
Diplomarbeit

Exploratory Tools for Cellwise Outlier
Detection in Compositional Data with

Structural Zeros

Ausgeführt am

Institut für Stochastik und Wirtschaftsmathematik

unter der Leitung von

Privatdoz. Dipl.-Ing. Dr.techn. Matthias Templ

durch

Lukas Beisteiner, BSc

Augasse 1, 2811 Wiesmath

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract
The analysis of compositional data using the log-ratio approach is based on ratios
between the compositional parts. Zeros in the parts thus cause severe difficulties
for the analysis. Log-ratio transformations represent the compositional information
into new coordinates. Outliers within these coordinates may be detected, however
it remains unclear which particular parts of the composition led to the deviating
ratios in question. To address this issue, the thesis presents four exploratory tools for
identifying cellwise outliers in compositional data sets with structural zeros. In order
to deal with structural zeros the proposed methods use robust imputation methods or
split the data into subcompositions determined by their zero patterns. Ratios between
parts are analyzed using an isometric log-ratio transformation or by observing pair-
wise log-ratios. Combining the results from robust regression analysis and robust
distance calculations the approaches deduce row- and cellwise outliers within the
original sample space. All four methods are applied on the household expenditure data
from Albania and then compared. A close-to-reality simulation study is conducted
to assess the performance of the different outlier detection algorithms.

ii

Acknowledgments
An dieser Stelle möchte ich mich bei all jenen bedanken, die mich im Zuge meiner
Diplomarbeit und meines Studiums unterstützt haben. Zuerst möchte ich mich bei
meinem Professor Matthias Templ bedanken. Du standest mir fachlich und inhaltlich
stets zur Seite und hast mir sehr viel deiner wertvollen Zeit geschenkt. Vielen Dank
für die großartige Zusammenarbeit.

Ein besonderer Dank gilt meinen Freunden. Danke, dass ihr mich während dieses
Studiums begleitet habt, dass ihr immer ein offenes Ohr für mich habt und dass man
mit euch so viel erleben kann. Ich hoffe ich bin euch ein ebenso guter Freund.

Zu guter Letzt möchte ich mich auch noch bei meinen Schwester und meinen
Eltern bedanken. Ich bin sehr froh zu wissen, dass ihr, egal welche Entscheidun-
gen ich treffe und welche Ziele ich mir setze, immer hinter mir steht und mich stets
unterstützt.

iii

Contents

1 Introduction 1

2 Basic notations and definitions 3
2.1 Representation in coordinates . 6
2.2 Zeros and coordinate representation 6
2.3 Robust regression estimators . 7

2.3.1 LTS-estimator . 8
2.3.2 MM-estimates . 9

2.4 Outlier detection for univariate data 10
2.5 Outlier detection for multivariate data 11

2.5.1 Robust multivariate distances 11
2.5.2 sign-method . 12

2.6 Regression methods for outlier detection 14

3 Cellwise outlier detection in compositional data 16
3.1 Imputation approach . 17

3.1.1 Detailed description of the algorithm 17
3.1.2 Advantages and limitations of the algorithm 20

3.2 Subset approach . 20
3.2.1 Detailed description of the algorithm 21
3.2.2 Advantages and limitations of the algorithm 22

3.3 Pairwise log-ratio approach . 23
3.3.1 Detailed description of the algorithm 24
3.3.2 Advantages and limitations of the algorithm 29

3.4 Detect deviating cells on pairwise log-ratios 29
3.4.1 Detailed description of the algorithm 29
3.4.2 Advantages and limitations of the algorithm 33

