
User-guided Predicate
Abstraction of TLA+

Specifications

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

European Master in Computational Logic

eingereicht von

Thanh Hai Tran
Matrikelnummer 1428553

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Helmut Veith
Mitwirkung: Igor Konnov, PhD

Wien, 10. Mai 2016
Thanh Hai Tran Helmut Veith

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

User-guided Predicate
Abstraction of TLA+

Specifications

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

European Master in Computational Logic

by

Thanh Hai Tran
Registration Number 1428553

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Helmut Veith
Assistance: Igor Konnov, PhD

Vienna, 10th May, 2016
Thanh Hai Tran Helmut Veith

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Thanh Hai Tran
Zur Spinnerin 53/4/18, Vienna 1100, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Mai 2016
Thanh Hai Tran

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisors Helmut
Veith and Igor Konnov for their continuous support on completing my internship and my
master studies, for all their useful advice, insightful ideas that always made a difference
and for the financial support. I would also like to thank Josef Widder for many interesting
discussions and many valuable comments.

I would like to thank the Joint Commission of the European Master’s Program in
Computational Logic for the opportunity to be a part of this master program and for the
received financial support during my studies. I am very grateful to all the people from
every partner university that are involved in the organization of this program, especially
for their support regarding all the formalities and making the transition from one country
to others as smooth as possible.

Last but not least, I want to thank my family: my parents and my brother for all their
encouragements and enormous support during my studies. To all my friends back home,
in Bolzano, Dresden, Lisbon and Vienna - thank you all for making the last three years
so memorable for me.

vii

Kurzfassung

TLA+ ist eine Sprache zur Spezifikation und Verifikation sequenzieller, nebenläufiger
und verteilter Systeme. Sie basiert auf den folgenden beiden mathematischen Konzepten:

i. der temporalen Logik der Aktionen (TLA) zur Charakterisierung von dynamischem
Systemverhalten, und

ii. einer Variante der Zermelo-Fraenkel-Mengenlehre mit Auswahlaxiom (ZFC) zur
Beschreibung von Datenstrukturen.

Diese mathematischen Aspekte machen TLA+ zu einer einfach verwendbaren und flexiblen
Sprache für die Spezifikation verschiedenster Systeme. Außerdem ermöglicht es das solide
mathematische Fundament der Sprache, die Korrektheit eines Systems formal zu beweisen.
Doch obwohl formale Beweise die verlässlichste Methode zur Korrektheitsüberprüfung
von Systemen darstellen, ist es oft schwer derartige Beweise zu finden.

Um die formale Verifikation von TLA+ -Spezifikationen zu automatisieren wurde deshalb
der Modelchecker TLC für TLA+ eingeführt, der sich dadurch auszeichnet, dass er die
erreichbaren Zustände explizit aufzählt. TLA+ und TLC werden erfolgreich zur Spezifika-
tion und Überprüfung industriell genutzer Systeme verwendet, jedoch wird die praktische
Verwendbarkeit von TLC dadurch eingeschränkt, dass er keine Abstraktionstechniken zur
Komplexitätsreduktion von Modellen unterstützt. Aus diesem Grund gilt TLC derzeit als
ein Werkzeug, das hauptsächlich zur Erkennung einfacher Fehler in TLA+ -Designs dient.

Bei der sogenannten Prädikatabstraktion handelt es sich um eine Technik, welche Software-
Modelchecking für Systeme mit großem (auch unendlichem) Zustandsraum ermöglicht,
indem sie den Zustandsraum mithilfe intelligenter Methoden verkleinert. Dabei wird,
ausgehend von einer Menge von Prädikaten über den Systemvariablen, automatisch
ein vereinfachtes abstraktes Modell des ursprünglichen Systems generiert, dessen Prädi-
katwerte und Transitionsrelationen anschließend, unter Verwendung von SMT-Solvern
(satisfiability modulo theories solver), überprüft werden.

In dieser Arbeit verbinden wir TLA+ mit benutzergeführter Prädikatabstraktion. Dabei
ergeben sich die folgenden drei grundlegenden Herausforderungen:

ix

• Bei TLA+ handelt es sich um eine ungetypte Sprache, wohingegen SMT-Solver
automatische Beweiser mit Entscheidungsprozeduren für verschiedenste Theorien
der mehrsortigen Prädikatenlogik sind.

• TLA+ enthält wichtige Sprachkonstrukte für welche es keine Entsprechung in
SMT-Lib – der Sprache für SMT-Solver – gibt.

• Transitionssysteme werden in TLA+ als Formeln mit komplexer Struktur spezifiziert.
Beispielsweise kann eine typische TLA+ -Spezifikation aus hunderten Zeilen von
Formeln in Prädikatenlogik ohne Sorten bestehen, welche etwa Mengenkonstrukte,
Quantifizierung über Verbunde oder Tupel, Konstrukte für Funktionen oder den
sogenannten CASE-Operator verwenden.

Das Hauptziel dieser Arbeit ist die Entwicklung eines neuen Modelcheckers für TLA+

-Spezifikationen, der basierend auf einer gegebenen Menge von Prädikaten ein abstraktes
Modell erzeugen und verifizieren kann. Dabei sind die folgenden drei Hauptresultate
dieser Arbeit herauszustreichen:

i. Wir präsentieren eine korrekte Übersetzung eines Fragments von TLA+ in mehr-
sortige Prädikatenlogik. Während der Übersetzung werden diejenigen Konstrukte,
für welche es keine Entsprechung in SMT-Lib gibt, durch Termersetzungsregeln
eliminiert. Durch die Verwendung von Heuristiken wird dabei die Übersetzung
vereinfacht. Obwohl unser Fragment Einschränkungen von TLA+ -Ausdrücken ein-
führt, ist es aus unserer Sicht nach wie vor ausreichend flexibel und ausdrucksstark
um eine große Klasse verteilter Algorithmen zu spezifizieren. Unsere Übersetzung
ist eine Erweiterung des Ansatzes von Merz und Vanzetto.

ii. Wir entwickeln einen Modelchecker, der Prädikatabstraktion und die kürzlich ein-
geführte IC3-Modelchecking-Technik unterstützt. Anstatt die Transitionsrelationen
auszurollen, generiert dieser Modelchecker einen inkrementellen Beweis für eine
gewünschte Sicherheitseigenschaft. Unsere vorläufigen Experimente zeigen, dass ein
IC3-basierter Modelchecker effizienter als ein NuSMV2-basierter Modelchecker ist,
allerdings hat ein IC3-Algorithmus den Nachteil, dass er keine Lebendigkeitseigen-
schaften testen kann.

Abstract

TLA+ is a language for specifying and verifying sequential, concurrent and distributed
systems. It is founded on two mathematical concepts:

i. the temporal logic of actions (TLA) for the characterization of the dynamic system
behavior, and

ii. a variant of standard Zermelo-Fraenkel set theory with the axiom of choice (ZFC)
for the description of data structures.

These mathematical aspects make TLA+ easy to use and flexible to specify many different
kinds of system. In addition, this mathematical approach allows the user to write a
formal proof of a TLA+ specification. While finding a proof is the most reliable way to
reason about the correctness of a system, it is an extensive work and requires expert
knowledge.

To automate the formal verification of TLA+ specifications, a model checker, named TLC,
was introduced. One main feature of TLC is that it explicitly enumerates reachable states.
TLA+ and TLC have been successfully used to specify and examine many industrial
systems. However, TLC does not support any abstraction techniques used to reduce the
complexity of a model. The lack of this feature seriously limits the applicability of TLC
for large industrial systems. Thus, for the moment, TLC is seen as a tool whose main
purpose is to detect simple bugs in TLA+ designs.

Predicate abstraction is a prominent technique which made software model checking a
reality. It reduces the state space of a large or infinite-state system. In this approach, an
abstract model is automatically constructed from a given set of predicates over system
variables and with the assistance of satisfiability modulo theories (SMT) solvers, which
are used to evaluate the values of predicates and the transition relations.

In this thesis, we brought together TLA+ with predicate abstraction technique guided by
the user. We had to address three major challenges:

• TLA+ is an untyped language, whereas SMT solvers are automatic theorem provers
with decision procedures for several theories in many-sorted first-order logic.

xi

• TLA+ contains essential constructs that do not have counterparts in SMT-Lib, the
language of SMT solvers.

• Transition systems are specified in TLA+ as formulas with complex structures. For
instance, a typical TLA+ specification may contain about 100 lines of formulas in
unsorted first-order logic with set constructs, involving quantification over records
or tuples, constructs for functions and the CASE operator.

This thesis aims at developing a new model checker for TLA+ specifications which can
construct and verify an abstract model from a given set of predicates. In doing so, it
makes two main contributions:

i. This thesis represents a sound translation from a fragment of TLA+ to many sorted
first-order logic. During the translation, constructs that do not have counterparts
in SMT-Lib are eliminated by rewriting rules. Additional heuristics are applied
to make the translation more simple and efficient. While our fragment introduces
restrictions on TLA+ expressions, we believe that it is still expressive and flexible
enough to specify a large class of distributed algorithms. Our translation extends
work by Merz and Vanzetto.

ii. This thesis develops a prototype model checker which supports predicate abstraction
and the recent IC3 model checking technique. Instead of unrolling the transition
relations, this model checker generates an incremental proof for a desired safety
property. Our preliminary experiments show that a checker based on IC3 outper-
forms one with NuSMV2. The main disadvantage of the IC3 algorithm is that it
cannot check liveness properties.

Keywords: TLA+, safety, model checking, predicate abstraction, theorem proving,
NuSMV2, IC3.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xv

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Challenges . 4
1.4 Related Works . 5
1.5 Contributions . 5
1.6 Overview . 6

2 Preliminaries 7
2.1 Rewriting system . 8
2.2 Unsorted first-order logic . 10
2.3 Many-sorted first-order logic . 13
2.4 SMT Solvers . 15
2.5 The satisfiability modulo theories library 19
2.6 SMT solver competitions and Z3 . 21
2.7 Linear-time logic . 22
2.8 Conclusions . 25

3 TLA+ Language and its Toolbox 27
3.1 Underlying Logic . 27
3.2 Specification . 35
3.3 TLA+ Toolbox . 39

xiii

3.4 Conclusions . 44

4 Model Checking 45
4.1 Overview . 45
4.2 Predicate Abstraction . 47
4.3 Model Checking with NuSMV2 . 49
4.4 Model Checking with IC3 . 50
4.5 Conclusions . 56

5 Translation of TLA+ to Z3 57
5.1 Overview . 57
5.2 The fragment of TLA+ . 59
5.3 Our type system . 61
5.4 Boolification . 75
5.5 Transformation to SMT . 76
5.6 Properties of our encoding . 87
5.7 Related Work . 88
5.8 Conclusions . 90

6 The Implementation 91
6.1 The Architecture . 91
6.2 How to use our system . 93
6.3 Example . 93

7 Experimental Evaluation 99
7.1 Experiment with TA . 99
7.2 Experiment with BcastFolklore . 101
7.3 Experiment with NBAC . 103
7.4 Discussions . 104

8 Conclusion 105

Bibliography 119

List of Figures

5.1 Our translation process . 57
5.2 Inference rules for TLA+ Boolean expressions in T 69

6.1 Class diagram of our system . 92

7.1 An example threshold automaton [KVW15] . 100

List of Tables

3.1 Action operators . 28
3.2 Temporal operators . 29

7.1 Experiments with Spec1, inv1, TLC and our model checker 101
7.2 Experiments with Spec2, inv1, TLC and our model checker. T/O is 24 hours. 102
7.3 Experiments with bcastFolklore, bf inv , TLC and our model checker. T/O is

2 hours and is 24 hours. 103
7.4 Experiments with nbac and TLC. T/O is 1 hour and is 12 hours. 104

xv

List of Algorithms

3.1 TLC’s strategy to verify a safety property 42

4.1 IC3s top-level function prove () . 52

4.2 IC3s CTI detection strengthen . 52

4.3 IC3s CTI elimination . 53

4.4 IC3s clause pushing propagateClauses 55

5.1 Type checking for a TLA+ specification . 73

7.1 Core logic Folklore Broadcast Algorithm for correct process i 102

xvii

CHAPTER 1
Introduction

1.1 Motivation

A distributed system is a collection of individual computing devices that can communicate
with each other [AW04]. Nowadays, distributed computing plays an important role in
many critical applications such as VLSI chips, multi-core systems, and safety-critical
systems. Moreover, the development of methodologies and tools for specifying and
reasoning about distributed algorithms has been an active area of research for the last
few decades.

However, distributed algorithms are still difficult to design, build and verify. Their
operation is very complex because their dynamic nature and features such as limited local
knowledge, asynchrony and failures. These characteristics make distributed algorithms
non-deterministic and construct an exponential number of execution scenarios [AW04].
In addition, computing models are traditionally described in natural language, their
algorithms are still presented as pseudo-code, and their properties are proved manually
[KVW12]. These reasons make it difficult to reason about distributed algorithms, even
for experienced users. Therefore, errors and bugs in distributed systems are inevitable
and lead to the loss of crucial data and unacceptable service outages. In spite of these
challenges, the benefits and applications of distributed systems are abundant, making
these systems worthwhile to chase.

In order to avoid ambiguity, prove the correctness and implement reliable systems,
formal methods have been applied to model, specify and verify distributed systems
and algorithms. First, formal methods are used to model and specify systems. Many
frameworks and languagues such as input/output (I/O) automata, Event-B or TLA+

have been suggested [LT87, Abr10, Lam02]. Their underlying mathematical aspects can
be automata, set theory, classical logic or temporal logic. While most of the applications
of Event-B appear to be control systems, I/O automata and TLA+ concentrate on

1

1. Introduction

distributed systems [New14]. Second, formal methods are used to verify systems. The
main reason of the need of formal verfication is that testing and simulation which usually
involve providing certain inputs and observing the corresponding outputs can at best
show the presence of errors but never their absence [BR70]. Since the 1970s, temporal
logic has been used to prove properties of (concurrent) computer programs [Pnu77]. Since
proofs were constructed by hand, the techniques introduced back then were often difficult
to use in practice. While the introduce of interactive or automated theorem provers has
made the construction of proofs faster, proving has still been intensive and burdensome
work, requiring a large deal of human ingenuity. In the early 1980s, the appearance of
temporal-logic model checking algorithms made this type of reasoning automated. This
technique uses an exhaustive search of the state space of the system to determine if some
property is true or not [CGP99]. Examples of model checkers include Spin [Hol97], TLC
[LY01] and NuSMV2 [CCG+02].

TLA+, and its supporting tools, is one of the most prominent techniques to specify
and reason about distributed systems. TLA+ is a general-purpose formal specification
language designed by Leslie Lamport for specifying and reasoning about concurrent
and distributed algorithms and systems [Lam02]. The logical foundation of TLA+ is a
combination of the temporal logic of actions (TLA) [Lam94] and a variant of standard
Zermelo-Fraenkel set theory with the axiom of choice (ZFC). The former is for the
characterization of the dynamic system behavior and the latter is for the description of
data structures. These characteristics make TLA+ quick to learn, expressive to capture
rich concepts and flexible to adjust the level of abstraction [New14]. Moreover, research
community have developed powerful tools to construct a formal verification for TLA+

specifications. These tools are the theorem prover TLAPS and the model checker TLC.

TLAPS. The TLA+ Proof System, called TLAPS, is an interactive proof environment
in which the user can deductively verify properties of TLA+ specifications [CDLM08].
TLAPS is built around an application called the Proof Manager. The manager first
interprets a TLA+ proof as a collection of proof obligations. Then, the manager sends
proof obligations to back-end theorem provers to prove. Finally, if possible, a verifier
checks the proof generated by the back-end prover to provide complete machine-checking
of TLA+ proofs. Back-end provers and verifiers used by TLAPS are Zenon, Isabelle/TLA+

and SMT solvers, such as CVC, Z3 and VeriT. Theorem proving is a powerful method
and writing proofs is a great reliable method to reason about properties of the system.
However, constructing a proof is a complicated task and requires an assistance of an
experienced user.

TLC. TLC is an model checker for TLA+ specifications. In general, TLC checks the
specification by exploring all reachable states and looking for one in which a desired
property is not satisfied or deadlock occurs. If the property is violated, TLC will show
a minimal length trace that leads from an initial state to the bad state. TLC stops
when it has examined all reachable states in possible behavior. The main advantage of

2

1.1. Motivation

model-checking is that it requires much less effort and less expertise in the verification
domain from the user than writing a fully formal proof of correctness. Typically, the
user needs to add constraints to make the state space, run the tool, and wait for results.
Therefore, TLC is used not only to verify a TLA+ specification but also to check ideas
occurring during the construction of a formal proof.

Shortcomings of TLAPS. While proving is the most reliable method to show the
correctness of a system, it is intensive and burdensome work, requiring a large deal
of human ingenuity. First, a proof usually starts with reasoning about an inductive
invariant, but finding an inductive invariant is a difficult and error-prone task. Second,
TLAPS does not offer any reasoning mechanism about many TLA+ features such as
recursive operators, real numbers and quantification over tuples and set constructors
using tuples. In addition, the back-end provers require a lot of guidance to verify the
CASE constructs, the CHOOSE operator, tuples, records. . . 1 Finally, a full formal proof
may contain thousands of lines. For example, the formal specification and proof of
Memoir contain 61 top-level definitions, 182 LET-IN definitions, 74 named theorems, and
5816 discrete proof steps [DLP+11]. For the above reasons, it is difficult to use TLAPS
in some cases. For example, Newcombe et al. tried to verify their critical algorithms
by writing formal proofs but finally, he said “we doubt that we would use incremental
formal proof as a design technique even for those algorithms” [New14].

Shortcomings of TLC The major challenge of model checking is the state-space
explosion problem. To overcome it, the user usually needs to construct suitable abstrac-
tions of the system, which can reduce the number of states. However, TLC is still an
explicit-state tool which explicitly enumerates reachable states and keeps all data on
disk. That is, TLC does not support automated abstraction techniques. The lack of this
feature limits seriously the applicability of TLC, especially to infinite-state systems.

Predicate abstraction Predicate abstraction is one of the most prominent methods
to reduce the number of states and to construct an abstract model for a system with
potentially infinite-state space [GS97]. The abstract model is constructed from a given
set of predicates over program variables and with the help of SMT solvers to evaluate the
values of predicates. In the early of 2000s, the introduce of the Counterexample-Guided
Abstraction Refinement (CEGAR) technique allowed the refinement to be automated
[CGJ+00]. This method begins checking with a coarse (imprecise) abstraction and
iteratively refines it. During the verification procedure, abstract models may admit
erroneous (or “spurious”) counterexamples. When a violation (counterexample) is found,
the tool analyses it for feasibility. If the violation is feasible, it is reported to the user.

1We are not going to address all of these problems. At the moment, our system can reason about
quantification over tuples and records, set constructs using tuples, constructs for tuples and records
and the CASE operator. Automatic reasoning about recursive operators, real numbers, the CHOOSE
operator... is still difficult problems for us.

3

1. Introduction

If not, the proof of infeasibility is used to refine the abstraction automatically and the
checking begins again with a new set of predicates. Until now, predicate abstraction with
CEGAR has been used widely in many academic and industrial realistic projects.

1.2 Problem Statement

The main goal of this thesis is to develop a new prototype model checker for TLA+

specifications which can construct and verify an abstract model from a given set of
predicates which are manually specified by the user. In doing so, we need to

1. define a method to evaluate every states in a TLA+ specification by given predicates,

2. find an efficient way to construct an abstract model,

3. and choose model checking algorithms to verify a reduced model.

1.3 Challenges

Applying predicate abstraction to the verification of a TLA+ specification raise following
challenges:

• TLA+ is based on a variant of ZFC and therefore, it is an untyped language and
all its well-formed expressions are sets. Moreover, there is no syntactic difference
between Boolean and non-Boolean formulas in TLA+. In contrast, SMT solvers
are automatic theorem provers with decision procedures for several theories in
many-sorted first-order logic (MS-FOL). Therefore, we need to define a type system
for a fragment of TLA+ and to establish a procedure for assigning appropriate type
information to every expression in this fragments.

• Many constructs and expressions in TLA+ do not have counterparts in many-sorted
first-order logic. For example, we cannot translate constructs for functions in
TLA+ directly to MS-FOL. Another example is that a formula with quantifiers on
predicate P in the set construct {x ∈ S ∶ P} is in second-order logic. As a result,
in addition to restrictions on the fragment of TLA+, we need to define a sound
translation according with rewriting rules to eliminate “complex” expressions.

• Transition systems are specified in TLA+ as formulas with complex structures. For
instance, a typical TLA+ specification may contain about 100 lines of formulas in
unsorted first-order logic with set constructs, involving quantification over records
or tuples, constructs for functions and the CASE operator. Therefore, absolutely
unrolling the relation transition spends a tremendous amount of time and is
inappropriate for many cases.

4

1.4. Related Works

1.4 Related Works

Over the past years, there have been efforts to develop new model checkers for TLA+

specifications. Hansen and Leuschel introduce a framework to translate TLA+ to B for
validation with ProB [HL12, LB03]. Later, Plagge and Leuschel integrate the Kodkod
high-level interface to SAT-solvers into the kernel of ProB [PL12]. However, ProB is an
explicit model checking tool like TLC and constructing a predicate abstraction for a B
specification is not our focus.

In addition, researchers have made attempts on the integration of new automated or
interactive theorem provers into TLAPS. This integration usually requires to translate
TLA+ expressions from the untyped non-temporal TLA+ part into many-sorted (first-
order) logic. Merz and Vanzetto represent approaches to encode TLA+ proof obligations
into many-sorted logic and to integrate automated theorem provers and SMT solvers into
TLAPS. Each of their approaches can handle a different fragment of TLA+.

First, Merz and Vanzetto try to encode sets by characteristic predicates but this method is
so limited since it cannot represent a set of sets [MV12]. Later, the single-sorted encoding,
which is also called the untyped encoding, for TLA+ is suggested. This approach can
handle a useful fragment of the TLA+ language, including set theory, functions, linear
arithmetic expressions and especially the CHOOSE operator (Hilbert’s choice) [MV12].
The main weakness of the untyped encoding is that this mechanism introduces many
additional quantifiers and defines many “fresh” relations, even for built-in operators in
SMT-LIB.

In order to reduce the number of quantifiers and to utilize features in SMT solvers, Merz
and Vanzetto continually propose a TLA+ type system using refinement and dependent
types [MV14]. However, this method is undecidable and if their typed system cannot
decide an appropriate type for an expression, such as the empty set, they will come back
to the untyped encoding. If we translate transition relations in a TLA+ specification
with their systems, it is extremely difficult for SMT solvers to reason about the resulting
formulas automatically. The main reason is that a proof obligation is usually more
“shallow” than a transition relation.

1.5 Contributions

Translation from TLA+ to SMT-Lib The first contribution of this thesis is to
define a type system and a type assignment procedure for a fragment of TLA+ . While
this fragment does not support features such as recursive functions and the operator
CHOOSE , it is a reasonable fragment which we believe can express many distributed
algorithms. Its type system can be described in the language of state-of-the-art SMT
solvers.

5

1. Introduction

A model checker based on IC3 The second contribution of this thesis is to develop
an model checker which is based the IC3 model checking algorithm and can construct
an abstract model from a given set of predicates. Instead of absolutely unrolling the
transition relation, this tool tries to construct an incremental inductive proof for a safety
property in a system.

A model checker based on NuSMV2 The minor contribution of this thesis is
to develop a model checker based on NuSMV2 which allows the user to verify safety
properties of a TLA+ specification by manually specifying predicates. This prototype
was used in our preliminary experiments to compare model checking strategies.

1.6 Overview

The rest of this thesis is organized as follows:

• Chapter 2 gives a brief introduction to unsorted rewriting systems, first-order logic,
SMT solvers and temporal logic.

• Chapter 3 presents the foundation of TLA+ , the structure of a TLA+ specification,
a theorem prover TLAPS and a model checker TLC.

• Chapter 4 describes how to verify a program with model checking algorithms, how
to cope with the state-space explosion problem with predicate abstraction and how
to find an inductive invariant with IC3.

• Chapter 5 is the main part of this thesis. It explains how to soundly translate
a TLA+ specification into the language of SMT solver and to eliminate complex
expressions by rewriting rules. Moreover, it describes some heuristics to make
reasoning about obtained formulas faster. Our translation is based on the work of
Merz and Vanzetto [Van14].

• Chapter 6 depicts the architecture of our system and mentions additional elements
in the structure of a TLA+ specification. These elements are used to inform our
model checker what predicates are used and what property needs checking.

• Chapter 7 discusses our experiments and results.

• Chapter 8 concludes and gives directions for future work.

6

CHAPTER 2
Preliminaries

In this chapter, we first introduce the foundation of rewriting systems. Second, we review
the background of first-order logic, including both unsorted and many-sorted ones. Then,
we summarize some essential concepts of satisfiability modulo theories (SMT), including
the main formalisms in which the problems are expressed, the techniques which solvers
implement, and the standard input and output format in the SMT community. Finally,
we describe state-of-the-art SMT solvers.

As a form of computer program, rewriting systems was introduced in the late of 1960s
[Gor65]. Nowadays, these systems play an important role important role in various areas,
such as abstract data type specifications, implementations of functional programming
languages and automated deduction. In our work, term rewriting rules are used to remove
complex constructs in TLA+.

An SMT problem generalises a Boolean satisfiability (SAT) problem by adding background
theories such as: arithmetic, bit-vectors, arrays, and uninterpreted functions which are
expressed in many-sorted first-order logic (MS-FOL) with equality. An SMT solver is
a tool for deciding the satisfiability (or dually the validity) of an SMT problem. Our
system uses a SMT solver to construct and reason about a “reduced” model.

Temporal logic has been applied successfully to specify and reason about concurrent and
distributed algorithms. While now there are many variants of temporal logic, here we
introduce only linear-time logic (LTL) since TLA+ is based on LTL.

Chapter overview Section 2.1 introduces the foundation of (term) rewriting systems.
Section 2.2 describes unsorted first-order logic and MS-FOL (MS-FOL) is presented in
Section 2.3. Section 2.4 gives us some insights of their internal workings of SMT solvers.
Section 2.5 describes the input formats SMT-LIB2 for SMT solvers and mentions some
common background theories. Then, Section 2.6 outlines SMT competitions and explains
why Z3, an SMT solver from Microsoft Research, is chosen as our back-end solver. Finally,
Section 2.7 makes a brief introduction of LTL.

7

2. Preliminaries

2.1 Rewriting system

The idea of simplifying expressions has been around as long as algebra has. The
simplification procedure is usually to repeatedly replace subterms of a given expression
with equal terms until the (possible) simplest form is obtained. As a form of computer
program, rewriting systems was introduced in the late of 1960s [Gor65]. Nowadays, these
systems play an important role important role in many areas, such as abstract data type
specifications, implementations of functional programming languages and automated
deduction. In addition to simplify expressions, our rewriting rules are used to remove
complex constructs in TLA+ which do not have counterparts in TLA+, such as set
constructs and operators.

We here present basic concepts of term rewriting systems (TRSs) and how to construct a
terminate and confluent TRS from an equational theory. Several following definitions
and lemmas are taken from Baader and Nipkow’s Term Rewriting and All That [BN98].

An abstract rewriting system (ARS) models step by step activities like a transformation
of some object (e.g., a term) or stepwise execution of computations. Formally, an ARS
contains a set of objects A and a binary relation → on A, i.e. → ⊆ A ×A, called rewriting
or reduction relation. We usually denote an ARS as ⟨A,→⟩. When ⟨a, b⟩ ∈ → for a, b ∈ A,
we simply write a → b and say that there is a step from a to b.

We define the following symbols by composing a relation with itself:
0
Ð→ ∶∶= {(x , x) ∣ x ∈ A} identity

i+1
ÐÐ→ ∶∶=

i
Ð→ ○Ð→ (i + 1)-fold composition, i ≥ 0

+
Ð→ ∶∶= ⋃

i>0

i
Ð→ transitive closure

∗
Ð→ ∶∶=

+
Ð→ ∪

0
Ð→ reflexive transitive closure

=
Ð→ ∶∶=Ð→ ∪

0
Ð→ reflexive closure

−1
Ð→ ∶∶= {(y , x) ∣ x ⇒ y} inverse

←Ð ∶∶=
−1
Ð→ inverse

←→ ∶∶=Ð→ ∪←Ð symmetric closure
+
←→ ∶∶= (←→)+ transitive symmetric closure
∗
←→ ∶∶= (←→)∗ reflexive transitive symmetric closure

Based on these symbols, we introduce some extra notions:

1. x is reducible if there is a y such that x → y .

2. x is in normal form (irreducible) if it is not reducible.

8

2.1. Rewriting system

3. y is a normal form of x if x
∗
Ð→ y and y is in normal form. If x has a uniquely

determined normal form, the latter is denoted by x ↓.

4. y is a direct successor of x if x → y .

5. y is a successor of x if x
+
Ð→ y .

6. x and y are joinable if there is a z such that x
∗
Ð→ z

∗
←Ð y , which is also written as

x ↓ y .

A reduction relation → is called

• Church-Rosser if x
∗
←→ y then x ↓ y ,

• confluent if y1
∗
←Ð x

∗
Ð→ y2 then y1 ↓ y2,

• terminating if there is no infinite rewriting sequence a0 → a1 → . . .,

• normalizing if every term has a normal form,

• convergent if it is both confluent and terminating, and

• locally confluent if y1 ← x → y2 then y1 ↓ y2.

Now we consider rewriting systems whose objects are terms 1, usually called term rewriting
system (TRS). An equation s ≈ t is a pair ⟨s, t⟩ ∈ T × T , where T is the set of terms.
A TRS is used to check for equality in an equational theory by rewriting both sides of
the identity in question. Equations, especially its laws, in a given equational theory can
be used to generate rewriting rules. An equation s ≈ t where s is not a variable and t
contains only variables appearing in s is called a rewrite rule and is usually written s Ð→ t .
Identities can transform terms into other “equivalent” terms by replacing instances of
the left-hand side (lhs) with the corresponding instances of the right-hand side (rhs),
and vice-versa. A redex (reducible expression) is an instance of the lhs of a rewrite rule.
Rewriting or reducing the redex means replacing it with the corresponding instance of
the rhs of the rule.

Finally, we can define the concept of critical pair, which is crucial for proving TRS
confluence and termination. Let a ∣p be a sub-term of a at a given position p in its
syntactic tree and a[b]p be the term a such that b replaces a ∣p . Consider two rules
a1 Ð→ b1 and a2 Ð→ b2 whose variables have been renamed such that these rules do not
share variables. Let p be a position in the syntactic tree of a1 such that a1∣p is not a
variable, and σ be a most general unifier (mgu) of a1∣p and a2, that is, the superposition
of the left-hand sides of both rewriting rules. Then, the pair ⟨b1σ, (a1[b2]p)σ⟩ is a critical
pair.

Now, we have three lemmas about the TRS confluence and termination.
1For the definition of terms, please read the section 2.2

9

2. Preliminaries

Lemma 2.1. A terminating ARS is confluent if it is locally confluent.

Lemma 2.2. A TRS is locally confluent if and only if all its critical pairs are joinable.

Lemma 2.3. A terminating TRS is confluent if and only if all its critical pairs are
joinable.

Completion and orderings An interesting question is how to construct a terminating
and confluent TRS from a finite set of identities (or equations). Knuth and Bendix
presented a semi-decision algorithm to solve this problem in [KB83]. Provided a well-
founded ordering ≻ on terms, their procedure takes a set E of equations s ≈ t between
terms and applies the inference rules Ô⇒KB to construct a terminating and confluent
TRS. Initially, the inference rules are applied to the pair E ,∅, where the second element
represents a set of rewriting rules which a generated TRS contains. Two main inference
rules are rules (Orient) and (Deduce). Rule (Orient) transforms an equation s ≈ t , if
s ≻ t , into the rewriting rule s Ð→ t . Rule (Deduce) detects a critical pairs of ⟨s, t⟩
and add a new equation s ≈ t to E . During the process, some equations are simplified,
and trivial ones such as s ≈ s, which cannot be directed, are removed. The procedure
succeeds if it generates a final pair ∅,R, where the final set R is a set of rewriting rules
equivalent to E . The main weakness of this algorithm is that it may terminate with
failure or run forever if there exists an equation which can neither be oriented or removed.
In order to ensures termination, the ordering is total on ground terms [BDP89]. For
instance, assuming some basic requirements, the Knuth-Bendix ordering ≻KB which uses
a lexicographic comparison of terms together with a weight function is a total ordering
on ground terms. An algorithm using this kind of ordering is called an unfailing one.

