits the generalizability of
results of the individual cases. The author proposes a data extraction check-
list (cf. Appendix A.3) based on this thesis’ systematic mapping study that
can be used to describe context details in future studies to counteract this
recurring problem.

Key findings of the systematic mapping include the following:

Best database: Scopus, followed by Compendex
Top three countries (counting all universities): USA, Finland and Ger-
many
Top three universities: Aalto University (FI), Petronas University of Tech-
nology (MY) and Blekinge Institute of Technology (SE)
Top three conferences: International Conference on Global Software En-

63 Chapter Four

gineering (ICGSE), International Conference on Agile Software Development
(XP), The Agile Conference (AGILE)
Top three journals: Information and Software Technology (IST), Journal
of Systems and Software (JSS), Journal of Software: Evolution and Process
(JoS: EP)
Research types: there is a clear shift from experience papers to evaluation
studies, indicating a maturing research field
Research methods: shift from almost exclusive qualitative studies to quan-
titative and mixed methods as well
Empirical agile DSD context: is often not fully reported, the most ne-
glected context information is team structure, sourcing type and level of agility
Empirical project context: also often missing important information such
as project duration, project size and application domain
Most common agile process: scrum, followed by mixed methods (mostly
involving scrum and XP combined)
Most common distribution scenario: o↵shore, either insourcing or out-
sourcing, far distance, large time gap, involving two sites
Most reported customer countries in DSD: USA, United Kingdom and
Denmark
Most reported supplier countries in DSD: Finland, India and USA

The remaining related work until the finalization of the thesis (09/2014 to
12/2015), not covered in this chapter’s mapping study, is added to the discus-
sion (cf. Chapter 7) in Section 7.3.

Systematic Mapping 64

CHAPTER 5
Single-Case Analysis

Single-case reports have been published and presented at the 14th

International Conference on Agile Software Development (XP 2013)
in Vienna (Vallon et al., 2013b), the 8th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering
(ENASE 2013) in Ville d’Angers, France (Vallon et al., 2013a)
and the 2014 Agile Conference (AGILE 2014) in Orlando, FL
(Vallon et al., 2014). The multiple-case report has been published
in the journal Computer and Information Science (Vallon and
Grechenig, 2016).

Contents

5.1 Research Design . 67

5.2 Case CrossTown . 79

5.3 Case NoTimeshift . 86

5.4 Case Continental . 91

5.5 Conclusion . 94

This chapter presents the individual case reports on the multiple-case study
that has been conducted in this thesis. The study provides the following con-
tributions to the evolving research field of applying agile process in distributed
software development (DSD) environments:

1. Empirical evidence from a long-term multiple-case study covering three
di↵erent distribution scenarios: cross town, no timeshift and continental

2. Cross-case analysis of agile practices among these three di↵erent distri-
bution scenarios

Single-Case Analysis 66

3. Addressing the need for more robust primary empirical studies as iden-
tified in DSD in general (Marques et al., 2012) and in particular for agile
practices in DSD (Hanssen et al., 2011)

Section 5.1 presents the overarching multiple-case research design. Individual
cases CrossTown (Section 5.2), NoTimeshift (Section 5.3) and Continental
(Section 5.4) are then reported, discussing each background, challenges, agile
practices and the resulting input of guidelines of practices for the ADAPT
framework. An aggregation of single-case results and the cross-case (multi-
case) analysis follows in Chapter 6.

5.1 Research Design

This multi-case study is a major step in this doctoral research project aimed
at empirically investigating the application of agile practices in DSD. As such
it adds to the empirical basis of the research field and represents an important
link between the initial systematic mapping in Chapter 4 and the development
of a first iteration of the ADAPT framework in Chapter 6. The research design
follows the guidelines of Yin (2003) for general case study design and Verner
et al. (2009) for conducting multiple-case studies in software engineering in
particular. The case study protocol presented in this chapter is based on the
template by Brereton et al. (2008). The research design decisions made are
explained and embedded in the following subsections.

Both Jalali and Wohlin (2012a) and this thesis’ extended systematic map-
ping (cf. Section 4) showed that context is not richly described in empirical
studies in the area of agile DSD. The author of this thesis further investi-
gated how context has been described in past studies and built a conceptual
framework (cf. Table 5.1) to use for this multiple-case study and address the
identified shortcoming. Moreover, in previous multiple-case studies method-
ological triangulation was found to be scarce. This finding supports the claim
(Marques et al., 2012) that there is a need for robust primary empirical stud-
ies researching DSD and agile practices in DSD in particular (Hanssen et al.,
2011). Hence, the following research gap was identified:

As context information in past empirical studies is often not richly provided,
it is hard to generalize from past studies in the field. This study aims to
investigate three cases implementing agile practices in DSD in significantly
di↵erent distribution scenarios and presents rich contextual information for
each case respectively. The nature of this multiple-case study is exploratory
in the way that is has no clear, single set of outcomes (Yin, 2003) and that
it is to the best of the author’s knowledge unprecedented in the approach of
analyzing the emergence of common heuristics (Heeager and Rose, 2014) in
several distribution scenarios (cross town, no timeshift and continental).

67 Chapter Five

Based on that objective, the research question (RQ4) guides the research:

RQ4a. What process design guidelines and best practices can be formulated to
increase the chances of a successful agile process implementation in distributed
environment?

RQ4b. Do the di↵erent distribution scenarios a↵ect the implementation of
agile practices?

Since this research is exploratory there are no a-priori propositions (Yin, 2003)
and the research is guided by the research question RQ4.

5.1.1 Related Multiple-Case Studies

Jalali and Wohlin conducted a systematic mapping (Jalali and Wohlin, 2010)
and literature review study (Jalali and Wohlin, 2012a) on agile practices in
DSD reported in the years of 1999-2009. This section presents the multiple-
case studies of their included set of primary studies. Ramesh et al. (2006)
looked into applying agile principles to DSD as early as 2006 and concluded
that careful integration may help in addressing challenges with communica-
tion, control and trust across distributed teams. Sison and Yang (2007) an-
alyzed two cases in the Philippine IT industry and found agile principles to
result in greater learning and greater teamwork in both cases. Paasivaara
et al. (2009) o↵er insights to three cases of applying scrum in distributed en-
vironments. The results show how scrum practices have been applied in the
cases and what the identified challenges and benefits were. So in the years
of 1999-2009 (Jalali and Wohlin, 2012a) there were only three multiple-case
studies in this specific area.

This thesis also looked for multiple-case studies in the more recent years 2010-
2014 (cf. Chapter 4), which have not been covered in (Jalali and Wohlin,
2012a). Srinivasan and Lundqvist (2010) focus on agile DSD tied to Indian
software organizations. The authors conclude that the following guidelines
play an important role: appropriate selection of personnel, providing necessary
training and mentoring and creating a set of work practices that promotes
process excellence. Hossain et al. (2011b) analyze in four cases how scrum
was tailored to fit individual DSD contextual requirements. Bass (2012) also
investigated process tailoring, concluding that XP practices were much less
widely used compared to scrum practices. Paasivaara et al. (2012) focused
on ways of scaling the product owner role in their two-case study. Ramesh
et al. (2012) investigate the ambidexterity of balancing agile and distributed
development, which the authors see conflicting in nature as DSD forces more

Single-Case Analysis 68

plan-based approaches. The proposed solution is to simultaneously pursue the
two rather than creating dual structures. Badampudi et al. (2013) identified
17 challenges and 28 mechanisms how these challenges a↵ected certain roles
in global large-scale agile project environments, involving enabling, planning,
and coordinating the scrum teams and integrating their results. Daneva et al.
(2013) focus on requirements (re)prioritization by so-called delivery stories
which complement user stories with architectural design implications, test
scenarios, e↵ort estimation and associated risk. Paasivaara and Lassenius
(2014a) focuses on agile coaching of global software development projects,
pointing out their importance and proven benefit in the cases under study.

So in the research of related work eight multiple-case studies were found for the
years of 2010-2014 as compared to three multiple-case studies for 1999-2009,
which indicates an increasing research focus and interest on agile practices
in DSD. Contextual details have often been not fully described, which cor-
responds with observations by Jalali and Wohlin (2012a) and the systematic
mapping of Chapter 4.

5.1.2 Multiple-Case Study

The case study design was chosen as a natural fit to the research problem
as it ”investigates a contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not
clearly evident” (Yin, 2003, p. 13). Moreover, the author wants to focus
on covering contextual background for which the case study is especially well-
suited (Yin, 2003). In multiple-case studies it is especially important to follow
a rigid protocol (Yin, 2003), which is described in Section 5.1. Evidence from
multiple cases is considered more compelling (Herriott and Firestone, 1983).

The unit of analysis is a project within an organization for which agile pro-
cesses are applied in a distributed development environment, i.e. the develop-
ment itself has to take place on at least two sites. Hence, this multiple-case
study is an embedded case study focusing on the output of individual projects
as compared to a holistic one (Yin, 2003). For selecting information-rich cases
purposeful maximum variation (heterogeneity) sampling (Patton, 2002) was
used, i.e. heterogeneous cases were chosen based on the characteristics devel-
oped in the conceptual framework (cf. Table 5.1). Since scrum is the most
widely used agile process also in DSD (Jalali and Wohlin, 2012a) the case se-
lection was limited to scrum and the distribution scenario of the project was
chosen as the primary dimension for selecting heterogeneous cases. This also
adheres to the definition of Strauss et al. (1998, p. 120) for theoretic sampling,
where ”we want to know what happens [...] when the conditions under which
it occurs vary”. The final selection involved three cases applying scrum prac-
tices in greatly di↵erent distribution scenarios: cross town (sites in the same

69 Chapter Five

city), no timeshift (sites in the same country) and continental (sites spanning
multiple countries).

The assumed problem that individual cases are too di↵erent is intentional
and argued to produce stronger results: ”Any common patterns that emerge
from great variation are of particular interest and value in capturing the core
experiences and central, shared dimensions of a setting or phenomenon” (Pat-
ton, 2002, p. 235). In a multiple-case study, each case should be seen as a
unique ”experiment” and not just another sample (Yin, 2003). First, each
case is treated individually with an individual case report before the cross-
case analysis (Yin, 2003). This also aligns with Patton’s guidance to variation
sampling, i.e. to describe the uniqueness of each case and also look for common
themes (Patton, 2002).

5.1.3 Conceptual Framework

DSD is a contemporary phenomenon which is studied within its real-life con-
text. As such the boundaries between phenomenon and context are not clearly
evident (Yin, 2003). There has been joint e↵ort by Šmite et al. (2014) on how
to properly provide context details and a suggested taxonomy in DSD research.
However in past empirical studies context has often been poorly described as
has been pointed out in the systematic literature review by Jalali and Wohlin
(2012a) (years 1999-2009) and this thesis’ own systematic mapping (cf. Chap-
ter 4, years 2010-2014).

Based on the comprehensive review of previous work in Chapter 4, a con-
ceptual framework with the key factors was defined that is the focus of the
data collection (Verner et al., 2009). It is a central point in the process of
”sorting out of the wheat of what is central to your findings from the cha↵
of specific irrelevancies” (Robson, 1993, p. 72). The conceptual framework is
based on three main factors relevant to the context of the empirical study:
DSD inspired by (Šmite et al., 2014; Jalali and Wohlin, 2012a), scrum prac-
tices extraction inspired by (Paasivaara et al., 2009; Hossain et al., 2011a)
and general information with regard to the unit of analysis, i.e. the project,
inspired by (Jalali and Wohlin, 2012a; Hossain et al., 2011a). Table 5.1 drafts
the conceptual framework with all identified relevant empirical factors and
their respective sources.

5.1.4 Case Organizations

Three heterogeneous cases were purposefully selected with regard to their
varying distribution scenarios. Identities are withheld to preserve privacy and
the three projects receive pseudonyms which will be used throughout the the-
sis: CrossTown, NoTimeshift and Continental. The case CrossTown involves

Single-Case Analysis 70

Key contextual

factors

Sub-factors Extraction Details Inspired by

D
S
D

Location Onshore, O↵shore (Šmite et al., 2014)
Legal Entity Insourcing, Outsourcing (Šmite et al., 2014)
Geographic Distance Near, Far (used for both

Onshore and O↵shore)
(Šmite et al., 2014)

Temporal Distance Similar, Di↵erent (On-
shore)
Small, Large (O↵shore)

(Šmite et al., 2014)

Socio-cultural Distance Low, Significant (Hossain et al., 2011b)
Supplier Country Country name Jalali and Wohlin

(2012a), cf. Ch. 4
Customer Country Country name Jalali and Wohlin

(2012a), cf. Ch. 4
Number of sites � 2 Jalali and Wohlin

(2012a), cf. Ch. 4
Team Distribution Type Integrated Teams, Iso-

lated Teams, Mixed
cf. Ch. 4

A
G
IL

E

Process Scrum, XP, Lean,
Mixed, ...

Jalali and Wohlin
(2012a), cf. Ch. 4

Agility Level Not all teams, All
Teams, Organization-
wide

Jalali and Wohlin
(2012a), cf. Ch. 4

Sprint Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Sprint Planning Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Daily scrum Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Scrum of scrums Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Sprint Review Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Retrospective Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

Backlog Implementation Details (Hossain et al., 2011b;
Paasivaara et al., 2009)

P
R
O
J
E
C
T

(U
n
it

o
f
A
n
a
ly
si
s)

Application Domain The project’s domain Jalali and Wohlin
(2012a), cf. Ch. 4

Experience with Agile Company’s experience in
years

(Hossain et al., 2011b)

Experience with DSD Company’s experience in
years

(Hossain et al., 2011b)

Project Size Sum of project personnel Jalali and Wohlin
(2012a), cf. Ch. 4

Team Size Site A (> 0), ..., Site N
(> 0)

(Hossain et al., 2011b)

Project Duration In Months Jalali and Wohlin
(2012a), cf. Ch. 4

Project Type Industry, Student Jalali and Wohlin
(2012a), cf. Ch. 4

Successful Yes, No Jalali and Wohlin
(2012a), cf. Ch. 4

Table 5.1 – Conceptual framework for the key factors to be extracted. Extraction
details show the possible (exclusive) selection choices when extracting data,

separated by a comma, or a further description (without concrete selection choices,
i.e. free text).

teams in o�ces across the same city, case NoTimeshift has teams distributed
across the same country and case Continental features teams distributed across
several countries of the same continent. Table 5.2 shows an overview of the
contextual factors DSD and unit of analysis (project). The remaining contex-
tual factor agile (scrum) is discussed during case analysis.

71 Chapter Five

Sub-Factors CrossTown NoTimeshift Continental

D
S
D

Location Onshore Onshore O↵shore
Legal Entity Insourcing Outsourcing Insourcing
Geographic
Distance

Near Near Near

Temporal
Distance

None None Small

Socio-cultural
Distance

None None Low

Suppliers Austria Austria 3 European
Countries

Customers Austria Germany European Coun-
try

No. of sites 2 2 3
Team Distribu-
tion

Integrated Teams Integrated Teams Isolated Teams

P
R
O
J
E
C
T

Domain Web & Hardware Enterprise Soft-
ware

Web

Agile Exp. 7+ years 3 years 3+ years
DSD Exp. 10 years 2 years 15+ years
Team Size Overall: 19

”Dev Site”: 13
(11 Dev, 1 SM, 1
PO)
”Test Site”: 6 (5
Test, 1 SM)

Overall: 30
”Main Site”: 20
(11 Dev, 3 Test, 3
SM, 3 PO)
”Add. Site”: 10
(8 Dev, 2 Test)

Overall: 39
”EUC1”: 14 (6
Dev, 1 Test, 4
PO, 3 PMO)
”EUC2”: 19 (12
Dev, 5 Test, 1
PO, 1 PMO)
”EUC3”: 6 (4
Dev, 1 Test, 1
PMO)

Duration 15 months 6 months 9 months
Type Industry Industry Industry
Successful Yes Yes Yes

Table 5.2 – Contextual information on the selected cases.

5.1.5 Data Collection

The data collection strategy is aimed at finding out which scrum practices
organizations have applied to distributed projects in what way and which
DSD practices have been used to complement the agile process (RQ4a and
RQ4b). This multiple-case study is qualitative, with the exception of case
NoTimeshift also allowing an additional tracking of quantitative data.

In previous multiple-case studies methodological triangulation was not a ma-
jor concern, either not used or not reported. The most often used approaches
are (from most to least frequent): semi-structured/open-ended interviews
(Ramesh et al., 2006; Sison and Yang, 2007; Paasivaara et al., 2009; Srini-
vasan and Lundqvist, 2010; Paasivaara, 2011; Hossain et al., 2011a; Bass,
2012; Paasivaara et al., 2012; Ramesh et al., 2012; Badampudi et al., 2013),

Single-Case Analysis 72

document analysis (Sison and Yang, 2007; Hossain et al., 2011b; Ramesh et al.,
2012) and in one case also observation (Hossain et al., 2011b). Triangulation
is important because each method reveals di↵erent aspects of empirical reality
(Denzin, 1978). Denzin (1978) has identified four types of triangulation: data
triangulation (variety of data sources), investigator triangulation (use of dif-
ferent researchers), theory triangulation (multiple perspectives to interpret a
single set of data achieved by using multiple investigators (Stake, 1995)) and
methodological triangulation (multiple methods to study a single problem).
Table 5.3 shows how triangulation was achieved for each of the respective cases.
Since triangulation is expensive, it was employed reasonably and practically
(Patton, 2002) within the possibilities and limitations of each case (Patton,
2002). The triangulation sources are used as described by Yin (2003). The
research design followed Stake’s advice in using several investigators for each
case to achieve investigator triangulation and also theory triangulation to in-
clude di↵erent viewpoints and perspectives by means such as discussions and
reviews (Stake, 1995). All supporting investigators were only involved in one
case of the multiple-case study (except for one exception, where a supporting
investigator was involved in both cases NoTimeshift and Continental) in an
e↵ort to minimize bias. The author was the principal investigator (PI) in all
three studies.

Cases Method and Data Triangulation Investigator and
Theory Triangu-
lation

CrossTown • Participant-Observation (1 action researcher)
• Documentation (160 documents)
• Archival Records (3863 tickets in issue tracking
system, 274 wiki pages)
• Physical Artifacts (thousands of sticky notes
and dozens of paper boards)

Vallon (PI)
+1 senior
researcher
+2 supporting
investigators

NoTimeshift • Interviews (N=7)
• Direct Observation (5 meetings across several
sprints)
• Documents (15 documents)
• Archival Records (579 tickets, 37 wiki pages)
• Physical Artifacts (thousands of sticky notes
and dozens of paper boards)

Vallon (PI)
+1 senior
researcher
+3 supporting
investigators

Continental • Interviews (N=11)
• Documents (273 documents)
• Archival Records (only limited view)

Vallon (PI)
+1 senior
researcher
+4 supporting
investigators

Table 5.3 – Di↵erent types of triangulation in the three cases.

All interviews were semi-structured (Patton, 2002), recorded and later tran-
scribed by an investigator. Interviews usually lasted one to two hours.

73 Chapter Five

Data collection for case CrossTown involves the following activities due to
the action research setting: explore possibilities for accessing project data in
the issue tracking tool (beginning of study), update project diary with field
notes and photos (daily), extract data from issue tracking tool (each sprint),
discuss problems and solutions with practitioners and record actions (sprint
retrospective as well as informal discussions during sprint), track results of
sprint planning/review to analyze teams’ performance as well as results of
sprint retrospective to collect problems and solutions (each sprint), discuss
and analyze the data collected with the o↵-site supporting investigators and
senior researcher (each sprint).

5.1.6 Data Analysis

Figure 5.1 – Research methodology of the three individual cases and the cross-case
analysis. Case CrossTown follows an action research approach and cases

NoTimeshift and Continental use semi-structured interviews as primary source of
investigation. Investigators attached in the illustration to a case’s starting point
have been participating in all steps of the individual case. All others (e.g. senior

researcher) are explicitly attached only to the stages in which they have
participated in.

Figure 5.1 illustrates the general data analysis process. All case study data
was stored on a shared online drive. A description of all the applied techniques

Single-Case Analysis 74

follows in this section.

Action Research (AR): In case CrossTown action research was used as
the primary research approach. AR uses ”a spiral of steps, each of which is
composed of a circle of planning, action, and fact-finding about the result of
the action” (Lewin, 1946, p. 38). The term action research has been coined by
Kurt Lewin in 1946 (Lewin, 1946). AR is, however, close to non-existent in SE
research (Glass et al., 2002; Sjøberg et al., 2007; Santos and Travassos, 2009)
although it provides the most realistic research setting and thus enables the
researcher to gain an in-depth and first-hand understanding (Sjøberg et al.,
2007). Usually the researcher will incorporate one or several feedback cycles
(Davison et al., 2004). In CrossTown the process in use was scrum, which
provides a variety of feedback cycles which can be utilized for AR. Hence, AR
aligns very well with scrum, as the problem-solving cycle is already part of the
process. A parallel second research cycle can be established without altering
the original process.
Based on (Checkland and Holwell, 1998), McKay and Marshall (2001) propose
a two-cycle feedback loop with one problem cycle to address the problematic
situation and one research cycle to achieve scientific goals. This supports
the separation of the dual imperatives of AR and enables scientific rigor. The
stakeholders and participants own the problem-solving cycle (sprint iteration),
while the researchers own the (in this case parallel) research cycle (McKay and
Marshall, 2001). Researchers and participants collaborate to meet respective
goals.
An additional research cycle can be added as pictured in Figure 5.2. The cy-
cle starts with the research question RQ, a theoretical framework F based on
propositions, a research method MR and a problem-solving method MPS . The
research problem A was defined as the possibilities, challenges and solutions
of transforming single-site scrum to a DSD. In this case study P is analyzed,
which is a real-world instance of the research problem A. By evaluating ac-
tions on P , results for A shall be derived.
The problem-solving method MPS is the regular scrum process, where deci-
sions on the process are taken and evaluated in the retrospective meeting at
the end of each sprint in the real-world problem situation P . The research
method MR reflects on the problems and decisions (actions) in a separate
cycle with regard to research problem A. This parallel two-cycle process en-
ables the separation of problem-solving and research interests. The steps of
the dual AR cycle of Figure 5.2 are further explained in Table 5.4. A well
defined process is very important to establish recoverability (Checkland and
Holwell, 1998; Santos and Travassos, 2009). In this case, the exit criterion is
time-boxed, i.e. the end of the product development phase.
One researcher (the author) participated in the action research assuming the
role of a scrum master. The supporting investigators and senior researcher
(who were not participating in the action research on site) analyzed new data,

75 Chapter Five

Figure 5.2 – A dual imperative AR cycle (adapted from (McKay and Marshall,
2001)): The inbound practitioners’ cycle, designed to solve practical problems,
provides input to the parallel outbound researchers’ cycle, designed to gather

knowledge on the research problem.

discussed findings in regular research meetings each sprint with the action
researcher and corroborated findings with documents and archival records.

Interviews: In both cases NoTimeshift and Continental semi-structured in-
terviews were used which allow a conversational manner but still follow an
interview protocol (Yin, 2003). The interviews were recorded and later tran-
scribed and lasted from 0.5-3 hours (on average 100.5 minutes). The author
interviewed all di↵erent roles at least once for each case and also involved
stakeholders. For analyzing the semi-structured interviews grounded theory
was applied to start with empirical specifics and move towards general state-
ments (Denzin and Lincoln, 2011). To extract findings open coding (Strauss
et al., 1998) was followed, where the researcher generates categories fitting the
data in relation to a general issue of concern (Bryman et al., 2002). ”Codes
are tags or labels for assigning units of meaning to the descriptive or inferen-
tial information compiled during a study” (Miles and Huberman, 1994, p. 56).
”During open coding, data are broken down into discrete parts, closely exam-
ined, and compared for similarities and di↵erences” (Strauss et al., 1998, p.
102). These discrete parts identified are called concepts. The goal is to derive
categories from the concepts by comparing data from each case (Strauss et al.,

Single-Case Analysis 76

Cycle Steps Problem-solving Activ-
ity

Research Activity

0. Definition of RQ - Define RQ
1. Definition of F , MR,
MPS

(Re-)Define MPS (Sprint) (Re-)Define F , MR

2. Update problems Update problems of P
(Daily, Retro)

Update observations of A

3. Take action Act on problems of P
(Sprint)

Collect and analyze data

4. Reflect on success Reflect on success of actions
(Retro)

Draw conclusions for A

5. Update findings Update findings to P , MPS

(Retro)
Update findings to A, MR

6. Proceed with step 1 until exit criterion is met

Table 5.4 – The dual action research cycle and its implementation in scrum as used
in case CrossTown.

1998). The ”concepts that reach the status of a category are abstractions; they
represent not one individual’s or group’s story but rather the stories of many
persons or groups” (Strauss et al., 1998, p. 145).
Following this rationale the data is coded to find concepts using open coding.
From these concepts both categories (ADAPT guidelines) and subcategories
(ADAPT practices) are derived. Through axial coding subcategories (prac-
tices) are related to their categories (guidelines), termed ”axial” because the
category is the axis and the subcategories are linked to that axis (Strauss et al.,
1998). While the guidelines (categories) are less concrete and overspanning,
the practices (subcategories) give it greater explanatory power ”reassembling
data that were fractured during open coding” (Strauss et al., 1998, p. 124).
For single-case analysis in case Continental the ATLAS.ti qualitative data
analysis software has been used for coding, but the other cases as well as the
cross-case analyses have been conducted using spreadsheets. In case Conti-
nental the interview transcripts were approved by the interview partner before
they were used for analysis.

Observation: In case NoTimeshift the author participated in all meetings
at least once as a silent observer and took field notes, pictures and audio
recordings.

Documentation: In all cases archival records, documents and physical arti-
facts (paper board and sticky notes) were gathered to corroborate and triangu-
late evidence found from the interviews (cases NoTimeshift and Continental)
and action research (case CrossTown). For case Continental documents were
collected but the author was granted only limited access to archival records.

Feedback sessions: In all three cases feedback sessions followed the case

77 Chapter Five

Figure 5.3 – Atlas.ti qualitative data analysis software enables powerful yet simple
management of quotations/codes across di↵erent input source files. This shows a

sample of the quotation manager with codes and its respective quotations.

study analysis where results were presented to gain feedback, corrections and
possibly further input.

So in short, the data collection methods varied for the di↵erent cases. But
what is shared by all cases during data analysis is that open coding was used
to code the data from each case, resulting in the identification of concepts.
These concepts can be regarded as practice (subcategory) or guideline (cate-
gory) candidates. From an individual case point of view these candidates are
just concepts, it takes a cross-case analysis to derive categories and subcate-
gories, i.e. the ADAPT guidelines and practices, after the single-case analyses.
Concepts are of higher abstraction and more general and are thus more likely
to be suitable for guidelines/categories, while more concrete concepts are likely
to be suitable practices/subcategories. The following steps are followed to ar-
rive at a final set of practices and guidelines in the cross-case analysis (detailed
execution cf. Chapter 6):

1. Divide all identified concepts by their level of abstraction into two groups:
possible future categories (”guidelines”) and possible future subcate-
gories (”practices”).

2. For each group arrange concepts with similar properties.

3. Add all concepts (in their groups from step 1) to a spreadsheet, assign
each concept an ID for better future reference.

a) Group ”guidelines”: Merge the identified duplicate concepts and con-
cepts with similar properties to a category with empirical support in

Single-Case Analysis 78

at least two cases. Concepts without empirical support in more than
one case are discarded.

b) Group ”practices”: Merge the identified duplicate concepts and con-
cepts with similar properties to a subcategory with empirical support
in at least two cases. Concepts without empirical support in more
than one case retain their concept status.

4. Link all guidelines to one or more of the three DSD challenge types
coordination, control and communication such that linked guidelines
mitigate the challenge.

5. Link all practices (subcategories) to their guidelines (categories) such
that practices help implement a guideline and give it further clarification
and specification.

6. Also link remaining practice concepts (which have empirical support
in only one case and were thus not merged into subcategories) to the
guidelines but clearly mark them as conceptual practices, separated from
the other full practices within the ADAPT framework.

There is a small but important di↵erence in creating the guidelines in contrast
to practices: practice concepts are included into the ADAPT framework as
a separate group of practices (conceptual practices) while guideline concepts
are not and are thus discarded. The rationale behind is that while it could
be worthwhile to try out a practice concept in a project because it may fit a
given project environment well, it is not advisable to implement one’s process
according to a guideline concept which has empirical support in only one
case because the objective of ADAPT is to implement all ADAPT guidelines
to any given process implementation, hence there is no place for guideline
concepts. By linking the guidelines to the three DSD challenge types it is
achieved that ”categories are interrelated into a larger theoretical scheme”
(Strauss et al., 1998, p. 146) that is the three-tiered ADAPT framework and
thus the emerging theory of this dissertation.

5.2 Case CrossTown

5.2.1 Background

This case covers software development within an organization spread across
two sites in Vienna, Austria. Before the beginning of the case study, the de-
velopment of the product had started as an R&D (research and development)
project on a single site for two years already with the goal of evaluating several
technologies for the interplay of hardware devices and a web administration
(cf. Figure 5.4). In the 15-month case study period, the goal was to turn the
R&D prototype into a deliverable product. With the beginning of full-scale

79 Chapter Five

product development, the team size doubled and project personnel were dis-
tributed across two sites due to space constraints. The team members were
split into a development and a test site forming several fully distributed cross-
functional teams (Sutherland et al., 2007), i.e. teams integrated across both
sites. 27 two-week sprints were analyzed over the course of 15 months.

Table 5.5 lists all project members with regard to role and site. The following
scrum roles were present: one product owner (PO) and two scrum masters
(SM).

Co-Developers Developer Tester Scrum
Master

Product
Owner

Sum

Development Site 11 0 1 1 13
Testing Site 0 5 1 0 6
Overall 11 5 2 1 19

Table 5.5 – Team sizes distributed across two sites in case CrossTown.

Figure 5.4 – Case background timeline.

