
Extensions and Applications of

High Rate Staircase Codes

Pratana Kukieattikool
Matrikelnummer : 1228356

Institute of Telecommunications

Technische Universität Wien

Supervisor : Univ. Prof. Dipl.-Ing. Dr.-Ing. Norbert Görtz

Submitted in partial fulfilment of the requirements for the degree of

Doktor der Technischen Wissenschaften

April 2016

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

i

This thesis is dedicated to my father and mother.

Acknowledgements

I would like to express my sincerest thanks to Professor Norbert Görtz

for giving me a chance to conduct a research project under his su-

pervision. Without his support, guidance and encouragement, this

work could not have been accomplished. The knowledge and advice I

learned from him will be helpful for my career as a researcher through-

out the entirety of my life.

I would like to thank all people from Multimedia System group for

their friendships and support through these last years of my doctoral

study.

I am grateful for the support by “Technologiestipendien Suedostasien”

in the frame of ASEA-Uninet, granted by the Austrian Agency for

the International Cooperation in Education & Research (OeAD), and

the National Electronics and Computer Technology Center Thailand

(NECTEC) for granting me the scholarship to do this study.

Finally, I would like to give my appreciation to my family who sup-

ported and encouraged me throughout the years of doing this doctoral

degree. My father who inspired me to study as much as I am able to.

My uncle Supath Kookiattikoon, who has helped correct my English

in many parts of my work. Dr.Wasu Chaopanon, who read my work

and gave me suggestion for improving the thesis. Timothy Tercero,

who proof read my final draft. My husband and son, who have always

believed in me and have been patient in waiting for me to be together

the day I finish my study. I thank all of you for your support.

Abstract

Staircase codes are a class of high performance forward-error-correction

codes for high-rate transmission and hard decision decoding. They

are initially designed for high-rate fiber optic transmission, which in-

tends to correct errors in binary symmetry channels. However, to

apply these high performance high-rate codes on wireless channels,

some other aspects require close attention, which are addressed in

this work.

Staircase codes for wireless transmissions on burst-error channels,

which can be modelled using Gilbert and Elliott’s model, are inves-

tigated. The Staircase codes with Reed-Solomon codes, as compo-

nent codes, are tested in random-error as well as burst-error channels

with different burst lengths and bit error probabilities, and are com-

pared with the baseline Staircase codes with binary Bose-Chaudhuri-

Hochquenghem (BCH) component codes. Furthermore Staircase codes

with interleaving are implemented and tested in random-error, as well

as burst-error channels with different burst lengths and bit error prob-

abilities. For both types of component codes, the software complex-

ities and decoding latencies are compared to see which codes have

major impact on the decoding time of the Staircase codes.

For time-variant wireless channels (both optical and RF), Staircase

codes with adaptive rates are proposed and used in type-II hybrid

ARQ frameworks, so that throughput is maximized by avoiding re-

transmissions of the whole Staircase blocks that initially – at high code

rate – might not have been decoded successfully. These rate-adaptive

Staircase codes employ at their core the standard BCH component

codes, but they are concatenated with Reed-Solomon codes as extra

components to implement burst-error correction and rate-adaptivity.

Bit error performance and throughput of the rate-adaptive Staircase

codes are investigated by analysis and confirmed with simulations.

The possibility of using staircase codes in the framework of distributed

source coding (DSC) is also investigated as a further potential appli-

cation. The bit error Slepian-Wolf coding, which is the bit error from

lossy source coding, and the rate curve of Slepian-Wolf coding using

Staircase codes with BCH component codes to compress the data are

obtained.

Contents

Contents v

List of Figures ix

1 Introduction and Overview of the Thesis 1

2 Basic Concepts of Channel Coding 5

2.1 Channel Model . 6

2.1.1 Discrete Memoryless Channel (DMC) 6

2.1.2 Binary Symmetric Channel (BSC) 6

2.1.3 Binary Erasure Channel (BEC) 8

2.1.4 Additive White Gaussian Noise Channel (AWGNC) 8

2.2 Maximum Likelihood Decoding 9

2.3 Performance Measurement . 11

2.4 Minimum Distance and Minimum Weight 12

2.5 Linear Block Codes . 12

2.6 Decoding Principle . 14

2.6.1 Error Detection . 14

2.6.2 Maximum Likelihood Decoding 14

2.6.3 Symbol Maximum a Posteriori Decoding (MAP) 15

2.6.4 Bounded Minimum Distance Decoding (BMD) 15

2.7 Asymptotic Bounds . 15

2.7.1 Singleton Bound (Upper bound) 15

2.7.2 Hamming Bound (Upper bound) 16

2.7.3 McEliece Rodemich Rumsey Welch Bound (Upper bound) 17

v

CONTENTS

2.7.4 Varshamov Bound (Lower bound) 17

2.8 Product Codes . 18

2.8.1 Decoding Thresholds and Error Floor of Product Codes

with Iterated Decoding . 19

2.9 Finite Fields and Extension Fields 23

2.10 Cyclic Codes . 24

2.11 Rate Adaptation Methods for Block Codes 27

2.11.1 Extending and Puncturing 27

2.11.2 Lengthening and Shortening 28

2.11.3 Augmenting and Expurgating 28

3 Staircase Codes and their Component Codes 29

3.1 Staircase Codes Principle . 29

3.1.1 Encoding . 29

3.1.2 Decoding . 31

3.2 Component Codes . 32

3.2.1 BCH Codes . 32

3.2.1.1 Encoding . 32

3.2.1.2 Decoding . 33

3.2.2 RS Codes . 38

3.2.2.1 Encoding . 38

3.2.2.2 Decoding . 39

3.2.2.3 Erasure Decoding 41

3.2.3 LDPC Codes . 43

3.2.3.1 Encoding . 43

3.2.3.2 Combinatorial Design of LDPC Codes 44

3.2.3.3 Bit-Flipping Decoding Algorithm 46

4 Performance of Staircase Codes 47

4.1 G.709 Compatible Staircase Codes 47

4.2 Performance Analysis of the Baseline

Staircase Code . 48

vi

CONTENTS

4.3 Performance Simulations of the Baseline

Staircase Code . 54

4.4 High Error Floor of Staircase Codes with Small-t Component Codes 56

4.5 Performance of Staircase Codes with LDPC Component Codes . . 64

4.6 Conclusion . 65

5 Staircase Codes for High-Rate Wireless Transmission on Burst-

Error Channels 67

5.1 Gilbert-Elliott Model for Burst-Errors 67

5.2 Capacity of Gilbert-Elliot Channel 70

5.3 Simulation Set Up of Staircase Codes 73

5.4 Staircase Codes with Block Interleaving 75

5.5 Simulation Results for High-Rate Staircase Codes on a Burst-Error

Channels . 77

5.6 Complexity Comparison of the Component Codes 82

5.7 Conclusion . 86

6 Rate Compatible Staircase Codes for High-Rate Wireless Trans-

mission 88

6.1 Component Codes with Variable-Rate by

Puncturing . 90

6.2 Rate-Adaption of Staircase Codes 90

6.3 Rate-Adaption in Type-II hybrid ARQ 91

6.4 Rate-Adaptive Staircase Codes Analysis 95

6.4.1 Performance Analysis on Random-Error Channels 95

6.4.2 Throughput Analysis on Random-Error Channels 100

6.4.3 Performance Analysis on Burst-Error Channels 101

6.5 Performance Simulation on Random-Error Channel 107

6.6 Performance Simulation on Burst-Error

Channel . 110

6.7 Decoding with RS assistance in each

Iteration . 115

6.8 Throughput Simulation . 117

vii

CONTENTS

6.9 Comparison to a Retransmission Scheme 119

6.10 Conclusion . 126

7 Staircase Codes in Distributed Source Coding 127

7.1 Slepian-Wolf Coding and Code Designs 128

7.2 Staircase Codes in DSC implementation 132

7.3 Performance Analysis of Staircase Codes in DSC 134

7.4 Simulation Results . 137

7.5 Conclusion . 143

8 Conclusions 144

References 147

viii

List of Figures

2.1 Block transmission system. 5

2.2 Binary symmetric channel (BSC). 7

2.3 Binary erasure channel (BEC). 8

2.4 Binary additive white Gaussian channel (BAWGNC). 9

2.5 Asymtotic bounds. [9] . 18

2.6 Code array for the product code. 19

2.7 Example of an error graph of a product code with G(n = 20,m =

22). All component codes have error correction capability t = 3

(a) a product code array with 10 rows and 10 columns, Xs are

positions in error (b) an error graph before decoding (c) an error

graph after the decoding of column component codes (d) an error

graph after the decoding of row component codes. 22

2.8 Systematic encoding for (n, k) cyclic code. [46] 26

2.9 An (n − k)-stages syndrome circuit with input from the left end.

[46] . 27

3.1 Staircase code array for encoding. 30

3.2 “Staircase” visualization of Staircase codes: the parity-check sym-

bols are located in the shaded boxes. 31

3.3 Chien search algorithm. 38

4.1 Tanner graph of Staircase code with L = 7, w = 2 (derived from

[38]) . 50

4.2 Evolution of the bit error probability with x̄(0) = 0.0051 51

4.3 Evolution of the bit error probability with x̄(0) = 0.0050 52

ix

LIST OF FIGURES

4.4 Simulation of the baseline Staircase code compare with RS code

from G.709 and the theoretical performance of BCH component

codes. 55

4.5 Number of decoding iterations required for random sequences of

baseline Staircase code on different input bit error probability. . . 57

4.6 Performance comparison of Staircase codes with and without 2 bit

CRCs. 62

4.7 Performance comparison of Staircase code with RS component

codes decoded to t errors with and without 2 bit CRCs and de-

coded to t− 1 errors. 63

4.8 Comparison of the baseline Staircase code to the Staircase code

with LDPC(1023,930) component codes. 65

5.1 Gilbert-Elliott model generating burst errors. 68

5.2 Burst length distribution with average burst lengths (a) 2 bits (b)

10 bits (c) 30 bits (d) 80 bits with pE = 0.0045. 70

5.3 The capacity of the Gilbert-Elliot channel with parameter ∆B =

10, pG = 10−20, pB = 0.5 compared to the capacity of the BSC

channel. 74

5.4 Diagonal interleaving sequence of a product code array with 6 rows

and 4 columns. 76

5.5 Diagram of Staircase codes with interleaving. 77

5.6 Performance of Staircase codes with different component codes on

a random-error channel. 78

5.7 Performance of Staircase codes with different component codes on

a burst-error channel with average burst length of 10. 80

5.8 Performance of Staircase codes with RS and BCH component codes

vs. average error-burst length ∆B for a bit error probability of

pE = 0.0030. 82

5.9 Performance of Staircase codes with RS and BCH component codes

vs. average error-burst length ∆B for a bit error probability of

pE = 0.0045. 83

6.1 Rate-adaptive Staircase code: block array. 91

x

LIST OF FIGURES

6.2 Rate-adaptive blocks: arrangement in the Staircase scheme, only

shown for block B3 for simplicity. 92

6.3 Block diagram of hybrid ARQ Staircase Codes. 93

6.4 Illustration of Staircase decoding combined with incremental re-

dundancy. 96

6.5 Performance of rate-adaptive Staircase codes with RS assistance,

compared to analytic estimation on a random-error channel. . . . 109

6.6 Evolution of the bit error probability of Staircase codes with assist

rate of 0.5. (a) pE = 0.0272, which is below the iterative decoding

threshold; the graph converges to zero. (b) pE = 0.0273, which

is the adopted iterative decoding threshold; the graph does not

converge to zero. 111

6.7 Evolution of the bit error probability of Staircase codes with assist

rate of 0.6. (a) pE = 0.0204, which is below the iterative decoding

threshold; the graph converges to zero. (b) pE = 0.0205, which

is the adopted iterative decoding threshold; the graph does not

converge to zero. 111

6.8 Evolution of the bit error probability of Staircase codes with assist

rate of 0.7. (a) pE = 0.0145, which is below the iterative decoding

threshold; the graph converges to zero. (b) pE = 0.0146, which

is the adopted iterative decoding threshold; the graph does not

converge to zero. 112

6.9 Evolution of the bit error probability of Staircase codes with assist

rate of 0.8. (a) pE = 0.0087, which is below the iterative decoding

threshold; the graph converges to zero. (b) pE = 0.0088, which

is the adopted iterative decoding threshold; the graph does not

converge to zero. 112

6.10 Performance of rate-adaptive Staircase codes with RS assistance on

a random-error channel compared with iterative decoding thresh-

olds from density evolution in dash lines. The performance curves

for the baseline Staircase BCH code and the Staircase code with

RS component codes are also included for reference 113

xi

LIST OF FIGURES

6.11 Performance of rate-adaptive Staircase codes with RS assistance

on a burst-error channel with average burst length of 10. 114

6.12 Performance comparison of the rate-adaptive Staircase codes on

a random-error channel when RS decoding participates in every

iteration. 116

6.13 Performance comparison of the rate-adaptive Staircase codes on a

burst-error channel with burst length 10 when RS decoding par-

ticipates in every iteration. 117

6.14 Throughput of the rate-adaptive Staircase code for different input

bit-error probabilities on a random-error channel. 120

6.15 Throughput of the rate-adaptive Staircase code for different input

bit-error probabilities on a burst-error channel with average burst

length of 10. 121

6.16 Throughput of the rate-adaptive Staircase code for different input

bit-error probabilities on a burst-error channel with average burst

length of 30. 122

6.17 Throughput of the rate-adaptive Staircase code for different input

bit-error probabilities on a burst-error channel with average burst

length of 50. 123

6.18 Illustration of Staircase code decoding with retransmission scheme. 124

6.19 Throughput of the rate-adaptive Staircase code with ARQ com-

pared to retransmission. 125

7.1 Correlated source coding configuration. [70] 128

7.2 Slepian-Wolf rate region for two sources. [70] 129

7.3 Lossless source coding with side information at the decoder. [84] . 130

7.4 Staircase codes array for encoding in DSC. 133

7.5 Estimated source rate of BCH Staircase codes 134

7.6 Staircase codes array for decoding in DSC. 135

7.7 Performance of Staircase codes in DSC compared to the analytic

BCH component codes in DSC. 137

7.8 Bit error SW coding using a Staircase code with BCH component

codes in GF(210). 139

xii

LIST OF FIGURES

7.9 Rate curve of SW coding using a Staircase code with BCH com-

ponent codes in GF(210) compared to the optimal rate-adaptive

BCH codes from [66]. 140

7.10 Bit error SW coding using a Staircase code with BCH component

codes in GF(29). 141

7.11 Rate curve of SW coding using a Staircase code with BCH compo-

nent codes in GF(29) compared to the optimal rate-adaptive BCH

codes from [66]. 142

xiii

Chapter 1

Introduction and Overview of the

Thesis

Wireless communication becomes more and more essential to our everyday life.

At the same time, communication devices such as smart phones, tablets, or lap-

tops are maturely developed and are easily accessible for the general public. The

reachability and data accessibility anywhere and anytime is thus an important

concern. Meanwhile the transferred data volume is increasing rapidly due to the

demand of high resolution of the video image files for entertainment or commu-

nication. These aspects cause the massive growth of wireless rate requirements

above 10 Gbit/s; therefore, high code rate and lower error floor are a compulsory

criterion. At the moment wireless communication is usually based on Wi-Fi or

3G/4G telephone networks, which employ radio frequency (RF) waves to con-

nect end users. Due to the increase of transferred data rate, optical wireless is a

possible alternative, which will allow for much higher bit rate.

To protect the transmitted data against channel disturbances, an error correc-

tion code is inserted into the data in a process called channel encoding. The end

user or device must attempt to reconstruct the data from the received and cor-

rupted data with the decoder. The decoding process that uses side-information

from the channel to indicate the reliability of the data bits is called soft-decision

decoding, while the process without using the side-information from the channel

to indicate the reliability is called hard-decision decoding. Even though soft-

1

decision decoding allows for ≈ 2 dB coding gain over hard-decision decoding, the

latter is preferable for high-rate links because of much lower complexity resulting

in lower decoding latency [13].

Among the best off-the-shelf codes for high-rate and hard-decision decoding

are the so-called “Staircase codes” [6]. Those codes belong to a class of prod-

uct codes but they are un-terminated. They can be constructed from algebraic

component codes such as Bose-Chaudhuri-Hochquenghem (BCH), Reed-Solomon

(RS), or Hamming codes (e.g., [46]). Staircase codes are iteratively decoded in

a “shifted-window” fashion: this iterative decoding scheme is more efficient than

message passing decoding for low-density parity-check (LDPC) codes (e.g., [46])

in the sense that it requires much lower data flow in the decoding hardware [6];

moreover it has smaller complexity, because it processes hard decisions, in con-

trast to the high performance message passing decoding of LDPC codes, which

processes with soft information. Staircase codes achieve very high performance

due to iterative decoding and a very low error floor due to the concatenation of

their component codes. The baseline Staircase codes [6] have an error floor at

4.0 × 10−21 and 9.41 dB net coding gain at an output bit error probability of

10−15. Therefore the concept of Staircase codes is of interest for utilisation in

the area of high-rate wireless communication and in distributed source coding for

sources with high correlation, which are the main topics of this thesis.

The aim of this thesis is to study the application of Staircase codes for high-

rate and hard-decision decoding in wireless transmissions where different aspects

are regarded other than the original purpose of Staircase codes, which had fixed

high rate and were designed for random-error channels. These new aspects are

burst-error channels and time varying channels. In addition, the application of

the Staircase codes in a distributed source coding scheme, is examined to observe

how high-rate channel codes can be used for distributed source coding of highly

correlated (discrete) sources.

We investigate Staircase codes for high-rate wireless links that are prone to

bundles (bursts) of channel errors caused by interference or link blockages. For

indoor optical wireless channels, [12] shows that channels with line of sight com-

ponent including all reflections, or diffuse channels follow a modified Rayleigh

2

distribution. The generative model1 for burst errors can be derived from the

Rayleigh distribution as stated in [79]. Nevertheless, we simulate burst errors

with a Gilbert-Elliot model [29], [24] due to its simplicity. As stated in [46],

[62], [52], RS codes are encoded symbol-wise and decoded such that the codes

are capable of correcting burst errors. To bring about this result, we deploy RS

codes as component codes of the Staircase scheme. The performances of the new

RS Staircase codes on channels with different input error probabilities and burst

lengths are investigated. It is known that the block interleaving is one method to

help the codewords to combat burst errors in the channel, thus the deployment

of interleaving in Staircase codes scheme is examined. Then the software com-

plexities in decoding of the component codes are evaluated and decoding latency

of the component codes are measured, so that a suitable (well-performing) RS

component code can be selected.

The high-performance, high-rate Staircase codes [6] were originally designed

with fixed rates for fiber optic communication. However, for the transmission over

wireless channel, where the channel varies over time, an adaptation of the code

rate is essential. With an extension by additional RS codes with the application

in a type-II hybrid ARQ scheme proposed in this work, adaptive code rates are

enabled so that the Staircase codes can be successfully decoded in a wider range

of input bit error probabilities, thereby increasing throughput performance. The

bit error performance and throughput performance of the rate-adaptive Staircase

codes are analysed and confirmed with simulations.

We also employ Staircase codes in distributed source coding to investigate the

performance of those codes in a different application. This is motivated by the

high performance of hard-decision decoding of the Staircase codes for high-rate

transmission. This high-rate transmission corresponds to high correlation of the

sources in distributed source coding scheme. In addition it is simple to get the

distributed source coding set up from the Staircase channel codes.

After this introduction, Chapter 2 will describe the concepts of channel coding,

which are needed to understand the coding concepts in this work.

Then Chapter 3 describes the encoding and decoding methods for Staircase

1“The generative models are parameterized mathematical models capable of generating a
statistically similar error sequence as produced by the real channel.” [79]

3

codes and their component codes, which are Bose-Chaudhuri-Hochquenghem

(BCH), Reed-Solomon (RS), and low-density parity-check (LDPC) codes.

Chapter 4 begins with G.7091 compatible Staircase codes, which will be our

baseline codes throughout this thesis; then the causes of high error floors of

some Staircase codes are discussed and simulated. The LDPC codes with bit

flipping decoding are implemented into Staircase codes as component codes and

the performance is evaluated.

In Chapter 5 Staircase codes for high-rate wireless transmissions on burst-

error channels are investigated and the complexities and decoding latencies of

the component codes are compared.

In Chapter 6 rate compatible Staircase codes for high-rate wireless transmis-

sion are proposed, the analysis and simulation of the performance and throughput

of the proposed rate-adaptive Staircase codes are given, and a performance com-

parison between the proposed scheme and a conventional retransmission scheme

is presented.

Chapter 7 deals with the Staircase codes in distributed source coding (DSC).

The performance analysis of Staircase codes in the DSC is given. The simulations

of Staircase codes in the DSC scheme are performed so as to obtain the bit error

Slepian-Wolf coding and the Slepian-Wolf rate curves. The bit error Slepian-Wolf

coding is the bit error from lossy source coding, while the Slepian-Wolf rate curve

is the minimum rate achievable from source coding at each value of H(X|Y).

Chapter 8 summarises the main results and make suggestions for future work.

1recommendation for Interfaces for optical transport networks by the International Telecom-
munication Union

4

Chapter 2

Basic Concepts of Channel

Coding

This chapter is based on [46], [11], [9], [52] [20] and [34].

The main theoretical background of channel coding is Shannon information

theory [67], which states that information can be transmitted and received with-

out error if the rate R [in bits per channel use] of transmission is smaller than

the channel capacity C, where very long blocks of transmitted data are assumed.

In channel coding the information sequence u is transformed by the encoder and

the encoded sequence v (called as a codeword) is obtained. Then the codewords

are transformed by the modulator, sent through the channel, and then the de-

modulator produces the received sequence r. At last the decoder transforms the

received sequence r into the estimated information sequence û. In Figure 2.1 the

modulator and the demodulator are included in the channel block so that we

consider the input and the output at the encoder and the decoder only.

Encoder Channel Decoder
u v r û, v̂

Figure 2.1: Block transmission system.

There are two general types of codes, which are Block codes and Convolutional

codes. In block coding the encoder transforms a message tuple u = (u0, u1...uk−1)

5

of length k into the codeword v = (v0, v1, ...vn−1) of length n which adds redun-

dancy with n > k. The message symbols and codeword symbols are from the

same symbol alphabet D = {d(1), d(2), ..., d(q)}, which has q elements. Therefore

there are qk different possible codewords that exist in the vector space, which

contains qn different length-n words. The set is called (n, k) block code and has

a rate R = k/n. By a convolutional code, the k-bit blocks of the information

sequence u are encoded into n-symbol blocks, of which the rate is R = k/n. The

encoder has memory of order m which means each codeword depends on the past

m values for the feedforward encoder.

2.1 Channel Model

The modulator transforms the encoded sequence into a suitable signal to trans-

mit through the channel. There is a simple form of noise disturbance in the

channel which is called additive white Gaussian noise (AWGN). It is a linear ad-

dition of wideband noise with constant spectral density and Gaussian amplitude

distribution. Fading, multipath propagation, frequency selectivity, interference,

nonlinearity and dispersion are not included in this model. The AWGN is often

used due to its simplicity, and it allows to compare different coding schemes in a

fair way.

2.1.1 Discrete Memoryless Channel (DMC)

When the detector outputs each channel symbol independently of the previous

channel symbols, the channel is memoryless and the model is called discrete mem-

oryless channel (DMC). This model is characterized by the transition probabilities

P (j|i), where 0 ≤ i ≤ M − 1 represents a M-ary modulator input symbol and

0 ≤ j ≤ Q− 1 represents a Q-ary demodulator output symbol, and P (j|i) is the

probability of receiving j given that i was transmitted.

2.1.2 Binary Symmetric Channel (BSC)

In case of binary modulation, symmetric noise, and 2 level demodulator outputs,

the channel is called binary symmetric channel (BSC). The transition probability

6

pc, which defines the probability of error transmission, can be calculated from the

modulation signal set, the probability distribution of the noise, and the output

quantization threshold of the demodulator. The transition probability of BPSK

modulation on an AWGN channel with coherent detection and binary output

quantization is [52]

pc = Q(

√
2Es
N0

) (2.1)

with Es = nEb, Es is the energy-per-symbol, Eb is the energy-per-bit, n is number

of bit per symbol, N0/2 is the noise power spectral density, Q(·) is the comple-

mentary Gaussian error function given as

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2dt =

1

2
erfc(

x√
2

), x > 0. (2.2)

The binary output of the demodulator is then passed to the decoder. As decoding

is carried out with binary decision, this type is called hard-decision decoding. The

channel capacity C of the BSC is given by [20]

C = 1−H2(pc) (2.3)

with the entropy

H2(pc) = −pc log(pc)− (1− pc) log(1− pc). (2.4)

The model is illustrated in Figure 2.2.

x0 y0

x1 y1

pc
pc

1− pc

1− pc

Figure 2.2: Binary symmetric channel (BSC).

7

2.1.3 Binary Erasure Channel (BEC)

For this channel model and in case of binary modulation, the demodulator output

3 levels, one of which is an erasure, the bit error probability pc = 0 and the erasure

probability is pe: the model is called binary erasure channel (BEC). The channel

capacity of the BEC is given by [20]

C = 1− pe. (2.5)

The model is illustrated in Figure 2.3 .

x0 y0

x1 y1
1− pe

1− pe

y2

pe

pe

Figure 2.3: Binary erasure channel (BEC).

2.1.4 Additive White Gaussian Noise Channel (AWGNC)

When the input to the channel X is a continuous random variable with zero mean

and variance σ2
x, and the channel has only AWGN, zero mean, and variance σ2

n,

the channel output Y = X + N is also a Gaussian random variable with zero

mean and variance σ2
x + σ2

n. This channel is called the additive white Gaussian

noise channel (AWGNC). The channel capacity is given by [52]

C =
1

2
log2(1 +

σ2
x

σ2
n

). (2.6)

The quantity σ2
x represents the average power in the transmitted signal X and

σ2
n represents the average power in the noise signal N (both with zero mean).

In case there is only a 2 level input such as by BPSK modulation with ampli-

tude a, the channel is called binary additive white Gaussian channel (BAWGNC).

8

The channel capacity is given by [52]

C = −
∫ ∞
−∞

φ(y, Eb, σ
2) log2 φ(y, Eb, σ

2)dy − 1

2
log2 2πeσ2, (2.7)

where

φ(y, a, σ2) =
1√

8πσ2

[
e−(y−a)2/2σ2

+ e−(y+a)2/2σ2
]
, (2.8)

and σ2 is the noise variance. Figure 2.4 illustrates this type of channel.

x ∈ {+1,−1} y ∈ R
y = x+ n

n ∈ R

+

Figure 2.4: Binary additive white Gaussian channel (BAWGNC).

For transmission of a signal through a continuous-time channel with band-

width W , transmitter power P watts, and white Gaussian noise with two-sided

power spectral density N0/2. The channel capacity is given by [52]

C = W log2(1 +
P

N0W
) bits/second. (2.9)

Decoding for this type of channel is often carried out directly with the con-

tinuous channel outputs; such schemes referred to by soft-decision decoding are

not used in this thesis due to much higher complexity than schemes based on

hard-decisions.

2.2 Maximum Likelihood Decoding

For a coded system on an AWGN channel with quantised output r, the decoder

produces an estimated output û based on r as well as the corresponding codeword

9

v̂. The error probability of the decoder is given by

P (E) =
∑
r

P (v̂ 6= v|r)P (r), (2.10)

where P (r) is the probability of the received sequence r that is independent of

decoding rules used. Therefore to minimize the error probability is equivalent to

maximizing P (v̂ = v|r)

P (v|r) =
P (r|v)P (v)

P (r)
. (2.11)

If all codewords are equally likely then to maximize (2.11) is equivalent to maxi-

mizing P (r|v). For a discrete memoryless channel (DMC)

P (r|v) =
∏
i

P (ri|vi). (2.12)

The decoder that uses (2.12) is called maximum likelihood decoder (MLD). Be-

cause log x is a monotonically increasing function of x, maximizing (2.12) is equiv-

alent to maximize the log-likelihood function

logP (r|v) =
∑
i

logP (ri|vi). (2.13)

For a BSC with transition probability pc, let d(r,v) be the Hamming distance

between r and v, which is the number of bit positions that are different. For a

block code of length n we get [34]

logP (r|v) = d(r,v) log pc + [n− d(r,v)] log(1− pc)
= d(r,v) log

pc
1− pc

+ n log(1− pc). (2.14)

Since log pc
1−pc < 0 for pc <

1
2

and n log(1 − pc) is a constant for all v, the MLD

rule for the BSC chooses v̂ as the codeword v that minimizes the distance d(r,v)

between r and v, hence this rule is called minimum distance decoder.

10

2.3 Performance Measurement

The performance of a coded communication system is measured by the number

of decoding errors it produces. The probability of word (or block) error is called

word-error rate (WER) or block-error probability (BLER), on the other hand

the probability of bit error is called bit-error probability (BER).

Another figure of merit is called coding gain (CG), which is the reduction of

the Eb/N0
1 required to achieve a specific error probability in the data for a coded

system compared to an uncoded system. The CG can be obtained by measuring

the horizontal distance between BERcoded and BERuncoded curves in the output

BER over received power graphs at a certain output BER value. A formula for

the CG can be given as [76]

CG = 20 log10

[
erfc−1(2BERcoded)

erfc−1(2BERuncoded)

]
(dB) (2.15)

where erfc−1 is the inverse function of the error function and AWGN channel is

assumed, if not otherwise stated. When the code rate R is also determined in a

CG in binary symmetric channel, we have the Net Coding Gain (NCG) given by

[76]

NCG = CG+ 10 log10R (dB). (2.16)

It is desirable to minimize the Eb/N0 required to achieve a specific error rate,

which is equivalent to maximizing the coding gain in the system using the same

modulation signal set. A theoretical bound on the minimum Eb/N0 required for

a coded system with code rate R to achieve error-free or an arbitrary small error

probability is the Shannon limit. It guarantees the existence of a coded system

achieving error free communication but without limits on complexity or delay of

the encoding and decoding algorithm.