2.2 Unsorted first-order logic

In this section we describe the syntax and semantics of (unsorted) first-order logic (FOL)
and conjunctive normal form (CNF) in first-order and propositional logics.

The language FOL is the classical (unsorted) first-order logic with equality.

2.2.1 FOL syntax

We assume given three non-empty, infinite and disjoint collections:

• V of variable symbols,

• F of function symbols 2, and
2CNF, FOL and MS-FOL functions should not to be confused with TLA+ functions

10

2.2. Unsorted first-order logic

• P of predicate symbols.

In addition, we assume the total function

• ar ∶ F ∪P → N

that assigns a natural number, the arity, to each symbol in F and P. Together, they
define the FOL signature Σ = ⟨V,F ,P,ar⟩ that fixes an alphabet of non-logical symbols.
We call the nullary symbols of F constant symbols and usually denote them by the letters
a, b possibly with subscripts. We call the nullary symbols of P propositional symbols,
and usually denote them by the letters A,B , possibly with subscripts. Also, we use f , g ,
possibly with subscripts, to denote the non-constant symbols of F , and p, q , possibly
with subscripts, to denote the non-propositional symbols of P.

FOL has two syntactical categories: terms t and formulas ϕ.

t ∶∶= x ∣ f (t1, . . . , tn)
ϕ ∶∶= � ∣ ϕ⇒ ϕ ∣ ∀x .ϕ ∣ t = t ∣ p(t1, . . . , tm)

A term t is either a variable symbol x in V, or an application f (t1, . . . , tn) of a function
symbol f (with ar(f) = n) in F to n terms t1, . . . , tn . A ground term is a term without
any variable. A formula ϕ is either the falsehood symbol �, an implication between
two formulas, a universal quantification of a formula, an equality between terms, or an
application p(t1, . . . , tm) of a predicate symbol p (with ar(p) = m) in P to m terms
t1, . . . , tm . The last two kind of formulas are called atoms. A formula without variables is
called a ground formula.

Additionally, we define the familiar constant ⊺ (truth), the connectives ¬,∧,∨,⇔, and
the existential quantifier ∃. In particular, universal and existential quantifiers can be
freely nested. The definitions of free variables and variable substitution are the standard
ones [EE01]. By FV (ϕ), we note the free variables of a formula ϕ. By ϕ1[x ← ϕ2], we
denote the formula ϕ1 where the free variable x is substituted by the formula ϕ2. By l ,
we denote a literal which is either an atom (a positive literal) or the negation of an atom
(a negative literal).

2.2.2 FOL semantics

A FOL model (also called structure) M = ⟨D, v ,I⟩ is composed of

• a non-empty (infinite) set D called the domain or universe of discourse,

• a valuation function v ∶ V → D that assigns to each variable an element in the
domain, and

11

2. Preliminaries

• an interpretation function I that assigns to each function symbol f in F a function
I(f) ∶ Dar(f) → D, and to each predicate symbol p in P a set I(p) ⊆ Dar(p).

The interpretation of first-order formulas is defined in the standard way [EE01]. The
valuation of a term t under a model M = ⟨D, v ,I⟩ noted valM (t), is inductively defined
by:

valM (x) = v (x)
valM (f (t1, . . . , tn)) = I (f) (valM (t1) , . . . , valM (tn))

The truth value of a formula ϕ under a model M = ⟨D, v ,I⟩, noted M ⊧ ϕ or D, v ,I ⊧ ϕ,
is inductively defined as:

M ⊭ �

M ⊭ ϕ1 ⇒ ϕ2 iff M ⊧ ϕ1 and M ⊭ ϕ2

M ⊧ ∀x .ϕ iff D, v ⊕ (x ↦ d),I ⊧ ϕ for all d ∈ D

M ⊧ t1 = t2 iff valM (t1) is equal to valM (t2)
M ⊧ p (t1, . . . , tn) iff ⟨valM (t1) , . . . , valM (tn) is a member of I(p)

where v ⊕ (x ↦ d) denotes a valuation that is equal to v for all variables in V except in
x and mapping x to d . We say that a model M satisfies a formula ϕ if and only if ϕ
evaluates to true under M . A formula ϕ is called satisfiable iff there exists a model M
such that M satisfies ϕ. Otherwise, ϕ is called unsatisfiable. A formula ϕ is valid, noted
⊧ ϕ, iff M ⊧ ϕ for all models M , that is, for every domain, valuation and interpretation.

2.2.3 Conjunctive Normal Forms

A clause C is a set of literals l1, . . . , ln that represents the disjunction of its elements.
In other words, we have that C = l1 ∨ . . . ∨ ln . And the empty clause � is interpreted as
falsehood. A clause with one literal is called a unit clause. A formula ϕ is in conjunctive
normal form (CNF) if and only if it is a set of clauses C1, . . . ,Cn , where variables are
interpreted universally, that is, no variables are bound. A propositional CNF formula is
a ground first-order CNF formula.

Given a propositional formula ϕ, the Boolean satisfiability (SAT) problem is to decide
whether there exists a model M such that M ⊧ ϕ. Nowadays, SAT solvers usually require
that the input formula ϕ is in CNF. Moreover, if we want to check whether a formula ϕ
is valid, we just prove that ¬ϕ is unsatisfiable or find a derivation of the empty clause
from the given clauses using some appropriate mechanics such as natural deduction or
sequent calculus.

12

2.3. Many-sorted first-order logic

2.3 Many-sorted first-order logic

In many practical applications, it is desirable to categorize objects in many different
types, or sorts. For instance, common data structures found in computer science such as
integers, reals, and strings are usually formalized in different categories. By adding to
the formalism of first-order logic the notion of type, one obtains a flexible logic called
many-sorted first-order logic, which has similar properties as first-order logic. While
sorts require some restrictions on formulas [Coh87], they bring momentous advantages to
automated theorem provers: the type discipline implicitly avoids pointless inferences by
not having to evaluate ill-sorted formulas. In other words, sorts cut the search space by
eliminating useless branches.

The MS-FOL language is an extension of FOL with an extra syntactical category of sorts,
i.e. basic types. The set V of variable symbols is divided by sorts, while functions and
predicates range over sorts as well.

2.3.1 MS-FOL syntax

We assume four given non-empty enumerable infinite, and disjoint collections

• S of atomic sort symbols,

• V = ⋃σ ∈ S Vσ, the (enumerable) union of sets Vσ of variable symbols of sort σ,

• F of function symbols, and

• P of predicate symbols.

In addition, we assume given the functions

• ar ∶ F ∪P ⇒ N which assigns an arity to each symbol in F and P, and

• Θ ∶ F ∪P ⇒ S∗ which assigns to functions f in F a value in Sar(f)+1 (the Cartesian
product with ar(f) + 1 dimensions), and to predicates p in P a value in Sar(p).

Together, they define an MS-FOL signature Σ = ⟨S,V,F ,P,ar ,Θ⟩ 3.

The language MS-FOL has three syntactical categories: sorts, (well-sorted) terms, and
formulas. A sort σ is just an atomic sort symbol in S. Note that the values Θ(f) and

3The arity of a function or predicate symbol f can be got back from Θ(f) but we keep it in the
signature to maintain MS-FOL as an extension of FOL.

13

2. Preliminaries

Θ(p) associated to a function symbol f and a predicate symbol p, when ar(p) > 1, are
no sorts.

t ∶∶= x ∣ f (t1, . . . , tn)
ϕ ∶∶= � ∣ ϕ⇒ ϕ ∣ ∀xσ.ϕ ∣ t = t ∣ p (t1, . . . , tm)

A term t of sort σ is either a variable symbol x in Vσ, or a sort-consistent application of
a sorted function symbol f with Θ(f) = ⟨σ1, . . . , σn , σ⟩ in F to n terms t1, . . . , tn of sort
σ1, . . . , σn , respectively. A formula σ is built as in unsorted FOL except that

• each quantified variable is annotated with a sort,

• equality is ad-hoc polymorphic over the sorts, i.e. its arguments must have the
same but arbitrary sort, and

• predicates applied to terms must be sort-consistent, that is, a predicate symbol
p in P with Θ(p) = ⟨σ1, . . . , σm⟩ should be applied to m terms t1, . . . , tm of sort
σ1, . . . , σm , respectively.

2.3.2 MS-FOL semantics

The semantics of MS-FOL is analogous to FOL with the adjustments corresponding to
the presence of sorts. Moreover, the sort machinery is in principle not needed because
sorts can be encoded using unary predicates by relativizing quantified sorted variables.
Relativization is the traditional method to translate a multi-sorted language into a single-
sorted one [EE01]. For every atomic sort σ ∈ S, a fresh unary characteristic predicate
Pσ that represents the set of values having that sort is introduced. For each variable
x with sort σ, one new formula Pσ (x) is added. A MS-FOL formula is relativized
by systematically replacing the quantified sorted formulas ∀xσ.ϕ by a FOL formula
∀x .Pσ(x) ⇒ ϕ. Moreover, these predicates partition the universe of atomic sorts in
disjoint sets. For each pair of sorts ⟨σ1, σ2⟩, the encoding introduces an extra axiom

∀x , y .Pσ1(x) ∧Pσ2(y)⇒ ¬(x = y)

Lemma 2.4. (Relativization is sound [EE01]). ⊧ ∀xσ.ϕ implies ⊧ ∀x .Pσ(x)⇒ ϕ.

Consequently, all the main results of the unsorted logic extend to the many-sorted case.
Moreover, if the set S contains only one sort, the logic MS-FOL becomes single-sorted,
thus equivalent to FOL [EE01].

The traditional MS-FOL requires that each sort is interpreted as a set not overlapping
that of any other sorts, i.e. sorts are interpreted as disjoint sets. Some variants relax
this restriction to be more expressive and a sort structure can be represented as a tree
or a lattice. However, the overlapping between sorts makes the inference procedure
more complex. Therefore, in the rest of our work, we consider only the traditional sort
structure.

14

2.4. SMT Solvers

2.4 SMT Solvers

In order to give the reader an idea of the kind of formulas that SMT solvers can handle,
we informally give a compact description of their components and internal workings. In
addition, we first overview some basic concepts of rewriting systems and simplification
techniques, used by SMT solvers in the preprocessing steps and applied later in the
following chapter.

2.4.1 Simplification

Preprocessing is crucial for efficient reasoning and modern first-order theorem provers
spend a great part of their time in simplification operations. Most operations are
inferences that remove or modify existing formulas. In the case that the domain is finite,
universal quantifiers can be deleted.

1. Miniscoping: Miniscoping is a common technique for minimizing the scope of
quantifiers [17]. We can apply it after transform a formula to negation normal form
(NNF), that is the negation operator is only applied to variables and a formula
accepts only two other Boolean operators which are conjunction and disjunction.
The main idea is to distribute universal (existential) quantifiers over conjunctions
(disjunctions). We may also limit the scope of a quantifier if a sub-formula does
not contain the bound variable. It means

(∀x .F [x] ∨G)Ð→ (∀x .F [x]) ∨G

when G does not contain x . We use a similar rule for existential quantifiers over
disjunctions.

2. Skolemization: Existentially quantified variables can be eliminated by using
Skolemization which removes existential quantifiers by introducing new function
symbols. This procedure keeps the equisatisfiability of a formula, not the equality.
For example, a formula ∀x .∃y .p(x , y) is transformed into the equisatisfiable formula
∀x .px , fy(x)), where fy is a fresh function symbol.

3. Rewriting: We can use rewriting rules to simplify our formula.

4. Other simplifications: If we know the type of variable x , we can apply other
rules. For example, we have a + 0Ð→ a or a − a Ð→ 0 if a is an integer.

2.4.2 SAT solving

The Boolean satisfiability (SAT) problem is the problem of determining whether there
exists a interpretation that satisfies a given Boolean formula [DP60, DLL62]. The DPLL

15

2. Preliminaries

procedure is a complete, backtracking-based algorithm for checking the satisfiability of
propositional logic formulas in CNF. Until now, DPLL is still the basis procedure for
most efficient complete SAT solvers, as well as for many theorem provers for fragments
of first-order logic.

The basic backtracking algorithm works by choosing a literal, assigning a truth value
to it, simplifying its clauses and then recursively checking whether the new (simplified)
formula is satisfiable. If yes, the original formula is satisfiable. Otherwise, the algorithm
assumes the opposite truth value and then applies the same recursive check again. This
is considered as the splitting rule, since it splits the search space into two simpler and
smaller parts. The simplification step essentially eliminates all clauses which become
true under the assignment from the formula, and all literals that become false from the
remaining clauses. Notice that the order in which the search space is explored heavily
relies on the choice of the splitting variables.

The DPLL algorithm strengthens the backtracking algorithm by applying the following
rules at each step:

• Unit propagation: If a clause is a unit clause, this clause can only be satisfied by
assigning the appropriate value to make this literal true. It means that there is
only one choice. In other words, if there exists a clause Cj = q , then we drop it,
every clause containing q, every literal ¬p from the remaining clauses. In practice,
this help us avoide a large part of the naive search space.

• Pure literal elimination: If a propositional variable occurs only positively or neg-
atively in the formula, it is called pure. Pure literals can always be assigned in
a way that makes all clauses with them true. Thus, these clauses can be deleted.
While this optimization is part of the original DPLL algorithm, this techniques
are usually omitted in current SAT solvers, since the overhead for detecting purity,
even negative.

Modern SAT solvers implement variants of the classical algorithm, which include tech-
niques like back-jumping, conflict-driven learning, and restarts among others, plus many
optimizations, such as the use of highly efficient data structures, and heuristics to select
splitting variables [Kul09, MS99]. The performance of different SAT solvers also depend
on how they implement the preprocessing methods. Although SAT solvers work extremely
well in practice, checking the unsatisfiability of CNF formulas is coNP-complete.

2.4.3 SMT solving

We first explain how to utilize a SAT solver as an engineer in an SMT solver. A simple
integration allows us to solve quantifier-free SMT problems. To work with quantified
formulae, techniques for eliminating and instancing quantifiers need applying. These
techniques are also mentioned in following sub-sections.

16

2.4. SMT Solvers

Quantifier-free SMT solvers

A theory T is a set of closed first-order formulas. The common first-order theory are the
theory of equality and uninterpreted functions (EUF), fragments of arithmetic (linear
or non-linear, integer or real), arrays and bit vectors. Function symbols of a formula
ϕ occurring in a theory T are interpreted, while others are not in T are uninterpreted.
A first-order formula ϕ is T -satisfiable if T ∪ {ϕ} is satisfiable, that is, if there exists a
model of T , that is also a model of ϕ. Otherwise, ϕ is T -unsatisfiable. Each T -theory
has a T -solver which is an efficient procedure for the satisfiability of conjunctions of
literals in T .

Satisfiability modulo theories (SMT) solvers rely on an efficient propositional engine,
typically a SAT solver, with specialized T -solvers. The common approach is as follows

1. reduce an SMT formula into a new simplified SAT formula,

2. use an SAT solver to check the satisfiability of a new formula and to generate a
model, and

3. call a T -solver to verify an obtained model.

A SAT formula is usually created by abstraction which maps atoms of the original formula
into fresh Boolean variables. The new formula is equisatisfiable and can be checked
by a SAT solver. If the abstract formula is found to be unsatisfiable, then so, too, is
the original SMT formula. On the other hand, if the SAT procedure finds the abstract
formula to be satisfiable, the T -theory solver is called to check the model generated by
the SAT solver. This interplay is called the “lazy” approach.

The above algorithm is for only one theory. In many areas, we need to combine multiple
theory solvers. For example, software verification usually requires a combination of
arithmetic and arrays solver. Principal questions include [dMB08]:

• Is the union of two decidable theories still decidable?

• Is the union consistent?

• And how can we combine different theory solvers?

In general, combining theory solvers is an extremely difficult problem. Fortunately,
useful special cases have good results. The Nelson-Oppen architecture is a well-known
approach for the combinations of decision procedures in different theories [NO79]. In this
framework, theories must satisfy two conditions:

• they are disjoint, meaning that they share equality as the only interpreted symbol,
and

17

2. Preliminaries

• they are stably infinite.

A theory T is stably infinite if whenever a (quantifier-free) formula is T -satisfiable, then
it is T -satisfiable in a model of the theory with an infinite universe. Fortunately, many
interesting theories such as theories for integers, real numbers and arrays are disjoint
and stably infinite. Therefore, we can combine them into one theory.

To solve an SMT problem, the theory procedures need to communicate by exchanging
equalities of variables through the EUF solver.

Quantifier instantiation

Since the Nelson-Oppen framework only works for quantifier-free formulas, SMT solvers
were rather limited in their ability to reason about quantifiers. Existential quantifiers are
usually eliminated by Skolemization, but universal quantifiers are difficult to remove. The
notable solution is quantifier instantiation which apply different heuristics to choose a
set of ground instances {t1, . . . , tn} of the quantified sorted variable x . Instead of ∀xσ.ϕ,
the formulas ϕ [x ← ti], which are logical consequences of the original formula, are added
to the clause set to continue the quantifier-free search.

Pattern-based instantiation, also known as E-matching, is a well-known strategy to find
just the instances that render the problem unsatisfiable [DMB07]. This heuristic finds
ground terms that have the same shape as sub-terms of the body of ∀xσ.ϕ, and uses
them to guide the instantiation. For example, suppose that we have a set of formulas:

1. ∀x .f (g (y) ,a) = a

2. g (b) = c

3. f (c,a) = b

4. ¬ (b = c)

Pattern-based instantiation finds in the quantified formula the pattern g (y) that matches
the ground terms g (b) with the substitution y ↦ c. As a result of applying the
substitution in the quantifier, we obtain f (g (b) ,a) , which equals f (c,a) and b. It
causes a conflict at the ground level b = c,¬ (b = c). Although relatively useful for some
applications, pattern-based instantiation is not refutationally complete, needs ground
seeds, and could generate an exponential number of matches (most of them useless),
which may generally decrease the solver’s efficiency. Moreover, the syntactic structure of
ϕ, which is particularly affected by equivalence-preserving transformations of the original
formula in the preprocessing step, plays an important role. In order to reduce the number
of instances generated, the user can guide the instantiation by providing triggers, which
are sub-terms occurring in ϕ, used as hints of potentially useful patterns.

18

2.5. The satisfiability modulo theories library

Alternatively, the model-based approach for complete quantifier instantiation (MBQI)
[GDM09] uses model-checking techniques to prioritize and to recognize model candidates,
without explicitly generating all instances. MBQI is effective to construct models of
satisfiable formulas and, and in practice, it sometimes outperforms pattern-based in
solving unsatisfiable cases as well. For some fragments of first-order logic, the MBQI
engine guarantees that the SMT solvers are decision procedures.

In conclusion, the quantifier instantiation procedure is incomplete, since no fair strategy
guarantees the generation of the ground instances that are necessary to derive the empty
clause. Until now, these problems with nested quantifiers are very difficult to solve. In
these cases, the SMT solver either runs indefinitely with useless ground clauses or reports
“unknown” together with a partial model satisfying only the grounded instances.

2.5 The satisfiability modulo theories library

The SMT-LIB standard [SMT16] has the goal of advancing the theory and practice of
SMT solvers by

• giving standard rigorous descriptions of background theories used in SMT systems,

• providing a repository of benchmarks to the SMT community, and

• developing a common input and output format for SMT solvers.

At the assertion level, an SMT-LIB file is a sequence of

• commands to configure and interact with the solvers,

• declarations and definitions of sort and function symbols, and

• assertions of formulas over the resulting signature.

An SMT-LIB problem is given as a list of assertions, where the conjecture is negated.
SMT-LIB requires all identifiers to be declared before using them.

At the logical level, the SMT-LIB language is a variant on MS-FOL which allows some
syntactic features of higher-order logics: in particular, the identification of formulas with
terms of a distinguished Boolean sort, and the use of sort symbols of arity greater than 0.
As a result, for example, it is possible to have a sort List(Array(Int, U)), where Int, U,
List, and Array are sort constructors with arities 0, 0, 1 and 2, respectively. However, it
still requires that

• quantifiers are still first-order,

19

2. Preliminaries

• the sort structure is flat (no subsorts),

• the logic’s type system has no function (arrow) types, and

• there are no type quantifiers, no dependent types, no provisions for parametric or
subsort polymorphism.

Moreover, each legal expression must have a unique sort that has to respect the sorting
discipline. It means these properties of traditional MS-FOL still remains in SMT-LIB.

In SMT-LIB, Bool is a predefined sort. In contrast to MS-FOL, a predicate is defined as
a function that returns a Bool-sorted term, and SMT-LIB formulas are just terms of sort
Bool, i.e. they are both included in the same syntactic category t . In addition, SMT-LIB
provides a conditional if-then-else operator as a term, noted ite, where the sort of the
first argument is Bool, and the second and third arguments have the same sort.

SMT-LIB defines clearly a catalog of background theories, and give an implicit description
of combined theories by means of a general modular combination operator. An SMT
logic is identified by a pre-established name to which are associated sort and function
declarations, and possibly syntactic and semantic restrictions.

The background theories are QF AX, QF IDL, QF UF, QF BV and QF RDL [SMT16].
Letter groups in these names evoke the theories used by the logics and some major
restriction in their language, with the following conventions:

• QF for the restriction to quantifier free formulas,

• A or AX for the theory ArraysEx,

• BV for the theory FixedSizeBitVectors,

• FP (forthcoming) for the theory FloatingPoint,

• IA for the theory Ints (Integer Arithmetic),

• RA for the theory Reals (Real Arithmetic),

• IRA for the theory Reals Ints (mixed Integer Real Arithmetic),

• IDL for Integer Difference Logic,

• RDL for Rational Difference Logic,

• L before IA, RA, or IRA for the linear fragment of those arithmetics,

• N before IA, RA, or IRA for the non-linear fragment of those arithmetics, and

• UF for the extension allowing free sort and function symbols.

20

2.6. SMT solver competitions and Z3

We are mainly interested in the logic AUFLIA that offers a pre-defined sort Int, quantified
formulas and arithmetic expressions, features that are ubiquitous in hardware and software
verification problems 4. In our TLA+ encodings of Chapter 5, we will focus only on the
translations to the AUFLIA fragment.

2.6 SMT solver competitions and Z3

The annual Satisfiability Modulo Theories Competition (SMT-COMP) was initiated in
2005 in order to develop new theories and logics for SMT, and to encourage the advance
of state-of-the-art techniques and tools developed by the SMT community [BDdM+13].
The competition have two tracks: the “main” track and the “application” track. In both
tracks, the main task of a solver is to determine the satisfiability or unsatisfiability of
a single problem in a logical theory. While problems in the first track are usually very
different, problems in the second one may have a substantially similar set of assertions.
Hence, we can consider that in the second track, a solver needs to deal with incremental
problems. Every solver is checked in the sequential and parallel modes. In the SMT-
COMP 2015, 21 solvers competed in 41 logical divisions and these following tables show
top-three solvers Z3, CVC4 and Yices which support all or nearly all logics and earn the
highest scores in various divisions [SMT15]. Moreover, these solves have performed at
the highest levels in previous competitions.

Sequential Performances
Rank Solver Score
- [Z3] 159.36
1 CVC4 144.67
2 CVC4 (exp) 140.47
3 Yices 101.91

Parallel Performances
Rank Solver Score
- [Z3] 159.36
1 CVC4 144.74
2 CVC4 (exp) 140.51
3 Yices 101.91

Sequential Performances
(industrial benchmarks)

Rank Solver Score
- [Z3] 139.34
1 CVC4 124.59
2 CVC4 (exp) 120.49
3 Yices 81.64

Parallel Performances
(industrial benchmarks)

Rank Solver Score
- [Z3] 139.34
1 CVC4 124.63
2 CVC4 (exp) 120.51
3 Yices 81.64

Because of these above reasons, Z3, an SMT solver from Microsoft Research [dMB08], is
chosen as our back-end solver. It is targeted at solving problems that arise in software
verification and software analysis. Z3 integrates a modern DPLL-based SAT solver, a core

4AUFLIA is a theory which contains closed formulas over the theory of linear integer arithmetic and
arrays extended with free sort and function symbols but restricted to arrays with integer indices and
values.

21

2. Preliminaries

theory solver that handles equalities and uninterpreted functions, satellite solvers (for
arithmetic, arrays, etc.) and techniques for quantifier instantiation. Z3 is implemented in
C++ and supports APIs for many languages such as Python, C/C++, .NET and Java.
At the language aspect, Z3 allows the SMT-LIB input format and supports extensions
such as data-types, weight annotations and pattern definitions.

Z3 is being used in several realistic projects in academia and industry and its main
applications are extended static checking, test case generation and predicate abstraction
[BDM09]. In our thesis, Z3 is used as a backend prover to construct the predicate
abstraction and to check safety properties.

2.7 Linear-time logic

Propositional logic and first-order logic are useful tools to describe statements whose truth
values do not change from time to time. However, these logics are not convenient enough
to formalize sentences whose truth values depend on time. To reason about time, both
propositional logic and first-order logic require that points of time have to be explicitly
represented in the underlying universe. Therefore, the user needs to construct very
complicated formulas in these logics to represent successfully some interesting properties
of concurrent program.

Temporal logic addresses this issue by containing some reference to time conditions in
which the user can describe sequences of changes and properties of behavior 5. This
property makes temporal logic adequate for expressing a broad variety of behavior of
concurrent systems such as termination (the program eventually does terminate) or
starvation-freedom (a process eventually receives services). Therefore, temporal logic is
applied to following topics: formal specification, formal verification and requirements
description [Lam83, Pnu77]. At the moment, there exists many variants of temporal
logic such as linear-time logic, branching-time logic, time-intervals logic or partial-order
logic. However, in this section, we introduce only linear-time logic (LTL) where formulas
are interpreted on one (linear) execution of the system. Temporal logic of Action (TLA),
a well-known variant of LTL is introduced by Lamport, is discussed in Chapter 3

2.7.1 Syntax

LTL formulas are defined with the following grammar

ϕ ∶∶= ⊺ ∣ p ∣ ϕ ∨ ϕ ∣ ¬ϕ ∣Xϕ ∣ ϕUϕ

where
• p ranges over a (finite) set AP of atomic propositions, and
5Temporal logic is used to describe the order in which events must happen rather than the actual

times at which they happen.

22

2.7. Linear-time logic

• X and U are also temporal operators called “next” and “until”, respectively.

Other Boolean connectives in classical logic are defined in the standard way. We can
define two extra operators “eventually” F and “always” G by following rules

Fϕ = ⊺Uϕ
Gϕ = ¬F¬ϕ

2.7.2 Kripke structures

Let AP be a set of atomic propositions. A Kripke structure is a tuple K = (S ,S0,R,L),
where

• S is a set of states,

• S0 ⊆ S is a set of initial states,

• R is the left-total transition relation on S ×S , i.e. for every state s ∈ S , there exists
state s ′ ∈ S , such that R (s, s ′), and

• L is a labelling function L ∶ S → 2AP which defines for each state s ∈ S the set L(s)
of all atomic propositions that are valid in s.

Since R is left-total, it is always possible to construct an infinite path π through a Kripke
structure. A path of the structure K is a sequence of states π = s0, s1, . . . such that for
each i ≥ 0,R (si , si+1) holds. By π (i) we denote the i-th state on the path. By πi we
denote π’s i-th suffix, i.e. πi = (si , si+1, . . .).

2.7.3 Semantics

Informally, the meaning of temporal operators is

• Xϕ: ϕ is true at next step,

• ϕ1Uϕ2: ϕ2 is true at some point, ϕ1 is true until that time,

• Fϕ: ϕ will become true at some point in the future, and

• Gϕ: ϕ is always true.

The satisfaction ⊧ of a formula ϕ in LTL is with respect a pair of a Kripke structure and
a path K , π and is defined inductively as the following

• K , π ⊧ ⊺ is always satisfied

23

2. Preliminaries

• K , π ⊧ � is is never satisfied

• K , π ⊧ p if and only if p ∈ L(π0), i.e. an atomic proposition is satisfied when it is
labelled at the first element π (0) of the path π

• K , π ⊧ ¬ϕ if and only if K , π ⊭ ϕ.

• K , π ⊧ ϕ ∨ ψ if and only if K , π ⊧ ϕ ∨K , π ⊧ ψ

• K , π ⊧Xϕ if and only if K , π (1) ⊧Xϕ

• K , π ⊧ ϕUψ if and only if ∃i . (K , π (i) ⊧ ψ) ∧ (∀j < i . (K , π (j) ⊧ ϕ))

• K , π ⊧ Fϕ if and only if ∃i .K , π (i) ⊧ ϕ

• K , π ⊧Gϕ if and only if ∀i .K , π (i) ⊧ ϕ

Because of its unique features, temporal logics is a effective tool to formalize two main
classes of properties of systems [Lam83, MP90]:

• A safety property stipulates that “bad things” do not happen during execution of a
program or this property mest be satisfied by all reachable states of a given system.

• A liveness property stipulates that “good things” eventually do happen.

States which violate a given property are usually called bad states.

Example 2.5, 2.7 and 2.6 describe how to describe system behavior by LTL. Notice that
two first examples are for safety properties and the last one is a liveness property.

Example 2.5. Process A and B are never both in their critical sections at the same
time (mutual exclusion).

G (¬inCSA ∨ ¬inCSB)

Example 2.6. Once red, the light cannot become green immediately.

G (red ⇒ ¬Xgreen)

Example 2.7. Traffic light is green infinitely often.

GFgreen

24

2.8. Conclusions

2.8 Conclusions

Specifying and reasoning about a distributed algorithm is a difficult work. In order to
give the reader an idea of how to do that, we have given a compact introduction of LTL.
The reason we choose LTL is that the underlying logic of TLA+, Temporal Logic of
Action, is a variant of LTL.

An SMT solver is a tool for deciding the satisfiability of an SMT problem which is
formalised with equality and many theories in MS-FOL. At the moment, researchers
usually use an SMT solver when applying predicate abstraction. In order to help the user
understand the capability of an SMT solver, we have mentioned fundamental concepts of
first-order logic (and common background theories) and described internal mechanism of
advanced SMT solvers. Moreover, we have explained why we choose Z3 as a back-end
prover in our work.

However, we cannot directly evaluate a TLA+ expression with an SMT solver. One
reason is that TLA+ contains many complex constructs which do not have counterparts
in SMT-LIB. A traditional way to remove complex structures is to repeatedly apply
rewriting rules which replace subterms of a given expression with equal terms until the
(possible) simplest form is obtained. In this chapter, we have recalled crucial properties
which a TRS should have and have explained how to create a “good” TRS from a set of
equations.

25

CHAPTER 3
TLA+ Language and its Toolbox

TLA+ is a formal specification language introduced by Leslie Lamport originally for
specifying and reasoning about concurrent and reactive systems [Lam02]. This language
is based on the linear-time temporal logic of actions (TLA) for the characterization of
the dynamic system behavior and a variant of standard Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) for the description of data structures. It has been
used successfully for many industrial projects at Microsoft, Compag, Intel and Amazon
[BL02, TY02, New14]. In order to know how to make best use of TLA+ and its supporting
tools, we recommend the user to read Lamport’s book "Specifying Systems" [Lam02].
This section outlines only its underlying logic, the specification structure and its toolbox.

Chapter Overview Section 3.1 explains the logical aspect of TLA+ over which we will
work in the rest of this document. In Section 3.2, we use a real example to describe
a TLA+ specification to introduce some basic concepts. In Section 3.3, we discuss its
supporting tools, including SANY, TLAPS and TLC.

3.1 Underlying Logic

The logical foundations of TLA+ are TLA and an untyped variant of ZFC set theory.
An expression in TLA+ may be in one of four basic levels constant, state, transition
and temporal, which are described in detail later. We start by defining the syntax and
semantics of Temporal Logic of Actions. Then, we describe the set-theoretical aspect of
TLA+ with the choice operator and gradually the first-order fragment over which the
set theoretical axioms are defined. Finally, we presents extensions in TLA+ which are
functions, records, tuples, IF/THEN/ELSEs and CASE.

All definitions in the following are from [Lam94, Lam02].

27

3. TLA+ Language and its Toolbox

3.1.1 TLA

We assume given two non-empty and disjoint collections

• Val of value symbols, such as numbers, strings and sets but not Boolean values
(true, false), and

• Var of variable symbols.