5.2.2 Challenges

The initial process implementation su↵ered from a strong focus on the former
R&D site, the development site, since the testing site was a new addition to the
process after the initial two-year R&D phase. The development site worked
in sprints without the direct involvement of the test site, which resulted in
test-ready stories at the end of the sprint instead of deployment-ready ones.
Furthermore, the teams had to deal with technically complex implementations
regarding the interplay of hardware devices and software and decided to split in
closely collaborating on-site micro teams with 3-4 team members. The process
implementation exhibited various serious problems: A story was regarded

Single-Case Analysis 80

as accepted once it was developed. After that it was released for test, but
the focus was on implementing new stories instead of fixing ”old” ones. In
consequence a customer deployment failed badly due to the low quality of
software in sprint 7 (cf. Figure 5.5), which was the turning point to include
the test site in the process more properly. The micro teams were extended to
consist of 2-3 developers and one (remote) tester. Contact visits also increased,
especially in the second week of each sprint the testers joined the developers for
an intense story testing and bug fixing session. To make room for the testers,
some developers moved either to the test site or worked at home these days.
Greater e↵ort was put into a more realistic sprint planning and commitment
with the customer shipment always in mind. During the 15-months of agile
DSD, the retrospective turned out to be an invaluable tool, especially at high-
stress times, to keep process improvement going and thus keep frustration
levels low as all team members could speak their mind and propose solutions.

5.2.3 Agile Practices

This section presents the established working process towards the end of the
case study with regard to known scrum practices.

Sprint: Two-week iterations were used which were on few occasions prolonged
to cope with holidays and customer’s deadlines.
Sprint planning: A joint sprint planning was held in person at the develop-
ment site with all developers and one or two testers (ambassadors) to represent
the testing site. The ambassador(s) then traveled back to the test site to dis-
cuss the planning results.
Daily scrum: This project environment worked with very closely collabo-
rating micro teams (cf. Figure 5.6) and the practice of daily scrums, although
practiced in the beginning, was eventually dropped. The testers contacted
the developers directly for information and updates when needed. Vice versa
the developers tried to give a heads-up to the testers when possible. Both
formal (ticket management system and emails) and informal (instant messag-
ing, chats and phone calls) were extensively used between the two sites to
compensate the lack of face-to-face communication.
Scrum of scrums: Although there were several micro teams, no scrum of
scrums has been used as it was regarded as an overhead and the communica-
tion mechanisms in-place su�ced.
Sprint review and retrospective: These meetings were held in a similar
fashion as the sprint planning, at the developer’s site with one or more ambas-
sadors from the testing site present. For the retrospective, the ambassador(s)
made sure to collect positive and negative comments from all members of the
testing site in advance and presented them at the retrospective.
Backlog: As the customer preferred to work with milestones, there was a
rough set of user stories planned for each milestone, a generally two-month

81 Chapter Five

Figure 5.5 – Bug, release and impediment count measured per sprint: sprints 2, 7,
11, 15, 19 and 22-26 denote shipments to the customer. In these sprints one can see

a rise in release frequency and closed bugs (positive) but also a rise in new
impediments (negative), which shows that these sprints put the process to a test.
The regular shipments starting with sprint 22 allowed for a more continuous flow.

time frame. The backlog planning relates to the process described by Hong
et al. (2010): The roadmap planning was done for milestones and the de-
tailed planning was done for sprints. Naturally with agile development, the
roadmap was subject to change as stories were implemented by priority sprint
after sprint.

Single-Case Analysis 82

Figure 5.6 – The microteams in place in case CrossTown.

5.2.4 ADAPT Framework Input

This section shows deducted guidelines and practices based on the empirical
evidence found in case CrossTown. Table 5.6 shows the problem root cause
analysis and the decisions taken, which was an intermediary step before the
extraction of the conceptual guidelines (cf. Figure 5.7) and practices (cf. Figure
5.8).

83 Chapter Five

Problem Categories Root Causes Decisions
Test-ready features at the
end of the sprint instead of
deployment-ready ones

• Isolation of test site
• Focus on dev site

• Give test site the right to reject stories
• Increase contact visits (for face-to-face specification en-
quiries)
• Review of test cases for critical user stories by a developer
• Constant availability of team members in instant messag-
ing

Transparency for both sites
not accomplished

• Dev site members did not keep issue tracking system up-
to-date
• Commitment not met (waste in commitment)
• Overhead due to rising bug count

• All relevant informal communication needs to be appended
to the feature ticket in the issue tracking tool
• Contact visits to improve trust and team spirit

Low software quality
Lack of focus in sprint

• Feature rush (many 80% ready features valued higher by
product owner than fewer 95% ready ones)
• Huge technical debt in the interplay of hardware devices
and software
• Definition of done not well defined
• No pressure to deliver potentially shippable code

• Incremental inclusion of test site
• Bugfix iteration (should be avoided)
• Sunshine cases should work when a story is passed to the
tester, so the tester can focus on corner cases
• Implement all aspects of a story including non-functional
requirements (e.g. stability, performance)
• Continuous deployment to customer every sprint

Volatile specification • Legacy stories from R&D project not defined
• Stories not detailed enough before sprint
• Stories written at dev site only
• Stories too big

• No informal story updates
• Meetings with customer before sprint
• Involve customer more in the prioritization
• Small manageable stories
• Increased up-front planning and specification to identify
problems, corner cases and impact on existing software early
and improve estimation of team
• Sta�ng: new Business Analyst

No up-to-date test cases • Test cases not ready before stories get pulled into sprint
• Specification wrongly interpreted
• Informal specification adaptations without the other site’s
knowledge
• Wrong e↵ort estimation due to open questions in specifi-
cation

• No story updates during sprint
• On-demand specification meetings with members from
both sites

Process adaptation in DSD
is slower and more di�cult
than in regular collocated
scrum

• Harder to propagate changes over multiple sites
• More variables and complexities to take into account

Use retro as a driver for continuous process improvement

Table 5.6 – Case CrossTown: identified problems, root causes and the decisions taken.

S
in
g
l
e
-C

a
se

A
n
a
ly

sis
84

Figure 5.7 – Draft of the deducted guidelines of case CrossTown.

Figure 5.8 – Draft of the deducted practices of case CrossTown.

The case showed that adaptations to the process take longer to take e↵ect be-
cause solutions need to be propagated across several sites. Synchronization of
team members needs mechanisms such as instant messaging and contact visits
to substitute on-site availability. Documentation and knowledge management
is more important in agile DSD since even informal enquiries (between a de-
veloper and the product owner e.g.) need to be communicated to the other
site. The retrospective served as a mood barometer for team members of both
sites and was a great driver for process improvement. In the last months of
the case study, software has been successfully shipped to the customer each
sprint, which underlines the working process adaptations for the given dis-
tributed project environment.

85 Chapter Five

5.3 Case NoTimeshift

5.3.1 Background

This case covers two una�liated organizations, a main supplier (MainSupp)
and an additional supplier (AddSupp), co-developing three product variations
of the same code base, resulting in three product owners. Both suppliers
have successfully applied regular scrum before and chose to implement an
adapted version of scrum to better suit the needs of a DSD environment.
The two organizations develop at their own sites in two di↵erent cities in
Austria, separated by about 300km. MainSupp is a large organization whose
IT department is involved in the development of the three software products.
It acts as point of contact to customers and provides the bigger part of the
development sta↵. AddSupp is a medium-sized core software development
company and a subcontractor to MainSupp for the software development. It
complements the MainSupp’s development with additional sta↵ and know-
how. The teams are all integrated (cross-site) distributed ones (Sutherland
et al., 2007).

Table 5.7 shows the distribution of team members over the two suppliers. The
MainSupp has one product owner (PO) for each software product and three
scrum masters (SM) serving three teams. The AddSupp does neither have a
PO nor an SM on site.

Co-Developers Developer Tester Scrum
Master

Product
Owner

Sum

Main Supplier
(MainSupp)

11 3 3 3 20

Additional Supplier
(AddSupp)

8 2 0 0 10

Overall 19 5 3 3 30

Table 5.7 – Team sizes distributed across two sites in case NoTimeshift.

5.3.2 Challenges

Although both companies had previous experience with applying regular scrum
successfully, both lacked experience in DSD. Transparency was a big issue be-
tween the two suppliers and low quality video conferences and little available
documentation for AddSup handicapped communication and coordination in
the first months. There was no high level overview of the progress of all three
teams available to everyone since paper scrum boards and burndown charts
were used. All three scrum teams were sta↵ed by members of both suppliers,
yet all product owners and scrum masters were based on the MainSupp’s site.

Single-Case Analysis 86

”They [MainSupp] are not used to work with other suppliers collaboratively
and hence naturally the process is focused on their sta↵ and site. They need
to learn that there needs to be a planning that involves both suppliers because
we are not within earshot. There is a lot to learn in both directions.” (Scrum
Master, AddSupp)

The resulting coordination issues are best described in the words of one of the
AddSupp’s developers:

”I would love to break down tasks to a decent level, but if we do not know what
should be developed exactly, that is hard to achieve.” (Developer, AddSupp)

The situation eventually improved with heavy use of video conferencing to
complement the scrum process meetings.

5.3.3 Agile Practices

This section presents the established working process towards the end of the
case study with regard to known scrum practices.

Sprint: Two-week sprint iterations were used with reviews every sprint and
planning and retrospective meetings only every other sprint.
Sprint planning was a two-tiered process and covers two sprints. The
first tier involved planning at the MainSupp’s site with one ambassador from
AddSupp present. The second-tier planning continued at the AddSupp’s site.
The ambassador returned with pre-estimated user stories which were then bro-
ken down into tasks by AddSupp’s developers. When a developer accepted
a task, he adjusted the original estimation of the MainSupp to his own. An
updated planning spreadsheet was then returned to MainSupp.
Daily scrum: Each scrum team held a daily video conference meeting, where
respective team members of the MainSupp and AddSupp participated.
Scrum of scrums: One of the AddSupp’s developers traveled to the Main-
Supp’s site once a week for face-to-face updates and discussions. Both sites
also engaged in their own intra-site coordination scrum of scrum right after
the daily scrum. The testers of each team also felt the need to coordinate
across all teams in their own scrum of scrums.
The sprint review was held jointly for all the distributed teams. It was
primarily held at the MainSupp’s site with one or two proxies from AddSupp
on site. In contrast to the sprint planning, for the review and retrospective,
AddSupp joined directly via video conference. The review consisted of story
demonstrations and discussions about di↵erent areas of the current product
increment.
The retrospective followed the review in the same setup, but only every
other sprint.

87 Chapter Five

Backlog: Each product owner maintained a product backlog on the Main-
Supp’s site for his product. AddSupp worked only with the sprint backlog,
which was a planning spreadsheet created during the two-tiered planning pro-
cess.

5.3.4 ADAPT Framework Input

This section shows deducted guidelines and practices based on the empirical
evidence found in case NoTimeshift. Table 5.8 shows the problem root cause
analysis and the decisions taken, which was an intermediary step before the
extraction of conceptual guidelines (cf. Figure 5.9) and practices (cf. Figure
5.10).

Single-Case Analysis 88

Problem Categories Root Causes Decisions
Transparency • Suppliers not Collocated

• Communication Issues
• Little Documentation
• No Overview over All Teams

• Installment of Video Conference Daily Scrum, On-site
Scrum of Scrums, Phone Calls and Screen-sharing
• Paper boards for each site

Commitment • Commitment Fails with Insu�cient Planning
• Commitment Fails with Late Planning
• Commitment Fails with Frequent Changes
• Little Respect for Iterations

Invite AddSupp more into the process with contact visits
and two-tiered planning

Planning • Late Actual Beginning of Sprint
• Little Participation of AddSupp
• Little Information for AddSupp

Two-tiered planning with ambassador from other site first,
then planning on the other site with returning ambassador.

Estimation & Predictability • User Story Estimation in Hours
• Pre-estimations by MainSupp
• No Proper Sprint Velocity
• Further Impediments for Better Predictability

Unresolved within the case study period

Self-Organizing Teams • No O�cial Scrum Roles at the AddSupp
• No Joint Estimation and Planning
• Inter-Company Distribution of Team Members
• Tasks Assigned to Team Members
• Estimations Based on Individuals
• Cross-Team Working Agreements

• Scrum masters evolved at AddSupp’s site
• Cross-Team QA Scrum

Tools • Tools Lack Scrum Compatibility
• Limited Remote Access for AddSupp
• Paper Scrum Board and Burndown Chart

Paper boards for each site

Table 5.8 – Case NoTimeshift: identified problems, root causes and the decisions taken.

89
C
h
a
p
t
e
r
F
iv
e

Figure 5.9 – Draft of the deducted guidelines of case NoTimeshift.

Figure 5.10 – Draft of the deducted practices of case NoTimeshift.

The case showed that inter-organizational co-development added another layer
of complexity. Even though both suppliers have experience with collocated
scrum, the transition to distributed scrum was not an easy one. The larger
the organization, the harder it is to introduce changes and the more time it
takes. This could especially be observed with the MainSupp, where changes
took long to be realized compared to the AddSupp, which is smaller in size.
Compromises had to be made to deal with organizational impediments such
as the switch to paper boards.

Single-Case Analysis 90

5.4 Case Continental

5.4.1 Background

This case covers a customer based in EU country 1 (EUC1) and a supplier
based in both EU country 1 and two further European countries (EUC2,
EUC3), which are withhold for privacy reasons. The project had a rushed
start because of a tight schedule and deadline. Moreover it was one of the
first projects to be done in this setup and there were organizational restric-
tions on the supplier’s side to use the V-model (Boehm, 1979) also in this
distributed development. Still, agile practices were eventually used in an ef-
fort to improve collaboration among the three development sites. The project
spanned 9 months. There were no time zone issues and cultural issues can
be regarded as minor between the three European countries (EUC) due to
their proximity. Table 5.9 shows the detailed project’s sta�ng setup across
the three sites. Since the overall process was the V-model, there was no scrum
master in place, yet several PMO roles such as project manager, test manager,
solution architect and change manager.

Co-Developers Developer Tester Scrum
Master

Product
Owner

PMO Sum

EUC1 6 1 0 4 3 14
EUC2 12 5 0 1 1 19
EUC3 4 1 0 0 1 6
Overall 22 7 0 5 5 39

Table 5.9 – Team sizes distributed across three sites, in three di↵erent European
countries, in case Continental.

5.4.2 Challenges

Three problem categories were identified in this case, the inflexibility of the V-
model, weak feedback loops and collaboration with the customer and further
intra-supplier issues. The V-model was implemented because the supplier had
many years experience with it, but the project had been under a very tight
schedule from the very beginning and the V-model did not allow enough flex-
ibility to cope with unforeseen problems (both technical and organizational
in nature). The supplier’s internal problems, being distributed across three
sites, were in the end successfully mitigated by employing several agile meet-
ings such as daily scrum and daily scrum of scrums that helped bring the
project back on track. The customer collaboration could only be improved
up to a certain point, because it is not an integral part of the V-model. The
customer felt left out of feedback loops and was not fully content with the
final product. A mitigation strategy was to make a dashboard available to the
customer for live test reports, but it only came late in the project’s timeline.

91 Chapter Five

This project also served as a ramp-up for future collaborations and as such
was a great learning experience for all parties. The customer and the supplier
decided to alter the process for future projects in favor of the implementation
of more agile practices.

5.4.3 Agile Practices

There was no sprint, sprint planning or backlogs in use as the V-model worked
with milestones and formal reviews and a fixed set of requirements with little
flexibility other than change requests. Still, a few agile practices were imple-
mented as a crucial improvement to the development collaboration: there was
a 15 minutes daily scrum within teams and another daily scrum of scrums
including development lead, PMO, solution architect and test manager. Fur-
thermore there were also weekly meetings between development lead of EUC2
and specialists from EUC1 and EUC3 and two-weekly meetings of all teams
and stakeholders to spread knowledge on project’s status. In short, commu-
nication was very important for the supplier internally but not towards the
customer. There was no retrospective meeting, only a one-time lessons-learned
workshop after the completion of the project. The implemented scrum-style
meetings were an e↵ort to improve collaboration and interaction in the dis-
tributed setting.

5.4.4 ADAPT Framework Input

This section shows deducted guidelines and practices based on the empirical
evidence found in case Continental. Table 5.10 shows the problem root cause
analysis and the decisions taken, which was an intermediary step before the
extraction of conceptual guidelines (cf. Figure 5.11) and practices (cf. Figure
5.12).

Single-Case Analysis 92

Problem Categories Root Causes Decisions
Inflexible V-model • The supplier had many years experience with the V-model

thus making it a constraint to be used also for this dis-
tributed project and hindering the application of an agile
process, which would have been preferred by the customer
• Initial use cases do not get refined as project involves and
thus little collaboration between product owner and testers
due to strict phases, especially during the ”lower” develop-
ment phases of the V-model
• Dealing with formalities seems to slow the project down

• Find a compromise to restrictions laid upon the project
by the V-model by allowing communication and interaction,
especially during the development phase, to be more agile,
resulting in a less formal agile development phase, yet the
usual formal phases for integration and system testing in
the V-model
• Future projects between the customer and the supplier
should incorporate more agile elements and feedback loops
to the customer

Customer collaboration • Ramp-up problems being first project in collaboration of
customer and supplier
• High role fluctuation and weakly enforced contact inter-
faces
• Customer feels shut out and does not know real project
status, i.e. no customer contact during development, only in
the beginning and end of project and also no test reports

• Invite customer into the tool chain and provide a dash
board with live status reports
• Keep well-defined communication points of contact steady
between customer and supplier during project execution
• Lessons Learned Workshop after project

Internal supplier collabora-
tion

• Concerns regarding e�ciency of collaboration: expensive
on-shore developers vs less expensive o↵-shore ones that may
need considerably more time
• All technical decisions have to be approved by EUC1 site

• Implement di↵erent formal ways of communication (daily
scrums, daily scrum of scrums, Weekly specialist meetings,
two-weekly general meetings of all teams and stakeholders
(without customer) to discuss project’s status
• Implement di↵erent informal ways of communication (face-
to-face on site, conference calls and instant messaging be-
tween sites)
• Regular contact visits from European EUC2 and EUC3
sites to main EUC1 site, also during system, integration and
acceptance testing in the end
• Language courses for EUC2 and EUC3 sites allowed writ-
ten conversation in the foreign language, all new documen-
tation in English

Table 5.10 – Case Continental: identified problems, root causes and the decisions taken.

93
C
h
a
p
t
e
r
F
iv
e

Although no full scrum process has been employed in this case, it is an inter-
esting finding that agile practices such as daily scrum and scrum of scrums
were used to get the development process to work and establish frequent com-
munication. Even within the strict frame of a V-model, the agile practices
managed to allow a little bit of flexibility from the inside and foster collab-
oration. The retrospective workshop after the finished project showed that
the involved parties, especially the customer, would highly prefer to move to
a more agile process to increase transparency and shorten feedback cycles as
the customer felt largely uninvolved and out of the picture as he was kept out
of the intra-agile feedback loops.

Figure 5.11 – Draft of the deducted guidelines of case Continental.

Figure 5.12 – Draft of the deducted practices of case Continental.

5.5 Conclusion

The multiple-case study let the following research question guide data collec-
tion and analysis:

Single-Case Analysis 94

RQ4a. What process design guidelines and best practices can be formulated to
increase the chances of a successful agile process implementation in distributed
environment?

RQ4b. Do the di↵erent distribution scenarios a↵ect the implementation of
agile practices?

This chapter presented single-case results of this multiple-case study and can
thus only answer RQ4 partly. The analysis continues with a cross-case analysis
in Chapter 6 and the final answer will be given in Chapter 7. The multiple-
case study spanned an overall timeframe of several years and involved the
following distribution scenarios:

• Case CrossTown: sites distributed within one city, spanning two districts

• Case NoTimeshift: sites distributed within one country, spanning two
cities

• Case Continental: sites distributed within one continent, spanning three
countries

Through careful analysis multiple conceptual guidelines and practices (i.e. in a
first draft) were extracted from the empirical evidence of each case which are
subject to further analysis and a cross-case comparison in the next chapter:

• Case CrossTown: 15 guidelines, 40 practices

• Case NoTimeshift: 22 guidelines, 35 practices

• Case Continental: 12 guidelines, 19 practices

So the individual single-case analysis resulted in total in 49 guideline and 94
practice concepts. The concepts are analyzed (including splits, merges and
redefinitions) during the cross-case analysis in Chapter 6.

95 Chapter Five

CHAPTER 6
Cross-Case Analysis:
Building the ADAPT

Framework v1.0

At the time of finalizing this dissertation, this chapter’s work was
in preparation for publication (to appear, cf. Section 1.5).

Contents

6.1 Cross-Case Summary . 97

6.2 Practices . 98

6.3 Guidelines . 117

6.4 ADAPT Framework v1.0 125

6.5 Conclusion . 128

With the multiple-case study research approach, the author looks for two
kinds of findings (Patton, 2002, p. 235):

1. High quality, detailed descriptions of each case, useful for documenting
uniqueness (cf. Chapter 5)

2. Important shared patterns that cut across cases and derive their signif-
icance from having emerged out of heterogeneity (this chapter)

This chapter describes the execution of the cross-case analysis, commencing
in Section 6.1 with a short overview of the agile practices in use in a cross-
case manner but arranged similar to the presentation of the individual cases.
Section 6.2 then proceeds with the actual extraction of practices that have
emerged from the three cases CrossTown, NoTimeshift and Continental for

Building The ADAPT Framework 96

the first iteration of the ADAPT framework, which will result in a set of full
practices that have empirical support in at least two out of three cases and a set
of conceptual practices that only have empirical support in one case. Section
6.3 continues with the next level of the ADAPT framework, the guidelines.
The pieces are then put together in final Section 6.4 of this chapter resulting
in the first full version of the framework, the ADAPT framework v1.0.

The actual order in which the cross-case analysis has been conducted is defined
in Section 5.1.6, where guidelines have been created before the practices. How-
ever, for allowing a compact presentation of the ADAPT framework within
this thesis and better accessibility to the reader, the report in this chapter
follows a bottom-up presentation, from practices (cf. Section 6.2) to guide-
lines (cf. Section 6.3) to the complete picture, the full ADAPT framework
also including challenge types (cf. Section 6.4).

6.1 Cross-Case Summary

Sprint: Cases CrossTown and NoTimeshift used two-week sprints, while Con-
tinental worked with a V-model and thus did not use iterations. No DSD
methods were applied in any of the cases to alter the sprint practice.
Sprint Planning: Cases CrossTown and NoTimeshift applied a similar ap-
proach using an ambassador and focused the planning physically on one site
only. In case NoTimeshift the other site also held another (second-level) plan-
ning following the return of the ambassador. Case Continental worked with
a V-model and up-front heavy-weight requirements and planning. The DSD
enhancement of adding a travelling ambassador worked well in both cases and
was a substantial improvement for a working scrum process.
Daily Scrum: CrossTown worked in micro teams and dropped the practice
in favor of using several other means of formal and informal communication
(ticket management system, phone calls, emails, chat, instant messaging and a
wiki). NoTimeshift and Continental both implemented the practice of a daily
scrum, for case NoTimeshift with the help of video conferences (integrated dis-
tributed teams) and on-site for case Continental (isolated distributed teams).
Scrum of Scrums: CrossTown also did not use scrum of scrums due to
the same rationale as not using daily scrums. NoTimeshift used scrum of
scrums for on-site inter-team coordination. Continental applied several scrum
of scrums for cross-team and cross-site coordination by means of video con-
ferencing and screen sharing sessions.
Sprint Review and Retrospective: These two practices have been applied
in the same setup within the respective case of CrossTown and NoTimeshift
with the introduction of a travelling proxy/ambassador similar to the sprint
planning acting on behalf of the colleagues not present in case CrossTown
and serving as a proxy (with the team joining in video conference) in case

97 Chapter Six

NoTimeshift. Continental used a V-model with its respective phases and re-
views.
Backlog: Case CrossTown used a product backlog with coarse-grained low-
priority stories and fine-grained high-priority ones, planned for the next ”mile-
stone”, usually a time span of about 4-5 sprints, which would then each have
a regular sprint backlog. Case NoTimeshift had the product backlog handled
by the main site (as consequence of all the product owners residing there)
and handed only the sprint backlog to the additional site for co-development
by both sites. No DSD practices have been used to facilitate this practice
other than ticket management systems. Continental used a V-model with a
pre-defined release plan and no backlog practices.
Summary of DSD Enhancements: In this multiple-case study the fol-
lowing DSD practices supported the application of scrum practices in a dis-
tributed environment: contact visits by a travelling proxy/ambassador (sprint
planning, review and retrospective), di↵erent types of formal and informal
means of communication such as video conferences, phone calls, chat, emails,
screen sharing sessions, ticket management systems and wikis (sprint plan-
ning, review, retrospective, daily scrum, scrum of scrums, backlog) in order
to mitigate the lack of face-to-face communication in DSD environments.

6.2 Practices

Figure 5.1 presented the analysis process including the cross-case analysis.
Each individual case resulted in an extracted set of working practices (cf.
Figures 5.8, 5.10 and 5.12). From an ADAPT framework’s point of view
these reported working practices are only regarded as conceptual practices.
This section now compares the three sets of practices to find common (full)
practices.

The following steps were employed to arrive at the final set of practices (cf.
Section 5.1.6).

1. Arrange practice concepts in groups with similar properties (visualized
in Figures 5.8, 5.10 and 5.12).

2. Add all practices with the identified similar concepts to a spreadsheet,
assign each practice an ID for better future reference (cf. Table 6.1).

3. Merge the identified duplicate concepts and concepts with similar prop-
erties to a full practice (in terms of open coding: a subcategory) with
empirical support in at least two cases. Concepts without empirical sup-
port in more than one case retain their conceptual status (in terms of
open coding: a concept).

Building The ADAPT Framework 98

4. Link all practices to the guidelines4 such that practices help implement
a guideline and give it further clarification and specification.

5. Also link remaining practice concepts (which have empirical support
in only one case and were thus not merged into subcategories) to the
guidelines but clearly mark them as conceptual practices, separated from
the regular full practices within the ADAPT framework.

Table 6.1 shows step 2, where all practices are added to a spreadsheet. The
groups to intermediary classify concepts were: proximity, interaction, sprint,
backlog, teams, boards, sprint planning, retrospective, sprint review, metrics,
daily scrum, scrum of scrums and role. They are only used to identify pos-
sible concepts for merging as a temporary help and have no further semantic
meaning to the ADAPT framework.

ID Merge

Groups

Single-Case Practices Source

CT.P.1 Proximity Travelling Scrum Master CrossTown
CT.P.2 Proximity End-of-sprint on-site sessions CrossTown
CT.P.3 Proximity Travelling Ambassador CrossTown
CT.P.4 Proximity Travelling Guru CrossTown
CT.P.5 Proximity Team On-Site Visits CrossTown
CT.P.6 Proximity Team Rotations CrossTown
CT.P.7 Proximity Team events (team building) CrossTown
CT.P.8 Proximity Scrum Master on each Site CrossTown
NT.P.16 Proximity Scrum Master on each Site NoTimeshift
NT.P.17 Proximity Team On-Site Visits NoTimeshift
NT.P.18 Proximity Team Rotations NoTimeshift
NT.P.19 Proximity Travelling Ambassador NoTimeshift
NT.P.20 Proximity Travelling Guru NoTimeshift
NT.P.21 Proximity Travelling Scrum Master NoTimeshift
NT.P.22 Proximity Team events (team building) NoTimeshift
C.P.13 Proximity Regular Contact Visits (whole team) Continental
C.P.14 Proximity All new documentation strictly in English Continental
C.P.15 Proximity Team events (team building) Continental
C.P.16 Proximity Team On-Site Visits Continental
CT.P.9 Interaction Cross-site Code Reviews CrossTown
CT.P.10 Interaction Cross-site review of each other’s test case CrossTown
CT.P.11 Interaction Add informal communication to issue tracking ticket CrossTown
CT.P.12 Interaction Email (formal and informal) CrossTown
CT.P.13 Interaction Instant Messaging (informal) CrossTown
CT.P.14 Interaction Chat (informal) CrossTown
CT.P.15 Interaction Phone Calls (informal) CrossTown
CT.P.16 Interaction Constant availability of members in instant messaging CrossTown
CT.P.17 Interaction Scrum Master documents meetings in wiki CrossTown
CT.P.18 Interaction Conference Calls (formal and informal) CrossTown
CT.P.40 Interaction Selective Pair Programming CrossTown
NT.P.5 Interaction Screensharing (informal) NoTimeshift
NT.P.6 Interaction Phone Calls (informal) NoTimeshift
NT.P.7 Interaction Email (formal and informal) NoTimeshift
NT.P.8 Interaction Instant Messaging (informal) NoTimeshift
NT.P.9 Interaction Meeting protocols (formal) NoTimeshift
NT.P.10 Interaction Scrum Master documents meetings in email NoTimeshift
NT.P.11 Interaction Cross-site review of each other’s test case NoTimeshift
NT.P.12 Interaction Conference Calls (formal and informal) NoTimeshift
C.P.1 Interaction (Weekly) Cross-site specialist meeting Continental
C.P.2 Interaction (Two-weekly) Global all-site meeting Continental
C.P.3 Interaction Conference Calls (formal and informal) Continental
C.P.4 Interaction Instant Messaging (informal) Continental
C.P.5 Interaction Language Courses Continental

4Guidelines are presented in the next Section 6.2.