4 Application to household expenditure data 34

5 Simulation study 42
5.1 Simulation of data . 42
5.2 Simulation setup . 44
5.3 Simulation results . 44

5.3.1 Results for varying the fraction of missing values 44

iv

5.3.2 Results for varying the fraction of outliers 46

6 Summary and Conclusio 48

Appendix 50
A Robust imputation methods . 50
B Addtional robust estimates used in the detectDeviatingCells algorithm 52
C R functions . 53

v

Chapter 1

Introduction

The term compositional data is used when relative contributions of parts on a whole
contain the information of interest. Such data occur frequently in many practical
situations. A typical example would be household expenditures on various costs like
housing, foodstuff, alcohol and tobacco, furnishings, health and transportation for
a sample of households, whenever the aim is to analyze the ratios between parts
or/and the multivariate structure of the data. Such data from world bank will be
discussed and analyzed later in this thesis. The sum of these parts is not necessarily
1 (or 100%), but since the relevant information is contained in the ratios between
the parts, a constant sum constraint 1 or 100 can be achieved without any loss of
information.

Compositional data induce an own sample space; they are represented in the
simplex, correspondent to the Aitchison geometry (see Egozcue et al. [2003] and
Bacon-Shone [2008]) that is substantially different from the Euclidean geometry. The
𝐷-part simplex is defined as

𝑆𝐷 =

{︃
𝑥 = (𝑥1, . . . , 𝑥𝐷) | 𝑥𝑖 > 0, 𝑖 = 1, . . . , 𝐷;

𝐷∑︁
𝑖=1

= 𝜅

}︃

where 𝜅 is an arbitrary positive constant. Therefore, standard statistical methods
designed for the Euclidean geometry cannot be directly applied to compositions. To
offer a way out Aitchison [1986] proposed a family of log-ratio coordinates that en-
able to express compositional data from the simplex in the Euclidean real space.
Nowadays, the isometric log-ratio (ilr) coordinates are preferred due to advantageous
theoretical properties like isometry and non-singularity. We will also make extensive
use of this transformation within this thesis. The downside comes with the fact that
the new and transformed variables are not easy to interpret. In this thesis we aim for
detecting outliers in the data only. Therefore the interpretability of the
variables/coordinates becomes a non-issue. As stated above after transformation,
standard statistical methods and in this sense outlier detection methods can now be
applied on the variables represented in the new coordinates. As a consequence all
outlier results are expressed in the transformed space as well. However from a user’s
perspective it may be of great interest which of the initial part of an observation leads

1

to deviating ratios within the transformed coordinates.
This thesis therefore proposes several exploratory tools for detecting cellwise out-

liers within compositional data. Chapter 2 elaborates on the theoretical background
of the data transformation and robust methods used for outlier detection. Chapter 3
then describes the proposed algorithms for a cellwise outlier detection in detail, also
introducing two different approaches for dealing with structural zeros in the data.
The methods are then applied on household expenditure data from Albania and the
obtained results are discussed in Section 4. The thesis concludes in Chapter 5 by
measuring the performance of the different outlier detection algorithms by means of
a simulation study, based on the original data from the survey.

2

Chapter 2

Basic notations and definitions

This chapter will first recapitulate robust properties of an estimator, most impor-
tant the breakdown point, efficiency and affine equivariance. We will introduce an
isometric log-ratio transformation used for representing the compositional variables
into orthogonal coordinates in the Euclidean real space. Furthermore the theory be-
hind outlier detection using robust regression, as well as univariate and multivariate
distances is presented.

With real-world data sets with quantitative information, estimators which are not
sensitive to outliers should be preferred. Therefore a measure for the sensitivity of an
estimator to contaminated data has to be established. In this case the finite-sample
breakdown point (“Donoho-Huber breakdown point”) (see Donoho and Huber [1983])
is used. In a given sample 𝑥1, . . . , 𝑥𝑛 replace 𝑚 data points 𝑥11 , . . . , 𝑥1𝑚 with arbitrary
values 𝑦1, . . . , 𝑦𝑚. Denote these new data points as 𝑧1, . . . , 𝑧𝑛. The (gross-error) finite-
sample breakdown point for estimator 𝑇 is then defined as

𝜀*𝑛(𝑇 ;𝑥1, . . . , 𝑥𝑛) = min

{︂
𝑚

𝑛
; max
𝑖1,...,𝑖𝑚

sup
𝑦1,...,𝑦𝑚

|𝑇 (𝑧1, . . . , 𝑧𝑛)| = ∞
}︂
.