There are two kinds of variables: flexible and rigid ones. The former are is declared by
a VARIABLES statement, and the latter are variables whose value is the same in every
state of the system’s behavior which is defined formally in the following paragraph. Var
is considered as fixed collections of built-in and user-defined symbols in a specification.

In the following, we give a compact introduction of operators in TLA+. Operators in
TLA+ are distinguished into two different categories: constant operators and nonconstant
operators. Constant operators are usually popular operators, nonconstant operators are
what distinguish TLA+ from ordinary mathematics.

Constant operators are ones of ordinary mathematics, having nothing to do with TLA or
temporal logic. For instance, logical connectives or set operators are constant operators.
Constructs for functions, records and tuples are also constant operators. A main feature
of constant operators is that we can understand their meanings without considering their
arguments. For the complete list of constant operators, please read pages 268 and 269 in
Lamport’s book [Lam02].

There are two categories of nonconstant operators: action operators in Table 3.1 and
temporal operators in Table 3.2 1. To understand these operators, we need to think about
their arguments. Here we bring only the definition of basic expressions which contains
built-in TLA+ operators, declared constants and declared variables 2.

Table 3.1: Action operators

e ′ [The value of e in the final state of a step]
[A]e [A ∨ (e ′ = e)]
⟨A⟩e [A ∧ (e ′ ≠ e)]
ENABLED A [An A step is possible]
UNCHANGED e [e ′ = e]
A ⋅B [Composition of actions]

A constant expression is one containing only constant operators and declared constants. A
computation (or behavior) of a system in a TLA specification is formalized as a sequence

1In Table 3.1 and 3.2, e is a state function, A is an action and F ,G are temporal formula. These
terms are explained in following paragraphs.

2TLA+ allows the user define new operators in modules and to construct nonbasic expressions. Please
read Lamport’s book for more information.

28

3.1. Underlying Logic

Table 3.2: Temporal operators

[]F [F is always true]
<> F [F is eventually true]
WFe(A) [Weak fairness for action A]
SFe(A) [Strong fairness for action A]
F > G [F leads to G]

of states, where a state of the system is an assignment of values to variables and is
usually represented as a Boolean formula or a predicate . A pair of consecutive states,
si and si+1 say, is named a step, denoted si → si+1. The prime (′) operator is used to
differentiate the values of variables in a step. Considering a given step S ∶ si → si+1 and
assuming a variable v on S , the unprimed occurrence (v) refers to its value in si while
the primed one (v ′) refers to its value in si+1. We write an initial predicate that specifies
the possible initial values of variables, and a next-state relation that specifies how the
value of variables can change in any step.

A state function is an ordinary expression (one without priming, action or temporal
operators listed in Table 3.1, 3.2) that can contain unprimed variables, declared constants,
constant operators and ENABLED expressions. In other words, a state function is a
mapping from states to values. A state predicate is a Boolean-valued state function.

A transition function is an expression built from state functions using the priming
operator (′) and the other action operators of TLA+ listed in Table 3.1. A transition
function assigns a value to every step, where a step is a pair of states. For example, if
step S is such that v = {0} in si and v = {1} in si+1 , the transition function [v ′ ∪ v]
equals {0,1} on S . Finally, an action is defined as a Boolean-valued transition function,
such as v ⊆ v ′ 3.

A temporal formula is Boolean assertion about a behavior, where behavior is a sequence
of states. Syntactically, a temporal formula is defined inductively to a state predicate or
a formula having one of the forms shown in 3.2. A behavior satisfies a formula F if F is
a true assertion of this behavior.

An invariant Inv of a specification Spec is a state predicate such that Spec ⇒ 2Inv is
a theorem. A variable v has type T in a specication Spec if and only if v ∈ T is an
invariant of Spec.

In TLA, an expression has one of four basic levels, which are numbered 0, 1, 2 and
3. Assume two variables x , y are declared by VARIABLES, a constant c is declared by
CONSTANT and two symbols −,< have their usual meanings in arithmetic. These levels
are described below

0. A constant-level expression is a constant; it has only constants and constant
operators. Example: c − 1.

3We do not permit quantification over flexible variables in state functions and actions.

29

3. TLA+ Language and its Toolbox

1. A state-level expression is a state function; it may have constants, constant operators
and unprimed variables. Example: x − c.

2. A transition-level expression is a transition function; it may have anything except
temporal operators. Example: x − y ′ < c .

3. A temporal-level expression is a temp oral formula; it may have any TLA operator.
Example: 2 [x ′ > y − c]⟨x ,y⟩.

3.1.2 TLA+ set theory

In this subsection, we describe the set theoretical aspect of TLA+ with common constructs
and operators. For other constructs, please read Lamport’s book [Lam02] 4.

TLA+ is based on ZFC set theory, in which every value in TLA+ is a set, even a natural
number such as 0 5. In set theory, the operator ∈ is considered as a primitive, undefined
operators. We could define all the other set operators by the opeartor ∈ , predicate logic
and the operator CHOOSE .

The operator CHOOSE in TLA+ is Hilbert’s choice operator ε, written CHOOSE x ∶ P(x).
This expression denotes an arbitrary but fixed value x such that P(x) is true. If no such
x exists, then the expression has a completely arbitrary value.

The semantics of CHOOSE are expressed by the following two rules:

1. ∃x ∶ P(x) ≡ P(CHOOSE x ∶ P(x))

2. ∀x ∶ P(x) = Q(x)⇒ (CHOOSE x ∶ P(x)) = (CHOOSE x ∶ Q(x))

for any operators P and Q . We know nothing about the value chosen by CHOOSE except
what we can deduce from these rules. The second one expresses the equality of CHOOSE ,
that is, it assigns the same witness value to equivalent formulas P and Q or CHOOSE is
not a non-deterministic operator. Moreover, the expression CHOOSE x ∶ FALSE and all
its equivalent forms represent a unique value.

With the operator ∈ , predicate logic and the operator CHOOSE , we can define set union
as following:

S ∪T ≜ CHOOSE U ∶ ∀x ∶ (x ∈ U) ≡ (x ∈ S) ∨ (x ∈ T)

In standard set theory, sets are constructed from axioms that state their existence. Here,
we add the set constructs as primitive objects of the language. The set objects are the
empty set {}, the power set SUBSET, the generalized union UNION, two forms of set
comprehension {x ∈ S ∶ p} and {e ∶ x ∈ S} 6. Primitive operators are which we can define

4Complex constructs can be inductively defined on those which we introduce in this subsection.
5A number 0 is a set but we do not know exactly what elements of 0 are.
6The general construct is {e ∶ y1 ∈ S1, . . . , yn ∈ Sn} and the user can find its definition in Lamport’s

book.

30

3.1. Underlying Logic

mathematically in terms of the rules that they satisfy. Other set operators such as ∪ or
∩ are also considered to be primitive.

Here is the list of defining rules. A rule with “is defined by” shows that the operator in
the left-hand side is taken as a primitive one 7.

S = T ≜ ∀x ∶ (x ∈ S) ≡ (x ∈ T)

e1 ≠ e2 ≜ ¬(e1 = e2)

e ∉ S ≜ ¬(e ∈ S)

S ⊆ T ≜ ∀x ∶ (x ∈ S)⇒ (x ∈ T)

S ∪T is defined by ∀x ∶ (x ∈ (S ∪T)) ≡ (x ∈ S) ∨ (x ∈ T)

S ∩T is defined by ∀x ∶ (x ∈ (S ∪T)) ≡ (x ∈ S) ∧ (x ∈ T)

S ∖T is defined by ∀x ∶ (x ∈ (S ∪T)) ≡ (x ∈ S) ∧ (x ∉ T)

{} is defined by ∀x ∶ x ∉ {}

{e} is defined by ∀x ∶ (x ∈ {e}) ≡ (x = e)
{e1, . . . , en} ≜ {e1} ∪ . . . ∪ {en}

{x ∈ S ∶ p} is defined by ∀y ∶ (y ∈ {x ∈ S ∶ p}) ≡ (y ∈ S) ∧ p[x ← y]
{e ∶ x ∈ S} is defined by ∀y ∶ (y ∈ {e ∶ x ∈ S}) ≡ (∃x ∈ S ∧ e = y)

The defining rule of {x ∈ S ∶ p} requires that x is a bound identifier, S is outside the
scope of the bound identifier and y is a fresh variable 8.

In addition to the unbounded form of quantifiers and CHOOSE , TLA+ supports the
bounded form which is defined by

∀x ∈ S ∶ P(x) ≜ ∀x ∶ x ∈ S ⇒ P(x)
∃x ∈ S ∶ P(x) ≜ ∃x ∶ x ∈ S ∧P(x)

CHOOSE x ∈ S ∶ P(x) ≜ CHOOSE x ∶ x ∈ S ∧P(x)

3.1.3 Other constructs

Conditional expressions

TLA+ offers two conditional constructs IF THEN ELSE and CASE with their obvious
meanings like in programming languages.

Numbers

TLA+ allows the user to work with arithmetic expressions. Nat , Int and Real denotes the
set of natural number, of integer numbers and of real numbers, respectively. In addition

7This operator appears in both the left-hand side and the right-hand side, i.e. S ∪T
8x can be a tuple of bound identifiers.

31

3. TLA+ Language and its Toolbox

to common operators, it offers the operator . . which is the interval between two integer
numbers, that is, a . . b ≜ {n ∈ Int ∶ a ≤ n ∧ n ≤ b} where a ≤ b.

Strings

TLA+ defines a string to be a tuple of characters. However, the semantics of TLA+ does
not specify what a character is and exactly what characters may appear in a string is
system-dependency [Lam02].

Functions

Functions are in the extension of TLA+ set-theoretic fragment. In principle, all well-
formed expressions denote sets, but some of them are used as functions, as they are called
in TLA+ . To explain functions, we introduce meanings of 4 constructs:

f [e] DOMAIN f [S → T] [x ∈ S ↦ e]

where x is an identifier.

A function f in TLA+ has a domain, written DOMAIN f , and it maps to each element x
of its domain one unique value, written f [x]. For any x ∈ S , an expression f [x] is legal
but its value is unspecified. The range of a function f is the set of all values of the form
f [x] with x in DOMAIN f .

TLA+ offers a convenient way to describe explicitly a function f with the construct

f ≜ [x ∈ S ↦ e]

The above expression means that the the domain of function f with domain S and
f equals the value obtained by substituting v for x in e, for any v ∈ S . For example,
f1 = [x ∈ {1,2} ↦ 0] depicts the function f1 with domain {1,2} such that f1[1] = 0 and
f1[2] = 0.

For any sets S and T , the set of all functions f whose domain equals S and whose range
is any subset of T is written [S → T], that is, DOMAIN f = S and f [v] ∈ T for all v ∈ S .
Note that it is possible to quantify over (terms representing) functions. For instance, an
expression

∀f ∈ [{1,2}→ {1,2}].DOMAIN f = {1,2}

is well-formed.

In addition, TLA+ has the construct for function-update [f EXCEPT ![d] = e] depicts
the function f̂ equal to f except that f̂ [d] = e.

In TLA+, to check whether a set g is a function or not, we can use the following operator
[Lam02]

32

3.1. Underlying Logic

IsAFcn(g) ≜ g = [x ∈ DOMAIN g ↦ g[x]],

We have that IsAFcn(g) is true if and only if g is a function.

Now, we can define the axiom of function extensionality as follows:
f = [x ∈ S ↦ e]⇔ ∧ IsAFcn(f)

∧DOMAIN f = S
∧ ∀y ∈ S ∶ f [y] = e[x ← y] (3.1)

Note that these above constructs are primitive and there is no separate defining rule for
the DOMAIN operator. For further information about functions and its constructs, such
as recursive functions, we refer the reader to Lamport’s book [Lam02].

Tuples and records

Unlike programming languages, tuples and tuples in TLA+ are functions.

An n-tuple ⟨e1, . . . , en⟩ is also a function whose domain is a set of n integers {1, , . . . ,n}

and which maps 1 to e1, 2 to e2 and so on.It means ⟨e1, . . . , en⟩[i] = ei where 1 ≤ i ≤ n.
TLA+ provides the Cartesian product operator × of ordinary mathematics to construct
a set of tuples. For example, A × B × C is the set of all 3-tuples ⟨a, b, c⟩ such that
a ∈ A, b ∈ B and c ∈ C . Note that the operator × is not associative and the 0-tuple
⟨⟩ ≜ [x ∈ {}↦ {}] is the unique function having an empty domain.

A record is a function whose domain is a finite set of strings. For example, a record msg
with p, val , rnd fields is a function whose domain is the set of the three strings “p”, “val”
and “rnd”. The expression msg .val is an abbreviation for msg[“val”]. To construct a
record msg , the user can write

[p ↦ 2, val ↦ 1, rnd ↦ 1]

which can be written

[i ∈ {“p”, “val”, “rnd”}↦ IF i = “p” THEN 2 ELSE
IF i = “val” THEN 1 ELSE 0]

In general, record construction is defined by the following rule

[h1 ↦ e1, . . . ,hn ↦ en]

and the below rule is to define the set of records.

33

3. TLA+ Language and its Toolbox

[h1 ∈ S1, . . . ,hn ∈ Sn]

The EXCEPT construct is also for records. Note that the TLA+ definition of records as
functions makes it possible to manipulate them in ways that have no counterparts in
programming languages [Lam02].

3.1.4 TLA+ semantics

Because of its untyped properties, TLA+ accepts expressions like 2∧“abc” or FALSE⇒ ⟨5⟩.
We must therefore decide how to interpret them. The standard semantics of TLA+ offers
three different ways to decide the meaning of these expressions which are called the
conservative, moderate and liberal interpretations.

In the conservative interpretation, we do not completely specify the value of an expression
like 2 ∧ “abc”. It could equal

√
3 or any other value. Moreover, it need not to be equal

to “abc” ∧ 2. Hence, the ordinary laws of logic, such as the of two Boolean operators ∨
and ∧, are valid only for Boolean values.

In the liberal interpretation, the value of 2 ∧ “abc” is specified to be a Boolean value,
however this interpretation does not mention whether the value of this expression equals
TRUE or FALSE. However, all the ordinary laws of logic, such as the commutation or
association, are valid. Hence, 2 ∧ “abc” equals “abc” ∧ 2. More precisely, any tautology
of propositional or predicate logic is valid, even if the value of some its sub-formula is
not a Boolean one. As a result, the liberal approach is sound.

The only difference between conservative and liberal interpretations the use of Boolean-
valued functions. For instance, suppose we define the function isReal by

isReal ≜ [r ∈ Real ↦ TRUE]

so isReal[r] equals TRUE for all r in Real . Now, consider the formula

∀x ∶ (x ∈ Real)⇒ isReal[x] (3.2)

which asserts that (x ∈ Real) ⇒ isReal[x] is true for all x , including, for example,
x = “a”. Let x be "a", we obtain a formula (“a” ∈ Real) ⇒ isReal[“a”]. While this
formula is TRUE in the liberal interpretation, its value is unspecified in the conservative
interpretation. Therefore, the formula 3.2 is TRUE in the liberal interpretation, but its
value is unspecified in the conservative interpretation. If we are using the conservative
interpretation, instead of 3.2, we should write

∀x ∶ (x ∈ Real)⇒ isReal[x] = TRUE (3.3)

The formula 3.3 equals TRUE in both interpretations.

34

3.2. Specification

The moderate interpretation lies between the conservative and liberal interpretations. Not-
so-silly formula which involves TRUE and FALSE like FALSE⇒ “a” have their Boolean
expected values. For example, FALSE⇒ “a” equals TRUE and FALSE∧“a” equals FALSE.
However, the value of 2 ∧ “abc” is still completely unspecified. This causes two problems
in the moderate interpretation:

1. The laws of logic do not hold unconditionally in this approach. The formulas p ∨ q
and q ∨ p are equivalent only if p and q are both Boolean expressions, or if one of
them equals TRUE.

2. When using the moderate interpretation, we still have to check that all the values
of subformulas are Booleans before applying any of the ordinary rules of logic in a
proof.

In our work, we prefer the conservative interpretation. For expressions with unspeci-
fied values, we will give the user warnings.

3.2 Specification

In TLA+ , specifications are formulas and are organised in modules. A module usually
consists of three sections which are declarations (of parameters and variables), definitions
(of operators) and assertions (of assumptions and theorems). However, this structure is
conventional, but not mandatory. TLA+ only requires that an identifier must be declared
or defined before it is used, and that it cannot be reused, even as a bound variable, in
its scope of validity. Horizontal lines are usually added between different sections of
a module to make it easier to read, but they have no semantic content. In general, a
module looks like

module bcastFolklore

declaration

definition

assertion

Declarations These describe constant parameters and variables in the system by com-
mands CONSTANTS and VARIABLES. There are typically a dozen or so declared identi-
fiers. For example,

35

3. TLA+ Language and its Toolbox

Definitions These define mathematical operators used to describe operations specific
to the particular system. They take the form Op (arg1, . . . ,argn) ≜ e. For example,
a specification of a distributed system can have user-defined operators Receive and
Broadcast . A specification can inherit definitions from others by a command EXTENDS.
Four interesting and important definitions are

1. The initial predicate describes the possible initial values of variables, or possible
initial states of the system. It is a conjunction of formulas x = . . . or x ∈ . . . for
each variable x , where the . . . is usually a simple constant expression. It is usually
named Init .

2. The next-state action describes the system’s transitions over primed and unprimed
variables. Usually It is defined as a disjunction of sub-actions, each system step.
For example, in the specification bcastFolklore, assume that N = 2, so there are two
sub-actions Step(1) and Step(2). It is usually named Next .

3. Liveness defines a temporal formula specifying the liveness properties of the system,
usually in terms of fairness conditions on sub-actions of the next-state action.

4. The specification, usually named Spec, is the one-line definition

Spec ≜ Init ∧2[Next]vars ∧ Liveness

where 2 is the ordinary "always" operator of linear-time temporal logic, vars is
a tuple representing all variables in the specification and [Next]vars s abbreviates
Next ∨ UNCHANGED vars. It means the specification is always represented by a
single temporal formula.

Assertions are assumptions and theorems which are introduced by ASSUME,THEOREM, . . .
For instance, in the specification bcastFolklore, the number of crashed processes is less
than a half of the number of processes. In our work, we do not focus on assertions.

The following TLA+ specification is the encoding of Chandra’s algorithm for reliable
broadcast by message diffusion (BcastFolklore) [CT96]. This encoding was provided by
my supervisors and used in our experiment. For the description of this algorithm, we
refer the user to Chapter 7.

module bcastFolklore

extends Naturals, FiniteSets

constants N , T , F

variable pc, rcvd , sent , nfailed

36

3.2. Specification

assume N ∈ Nat ∧T ∈ Nat ∧ F ∈ Nat

assume (N > 2 ∗T) ∧ (T ≥ F) ∧ (F ≥ 0)

P ∆
= 1 . . N all processess, including the faulty ones

Corr ∆
= 1 . . N correct processes

M ∆
= {“ECHO”}

vars ∆
= ⟨pc, rcvd , sent , nfailed⟩

Receive(self) ∆
=

∃ r ∈ SUBSETPM ∶

∧ r ⊆ sent

∧ rcvd[self] ⊆ r

∧ rcvd ′ = [rcvd except ![self] = r] receive set ”r“ of msgs

UponV 1(self) ∆
=

∧ pc[self] = “V1” if a process ”has received a msg from

a bcasting process and has not sent (ECHO)“

∧ pc′ = [pc except ![self] = “AC”] it accepts and sends (ECHO) to all

∧ sent ′ = sent ∪ {⟨self , “ECHO”⟩}

∧ nfailed ′ = nfailed a number of crashed processes does not change

UponCrash(self) ∆
=

∧ nfailed < F if a number of crashed processes < F and

∧ pc[self] ≠ “CR” this process is correct, it will be crashed

∧ nfailed ′ = nfailed + 1 increase a number of crashed processes

∧ pc′ = [pc except ![self] = “CR”] update labels of processes

∧ sent ′ = sent message channel does not change

UponAccept(self) ∆
=

∧ (pc[self] = “V0” ∨ pc[self] = “V1”) if a process ”has not receive any msg“ or

37

3. TLA+ Language and its Toolbox

∧ rcvd ′[self] ≠ {} ”has received a msg from a bcasting process

and has not sent (ECHO)“

∧ pc′ = [pc except ![self] = “AC”] it accepts and sends (ECHO) to all

∧ sent ′ = sent ∪ {⟨self , “ECHO”⟩}

∧ nfailed ′ = nfailed a number of crashed processes does not change

an action

Step(self) ∆
= ∧Receive(self)

∧ ∨UponV 1(self)

∨UponCrash(self)

∨UponAccept(self)

∨ pc′ = pc ∧ sent ′ = sent ∧ nfailed ′ = nfailed

Init ∆
=

∧ sent = {} message channel is empty

∧ pc ∈ [Corr → {“V0”, “V1”}] process can be labeled as ”has not received any msgs“

or ”has received a msg from a bcasting process

and has not sent (ECHO)“

∧ rcvd = [i ∈ Corr ↦ {}] every process has not received any msg

∧ nfailed = 0 no process crashes

the Next predicate

∧ rcvd = [i ∈ Corr ↦ {}]

Next ∆
= (∃ self ∈ Corr ∶ Step(self))

specification

Spec ∆
= Init ∧2[Next]vars

type invariant

TypeOK ∆
= ∧ sent ⊆ P ×M

∧ pc ∈ [Corr → {“V0”, “V1”, “AC”, “CR”}]

∧ rcvd ∈ [Corr → subset (P ×M)]

38

3.3. TLA+ Toolbox

system properties

Unforg ∆
= (∀ self ∈ Corr ∶ (pc[self] ≠ “AC”))

UnforgLtl ∆
= (∀ i ∈ Corr ∶ pc[i] = “V0”) Ô⇒ 2(∀ i ∈ Corr ∶ pc[i] = “AC”)

CorrLtl ∆
= (∀ i ∈ Corr ∶ pc[i] = “V1”) Ô⇒ 3(∃ i ∈ Corr ∶ pc[i] = “AC”)

RelayLtl ∆
= 2((∃ i ∈ Corr ∶ pc[i] = “AC”) Ô⇒ 3(∀ i ∈ Corr ∶ pc[i] = “AC”))

3.3 TLA+ Toolbox

The TLA+ Toolbox is an integrated development environment (IDE) for writing specifi-
cations and running tools to check them [Lam02]. The main tools include the parser and
syntax checker SANY, the interactive theorem prover TLAPS [CDL+12] and the model
checker TLC c.

3.3.1 SANY

SANY is a parser and syntax checker for TLA+ specifications. Therefore, SANY is
responsible for creating the abstract-syntax tree and semantic tree of the specification.

3.3.2 TLAPS

The TLA+ specification language was extended to permit writing hierarchically structured
proofs [CDLM10] and the tool TLA+ Proof System (TLAPS) has been developed to
deductively verify specifications, their properties and proofs formally [CDL+12]. It is
an interactive proof environment which is built around an application called the Proof
Manager. TLAPS is built around an application called the Proof Manager. The manager
first interprets a TLA+ proof as a collection of proof obligations. Then, the manager sends
proof obligations to back-end theorem provers to prove. Finally, if possible, a verifier
checks the proof generated by the back-end prover to provide complete machine-checking
of TLA+ proofs. At the time of starting this work, TLAPS was based on three available
back-ends with different capabilities Zenon, Isa and SMT.

1. Zenon [BDD07] is a tableau prover for FOL.

2. Isa is the automatic tactic auto of the Isabelle prover [NPW02].

3. SMT is the baseline SMT solver. The default one is CVC3, but it allows the user
to use Z3 or Yices (only version 1) [BT07, dMB08, DDM06].

39

3. TLA+ Language and its Toolbox

While TLAPS is a new tool, it is successfully used in some projects which includes the
verification of the Paxos consensus algorithm [Lam11], the Memoir [PLD+11] security
architecture and the Pastry [LMW12] algorithm. The safety-proof of a specification has
the following structure [Lam02]:

lemma Spec Ô⇒ 2SafetyProperty

(* Dijkstra’s invariant implies correctness *)

⟨1⟩1 Inv Ô⇒ 2SafetyProperty

(* Dijkstra’s invariant is (trivially) established by the initial condition *)

⟨1⟩2 Init Ô⇒ Inv

(* Dijkstra’s invariant is inductive relative to the type invariant *)

⟨1⟩3TypeOK ∧ Inv ∧ [Next]vars Ô⇒ Inv

⟨1⟩q QED

by ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, ⟨1⟩q , TypeOKinv , PTL def Spec

3.3.3 TLC

TLC is an explicit-state model checker for TLA+ specifications in the standard form

Init ∧2[Next]vars ∧ Liveness

where Liveness is an option [YML99]. If Liveness is omitted, TLC checks invariants and
"silliness" errors whose meaning is not defined by the semantics of TLA+ and deadlock
which can be disabled. In general, TLC checks the specification by exploring all states
satisfying 3.3.3 and looking for one in which a desired property is not satisfied or deadlock
occurs. If the property is violated, TLC will show a minimal length trace that leads from
an initial state to the bad state. TLC stops when it has examined all reachable states.
Certainly, TLC may never terminate if this set of these states is infinite.

To work with TLC, the user must first create a model of the specification which contains
values of all specification’s constant parameters and states clearly what properties needing
to check. Moreover, the user should add constraints to make the model become a finite-
state system. For example, the specification in our example module bcastFolklore is not
finite-state because:

• the set of processors can be arbitrarily large — even infinite, and

40

3.3. TLA+ Toolbox

• the number of states could depend on the unspecified parameters N ,T , and F .

Fortunately, it is not difficult to bound the number of states. The user needs to only
assign particular values to the constants N ,T , and F . Because of the constraints, TLC
will check only states that appears in a behavior satisfying

Init ∧2[Next]vars ∧2Constraint ∧ Liveness

and that are usually called the reachable ones.

A main feature of TLC is that it uses an explicit state representation because [YML99]:

• A symbolic method would need additional restrictions on the class of TLA+ specifi-
cations TLC could handle.

• Explicit state representations seem to work at least as well for the asynchronous
systems.

• It is burdensome to keep a symbolic representation on disk.

At the moment, TLC can check both safety and liveness properties. However, in the
distributed mode, TLC cannot verify liveness properties since checking a liveness property
is very expensive [Lam02]. Fortunately, liveness properties are rarely written in TLA+

specification [BL02]. Moreover, we focus on only safety properties in this thesis. Therefore,
here we describe how TLC checks safety properties.

Table 3.1 shows how TLC works. TLC first generates and checks all possible states
satisfying the initial predicate, and then applies the breadth-first search algorithm for
traversing the state space. If TLC finds a bad state, it will print an error trace and
stop. To overcome the space limitation, TLC therefore keeps all data on disk, using main
memory as a cache. To make the computation of next states simple and efficient, TLC
rewrites the next-state relation as a disjunction of as many simple sub-actions as possible.

In experiments at Amazon, Newcombe et al. had 2 TB of local SSD storage to keep
visited states [New14]. So, techniques TLC applies are not impractical as one can think.

Thanks to an explicit state representation, TLC can handle a critical fragment of TLA+

that most people actually write [Lam02]. All values in this fragment are are built from
the following four types of primitive values:

A TLC value is defined inductively to be either

1. a primitive value, or

2. a finite set of comparable TLC values 9, or
9Informally, two values in TLA+ are comparable if the semantics of TLA+ decides whether they are

equal or not. For precise rules, please read the book [Lam02]

41

3. TLA+ Language and its Toolbox

Algorithm 3.1: TLC’s strategy to verify a safety property
input : A TLA+ specification Spec and safety property inv
output : true or an error trace if a bad state exists

1 create an empty queue Q ;
2 while exists state s s.t. s satisfies Init and s is unvisited do
3 if s violates inv then
4 print a bad state s ;
5 end
6 add s to Q ;
7 mark s visited ;
8 end
9 while queue ≠ {} do

10 s = dequeue Q ;
11 if exists unvisited state t is s.t. (s, t) satisfies an action in then
12 mark s as a father of t ;
13 if t violates inv then
14 print an error trace ;
15 end
16 add t to Q ;
17 mark t visited ;
18 end
19 end
20 return true ;

Booleans The values TRUE and FALSE.
Integers Values like 5 and -2.
Strings Values like "a3b" .
Model Values These are values, called model values, assigned to the CONSTANT

parameters in the specification. Model values with different names
are considered to be distinct.

3. a function f whose domain is a TLC value such that for all elements x ∈ DOMAIN f ,
we have that f [x] is also a TLC value.

TLC cannot evaluate

• quantifiers or CHOOSE expressions with infinite domains,

• any expression whose value is not a TLC value,

• a set-valued expression for an infinite set,

• a function-valued expression whose domain is infinite, and

42

3.3. TLA+ Toolbox

• a recursive definition which causes an infinite loop.

At the moment, TLC has many optimization which allow TLC to evaluate an expression
even when it cannot assess all sub expressions. For example, TLC can evaluate

[n ∈ Nat ↦ n + 1][3]

which equals the TLC value 4, even though it cannot evaluate the function [n ∈ Nat ↦
n + 1] since its domain is an infinite set Nat .

Until now, TLC has been successfully applied to the verification of software and hardware
systems in many industrial projects. We can mention several examples: cache-coherency
protocols for microprocessors at Compaq and Intel [TY02, BL02], and fault-tolerant
distributed algorithms at Amazon [New14], among others. Moreover, TLC is also used
to construct the formal proof by checking the invariant. Before attempting to prove
correctness of a TLA+ specification, the user should check (small) finite instances with
TLC.

3.3.4 Discussions of TLAPS and TLA

While writing proofs is a great reliable method to reason about properties of the system,
it is a hard and extensive work.

1. Finding an inductive invariant is a difficult and error-prone task. To avoid useless
attempt, the user should try to check their ideas in small cases by TLC. Unfortu-
nately, TLC is still a explicit tool and needs a lot of time to check the invariant
[Lam02].

2. TLAPS does not offer any reasoning mechanism about TLA+ features which
are recursive operators, real numbers, many temporal operators, quantification
over tuples and set constructors using tuples, the operator ENABLED, the action
composition and operators in the TLC standard module [Res]. In these cases,
the user can write OMITTED to inform that TLAPS should skip these lemmas or
believe they are true. However, it is not easy to know when the user should use
OMITTED.

3. The back-end provers require a lot of guidance to reason about CASE constructs,
strings, tuples, records, the CHOOSE operator, and complicated operators in
arithmetic such as the division, modulus, or exponentiation [Res].

4. A full formal proof may contain thousands of lines. For example, the formal
specification and proof of Memoir contain 61 top-level definitions, 182 LET-IN
definitions, 74 named theorems, and 5816 discrete proof steps [DLP+11].

43

3. TLA+ Language and its Toolbox

For the above reasons, it is difficult to use TLAPS in some cases. For example, Newcombe
et al. tried to verify their critical algorithms by writing formal proofs but finally, he said
"we doubt that we would use incremental formal proof as a design technique even for
those algorithms" [New14]. In these cases, TLC is preferred.

The main advantage of model-checking is that it requires much less effort and less
expertise in the verification domain from the user than writing a fully formal proof
of correctness. Typically, the user needs to add constraints to make the state space,
presses some buttons, and waits for results. The greatest weakness of this approach is
the state-space explosion problem which makes it not scalable for industrial-strength
specifications. To overcome it, the user usually needs to construct suitable abstractions
of the system, which can reduce the number of states by mapping many concrete states
to an abstract one. A resulting model is enough small to effectively be verified. However,
at the moment, TLC does not support any abstract techniques and therefore, it cannot
check many real projects.

3.4 Conclusions

In this section, first we have introduced the mathematical aspects of TLA+

i. the temporal logic of actions (TLA) for the characterization of the dynamic system
behavior, and

ii. a variant of standard Zermelo-Fraenkel set theory with the axiom of choice (ZFC)
for the description of data structures.

We have also described the typical structure of a TLA+ specification. A TLA+ specification
usually contains three parts: declarations of constants and variables, definitions of
operators and assertions of system behavior.

We have discussed the TLA+ Toolbox, an IDE for writing and verifying specifications.
The main tools include the parser and syntax checker SANY, the interactive theorem
prover TLAPS [CDL+12] and the model checker TLC. Finally, we have made a compact
comparison between two ways to prove the correctness of a TLA+ specification: automated
deduction with TLAPS and model checking with TLC.