1Energy per bit to noise power spectral density ratio, also known as signal-to-noise ratio
(SNR) per bit

11

2.4 Minimum Distance and Minimum Weight

The Hamming weight of a code vector c of length n is the number of elements in

c that are different from 0

wH(c) =
n−1∑
j=0

wt(cj) with wt(cj) =

{
0, cj = 0

1, cj 6= 0.
(2.17)

The minimum Hamming weight of a block code C is the minimum of Hamming

weights of all nonzero codeword c ∈ C

wH,min(C) = min
c∈C,c 6=0

wH(c). (2.18)

The Hamming distance of 2 code vectors a, c is the number of different ele-

ments in a and c

dH(a, c) =
n−1∑
j=0

wt(aj + cj) with wt(aj + cj) =

{
0, cj = aj

1, cj 6= aj.
(2.19)

The minimum Hamming distance of a block code C is the minimum of the

Hamming distance of any two different codewords a, c ∈ C

dH,min(C) = min
a,c∈C,a6=c

dH(a, c). (2.20)

2.5 Linear Block Codes

Here we define a linear block code C(n, k, d) as a code with block length n, with

dimension k and minimum distance d. The code is linear, when every linear

combination of two codewords c, c′ ∈ C is again in C. Such a code can correct up

to t =
⌊
d−1

2

⌋
errors and detect up to d− 1 errors.

The codeword c = (c0, c1, ...cn−1) can be generated from the information vec-

tor i = (i0, i1,,ik−1) via

c = i ·G, (2.21)

12

where G is the generator matrix with dimension (k × n), of which each row is a

base vector of linear vector space. All of the codewords are constructed by linear

combination of the rows of the generator matrix. Besides, the linear block code

c can be checked by the parity check matrix H: for each codeword c

H · cT = 0 (2.22)

has to apply. The dimension of H is ((n− k)× n)1.

For linear codes, the minimum distance is equal to minimum weight. That is

dH,min(C) = min
c∈C,c 6=0

wH(c). (2.23)

This property is important because it is simpler to consider the minimum weight

of a code rather than its minimum distance. To correct the received codeword

r = c + f , where c ∈ C and f is the error, the decoder will choose the codeword

with the smallest distance to the received codeword. Therefore, to preserve the

best output bit error probability after decoding, the following equation should be

used:

wH(f) ≤
⌊
dH,min − 1

2

⌋
. (2.24)

Systematic encoders construct the codeword with the k information symbols

unchanged as components, the redundancy are the (n − k) parity symbols ap-

pended to the data bits . Then the parity check matrix has the following structure

H = (A | I); I is the Identity matrix of dimension (n− k)× (n− k). (2.25)

The generator matrix has the structure (for the binary case)

G = (I′ | AT); I′ is Identity matrix dimension (k × k). (2.26)

The syndrome s is obtained from the check equation. For the received word

1The minimum dimension H could contain redundancy rows (see LDPC codes)

13

r = c + f , c ∈ C, f is the error, the check equation

sT = H · rT = H · (cT + fT) = H · fT (2.27)

depends only on the error vector, because H · cT = 0 for c ∈ C. The function of

the decoder is to search for the most likely error vector f that causes the observed

syndrome s.

2.6 Decoding Principle

The result of decoding can be correct decoding, incorrect decoding or decoding

failure. Correct decoding is when the decoded word ĉ is the same as the codeword

c sent. Incorrect decoding/decoding error occurs when the decoded word ĉ is not

the same as the sent codeword c. This means the decoder has tried to correct the

received word but it chose the wrong error vector f which did not occur in the

channel. Decoding failure occurs when the decoder has no solution whether it

was correct or incorrect decoding. There are different kinds of decoding principles

as described below.

2.6.1 Error Detection

The decoder checks if the received word r is a codeword or not. That means that

it only checks whether r ∈ C. For r /∈ C an error is detected.

2.6.2 Maximum Likelihood Decoding

The received word r is decoded as a codeword v̂, which was sent with maximum

probability, so the decoding rule is

v̂(r) = arg max
v∈C

P (r|v). (2.28)

In case there is more than one codeword with the same maximum probability,

then the decision to favour one of them will be taken randomly. In case of the

BSC the codeword v̂ is the one with the minimum Hamming distance to r. The

14

result is either correct or incorrect but the decoding process always comes up

with the result.

2.6.3 Symbol Maximum a Posteriori Decoding (MAP)

For decoding, each data symbol ui is considered separately and the decision of

each symbol is based on the entire received word r

ûi(r) = arg max
u∈D

PUi|R(u|r), (2.29)

where D is symbol alphabet e.g. binary bits in binary coding.

2.6.4 Bounded Minimum Distance Decoding (BMD)

The received word r is decoded only when it is situated within the correction

sphere of radius equal to or smaller than
⌊
d−1

2

⌋
with d the minimum distance of

the code. The result of decoding can be all 3 cases: correct decoding, incorrect

decoding and decoding failure.

2.7 Asymptotic Bounds

The following bounds [9] specify the possible rate R of a codeword c with mini-

mum distance d that does not go against the channel coding theory for n→∞.

Here we consider (n, k, d) block code with message length k, codeword length n

and minimum distance d for only BSC with error probability p.

2.7.1 Singleton Bound (Upper bound)

For any two codewords that are different in at least d positions, if we remove the

first d − 1 symbols of each codeword, we get the shortened codewords of length

n−(d−1) which are different in at least one position [34]. Thus, the 2k shortened

codewords are all different in the set of 2n−d+1 codewords, which is possible only

15

if 2k ≤ 2n−d+1. Taking the ld(.) on both sides, we get

n− k ≥ d− 1, (2.30)

which can be interpreted as lower bound on the number of parity symbols n− k.

When we divide both sides of (2.30) by n, we get an upper bound on code

rate R given as

R ≤ 1− d

n
+

1

n
. (2.31)

For asymptotic regime where n→∞, thus d
n
→ 2p [34], the Singleton bound can

finally be given as

R ≤ 1− 2p. (2.32)

2.7.2 Hamming Bound (Upper bound)

In each decoding sphere of the BMD decoder, which corresponds to Hamming

sphere St(c) of radius t =
⌊
d−1

2

⌋
around each codeword c, the number of words

can be given as (for BSC) [34]

|St(c)| =
t∑
i=0

(
n

i

)
. (2.33)

The total number of words contained in any decoding sphere is equal to qk|St(c)|,
which must not be greater than the total number of words in the vector space,

which is equal to 2n. Therefore we get

t∑
i=0

(
n

i

)
≤ 2n−k (2.34)

16

Taking the ld(.) on both sides, and then divide both side by n, the upper bound

on code rate R is given as

R ≤ 1− 1

n
ld

(
t∑
i=0

(
n

i

))
. (2.35)

For asymptotic regime where n → ∞ and t/n ≤ 1/2, (2.35) can be written

using asymptotic expression [34] as

R ≤ 1−H(
t

n
), (2.36)

where

H(p) = −p · ld p− (1− p) · ld (1− p). (2.37)

Then for asymptotic regime t/n ≡ δ/2 and δ → 2p [34], finally we get

R ≤ 1−H(p). (2.38)

This bound corresponds to the channel capacity C and is always tighter than the

Singleton bound.

2.7.3 McEliece Rodemich Rumsey Welch Bound (Upper

bound)

This bound is the most famous upper bound and can be given for n→∞ as

R ≤ H

(
1

2
−
√

2p · (1− 2p)

)
. (2.39)

2.7.4 Varshamov Bound (Lower bound)

This bound is a lower bound on code rate R and can be given for n→∞ as

R ≥ 1− 2p ld
1

2p
− (1− 2p) ld

1

(1− 2p)
= 1−H(2p). (2.40)

17

Figure 2.5: Asymtotic bounds. [9]

These asymptotic bounds are illustrated in Figure 2.5. Good codes exist above

the Varshamove bound and below all upper bounds (in grey area).

2.8 Product Codes

Product codes construct long efficient codes from short component codes. These

component codes can be C1(n1, k1, d1) and C2(n2, k2, d2). The product code

(n1n2, k1k2) is a code array of n1 columns and n2 rows, in which every row is

a codeword in C1 whereas every column is a codeword in C2. First, the informa-

tion of k1k2 symbols are arranged in the upper left corner as in Figure 2.6, then

each row is encoded into a codeword in C which results in an array of k2 rows and

n1 columns. Secondly each column is encoded into a codeword in C which results

in a code array of n2 rows and n1 columns. At last the codeword is transmitted

row-by-row or column-by-column. The minimum weight of this code is d1d2.

The error pattern that can be corrected depends on the algorithm of decoding.

One method is a two-step decoding, firstly columns then rows. The improved

performance can be obtained by the iterative decoding, which decodes columns,

18

k1

n2

n1

k2 Information digits Checks on rows

Checks on columns Checks on checks

Figure 2.6: Code array for the product code.

rows, columns, rows and so on. “The product code has error correction capability

equal to
⌊
d1d2−1

2

⌋
errors, but two step decoding is not enough to achieve this error

correction capability” [46], thus it is better to decode iteratively to achieve the

high error correction capability of the product codes.

The incomplete product code is the product code without checks on checks. It

is a (k1n2 +k2n1−k1k2, k1k2) linear block code with minimum distance d1 +d2−1.

It has higher rate but smaller minimum distance than the complete product code.

2.8.1 Decoding Thresholds and Error Floor of Product

Codes with Iterated Decoding

The decoding threshold of product codes can be stated as follows [41]: an error

pattern affecting a product code can be interpreted as a bipartite “error graph”,

where each node represents a component code decoder, and each edge represents

an erroneous symbol. Due to the structure of a product code, each erroneous

symbol is contained in two sub-graphs that belong to a “vertical” and a “hori-

zontal” component code. The error graph is a random graph, as the errors are

assumed to occur randomly and independently of each other. The process of

decoding corresponds to iteratively removing of those nodes and their edges, for

19

which the number of connected edges to a node is not bigger than the number t

of symbols that can be corrected by the component code. It is assumed that the

sequence of decoding the component codes is random; decoding of the product

code finally fails when an error graph remains that (then) has a least t+ 1 edges.

Such a sub-graph is called (t+ 1)-core in Graph theory [57].

As a result, [57] indicates that a random graph G(n,m) with n vertices and

m edges has high probability of a k-core to appear, when m reaches ck n/2, where

ck = minλ>0 λ/πk(λ) and πk(λ) = P{Poisson(λ) ≥ k − 1} is the probability that

random Poisson-distributed variable (with parameter λ) has a value of at least

k− 1. The probability mass function of a Poisson(λ) random variable X is given

as [85]

PX(x) =

λxe−λ/x! for x = 0, 1, 2, ...,

0 otherwise.
(2.41)

The solution for ck can be approximated by ck ≈ k +
√
k log k [41]. Thus, it was

concluded in [41] that as n increases while t > 1 is fixed, the probability that a

random graph contains a (t+ 1)-core vanishes if and only if the total number of

errors is smaller than

W = n
ct+1

2
, (2.42)

where t is error correction capability of the component codes. This is the decoding

threshold of iterated decoding of product codes: if more errors than this threshold

W occur in an error pattern of a product code, iterative decoding is very likely

to fail. When the iterative decoding succeeds, the tangent of the output bit-error

probability curve is steep: this is the waterfall region of the performance curve.

An example of error graph of a product code is given in Figure 2.7. There

are 10 rows of component codes, 10 columns of component codes and 22 error

positions in the product code array, which corresponds to n = 20 vertices, and

m = 22 edges in the error graph. After column component codes decoded by

removing edges connecting to not more than the error correction capability t = 3

in the column vertices subgraph, the error graph results in Figure 2.7(c). Then

20

after row component codes decoded by removing edges connecting to not bigger

than the error correction capability t = 3 in the row vertices subgraph, the error

graph results in Figure 2.7(d), which shows that all errors are able to be corrected

as there are no more edges in the error graph.

After decreasing the input bit error probability pE until the points that the

output bit error probabilities pO fall down slowly, this region in the curve is

recognized as error floor. First consider the probability pt1 that there are t1 + 1

errors in n rows:

pt1 =

(
n

t1 + 1

)
p

(t1+1)
E (1− pE)(n−t1−1), (2.43)

and the probability pt2 that there are t2 + 1 errors in n columns given as

pt2 =

(
n

t2 + 1

)
p

(t2+1)
E (1− pE)(n−t2−1). (2.44)

For n� t1, t2 we can approximate pt1 and pt2 by

pt1 ≈
(

n

t1 + 1

)
p

(t1+1)
E , (2.45)

pt2 ≈
(

n

t2 + 1

)
p

(t2+1)
E . (2.46)

The product pt1∗pt2 is the probability that there are t1+1 rows and t2+1 columns

in error, each of which are (t1 + 1)(t2 + 1) errors in n2 symbols of the array. Such

a pattern is the (t+1)-core, which cannot be decoded with iterative decoding and

causes error floor. As a consequence, the output bit error probability pO where

the error floor occurs can be approximated as [41]

pO ≈
(

n

t1 + 1

)(
n

t2 + 1

)
p

(t1+1)(t2+1)
E (t1 + 1)(t2 + 1)/n2, (2.47)

where n is the number of rows or columns of the product code, t1 is the error

21

109876543210

10

9

8

7

6

5

4

3

2

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

XX X

X

X

XX

X

X

row

column

(a)

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

row component codes column component codes

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

(b)

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

row component codes column component codes

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

(c)

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

row component codes column component codes

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

(d)

Figure 2.7: Example of an error graph of a product code with G(n = 20,m = 22).
All component codes have error correction capability t = 3 (a) a product code
array with 10 rows and 10 columns, Xs are positions in error (b) an error graph
before decoding (c) an error graph after the decoding of column component codes
(d) an error graph after the decoding of row component codes.

22

correction capability of the row component codes and t2 is the error correction

capability of the column component codes.

2.9 Finite Fields and Extension Fields

A finite field (GF(q),+, ·) [9] is a set of elements from symbol alphabet D =

{d(1), d(2), ..., d(q)}, which has q elements or order of q. We can perform addition

“+” and multiplication “·” of two elements, a, b ∈ GF(q), without leaving the set:

a + b ∈ GF(q) and a · b ∈ GF(q). The addition operation is commutative thus

a+ b = b+a with the additive identity 0. The multiplication is also commutative

a · b = b · a with the multiplicative identity 1. The distributive law over addition

for three elements, a, b, c ∈ GF(q), must hold: a · (b + c) = a · b + a · c. The

inverse element −a ∈ GF(q) of a ∈ GF(q) for addition operation exists for which

a + (−a) = 0. The multiplicative inverse a−1 ∈ GF(q) of a ∈ GF(q)\{0} exists

such that a · a−1 = 1.

If a field is constructed from a prime p, it is called a prime field and can be

written as GF(p), for p = 2 we obtain binary field GF(2). For any prime p a finite

field of p elements exists. For any positive integer m, it is possible to extend the

prime field GF(p) to pm elements, which is called an extension field of GF(p)

denoted by GF(pm). Furthermore, it has been proven that the order of any finite

field is a power of a prime. The GF(qm) can be represented as m- tuple [34]

GF(qm) = {(a0, a1, ..., am−1) | ai ∈ GF(q)}, (2.48)

or as a polynomial

GF(qm) =

{
m−1∑
i=0

aiX
i | ai ∈ GF(q)

}
, (2.49)

where X is a dummy parameter for the polynomial. Through the polynomial

representation, the addition of two elements of GF(qm) can be done by adding

the coefficients, while the multiplication operation can be done by multiplication

of polynomials modulo f(X), where f(X) denotes any fixed prime polynomial

23

of degree m over GF(q). The prime polynomial is an irreducible polynomial1

in GF(q) that has the highest degree coefficient equal to one. Linear codes

C(GF(q);n, k, dmin) can be interpreted as subspace of GF(qn) with dimension

k, as a consequence they can be written in the polynomial notation.

A primitive element α is an element in GF(q), of which each power j =

0, .., q − 2 of this element (αj) represents all non zero elements in this GF(q).

A primitive polynomial is a prime polynomial over GF(q) of degree m, which

has zeros zl ∈ GF(qm) as primitive elements of GF(qm). These zeros are all

distinct, then zl = z(ql) for l = 0, 1, ...,m−1. Thus in GF(qm) we can factor f(X)

as

f(X) =
m−1∏
i=0

(X − z(ql)). (2.50)

A minimal polynomial Φ(X) of any element β in GF(qm) is

Φ(X) =
e−1∏
i=0

(X + β2i), (2.51)

where e is the smallest integer that β2e = β. The minimal polynomial is irre-

ducible in GF(q) and will be used in the BCH code construction.

2.10 Cyclic Codes

A cyclic code is a linear block code C over GF(q) of block length n if, whenever

v = (v0, v1, ...vn−1) is in C, then v′ = (vn−1, v0, ...vn−2) is also in C. The codeword

v′ is obtained by cyclically shifting the components of the codeword v one place

to the right. The code can also be represented in a polynomial form of degree of

at most n− 1 according to [34]

v(X) =

{
n−1∑
i=0

viX
i | vi ∈ GF(q)

}
. (2.52)

1a polynomial that cannot be divided by any polynomials of degree ≥ 1

24

The polynomial coefficients vi, i = 0, ..., n−1 are the components of the codeword

v. The cyclic property can be written in polynomial form as

v(X) ∈ C ⇒ v(l)(X) = RXn−1[X lv(X)] ∈ C for l = 0, 1, .., n− 1, (2.53)

where RXn−1[·] is the ring of polynomials modulo Xn − 1. Cyclic codes have a

structure that is strongly related to finite fields; hence they can be encoded and

decoded algorithmically and computationally more efficiently than the tabular

decoding techniques used for general linear codes.

A cyclic code v(X) consists of all multiples of the generator polynomial g(X)

of degree n− k by data polynomial u(X) of degree at most k − 1

v(X) = u(X)g(X). (2.54)

The generator polynomial g(X) must divide Xn − 1 as follows

Xn − 1 = g(X)h(X); (2.55)

the polynomial h(X) of degree k is called check polynomial.

To obtain systematic encoding, the data is inserted into the high-order coeffi-

cients of the codeword, and then the check symbols are computed. The codeword

is

v(X) = Xn−ku(X) + p(X), (2.56)

and the parity polynomial p(X) is a polynomial of degree at most n−k−1 given

by

p(X) = −Rg(X)[X
n−ku(X)]. (2.57)

The systematic encoder is constructed with the shift register [46] in Figure 2.8, of

which the generator polynomial is g(X) = 1+g1X+g2X
2 + ...+gn−k−1X

n−k−1 +

Xn−k. Firstly, the “gate” is turned on and the k information digits u0, u1, ...uk−1

are shifted into the circuit, and at the same time to the channel, as the switch

to “codeword” is connecting to “message” (as shown in Figure 2.8). As soon

25

as the complete message has entered the circuit, the n − k digits in the register

correspond to the remainder, which are the parity check digits. Then the “gate”

is turned off to break the feedback connection, and at the same time the parity

check digits are shifted into the channel by connecting the switch between “parity-

check digits” and “codeword”.

Gate

gn−k−1
g2g1

p0 p1 p2
pn−k−1

Codeword

Parity-Check Digits

Message Xn−ku(x)

++ ++

Figure 2.8: Systematic encoding for (n, k) cyclic code. [46]

Let v(X) denote the transmitted codeword, the received polynomial r(X)

is equal to v(X) + e(X), where e(X) is error polynomial. The coefficients of

the error polynomial are non-zero when channel errors occurred. The syndrome

polynomial s(X) used for decoding are the remainder under division by g(X)

given as

s(X) = Rg(X)[r(X)] = Rg(X)[v(X) + e(X)] = Rg(X)[e(X)]. (2.58)

The decoding task is finding the unique e(X) with the least number of non zero

coefficients satisfying (2.58). The syndrome can also be generated by the shift

register as shown in Figure 2.9. The received polynomial r(X) is shifted in to the

register from the left end with all stages set initially to zero. When the whole

r(X) has been shifted into the register the syndrome s(X) is fetched from the

contents in the register. This circuit can be used as a component of a decoder for

(n, k) cyclic code known as Meggitt decoder, which contains a syndrome register,

26

an error-pattern detector, and a buffer register. Furthermore it can be used as a

component of error-trapping decoder, for which the “gate” in Figure 2.9 controls

the shifting of the syndrome register until contents of the register are the same

as the error digits (details see [46]).

Gate

gn−k−1
g2g1

s0 s1 s2 sn−k−1+ +++r(x)

Figure 2.9: An (n− k)-stages syndrome circuit with input from the left end. [46]

2.11 Rate Adaptation Methods for Block Codes

Assume that a (N,K)q block code in GF(2q) with generator matrix G and parity-

check matrix H is given as a “mother code” with rate R = K/N . Furthermore it

is assumed that the code is systematically encoded, i.e., the K data symbols are

mapped to N code symbols by appending N −K parity symbols.

2.11.1 Extending and Puncturing

In extending and puncturing, the number of data symbol K is kept constant as

in the mother code. However by extending, the number of parity bits N − K

is increased letting the rate decrease. By puncturing, the number of parity bits

N −K is decreased letting the rate increase [34].

In practice the mother code is from a lower-rate and the rate adaptive encoder

sends the punctured codewords through the channel corresponding to the rate

requirement. The puncturing pattern is known to the decoder and hence the

received punctured word is treated as a codeword of the mother code with erased

symbols.

27

2.11.2 Lengthening and Shortening

For lengthening and shortening, the number of N − K parity symbols remains

constant as for the mother code. However by lengthening, the block length N is

increased by increasing the number of data symbols K. By shortening, the block

length N is decreased by decreasing number of data symbols K. The code rate

of lengthening is increased whereas the rate of shortening is decreased [34].

In practice a shortened codeword has a number of data symbols equal to

K − D, where D is the number of shortening symbols. The vector of length

K, with D zeros filled at the pre-determined positions, is encoded resulting in a

codeword of length N , but only N − D symbols are sent through the channel.

The locations of the D filled zeros are known to the decoder, and therefore the

decoder fills the received word with D zeros at those positions, which results in

the received word of length N . The received word is decoded with the mother

code decoder, resulting in the codeword of length K. At last the D zero positions

are dropped and the decoded symbol of length K −D is the result.

2.11.3 Augmenting and Expurgating

For augmenting and expurgating the block lengthN is kept constant. The number

of data symbols K is increased and the number of parity symbols N − K is

decreased by the same value through the use of augmenting, thus resulting in an

increasing rate. The number of data symbols K is decreased and the number

of parity symbols N − K is increased by the same value through the use of

expurgating, thus resulting in a decreasing rate [34]. In practice augmenting

and expurgating are more complex than shortening or puncturing, since both the

number of data symbols and the number of parity symbols change at the same

time.

28

Chapter 3

Staircase Codes and their

Component Codes

3.1 Staircase Codes Principle

Staircase codes are a class of forward-error-correction codes (FEC) first proposed

in [6]. The code is constructed to be a continuous product code, which can be

efficiently hard-decoded, and is therefore suitable for high-speed optical commu-

nications. It is claimed in [6] that “this code, using syndrome based decoding,

is significantly more efficient than message-passing-decoding of LDPC code, in

terms of data flow, and has better performance than any other code recommended

in ITU-T recommendations G.975 and G.975.1 [77]. The error floor analysis of

the code results in a very low error floor at 4.0 × 10−21, contrary to the LDPC

codes that always have a higher error floor.”[6] In this section we will give insight

into the encoding and decoding of Staircase codes.

3.1.1 Encoding

Staircase codes are characterized by the relationship of the successive matrices

of symbols denoted B0, B1, B2... of m by m matrices Bi, i ∈ Z+. The elements

in Bi are restricted here to GF(2), but the concept can also be applied to non-

binary cases. Conventional FEC in systematic form is used as the component

code referred to as C with a block length of 2m symbols, r of which are parity

29

symbols. The component codes can be Hamming, BCH, RS codes etc.

The encoding proceeds recursively on the Bi. The block B0 is initialized as

an all zeros matrix m ×m and also known to the decoder. For each i we have

m×(m−r) information bits arranged in the left-most column of Bi which results

in m × (m − r) arrays denoted by Bi,L. Thereafter the array A = [BT
i−1Bi,L] is

formed, resulting in an array of size m × 2m − r, where BT
i−1 is the transpose

of Bi−1. Then the entries of Bi,R are computed such that each row of the array

[BT
i−1Bi,LBi,R] is a valid codeword of C as can be seen in Figure 3.1.

m

m

Information Checks

m− r r

BT
i−1 Bi,L Bi,R

digits on
rows

Figure 3.1: Staircase code array for encoding.

Staircase codes have a structure related to product codes, but they are unter-

minated, and are therefore decoded with varying latencies. The visualization in

Figure 3.2 shows how the name staircase is originated.

The code has the overall rate

R =
m× (m− r)
m×m = 1− r

m
. (3.1)

According to the product codes properties, “If the component codes C have a

minimum distance dmin, then the Staircase code has a minimum distance of at

least d2
min” [6].

30

BT
0 B1

BT
2 B3

BT
4

B5

Figure 3.2: “Staircase” visualization of Staircase codes: the parity-check symbols
are located in the shaded boxes.

3.1.2 Decoding

Staircase codes are unterminated, and thus can be decoded using a sliding window

with arbitrary length L. The consecutively received blocksBi, Bi+1, Bi+2, ...Bi+L−1

are decoded as follows:

Firstly the codewords that terminate in block Bi+L−1 are decoded. Since one

codeword involves two blocks, both blocks of Bi+L−1 and Bi+L−2 are decoded and

updated. Then the codewords that terminate in block Bi+L−2 are decoded and

updated. This process continues until the codewords that terminate in block Bi

are each decoded and updated. Because decoding the block that is terminated at

Bj also impacts the block Bj+1, it is efficient to process back to Bi+L−1 and repeat

until the sufficient number of iteration is reached. Lastly the decoder outputs the

information of the block Bi. After finishing one round, the window slides to the

right, i.e., the “decided” block Bi is removed and the new block Bi+L is accepted,

and the whole process repeats.

31

3.2 Component Codes

3.2.1 BCH Codes

The Bose, Chaudhuri, and Hocquenghem(BCH) codes form a class of cyclic codes

for random-error correction. Binary BCH codes were discovered by Hochquenghem

[35] and independently by Bose and Chaudhuri [10]. The most efficient decoding

algorithm for these codes is Berlekamp’s iterative algorithm [7],[8] and Chien’s

search algorithm [18]. What follows below is based on [46].

3.2.1.1 Encoding

Here we will consider only binary primitive BCH codes. For any positive integer

m (m > 3) and t (t < 2m−1), there exists a binary BCH code with the following

parameters: primitive block length n = 2m − 1, number of parity check digits

n − k < mt and minimum distance dmin ≥ 2t + 1. This code can correct any

combination of t or fewer errors in a block of n = 2m − 1 digits. Such a code is

called a t-error-correcting BCH code. Let α be a primitive element1 in GF(2m).

The generator polynomial g(x) of a t-error correcting BCH code of length 2m− 1

is the lowest-degree polynomial over GF(2) that has α, α2, α3, ..., α2t as its roots

g(αi) = 0 for 1 ≤ i ≤ 2t, (3.2)

then g(x) is the least common multiple (LCM) of Φ1(X),Φ2(X),....,Φ2t(X) given

as

g(X) = LCM{Φ1(X),Φ2(X),,Φ2t(X)}, (3.3)

where Φi(X) is the minimal polynomial2 of αi. Because every even power of α in

the sequence has the same minimal polynomial as some preceding odd power of

1α ∈ GF(q) is primitive if every nonzero element x ∈ GF(q) \ {0} can be represented as a
power of α; x = αj for some j ∈ {0, 1, ..., q − 2}

2A minimal polynomial Φ(X) of any element β in GF(qm) is Φ(X) =
∏e−1

i=0 (X+β2i), where
e is the smallest integer that β2e = β.

32

α in the sequence g(x) can be reduced to

g(X) = LCM{Φ1(X),Φ3(X),,Φ2t−1(X)}. (3.4)

This binary BCH codes with length n = 2m − 1 is called primitive BCH codes.

The general definition of binary BCH codes with a designed distance d0 is

generated by the binary polynomial of degree that has consecutive powers of β

as roots, which are βl0 , βl0+1, ..., βl0+d0−2 , where β is an element of GF(2m) and

l0 is a nonnegative integer. The generator polynomial is

g(X) = LCM{Ψ1(X),Ψ1(X),,Ψd0−2(X)}, (3.5)

and the length of the code is

n = LCM{n0, n1, ..., nd0−2}, (3.6)

where Ψi(X) is the minimal polynomial, and ni is the order of βl0+i for 0 ≤ i <

d0 − 1. This general BCH code has minimum distance of at least d0 and has a

number of parity check digits not more than m(d0 − 1); hence it can correct not

more than b(d0 − 1)/2c errors.

3.2.1.2 Decoding

The general approach of BCH error-correcting procedure has four steps as follows:

1. Compute the syndrome S = (S1, S2, ..., S2t) from the received polynomial

r(x). For a t-error correcting BCH code, the syndrome is a 2t tuple

S = (S1, S2, ..., S2t) = r ·HT, (3.7)

where r is the length n receive vector r = r0 + r1X + r2X
2 + ...rn−1X

n−1

33

and the check matrix is

H =



1 α α2 α3 ... αn−1

1 (α2) (α2)2 (α2)3 ... (α2)n−1

1 (α3) (α3)2 (α3)3 ... (α3)n−1

...
...

1 (α2t) (α2t)2 (α2t)3 ... (α2t)n−1


. (3.8)

Then i th component of the syndrome is

Si = r(αi) = r0 + r1α
i + r2α

2i + ...+ rn−1α
(n−1)i for 1 ≤ i ≤ 2t. (3.9)

The syndrome depends only on the error pattern e(X), thus Si = e(αi).

The error pattern has ν errors at locations Xj1 , Xj2 , ..., Xjν that is

e(X) = Xj1 +Xj2 + ...+Xjν , (3.10)

where 0 ≤ j1 < j2 < ... < jν < n. Set each αi ; 1 ≤ i ≤ 2t in (3.10) we

obtain 2t equations

S1 = αj1 + αj2 + ...+ αjν

S2 = (αj1)2 + (αj2)2 + ...+ (αjν)2

S3 = (αj1)3 + (αj2)3 + ...+ (αjν)3

...