In general 𝜀*𝑛 is independent of 𝑥1, . . . , 𝑥𝑛. Furthermore Hampels (see Hampel [1971])
asymptotic version of this definition for infinite samples results in

lim
𝑛→∞

𝜀*𝑛 = 𝜀*.

The maximum achievable breakdown point is 50%. A breakdown point over 50% is
not feasible; in this case the majority of outliers could be treated as "good" data
points.

Robust estimates are more reliable in case of contaminated or extreme data points
in a data set, however they do have a drawback when it comes to the quality of the
estimate. Contrary to their classical counterpart, robust estimates are in general not
very efficient. Concerning the precision of an estimator, statistical efficiency is an
important and desirable characteristic. It is defined via the Ramér-Crao bound or
Cramér-Rao inequality, which is a lower bound for the variance of an estimator. Let
𝑥1, . . . , 𝑥𝑛 be a sample from a distribution 𝑋, for which the density 𝑓(𝑥; 𝜃) exists

3

with unknown parameter 𝜃 ∈ Θ. Additionally we consider the following regularity
assumptions:

1. (R1) The true parameter 𝜃0 is an inner point of Θ and from 𝜃 ̸= 𝜃′ follows
𝑓(𝑥; 𝜃) ̸= 𝑓(𝑥; 𝜃′).

2. (R2) The distributions 𝑓(𝑥𝑖; 𝜃), 𝑖 = 1, . . . , 𝑛, have common support for all 𝜃 ∈
Θ.

3. (R3) 𝑓(𝑥; 𝜃) is twice differentiable in 𝜃 and for 𝑘 = 1, 2 holds

𝜕𝑘

𝜕𝜃𝑘

∫︁ ∞

−∞
𝑓(𝑥; 𝜃)𝑑𝑥 =

∫︁ ∞

−∞

𝜕𝑘𝑓(𝑥; 𝜃)

𝜕𝜃𝑘
𝑑𝑥.

Thus the operations of integration with respect to 𝑥 and differentiation with
respect to 𝜃 can be permuted.

The regularity assumptions above are necessary for the Cramér-Rao bound and are
not only sufficient for the existence of the Fisher information 𝐼(𝜃), defined by

𝐼(𝜃) = E

[︃(︂
𝜕 ln 𝑓(𝑋; 𝜃)

𝜕𝜃

)︂2
]︃
.

The Cramér-Rao inequality can then be introduced as follows: Consider a sample
𝑥1, . . . , 𝑥𝑛 from a distribution 𝑋, for which the density 𝑓(𝑥; 𝜃) exists with unknown
parameter 𝜃 ∈ Θ. Let 𝑇 = 𝑇 (𝑥1, . . . , 𝑥𝑛) be an estimate for the parameter 𝜃 with
E[𝑇 (𝑥1, . . . , 𝑥𝑛)] = 𝑘(𝜃). Given the regularity assumptions (R1)-(R3) the following
inequality holds true

Var[𝑇] ≥ [𝑘′(𝜃)]2

𝑛𝐼(𝜃)
. (2.1)

For an unbiased estimate 𝑇 for 𝜃, meaning that E[𝑇] = 𝜃, the inequality reduces to

Var[𝑇] ≥ 1

𝑛𝐼(𝜃)
.