99 Chapter Six

C.P.6 Interaction Email (formal and informal) Continental
C.P.7 Interaction Phone Calls (informal) Continental
C.P.8 Interaction Meeting protocols (formal) Continental
C.P.9 Interaction Screensharing (informal) Continental
CT.P.19 Sprint Sprint-wise deployments to customer CrossTown
CT.P.20 Sprint Synchronized sprints CrossTown
NT.P.31 Sprint Synchronized sprints NoTimeshift
NT.P.35 Sprint Frequent deployments to customer NoTimeshift
CT.P.21 Backlog On-Demand specification meetings with PO CrossTown
CT.P.22 Backlog BDD (double-checked specifications) CrossTown
CT.P.23 Backlog Accessible Product Backlog CrossTown
CT.P.24 Backlog Accessible Sprint Backlog CrossTown
CT.P.25 Backlog Requirements workshop with customer CrossTown
CT.P.37 Backlog User Story Requirements CrossTown
NT.P.27 Backlog Accessible Product Backlog NoTimeshift
NT.P.28 Backlog Accessible Sprint Backlog NoTimeshift
NT.P.29 Backlog BDD NoTimeshift
NT.P.33 Backlog User Story Requirements NoTimeshift
C.P.17 Backlog Requirements workshop with customer Continental
C.P.19 Backlog On-Demand specification meetings with BA Continental
CT.P.26 Teams Specialist micro teams yet able to implement full stories CrossTown
CT.P.27 Teams Organized around requirement areas CrossTown
NT.P.30 Teams Organized around requirement areas NoTimeshift
CT.P.28 Boards Board in Issue Management System CrossTown
NT.P.13 Boards Paper boards on each site NoTimeshift
NT.P.14 Boards One board for all teams on a site NoTimeshift
CT.P.29 Sprint Planning On-site sprint planning with proxies from other site CrossTown
CT.P.30 Sprint Planning Roadmap planning and sprint planning CrossTown
NT.P.25 Sprint Planning Multi-level planning (two on-site plannings) NoTimeshift
NT.P.26 Sprint Planning Allow time for research and learning NoTimeshift
CT.P.31 Retrospective On-site retrospective with proxies from other site CrossTown
NT.P.24 Retrospective Video-conference Retro with proxies NoTimeshift
C.P.10 Retrospective Lessons learned workshop after project Continental
CT.P.32 Sprint Review On-site review with proxies from other site CrossTown
NT.P.23 Sprint Review Video-conference Review with proxies NoTimeshift
CT.P.33 Metrics Bug count CrossTown
CT.P.34 Metrics Release count CrossTown
CT.P.35 Metrics Impediment count CrossTown
NT.P.15 Metrics Accessible Burndown chart NoTimeshift
NT.P.34 Metrics Code Quality NoTimeshift
C.P.18 Metrics Coding Standards Continental
NT.P.1 Daily Scrum Video Conference Daily NoTimeshift
NT.P.2 Daily Scrum Audio Conference Daily NoTimeshift
C.P.11 Daily Scrum Intra-Team Daily Scrum Continental
CT.P.38 Scrum of Scrums Cross-Team specialist meetings CrossTown
CT.P.39 Scrum of Scrums Global on-site broadcast meeting CrossTown
NT.P.3 Scrum of Scrums Cross-Team QA Scrum NoTimeshift
NT.P.4 Scrum of Scrums On-site Scrum of Scrums with Ambassador NoTimeshift
C.P.12 Scrum of Scrums Inter-Team Daily Scrum of Scrums Continental
CT.P.36 Role Permanent agile coach CrossTown
NT.P.32 Role Temporary agile coach NoTimeshift

Table 6.1 – The table gives an overview of the cross-case practice extraction status
after step 2 and shows 94 single-case practices.

After running through all the steps, the final set included 22 practices (cf.
Section 6.2.1) that had empirical evidence in at least two out of the three
cases and 10 additional conceptual practices (cf. Section 6.2.2) which had
only support in one case. The following sections present each of the practices
in greater detail and also explain which of the initial conceptual practices have
been merged to arrive at the final set. Although the process for arriving at
the final set of guidelines (cf. Section 6.3) and the final version of the ADAPT
framework (cf. Section 6.4) has not been discussed yet, the following practice

Building The ADAPT Framework 100

description already includes the linked guidelines and challenge categories to
present the complete practices in one spot only (for further reference).

The practices are described in the following way: The description is opened
with a short overview of the practice, covering its essence. The section further
elaboration from empirical evidence explains how the practice was constructed
using single-case practices (flavors) of the three cases CrossTown, NoTimeshift
and Continental from Table 6.1 including the practice IDs in parentheses.
The description concludes with linked guidelines, mitigated challenges and
the rationale behind.

6.2.1 Full Practices

Practice P1: Travelling Ambassador

The travelling ambassador is a person which travels between development sites
to exchange information and also serves as an on-site proxy for the other
distant sites while he is away.

Further elaboration from empirical evidence: The travelling ambas-
sador practice addresses the lack of proximity in DSD. The person travelling
can be a specifically nominated person for that purpose (CT.P.3, NT.P.19),
the scrum master (CT.P.1, NT.P.21), a guru, i.e. a technical, process or other-
wise specialist (CT.P.4, NT.P.20), regular team members (CT.P.5, NT.P.17,
C.P.16) or a combination thereof.
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: The practice improves coordination as a working knowledge trans-
fer between sites (G3) is a prerequisite to establish inter-site coordination.
Furthermore the ambassador stands up and speaks for the other site, de-
manding inter-site coordination and a more equal involvement of all the sites
(G1).

Practice P2: Full Team On-Site Sessions

The teams gather for regular face-to-face meetings or coding/integration ses-
sions at one site.

Further elaboration from empirical evidence: This practice addresses
the lack of proximity in DSD. The teams can gather for special occasions
like kicko↵ or end-of-milestone sessions (CT.P.2) or establish regular contact
visits for face-to-face meetings (C.P.13).The concentration on one site allows
the combination of all forces for a limited time in a collocated manner, which
also helps to establish trust among sites. If one site has not enough space to
host all team members, pair programming is a viable solution (two people per

101 Chapter Six

desk) and some team members from the hosting site can take turns in working
from home instead (CT.P.2).
Linked Guidelines: G3
Mitigates Challenges: Coordination
Rationale: The practice improves coordination as on-site sessions allow an
e�cient in-depth knowledge transfer (G3) as well as building trust and get-
ting to know each other on a personal level as a pre-requisite for inter-team
coordination.

Practice P3: Team Rotations

Team members rotate such that people can get to know each other in person.

Further elaboration from empirical evidence: This practice addresses
the lack of proximity in DSD. Team members can rotate for a single or multiple
sprints (NT.P.18) or just several days (CT.P.6). The rotated team members
can also serve as an on-site proxy to their now-distant fellow team members
(NT.P.18).
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: The practice improves coordination as rotating team members
naturally foster knowledge transfer between sites (G3), making it easier to
coordinate on with a common and up-to-date knowledge base, and the practice
also supports an equal involvement of all sites (G1) when team members get
to know other sites better through rotation.

Practice P4: Team Events

All teams gather for a social event to establish personal relationships.

Further elaboration from empirical evidence: This practice addresses
the lack of proximity in DSD. Team events can be used to build trust and es-
tablish personal relationships and to get to know each other also on a personal
level (NT.P.22, C.P.15). This lowers the barrier for frequent communication
to exchange information across sites. Team events can also be used as a mo-
tivational factor, e.g. to celebrate a milestone or a release (CT.P.7).
Linked Guidelines: G2
Mitigates Challenges: Coordination
Rationale: The practice allows the establishment of trust and getting to
know each other on a personal level, which makes inter-site coordination and
self-organization of teams (G2) easier with distant team members.

Building The ADAPT Framework 102

Practice P5: Scrum Master on each Site

A dedicated scrum master needs to be present at all sites to look after the agile
process.

Further elaboration from empirical evidence: This practice addresses
the lack of proximity in DSD. Case NoTimeshift showed that it is very in-
e�cient for a scrum master to serve distant team members, the situation
substantially improved when every site had one (NT.P.16). It is thus nec-
essary to have a scrum master on each site that is dedicated to track and
overcome impediments and set impulses to make the agile process work both
on-site and cross-site (NT.P.16, CT.P.8).
Linked Guidelines: G1, G5, G10
Mitigates Challenges: Coordination, Control, Communication
Rationale: By having a scrum master on each site, agile values are more
likely to be appreciated leading to an equal involvement of all sites (G1) for
better coordination at eye level. The scrum masters can furthermore help in
visualizing the workflow truthfully (G5), serving as a means of control for all
parties. The scrum masters can also assist in improving communication with
incremental steps (G10) until a good quality is reached. Following these three
guidelines successfully is much more likely if there is a dedicated scrum master
on each site to look after the process implementation.

Practice P6: Cross-Site Reviews

Cross-site reviews foster inter-site information exchange and knowledge trans-
fer.

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD. As knowledge transfer and information ex-
change are essential between sites, establishing the practice of cross-site re-
views, such as code reviews (CT.P.9) or test case reviews (CT.P.10, NT.P.11),
fosters inter-site collaboration and improves overall quality.
Linked Guidelines: G5, G7, G9
Mitigates Challenges: Control, Communication
Rationale: Cross-site reviews achieve two goals. First they serve as a mech-
anism for controlling software quality (G7). Second they improve communi-
cation by adding a new feedback loop (G9) that can be integrated as a step
into the workflow (G5).

Practice P7: Multi-Way Informal Communication

Implement di↵erent forms of synchronous and asynchronous informal com-
munication to allow self-organization.

103 Chapter Six

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD. While formal communication needs to be es-
tablished in every project setup, informal communication is often not fos-
tered as much. The multiple-case study showed that informal communica-
tion is especially important in an agile setup that demands frequent inter-
action for self-organization. To that end, empirical evidence shows that it
is best to allow a variety of di↵erent-purpose ways of communication, both
synchronous such as phone calls (CT.P.15, NT.P.6, C.P.7), conference calls
(CT.P.18, NT.P.12, C.P.3) or chat (CT.P.14) and asynchronous such as in-
stant messaging (CT.P.13, NT.P.8, C.P.4), email (CT.P.12, NT.P.7, C.P.6),
wikis (CT.P.17) or issue tracking systems/tickets (CT.P.11).
Linked Guidelines: G2, G3, G8, G10
Mitigates Challenges: Coordination, Communication
Rationale: Individuals and interactions are a central part of the agile man-
ifesto (Fowler and Highsmith, 2001) and thus so is informal communication
(G10). It should be possible in multiple ways supported by the tool chain
(G8). The practice is very important to allow self-organizing teams (G2) to
coordinate and exchange knowledge and information (G3).

Practice P8: Meeting Minutes

All meetings must be summarized in a compact way and made available to all
members of all sites.

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD. It is very important to track communication
in DSD such that information important to all sites does not get lost. The
scrum master (NT.P.10) proved especially capable for accomplishing that goal,
posting meeting minutes of all scrum meetings (and others) to a wiki (CT.P.17)
or mailing list (NT.P.9). In case Continental an overarching project manager
took care of meeting minutes (C.P.8).
Linked Guidelines: G3, G4
Mitigates Challenges: Coordination, Control
Rationale: Meeting minutes help transfer knowledge from on-site meetings
to other sites (G3) allowing coordination with all information freely available
and also serving as a means of control for the other sites. While all meeting
outcomes should be shared, it is especially important for the retrospective to
document and track steps for continuous improvement and general satisfaction
with the current process implementation (G4).

Practice P9: Ad-Hoc Screensharing

Screensharing enables faster problem solving and information sharing.

Building The ADAPT Framework 104

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD. Screensharing allows faster problem-solving
especially for programming, integration or configuration problems (NT.P.5,
C.P.9) and should be set up in an easy-to-use way to allow ad-hoc usage.
Linked Guidelines: G8, G9
Mitigates Challenges: Communication
Rationale: Sceensharing facilitates problem-centered communication as part
of an environment with multiple feedback loops (G9). To be of value, it needs
to be easily accessible within the toolchain (G8) for an ad-hoc, hazzle-free
usage.

Practice P10: Synchronized Sprints

Synchronize sprints across sites to work towards common goals and not en-
courage waterfall-thinking.

Further elaboration from empirical evidence: This practice deals with
handling iterations in DSD. The multiple-case study shows that is highly
preferable to work with the same iterations across sites, i.e. have sprint plan-
ning, review and retro all at the same time (CT.P.20, NT.P.31). Otherwise
more waterfall-like thinking is encouraged and inter-team coordination gets
more complex if teams cannot resolve dependencies within the same sprints
but e.g. have to wait for other sprints to complete first.
Linked Guidelines: G1, G5
Mitigates Challenges: Coordination, Control
Rationale: Coordination is easier to achieve if sprints are held in synch
across all sites, which makes it harder to drift into unequal involvement of
the sites (G1). Synchronized sprints also take complexity out of the workflow
visualization (G5) for better control.

Practice P11: Accessible Backlogs

The backlog, in its current state, as a living artifact, needs to be accessible to
all members.

Further elaboration from empirical evidence: This practice deals with
backlog handling in DSD. Both backlogs, the sprint and the product backlog,
need to be accessible to all team members for transparent handling of require-
ments. The process of grooming the product backlog by the product owner,
with the customer or with the team needs to be tracked, historized, transpar-
ent and available to everybody (CT.P.23, CT.P.24, NT.P.27, NT.P.28).
Linked Guidelines: G1, G8
Mitigates Challenges: Coordination, Communication
Rationale: Inaccessible backlogs to all parties severely complicate coordina-

105 Chapter Six

tion and foster unequal site involvement (G1). Backlogs should be accessible
within the tool chain (G8) for improved communication and flow of informa-
tion.

Practice P12: Tangible Requirements (BDD)

Behavior Driven Development (BDD) creates human-readable yet executable
acceptance criteria.

Further elaboration from empirical evidence: This practice deals with
backlog handling in DSD. Behavior Driven Development (BDD) involves break-
ing down requirements to a ”Given-When-Then” scheme: ”Given some initial
context (the givens), When an event occurs, Then ensure some outcomes”
(North, 2006). Each step can be automated for running tests with the out-
come that each requirement has executable human-readable acceptance crite-
ria. This can be especially powerful in DSD, where all sites work with same
test cases and conduct cross-site test case reviews (cf. P6) (CT.P.22, NT.P.29).
Linked Guidelines: G3, G5, G6
Mitigates Challenges: Coordination, Control
Rationale: Tangible requirements improve knowledge transfer (G3) both be-
tween sites and the customer (G6) by having testable acceptance criteria as a
prerequisite for goal-oriented coordination. The criteria can serve as a valu-
able addition to the definition of done for controlling the truthful completion
of a step in the workflow (G5).

Practice P13: Customer Requirements Workshop

Regular requirements workshop should be held in person with the customer for
continuous grooming of the product backlog.

Further elaboration from empirical evidence: This practice deals with
backlog handling in DSD. Similar to collocated development, it is important
that an initial set of requirements (user stories) is created, discussed and
explained in a kicko↵ workshop with the product owner and the customer
(C.P.17). The workshop greatly benefits if members from all sites are able to
participate in this workshop and if it is held in regular intervals in order to
form a common vision and view on the requirements (CT.P.25).
Linked Guidelines: G3, G6
Mitigates Challenges: Coordination, Control
Rationale: Regular workshops with the customer make sure that the product
is heading in the right direction (G6) and serve as a means of both control and
coordination between supplier and customer by creating common knowledge
(G3).

Building The ADAPT Framework 106

Practice P14: Feature-Team Organization

Have as small teams as possible to be able to develop features on their own.

Further elaboration from empirical evidence: This practice deals with
team setup in DSD. Also in distributed environments it is important that
teams remain self-organizing and are able to develop features on their own
with as little dependency to other teams as possible. Micro teams have less
intra-team coordination to overcome and are more flexible (CT.P.26). It also
helps to organize teams around requirement areas so that teams get the chance
to become familiar with the area and are thus more productive (CT.P.27,
NT.P.30).
Linked Guidelines: G2
Mitigates Challenges: Coordination
Rationale: Having feature teams allows teams to work as autonomous units,
being able to implement features on their own with no or little dependency
to other teams. Hence intra-team coordination is facilitated and the need for
inter-team coordination is minimized (G2).

Practice P15: Multi-Site Multi-Team Workflow Board

The multi-site and multi-team workflow needs to be illustrated in detail, kept
up-to date and made available to all sites.

Further elaboration from empirical evidence: This practice deals with
handling workflow boards in DSD. A board describing all steps of the work-
flow truthfully, either electronic (CT.P.28) or on paper (NT.P.13, NT.P.14),
needs to be accessible to all team members. While the electronic version is
preferable, if opposed by lacking tool support or other reasons, paper boards
can also be used facilitated by web cams streaming them to the other sites and
updated during the daily scrum. It is important that all work is visualized in
the workflow to become the central instrument in the process implementation.
Linked Guidelines: G5, G8
Mitigates Challenges: Control, Communication
Rationale: An overarching multi-team workflow board needs to visualize all
steps in the value stream truthfully (G5) and is best integrated tightly into the
tool chain (G8). The workflow board serves both as a means of control and
as another communication channel, i.e. a feedback loop showing bottlenecks
and where other teams stand in the sprint.

Practice P16: Multi-Level On-site Proxy-Planning

Multi-level planning involves an initial planning on one site with proxies and
a subsequent planning on the other sites when proxies return.

107 Chapter Six

Further elaboration from empirical evidence: This practice deals with
sprint planning in DSD. If it is not feasible for everybody to gather at one site
for every sprint planning (cf. P2), sending proxies is a viable option that
is preferable over full video conference plannings that tend to be chaotic
and of little value to the individual as case NoTimeshift pointed out. Cases
CrossTown (CT.P.29) and NoTimeshift (NT.P.25) both featured a planning on
one site with proxies attending from the other site. The proxies then returned
to their site to hold a second planning meeting, completing the planning cycle
and reporting back to get an overall planning result for the sprint.
Linked Guidelines: G1
Mitigates Challenges: Coordination
Rationale: On-site proxies help to create an equal involvement of the sites
(G1) during planning and thus allow easier coordination.

Practice P17: Separation of Roadmap and Sprint Planning

Both roadmap and sprint planning should be practiced to keep all sites moving
in the right direction.

Further elaboration from empirical evidence: This practice deals with
sprint planning in DSD. Every couple of sprints (depending on sprint length) it
is important to do a backlog grooming session and conduct roadmap planning,
i.e. the planning of what lies ahead, rather than only regular sprint planning
for the next sprint, i.e. several weeks. This backlog grooming should include
most of the team members (CT.P.30) with either proxies present (cf. P1) or in
full on-site sessions (cf. P2). The results must be made available to everyone
including the rationale behind (NT.P.27, NT.P.28). This allows all sites to
get a heads-up on what lies ahead and move in the same direction.
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: The roadmap and sprint planning helps coordination by creating
a common understanding of what lies ahead. The practice improves knowledge
transfer (G3) and an equal involvement of the sites (G1).

Practice P18: On-Site Retrospective with Proxies

This multi-site retro involves both proxies on-site and other team members
joining via video conference.

Further elaboration from empirical evidence: This practice deals with
the retrospective in DSD. In both cases CrossTown (CT.P.31) and NoTimeshift
(NT.P.24) the retrospective was held on one site with proxies from the other
site present (cf. P1). In case NoTimeshift the other distant team members
also attended via video conference. In case CrossTown the relevant argu-

Building The ADAPT Framework 108

ments for the retrospective were collected by the travelling ambassador prior
to the retrospective and presented then on site at the meeting. In any case,
the retrospective produced a clear set of problems and the measures discussed
to be implemented in the next sprint.
Linked Guidelines: G4, G9
Mitigates Challenges: Control, Communication
Rationale: The retrospective with proxies serves a feedback loop and com-
munication channel (G9). As such it is also a control mechanism and mood
barometer for the current process implementation (G4).

Practice P19: On-Site Sprint Review with Proxies

This multi-site sprint review involves both proxies on-site and other team mem-
bers joining via video conference.

Further elaboration from empirical evidence: This practice deals with
the sprint review in DSD. The setup was in both cases similar to the ret-
rospective (cf. P18). In both cases CrossTown (CT.P.32) and NoTimeshift
(NT.P.23) the sprint review was held on one site with proxies from the other
site present (cf. P1). In case NoTimeshift the other distant team members
also attended via video conference. In case CrossTown some sprint reviews
were attended by all team members from both sites (cf. P2) and others only
by proxies from the other site (cf. P1). In any case, the sprint review involved
feature demonstrations of the features implemented within the sprint.
Linked Guidelines: G7, G9
Mitigates Challenges: Control, Communication
Rationale: The review with proxies serves as another feedback loop and
communication channel (G9) and a quality control mechanism for the current
product increment (G7).

Practice P20: Establish Metrics to Evaluate the Process

Track metrics each sprint and make them available to all sites as an additional
means to evaluate the e�ciency of adaptations to the process.

Further elaboration from empirical evidence: This practice deals with
metrics in DSD. While visualizing the workflow is important (cf. P15), it is
also necessary to use metrics to oversee process adaptations. Without metrics
it is hard to tell if a measure taken indeed has a positive e↵ect on the process
output. The metrics can vary, in case CrossTown three types of metrics were
tracked: bug count (CT.P.33), release frequency (CT.P.34) and impediment
count (CT.P.35). In case NoTimeshift a common burndown chart (NT.P.15),
burning down estimated hours against actual progress, was set in place to
track sprint progress. In any case, the metrics need to be made available to

109 Chapter Six

all sites, either an electronic dash board or a webcam streaming the paper
equivalent.
Linked Guidelines: G4, G5, G8
Mitigates Challenges: Control, Communication
Rationale: Metrics help track the process implementation for continuous
improvement and mitigate the control challenge (G4). They can also help
to identify bottlenecks in the workflow (G5) and are best tracked with tool
support (G8) for an additional feedback loop improving communication across
the sites.

Practice P21: Daily Intra-Team Communication

A compact Daily Scrum is necessary for intra-team coordination.

Further elaboration from empirical evidence: This practice deals with
the daily scrum in DSD. Like in collocated scrum, the daily scrum is used for
intra-team coordination. For distributed teams (all team members of a team
are on the same site) no adaptation is necessary, for dispersed teams (team
members of the same team span multiple sites) the daily scrum can be held
using an audio or video conference setup (NT.P.1, NT.P.2, C.P.11).
Linked Guidelines: G2, G9
Mitigates Challenges: Coordination, Communication
Rationale: The daily scrum is a central part of intra-team coordination for
self-organization (G2) and communication in terms of adding another feedback
loop to the process (G9).

Practice P22: Inter-Team Scrum of Scrums

Regular inter-team coordination (SoS) is necessary to resolve dependencies
and remove impediments.

Further elaboration from empirical evidence: This practice deals with
the scrum of scrums in DSD. Unlike the daily scrum (cf. P21), the scrum
of scrums (SoS) in DSD will always involve multiple sites since the focus is
inter-team coordination. Case NoTimeshift used weekly SoS meetings on one
site with proxies present (NT.P.4) (cf. P2) but also special-purpose cross-team
meetings such as a QA SoS with audio/video conference support focusing es-
pecially on improving quality assurance and the BDD workflow (NT.P.3) (cf.
P12). Case Continental held SoS meetings even daily (C.P.12) for cross-team
coordination. In any case, the SoS should help and be limited to dealing with
inter-team dependencies (and how to resolve them) and be kept short and
compact similar to the daily scrum.
Linked Guidelines: G2, G9
Mitigates Challenges: Coordination, Communication

Building The ADAPT Framework 110

Rationale: The scrum of scrums is a central part in inter-team coordina-
tion for self-organization (G2) and communication in terms of adding another
feedback loop to the process (G9).

Practice P23: Frequent Deployments to Customer

Frequent (e.g. sprint-wise) deployments to the customer help establish a com-
mon finish line.

Further elaboration from empirical evidence: This practice deals with
the sprint iteration in DSD. Achieving the goal of deploying frequently to
the customer puts the whole process to a test and keeps everybody focused
and goal-oriented. After initial problems, in case CrossTown the teams man-
aged to deploy to the customer each sprint, which was a major improvement
(CT.P.19). In case NoTimeshift the deployments spanned several sprints, but
they were still an important factor (NT.P.35). Frequent deployments with
working software are a sign of a process implementation in good health and
shorter delivery times are preferable to longer ones.
Linked Guidelines: G6, G7, G8
Mitigates Challenges: Control, Communication
Rationale: Frequent deployments invite the customer into the process (G6),
which serves as a quality control (G7), improves communication to the cus-
tomer and adds another layer of feedback. The necessity of frequent deploy-
ments also demands good usage of an automated build and deployment tool
chain (G8).

Practice P24: On-Demand Specification Meetings

The product owner needs to be available to on-demand requirement clarifica-
tions also during the sprint.

Further elaboration from empirical evidence: This practice deals with
backlog handling in DSD. It frequently happens that new questions arise dur-
ing the implementation of features within the sprint iteration. It is thus nec-
essary that the product owner takes an active role and is available to further
inquiries by team members from all sites during the whole sprint (CT.P.21).
If the product owner role is too big for one person to fill, it is also possible to
have business analysts (BA) available for on-demand inquiries (C.P.19).
Linked Guidelines: G1, G7
Mitigates Challenges: Coordination, Control
Rationale: The availability of the product owner (or assistants) to all sites
(G1) is important to ensure timely responses to inquiries on the backlog dur-
ing development, which allows the PO better to control the implementation

111 Chapter Six

and also adds quality early in the development (G7), i.e. in the same sprint.
This practice improves coordination between the team and the PO.

Practice P25: Cross-Team Specialist Meetings

A cross-team (cross-site) specialist meeting can be a fruitful addition to the
regular Scrum of Scrums.

Further elaboration from empirical evidence: This practice deals with
the lack of interaction in DSD. In case Continental on top of the regular scrum
of scrums, a weekly cross-site specialist meeting was held in a video conference
setup to discuss technical solutions and architectural decisions (C.P.1). In case
CrossTown technical specialist also met cross-team and on site each sprint
to discuss technical solutions and possible technical debt (CT.P.38). Case
NoTimeshift worked with daily cross-site QA-dedicated meetings to improve
the BDD workflow (NT.P.3).
Linked Guidelines: G2, G9
Mitigates Challenges: Coordination, Communication
Rationale: Cross-team specialist meetings improve the self-organization for
inter-team coordination (G2) and can be utilized as another feedback loop for
cross-team/cross-site communication (G9).

Practice P26: Global All-Site Broadcast Meetings

Global all-site broadcast meeting are held to share important information with
everybody.

Further elaboration from empirical evidence: This practice deals with
the lack of interaction in DSD. In case Continental a moderated bi-weekly
all-site meeting was held in a video conference setup, where all team members
from all sites were asked to participate and which was used to share important
organizational information such as changes to the project plan. The objective
of the meeting was to broadcast information rather than discuss them due to
the big number of participants (C.P.2). A similar meeting was held in case
CrossTown, where all team members from both sites would gather on one site
to discuss new milestones that were set with the customer, i.e. to give every-
body a common understanding of what lies ahead, spanning multiple sprints
(CT.P.39).
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: An all-site broadcasting meeting can be an e�cient way to trans-
fer knowledge (G3) to all sites (G1) because inter-site coordination is easier
when all sites share the same level of information.

Building The ADAPT Framework 112

Practice P27: User Story Requirements

Feature requirements should be phrased as user stories to communicate the
user’s role, goal and benefit clearly across sites.

Further elaboration from empirical evidence: This practice deals with
backlog handling in DSD. Both cases CrossTown and NoTimeshift worked with
a backlog containing user stories, well-known from collocated scrum. The idea
is that feature requirements are customer-centric and as such add value to the
product by being phrased in the following way: ”As a <user role>, I want
<to achieve some goal> so that <some reason/benefit>”. The phrasing may
di↵er, but the important thing is to state the user’s role, the goal/function
and the reason or benefit in a one-liner (CT.P.37, NT.P.33).
Linked Guidelines: G3, G6
Mitigates Challenges: Coordination, Control
Rationale: Formulating requirements as user stories controls that the devel-
opment is in fact user-oriented with requirements that are understood by both
the customer (G6) and the developers. User stories with the right granularity
can be e↵ectively used to transfer domain-specific knowledge across sites (G3)
and simplify coordination with a well-defined backlog.

Practice P28: Code Quality/Standards

Cross-site code standards are important to improve code overall quality.

Further elaboration from empirical evidence: This practice deals with
metrics in DSD. Case NoTimeshift had massive problems with code quality
in their two-site environment including broken builds, which becomes even
more frustrating if the teams are not collocated. The BDD workflow helped to
improve code quality and also the establishment of general cross-team working
agreements, both on the code level (code formatting, comments, ...) and
on a social level (not committing untested revisions, letting others know of
major refactorings that may raise problems for others, ...) (NT.P.34). Case
Continental worked with very strict coding standards that e.g. also involved
allowed third-party libraries (C.P.18).
Linked Guidelines: G3, G7
Mitigates Challenges: Coordination, Control
Rationale: Code standards can be used as one (among others) of the controls
for software quality (G7) by sharing common standards among all sites (G3).
Coordination is facilitated (and discussions are limited) when coding adheres
to an agreed set of standards.

113 Chapter Six

Practice P29: Agile Coach

An experienced agile coach can accompany the agile DSD process implemen-
tation.

Further elaboration from empirical evidence: This practice addresses
a new role in agile DSD. An agile coach is an experienced agile practitioner
and consultant who can help in setting up the initial process implementation
(NT.P.32) or accompany the whole project (CT.P.36). The agile coach may
be able to avoid some common pitfalls and thus arrive at a stable process
implementation and good agile culture faster.
Linked Guidelines: G10
Mitigates Challenges: Communication
Rationale: An agile coach can oversee the agile process implementation and
its continuous improvement (G10) and should be in touch with all sites.

6.2.2 Conceptual Practices

Conceptual Practice C1: Documentation Strictly in Common
Language

All documentation should be held in a language understood by all parties.

Further elaboration from empirical evidence: This conceptual practice
addresses proximity in DSD and is considered conceptual because it was only
observed in one case (Continental). To allow everybody access to documenta-
tion, all written communication should be conducted in a language understood
by all sites (C.P.14).
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: Documentation needs to be in a language understood by ev-
erybody for an equal participation of all sites (G1) and e�cient knowledge
transfer (G3), otherwise coordination is severely handicapped.

Conceptual Practice C2: Document Informal Communication

All relevant informal communication must be documented and made available
to all sites.

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD and is considered conceptual because it was
only observed in one case (CrossTown). Relevant informal communication is
regarded as everything that adds to clarify issues, be it technical, process or of
other nature. If a ticket management system is in place, it is good practice to
add informal communication (chat, instant messages, emails, ...) to the ticket

Building The ADAPT Framework 114

description or post it to a wiki (CT.P.11).
Linked Guidelines: G3
Mitigates Challenges: Coordination
Rationale: Informal communication needs to be documented, especially
when it involves decisions relevant to other sites (G3), otherwise it is a lot
harder for teams to self-organize and coordinate.

Conceptual Practice C3: Hours of Availability

Publish individual hours of availability to all sites.