S2t = (αj1)2t + (αj2)2t + ...+ (αjν)2t, (3.11)

where αj1 , αj2 , ..., αjν are unknown. If we have found αj1 , αj2 , ..., αjν , the

powers j1, j2, ..., jν indicate the error locations in e(X). If the number of

errors in e(X) is t or fewer, the solution is the error pattern with smallest

number of errors and it is the desired solution. Let

βl = αjl (3.12)

34

be the error-location number. Then we define the error-location polynomial

σ(X) = (1 + β1X)(1 + β2X)...(1 + βvX), (3.13)

of which the coefficients must be searched. Note that the roots of σ(X) are

β−1
1 , β−1

2 , ..., β−1
v which are the inverses of the error-location numbers. Then

by expansion of the error-location polynomial, we get

σ(X) = σ0 + σ1X + σ2X
2 + ...+ σvX

v, (3.14)

of which the coefficients are

σ0 = 1

σ1 = β1 + β2 + ...+ βν

σ2 = β1β2 + β2β3 + ...+ βν−1βν
...

σν = β1β2...βν . (3.15)

These σi’s are called the elementary symmetric functions of error-location

numbers and are non-linear functions to the syndromes.

The linear relationship between the syndromes and the coefficients of the

error-location polynomial can be described by Newton identities, given as

[52]

Sk + σ1Sk−1 + ...+ σk−1S1 + kσk = 0 ; 1 ≤ k ≤ ν

Sk + σ1Sk−1 + ...+ σν−1Sk−ν+1 + σνSk−ν = 0 ; k > ν. (3.16)

For k > ν the notation can be written as

Sj = −
ν∑
i=1

σiSj−i, (3.17)

which can be generated from the linear feedback shift register such that the

relation between the syndromes and the coefficients of the error-location

35

polynomial can be found.

2. Determine the error-location polynomial σ(x) from S using the Berlekamp-

Massey Algorithm or Key equation solver or Peterson’s algorithm for BCH

codes.

The Peterson-Gorenstein-Zierler algorithm is given here, as from this al-

gorithm the formulas for the coefficient of σ(X) are explicitly given for a

small number of errors, and thus [6] suggested using this method to find the

error-location polynomial for BCH component codes of high-rate Staircase

codes.

Firstly (3.17) can be written in matrix form as

S1 S2 . . . Sν

S2 S3 . . . Sν+1

S3 S4 . . . Sν+2

...

Sν Sν+1 . . . S2ν−1





σν

σν−1

σν−2

...

σ1


= −


Sν+1

Sν+2

...

S2ν

 . (3.18)

The ν × ν matrix is called Mν , where ν has to be determined using the

Peterson-Gorenstein-Zierler decoder as follows [52]:

(a) Set ν = t.

(b) Form Mν and calculate the determinant det(Mν) to check whether it

is invertible. If it is not invertible, set ν ← ν − 1 and rerun this step.

(c) If Mν is invertible, solve for the coefficient σ1, σ2, ..., σν .

The explicit formulars are as follows [52]:

1-error correction σ1 = S1.

2-error correction σ1 = S1, σ2 = (S3 + S3
1)/(S1).

3-error correction σ1 = S1, σ2 =
(S2

1S3+S5)

(S3
1+S3)

, σ3 = (S3
1 + S3) + S1σ2.

4-error correction σ1 = S1

σ2 =
S1(S7+S7

1)+S3(S5
1+S5)

S3(S3
1+S3)+S1(S5

1+S5)
, σ3 = S3

1 + S3 + S1σ2, σ4 =
(S5+S2

1S3)+(S3
1+S3)σ2

S1
.

5-error correction σ1 = S1,

σ2 =
(S3

1+S3)[(S9
1+S9)+S4

1(S5+S2
1S3)+S2

3(S3
1+S3)]+(S5

1+S5)(S7+S7
1)+S1(S2

3+S1S5)

(S3
1+S3)[(S7+S7

1)+S1S3(S3
1+S3)]+(S5+S2

1S3)(S5
1+S5)

,

36

σ3 = (S3
1 + S3) + S1σ2,

σ4 =
(S9

1+S9)+S2
3(S3

1+S3)+S4
1(S5+S2

1S3)+σ2[(S7+S7
1)+S1S3(S3

1+S3)]

S5
1+S5

,

σ5 = S5 + S2
1S3 + S1S4 + σ2(S3

1 + S3).

It can be seen that with an increasing number of error correction capabil-

ity t, the formulae are more complex and thus using Peterson’s algorithm is

not efficient anymore. Thus, the less complex method known as Berlekamp-

Massey algorithm is employed. The main idea of this algorithm is to try

to find the shortest linear feedback shift register (LFSR) that can gener-

ate {S1, S2, ..., S2t} where the coefficient of this LFSR is the error-location

polynomial σ(X) of smallest degree. For details of the algorithm see [7],

[8], [46], [52].

3. The error-location numbers β1, β2, ..., βv are determined by finding the roots

of σ(X) using Chien’s procedure [18]. This search is exhaustive over all the

elements in the field GF(qm) with elements {1, α, α2, ..., αq
m−2} by evaluat-

ing these values by the error-location polynomial. The efficient implemen-

tation in hardware is shown in Figure 3.3 where firstly the register is loaded

with the coefficients of the error-location polynomial, and the initial output

is

A =
ν∑
j=1

σj = σ(x)− 1|x=1. (3.19)

If A = 1 the error location has been found because σ(x) = 0. Thereafter

each register is multiplied by αj where j = 1, 2, ..., ν results

A =
ν∑
j=1

σjα
j = σ(x)− 1|x=α. (3.20)

The next step is done until all the non zero elements in the field are evalu-

ated. If all of the roots that are found are different and stay in that field,

they can be used to determine the error-location numbers.

4. Flip the bits at locations according to the error-location number in r(x)

such that the word is corrected.

37

σ1 σ2 σν

α α2
αν

A

×××

+

Figure 3.3: Chien search algorithm.

From the fact that polynomial f 2(X) = f(X2) over GF(2), the received vector

r2(X) = r(X2). When we substitute αi for X in the received polynomial, we

have for the syndrome S2i = S2
i . Therefore the complexity of computing all the

syndromes reduce to half, as well as the complexity of finding the error-location

polynomial using the Berlekamp-Massey Algorithm.

3.2.2 RS Codes

Reed-Solomon (RS) codes are a nonbinary subclass of BCH codes, which were in-

vented by Reed and Solomon [62] independently of the invention of BCH codes in

the same year. The efficient decoding algorithm for these codes is also Berlekamp’s

iterative algorithm [7],[8] and Chien’s search algorithm [18] similar to BCH codes.

The Euclidean algorithm, which was invented by Sugiyama, Kasahara, Hirasawa,

and Namekawa [71], is a simple concept used for decoding of both RS and BCH

codes. The BCH and RS codes can additionally be encoded and decoded in

frequency domain [9].

3.2.2.1 Encoding

If we first consider nonbinary BCH codes with block length n = qm − 1, and we

set m = 1, it results in RS codes with block length n = q − 1: this is how RS

38

codes are defined as a subclass of q-ary BCH codes. The primitive element α is

a symbol in the Galois field GF(q) and is not over the extension field as in BCH

codes. The parameters of a t-error-correcting RS code: number of parity-check

symbols: n− k = 2t and minimum distance dmin = 2t+ 1 cause the RS codes to

be one of the maximum distance separable (MDS)1 codes.

The generator polynomial g(x) of a t-error correcting RS code of length q− 1

is the lowest-degree polynomial over GF(q) that has α, α2, α3, ..., α2t as its roots

g(αi) = 0 for 1 ≤ i ≤ 2t, (3.21)

and, because αi is an element of GF(q), the minimal polynomials are X − αi,

thus, reads

g(X) = (X − α)(X − α2)...(X − α2t) (3.22)

= g0 + g1X + g2X
2 + ...+ g2t−1X

2t−1 +X2t.

Because RS codes belong to the class of cyclic codes, the data polynomial u(X)

of degree at most k− 1 is encoded using the shift register as shown in Figure 2.8.

3.2.2.2 Decoding

The steps of RS decoding are similar as those for decoding of BCH codes but

with the additional step of determining the error values, because the codewords

are not from GF(2), which need only bit flipping at the error locations. The steps

are as follows [46]:

1. Compute the syndrome S = (S1, S2, ..., S2t) from the received polynomial

r(X).

For a t-error correcting RS code, the syndrome is a 2t tuple over GF(q)

S = (S1, S2, ..., S2t), (3.23)

1Block codes that achieve equality in the Singleton bound

39

where r is the received polynomial r(X) = r0 + r1X + r2X
2 + ...rn−1X

n−1.

Then the i th component of the syndrome is given by

Si = r(αi) = r0 + r1α
i + r2α

2i + ...+ rn−1α
(n−1)i for 1 ≤ i ≤ 2t. (3.24)

The syndrome depends only on the error pattern e(X) of which the coef-

ficients are from GF(q), so Si = e(αi). The error pattern has ν errors at

locations Xj1 , Xj2 , ..., Xjν that is

e(X) = ej1X
j1 + ej2X

j2 + ...+ ejνX
jν , (3.25)

where 0 ≤ j1 < j2 < ... < jν < n. Set each αi; 1 ≤ i ≤ 2t in (3.25) and we

obtain 2t equations

S1 = ej1α
j1 + ej2α

j2 + ...+ ejνα
jν

S2 = ej1(α
j1)2 + ej2(α

j2)2 + ...+ ejν (α
jν)2

S3 = ej1(α
j1)3 + ej2(α

j2)3 + ...+ ejν (α
jν)3

...

S2t = ej1(α
j1)2t + ej2(α

j2)2t + ...+ ejν (α
jν)2t. (3.26)

For 1 ≤ i ≤ ν, βi = αji are then assigned as the error-location numbers and

δi = eji are assigned as the error values. If we have found αj1 , αj2 , ..., αjν ,

the powers j1, j2, ..., jν indicate the error locations in e(X). If the number

of errors in e(X) is t or fewer, the solution is the error pattern with the

smallest number of errors and it is the desired solution. Thereafter, the

error-location polynomial is defined as

σ(X) = (1− β1X)(1− β2X)...(1− βvX)

= σ0 + σ1X + σ2X
2 + ...+ σvX

v, (3.27)

of which the coefficients must be determined.

2. Determine the error-location polynomial σ(x) from S using the Berlekamp-

Massey Algorithm or Key equation solver or Peterson-Gorenstein-Zierler

40

algorithm for RS codes. For details see [7], [8], [46], [52].

3. Evaluate error-location numbers β1, β2, ..., βv by finding the roots of σ(X)

using Chien’s procedure [18] .

4. Determine the error-value-evaluator as

Z0(X) =
ν∑
l=1

δlβl

ν∏
i=1,i 6=l

(1− βiX) (3.28)

= S1 + (S2 + σ1S1)X + (S3 + σ1S2 + σ2S1)X2 (3.29)

+...+ (Sν + σ1Sν−1 + ...+ σν−1S1)Xν−1.

Find the error values at location βk in Forney’s formula

δk =
−Z0(β−1

k)

σ′(β−1
k)

, (3.30)

where

σ′(β−1
k) = −βk

ν∏
i=1,i 6=k

(1− βiβ−1
k). (3.31)

5. Correct the symbols in r(X) at the location corresponding to error-location

number by computing r(X)− e(X).

3.2.2.3 Erasure Decoding

Now there are f erasures in addition to the ν errors, thus the erasures at positions

Xj1 , Xj2 , ..., Xjf have erasure location numbers αj1 , αj2 , ..., αjf . The decoder has

to find locations and values of the errors and also the values at each erasure

position. Because the locations of the erasures are known, the erasure-location

polynomial can be already computed as [46]

β(X) =

f∑
l=1

(1− αjlX). (3.32)

The syndromes S = (S1, S2, ..., S2t) can be computed from the received poly-

41

nomial r(X) with the erasure locations equal to zeros resulting the modified re-

ceived polynomial r∗(X) which contains up to f additional errors. The syndrome

polynomial can be given as

S(X) = S1 + S2X + ...+ S2tX
2t−1. (3.33)

We know from 3.2.2.2 that the error-location polynomial is

σ(X) =
ν∑
k=1

(1− αikX), (3.34)

hence the error-location polynomial for the modified received polynomial r∗(X)

can be defined as

γ(X) = σ(X)β(X), (3.35)

where β(X) is known. The resulting key equation is equal to [46]

σ(X)β(X)S(X) ≡ Z0(X) mod X2t, (3.36)

where the known terms can be combined to

T (X) , β(X)S(X) mod X2t, (3.37)

thus

σ(X)T (X) ≡ Z0(X) mod X2t. (3.38)

The decoder has to find the solution (σ(X), Z0(X)) such that σ(X) has minimum

degree ν and degree Z0(X) < ν + e via the Berlekamp-Massey algorithm or the

Euclidean algorithm, where T (X) is used instead of S(X) in these algorithms.

When the error-location polynomial σ(X) is found, the term γ(X) can be

evaluated. The error-value evaluator Z0(X) is also obtained from the Berlekamp-

Massey algorithm or the Euclidean algorithm. At last the error values are given

42

by [46]

eik =
−Z0(α−ik)

γ′(α−ik)
(3.39)

for 1 ≤ k ≤ ν, and the values of the erasures are [46]

fil =
−Z0(α−jl)

γ′(α−jl)
(3.40)

for 1 ≤ l ≤ f , where γ′(X) is the derivative of γ(X).

3.2.3 LDPC Codes

Low-density parity-check (LDPC) codes were first invented by Gallager in 1962

[25]. In 1981 Michael Tanner published his work about codes on graphs [72].

After many years of being ignored, LDPC codes on graph and iterative decoding

were interested and intensively investigated by researchers in the 1990. LDPC

codes with long block length and iterative message passing decoding achieve very

low error rate just a fraction of decibel away from Shannon limit [46].

3.2.3.1 Encoding

LDPC codes are linear block codes, so they can be specified by a generator matrix

G or a parity-check matrix H. The parity-check matrix H is of low-density

which means the number of non-zero elements in the parity check matrix is small

compared to the number of rows and columns in the check matrix. To design the

LDPC codes, the parity-check matrix is firstly determined, then the generator

matrix can be obtained through Gauss-Jordan elimination of the parity-check

matrix (details see [39]). The parameters for designing the parity check matrix

H are code length n, number of message bits k, row weight Wr and column weight

Wc. There can be any number of check equations (but only n − k of them are

linearly independent), which correspond to the rows in the parity-check matrix.

LDPC codes can be visualized by a Tanner graph, where the check nodes and

bit nodes are connected through the edges. The check nodes correspond to the

parity check equations and the bit nodes correspond to the codeword bits. An

43

edge connects the check node i to the bit node j if the bit j takes part in the check

equation i and so on. A cycle is defined as a path in the graph which starts and

ends at the same node; besides the nodes in the path must not be repeated. The

smallest cycle in the graph is called a girth. To design good LDPC codes suitable

for iterative decoding, any 4-cycle in the graph should be avoided because they

often prevent decoding from converging to the correct codeword.

3.2.3.2 Combinatorial Design of LDPC Codes

We are interested in high-rate transmission of Staircase codes, thus the LDPC

component codes built into Staircase blocks also need to have high rate. The

high-rate LDPC codes can be constructed by combinatorial design [40], which is

algebraically constructed with flexibility in selecting code length and rate online.

Moreover it has specified properties such as regularity, minimum distance, girth

and rate. While the random construction for high-rate LDPC codes has difficulty

in removing cycles and requires more storage for H.

Combinatorial design arranges a set of v points into b blocks. The design

parameters are the number of points in each block k, and the number of blocks

that contain each point r. The design is regular if k are the same for every block

and r are the same for every point. The number of blocks that two points x and

y are joined is λx,y. A regular t design is denoted as t − (v, b, r, k, λ) with every

t-subset of points is contained in exactly λ blocks. The design can be described

by a (b × v) incident matrix N where each row in N represents a block Bj and

each column represents a point Pj [40]

Ni,j =

{
1, if Pj ∈ Bi

0, otherwise.
(3.41)

The transpose of the incident matrix is used as the parity-check matrix H of

LDPC codes. The Steiner design has λ = 1. The Steiner 2-design has t = 2

which guarantees no existence of cycle-4 codes.

A class of Steiner 2-design is called Kirkman triple systems (KTS), of which

blocks can be arranged into r groups called resolution classes, so that v/k blocks

of each resolution class are disjoint, and each class contains every point exactly

44

once. The construction method for KTS(3q) with v = 3q presented by [40] is as

follows: “Let q = 6m+ 1 be a prime power, m an integer and take θ a primitive

element of GF(q), so that θ6m = 1, θ3m = −1 and θ2m + 1 = θm. The point set is

H = GF(q)× Z3
1 and the mixed difference system2 consists of the sets

A = {01, 02, 03}
Bi,j = {θij, θi+2m

j , θi+4m
j }, 1 ≤ i ≤ m

Ci,j = {θi+mj , θi+3m
j+1 , θi+5m

j+2 }, 1 ≤ i ≤ m

Di,j = {θij, θi+2m
j+1 , θi+4m

j+2 }, 1 ≤ i ≤ m

for 1 ≤ j ≤ 3 (mod 3), where θij = (θi, j) ∈ H. The sets A,Bi,j and Ci,j of the

mixed different system make up the blocks of one resolution class of a design,

and each translate3 of these sets gives a further resolution class. Next, each set

Di,j with its translate gives a resolution class, so we obtain r = 9m+ 1 resolution

classes.

For example, take H = GF(7)× Z3, m = 1, q = 7, and v = 21. Choose θ = 3

and the mixed different system is

A = {01, 02, 03}
B = {31, 61, 51}, {32, 62, 52}, {33, 63, 53}
C = {21, 42, 13}, {22, 43, 11}, {23, 41, 12}
D = {31, 32, 33}, {62, 63, 61}, {53, 51, 52}

The set A,B, and C make up the blocks of the first resolution class of the design

and the six translation of these sets make up the blocks of the next six resolution

classes. The blocks in the second resolution class with g = 1 are {11, 12, 13},
1For an Abelian (commutative) group G with a number of elements v, H = G×Zt consists

of tv elements, t copies of each element of G with (a, i) ∈ H is the ith copy of the elements a in
G

2For H = G × Zt, the k-elements subsets D1, ..., Ds ∈ H form a mixed difference system,
if there exists an integer λ such that for every i, j ∈ 1, 2, ..., t, every element g ∈ G occurs λ
times as the difference (x, i)− (y, j), where g = x− y and (x, i), (y, j) are among the elements
of D1, ..., Ds. If i = j we have g as a pure difference of class i, and if i 6= j we have g as a mixed
difference of class ij [64].

3Translate of the set Dl are the set Dl + g := {(x+ g, i) : (x, i) ∈ Dl} for all g ∈ G.

45

{41, 01, 61}, {42, 02, 62}, {43, 03, 63}, {31, 52, 23}, {32, 53, 21}, {33, 51, 22}. Next

the translate of each block in D make up a resolution class; for the first block,

D1,1, the blocks in this resolution class are {31, 32, 33}, {41, 42, 43}, {51, 52, 53},
{61, 62, 63}, {01, 02, 03}, {11, 12, 13}, {21, 22, 23}. There are totally 10 resolution

classes, each with 7 blocks to give KTS(21,70,10,3,1). Each block defines a row

of the binary incident matrix N, which has the dimension of (70 × 21), and is

constructed as in (3.41). Then the transpose of N is a parity-check matrix H for

LDPC code.” [40]

3.2.3.3 Bit-Flipping Decoding Algorithm

We investigate only the performance of hard-decision decoding by using a bit-

flipping algorithm, because soft-decision decoding that uses a sum-product algo-

rithm is too complex and inefficient for high-rate transmission.

The bit-flipping algorithm is a hard-decision iterative form of decoding. The

decoding algorithm is given in [46] as follows. Firstly, it computes the parity

check sum (syndrome bits) from z = (z0, z1, ..., zn−1) the binary hard-decision

received sequence as

s = (s1, s2, ..., sJ) = z ·HT, (3.42)

where

sj = z · hj =
n−1∑
l=0

zlhj,l. (3.43)

If all the parity-check sums are zero, then stop decoding. Otherwise find the

number of failed parity-check equations for each bit denoted as fi whereas i =

0, 1, ..., n − 1. Thereafter identify the set of bits which fi is the largest and

flip those bits. The algorithm repeats from computing the syndrome bits again

until the parity-check sums are equal to zero or the preset maximum number of

iterations is reached.

46

Chapter 4

Performance of Staircase Codes

4.1 G.709 Compatible Staircase Codes

The G.709 [36] recommendation of interfaces for optical transport networks by the

International Telecommunication Union (ITU) defines high-rate optical transmis-

sion with code rate R = 239/255 = 0.9373. Thus, [6] defines a G.709 compatible

Staircase code with rate R = 0.9373, m = 510, r = 32, where the BCH component

codes have parameters (n = 1023, k = 993, t = 3) with the modified generator

polynomial adding two-bit error detection (X2 + 1)

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1)

(X10 +X8 +X3 +X2 + 1)(X2 + 1) (4.1)

resulting in BCH component codes with r = 32 parity bits. The modified Stair-

case block Bi has dimension 512 rows each with 510 bits (512 × 510) resulting

in 261120 bits per block. The frame BT
i−1 has dimension (512 × 512) where the

two top missing rows are filled with zeros (this is to achieve compatibility with

ITU G. 709). The encoding of the block of BCH component codes (1023, 993, 3)

is carried out with one bit shortening, so the rows of the Staircase code have

dimension 512 + 510 = 1022. The resulting rate of this modified code is equal to

R = 1− 32/510 = 0.9373 which is exactly the same as the rate of the code in the

G.709 recommendation and indicates high-rate code. This code is the baseline

code in the research of this thesis as high-rate Staircase codes on wireless channels

47

are investigated.

4.2 Performance Analysis of the Baseline

Staircase Code

The performance analysis of Staircase codes is split into three parts: performance

for high input bit error probability, iterative decoding threshold analysis, and

performance at low bit error probability. At high input bit error probability the

baseline Staircase code follows the performance of the BCH component codes,

since iterative decoding does not perform; thus the decoding is equivalent to each

component code that is decoded independently. The output bit error probability

of Staircase codes pO can be given as [73]

pO ≥
n∑

i=t+1

i

n

(
n

i

)
piE(1− pE)(n−i), (4.2)

where pE is the input bit error probability, t is the error correction capability of

the component codes, and n is codeword length.

To find the decoding threshold of iterative decoding, above which the decoding

is likely to fail, peeling decoding analysis is done [75], which is a simulation on

pseudo decoding [41] to estimate the iterative decoding threshold of Staircase

codes based on an error graph argument. The all-zero codeword with random-

error patterns is processed in each row and in each column, removing the errors

if the weight is at most t. Thus, the highest input bit error probability pE where

no more errors exist in the first block of the decoding window is the estimated

iterative threshold, which also depends on the size of the decoding window and

the maximum number of iterations. After the input bit error probability pE is less

than the iterative decoding threshold, then the tangent of the output bit-error

curve is getting steep according to the product codes property, which corresponds

to the waterfall region in the performance curve. In [75] the authors derive an

upper bound for the iterative decoding threshold based on information transfer

functions.

Density evolution (DE), which tracks the evolution of the probability density

48

functions through iterative decoding, can be used to find the iterative decod-

ing threshold of an ensemble. Density evolution for generalised LDPC (GLDPC)

codes and spatially-coupled GLDPC codes is proposed by [38], where they primar-

ily define an ensemble of spatially-coupled GLDPC as a Tanner graph with ensem-

ble (C,m, L, w), where C is a binary linear code with (n, k, dmin) with dmin ≥ 2t+1

and t is the error correction capability, L is the number of positions of bit nodes

contained in spatially-coupled GLDPC, m is a selected number such that mn is

divisible by 2 and w. There are N = mn
2

degree-2 bit nodes and m degree-n code-

constraint nodes at each position, thus there are totally mn output connections

from all bit nodes and mn output connections from all code-constraint nodes at

each position, which are called sockets. “The mn sockets are separated to w

groups of mn
w

sockets via uniform random permutation π at each bit position and

code-constraint position. The j-th group of the bit nodes at the i-th position is

called Sbi,j with j ∈ {0, 1, ..., w − 1}, and the j-th group of the code-constraint

nodes at the i-th position is called Sci,j with j ∈ {0, 1, ..., w − 1}. The Tanner

graph is constructed by connecting Sbi,j to Sci+j,w−j−1” [38]. This annotation can

be illustrated as the yellow lines in Figure 4.1. The iterative decoding of Staircase

codes with the bound minimum distance decoder can be interpreted as removing

the “error graph”, which has the code-constraint node of each component code

connecting (by edges) to its erroneous bit nodes. In iterative decoding process, we

remove those code-constraint nodes, their edges, and their connected erroneous

(but correctable) bit nodes from the error graph, for which the number of the

connected edges to a check node is not bigger than the error correction capability

t of the component codes. The error graph has a high probability to be a tree,

which is necessary for a message passing algorithm to guarantee the correctness

of the result, when m→∞, thus the iterative decoding can be analysed through

density evolution. In [32] the density evolution is used to predict the performance

curve at the iterative decoding threshold, and the waterfall region for Staircase

codes by assigning w = 2, since each position of the Staircase codes are connected

to 2 code-constraint positions as illustrated in Figure 4.1. The message from bit

node i to constraint node j is in error, when the bit node i is in error and the

incoming messages from other constraint nodes j′ 6= j are in error, which happens

when there are at least t errors in those constraint nodes. The error probability of

49

......

......

m1

π′
2

π2

N1

......

......

m1

π′
1

π1

N1

n

2

mn
w

mn
w

L = 1 L = 7

π′
8

1 m......

π′
7

1 m......

1 N

π7

......

...

...

Sb
2,0 Sb

2,1Sb
1,1Sb

1,0

Sc
1,1

Sc
2,0 Sc

2,1 Sc
3,0

Figure 4.1: Tanner graph of Staircase code with L = 7, w = 2 (derived from [38])

the bit nodes at position i in the (l+1)-th iteration for ideal component decoders

without error decoding can therefore be given as [38]

x
(l+1)
i = pf̂n(x

(l)
i), (4.3)

where x
(l)
i = 0 for all i /∈ {1, 2, ..., L}, l ≥ 0, p is the bit error probability of the

BSC, and

fn(x) ,
n−1∑
i=t

i

n

(
n− 1

i

)
xi(1− x)(n−i). (4.4)

From the spatially-coupled GLDPC codes ensemble definition, the average of

input bit error probability at position i is given as [38]

y
(l)
i =

1

w

w−1∑
j=0

x
(l)
i−j, (4.5)

therefore the bit error probability of the bit nodes at position i in the (l + 1)-th

50

iteration is given as

x
(l+1)
i = p

(
1

w

w−1∑
k=0

fn

(
1

w

w−1∑
j=0

x
(l)
i−j+k

))
. (4.6)

We track the evolution of the bit error probability of the baseline Staircase

code ensemble (BCH (1023, 993, dmin = 7), m=512, L=7, w=2) with x
(0)
i = 0.0051

for i ∈ L and plot it in Figure 4.2. The evolution starts at the upper right

corner and attempts to reach the origin, where the bit error probability is zero.

The minimum input bit error probability x(0) for which the average bit error

probability x̄(l) with l →∞ gets stuck at the bisectrix is the estimated iterative

decoding threshold. For this ensemble the iterative threshold is found to be at

x̄(0) = 0.0051. Figure 4.3 shows the case with x̄(0) = 0.0050 that the iterations

succeed in arriving at the origin after so many iterations. It can be observed that

the decoding trajectory slows down when it enters a bottleneck or tunnel region

[22] near the bisectrix line [45].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

x̄
(l)

x̄
(
l
+

1
)

Figure 4.2: Evolution of the bit error probability with x̄(0) = 0.0051

51

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

x̄
(l)

x̄
(
l
+

1
)

Figure 4.3: Evolution of the bit error probability with x̄(0) = 0.0050

At last the performance curve in waterfall region can be extrapolated to reach

the error floor at a very low output bit error probability, which depends on the

probability that an error pattern contains a stall pattern. The stall pattern is “a

set s of codeword positions, for which every row and column involving positions

in s has at least t+ 1 position in s, and thus the decoder gets locked in s state in

which no updates are performed” [6]. This definition is equivalent to the (t+ 1)-

core pattern of product codes (see Section 2.8.1); however the analysis of Staircase

codes involves two consecutive blocks Bi and Bi+1 instead of one block B in the

product codes analysis.

The error floor of the baseline Staircase codes can be estimated using the

Union Bound Technique [6]. The error floor equals the probability that a stall

pattern is assigned to block Bi, i.e., and possibly Bi+1 given

BERfloor ≤
∑
s∈Si

Pr[bits in s in error] · |s|
5102

, (4.7)

52

where each block has 510 rows, 510 columns, and the component codes have

error correction capability t = 3. To enumerate the set S, [6] gives the bounding

contribution due to the minimal stalls, in which only t+ 1 rows have positions in

s and only t + 1 columns have positions in s. Thus the multiplicity of minimal

stall patterns for Bi is given as

Mmin =

(
510

4

)
·

4∑
m=1

(
510

m

)
·
(

510

4−m

)
, (4.8)

where the first term (
(

510
4

)
) is for the two consecutive blocks sharing the same

t + 1 rows (or columns) in s. The sum term is for t + 1 columns (or rows) in s,

where m columns (or rows) of the t + 1 columns (or rows) are in the first block

and t+ 1−m columns (or rows) of the t+ 1 columns (or rows) are in the other

block. When p is the probability that the received bit is in error, and ζ is the

erroneous bit flips that occur due to incorrect decoding, the upper bound of the

probability that a particular minimal stall s occurs is [6]

16∑
l=0

(
16

l

)
p16−lζ l = (p+ ζ)16. (4.9)

Then the error floor contribution due to minimal stall patterns can be estimated

as [6]

BERfloor ≈
16

5102
·Mmin · (p+ ζ)16 (4.10)

where ζ = 5.8 × 10−4 when p = 4.8 × 10−3. For details in calculating the error

floor’s contribution due to non minimal stalls see [6]. The error floor, which the

dominant contribution is due to minimal stall patterns, is estimated to occur at

4.0× 10−21 [6], which is very hard to get to by simulation; thus the extrapolation

of the performance curve is usually done for these kinds of codes.