The efficiency 𝑒(𝑇) of an unbiased estimator 𝑇 is defined by the quotient of the
Cramér-Rao bound and the true variance of the estimator:

𝑒(𝑇) =

1
𝑛𝐼(𝜃)

Var[𝑇]

An unbiased estimate is called efficient if its variance reaches the Cramér-Rao bound,
which implies that 𝑒(𝑇) = 1 for efficient estimates. If the variance of an unbiased
estimate reaches the Cramér-Rao bound only for 𝑛→ ∞ the estimate is called asymp-

4

totically efficient :

lim
𝑛→∞

1
𝑛𝐼(𝜃)

Var[𝑇]
= 1

In case of robust estimators, most of them are biased, 𝑏(𝜃) = E(𝑇) − 𝜃, and thus
𝑘(𝜃) = 𝑏(𝜃) + 𝜃. By the result in Formula (2.1), any unbiased estimator whose
expectation is 𝑘(𝜃) has variance greater than or equal to [𝑘′(𝜃)]2/(𝑛𝐼(𝜃)). Therefore
any estimator 𝑇 whose bias is given by function 𝑏(𝜃) satisfies

Var[𝑇] ≥ [1 + 𝑏′(𝜃)]2

𝑛𝐼(𝜃)
. (2.2)

The unbiased version of the bound is a special case of this result, with 𝑏(𝜃) = 0. From
Formula (2.2) we find that the mean squared error of a biased estimator, given by

MSE(𝑇) = E[(𝑇 − 𝜃)2] = Var[𝑇] + 𝑏(𝑇)2, (2.3)

is bounded by

E[(𝑇 − 𝜃)2] ≥ [1 + 𝑏′(𝜃)]2

𝑛𝐼(𝜃)
+ 𝑏(𝜃)2,

using the standard decomposition of the MSE as in Formula (2.3). It is important
to note that this bound can be less than the unbiased Cramér-Rao bound bound
1/(𝑛𝐼(𝜃)). This may be the case when using robust estimators, which are biased but
achieve lower variance, leading to a low mean squared error.

Another desirable characteristic of an estimator is the so called affine equivariance.
This property is specifically interesting when it comes to multivariate estimates of
location and scale. The advantage of such estimates lies in the invariance of the
estimator when data is translated, rotated or changes in scale. Let 𝑋 be an 𝑛 × 𝑝
dimensional data set. A location estimator 𝑇 is called affine equivariant if and only
if for all 𝑝-dimensional vectors 𝑏 and all nonsingular 𝑝 × 𝑝 matrices 𝐴 the following
holds

𝑇 (𝑋𝐴 + 1𝑏′) = 𝑇 (𝑋)𝐴 + 1𝑏′, (2.4)

where 1 is a column vector with 𝑛 components all equal to 1.
When estimating the covariance matrix of 𝑋, an estimator 𝐶, which is a positive

definite, symmetric 𝑝× 𝑝 matrix is called affine equivariant if and only if

𝐶(𝑋𝐴 + 1𝑏′) = 𝐴′𝐶(𝑋)𝐴 (2.5)

holds true for all 𝑝-dimensional vectors 𝑏 and all nonsingular 𝑝× 𝑝 matrices 𝐴.

5

2.1 Representation in coordinates
As stated in the introductory chapter analyzing compositional data is best done
by transforming it with an isometric log-ratio (ilr) transformation. We focus on
one particular ilr transformation with useful properties that supports our proposed
algorithms. The ilr coordinates for a𝐷-part composition 𝑥 = (𝑥1, . . . , 𝑥𝐷)′ are defined
as ilr(𝑥) = 𝑧 = (𝑧1, . . . , 𝑧𝐷−1)

′, where

𝑧𝑗 =

√︃
𝐷 − 𝑗

𝐷 − 𝑗 + 1
ln

𝑥𝑗

𝐷−𝑗

√︁∏︀𝐷
𝑘=𝑗+1 𝑥𝑘

, 𝑗 = 1, . . . , 𝐷 − 1. (2.6)

The inverse isometric log-ratio (invilr) transformation of 𝑧 = (𝑧1, . . . , 𝑧𝐷−1)
′ is defined

as

𝑥1 = exp

(︂√
𝐷 − 1√
𝐷

𝑧1

)︂
,

𝑥𝑖 = exp

(︃
−

𝑖−1∑︁
𝑗=1

1√︀
(𝐷 − 𝑗 + 1)(𝐷 − 𝑗)

𝑧𝑗 +

√
𝐷 − 𝑖√

𝐷 − 𝑖+ 1
𝑧𝑖

)︃
, 𝑖 = 2, . . . , 𝐷 − 1, and

𝑥𝐷 = exp

(︃
−

𝐷−1∑︁
𝑗=1

1√︀
(𝐷 − 𝑗 + 1)(𝐷 − 𝑗)

𝑧𝑗

)︃
.