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD and is considered conceptual because it was
only observed in one case (CrossTown). This practice is two-fold (CT.P.16):
First of all, all team members should be available and involved in informal
communication, i.e. be online for chat and instant messaging, read emails reg-
ularly and also make known, when somebody is absent (e.g. a common wiki
page for long term absences and status message in the messenger for short
term absences). Absence includes both being physically not available, i.e. not
in the o�ce, or currently focusing on an issue and not available to talk or
chat.
Linked Guidelines: G10
Mitigates Challenges: Communication
Rationale: Hours of availability need to be published to allow informal com-
munication, which is necessity for every agile process implementation (G10).

Conceptual Practice C4: O↵er Language Courses

O↵ering language course can improve building social relationships.

Further elaboration from empirical evidence: This practice addresses
the lack of interaction in DSD and is considered conceptual because it was only
observed in one case (Continental). For long-term distributed development ef-
forts, o↵ering language courses to interested team members can increase moti-
vation and facilitate the establishment of trust and social relationships across
sites (C.P.5).
Linked Guidelines: G1, G3
Mitigates Challenges: Coordination
Rationale: Language courses should be o↵ered to overcome language barriers
and share knowledge and information (G3) for intra- and inter-team coordi-
nation. It also helps to create an equal involvement of all sites (G1).

Conceptual Practice C5: Plan Time for Research and Learning

Research and learning needs to be included in estimations.

115 Chapter Six

Further elaboration from empirical evidence: This practice deals with
the sprint planning in DSD and is considered conceptual because it was
only observed in one case (NoTimeshift). Implementing features may require
searching for new technical solutions (research). New team members need
time to get to know the environment and code base (learning). Research and
learning are both worthwhile and necessary and this time needs to be ac-
counted for during sprint planning (NT.P.26).
Linked Guidelines: G3, G7
Mitigates Challenges: Coordination, Control
Rationale: Research and learning is part of the development process when
working with new technologies or new code or requirement areas. Sharing
the information and knowledge takes time (G3) but is important to produce
quality output (G7). Planning these e↵orts allows better control and pro-
vides more solid and reliable estimations, which facilitates many aspects of
coordination.

Conceptual Practice C6: Lessons Learned Workshop after Project

Conducting a lessons learned workshop allows reflection across the whole time
span and encourages improvements for new projects.

Further elaboration from empirical evidence: This practice deals with
the retrospective in DSD and is considered conceptual because it was only
observed in one case (Continental). While the retrospective focuses on the
last sprint iteration, a lessons learned workshop after the project ends (or
near the end) can be used to reflect on the whole project’s time span (C.P.10)
and can be used to derive new practices for the next project.
Linked Guidelines: G4
Mitigates Challenges: Control
Rationale: A lessons learned workshop can be regarded as a retrospective
covering the full project’s lifecycle (G4), which adds to controlling the project
end and provides feedback for future implementations.

Conceptual Practice C7: Selective Pair Programming

Selective pair programming lets developers decide when pair programming is
beneficial.

Further elaboration from empirical evidence: This practice deals with
interaction in DSD and is considered conceptual because it was only observed
in one case (CrossTown). In case CrossTown pair programming was used very
selectively, only when developers decided they needed an extra pair of eyes,
e.g. for critical algorithms or delicate refactorings (CT.P.40).

Building The ADAPT Framework 116

Linked Guidelines: G7, G9
Mitigates Challenges: Control, Communication
Rationale: Pair Programming provides an extra feedback cycle for commu-
nication and control purposes (G9) and helps to improve code quality (G7).

6.3 Guidelines

The overspanning guidelines were extracted similarly to the practices (cf. Fig-
ure 5.1): Each individual case resulted in an extracted set of guidelines (cf.
Figures 5.7, 5.9 and 5.11). From an ADAPT framework’s point of view these
guidelines are only regarded as conceptual guidelines. This section now com-
pares the three sets of guidelines to find common (full) ones.

The following steps were employed to arrive at the final set of guidelines (cf.
Section 5.1.6).

1. Arrange guideline concepts in groups with similar properties (visualized
in Figures 5.7, 5.9 and 5.11).

2. Add all guidelines with the identified similar concepts to a spreadsheet,
assign each guideline an ID for better future reference (cf. Table 6.2).

3. Merge the identified duplicate concepts and concepts with similar prop-
erties to one guideline (in terms of open coding: a category) with empir-
ical support in at least two cases. Concepts without empirical support
in more than one case are discarded.

4. Link all guidelines to one or more of the three DSD challenge types
coordination, control and communication such that linked guidelines
mitigate the challenge.

Table 6.2 shows step 2, where all guidelines are added to a spreadsheet. The
groups to intermediary classify concepts were: retrospective, board/workflow,
development sites, teams, customer, sprint iterations, tools, information shar-
ing, interaction and general. They are only used to identify possible concepts
for merging as a temporary help and have no further semantic meaning to the
ADAPT framework.

ID Merge Group Guideline Concept Title Source

CT.G.7 Retrospective Use retrospective as a mood barometer across all
sites (keep frustration levels low)

CrossTown

CT.G.2 Retrospective Retro can be a powerful driver for continuous pro-
cess improvement

CrossTown

CT.G.9 Board/Workflow Definition of done needs to be well-defined and
agreed (even more important in DSD)

CrossTown

NT.G.15 Board/Workflow Visualize the workflow truthfully NoTimeshift
NT.G.1 Development Sites Foster equal involvement of all sites NoTimeshift
C.G.8 Development Sites Understand each other’s processes and try to align

them (multiple suppliers)
Continental

117 Chapter Six

CT.G.14 Development Sites Equal involvement of all sites CrossTown
C.G.11 Development Sites Equally distribute decision makers among the sites Continental
C.G.10 Development Sites Define roles clearly and enact them Continental
C.G.2 Development Sites Enforce contact interfaces and keep role fluctua-

tion to a necessary minimum
Continental

NT.G.12 Teams Distributed teams over dispersed teams (virtual
inter-team coordination but on-site intra-team co-
ordination)

NoTimeshift

NT.G.5 Teams Build trust NoTimeshift
C.G.12 Teams Build team-spirit Continental
NT.G.22 Teams Aim for fully distributed cross-functional teams

working on requirement areas
NoTimeshift

NT.G.8 Teams Hire motivated people NoTimeshift
NT.G.7 Teams Establish willingness and commitment to change NoTimeshift
NT.G.9 Teams Establish a good working atmosphere NoTimeshift
NT.G.17 Teams Establish long-lived teams NoTimeshift
NT.G.18 Teams Teams small enough to not encourage sub-teaming

(teams within teams)
NoTimeshift

NT.G.20 Teams Allow self-organization also in distributed environ-
ments

NoTimeshift

C.G.4 Customer Involve customer in development progress (meet-
ings)

Continental

C.G.5 Customer Invite customer into the tool chain (dashboard,
access to ticket management system)

Continental

CT.G.10 Customer Frequent releases (as frequent as feasible/sensible) CrossTown
CT.G.6 Customer Regular deployments to the customer set a com-

mon goal and encourage frequent integration
among teams and sites

CrossTown

NT.G.10 Sprint Iterations Plan in time NoTimeshift
NT.G.16 Sprint Iterations Respect Iterations (Product Owner) NoTimeshift
CT.G.12 Sprint Iterations Short sprint intervals let problems between sites

surface quickly
CrossTown

CT.G.5 Sprint Iterations Quality over Feature Rush CrossTown
CT.G.15 Sprint Iterations Work towards a continuous flow (instead of panic

bugfixing at sprint end)
CrossTown

CT.G.11 Sprint Iterations Deployment-ready features at the end of sprint it-
eration instead of test-ready ones

CrossTown

CT.G.13 Tools Establish a proper tool chain (preferably inte-
grated)

CrossTown

NT.G.6 Tools Tool choices are secondary, but all sites should
commit to using the same tools. Keep tool chain
small.

NoTimeshift

NT.G.19 Information Sharing Facilitate knowledge sharing across sites NoTimeshift
CT.G.3 Information Sharing Make informal communication visible/transparent

to everyone
CrossTown

CT.G.1 Information Sharing Keep documentation up to date, especially one rel-
evant to other teams (sites)

CrossTown

NT.G.14 Information Sharing Documentation becomes more important NoTimeshift
C.G.9 Interaction Establish multi-level (multi-concern) feedback

loops
Continental

NT.G.11 Interaction Keep video conference meetings compact and fo-
cused and in manageable group sizes

NoTimeshift

NT.G.13 Interaction Keep virtual meetings to minimum for the sake of
on-site meetings

NoTimeshift

NT.G.2 Interaction Allow informal communication as a substitute for
face-to-face communication

NoTimeshift

NT.G.3 Interaction Allow formal communication as a substitute for
face-to-face communication

NoTimeshift

C.G.6 Interaction All communication in common language Continental
CT.G.4 Interaction Teams need to synchronize using both formal and

informal means of communication
CrossTown

C.G.1 General Dealing with formalities slows down the project Continental
C.G.3 General Don’t let years of experience get in the way of

trying something new
Continental

CT.G.8 General Process adaptation takes time (small steps instead
of big leaps)

CrossTown

NT.G.4 General Beware of a superficial adoption of agile values NoTimeshift
C.G.7 General Agile practices can also be employed in traditional

environments (to a limited extent)
Continental

Building The ADAPT Framework 118

NT.G.21 General Small steps instead of big leaps (continuous im-
provements over quick gains)

NoTimeshift

Table 6.2 – The table gives an overview of the cross-case guidelines extraction
status after step 2 and shows 49 conceptual guidelines.

The guidelines are described in the following way: The description explains
how the guideline was constructed using single-case guidelines extracted from
the three cases CrossTown, NoTimeshift and Continental from Table 6.2 in-
cluding the guideline IDs in parentheses. It concludes with linked practices,
mitigated challenge and the rationale behind.

Guideline G1: Strive for an equal involvement of all sites with
clearly defined roles and allow people enough time to concentrate
on and fully enact their role.

All three cases showed that the sites need to be able to work at an equal level,
i.e. be as equal as organizational constraints allow. The situation improved
in all three cases when the sites moved together and improved collaboration.
It is therefore necessary to distribute decision makers equally between sites,
i.e. have product owners (or their proxies) on all sites. Moreover, the roles
(such as the product owner and scrum master) need to be allowed enough
time to fully enact their roles and be available to their on-site colleagues as
well as to the other sites, this roles always require full-time e↵ort in DSD
environments. It is also important to build an understanding of each other’s
organizational processes and constraints in case several suppliers are involved
in the DSD environment. This process of fighting inequalities may take time
but is worthwhile to pursue (CT.G.14, NT.G.1, C.G.8, C.G.10, C.G.11).

Linked Practices: P1, P3, P5, P10, P11, P16, P17, P24, P26, C1, C4
Mitigates Challenge: Coordination
Rationale: Following the guideline G1 allows the mitigation of coordination
challenges with development partners on di↵erent sites collaborating at eye
level. Equal involvement can be facilitated with scrum masters on each site
(P5) that can look after the process implementation to prevent local process
optimizations interfering with the global (all-site) process. Travelling ambas-
sador (P1) and/or team rotations (P3) help to better include distant sites
better into everyone’s thinking. Synchronized sprints (P10) severely reduce
planning overhead. The following practices try to achieve better flow of in-
formation in various aspects to facilitate coordination: separation of roadmap
and sprint planning (P17), accessible backlogs (P11), multi-level on-site proxy
planning (P16), on-demand specification meetings (P24) and global all-site
broadcast meetings (P26). Last but not least, having documentation strictly
in a common language (C1) and o↵ering language courses (C4) is a prerequisite
for e↵ective inter-site (inter-team) coordination.

119 Chapter Six

Guideline G2: Create an environment that allows compact
long-lived cross-functional teams to self-organize. Work towards
distributed teams in the long run.

Long-lived teams with little fluctuation are generally regarded as more pro-
ductive (Larman and Vodde, 2009). In DSD this needs to be weighed against
having cross-site team rotations for getting to know each other better. So a
rule of thumb can be defined as having little on-site fluctuation but allow-
ing cross-site team rotations when feasible. No matter if teams are dispersed
(team members spanning multiple sites) or distributed (all team members col-
located on one site) it is advised to keep team sizes small to ease inter-team
coordination, but teams should always be cross-functional, i.e. able to imple-
ment a feature on their own (or with as little dependency as possible) in order
to not encourage sub-teaming (teams within teams). The cases CrossTown
and NoTimeshift also showed that it helps to organize teams around require-
ment areas such that teams can familiarize themselves with the area. This
procedure is beneficial, but can be discarded if the project environment does
not allow such area groupings. In general it is easier and more productive to
work with distributed teams instead of dispersed ones because then only inter-
team coordination is necessary, while intra-team coordination can be done on
site. The scrum masters must critically review at all times that teams are al-
lowed to be self-organizing and handle their communication and coordination
by themselves otherwise the process is not agile and he must work towards
building trust and establishing a good working atmosphere (NT.G.5, NT.G.9,
NT.G.12, NT.G.17, NT.G.18, NT.G.20, NT.G.22, C.G.2, C.G.12).

Linked Practices: P4, P7, P14, P21, P22, P25
Mitigates Challenge: Coordination
Rationale: The guideline G2 strives for self-organizing inter and intra-team
coordination. Team events (P4) allow the team members to get to know each
other in person and establish personal relationships, which makes it easier to
make use of multi-way informal communication (P7) to coordinate. Feature-
team organization (P14), daily intra-team communication (P21), inter-team
scrum of scrums (P22) and the cross-team specialist meeting (P25) are all
practices that help teams to succeed in their self-organization.

Guideline G3: Transfer knowledge and share information between
sites to establish the necessary working flow of information.

Knowledge transfer and information sharing build viable links between sites
in agile DSD and it is something that everybody has to work for. One im-
portant part is to make informal communication visible to everyone e.g. by
appending information to a ticket in a ticket management systems and thus
share clarifications and decisions to others interested. Moreover documenta-

Building The ADAPT Framework 120

tion plays a bigger part with distributed sites and more e↵ort needs to be
put into writing documentation (meaning all kinds of documentation, from
full-fledged documents to comments in source code). Other possibilities for
sharing information are already part of the scrum process with all meetings
from planning to retrospective (CT.G.1, CT.G.3, NT.G.14, NT.G.19).

Linked Practices: P1, P2, P3, P7, P8, P12, P13, P17, P26, P27, P28, C1,
C2, C4, C5
Mitigates Challenge: Coordination
Rationale: Knowledge transfer and information sharing is very important
to allow inter-site coordination. Knowledge sharing is important both with
regular on-site visits using travelling ambassador (P1), full team on-site ses-
sions (P2), team rotations (P3) and/or customer requirements workshop (P13)
but also distributed using multi-way informal communication (P7), meeting
minutes (P8), global all-site broadcast meeting (P26), code quality/standards
(P28) and documenting informal communication (C2). Practices tangible re-
quirements (BDD) (P12) and user story requirements (P27) support the cre-
ation of comprehensible requirements, which are easier to share. Documen-
tation needs to be strictly written in a common language (C1) and language
courses (C4) can substantially improve knowledge transfer. Planning time for
research and learning (C5) is important in agile processes implementations
and holding roadmap and sprint plannings (P17) helps to provide a common
picture on the future steps.

Guideline G4: Use retrospective as mood barometer and driver for
continuous process improvement.

Case CrossTown and NoTimeshift both showed that the retrospective was
the most important driver for process improvement and also serves as mood
barometer and a means to keep frustration levels low as everybody can voice
his opinion and suggest improvements to the process. The scrum master needs
to take an active part in making the proposed changes happen and in tracking
their progress throughout the sprint to establish and manifest the willingness
and commitment to change and improve the agile process implementation,
which is very important in DSD (CT.G.2, CT.G.7, NT.G.7).

Linked Practices: P8, P18, P20, C6
Mitigates Challenge: Control
Rationale: The retrospective can be regarded as a tool of control, both
for management and for the process participants. When possible, an on-
site retrospective with proxies (P18) provided good results during the case
studies. The agreed measures during retrospective need to be tracked (P8)
and evaluated (P20) in the next sprint. The lessons learned workshop at the

121 Chapter Six

end of the project (C6) is a retrospective addressing the full project’s timespan
for reflecting and creating improvements for future projects.

Guideline G5: Visualize the workflow including all sites truthfully.
Leave no steps out and clearly define the end of a step.

The multiple-case study showed that visualizing the workflow becomes es-
pecially important in DSD as it always involves a complex setup spanning
multiple teams and development sites. It is therefore absolutely necessary to
represent the workflow as it is now (and not as it should be), even if it is a sub-
par process in the beginning that involves a lot of manual steps. Otherwise
bottlenecks in the workflow cannot be identified and improvements cannot be
made. An important part of the workflow is to agree on common definitions
of done (DoD). This includes both the definition (or several) of when a feature
is really done, because done could mean e.g. any of the following: ”ready for
test”, ”ready for user acceptance test”, ”ready for production”, as well as the
definition of when a step in the workflow is completed. The workflow repre-
sents the process as a whole and as such is a living artifact in an agile process
and should be under review each retrospective to find improvements (CT.G.9,
NT.G.15).

Linked Practices: P5, P6, P10, P12, P15, P20
Mitigates Challenge: Control
Rationale: A truthful representation of the workflow can be used to control
the process implementation and set initiatives for improvement. The scrum
master on each site (P5) can help control that each step is visualized and per-
formed correctly. The workflow is easier to visualize when using synchronized
sprints (P10) and all teams should follow the same workflow in one board
(P15). The workflow can be accompanied by metrics (P20) for evaluation.
BDD-style requirements with acceptance criteria (P12) and cross-site reviews
(P6) can be e↵ective steps in the workflow to improve quality and control.

Guideline G6: Invite the customer in and establish a
customer-centric process with frequent releases to the customer.

Case Continental showed that it is very important to include the customer
regularly into the process otherwise the end product may not be what the
customer actually wanted. Integrating the customer into the process is as
important in DSD as it is in collocated development. Since not all sites may
be able to meet with the customer, other ways have to be established to invite
the customer into the process such as providing access to the workflow board,
the ticket management system or a report dashboard. Deploying regularly
(best case: each sprint) to the customer ensures that the software is moving

Building The ADAPT Framework 122

in the right direction and set a common goal for all sites to integrate frequently
and produce working software (CT.G.6, CT.G.10, C.G.4, C.G.5).

Linked Practices: P12, P13, P23, P27
Mitigates Challenge: Control
Rationale: The customer needs to be satisfied with the product increment. A
customer-oriented workflow demands adequate quality for delivery and serves
as a control to the process implementation. Good means to invite the customer
into the process are using tangible requirements with acceptance criteria (P12)
formulated as user stories (P27), customer requirements workshop (P13) and
frequent deployments to customer (P23).

Guideline G7: Embrace quality over feature rush: Respect
iterations across multiple sites and work towards a continuous flow.

Since several sites collaborate to develop software, frequent integration is nec-
essary and testing/quality assurance becomes very important. Quality must
be established within the sprint iteration. To that end iterations must be
respected by the product owner and other stakeholders and planning must
be held timely at the beginning of the sprint to not have a late start. Short
sprint intervals can help in letting problems between sites surface quickly. The
flow should be continuous with early integration testing (as compared to last
minute bugfixing at the end of the sprint) to have deployment-ready features
at the end of the sprint instead of test-ready ones (”feature rush”) (CT.G.5,
CT.G.11, CT.G.12, CT.G.15, NT.G.10, NT.G.16).

Linked Practices: P6, P19, P23, P24, P28, C5, C7
Mitigates Challenge: Control
Rationale: This guideline addresses the need for not over-managing an agile
process, which is a control challenge. The teams need to be allowed to work
peacefully within iterations to build quality features and accomplish their
commitment. Quality controls are very important in distributed development
and can be achieved with the following practices: cross-site reviews (P6), on-
site sprint review with proxies (P19), frequent deployments to customer (P23)
demanding good quality at the end of each sprint, on-demand specification
meetings (P24) allowing to clear doubts timely within the sprint iteration,
code quality/standards (P28), selective pair programming (C7) for critical
parts and allowing time for research and learning (C5) to build it right the
first time.

123 Chapter Six

Guideline G8: Build your tool chain to support agile practices as
the process shall never be a slave to the given tool chain.

While tools are important for any process implementation the process shall
never be limited by the given tool chain. If not the case, the tool chain must
be improved towards and integrated one for all sites which supports the agile
process (e.g. provide a workflow board). If not feasible or the tool integration
takes too much time, it is possible to start on paper and stream the content
with webcams to the other site. This is a cost-e↵ective approach to begin with
and can later be replaced by an electronic tool support (but does not have to).
It is furthermore important that all sites use the same tools (even if multiple
suppliers with their own separate tool landscape are collaborating). Having
as few separate tools as necessary to support the process is the preferred
approach (CT.G.13, NT.G.6).

Linked Practices: P7, P9, P11, P15, P20, P23
Mitigates Challenge: Communication
Rationale: The tool chain should increase, not limit, available communica-
tion channels. The tool chain should support the following practices: multi-
way informal communication (P7), ad-hoc screensharing (P9), accessible back-
logs (P11), multi-team workflow board (P15), metrics to evaluate the process
(P20) and frequent deployments to the customer (P23).

Guideline G9: Establish multi-level (multi-concern) feedback loops
as substitutes for face-to-face communication, including both
formal and informal ways of communication.

All three cases showed that multi-level feedback loops between sites need to be
established to serve di↵erent purposes from formal to informal communication.
However virtual meetings are harder to moderate and should be kept compact
and limited to a manageable size of participants. On-site meetings are prefer-
able to virtual ones but this is often not feasible in DSD. The formal and
informal channels of communication can substitute the missing face-to-face
communication in DSD. All sites should use the same language for communi-
cation (CT.G.4, NT.G.2, NT.G.3, NT.G.11, NT.G.13, C.G.6, C.G.9).

Linked Practices: P6, P9, P18, P19, P21, P22, P25, C7
Mitigates Challenge: Communication
Rationale: Multi-level feedback loops need to be established to allow a vary-
ing richness in communication and information using some or all of the fol-
lowing practices: cross-site reviews (P6), ad-hoc screensharing (P9), on-site
retrospective (P18) and sprint review (P19) with proxies, daily intra-team
communication (P21), inter-team scrum of scrums (P22), cross-team special-
ist meeting (P25) and selective pair programming (C7).

Building The ADAPT Framework 124

Guideline G10: Create an environment where agile can work.
Small steps over big leaps.

This guideline is general and overarching. Adapting the process implementa-
tion with the ADAPT framework takes time and small steps each sprint in the
right direction. In DSD it is even harder because there are always multiple
sites and also often multiple parties involved, which need to align their indi-
vidual processes to a working collective. Be willing to try something new and
do net let formalities and organizational constraints slow down the process
improvement. Although agile practices can be applied in traditional environ-
ments as case Continental showed, beware of a superficial adoption of agile
values. Making a distributed process work takes extra e↵ort and motivated
people, that also holds true for agile DSD, but it adds very valuable tools and
drives continuous process improvement (CT.G.8, NT.G.4, NT.G.8, NT.G.21,
C.G.1, C.G.3, C.G.7).

Linked Practices: P5, P7, P29, C3
Mitigates Challenge: Communication
Rationale: The overarching guideline G10 addresses communication as com-
munication is regarded as a mediating factor a↵ecting both coordination and
control in the CCC model (cf. Figure 3.2). Both an agile coach (P29) and
scrum masters on each site (P5) are important to oversee that agile values
are implemented truthfully and not have a superfluous agile implementation.
A very central practice for communication (and thus also for coordination
and control) is establishing multi-way informal communication (P7) to allow
teams to self-organize, best used in combination with having clear hours of
availability (C3) of all team members.

6.4 ADAPT Framework v1.0

After the presentation of practices in Section 6.2 and guidelines in Section
6.3 this section puts the pieces together to the first iteration of the ADAPT
learning framework and is as such the emerging theory and output artifact of
this thesis. Table 6.3 illustrates the whole framework including the hierarchical
setting of challenges categories, guidelines and practices and has been created
using the following step from Section 5.1.6:

Link all guidelines to one or more of the three DSD challenge types coordi-
nation, control and communication such that linked guidelines mitigate the
challenge.

Table 6.3 is the main output artifact of this thesis, as it provides a compact yet
overarching view of the full ADAPT framework in its first full iteration with
the hierarchy of challenge categories (CCC), guidelines and practices. The

125 Chapter Six

practitioner can use it as a one-page roadmap to steer the process adaptation
and instantiate a subset of the practices provided.

Building The ADAPT Framework 126

G1: Strive for an equal involvement of all sites with clearly defined roles and allow people enough time to concentrate on and fully enact their role.
G2: Create an environment that allows compact long-lived cross-functional teams to self-organize. Work towards distributed teams in the long run.
G3: Transfer knowledge and share information between sites to establish the necessary working flow of information.
G4: Use retrospective as mood barometer and driver for continuous process improvement.
G5: Visualize the workflow including all sites truthfully. Leave no steps out and clearly define the end of a step.
G6: Invite the customer in and establish a customer-centric process with frequent releases to the customer.
G7: Embrace quality over feature rush: Respect iterations across multiple sites and work towards a continuous flow.
G8: Build your tool chain to support agile practices as the process shall never be a slave to the given tool chain.
G9: Establish multi-level (multi-concern) feedback loops as substitutes for face-to-face communication, including both formal and informal ways of communication.
G10: Create an environment where agile can work. Small steps over big leaps.

Coordination Control Communication

Practices

Guidelines

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

P1: Travelling Ambassador X X
P2: Full Team On-Site Sessions X
P3: Team Rotations X X
P4: Team Events X
P5: Scrum Master on each Site X X X
P6: Cross-Site Reviews X X X
P7: Multi-Way Informal Communication X X X X
P8: Meeting minutes X X
P9: Ad-Hoc Screensharing X X
P10: Synchronized Sprints X X
P11: Accessible Backlogs X X
P12: Tangible Requirements (BDD) X X X
P13: Customer Requirements Workshop X X
P14: Feature-Team Organization X
P15: Multi-Team Workflow Board X X
P16: Multi-Level On-site Proxy-Planning X
P17: Separation of Roadmap and Sprint Planning X X
P18: On-Site Retrospective with Proxies X X
P19: On-Site Sprint Review with Proxies X X
P20: Establish Metrics to Evaluate the Process X X X
P21: Daily Intra-Team Communication X X
P22: Inter-Team Scrum of Scrums X X
P23: Frequent Deployments to Customer X X X
P24: On-Demand Specification Meetings X X
P25: Cross-Team Specialist Meeting X X
P26: Global All-Site Broadcast Meeting X X
P27: User Story Requirements X X
P28: Code Quality/Standards X X
P29: Agile Coach X
C1: Documentation Strictly in Common Language X X
C2: Document Informal Communication X
C3: Hours of Availability X
C4: O↵er Language Courses X X
C5: Plan Time for Research and Learning X X
C6: Lessons Learned Workshop after Project X
C7: Selective Pair Programming X X

Table 6.3 – Compact overview of the ADAPT framework v1.0 including the full hierarchy of challenge categories (CCC), guidelines
and practices.

127
C
h
a
p
t
e
r
S
ix

6.5 Conclusion

The cross-case analysis in this chapter aimed at answering the research ques-
tions that guided the multiple-case study RQ4a and RQ4b.

RQ4a. Which process design guidelines and practices can increase the chances
of a successful agile process implementation in distributed environments?

The three cases CrossTown, NoTimeshift and Continental showed that agile
practices can be successfully applied to all three distribution scenarios defined
by Prikladnicki et al. (2003). All three cases have been reported to the full
extent of the checklist (cf. Appendix A.3) designed as an outcome of this the-
sis’ systematic mapping study. The multiple-case study featured the following
cases:

• Case CrossTown: sites distributed within one city, spanning two dis-
tricts, yielding 15 conceptual guidelines and 40 conceptual practices

• Case NoTimeshift: sites distributed within one country, spanning two
cities, yielding 22 conceptual guidelines and 35 conceptual practices

• Case Continental: sites distributed within one continent, spanning three
countries, yielding 12 conceptual guidelines and 19 conceptual practices

So the individual single-case analysis resulted in total in 49 guideline and
94 practice concepts. These concepts were then analyzed, merged and com-
bined cross-case and led to a final set of 10 guidelines, 29 full practices (with
evidence in at least two out of the three cases) and 7 conceptual practices
(that lack evidence in more than one case). The practices were then linked to
guidelines and the guidelines in turn linked to the three challenge categories
coordination, control and communication, to build the first full iteration of
the ADAPT learning framework as the outcome of this thesis (cf. Table 6.3).
The guidelines provide high level information and can be implemented using
the concrete linked practices.

RQ4b. Do the di↵erent distribution scenarios a↵ect the implementation of
agile practices?

The thesis showed that 29 practices emerged from varying distribution scenar-
ios to generate common practices, hence there is no evidence that the scenario
has e↵ects on the implementation of the agile practices. However, the global
scenario has been outscoped for the ADAPT framework as it was not featured
in the multiple-case study, but it can be added in future iterations. With
the given empirical base of three case studies results show that the practices
are not covering each problem to the same extent, e.g. while there are P1-P4

Building The ADAPT Framework 128

dealing with missing proximity in DSD, there is only one practice to address
the sprint iteration (P10). Future iterations should try to grow larger in as-
pects that the current three cases could not shed more light on as of now.
Further discussion of this research question will be provided based on expert
interviews in Chapter 7.

129 Chapter Six

CHAPTER 7
Evaluation and Discussion of

Results

Contents

7.1 Focus Groups . 131

7.2 Expert Interviews . 133

7.3 Related Work . 136

7.4 Propositions revisited . 138

7.5 Research Questions revisited 140

7.6 Limitations . 144

7.7 Future Work . 146

This chapter discusses results and reports feedback on the ADAPT frame-
work from several points of view. Section 7.1 presents feedback from two
focus groups on the research methodology and framework design, one held at
the XP 2014 conference in Rome and one at the Center for Design Research
(CDR) at Stanford University. Further evaluation is conducted in Section 7.2,
where 10 experts have been interviewed about the thesis, the first half on the
framework design and the other half on the results (ADAPT v1.0). A summa-
rizing look at related work in the field up to 12/2015 is presented in Section
7.3 to position the framework in the research field, now that it is completed.
The propositions that have been created in the design theory (cf. Chapter 3)
are now revisited in Section 7.4 to analyze whether the ADAPT v1.0 has fol-
lowed the design truthfully and successfully fulfilled all five propositions TP1-
TP5. Section 7.5 gives a compact discussion and final answer to the research
questions RQ1-RQ4 that led through the di↵erent parts of the thesis. Section
7.6 describes the limitations and Section 7.7 presents various possibilities for

Evaluation and Discussion of Results 130

further enhancements in future work. In contrast to the preceding chapters,
this chapter does not feature a conclusion section as the overall conclusion is
covered in Chapter 8.