53

4.3 Performance Simulations of the Baseline

Staircase Code

In Figure 4.4 the performance simulation of the baseline Staircase code is com-

pared with the performance simulation of a Reed-Solomon code of the same rate

and with the theoretical performance of the BCH (1023, 993, t = 3) component

codes from Equation 4.2. At high input bit error probability with pE > 0.008 the

performance simulation of the Staircase code follows the theoretical performance

of the BCH component code, as the BCH component codes cannot correct more

errors than the error correction capability of the BCH component codes, and for

a bad channel such error patterns occur often. It can be seen that at input bit

error probability pE = 0.0049, the Staircase code performs with the output bit

error probability pO = 2.79 × 10−7, which is much better than the theoretical

performance of the BCH component codes and the RS code of the same rate. At

pE = 0.0048 the pO is marked at 10−8 because the simulation finds no errors in

109 data bit realizations1. The abrupt improvement of the output bit error prob-

ability from the theoretical performance of the BCH component code is known as

the water fall region. This is due to the iterative decoding of Staircase codes that

reduces the number of errors in each iteration processed (for channel better than

the iterative decoding threshold). The estimated iterative decoding threshold

from density evolution in the last section results at pE = 0.0051 for the baseline

Staircase code ensemble, which defines the upper bound, above which, the iter-

ative decoding will definitely fail. Our Monte Carlos simulation with MATLAB

can only run to have a confidence value of pO above 10−8. For pO smaller than

10−15 as required for high-rate optical transport networks, hardware simulations,

e.g. by an FPGA realization, would be required, but this was out of scope of this

1According to [44, Theorem 2.4] the confidence interval for a probability p of “success” (a
bit error in our case) when we observe z = 0 successes in an experiment of n independent trials
is [0; p0(n)]. For n large and for a confidence of 0.95 the upper limit p0(n) is approximately
given by p0(n) ≈ 3.689

n , with the relative error smaller than 10% for n ≥ 20. A condition for
this result to hold is, however, that the trials must be independent, and, as we are considering
bit-error probability also within code words, independence can not be guaranteed. Therefore,
well knowing that the error probability is not zero, we have decided to mark the fact that no
error has been found in 109 trials by marking the point at 10−8, which is more conservative
than the bound p0(n) ≈ 3.689 · 10−9 one would obtain from the theorem in [44].

54

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

RS(255,239) code rate R = 0.9373

baseline Staircase code with rate R = 0.9373

Performance analysis of BCH (1023,993,t=3)

Figure 4.4: Simulation of the baseline Staircase code compare with RS code from
G.709 and the theoretical performance of BCH component codes.

55

research.

Figure 4.5 shows the number of decoding iterations that some random error

sequences decoded by the baseline Staircase code require to converge to a stable

state. The curves are shown for different pE with a decoding window of size 7.

Here we define the stable state as when the decoding of the next iteration does

not change the number of errors decoded in a codeword and the iterations can be

stopped. It can be seen that at pE = 0.0052 and pE = 0.008, which are greater

than the successful decoding probability at pE = 0.0048 shown in Figure 4.4

with the output bit error probability pO ≤ 10−8, the codewords require fewer

iterations (about 2 to 5) because the iterations stop early on the uncorrectable

error patterns. At pE = 0.0048 the number of iterations required varies between

5 to 13. At pE = 0.0045 which is below the successful decoding probability, the

number of iterations required is between 4 to 10, which is less than the iterations

required at the pE = 0.0048 because there are less errors to be corrected. Later

on we fix the number of decoding iterations in every simulation to 7 such that

the input bit error pE below 0.0048 are still correctable and the decoding time is

moderate.

4.4 High Error Floor of Staircase Codes with

Small-t Component Codes

The probability PE of decoding error for t-error-correcting RS codes is given as

[51]

PE =
n∑
u=0

PE(u)qu (4.11)

where qu is the probability that an error pattern has weight u, PE(u) is the

conditional probability of decoder error given u channel errors, and n is codeword

length. The upper bound on PE(u) assuming all error patterns of the same weight

are equiprobable, is given as [51]

PE(u) ≤ 1

t!
for all u ≥ t+ 1. (4.12)

56

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

codeword sequence

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
 t

o
 s

te
a

d
y

p

E
 = 0.0045

p
E
 = 0.0048

p
E
 = 0.0052

p
E
 = 0.0080

Figure 4.5: Number of decoding iterations required for random sequences of base-
line Staircase code on different input bit error probability.

57

Therefore, when there are more than t errors in a received codeword, the prob-

ability of decoder error, which means the decoder selects a wrong codeword, is

upper bounded by 1
t!

: this can also be adopted for BCH codes that are a subcode

of RS codes.1 Accordingly, for small t-error correcting codes the probability of

decoder error is higher than for large t-error correcting codes. The probability

of decoder error of RS/BCH component codes of product codes can be neglected

for moderate to large value of t as it is quite small, e.g., for t = 5 the probability

of decoder error is upper bounded by 0.0083. However, small values of t, where

t = 2− 4, e.g., for t = 4 with the probability of decoder error 0.0416, contribute

more to additional events that increase the probability of decoder errors of the

RS/BCH component codes. Therefore the iterative decoding of product codes

with small-t component codes may stop with a stall pattern, which is not part

of the original pattern, thus causing higher error floor in the product codes [41].

The statement is also valid for Staircase codes, because Staircase codes are a

kind of product code and also are decoded iteratively. Based on this, [41] sug-

gested using binary codes of even weight, or introducing extra parity symbols,

or decoding only up to t− 1 errors, to decrease decoding error of the component

codes, such that no more error bits are inserted in to the blocks of product codes,

which worsen the iterative decoding. The error floor of the product codes, there-

fore, is lowered. The main purpose is to avoid decoding the most unconfident

words located between two nearest-neighbour codewords. Using block codes of

even weight, of which dmin is even, in BMD decoder that has error correction

capability t =
⌊
dmin−1

2

⌋
, the decoder leaves words of distance dmin/2 between

two nearest-neighbour codewords undecided; because they locate outside of the

decoding bound of the BMD decoder. In contrast to using block codes of odd

weight, of which dmin is odd, of the same error correction capability t =
⌊
dmin−1

2

⌋
,

the BMD decoder leaves no words between two nearest-neighbour codewords un-

decided. Hence the error decoder probability of codes with even weight is lower

than codes with odd weight for the same error correction capability t. Similarly

decoding only up to t − 1 leaves some words that is further away with distance

1According to [34] let C′ be an RS code over the extension field GF(qm) that has a set of
codewords over GF(qm) of length N = qm − 1. Thus the codewords c′ are in [GF(qm)]N , but
some of them are in [GF(q)]N , which form the BCH code c. The BCH code c is, thus, a set of
all RS codewords that are in [GF(qm)].

58

t from codewords undecided, such that the decoder error probability is lowered.

Using extra parity check symbols controls the correctness of the decoded compo-

nent codewords. If they are not correct, the initial words are left unchanged, such

that no more error bits are inserted into the array of product codes or Staircase

codes during iterative decoding.

We investigate by performance simulation whether adding a Cyclic Redun-

dancy Check (CRC) to the component code lowers the error floor of Staircase

codes. The baseline Staircase code has BCH codes (n = 1023, k = 993, t = 3)

as component codes, which are small-t component codes, and it has the compo-

nent codes extended by 2 bit CRCs. We simulated a Staircase code with BCH

(n = 1023, k = 993, t = 3) component codes without the additional 2 bit CRCs

for comparison that has the generator polynomial

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1) (4.13)

(X10 +X8 +X3 +X2 + 1)

with the overall rate equal to 0.9412.

For smaller t, the Staircase code with BCH (n = 1023, k = 1003, t = 2)

component codes was simulated, of which the generator polynomial can be given

as

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1) (4.14)

with the overall rate of 0.9608. For the Staircase code with BCH (n = 1023, k =

1003, t = 2) component codes that have additional 2 bit CRCs and an overall

rate equal to 0.9569, the generator polynomial of the component codes can be

given as

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1) (4.15)

(X2 + 1).

Moreover the Staircase code with BCH (n = 1023, k = 983, t = 4) component

59

codes was simulated, of which the generator polynomial can be given as

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1) (4.16)

(X10 +X9 +X8 +X7 +X6 +X5 +X4 +X3 + 1)

(X10 +X8 +X3 +X2 + 1)

with the overall rate of 0.9216. For the Staircase code with BCH (n = 1023, k =

983, t = 4) component codes that have additional 2 bit CRCs and the overall rate

equal to 0.9176, the generator polynomial of the component codes can be given

as

g(X) = (X10 +X3 + 1)(X10 +X3 +X2 +X + 1) (4.17)

(X10 +X9 +X8 +X7 +X6 +X5 +X4 +X3 + 1)

(X10 +X8 +X3 +X2 + 1)(X2 + 1).

It can be observed in Figure 4.6 that the Staircase code with BCH (1023, 993,

t = 3) without CRC shows a higher error floor at pO = 2× 10−7 with pE = 0.002

in contrast to the baseline Staircase code with 2 bit CRCs, which shows steep a

waterfall region at pE = 0.0048. The Staircase code with BCH (1023, 1003, t = 2)

without 2 bit CRCs shows a higher error floor at pO = 2× 10−6 with pE = 0.001,

but the Staircase code with BCH (1023, 1003, t = 2) with 2 bit CRCs shows

a steep waterfall region and is even better than the Staircase code with BCH

(1023, 993, t = 3) without CRC, which has a smaller rate, at pE < 0.00285. The

Staircase code with BCH (1023, 983, t = 4) with 2 bit CRCs has a waterfall

region at pE = 0.007, where the Staircase code with BCH (1023, 983, t = 4)

without CRC has an error floor at pO = 1.43 × 10−6 with pE = 0.0061. Even

though the BCH component codes of two Staircase codes have the same error

correction capability t, the insertion of 2 bit CRCs improves the performance

significantly and eliminates the high error floor. This is because when the CRCs

detect errors in the decoded codewords, the initial bits are left unchanged; hence

error decoding, which causes more flipped bits in iterative decoding, is avoided.

Nevertheless, errors may have patterns that are sometimes undetectable by CRCs;

thus it has impact on the performance of Staircase codes. The undetected error

60

probability Pud for BSC can be given as [3], [81]

Pud(C, ε) =
n∑
i=d

Aiε
i(1− ε)n−i, (4.18)

where the bit error probability ε ∈ [0, 1/2], Ai is the weight distribution of the

code C, d is the minimum distance of the code C, and n is the code length.

This formula requires the knowledge of the weight distribution of the code, which

is unknown for most codes except Hamming codes, maximum distance codes,

e.g., the Reed-Solomon-Codes [34]. A simple approximation of undetected error

probability for BSC when ε = 1/2 is given as [81]

Pud < 2−r, (4.19)

where r is the number of parity check bits. In our simulation, the undetected

errors for each row of BCH codeword with 2 bit CRCs have Pud < 2−2.

For a Staircase code with RS (n = 255, k = 247, t = 4) component codes,

which are small-t component codes, we compared the performance to the Staircase

code with RS (n = 255, k = 247, t = 4) component codes extended by 2 bit

CRCs, which has the overall rate R ≈ 0.9352. The component codes of these two

Staircase codes are decoded to t errors. Furthermore, we simulated the Staircase

code with RS (n = 255, k = 247, t = 4) component codes decoded to t−1 errors,

which means the decoding makes a correction to codewords that have up to t− 1

errors, while codewords with t errors are left unchanged.

As can be observed in Figure 4.7 the performances of the Staircase codes with

component codes decoded to t errors have the iterative decoding thresholds at

pE > 0.003, which are higher than that decoded to t − 1 errors, and has the

iterative decoding threshold at pE ≈ 0.0027. However the curve with component

codes decoded to t errors shows a higher error floor in contrast to those decoded

to t− 1 errors, where no error floor is observed in our simulations. The Staircase

code with CRC has a waterfall region at a higher input bit error probability pE

due to the lower rate, but the error floor is still able to be seen, nevertheless the

error floor occurs at a lower output bit error probability pO than the RS Staircase

code without CRC.

61

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p
O

p
E

Staircase BCH(1023,1003,t=2) component codes rate=0.9608

Staircase BCH(1023,993,t=3) component codes rate=0.9412

Staircase BCH(1023,983,t=4) component codes rate=0.9216

Staircase BCH(1023,1003,t=2) with 2 bits CRC component codes rate=0.9569

Staircase BCH(1023,993,t=3) with 2 bits CRC component codes rate=0.9373

Staircase BCH(1023,983,t=4) with 2 bits CRC component codes rate=0.9176

Figure 4.6: Performance comparison of Staircase codes with and without 2 bit
CRCs.

62

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

Staircase RS (255,247,t=4) component codes decoded to t errors

Staircase RS (255,247,t=4) component codes decoded to t−1 errors

Staircase RS (255,247,t=4) + 2 bits CRC component codes decoded to t errors

Figure 4.7: Performance comparison of Staircase code with RS component codes
decoded to t errors with and without 2 bit CRCs and decoded to t− 1 errors.

63

4.5 Performance of Staircase Codes with LDPC

Component Codes

LDPC codes with soft-decision decoding using the sum-product algorithm are

capacity-approaching codes (for some code designs). However LDPC codes with

hard-decision decoding using the bit flipping-algorithm do not perform very well.

The Staircase code structure improves the performance of the component codes.

Therefore we investigated the LDPC component codes in the Staircase code struc-

ture to determine whether they can compete with other hard-decision algebraic

component codes.

The systematic LDPC codes are integrated into the block structure of the

Staircase code. The selected LDPC (n=1023, k=930) codes with rate 0.9091 are

constructed from the Kirkman triple system (KTS) which enables the construc-

tion with specified properties such as regularity, minimum distance, girth and

rate of high-rate LDPC codes [39]. The decoding of LDPC component codes is

based on bit-flipping algorithms, which are used for hard-decision decoding, be-

cause in the decoding of high-rate codes, the complexity is critical, and therefore

hard-decision decoding is preferred.

As can be seen in Figure 4.8 the performance of the Staircase code with LDPC

component codes is inferior to the baseline Staircase code, even though it has

smaller code rate. The increase in the maximum number of decoding iterations

of the LDPC component codes from 100 to 1000 does not help improving the

performance of LDPC Staircase code. A high error floor can be observed at

input bit error probability pE < 0.0025, in contrast to the baseline Staircase code

where no error floor can be seen. As a consequence the selected LDPC component

codes are not suitable for high-rate Staircase codes using hard-decision decoding.

We note here that the investigation is not exhaustive, where only one LDPC code

design with one option of hard-decision decoding is performed.

Even though soft-decision decoding of the LDPC component codes by the sum-

product algorithm can improve the performance of the LDPC Staircase codes, we

do not consider it due to the complexity and latency of soft-decision decoding.

Nevertheless LDPC codes with soft-decision decoding could be of interest, if the

latency and the complexity were not restricted, e.g., [88] proposed a rate adaptive

64

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

Staircase code with LDPC(1023,930) component codes decoding iteration 100

Staircase code with LDPC(1023,930) component decoding iteration 1000

baseline Staircase code

Figure 4.8: Comparison of the baseline Staircase code to the Staircase code with
LDPC(1023,930) component codes.

LDPC in Staircase structure decoded by sum-product algorithm, this is beyond

the scope of this research.

4.6 Conclusion

The high-rate G.709-compatible Staircase code with BCH component codes and

the parameters for the iterative decoding of these codes were investigated in this

chapter. The performance analysis started at high input bit error probability,

where the performance of Staircase codes followed the performance of BCH com-

ponent codes. When the input bit error probability falls below the iterative

decoding threshold, the iterative decoding of Staircase code improves the perfor-

mance significantly and can be seen as the water fall region in the performance

65

curve. The iterative decoding threshold can be obtained in many ways, such as,

peeling decoding analysis, information transfer function or density evolution. At

a low input bit error probability, iterative decoding cannot correct the errors in

stall patterns, even though the input bit error probability is decreased; hence this

can be seen as the error floor in the performance curve. The performance simula-

tion corresponds to the theoretical performance analysis. However, the error floor

from the analysis yields very low values, which cannot be verified by simulation.

High error floors in the performance curves of some Staircase codes are due to

small-t errors correction capability of the component codes, which causes higher

probability of error decoding of the component codes. This high error floor can be

avoided by introducing extra parity symbols to the component codes, or decoding

the component codes only up to t − 1 errors to prevent the erroneous decoding

of the component codes and, hence, even more bit errors.

The implementation of high-rate LDPC codes to the block of Staircase codes,

which are decoded using bit-flipping algorithms, shows inferior performance to the

Staircase codes that use usual algebraic component codes. This is due to the poor

performance of low-complexity hard-decision decoding of the LDPC component

codes.

66

Chapter 5

Staircase Codes for High-Rate

Wireless Transmission on

Burst-Error Channels

1 Staircase codes were initially designed for high-rate fiber optic transmission to

correct errors in a BSC channel; however to use them on burst-error channels

some aspects require close attention. The RS codes (which are known to have

good performance for correcting burst errors [46], [62], [52] because the codewords

are encoded and decoded symbol-wise) are implemented in the Staircase blocks

and tested on channels with different burst length. Block interleaving of the

codeword prior to transmission is one method to combat burst errors, thus it is

implemented and tested on burst-error channels. Lastly, complexity and decoding

latency of both types of component codes are given which have direct influence

on decoding latency of Staircase codes that can be achieved on a given hardware.

5.1 Gilbert-Elliott Model for Burst-Errors

Gilbert [29] and Elliott [24] defined a two-state Markov model for a burst-noise

binary channel, which depends on the channel states “good (G)” and “bad (B)”

1Part of this Chapter has been published in the IEEE Wireless Communications Letters
[43]

67

G B

p

r

1-r1-p

Figure 5.1: Gilbert-Elliott model generating burst errors.

as can be seen in Figure 5.1. In the Gilbert model, errors are generated with

probability 0 in the “good state” and probability b in the “bad state”, whereas,

for the Elliott model, errors can also occur in the “good state” with probability

g. The probability of transition from the “good state” to the “bad state” is

p = P (Qt = B | Qt−1 = G), (5.1)

and the probability of transition from the “bad state” to the “good state” is

r = P (Qt = G | Qt−1 = B). (5.2)

The unconditional (“steady state”) probability of the “good state” is [33]

πG =
r

p+ r
, (5.3)

and the probability of the “bad state” is

πB =
p

p+ r
(5.4)

with the resulting error rate equal to

pE = gπG + bπB. (5.5)

As the time spent in one state until leaving for the other state does not depend

on the probability of transition into that state, the probability distribution of how

68

long the channel stays in a particular state is a geometric random variable. The

probability to stay in the “bad state” for T = τ time instances is, therefore, [85]

PT (τ) =

{
r(1− r)τ−1 for τ = 1, 2, ...

0 otherwise.
(5.6)

The average burst length is the expected value of the time staying in the “bad

state” which is (with (5.6)) calculated as

∆B = E[T] = 1/r. (5.7)

The average length of an “error free” interval is derived the same way resulting

in

∆G = 1/p. (5.8)

To specify all parameters of the model as functions of the desired error prob-

ability pE and the desired average burst-error length ∆B, hence g = 0 (i.e., no

errors in the good state) and b = 1
2

(50% error probability in the bad state) are

assigned such that the total error probability depends only on the probability πB

to be in the “bad state” [54]:

pE =
1

2
πB. (5.9)

The probability of changing from “bad state” to “good state” is with (5.7)

r =
1

∆B

. (5.10)

Using (5.4) in (5.9), the probability of changing from “good state” to “bad state”

is given as

p =
2pE

∆B(1− 2pE)
. (5.11)

With the parameter settings according to (5.10) and (5.11) and with g = 0 and

b = 1
2

all channel model parameters are now determined by the desired average

69

burst length ∆B and the desired error probability pE.

Figure 5.2 shows the distribution of the simulated burst length with average

burst lengths of 2, 10, 30 and 80 bits with parameter pE = 0.0045 compared

to values computed from the Equation in 5.6. The simulation results accurately

match the probability distribution equation. It can be observed that bursts with

shorter burst lengths than the average value occur more often than bursts with

longer burst lengths.

0 2 4 6 8 10
0

0.5

1

l [bit]

P
L
(l
)

simulation
PMF equation

(a)

0 10 20 30 40 50
0

0.05

0.1

l [bit]

P
L
(l
)

simulation
PMF equation

(b)

0 50 100 150
0

0.02

0.04

l [bit]

P
L
(l
)

simulation
PMF equation

(c)

0 100 200 300 400
0

0.005

0.01

0.015

l [bit]

P
L
(l
)

simulation
PMF equation

(d)

Figure 5.2: Burst length distribution with average burst lengths (a) 2 bits (b) 10
bits (c) 30 bits (d) 80 bits with pE = 0.0045.

5.2 Capacity of Gilbert-Elliot Channel

As stated in [53] the capacity Cµ of the channel with memory µ , 1 − p − r

is lower bounded by the channel without memory, it increases monotonically

with µ and converges asymptotically to the capacity of the channel where the

side information about its instantaneous state is available at the receiver. The

capacity in terms of the input sequences xl and the output sequences yl of length

70

l is given by

C = lim
l→∞

1

l
max
P (xl)

I(xl,yl). (5.12)

Besides, the capacity of the Gilbert-Elliot channel in bits per channel use in terms

of error, the process zl is given by [53]

C = 1− lim
l→∞

1

l
H(zl), (5.13)

and also

C = 1− lim
l→∞

E[h(ql)], (5.14)

where H(·) is the entropy rate, zl = xl⊕yl and h(·) is the binary entropy function

given as

h(q) , −q log q − (1− q) log(1− q). (5.15)

The random variable ql is the probability of channel error at the lth use of the

channel, conditioned on the channel errors at its previous uses given as

ql = Pr(zl = 1 | zl−1). (5.16)

The random variable ql can be computed recursively as [53]

ql+1(zl) = v(zl, ql(zl−1)) (5.17)

with the function v(·, ·) which is defined as follows:

v(0, q) ,

pG + p(pB − pG) + µ(q − pG) (1−pB)
(1−q) if pB 6= 1,

(1− p)pG + p, if pB = 1, q 6= 1,
(5.18)

71

and

v(1, q) ,

pG + p(pB − pG) + µ(q − pG)(pB/q) if pG 6= 0,

(1− r)pB, if pG = 0, q 6= 0,
(5.19)

where p and r correspond to the probability of transition from good state (G) to

bad state (B) and vice versa. The notation pG is the probability of generating

errors in the good state and corresponds to g in Section 5.1. The notation pB is the

probability of generating errors in bad state and corresponds to b in Section 5.1.

The initial value for the recursion is given after [63] as

q0 = Pr(z0 = 1) (5.20)

= Pr(q0 = G)pG + Pr(q0 = B)pB

= πGpG + πBpB,

which is the error probability pE of the steady state, such that the stationarity

of the process is guaranteed.

To compute the capacity from Equation 5.14 the complexity is increased ex-

ponentially with l, thus [63] proposed a method called “coin tossing method”

to evaluate the capacity of the burst-error channel using Equation 5.13 and the

property of convergence in probability according to

1

l
log p(zl) 7→ lim

k→∞

1

k
H(zk). (5.21)

There the term limk→∞
1
k
H(zk) is approximated by generating a long process of

sequence zl and evaluating 1
l

log p(zl). The sequence zl can be generated recur-

sively as a Bernoulli(qi) process using Equation 5.17. Therefore the capacity can

72

be computed as

C , 1 +
1

l
log p(zl)

= 1 +
1

l

l∑
i=1

log p(zi | zi−1)

= 1 +
1

l

l∑
i=1

[zi log(qi) + z̄i log(1− qi)], (5.22)

where z̄ = 1 − z and it was shown in [63] to converge to the same value as the

computationally demanding method of evaluating the probability distribution in

each iteration.

In Figure 5.3 the capacity of the Gilbert-Elliot channel computed by the coin

tossing method with channel parameters ∆B = 10, pG = 10−20, pB = 0.5 and

pE ranging from 0.001 to 0.5 is shown in comparison to the capacity of the BSC.

The computation of coin tossing method is averaged over 100 realizations. It

can be observed that channel capacity decreases with increasing input bit error

probability pE. The capacity of Gilbert-Elliot channel is higher than the capacity

of BSC for the same input bit error probability.

5.3 Simulation Set Up of Staircase Codes

Due to the iterative decoding of the Staircase codes, it is hard to analytically

find the output bit error probability on a burst-error channel. Therefore, we

perform Monte Carlo simulations to investigate the performance of these codes

on burst-error channels.

The G.709-compatible Staircase code from [6] is our baseline code. Its compo-

nent codes are shortened binary BCH codes (n = 1022, k = 990; t = 3) extended

by 2 bit CRCs1, where n is the block length, k is the number of data bits and t is

the error correction capability. In one codeword block Bi (see Figure 3.1) there

1The insertion of CRC bits to the Staircase codes is quite essential for small-t RS or BCH
component codes (which have probability of decoding error of at most 1/t! if more than t errors
occur [51]), because the CRC prevents the component codes to contribute to additional events
that increase the error probability of product-like codes [41], which is the cause of high error
floors.

73

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
E

c
a

p
a

c
it
y

Gilbert−Elliot Channel

Binary Symmetric Channel

Figure 5.3: The capacity of the Gilbert-Elliot channel with parameter ∆B = 10,
pG = 10−20, pB = 0.5 compared to the capacity of the BSC channel.

are 512 rows and 510 columns, which corresponds to 261120 bits. The code has

overall rate R = 0.9373, which indicates high-rate transmission. Due to the fixed

structure of Staircase codes, it is difficult to leverage the same block length and

rate for different component codes, when RS codes are to be used. The best we

can do is to design a code with approximately the same rate. However, the block

lengths are smaller and bigger than those of the baseline Staircase code, such that

the performance of the baseline Staircase code is expected to be in-between.

The RS component codes built into the Staircase structure yield high rates

approximately equal to that of the baseline code as follows:

1) RS (n = 255, k = 247; t = 4) in GF(28), R ≈ 0.9370, each Bi has 128 rows and

127 columns of symbols resulting in 130048 bits.

2) RS (n = 255, k = 247; t = 4) in GF(28) extended by 2 bit CRCs with R ≈

74

0.9352, each Bi has 128 rows of symbols and 127 symbols plus 2 bits columns

resulting in 130304 bits. The 2 bit CRCs are implemented by multiplying the

polynomial X2 + 1 to each row of the encoded RS component codes.

3) RS (n = 511, k = 495; t = 8) in GF(29), R ≈ 0.9373, each Bi has 256 rows and

255 columns of symbols resulting in 587520 bits.

For all simulations we decode with a sliding window of size 7 and the maximum

number of iterations is set to 7.

5.4 Staircase Codes with Block Interleaving

When a code is transmitted on a channel with burst errors, one method to reduce

the effect of burst errors is to deploy an interleaver; such that bundles of errors

are distributed over many codewords.

Row-column interleaving is a well-known simple type of block interleaving.

The input codeword is firstly arranged into the block interleaver row-by-row.

Then the output is read from the block column-by-column. At the de-interleaver

the received codeword is arranged into the block column-by-column and then the

output is read from the block row-by-row. At the end the output symbols have

the same sequence as the input symbols and can be decoded with the deployed

channel decoder.

The diagonal interleaving for product codes proposed by [86] interleaves the

code bits or symbols of a block of a product code in diagonal direction. The

pseudo code for arranging the product code symbols with n2 rows and n1 columns

assuming n2 ≥ n1 is given in Algorithm 1, where i is the index of the ith row,

and j is the index of the jth column of the product code array, whose element is

read out as the vth element. An example of diagonal interleaving sequence of a

product code array with 6 rows and 4 columns is illustrated in Figure 5.4, where

the number in each box corresponds to the read out sequence v. The red numbers

indicate that the read out sequence is done in diagonal direction.

After each block of a Staircase codeword is encoded, it is interleaved with an

array of dimension equal to the dimension of one Staircase codeword block; thus

the size of an interleaving block is defined. The symbols of BCH component codes

are in bits as they are from GF(2); therefore the baseline Staircase code is in bit-

75

Algorithm 1 Diagonal Interleaver [86]

i← 0, j ← 0, f ← 0, g ← 0
for v = 1 to n1n2 do
i← ((v − 1 + f · g) mod n2) + 1
j ← ((v − 1) mod n1) + 1
if ij = n1n2 then
f ← 1

end if
if f = 1 and j = n1 and v2 mod n2 = 0 then
g ← g + 1

end if
end for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 5.4: Diagonal interleaving sequence of a product code array with 6 rows
and 4 columns.

wise interleaved. Symbol-wise interleaving performs interleaving for each symbol

of RS Staircase codes such that the burst error correction capability of the RS

component codes is maintained. At the receiver, each block is de-interleaved and

then decoded with an iterative Staircase-code decoder as illustrated by Figure 5.5.

The drawback is that extra memory is required and interleaving causes additional

delay due to computing time for rearranging the symbols [61].

For the baseline Staircase code, we simulated with bit-wise row-column in-

terleaving and diagonal interleaving, both with an interleaving array of 512 rows

and 510 columns with a size of 261120 bits equal to one codeword block Bi.

76

Interleaver

DeinterleaverStaircase codes Decoder

Staircase codes Encoder

Channel

u v vI

rIrû

Figure 5.5: Diagram of Staircase codes with interleaving.