(2.7)

2.2 Zeros and coordinate representation
One has to take into account that zeros might naturally occur in the data set (see Hron
et al. [2015]). Zeros caused by any rounding error (this refers to so called rounded
zeros, typically present in geochemical data) are not considered, but zeros may be the
result of structural processes (structural zeros). Once again considering the house-
hould example, there could be teetotal households that do not have any expenditures
on alcohol or tobacco. Zero values are in contradiction with the definition of compo-
sitions as data with positive entries. This is quite a natural requirement, because a
multivariate observation is a composition if and only if all the relevant information
is contained in the ratios between the compositional part (see Cortes [2009]). How-
ever, as a severe consequence, the log-ratio coordinates where logarithms of ratios of
compositional parts are taken, cannot be applied to compositional data with zeros.
There are also some alternative transformations for compositional data that avoid the
problem of dealing with zero compositional parts, like the square root or the hyper-
spherical transformations (see Stewart and Field [2010]), resulting from considering
a fixed constant sum constraint 1 of compositional parts instead of scale invariance
as it is the case in the log-ratio approach. Although the transformations represent
concepts of dealing with compositional data that allow for zero parts, they fail (from
the perspective of the log-ratio approach) in other important features like incorpo-

6

rating relative scale of compositions, or their subcompositional coherence (see Cortes
[2009]).

As stated in Hron et al. [2015] the advantage of our chosen log-ratio transformation
as in Formula (2.6) becomes quite clear when considering a 𝐷-part composition 𝑥𝑖 =
(𝑥𝑖1, . . . , 𝑥𝑖𝐷)′, for 𝑖 = 1, . . . , 𝑛. Suppose that 𝑥𝑖 has 𝐷 − 𝐾(𝑖) structural zeros,
2 ≤ 𝐾(𝑖) ≤ 𝐷 − 1. We put the zeros on the first positions, resulting in �̃�𝑖 =
(0, . . . , 0, 𝑥𝑖𝑗1 , . . . , 𝑥𝑖𝑗𝐾(𝑖)

)′. The cell 𝑥𝑖𝑗𝑘 corresponds to the 𝑘th non-zero position in
the vector 𝑥𝑖, for 𝑘 ∈ {1, . . . , 𝐾(𝑖)}. It is now straightforward to find a 𝐷 × 𝐷
dimensional permutation matrix �̃� 𝑖 with 0/1 entries, such that 𝑥𝑖 = �̃� 𝑖𝑥𝑖, for 𝑖 =
1, . . . , 𝑛. The idea behind the re-arrangement of the parts is to construct an ilr
representation of the non-zero parts. We can use Formula (2.6) for that purpose: an
ilr coordinate 𝑧𝑖𝑗𝑘 will describe all the relative information about the part 𝑥𝑖𝑗𝑘 with
respect to all “subsequent” parts 𝑥𝑖𝑗𝑙 , with 𝑙 > 𝑘. Therefore, the corresponding ilr
coordinates 𝑧𝑖𝑗1 , . . . , 𝑧𝑖𝑗𝐾(𝑖)−1

contain all the relative information of 𝑥𝑖𝑗1 , . . . , 𝑥𝑖𝑗𝐾(𝑖)
, for

𝑖 = 1, . . . , 𝑛. This transformation also ensures that (imputed) zeros in 𝑥𝑖 influence
the new coordinates 𝑧𝑖 as little as possible. We will use these coordinates in the
following and present two approaches to dealing with structural zeros in the data in
Chapter 3.