44

CHAPTER 4
Model Checking

In this chapter, we describe a well-known technique for system verification, called model
checking which applies a transition system and checks whether the behavior of the system
model satisfy its specification. Model checking is a state-based method and it suffers from
the infamous state-space explosion problem. To overcome the obstacle, researchers in
model checking have applied many techniques such as symbolic representations, the partial
order reduction, symmetry or abstraction. We focus on predicate abstraction which maps
a system state to a vector of predicates, called an abstract state [GS97]. Notice that
many concrete states can be mapped to the same bit vector. Unfortunately, constructing
a full transition system is expensive. Therefore, instead of building and verifying a
“complete” (abstract) model which represents explicitly all states and transition relations,
we produce a formal proof of a safety property based on the IC3 algorithm.

Chapter overview Section 4.1 introduces basic ideas of model checking. Section 4.2
describes one of the most well-known techniques, called predicate abstraction, to reduce
the state-space problem. Section 4.3 shows our preliminary experiments with NuSMV2,
one of popular model checking tools. Section 4.4 presents how to construct an incremental
proof based on the IC3 algorithm and predicate abstraction.

4.1 Overview

Errors are inevitable and cause serious problems in computer software programs, computer
hardware designs and computer systems. The US National Institute of Standards and
Technology (NIST) has estimated that programming failures pose a significant cost,
around $60B annually, to the US economy [New02]. Moreover, software developers may
spend half of their time fixing bugs and making code work. A great deal of research effort
has been and is devoted to develop methods for error elimination. In the early 1980s,
temporal-logic model checking algorithms were introduced to solve non-trivial verification

45

4. Model Checking

problems automatically [CE81, QS82]. These algorithms were based on a combination of
the state-exploration approach with temporal logic.

Applying model checking to a program consists of three main steps [CGP99] :

• Modelling. The first task is to transform a program into an input format accepted
by a model checker. In many cases, the use of abstraction is required to remove
irrelevant or unimportant information. For example, the model checker TLC accepts
only specification written in the TLA+ language.

• Specification. The second task is to assert properties that the program must
satisfy. Nowadays, temporal logic is widely used to formalize the behavior of the
system. In our work, TLA+ , a well-known variant of temporal logic, is used to
formalize both system behavior and desired properties.

• Verification. Ideally the verification is completely automatic. However, in practice
it often involves human assistance in constructing the abstraction, analyzing error
traces and modifying the system.

Definition 4.1. Give a Kripke structure M = (S ,S0,R,L) that represents a finite-state
system and a temporal formula ϕ that formalize a desired property, the model checking
problem is to find the set of all states s ∈ S that satisfy ϕ, i.e. the set {s ∈ S ∣ M , s ⊧ ϕ}
[CGP99].

We say that a state s is a bad state if it violates a given property.

Compared to deductive verification based on theorem proves, model checking has a
number of advantages

• No proofs. The user does not need to make a correctness proof which may require
expert knowledge and months of the user’s time working. In principle, all that is
necessary for the user is to enter a description of the program to be verified, to give
the specification to be checked, to press the “run” key and wait for results. The
checking process is automatic.

• Diagnostic counterexamples. If the specification is violated, the model checker will
produce a counterexample execution trace that shows why the desired property
does not hold. The counterexamples bring real value in debugging complex systems.

• No problem with partial specifications. It is unnecessary to completely specify the
system before checking properties with a model checker. Hence, model checking
can be applied many times during the design of a complex system.

However, the state-space explosion problem is a major challenge in this approach. In
real projects, the number of global system states of a concurrent system with many
processes or complicated data structures can be enormous. Much of the research in this

46

4.2. Predicate Abstraction

area is targeted at reducing the state-space of the model and many techniques have been
introduced: such as symbolic representations, methods related to pushdown automata,
symmetry or abstraction. Thank to the help of the methods, state-of-the-art model
checkers now can solve problems in real complex systems, even infinite-state systems
[Eme08, JM09].

In theory, model checking can verify both safety and liveness properties. However, the
complexity of model checking liveness properties is inherently much more enormous
than that of checking safety properties. Engineers therefore usually do not even write
the liveness property. Moreover, only temporal operator 2 usually appears in TLA+

specifications [BL02]. Therefore, here we focus on only safety properties.

4.2 Predicate Abstraction

Abstraction is probably the most significant method to copy with the state-space explosion
problem. Abstraction defines a relationship between the states of the concrete system
and the states of a “reduced” system. To construct a smaller model, many concrete
states are usually mapped to one abstract state. Abstraction is usually performed on a
high level description of the system, before building the model for the system. Hence,
the construction of the “prohibitively large” model is prevented.

The “reduced” model is usually constructed based on two techniques the cone of influence
reduction and data abstraction [CGP99]. The cone of influence reduction eliminates
variables that do not influence the variables in the specification. Data abstraction finds a
mapping between the actual data values in the system and a small set of abstract data
values. Data abstraction is based on the observation that the specifications of systems
that include data paths usually involve fairly simple relationships among the data values
in the system.

At the moment, there are many ways to construct an abstract model. existential
abstraction is one of the most well-known technique [CGL94].

Definition 4.2. Amodel M̂ = {Ŝ , Ŝ0, R̂, L̂} is an existential abstraction of M = (S ,S0,R,L)

with respect to α ∶ S → Ŝ if and only if

• ∃s ∈ S0 . α (s) = ŝ ⇒ ŝ ∈ Ŝ0

• ∃ (s0, s1) ∈ R . α (s) = ŝ ∧ α (s1) = ŝ1 ⇒ (ŝ, ŝ1) ∈ R̂.

• a ∈ L̂ (ŝ)⇔ (∀s ∈ S . α (s)⇒ a ∈ L (s)) for every atomic proposition a ∈ AP .

Example 4.3. Let a be an atomic proposition a ≜ (x = 1), P be a set of two predicates
p1 ≜ (x > 0) and p2 ≜ (y = 1) and a model M with one initial state s0 ≜ ⟨x = 1, y = 0⟩, two
other states s1 ≜ ⟨x = 2, y = 2⟩, s2 ≜ ⟨x = 1, y = 1⟩ and only one transition from s0 to s2. In
the abstract model, we have:

47

4. Model Checking

• Two concrete states s0, s1 are mapped to the same abstract state ŝ0 ≜ ⟨p1 = ⊺,p2 = �⟩.

• The state s2 is mapped to an abstract state ŝ2 ≜ ⟨p1 = ⊺,p2 = ⊺⟩.

• There exists only one transition from ŝ0 to ŝ2. Notice that while s1 and s2 are
disconnected, their images ŝ0 = α (s1) and ŝ2 are connected in the abstract model.

• ŝ2 is labelled with a.

• ŝ0 is not labelled with neither a nor ¬a. The reason is that s0 is marked with a
but s1 is marked with ¬a.

Predicate abstraction is an famous instance of existential abstraction [GS97]. The abstract
model is constructed from a given set of predicates P = {p1, . . . ,pn} over program variables
x1, . . . , xm . Every predicate pi is represented by a Boolean variable bi in the abstract
program, while the original variables are eliminated. Since the set of predicates P is
finite, the abstract model is always a finite-state system, even though the original system
has infinite states.

The abstraction function is usually denoted as α (s) = ⟨p1 (s) , . . . ,pn (s)⟩ where pi (s)
is the evaluation of the predicate pi on the state s. The set of abstract states Ŝ can be
defined as Ŝ = {ŝ ∣ ∃s ∈ S . α (s) = ŝ}.

The set P of predicates and the abstraction function introduce an equivalence relation
over states and a partition of the state space. More precisely, if two states s0 and s1 in S
satisfy the same set of predicates in P , they are equivalence and are mapped to the same
abstract state ŝ. The equivalence classes form a partitioning of the state space, each
class is characterized by which of n predicates p1, . . . ,pn hold and which do not. Then,
every abstract state is a representative of an equivalence class and may be formalize by a
bit vector of length n.

Let π be the concrete path π = s0, s1, . . . The abstraction of the path π is denoted as
α (π) = α (s0) , α (s1) , . . .

We now can state two main critical properties of existential abstraction

Lemma 4.4 (Over-approximation). Let M̂ be an existential abstraction of M . The
abstraction of every path (trace) π in M is a path (trace) in M̂ .

π ∈ M ⇒ α (π) ∈ M̂

Lemma 4.5 (Conservative Abstraction). Let ϕ be a LTL formula such that the negation
operator (¬) is only applied to the atomic propositions, and let M̂ be an existential
abstraction of M . We have that if ϕ holds on M̂ , then it also holds on M .

M̂ ⊧ ϕ⇒M ⊧ ϕ

48

4.3. Model Checking with NuSMV2

Because of the condition of the labeling function, existential abstraction requires that
the set AP must contains all propositions in the formula ϕ which represents the desired
property. If not, we cannot evaluate successful ϕ on every abstract state.

Existential abstraction is a conservative over-approximative technique. The use of a
conservative abstraction generates noticeable reductions in the state space and therefore
model checking on the resulting model may be easier than on the original one 1 The
weakness of the conservative abstraction is that when model checking of the abstract
model fails it may produce a counterexample that does not correspond to a concrete
counterexample because of the too coarse abstraction. This counterexample is usually
called a spurious counterexample. When a spurious counterexample is found, the set of
predicates must be adjusted in order to eliminate this counterexample.

A typical way to modify the set of predicates is to add new predicates and this method
is named refinement. In the past, the model checker needed the user assistance to
compute a more sufficiently precise abstraction. Recently, the abstraction refinement
process has been automated by the Counterexample Guided Abstraction Refinement
(CEGAR) paradigm [BR01, CGJ+00]. While refinement is a growing research area in
two last decades, we here do not focus on it. The main reason is that since every TLA+

specification is a logical program, it is not difficult to find a “good” set of predicates. In
our work, we assume that P is given by the user. Moreover, the user has to refine P
manually if needed.

4.3 Model Checking with NuSMV2

Our first attempt was to verify the reduced model generated by predicate abstraction
with the model checker NuSMV2 [CCG+02]. NuSMV is a reimplementation and exten-
sion of SMV, the first model checker based on BDDs [McM93, CCGR99]. NuSMV2
supports model checking techniques based on binary decision diagrams and propositional
satisfiability.

The serious shortcoming of this approach is the full unrolling of the transition relation.
Our experiments showed that the unrolling may need more time than checking directly
the original model with TLC in some cases. The main reason is that after the translation
to the SMT-LIB format, the next predicate is really a complex formula which may contain
hundred lines, involving user-defined types, uninterpreted functions and axioms for sets
(and functions). Therefore, Z3 spends a lot of time evaluating predicates on it.

In addition, NuSMV2 spends all of its resources in computing one inductive assertion
during the running time. This inductive assertion is usually stronger than a desired
property. This strategy is refered as monolithic [Bra11].

1To construct an abstract model, we need spend time evaluating predicates on concrete states and
this task may require a lot of time.

49

4. Model Checking

Many model checking algorithms have the same problem since they need to compute pre-
or post-images precisely or approximately and this computation step also demands many
SMT calls. Therefore, we decided not to do experiments with those which require the
unrolling of the transition relations.

4.4 Model Checking with IC3

After considerable discussion, we found that IC3 2 might solve our problem. IC3 is
a model checking algorithm for safety properties of a finite state transition system.
The main difference between IC3 and other model checking algorithms is that instead
of applying a monolithic strategy, it pursues an incremental one. To make a formal
verification, IC3 produces lemmas in CNF that are inductive relative to previous lemmas,
the safety property and step-wise assumptions [Bra11].

Before explaining how IC3 works with predicate abstraction in detail, we recall some
common definitions which are used in the rest of this section.

4.4.1 Background

By x i , we denote an i -th copy of x and we distinguish the copies by the number of primes.
By F i , we denote a new formula obtained by adding i primes to a formula F . By S i , we
denote a new set obtained by adding i primes to every formula in S . For brevity, we
sometimes write x ′,F ′ and S ′ instead of x 1,F 1 and S 1, respectively.

A finite-state transition system is a tuple S = (X , I ,T) where X is a set of internal
state variables, I is a set of initial states represented by the logical formula I (x̄), and a
transition relation T (X ,X ′). In our work, S is generated by predicate abstraction. In
other words, X is the set P of predicates. In the rest of this section, by Ŝ = (P, Î , T̂), we
denote the finite-state transition system generated by predicate abstraction and minimal
existential abstraction. Notice that the IC3 algorithm does not compute Î and T̂ .

A state s of a transition system 3 is an assignment of Boolean values to all variables in P
and is represented as a conjunction of literals. Note that the negation of an assignment,
denoted by ¬s , can be transformed into an equivalent clause. An inducetive generalization
of a clause d is a (sub-) clause c of s such that all literals of c must appear in s and
c ⇒ s.

An inductive assertion for a transition system is a formula F which satisfies two conditions
I ⇒ F and F ∧T ⇒ F ′. A formula F is an inductive strengthening of a safety property
P if F ∧P is inductive. A formula F is inductive relative to another formula G if both
I ⇒ F and G ∧T ∧ F ⇒ F ′ hold. Since the assertion G reduces the set of states that

2IC3 is an abbreviation of Incremental Construction of Inductive Clauses for Indubitable Correctness
3It is generated by predicate abstraction

50

4.4. Model Checking with IC3

must be considered, an assertion F may not be inductive on its own (or F ∧T ⇏ F ′). A
Counterexample To Induction (CTI) is a state which is a bad state or can lead to a bad
state.

4.4.2 How IC3 works

IC3 incrementally extends and refines a sequence of frames F = F0,F1,F2, . . . ,Fk that are
over-approximations of the sets of states reachable in at most 0, 1, 2, . . . , k steps. Frames
are represented as logical formulas. Moreover, IC3 requires that all frames must satisfy
four following conditions:

(P1) I ⇒ F0,

(P2) Fi ⇒ Fi+1 for 0 ≤ i ≤ k ,

(P3) Fi ⇒ P for 0 ≤ i ≤ k , and

(P4) Fi ∧T ⇒ F ′
i+1 for 0 ≤ i ≤ k .

The following lemma shows the main property of F

Lemma 4.6. If Fi and Fi+1 are equivalent for some i , then these above properties imply
that Fi is an inductive invariant and Fi ⇒ P . Therefore, P is an invariant [Bra11].

Proof. First, Fi is closed under the transition relation because of (P4) and Fi ⇔ Fi+1.
Second, Fi contains all initial states since (P1) and (P2). Thus, Fi is inductive. By (P3),
we have that P is an invariant. Moreover, Fi shows an inductive strengthening of P .

We now turn to the details of the algorithm. Here, we follow the tutorial by Sebastian
Wolff [Wol14]. Algo 4.1 shows the top-level function prove which returns true if and
only if P is S -invariant.

First of all, the satisfiability of I ∧¬P and I ∧T ∧¬P ′ are checked to detect 0- and 1-step
counterexamples. This step ensures that all initial state are “good” state and cannot
reach a bad state in one step. Otherwise, we have a concrete CTI and the execution
stops.

After the primary checks, the sequence F is initialized to F0 = I ,F1 = P and the counter
is set to k = 1. Note that the initialization of F satisfies all properties (P1) − (P4).

On each iteration, first a new frame Fk+1 is added to the sequence F (line 28). Second,
prove calls strengthen (k) to strengthen Fi for 1 ≤ i ≤ k so that a bad state cannot
be reached in at most k steps. If so, prove calls propagateClauses (k) to propagate
clauses forward through F1,F2, . . . ,Fk+1. Finally, if this propagation yields any adjacent
frames Fi and Fi+1 that share all clauses, i.e. Fi ⇔ Fi+1, then Fi is an inductive invariant,
proving that P is invariant.

51

4. Model Checking

Algorithm 4.1: IC3s top-level function prove ()

input : A transition system S and a property P
output : A Boolean value

21 if sat(I ∧ ¬P) or sat(I ∧T ∧ ¬P ′) then
22 return false
23 end
24 F0 ∶= I , clause (F0) ∶= ∅ ;
25 F1 ∶= P , clause (F1) ∶= ∅ ;
26 k ∶= 1 ;
27 while true do
28 Fk+1 = P ;
29 if not strengthen(k) then
30 return false ;
31 end
32 propagateClauses(k) ;
33 if Fi ⇔ Fi+1 for some 0 ≤ i ≤ k then
34 return true ;
35 end
36 k ∶= k + 1 ;
37 end

In addition, this check with properties of strengthen (k) guarantees that the loop
at line 27 is always terminated. By P2, the state sets represented by F0,F1, . . . ,Fk are
non-decreasing with level of k . If the algorithm does not terminate at the final check at
line 33, the state sets represented by F0,F1, . . . ,Fk must be strictly increasing with level
of k . Since the number of states is bounded by maxno = 2∣X ∣ + 1, the sequence F has at
most maxno elements. Therefore, the loop at line 27 is always terminated.

Algorithm 4.2: IC3s CTI detection strengthen

input : The index of a frame k
output : A Boolean value

38 while sat(Fk ∧T ∧ ¬P ′) do
39 s ∶= predecessor of ¬P ′ extracted from the witness ;
40 if not removeCTI(⟨s, k⟩) then
41 return false ;
42 end
43 return true ;
44 end

Here, (un)sat are calls to the SMT solver. For level k , strengthen (k) iterates until
Fk removes all states that lead to a bad state in one step. Assume s is one such state.

52

4.4. Model Checking with IC3

strengthen (k) calls removeCTI (s) in 4.3 to eliminate s. The removal keeps all
properties P1 −P4 true.

Algorithm 4.3: IC3s CTI elimination
input : A bad entry ⟨s, k⟩
output : A Boolean value with an explanation for an error trace, if exists

45 states ∶= {⟨s, k⟩} ;
46 while states ≠ ∅ do
47 ⟨q , i⟩ ∶= pop an element of states that minimizes i ;
48 if sat(F0 ∧T ∧ ¬q ∧ q ′) then
49 print Counterexample ;
50 return false ;
51 end

// here, ¬q is at lest inductive relative to F0
52 j ∶= maximal j with unsat(Fj ∧T ∧ ¬q ∧ q ′) ;
53 c ∶= inductiveGeneralize(¬q) ;
54 for l ∶= 0 to j + 1 do
55 Fl ∶= Fl ∧ c ;
56 end
57 if j ≤ j − 1 then
58 return true // proof obligation fulfilled
59 end
60 w ∶= witness for sat(Fj+1 ∧T ∧ ¬q ∧ q ′) ;
61 p ∶= predecessor of q extracted from w ;
62 states ∶= states ∪ {⟨p, j + 1⟩} ;

// ⟨p, j + 1⟩ might not resolve ⟨q , i⟩ ; check again
63 states ∶= states ∪ {⟨q , i⟩} ;
64 end
65 return true ;

IC3 maintains a whole set of such proof obligations. Each entry ⟨q , i⟩ in states mentions
that a state q must be eliminated from frame (formula) Fi . To do so, we prove that (1)
Fi−1 implies ¬q and (2) ¬q ∧Fi−1 ∧T ∧ q ′ is unsatisfiable. By (1) and (P2), we have that
Fl ⇒ ¬q for 0 ≤ l ≤ i and therefore we can conjoin a clause c to frames F0, . . . ,Fi where c
is a inductive generalization of ¬q , i.e. c ⇒ ¬q . By (2), we have that q is removed from
Fi . Finally, from (1) and (2) we can conclude that ¬q is inductive relative to Fi−1. It
means that Fi implies ¬q .

Let us now explain how the function removeCTI(s) in 4.3 generates correct proof
obligations for ⟨s, k⟩ (and ⟨q , i⟩).

53

4. Model Checking

First of all, removeCTI checks if q is reachable from F0 just in one step (line 48) 4. If
so, we can construct a counterexample and the algorithm stops. Otherwise, we seek a
maximal j such that Fj ∧T ∧ ¬q ∧ q ′ is unsatisfiable. Due to the first check at line 21,
j must exist. We also have that j ≥ i − 2. If not, ⟨q , i⟩ can be reached in at most i − 1
steps. Contradiction. Moreover, we can prove that ¬q is inductive relative to each frame
Fl for 0 ≤ l ≤ j .

Next, we can conjoin an inductive generalization c of ¬q to F0, . . . ,Fj+1. Certainly, we
can choose c = ¬q , but this might be inefficient because only the single state q is removed.
The generalization can eliminate not only q but also other q − like states. However,
instead of the algorithm down in [Bra11], we choose c is an unshifted unsatisfiable core
of Fj ∧T ∧ q ′ such that every literal of c must be a literal of q ′. If j ≥ i − 1, we are done.
Otherwise, we know that a lemma is not enough “strong” and we need to find a better
one.

Assume that j < i − 1. Hence, we have a witness w of Fj+1 ∧T ∧ ¬q ∧ q ′ (line 60). Let p
be a predecessor of q extracted from w . Now our additional minor goal is to generate
a proof obligation of p since q is reachable through p. Therefore, we add ⟨p, j + 1⟩ to
states (line 62).

Eventually, obligation ⟨p, j + 1⟩ fulfills and p is eliminated from Fj+1. Then ⟨q , i⟩ is
considered again and the procedure is rerun. However, the query Fj+1 ∧T ∧ ¬q ∧ q ′ will
do not have a witness with p again because of the previous strengthening. Hence, a new
predecessor of q is revealed and is treated like p. In general, we may need to find a proof
obligation for every predecessor of q . Since the number of states in finite, removeCTI
always terminates.

Notice that properties (P1) − (P4) in F are maintains during removeCTI.

(P1) No initial state is eliminated from F0. Since F0 implies ¬q (enforced by check at
line 21 and 48), the conjunction of F0 and c does not change the set represented
by F0. Indeed, c is actually inductive relative to F0.

(P2) Clauses are always added to all frames F0, . . . ,Fi for some i and therefore, we have
Fi ⇒ Fi+1.

(P3) We only add more clauses to frames.

(P4) A state q and all its predecessors are eliminated, together.

Finally, we need to propagate clauses forward to refine frames. That is, some clause c of
frame Fi is add to frame Fi+1 (line 69). To do that, we need to check that Fi ∧T ∧¬c′ is
unsatisfiable. That is, Fi+1 does not contain ¬c and ¬c is unreachable in at least i + 1
steps. Here, we focus on only one clause. However, in theory, this is not the strongest
possible refinement. The combination of two or more clauses may be inductive relative
to Fi but no clause is.

4Notice that the initial check at line 21 guarantees that F0 does not contain q .

54

4.4. Model Checking with IC3

Algorithm 4.4: IC3s clause pushing propagateClauses
input : The number of frame k + 1

66 for i ∶= 1 to k do
67 for each clause c ∈ clause (Fi) do
68 Fi ∶= Fi ∧ c ;
69 clause(Fi) ∶= clause (Fi) ∪ {c} ;
70 end
71 end

Finally, the following lemma shows the correctness and termination of IC3. This lemma
can be proved based on ideas we discuss in the previous paragraphs.

Lemma 4.7. Given a finite state transition system S and a formula P , IC3 terminates
and returns true if and only if P is a safety property of S [Bra11].

IC3 with predicate abstraction It is easy to modify the above algorithms to combine
IC3 with predicate abstraction. Literals now show the truth value of predicats and frames
are over-approximations of abstract states. Moreover, instead of a concrete system and
SAT calls, IC3 now is applied on an abstract system and calls a SMT solvers. For
example, a query at line 52 is replaced by (un)satSMT (Fj ∧T ∧ ¬q̂ ∧ q ′).

Spurious counterexamples can happen because of two following reasons [BBW14]:

1. An abstract state p represents both reachable and unreachable states and the
unreachable subset of p̂ leads to an abstract CTI q̂ . Since p̂ covers reachable
states, IC3 cannot remove it and erroneously concludes that a counterexample is
discovered.

2. Fi ∧T ∧ ¬ŝ ∧ ŝ ′ is satisfiable while Fi ∧T ∧ ¬s ∧ s ′ is not. The reason is that an
abstract state ŝ resembles some concrete states that are reachable in at most i − 1
steps and concrete states that are reachable in at least i steps.

While the first scenario is a common challenge in predicate abstraction, the second one is
a typical problem of IC3. Therefore, when reviewing a counterexample, the user needs
to check whether concrete states characterized by an abstract state are reachable in the
same number of steps. Notice that our system has not supported automatic refinement
and the user needs to change a set of predicates manually.

Since the lack of automatic refinement, the implementation of IC3 with predicate abstrac-
tion is similar with the original one, except that we now consider only abstract states
q̂ (not concrete states q). Notice that we still use the original initial and transitional
formulas.

55

4. Model Checking

4.5 Conclusions

In this chapter, first we have introduced model checking and its features. In addition,
we have described how to copy with the state-space explosion problem by predicate
abstraction. We have showed some results of our preliminary experiments with NuSMV2
and given reasons why monolithic is not an appropriate strategy for our model checker.
Finally, we have explained how to generate an incremental proof for a safety property with
the IC3 algorithm. In our preliminary experiments, IC3 could verify safety properties in
acceptable time since it did not need to unroll the transition translation. Therefore, we
decided to apply the IC3 algorithm. Our model checker is the integration of IC3 and
predicate abstraction.

56

CHAPTER 5
Translation of TLA+ to Z3

5.1 Overview

The main goal of this section is to develop an efficient translation from the fragment
of TLA+ discussed in Section 5.2 to the language of the SMT solver Z3. The resulting
Z3 specification should be efficient enough to construct a predicate abstraction which is
used to check the invariant. The translation proceeds in four main steps: type synthesis,
Boolification, expression rewriting and information addition which contains symbol
declarations and assertions of axioms.

Figure 5.1: Our translation process

Our framework for the SMT-LIB translation is presented in Fig. 5.1. In general, the
translation has four main steps. First, based on the type-correctness invariant which is
given by users in order to know the possible values of variables, our system constructs
and assigns type information to every expression in a TLA+ specification. Our system
will stop and give the user an error message if it finds a type violation. Second, the
Boolification procedure performs a quick double-check of expressions’ types. Then,
our tool rewrites TLA+ formulas that Z3 cannot handle directly. At that point, most
expressions have a native counterpart in the language of Z3. Finally, extra information

57

5. Translation of TLA+ to Z3

for symbol declarations and assertions of axioms is added. Now, the it is ready to pass
the result to the solver.

Given a solver’s input language, such as the SMT-LIB extension of Z3, we call a basic
formula one that is formed by TLA+ expressions that can be directly written in that
target language. In other words, a basic TLA+ expression has a counterpart in the target
language. Boolean operators and most of operators defined in the module Integers are
one-to-one corresponding with the predefined operators of SMT-LIB/AUFLIA. However,
operators and constructs for sets and functions are not. Therefore, we need to rewrite
these expressions into those which can be straightforwardly passed to the SMT solver.

Researchers have recently made attempts on translating non-temporal TLA+ part into
many-sorted (first-order) logic. Hansen and Leuschel introduced a framework to translate
TLA+ to B for validation with ProB [HL12, LB03]. However, ProB is an explicit model
checking tool and it does not offer advatages of predicate abstraction. Constructing a
predicate abstraction for a B specification is not our focus. Merz and Vanzetto presented
approaches to encode TLA+ proof obligations into many-sorted logic and to integrate
automated theorem provers and SMT solvers into TLAPS. First, they tried to encode
sets by characteristic predicates but we cannot represent a set of sets or functions with
characteristic predicates [MV12]. Therefore, this method does not meet our requirements.
Later, they suggest the single-sorted encoding for TLA+ , which is also called the untyped
encoding. This approach can handle a useful fragment of the TLA+ language, including
set theory, functions, linear arithmetic expressions and especially the CHOOSE operator
(Hilbert’s choice) [MV12]. The main weakness of the untyped encoding is that this
mechanism introduces many additional quantifiers and defines many “fresh” relations,
even for built-in operators in SMT-LIB what we say the implications of having many
quantifiers. In order to reduce the number of quantifiers and to utilize features in
SMT solvers, Merz and Vanzetto proposed a TLA+ type system using refinement and
dependent types [MV14]. However, deciding a refinement and dependent type for a TLA+

expression is an undecidable problem. Moreover, if their typed system cannot decide an
appropriate type for an expression, such as the empty set, they will come back to the
untyped encoding. Therefore, their systems are not efficient enough to reason about a
next-state action with an SMT solver since a proof obligation is usually more “shallow”
than the nsext predicate.

First, we introduce our new TLA+ fragment TLA+τ which is smaller than one which TLC
can handle, but we believe our fragment is still expressive enough to write specifications
for many distributed algorithms. Our TLA+ fragment requires an over-approximation on
a function and accepts most relevant expressions records, tuples and set operators. Some
unsupported features on our fragment are the CHOOSE operator, an empty sequence,
and a set of elements with different types. In contrast to the standard TLA+ , expressions
in our fragment are distinguished into different syntactic categories: terms t , formulas ϕ,
numbers n, strings str , sets s, functions fcn, records rcd , tuples tup and expressions e.

Second, our type system T is presented. In general, each kind of syntactic categories
except terms has a one-to-one corresponding class of types. SMT basic types are

58

5.2. The fragment of TLA+

Bool , Int , and String and constructed types are classified into four categories which are
sets, functions, records and tuples. In addition, our type system contains type variables
α which can be thought of as unknown types and are interpreted over the resulting
Herbrand universe generated by type constructors. A set of types in a given TLA+

specification is constructed based on the TLA+ invariant TypeOK .

Before the translation, we need to check whether or not each expressions e in a given
TLA+ specification Spec can be assigned a suitable type. To do that, we implement a light
constraint-based type-checking procedure which has two main modules: a unification
one and a constraint one. The main purpose of the first module is to construct a type
assignment σ based on type inference rules which are purely syntactic. After that,
the second module generates corresponding constraints which must be satisfied by the
assignment σ. A TLA+ expression is T well-formed if and only if our type checker can
assign it (and its sub-expressions) a type. Notice that to avoid conflicts, all (bounded)
variables should be renamed so that no two (bounded) variables have the same name in
order to avoid ambiguity. The renaming procedure can be done automatically.

Because TLA+ is an untyped language, there is no syntactic differences between TLA+

Boolean expressions and non-Boolean ones. In [Van14], Vanzetto introduces an algorithm
to distinguish them. We extend Vanzetto’s algorithm and use the extension to perform a
quick double-check of expressions’ types. Our algorithm is complete for TLA+τ .

If no type errors are found, the translation starts. Hence, rewriting rules are applied to
transform a complex TLA+ expression to a simpler one. All rewriting rules ensures that
a resulting formula is T well-formed. Moreover, many heuristics are applied during the
transformation period to simplify the resulting expression and to improve the performance
of the SMT solver. The translation stops when all expressions are in the basic form.

Finally, a shallow embedding is added. This step adds extensionality axioms for sets
and functions. Moreover, it declares useful constants and constraints for strings. The
resulting specification now can pass directly to Z3.

5.2 The fragment of TLA+

In this subsection, we define a fragment of the TLA+ language, which will be used in
the rest of this chapter and be called TLA+τ 1. The fragment considered here is smaller
than one which TLC can handle, but we believe our fragment is expressive enough
to write specifications for many distributed algorithms. In contrast to the standard
TLA+ , expressions in our fragment are distinguished into different syntactic categories:
terms t , formulas ϕ, numbers n, strings str , sets s, functions f , records rcd , tuples
tup, and expressions e. Moreover, TLA+τ requires the type invariant TypeOK in every
specification and has some restrictions which are mentioned later.

1The symbol TLA+τ implies that this fragment will be decorated with the type system described in
the next section.

59

5. Translation of TLA+ to Z3

Restrictions in TLA+τ are

• The CHOOSE operator, the empty sequence, the general construct {e ∶ y1 ∈ S1, . . . , yn ∈ Sn},
recursive definitions, a function application with many arguments are not allowed.

• Temporal operators are not considered.

• The CASE construct without OTHER is also removed.

• Every expression in TLA+τ must have a TLC value 2.

• After the type synthesis, all elements of a set must have the same type 3.

• All elements in the domain of a function f should have the same type in our type
system which is described in detail later.

• The codomain of a function f , which is {f [x] ∶ x ∈ DOMAIN f }, should be a TLC
value and all of its elements should have the same type. For example, a function

[x ∈ {1,2}↦ IF x = 1 THEN f [x] = 0 ELSE f [x] = “a”]

is illegal.

• A TLA+τ string is considered as a constant, not a sequence of characters 4.

In the following, we use notations

• x is a variable,

• c is a constant which can be TRUE, an integer or a tuple constant,

• s, fcn, rdc, tup are respectively abbreviations for sets, functions, records and tuple,
and

• ⊗,⊕, ○ are a Boolean operator, an arithmetic comparison operator, a set operator,
respectively.