7.1 Focus Groups

Focus groups (Morgan, 1997) are group interviews, which a moderator guides
and the empirical data is what the participants say during the focus group.
The participants should typically come from a similar background. This thesis
applied two focus groups as a means of evaluation. The first one was held dur-
ing the XP 2014 conference and featured researchers and PhD students in the
field of agile software development. The second focus group was held with the
designX lab group at the Center for Design Research of Stanford University
during the research leave of the author and thus featured a group of design
research experts. Both focus groups were kicked o↵ with a compact presen-
tation by the author of about 20 minutes, which then evolved into a group
discussion/interview, moderated by the author. The focus groups proved to
be exceptionally useful to reflect and evaluate the design theory behind the
framework (focus group at CDR, Stanford University, cf. Section 7.1.2) and
the overall interest in the framework for the research field of agile software
development (focus group at XP 2014, cf. Section 7.1.1).

7.1.1 XP 2014 Conference, Rome

The author attended the PhD symposium at the 15th International Conference
on Agile Software Development (XP 2014) in Rome, Italy and presented the
status at the time with a special focus on the methodology, followed by a group
discussion with 10 participants (not including the author and not counting sit-
ins, who did not actively participate), which overall took about 40 minutes.
The organizers were Dr. Davide Falessi (Fraunhofer Institute for Experimen-
tal Software Engineering, USA) and Dr. Xiaofeng Wang (Free University of
Bozen-Bolzano). The invited mentor was Prof. Dr. Pekka Abrahamsson (Nor-
wegian University of Science and Technology). Additionally attending and
providing feedback was Prof. Dr. Giovanni Cantone (University of Rome ”Tor
Vergata”).

Overall the feedback was very helpful and valuable to the creation of this
thesis. Feedback received involved the sharpening of research questions to
better reflect the planned outcome of the dissertation. Discussion showed that
the process toolkit should be regarded as a first increment of such an agile
distributed design, not a fully matured one, which aligns with the intention of
the author and also the nascent nature of the research field. Furthermore, it
was advised to explicitly state the given situational context as this approach
may help to ensure a rigorous research output as well as facilitate future

131 Chapter Seven

research to build upon it. Table 7.1 summarizes the feedback and shows how
it was addressed in the thesis.

Feedback Implementation
Sharpen research questions as they cover
too many di↵erent aspects

Cut down to the final 4 RQs (cf. Chapter
1)

ADAPT framework should be regarded as
a first step in an ongoing process

Added more focus on it being a learning
framework (cf. Chapter 1)

Empirical context is very important for
future research

Designed the checklist for reporting con-
text (cf. Chapter 4)

How to measure the e↵ectiveness of the
ADAPT framework

Test propositions TP1-TP5 (cf. Chapter
3)

Evolve into a pattern language Needs more empirical data, future work
(cf. Section 7.7)

Systematic literature review is essential to
the nature of this thesis

Conducted a systematic mapping study
of the last 15 years (cf. Chapter 4)

Table 7.1 – Summary of the feedback received at XP 2014 conference and details
of its implementation.

7.1.2 Center for Design Research, Stanford University

The author held a focus group at the designX lab, Center for Design Research,
Stanford University, which lasted 90 minutes. This section describes the mod-
erated group interview. The 14 participants included Prof. Dr. Larry Leifer
as well as several of his research sta↵ and PhD students.

Overall the research endeavor of creating the ADAPT framework was regarded
as very worthwhile, addressing a current and still unresolved issue, but it was
also noted that it is a very big challenge and that it will require future iter-
ations after the finalization of the thesis. The name ADAPT was perceived
very positive and fitting well. It was stressed that design requirements need
to feature a rationale and means of verification (testable proposition). It was
clarified that the framework is not designed for a special kind of project but
can and should be adapted to any context using the guidelines and practices
at disposal. It was also discussed how implementing the ADAPT framework
would be a topic of its own which would require di↵erent methods for vali-
dation. This is out of scope for the thesis, which focuses on creating a first
full iteration of the framework. The need for a pattern language was also
addressed, which is a possible evolutionary step for the framework after more
empirical data is gathered. Furthermore, it was discussed whether the focus
was research or practice and explained that this is a research-based frame-
work which is built on empirical data and thus should also provide value to
the practitioner. Table 7.2 summarizes the feedback and shows how it was
addressed in the thesis.

Evaluation and Discussion of Results 132

Feedback Implementation
Grand challenge requiring future itera-
tions as well

Added to Design Theory (cf. Chapter 3)

Design requirements positively designed
including rationale and metric

Added to Design Theory (cf. Chapter 3)

How to deal with di↵erent types of
projects

The framework can deal with all types of
projects (cf. Chapter 3)

Implementing the framework Out-scoped for the thesis (cf. Section 7.7)
Pattern language Needs more empirical data, future work

(cf. Section 7.7)
Research or practice focus Cf. Design Theory in Chapter 3: it is a

research-based framework that also has
value to the practitioner

Table 7.2 – Summary of the feedback received from the designX lab at Stanford
University and details of its implementation.

7.2 Expert Interviews

Overall 10 semi-structured interviews have been conducted with experts in
either research or practice to evaluate this thesis. The interviews lasted from
about 40 to 90 minutes, were recorded, transcribed and coded. The interview
guide can be found in Appendix A.4. Table 7.3 provides a short overview of all
interviewed experts. As the table shows, the emphasis of the interviews was
two-fold, interviews #1 to #5 concentrated on the framework design at the
design stage, as the following exemplary quote shows, where a senior researcher
advises to create a tangible framework, which eventually became part of the
testable proposition TP4:

”A sense of my thinking: How could we get this framework on the
whiteboard, how could we start interacting with it, how can we
get beyond words only?” (Sr. Researcher, Interview #1)

Interviews #6 to #10, on the other hand, dealt with the actual outcome of
this thesis, the guidelines and practices of the ADAPT framework and their
value to research and practice, including a presentation of the the compact
ADAPT overview table (cf. Table 6.3):

”[The overview table] is neat and easy to use. In one page, you
have everything you need. [...] This is all of the information, only
what’s necessary. To me this is optimal, as an engineer. [...] What
I find intriguing is that you could take this as is and start using it
right now.” (Software Architect & PhD, Interview #6)

The second set of interviews covers a varying background: a software architect
and agile practitioner for many years, also holding a PhD (interview #6), a

133 Chapter Seven

long-time agile coach and certified scrum master (interview #7), an experi-
enced program manager for distributed projects, holding a PhD in the field
and taking a look from a non-agile perspective (interview #8), an industrial
agile researcher (interview #9, only interview done remote and not in person)
and interview #10, a practitioner and book author, for covering the product
owner perspective as well. The experts remain anonymous for privacy rea-
sons. Table 7.4 shows an aggregated summary of the interviews, including
both approval and suggestions for future improvement.

Current role Exp. Expertise Origin Lang. Time
1 Sr. Researcher 50 years Design

Research
US ENG 2x40’

2 Sr. Researcher 10 years Design
Research

FI ENG 92’

3 Sr. Industrial Researcher 15 years Design
Research

FI ENG 60’

4 Sr. Researcher 5 years Design
Research

DE GER 90’

5 Sr. Researcher 10 years Design
Research

DE GER 40’

6 Software Architect & PhD 5 years Agile DSD AT GER 63’
7 Agile Coach 7 years Agile DSD AT GER 67’
8 Program Manager & PhD 11 years DSD AT GER 60’
9 Industrial Researcher 8 years Agile DSD DE GER 69’
10 Product Owner 5 years Agile DSD AT GER 56’

Table 7.3 – Overview of the interview partners in the semi-structured expert
interviews during evaluation of results.

Evaluation and Discussion of Results 134

Type Category Code Summarized Feedback Addressed how Interview Source

A
p
p
ro
v
a
l

Methods

Action research Direct observation is the best research method, lucky to have such case for
this framework

No action required #1

Case study research Case study fits the problem well, used much in design research No action required #1
Design propositions Good messages, especially: adaptive, no silver bullet solution, easily ex-

tensible, tangible and detailed
No action required #1

Research problem Grand challenge that could be very rewarding No action required #1, #2
Overall methodology Very good structure with design theory, systematic mapping, multiple-case

study and evaluation
No action required #6, #7, #8, #9

Evaluation Focus groups and interviews are good means to achieve first evaluation No action required #4, #6, #7

ADAPT

Learning framework Modularity is well-fit for future iterations No action required #5
Golden nugget Practices were regarded as the central component with the guidelines pro-

viding good meta-information, ready-to-go for implementation study
No action required #2, #5, #6, #7, #8,

#9, #10
Guidelines Provide good meta-information, well-phrased using imperative No action required #2, #7, #10
ADAPT overview ta-
ble

Well-designed to have all necessary information on one page No action required #6, #7, #8, #9,
#10

Hierarchy The hierarchy of challenges - guidelines - practices serves the framework
well and is also tangible for the practitioner

No action required #2, #3, #5, #6, #7,
#8, #9, #10

Scoping Outscoping global scenario makes sense to cut the scope to a manageable
size

No action required #1, #2, #6, #7

Global scenario Many current practices make sense in a global scenario as well, good ex-
tensibility for that scenario

No action required #8

Im
p
ro
v
em

en
ts Future Work

Implementation
study

Would be very interesting, but requires di↵erent methods, could easily fill
the scope of another dissertation. Interviewees 7, 9 and 10 also showed
interest in supporting the implementation.

Added to future work
(cf. Section 7.7)

#1, #2, #3, #4,
#5, #6, #7, #8, #9,
#10

Database Could provide a great means to improve the empirical basis, but needs to
be moderated

Added to future work
(cf. Section 7.7)

#5, #6, #7, #8, #9

Practice cards Great idea, good starting point next to the overview table, worth testing
in practice

Added to future work
(cf. Section 7.7)

#6, #7, #8, #9,
#10

Distribution scenar-
ios

Once empirical basis is larger, analyze whether practices fit better to one
or the other distribution scenario

Added to future work
(cf. Section 7.7)

#3, #6, #10

Scaling Needs to be well-considered, depends also on the featured approach
(database or more studies)

Added to future work
(cf. Section 7.7)

#6, #7, #8, #9

Practice equivalency Future work could also analyze which practices are interchangeable, o↵er-
ing di↵erent perspectives on the practices such as simplicity, cost, impact,
etc.

Added to future work
(cf. Section 7.7)

#2, #5, #6, #7, #8,
#9, #10

Methods

Design criteria (past
version)

Too narrative, lack detail, need to be quantifiable Added rationale and
metric in Chapter 3

#1, #3, #4, #5

Adding a practice State criteria for adding a practice and establish a feedback loop Added to Chapter 5 #5
RQs Too many aspects covered in RQ Sharpened RQs in

Chapter 1
#2

Table 7.4 – Summary of the feedback received from 10 expert interviews for evaluating the framework design (interviews #1 to #5)
and the resulting ADAPT framework (interviews #6 to #10).

135
C
h
a
p
t
e
r
S
e
v
e
n

7.3 Related Work

The systematic mapping study in Chapter 4 covered related work from 1999 to
2014 by extending the study of Jalali and Wohlin (2012a) covering years 1999-
2009 by another five years, 2010-2014, e↵ectively covering the 15-year period
of 1999 to 2014. The results of the mapping have already been extensively
presented and discussed in Chapter 4. This section will now add to the discus-
sion by comparing the ADAPT framework v1.0 (cf. Chapter 6) to the results
of the mapping study conducted. The ADAPT framework limited its scope to
scrum and applicable XP practices because the extensive systematic mapping
showed that the vast majority of reported cases used either scrum (59.7%) or
mixed XP@Scrum (17.7%). By including both types, scrum and XP@Scrum,
into the ADAPT framework, it includes 77.4% of the analyzed cases and thus
indicates to have high relevance for current real-world problems. Figure 4.10
provided an overview of reported successful practices in the last 15 years.
The comparison with the ADAPT framework’s practices v1.0 shows that the
majority of practices can be found in other reported cases as well, thus im-
proving confidence in the results of this thesis. Table 7.5 o↵ers the complete
comparison and shows a rough mapping of the more general practices as part
of the mapping and the more concrete practices of the ADAPT framework.
The overview shows that most practices of the ADAPT framework were also
reported in other case studies, which shows that the ADAPT framework v1.0
has both support and relevance to related work. Both the systematic mapping
study and the first iteration of the ADAPT learning framework are a major
step towards aggregating know-how and thus moving to the next evolutionary
step away from isolated case study results to a common basis (ADAPT v1.0)
that other researchers can also build upon. It is also notable that ADAPT
practices seem to also have strong resemblance to the global scenario, which
was included in the systematic mapping, but out-scoped for the current iter-
ation of the ADAPT framework.

The following practices from the systematic mapping were not identified dur-
ing the multiple-case study and should be investigated further for considera-
tion to future iterations of the ADAPT framework: collective code ownership,
continuous integration, simple/incremental design, planning game, refactoring
and estimation meeting.

The discussion continues to address relevant related publications, also cov-
ering the remaining period of 09/2014-12/2015, which has not been part of
the systematic mapping study. Dumitriu et al. (2011) have published several
strategies to cope with agile global software development. They are a mix
between ADAPT’s guidelines and practices (in terms of abstraction), explain-
ing strategy and possible practices, in a limited fashion, in a few sentences.
Some practices of the ADAPT framework can also be found there: P2: Full-

Evaluation and Discussion of Results 136

ADAPT Practices Practices from Systematic Mapping of

1999-2014 (case count in parentheses)

P1: Travelling Ambassador Ambassador (2)
P2: Full Team On-Site Sessions Contact Visits (11)
P3: Team Rotations -
P4: Team Events -
P5: Scrum Master on each Site Scrum Master (21)
P6: Cross-Site Reviews Code Reviews (3)
P7: Multi-Way Informal Communication Video/Audio Conference Meetings (27), Instant

Messaging (10), Wiki (9), Chat (2)
P8: Meeting Minutes Enough Documentation (5)
P9: Ad-Hoc Screensharing Screen sharing (3)
P10: Synchronized Sprints Sprint/Iterations (38.5)
P11: Accessible Backlogs Backlogs (38)
P12: Tangible Requirements (BDD) TDD (12), Automated Testing (5)
P13: Customer Requirements Workshop Requirements Workshop (4)
P14: Feature-Team Organization Self-organizing team (2)
P15: Multi-Team Workflow Board Electronic/virtual task board (9)
P16: Multi-Level On-site Proxy-Planning Sprint planning (35)
P17: Separation of Roadmap and Sprint Plan-
ning

Sprint planning (35)

P18: On-Site Retrospective with Proxies Retrospective (32)
P19: On-Site Sprint Review with Proxies Sprint review/demo (26)
P20: Establish Metrics to Evaluate the Process Burndown Chart (4)
P21: Daily Intra-Team Communication Standup Meeting (50.5)
P22: Inter-Team Scrum of Scrums Scrum of Scrums (14)
P23: Frequent Deployments to Customer -
P24: On-Demand Specification Meetings Product Owner (24), Proxy Product Owner (4),

Product Owner Teams (4)
P25: Cross-Team Specialist Meeting -
P26: Global All-Site Broadcast Meeting -
P27: User Story Requirements User stories (20)
P28: Code Quality/Standards Coding Standards (16)
P29: Agile Coach Agile Coach (5)
C1: Documentation Strictly in Common Lan-
guage

-

C2: Document Informal Communication -
C3: Hours of Availability -
C4: O↵er Language Courses -
C5: Plan Time for Research and Learning -
C6: Lessons Learned Workshop after Project -
C7: Selective Pair Programming Pair Programming (18)

Table 7.5 – A comparison of ADAPT practices and practices reported in the
systematic mapping study of Chapter 4.

Team On-Site Sessions, P3: Team Rotations, P24: On-Demand Specification
Meetings and P29: Agile Coach. The scope is much more limited covering
ten strategies. van Hillegersberg et al. (2011) o↵er an overview of 33 prac-
tices as one-liners, but most of them extracted from single case reports, as an
introduction to their own case report. Šmite et al. (2010a) o↵er a small list
of practice advice, that also resembles the scope of the ADAPT guidelines in
terms of the level of abstraction. These examples, among others (cf. Chapter
4), show that there are many studies who strive to improve agile DSD, but
what separates the ADAPT framework is that it is fully based on empirical
evidence, demands full description of contextual factors and allows further
extension/iterations, also by other researchers.

Using the same search terms and databases as in Chapter 4 (except for
database INSPEC as it was not available via TU Wien library services at

137 Chapter Seven

the time of finalizing the thesis), the period of 09/2014 of 12/2015 yields 34
potentially relevant studies, indicating a great interest in the research field.
More recent work in the field includes several systematic literature reviews
such as (Rizvi et al., 2015; da Silva Estácio and Prikladnicki, 2015; Razavi and
Ahmad, 2014), case studies such as (Sundararajan et al., 2014; Lehtinen et al.,
2015), also more interest towards lean approaches in DSD (Viswanath, 2014;
Tripathi et al., 2015) and towards knowledge sharing (Razzak and Ahmed,
2014; Sungkur and Ramasawmy, 2014; Razzak and Mite, 2015). However, to
date (12/2015) no framework similar to the scope and extent of the ADAPT
framework can be found, neither in the systematic mapping study of 1999 to
08/2014 (cf. Chapter 4) nor in the additional literature search for the time
period of 09/2014 to 12/2015 within this section.

7.4 Propositions revisited

In Chapter 3 five propositions have been described which are now revisited
after the completion of the first full iteration of the ADAPT learning frame-
work, the focus groups and evaluation expert interviews. The proposition
descriptions, rationale and means of verification are taken from Chapter 3.
The discussion is added in this section. It shall be noted that future iterations
of the framework need to also adhere to these five initial propositions, i.e. the
propositions have to be revisited each time a new iteration of the ADAPT
framework is desired.

TP1. Each practice of the ADAPT framework is grounded in empirical evi-
dence.

Rationale: The ADAPT framework is not a silver bullet solution but it
is a set of tools based on empirical evidence showing what worked in which
context. Verification: The empirical context of all practices and guidelines
must be fully specified according to the checklist defined in Chapter 4. Dis-
cussion: The systematic mapping study of related work in the field resulted
in a checklist for reporting contextual information in case studies on agile
DSD. This checklist was used to describe the context for all three cases in this
study CrossTown, NoTimeshift and Continental. All practices (and guide-
lines) were derived from these three cases, where the context has been fully
described according to the checklist design. Hence this proposition has been
successfully fulfilled for the ADAPT framework v1.0.

TP2. The ADAPT framework allows a simple, pragmatic and iterative pro-
cess tailoring (rather than planned and strictly managed).

Rationale: Process tailoring should be part of any agile implementation.

Evaluation and Discussion of Results 138

Verification: Evaluation of the process design (cf. Section 3.3) is conducted
through two focus groups and ten expert interviews. Discussion: The feed-
back from expert interviews and focus groups has been overwhelmingly pos-
itive that the ADAPT framework in its current state (v1.0) is ready to be
implemented and experimented with in a real study to achieve further im-
provements. Such study is planned in future work (cf. Section 7.7). This
proposition is regarded as successfully fulfilled as the expert interviews indi-
cate that the framework is heading in the right direction, but also taking into
account that it needs further practical evaluation in future work.

TP3. The ADAPT framework supports project-based process tailoring (rather
than organization-based).

Rationale: Even within the same organization each project is unique. Veri-
fication: The multiple-case study needs to feature di↵erent distribution sce-
narios (outscoped: global scenario) and thus di↵erent project-based environ-
ments. Discussion: The multiple-case study featured three di↵erent distribu-
tion scenarios: CrossTown, NoTimeshift and Continental. 10 guidelines and
29 practices were found that emerged from at least two of these distribution
scenarios, which shows that the adapt framework provides value for di↵erent
distribution types and thus also di↵erent project settings. The global scenario
is currently out of scope but can be added to the framework once more em-
pirical evidence is gathered in future studies. Hence this proposition has been
successfully fulfilled for the ADAPT framework v1.0.

TP4. The ADAPT framework provides tangible and detailed advice to the
practitioner.

Rationale: In order to be of practical use the practices must provide enough
detail. Verification: Evaluation is conducted through two focus groups
and ten expert interviews. Discussion: The interviews (especially the more
industry-focused ones: #3, #6, #7, #8 and #10) showed that the current
iteration (v1.0) of the ADAPT framework provides a good starting point to
implement agile practices to a DSD environment. While it has been noted
that in some parts the variety of practices is rather limited (e.g. sprint vari-
ations, only P10 available), the overall common evaluation was that it is a
worthwhile endeavor, also for the practitioner. The current overview table
(cf. Table 6.3) was found to have a very compact design that is very useful
once you know what all the practices are about, for which the in-depth prac-
tice description has to be read first. There were also several interesting future
approaches to make the framework even easier to handle in practice (cf. future
work in Section 7.7 such as e.g. practice cards, a website/database or a pat-
tern language). Following the positive feedback by experts, this proposition
is regarded as successfully fulfilled for the current iteration of the ADAPT

139 Chapter Seven

framework, keeping in mind that future implementation studies can make the
testing of this proposition more robust.

TP5. The ADAPT framework is easily extensible.

Rationale: In order for the ADAPT framework to further evolve and im-
prove, practices and guidelines need to be extensible. Verification: Evalu-
ation is conducted through two focus groups and ten expert interviews. At
least one possible way of expanding the framework must be scheduled for
future work. Discussion: The current iteration (v1.0) has been built us-
ing three cases, where guidelines and practices were first extracted using a
grounded theory approach and then merged to a final set of practices and
guidelines, which emerged from at least two of the three cases. While the
two out of three approach is a good means to start building a base, it is not
an approach worth following for future iterations of the ADAPT framework,
as experts seemed to agree during the evaluation interviews. The experts
acknowledged that in general the flat hierarchical structure of the ADAPT
framework has good potential to be expanded, but that further scaling mech-
anisms need to be designed or, possibly, experimented with as the empirical
basis grows larger. Possible scaling techniques discussed during the interviews
(to be evaluated in a future study) included a fixed percentage of when a prac-
tice may be included (e.g. 66% successfully employed), which is agreed by the
author and the experts interviewed is not the way to proceed. Suggested ways
by experts included having worked at least once in all distribution scenar-
ios or have minimal empirical grounding of a certain number of cases (rather
than a percentage of all cases). It is also agreed that expanding the ADAPT
framework has to be moderated and that case studies by other authors can be
considered if all propositions are fulfilled (especially TP1 that the full empir-
ical context of the case study is reported). Hence the proposition is regarded
as successfully fulfilled with regard to positive feedback from experts that the
current framework design allows a variety of future scaling mechanisms, which
need to be analyzed in detail in future work.

7.5 Research Questions revisited

In Chapter 1 four RQs have been posed which are now revisited after the
completion of the first full iteration of the ADAPT learning framework as an
output to this thesis and also taking the evaluation in focus groups and expert
interviews into account. The RQs will be answered here in a compact manner.

RQ1. Why would distributed software development benefit from agile prac-
tices?

Evaluation and Discussion of Results 140

This introductory research question to the thesis has been tackled by ana-
lyzing related work. Based on the investigation presented in Chapter 2, the
typical challenges found in DSD are related to communication, coordination
and control. Previous studies indicate that they can be successfully mitigated
by implementing agile practices (cf. Section 2.2). The systematic mapping
study in Chapter 4 shows that there is an increasing research interest in the
fifteen years of 1999-2014 (and later) to transfer agile values to DSD environ-
ments, but that there is no framework yet to achieve that task.

RQ2. What are suitable design components for building a distributed agile
process framework?

Chapter 3 presented the complete design theory behind the ADAPT frame-
work. Table 3.3 discussed the design components purpose and scope, con-
structs, principles of form and function, artifact mutability, testable proposi-
tions, justificatory knowledge, principles of implementation and expository in-
stantiation. The design components clearly outlined the envisioned framework
and five testable propositions TP1-TP5 were described to test the ADAPT
design after completion. The precedent Section 7.4 revisited all five proposi-
tions and determined their successful accomplishment. It shall be noted that
a future implementation study is advised to further test the propositions and
that the propositions must also be satisfied in future iterations of the ADAPT
framework, beyond the scope of this thesis.

RQ3a. What does the research landscape in the field look like in the 15 years
of 1999 to 2014?

Chapter 4 examined the research landscape of agile DSD in great detail. In-
teresting findings include that 94.74% of the 95 finally included studies in
the mapping could have been found using only the Scopus and Compendex
database. The most prominent venues for publishing papers on agile DSD are
ICGSE, XP and AGILE conferences as well as (to a lesser extent) the journals
IST, JSS and JoS: EP. The most active countries in researching agile DSD are
the United States, Finland and Germany, and the most active universities in
the field are Aalto University, Universiti Teknologi PETRONAS and Blekinge
Institute of Technology. The most involved countries in agile DSD were Fin-
land and India as suppliers, UK and Denmark as customers and the United
States in both categories.

The map of research types (cf. Figure 4.6) shows that applying agile prac-
tices in DSD is an active research field with a variety of research types, most
prominently evaluation studies with an empirical background. Out of 95 in-
cluded studies in this thesis’ systematic mapping of Chapter 4 about half used

141 Chapter Seven

a qualitative approach and the rest is almost equally split between quantita-
tive, mixed method or a not properly specified methodology. The most used
research approach in the whole fifteen-year timespan of 1999-2014 was the
case study. Otherwise there is a rise in literature reviews, which indicates a
maturing research field.

The most reported cases in years 2010-2014 (47 out of 62) focus on the SE
process as a whole rather than on a specific part of the workflow which in-
dicates that research on agile practices in DSD is still quite holistic rather
than in-depth. Context details were often not stated clearly such as project
duration (29 cases), application domain (17) and project size (15). 45 studies
explicitly stated success and only 3 reported failure, which leads to the as-
sumption that publications are more solution-centric than problem-centric.

RQ3b. What has changed in the later five years 2010 to 2014 in compar-
ison to the former ten-year period of 1999-2009?

The systematic map of research types shows that, compared to 1999-2009,
there is a major increase in frequency of evaluation papers in the studied
newer five-year period of 2010 to 2014 as compared to the experience papers
that were most frequent in the years before (Jalali and Wohlin, 2010, 2012a).
This finding indicates increasing research attention and interest to mature
the field, which is also supported by a shift to a greater variety of research
approaches, from close to 90% qualitative research 1999-2009 down to close
to 50% 2010-2014. There is notably greater e↵ort towards the evolvement of
frameworks and models rather than mostly lessons learned before (Jalali and
Wohlin, 2012a). However, none of the said models or frameworks tackle a
similar scope as the ADAPT framework.

The greatest change of directions compared to 1999-2009 is the predominance
of scrum, more frequent application of mixed methods and the neglecting of
XP as a standalone process in agile DSD. That observation is supported in
Figure 4.10, showing that XP practices have been applied fewer times success-
fully in 2010-2014 compared to the years of 1999 to 2009. In general under-
specified context had been an issue in previous research (Jalali and Wohlin,
2010, 2012a) already. However, while the issue is definitely not resolved, most
studies in the 2010-2014 studied time period at least painted a better picture
for case characteristics than just ”distributed teams” or ”agile”, which was
frequent in years 1999-2009.

RQ3c. What are common agile practices and distribution scenarios?

Out of the 95 included studies, the majority (66 publications) had an em-
pirical background. To encourage a full description of context in future work

Evaluation and Discussion of Results 142

a checklist was designed as a further outcome of the systematic mapping study
of Chapter 4 that can be found in Appendix A.3.

The majority of reported studies had the following characteristics: o↵shore
(43 cases), far distance (29), large time gap (23), all-agile teams (23), two site
environment (22) and insourcing (16) but closely followed by outsourcing (14),
i.e. complex global cases. Compared to years 1999 to 2009 there is a greater
variety of involved countries being reported in general. Scrum is by far the
most used agile process across all distribution scenarios (37 cases), followed
by mixed methods (11), most notably the combination of scrum methodology
with XP development practices.

Out of all studied papers successful practices have been extracted 309 times
in the five-year period of 2010-2014 and 444 in total for the fifteen years of
1999-2014. For years 2010-2014, there is a strong support for the successful
implementation of the most basic scrum practices such as standup meeting (32
cases), product owner (32, including variations of proxy product owner and
product owner teams), backlog (31), sprint planning (25), retrospective (23),
scrum master (21), user stories and sprint reviews (18 cases each). Neglected
scrum practices (or ones that did not receive explicit attention in reports)
were estimation meetings (2 cases), self-organizing teams (2) and burndown
charts (2). Also, the scrum of scrums (6) has been seldom reported in DSD
environments, although it is a practice to support scaling in agile processes.
Overall for 1999-2014 the top three agile practices were standup meeting (50.5
cases), sprint/iterations (38.5 cases) and backlog (38 cases).

Agile practices are often supported by means to overcome distance. These
means are of general nature and not related to agile methods as such (only
covering years 2010-2014): video/audio conference meetings (27 cases), con-
tact visits (11), instant messaging (10), wiki (9), screen sharing (3), ambas-
sador (2) and chat (2). However, they are still important for the ADAPT
framework as these or similar means are needed in any distributed process
implementation, including agile ones.

RQ4a. Which process design guidelines and practices can increase the chances
of a successful agile process implementation in distributed environments?