2.3 Robust regression estimators
In this section the different robust regression methods used for detecting outliers are
described. The following notation is used for the linear regression model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + · · · + 𝛽𝑞𝑥𝑖𝑞 + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛

Often these 𝑛 equations are written in matrix notation as

y = X𝛽 + 𝜀,

where

y =

⎛⎜⎜⎜⎝
𝑦1
𝑦2
...
𝑦𝑛

⎞⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎝
1 𝑥1

1 𝑥2
...

...
1 𝑥𝑛

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 𝑥11 · · · 𝑥1𝑞
1 𝑥21 · · · 𝑥2𝑞
...

...
1 𝑥𝑛1 · · · 𝑥𝑛𝑝

⎞⎟⎟⎟⎠ ,

𝛽 =

⎛⎜⎜⎜⎝
𝛽0
𝛽1
...
𝛽𝑞

⎞⎟⎟⎟⎠ , 𝜀 =

⎛⎜⎜⎜⎝
𝜀0
𝜀1
...
𝜀𝑞

⎞⎟⎟⎟⎠ .

Furthermore the following assumptions are made. The 𝜀𝑖 are i.i.d and independent of
𝑥𝑖 with 𝜀𝑖 ∼ 𝒩 (0, 𝜎2). The residuals are denoted as 𝑟𝑖(𝛽) = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖1 + · · · +
𝛽𝑞𝑥𝑖𝑞).

7

Instead of the standard least squares method, which minimizes the sum of squared
residuals

min
𝛽

ℎ∑︁
𝑖=1

𝑟𝑖(𝛽)2,

several robust regression methods can be formulated with positive breakdown point
up to 50%. In the regression context, outliers can be defined with the help of the
residuals. The 𝑖-th observation is considered an outlier, if its standardized residual

𝑟𝑖(�̂�)

�̂�(𝑟)
(2.8)

exceeds/undercuts ±2.5, where �̂� denotes the estimated standard deviation of the
residuals. These boundaries are due to the model assumptions of 𝜀𝑖 ∼ 𝒩 (0, 𝜎2) and
therefore the standardized residuals are distributed according to 𝒩 (0, 1). Of course
the standard deviation for robustly estimated residuals also has to be estimated in a
robust way.

2.3.1 LTS-estimator

Let |𝑟|(𝑖) be the 𝑖-th ordered absolute residual, with |𝑟|(1) ≤ |𝑟|(2) ≤ . . . ≤ |𝑟|(𝑛).
Furthermore the residual’s standard deviation is estimated by

𝜎 =

⎯⎸⎸⎷1

ℎ

ℎ∑︁
𝑖=1

|𝑟|2(𝑖).

The Least Trimmed Squares (LTS-) estimator (see Rousseeuw [1984]) is then defined
as

�̂�LTS = arg min
𝛽

⎯⎸⎸⎷1

ℎ

ℎ∑︁
𝑖=1

|𝑟|2(𝑖) = arg min
𝛽

ℎ∑︁
𝑖=1

|𝑟|2(𝑖) .

The maximum breakdown point of 50% is achieved for ℎ = [(𝑛+𝑞)/2], but this results
in an asymptotic efficiency of only 7%.

The choice of ℎ determines both breakdown point and efficiency,[︂
𝑛+ 𝑞

2

]︂
≤ ℎ ≤ 𝑛,

with LTS being more robust for ℎ towards the lower end and more efficient for ℎ
towards the upper end of the interval. Using ℎ ≈ 𝑛/2 this method has a breakdown
point of approximately 50%, for larger ℎ it depletes to about (𝑛− ℎ)/𝑛.