TLA+τ is defined with the following grammar

TLA+ is an untyped system, and therefore type-correctness is not imposed by the language.
However, every specification in TLA+τ must have the type invariant for its variables and
ensure that all quantified variables are also bound to a finite set. For instance, both of
two expressions ∀x .ϕ and ∀x ∈ Int .ϕ are discarded.

Finally, it is use to see that TLA+τ is a subset of a fragment on which TLC can work. An
expression satisfying all above requirements is called a TLA+τ well-formed expression.

2This requirement implies that an argument of a function application is always in the function domain.
When we rewrite a function application, this condition is automatically added.

3This requirement implies restrictions for function’s domain and codomain.
4However, we do not think it is a weakness of TLA+τ since in practice, the user seldom uses a string

as a sequence.

60

5.3. Our type system

(terms) t ∶∶= x ∣ c ∣ fcn[e] ∣ rcd .h
(formulas) ϕ ∶∶= t ∣ FALSE ∣ TRUE ∣ ϕ⊗ ϕ ∣ e = e ∣ e ⊕ e ∣ e ∈ e ∣ e ⊆ e ∣ ∀x ∶ ϕ ∣ ∃x ∶ ϕ
(integers) n ∶∶= t ∣ . . . ∣ −1 ∣ 0 ∣ 1 ∣ . . . ∣ n + n ∣ n − n ∣ n ⋆ n ∣ n div n ∣ n mod n
(strings) str ∶∶= t ∣ “abc”
(sets) s ∶∶= t ∣ {} ∣ BOOLEAN ∣ Int ∣ s ○ s ∣

s ∶∶= {e, . . . , e} ∣ SUBSET s ∣ UNION s ∣ {x ∈ s ∶ ϕ} ∣ {e(x) ∶ x ∈ s} ∣

s ∶∶= [s → s] ∣ [hi ∶ si] ∣ s × . . . × s ∣

s ∶∶= DOMAIN fcn ∣ DOMAIN rcd ∣ DOMAIN tup
(functions) fcn ∶∶= t ∣ [x ∈ s ↦ e]
(records) rcd ∶∶= t ∣ [hi ↦ ei]
(tuples) tup ∶∶= t ∣ ⟨e, . . . , e⟩
(expressions) e ∶∶= t ∣ ϕ ∣ n ∣ str ∣ s ∣ fcn ∣ rcd ∣ tup

5.3 Our type system

5.3.1 Syntax and definition

In principle, types τ for the fragment TLA+τ are defined by the following grammar

τ ∶∶=Bool ∣ Int ∣ Str ∣

Set τ ∣ τ → τ ∣ [h ↦ τ] ∣ ⟨τ⟩ ∣ α

Bool, Int, and Str are atomic types for Boolean formulas, integers and strings, respectively.
The type constructor Set determines the level of set strata, for instance, for the enumera-
tion or the operators SUBSET and UNION. The type construct τ → τ is corresponds to
a unary function. The type construct [h ↦ τ] and ⟨τ⟩ are for records and tuples. Type
variables α, representing unknown types, are interpreted over the resulting Herbrand
universe induced by the preceding type constructors, that is, the set of all ground, i.e.
variable-free, types. We usually note atomic types by the letter β, and ground types by
the letter γ. A ground assignment σ is a mapping, maybe partial, of type variables to
ground types, where ◻ is the empty assignment.

σ ∶∶= ◻ ∣ α ↦ γ, σ

Example 5.1. Both sets S1 = {1,2} and S2 = {3,2} have the same type Set Int. A
variable z in an expression z ∈ S1 has the type Int. Both functions [x ∈ S1 ↦ 0] and
[x ∈ S2 ↦ 0] have the same type Int↦ Int. Two sets of functions [S1 → S1] and [S2 → S1]
have the same type Set (Int↦ Int). A type of a record [“rnd”↦ 1, “val”↦ “ECHO”] is
[“rnd” ∶ Int, “val” ∶ Str]. A type of a tuple ⟨1,TRUE⟩ is ⟨Int,Bool⟩.

In the following, we give some ideas how our type system works through small examples.

61

5. Translation of TLA+ to Z3

The empty set

The empty set {} is the set having no elements. In the set theory ZFC, the empty set
unique and is represented as ∀x .x ∉ {}. However, in a many-sorted type system, it is
natural to think that there is an empty set in every type for sets. In our type system,
many empty set exist.

The following examples show some challenges when reasoning about type information for
empty sets.

Example 5.2. A type of an expression, especially the empty set, depends on related
expression in some cases. Consider an expression e2 ≜ {} = {1}. It is easy to see that e2
should the type Bool since it is an equation. However, to decide a type of the empty set
at the left-hand side of e, we need to look at the right-hand side. Since {1} has the type
Set Int, the empty set here should have the same type Set Int.

Example 5.3. In some cases, it is not easy to know a type of an expression, including
an empty set. For example, in an expression e3 ≜ {{}} ∪ {{“a”}}, the set {{}} has the
type Set Set Str and its inner one has the type Set Str.

Example 5.2 and 5.3 show that the empty set can be assigned different types. Because
of the type discipline, we need to discard some TLA+ well-formed expressions with the
empty set. For example, an expression e4 ≜ {1} ∖ {1} = {“a”} ∖ {“a”} is evaluated as
TRUE under all of TLA+ interpretations which are the conservative, liberal and moderate
interpretations. However, in our system, e4 is a ill-formed expression since its left-hand
side and right-hand side have different types, Set Int and Set Str.

Sets

All elements of a set should have the same type; otherwise, a set has an undefined type.
The main advantage of this requirement is that it makes our type system simple. In
order to represent a set of elements with different types, we need to define an hierarchy
of types. At the moment, SMT solvers do not supported subtype declarations which
makes the reasoning procedure complex. Therefore, the set s ≜ {1, “a”} is ill-formed in
our fragment. Fortunately, we can encode many distributed algorithms in the way no set
of elements with different types are used. For example, the user can read our encodings of
Chandra’s algorithm for reliable broadcast by message diffusion (BcastFolklore) [CT96]
and Raynal’s algorithm for non-blocking atomic commitment (NBAC) [Ray97]. However,
this restriction is really a weakness of our type system. For instance, our system cannot
handle expressions in the TLA+ Paxos specification of Leslie Lamport because a variable
bmsgs is a set of records with different structures [Lam11].

62

5.3. Our type system

Functions

Many functions which TLC can evaluate are assigned undefined types in our type system.
Assume that s1 ≜ {1,2}, s2 ≜ {“a”},S ≜ {s1, s2}, and f ≜ [x ∈ S ↦ 0]. Since cardinalities
of s1 and s2 are not equal, s1 and s2 are TLA+ comparable. Hence, S has a TLC value
and f can be evaluated by TLC. However, s1 and s2 have different types: s1 has type
Set Int and s2 has type Set Str. Therefore, types of S and f are undefined. In general,
the type construct τ → τ cannot capture functions whose domain (and codomain) has
elements with different types.

Moreover, the over-approximation on functions can make an invalid TLA+ formula become
valid. Assume that a function f is declared as f1 ≜ [x ∈ {1,2} ↦ 1]. Now consider the
formula ϕ ≜ ∀x ∈ Int.f1[x] + 0 = f1[x]. If x = 3, the value of f [3] in TLA+ is undefined
since 3 is not in the domain of f . Therefore, we cannot compare f1[3] + 0 with f1[3]. In
other words, ϕ is invalid in TLA+ . However, in our type system, ϕ becomes valid. First,
f is assigned the type Int→ Int. Although we do not still know the value of f [3], now we
ensure that its value is an integer. Therefore, f1[3] + 0 = f1[3]. In general, for all x ∈ Int ,
we have f1[x] + 0 = f1[x]. It means ϕ is valid in our type system. To avoid this kind of
errors, the user should check whether an argument of a function application is in the
function domain. In our rewriting system, this condition x ∈ dom(f) is automatically
added.

Notice that the formula ϕ′ ≜ ∀x ∈ Int.x ∈ dom ⇔ (f1) f1[x] + 0 = f1[x] is valid in both
untyped and typed versions of TLA+ .

Functions, records and tuples

In contrast to the standard version of TLA+ , here functions, records and tuples are
classified into three different categories and have different types. The main reasons are
the over-approximation on functions and the operator DOMAIN .

• The type construct τ → τ requires that all elements in the codomain of a function
f must have the same type. If a tuple tup considered as a function, then the
type of tup has to be necessarily compatible with the type of a TLA+ function. It
means tup has a functional type τ1 → τ2 or all elements of tup should be of the
same type. As a result, we cannot use a tuple with elements of different types,
i.e. ⟨1,TRUE⟩. Therefore, to enhance the power of our type system, we decide to
reorganise functions and tuples into different classes.

• Functions and records are separated because of the similar reason.

• In TLA+ , a record rcd is a function whose domain is a set of strings and a tuple tup
is a function whose domain is set of integers. It means their domains DOMAIN rcd
and DOMAIN tup are always assigned different types. Therefore, it makes sense to
have distinguished type constructs for records and tuples.

63

5. Translation of TLA+ to Z3

The categorization of functions, records and tuples causes some troubles. Let’s consider
a record r ≜ [1 ↦ 1,2 ↦ 1] and a function f ≜ [x ∈ {1,2} ↦ 1]. In TLA+ , r equals f .
However, r and f are incomparable in our type system because they are assigned different
types. We do not see this as a strong limitation as our type constructor will complin
to the user about type inconsistency, and the user can fix the specification accordingly.
Notice that any type system requires discipline. In general, if a record appears in a given
TLA+ specification explicitly as a function, it will not be captured by our type discipline.
To avoid ambiguity, the user should not use the function application for a record.

Special type operators

We introduce four new special type operators in order to extract information from a
function, record and tuple type.

τ ∶∶= . . . ∣ dom (τ) ∣ cod (τ) ∣ dot (τ,h) ∣ get (τ, i)

These type modifiers are defined by the properties

dom (τ1 → τ2) = τ1 dom ([hi ↦ τi]i=1..n) = Str
dom (⟨τ1, . . . , τn⟩) = Int cod (τ1 → τ2) = τ2

dot ([hi ↦ τi]i=1..n ,hi) = τi get (⟨τ1, . . . , τn⟩, i) = τi

The type dom (τ) represents the domain of some type τ , when τ is a function, record,
or tuple type. The type cod (τ) describes the codomain of some function type τ . The
type dot ([hi ↦ τi]i=1..n ,hi) mentions that we want to know type information related to
a record selection at a field hi . Finally, the type get (⟨τ1, . . . , τn⟩, i) = τi is some type τi
at a position i . Notice that two different ground types in T are never unifiable.

By applying their properties as rewriting rules, the type operators dom, cod,dot,get, ω
can be eliminated when they are applied to the expected type.

5.3.2 Type relations

A type system usually allows two equivalence relations ≡ and ≅ on types, whose difference
is that the first one allows type variables to be unified, while the latter is the equality
between ground types defined above [MV14].

Two ground types γ1 and γ2 are equal, noted γ1 ≅ γ2, if and only if they characterize the
same elements. Note that in our system any two different ground types γ1 and γ2 with
syntactically different representations are always disjoint. Therefore, we say that γ1 ≅ γ2
is valid if and only if γ1 and γ2 are exactly the same object.

Two types τ1 and τ2 are unifiable, noted γ1 ≡ γ2, if and only if there exists a type
assignment σ that makes στ1 ≅ στ2. We usually write σ ⊧ τ1 ≡ τ2.

64

5.3. Our type system

Moreover, we define a new type relation ◁. we say that γ1 ◁ γ2 if and only if γ1 and γ2
are are unifiable and γ1 is a ground type. The type relation ◁ is a special case of the
type relation ≅ and appears only in inference rules for equality and two set operators ∈

and ⊆. We use this type relation to ensure that the upper bound of possible values of
some (left-hand or right-hand) side is known.

Example 5.4. The unification of the types Set α1 → Set Int ≡ Set Bool → α2 yields
the ground assignment σ = α1 ↦ Bool, α2 ↦ Set Int. Then, σ (Set α1 → Set Int) ≅

σ (Set Bool→ α2) is valid.

Example 5.5. The unification of the types Set α1 → Set α3 ≡ Set Bool → α2 yields the
ground assignment σ1 = α1 ↦ Bool. Then, σ1 (Set α1 → Set Int) ≅ σ1 (Set Bool→ α2) is
not valid.

Just for presentational purposes, sometimes we write τ1 ≡ . . . ≡ τn as τi ≡ τj for all
i , j ∈ 1 . . n and τ1 ≅ . . . ≅ τn as τi ≅ τj for all i , j ∈ 1 . . n.

While our type inference rules uses three above type relations to describe constraints,
our constraint solvers uses only the non-unifiable relation ≅ to generate constraints.

5.3.3 Typing propositions and typing hypotheses

Here, we adapt the definition of the type proposition in [Van14]. The typing proposition
of a type assignment e ∶ τ , noted ⟦e ∶ τ⟧, is a characteristic predicate associated to the
type τ that is true for precisely those expressions e whose possible values are in the
type τ . In other words, the TLA+ formula ⟦e ∶ τ⟧ states that the expression e is one
of the elements characterized by the type τ . For instance, having an integer type is
characterized by being a member of the set of integers. Typing propositions allow us
to syntactically translate a type assignment x ∶ τ , where τ is a ground type, to a TLA+

formula ⟦x ∶ τ⟧.

Definition 5.6. Given a TLA+ expression e and a ground type τ , the TLA+ formula
⟦e ∶ τ⟧ is defined as follows:

65

5. Translation of TLA+ to Z3

Boolean
Integer
String

Set
Set of records

Set of tuples

Function

Set of functions

⟦e ∶ Bool⟧ ≜ e ∈ BOOLEAN
⟦e ∶ Int⟧ ≜ e ∈ Int
⟦e ∶ Str⟧ ≜ e = “abc”

⟦e ∶ Set τ⟧ ≜ ∀x ∈ e ∶ ⟦x ∶ τ⟧
⟦e ∶ Set [hi ↦ τi]i ∶1..n⟧ ≜ ∧ e = [h1 ∶ e1, . . . ,hn ∶ en]

∧ ⟦h1 ∶ Str⟧ ∧ . . . ∧ ⟦hn ∶ Str⟧
∧ ⟦e1 ∶ Set τ1⟧ ∧ . . . ⟦en ∶ Set τn⟧

⟦e ∶ Set ⟨τi⟩i ∶1..n⟩⟧ ≜ ∧ e = e1 × . . . × en

∧ ⟦1 ∶ Int⟧ ∧ . . . ∧ ⟦n ∶ Int⟧
∧ ⟦e1 ∶ Set τ1⟧ ∧ . . . ⟦en ∶ Set τn⟧

⟦e ∶ τ1 → τ2⟧ ≜ ∧ e = [x ∈ DOMAIN e ↦ e[x]]
∧ ∀x ∶ x ∈ DOMAIN e ⇔ ⟦x ∶ τ1⟧

∧ ∀x ∶ ⟦x ∶ τ1⟧⇒ ⟦e[x] ∶ τ2⟧

⟦e ∶ [hi ↦ τi]i ∶1..n⟧ ≜ ∨ (∧ e ∈ [h1 ∶ e1, . . . ,hn ∶ en]

∧ ⟦[h1 ∶ e1, . . . ,hn ∶ en] ∶ Set [hi ↦ τi]i ∶1..n⟧)

∨ (∧ e = [h1 ↦ e1, . . . ,hn ↦ en]

∧DOMAIN e = {h1, . . . ,hn}

∧ ⟦h1 ∶ Str⟧ ∧ . . . ∧ ⟦hn ∶ Str⟧
∧ ⟦e1 ∶ τ1⟧ ∧ . . . ∧ ⟦en ∶ τn⟧)

Tuple ⟦e ∶ ⟨τi⟩i ∶1..n⟩⟧ ≜ ∨ (∧ e ∈ e1 × . . . × en

∧ ⟦e1 × . . . × en ∶ Set ⟨τi⟩i ∶1..n⟧)

∨ (∧e = ⟨e1, . . . , en⟩

∧DOMAIN e = {1, . . . ,n}

∧ ⟦1 ∶ Int⟧ ∧ . . . ∧ ⟦n ∶ Int⟧
∧ ⟦e1 ∶ τ1⟧ ∧ . . . ⟦en ∶ τn⟧)

To ensure that types are pairwise disjoint, we should introduce the set of axioms

∀x , y ∶ ⟦x ∶ β1⟧ ∧ ⟦y ∶ β2⟧→ x ≠ y

for each pair of atomic types {Bool, Int,Str}.

Definition 5.7. Given a typed-TLA+ expression e, the relativized expression R(e) is
obtained by recursively replacing each type annotation x ∶ τ by a new hypothesis ⟦x ∶ τ⟧.

66

5.3. Our type system

The relevant transformation rule for a quantified formula is

R(∀x τ ∶ ϕ) ≜ ∀x ∶ ⟦x ∶ τ⟧⇒R(ϕ)

As in standard relativization that ensures soundness in the translation from MS-FOL to
FOL, we have that the following lemma relates validity in TLA+ and our typed fragment
of TLA+ is sound.

Lemma 5.8. Given a ground type γ, we have ⊢ ∀x γ ∶ ϕ implies R(∀x γ ∶ ϕ).

Definition 5.9. A typing hypothesis H(x) for a variable x is a premise of the form x ∈ e
or x = e, for any expression e where x is not free in e.

The meaning of a type hypothesis for an expression e is that it is an upper bound to the
possible values of e. Therefore, type-correctness invariants are thus natural candidates
for typing hypotheses of global variables. Each quantified variable should be bound by a
specific set of its possible values. If we know type hypothesis of (global and local) variables,
we often decide the type propositions of most expressions in a TLA+ specification. The
challenge here is that typing propositions may appear in a given specification in many
different, though equivalent, forms. For example, the typing proposition ⟦S ∶ Set Int⟧
is equal to ∀z ∈ S ∶ z ∈ Int , but it may appear, for instance, as the equivalent formula
S ∈ SUBSET Int . Then, it is not always possible to easily identify them. Therefore, we
have the following restriction

Every type-correctness invariant is in the form x ∈ e where e is BOOLEAN ,Nat , Int
or constructs for SUBSET , a set of function, a set of records and a set of tuples.

5.3.4 Type system

A type system is defined by a collection of inference rules which are independent from
particular type-checking algorithms [Car96]. Given a TLA+ expression e and an expected
type τ for that expression, the main purpose of a TLA+ type system is to generate a
valid derivation tree of inference rules in order to decide whether or not τ is a type of e.
To explain how to construct a derivation, first we need to provide some definitions.

The description of a type system starts with the description of a collection of judgements.
A judgement is a triple in the form:

Γ ⊢ e ∶ τ

asserts that the TLA+ expression e has type τ in the typing context Γ. The typing context
Γ is usually represented as an ordered list of distinct variables and their types, of the
form ∅, x1 ∶ τ1, . . . , xn ∶ τn . The symbol ∅ is used to denote the empty typing environment.

67

5. Translation of TLA+ to Z3

The collection of variables x1, . . . , xn declared in Γ is indicated by dom (Γ). In our system,
a variable x can be a variable symbol or an operator symbol in TLA+ . A symbol Γ, x ∶ τ
is used to emphasiszethe variable x in the typing context and implies that x does not
appear in the domain of Γ.

The application of a type assignment σ to a typing context is recursively defined by
following rules:

σ∅ = ∅ and σ(Γ, x ∶ τ) = (σΓ, x ∶ στ).

A type inference rule is written as a number of premise judgements Γi ⊢ ei ∶ τi and a finite
collection of atomic type constraints C 5 above a horizontal line, with a single conclusion
judgement Γ ⊢ e ∶ τ below the line, where ei are typically sub-expressions of e. In other
words, an inference rule has the form

Γ1 ⊢ e1 ∶ τ1 . . . Γn ⊢ en ∶ τn C1 . . . Cm RΓ ⊢ e ∶ τ

where R is a rule’s name. If all of the premises and constraints are valid, the conclusion
must be valid. Therefore, in order to prove that an expression e has a type τ , we need to
find a derivation tree with a conclusion Γ ⊢ e ∶ τ . A symbol eτ denotes that an expression
e has a type τ and a judgement Γ ⊢ e ∶ τ is proven.

The definition of the type inference rules for the systems T is inspired from standard
type systems which are usually studied by the type theoretical research community
[Car96, Mil78]. During a type derivation, the type inference rules for those systems
introduce constraints with many fresh type variables, which are unified throughout to
obtain the most general type. In order to find derivation trees and to sovle constraints,
our type system needs two main modules which are

• the unification module which looks for type assignments of type variables, and

• the constraint module which checks whether or not all type constraints are satisfied.

If the type unification module cannot find a type assignment σ for a given expression e,
an error message will be showed. If so, then type variables must be instantiated by σ.
After that, the constraint module will generate constraints for e and check whether or
not σ satisfies all the constraints. If all requirements are satisfied, we can ensure that no
errors occur during the next translation step.

A pair ⟨Γ, τ⟩ is a typing of an expression e if and only if FV (e) ⊆ dom (Γ) and the
prejudgement Γ ⊢ e ∶ τ is valid. An expression e is typable if and only if it admits a type.

5An atomic constraint is defined in the following paragraph “Type inference rule”.

68

5.3. Our type system

Type inference rules

The typing inference rules for Boolean TLA+ expressions are given in Fig 5.2. The types
for variables are taken directly from the typing context Γ through rule T -Var. 6.

T -VarΓ ⊢ x ∶ Γ (x)

T -FalseΓ ⊢ FALSE ∶ Bool

Γ ⊢ ϕ1 ∶ Bool Γ ⊢ ϕ2 ∶ Bool
T -AndΓ ⊢ ϕ1 ∧ ϕ2 ∶ Bool

Γ ⊢ ϕ1 ∶ Bool Γ ⊢ ϕ2 ∶ Bool
T -IfΓ ⊢ ϕ1 ⇒ ϕ2 ∶ Bool

T -TrueΓ ⊢ TRUE ∶ Bool

Γ ⊢ ϕ ∶ Bool
T -NotΓ ⊢ ¬ϕ ∶ Bool

Γ ⊢ ϕ1 ∶ Bool Γ ⊢ ϕ2 ∶ Bool
T -OrΓ ⊢ ϕ1 ∨ ϕ2 ∶ Bool

Γ ⊢ ϕ1 ∶ Bool Γ ⊢ ϕ2 ∶ Bool
T -IffΓ ⊢ ϕ1 ⇔ ϕ2 ∶ Bool

Γ ⊢ e ∶ Set τ Γ, x ∶ τ ⊢ ϕ ∶ Bool x ∉ FV (e)
T -ForAllΓ ⊢ ∀x ∈ e . ϕ ∶ Bool

Γ ⊢ e ∶ Set τ Γ, x ∶ τ ⊢ ϕ ∶ Bool x ∉ FV (e)
T -ExistsΓ ⊢ ∃x ∈ e . ϕ ∶ Bool

Γ ⊢ e1 ∶ τ1 Γ ⊢ e2 ∶ τ2 Γ ⊢ τ1 ≡ τ2 T -EqΓ ⊢ e1 = e2 ∶ τ1

Figure 5.2: Inference rules for TLA+ Boolean expressions in T

Inference rules for Boolean operators require their arguments to have the ground type
Bool. Quantified formulas in the unbounded always have unknown types since there
are no rules form them in Fig. 5.2. Therefore, an error message will be showed if a
TLA+ given specification has unbounded quantified formulas. Notice that constraints in
inference rules only orient a type assignment or a unification problem.

The Appendix 26 shows remaining inference rules for other operators. When evaluating
an expression f that is supposed to be a function, as in the case of rules T -App and
T -Dom, we cannot evaluate the type of f by imposing a functional type on it. We expect
to derive the desired functional type from the context. That is why we need to define
special type operators dom and cod in Section 5.3.1. Strings (T -Str), the set of Boolean
values (T -Bool), literal integers (T -Num), the set of integers (T -Int) have a constant

6This rule is not for a Boolean TLA+ expression but we represent it here because it is basic.

69

5. Translation of TLA+ to Z3

type. Inference rules for (comparison) arithmetic operators require their arguments to
have the ground type Int.

It is easy to see that the typing inference rules in our type systems are syntax-directed.
In other words, for any expression e, at most one typing rule may be applied. Therefore,
a (possible) type assignment for an expression e is unique and fully determined by the
shape of the expression, in a given typing context. In other words, every expression
are assigned at most one expected ground type. This property can be easily proved by
induction on the structure of e (based on its operator).

Type constraints

A type derivation for a TLA+ expression through inference rules finds a type assignment
which marks the TLA+ expression and each of its sub-expressions with a type. In order
to construct a tree derivation, all expected types are forced to match type constraints
which lies in two equivalence relations on types: unifying ≡ and non-unifying ≅ whose
definitions are described in the section 5.3.2. An atomic type constraint CA is defined by
the grammar:

CA ∶∶= Γ ⊢ τ ≡ τ ∣ Γ ⊢ τ ≅ τ

A constraint Γ ⊢ τ1 ≅ τ2 is satisfiable if and only if τ1 and τ2 are ground types and have the
same syntactical structre. Informally, they are the same object. A constraint Γ ⊢ τ1 ≡ τ2
is satisfiable, noted σ ⊧ Γ ⊢ τ1 ≡ τ2, if and only if there exists a ground assignment σ that
makes σΓ ⊢ στ1 ≡ στ2 valid.

From the above definitions and the fact that types are disjoint, it is trivial to derive the
following equivalent, purely syntactic rules,

β ∈ S
C- ≡ -β

σ ⊧ Γ ⊢ β ≡ β

σ ⊧ Γ ⊢ τ1 ≡ τ2
C- ≡ -SET

σ ⊧ Γ ⊢ Set τ1 ≡ Set τ2

β ∈ S
C- ≅ -βΓ ⊢ β ≅ β

τ1 ≅ τ2
C- ≅ -SETΓ ⊢ Set τ1 ≅ Set τ2

σ ⊧ Γ ⊢ τ1 ≡ τ
′
1 σ ⊧ Γ ⊢ τ2 ≡ τ

′
2
C- ≡ -ARROW

σ ⊧ Γ ⊢ τ1 → τ2 ≡ τ
′
1 → τ ′2

τ1 ≅ τ
′
1 τ2 ≅ τ

′
2
C- ≅ -ARROWΓ ⊢ τ1 → τ2 ≅ τ

′
1 → τ ′2

70

5.3. Our type system

where S is a set of ground types.

A general constraint is considered as a logical formula and constructed by the following
grammar:

C ∶∶= CA ∣ C ∧ C ∣ ∃α .C

In addition to atomic constraints CA, a general constraint C is either a conjunction of
constraints, or the existential quantification of type variables. The two new constraints
allow to reflect the tree structure of a type derivation in a single constraint expression.

Non-atomic constraints are interpreted by the following rules:

σ ⊧ C1 σ ⊧ C2
C-∧

σ ⊧ C1 ∧ C2

σ,α ↦ γ ⊧ C
C-∃

σ ⊧ ∃α .C

where the mapping σ,α ↦ γ updates σ with a new assignment where α ∉ dom (σ) and γ
is a ground type. A constraint C is satisfiable, noted σ ⊧ C, if and only if there exists a
ground assignment σ that satisfies C.

Just for presentational purposes, sometimes we write ∃αa . (. . . (∃αb .C)) as ∃αa , . . . , αb .C,
and a concatenation of constraint conjunctions C1 ∧ (C2 ∧ (. . . ∧ Cn)) as a multi-line list
of constraints, as in TLA+ .

In addition to constraints for types, constraints for expressions’ values are used. For
example, the rule T -Rcd requires that there are no duplicate values in h1, . . . ,hn and this
requirement is represented as a constraint of the cardinality of a set {h1, . . . ,hn}, that is,
{∣h1, . . . ,hn}∣ = n.

The lack of sub-types is an important feature of the type system T since it makes T
simple and type constraint problems here can be solved efficiently by a basic unification
algorithm [Rob65]. Moreover, since a type assignment found by the unification module
assigns every (sub-)expression a ground type, constraints generated by the constraint
module are based only the non-unifiable relation ≅.

We define a new operator ⟪⟫, call constraint generator (CG), whose main purpose is to
generate constraints for given a typing context Γ, a TLA+ expression e, and an expected
type τ , with FV (e) ⊆ dom (Γ). The symbol ⟪Γ ⊢ e ∶ τ denotes generated constraints.
The operator is recursively defined over the structure of e. The full definition of ⟪⟫ is
described in the Appendix 26. Here, we explain how CG works through an example with
the inference rule T -Mem. The corresponding constraint for T -Mem is defined as the
following:

⟪Γ ⊢ e1 ∈ e2 ∶ τ⟫ ≜ ∃α . ∧ ⟪Γ ⊢ e1 ∶ α⟫

∧ ⟪Γ ⊢ e2 ∶ Set α⟫
∧ τ ≅ Bool

71

5. Translation of TLA+ to Z3

The constraint is the conjunction of constraints for T -Mem’s premises and an extra
atomic constraint for the expected type which must Bool. Informally, every free type that
appears in the typing rule premises is replaced by a fresh type variable and existentially
bound.

The following lemma asserts soundness and completeness of the CG rules with respect to
the type inference rules, when the judgements are ground by a type assignment σ.

Lemma 5.10. (CG soundness and completeness). Assuming FV (e) = dom (Γ), then
σ ⊧ ⟪Γ ⊢ e ∶ τ⟫ if and only if σΓ ⊢ e ∶ στ , for some ground assignment σ such that every
sub-expression of e is assigned a ground type by σ.

In other words, if the constraint ⟪Γ ⊢ e ∶ τ⟫ is satisfied by σ, then the generated constraint
contains only valid equality relationships, and the expression e is typable. This lemma
can be proved by an induction on the structure of e [MV14].

Type-checking procedure

The Algo. 5.1 shows how our type checker works. First, bounded variables should be
renamed such that each has a unique name. Bounded variables in the TLA+ language are
local and therefore, one name can be shared between many bounded variables. Renaming
is mandatory to avoid conflicts. Second, the type invariant TypeOK with the empty
environment Γ and the empty assignment σ is passed to findGroundAssignment and
checkGroundAssignment to construct ground type information in T for remaining
variables. Finally, two predicates Init and Next are checked. Notice that the type-checking
procedure for Init and Next cannot start with the empty environment and the empty
assignment. Variables declared by the statement VARIABLES are global and hence, all
occurrences of a global one should be assigned the same type.

Derivation examples

We here show three toy examples of type derivation in Examples 5.11, 5.12 and 5.13.

Example 5.11. Let’s consider the following formula

{} ∈ {} ∪ {{},{1,2,3}}

Type derivation of the above expression is shown in following proof trees. Because of
lack of space, the derivation is divided into sub-steps [1], [2], etc.

T -Empty
∅ ⊢ {} ∶ Set τ1 [1] Set τ1 ≡ τ2

T -Mem
∅ ⊢ {} ∈ {} ∪ {{},{1,2,3}} ∶ Bool

Type derivation of [1]:

72

5.3. Our type system

Algorithm 5.1: Type checking for a TLA+ specification
input : A TLA+ specifiction Spec with the type invariant TypeOK
output : A type environment Γ and a ground type assignment σ

1 Rename bounded variables;
2 Γ ∶= ∅, σ ∶= ◻;
3 if not findGroundAssignment(TypeOK ,Γ, σ) then
4 showError(TypeOK ,Γ, σ);
5 end
6 if not checkGroundAssignment(TypeOK ,Γ, σ) then
7 showError(TypeOK ,Γ, σ);
8 end
9 if not findGroundAssignment(Init ,Γ, σ) then

10 showError(TypeOK ,Γ, σ);
11 end
12 if not checkGroundAssignment(Init ,Γ, σ) then
13 showError(TypeOK ,Γ, σ);
14 end
15 if not findGroundAssignment(Next ,Γ, σ) then
16 showError(TypeOK ,Γ, σ);
17 end
18 if not checkGroundAssignment(Next ,Γ, σ) then
19 showError(TypeOK ,Γ, σ);
20 end

T -Empty
∅ ⊢ {} ∶ Set τ2 [2] τ2 ≡ Set τ3

T -Cup
∅ ⊢ {} ∪ {{},{1,2,3}} ∶ Set τ2

Type derivation of [2]:

T -Empty
∅ ⊢ {} ∶ Set τ3 [3] Set τ3 ≡ Set Int

T -Enum
∅ ⊢ {{},{1,2,3}} ∶ Set Set τ3

Type derivation of [3]:

i ∈ {1,2,3}
T -Num

∅ ⊢ i ∶ Int Int ≡ Int ≡ Int
T -Enum

∅ ⊢ {1,2,3} ∶ Set Int

When the derivation is finished, we gather the list of generated constraints

Int ≡ Int Set τ3 ≡ Set Int τ2 ≡ Set τ3 Set τ1 ≡ τ2

73

5. Translation of TLA+ to Z3

After resolving the unifying equalities, we obtain the following assignment σ:

σ = {τ3 ↦ Int, τ2 ↦ Set Int, τ1 ↦ Int}

Since σ satisfies all constraints and maps every type variable to a ground type, the whole
derivation is valid.