The three cases CrossTown, NoTimeshift and Continental showed that ag-
ile practices can be successfully applied to all three distribution scenarios
defined by Prikladnicki et al. (2003). All three cases have been reported to
the full extent of the checklist (cf. Appendix A.3) designed as an outcome of
the systematic mapping study. The multiple-case study featured the following
cases:

143 Chapter Seven

• Case CrossTown: sites distributed within one city, spanning two dis-
tricts, yielding 15 conceptual guidelines and 40 conceptual practices

• Case NoTimeshift: sites distributed within one country, spanning two
cities, yielding 22 conceptual guidelines and 35 conceptual practices

• Case Continental: sites distributed within one continent, spanning three
countries, yielding 12 conceptual guidelines and 19 conceptual practices

So the individual single-case analysis resulted in total in 49 guideline and
94 practice concepts. These concepts were then analyzed, merged and com-
bined cross-case and led to a final set of 10 guidelines, 29 full practices (with
evidence in at least two out of the three cases) and 7 conceptual practices
(that lack evidence in more than one case). The practices were then linked to
guidelines and the guidelines in turn linked to the three challenge categories
coordination, control and communication, to build the first full iteration of
the ADAPT learning framework as the outcome of this thesis (cf. Table 6.3).
The guidelines provide high level information and can be implemented using
the concrete linked practices.

RQ4b. Do the di↵erent distribution scenarios a↵ect the implementation of
agile practices?

This thesis found 10 common guidelines and 29 common practices emerge
from varying distribution scenarios. The global scenario has been outscoped
for the ADAPT framework as it was not featured in the case study, but is
planned to be added in future iterations (cf. Section 7.7). Interview #8 with
an expert on global software development also confirmed that in fact most
of the current practices already have value in a global scenario, only missing
practices to better cope with cultural and timezone issues. The systematic
mapping study, which featured many studies in global scenarios, supports
that claim (cf. Table 7.5). With the given empirical basis of three case studies
results show that the practices are not covering each problem to the same ex-
tent, e.g. while there are P1-P4 dealing with missing proximity in DSD, there
is only one practice to address the sprint iteration (P10). Future iterations
of the ADAPT framework should try to grow larger in those aspects that
the current three cases could not shed more light on as of now. Nevertheless
experts during evaluation interviews agreed that the current set of guidelines
and practices is a very good starting point, both for an implementation study
as is, as well as for adding more cases to the empirical basis.

7.6 Limitations

Systematic Mapping. Reliability. Threats to the reliability and validity
were a great concern which is one of the reasons why multiple researchers were

Evaluation and Discussion of Results 144

involved in this systematic mapping study, e↵ectively minimizing individual
bias. Threats to study design and procedure have been discussed early in the
study and finalized before the beginning of the actual searches. The inclusion
process has been executed by the author, but has been double-checked by a
supporting researcher to the extent presented in Section 4.2. Reliability of
the procedure is also increased since this is a successful replication for the
most part (cf. Section 4.2 for adaptations) of (Jalali and Wohlin, 2012a) to
update trends and directions for the more recent years of 2010-2014. Validity.
Each step along the way has been documented and presented thoroughly and
extensively. All of the study has been conducted in a continuous and compact
timely flow led by the author, so that all information was fresh in the minds
of the researchers during execution, documentation and analysis of the study.
One of the most time-consuming parts during the inclusion process was to
identify replicate cases, i.e. evaluation studies, which have been published
more than once. The most promising approach to counter that was to group
publications by authors and try to make sure that the same case was only
reported once in our included study set. Still it is a di�cult long-winding
process since these repeatedly reported studies also tend to not reference each
other. After the complete paper draft has been set up by the first author, it
has also been thoroughly reviewed and improved by all authors for construct
and conclusion validity. Individual decisions may di↵er, but the author feels
confident that the general trends and directions identified in this study would
be very similar if replicated by other researchers.

Multiple-case study and the ADAPT framework. Like any empiri-
cal study this study exhibits certain threats to validity (Yin, 2003) and the
generalizability of the results is limited in light of its limitations. Construct va-
lidity was addressed by using multiple sources of evidence, a chain of evidence
and informants validated the results for each of the three cases in separate
feedback sessions. To achieve internal validity the author employed method,
data, investigator and theory triangulation. For external validity the author
deducted a checklist for reporting context in case studies based on the sys-
tematic mapping study in Chapter 4. Reliability was established by following
a case study protocol, a case study data drive and the data analysis software
ATLAS.ti for consistent handling. The great di↵erence in the cases’ context
was purposefully introduced via maximum variation (heterogeneity) sampling
with the objective of finding that ”a theme song emerged from all the scat-
tered noise” (Patton, 2002, p. 235). While multiple-case studies provide more
value for generalization than single-case studies, results should be regarded
as specific to the individual case’s context and thus generalized with caution
until more robust empirical evidence is found. Case Continental did not con-
tain a full-fledged agile process, but worked with agile development methods
inside a traditional setup. This resulted in a fewer amount of guidelines and
practices (due to the agile nature of the framework) but certainly enriched the

145 Chapter Seven

empirical basis due to the greatly distributed setting across three countries in
Europe.

The current setup of challenge categories, guidelines and practices has been
constructed solely by the author and then reviewed by experts during the
evaluation interviews. Once the empirical basis grows in future work, it would
be beneficial to employ methods such as card sorting (Nawaz, 2012) to further
refine the setup of guidelines and practices. The current iteration (v1.0) serves
as the base of the learning framework but does not cover each aspect equally
and is thus currently lacking alternatives to some of the practices. Until
further empirical studies are added to the framework in future iterations, the
conceptual practices have been provided to be tested if a current full practice
does not yield the expected results. This dissertation does not feature an
implementation study of the ADAPT framework as this was out-scoped and
would require di↵erent methods for validation and is planned for future work.

The focus groups and expert interviews served to reflect with both research
and industrial experts on the thesis’ methodology and results to minimize bias
and thus reduce limitations.

7.7 Future Work

There are several directions in which the ADAPT framework can be developed
in the future, following multiple of the approaches below or one exclusively.

Case Study: Implementing the ADAPT framework

Conducting one or several case studies to put the ADAPT framework v1.0
to the test is arguably the most important step (next to further building the
empirical basis) for future increments of the ADAPT learning framework. It
would allow to analyze the application of the current ADAPT guidelines and
practices and their e↵ectiveness and also take a closer look into how people
would use the ADAPT framework, when provided with the overview table
(cf. Table 6.3) and a short description of the aim of the framework and its
guidelines and practices. Interesting phenomena to analyze in this regard
could be which practices practitioners regard as interchangeable, possibly on
di↵erent dimensions such as e.g. simplicity (easy to implement), cost and
impact.

Growing the Empirical Basis: ADAPT Database and Website

Equally important to improving the usability of the framework is growing
the empirical basis which currently features the three cases of this thesis:
CrossTown, NoTimeshift and Continental. There are several possibilities to

Evaluation and Discussion of Results 146

grow the empirical basis, one is simply for the author to conduct more case
studies, e.g. for the global scenario, which was outscoped for this thesis. An-
other more intriguing possibility is to invite further researchers to partici-
pate in building the framework, which would be much faster for developing a
stronger empirical basis and also minimize researcher’s bias. The minimum
requirements for case studies to be considered as an addition to the empirical
basis of the ADAPT framework is that (at least) all types of contextual infor-
mation in the developed checklist (cf. Appendix A.3) are reported. For past
studies, this could be accomplished by contacting the researchers of the cases
identified in the systematic mapping study of this thesis to fill out the missing
pieces of contextual information in their case report. Yet another approach is
to develop an ADAPT database (with practices and guidelines) and a website,
where researchers and practitioners can search for practices and also e.g. com-
ment on them or suggest further practices. The latter would again require
a full presentation of all contextual information in the checklist developed.
However, building the ADAPT framework needs to be a moderated procedure
for systematic handling, otherwise the community could add/remove/modify
practices as they see fit. Once the empirical basis of practices grows larger, it
would also be interesting to investigate further which practices are reported
to work the most in which context (e.g. distribution scenarios).

ADAPT Pattern Language

It has been noted in both focus groups that developing a pattern language
(Alexander et al., 1977) is a possible future step. However, Alexander et al. de-
scribe their pattern language of 253 architectural patterns after eight years of
research in the matured research field of architecture. The ADAPT framework
addresses the current problem of distributed software development in the com-
parably new field of software engineering (in comparison to other disciplines).
Hence the thesis uses practices instead of patterns to address the di↵erence
in maturity. Furthermore, the current iteration of the ADAPT framework
is description-oriented (Aken, 2004). Once the empirical basis grows larger,
evolving the ADAPT framework to a (possibly more prescription-oriented)
pattern language in future iterations could be very interesting and rewarding
to both research and practice, similar to Alexander et al.’s contribution to the
field of architecture.

Gamification: ADAPT Practice Cards

An interesting approach could be to turn each practice into a playing card as
Figure 7.1 showcases. The practice cards can be used for a kick-o↵ workshop
(when deciding on an initial set of practices) and/or in each retrospective
(when deciding how to adapt the current process implementation). Agile pro-
cesses often rely on physical artifacts such as the paper boards and sticky

147 Chapter Seven

notes and using cards is nothing new to the agile practitioner as many have
used planning poker (Grenning, 2002) with success. The advantage of phys-
ical cards is that the practices become more tangible and the cards can be
grouped or aligned on the table without further ado to create the new process
implementation. No other tools would be required than a printer and a pair
of scissors. In a distributed environment it depends of course on how the ret-
rospective is set up, if it is held in a video conference setting, then physical
cards are of lesser use, but the cards could also be made available electroni-
cally (which could be a further improvement after the initial implementation
of the physical card game). Both physical and electronic cards would make
an interesting subject for future studies.

cc
c
ty
p
es

A IDPractice Title

Linked Guidelines

Practice Description

(a) ADAPT schematic practice card.

co
or
d
in
at
io
n

A P1Travelling
Ambassador

Linked Guidelines: G1, G3

The travelling ambas-

sador travels between
sites to exchange informa-
tion and serves as an on-
site proxy for the other
distant sites.

(b) ADAPT example card for P1.

Figure 7.1 – Gamification approach: card game for practices to be used during
kick-o↵ and retrospective (cards are in real-world size). Icon ”traveller” by

Alexander Wiefel from the Noun Project used under CC BY 3.0 US.

Evaluation and Discussion of Results 148

CHAPTER 8
Conclusion

This thesis created the first iteration of the ADAPT framework featuring
10 guidelines, 29 full practices (with evidence in at least two cases of the
multiple-case study) and 7 conceptual practices (lacking evidence in more
than one case). The guidelines and practices are regarded as more robust
as they emerged from three di↵erent distribution scenarios. The ADAPT
framework can be used both by researchers to further expand the empirical
basis and by practitioners to drive their process implementation in agile DSD
environments.
The ADAPT framework is based on a design theory that has been discussed
and evaluated during a four-month research visit at Stanford University’s Cen-
ter for Design Research and features the following core testable propositions
(TP):

TP1 Each practice and guideline of the ADAPT framework is grounded in
empirical evidence.

TP2 The ADAPT framework allows a simple, pragmatic and iterative process
tailoring (rather than planned and strictly managed).

TP3 The ADAPT framework supports project-based process tailoring (rather
than organization-based).

TP4 The ADAPT framework provides tangible and detailed advice to the
practitioner.

TP5 The ADAPT framework is easily extensible.

The surrounding research field has been extensively analyzed in a systematic
mapping study, o↵ering numerous insights, most prominently the frequency of
various practices in agile DSD. The mapping study also resulted in a checklist

Conclusion 150

for reporting context in agile DSD (cf. Appendix A.3) and thus serves as an
additional result of this thesis. The checklist has been used to report empiri-
cal context in the multiple-case study conducted which covered the following
distribution scenarios:

• Case CrossTown: sites distributed within one city, spanning two dis-
tricts, yielding 15 conceptual guidelines and 40 conceptual practices

• Case NoTimeshift: sites distributed within one country, spanning two
cities, yielding 22 conceptual guidelines and 35 conceptual practices

• Case Continental: sites distributed within one continent, spanning
three countries, yielding 12 conceptual guidelines and 19 conceptual
practices

The conceptual guidelines and practices from each single-case analysis were
then aggregated cross-case to arrive at the final set of 10 guidelines, 29 full
practices and 7 conceptual practices. The guidelines were connected to the
three challenge categories Coordination, Control and Communication. This
three-tiered hierarchy of challenge categories, guidelines and practices together
forms the first full iteration of the ADAPT framework as the outcome of this
thesis.
The ADAPT framework is regarded as a learning framework, which means
that it is designed with future iterations in mind to further improve both the
empirical basis (more cases to deduct more guidelines and practices) and the
utility of the framework for practitioners, by implementing the framework in
a case study. To evaluate this first iteration of the ADAPT framework, two
focus groups, one at Stanford University and one at the XP 2014 conference,
have been held and ten expert interviews have been conducted. The feedback
has been overwhelmingly positive, acknowledging this research endeavor as
a grand challenge, well-designed and fit for future iterations. Three experts
even o↵ered to implement the framework in one of their projects, right after
the interview has ended, which would be an important next step for future
work. Other improvements, as discussed with experts during interviews, in
future work will target growing the empirical basis by possibly inviting other
researchers in, which could be facilitated by a database/website, and making
the implementation more tangible by providing a set of physical practice cards
for kick-o↵ workshops and retrospectives.

151 Chapter Eight

List of Figures

2.1 Scrum process overview (Mountain Goat Software, 2005). 10

2.2 Scrum burndown chart (Kniberg and Skarin, 2010). 15

2.3 The 12 Extreme Programming (XP) practices (Beck, 1999). 16

2.4 XP@Scrum process (Mar and Schwaber, 2002) 17

2.5 Example kanban board (Kniberg and Skarin, 2010). 20

2.6 Kanban cumulative flow diagram (Kniberg and Skarin, 2010). . . . 21

2.7 Characteristics of DSD and agile practices compared (Ramesh et al.,
2006). 23

3.1 Schematic outline of the ADAPT framework: challenges, guidelines
and practices. 30

3.2 Challenge categories by Carmel and Agarwal (2001): Impacts of
distance in distributed software development. 32

3.3 Using the ADAPT framework for process design. 34

4.1 Six step inclusion process: Nyes/Nmb/Nno show the amount of rel-
evant/maybe relevant/irrelevant studies after each respective step. 45

4.2 A snippet of the implemented web form that has been used, show-
ing parts of the empirical data extraction for distributed software
development. 47

4.3 Total paper count and a trend line for agile practices in DSD for the
fifteen years of 1999-2014. Data from 1999 to 2009 is from (Jalali
and Wohlin, 2012a). Year 2014 does not account for the full year
as the search has been conducted in 08/2014 (plus AGILE2014 and
ICGSE2014 conferences). 49

4.4 Researchers’ a�liations (country and university): Only counts of
3 and more are included in this overview. Only years 2010 to 2014
are covered because this type of mapping was not covered in (Jalali
and Wohlin, 2010, 2012a). 49

152

4.5 Conferences and journals: Conferences show a clear lead of ICGSE,
XP and AGILE, while journal publications are more widespread
with many journals featuring just one included study. Only targets
with more than one publication are included in this overview. Only
years 2010 to 2014 are covered because the information was not
available in (Jalali and Wohlin, 2010, 2012a). 51

4.6 Distribution of research types over the studied years 2010-2014 and
data added from (Jalali and Wohlin, 2012a) for 2002-2009. There is
a notable shift from experience papers towards evaluation papers.
The total sum of studied papers for 2010-2014 is 111 papers here,
because experience reports are not part of the included studies
(N=95) for further analysis. 51

4.7 Research methods and sub-methods for 2010-2014 and data added
from (Jalali and Wohlin, 2012a) for 1999-2009. 52

4.8 Overview of the means of analysis and contributions of the studies
for 2010-2014 and data added from (Jalali and Wohlin, 2012a) for
1999-2009. 52

4.9 Mapping the usage of agile processes against the reported DSD
characteristics in the 62 reported cases in years 2010-2014. 55

4.10 Frequencies (>2) of successful application of agile practices for the
studied years 2010-2014 and also years 1999-2009 by Jalali and
Wohlin (2012a). 58

4.11 Frequencies (>2) of successful application of means to overcome
distance in agile processes for the studied years 2010-2014, which
was not covered by Jalali and Wohlin (2012a) for years 1999-2009. 59

5.1 Research methodology of the three individual cases and the cross-
case analysis. Case CrossTown follows an action research approach
and cases NoTimeshift and Continental use semi-structured inter-
views as primary source of investigation. Investigators attached in
the illustration to a case’s starting point have been participating in
all steps of the individual case. All others (e.g. senior researcher)
are explicitly attached only to the stages in which they have par-
ticipated in. 74

5.2 A dual imperative AR cycle (adapted from (McKay and Marshall,
2001)): The inbound practitioners’ cycle, designed to solve practi-
cal problems, provides input to the parallel outbound researchers’
cycle, designed to gather knowledge on the research problem. . . . 76

5.3 Atlas.ti qualitative data analysis software enables powerful yet sim-
ple management of quotations/codes across di↵erent input source
files. This shows a sample of the quotation manager with codes
and its respective quotations. 78

5.4 Case background timeline. 80

153

5.5 Bug, release and impediment count measured per sprint: sprints
2, 7, 11, 15, 19 and 22-26 denote shipments to the customer. In
these sprints one can see a rise in release frequency and closed bugs
(positive) but also a rise in new impediments (negative), which
shows that these sprints put the process to a test. The regular
shipments starting with sprint 22 allowed for a more continuous flow. 82

5.6 The microteams in place in case CrossTown. 83
5.7 Draft of the deducted guidelines of case CrossTown. 85
5.8 Draft of the deducted practices of case CrossTown. 85
5.9 Draft of the deducted guidelines of case NoTimeshift. 90
5.10 Draft of the deducted practices of case NoTimeshift. 90
5.11 Draft of the deducted guidelines of case Continental. 94
5.12 Draft of the deducted practices of case Continental. 94

7.1 Gamification approach: card game for practices to be used during
kick-o↵ and retrospective (cards are in real-world size). Icon ”trav-
eller” by Alexander Wiefel from the Noun Project used under CC
BY 3.0 US. 148

154

155

List of Tables

1.1 The research framework and chapter outline. 5

3.1 The eight components of design theory as defined by Gregor and
Jones (2007). 28

3.2 ADAPT framework vs. a concrete process instantiation (inspired
by (Gregor and Jones, 2007)). 29

3.3 The eight design components of the ADAPT framework’s design
theory. 36

3.4 Testable propositions for the design theory of the ADAPT framework. 37

4.1 Steps 5 of the six step inclusion process. 44
4.2 Coverage of included studies by the databases over the studied

years 2010-2014. ”Compendex, IEEE” e.g. means that the same
paper has been found in both Compendex and IEEE databases,
while e.g. ”Compendex” denotes an exclusive hit in only this re-
spective database. 50

4.3 Overview of the characteristics from 62 reported empirical cases
for years 2010-2014. Numbers in parentheses is data added from
(Jalali and Wohlin, 2010) for years 1999-2009. 53

4.4 Supplier to customer relationships between the countries involved
in agile DSD in the studied papers. Numbers in parentheses is data
added from (Jalali and Wohlin, 2012a). 56

5.1 Conceptual framework for the key factors to be extracted. Extrac-
tion details show the possible (exclusive) selection choices when
extracting data, separated by a comma, or a further description
(without concrete selection choices, i.e. free text). 71

5.2 Contextual information on the selected cases. 72
5.3 Di↵erent types of triangulation in the three cases. 73
5.4 The dual action research cycle and its implementation in scrum as

used in case CrossTown. 77
5.5 Team sizes distributed across two sites in case CrossTown. 80
5.6 Case CrossTown: identified problems, root causes and the decisions

taken. 84

156

5.7 Team sizes distributed across two sites in case NoTimeshift. 86
5.8 Case NoTimeshift: identified problems, root causes and the deci-

sions taken. 89
5.9 Team sizes distributed across three sites, in three di↵erent Euro-

pean countries, in case Continental. 91
5.10 Case Continental: identified problems, root causes and the deci-

sions taken. 93

6.1 The table gives an overview of the cross-case practice extraction
status after step 2 and shows 94 single-case practices. 100

6.2 The table gives an overview of the cross-case guidelines extraction
status after step 2 and shows 49 conceptual guidelines. 119

6.3 Compact overview of the ADAPT framework v1.0 including the full
hierarchy of challenge categories (CCC), guidelines and practices. . 127

7.1 Summary of the feedback received at XP 2014 conference and de-
tails of its implementation. 132

7.2 Summary of the feedback received from the designX lab at Stanford
University and details of its implementation. 133

7.3 Overview of the interview partners in the semi-structured expert
interviews during evaluation of results. 134

7.4 Summary of the feedback received from 10 expert interviews for
evaluating the framework design (interviews #1 to #5) and the
resulting ADAPT framework (interviews #6 to #10). 135

7.5 A comparison of ADAPT practices and practices reported in the
systematic mapping study of Chapter 4. 137

157

Bibliography

Abran, A., Moore, J. W., Bourque, P., Dupuis, R. and Tripp, L. Guide to the software
engineering body of knowledge. IEEE Computer Society, 2004.

Ågerfalk, J. and Fitzgerald, B. Flexible and distributed software processes: old petunias in
new bowls. In Communications of the ACM, 2006.

Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B. and Conchúir, Ó.
A framework for considering opportunities and threats in distributed software develop-
ment. In Proceedings of the International Workshop on Distributed Software Development
(Paris, Aug. 29, 2005). Austrian Computer Society, pp. 47–61, 2005.

Akbar, R., Hassan, M., Qureshi, M. and Safdar, S. Structured role based interaction model
for agile based outsourced IT projects: Client’s composite structure. Information Tech-
nology Journal, 10(5):1009 – 1016, 2011a. ISSN 18125638.

Akbar, R. and Hassan, M. F. A collaborative-interaction model of software project develop-
ment: An extension to agile based methodologies. In Information Technology (ITSim),
2010 International Symposium in, volume 1, pp. 1–6. IEEE, 2010.

Akbar, R., Hassan, M. F. and Abdullah, A. A Review of Prominent Work on Agile Processes
Software Process Improvement and Process Tailoring Practices. In Software Engineering
and Computer Systems, pp. 571–585. Springer, 2011b.

Akbar, R., Hassan, M. F., Abdullah, A., Safdar, S. and Qureshi, M. A. Directions and
advancements in global software development: A summarized review of GSD and agile
methods. Research Journal of Information Technology, 3(2):69–89, 2011c.

Akbar, R., Hassan, M. F. and Abdullah, A. A framework of software process tailoring for
small and medium size IT companies. In Computer & Information Science (ICCIS), 2012
International Conference on, volume 2, pp. 914–918. IEEE, 2012.

Aken, J. E. v. Management research based on the paradigm of the design sciences: the quest
for field-tested and grounded technological rules. Journal of management studies, 41(2):
219–246, 2004.

Alexander, C. The timeless way of building, volume 1. Oxford University Press, 1979.

Alexander, C., Ishikawa, S. and Silverstein, M. A pattern language: towns, buildings, con-
struction, volume 2. Oxford University Press, 1977.

Almeida, L. H., Albuquerque, A. B. and Pinheiro, P. R. A multi-criteria model for planning
and fine-tuning distributed scrum projects. In Global Software Engineering (ICGSE),
2011 6th IEEE International Conference on, pp. 75–83. IEEE, 2011.

158

Alqahtani, A. S., Moore, J. D., Harrison, D. K. and Wood, B. M. The Challenges of
Applaying Distributed Agile Software Development: A Systematic Review. International
Journal of Advances in Engineering & Technology, 5(2):23–36, January 2013.

Alsmadi, I. and Saeed, S. A software development process for open source and open com-
petition projects. International Journal of Business Information Systems, 12(1):110–122,
2013.

Alyahya, S., Ivins, W. K. and Gray, W. Raising the Awareness of Development Progress in
Distributed Agile Projects. Journal of Software, 8(12):3066–3081, 2013.

Ambler, S. Agile modeling: e↵ective practices for extreme programming and the unified
process. John Wiley & Sons, 2002.

Ambler, S. W. Questioning ”Best Practices” for Software Development: Practices are
Contextual, Never Best, 2011. URL http://www.ambysoft.com/essays/bestPractices.

html.

Anderson, D. J. Agile management for software engineering: Applying the theory of con-
straints for business results. Prentice Hall Professional, 2003.

Anderson, D. J. Kanban: Successful Evolutionary Change For Your Technology Business.
Blue Hole Press, 2010.

Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M.
and Wirfs-Brock, R. Agile management-an oxymoron?: who needs managers anyway? In
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pp. 275–277. ACM, 2003.

Ansari, A. A. and Ansari, A. Enabling to Apply XP Process in Distributed Development En-
vironments with Tool Support. International Journal of Computer Science Issues(IJCSI),
9(4):272–276, 2012.

Ansari, A. A., Sharafi, S. M. and Nematbakhsh, N. A method for requirements manage-
ment in distributed extreme programming environment. Journal of Theoretical & Applied
Information Technology, 20(1):52–58, 2010.

Ashraf, M. A., Shamail, S., Rana, Z. et al. Agile model adaptation for e-learning students’
final-year project. In Teaching, Assessment and Learning for Engineering (TALE), 2012
IEEE International Conference on, pp. T1C–18. IEEE, 2012.

Badampudi, D., Fricker, S. A. and Moreno, A. M. Perspectives on Productivity and Delays
in Large-Scale Agile Projects. In Agile Processes in Software Engineering and Extreme
Programming: 14th International Conference, XP 2013, Vienna, Austria, June 3-7, 2013,
Proceedings, volume 149, p. 180. Springer, 2013.

Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P. and Linkman, S. Evidence
relating to Object-Oriented software design: A survey. In Empirical Software Engineering
and Measurement, 2007. ESEM 2007. First International Symposium on, pp. 482–484.
IEEE, 2007.

Bandukda, M. and Nasir, Z. E�cacy of distributed pair programming. In Information and
Emerging Technologies (ICIET), 2010 International Conference on, pp. 1–6. IEEE, 2010.

Bannerman, P. L., Hossain, E. and Je↵ery, R. Scrum practice mitigation of global soft-
ware development coordination challenges: A distinctive advantage? In System Science
(HICSS), 2012 45th Hawaii International Conference on, pp. 5309–5318. IEEE, 2012.

159

http://www.ambysoft.com/essays/bestPractices.html
http://www.ambysoft.com/essays/bestPractices.html

Baskerville, R. and Pries-Heje, J. Discursive Co-development of Agile Systems and Agile
Methods. In Grand Successes and Failures in IT. Public and Private Sectors, pp. 279–294.
Springer, 2013.

Bass, J. M. Influences on agile practice tailoring in enterprise software development. In
AGILE India (AGILE INDIA), 2012, pp. 1–9. IEEE, 2012.

Bass, J. M. How product owner teams scale agile methods to large distributed enterprises.
Empirical Software Engineering, In-Print 20(6):1525–1557, 2015, Online–First, 2014.

Batra, D. Modified agile practices for outsourced software projects. Communications of the
ACM, 52(9):143–148, 2009.

Batra, D., Xia, W., VanderMeer, D. and Dutta, K. Balancing agile and structured devel-
opment approaches to successfully manage large distributed software projects: A case
study from the cruise line industry. Communications of the Association for Information
Systems, 27(1):21, 2010.

Battin, R. D., Crocker, R., Kreidler, J. and Subramanian, K. Leveraging resources in global
software development. Software, IEEE, 18(2):70–77, 2001.

Beck, K. Embracing change with extreme programming. Computer, 32(10):70–77, 1999.

Beck, K. Extreme programming explained: embrace change. Addison-Wesley Professional,
2000.

Beck, K. Test-driven development: by example. Addison-Wesley Professional, 2003.

Begel, A. and Nagappan, N. Usage and perceptions of agile software development in an
industrial context: An exploratory study. In Empirical Software Engineering and Mea-
surement, 2007. ESEM 2007. First International Symposium on, pp. 255–264. IEEE,
2007.

Belsis, P., Koutoumanos, A. and Sgouropoulou, C. PBURC: a patterns-based, unsupervised
requirements clustering framework for distributed agile software development. Require-
ments Engineering, 19(2):213–225, 2014.

Bocock, L. and Martin, A. There’s something about lean: A case study. In Agile Conference
(AGILE), 2011, pp. 10–19. IEEE, 2011.

Boehm, B. Guidelines for Verifying and Validating Software Requirements and Design
Specifications. Technical report, University of Southern California, 1979.

Boehm, B. Software risk management, pp. 1–19. ESEC ’89: 2nd European Software En-
gineering Conference University of Warwick, Coventry, UK September 11–15, 1989 Pro-
ceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. ISBN 978-3-540-46723-6.

Boehm, B. W. A spiral model of software development and enhancement. Computer, 21(5):
61–72, 1988.

Brereton, P., Kitchenham, B., Budgen, D. and Li, Z. Using a protocol template for case
study planning. In Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering. University of Bari, Italy, 2008.

Bryman, A., Burgess, B. et al. Analyzing qualitative data. Routledge, 2002.

Carmel, E. Global software teams: collaborating across borders and time zones. Prentice
Hall PTR, 1999.

160

Carmel, E. and Agarwal, R. Tactical approaches for alleviating distance in global software
development. Software, IEEE, 18(2):22–29, 2001.

Ceria, S. and Pallotti, C. Argentinas O↵shore Software Industry–Opportunities and Chal-
lenges. In Software Engineering Approaches for O↵shore and Outsourced Development,
pp. 23–36. Springer, 2010.

Checkland, P. and Holwell, S. Action research: its nature and validity. Systemic Practice
and Action Research, 11(1):9–21, 1998.

Chen, J. Q., Phan, D., Wang, B. and Vogel, D. R. Light-Weight Development Method: a
Case Study. In Service Systems and Service Management, 2007 International Conference
on, pp. 1–6. IEEE, 2007.

Chung, M.-W. and Drummond, B. Agile at yahoo! from the trenches. In Agile Conference,
2009. AGILE’09., pp. 113–118. IEEE, 2009.

Cocco, L., Mannaro, K. and Concas, G. A Model for Global Software Development with
Cloud Platforms. In Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on, pp. 446–452. IEEE, 2012.

Cockburn, A. and Williams, L. Agile software development: It’s about feedback and change.
Computer, 36(6):39–43, 2003.

Cohn, M. User stories applied: For agile software development. Addison-Wesley Professional,
2004.

Cohn, M. Agile estimating and planning. Pearson Education, 2005.

Coplien, J. O. A generative development process pattern language. Cambridge University
Press, New York, 1998.