8

2.3.2 MM-estimates

M-estimates of regression are defined as (see also Koller and Stahel [2011])

�̂� = arg min
𝛽

𝑛∑︁
𝑖=1

𝜌

(︂
𝑟𝑖(𝛽)

𝜎

)︂
, (2.9)

where 𝜌(𝑟) is assumed to be a nondecreasing function of |𝑟|, with 𝜌(0) = 0 and strictly
increasing for 𝑟 > 0 where 𝜌(𝑟) < 𝜌(∞). Maronna et al. [2006] restrict the term 𝜌-
function to this type of functions. If 𝜌 is bounded, it is assumed that 𝜌(∞) = 1 and
the estimate defined by (2.9) is then called redescending M-estimate of regression.
The scale 𝜎 is required to gain scale equivariance and can either be an external scale
estimate or estimated simultaneously. Differentiating (2.9) results in the estimating
equation

𝑛∑︁
𝑖=1

𝜓

(︃
𝑟𝑖(𝛽)

𝜎

)︃
𝑥𝑖 = 0,

where 𝜓 is proportional to 𝜌′ and is usally chosen to have 𝜓′(0) = 1.
An M-estimate of scale of 𝑒 = (𝑒1, . . . , 𝑒𝑛) is the solution �̂� to the estimating

equation

1

𝑛

𝑛∑︁
𝑖=1

𝜒
(︁𝑒𝑖
𝜎

)︁
= 𝜅,

where 𝜅 is a tuning constant and 𝜒(𝑒) fullfills the same properties as 𝜌 does.
S-estimates of regression are the parameter values 𝛽𝑆 that minimize the M-

estimate of scale �̂�𝑆 = �̂�(𝑟(𝛽)) of the associated residuals,

𝛽𝑆 = arg min
𝛽

�̂�𝑠(𝑟(𝛽)).

The maximal breakdown point (1 − 𝑞/𝑛)/2 of the S-estimate is attained at 𝜅 =
(1− 𝑞/𝑛)/2 (see Maronna et al. [2006] for details). It is impossible for an S-estimator
to achieve both a high breakdown point and a high efficiency. Following the proposal
of Yohai [1987] arbitrarily high efficiency is possible by using MM-estimates. They
are defined as the local minimum of the M-estimator for regression,

𝛽𝑀 = arg min
𝛽

𝑛∑︁
𝑖=1

𝜌

(︂
𝑟𝑖(𝛽)

�̂�

)︂
,

obtained by using an iterative procedure started at an initial S-estimate �̂�𝑆. The
corresponding �̂�𝑆 is used as the scaling factor in the formula above. The functions 𝜌
and 𝜒 are usually taken from the same family. The tuning constant for 𝜌 is determined
such that the estimator reaches a desired value for the asymptotic efficiency.

9

2.4 Outlier detection for univariate data
When considering one-dimensional data outliers are points that are “far enough” away
from the main bulk of the data. One way of locating these points is to measure
location and scale of a data sample in a robust way. All observations which exceed
the range of the location plus/minus multiple times the scale can be considered as
potential outliers. Several methods for robustly estimating location and scale are
available. We chose the ones used by Rousseeuw and Van den Bossche [2016] due to
their combination of robustness and computational efficiency. For further discussion
let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be a univariate data set.

For estimating location and scale of 𝑥 the first step of an algorithm of M-estimators,
as described in [Maronna et al., 2006, pp. 39-41], is used. In particular, for robust lo-
cation estimation we start from the initial estimates, the median and a robust measure
of spread,

𝑚1 = med𝑛
𝑖=1(𝑥𝑖) and 𝑠1 = med𝑛

𝑖=1|𝑥𝑖 −𝑚1|,

and then compute the location estimate

robLoc(𝑥) =

∑︀𝑛
𝑖=1𝑤𝑖𝑥𝑖∑︀𝑛
𝑖=1𝑤𝑖

, (2.10)

where the weights are given by 𝑤𝑖 = 𝑊𝑐1((𝑥𝑖 −𝑚1)/𝑠1). Here 𝑊𝑐1(·) means Tukey’s
biweight function

𝑊𝑐1(𝑡) =

(︃
1 −

(︂
𝑡

𝑐1

)︂2
)︃2

1(|𝑡| ≤ 𝑐1),

where 𝑐1 > 0 is a tuning constant (by default 𝑐1 = 3).
For robustly estimating scale we assume that 𝑥 has already been centered, e.g.