Example 5.12. Let’s consider the following formula

{“a”} ∖ {“a”} = {1} ∖ {1}

Type derivation of the above expression is shown in following proof trees. Because of
lack of space, the derivation is divided into sub-steps [1], [2], etc.

[1] [2] Set τ1 ≡ Set τ3
T -Eq

∅ ⊢ {“a”} ∖ {“a”} = {1} ∖ {1} ∶ Bool

Type derivation of [1]:

Str ≡ τ1
T -Str

∅ ⊢ “a” ∶ τ1
T -Enum

∅ ⊢ {“a”} ∶ Set τ1

Str ≡ τ2
T -Str

∅ ⊢ “a” ∶ τ2
T -Enum

∅ ⊢ {“a”} ∶ Set τ2 τ1 ≡ τ2
T -SetMinus

∅ ⊢ {“a”} ∖ {“a”} ∶ Set τ1

Type derivation of [2]:

Int ≡ τ3
T -Int∅ ⊢ 1 ∶ τ3
T -Enum

∅ ⊢ {1} ∶ Set τ3

Int ≡ τ4
T -Int∅ ⊢ 1 ∶ τ4
T -Enum

∅ ⊢ {1} ∶ Set τ4 τ3 ≡ τ4
T -SetMinus

∅ ⊢ {1} ∖ {1} ∶ Set τ3

When the derivation is finished, we gather the list of generated constraints

Str ≡ τ1 Str ≡ τ2 τ1 ≡ τ2

Int ≡ τ3 Int ≡ τ4 τ3 ≡ τ4

Set τ1 ≡ Set τ3

No unifier satisfies all of these above constraints and therefore, the above expression is
not allowed in our system.

Example 5.13. Let’s consider the following formula

{} = {}

Type derivation of [1]:

74

5.4. Boolification

T -Empty
∅ ⊢ {} ∶ Set τ1

T -Empty
∅ ⊢ {} ∶ Set τ2 Set τ1 ≡ Set τ2

T -Eq
∅ ⊢ {} = {} ∶ Set τ1

When the derivation is finished, we gather one generated constraint Set τ1 ≡ Set τ2 whose
most general unifiers are σ1 = {τ1 ↦ τ2} and σ2 = {τ2 ↦ τ1}. Since no most general unifier
maps each type variable to a ground type, the above expression is not allowed in our
system.

5.4 Boolification

In TLA+ , there is no syntactic difference between Boolean and non-Boolean expressions.
Therefore, we need to classify those elements of V (the set of variable symbols) and
O (the set of operator symbols) that are used as logical formulas and those that are
not. In our interpretation of TLA+ expressions, Boolean expressions always have a truth
(Boolean) value, and the arguments of logical operators always have a truth value as well.

Example 5.14. While the operator TRUE in the TLA+ expression p ∧TRUE should be
considered as a Boolean constant, in the TLA+ exprssion TRUE ∈ {FALSE}, it should not
be thought as an operator, but a constant.

Example 5.15. Consider the TLA+ expression ∀x ∶ (¬¬x) = x , which is not a theorem
and whose validity could be easily misinterpreted. The main reason is that it is not
possible to decide the truth value of this formula because x could have any value, such
as 1 or “a”.

Merz and Vanzetto [Van14] introduced an algorithm to identify the symbols used as
propositions, which is mutually defined by the operator JeK+ that treats the expression
e as a formula, and by the operator JeK− that considers e as a non-Boolean expression.
The algorithm recursively traverses an expression searching for the arguments of every
sub-expression. When it finds an expression e that is implicitly used as a Boolean, it
puts a superscript mark b on e. This only applies if e is a term, a function application,
or a CHOOSE expression. In particular, equality yields a Boolean value but it is not
expected that its arguments are formulas. If a non-Boolean expression, like a set or an
operator, is tried to be Boolified, meaning that a Boolean formula is expected in its place,
the algorithm aborts with a “type” error. Finally, an expression e has a Boolean value
if and only if it has a b mark or if it is a formula, that is, an expression of the form
e1 ○ e2, ∀x ∶ φ, e1 = e2, e1 ∈ e2, or an expression defined from formulas where ○ is a logical
connective.

The rules of boolification are presented below:

75

5. Translation of TLA+ to Z3

JxK+ ≜ x b

Jw(e)K+ ≜ wb(JeK−)
Je1⇒ e2K+ ≜ Je1K+ ⇒ Je2K+

J∀x ∶ eK+ ≜ ∀x ∶ JeK+

Je1 = e2K+ ≜ Je1K− = Je2K−

Je1 ∈ e2]]+ ≜ Je1K− ∈ Je2K−

Je1[e2]K+ ≜ (Je1K−[Je2K−])b
JEK+ ≜ error

JIF e1 THEN e2 ELSE e3K+ ≜ IF Je1K+ THEN Je2K+ ELSE Je3K+

JCHOOSEx ∶ eK+ ≜ (choosex ∶ JeK+)b

JxK− ≜ x
Jw(e)K− ≜ w(JeK−)
Je1 ⇒ e2K− ≜ Je1 ⇒ e2K+

J∀x ∶ eK− ≜ J∀x ∶ eK+

Je1 = e2K− ≜ Je1 = e2K+

Je1 ∈ e2K− ≜ Je1 ∈ e2K+

Je1[e2]K− ≜ Je1K−J[e2K−]

JDOMAIN eK− ≜ DOMAIN JeK−

J[x ∈ e1 ↦ e2]K− ≜ [x ∈ Je1K− ↦ Je2K−]
J{e1,⋯, en}K− ≜ {Je1K−,⋯, JenK−}
J{x ∈ e1 ∶ e2}K− ≜ {x ∈ Je1K− ∶ Je2K+}
JUNION eK− ≜ UNIONJeK−

J{e1 ∶ x ∈ e2}K− ≜ {Je1K− ∶ x ∈ Je2K−}
JSUBSET eK− ≜ SUBSETJeK−

JIF e1 THEN e2 ELSE e3K− ≜ IF Je1K− THEN Je2K− ELSE Je3K−

JCHOOSE x ∶ eK− ≜ (CHOOSE x ∶ JeK+)

e extend the above for set and arithmetic operators.

JS1 ○ S2K+ ≜ JS1K+ ○ JS2K+

JS1 ⋆ S2K+ ≜ JS1K− ⋆ JS2K−

JS1 ∗ S2K+ ≜ JS1K+ ∗ JS2K+

JS1 ○ S2K− ≜ JS1K− ○ JS2K−

JS1 ⋆ S2K− ≜ JS1K− ⋆ JS2K−

JS1 ∗ S2K− ≜ JS1 ∗ S2K+

where ○ is an set operator, ⋆ is an arithmetic operator, and ∗ is a Boolean operator.

5.5 Transformation to SMT

First-order formulas with equality have a direct counterpart in SMT-LIB. Moreover,
arithmetic operators are built-in in SMT-LIB. Therefore, it suffices to apply a shallow
embedding to map TLA+ quantifiers, logical connectors and the equality symbol to their
corresponding entities in the language of Z3. However, not each TLA+τ expression has
a native counterpart. Specifically, the TLA+ constructs containing second-order sub-
expressions, such as {x ∈ S ∶ p} or [x ∈ S ↦ e], cannot be directly mapped to first-order
sentences. The goal of our translation is to encode TLA+ expressions in the fragment
TLA+τ using essentially first-order logic and uninterpreted functions. Our translation
ensures that the original and generated formulas are equi-satisfiable.

Except two sorts Bool and Int, other sorts in our type system T are newly declared
sorts. TLA+ functions and operators are declared as uninterpreted functions with sorted
arguments. The empty set, function application and set operator ∈ are three special

76

5.5. Transformation to SMT

cases in our translation since they are mapped to many different objects, depending on
the context.

We will discuss how to encode and rewrite a TLA+ enxpression in the following sub-
sections. For the full list of rewriting rule, the reader can see Appendix 26.

5.5.1 Set Theory

Since the set theoretical aspect, every expressions in TLA+ are considered as sets.
Therefore, our first challenge is how to encode sets efficiently.

The naive way to encode a set in SMT-LIB is to use a characteristic predicate. The
following example shows how to encode a set by a characteristic predicates.

Example 5.16. Let A be a set of integers such that A = {1,2}. We can encode A by a
fresh function

(declare − fun A (Int)Bool)

and describe what elements are in A by the following assertions

A(1) = TRUE
A(2) = TRUE
∀x ∈ Int . (x ≠ 1 ∧ x ≠ 2)⇒ A(x) = FALSE

However, because SMT-LIB does not allow to construct a function whose arguments are
functions, we cannot represent sets of sets in this way. Another popular technique to rep-
resents a set is to use the array theory. In Z3, an array is declared as (Array Type1 Type2).
Hence, a set of elements whose type is A can be encoded as (Array A Bool) and a set of
sets of A elments can be encoded as (Array (Array A Bool)Bool) [dMB09]. Now, a set is
encoded as a variable in Array , but unfortunately Z3 does not allow to quantify over
Array variables. Therefore, in general, we cannot construct an axiom which represents
exactly what are in a given set or define a domain of a function.

In [MV12], every set is encoded as an uninterpreted constant, which is a function without
arguments. In our work instead of one type U, we use many types. Here, we explain our
ideas through Example 5.17.

Example 5.17. Consider two sets of integers A = {1,2}, B = {3}, and a set of sets
S = {A,B}. First, we declare two fresh types SetInt and SetSetInt. Second, we declare
three corresponding functions

(declare − fun A () SetInt)
(declare − fun B () SetInt)
(declare − fun S () SetSetInt)

77

5. Translation of TLA+ to Z3

The operator ∈ is mapped to two functions whose difference is arguments’ types

(declare − fun inSetInt (Int SetInt) Bool)
(declare − fun inSetSetInt (SetInt SetSetInt) Bool)

Finally, three assertions are added

∀x1 ∈ Int . inSetInt(x1,A)⇔ (x1 = 1 ∨ x1 = 2)
∀x2 ∈ Int . inSetInt(x2,B)⇔ (x2 = 3)

∀x3 ∈ Set Int . inSetSetInt(x3,S)⇔ (x3 = A ∨ x3 = B)

The main difference between naive approaches and our one is the occurrence of operators
“in”. In this approach, sets are just constants and their membership relations are
formalised via different functions. Therefore, it is possible to represent sets of sets and to
quantify over sets.

In our approach, every set type τ has its own operator inτ . For other set operators such
as the intersection ∩ or set difference ∖, we can easily define corresponding uninterpreted
functions.

While the encoding described above has simple translation rules and is not hard to
implement, it has two serious weaknesses. First, the set theory of TLA+ is not finitely
axiomatizable. Hence, some TLA+ expressions, such as {x ∈ S ∶ P} and {e ∶ x ∈ S} cannot
be encoded as first-order axioms. Second, the above encoding does not perform and scale
well in practice; the back-end solvers are unable to prove even simple formula [Van14].

State-of-the-art SMT solvers can solve some quantified formulas by instantiating bounded
variables. The result depends heavily on instantiation patterns which are used to manage
the generation of ground terms. However, we have not been able to find patterns to
attach to the axiom formulas that would significantly improve the performance of SMT
solvers.

What we do instead is to perform several transformations to a TLA+ expression to obtain
an equisatisfiable formula which is in the basic form and therefore, which could be directly
passed to the solvers using the above encoding. We can rewrite a TLA+ expression in
many ways. However, it is difficult to know what transformation is better. As a result,
we decide to use the following heuristics:

The fewer non-basic expressions and the fewer quantified formulas the translation
introduces, the easier for the solvers to find a proof or a counter-model.

First, we decide to represent remaining set operators through the operators inτ and
logical connectives. In other words, rewriting rules which are described in 26 are applied
to eliminate complex set operators.

78

5.5. Transformation to SMT

Example 5.18. The expression x ∈ S ∩T can be rewritten as x ∈ S ∧ x ∈ T . Hence, we
do not introduce a fresh uninterpreted function for the operator intersection ∩ since we
can encode it by the operator “in” and the logical conjunction.

Second, every set has its own empty set and it is used to reduce the number of quantified
formulas.

Example 5.19. Let S1,S2 be sets of integers such that S1 = {} and S2 = {}. Certainly,
we can rewrite these expressions as

∀x ∈ Int .¬(x ∈ S1))

∀x ∈ Int .¬(x ∈ S2))

However, our experiments show that it is better to introduce a new constant “empty”SetInt
which is

(declare − fun emptySetInt () SetInt)
∀x ∈ Int .¬(inSetInt(x , emptySetInt))

and then to assert that S1,S2, and “empty”SetInt are equal.

Finally, other trivial rewriting rules, such as x ∈ {}Ð→ FALSE and x ∪ {}Ð→ x , allow to
further shorten the expression.

Extensionality axiom Instead of one axiom in the untyped language, here every set
type Set τ has its own extensionality axiom.

∀S,T ∈ Set τ . (∀x ∈ τ . inτ(x ,S) = inτ(x ,T))⇒ S = T

However, reasoning with extensionality axioms is quite expensive since they force the
back-end SMT solvers to generate instances over all values in sorts. To avoid the explosive
generation, we instantiate equality expressions x = y whenever possible. In these cases,
we say that we expand equality. For instance, the following rules are derived from set
extensionality and the definition of set constructs.

S = T ∪U
S ∶ Set τ
ÐÐÐÐ→∀x ∈ τ . x ∈ S ⇔ x ∈ T ∨ x ∈ U

S = {1,2} S ∶ Set Int
ÐÐÐÐÐ→∀x ∈ τ . x ∈ S ⇔ x = 1 ∨ x = 2

S = {x ∈ T ∶ P(x)}
S ∶ Set τ
ÐÐÐÐ→∀x ∈ τ . x ∈ S ⇔ x ∈ T ∧P(x)

Notice that, as TLC, we work with finite domains. Therefore, we can unfold every set
(in theory).

79

5. Translation of TLA+ to Z3

5.5.2 Functions

Our second challenge is how to encode functions. The function construct [x ∈ S ↦ e(x)]
cannot be mapped directly to a FOL expression. Moreover, first-order functions have
no notion of function domain other than the types of their arguments even in sorted
languages like MS-FOL.

In principle, TLA+ functions can be encoded in the same way as sets 7. However, instead
of the operator ∈ , we here need to consider the function application and the operator
DOMAIN . Again, uninterpreted functions are introduced. Every function type τ1 → τ2
has its own function application applyτ1→τ2 and operator domain domainτ1→τ2 . In other
words, the TLA+ function application operator has many instances in a corresponding
SMT-LIB specification and its mapping depends on the context which is the types of the
function domain and range. Example 5.20 explains informally our idea.

Example 5.20. Consider the following TLA+ expression

∧ f = [x ∈ {1,2}↦ 0]
∧ 1 ∈ DOMAIN f
∧ a = f [1]

where a is an integer and f is a function from Int to Int. The second expression ensures
that the function application’s argument in the third expression is always in the function’s
domain. To encode the above expressions, we first declare a fresh type Int Int. Second,
we declare three corresponding functions

(declare − fun a () Int)
(declare − fun f () Int Int)
(declare − fun applyInt Int (Int Int Int) Int)
(declare − fun domainInt Int (Int Int) Set Int)

Third, following assertions about the domain and function application of f are added

applyInt Int(f,1) = 0
applyInt Int(f,2) = 0

∀x1 ∈ Int . inInt Int(x1,domainInt Int(f))⇔ (x1 = 1 ∨ x1 = 2)

Notice that three above assertions are described the construct of f . Finally, we add

inInt Int(1,domainInt Int(f))
a = applyInt Int(f,1)

7In Z3, we can encode a function as an array. However, this encoding is suitable if the function
domain has many elements and we do not need to quantify over functions.

80

5.5. Transformation to SMT

TLA+ functions are total: a function applied to any expression has a value, which is
unspecified if the argument is not in the function’s domain [Lam02]. For example, the
expression f [0] is TLA+ well-formed and has undefined value. Computing the domain of
a TLA+ function encoded in a first-order logic is not always easy, leading the provers to
failed proof attempts (since the domain can be in form {e(x) ∶ x ∈ S}).

Therefore, we expect that the user should state explicitly the type-correctness
information, (and the upper bound if possible), of a function and its domain.

The over-approximation on a function can make a TLA+ invalid formula, such as

ϕ ≜ f = [x ∈ {1,2}↦ 0]⇒ f [0] < f [0] + 1

become a valid one in our typed fragment since f [0] becomes an integer when f is
assigned the type Int → Int. Fortunately, the untyped fragment TLA+τ restricts that
every expression in a given TLA+ specification has a TLC value that implies that the
function application’s argument is always in the function domain. Therefore, the above
formula ϕ is not allowed. The domain condition can be check automatically with the
help of TLC, but it is better to add one formula for the domain condition before using
the function application. That is, we should rewrite a formula ϕ into

f = [x ∈ {1,2}↦ 0]⇒ (0 ∈ DOMAIN f ∧ 0 ∈ f [0] < f [0] + 1)

Hence, we do not need assertions for cases in which the function application’s argument
is not in the function domain.

The design of an appropriate type system is further complicated by the fact that some
formulas, such as g[x] ∪ ∅ = g[x], are actually valid irrespectively of what construct of g
is and whether or not the domain condition holds. Unfortunately, we have not found a
many-typed system which can handle this formula. Here, our system tries to avoid it. If
g[x] is not assigned a ground set type Set γ, our system will show an error message about
type conflict. For the domain condition, the user should check it with TLC manually
and add a guard x ∈ DOMAIN g to his specification. In general, a specification usually
needs rewriting many times before the translation starts. The user has to refine types
manually, before the actual translation starts.

Functions in TLA+ are those terms f that satisfy a special predicate IsAFcn(f) described
in [Lam02].

IsAFcn(f) ≜ f = [x ∈ DOMAIN f ↦ f [x]

This predicate in the TLA+ specification characterizes the value of f as being a function.
In our typed system, the predicate IsAFcn is true if and only if its argument is assigned
a ground type τ1 → τ2, [hi ∶ Si], or ⟨τi⟩. Therefore, we can replace correctly IsAFcn(e)
into TRUE or FALSE if we know the type of e.

81

5. Translation of TLA+ to Z3

Like the transformation for sets, we also apply rewriting rules to obtain simpler expressions.
For example, we have two following rules

[x ∈ S ↦ e][a]Ð→ e[a]
[f EXCEPT ![x] = y][a]Ð→ IF a = x THEN y ELSE f [a]

Function extensionality For each function type τ1 → τ2, we add a variant of the
function extensionality

∀f,g ∈ τ1 → τ2 . (∧ domain(f) = domain(g)
∧ ∀x ∈ τ1 . x ∈ domain(f)⇒ applyτ1→τ2(f, x) = applyτ1→τ2(g, x))
⇒ f = g

Functions with many arguments In TLA+ , functions can have many arguments,
f [e1,⋯, en]. They are those whose domain is a set of tuples and therefore, they can
be defined as f [⟨e1,⋯, en⟩]. Because of implementation reasons, we require the user to
use a tuple as an argument, instead of many arguments. Moreover, we don’t support
f [y1 ∈ S1,⋯, yn ∈ Sn] since we cannot handle with CHOOSE .

5.5.3 Strings

Strings in TLA+ are sequences of characters without any operators except equality defined
on them. However, in practice, they are usually used as constants. Therefore, we decide
to declare a fresh type Str for strings and to encode each string as a distinct uninterpreted
function.

Example 5.21. Suppose that a TLA+ specification contains only three strings “init”,
“echo” and “accept”. In addition to declarations for types and corresponding functions,
our encoding adds the following assertion

¬(init = echo) ∧ ¬(init = accept) ∧ ¬(echo = accept)

5.5.4 Tuples and records

TLA+ tuples are also functions whose domain is considered as 1..n, and it is not possible
to distinguish functions and tuples by a syntactic analysis. TLA+ records are also
functions whose domain is a set of strings, and who return values of any type. As a
consequence, we can encode tuples and records in the same way as functions. However,
in our encoding, functions are constrained to have the same type for every element in its
codomain. By encoding a tuple or a record as a function, we would discard many ones
that have different kind of values in each field. Therefore, we decide to introduce new
datatypes for records and tuples and fortunately, Z3 allows us to declare new datatypes
easily and to quantify over variables of these types.

82

5.5. Transformation to SMT

Since built-in features of Z3 are used to encode records and tuples, we do not need to
add extensionality of axioms for records and tuples. These axioms exists implicitly
in the corresponding theories in Z3.

Since records and tuples are used a lot, we avoid many unnecessary axioms. This feature
makes reasoning about records and tuples more efficiently.

However, Z3 does not support any features for the domain of a record (or a tuple).
Therefore, we need to declare a fresh function domainτ for every record (and tuple) type.

This encoding has four weaknesses.

• Functions now are treated in a different way from records and tuples.

• The empty sequence cannot be handled since a data-type in Z3 requires at least
one field.

• An argument of the record selection should be explicitly a string and an argument
of the function application for a tuple should be explicitly an integer.

• Before the mapping, we may need to rename a field’s name of a record if necessary.
A field of a record in TLA+ is considered as a string can be used as a normal
expression. However, a field of a datatype in Z3 is thought as a special sequence of
characters and can be used only in the selector function. To avoid ambiguity, fields’
name renaming is necessary.

Example 5.22. Two following expressions

rcd = [a ↦ 0, b ↦ TRUE] ∧ h ∈ DOMAIN rcd ∧ x = rcd .h
rcd = [a ↦ 0, b ↦ TRUE] ∧ h = “a” ∧ x = rcd .h

are well-formed in TLA+ . However, an argument of the selector function in Z3 cannot be
a variable. Hence, the above expressions cannot be translated into the language of Z3 8.

Example 5.23. Consider the following TLA+ expression

rcd = [a ↦ 0, b ↦ TRUE] ∧ a ∈ DOMAIN rcd

If our encoding introduces a new data type

(declare − datatypes () ((Pair (mk − pair (a Int) (b Bool)))))

and translate the expression a ∈ DOMAIN rcd into

inPair(a,domainPair(rcd)),

then a conflict at a happens. As a result, we decide to rename fields’ name in the
data-type declaration and the record selection. At other occurrences, nothing changes.
Notice that renaming happens only when the transformation ends.

8The technique “definition elimination” described later allows us to replace h by “a” and therefore,
we can translate the second expression successfully. However, we still cannot translate the first one.

83

5. Translation of TLA+ to Z3

5.5.5 Conditional statement

The TLA+ expression IF c THEN t ELSEu can be conveniently mapped by using SMT-LIB
conditional operator to ite(c, t,u). The TLA+ expression CASE can be considered as a
nested expression IF THEN ELSE.

CASE c1 → e12 . . .2 cn → en2 OTHER en+1

Ð→IF c1THEN e1 ELSE IF . . . ELSE en+1

The disadvantage of this approach is that we cannot handle the operator CASE without
OTHER .

5.5.6 Definition elimination

An primed variable can appear many times in a TLA+ action and its occurrence usually
has the form x ′ = ψ where ψ is often a non-basic expression. In order to improve the
encoding, we introduce an optimization procedure that eliminates definitions, in the
sense of the preceding sub-section. The heuristics collects definitions of the form x = ψ,
and then simply substitute every occurrence of x by ψ in the rest of the context. This
substitution is the same as the application of the rewriting rule x Ð→ ψ. The definitions
we want to remove typically occur in the action, that is, the user does not need to
introduce them.

Example 5.24. In the TLA+ expression x ′ = 1 ∧ y ′ = x ′ + 1, the second appearance of x
can be safely replaced by 1. Therefore, the expression can be rewritten as x ′ = 1∧y ′ = 1+1.

This procedure is also used to remove definitions of operators. After applying all
substitutions, we must keep definitions of global variables and applied operators. For
other terms, we can remove safely their definitions.

Example 5.25. Look at Example 5.24 again. If we remove the definition of x , x ′ = 1,
we cannot represent a state successfully.

Example 5.26. Suppose we discard an assumption DOMAIN f = S , where f is an
element of a set [S → T]. If we want to compare f with another function later, we cannot
use the function extensionaliy axiom since we do not know what the domain of f is.

Eliminating definitions, especially with the constructs EXCEPT and DOMAIN , can help
us obtain a simpler formula. However, the problem of efficiently eliminating definitions
from propositional formulas is a major open question in the field of proof complexity
[Avi03]. This procedure can result in an exponential growth in the size of a given formula
when applied naively.

In our system, if a variable (or an operator) has many definitions, we always choose
the first one. For example, in the following expressions x = 1 ∧ x = y + 1 ∧ z = x + 1, the

84

5.5. Transformation to SMT

variable x has two definition which are x = 1 and x = y + 1. Our system just chooses the
first one and then replaces z = x + 1 by z = 1 + 1.

Example 5.27. The technique “definition elimination” rewrites the following TLA+

expression

f = [{1,2}↦ 0] ∧ f ′ = [f EXCEPT ![0] = 1] ∧ a ′ = f ′[0]

into

f = [{1,2}↦ 0] ∧ f ′ = [f EXCEPT ![0] = 1] ∧ a ′ = [f EXCEPT ![0] = 1][0]

Apply the rewriting rule for the EXCEPT construct, we have

. . . ∧ a ′ = IF 0 = 0 THEN 1 ELSE f [0]

After replacing 0 = 0 as TRUE and applying the rewriting rule for IF THEN ELSE , we
have

. . . ∧ a ′ = 1

The resulting expression is simpler than the original one since it does not have any
function application.

5.5.7 Miscellaneous

Boolean values

For Boolean values TRUE and FALSE, if their occurrences are boolified as non-logical
value, we will try to remove those occurrences by rewriting rules.

Arithmetic expressions

For arithmetic expressions, rewriting rules can help us eliminate some trivial rules such
as x + 0 = x or x < x where x is a variable annotated with the type Int.

Constant generation

A specification for a distributed algorithm usually contains a set of objects which are
represents as records or tuples. Set constructs in TLA+ give us only general information
about elements, but not state explicitly what elements are. Therefore, after the trans-
formation, many sub-formulas of the resulting formula are identical or share the same
structure. It causes troubles for the back-end solver to find a proof.

85

5. Translation of TLA+ to Z3

Example 5.28. Consider the following TLA+ expression

∧ S = {1,2,3}
∧R = [rnd ∶ {0,1}, val ∶ { “a”, “b”, “c” }]

∧ f ∈ [S → R]

After a few translation step, we have

. . .

∧ f [1] ∈ [rnd ∶ {0,1}, val ∶ { “a”, “b”, “c” }]

∧ f [2] ∈ [rnd ∶ {0,1}, val ∶ { “a”, “b”, “c” }]

∧ f [3] ∈ [rnd ∶ {0,1}, val ∶ { “a”, “b”, “c” }]

Applying more rewriting rules, we obtain

. . .

∧ f [1].rnd = 0 ∨ f [1].rnd = 1
∧ f [1].val = “a” ∨ f [1].val = “b” ∨ f [1].val = “c”
. . .

In the final expression, sub-expressions related to f [1], f [2], f [3] share the same shape.

Fortunately, if the set does not have so many elements, we can unroll it and declare a
uninterpreted function for each element. Therefore, instead of rewriting rules for a set of
records, we can use rules for an enumerable set which make the resulting formula shorter
and simpler.

Example 5.29. For the set R in Example 5.28, we can replace its definition by S =

{rcd1, . . . , rcd6} where

rcd1.rnd = 0 ∧ rcd1.val = “a”
rcd2.rnd = 0 ∧ rcd2.val = “b”
. . .

rcd6.rnd = 1 ∧ rcd2.val = “c”

Therefore, the final expression is in the form

. . .

∧ (f [1] = rcd1 ∨ . . . ∨ f [1] = rcd6)

∧ (f [2] = rcd1 ∨ . . . ∨ f [2] = rcd6)

∧ (f [3] = rcd1 ∨ . . . ∨ f [3] = rcd6)

Moreover, constants provide hints for the SMT solver to find a proof. Our experiments
show that the appearances of constants can help us save a lot of time.

86

5.6. Properties of our encoding

Syntactical comparison

Obviously, if e1 and e2 are syntactically identical, we can rewrite the equality e1 = e2 as
a Boolean constant TRUE. Therefore, for each the equality appearing in the translation,
first we try to compare the left-hand side’s side with the right-hand side’s. If they are
the same, the equality is rewritten as TRUE.

Example 5.30. During the translation of the expression f ′ = [f EXCEPT ![0] = 1],
thank to the type-correctness information, we can replace the condition DOMAIN f ′ =
DOMAIN f with TRUE.

Since the syntactic tree of a given equality is not too big, the cost of this procedure is
not expensive. In practice, it can reduce time the SMT solver needs to solve a problem.

Abstraction

The rewriting process significantly eliminates the number of non-basic operators that
occur in an action. However, it is not always possible to obtain a basic formula just
by applying rewriting rules since its sub-expressions in the non-basic form do not occur
in the same form as the left-hand sides of the rewriting rules. Vanzetto introduces a
technique, called abstraction, which can solve the similar problem in a proof obligation
automatically [Van14]. Briefly, for every occurrence in a proof obligation ϕ of a non-basic
expression ξ, it introduces in its place a fresh term y , and adds the formula y = ξ, giving
a definition to y , as an assumption in the appropriate context. The new term y now
works as an “abbreviation” for the non-basic expression and the equality woks as its
“definition”. Hence, we can replace the occurrence of ξ in ϕ by y . In order to obtain a
basic formula, we should systematically apply the abstraction for all non-basic operators
in a proof obligation and apply rewriting rules. The resulting formula is equisatisfiable
basic formula.

However, the implementation of such a technique is beyound the scope of this thesis.

5.6 Properties of our encoding

The following lemmas show two main properties of our rewriting system. Their proofs
are similar with the corresponding theorems in [Van14].

Theorem 5.31. (TLA+ , Ð→) terminates.

Theorem 5.32. (TLA+ , Ð→) is confluent.

Theorem 5.33. Every rewriting rule in our rewriting system generates a equisatisfiable
formula.

87

5. Translation of TLA+ to Z3

From the above theorems and the property of relativization, we obtain most important
theorems of our translation system. These proofs of these lemma are technically extended
from Vanzetto’s work [Van14].

Theorem 5.34. Our type synthesis algorithm is decidable.

c Sketch. Our inference rules are syntactic ones and our algorithm for type synthesis is a
the standard unification algorithm.

Theorem 5.35. The original TLA+ formula and the resulting formula generated by our
system are equisatisfiable.

Sketch. We explain the idea to prove the above lemma.

1. Our type system is an extension of Vanzetto’s type system T1 in [Van14]. Because of
the type invariant TypeOK in a TLA+ specification, we know possible values which
a variable can have. With restrictions in our fragment TLA+τ , we can calculate
“calculate” the upper bound of possible values of every expression in a TLA+

specification. Therefore can assign safely type information for every expression,
involving the empty set.

2. Our encoding (for sets and functions) and rewriting rules are based on Vanzetto’s
work [Van14]. Because we assume that an argument of an function application is
always in the function domain, we can simplify the way to encode functions and
the function application. We automatically add an assertion for this condition in
our rewriting rules related to functions. Moreover, we add one rule the construct
“set of all” and modify some rules to make the transformation more efficiently.
Since Vanzetto’s system generates equisatisfiable formulas, our system also keeps
equisatisfiability property.

3. For the above reasons, we have that the original TLA+ formula and the resulting
formula generated by our system are equisatisfiable.

5.7 Related Work

Researchers have recently made attempts on translating non-temporal part of TLA+ into
many-sorted (first-order) logic.

Hansen and Leuschel introduce a framework to translate TLA+ to B for validation with
ProB [HL12, LB03]. Later, Plagge and Leuschel integrate the Kodkod high-level interface
to SAT-solvers into the kernel of ProB [PL12]. However, ProB is an explicit model
checking tool and constructing a predicate abstraction for a B specification is not our
focus.