For the RS Staircase code, the symbol-wise diagonal interleaving for every

2 blocks of the Staircase RS code (n = 255, k = 247; t = 4) with and without

CRC component codes is performed. The interleaving array has 128 rows and

254 columns for the RS (n = 255, k = 247; t = 4) Staircase code without CRC,

which results in an interleaving block size of 260096 bits. The interleaving array

for the 2 blocks of RS (n = 255, k = 247; t = 4) Staircase code with CRC has 128

rows and 256 columns with an interleaving block size of 260608 bits, where the 2

bit CRCs are filled with zeros before transformed into symbols. Accordingly, the

interleaving block sizes in bits are close to the interleaving block size of the BCH

baseline code.

5.5 Simulation Results for High-Rate Staircase

Codes on a Burst-Error Channels

Figure 5.6 shows the performance of those high-rate Staircase codes on a random-

error channel. The baseline Staircase code, the baseline Staircase code with

diagonal interleaving, and the baseline Staircase code with row-column inter-

leaving have the same performance, because the channel errors have a random

distribution, hence the interleaving does not improve anything. It can be seen

that the Staircase codes with RS component codes have a worse performance

than the baseline Staircase code on the random-error channel due to symbol-wise

encoding of the RS component codes such that they are not suitable for correc-

tion of random errors as many symbols are corrupted with single erroneous bits.

High error floor can be noticed for the RS (255, 247; 4) Staircase code without

77

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p
O

p
E

baseline Staircase code

baseline Staircase code with diagonal interleaving

baseline Staircase code with row−column interleaving

Staircase code RS(511,495) components

Staircase code RS(255,247) components

Staircase code RS(255,247) components 2 blocks diagonal interleaving

Staircase code RS(255,247)+CRC components

Staircase code RS(255,247)+CRC components 2 blocks diagonal interleaving

Figure 5.6: Performance of Staircase codes with different component codes on a
random-error channel.

CRC due to small error correction capability t of the component codes, while

the RS (255, 247; 4) Staircase code with 2 bit CRCs has a lower error floor and

has a little bit higher iterative decoding threshold. The diagonal interleaving

on both RS (255, 247; 4) Staircase code with and without CRC brings no im-

provement again, because the random errors are “randomized” which does not

change the error characteristics. The RS (511, 495; 8) Staircase code has a little

bit higher iterative decoding threshold than the RS (255, 247; 4) Staircase code

without CRC, but still lower than the RS (255, 247; 4) Staircase code with CRC;

however no error floor can be observed at pO = 10−7 of our simulation.

Figure 5.7 shows the performance of these high-rate codes on a burst-error

channel with average burst length of 10. It can be observed that the baseline

Staircase code without interleaving and the baseline Staircase code with row-

78

column interleaving have similar and the worst performance of all curves. The

baseline Staircase code with diagonal interleaving has significantly better per-

formance than that with row-column interleaving. Although both interleaving

methods spread the burst errors over multiple component codewords, the row-

column interleaving with the array of size equal to that of the Staircase code

block does not improve the burst-error correction capability, because it spreads

the errors over rows or columns, which the iterative decoding of Staircase codes

has achieved to correct. The RS Staircase codes have better performance than on

the random-error channel in Figure 5.6 and also have much better performance

than the three curves of the BCH Staircase codes on burst-error channels, be-

cause the RS component codes are encoded and decoded symbol-wise, thus they

are suitable for burst-error channels. All RS Staircase codes perform much better

than the baseline Staircase code to correct burst errors at higher input bit er-

ror probability pE; however the Staircase codes with RS (255, 247; 4) component

codes show high error floor, so that the curves intersect with the baseline Stair-

case code with diagonal interleaving at low measured bit error rate pO. Thus,

diagonal interleaving for the baseline Staircase code is better for burst error chan-

nels with short burst lengths. The RS (255, 247; 4) Staircase code without CRC

shows higher error floor and worse performance than the RS (255, 247; 4) Stair-

case code with CRC. The symbol-wise diagonal interleaving improves the perfor-

mance of both RS (255, 247; 4) Staircase codes. The RS (511, 495; 8) Staircase

code has a better performance than the RS (255, 247; 4) Staircase code because

the RS component codes are longer and have higher error correction capability

t. The performance of RS (511, 495; 8) Staircase code with symbol-wise diago-

nal interleaving is expected to be better than that without symbol-wise diagonal

interleaving; however, we omit its simulation, since the simulations of diagonal

interleaving of the RS (255, 247; 4) Staircase codes have indicated the results of

using diagonal interleaving on RS Staircase codes.

We simulate these high-rate Staircase codes for different average error-burst

lengths ∆B on the channel and for error probabilities pE = 0.0030 and 0.0045, for

which the simulation of our baseline Staircase code finds no errors in 109 data bit

realizations on a random-error channel. In our graphs the marks1 at pO = 10−8

1According to [44, Theorem 2.4] the confidence interval for a probability p of “success” (a

79

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p
O

p
E

baseline Staircase code

baseline Staircase code with diagonal interleaving

baseline Staircase code with row−column interleaving

Staircase code with RS(511,495) components

Staircase code RS(255,247) components

Staircase code RS(255,247) components 2 blocks diagonal interleaving

Staircase code RS(255,247)+CRC components

Staircase code RS(255,247)+CRC components 2 blocks diag−interleaving

Figure 5.7: Performance of Staircase codes with different component codes on a
burst-error channel with average burst length of 10.

indicate that no error has been found in 109 realizations of our simulation.

Figure 5.8 shows the performances of different Staircase codes for different

average burst length at pE = 0.0030. We can observe that the baseline Stair-

case code shows no error only up to ∆B = 2, while the baseline Staircase code

with diagonal interleaving shows no error up to ∆B = 100. The RS (255, 247; 4)

Staircase code without CRC component codes has an output bit error proba-

bit error in our case) when we observe z = 0 successes in an experiment of n independent trials
is [0; p0(n)]. For n large and for a confidence of 0.95 the upper limit p0(n) is approximately
given by p0(n) ≈ 3.689

n , with the relative error smaller than 10% for n ≥ 20. A condition for
this result to hold is, however, that the trials must be independent, and, as we are considering
bit-error probability also within code words, independence can not be guaranteed. Therefore,
well knowing that the error probability is not zero, we have decided to mark the fact that no
error has been found in 109 trials by inserting a point at 10−8 in Figures 5.8, 5.9, which is more
conservative than the bound p0(n) ≈ 3.689 · 10−9 one would obtain from the theorem [44].

80

bility of pO = 10−6 on a random-error channel, which is higher than for the

RS (255, 247; 4) Staircase code with CRC component codes, which has pO = 10−7.

For 2 ≤ ∆B ≤ 12 we find no error for the RS (255, 247; 4) Staircase code with

CRC, while for the RS (255, 247; 4) Staircase code without CRC we still find some

errors. The symbol-wise diagonal interleaving on both RS (255, 247; 4) Staircase

codes improves the performance such that no error is found from ∆B = 5 in

the case that the code is without CRC, and from ∆B = 2 in the case that the

code is with CRC, up to ∆B = 400. For the RS (510, 495; 8) Staircase code we

find no error both on a random-error channel and on a burst-error channel up to

∆B = 100. The output bit error probability pO of RS (255, 247; 4) Staircase codes

at first decreases with the burst length ∆B (at fixed bit error probability pE) and

later increases again, while the output bit error probability pO of RS (511, 495; 8)

Staircase codes is small even for small burst length and it only starts to increase

at relatively large ∆B.

Figure 5.9 shows the performances of different Staircase codes for different

average error-burst length at pE = 0.0045, which is slightly below the iterative

decoding threshold of the baseline Staircase code. The baseline Staircase code

shows no error up to ∆B = 2. The diagonal interleaving improves the performance

such that no error is found up to ∆B = 7. All of the RS Staircase codes cannot

correct errors on the random-error channel at this input bit error probability,

where the output bit error probability is equal to input bit error probability. The

RS (255, 247; 4) Staircase code without CRC component codes can correct with

pO < 10−6 for 3 < ∆B < 15, while the RS (255, 247; 4) Staircase code with CRC

component codes shows a better performance with pO < 10−7 in the same ∆B

interval. The symbol-wise interleaving also helps to extend the error correction

to around ∆B = 200 with pO close to 10−8 for both RS (255, 247; 4) Staircase

codes. The RS (510, 495; 8) Staircase code shows no error from ∆B = 2 up to

∆B = 60. The symbol-wise diagonal interleaving of RS (511, 495; 8) Staircase

code is expected to extend the burst-error correction capability to a longer burst

length than ∆B = 60; however, we omit its simulation, since the simulations

of symbol-wise diagonal interleaving of the RS (255, 247; 4) Staircase codes have

indicated that using diagonal interleaving on RS Staircase codes can extend the

burst-error correction capability to a longer burst length.

81

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

average burst length [bit]

p
O

baseline Staircase code

baseline Staircase code with diagonal interleaving

Staircase code RS(n=511,k=495) components

Staircase code RS(n=255,k=247) components

Staircase code RS(n=255,k=247) 2 blocks diagonal interleaving

Staircase code RS(n=255,k=247)+CRC components

Staircase code RS(n=255,k=247)+CRC components 2 blocks diag−interleaving

Figure 5.8: Performance of Staircase codes with RS and BCH component codes
vs. average error-burst length ∆B for a bit error probability of pE = 0.0030.

5.6 Complexity Comparison of the Component

Codes

The analysis in [6] discovered that Staircase codes have smaller decoding data

flow than message passing decoding for LDPC codes, because the decoding of

component codes using lookup-table-based decoding has relative low data flow.

Due to the structure of Staircase codes, which enables parallel decoding of many

component codes in one decoding window at the same time, we compare the

software-decoding complexities of the component codes, which mainly affect the

decoding latency of Staircase codes. The decoding of high-rate codes using syn-

dromes is efficient and has small complexity [17]; therefore we analyze syndrome-

82

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

average burst length [bit]

p
O

baseline Staircase code

baseline Staircase code with diagonal interleaving

Staircase code RS(n=511,k=495) components

Staircase code RS(n=255,k=247) components

Staircase code RS(n=255,k=247) 2 blocks diagonal interleaving

Staircase code RS(n=255,k=247)+CRC components

Staircase code RS(n=255,k=247)+CRC components 2 blocks diag−interleaving

Figure 5.9: Performance of Staircase codes with RS and BCH component codes
vs. average error-burst length ∆B for a bit error probability of pE = 0.0045.

based decoding here.1

The implementation complexities for decoding RS codes are given in Table 5.1

(with references). For BCH codes, which have symbols in GF(2), the complex-

ity of computing syndromes reduces to half of the computation than for RS

codes, as well as the complexity of finding the error-location polynomial using

the Berlekamp-Massey algorithm, due to the fact that for computing a syndrome

we can exploit the property [f(X)]2i = f(X2i) for any polynomial in X in GF(2)

(for details, see [46]). Furthermore there is no need for Forney’s formula for codes

over GF(2) as knowledge of the error-location is sufficient to correct by flipping

the bit. The complexities of decoding BCH codes are given in Table 5.2. The

1We would like to thank Prof. Martin Bossert for help with the computation of the com-
plexities of hard decision decoding of BCH and RS codes.

83

Table 5.1: Complexity of RS Decoding
Decoding step Multiplication Addition Inversion

Syndrome Comp. [17] 2t(n− 1) 2t(n− 1) 0
Massey Algorithm [46] 4t2 4t2 0

Chien Search [17] n(t− 1) nt 0
Forney’s Formula [17] 2t2 t(2t− 1) t

Total 3nt+ 6t2 − n− 2t 3nt+ 6t2 − 3t t

Total per bit 3nt+6t2−n−2t
qn

3nt+6t2−3t
qn

t
qn

n: code length in symbols, q: bits per symbol, t: symbol error correction
capability

Table 5.2: Complexity of BCH Decoding
Decoding step Multiplication Addition Inversion

Syndrome Comp. [46] t(n− 1) t(n− 1) 0
Massey Algorithm[46] 2t2 2t2 0

Chien Search[17] n(t− 1) nt 0
Total 2nt+ 2t2 − n− t 2nt+ 2t2 − t 0

Total per bit 2nt+2t2−n−t
n

2nt+2t2−t
n

0
n: code length in bits, t: bit error correction capability

decoding complexity of the additional x bits CRC of a codeword of length n,

which can be implemented using the shift register from Figure 2.9, requires xn

additions and (x−1)n multiplications. Table 5.3 shows numbers for the decoding

complexities per component codeword of the Staircase codes with code rate of

approximately 0.93.

Even though the complexities of decoding all codes are of the same order

and directly proportional to n for the high-rate regime where n � t, the num-

ber of arithmetic operations per code bit are different as shown in Table 5.4

for specific examples. We observe that the BCH (1023, 993; 3) code requires the

most multiplication and addition operations, while the RS (255, 247; 4) code re-

Table 5.3: Complexities per code word for decoding the component codes
Component codes Multiplication Addition Inversion
BCH (1023,993) 5130 6153 0

RS (255,247) 2893 3144 4
RS (511,495) 12121 12624 8

84

Table 5.4: Comparison of the complexities per code bit
Component codes Multiplication Addition Inversion
BCH (1023,993) 5.0147 6.0147 0

RS (255,247) 1.4181 1.5412 0.0020
RS (511,495) 2.6356 2.7449 0.0017

quires the most inversion operations per code bit. Nevertheless, the complexity

of each arithmetic function depends on the algorithm used, and the cost of the

arithmetic functions are different for symbols from different fields. We there-

fore measure the software decoding time per code bit of those component codes

operated on our computer as given in Table 5.5. Furthermore we measure the

additional latency per code bit of a diagonal de-interleaving function with respect

to no interleaving as shown in Table 5.6. We note that for other hardware the

values will vary, but generally RS decoding latency will also remain smaller than

that of BCH (1023, 993; 3) component codes on other configurations. The soft-

ware decoding latency for one sliding window of a Staircase code is equal to the

number of component codes in one block multiplied by the decoding time of one

component codeword, since the decoding is usually serially operated. However in

hardware simulations e.g., by an FPGA realisation, the decoding of one sliding

window can be done in parallel, such that the decoding latency depends only on

the decoding time of one component codeword; moreover, the additional latency

due to transformation between bit and symbols (for RS Staircase codes) can be

neglected, as for an FPGA circuit, the line for symbols can be preallocated under

construction.

The Staircase code with RS (511, 495; 8) component codes has high perfor-

mance in decoding long burst errors at the given pE, and the time required for

decoding the component codes per code bit is 4 times smaller than the decoding

time required for decoding the BCH (1023, 993; 3) component codes of the base-

line Staircase code. The Staircase code with RS (255, 247; 4) can correct short

burst errors at the given pE and the decoding time of the component codes per

code bit is 5 times smaller than the decoding time of the BCH (1023, 993; 3).

The de-interleaving time per code bit for decoding 2 blocks of RS (255, 247; 4)

Staircase code is 8.8 times less than that for one block of the baseline Staircase

85

Table 5.5: Software decoding time per code bit [µs]
BCH (1023,993) RS(255,247) RS(511,495)

0.3093 0.0586 0.0739

on Dell PowerEdge Rack 410 Dual Xeon X5650 2.66GHz (2011)

Table 5.6: De-interleaving time per code bit [µs]
1 block baseline Staircase code 2 blocks Staircase RS(255,247) code

0.1624 0.0184

on Dell PowerEdge Rack 410 Dual Xeon X5650 2.66GHz (2011)

code, in spite of approximately equal bit block interleaving sizes, because the

interleaving is done symbol-wise.

5.7 Conclusion

We investigated high-rate Staircase codes for transmission over burst-error chan-

nels. The Staircase codes with RS component codes have much better perfor-

mance in correcting burst errors than the baseline Staircase code with BCH com-

ponent codes. For Staircase codes with the same overall rate, the BCH component

codes of the baseline Staircase code require the largest decoding time per code

bit, while the selected RS component codes require less decoding time per bit;

therefore the decoding time of the baseline Staircase code is higher than the de-

coding time of the selected RS Staircase codes for the same number of bits. The

larger the error correction capability t of RS component codes, the longer burst

errors they can correct; however this increases decoding latency and the complex-

ity per code bit. Besides, the complexity per bit is inversely proportional to the

symbol size q: the number of multiplications per bit is proportional to 3t−1
q

, and

the number of additions per bit is proportional to 3t
q

for n� t.

The baseline Staircase code with diagonal interleaving, despite additional la-

tency, shows satisfactory performance on burst-error channels with short burst

lengths at the given input bit error probability, in contrast to the well-known row-

column interleaving, which does not bring about the improvement, because the

decoding of Staircase codes is processed iteratively row- and column-wise, thus

86

the burst-error distribution stays widely the same. The symbol-wise diagonal

interleaving of RS (255, 247; 4) Staircase code extends the burst-error correction

capability to longer burst lengths. The additional latency in de-interleaving of

the RS Staircase codes is lower than that of the BCH Staircase codes due to

symbol-wise interleaving.

Therefore, Staircase codes with RS component codes are suitable for high-

rate transmission on burst-error channels without increasing decoding latency.

The symbol-wise interleaving of the RS Staircase codes extends the burst-error

correction capability to longer burst length with inherently increasing decoding

latency. However if there are both random errors and (not too long) burst errors

in the channel, the baseline Staircase code with diagonal interleaving is a better

solution as it can correct burst errors and additionally random errors without

error floor (at the price of more decoding latency). All in all, a compromise

between the burst-error correction capability and the decoding latency must be

reached, depending on the burst-nature of the channel.

87

Chapter 6

Rate Compatible Staircase Codes

for High-Rate Wireless

Transmission

1 Wireless transmission normally suffers from varying channels, which arise from

multipath propagation that can cause severe amplitude fading, or from dispersion

that causes inter symbol interference. Due to high bit rate, even slow movements

of objects change the channel on a time scale of many bit periods. To transmit

data efficiently under varying channel conditions an adaptation of the channel

code rate is crucial. By channel estimation at the receiver, the measured channel

SNR or the decoder input bit-error probability (pE) [28] are used to determine

the maximum code rate that can be supported. There are different algorithms

for different error correction codes. For example LDPC codes [37], [42], [14],

Convolutional Codes [31], RS codes [48], [19], and Turbo codes [27], [55], [87],

Staircase codes with LDPC component codes [88] and GLDPC-Staircase codes

[50] adapt the code rate at the transmitter, according to the channel quality

(which must be returned from the receivers). The general method of adapting

the code rate of a “mother code” is shortening or puncturing it; code specific

details have to be accounted for, such as cycle length in LDPC codes [14], good

convergence properties of the convolutional component codes of Turbo codes [55],

1Part of this Chapter has been accepted for publication in the Transactions on Emerging
Telecommunications Technologies

88

large free distance dfree and a small information error weight cd on all paths with

d ≥ dfree for convolutional codes [31]. An important common point in design-

ing rate-adaptive channel codes is to keep low complexity at the encoder and

the decoder and rate-compatibility, meaning that lower-rate code words contain

higher-weight code words.

One practical and effective approach to increase the throughput in time-

varying wireless channels is to combine error correction codes with automatic

repeat request (ARQ) schemes known as “hybrid ARQ”: the decoder first tries

to decode the received high-rate codeword. In case the decoder detects no failure

it sends an acknowledgement (ACK). If, however, there is a decoding failure, a

retransmission is required through a negative acknowledgement (NACK). There

are two well known types of hybrid ARQ. For Type-I hybrid ARQ [21], upon

receiving NACK the encoder re-encodes the data block and sends the codeword

again, while the decoder attempts to decode the newly received codeword in-

dependently of the previously received one. This scheme merely increases the

probability of successful transmission at the cost of lower throughput. The op-

timal approach is called Chase Combining (CC) [15], which combines multiple

received codewords before decoding, corresponding to maximal ratio combining

(MRC). For Type-II hybrid ARQ [68] the transmitter, upon receiving NACK,

sends additional parity bits to the receiver (that have not been sent before), and

the decoder tries to decode the received codeword using the word received from

the previous transmission assisted by the newly received parity bits; this is called

an “Incremental Redundancy (IR)” scheme. Type-II has significantly better er-

ror correction performance than Type-I for a given throughput, but also higher

complexity and it requires additional signaling as well as larger buffer size at the

encoder and the decoder.

Our contribution is the implementation of rate-adaptive Staircase codes suit-

able for wireless communication, which requires high-rate transmission and hard-

decision decoding. The high performance high-rate Staircase codes [6] were pre-

viously of fixed rate for fiber optic communication. But the proposed extension

with RS codes in an ARQ-framework rate-adaptive encoders are enabled so that

the code can be successfully decoded in a wider range of bit error probability,

and therefore throughput is increased.

89

6.1 Component Codes with Variable-Rate by

Puncturing

We briefly discuss variable-rate block codes that can be used as component codes

in the Staircase concept. Assume that we are given a (N,K)q block code in

GF(2q) with generator matrix G and parity-check matrix H as a “mother code”

with rate R = K/N . We also assume that the code is systematically encoded,

i.e., the K data symbols are mapped to N code symbols by appending N − K
parity symbols.

Consider the popular and simple concept of puncturing [31]: the number K

of data symbols is kept constant (i.e., the same as in the mother code) and

by puncturing, the number N − K of redundancy bits is decreased, resulting

in a higher code rate. Therefore, the mother code is of low code rate and the

concept is that the rate-adaptive encoder sends punctured codewords through the

channel, which corresponds to a code rate determined by the channel capacity.

The puncturing pattern is known at the decoder, and the received punctured code

word is treated as a code word of the mother code with erased symbols. We use

this concept to adapt the rate of the RS assist part for rate-adaptive Staircase

codes in the following section.

6.2 Rate-Adaption of Staircase Codes

Because RS codes allow for a flexible number of punctured bits for Incremental

Redundancy (IR) transmission schemes [46], a wide range of rate-adaptivity is

achieved with only one additional encoder and decoder; hence low complexity

at the encoder and decoder is retained. Moreover, RS codes have burst-error

correction capability to combat burst errors that can occur in wireless transmis-

sion. Therefore, we use punctured RS codes as extra component codes for the

rate-adaptive Staircase codes we propose below. At the decoder, the punctured

symbols of the RS component codes are treated as “erased” when decoding the

component codes (see Section 3.2.2.3).

The RS codes are used additionally to the BCH codes of the standard Staircase

90

scheme, i.e., each Staircase block still consists of data bits and high-rate BCH

component codes: the reason is to maintain high performance and low error floor

in correcting random (non-burst) errors of the BCH Staircase code. The RS codes

perform rate-adaptivity, and at the same time burst-error correction in addition

to high-performance random error correction of BCH Staircase code without a

requirement for an additional interleaving.

The code array of such a rate-adaptive Staircase code is shown in Figure 6.1.

Each row of a Staircase block Bi of length m1 is additionally encoded with RS

codes of low rate resulting in m2 rows of RS codes, each of length n and each

with m1 “data” bits. By variable-rate encoding (through puncturing of the parity

symbols), the blocks of the RS component codes can be shortened to fit into the

block size of the required rate; for this, the parity bits of the RS codes are

partitioned into m2 rows of blocks Ci,1, Ci,2, Ci,3, and so forth.

m1

m2

RS (n,m1)

Bi Ci,1 Ci,2 Ci,3

Figure 6.1: Rate-adaptive Staircase code: block array.

6.3 Rate-Adaption in Type-II hybrid ARQ

The rate-adaptive Staircase codes are deployed in a Type-II hybrid ARQ scheme

with incremental redundancy, following the principle of rate-compatible punc-

tured convolutional codes (RCPC) [31]: upon decoding failure, the transmission

91

of information or parity bits is not repeated; instead, previously punctured code

bits are transmitted (forming a lower-rate code together with the information

that has already been received), until the code is powerful enough to be decoded

successfully. This way, a retransmission of the whole Staircase block is avoided.

As depicted in Figure 6.2, the block B3 (the same extension with RS blocks

Cj,1, Cj,2, Cj,3... would apply to all other blocks Bj), only the block C3,1 or addi-

tionally the block C3,2 or additionally the block C3,3 and so on are transmitted,

when the transmitter keeps receiving the information “NACK” (unable to de-

code) from the decoder for block B3 or {B3, C3,1} or {B3, C3,1, C3,2} etc. In order

to decide whether ACK or NACK is sent back to the encoder, the data bits are

encoded with a Cyclic Redundancy Check (CRC). If no error is detected by the

CRC, ACK is sent and NACK otherwise. The transmission of the ACK/NACK

messages is assumed to be error-free. The required number of CRC bits depends

on the desired reliability of the detection. NCRC = 64 redundancy bits will be

sufficient for most applications. Note that the rate-loss relative to the data block

size is rather small, as of the m1(m2 − r) = 512(510− 32) = 244736 data bits in

the standard Staircase code block just 64 are used for extra CRC redundancy.

BT
0 B1

BT
2 B3

BT
4

B5

C3,1 C3,2

C3,3

Figure 6.2: Rate-adaptive blocks: arrangement in the Staircase scheme, only
shown for block B3 for simplicity.

The flow-chart of rate-adaptive Staircase codes, deployed in a type-II hybrid

ARQ scheme, is depicted in Figure 6.3. It has the following steps:

92

Source CRC Encoder
Staircase
core Encoder

Staircase
Rate Adaptive

Encoder

Puncturing and
Buffer

Modulator

Channel

Demodulator

Combiner
Staircase

Rate Adaptive
Decoder

Staircase
core DecoderCRC DecoderReceiver

error-free NACK
ACK Time Out

error-free

Figure 6.3: Block diagram of hybrid ARQ Staircase Codes.

1. The data bits in each Staircase block B1, B2, B3, ... are step-wise encoded

with a Cyclic Redundancy Check (CRC) for error detection [46] to form

ACK/NACK messages.

2. The blocks (including the CRC redundancy bits) from Step 1) are encoded

with the high-rate Staircase code with BCH component codes extended by

2 bit CRCs1; this is the Staircase core code.

3. The core codewords from Step 2) are encoded with the rate-adaptive RS-

encoder forming the blocks Cj,1, Cj,2, Cj,3... that are kept in a buffer for the

moment. If latency permits, one could also encode Cj,1, Cj,2, Cj,3... only

when those additional blocks are requested by the decoder (see later steps).

4. Transmit the blocks of the high-rate Staircase core code.

5. The Staircase core decoder attempts to decode the received word until the

maximum number of iterations is reached. In the implemented version, the

length of the decoding windows was L = 7; decoding would start at the last

staircase block Bi+L−1 in the window and proceed back to the start of the

1To prevent error decoding of the small-t component codes; thus high error floor is avoided

93

window at block Bi; from there, decoding would return in forward direction

to block Bi+L−1 where the iteration started.

6. After core decoding in Step 5), the CRC error detection for the data symbols

of block Bi is evaluated. If errors are detected a NACK message is sent to

the encoder and the scheme proceeds with Step 7).

If the block Bi is decoded error-free, this block is “decided” and removed

from the decoding window. At the beginning of the decoding window the

new block Bi=L is accepted (in fact, the window slides one block forward)

and the scheme proceeds with Step 1).

7. If for blockBi a NACK-message was received, the transmitter sends the next

block of incremental redundancy for each block in the decoding window (see

also Figure 6.4 for an illustration that is further explained below). If there

is no more redundancy available in the buffer, stop the process for block Bi,

initiate failure management (e.g. complete re-transmission of Bi) and move

the decoding window forward to decode the next block1.

8. At the receiver, the incremental information is combined: the decoding

iterations for the Staircase code are repeated, with RS decoding carried

out first (to remove burst errors) for those blocks for which incremental

redundancy is available; this is followed by standard BCH decoding in the

sliding window fashion of the staircase scheme. After this decoding iteration

the CRC of block Bi is checked; if it fails again, go to Step 7). If the

CRC detects no errors, block Bi is decided, the window is moved forward,

accepting the new block Bi+L, and the scheme proceeds with Step 1).

To further explain the process of rate-adaptive coding in the type-II hybrid

ARQ scheme consider Figure 6.4. We assume that the current decoding window

(dashed box) contains the blocks B3...B9. The check of the CRC of B3 after the

Staircase iterations detects errors in Figure 6.4 a), so incremental redundancy

1In the simulations below, this situation would be considered as packet loss which reduces
throughput in Figure 6.14. For the bit-error performance simulation in Figure 6.5 we have
considered this case by just using the erroneous data bits from the systematic encoding – this
is the best we can do without assuming a re-transmission.

94

blocks are requested. This leads to correct decoding of block B3 in part b) of

Figure 6.4 and, hence, block B3 is removed from the window and block B10

is accepted in Figure 6.4 c). Note that the previously transmitted incremental

redundancy packets are kept for B4...B9. Assuming that decoding of B4 fails in

the first Staircase iteration, more incremental redundancy blocks are requested

(see Figure 6.4 d)) which finally leads to a correct decoding of B4 which is removed

from the window in Figure 6.4 e) and B5 is decoded.

Of course one could evaluate all CRC within each decoding window and only

request more incremental redundancy packets for those blocks that (still) fail to

decode correctly. This would, however, require much more complicated ARQ

signalling. Moreover, note that block Bi (e.g. B3 in Figure 6.4 a) is the “safest

place” in the decoding window, as in the progress of sliding-window decoding, the

most iterations have been spent on this block (within the current decoding win-

dow) and the most information from other blocks is concentrated there. Hence,

when the decoding of block Bi fails (indicated by the CRC) this is a clear message

that the whole decoding window requires more redundancy to combat errors.

6.4 Rate-Adaptive Staircase Codes Analysis

6.4.1 Performance Analysis on Random-Error Channels

The performance analysis of rate-adaptive Staircase codes consists of 3 parts:

the first is for high input bit error probability, the second part includes itera-

tive decoding threshold analysis, and the third part is analysis for low bit error

probability.

At high input bit error probability the Staircase code core parts alone cannot

correct this high number of errors, because the number of errors is higher than the

decoding threshold of iterated decoding, above which the decoded codeword is

likely to fail. With the assistance by RS codes, the input bit probability of errors

pE in each block is reduced to the acceptable intermediate bit probability of error

pI for the iterative decoding of the core codes. Here in each row the shortened

RS codes with error correction capability t are decoded with the available parity

bits using a bounded minimum distance decoder (BMD). Let A(i) be the event

95

one block of incremental redundancy two blocks

1

2 3

4 5

6 7

8 9

10 11

1

2 3

4 5

6 7

8 9

10 11

a) b)

c)

12

2 3

4 5

6 7

8 9

10 11

d)

12

2 3

4 5

6 7

8 9

10 11

12

3

4 5

6 7

8 9

10 11

13

f)

?