Coyne, R. Designing information technology in the postmodern age: From method to
metaphor. Mit Press, 1995.

Cristal, M., Wildt, D. and Prikladnicki, R. Usage of Scrum practices within a global com-
pany. In Global Software Engineering, 2008. ICGSE 2008. IEEE International Conference
on, pp. 222–226. IEEE, 2008.

Cunningham, W. Episodes: A pattern language of competitive development. In Pattern
languages of program design 2, pp. 371–388. Addison-Wesley Longman Publishing Co.,
Inc., 1996.

da Silva, F. Q., Costa, C. and Prikladinicki, R. Challenges and solutions in distributed
software development project management: a systematic literature review. In Global
Software Engineering (ICGSE), 2010 5th IEEE International Conference on, pp. 87–96.
IEEE, 2010.

da Silva Estácio, B. J. and Prikladnicki, R. A Set of Practices for Distributed Pair Pro-
gramming. In International Conference on Enterprise Information Systems, pp. 331–338,
2014.

da Silva Estácio, B. J. and Prikladnicki, R. Distributed Pair Programming: A Systematic
Literature Review. Information and Software Technology, 63:1–10, 2015.

Damian, D. and Moitra, D. Guest Editors’ Introduction: Global Software Development:
How Far Have We Come? Software, IEEE, 23(5):17–19, 2006.

161

Damian, D. E. and Zowghi, D. RE challenges in multi-site software development organisa-
tions. Requirements engineering, 8(3):149–160, 2003.

Daneva, M. and Ahituv, N. What agile ERP consultants think of requirements engineer-
ing for inter-organizational ERP Systems: Insights from a Focus Group in BeNeLux.
In Evaluation & Assessment in Software Engineering (EASE 2012), 16th International
Conference on, pp. 284–288. IET, 2012.

Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., Ajmeri,
N., Ramteerthkar, U. and Wieringa, R. Agile requirements prioritization in large-scale
outsourced system projects: An empirical study. Journal of systems and software, 86(5):
1333–1353, 2013.

Davies, R. and Sedley, L. Agiles Coaching: Praxis-Handbuch für ScrumMaster, Teamleiter
und Projektmanager in der agilen Software-Entwicklung. Hüthig Jehle Rehm, 2010.

Davison, R., Martinsons, M. G. and Kock, N. Principles of canonical action research.
Information systems journal, 14(1):65–86, 2004.

del Nuevo, E., Piattini, M. and Pino, F. J. Scrum-based methodology for distributed software
development. In Global Software Engineering (ICGSE), 2011 6th IEEE International
Conference on, pp. 66–74. IEEE, 2011.

DeMarco, T. and Lister, T. Peopleware: Productive Projects and Teams Dorset House.
Dorset House Publishing Co., Inc., 1999.

Denzin, N. The research act: a theoretical introduction to sociological methods. McGraw-Hill,
2nd edition, 1978.

Denzin, N. K. and Lincoln, Y. S. The SAGE handbook of qualitative research. Sage, 2011.

Derby, E., Larsen, D. and Schwaber, K. Agile retrospectives: Making good teams great.
Pragmatic Bookshelf Raleigh, NC, 2006.

Dingsøyr, T., Nerur, S., Balijepally, V. and Moe, N. B. A decade of agile methodologies:
Towards explaining agile software development. Journal of Systems and Software, 85(6):
1213–1221, 2012.

Dogs, C. and Klimmer, T. Agile Software-Entwicklung kompakt. mitp, 2005.

Dorairaj, S., Noble, J. and Malik, P. Understanding Lack of Trust in Distributed Agile
Teams: A grounded theory study. In Evaluation & Assessment in Software Engineering
(EASE 2012), 16th International Conference on, pp. 81–90. IET, 2012a.

Dorairaj, S., Noble, J. and Malik, P. Understanding the Importance of Trust in Distributed
Agile Projects: A Practical Perspective. In Agile Processes in Software Engineering and
Extreme Programming: 11th International Conference, XP 2010, Trondheim, Norway,
June 1-4, 2010, Proceedings, volume 48, p. 172. Springer Science & Business Media,
2010.

Dorairaj, S., Noble, J. and Malik, P. E↵ective Communication in Distributed Agile Soft-
ware Development Teams. In Agile Processes in Software Engineering and Extreme Pro-
gramming: 12th International Conference, XP 2011, Madrid, Spain, May 10-13, 2011,
Proceedings, volume 77, p. 102. Springer Science & Business Media, 2011.

Dorairaj, S., Noble, J. and Malik, P. Knowledge management in distributed agile software
development. In Agile Conference (AGILE), 2012, pp. 64–73. IEEE, 2012b.

162

Dorairaj, S., Noble, J. and Allan, G. Agile software development with distributed teams:
Senior management support. In Global Software Engineering (ICGSE), 2013 IEEE 8th
International Conference on, pp. 197–205. IEEE, 2013.

Dullemond, K., van Gameren, B. and van Solingen, R. How technological support can
enable advantages of agile software development in a GSE setting. In Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on, pp. 143–152.
IEEE, 2009.

Dumitriu, F., Oprea, D. and Mesnita, G. Issues and strategy for agile global software
development adoption. Recent researches in Applied Economics, pp. 37–42, 2011.

Dyb̊a, T., Kampenes, V. B. and Sjøberg, D. I. A systematic review of statistical power in
software engineering experiments. Information and Software Technology, 48(8):745–755,
2006.

Eckstein, J. Agile Software Development with Distributed Teams. Dorset House Publishing
Co., Inc., 2010.

Eckstein, J. Agile software development with distributed teams: Staying agile in a global
world. Addison-Wesley, 2013.

Estler, H.-C., Nordio, M., Furia, C. A., Meyer, B. and Schneider, J. Agile vs. structured
distributed software development: A case study. Empirical Software Engineering, 19(5):
1197–1224, 2014.

Falcon, A. Aristotle on Causality. In The Stanford Encyclopedia of Philosophy. Spring
2014 edition, 2014. URL http://plato.stanford.edu/archives/spr2014/entries/

aristotle-causality/.

Falessi, D., Oliveira, R., Taylor, K., Fontana, R. M., Power, K., Vallon, R., Giardino, C.,
Rejab, M. M. and Wang, X. Trends and emerging areas of agile research: the report
on XP2014 PhD symposium. ACM SIGSOFT Software Engineering Notes, 39(5):26–29,
2014.

Femmer, H., Kuhrmann, M., Stimmer, J. and Junge, J. Experiences from the Design of an
Artifact Model for Distributed Agile Project Management. In Global Software Engineering
(ICGSE), 2014 IEEE 9th International Conference on, pp. 1–5. IEEE, 2014.

Fernando, B. A. J., Hall, T. and Fitzpatrick, A. The impact of media selection on stakeholder
communication in agile global software development: a preliminary industrial case study.
In Proceedings of the 49th SIGMIS annual conference on Computer personnel research,
pp. 131–139. ACM, 2011.

Fowler, M. and Highsmith, J. The agile manifesto. Software Development, 9(8):28–35, 2001.

Fraser, S., Rising, L., Ambler, S., Cockburn, A., Eckstein, J., Hussman, D., Miller, R.,
Striebeck, M. and Thomas, D. A fishbowl with piranhas: coalescence, convergence or
divergence? In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pp. 937–939. ACM, 2006.

Gilb, T. and Finzi, S. Principles of software engineering management, volume 4. Addison-
Wesley Reading, MA, 1988.

Glass, R. L., Vessey, I. and Ramesh, V. Research in software engineering: an analysis of the
literature. Information and Software technology, 44(8):491–506, 2002.

163

http://plato.stanford.edu/archives/spr2014/entries/aristotle-causality/
http://plato.stanford.edu/archives/spr2014/entries/aristotle-causality/

Gloger, B. Scrum: Produkte zuverlässig und schnell entwickeln. Hanser, 2011.

Grechenig, T., Bernhart, M., Breiteneder, R. and Kappel, K. Softwaretechnik: mit Fall-
beispielen aus realen Entwicklungsprojekten. Pearson Deutschland GmbH, 2010.

Green, R., Mazzuchi, T. and Sarkani, S. Communication and quality in distributed agile
development: an empirical case study. Proceeding in World Academy of Science, Engi-
neering and Technology, 61:322–328, 2010a.

Green, R., Mazzuchi, T. and Sarkani, S. Understanding the role of synchronous & asyn-
chronous communication in agile software development and its e↵ects on quality. Journal
of Information Technology Management, 21(2):8, 2010b.

Greenleaf, R. K. Servant leadership: A journey into the nature of legitimate power and
greatness. Paulist Press, 2002.

Gregg, D. G., Kulkarni, U. R. and Vinzé, A. S. Understanding the philosophical under-
pinnings of software engineering research in information systems. Information Systems
Frontiers, 3(2):169–183, 2001.

Gregor, S. and Jones, D. The anatomy of a design theory. Journal of the Association for
Information Systems, 8(5):312–335, 2007.

Grenning, J. Planning poker or how to avoid analysis paralysis while re-
lease planning, 2002. URL http://www.renaissancesoftware.net/files/articles/

PlanningPoker-v1.1.pdf.

Hallikainen, M. Experiences on agile seating, facilities and solutions: multisite environment.
In Global Software Engineering (ICGSE), 2011 6th IEEE International Conference on,
pp. 119–123. IEEE, 2011.

Hamid, A. M. E. Upgrading distributed agile development. In Computing, Electrical
and Electronics Engineering (ICCEEE), 2013 International Conference on, pp. 709–714.
IEEE, 2013.

Hannay, J. E., Sjøberg, D. I. and Dyb̊a, T. A systematic review of theory use in software
engineering experiments. Software Engineering, IEEE Transactions on, 33(2):87–107,
2007.

Hanssen, G. K., Westerheim, H. and Bjørnson, F. O. Tailoring RUP to a defined project
type: A case study. In Product Focused Software Process Improvement, pp. 314–327.
Springer, 2005.

Hanssen, G. K., Šmite, D. and Moe, N. B. Signs of agile trends in global software engineering
research: A tertiary study. In Global Software Engineering Workshop (ICGSEW), 2011
Sixth IEEE International Conference on, pp. 17–23. IEEE, 2011.

Heeager, L. T. and Rose, J. Optimising agile development practices for the maintenance
operation: nine heuristics. Empirical Software Engineering, In-Print 20:1762–1784, 2015,
Online–First, 2014.

Herbsleb, J. D. and Mockus, A. An empirical study of speed and communication in globally
distributed software development. Software Engineering, IEEE Transactions on, 29(6):
481–494, 2003.

Herbsleb, J. D. and Moitra, D. Global software development. Software, IEEE, 18(2):16–20,
2001.

164

http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf
http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf

Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M. and Finholt, T. A. Introducing
instant messaging and chat in the workplace. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 171–178. ACM, 2002.

Herriott, R. E. and Firestone, W. A. Multisite qualitative policy research: Optimizing
description and generalizability. Educational researcher, pp. 14–19, 1983.

Highsmith, J. Agile Project Management: Creating Innovative Products. Addison Wesley,
2004.

Hildenbrand, T., Geisser, M., Kude, T., Bruch, D. and Acker, T. Agile methodologies for
distributed collaborative development of enterprise applications. In Complex, Intelligent
and Software Intensive Systems, 2008. CISIS 2008. International Conference on, pp. 540–
545. IEEE, 2008.

Holmström, H., Fitzgerald, B., Ågerfalk, P. J. and Ó Conchúir, E. Agile practices reduce
distance in global software development. Information Systems Management, 23(3):7–18,
2006.

Hong, N., Yoo, J. and Cha, S. Customization of scrum methodology for outsourced e-
commerce projects. In Software Engineering Conference (APSEC), 2010 17th Asia Pa-
cific, pp. 310–315. IEEE, 2010.

Hooker, R. Aristotle: The Four Causes-Physics II. 3, 1996. URL http://richard-hooker.

com/sites/worldcultures/GREECE/4CAUSES.HTM.

Hossain, E., Babar, M. A. and Paik, H.-y. Using scrum in global software development: a
systematic literature review. In Global Software Engineering, 2009. ICGSE 2009. Fourth
IEEE International Conference on, pp. 175–184, 2009.

Hossain, E., Bannerman, P. L. and Je↵ery, D. R. Scrum practices in global software de-
velopment: a research framework. In Product-focused software process improvement, pp.
88–102. Springer, 2011a.

Hossain, E., Bannerman, P. L. and Je↵ery, R. Towards an understanding of tailoring scrum in
global software development: a multi-case study. In Proceedings of the 2011 International
Conference on Software and Systems Process, pp. 110–119. ACM, 2011b.

IEEE. 610.12-1990 Standard glossary of software engineering terminology, 1990.

Inayat, I., Salim, S. S. and Kasirun, Z. M. Socio-technical aspects of requirements-driven
collaboration (RDC) in agile software development methods. In Open Systems (ICOS),
2012 IEEE Conference on, pp. 1–6. IEEE, 2012.

Jacobson, I. Object-oriented software engineering. Addison-Wesley, 1994.

Jalali, S. and Wohlin, C. Agile practices in global software engineering-A systematic map.
In Global Software Engineering (ICGSE), 2010 5th IEEE International Conference on,
pp. 45–54. IEEE, 2010.

Jalali, S. and Wohlin, C. Global software engineering and agile practices: a systematic
review. Journal of Software: Evolution and Process, 24(6):643–659, 2012a.

Jalali, S. and Wohlin, C. Systematic literature studies: database searches vs. backward
snowballing. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, pp. 29–38. ACM, 2012b.

165

http://richard-hooker.com/sites/worldcultures/GREECE/4CAUSES.HTM
http://richard-hooker.com/sites/worldcultures/GREECE/4CAUSES.HTM

Janes, A. and Succi, G. To pull or not to pull. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages and applica-
tions, pp. 889–894. ACM, 2009.

Jiménez, M., Piattini, M. and Vizcáıno, A. Challenges and improvements in distributed
software development: A systematic review. Advances in Software Engineering, 2009:3,
2009.

Jones, D. T., Roos, D. and Womack, J. P. Machine that Changed the World. Simon and
Schuster, 1990.

Kajko-Mattsson, M., Azizyan, G. and Magarian, M. K. Classes of distributed Agile devel-
opment problems. In Agile Conference (AGILE), 2010, pp. 51–58. IEEE, 2010.

Kamaruddin, N. K., Arshad, N. H. and Mohamed, A. Chaos issues on communication in
Agile Global Software Development. In Business Engineering and Industrial Applications
Colloquium (BEIAC), 2012 IEEE, pp. 394–398. IEEE, 2012.

Kampenes, V. B., Dyb̊a, T., Hannay, J. E. and Sjøberg, D. I. A systematic review of e↵ect
size in software engineering experiments. Information and Software Technology, 49(11):
1073–1086, 2007.

Kanwal, F., Bashir, K. and Ali, A. H. Documentation Practices for O↵shore Agile Software
Development. Life Science Journal, 11(10s), 2014.

Khan, M. I., Qureshi, M. A. and Abbas, Q. Agile methodology in software development
(SMEs) of Pakistan software industry for successful software projects (CMM framework).
In Educational and Network Technology (ICENT), 2010 International Conference on, pp.
576–580. IEEE, 2010.

Kitchenham, B. and Charters, S. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-01, School of Computer Science and
Mathematics, Keele University, 2007.

Kitchenham, B., Pickard, L. and Pfleeger, S. L. Case studies for method and tool evaluation.
IEEE software, 12(4):52–62, 1995.

Klein, H., Knauss, E. and Rausch, A. Scaling Software Development Methods from Co-
located to Distributed. In Software Quality: 4th International Conference, SWQD 2012,
Vienna, Austria, January 17-19, 2012, Proceedings, volume 94, p. 71. Springer, 2012.

Klimpke, L., Kramer, T., Betz, S. and Nordheimer, K. Globally distributed software de-
velopment in small and medium-sized enterprises in germany: Reasons, locations, and
obstacles. In ECIS 2011 Proceedings, number 118, 2011.

Kniberg, H. Scrum and XP from the Trenches. Lulu.com, 2007.

Kniberg, H. and Skarin, M. Kanban and Scrum-making the most of both. Lulu.com, 2010.

Korhonen, K. Evaluating the e↵ect of agile methods on software defect data and defect re-
porting practices-a case study. In Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference on the, pp. 35–43. IEEE, 2010.

Korkala, M. and Abrahamsson, P. Communication in distributed agile development: A case
study. In Software Engineering and Advanced Applications, 2007. 33rd EUROMICRO
Conference on, pp. 203–210. IEEE, 2007.

166

Korkala, M., Pikkarainen, M. and Conboy, K. A case study of customer communication in
globally distributed software product development. In Proceedings of the 11th Interna-
tional Conference on Product Focused Software, pp. 43–46. ACM, 2010.

Kruchten, P. The rational unified process: an introduction. Addison-Wesley Professional,
2004.

Kuhrmann, M., Mendez Fernandez, D. and Grober, M. Towards artifact models as process
interfaces in distributed software projects. In Global Software Engineering (ICGSE), 2013
IEEE 8th International Conference on, pp. 11–20. IEEE, 2013.

Ladas, C. Scrumban-essays on kanban systems for lean software development. Modus Co-
operandi Press, 2008.

Lako↵, G. and Johnson, M. Philosophy in the flesh: The embodied mind and its challenge
to western thought. Basic books, 1998.

Larman, C. and Vodde, B. Scaling lean & agile development: thinking and organizational
tools for large-scale Scrum. Addison-Wesley, 2009.

Lavazza, L., Morasca, S., Taibi, D. and Tosi, D. Applying SCRUM in an OSS Development
Process: An Empirical Evaluation. In Agile Processes in Software Engineering and Ex-
treme Programming: 11th International Conference, XP 2010, Trondheim, Norway, June
1-4, 2010, Proceedings, volume 48, p. 147. Springer Science & Business Media, 2010.

Lee, J. C., Judge, T. K. and McCrickard, D. S. Evaluating extreme scenario-based design in
a distributed agile team. In CHI’11 Extended Abstracts on Human Factors in Computing
Systems, pp. 863–877. ACM, 2011.

Lehtinen, T. O., Virtanen, R., Viljanen, J. O., Mäntylä, M. V. and Lassenius, C. A tool sup-
porting root cause analysis for synchronous retrospectives in distributed software teams.
Information and Software Technology, 56(4):408–437, 2014.

Lehtinen, T. O., Virtanen, R., Heikkilä, V. T. and Itkonen, J. Why the Development
Outcome Does Not Meet the Product Owners Expectations? In Agile Processes, in
Software Engineering, and Extreme Programming: 16th International Conference, XP
2015, Helsinki, Finland, May 25-29, 2015, Proceedings, volume 212, p. 93. Springer,
2015.

Lencioni, P. M. and Schieberle, A. Die 5 Dysfunktionen eines Teams. John Wiley & Sons,
2014.

Lewin, K. Action research and minority problems. Journal of social issues, 2(4):34–46, 1946.

Licorish, S. A. and MacDonell, S. G. How Do Globally Distributed Agile Teams Self-
organise?-Initial Insights from a Case Study. In ENASE, pp. 157–164, 2013.

Lipnack, J. and Stamps, J. Virtual teams: Reaching across space, time, and organizations
with technology. Wiley, 1997.

Maher, P. E., Kourik, J. L. and Chookittikul, W. Exploratory Study of Agile Methods in
the Vietnamese Software Industry. In Computing in the Global Information Technology
(ICCGI), 2010 Fifth International Multi-Conference on, pp. 300–304. IEEE, 2010.

Malone, T. W. and Crowston, K. The interdisciplinary study of coordination. ACM Com-
puting Surveys (CSUR), 26(1):87–119, 1994.

167

Mar, K. and Schwaber, K. Scrum with XP. Informit.com, 2002. URL http://www.informit.

com/articles/article.aspx?p=26057.

Marques, A. B., Rodrigues, R. and Conte, T. Systematic literature reviews in distributed
software development: A tertiary study. In Global Software Engineering (ICGSE), 2012
IEEE Seventh International Conference on, pp. 134–143. IEEE, 2012.

Martin, J. Rapid application development. Macmillan Publishing Co., Inc., 1991.

Mart́ınez-Ruiz, T., Münch, J., Garćıa, F. and Piattini, M. Requirements and constructors
for tailoring software processes: a systematic literature review. Software Quality Journal,
20(1):229–260, 2012.

McCann, J. and Galbraith, J. R. Interdepartmental relations. Handbook of organizational
design, 2:60–84, 1981.

McKay, J. and Marshall, P. The dual imperatives of action research. Information Technology
& People, 14(1):46–59, 2001.

Meyer, S., Knauss, E. and Schneider, K. Distributing a Lean Organization: Maintaining
Communication While Staying Agile. In Lean Enterprise Software and Systems: First In-
ternational Conference, LESS 2010, Helsinki, finland, October 17-20, 2010, Proceedings,
volume 65, p. 99. Springer, 2010.

Miles, M. B. and Huberman, A. Qualitative Data Analysis. SAGE, 1994.

Mirakhorli, M., Khanipour Rad, A., Shams, F., Pazoki, M. and Mirakhorli, A. RDP tech-
nique: A practice to customize XP. In Proceedings of the 2008 international workshop on
Scrutinizing agile practices or shoot-out at the agile corral, pp. 23–32. ACM, 2008.

Modi, S., Abbott, P. and Counsell, S. Negotiating common ground in distributed agile
development: A case study perspective. In Global Software Engineering (ICGSE), 2013
IEEE 8th International Conference on, pp. 80–89. IEEE, 2013.

Morgan, D. L. The focus group guidebook, volume 1. Sage publications, 1997.

Mountain Goat Software, . Scrum Overview for Agile Software Development, 2005. URL
http://www.mountaingoatsoftware.com/agile/scrum/overview.

Mudumba, V. and Lee, O.-K. A new perspective on GDSD risk management: agile risk
management. In Global Software Engineering (ICGSE), 2010 5th IEEE International
Conference on, pp. 219–227. IEEE, 2010.

Nagle, T., McAvoy, J. and Sammon, D. Utilising mindfulness to analyse agile global software
development. In ECIS 2011 Proceedings, p. 119, 2011.

Nawaz, A. A Comparison of Card-sorting Analysis Methods. In The 10th Asia Pacific
Conference on Computer Human Interaction. 2012, pp. 583–592, 2012.

Nawaz, A. I. and Zualkernan, I. A. The role of agile practices in disaster management and
recovery: a case study. In Proceedings of the 2009 Conference of the Center for Advanced
Studies on Collaborative Research, pp. 164–173. IBM Corp., 2009.

Nevo, S. and Chengalur-Smith, I. Enhancing the performance of software development
virtual teams through the use of agile methods: a pilot study. In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pp. 1–10. IEEE, 2011.

168

http://www.informit.com/articles/article.aspx?p=26057
http://www.informit.com/articles/article.aspx?p=26057
http://www.mountaingoatsoftware.com/agile/scrum/overview

Niinimaki, T. Face-to-face, email and instant messaging in distributed agile software devel-
opment project. In Global Software Engineering Workshop (ICGSEW), 2011 Sixth IEEE
International Conference on, pp. 78–84. IEEE, 2011.

Noordeloos, R., Manteli, C. and Van Vliet, H. From RUP to Scrum in global software
development: A case study. In Global Software Engineering (ICGSE), 2012 IEEE Seventh
International Conference on, pp. 31–40. IEEE, 2012.

North, D. Introducing BDD. Better Software, March, 2006.

Nurmi, A., Hallikainen, P. and Rossi, M. Coordination of Outsourced Information System
Development in Multiple Customer Environment-A Case Study of a Joint Information
System Development Project. In System Sciences, 2005. HICSS’05. Proceedings of the
38th Annual Hawaii International Conference on, pp. 260a–260a. IEEE, 2005.

Ó Conchúir, E., Holmström Olsson, H., Ågerfalk, P. J. and Fitzgerald, B. Benefits of global
software development: exploring the unexplored. Software Process: Improvement and
Practice, 14(4):201–212, 2009.

Ohno, T. Toyota Seisan Houshiki.[The Toyota Production System]. Diamond, 1978.

Ohno, T. Toyota production system: beyond large-scale production. Productivity press, 1988.

Paasivaara, M. Coaching global software development projects. In Global Software Engi-
neering (ICGSE), 2011 6th IEEE International Conference on, pp. 84–93. IEEE, 2011.

Paasivaara, M. and Lassenius, C. Could global software development benefit from agile
methods? In Global Software Engineering, 2006. ICGSE’06. International Conference
on, pp. 109–113. IEEE, 2006.

Paasivaara, M. and Lassenius, C. Agile coaching for global software development. Journal
of Software: Evolution and Process, 26(4):404–418, 2014a.

Paasivaara, M. and Lassenius, C. Deepening Our Understanding of Communities of Practice
in Large-Scale Agile Development. In Agile Conference (AGILE), 2014, pp. 37–40. IEEE,
2014b.

Paasivaara, M., Durasiewicz, S. and Lassenius, C. Using scrum in distributed agile develop-
ment: A multiple case study. In Global Software Engineering, 2009. ICGSE 2009. Fourth
IEEE International Conference on, pp. 195–204. IEEE, 2009.

Paasivaara, M., Heikkilä, V. T. and Lassenius, C. Experiences in scaling the product owner
role in large-scale globally distributed scrum. In Global Software Engineering (ICGSE),
2012 IEEE Seventh International Conference on, pp. 174–178. IEEE, 2012.

Paasivaara, M., Lassenius, C., Damian, D., Raty, P. and Schroter, A. Teaching stu-
dents global software engineering skills using distributed scrum. In Software Engineering
(ICSE), 2013 35th International Conference on, pp. 1128–1137. IEEE, 2013a.

Paasivaara, M., Lassenius, C., Heikkila, V. T., Dikert, K. and Engblom, C. Integrating global
sites into the lean and agile transformation at ericsson. In Global Software Engineering
(ICGSE), 2013 IEEE 8th International Conference on, pp. 134–143. IEEE, 2013b.

Paasivaara, M., Behm, B., Lassenius, C. and Hallikainen, M. Towards rapid releases in
large-scale xaas development at ericsson: A case study. In Global Software Engineering
(ICGSE), 2014 IEEE 9th International Conference on, pp. 16–25. IEEE, 2014.

169

Patton, M. Q. Qualitative Research and Evaluation Methods. Sage Publications, Inc, 2002.

Pedreira, O., Piattini, M., Luaces, M. R. and Brisaboa, N. R. A systematic review of software
process tailoring. ACM SIGSOFT Software Engineering Notes, 32(3):1–6, 2007.

Persson, J. S., Mathiassen, L. and Aaen, I. Agile distributed software development: enacting
control through media and context. Information Systems Journal, 22(6):411–433, 2012.

Petersen, K. and Wohlin, C. Context in industrial software engineering research. In Pro-
ceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, pp. 401–404. IEEE Computer Society, 2009.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. Systematic mapping studies in
software engineering. In 12th International Conference on Evaluation and Assessment in
Software Engineering, volume 17. sn, 2008.

Pichler, R. Scrum. Agiles Projektmanagement erfolgreich einsetzen. Heidelberg, 2008.

Poppendieck, M. and Poppendieck, T. Lean software development: an agile toolkit. Addison-
Wesley Professional, 2003.

Power, K. Using Silent Grouping to Size User Stories. In Agile Processes in Software En-
gineering and Extreme Programming: 12th International Conference, XP 2011, Madrid,
Spain, May 10-13, 2011, Proceedings, volume 77, p. 60. Springer Science & Business
Media, 2011.

Pries-Heje, L. and Pries-Heje, J. Why Scrum works: A case study from an agile distributed
project in Denmark and India. In Agile Conference (AGILE), 2011, pp. 20–28. IEEE,
2011.

Prikladnicki, R., Audy, J. L. N. and Evaristo, J. R. Distributed Software Development: To-
ward an Understanding of the Relationship Between Project Team, Users and Customers.
In ICEIS (3), pp. 417–423. Citeseer, 2003.

Ramesh, B., Cao, L., Mohan, K. and Xu, P. Can distributed software development be agile?
Communications of the ACM, 49(10):41–46, 2006.

Ramesh, B., Mohan, K. and Cao, L. Ambidexterity in agile distributed development: an
empirical investigation. Information Systems Research, 23(2):323–339, 2012.

Raza, B., MacDonell, S. G. and Clear, T. Research in global software engineering: a system-
atic snapshot. In Evaluation of Novel Approaches to Software Engineering, pp. 126–140.
Springer, 2013.

Razavi, A. M. and Ahmad, R. Agile development in large and distributed environments:
A systematic literature review on organizational, managerial and cultural aspects. In
Software Engineering Conference (MySEC), 2014 8th Malaysian, pp. 216–221. IEEE,
2014.

Razzak, M. A. and Ahmed, R. Knowledge sharing in distributed agile projects: Techniques,
strategies and challenges. In Computer Science and Information Systems (FedCSIS), 2014
Federated Conference on, pp. 1431–1440. IEEE, 2014.

Razzak, M. A. and Mite, D. Knowledge Management in Globally Distributed Agile Projects–
Lesson Learned. In Global Software Engineering (ICGSE), 2015 IEEE 10th International
Conference on, pp. 81–89. IEEE, 2015.

170

Rizvi, B., Bagheri, E. and Gasevic, D. A systematic review of distributed agile software
engineering. Journal of Software: Evolution and Process, 27(10):723–762, 2015.

Robson, C. Real world research: A resource for social scientists and practitioner-researchers.
Blackwell, 2nd edition, 1993.

Royce, W. W. Managing the development of large software systems. In proceedings of IEEE
WESCON, volume 26. Los Angeles, 1970.

Runeson, P. and Höst, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, 14(2):131–164, 2009.

Ryan, S. and O’Connor, R. Acquiring and sharing tacit knowledge in software development
teams: An empirical study. Information and Software Technology, 55(9):1614–1624, 2013.

Sabherwal, R. The evolution of coordination in outsourced software development projects:
a comparison of client and vendor perspectives. Information and organization, 13(3):
153–202, 2003.

Santos, P. S. M. d. and Travassos, G. H. Action research use in software engineering: An
initial survey. In Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 414–417. IEEE Computer Society, 2009.