In [MV12], Merz and Vaneztto used first-order logic and uninterpreted functions to
encode TLA+ expressions. All Boolean expressions are mapped to the sort Bool. A

88

5.7. Related Work

new sort U (for TLA+ universe) is declared for all non-Boolean expressions, including
sets, functions, strings and numbers. This encoding is more versatile than ours since it
can handle most aspects of TLA+ , even the operator CHOOSE . Sets are just values
in the universe of discourse (represented by the sort U in the sorted translation), and
it is possible to represent sets of sets and to quantify over sets. For example, consider
three sets A = {1, 2}, B = {3}, and S = {A,B}. First, the authors declare three constants
AU ,BU ,CU in U and then add three axioms:

∀xU .in(x ,AU)⇔ (x = int2u(1) ∨ x = int2u(2))
∀xU .in(x ,BU)⇔ (x = int2u(3))
∀xU .in(x ,SU)⇔ (x = AU ∨ x = BU)

where two operators in and int2u are defined below. Non-logical TLA+ operators are
encoded as function or predicate symbols with U-sorted arguments. For example, the
operators ∩ and ∈ are encoded in SMT-LIB as the functions intersection ∶ U×U→ U and
in ∶ U ×U→ Bool. The semantics of standard TLA+ operators is defined axiomatically.
For example, only the operator ∈ is primitive in the set theory and expressions with other
set operators can be rewritten into appropriate expressions with only the operator ∈ . As
a result, the corresponding function in in SMT LIB will be unspecified and we can express
in MS-FOL axioms for other set operators. For instance, the operator intersection has a
corresponding axiom ∀xU,SU,TU.in(xU, intersection(SU,TU)) = in(xU,SU) ∧ in(xU,TU).
And the construct for set enumeration {e1,⋯, en}, with n ≥ 0, is an n-ary expression, so
we declare separate uninterpreted functions for the arities, like construct 3 ∶ U×U×U→ U,
together with the corresponding axioms. The main weakness of the untyped encoding is
that this mechanism introduces many additional quantifiers and defines many “fresh”
relations, even for built-in operators in SMT-LIB. These appearances significantly decrease
the performance of automated theorem provers.

Fortunately, in some cases, TLA+ formulas can be assigned appropriate types such as Int
or Bool. Moreover, types arise informally in any domain to categorize objects according
to their usage and behavior, even if we work in an untyped universe [CW85]. For that
reason, if we could detect type information or type invariants from the original TLA+
formula, the translation is simpler because we can use directly built-in types and operators
of the provers. In [MV14], Merz and Vanzetto propose automated procedures, which are
based on type refinements [FP91, XP99], to construct types for TLA+ expressions. This
method tries to find type information in a TLA+ specification to encode expressions
into both sorted and unsorted languages of automated theorem provers. In [Van14], they
extend their refinement procedures with a new dedicated type Map that mimics records
and tuples by mapping strings to some other type. This method can reduce the number
of quantifiers and to utilize features in SMT solvers. However, this method is undecidable
and if their typed system cannot decide an appropriate type for an expression, such as
the empty set, they will come back to the untyped encoding. Therefore, their systems
are not enough efficient to reason about a next-state predicate with an SMT solver since
a proof obligation is usually more “shallow” than a next-state predicate.

89

5. Translation of TLA+ to Z3

5.8 Conclusions

In this chapter, first we have described our typed fragment of TLA+, which is named
TLA+τ , and its corresponding type system. We have given examples to explain its
restrictions and how to assign type information to a TLA+ expression. While our
fragment is smaller than what TLC can evaluate, we believe that it is expressive enough
to specify many distributed algorithms.

Second, we have extended the Boolification algorihm which Vanzetto suggested in [Van14].
This extension is complete for our fragment and is used to perform a quick double-check
of expressions’ types.

Moreover, we have presented how to transform an TLA+ expression in our fragment to
the language of SMT solvers. Our encoding can handle functions, conditional statements
and sets of sets. We use built-in mechanism of Z3 to capture records and tuples and this
encoding helps us avoid to introduce unnecessary axioms. Moreover, we have introduces
some heuristics to make our translation more efficiently, such as definition elimination or
unfolding finite sets.

Finally, we have compared our work with others. Our system is decidable, keeps
equisatisfiability and generates formulas which is simple enough to reason with SMT
solvers, such as Z3.

90

CHAPTER 6
The Implementation

This section describes the prototype’s architecture and provides a short user manual.

6.1 The Architecture

In our implementation, variables with the prefix p or next are actions or variables at
the next states. Figure 6.1 shows the class diagram of our system

Our system contains the following classes:

1. Preprocessor creates new names for TLA+ actions action (vi) into which TLA+

Toolbox splits a “big” action ∃x ∈ {v1, . . . , vn} .action (x).

2. Z3Constants contains global constants and operator codes.

3. Z3ErrorCode contains codes of errors which may happen during the translation
time.

4. Z3Node is a "composited" class which stores and summaries information of classes
in package SANY such as OpApplNode, NumeralNode or OpDefNode.

5. Z3Pair binds a variable to its new definition which appears in an action.

6. TypeInferencer has a list of type inference rules.

7. ConstraintChecker has a list of rules for type constraints.

8. Rewriter has a list of rewriting rules.

91

6. The Implementation

Figure 6.1: Class diagram of our system

9. Z3Encoder is one of main classes for translation from TLA+ language to SMT-LIB.
It has an object Tool which contains all information about modules, variables,
invariants and actions which are generated by SANY. Based on these materials,
Z3Encoder builds its semantic trees.

10. Z3Tool constructs corresponding types and applies rewriting rules to transform
and simplify semantic trees obtained from Z3Encoder.

11. Z3SortSymbol (or Z3VarSymbol, Z3FuncSymbol) is a declaration of a fresh
sort (or a variable, a function) in the Java API of Z3.

12. IC3 StateK, or ⟨q , k⟩ in the algoritm 4.3, is an abstract and bad state formula
which is found at the k-th frame and has a next bad state next.

13. IC3 Clause is a clause c with one unique id. Because of the performance,
formula may be in the form ¬ (l1 ∧ . . . ∧ ln), not l1 ∨ . . . ∨ ln .

14. IC3 Frame is a frame F in the algorithm 4.1. Except F0, other frames are always
in CNF. clauses contains all clauses in formula. While clauses can be got
back from formula, we decide to save both of them to get c ∈ Fi easy and to
reduce the number of the SAT checking of Fi ∧T ∧ ¬c′ in propagateClauses.

15. IC3 ErrorCode contains codes of errors which may happen during the verification
time.

92

6.2. How to use our system

16. IC3 Worker is the main part of the algorithm IC3.

6.2 How to use our system

The main features of our system is to test invariants, to find a stronger inductive
strengthening and to check safety properties. In order to do that, the user needs to add
the following information in the TLA+ specification

• TypeOK: contains annotations of every variable’s type which should be the minimum
set of possible values which a variable can be assigned. For example, if the number
of processes is N and p is a process variable, it is better to write p ∈ 1 . . N than
p ∈ Int . Take notice of natural numbers, instead of x ∈ Nat , the user needs to
write x ∈ Int ∧ x ≥ 0.

• Predicates pred1, . . . , predn : are used to construct the abstraction. They are
declared as user-defined operators.

• Inv ToCheck is a safety property the system needs to check. Inv ToCheck have
to use only above predicates pred1, . . . ,predn .

• “Fake” invariant Predicates is in form ⊺∨ pred1 ∨ . . .∨ predn . It is a hint for
our system on what predicates are used to construct the abstraction.

If Inv ToCheck is a safety property, its inductive strengthening is printed. And if Inv
ToCheck is an inductive invarient, a constant TRUE is printed. Finally, if a given TLA+

specification violates Inv ToCheck, our system shows a abstract bad path.

6.3 Example

The following specification is the encoding of Chandra’s algorithm for reliable broadcast
by message diffusion (BcastFolklore) [CT96]. This encoding is based on [KVW15] and this
algorithm is used in our experimental evaluation. For the description of this algorithm,
we refer the user to Chapter 7.

This encoding introduces many predicates pred1, . . . ,pred21, two invariants Inv ToCheck
and Predicates. Moreover, a big action Step is manually split into 4 simpler actions
Receive UponV 1, Receive UponCrash, Receive UponAccept and Receive Nothing .

module bcastFolklore lazyValues 411

extends Naturals, FiniteSets

93

6. The Implementation

constants N , T , F

we need to say explicitly values of constants.

N ∆
= 4

T ∆
= 1

F ∆
= 1

variable declarations

variable pc, rcvd , sent , nfailed

assume N ∈ Nat ∧T ∈ Nat ∧ F ∈ Nat

assume (N > 2 ∗T) ∧ (T ≥ F) ∧ (F ≥ 0)

P ∆
= 1 . . N all processess, including the faulty ones

Corr ∆
= 1 . . N correct processes

M ∆
= {“ECHO”} only messages (ECHO) is sent in this algorithm

PM ∆
= (P ×M) inform that our prototype should declare elements of these set

SUBSETPM ∆
= subset PM

predicates are used to construct the abstraction

pred1 ∆
= pc[1] = “V0” pred2 ∆

= pc[1] = “V1” pred3 ∆
= pc[1] = “AC”

pred4 ∆
= pc[1] = “CR” pred5 ∆

= rcvd[1] = {}

pred6 ∆
= pc[2] = “V0” pred7 ∆

= pc[2] = “V1” pred8 ∆
= pc[2] = “AC”

pred9 ∆
= pc[2] = “CR” pred10 ∆

= rcvd[2] = {}

pred11 ∆
= pc[3] = “V0” pred12 ∆

= pc[3] = “V1” pred13 ∆
= pc[3] = “AC”

pred14 ∆
= pc[3] = “CR” pred15 ∆

= rcvd[3] = {}

pred16 ∆
= pc[4] = “V0” pred17 ∆

= pc[4] = “V1” pred18 ∆
= pc[4] = “AC”

pred19 ∆
= pc[4] = “CR” pred20 ∆

= rcvd[4] = {}

pred21 ∆
= sent = {}

vars ∆
= ⟨pc, rcvd , sent , nfailed⟩

Receive(self) ∆
=

94

6.3. Example

∃ r ∈ SUBSETPM ∶

∧ r ⊆ sent

∧ rcvd[self] ⊆ r

∧ rcvd ′ = [rcvd except ![self] = r] receive set ”r“ of msgs

UponV 1(self) ∆
=

∧ pc[self] = “V1” if a process ”has received a msg from

a bcasting process and has not sent (ECHO)“

∧ pc′ = [pc except ![self] = “AC”] it accepts and sends (ECHO) to all

∧ sent ′ = sent ∪ {⟨self , “ECHO”⟩}

∧ nfailed ′ = nfailed a number of crashed processes does not change

UponCrash(self) ∆
=

∧ nfailed < F if a number of crashed processes < F and

∧ pc[self] ≠ “CR” this process is correct, it will be crashed

∧ nfailed ′ = nfailed + 1 increase a number of crashed processes

∧ pc′ = [pc except ![self] = “CR”] update labels of processes

∧ sent ′ = sent message channel does not change

UponAccept(self) ∆
=

∧ (pc[self] = “V0” ∨ pc[self] = “V1”) if a process ”has not receive any msg“ or

∧ rcvd ′[self] ≠ {} ”has received a msg from a bcasting process

and has not sent (ECHO)“

∧ pc′ = [pc except ![self] = “AC”] it accepts and sends (ECHO) to all

∧ sent ′ = sent ∪ {⟨self , “ECHO”⟩}

∧ nfailed ′ = nfailed a number of crashed processes does not change

actions

Receive UponV 1 ∆
= ∃ self ∈ Corr ∶ (Receive(self) ∧UponV 1(self))

Receive UponCrash ∆
= ∃ self ∈ Corr ∶ (Receive(self) ∧UponCrash(self))

95

6. The Implementation

Receive UponAccept ∆
= ∃ self ∈ Corr ∶ (Receive(self) ∧UponAccept(self))

Receive Nothing ∆
= ∃ self ∈ Corr ∶ (Receive(self) ∧ pc′ = pc ∧

sent ′ = sent ∧ nfailed ′ = nfailed)

Next ∆
=

∨ Receive UponV 1

∨ Receive UponCrash

∨ Receive UponAccept

∨ Receive Nothing

Init ∆
=

∧ sent = {} message channel is empty

∧ pc ∈ [Corr → {“V0”, “V1”}] process can be labeled as ”has not received any msgs“

or ”has received a msg from a bcasting process

and has not sent (ECHO)“

∧ rcvd = [i ∈ Corr ↦ {}] every process has not received any msg

∧ nfailed = 0 no process crashes

InitNoBcast ∆
=

∧ sent = {} message channel is empty

∧ pc ∈ [Corr → {“V0”}] no process has received msgs from a bcasting process

∧ rcvd = [i ∈ Corr ↦ {}] every process has not received any message

∧ nfailed = 0 no process crashes

Spec ∆
= Init ∧2[Next]vars we will check this specification

just another specification, also used in our benchmarks

SpecNoBcast ∆
= InitNoBcast ∧2[Next]vars

type invariant

TypeOK ∆
=

∧ sent ∈ SUBSETPM

∧ pc ∈ [Corr → {“V0”, “V1”, “AC”, “CR”}]

96

6.3. Example

∧ rcvd ∈ [Corr → SUBSETPM]

∧ nfailed ∈ Nat

a safety property: no message is sent or all processes do not accpet

Inv ToCheck ∆
=

∨ (¬pred21)

∨ (∧ (¬pred3) ∧ (¬pred8) ∧ (¬pred13) ∧ (¬pred18))

inform our system that these predicates are used and Predicates is marked as an invariant

Predicates ∆
=

∨ true ∨ pred1 ∨ pred2 ∨ pred3 ∨ pred4

∨ pred5 ∨ pred6 ∨ pred7 ∨ pred8 ∨ pred9

∨ pred10 ∨ pred11 ∨ pred12 ∨ pred13 ∨ pred14

∨ pred15 ∨ pred16 ∨ pred17 ∨ pred18 ∨ pred19

∨ pred20 ∨ pred21

system properties

UnforgLtl ∆
= (∀ i ∈ Corr ∶ pc[i] = “V0”) Ô⇒ 2(∀ i ∈ Corr ∶ pc[i] = “AC”)

CorrLtl ∆
= (∀ i ∈ Corr ∶ pc[i] = “V1”) Ô⇒ 3(∃ i ∈ Corr ∶ pc[i] = “AC”)

RelayLtl ∆
= 2((∃ i ∈ Corr ∶ pc[i] = “AC”) Ô⇒ 3(∀ i ∈ Corr ∶ pc[i] = “AC”))

97

CHAPTER 7
Experimental Evaluation

To test our model checker, we used three benchmarks about a threshold automata
TA [KVW15] and Chandra’s algorithm for reliable broadcast by message diffusion
(BcastFolklore) [CT96] and Raynal’s algorithm for non-blocking atomic commitment
(NBAC) [Ray97]. The benchmarks were provided by my supervisors. They are are based
on the repository: https://github.com/konnov/fault-tolerant-benchmarks [KVW15].

Experimental setup: All of the experiments were performed on an Intel Core i5 4210U
processor with 4 GB RAM and Windows 7. We ran experiments with TLC and ex-
periments our prototype (predicate abstraction and IC3). In our experiments, time is
measured in minutes and T/O is an abbreviation of timeout. The time limitation depends
on an experiment.

7.1 Experiment with TA

Figure 7.1 represents an example of a threshold automaton TA over two shared variables
Γ = {x , y} and parameters Π = {n, t , f } 1. In our example, n is a number of processes,
t is a maximum number of faulty processes, f is a real number of faulty processes and
correct n − f processes concurrently execute the automaton TA. The circles depict the
local states {l1, . . . , l5}, two of them are the initial states {l1, l2}. The edges depict the
transition rules {r1, . . . , r6}, whose labels have the form ϕ↦ act, where ϕ is one of the
threshold guards:

ϕ1 ∶ x ≥ ⌈(n + t)/2⌉ − f , ϕ2 ∶ y ≥ (t + 1) − f , ϕ3 ∶ y ≥ (2 ∗ t + 1) − f ,

and an action act updates the shared variables by increasing x or y, or does nothing
(as in rule r6). Every local state li has a non-negative counter κ[i] that represents the

1This description is from [KVW15].

99

https://github.com/konnov/fault-tolerant-benchmarks

7. Experimental Evaluation

number of processes in local state li . Together with the values of x , y ,n, t and f , the
values of the counters κ[1], . . . , κ[5] constitute a configuration of the system.

Figure 7.1: An example threshold automaton [KVW15]

We encoded this transition system in two different ways. In the first approach, we
focused on only the number of processes in every local states. That is, processes were
not encoded in our first TLA+ specification. The correct specification is named as Spec1.
Moreover, we wrote a wrong specification, named as WSpec1 with some bug of counters
in transition relations. In the second approach, processes were really encoded. For the
second approach, a right specification is named as Spec2 and a wrong one is WSpec2.

We tried to verify two following invariants:

i. inv1: the number of processes at every states is always n − f .

ii. inv2: assuming that no processes are in local state l2 in initial steps, we have that
κ[5] is always 0.

Experiment with Spec1 and inv1

We tried to check inv1 with three predicates 2

pred0 ≜ κ[1] + κ[2] + κ[3] + κ[4] + κ[5] = n − f , pred1 ≜ x ≥ 0, pred2 ≜ y ≥ 0.

Table 7.1 shows running time of our model checker and TLC for Spec1 and inv1. If n is
small (n < 100), TLC (and its explicit-state enumeration) works better since our tool
spends time translating the TLA+ specification and calling Z3 to verify inv1. However, if
n is large enough (n ≥ 200), our model checker is more efficient than TLC.

Experiment with Spec1 and inv2

In this scenario, the explicit-state enumeration is an appropriate choice since a number
of reachable state is only 1 for any N . In this scenario, no processes move. We decided
to ran experiments with N = 500 and 3 predicates

2If we use only p0, wrong conclusion may happen.

100

7.2. Experiment with BcastFolklore

Table 7.1: Experiments with Spec1, inv1, TLC and our model checker

TLC Predicates + IC3
N time (m) #states time (m) #predicates #frames
50 1 220701 2 3 3
100 2 318026 2 3 3
150 5 1555851 2 3 3
200 15 48310926 2 3 3
250 42 116712876 2 3 3

pred3 ≜ κ[1] = N − F ∧ κ[2] = 0 ∧ κ[3] = 0 ∧ κ[4] = 0 ∧ κ[5] = 0 ∧ x = 0 ∧ y = 0,
pred4 ≜ x ≥ ⌈(n + t)/2⌉ − f ,
pred5 ≜ y ≥ (t + 1) − f ,
pred6 ≜ y ≥ (2 ∗ t + 1) − f

Both TLC and our model checker could prove inv2 in less than 1 minutes. However, in
this case TLC is a better choice because we do not think about predicates and TLC runs
faster.

Experiment with WSpec1

For inv1, a concrete error trace is short and easy to find. TLC spent less than 2 minutes
to detect a bug, even if n = 500. Our model checker need about 2 minutes to find an
abstract error trace. However, if we use only a few of predicates, it is not easy to construct
a concrete trace from an abstract trace. Therefore, it is difficult to check whether an
abstract error trace is spurious or not. Moreover, it took time to find a good set of
predicates.

For inv2, TLC can check very fast whether inv2 is an invariant or not. Again, about 1
minutes. We did not run experiments with our model checker since we believe that it is
better to use TLC in this case.

Experiment with Spec2

When processes are really encoded, TLC needed more time to verify both invariants but
our model checker still runs fast. Table 7.2 shows the running time and extra information
of TLC and our tool. For the case N = 15, we decided to stop TLC after 24 hours since
TLC could not finish its work.

7.2 Experiment with BcastFolklore

Algorithm 7.1 shows the core logic of the Folklore Reliable Broadcast Algorithm for a
correct process from [CT96]. We use the benchmark introduced in Ph.D thesis from by

101

7. Experimental Evaluation

Table 7.2: Experiments with Spec2, inv1, TLC and our model checker. T/O is 24 hours.

TLC Predicates + IC3
N time (m) #states time (m) #predicates #frames
7 1 22680 1 3 3
9 2 408148 1 3 3
11 7 7258975 1 3 3
13 150 127700089 2 3 3
15 T/O T/O 2 3 3

Annu Gmeiner [Gme15]. A process broadcasts a message by sending it to all processes.
Upon the reception of a message for the first time by a process, it sends the message to
all the processes in the system and accepts it.

Algorithm 7.1: Core logic Folklore Broadcast Algorithm for correct process i

21 pci ∈ {V 0,V 1} ;
22 if (received (echo) from some other process and not sent ⟨echo⟩ before) or
23 (pci = V 1) then
24 send ⟨echo⟩ to all ;
25 pci = AC ;
26 end

We use the variable pci to show a status of a process. pci = V 1 indicates that the process i
has received the message from the broadcasting process and pci = V 0 indicates otherwise.
Thus, if a process starts with pci = V 1, and it has not sent an ⟨echo⟩ yet, it sends an
⟨echo⟩ to every process and accepts. Also, if a process has received ⟨echo⟩ and has not
sent ⟨echo⟩ yet then it sends an ⟨echo⟩ to every process and accepts. In this algorithm,
there exist some faulty process which is labeled with pci = CR. The number of faulty
processes is less than a half of processes.

For this algorithm, we technically modified a specification “bcastFolklore.tla” and checked

• an invariant bf inv “Nothing is sent or all processes do not accept.”, and

• a property bf p “All processes do not accept.” which is not an invariant.

Table 7.3 shows the running time and extra information of TLC and our tool for an
invariant bf inv . N is a number of processes, T is a maximum number of crashed
processes and F is a number of crashed processes. For two cases (T = 1,F = 1,N = 5)
and (T = 1,F = 1,N = 6), we decided to stop TLC after 2 hours since TLC could not
finish his work. For case (T = 1,F = 1,N = 7), we decided to stop TLC after 1 days. To
prove this invariant bf inv , we use 4 ×N + 1 predicates. There are 5 predicates for each

102

7.3. Experiment with NBAC

Table 7.3: Experiments with bcastFolklore, bf inv , TLC and our model checker. T/O is
2 hours and is 24 hours.

#processes TLC Predicates + IC3
N T F time (m) #states time (m) #predicates #frames
2 0 0 1 36 1 11 3
3 1 1 1 1000 1 16 3
4 1 1 3 501552 1 21 3
5 1 1 T/O ? 2 26 3
6 1 1 T/O ? 2 31 3
7 1 1 ? 2 36 3

process i : pc1
i = V 0,pc1

i = V 1,pc1
i = AC ,pc1

i = CR and rcvdi = {}. rcvdi in our encoding
is a set of received messages of process i and the last predicate shows whether process i
received some message or not. One additional predicate for a message channel sent = {}.

We use the same set of predicates to check the property bf p. Since a concrete error
trace is not complicated, TLC and our model checker can find a bug in one minutes for
the test case ⟨N = 7,T = 1,F = 1⟩.

7.3 Experiment with NBAC

In this experiment, Raynal’s algorithm for asynchronous non-blocking atomic commitment
(NBAC) was considered [Ray97]. Non-blocking atomic commitment (NBAC and NBACC)
[29,14]. Here, N processes are initialized with Yes or No and decide on whether to commit
a transaction. The transaction must be aborted if at least one process is initialized to
No. In this algorithm, a process may crash. Both models contain four shared variables.
The algorithm uses a failure detector, which is modeled as local variable that changes its
value non-deterministically.

For this algorithm, we technically modified a specification “nbac.tla” and checked an
invariant invnbac “If some process votes NO, no processes commit.” The main feature of
this algorithm is that a process commits if and only if if a vote YES has been received
from all participants, and ABORT in all other cases.

Table 7.4 shows the results with TLC. For case N = 5, we stopped TLC after 12 hours
since it could not finish his work.

Our model checker worked worse than TLC in this experiment. For case N = 3, our
checker could not answer whether invnbac is an invariant or not after 60 minutes. One
problem is that process i needs to check whether it has received vote YES from all
participants. In our specification, this condition is encoded as

103

7. Experimental Evaluation

Table 7.4: Experiments with nbac and TLC. T/O is 1 hour and is 12 hours.

TLC Predicates + IC3
N time (m) #states time (m) #predicates #frames
3 1 7352 T/O ? ?
4 10 2406640 T/O ? ?
5 ? T/O ? ?

{p ∈ P ∶ (∃msg ∈ rcvd ′[self] ∶ msg[1] = p ∧msg[2] = “YES”)} = P

where P is a set of processes, rcvd is a message channel and rcvd[self] is a set of messages
which process self has received. Unfortunately, a formula generated by our system is too
difficult for Z3 to evaluate and our predicates are not good enough to guide Z3.

It is future work to find out, why our tool does not work efficiently for this case study.

7.4 Discussions

Our preliminary experiments show that our new prototype is much more efficiently than
TLC, which performs explicit-state model checking.

104

CHAPTER 8
Conclusion

What we have presented in the preceding chapters is an efficient way of verifying a safety
property of a TLA+ specification with predicate abstraction and inductive invariants.
The main outcome is a prototypical model checker which can automatically construct
an abstract model for the TLA+ specification from a set of predicates given by the user
and check the safety property by finding a formal proof for a corresponding inductive
invariant.

We have defined a simple type system for a fragment of the TLA+ language. This type
system is based on many-sorted first-order logic and can be represented in the SMT-LIB
language. Our fragment does not allow the user to use many features in TLA+, such
as the CHOOSE operator, recursive functions and a set of elements which are records
with different structures. Therefore, our system cannot handle the Paxos specification in
[Lam02]. However, we believe that the fragment is enough expressive to describe a wide
variety of distributed and concurrency algorithms. An interesting theoretical question is
whether we can extend the current type system or utilize the untyped encoding in order
to capture more features in TLA+ .

We have described rewriting rules to eliminate “complex” TLA+ formulas which do not
counterparts in MS-FOL (and SMT-LIB). Many rewriting rules are applied to transform
these formulas into simple forms which can be mapped directly to the language of a target
SMT solver. During the translation, many heuristics, such as definition elimination, set
enumeration and constant declarations, are called to simplify the obtained specification.
The translation plays a central role in our work and therefore, every improvement in the
translation can bring significant benefits.

We have shown how to use IC3 and predicate abstraction to verify the safety property of
the TLA+ specification. For our benchmarks, our model checker outperforms than TLC
in finding an inductive variants. The shortcomings of our tool are that the way it shows

105

8. Conclusion

error traces and that user needs to check whether every abstract state in frame Fk can
be reachable in at least k step.

Future work

The translation can be improved in several aspects. First, we are studying how to
translate the Cardinality operator for finite sets. Second, if no set of sets occur in the
specification, sets can be encoded simply through their characteristic predicates. This
encoding can reduce the number of constants and functions in the SMT specification and
make the reasoning more simple and efficient. Moreover, there may exist many definitions
for a variable in an action and we should find some measure to compare these definitions.
Finally, we intend to do more experiments to know the effect of the order of formulas in
the SMT solver.

At the moment, our implementation is for a sequence algorithm of IC3 in [Bra11]. Parallel
versions of IC3 have been recently introduced in [Bra11, CK16]. These algorithms differ
in the degree of synchronization and technique to detect and share lemmas. An important
area of future work is to study how effectively these paralleled versions of IC3 can check
distributed systems.

106

Type Inference Rules

This appendix shows type inference rules for sets, arithmetic, functions, records and tuples.
Some inference rules for set and operators, such as the intersection operator cap or div,
are missed but we believe that the reader can construct these rules easily. Missing rules
look very similar with rules T -Cup, T -Plus, and T -Less. A constraint ∣{h1, . . . ,hn}∣ = n
means that every string h1, . . . ,hn is distinct or h1 ≠ hn for all i , j ∈ 1 . . n and i ≠ j .

T -Empty
Γ ⊢ {} ∶ Set α

T -BooleanΓ ⊢ Boolean ∶ Set Bool

T -IntΓ ⊢ Int ∶ Set Int

T -StrΓ ⊢ “abc” ∶ Str

Γ ⊢ S ∶ Set τ
T -SUBSETΓ ⊢ SUBSET S ∶ Set Set τ

Γ ⊢ S ∶ Set Set τ
T -UNIONΓ ⊢ UNION S ∶ Set τ

n ∈ {. . . ,−1,0,1, . . .}
T -NumΓ ⊢ n ∶ Int

Γ ⊢ e1 ∶ τ1 . . . Γ ⊢ en ∶ τn Γ ⊢ τ1 ≡ . . . ≡ τn
T -EnumΓ ⊢ {e1, . . . , en} ∶ Set ω (τ1, . . . , τn)

Γ ⊢ S ∶ Set τ1 Γ, x ∶ τ2 ⊢ ϕ ∶ Bool Γ ⊢ τ1 ≡ τ2 T -SetComp-1Γ ⊢ {x ∈ S ∶ ϕ} ∶ Set ω (τ1, τ2)

Γ ⊢ S ∶ Set τ1 Γ, x ∶ τ2 ⊢ ϕ ∶ Bool Γ, x ∶ τ2 ⊢ e (x) ∶ τ Γ ⊢ τ1 ≡ τ2
T -SetComp-2Γ ⊢ {e (x) ∶ x ∈ S} ∶ Set τ

Γ ⊢ e1 ∶ τ1 Γ ⊢ e2 ∶ τ2 Γ ⊢ τ1 ◁ τ2 T -Left-EqΓ ⊢ e1 = e2 ∶ Bool

Γ ⊢ e1 ∶ τ1 Γ ⊢ e2 ∶ τ2 Γ ⊢ τ2 ◁ τ1 T -Right-EqΓ ⊢ e1 = e2 ∶ Bool

107

8. Conclusion

Γ ⊢ e1 ∶ τ1 Γ ⊢ e2 ∶ Set τ2 Γ ⊢ τ1 ◁ τ2
T -MemΓ ⊢ e1 ∈ e2 ∶ Bool

Γ ⊢ e1 ∶ Set τ1 Γ ⊢ e2 ∶ Set τ2 Γ ⊢ τ1 ◁ τ2
T -SubsetΓ ⊢ e1 ⊆ e2 ∶ Bool

Γ ⊢ e1 ∶ Set τ1 Γ ⊢ e2 ∶ Set τ2 Γ ⊢ τ1 ≡ τ2 T -CupΓ ⊢ e1 ∪ e2 ∶ Set τ1

Γ ⊢ f ∶ Set τ1 Γ ⊢ e ∶ Set τ2 Γ ⊢ dom (τ1) ≡ τ2
T -App

Γ ⊢ f [e] ∶ cod (τ1)

Γ ⊢ f ∶ Set τ
T -DomΓ ⊢ DOMAIN f ∶ Set (dom (τ))

Γ ⊢ S ∶ Set τ1 Γx ∶ τ ′1 ⊢ e ∶ τ2 Γ ⊢ τ1 ≡ τ
′
1
T -FcnΓ ⊢ [x ∈ S ↦ e] ∶ τ1 → τ2

Γ ⊢ e1 ∶ Int Γ ⊢ e2 ∶ Int
T -PlusΓ ⊢ e1 + e2 ∶ Int

Γ ⊢ e1 ∶ Int Γ ⊢ e2 ∶ Int
T -LessΓ ⊢ e1 < e2 ∶ Bool

Γ ⊢ hi ∶ Str Γ ⊢ ej ∶ τj ∣{h1, . . . ,hn}∣ = n i , j ∈ 1 . . n
T -RcdΓ ⊢ [h1 ↦ e1, . . . ,hn ↦ en] ∶ [h1 ↦ τ1, . . . ,hn ↦ τn]

Γ ⊢ hi ∶ Str Γ ⊢ Sj ∶ Set τj ∣{h1, . . . ,hn}∣ = n i , j ∈ 1 . . n
T -SetRcdΓ ⊢ [h1 ∶ S1, . . . ,hn ∶ Sn] ∶ Set [h1 ↦ τ1, . . . ,hn ↦ τn]

Γ ⊢ e1 ∶ τ1 . . . Γ ⊢ en ∶ τn T -Tuple
Γ ⊢ ⟨e1, . . . , en⟩ ∶ ⟨τ1, . . . , τn⟩

Γ ⊢ S1 ∶ τ1 . . . Γ ⊢ Sn ∶ τn Si ≠ {}, i = 1 . . n
T -ProductΓ ⊢ S1 × . . . × Sn ∶ Set ⟨τ1, . . . , τn⟩

Γ ⊢ e1 ∶ Bool Γ ⊢ e2 ∶ τ1 Γ ⊢ e3 ∶ τ2 Γ ⊢ τ1 ≡ τ2
T -ITEΓ ⊢ IF e1 THEN e2 ELSE e3 ∶ τ1

Γ ⊢ ci ∶ Bool Γ ⊢ ej ∶ τj Γ ⊢ τ1 ≡ . . . ≡ τn+1 i ∈ 1 . . n, j ∈ 1 . . (n + 1)
T -CaseΓ ⊢ CASE c1 → e1 2 . . .2 OTHER → en+1 ∶ τ1

108

Transition Rules

This appendix lists the collection of rewriting rules applied during the translation. This
list is not comprehensive; some trivial rules are omitted. The expression [hi ↦ ei]i ∶1..n
abbreviates [h1 ↦ e1, . . . ,hn ↦ en] and [hi ∶ ei]i ∶1..n abbreviates [h1 ∶ e1, . . . ,hn ∶ en]. The
expression B abbreviates the sort Bool . In our translation, we assume that the function
argument is always in the function domain. Moreover, just to apply the rewriting rules,
we require that all expressions are assigned appropriate sorts, i.e. the type checker cannot
detect any error. The default type of term x is τ . Note that the equality and equivalence
in Z3 use the same symbol ı = .