12

3

4 5

6 7

8 9

10 11

e)

Figure 6.4: Illustration of Staircase decoding combined with incremental redun-
dancy.

96

that i symbol errors in a codeword of length n occur at the decoder input, and

its probability P [A(i)] is given as [74]

P [A(i)] =

(
n

i

)
P i(1− P)(n−i), (6.1)

where P is the symbol error probability of the channel, n is the codeword length

in symbols. The term
(
n
i

)
is the possibility of i symbol errors occuring in n

symbols of a codeword, the term P i(1 − P)(n−i) is the error probability of a

particular i-symbol error in a codeword of n symbols. The BMD does not make

a correction, when there are more than t errors in a codeword; thus the average

decoded symbol error probability is given by [74]

pSE =
n∑

i=t+1

P [A(i)] pISI , (6.2)

where pISI is the average information-symbol error probability given A(i). It is

assumed in [74] that pISI ≈ pDSI for i = t+1, t+2, ..., n, where pDSI is the average

decoded-symbol error probability given A(i), for d ≤ i ≤ n the decoder does not

change the number of errors so pDSI ≈ i/n, and for t + 1 ≤ i ≤ d the decoder

produce a sequence of distance d from the correct codeword so pDSI ≈ d/n;

therefore, the average decoded symbol error probability is given by [74]

pSE ≈
d

n

d∑
i=t+1

(
n

i

)
P i(1− P)(n−i) +

1

n

n∑
i=d+1

i

(
n

i

)
P i(1− P)(n−i). (6.3)

Finally a tight lower bound on decoded symbol error probability over BSC is

given by [60]

pSE ≥
n∑

i=t+1

i

n

(
n

i

)
P i(1− P)(n−i) , (6.4)

where P is the symbol error probability of the channel, n is the codeword length in

symbols (in our case the codewords are shortened to fit into one staircase block),

and t is the error correction capability (in symbols) of the RS assist codes.

97

In case of the transmission over a binary symmetric channel, the bit errors

occur independently; thus the relation between the symbol error probability P of

the channel and the decoder input bit error probability pE is given as [60]

P =
m∑
i=1

(
m

i

)
piE(1− pE)(m−i), (6.5)

where m is the length of binary sequence that represents one symbol in GF(qm).

The term
(
m
i

)
is for the number of possibility that i bit errors occur in m binary

sequence that represent one symbol, while the term piE(1 − pE)(m−i) is the error

probability of a particular i-bit error in m bits sequence. From the binomial

theorem (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk, we have a = 1− pE and b = pE; hence

P =
m∑
i=1

(
m

i

)
piE(1− pE)(m−i) +

(
m

0

)
p0
E(1− pE)m −

(
m

0

)
p0
E(1− pE)m

= (pE + (1− pE))m − (1− pE)m

= 1− (1− pE)m. (6.6)

Since the symbol error probability pSE is related to the bit error probability pB

by [60]

pB = FpSE with F =
pE
P
, (6.7)

scaling Equation 6.4 with F and inserting P with 1−(1−pE)m in the equation, we

get the lower bound on intermediate bit error probability pI on the binary sym-

metric channel of the RS assist codes depending on the input bit error probability

pE given as [60]

pI ≥
pE

1− (1− pE)m

n∑
i=t+1

i

n

(
n

i

)
[1− (1− pE)m]i[(1− pE)m](n−i). (6.8)

The intermediate bit error probability of the BCH component codes, which are

98

codes on GF(2), can be simply given as

pI ≥
n∑

i=t+1

i

n

(
n

i

)
piE(1− pE)(n−i) . (6.9)

where the sum starts from t + 1 errors that the BMD cannot correct, i
n

is for

the number of errors relative to the number of codeword bits,
(
n
i

)
is for the

possibility of i bit errors in n codeword bits, and the term piE(1− pE)(n−i) is the

error probability of a particular i-bit error in a codeword of length n bits.

To find the iterative decoding threshold of the Staircase core code, which is a

kind of product code, the error pattern in Staircase core code can be interpreted

as an “error graph” [41] (see Section 2.8.1). Based on error graph statement,

the peeling decoding analysis [75] can be deployed to find the iterative decoding

threshold (see Section 4.2). The iterative decoding threshold can also be esti-

mated using the density evolution (see Section 4.2) with the reduced bit error

probability by RS assistance from Equation 6.8 as an input x
(0)
i to the density

recursion formulae [38] as follows

x
(l+1)
i = p

(
1

w

w−1∑
k=0

fn

(
1

w

w−1∑
j=0

x
(l)
i−j+k

))
, (6.10)

where x
(l)
i = 0 for all i /∈ {1, 2, ..., L}, L is the number of positions of bit nodes

contained in a decoding window, p is the reduced bit error probability after the

RS assistance from Equation 6.8, w is the number of groups that the sockets1

at each bit/code-constraint position are separated, with w = 2 for Staircase core

code, l → ∞ is the number of iterations that x̄(l) gets stuck at bisectrix, and n

is the codeword length of BCH component codes of the Staircase core code. The

function fn(x) is defined as [38]

fn(x) ,
n−1∑
i=t

i

n

(
n− 1

i

)
xi(1− x)(n−i), (6.11)

where n is the codeword length of BCH component codes of the Staircase core

1output connections from bit nodes or from code-constraint nodes in the error graph

99

code, t is the error correction capability of the BCH component codes of the

Staircase core code.

After the intermediate error probability pI is less than the iterative decoding

threshold, the tangent of the output bit-error curve is getting steep according

to the product codes property, which corresponds to the waterfall region in the

performance curve. This curve can be extrapolated to reach the error floor at

very low output bit error probability, which depends on the probability that an

error pattern contains a stall pattern1 and was analysed in [6].

6.4.2 Throughput Analysis on Random-Error Channels

In wireless transmission, if a block cannot be decoded and a CRC detects errors,

the packet is often dropped and a retransmission is required. The throughput is

a figure of merit in this situation. The throughput of Rate-Adaption in Type-

II hybrid ARQ Staircase codes under the assumption that all the blocks in a

decoding window possess the same number of assist bits can be given as [31]

η =
k

k + lAV
, (6.12)

where k is the number of information bits. The average number of parity bits

lAV , which is derived from [31], can be given as

lAV =


∑K

j=0 lj(1− PEF (lj))
∏j−1

i=0 PEF (li) if ∃PEF (lj) < 10−7for j ∈ {0, 1.., K}
∞ else,

(6.13)

where lj is the number of parity bits used for decoding in step j, l0 is the number

of parity bits of the Staircase core codes, K is the maximum number of assist

steps. In our scheme, the packet is dropped after the maximum number of assist

step is reached without success in decoding, which corresponds to when there

1“a set s of codeword positions, for which every row and column involving positions in s
has at least t+ 1 position in s, and thus the decoder gets locked in s state in which no updates
are performed”[6], where t is the error correction capability of the component codes. (details
see Section 4.2)

100

is not any step j that the packet error probability PEF (lj) is lower than 10−7;

therefore lAV is set to infinity to force the throughput to zero. The packet error

probability PEF (lj) at step j is given by [31]

PEF (lj) = 1− (1− pO(lj))
n, (6.14)

where n is the packet length in bits, pO(lj) is the output bit error probability

of the rate-adaptive Staircase code from performance analysis depending on lj.

For a value of lj, the output bit error probability pO(lj) can be obtained from

Equation 6.8; however when pI is lower than the iterative decoding threshold of

the Staircase core code, pO(lj) is set to a small value, e.g., 10−8 to account for

the water fall region or the error floor.

6.4.3 Performance Analysis on Burst-Error Channels

In the analysis of the rate-adaptive Staircase codes on burst-error channels, where

the Gilbert-Elliot model was used, we firstly consider the high input bit error

probability region where the RS assist codes correct the errors in codewords.

The probability of m symbol errors in a sequence of n symbols (P (m,n)), the

probability of m symbol errors in a block of length n symbols where the channel

is the “good state” at the first bit (G(m,n)), and the probability of m symbol

errors in a block of length n symbols where the channel is the “bad state” at

the first bit (B(m,n)), were first introduced in [24]. The recursion formulas for

P (m,n) are given as [24]

P (m,n) =
r

p+ r
G(m,n) +

p

p+ r
B(m,n), (6.15)

G(m,n) = G(m,n− 1)(1− p)(1− g) +B(m,n− 1)p(1− g) +

G(m− 1, n− 1)(1− p)g +B(m− 1, n− 1)pg,

B(m,n) = B(m,n− 1)(1− r)(1− b) +G(m,n− 1)r(1− b) +

B(m− 1, n− 1)(1− r)b+G(m− 1, n− 1)rb,

with the initialisation G(0, 1) = 1− g, B(0, 1) = 1− b, G(1, 1) = g, B(1, 1) = b,

and G(m,n) = B(m,n) = 0 when m < 0 or m > n. The parameters r, p, b, g are

101

defined the same as in Section 5.1 as follows

p = P (Qt = B | Qt−1 = G), (6.16)

and

r = P (Qt = G | Qt−1 = B). (6.17)

At “good state (G)” errors are generated with probability g, while in “bad state

(B)” errors are generated with probability b. These formulas are for the case of

symbols from GF(2) where no state transition between good and bad state occurs

in between one symbol transmission.

In case of RS codes, for which the state transitions between the good and

bad state happen at times between one symbol transmission, the authors of [56]

defined closed form expressions for this burst-error statistic. Firstly, the error

sequence E = {Ek}∞k=1, which is additive to the input sequence in GF(2) with

Ek = 1 denoted as error at kth time, is defined. The matrices P(0) and P(1) have

the (i, j)th entry as P (Ek = ek, Sk = j|Sk−1 = i) which means the probability

has the output symbol ek when the state changes from i to j. Thus the sequence

en , e1e2...en has the probability [56]

P (en) = ΠT

(
n∏
k=1

P(ek)

)
1, (6.18)

where 1 is a column vector with all entry ones, the distribution of the initial state

Π of the channels assumed to be the stationary distribution given as the matrix

Π =

[
πG

πB

]
=

[
r
p+r
p
p+r

]
, (6.19)

where the parameters p and r are from Equation 6.16 and Equation 6.17 respec-

tively. The transition matrices are defined as [56]

P =

[
1− p p

r 1− r

]
, (6.20)

102

P(0) =

[
(1− p)(1− g) p(1− b)
r(1− g) (1− r)(1− b)

]
, (6.21)

P(1) =

[
(1− p)g pb

rg (1− r)b

]
, (6.22)

where g is the probability of generating errors at “good state (G)” and b is

the probability of generating errors at “bad state (B)”. As an example, the

probability of a sequence e5 = 10010 can be calculated by

P (10010) = ΠTP(1)P(0)P(0)P(1)P(0)1. (6.23)

Let En be an error event of length n, which is composed of all w elementary error

sequences en of length n. The generating series for such an error event is defined

as [56]

FEn =
w∑
i=1

xei,1xei,2 ...xei,n ; xei,j ∈ {x0, x1}, j ∈ {1, 2, ..., n}, (6.24)

which is in R[[x0, x1]] the set of polynomials in non-commuting indeterminates

x0 and x1, where x0 marks an error bit equal to zero and x1 marks an error bit

equal to one. The probability of an elementary error sequence is not the same

when the symbols are swapped; besides, it is related to the generating series, by

which it can be obtained from the generating series. Firstly the generating series

are used to determine the possible error sequences, and then xei of the generating

series is replaced by P(ei) and wrapped in Π and 1 as in Equation 6.18 to get the

probability of the elementary error sequence. The probability of an error event

of length n can thus be written as [56]

P (En) = ΠT

(
w∑
i=1

(
n∏
k=1

P(ei,k))

)
1, (6.25)

where ei,k is the kth symbol of the ith elementary error sequence. Using the

103

generating series property1 for the error event with the set of all {0, 1} strings as

follows [56]

FEn = [({0, 1}∗, τ)] = (1− [({0, 1}, τ)])−1 = (1− x0 − x1)−1 ∈ R[[x0, x1]]

= [smzn](1− x0z − x1sz)−1, (6.26)

where the indeterminates x0 marks the number of zeros, x1 marks the number

of ones, z marks the length of the sequence, and s marks the number of ones,

then replacing xk with P(k), the probability of m symbol errors in a codeword of

length n symbols is defined in terms of the generating series as [56]

P (m,n) , P (En) (6.27)

= [smzn]ΠT (I−P(0)z −P(1)sz)−11,

where the indeterminate z marks the length of the sequence, and the indetermi-

nate s marks the number of ones. For the RS code from GF(2c) the probability

of m error symbols in n symbols is given as [56]

P (m,n) = [smzn]ΠT (I−P(0)cz − (Pc −P(0)c)sz)−11

= [smzn]HP (s, z). (6.28)

The term HP (s, z) is the ratio of two polynomials in s and z known as rational

generating function, which the denominator polynomial is for the recurrence re-

lation, and the numerator polynomial is for the initial conditions. Thus P (m,n)

can be evaluated with a recurrence relation2. To evaluate the recurrence relation,

we firstly give the coefficient of z from Equation 6.27, 6.28 as a matrix X1 with

1 “[(S∗, w)] = 1 + [(S, w)] + [(S2, w)] + ... = (1− [(S, w)])−1, where S∗ = φ ∪ S ∪ S2 ∪ S3... is
the set of sequences formed by concatenation any number of sequences in S, the concatenation
product of A and B is AB = {ab|a ∈ A, b ∈ B}. S is a particular subset of the alphabet
NA = {0, 1, ..A} to be enumerated, w is the weight function recording the designed information
about a sequence σ ∈ S.”[56]

2The recurrence relation an = c1an−1 + c2an−2 + ... + cdan−d with generating function
a0 + a1x

1 + a2x
2 + can be expressed by a rational generating function as:

an = a0 + a1x
1 + a2x

2 + ... = b0+b1x
1+b2x

2+...bd−1x
d−1

1−c1x1−c2x2−...−cdxd [49], [5]

104

dummy elements a,b, c,d

X1 =

[
a b

c d

]
, (6.29)

and the coefficient of sz from Equation 6.27, 6.28 as a matrix X2 with dummy

elements e, f,g,h

X2 =

[
e f

g h

]
. (6.30)

After some matrix operations, we get

HP (s, z) =

r
r+p

(1 + (b− d)z + (f − h)sz)

+ p
r+p

(1 + (c− a)z + (g − e)sz)

1− (a + d)z − (e + h)sz + (ah + de− fc− bg)sz2

+ (ad− bc)z2 + (eh− fg)s2z2

(6.31)

To find the initial conditions, let HP (s, z) = a0 +a1z+a2sz+a3sz
2 + ..., and mul-

tiply both sides of Equation 6.31 by its denominator, then equate the coefficients

of each indeterminates s, z. As we will allow for a negative index in the recur-

rence relation, the condition P (m,n) = 0 for m,n < 0 must hold, and only a0, a1

and a2 are required for the initial conditions [5] as a3, a4, ... can be obtained from

the recursion. Thus, we equate only the term with the indeterminates 1, z, sz as

follows

a0 − (a1 + (a + d)a0)z + (a2 − (h + e)a0)sz =
r

r + p
(1 + (b− d)z + (f − h)sz) +

p

r + p
(1 + (c− a)z + (g − e)sz).

(6.32)

Then we get the coefficients of the generating series that will be used as initial

105

conditions as follows:

a0 = 1

a1 =
r

r + p
(a + b) +

p

r + p
(c + d)

a2 =
r

r + p
(e + f) +

p

r + p
(g + h). (6.33)

Finally the recurrence relation can be given as

P (m,n) = (a + d)P (m,n− 1) + (e + h)P (m− 1, n− 1)

−(ah + de− fc− bg)P (m− 1, n− 2)− (ad− bc)P (m,n− 2)

−(eh− fg)P (m− 2, n− 2), (6.34)

with initial conditions

P (m,n) = 0 for m,n < 0 || m > n

P (0, 0) = a0 = 1

P (0, 1) = a1 =
r

r + p
(a + b) +

p

r + p
(c + d)

P (1, 1) = a2 =
r

r + p
(e + f) +

p

r + p
(g + h). (6.35)

When we insert the elements of X1 with the elements of P(0), and insert the

elements of X2 with the elements of P(1) in Equation 6.34, 6.35 the result is a

recurrence relation given in [56]. For RS codes, we insert the elements of X1 with

the elements of P(0)c and the elements of X2 with the elements of Pc − P(0)c

in Equation 6.34, 6.35 to get the probability of m symbol errors in a sequence of

length n symbols.

The output symbol error probability of a bound minimum distance decoder

on burst-error channels is given as

pSE =
n∑

m=t+1

m

n
· P (m,n), (6.36)

where the summation starts from t+1 symbol errors that the BMD cannot correct,

106

m
n

is for the number of symbol errors relative to the codeword length n. Finally

we scale the symbol error probability with F = p1
P1

according to Equation 6.7,

where p1 = ΠTP(1)1 accounts for probability of one bit error in the symbol,

and P1 = 1 − ΠTP(0)c1 accounts for probability of symbol errors, therefore the

intermediate bit error probability of the RS assist codes on burst-error channels

can be given as

pI =
p1

P1

n∑
m=t+1

m

n
· P (m,n), (6.37)

After the intermediate bit error probability pI is less than the iterative decod-

ing threshold of the core BCH Staircase code on burst-error channels, the output

bit error probability reduces due to the iterative decoding of the core BCH Stair-

case code; nevertheless it has not so steep slope as on random-error channels,

because the core BCH Staircase code does not perform so well on burst-error

channels.

6.5 Performance Simulation on Random-Error

Channel

The G.709-compatible Staircase code from [6] is selected as the Staircase code core

part because of its high performance in correcting random errors and its low error

floor. To decide whether an ACK or NACK message is sent, we directly compare

the data bits with the decoded bits in our simulation, thus in the simulation we

do not have any failure in the CRC error detection; however in reality, a CRC is

required for checking the correctness of the decoded bits as the data bits are not

known to the decoder. Assuming a sufficient number of CRC redundancy bits,

the probability not to detect any error is extremely small and, hence, we neglect

this case. We select the RS code from GF(28) as the assist codes, because it is

from the smallest field that the number of bits in a row of one block of the core

BCH Staircase code (510 bits) fits in the RS codeword such that the actual rate1

of 0.5 is achievable (with symbols shortening).

1actual rate = the number of message bits in the core part
the number of codeword bits in the core part+the number of the parity bits of the assist parts

107

pE total rate pO
0.0078 0.8 1.39× 10−6

0.01315 0.7 2.58× 10−6

0.0185 0.6 3.195× 10−6

0.025 0.5 1.30× 10−6

Table 6.1: Performance of rate-adaptive Staircase codes assisted by RS codes on
a random-error channel

For each row of the Staircase core part, the RS (n=255, k=199, shortened

symbols = 135) component codes, which have 255 − 199 = 56 parity symbols,

199− 135 = 64 symbols to be encoded, and an actual rate of 0.501, are encoded.

These parity symbols are stored in a buffer for use in the ARQ scheme. If the

transmitter receives NACK, it sends a block of parity symbols corresponding to

the rate requirement, for example 11 parity symbols per row are sent for a rate

requirement of 0.8, 22 parity symbols per row are sent for a rate requirement

of 0.7, 36 parity symbols per row are sent for a rate requirement of 0.6, and all

56 parity symbols for each row are sent for a rate requirement of 0.5. At the

receiver side, the decoder would succeed in decoding the rate-adaptive part using

the Berlekamp-Massey Algorithm [46] with erasure symbols as long as for each

row 2e+ρ ≤ dmin−1, where e is the number of error symbols, ρ is the number of

punctured symbols and dmin is the minimum hamming distance of the RS mother

code.

Figure 6.5 shows the performance of the rate-adaptive Staircase code for differ-

ent input bit error probabilities on a random-error channel. With RS-assistance

at an actual rate of 0.8, the Staircase code achieves an output bit error proba-

bility of pO = 1.39 · 10−6 at an input bit error probability of pE = 0.0078; this

RS-assistance helps to increase the error correction capability of the Staircase

code core part so that it is able to correct higher input error probability with the

trade-off of a smaller rate. Table 6.1 gives an overview. We plot the analytical

performance estimation derived from Section 6.4 for each rate of the RS assist

codes in Figure 6.5. The estimated iterative decoding threshold of the core BCH

codes obtained by peeling decoding analysis, which has a window size equal to 7,

maximum number of iterations equal to 7, and averaging for 1000 decision blocks,

108

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

baseline staircase BCH 0.9373

staircase RS assist 0.80

staircase RS assist 0.70

staircase RS assist 0.60

staircase RS assist 0.50

analytic estimation staircase BCH rate 0.9373

analytic estimation staircase assist rate 0.80

analytic estimation staircase assist rate 0.70

analytic estimation staircase assist rate 0.60

analytic estimation staircase assist rate 0.50

Figure 6.5: Performance of rate-adaptive Staircase codes with RS assistance,
compared to analytic estimation on a random-error channel.

109

is at a bit error probability of 0.00533. The iterative decoding threshold of the

BCH Staircase core code can be noticed in the Figure 6.5 at pE = 0.00533 for

the curve of the analytic Staircase BCH code, and at pO = 0.00533 for the curves

of the analytic Staircase assist codes where the sharp bends are shown. It can

be seen that the curves of rate-adaptive Staircase codes coincide with the upper

bound of the RS assist codes at high input bit error probability, the actual water-

fall region occurs at a lower input bit error probability than the analysis curves,

because the iterative decoding threshold gives the bound for unsuccessful itera-

tive decoding, above which the iterative decoding will definitely fail; thus below

the iterative decoding threshold, the iterative decoding is a possible success.

We track the evolution of bit error probability to estimate the iterative de-

coding threshold of the rate-adaptive Staircase codes via density evolution using

Equation 6.10 as shown Figures 6.6-6.9. In each figure, the subfigure (a) shows

density evolution of Staircase codes with rate assistance at input bit error prob-

ability pE below the iterative decoding threshold where the bit error probability

converges to zero after many iterations; while the subfigure (b) shows density

evolution of Staircase codes with rate assistance at input bit error probability

pE at the adopted iterative decoding threshold where the bit error probability

gets stuck at the bisectrix line after so many iterations and never converges to

zero. The iterative decoding thresholds of the rate-adaptive Staircase codes are

found to be at 0.0273 for rate 0.50 from Figure 6.6, at 0.0205 for rate 0.60 from

Figure 6.7, at 0.0146 for rate 0.70 from Figure 6.8 and at 0.0088 for rate 0.80

from Figure 6.9. We plot these thresholds as vertical dash lines in Figure 6.10

and observe that the density evolution is indeed consistent with the performance

simulation.

6.6 Performance Simulation on Burst-Error

Channel

Figure 6.11 depicts performance of rate-adaptive Staircase codes on a burst-error

channel with average burst length of 10. We observe that the baseline Staircase

BCH code can correct fewer errors than on the random-error channel, so it can

110

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

x̄
(l)

x̄
(l
+
1
)

(a)

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

x̄
(l)

x̄
(l
+
1
)

(b)

Figure 6.6: Evolution of the bit error probability of Staircase codes with assist
rate of 0.5. (a) pE = 0.0272, which is below the iterative decoding threshold; the
graph converges to zero. (b) pE = 0.0273, which is the adopted iterative decoding
threshold; the graph does not converge to zero.

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x̄
(l)

x̄
(l
+
1
)

(a)

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x̄
(l)

x̄
(l
+
1
)

(b)

Figure 6.7: Evolution of the bit error probability of Staircase codes with assist
rate of 0.6. (a) pE = 0.0204, which is below the iterative decoding threshold; the
graph converges to zero. (b) pE = 0.0205, which is the adopted iterative decoding
threshold; the graph does not converge to zero.

only correct for an input bit error probability of almost pE = 0.0014 with an

output bit error probability of pO = 10−6. However, the Staircase code with RS

assistance at a rate of 0.8 can achieve the same output bit error probability at

an input bit error probability of pE = 0.0047. There is an inverse relationship

between the rate of rate-adaptive Staircase codes and the input bit error prob-

111

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x̄
(l)

x̄
(l
+
1
)

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x̄
(l)

x̄
(l
+
1
)

(b)

Figure 6.8: Evolution of the bit error probability of Staircase codes with assist
rate of 0.7. (a) pE = 0.0145, which is below the iterative decoding threshold; the
graph converges to zero. (b) pE = 0.0146, which is the adopted iterative decoding
threshold; the graph does not converge to zero.

0 1 2 3 4 5 6 7 8

x 10
−3

0

1

2

3

4

5

6

7

8

x 10
−3

x̄
(l)

x̄
(l
+
1
)

(a)

0 1 2 3 4 5 6 7 8

x 10
−3

0

1

2

3

4

5

6

7

8

x 10
−3

x̄
(l)

x̄
(l
+
1
)

(b)

Figure 6.9: Evolution of the bit error probability of Staircase codes with assist
rate of 0.8. (a) pE = 0.0087, which is below the iterative decoding threshold; the
graph converges to zero. (b) pE = 0.0088, which is the adopted iterative decoding
threshold; the graph does not converge to zero.

ability, e.g., as the rate of the rate-adaptive Staircase code decreases the more

input bit errors are corrected, thus allowing for the desired lower output bit error

probability.

We plot the analytical performance estimation of the RS component codes

from Equation 6.37 on a burst-error channel in Figure 6.11. The performance

112

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

baseline staircase BCH 0.9373

staircase RS assist 0.80

staircase RS assist 0.70

staircase RS assist 0.60

staircase RS assist 0.50

staircase RS 0.9370

Figure 6.10: Performance of rate-adaptive Staircase codes with RS assistance
on a random-error channel compared with iterative decoding thresholds from
density evolution in dash lines. The performance curves for the baseline Staircase
BCH code and the Staircase code with RS component codes are also included for
reference

113

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

baseline staircase BCH 0.9373

staircase RS assist 0.80

staircase RS assist 0.70

staircase RS assist 0.60

staircase RS assist 0.50

analytic estimation component BCH rate 0.97

analytic estimation RS rate 0.80

analytic estimation RS rate 0.70

analytic estimation RS rate 0.60

analytic estimation RS rate 0.50

Figure 6.11: Performance of rate-adaptive Staircase codes with RS assistance on
a burst-error channel with average burst length of 10.

114

of the Staircase with RS assistance coincides with the performance of the RS

component codes at high input bit error probability. Thereafter, the smaller the

input bit error probability, the larger the difference between the output bit error

probability of the Staircase with RS assistance and their RS component codes,

where the Staircase with RS assistance has smaller output bit error probability,

e.g., the Staircase with RS assistance of rate 0.8 achieves pO = 10−6 at input

bit error probability pE = 0.0044, while the RS component codes achieves pO =

9× 10−4 at the same input bit error probability. This reduction of the output bit

error probability of the Staircase with RS assistance is due to the iteration of the

BCH Staircase core code, which starts to iterate after the number of errors are

small enough, i.e., below the iterative decoding threshold of the BCH Staircase

core code. Nevertheless, this reduction of the output bit error probability is not

so fast as that on a random-error channel; thus there is no steep water fall region

as for a random-error channel. This is because the BCH Staircase core codes do

not perform very well on burst-error channels. The estimated iterative decoding

threshold of the BCH Staircase core code is at 0.0037, which was found by peeling

decoding analysis for a window of size 7 and the maximum number of iterations

of 7, averaged for 1000 decision blocks on this burst-error channel. The iterative

decoding threshold on the burst-error channel is naturally worse than the iterative

decoding threshold for the random-error channel due to the worse performance

of BCH codes on burst-error channels. Moreover, it does not guarantee error free

decoding below the iterative decoding threshold, thus only the estimated bit error

probability where iterations of the Staircase core code start can be determined

from this value.

6.7 Decoding with RS assistance in each

Iteration

We simulate the performance of rate-adaptive Staircase codes where the decod-

ing of the RS component codes participates in every decoding iteration as the

decoding window moves backwards, which means the decoding of the RS assist

codes is done before the decoding of BCH component codes in every iteration

115

of decoding. This is different from the former simulations where the decoding

of RS component codes is done only once, prior to the first iteration of the core

decoding to remove the block errors.

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

baseline staircase BCH 0.9373

staircase RS assist 0.80

staircase RS assist 0.70

staircase RS assist 0.60

staircase RS assist 0.50

staircase RS assist iterate 0.50

staircase RS assist iterate 0.60

staircase RS assist iterate 0.70

staircase RS assist iterate 0.80

Figure 6.12: Performance comparison of the rate-adaptive Staircase codes on a
random-error channel when RS decoding participates in every iteration.

We can see from Figure 6.12 and Figure 6.13 that the performances are not

different from the former simulations on both random-error channels and burst-

error channels. The reason is, that even though the RS assist codes have more

error correction capability than the BCH core codes, they do not participate in

concatenation to the neighbouring blocks; thus in the first decoding iteration

nearly all of the correctable errors of the RS words have been corrected locally in

each block, e.g., considering the Staircase core code with BCH component codes

of t = 3 and the RS assist codes from GF(28) with t = 4 (the minimum t allowed

for core codes of t = 3) at pE below the iterative decoding threshold of the core

BCH codes: the maximum number of symbols changed per row is equal to 4 when

decoding with the RS assist codes, and this is valid to all other blocks, thus the

codewords are in the centre of each RS code decoding region with t = 4. Then

after a decoding iteration of the BCH Staircase core code, the maximum number

116

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
O

p
E

baseline staircase BCH 0.9373

staircase RS assist 0.80

staircase RS assist 0.70

staircase RS assist 0.60

staircase RS assist 0.50

staircase RS assist iterate 0.50

staircase RS assist iterate 0.60

staircase RS assist iterate 0.70

staircase RS assist iterate 0.80

Figure 6.13: Performance comparison of the rate-adaptive Staircase codes on a
burst-error channel with burst length 10 when RS decoding participates in every
iteration.

of bits changed per row (altogether in the former block and the subsequent block)

are only 3, because the iterative decoding of the core codes does not introduce

more errors to the codewords. The change of these 3 bits per row yields the

codewords, which are still in the same decoding region of the RS assist codes.