Schar↵, C. Guiding global software development projects using Scrum and Agile with quality
assurance. In Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-
CS Conference on, pp. 274–283. IEEE, 2011.

Schar↵, C. and Verma, R. Scrum to support mobile application development projects in a
just-in-time learning context. In Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 25–31. ACM, 2010.

Schar↵, C., Gotel, O. and Kul, V. Transitioning to Distributed Development in Students’
Global Software Development Projects: The Role of Agile Methodologies and End-to-End
Tooling. In Software Engineering Advances (ICSEA), 2010 Fifth International Conference
on, pp. 388–394. IEEE, 2010.

Schatten, A., Bi✏, S., Demolsky, M., Gostischa-Franta, E., Östreicher, T. and Winkler, D.
Best Practice Software-Engineering. Springer, 2010.

Schenk, J., Prechelt, L. and Salinger, S. Distributed-Pair Programming can work well
and is not just Distributed Pair-Programming. In Companion Proceedings of the 36th
International Conference on Software Engineering, pp. 74–83. ACM, 2014.

Schnabel, I. and Pizka, M. Goal-driven software development. In Software Engineering
Workshop, 2006. SEW’06. 30th Annual IEEE/NASA, pp. 59–65. IEEE, 2006.

Schnitter, J. and Mackert, O. Large-scale agile software development at SAP AG. In
Evaluation of Novel Approaches to Software Engineering, pp. 209–220. Springer, 2011.

Schümmer, T. and Lukosch, S. Understanding Tools and Practices for Distributed Pair
Programming. J. UCS, 15(16):3101–3125, 2010.

Schwaber, K. Scrum development process. In Business Object Design and Implementation,
pp. 117–134. Springer, 1997.

Schwaber, K. Agile project management with Scrum, volume 7. Microsoft press Redmond,
2004.

171

Schwaber, K. The enterprise and scrum, volume 1. Microsoft Press Redmond, 2007.

Schwaber, K. and Beedle, M. Agile Software Development with Scrum. Prentice Hall PTR,
2001.

Sengupta, B., Chandra, S. and Sinha, V. A research agenda for distributed software devel-
opment. In Proceedings of the 28th international conference on Software engineering, pp.
731–740. ACM, 2006.

Sharp, H., Giu↵rida, R. and Melnik, G. Information Flow within a Dispersed Agile Team:
A Distributed Cognition Perspective. In Agile Processes in Software Engineering and
Extreme Programming: 13th International Conference, XP 2012, Malmö, Sweden, May
21-25, 2012, Proceedings, volume 111, pp. 62–76. Springer, 2012.

Shrivastava, S. V. and Rathod, U. Categorization of risk factors for distributed agile projects.
Information and Software Technology, In-Print 58:373–387, 2015, Online–First, 2014.

Sindhgatta, R., Sengupta, B. and Datta, S. Coping with distance: an empirical study of
communication on the jazz platform. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications compan-
ion, pp. 155–162. ACM, 2011.

Sison, R. and Yang, T. Use of Agile Methods and Practices in the Philippines. In Software
Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, pp. 462–469. IEEE, 2007.

Sjøberg, D. I., Dyb̊a, T. and Jørgensen, M. The future of empirical methods in software en-
gineering research. In 2007 Future of Software Engineering, pp. 358–378. IEEE Computer
Society, 2007.

Šmite, D., Wohlin, C., Feldt, R. and Gorschek, T. Reporting empirical research in global
software engineering: A classification scheme. In Global Software Engineering, 2008.
ICGSE 2008. IEEE International Conference on, pp. 173–181. IEEE, 2008.

Šmite, D., Moe, N. B. and Ågerfalk, P. J. Agility across time and space: summing up and
planning for the future. In Agility Across Time and Space, pp. 333–337. Springer, 2010a.

Šmite, D., Moe, N. B. and Ågerfalk, P. J. Fundamentals of agile distributed software
development. In Agility Across Time and Space, pp. 3–7. Springer, 2010b.

Šmite, D., Wohlin, C., Gorschek, T. and Feldt, R. Empirical evidence in global software
engineering: a systematic review. Empirical software engineering, 15(1):91–118, 2010c.

Šmite, D., Wohlin, C., Galviņa, Z. and Prikladnicki, R. An empirically based terminology
and taxonomy for global software engineering. Empirical Software Engineering, 19(1):
105–153, 2014.

Sohan, S., Richter, M. M. and Maurer, F. Auto-tagging Emails with User Stories Using
Project Context. In Agile Processes in Software Engineering and Extreme Programming:
11th International Conference, XP 2010, Trondheim, Norway, June 1-4, 2010, Proceed-
ings, volume 48, pp. 103–116. Springer, 2010.

Sorathia, V., van Sinderen, M. and Pires, L. F. Towards a Unifying Process Framework for
Services Knowledge Management. In Exploring Services Science, pp. 295–299. Springer,
2010.

Soundararajan, S., Arthur, J. D. and Balci, O. A Methodology for Assessing Agile Software
Development Methods. In Agile Conference (AGILE), 2012, pp. 51–54. IEEE, 2012.

172

Srinivasan, J. and Lundqvist, K. Agile in India: Challenges and lessons learned. In Proceed-
ings of the 3rd India software engineering conference, pp. 125–130. ACM, 2010.

Sriram, R. and Mathew, S. Global software development using agile methodologies: A
review of literature. In Management of Innovation and Technology (ICMIT), 2012 IEEE
International Conference on, pp. 389–393. IEEE, 2012.

Stake, R. E. The art of case study research. Sage, 1995.

Stankovic, D., Nikolic, V., Djordjevic, M. and Cao, D.-B. A survey study of critical success
factors in agile software projects in former Yugoslavia IT companies. Journal of Systems
and Software, 86(6):1663–1678, 2013.

Stapel, K., Knauss, E., Schneider, K. and Zazworka, N. FLOW mapping: planning and
managing communication in distributed teams. In Global Software Engineering (ICGSE),
2011 6th IEEE International Conference on, pp. 190–199. IEEE, 2011.

Stapleton, J. DSDM, dynamic systems development method: the method in practice. Cam-
bridge University Press, 1997.

Strauss, A. L., Corbin, J. M. et al. Basics of qualitative research. Sage, 1998.

Sundararajan, S., Bhasi, M. and Vijayaraghavan, P. K. Case study on risk management
practice in large o↵shore-outsourced Agile software projects. IET Software, 8(6):245–257,
2014.

Sungkur, R. K. and Ramasawmy, M. Knowledge4Scrum, a novel knowledge management
tool for agile distributed teams. VINE, 44(3):394–419, 2014.

Sutherland, J. Business object design and implementation workshop. ACM SIGPLAN
OOPS Messenger, 6(4):170–175, 1995.

Sutherland, J. and Schwaber, K. The scrum papers: Nuts, bolts, and origins of an agile
process. Scruminc., 2007.

Sutherland, J., Viktorov, A., Blount, J. and Puntikov, N. Distributed scrum: Agile project
management with outsourced development teams. In System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on, pp. 274a–274a. IEEE, 2007.

Szőke, Á. Optimized Feature Distribution in Distributed Agile Environments. In Product-
Focused Software Process Improvement: 11th International Conference, PROFES 2010,
Limerick, Ireland, June 21-23, 2010, Proceedings, volume 6156, pp. 62–76. Springer, 2010.

Szőke, Á. A Feature Partitioning Method for Distributed Agile Release Planning. In Agile
Processes in Software Engineering and Extreme Programming: 12th International Con-
ference, XP 2011, Madrid, Spain, May 10-13, 2011, Proceedings, volume 77, pp. 27–42.
Springer, 2011.

Tahir, F. and Manarvi, I. A. Agile Process Model and Practices in Distributed Environment.
In Concurrent Engineering Approaches for Sustainable Product Development in a Multi-
Disciplinary Environment, pp. 1169–1180. Springer, 2013.

Takeuchi, H. and Nonaka, I. The new new product development game. Harvard business
review, 64(1):137–146, 1986.

Teiniker, E., Paar, S. and Lind, R. A practical software engineering course with distributed
teams. In Interactive Collaborative Learning (ICL), 2011 14th International Conference
on, pp. 195–201. IEEE, 2011.

173

Thomas, D. Web time software development. Software Development, 6(10):80, 1998.

Tripathi, N., Rodŕıguez, P., Ahmad, M. O. and Oivo, M. Scaling Kanban for Software
Development in a Multisite Organization: Challenges and Potential Solutions. In Agile
Processes, in Software Engineering, and Extreme Programming: 16th International Con-
ference, XP 2015, Helsinki, Finland, May 25-29, 2015, Proceedings, volume 212, p. 178.
Springer, 2015.

Vallon, R. Lean and Agile Software Development: Planung und Realisierung einer
Verbindung von Kanban und Scrum. Master’s thesis, Vienna University of Technology,
2011.

Vallon, R. Evaluation of Lean-Agile Multi-Project Management in a Medium-sized Devel-
opment Environment. Master’s thesis, Vienna University of Technology, 2012.

Vallon, R. Empirically Driven Design of the Agile Distributed Adaptable Process Toolkit
(ADAPT). Technical report, Austrian Marshall Plan, 2015.

Vallon, R. and Grechenig, T. Ten Heuristics from Applying Agile Practices across Di↵erent
Distribution Scenarios: A Multiple-Case Study. Computer and Information Science, 9
(2):Online–First, May 2016.

Vallon, R., Müller-Wernhart, M., Schramm, W. and Grechenig, T. Kombination von Agil
und Lean in der Softwareentwicklung. Springer Informatik-Spektrum, In-Print 37(1):28–
35, 2014, Online–First, 2012.

Vallon, R., Bayrhammer, K., Strobl, S., Bernhart, M. and Grechenig, T. Identifying Critical
Areas for Improvement in Agile Multi-site Co-development. In 8th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering (ENASE), pp. 165–172.
SciTePress, 2013a.

Vallon, R., Strobl, S., Bernhart, M. and Grechenig, T. Inter-organizational Co-development
with Scrum: Experiences and Lessons Learned from a Distributed Corporate Development
Environment. In Agile Processes in Software Engineering and Extreme Programming.
14th International Conference, XP 2013, Vienna, Austria, June 3-7, 2013. Proceedings.,
volume 149 of Lecture Notes in Business Information Processing, pp. 150–164. Springer
Berlin Heidelberg, 2013b.

Vallon, R., Dräger, C., Zapletal, A. and Grechenig, T. Adapting to Changes in a Project’s
DNA: A Descriptive Case Study on the E↵ects of Transforming Agile Single-Site to Dis-
tributed Software Development. In Agile Conference (AGILE), 2014, pp. 52–60. IEEE,
2014.

Vallon, R., Wenzel, L., Brüggemann, M. E. and Grechenig, T. An Agile and Lean Process
Model for Mobile App Development: Case Study into Austrian Industry. Journal of
Software, 10(11):1245–1264, 2015.

Van Aken, J. E. Management research as a design science: articulating the research products
of mode 2 knowledge production in management. British journal of management, 16(1):
19–36, 2005.

van Hillegersberg, J., Ligtenberg, G. and Aydin, M. N. Getting Agile Methods to Work
for Cordys Global Software Product Development. In New Studies in Global IT and
Business Services Outsourcing: 5th Global Sourcing Workshop 2011, Courchevel, France,
March 14-17, 2011, Revised Selected Papers, volume 91, p. 133. Springer, 2011.

174

VanderLeest, S. H. and Buter, A. Escape the waterfall: Agile for aerospace. In Digital
Avionics Systems Conference, 2009. DASC’09. IEEE/AIAA 28th, pp. 6–D. IEEE, 2009.

Verner, J., Brereton, O., Kitchenham, B., Turner, M. and Niazi, M. Systematic literature
reviews in global software development: A tertiary study. In Evaluation & Assessment
in Software Engineering (EASE 2012), 16th International Conference on, pp. 2–11. IET,
2012.

Verner, J. M., Sampson, J., Tosic, V., Bakar, N. A. A. and Kitchenham, B. A. Guidelines for
industrially-based multiple case studies in software engineering. In Research Challenges in
Information Science, 2009. RCIS 2009. Third International Conference on, pp. 313–324.
IEEE, 2009.

VersionOne, . 9th Annual State of Agile Survey, 2014. URL http://stateofagile.

versionone.com/.

Viswanath, U. Lean Transformation: How Lean Helped to Achieve Quality, Cost and Sched-
ule: Case Study in a Multi Location Product Development Team. In Global Software
Engineering (ICGSE), 2014 IEEE 9th International Conference on, pp. 95–99. IEEE,
2014.

Vriens, C. Certifying for CMM Level 2 and IS09001 with XP@ Scrum. In Agile Development
Conference, 2003. ADC 2003. Proceedings of the, pp. 120–124. IEEE, 2003.

Wang, X., Conboy, K. and Cawley, O. Leagile software development: An experience report
analysis of the application of lean approaches in agile software development. Journal of
Systems and Software, 85(6):1287–1299, 2012.

Wieringa, R., Maiden, N., Mead, N. and Rolland, C. Requirements engineering paper clas-
sification and evaluation criteria: a proposal and a discussion. Requirements Engineering,
11(1):102–107, 2006.

Wild, P., Clarkson, P. and McFarlane, D. A framework for cross disciplinary e↵orts in
services research. In Proceedings of the 19th CIRP Design Conference–Competitive Design.
Cranfield University Press, 2009.

Winkler, D., Bi✏, S. and Kaltenbach, A. Evaluating tools that support pair programming in
a distributed engineering environment. In Proceedings of the 14th international conference
on Evaluation and Assessment in Software Engineering, pp. 54–63. British Computer
Society, 2010.

Wirdemann, R. Scrum mit User Stories. Hanser, 2011.

Womack, J. P. and Jones, D. T. Lean thinking: banish waste and create wealth in your
corporation. Productivity Press, 1996.

Wood, J. and Silver, D. Joint application development. John Wiley & Sons, Inc., 1995.

Woodward, E., Surdek, S. and Ganis, M. A practical guide to distributed Scrum. Pearson
Education, 2010.

Xie, M., Shen, M., Rong, G. and Shao, D. Empirical studies of embedded software develop-
ment using agile methods: a systematic review. In Proceedings of the 2nd international
workshop on Evidential assessment of software technologies, pp. 21–26. ACM, 2012.

Xu, P. and Ramesh, B. A tool for the capture and use of process knowledge in process
tailoring. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on. IEEE, 2003.

175

http://stateofagile.versionone.com/
http://stateofagile.versionone.com/

Yin, M. and Ma, J. A review of the agile and geographically distributed software devel-
opment. In Information Technology and Computer Application Engineering: Proceedings
of the International Conference on Information Technology and Computer Application
Engineering (ITCAE 2013), p. 173. CRC Press, 2013.

Yin, R. Case study research. Sage Publications, 2003.

Yoshii, A. and Higa, K. Analysis of the peculiarity of the japanese software development
style in o↵shore software development. IEEJ Transactions on Electrical and Electronic
Engineering, 6(1):46–50, 2011.

Zieris, F. and Salinger, S. Doing Scrum Rather Than Being Agile: A Case Study on Ac-
tual Nearshoring Practices. In Global Software Engineering (ICGSE), 2013 IEEE 8th
International Conference on, pp. 144–153. IEEE, 2013.

176

APPENDIX A
Appendix

A.1 Glossary

ADAPT Agile Distributed Adaptable Process Toolkit

AGILE The Agile Conference (conference series)

AR Action Research

BDD Behavior Driven Development

CCC Coordination, Control, Communication (CCC model)

CFD Cumulative Flow Diagram

Cx C1, ..., C7 abbreviating the 7 conceptual practices of ADAPT

Dev Development

DoD Definition of Done

DSD Distributed Software Development

EUC EU Country (country within the European Union)

GSD Global Software Development

Gx G1, ..., G10 abbreviating the 10 guidelines of ADAPT

ICGSE International Conference on Global Software Engineering (conference series)

IS Information Science

IST Information and Software Technology (journal)

JoS: EP Journal of Software: Evolution and Process (journal)

JSS Journal of Systems and Software (journal)

PI Principal Investigator

PMO Project Management O�ce

178

Px P1, ..., P29 abbreviating the 29 full practices of ADAPT

PO Product Owner

QA Quality Assurance

RQ Research Question

SE Software Engineering

SoS Scrum of Scrums

SM Scrum Master

SLR Systematic Literature Review

SWEBOK Software Engineering Body of Knowledge

TDD Test Driven Development

TP Testable Proposition

WiP Work in Progress

XP Extreme Programming or International Conference on Agile Software Devel-
opment (conference series)

A.2 Final Set of 95 Included Studies in Systematic
Mapping

1. Akbar and Hassan (2010)

2. Akbar et al. (2011b)

3. Akbar et al. (2011c)

4. Akbar et al. (2011a)

5. Akbar et al. (2012)

6. Almeida et al. (2011)

7. Alyahya et al. (2013)

8. Alsmadi and Saeed (2013)

9. Ansari and Ansari (2012)

10. Ansari et al. (2010)

11. Ashraf et al. (2012)

12. Badampudi et al. (2013)

13. Bandukda and Nasir (2010)

14. Bass (2012)

15. Bass (2014)

16. Batra et al. (2010)

17. Belsis et al. (2014)

179

18. Bocock and Martin (2011)

19. Ceria and Pallotti (2010)

20. Cocco et al. (2012)

21. Daneva and Ahituv (2012)

22. Daneva et al. (2013)

23. Dorairaj et al. (2010)

24. Dorairaj et al. (2011)

25. Dorairaj et al. (2012a)

26. Dorairaj et al. (2013)

27. Dumitriu et al. (2011)

28. Estler et al. (2014)

29. da Silva Estácio and Prikladnicki (2014)

30. Femmer et al. (2014)

31. Green et al. (2010a)

32. Green et al. (2010b)

33. Hallikainen (2011)

34. Hamid (2013)

35. Hong et al. (2010)

36. Hossain et al. (2011a)

37. Hossain et al. (2011b)

38. Inayat et al. (2012)

39. Jalali and Wohlin (2010)

40. Jalali and Wohlin (2012a)

41. Jalali and Wohlin (2012b)

42. Fernando et al. (2011)

43. Kamaruddin et al. (2012)

44. Kajko-Mattsson et al. (2010)

45. Kanwal et al. (2014)

46. Khan et al. (2010)

47. Klein et al. (2012)

48. Korkala et al. (2010)

49. Korhonen (2010)

50. Kuhrmann et al. (2013)

51. Lavazza et al. (2010)

180

52. Lee et al. (2011)

53. Lehtinen et al. (2014)

54. Licorish and MacDonell (2013)

55. Maher et al. (2010)

56. Meyer et al. (2010)

57. Modi et al. (2013)

58. Mudumba and Lee (2010)

59. Nagle et al. (2011)

60. Nevo and Chengalur-Smith (2011)

61. Noordeloos et al. (2012)

62. del Nuevo et al. (2011)

63. Paasivaara et al. (2012)

64. Paasivaara et al. (2013a)

65. Paasivaara et al. (2013b)

66. Paasivaara et al. (2014)

67. Paasivaara and Lassenius (2014a)

68. Paasivaara and Lassenius (2014b)

69. Persson et al. (2012)

70. Power (2011)

71. Pries-Heje and Pries-Heje (2011)

72. Ramesh et al. (2012)

73. Ryan and O’Connor (2013)

74. Schümmer and Lukosch (2010)

75. Schar↵ et al. (2010)

76. Schar↵ (2011)

77. Schenk et al. (2014)

78. Sharp et al. (2012)

79. Shrivastava and Rathod (2014)

80. Sindhgatta et al. (2011)

81. Sohan et al. (2010)

82. Srinivasan and Lundqvist (2010)

83. Sriram and Mathew (2012)

84. Stapel et al. (2011)

85. Stankovic et al. (2013)

181

86. Szőke (2010)

87. Szőke (2011)

88. Tahir and Manarvi (2013)

89. Teiniker et al. (2011)

90. Vallon et al. (2014)

91. Vallon et al. (2013b)

92. Winkler et al. (2010)

93. Yin and Ma (2013)

94. Yoshii and Higa (2011)

95. Zieris and Salinger (2013)

A.3 Proposed Data Extraction Checklist for
Reporting Empirical Studies on Agile
Distributed Software Development

General:
Include (yes, no, maybe)
Exclusion comment
Identifier
Title
Databases (comma-separated)
Authors’ Names (comma-separated)
Authors’ A�liations (comma-separated: university/R&D or ”INDUSTRY”)
Authors’ Countries (comma-separated)
Year
Target (conference or journal name)
Time stamp of Data Extraction and Researcher’s Name

Research:
Type (solution, validation, evaluation, philosophical, experience, opinion)
Method (qualitative, quantitative, mixed)
Sub-Method (single-case study, multiple-case study, interviews, ...)
Means of Analysis (grounded theory, statistical, ...)

Empirical:
Empirical (yes, no, unclear)
Project Size (small, medium, large, unclear)
Project Duration (short, medium, large, unclear)
Participants (industry, students, unclear)
Knowledge Area (requirement, design, construction, testing, SE management, SE
process, maintenance, tools & methods)
Application Domain (e.g. enterprise software, ...)
Successful (yes, no, unclear)

182

Distribution:
Global Development (yes, no, unclear)
Location (o↵shore, onshore, unclear)
Legal entity (outsourcing, insourcing, unclear)
Geographical Distance (far, near, unclear)
Temporal Distance (large, small, unclear)
Team Distribution Type (integrated, isolated, unclear)
Number of sites (0 for unclear, otherwise � 1)
Supplier Countries (comma-separated)
Customer Countries (comma-separated)

Agile:
Agile Main Practice (Scrum, XP, Lean, ..., unclear)
Agility Level (not all teams, all teams, organization, unclear)
Working Agile Sub-practices (comma-separated)
Not working Agile Sub-practices (comma-separated)

Result:
Contributions of the Study (lessons learned, tool development, framework, model, ...)
Summary Comment by Researcher

A.4 Semi-structured Interview Guide for
Evaluation Interviews

1. Background:

• What is your current position (in research / in practice)?

• How many years experience with agile collocated (in research / in prac-
tice)?

• How many years experience with agile distributed (in research / in prac-
tice)?

• How many years of other relevant experience?

2. Short presentation to give an overview of the ADAPT framework’s problem
statement, motivation, methodology and results.

3. Have you done Case Study research? What do you think of the methodology?
What would you have done di↵erently?

4. Have you done Action Research? What do you think of the methodology?
What would you have done di↵erently?

5. Have you conducted a systematic mapping/literature review before? What do
you think of the methodology? What would you have done di↵erently?

6. What is your opinion on the design criteria? What would you have done
di↵erently?

7. What is your opinion on the best practice? How could it be made for useful to
a) the practitioner? b) the research community?

183

8. How would you see the a) practical b) research value of this framework? What
could be next steps/improvements?

9. What is missing in the framework, based on your experience, either from a a)
practical or b) research point of view?

10. What should be considered for future work? Your thoughts on:

a) Implementation study

b) Scaling mechanisms for the framework (integrating new cases)

c) Practice cards

d) Database/Website

e) Pattern language

f) What else comes to mind?

11. Your overall evaluation, positive or negative? Any other final comments?

Printouts provided during interview:

• ADAPT Testable Propositions TP1-TP5

• ADAPT v1.0 Compact Summary Table

• ADAPT Practice Cards Example

A.5 Tools Used

This thesis has been created using the following tools:

Main OS: Ubuntu 14.04 (former 12.04)

• LaTeX: pdfTeX 3.1415926-2.5-1.40.14 TeX Live 2013/Debian (Typesetting)

• Kile 2.1.3 (LaTeX editor)

• JabRef 2.9.2 (Reference manager/BibTeX editor)

• GNOME-Terminal 3.6.2 (orchestrating LaTeX builds)

• Meld 1.6.0 (useful for merging back and forth between publications and thesis)

• Google Web Forms (used for data extraction for systematic mapping study)

• Google Scholar (used as primary source for extracting BibTeX references)

• Evince 3.10.3 (fast and light-weight PDF reader)

• Adobe Reader 9.5.5 (most widely used PDF reader, for compatibility checking)

• Oracle Java 6: 1.6.0 45 (small program used for data extraction assistance in
merging the csv files to one main file in systematic mapping study and getting
rid of duplicate entries)

• LibreO�ce 4.2.8.2 (spreadsheet analysis)

• GIMP 2.8.10 (image processing)

184

• http://ericwood.org/excel2latex/ (turn spreadsheet tables into LaTeX table
stubs)

• http://text2mindmap.com (for mindmap-style figures of guidelines and prac-
tices in single-case analysis)

Side OS: MS Windows 7

• ATLAS.ti 7.5.2 (qualitative data analysis software)

• SmartDraw CI 22.0.0.3 (schematic diagrams and graphs)

• MS Powerpoint 2007 (schematic diagrams and graphs)

• MS Excel 2007 (supporting multi-case study and systematic mapping)

A.6 Curriculum Vitae

See following page.

185

CURRICULUM VITAE
DDIPL.-ING. RAOUL VALLON, BSC

Born in Vienna, 09-05-1986, Austrian

Hernalser Hauptstr. 14/9, A-1170 Vienna
raoul.vallon@gmail.com

EDUCATION

2013 – 2016 (expected) PhD in Computer Science, Vienna University of Technology

x Specializing in Agile and Distributed Software Development
x Thesis title: “Towards a Light-weight Distributed Software Development

Process: Empirically Driven Design of the Agile Distributed Adaptable
Process Toolkit (ADAPT)”

x Supervisor: Prof. Thomas Grechenig

08/2014 – 11/2014 Research Leave, Center for Design Research, Stanford University, CA

x Visiting researcher at the designX lab, hosted by Prof. Larry Leifer
x Working on the the design theory behind the ADAPT framework
x Austrian Marshall Plan scholar

10/2009 – 03/2012 MSc. (with Honors) Software Engineering & Internet Computing,

Vienna University of Technology
x Specialized in Internet Technologies and Distributed Systems
x Thesis title: „Evaluation of Lean-Agile Multi-Project Management in a

Medium-sized Development Environment“
x Supervisors: Prof. Thomas Grechenig and Michael Müller-Wernhart

09/2010 – 01/2011 Erasmus Exchange, Universidad Politécnica de Madrid (UPM)

x Successfully completed several courses of the European Master in Software
Engineering (EMSE) program in English and Spanish

x Successfully completed two advanced Spanish courses (B1)

10/2008 – 06/2011 MSc. (with Honors) Business Informatics, Vienna University of Technology

x Specialized in Internet Computing
x Thesis title: “Lean and Agile Software Development: Conception and

Realization of a Combination of Kanban and Scrum”
x Supervisors: Prof. Thomas Grechenig and Michael Müller-Wernhart

10/2005 – 10/2008 BSc. Business Informatics, Vienna University of Technology

x Specialized in Practical Software Engineering
x Thesis title: “Conformity Testing of Interactive Systems”
x Supervisors: Prof. Thomas Grechenig and Thomas Költringer

10/2004 – 06/2005 Military Service, Fire Brigade, Military Airport Brumowski, Lower Austria

Firefighter, promoted to “Gefreiter” (Private)

09/1996 – 06/2004 A-Levels (with Honors), Billrothgymnasium Grg19, 1190 Vienna

x Emphasis on languages German, English, Latin and French
x Specialized in Informatics and English

RELEVANT EMPLOYMENT

2012 – present Research Fellow, Research Group for Industrial Software,

Vienna University of Technology
x Operational head of work group AMMA focusing on empirical software

engineering and agile/lean software development processes
x Co-supervisor of several master and bachelor theses

03/2007 – 01/2012 Teaching Assistant, Vienna University of Technology
x Internet Security at Information & Software Engineering Group
x Database Systems and Semi-Structured Data at Artificial Intelligence Group
x Interaction Design & Usability Engineering at Research Group for Industrial

Software

OTHER EMPLOYMENT

2012 – present Senior Software Engineer and Agile Coach in various projects

2008 – 2010 Software Backend Developer and Software Tester in various projects

188

	Introduction
	Motivation
	Research Challenges and Objective
	Research Framework and Outline
	Contributions
	Publications

	Theoretical Background
	Agile Software Development
	Scrum
	Extreme Programming (XP)
	XP@Scrum
	Lean Software Development and Kanban

	Distributed Software Development and Agile Practices
	Distributed Software Development
	Benefits
	Challenges
	Why Agile DSD?

	Conclusion

	Design Theory
	Design Research
	Framework Design
	Software Process Tailoring
	DSD Challenge Categories
	Design Guidelines
	Effective Practices based on Context

	Process Design
	Design Components
	Conclusion

	Agile Practices in DSD: Systematic Mapping of Fifteen Years
	Related Systematic Literature Reviews and Mappings
	General Remarks on Systematic Mapping and Literature Reviews in SE
	Agile Practices in DSD

	Study Design
	Research Steps
	Search Terms
	Resources Searched
	Study Selection Criteria
	Study Selection Process
	Study Quality Assessment Criteria
	Data Extraction and Synthesis

	Results
	Research Settings
	Empirical Background
	DSD and Agile
	Summary

	Implications for Research and Practice
	Conclusion

	Single-Case Analysis
	Research Design
	Related Multiple-Case Studies
	Multiple-Case Study
	Conceptual Framework
	Case Organizations
	Data Collection
	Data Analysis

	Case CrossTown
	Background
	Challenges
	Agile Practices
	ADAPT Framework Input

	Case NoTimeshift
	Background
	Challenges
	Agile Practices
	ADAPT Framework Input

	Case Continental
	Background
	Challenges
	Agile Practices
	ADAPT Framework Input

	Conclusion

	Cross-Case Analysis: Building the ADAPT Framework v1.0
	Cross-Case Summary
	Practices
	Full Practices
	Conceptual Practices

	Guidelines
	ADAPT Framework v1.0
	Conclusion

	Evaluation and Discussion of Results
	Focus Groups
	XP 2014 Conference, Rome
	Center for Design Research, Stanford University

	Expert Interviews
	Related Work
	Propositions revisited
	Research Questions revisited
	Limitations
	Future Work

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Glossary
	Final Set of 95 Included Studies in Systematic Mapping
	Proposed Data Extraction Checklist for Reporting Empirical Studies on Agile Distributed Software Development
	Semi-structured Interview Guide for Evaluation Interviews
	Tools Used
	Curriculum Vitae