Many-sorted first-order logic

x ∈ Set τ → TRUE
∀x ∈ {e1, . . . , en} ∶ p(x)→ p(e1) ∧ . . . ∧ p(en) (x ∉ FV1..n)

∃x ∈ {e1, . . . , en} ∶ p(x)→ p(e1) ∨ . . . ∨ p(en) (x ∉ FV1..n)

∀x ∈ {y ∈ S ∶ q(x)} ∶ p(x)→ ∀x ∶ (x ∈ S ∧ q(x))⇒ p(x)
∃x ∈ {y ∈ S ∶ q(x)} ∶ p(x)→ ∃x ∶ x ∈ S ∧ q(x) ∧ p(x)
∀x ∈ {e(y) ∶ y ∈ S} ∶ p(x)→ ∀x ∶ (∃y ∶ y ∈ S ∧ x = e(y))⇒ p(x)
∃x ∈ {e(y) ∶ y ∈ S} ∶ p(x)→ ∃x ∶ (∃y ∶ y ∈ S ∧ x = e(y)) ∧ p(x)

∀x ∈ S ∶ p(x)→ ∀x ∶ (x ∈ S)⇒ p(x)
∃x ∈ S ∶ p(x)→ ∃x ∶ (x ∈ S) ∧ p(x)

where FV1..n = FV (e1) ∪ . . . ∪ FV (en).

Set theory

x ∈ ∅→ FALSE
x ∉ S → ¬(x ∈ S)

x ∈ {e1, . . . , en}→ x = e1 ∨ . . . ∨ x = en

x ∈ {y ∈ S ∶ p(y)}→ x ∈ S ∧ p(x)

109

8. Conclusion

x ∈ {e(y) ∶ y ∈ S}→ x = e(y) ∧ y ∈ S (y is fresh)
S ∈ SUBSETT → ∀x ∶ x ∈ S ⇒ x ∈ T

S ⊆ T → ∀x ∶ x ∈ S ⇒ x ∈ T
x ∈ UNIONS → ∃T ∶ T ∈ S ∧ x ∈ T

x ∈ e1 ∪ e2 → x ∈ e − 1 ∨ x ∈ e2

x ∈ e1 ∩ e2 → x ∈ e1 ∧ x ∈ e2

x ∈ e1 ∖ e2 → x ∈ e1 ∧ ¬(x ∈ e2)

Instances of extensionality:

S = ∅→ ∀x ∶ ¬(x ∈ S)

S = {e1, . . . , en}→ ∀x ∶ x ∈ S ⇐⇒ x = e1 ∨ . . . ∨ x = en

S = SUBSETT → ∀x ∶ x ∈ S ⇐⇒ (∀y ∶ y ∈ x ⇒ yinT)

S = UNIONT → ∀x ∶ x ∈ S ⇐⇒ (∃y ∶ y ∈ T ∧ x ∈ y)
S = {x ∈ T ∶ p(x)}→ ∀x ∶ x ∈ S ⇐⇒ x ∈ T ∧ p(x)
S = {e(y) ∶ y ∈ T}→ ∀x ∶ x ∈ S ⇐⇒ (∃y ∶ y ∈ T ∧ x = e(y))

S = T ∪U → ∀x ∶ x ∈ S ⇐⇒ x ∈ T ∨ x ∈ U
S = T ∩U → ∀x ∶ x ∈ S ⇐⇒ x ∈ T ∧ x ∈ U
S = T ∖U → ∀x ∶ x ∈ S ⇐⇒ x ∈ T ∧ ¬(x ∈ U)

∀x ∶ x ∈ S ⇐⇒ x ∈ T → S = T

Functions

[x ∈ S ↦ e(x)][a]→ e(a)
[f EXCEPT ![x] = y][a]→ IF x = a THEN y ELSE f [a]

DOMAIN [x ∈ S ↦ e]→ S
DOMAIN [f EXCEPT ![x] = y]→ DOMAIN f

f ∈ [S → T]→ ∧ isAFcn(f)
∧ DOMAIN f = S
∧ ∀x ∶ x ∈ S ⇒ f [x] ∈ T

[f EXCEPT ![a] = b] ∈ [S → T]→ ∧ isAFcn(f)
∧ DOMAIN f = S
∧ a ∈ S
∧ b ∈ T
∧ ∀x ∶ (x ∈ S a)⇒ f [x] ∈ T

[x ∈ S ′ ↦ e(x)] ∈ [S → T]→ ∧S ′ = S
∧ ∀x ∶ (x ∈ S)⇒ e(x) ∈ T

110

isAFcn([x ∈ S ↦ e])→ TRUE
isAFcn([f EXCEPT ![x] = y])→ TRUE

isAFcn(f)
f ∈ [S→T]
ÐÐÐÐÐÐÐ→
f ∈ S1×...×Sn
f ∈ [hi ∶Si]

TRUE

Instances of extensionality:

f = [x ∈ S ↦ e(x)]→ ∧ isAFcn(f)
∧DOMAIN f = S
∧ ∀x ∶ x ∈ S ⇒ f [x] = e(x)

g = [f EXCEPT ![a] = b]→ ∧ isAFcn(g)
∧DOMAIN g = DOMAIN f
∧ a ∈ DOMAIN g ⇒ g[a] = b
∧ ∀x ∶ x ∈ DOMAIN f ∖ {a}

⇒ g[x] = f [x]
[x ∈ S ↦ e(x)] = [x ∈ T ↦ d(x)]→ ∧S = T

∧ ∀x ∶ x ∈ S ⇒ e(x) = d(x)

Conditional Operators

x ⊗ IF c THEN t ELSE f → IF c THEN x ⊗ t ELSE x ⊗ f
f [IF c THEN t ELSE u]→ IF c THEN f [t] ELSE f [u]

O1[IF c THEN t ELSE u]→ IF c THEN O1(t) ELSE O1(u)

where ⊗ is an infix binary TLA+ operator such as =, ∈ ,⇒,∧,⇔,+, or <, and O1 is a
prefix unary TLA+ operator such as ¬,DOMAIN,SUBSET or UNION.

Tuples and records

⟨e1, . . . , en⟩[i]→ ei when i ∈ 1 . . n
t ∈ S1 × . . . × Sn → ∧ isAFcn(t)

∧DOMAIN t = 1 . . n
∧ t[1] ∈ S1 ∧ . . . ∧ t[n] ∈ Sn

[hi ↦ ei]i ∶1..n .hj → ej when j ∈ 1 . . n
[r EXCEPT !.h1 = e].h2 → IF “h1” = “h2” THEN e ELSE r .h2

r ∈ [hi ∶ Si]i ∶1..n → ∧ isAFcn(r)
∧DOMAIN r = {“h1”, . . . , “hn”}
∧ r[“h1”] ∈ S1 ∧ ⋅ ⋅ ⋅ ∧ r[“hn”] ∈ Sn

111

8. Conclusion

[hi ↦ ei]i ∶1..n ∈ [fj ∶ Sj]j ∶1..n →⋀ “hi” = “fj”⇒ ei ∈ Sj i , j ∈ 1 . . n
DOMAIN ⟨⟩→ ∅

DOMAIN [hi ↦ ei]i ∶1..n → {“h1”, . . . , “hn”}
DOMAIN ⟨e1, . . . , en⟩→ 1 . . n

DOMAIN [r EXCEPT !.h = e]→ DOMAIN r

Instances of extensionality:

t = ⟨e1, . . . , en⟩→ ∧ isAFcn(t)
∧DOMAIN t = 1 . . n
∧⋀ t[i] = ei i ∈ 1 . . n

T = S1 × . . .Sn → ∀x ∶ x ∈ T ⇔ ∧ isAFcn(x)
∧DOMAIN x = 1 . . n
∧ x [1] ∈ S1 ∧ . . . ∧ x [n] ∈ Sn

r = [hi ↦ ei]i ∶1..n → ∧ isAFcn(r)
∧DOMAIN r = {“h1”, . . . , “hn”}
∧ r[“h1”] = e1 ∧ . . . ∧ r[“hn”] = en

x = [y EXCEPT !.h = e]→ ∧ isAFcn(x)
∧DOMAIN x = DOMAIN y
∧ “h” ∈ DOMAIN y ⇒ x [“h”] = e
∧ ∀k ∶ k ∈ DOMAIN y ∖ {“h”}⇒ x [k] = y[k]

R = [hi ∶ Si]i ∶1..n → ∀r ∶ r ∈ R⇔
∧ isAFcn(r)
∧DOMAIN r = {“h1”, . . . , “hn”}
∧ r[“h1”] ∈ S1 ∧ . . . ∧ r[“hn”] ∈ Sn

112

Type Constraints

This appendix lists the collection of rules which the constraint generator uses. This list
is not comprehensive; some trivial rules are omitted. The Γ symbol is used to denote the
environment of the type checker and the S symbol is used to denote the set of ground
types constructed from a given TLA+ specification. In our translation, we assume that
a function argument is always in the function domain. Notice that the equality and
equivalence in Z3 use the same symbol “ =”. Moreover, all variables declared by the
command VARIABLES in a TLA+ specification are global. The operator x . . y requires
that x ≤ y but our constraint language cannot represent this requirement. Fortunately,
since all expressions in a given TLA+ specification have TLC values, this requirement is
satisfied and checked by TLC.

Type grammar

τ ∶∶=Bool ∣ Int ∣ Str ∣

Set τ ∣ τ → τ ∣ [h ↦ τ] ∣ ⟨τ⟩ ∣ α

Abbreviations

∃α1..n .C ≜ ∃α1, . . . , αn .C

α1 ≅ . . . ≅ αn ≜ α1 ≅ α2 ∧ α2 ≅ α3 ∧ . . . ∧ αn−1 ≅ αn

⟪Γ ⊢ ei ∶ τi⟫i ∶1..n ≜ ⟪Γ ⊢ e1 ∶ τ1⟫ ∧ . . . ∧ ⟪Γ ⊢ en ∶ τn⟫

[hi ↦ ei]i ∶1..n ≜ [h1 ↦ e1, . . . ,hn ↦ en]

[hi ∶ ei]i ∶1..n ≜ [h1 ∶ e1, . . . ,hn ∶ en]

Type properties abc

dom (τ1 → τ2) = τ1

dom (⟨τ1, . . . , τn⟩) = Int
dot ([hi ↦ τi]i=1..n ,hi) = τi

dom ([hi ↦ τi]i=1..n) = Str
cod (τ1 → τ2) = τ2

get (⟨τ1, . . . , τn⟩, i) = τi

113

8. Conclusion

First-order logic

⟪Γ ⊢ x ∶ τ⟫ ≜ τ ≅ Γ(x)
⟪Γ ⊢ TRUE ∶ τ⟫ = ⟪Γ ⊢ FALSE ∶ τ⟫

≜ τ ≅ Bool
⟪Γ ⊢ e1 ∧ e2 ∶ τ⟫ = ⟪Γ ⊢ e1 ∨ e2 ∶ τ⟫ = ⟪Γ ⊢ e1 ⇒ e2 ∶ τ⟫ = ⟪Γ ⊢ e1 ⇔ e2 ∶ τ⟫

≜ τ ≅ Bool ∧ ⟪Γ ⊢ e1 ∶ Bool⟫ ∧ ⟪Γ ⊢ e2 ∶ Bool⟫
⟪Γ ⊢ ∀x ∈ e . ϕ ∶ τ⟫ = ⟪Γ ⊢ ∃x ∈ e . ϕ ∶ τ⟫

≜ ∧ τ ≅ Bool
∧ ∃α1α2 . ∧ ⟪Γ ⊢ e ∶ Set α1⟫ ∧ ⟪Γ, x ∶ α2 ⊢ ϕ ∶ Bool⟫

∧ α1 ≅ α2

⟪Γ ⊢ e1 = e2 ∶ τ⟫ ≜ ∧ τ ≅ Bool
∧ ∃α1α2 .⟪Γ ⊢ e1 ∶ α1⟫ ∧ ⟪Γ ⊢ e2 ∶ α2⟫ ∧ α1 ≅ α2

Sets

⟪Γ ⊢ e1 ∈ e2 ∶ τ⟫ ≜ ∧ τ ≅ Bool
∧ ∃α1, α2 . ∧ ⟪Γ ⊢ e1 ∶ α1⟫ ∧ ⟪Γ ⊢ e2 ∶ Set α2⟫

∧ α1 ≅ α2

⟪Γ ⊢ {} ∶ τ⟫ ≜ ∃α . τ ≅ Set α
⟪Γ ⊢ {e1, . . . , en} ∶ τ⟫ ≜ ∃α1 . . . αn . ∧ ⟪Γ ⊢ ei ∶ αi⟫i ∶1..n

∧ α1 ≅ . . . ≅ αn

∧ τ ≡ Set α1

⟪Γ ⊢ {x ∈ S ∶ ϕ} ∶ τ ≜ ∃α1α2 . ∧ ⟪Γ ⊢ S ∶ Set α1⟫

∧ ⟪Γ, x ∶ α2 ⊢ ϕ ∶ Bool⟫
∧ τ ≅ Set α1

∧ α1 ≅ α2

⟪Γ ⊢ {e ∶ x ∈ S} ∶ τ⟫ ≜ ∃α1α2 . ∧ ⟪Γ ⊢ S ∶ Set α1⟫ ∧ ⟪Γ, x ∶ α1 ⊢ e ∶ α2⟫

∧ τ ≅ Set α2

⟪Γ ⊢ SUBSET S ∶ τ⟫ ≜ ∃α .⟪Γ ⊢ S ∶ Set α⟫ ∧ τ ≅ Set Set α
⟪Γ ⊢ UNION S ∶ τ⟫ ≜ ∃α . τ ≅ Set α ∧ ⟪Γ ⊢ S ∶ Set α⟫

⟪Γ ⊢ e1 ⊆ e2 ∶ τ⟫ ≜ ∧ τ ≅ Bool
∧ ∃α1α2 . ∧ ⟪Γ ⊢ e1 ∶ Set α1⟫ ∧ ⟪Γ ⊢ e2 ∶ Set α2⟫

∧ α1 ≅ α2

114

⟪Γ ⊢ e1 ∪ e2 ∶ τ⟫ = ⟪Γ ⊢ e1 ∩ e2 ∶ τ⟫ = ⟪Γ ⊢ e1 ∖ e2 ∶ τ⟫

≜ ∃α1α2 . ∧ ⟪Γ ⊢ e1 ∶ Set α1⟫

∧ ⟪Γ ⊢ e2 ∶ Set α2⟫

∧ τ ≅ Set α1

∧ α1 ≅ α2

Functions

⟪Γ ⊢ [x ∈ S ↦ e] ∶ τ⟫ ≜ ∃α1α2 . ∧ ⟪Γ ⊢ S ∶ Set α1⟫

∧ ⟪Γ, x ∶ α1 ⊢ e ∶ α2⟫

∧ τ ≅ α1 → α2

⟪Γ ⊢ f [e] ∶ τ⟫ ≜ ∃α1α2 . ∧ ⟪Γ ⊢ f ∶ α1⟫

∧ ⟪Γ ⊢ e ∶ α2⟫

∧ α2 ≅ dom (α1)

∧ τ ≅ cod (α1)

⟪Γ ⊢ DOMAIN f ∶ τ⟫ ≜ ∃α .⟪Γ ⊢ f ∶ α⟫ ∧ τ ≅ Set (dom (α))

⟪Γ ⊢ [S → T] ∶ τ⟫ ≜ ∃α1α2 . ∧ ⟪Γ ⊢ S ∶ Set α1⟫

∧ ⟪Γ ⊢ T ∶ Set α2⟫

∧ τ ≅ Set (α1 → α2)

⟪Γ ⊢ [f EXCEPT ![a] = b] ∶ τ⟫ ≜ ∃αf . ∧ ⟪Γ ⊢ f ∶ αf ⟫

∧ ∃αaαb . ∧ ⟪Γ ⊢ a ∶ αa⟫

∧ ⟪Γ ⊢ b ∶ αb⟫

∧ αf ≅ αa → αb

∧ τ ≅ αf

Arithmetic

⟪Γ ⊢ n ∶ τ⟫ ≜ τ ≅ Int for n ∈ Int
⟪Γ ⊢ Nat ∶ τ⟫ ≜ τ ≅ Set Int
⟪Γ ⊢ Int ∶ τ⟫ ≜ τ ≅ Set Int
⟪Γ ⊢ −e ∶ τ⟫ ≜ τ ≅ Int ∧ ⟪Γ ⊢ e ∶ Int⟫

⟪Γ ⊢ x + y ∶ τ⟫ = ⟪Γ ⊢ x − y ∶ τ⟫ = ⟪Γ ⊢ x ∗ y ∶ τ⟫
= ⟪Γ ⊢ x div y ∶ τ⟫ = ⟪Γ ⊢ x mod y ∶ τ⟫
≜ ⟪Γ ⊢ x ∶ Int⟫ ∧ ⟪Γ ⊢ y ∶ Int⟫ ∧ τ ≅ Int

⟪Γ ⊢ x < y ∶ τ⟫ = ⟪Γ ⊢ x ≤ y ∶ τ⟫ = ⟪Γ ⊢ x > y ∶ τ⟫ = ⟪Γ ⊢ x ≥ y ∶ τ⟫
≜ ⟪Γ ⊢ x ∶ Int⟫ ∧ ⟪Γ ⊢ y ∶ Int⟫ ∧ τ ≅ Bool

115

8. Conclusion

⟪Γ ⊢ x . . y ∶ τ⟫ ≜ ⟪Γ ⊢ x ∶ Int⟫ ∧ ⟪Γ ⊢ y ∶ Int⟫ ∧ τ ≅ Set Int

Tuples and records

⟪Γ ⊢ ⟨e1, . . . , en⟩ ∶ τ⟫ ≜ ∃α1..n . ∧ ⟪Γ ⊢ ei ∶ αi⟫i ∶1..n

∧ τ ≅ ⟨τ1, . . . , τn⟩

⟪Γ ⊢ S1 × . . . × Sn ∶ τ⟫ ≜ ∃α1..n . ∧ ⟪Γ ⊢ Si ∶ Set αi⟫i ∶1..n

∧ τ ≅ Set ⟨τ1, . . . , τn⟩

⟪Γ ⊢ [hi ↦ ei]i ∶1..n ∶ τ⟫ ≜ ∃α1..n . ∧ ⟪Γ ⊢ ei ∶ αi⟫i ∶1..n

∧ τ ≅ [hi ↦ αi]i ∶1..n

⟪Γ ⊢ [hi ∶ Si]i ∶1..n ∶ τ⟫ ≜ ∃α1..n . ∧ ⟪Γ ⊢ Si ∶ Set αi⟫i ∶1..n

∧ τ ≅ Set [hi ↦ αi]i ∶1..n

⟪Γ ⊢ r .h ∶ τ⟫ ≜ ∃α .⟪Γ ⊢ r ∶ α⟫ ∧ τ ≅ dot (α,h)

Miscellaneous constructs

⟪Γ ⊢ “abc” ∶ τ⟫ ≜ τ ≅ Str
⟪Γ ⊢ IF c THEN t ELSE u ∶ τ⟫ ≜ ∧ ⟪Γ ⊢ c ∶ Bool⟫

∧ ∃α . ∧ ⟪Γ ⊢ t ∶ α⟫
∧ ⟪Γ ⊢ u ∶ α⟫

∧ τ ≅ α

⟪Γ ⊢ CASE c1 → e1 ∶ τ⟫ ≜ ∧ ⟪Γ ⊢ ci ∶ Bool⟫i ∶1..n

2 . . . ∧ ∃α . ∧ ⟪Γ ⊢ ei ∶ α⟫i ∶1..n+1

2OTHER → en+1 ∧ τ ≅ α

116

117

Bibliography

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: system and software engineer-
ing. Cambridge University Press, 2010.

[Avi03] Jeremy Avigad. Eliminating definitions and skolem functions in first-order
logic. ACM Transactions on Computational Logic (TOCL), 4(3):402–415,
2003.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons, 2004.

[BBW14] Johannes Birgmeier, Aaron R Bradley, and Georg Weissenbacher. Coun-
terexample to induction-guided abstraction-refinement (ctigar). In Computer
Aided Verification, pages 831–848. Springer, 2014.

[BDD07] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An
extensible automated theorem prover producing checkable proofs. In Logic
for Programming, Artificial Intelligence, and Reasoning, pages 151–165.
Springer, 2007.

[BDdM+13] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and
Aaron Stump. 6 years of smt-comp. Journal of Automated Reasoning,
50(3):243–277, 2013.

[BDM09] Nikolaj Bjørner and Leonardo De Moura. Z310: Applications, enablers,
challenges and directions. Constraints in Formal Verification, CFV, 9, 2009.

[BDP89] Leo Bachmair, Nachum Dershowitz, and David A Plaisted. Completion
without failure. Resolution of equations in algebraic structures, 2:1–30, 1989.

[BL02] Brannon Batson and Leslie Lamport. High-level specifications: Lessons from
industry. In Formal methods for components and objects, pages 242–261.
Springer, 2002.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

119

[BR70] John N Buxton and Brian Randell. Software Engineering Techniques: Report
on a Conference Sponsored by the NATO Science Committee. NATO Science
Committee; available from Scientific Affairs Division, NATO, 1970.

[BR01] Thomas Ball and Sriram K Rajamani. Automatically validating temporal
safety properties of interfaces. In Proceedings of the 8th international SPIN
workshop on Model checking of software, pages 103–122. Springer-Verlag
New York, Inc., 2001.

[Bra11] Aaron R Bradley. Sat-based model checking without unrolling. In Verifica-
tion, Model Checking, and Abstract Interpretation, pages 70–87. Springer,
2011.

[BT07] Clark Barrett and Cesare Tinelli. Cvc3. In Computer Aided Verification,
pages 298–302. Springer, 2007.

[Car96] Luca Cardelli. Type systems. ACM Computing Surveys, 28(1):263–264,
1996.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In Computer
Aided Verification, pages 359–364. Springer, 2002.

[CCGR99] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri.
Nusmv: A new symbolic model verifier. In Computer Aided Verification,
pages 495–499. Springer, 1999.

[CDL+12] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel
Ricketts, and Hernán Vanzetto. Tla+ proofs. In FM 2012: Formal Methods,
pages 147–154. Springer, 2012.

[CDLM08] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz.
A tla+ proof system. In G. Sutcliffe, P. Rudnicki, R. Schmidt, B. Konev,
and S. Schulz, editors, Proc. of the LPAR Workshop Knowledge Exchange:
Automated Provers and Proof Assistants (KEAPPA’08), number 418 in
CEUR Workshop Proceedings, pages 17–37, 2008.

[CDLM10] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz.
Verifying safety properties with the tla+ proof system. In Automated
Reasoning, pages 142–148. Springer, 2010.

[CE81] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. Springer, 1981.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer aided verifica-
tion, pages 154–169. Springer, 2000.

120

[CGL94] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and
abstraction. ACM transactions on Programming Languages and Systems
(TOPLAS), 16(5):1512–1542, 1994.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 1999.

[CK16] Sagar Chaki and Derrick Karimi. Model checking with multi-threaded ic3
portfolios. In Verification, Model Checking, and Abstract Interpretation,
pages 517–535. Springer, 2016.

[Coh87] Anthony G. Cohn. A more expressive formulation of many sorted logic. J.
Autom. Reason., 3(2):113–200, June 1987.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM), 43(2):225–267,
1996.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv., 17(4):471–523, December 1985.

[DDM06] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper
at http://yices.csl.sri.com/tool-paper.pdf, 2(2), 2006.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[DLP+11] John R Douceur, Jacob R Lorch, Bryan Parno, James Mickens, and
Jonathan M McCune. Memoir—formal specs and correctness proofs. Tech-
nical report, Technical Report MSR-TR-2011-19, Microsoft Research, 2011.

[DMB07] Leonardo De Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers.
In Automated Deduction–CADE-21, pages 183–198. Springer, 2007.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C.R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer Berlin Heidelberg, 2008.

[dMB09] L. de Moura and N. Bjorner. Generalized, efficient array decision procedures.
In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009, pages
45–52, Nov 2009.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, July 1960.

[EE01] Herbert Enderton and Herbert B Enderton. A mathematical introduction to
logic. Academic press, 2001.

121

[Eme08] E Allen Emerson. The beginning of model checking: A personal perspective.
In 25 Years of Model Checking, pages 27–45. Springer, 2008.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design
and Implementation, PLDI ’91, pages 268–277, New York, NY, USA, 1991.
ACM.

[GDM09] Yeting Ge and Leonardo De Moura. Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In Computer Aided Verification,
pages 306–320. Springer, 2009.

[Gme15] Annu Gmeiner. Parameterized Model Checking of Fault-Tolerant Distributed
Algorithms. PhD thesis, Vienna University of Technology, 2015.

[Gor65] Saul Gorn. Explicit definitions and linguistic dominoes. In Systems and
Computer Science, Proceedings of the Conference held at Univ. of Western
Ontario, pages 77–115, 1965.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
pvs. In Proceedings of the 9th International Conference on Computer Aided
Verification, CAV ’97, pages 72–83, London, UK, UK, 1997. Springer-Verlag.

[HL12] Dominik Hansen and Michael Leuschel. Translating tla+ to b for validation
with prob. In Integrated Formal Methods, pages 24–38. Springer, 2012.

[Hol97] Gerard J Holzmann. The model checker spin. IEEE Transactions on software
engineering, 23(5):279, 1997.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys (CSUR), 41(4):21, 2009.

[KB83] Donald E Knuth and Peter B Bendix. Simple word problems in universal
algebras. In Automation of Reasoning, pages 342–376. Springer, 1983.

[Kul09] Oliver Kullmann. Fundaments of branching heuristics. Handbook of Satisfi-
ability, 185:205–244, 2009.

[KVW12] Igor Konnov, Helmut Veith, and Josef Widder. Who is afraid of model
checking distributed algorithms? CAV Workshop (EC)2̂, 2012.

[KVW15] Igor Konnov, Helmut Veith, and Josef Widder. Smt and por beat counter
abstraction: Parameterized model checking of threshold-based distributed
algorithms. In Computer Aided Verification, pages 85–102. Springer, 2015.

[Lam83] Leslie Lamport. What good is temporal logic? In IFIP congress, volume 83,
pages 657–668, 1983.

122

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang.
Syst., 16(3):872–923, May 1994.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[Lam11] Leslie Lamport. Byzantizing paxos by refinement, 2011.
http://research.microsoft.com/en-us/um/people/lamport/pubs/web-
byzpaxos.pdf.

[LB03] Michael Leuschel and Michael Butler. Prob: A model checker for b. In FME
2003: Formal Methods, pages 855–874. Springer, 2003.

[LMW12] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Formal verification
of pastry using tla+. In International Workshop on the TLA+ Method and
Tools, 2012.

[LT87] Nancy A Lynch and Mark R Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the sixth annual ACM Symposium
on Principles of distributed computing, pages 137–151. ACM, 1987.

[LY01] Leslie Lamport and Yuan Yu. Tlc–the tla+ model checker, 2001.

[McM93] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited
paper, 1989). In Proceedings of the ninth annual ACM symposium on
Principles of distributed computing, pages 377–410. ACM, 1990.

[MS99] Joao Marques-Silva. The impact of branching heuristics in propositional
satisfiability algorithms. In Progress in Artificial Intelligence, pages 62–74.
Springer, 1999.

[MV12] Stephan Merz and Hernán Vanzetto. Automatic verification of TLA +
proof obligations with SMT solvers. In Logic for Programming, Artificial
Intelligence, and Reasoning - 18th International Conference, LPAR-18,
Mérida, Venezuela, March 11-15, 2012. Proceedings, pages 289–303, 2012.

[MV14] Stephan Merz and Hernán Vanzetto. Refinement types for TLA+. In Julia M.
Badger and Kristin Yvonne Rozier, editors, 6th Intl. NASA Symp. Formal
Methods (NFM 2014), volume 8430 of LNCS, pages 143–157, Houston, TX,
U.S.A., 2014. Springer.

123

[New02] Michael Newman. Software errors cost us economy $59.5 billion annually.
NIST Assesses Technical Needs of Industry to Improve Software-Testing,
2002.

[New14] Chris Newcombe. Why amazon chose tla+. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pages 25–39. Springer, 2014.

[NO79] Greg Nelson and Derek C Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(2):245–257, 1979.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[PL12] Daniel Plagge and Michael Leuschel. Validating b, z and tla+ using prob
and kodkod. In FM 2012: Formal Methods, pages 372–386. Springer, 2012.

[PLD+11] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens, and
Jonathan M McCune. Memoir: Practical state continuity for protected
modules. In Security and Privacy (SP), 2011 IEEE Symposium on, pages
379–394. IEEE, 2011.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in cesar. In International Symposium on Programming,
pages 337–351. Springer, 1982.

[Ray97] Michel Raynal. A case study of agreement problems in distributed systems:
non-blocking atomic commitment. In High-Assurance Systems Engineering
Workshop, 1997., Proceedings, pages 209–214. IEEE, 1997.

[Res] Microsoft Research–Inria. Tla+ proof system.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[SMT15] Smt-comp 2015, 2015. http://smtcomp.sourceforge.net/2015/index.shtml.

[SMT16] The satisfiability modulo theories library (smt-lib), 2016.
http://smtlib.cs.uiowa.edu/logics.shtml.

[TY02] Serdar Tasiran and Yuan Yu. Using formal specifications to monitor and
guide simulation: Verifying the cache coherence engine of the alpha 21364
microprocessor. In Proceedings of the 3rd IEEE Workshop on Microprocessor
Test and Verification, Common Challenges and Solutions, 2002.

124

[Van14] Hernán Vanzetto. Proof automation and type synthesis for set theory in the
context of TLA+. PhD thesis, Université de Lorraine, 2014.

[Wol14] Sebastian Wolff. Logics seminar 2014: Model checking with ic3,
2014. http://concurrency.informatik.uni-kl.de/documents/Logics Seminar
2014/IC3.pdf.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 214–227, New York,
NY, USA, 1999. ACM.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+
specifications. In Correct Hardware Design and Verification Methods, pages
54–66. Springer, 1999.

125

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Statement
	Challenges
	Related Works
	Contributions
	Overview

	Preliminaries
	Rewriting system
	Unsorted first-order logic
	Many-sorted first-order logic
	SMT Solvers
	The satisfiability modulo theories library
	SMT solver competitions and Z3
	Linear-time logic
	Conclusions

	TLA+ Language and its Toolbox
	Underlying Logic
	Specification
	TLA+ Toolbox
	Conclusions

	Model Checking
	Overview
	Predicate Abstraction
	Model Checking with NuSMV2
	Model Checking with IC3
	Conclusions

	Translation of TLA+ to Z3
	Overview
	The fragment of TLA+
	Our type system
	Boolification
	Transformation to SMT
	Properties of our encoding
	Related Work
	Conclusions

	The Implementation
	The Architecture
	How to use our system
	Example

	Experimental Evaluation
	Experiment with TA
	Experiment with BcastFolklore
	Experiment with NBAC
	Discussions

	Conclusion
	Bibliography