As a consequence, to decode the RS assist codes in the next iterations does not

bring about the improvement.

Hence, we persist with decoding the RS component codes only at the first

iteration to save time of decoding (very significantly).

6.8 Throughput Simulation

We simulate the transmission with rate-adaption according to the Type-II hybrid

ARQ scheme introduced in Section 6.3. It is assumed in the simulation that

the transmission delay is small, the signal processing is fast enough not to cause

any significant delay, and the feedback information (ACK and NACK) is error

free, such that the “assist-part” still provides continuous flow of data. In the

simulation, the baseline Staircase codes with BCH component of rate 0.9373 are

117

the core code. For each row of one assist block the assist part consists of 72

parity bits, therefore the resulting minimum rate for a maximum of 1 assist block

is equal to 0.82. For a maximum of 2, 3, 4, 5, 6 assist blocks, the minimum rates

are equal to 0.73, 0.66, 0.60, 0.55, 0.50 respectively. We define the throughput as

η =
accepted packets× data bits in a packet

transmitted packets× code bits in a packet
(6.38)

=
number of data bits received

total number of code bits transmitted
. (6.39)

where the data bits that are indicated as “received” are indeed correct (up to the

extremely small failure rate of a CRC which is ignored).

Figure 6.14 shows the throughput of rate-adaptive Staircase codes in the Type-

II hybrid ARQ scheme on a random-error channel. The curve “staircase RS

0.9370” is only for comparison of the Staircase code at (almost) the same rate

of 0.9373 with RS components in the Staircase scheme: the latter clearly per-

forms worse than the Staircase codes with BCH components on the random-error

channel. We plot the estimated throughput analysis derived from Section 6.4 in

Figure 6.14. The curve has a step shape due to the assumption that all windows

in a decoding block have the same number of assist parts, which is contrary to

the simulation where the number of assist parts is chosen as requested after the

requirements in the first block of the decoding window. This also causes the an-

alytic throughput curve to fall to zero at an input bit error probability smaller

than the actual simulation curve. Each step corresponds to each code rate that

matches the input bit error probability. It can be observed in Figure 6.14 that

without the RS assistance, the throughput of the staircase BCH code already falls

to zero at pE > 0.005. With up to 6 RS-assist blocks, however, the throughput

falls to zero at a much larger input bit error probability of pE = 0.02. The curve

“staircase ARQ max 1 assist block” shows that only one RS-assist block cannot

help to increase the throughput. This is due to the fact that there are still not a

sufficient number of parity bits of the RS component codes to correct the errors

in the channel. For more than two RS-assist blocks, throughput can indeed be

increased until the maximum available number of 6 assist-blocks is transmitted.

The bold dashed curve shows the overall throughput with a maximum of 6 assist

118

blocks when the rate-adaptive scheme described in Sections 6.2 and 6.3 is applied.

Figure 6.15 shows the throughput of rate-adaptive Staircase codes in the Type-

II hybrid ARQ scheme on a burst-error channel with average burst-length of 10.

When the input bit error probability is larger than 0.0035, the Staircase code with

BCH component codes has a throughput of zero, but when the rate adaption is

applied, the throughput does not fall to zero until pE = 0.058, which is also higher

than on the random-error channel due to the better error correction capabilities

of the RS assist parts for burst-error channels.

In Figure 6.16 and Figure 6.17 the throughput of rate-adaptive Staircase codes

in the Type-II hybrid ARQ scheme on a burst-error channel with average burst-

length of 30 and 50 are shown, respectively. It can be observed that the through-

put of both figures are not as good as of the Figure 6.15 with average burst length

of 10, and the figure for average burst length of 50 is the worst of all. This is

because the RS assist codes from GF(28) can correct better at the average burst

length of 10 than the average burst length of 30 or 50.

6.9 Comparison to a Retransmission Scheme

To show the benefits of the rate-adaptive Staircase codes for Type-II hybrid ARQ

schemes, we compare them with a retransmission scheme, in which the transmitter

resends each block of Staircase codes successively after receiving each NACK from

the receiver. It has the following steps:

1. The data bits for each Staircase block are encoded with a CRC for error

detection to form ACK/NACK messages, then these blocks are encoded

with the BCH Staircase code and are transmitted.

2. At the decoder, after receiving so many blocks as required for a decoding

window, the Staircase code is decoded, and then the CRC error detection

of the first block in the decoding window is evaluated. If errors are detected

(as depicted in Figure 6.18 a)), a NACK message is sent to the encoder,

otherwise this block is decided as “accepted” and an ACK is sent to acquire

a new block.

119

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

th
ro

u
g
h
p

u
t

p
E

baseline staircase BCH 0.9373

staircase ARQ max 1 assist block

staircase ARQ max 2 assist blocks

staircase ARQ max 3 assist blocks

staircase ARQ max 4 assist blocks

staircase ARQ max 5 assist blocks

staircase ARQ max 6 assist blocks

staircase RS 0.9370

capacity

analytic curve

Figure 6.14: Throughput of the rate-adaptive Staircase code for different input
bit-error probabilities on a random-error channel.

120

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

th
ro

u
g

h
p

u
t

p
E

baseline staircase BCH 0.9373

staircase ARQ max 1 assist block

staircase ARQ max 2 assist blocks

staircase ARQ max 3 assist blocks

staircase ARQ max 4 assist blocks

staircase ARQ max 5 assist blocks

staircase ARQ max 6 assist blocks

capacity

Figure 6.15: Throughput of the rate-adaptive Staircase code for different input
bit-error probabilities on a burst-error channel with average burst length of 10.

121

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

th
ro

u
g

h
p

u
t

p
E

baseline staircase BCH 0.9373

staircase ARQ max 1 assist block

staircase ARQ max 2 assist blocks

staircase ARQ max 3 assist blocks

staircase ARQ max 4 assist blocks

staircase ARQ max 5 assist blocks

staircase ARQ max 6 assist blocks

capacity

Figure 6.16: Throughput of the rate-adaptive Staircase code for different input
bit-error probabilities on a burst-error channel with average burst length of 30.

122

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

th
ro

u
g

h
p

u
t

p
E

baseline staircase BCH 0.9373

staircase ARQ max 1 assist block

staircase ARQ max 2 assist blocks

staircase ARQ max 3 assist blocks

staircase ARQ max 4 assist blocks

staircase ARQ max 5 assist blocks

staircase ARQ max 6 assist blocks

capacity

Figure 6.17: Throughput of the rate-adaptive Staircase code for different input
bit-error probabilities on a burst-error channel with average burst length of 50.

123

3. When the transmitter receives an ACK, it transmits a new block; otherwise

when NACK was received and the maximum number of retransmissions

allowed is not reached, the transmitter resends the acquired block to the

receiver.

4. At the decoder, after the decoder has received the retransmitted block, it

replaces the former received block with the new received one (as depicted in

Figure 6.18 b), c)), then the iterative Staircase decoding is processed and the

CRC checks for errors. If there is no error in the first block of the decoding

window (depicted in Figure 6.18 d)), this block is decided as “accepted”

and an ACK is sent to acquire a new block. Then the decoding window is

shifted forward to decode the new block (depicted in Figure 6.18 e)).

4

1110

98

76

5

32

1

a)

1110

98

76

54

32

1

b)

1110

98

76

54

32

1

1

2 3

4 5

6 7

8 9

10 11

11

109

87

65

43

2

12

?

c) d)

e)

red :1st retransmission

green

:2nd retransmissionviolet

:3rd retransmission

Figure 6.18: Illustration of Staircase code decoding with retransmission scheme.

We simulate both schemes on a randomly varying channel between input bit

error probability pE = 0.004, for which the Staircase core codes can certainly

correct errors, and an upper value of input bit error probability pUE. The max-

imum number of retransmissions per block allowed is bounded by the number

124

of maximum assist blocks of the ARQ scheme such that a fair comparison is

achieved.

Figure 6.19 depicts the simulation results of rate-adaptive ARQ scheme com-

pared to the retransmission scheme on varying channels. When the channel is

randomly varying between pE = 0.004 and pUE = 0.006, the throughput of the

ARQ schemes is equal to 0.78, whereas the throughput of the retransmission

schemes is equal to 0.07. If the channel varies between pE = 0.004 and a higher

value of pUE, the throughput of the ARQ schemes gets worse, but it is still better

than the retransmission schemes, which always has the throughput below 0.1.

We note that even though the rate-adaptive scheme has a drawback that the

extra RS decoding causes more decoding delay due to the computation of RS

assistance than direct retransmission, it has a lot better throughput performance

to cope with the varying channel conditions.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
UE

th
ro

u
g
h
p

u
t

ARQ

Retransmission

Figure 6.19: Throughput of the rate-adaptive Staircase code with ARQ compared
to retransmission.

125

6.10 Conclusion

We proposed a rate-adaptive Staircase code for use on time-varying high-rate

wireless channels. These rate-adaptive Staircase codes have RS codes as compo-

nent codes to assist the BCH core codes used in the standard Staircase scheme.

The advantages of using RS codes are burst-error correction capability and, im-

portantly, flexibility in puncturing, therefore enabling their application in type-II

hybrid ARQ schemes. The performance and throughput analysis of these rate-

adaptive Staircase codes are derived. The simulations of the novel rate-adaptive

Staircase codes show better performance and throughput on a wide range of in-

put error probabilities in comparison to a standard Staircase code without rate-

adaptation. Moreover the comparison of the proposed rate-adaptive Staircase

code to a direct retransmission scheme on a varying channel shows that this rate-

adaptive Staircase code has higher throughput on a wide range of input bit error

probabilities. Consequently, the proposed scheme is suitable for high-rate wireless

transmission on the channel that varies over time.

126

Chapter 7

Staircase Codes in Distributed

Source Coding

Because Staircase codes have high performance on decoding codewords without

knowledge of channel state information, together with the characteristic of a lin-

ear channel code that the generator matrix (G) and the check matrix (H) can

be simply exchanged to get a system for linear source coding, we investigate the

possibility of using Staircase codes in the framework of distributed source coding

(DSC). Distributed source coding is based on the work by Slepian and Wolf [70],

which gives the admissible rate region for lossless encoding of two correlated in-

formation sequences; the source encoder has no knowledge about this correlation

whereas the decoder has both encoded message sequences at hand as depicted

in Figure 7.1. The theory for lossy source coding that combines the results from

Slepian and Wolf with quantization was derived later on by Wyner and Ziv [83].

The DSC concept is widely discussed for many applications such as wireless sensor

networks [84] where the source data usually have correlation to the data from the

nearby nodes; sending the compressed data instead of the whole bit stream can

reduce the energy consumption of the nodes and extend the battery lifetime. Fur-

ther application thereof is distributed video coding (DVC) [59], [2], [30] where the

consecutive video frames have correlation to each other: sending the compressed

frame using distributed source coding pushes the computational burden to the

decoder that in some applications has more computational resources, and thus the

127

encoder requires less efficient hardware than in the conventional advanced video

coding (AVC). Other applications are for example stereo video coding, spectrum

sensing, multimedia streaming over heterogeneous networks etc.

DecoderCorrelated Sources

X Encoder

Y Encoder

..., X0, X1, ... Rate RX

..., Y0, Y1, ... Rate RY ..., Ŷ0, Ŷ1, ...

..., X̂0, X̂1, ...

...01101...

...11000...

Figure 7.1: Correlated source coding configuration. [70]

7.1 Slepian-Wolf Coding and Code Designs

Shannon’s source coding theorem [67] implies that the transmission of a single

source X = (X1, X2, ...Xn) with independent realizations of X, taking values in

the set A = {1, 2, ...A} must have rate of at least

R ≥ H(X) in [
bits

character
] (7.1)

(7.2)

such that it can be recovered with arbitrary small error, and therefore R is said to

be admissible. Equivalently, the upper limit of compression is equal to 1/H(X)

measured in source letters per encoded binary digits [69]. The entropy of random

variable X is

H(X) = −
A∑
i=1

pX(i) log2 pX(i) (7.3)

where pX(x) = Pr[X = x] is the probability distribution of X.

For two correlated sources X and Y that have the joint probability distri-

bution pXY (x, y) = Pr[X = x and Y = y], there exist the encoding rates RX

and RY such that the sequences X̂ and Ŷ after source decoding have arbitrary

128

small error probability: the rate pair (RX , RY) is called an admissible rate point.

The associated information-theoretic parameters such as H(X, Y), H(X), H(Y),

H(X|Y) and H(Y |X) can be obtained from the joint probability distribution

pXY (x, y) and can be found in [70]. The admissible rate region for the rate pair

(RX , RY) is given by

RX ≥ H(X|Y) (7.4)

RY ≥ H(Y |X) (7.5)

RX +RY ≥ H(X, Y) (7.6)

and can be seen in Figure 7.2 which is located on the upper right of the blue line.

RY

RX

H(X,Y)

H(Y)

H(Y |X)

H(X |Y) H(X) H(X,Y)

A

C

B

b

b

b

Figure 7.2: Slepian-Wolf rate region for two sources. [70]

The corner point A in Figure 7.2 corresponds to the problem of source coding

of X with side information Y as depicted in Figure 7.3, which implies that the

decoder knows Y , which is compressed with rate RY = H(Y), and the encoder

knows bothX and Y such that compression of X has rateRX = H(X|Y) following

the equality

RX +RY = H(X|Y) +H(Y) = H(X, Y). (7.7)

129

DecoderCorrelated Sources

X Encoder..., X0, X1, ... Rate RX

..., Y0, Y1, ...

..., X̂0, X̂1, ...

...01101...

Figure 7.3: Lossless source coding with side information at the decoder. [84]

The parameter X and Y can be swapped resulting in the corner point B. This

scheme is known as asymmetric SW coding. When the sources X and Y are

compressed with the same rate corresponding to point C the scheme is known

as symmetric SW coding. All other points along the blue line between points A

and B are then said to be nonasymetric SW coding, and they can be achieved by

time sharing between points A and B.

We will consider here the special case of asymmetric SW coding with a twin bi-

nary symmetric source for that the sources X and Y are binary random variables

defined as [80]

pX(0) = pX(1) = 1
2
,

pY (0) = pY (1) = 1
2
,

pY |X(0|1) = pY |X(1|0) = p,

pY |X(0|0) = pY |X(1|1) = 1− p,

(7.8)

with H2(p) = −[p log2(p) + (1 − p) log2(1 − p)]. Therefore the entropies of twin

binary symmetric sources are [80]

H(X) = 1, (7.9)

H(Y) = 1,

H(Y |X) = H2(p),

H(X|Y) = H2(p).

For asymmetric SW coding at corner point A we have RY = H2(Y) = 1 and

RX = H(X|Y) = H2(p), on that account the correlation of X and Y at point A

130

is usually modeled by a virtual binary symmetric channel (BSC) with crossover

probability p.

Considering the case of asymmetric SW coding, the constructive method

achieving the SW bound proposed by Wyner [82] suggested the close relation

of DSC to linear channel coding known as syndrome approach [23]. The source

sequences x of length n are partitioned to cosets of a binary linear (n, k) channel

code that is defined by an (n − k) × n parity check matrix H. The coset codes,

which are equivalent to syndrome bits obtained from s = xHT , are transmitted

by the encoder, and hence the compression rate is equal to n : (n − k) for a

full rank H matrix. The decoder thereafter receives the syndrome s knowing the

side information y and then tries to decode the original sequence x̂. In some

applications, where the correlation between the sources are not constant, rate-

adaptation is required. The parity approach, which can be easily constructed

for rate-adaptivity by puncturing the parity bits, was proposed by [1] and [26].

In parity approach the source sequences are firstly systematically encoded with

generator matrix G and then only the parity bits xp are sent such that the com-

pression is achieved. The decoder, upon receiving the parity bits having the side

information y available, can estimate the source sequence x̂.

There are many practical code designs based on channel codes. The first syn-

drome approach is known as DISCUS [58], where trellis based quantisation and

coset construction were proposed. Designs using efficient Turbo codes based on

the syndrome approach was proposed by [65] and based on the parity approach

were proposed by [4], [1], and [26]. Because LDPC codes with a believed propa-

gation decoder are near-capacity achieving, using LDPC codes for the DSC based

syndrome approach also perform better than Turbo codes [47]. Due to the require-

ments for practical DSC that codes should be rate-adaptive, incremental and near

the SW bound, a serially-concatenated-accumulated code (SCA) [16] was pro-

posed. The SCA code generator is composed of an accumulator, an interleaver,

and a set of base codes, which could be single parity check codes or extended

Hamming codes. The decoder decodes the received syndrome together with the

side information y using the turbo decoding algorithm that iterates between the

decoder of the accumulator code and the decoder of the base codes. The LDPC

accumulate (LDPCA) and sum LDPC accumulate (SLDPCA) codes proposed for

131

high compression rate-adaptive DSC by [78] are efficient. The encoder consists of

an LDPC syndrome former concatenated with an accumulator (additionally an

adder in case SLDPCA codes), whereas the decoder can handle rate-adaptivity by

modifying its decoding graph as it receives the additional syndrome bits. Lately

BCH codes are proposed by [66] for application of rate-adaptive DSC with short

to medium sequence length in a high correlation scenario.

7.2 Staircase Codes in DSC implementation

Due to better performance of Staircase codes over their component codes, which

could be BCH, RS, etc., at higher input bit error probability of the BSC channels,

which correspond to high correlation of the sources, together with the result from

[66] stating that the BCH codes are more suitable to compress information sources

at high correlation than LDPCA codes for moderate to short block length, we

implemented the Staircase codes in an asymmetric SW framework with twin

binary sources using the parity approach expecting that the concatenation of

component codes and the iterative decoding of Staircase codes will improve the

compression capability of the source codes in DSC schemes.

The implementation model is configured as shown in Figure 7.3. The source

sequence Xi of length (m− r)×m, which has correlation to the source sequence

Yi with correlated parameter p, is arranged in the block of the Staircase codes

encoder as depicted in Figure 7.4, where m is the number of rows or columns in

Staircase codes array, r is the number of columns of parity bits. The resulting

parity block Xp,i with length r×m generated from the Staircase codes encoder is

sent through the ideal channel and arrives at the Staircase codes decoder error-

free. The decoder decodes the received parity bits Xp,i by placing them to the

block of Staircase codes whereas the sequence of the side information Yi of length

(m − r) ×m is placed in the array in the position of Xi, and then the decoder

decodes iteratively through the decoding window until the maximum allowable

number of iterations is reached, thus the sequence X̂ is recovered. The scheme

has a normalized source encoding rate equal to

source rate =
r

m− r [bits per character] (7.10)

132

and a compression ratio equal to m−r
r

. The encoder still has lower complexity

in comparison to the decoder, which is crucial to DSC. We aim to push compu-

tational burdens to the decoder, i.e., the encoder only has to store the current

block and the former block, while the decoder needs to store as many blocks as

the predefined decoding window is long. Besides, the decoder needs to do iter-

ative decoding which is composed of many steps of component codes decoding.

For details of encoding and decoding of the Staircase codes see Chapter 3.

m

m

m− r r

XT
i−1

Xi Xp,i

XT
p,i−1

checks
on
rows

source
sequence

Figure 7.4: Staircase codes array for encoding in DSC.

If BCH component codes are constructed on another number field, the block

length and the number of parity bits are different, which yields a different source

rate of the Staircase codes. The BCH code from GF(2q) has the block length

equal to n = 2q − 1 and the number of parity check bits r ≤ qt where t is error

correction capability, thus the source rate is given as

source rate =
r

m− r
≤ qt

n
2
− qt

=
qt

2q−1
2
− qt. (7.11)

Figure 7.5 shows the estimated source rate for different q. It can be seen that

Staircase codes from a smaller field have higher source rates; moreover the source

133

rates thereof increase faster with the increasing of t. Therefore, the application

of BCH Staircase codes from a small field in DSC is quite limited as a small

source rate cannot be achieved. Note that the source rate greater than one is not

anymore source coding, because there are more encoded bits than data bits.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

s
o
u
rc

e
 r

a
te

 [
b
it
s
/c

h
a
ra

c
te

r]

Staircase code BCH GF(2

10
)

Staircase code BCH GF(2
9
)

Staircase code BCH GF(2
8
)

Staircase code BCH GF(2
7
)

Staircase code BCH GF(2
6
)

Figure 7.5: Estimated source rate of BCH Staircase codes

7.3 Performance Analysis of Staircase Codes in

DSC

From the system set up, the block Xp,i is transmitted error free through the

ideal channel, whereas the block Yi is available at the receiver with crossover

probability p from the correlated source Xi. The same is true for the other block

indices. In a decoding window as illustrated in Figure 7.6, each row of the 2

consecutive blocks is decoded with a bounded minimum distance decoder of the

BCH component codes with error correction capability t. Thus, for the analysis

134

m

m

m− r r

Y T
i−1

Yi Xp,i

XT
p,i−1

checks
on
rows

source
sequence

r

n

Figure 7.6: Staircase codes array for decoding in DSC.

at high p above the iterative decoding threshold, the lower bound of word error

probability of the first m− r rows is given by (see Section 4.2)

Pw1 ≥
n−r∑
i=t+1

(
n− r
i

)
pi(1− p)(n−r−i) , (7.12)

where p is the crossover probability of the correlated sources. The term
(
n−r
i

)
is

for the number of possibility that i bit errors occurring in n− r positions, while

the last r positions have no error due to the error free transmission of the block

Xp,i. The term pi(1 − p)(n−r−i) is the probability of a particular i-bit error in

n − r positions. The summation starts from t + 1 where there are more errors

than the error correction capability of the BMD to the possible number of errors

occurring in those rows. The bit error probability of the first m− r rows is thus

Pb1 ≥
n−r∑
i=t+1

i

n

(
n− r
i

)
pi(1− p)(n−r−i), (7.13)

135

where i
n

is for the number of errors relative to the number of codeword bits. The

lower bound of word error probability of the last r rows is given by

Pw2 ≥
m−r∑
i=t+1

(
m− r
i

)
pi(1− p)(m−r−i), (7.14)

where the term
(
m−r
i

)
is for the number of possibility that i bit errors occuring

in m− r positions while the other m+ r positions have no error due to the error

free transmission of the block Xp,i, and XT
p,i−1. The term pi(1 − p)(m−r−i) is the

probability of a particular i-bit error in m − r positions. The summation starts

from t + 1 where there are more errors than the error correction capability of

the BMD to the possible number of errors occurring in those rows. The bit error

probability of the last r rows is given as

Pb2 ≥
m−r∑
i=t+1

i

n

(
m− r
i

)
pi(1− p)(m−r−i) , (7.15)

where i
n

is for the number of errors relative to the number of codeword bits. The

bit error probability of one decoding window can finally be estimated as

Pb ≥
(m− r) · Pb1 + r · Pb2

m
, (7.16)

which is the average of m− r rows with bit error probability Pb1, and r rows with

bit error probability Pb2. After the iterative decoding threshold is reached, the

bit error rate reduces dramatically and can be observed as a waterfall region in

the performance curve. For the analysis of waterfall region and error floor see

Section 4.2.

Figure 7.7 shows the performance of the Staircase codes BCH component

codes from GF(210) with t = 2, 3, 4 with 2 bit CRCs in the DSC scheme and

the performance analytic curves of the BCH component codes from GF(210) in

the DSC scheme given by Equation 7.16. We simulated the Staircase codes with

BCH component codes with 2 bit CRCs as we know that higher error floor of

the small-t component codes, which degrades the performance of DSC, can be

avoided by adding error detection bits. It can be observed that the performances

136

of BCH Staircase codes in the DSC scheme coincide with the analytic curves of

BCH component codes in the DSC scheme at high crossover probability p. When

p is low enough the bit error rate of the BCH Staircase codes are lower than the

analytic curves of the BCH component codes due to the iterative decoding of the

Staircase codes as can be seen as waterfall region in the curves.

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p

b
e
r

BCH t=2 analytic in DSC

Staircase code t = 2+CRC in DSC

BCH t=3 analytic in DSC

Staircase code t = 3+CRC in DSC

BCH t=4 analytic in DSC

Staircase code t = 4+CRC in DSC

Figure 7.7: Performance of Staircase codes in DSC compared to the analytic BCH
component codes in DSC.

7.4 Simulation Results

We are interested in Staircase codes from GF(210) and GF(29) which can achieve

lower source rate, even though the block length of the Staircase codes with BCH

component codes from GF(210) is around 2.61 × 105 bits and from GF(29) is

around 6.52 × 104 which are quite long. We consider here the high correlation

137

scenario, where the conditional entropy H(Y |X) between source X and Y is

very low which corresponds to low crossover probability p; therefore X and Y are

very similar. In this scenario the compression rate of the optimal LDPC codes are

inferior to the compression rate of the optimal BCH codes from [66]. The decoded

bit error rate over the crossover probability p of the DSC using the Staircase codes

with BCH component codes of different error correction capabilities t are plotted

in Figure 7.8. When a decoded bit error rate ≤ 10−5, we regard it as correct

decoding and plot its source rate over conditional entropy H(Y |X) as depicted

in Figure 7.9. The same is done on Staircase codes from GF(29) as depicted in

Figure 7.10 and in Figure 7.11. These rate curves in Figure 7.9 and Figure 7.11 are

compared to optimal rate-adaptive BCH codes from [66], which are rate-adaptive

BCH codes of length 255 or 511 or 1023 with the lowest source rate at each value

of H(Y |X). The optimal rate-adaptive BCH from [66] are claimed to be better

than LDPCA for length 1584 bits [78] in a high correlation scenario.

From Figure 7.8 and Figure 7.10 we can see that with the increasing of the

crossover probability p, larger error correction capability t is required for the BCH

component codes, thus the source rate is higher according to Equation 7.11.

In Figure 7.9 and Figure 7.11 it can be observed that the bigger the error

correction capability t of the BCH component codes is, the wider is the gap from

the SW-bound. In Figure 7.9, the Staircase codes with t = 2, 3 with CRC from

GF(210) have source rates close to the optimal rate-adaptive BCH codes from

[66]. However, the source rates of the Staircase codes with higher t are higher

than those of the optimal rate-adaptive BCH codes from [66]. In Figure 7.11 the

Staircase codes from GF(29) have higher source rates than those of the optimal

rate-adaptive BCH codes from [66] for all values of t. The reason for this inferior

compression rate is due to the application of the parity approach in the Staircase

codes, which is worse than the syndrome approach used by BCH codes in [66].

In spite of the iterative decoding of the Staircase codes, the BER has not been

improved enough to cause the source rate smaller than the optimal rate-adaptive

BCH codes from [66].

138

00.0050.010.0150.020.0250.030.0350.040.045
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p

b
e
r

t=2 CRC

t=3 CRC

t=4 CRC

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Figure 7.8: Bit error SW coding using a Staircase code with BCH component
codes in GF(210).

139

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H(X|Y)

R
a
te

(b
it
s
/c

h
a

ra
c
te

r)

SW bound

t=2+CRC

t=3+CRC

t=4+CRC

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

optimal BCH

Figure 7.9: Rate curve of SW coding using a Staircase code with BCH component
codes in GF(210) compared to the optimal rate-adaptive BCH codes from [66].

140

0.0050.010.0150.020.0250.030.0350.040.0450.05
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p

b
e
r

t=2+CRC

t=3+CRC

t=4+CRC

t=5

t=6

t=7

t=8

Figure 7.10: Bit error SW coding using a Staircase code with BCH component
codes in GF(29).

141

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H(X|Y)

R
a
te

(b
it
s
/c

h
a

ra
c
te

r)

SW bound

t=2

t=3

t=4

t=5

t=6

t=7

t=8

optimal BCH

Figure 7.11: Rate curve of SW coding using a Staircase code with BCH com-
ponent codes in GF(29) compared to the optimal rate-adaptive BCH codes from
[66].

142

7.5 Conclusion

We found that the Staircase codes can be implemented in the DSC scheme in

a high correlation scenario, but it has inferior compression rate than using the

syndrome approach with BCH codes, only the Staircase codes with BCH compo-

nent codes from GF(210) with t = 2, 3 have comparable source rates at very high

correlation where H(X|Y) < 0.05.

The fixed array structure of the Staircase codes causes difficulties in adapting

rates, which are required for the cases where correlations between sources are not

constant. Using rate-adaptive RS codes as stated in Chapter 6 will definitely

increase the compression rate, which is undesired.

Consequently, using BCH Staircase codes in a DSC scheme is proper only for

specific component codes at very high correlation without rate-adaptivity.

143

Chapter 8

Conclusions

The study was set out to explore Staircase codes and their extensions. Staircase

codes are concatenated product-like codes suitable for high-rate transmission with

hard-decision decoding. They were originally designed for high-rate transmission

on binary symmetric channels. The present study contributes to the application

of these codes in some other areas; such as in burst-error channels, in time-varying

channels, and in distributed source coding.

This section will summarize the empirical findings of the study’s research on

three aspects of Staircase codes.

1. Staircase codes on burst-error channels:

a: Insertion of cyclic redundancy check codes for each component

codes: This is essential for component codes, which have small error correc-

tion capability, as it prevents erroneous decoding of the component codes and it

lowers the error floor in the performance curve on both random-error channels

and burst-error channels.

b: Using RS codes as component codes: We proposed using RS codes as

component codes for high-rate Staircase codes transmitted on burst-error chan-

nels, on which the transmission of the baseline BCH Staircase code totally fails.

This is due to the characteristic of the RS component codes, which are processed

symbol-wise, and therefore are appropriate for burst-error channels. The decod-

ing complexity per bit of the RS component code of length n is proportional to

the error correction capability t and is inversely proportional to the symbol size

q for n � t. The complexity per bit and the decoding latency per bit of the

144

selected RS component codes are smaller than those of the baseline BCH codes

for Staircase codes of the same rate. Thus RS Staircase codes are applicable for

high-rate wireless transmission on the channel with burst errors without increas-

ing decoding latency.

c: Using diagonal interleaving: We proposed using diagonal interleaving on

Staircase codes transmitted on burst-error channels. This improves the perfor-

mance of both BCH and RS Staircase codes on burst-error channels, in contrast

to the well known row-column interleaving, which does not make any difference

on burst-error channels, because the burst errors are distributed within rows or

columns, which the iterative decoding of Staircase codes has achieved to correct.

The diagonal interleaving of RS Staircase codes needs to be processed symbol-

wise to maintain the burst-error correction capability of the RS component codes.

The diagonal interleaving extends the burst-error correction capability of Stair-

case codes to a longer burst length with the trade off of more latency and memory

usage. The symbol-wise diagonal de-interleaving of the RS Staircase codes pro-

cesses with less time per bit than the bit-wise diagonal interleaving of the BCH

Staircase codes. With the combination of the suggested methods, Staircase codes

are able to correct burst errors with longer burst lengths.

2. Staircase codes on a time-varying channel:

We proposed a rate-adaptive Staircase code, which has RS codes as compo-

nent codes to assist the BCH core codes. Through the puncturing of the RS codes

the rate adaptivity is achieved. This rate-adaptive Staircase code is deployed in

Type-II hybrid ARQ framework to improve the throughput performance. The

performance and throughput simulation conformed to the theoretical performance

and throughput analysis, which shows that with this rate-adaptation the Stair-

case code can correct errors in a wide range of input bit error probabilities. The

comparison of this rate-adaptive Staircase code to a retransmission scheme shows

a superior throughput performance of the proposed scheme in a wide range of

input bit error probabilities. Hence, the proposed rate-adaptive Staircase code is

suitable for high-rate wireless transmission on time-varying channels.

3. Staircase codes in a distributed source coding (DSC) scheme:

Even though the Staircase codes are possible to be implemented in DSC, the

compression rate was shown to be inferior to the codes from literature. It is

145

only at very high source correlations H(X|Y) < 0.05 that the BCH Staircase

code from GF(210) has an equally good compression rate as the optimal codes

from the literature. Consequently, only the BCH Staircase code from GF(210) is

applicable for usage in DSC schemes at restricted correlation values under the

condition that a long block length is allowed, while the BCH Staircase codes from

smaller field are not proper for DSC schemes.

Three major recommendations can be made for future work. The first con-

cerns the error floor of the proposed method. To achieve very low error floor as

stated in the Staircase codes analysis, a large number of bit realisations would

have to be processed, which cannot be achieved with an implementation in soft-

ware (e.g. MATLAB) due to time limitation. Hence parallel decoding through

field-programmable gate arrays (FPGA) is an alternative to realize numerical

investigation of such low error floor. The second recommendation concerns the

analysis of the Staircase codes with the input bit error probability below the

decoding threshold in burst-error channels. In random-error channels, the per-

formance curve can be simply interpolated to reach the error floor; however the

performance curves have different slopes for different codes and different burst-

error characteristics in burst-error channels. This problem could possibly be

solved with a mathematical derivation such that the performance of Staircase

codes on burst-error channels can be predicted without extensive simulation. The

third recommendation is the implementation of the proposed Staircase codes in a

the real transmission system. The transmission could be optical or by radio fre-

quency signals; however the burst or time-varying nature of such channels should

first be evaluated, such that suitable parameters for rate-adaptive or burst-error

correction Staircase codes can be selected.

Staircase codes are powerful channel codes for future wireless communication

where the transmission relies on very high speed and thus high-rate, such that

the decoding can be done in parallel without soft-decision requirements. The

application of these codes on wireless channels requires adaptations, which were

addressed in this work. This would significantly contribute to the improvement

of wireless communication technology, which will then result in faster and more

reliable data transmission.

146

References

[1] A. Aaron and B. Girod. Compression with side information using turbo

codes. In Proceedings of the IEEE International Data Compression Con-

ference (DCC), pages 252–261, April 2002. doi: 10.1109/DCC.2002.999963.

131

[2] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret. The

DISCOVER codec: Architecture, techniques and evaluation. In Proceedings

of the Picture Coding Symposium (PCS’07), November 2007. 127

[3] T. Baicheva, S. Dodunekov, and P. Kazakov. Undetected error probability

performance of cyclic redundancy-check codes of 16-bit redundancy. IEE

Proceedings–Communications, 147(5):253–256, Oct 2000. ISSN 1350-2425.

doi: 10.1049/ip-com:20000649. 61

[4] J. Bajcsy and P. Mitran. Coding for the Slepian-Wolf problem with turbo

codes. In Proceedings of the 2001 IEEE Global Telecommunications Confer-

ence (GLOBECOM ’01), volume 2, pages 1400–1404, November 2001. doi:

10.1109/GLOCOM.2001.965721. 131

[5] E. A. Bender and S. G. Williamson. Foundation of Combinatorics with

Applications. Dover, 2006. ISBN 0-486-44603-4. 104, 105

[6] S. Benjamin, F. Arash, H. Andrew, and F. Kschischang. Staircase codes:

FEC for 100 Gb/s OTN. Journal of Lightwave Technology, 30(1):110–117,

January 2012. ISSN 0733-8724. doi: 10.1109/JLT.2011.2175479. 2, 3, 29,

30, 36, 47, 52, 53, 73, 82, 89, 100, 107

147

REFERENCES

[7] E. R. Berlekamp. On decoding binary Bose-Chaudhuri-Hocquenghem codes.

IEEE Transactions on Information Theory, 11(4):577–80, October 1965.

ISSN 0018-9448. doi: 10.1109/TIT.1965.1053810. 32, 37, 38, 41

[8] E. R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

32, 37, 38, 41

[9] R. Blahut. Algebraic Codes for Data transmission. New York: Cambridge

University Press, 2003. ix, 5, 15, 18, 23, 38

[10] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary

group codes. Information and Control, 3:68–79, March 1959. doi: 10.1016/

S0019-9958(60)90287-4. 32

[11] Martin Bossert. Kanalcodierung. Stuttgart, Germany: B.G. Teubner, 1991.

5

[12] J. B. Carruthers and S. M. Carroll. Statistical impulse response models for

indoor optical wireless channels. International Journal of Communication

Systems, 18(3):267–284, March 2005. doi: 10.1002/dac.703. 2

[13] F. Chang, K. Onohara, and T. Mizuochi. Forward error correction for 100

G transport networks. IEEE Communications Magazine, 48(3):S48–S55,

March 2010. ISSN 0163-6804. doi: 10.1109/MCOM.2010.5434378. 2

[14] N. B. Chang. Rate adaptive non-binary LDPC codes with low encoding com-

plexity. In Proceedings of the Forty Fifth Asilomar Conference on Signals,

Systems and Computers, pages 664 – 668, November 2011. 88

[15] D. Chase. Code combining - a maximum-likelihood decoding approach for

combining an arbitrary number of noisy packets. IEEE Transactions on

Communications, 33(5):385–393, May 1985. ISSN 0090-6778. doi: 10.1109/

TCOM.1985.1096314. 89

[16] J. Chen, A. Khisti, D. M. Malioutov, and J. S. Yedidia. Distributed source

coding using serially-concatenated-accumulate codes. In Proceedings of the

2004 IEEE Information Theory Workshop, pages 209–214, October 2004.

doi: 10.1109/ITW.2004.1405301. 131

148

REFERENCES

[17] N. Chen and Z. Yan. Complexity analysis of Reed-Solomon decoding over

GF(2m) without using syndromes. EURASIP Journal on Wireless Commu-

nication and Networking - Advances in Error Control Coding Techniques,

2008(9):1–11, May 2008. doi: 10.1155/2008/843634. 82, 84

[18] R. T. Chien. Cyclic decoding procedure for the Bose-Chaudhuri-

Hocquenghem codes. IEEE Transactions on Information Theory, 10:357–

363, October 1964. ISSN 0018-9448. doi: 10.1109/TIT.1964.1053699. 32,

37, 38, 41

[19] C. H. Cho, J. J. Won, and H. W. Lee. Performance of hybrid II ARQ

schemes using punctured RS code for wireless ATM. IEE Proceedings–

Communications, 148(4):229 – 233, August 2001. ISSN 1350-2425. doi:

10.1049/ip-com:20010399. 88

[20] T. Cover and J. Thomas. Elements of Information Theory. New York: John

Wiley & Sons Inc, 1991. ISBN 0471200611. 5, 7, 8

[21] R. H. Deng and M. L. Lin. A type I hybrid ARQ system with adaptive code

rates. IEEE Transactions on Communications, 43(2/3/4):733–737, February

1995. ISSN 0090-6778. doi: 10.1109/26.380101. 89

[22] D. Divsalar, S. Dolinar, and F. Pollara. Iterative turbo decoder analysis

based on density evolution. IEEE Journal on Selected Areas in Communi-

cations, 19(5):891–907, May 2001. ISSN 0733-8716. doi: 10.1109/49.924873.

51

[23] P. L. Dragotti and M. Gastpar. Distributed Source Coding: Theory, Algo-

rithms and Applications. Amsterdam: Academic Press/Elsevier, 2009. 131

[24] E. O. Elliott. Estimates of error rates for codes on burst-noise channels.

The Bell System Technical Journal, 42:1977–1997, September 1963. ISSN

0005-8580. doi: 10.1002/j.1538-7305.1963.tb00955.x. 3, 67, 101

[25] R.G. Gallager. Low-density parity-check codes. IRE Transactions on

Information Theory, 8(1):21–28, January 1962. ISSN 0096-1000. doi:

10.1109/TIT.1962.1057683. 43

149

REFERENCES

[26] J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources using

turbo codes. IEEE Communications Letters, 5(10):417–419, October 2001.

ISSN 1089-7798. doi: 10.1109/4234.957380. 131

[27] D. Garg and F. Adachi. Application of rates compatible punctured turbo

coded hybrid ARQ to MC-CDMA mobile radio. ETRI Journal, 26(5):405–

412, October 2004. ISSN 2233-7326. doi: 10.4218/etrij.04.0703.0003. 88

[28] G. H. Gho, L. Klak, and J. M. Kahn. Rate-adaptive coding for optical

fiber transmission system. Journal of Lightwave Technology, 29(2):222–233,

January 2011. ISSN 0733-8724. doi: 10.1109/JLT.2010.2099208. 88

[29] E. N. Gilbert. Capacity of a burst-noise channel. The Bell System Technical

Journal, 39:1253–1265, September 1960. ISSN 0005-8580. doi: 10.1002/j.

1538-7305.1960.tb03959.x. 3, 67

[30] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero. Distributed

video coding. Proceedings of the IEEE, 93(1):71–83, January 2005. ISSN

0018-9219. doi: 10.1109/JPROC.2004.839619. 127

[31] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC

codes) and their application. IEEE Transactions on Communications, 36

(4):389 – 400, April 1988. ISSN 0090-6778. doi: 10.1109/26.2763. 88, 89,

90, 91, 100, 101

[32] C. Häger, A. G. I. Amat, H. D. Pfister, and et al.(2015). On parameter

optimization for staircase codes. In Proceedings of the Optical Fiber Com-

munication Conference and Exposition (OFC), pages 1–3, March 2015. URL

http://publications.lib.chalmers.se/publication/211702. 49

[33] Gerhard Hasslinger and Oliver Hohlfeld. The gilbert-elliott model for packet

loss in real time services on the internet. In In Proceedings of the 14th

GI/ITG Conference on Measurement, Modelling and Evaluation of Com-

puter and Communication Systems, pages 269–283, 2008. 68

150

http://publications.lib.chalmers.se/publication/211702

REFERENCES

[34] Franz Hlawatsch. Information Theory and Coding. Wien, Austria: E389

Institute of Telecommunications, Technische University Wien, October 2011.

5, 10, 15, 16, 17, 23, 24, 27, 28, 58, 61

[35] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–56, 1959.

URL http://kom.aau.dk/~heb/kurser/NOTER/KOFA02.PDF. 32

[36] International Telecommunication Union (ITU). Interfaces for the optical

transport network, 2015. URL http://www.itu.int/rec/T-REC-G.709/.

47

[37] O. Jetlund, G. E. Oien, K. J. Hole, and V. Markhus. Rate-adaptive coding

and modulation with LDPC component codes. European Cooperation in the

Field of Scientific and Technical Research, September 2002. URL http:

//www.fysel.ntnu.no/projects/beats/Documents/TD-02-108.pdf. 88

[38] Y. Jian, H. D. Pfister, and K. R. Narayanan. Approaching capacity at high

rates with iterative hard-decision decoding. in arXiv:1202.6095v3 [cs.IT] 21

May 2015, May 2015. ix, 49, 50, 99

[39] J. S. Johnson. Introducing low-density parity-check codes. Published Inter-

nal Technical Report, Department of Electrical and Computer Engineering,

University of Newcastle, Australia, 2000. 43, 64

[40] J. S. Johnson and Steven R. Weller. Resolvable 2-design for regular low-

dentity parity-check codes. IEEE Transactions on Communications, 51(9):

1413–1419, September 2003. ISSN 0090-6778. doi: 10.1109/TCOMM.2003.

816946. 44, 45, 46

[41] J. Justesen. Performance of product codes and related structures with it-

erated decoding. IEEE Transactions on Communications, 59(2):407–415,

February 2011. ISSN 0090-6778. doi: 10.1109/TCOMM.2011.121410.090146.

19, 20, 21, 48, 58, 73, 99

[42] J. Kim, W. Hur, A. Ramamoorthy, and S. W. McLaughlin. Design of rate-

compatible irregular LDPC codes for incremental redundancy hybrid ARQ

151

http://kom.aau.dk/~heb/kurser/NOTER/KOFA02.PDF
http://www.itu.int/rec/T-REC-G.709/
http://www.fysel.ntnu.no/projects/beats/Documents/TD-02-108.pdf
http://www.fysel.ntnu.no/projects/beats/Documents/TD-02-108.pdf

REFERENCES

systems. In Proceedings of the 2006 IEEE International Symposium on In-

formation Theory, pages 1139 – 1143, July 2006. doi: 10.1109/ISIT.2006.

261962. 88

[43] P. Kukieattikool and N. Goertz. Staircase codes for high-rate wireless trans-

mission on burst channel. IEEE Wireless Communications Letters, PP(99):

1–1, 2015. ISSN 2162-2337. doi: 10.1109/LWC.2015.2507573. 67

[44] J. Le Boudec. Performance Evaluation of Computer and Communica-

tion Systems. Lausanne, Switzerland: EPFL Press, 2010. URL http:

//perfeval.epfl.ch/. 54, 79, 80

[45] F. Lehmann and G. M. Maggio. Analysis of the iterative decoding of LDPC

and product codes using the Gaussian approximation. IEEE Transactions

on Information Theory, 49(11):2993–3000, November 2003. ISSN 0018-9448.

doi: 10.1109/TIT.2003.819335. 51

[46] S. Lin and D. Costello. Error Control Coding. Upper Saddle River, N.J.:

Prentice-Hall, 2004. ix, 2, 3, 5, 19, 25, 26, 27, 32, 37, 39, 41, 42, 43, 46, 67,

83, 84, 90, 93, 108

[47] A. D. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary

sources with side information at the decoder using LDPC codes. IEEE

Communications Letters, 6(10):440–442, October 2002. ISSN 1089-7798.

doi: 10.1109/LCOMM.2002.804244. 131

[48] D. M. Mandelbaum. An adaptive-feedback coding scheme using incremental

redundancy. IEEE Transactions on Information Theory, 20(3):388 – 389,

May 1974. ISSN 0018-9448. doi: 10.1109/TIT.1974.1055215. 88

[49] Ivan Martino and Luca Martino. On the variety of linear recurrences and

numerical semigroups. Semigroup Forum, 88(3):569–574, 2013. ISSN 1432-

2137. doi: 10.1007/s00233-013-9551-2. 104

[50] F. Mattoussi. Design and Optimization of AL-FEC codes: the GLDPC-

Staircase Codes. PhD thesis, Networking and Internet Architecture [cs.NI].,

152

http://perfeval.epfl.ch/
http://perfeval.epfl.ch/

REFERENCES

Universite de Grenoble, 2014. URL https://tel.archives-ouvertes.fr/

tel-00969573. 88

[51] R. J. McEliece and L. Swanson. On the decoder error probability for Reed -

Solomon codes (corresp.). IEEE Transactions on Information Theory, 32(5):

701–703, January 1986. ISSN 0018-9448. doi: 10.1109/TIT.1986.1057212.

56, 73

[52] T. Moon. Error Correction Coding Mathematical Methods and Algorithms.

Hoboken, N.J.: Willey-Interscience, 2005. 3, 5, 7, 8, 9, 35, 36, 37, 41, 67

[53] M. Mushkin and I. Bar-David. Capacity and coding for the Gilbert-Elliott

channels. IEEE Transactions on Information Theory, 33(6):1277–1290,

November 1989. ISSN 0018-9448. doi: 10.1109/18.45284. 70, 71

[54] Claudia Osmann. Bewertung von Codierverfahren fuer einen

Stoerungssicheren Datentransfer. Dissertation, Mathematik der Gerhard-

Mercator-Universitaet-Gesamthochschule-Duisburg, Germany, 1999. 69

[55] K. Oteng-Amoako and S. Nooshabadi. Asymmetric rate compatible turbo

codes in hybrid automatic repeat request schemes. IEE Proceedings–

Communications, 153:603 – 610, October 2006. ISSN 1350-2425. 88

[56] C. Pimentel and I. F. Blake. Enumeration of Markov chains and burst error

statistics for finite state channel models. IEEE Transactions on Vehicular

Technology, 48(2):415–428, March 1999. ISSN 0018-9545. doi: 10.1109/25.

752565. 102, 103, 104, 106

[57] B. Pittel, J. Spencer, and N. Woemald. Sudden emergence of a giant k-

core in a random graph. Journal of Combinatorial Theory, Series B, 67(1):

111–151, May 1996. doi: 10.1006/jctb.1996.0036. 20

[58] S. S. Pradhan and K. Ramchandran. Distributed source coding using

syndromes (DISCUS): design and construction. IEEE Transactions on

Information Theory, 49(3):626–643, March 2003. ISSN 0018-9448. doi:

10.1109/TIT.2002.808103. 131

153

https://tel.archives-ouvertes.fr/tel-00969573
https://tel.archives-ouvertes.fr/tel-00969573

REFERENCES

[59] R. Puri, A. Majumdar, and K. Ramchandran. PRISM: A video coding

paradigm with motion estimation at the decoder. IEEE Transactions on

Image Processing, 16(10):2436–2448, October 2007. ISSN 1057-7149. doi:

10.1109/TIP.2007.904949. 127

[60] H. A. Rajab and M. D. Yucel. The probability of error performance of Reed-

Solomon codes over q-ary nonsymmetric channels. In Proceedings of the 6th

Mediterranean Electrotechnical Conference, volume 1, pages 610–613, May

1991. doi: 10.1109/MELCON.1991.161912. 97, 98

[61] J. Ramsey. Realization of optimum interleavers. IEEE Transactions on

Information Theory, IT-16(3):338–345, May 1970. ISSN 0018-9448. doi:

TIT.1970.1054443. 76

[62] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,

June 1960. doi: 10.1137/0108018. 3, 38, 67

[63] M. Rezaeian. Computation of capacity for Gilbert-Elliott channels, using a

statistical method. In Proceedings of the 6th Australian Workshop on Com-

munication Theory, pages 56–61, February 2005. doi: 10.1109/AUSCTW.

2005.1624226. 72, 73

[64] A. Rosa. Combinatorial design theory. In Proceedings of the Algebraic, Topo-

logical and Complexity Aspects of Graph Covers & Winter School in Har-

monic Functions on Graphs and Combinatorial Designs, Sepetn’a, Czech

Republic, January 2014. URL http://kam.mff.cuni.cz/~atcagc14/

materialy/DesignTheoryNotes.pdf. 45

[65] A. Roumy, K. Lajnef, and C. Guillemot. Rate-adaptive turbo-syndrome

scheme for Slepian-Wolf coding. In Proceedings of the Forty-First Asilomar

Conference on Signals, Systems and Computers (ACSSC), pages 545–549,

November 2007. doi: 10.1109/ACSSC.2007.4487272. 131

[66] M. Salmistraro, K. J. Larsen, and S. Forchhammer. Rate-adaptive BCH

codes for distributed source coding. EURASIP Journal on Advances in Sig-

154

http://kam.mff.cuni.cz/~atcagc14/materialy/DesignTheoryNotes.pdf
http://kam.mff.cuni.cz/~atcagc14/materialy/DesignTheoryNotes.pdf

REFERENCES

nal Processing, 2013(166), 2013. doi: 10.1186/1687-6180-2013-166. xiii, 132,

138, 140, 142

[67] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:623–656, October 1948. 5, 128

[68] A. Shiozaki. Adaptive type-II hybrid broadcast ARQ system. IEEE Trans-

actions on Communications, 44(4):420–422, April 1996. ISSN 0090-6778.

doi: 10.1109/26.489086. 89

[69] J. K. Skwirzynski. Communication Systems and Random Process Theory.

Alphen aan den Rijn: Sijthoff & Noordhoff, 1978. 128

[70] David Slepian and Jack K. Wolf. Noiseless coding of correlated information

sources. IEEE Transactions on Information Theory, IT-19(4):471–480, July

1973. doi: 10.1109/TIT.1973.1055037. xii, 127, 128, 129

[71] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for

solving key equation for decoding Goppa codes. Information and Control,

27:87–99, January 1975. doi: 10.1016/S0019-9958(75)90090-X. 38

[72] R.M. Tanner. A recursive approach to low complexity codes. IEEE Trans-

actions on Information Theory, 27(5):533–547, September 1981. ISSN 0018-

9448. doi: 10.1109/TIT.1981.1056404. 43

[73] D. Torrieri. Information-bit, information-symbol, and decoded-symbol error

rates for linear block codes. IEEE Transactions on Communications, 36(5):

613–617, May 1988. ISSN 0090-6778. doi: 10.1109/26.1477. 48

[74] D.J. Torrieri. The information-bit error rate for block codes. IEEE Trans-

actions on Communications, 32(4):474–476, Apr 1984. ISSN 0090-6778. doi:

10.1109/TCOM.1984.1096082. 97

[75] D. Truhhachev, L. Zhang, and F. R. Kschischang. Information transfer

bounds on iterative thresholds of Staircase codes. Paper presented at the

2015 Information Theory and Applications workshop (ITA), Scripps Sea-

side Forum, La Jolla, USA, February 2015. URL http://ita.ucsd.edu/

workshop/15/files/paper/paper_1258.pdf. 48, 99

155

http://ita.ucsd.edu/workshop/15/files/paper/paper_1258.pdf
http://ita.ucsd.edu/workshop/15/files/paper/paper_1258.pdf

REFERENCES

[76] A. Tychopoulos, O. Koufopavlou, and I. Tomkos. FEC in optical communi-

cations. IEEE Circuit and Devices Magazine, pages 79–86, November 2006.

11

[77] International Telecommunication Union. Forward error correction for high

bit-rate DWDM submarine systems. Recommendation G 975.1: Series G

Transmission Systems and Media, Digital Systems and Networks, February

2004. URL https://www.itu.int/rec/T-REC-G.975.1-200402-I/en. 29

[78] D. Varodayan, A. Aaron, and B. Girod. Rate-adaptive distributed source

coding using low-density parity-check codes. In Proceedings of the Thirty-

Ninth Asilomar Conference on Signals, Systems and Computers, pages 1203–

1207, 2005. doi: 10.1109/ACSSC.2005.1599952. 132, 138

[79] C. X. Wang and M. Paetzold. A novel generative model for burst error char-

acterization in Rayleigh fading channels. In Proceedings of the 14th IEEE

on Personal, Indoor and Mobile Radio Communications (PIMRC 2003), vol-

ume 1, pages 960–964, September 2003. doi: 10.1109/PIMRC.2003.1264416.

3

[80] J. K. Wolf and B. M. Kurkoski. Slepian-Wolf coding. Scholarpedia, 3(11):

6789, 2008. ISSN 1941-6016. doi: 10.4249/scholarpedia.6789. 130

[81] J.K. Wolf, A. Michelson, and A.H. Levesque. On the probability of un-

detected error for linear block codes. IEEE Transactions on Communica-

tions, 30(2):317–325, Feb 1982. ISSN 0090-6778. doi: 10.1109/TCOM.1982.

1095473. 61

[82] A. D. Wyner. Recent results in the Shannon theory. IEEE Transactions

on Information Theory, 20(1):2–10, January 1974. ISSN 0018-9448. doi:

10.1109/TIT.1974.1055171. 131

[83] A. D. Wyner and J. Ziv. The rate-distortion function for source coding with

side information at the decoder. IEEE Transactions on Information Theory,

22(1):1–10, January 1973. doi: 10.1109/TIT.1976.1055508. 127

156

https://www.itu.int/rec/T-REC-G.975.1-200402-I/en

REFERENCES

[84] Z. Xiong, A. D. Liveris, and S. Cheng. Distributed source coding for sensor

networks. IEEE Signal Processing Magazine, pages 80–94, September 2004.

ISSN 1053-5888. doi: 10.1109/MSP.2004.1328091. xii, 127, 130

[85] R. D. Yates and D. J. Goodman. Probability and Stochastic Processes. John

Wiley & Sons, Inc., 2005. 20, 69

[86] Chaehag. Yi and J. H. Lee. Interleaving and decoding scheme for a

product code for a mobile data communication. IEEE Transactions on

Communications, 45(2):144–147, February 1997. ISSN 0090-6778. doi:

10.1109/26.554359. 75, 76

[87] X. Yu, K. Sun, and D. Yuan. Comparative analysis on HARQ with turbo

codes in Rician fading channel with low Rician factor. In Proceedings of the

12th IEEE International Conference on Communication Technology (ICCT),

pages 342 – 345, November 2010. doi: 10.1109/ICCT.2010.5689216. 88

[88] Yequn Zhang and I.B. Djordjevic. Staircase rate-adaptive ldpc-coded mod-

ulation for high-speed intelligent optical transmission. In Proceedings of the

Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3,

March 2014. doi: 10.1364/OFC.2014.M3A.6. 64, 88

157

	Contents
	List of Figures
	1 Introduction and Overview of the Thesis
	2 Basic Concepts of Channel Coding
	2.1 Channel Model
	2.1.1 Discrete Memoryless Channel (DMC)
	2.1.2 Binary Symmetric Channel (BSC)
	2.1.3 Binary Erasure Channel (BEC)
	2.1.4 Additive White Gaussian Noise Channel (AWGNC)

	2.2 Maximum Likelihood Decoding
	2.3 Performance Measurement
	2.4 Minimum Distance and Minimum Weight
	2.5 Linear Block Codes
	2.6 Decoding Principle
	2.6.1 Error Detection
	2.6.2 Maximum Likelihood Decoding
	2.6.3 Symbol Maximum a Posteriori Decoding (MAP)
	2.6.4 Bounded Minimum Distance Decoding (BMD)

	2.7 Asymptotic Bounds
	2.7.1 Singleton Bound (Upper bound)
	2.7.2 Hamming Bound (Upper bound)
	2.7.3 McEliece Rodemich Rumsey Welch Bound (Upper bound)
	2.7.4 Varshamov Bound (Lower bound)

	2.8 Product Codes
	2.8.1 Decoding Thresholds and Error Floor of Product Codes with Iterated Decoding

	2.9 Finite Fields and Extension Fields
	2.10 Cyclic Codes
	2.11 Rate Adaptation Methods for Block Codes
	2.11.1 Extending and Puncturing
	2.11.2 Lengthening and Shortening
	2.11.3 Augmenting and Expurgating
	bookmark text is here

	3 Staircase Codes and their Component Codes
	3.1 Staircase Codes Principle
	3.1.1 Encoding
	3.1.2 Decoding

	3.2 Component Codes
	3.2.1 BCH Codes
	3.2.1.1 Encoding
	3.2.1.2 Decoding

	3.2.2 RS Codes
	3.2.2.1 Encoding
	3.2.2.2 Decoding
	3.2.2.3 Erasure Decoding

	3.2.3 LDPC Codes
	3.2.3.1 Encoding
	3.2.3.2 Combinatorial Design of LDPC Codes
	3.2.3.3 Bit-Flipping Decoding Algorithm

	4 Performance of Staircase Codes
	4.1 G.709 Compatible Staircase Codes
	4.2 Performance Analysis of the Baseline Staircase Code
	4.3 Performance Simulations of the Baseline Staircase Code
	4.4 High Error Floor of Staircase Codes with Small-t Component Codes
	4.5 Performance of Staircase Codes with LDPC Component Codes
	4.6 Conclusion

	5 Staircase Codes for High-Rate Wireless Transmission on Burst-Error Channels
	5.1 Gilbert-Elliott Model for Burst-Errors
	5.2 Capacity of Gilbert-Elliot Channel
	5.3 Simulation Set Up of Staircase Codes
	5.4 Staircase Codes with Block Interleaving
	5.5 Simulation Results for High-Rate Staircase Codes on a Burst-Error Channels
	5.6 Complexity Comparison of the Component Codes
	5.7 Conclusion

	6 Rate Compatible Staircase Codes for High-Rate Wireless Transmission
	6.1 Component Codes with Variable-Rate by Puncturing
	6.2 Rate-Adaption of Staircase Codes
	6.3 Rate-Adaption in Type-II hybrid ARQ
	6.4 Rate-Adaptive Staircase Codes Analysis
	6.4.1 Performance Analysis on Random-Error Channels
	6.4.2 Throughput Analysis on Random-Error Channels
	6.4.3 Performance Analysis on Burst-Error Channels

	6.5 Performance Simulation on Random-Error Channel
	6.6 Performance Simulation on Burst-Error Channel
	6.7 Decoding with RS assistance in each Iteration
	6.8 Throughput Simulation
	6.9 Comparison to a Retransmission Scheme
	6.10 Conclusion

	7 Staircase Codes in Distributed Source Coding
	7.1 Slepian-Wolf Coding and Code Designs
	7.2 Staircase Codes in DSC implementation
	7.3 Performance Analysis of Staircase Codes in DSC
	7.4 Simulation Results
	7.5 Conclusion

	8 Conclusions
	References