by computing 𝑥− 𝑟𝑜𝑏𝐿𝑜𝑐(𝑥), so only the deviations from zero have to be calculated.
The function

𝜌𝑐2(𝑡) = min(𝑡2, 𝑐22)

is used for a constant 𝑐2 = 2.5. Starting from the initial estimate 𝑠2 = med𝑖(|𝑥𝑖|) we
then compute the scale estimate

𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒(𝑥) = 𝑠2

⎯⎸⎸⎷1

𝛿

1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖
𝑠2
, (2.11)

where the constant 𝛿 = 0.845 ensures consistency for gaussian data. Let

𝑚 = 𝑟𝑜𝑏𝐿𝑜𝑐(𝑥) and 𝑠 = 𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒(𝑥−𝑚),

10

as well as 𝑧 = (𝑥−𝑚)/𝑠 the standardization of data set 𝑥. 𝑥𝑖 is then considered an
outlier if

|𝑧𝑖| >
√︁
𝜒2
1,𝑝.

The probability 𝑝 is often chosen as 99%, so that under ideal circumstances only 1%
of the entries get flagged.

2.5 Outlier detection for multivariate data
In the multivariate case potential outliers will primarily be data points, that are
not in correspondence with the structure of the main bulk of the data. We use two
methods to detect outliers in multivariate data, the first one being the very prominent
measure of squared Mahalanobis distances 𝑀𝐷2

𝑖 . Let 𝑋 ∈ R𝑛×𝑝 be a data matrix
with observations 𝑥𝑖 ∈ R𝑝, 𝑖 = 1, . . . , 𝑛.

2.5.1 Robust multivariate distances

The robust squared Mahalanobis distance for the 𝑖-th observation is then defined by

𝑅𝐷2
𝑖 = (𝑥𝑖 − 𝑇)′𝐶−1(𝑥𝑖 − 𝑇), (2.12)

where 𝑇 is a robust measure of location of the data set 𝑋 and 𝐶 is a robust estimate of
the covariance matrix. In case of 𝑋 following a multivariate normal distribution, the
squared classic Mahalanobis distance (based upon the sample mean and covariance
matrix) follows a 𝜒2

𝑝 distribution (e.g. Johnson and Wichern [1998]). A common rule
is to declare observations as potential outliers, if they exceed the 97.5% quantile of the
chi-squared distribution 𝜒2

𝑝;0.975. In the literature one can find many different robust
estimates for location 𝑇 and covariance 𝐶, which not only differ in breakdown points,
but also in statistical efficiency. More developed robust estimates may be tuned to
achieve high breakdown point combined with high efficiency.

Here we consider the minimum covariance determinant (MCD) estimator, first
introduced by Rousseeuw [1985]. This particular estimator features affine equivari-
ance for location and scale and can achieve the maximal breakdown point of 50%.
Given a data set {𝑥1, . . . ,𝑥𝑛} with 𝑥𝑖 ∈ R𝑝, 𝑖 = 1, . . . , 𝑛, the minimum covariance
determinant estimator is defined by the subset of ℎ data points {𝑥𝑖1 , . . . ,𝑥𝑖ℎ} with
the smallest determinant of the sample covariance matrix among all subsets of size
ℎ. The MCD estimate for location 𝑇𝑀𝐶𝐷 and covariance 𝐶𝑀𝐶𝐷 is then defined by

𝑇𝑀𝐶𝐷 =
1

ℎ

ℎ∑︁
𝑖=1

𝑥𝑖𝑗 , (2.13)

𝐶𝑀𝐶𝐷 = 𝑐𝑐𝑐𝑓𝑐𝑠𝑠𝑐𝑓
1

ℎ− 1

ℎ∑︁
𝑗=1

(𝑥𝑖𝑗 − 𝑇𝑀𝐶𝐷)(𝑥𝑖𝑗 − 𝑇𝑀𝐶𝐷)′. (2.14)

11

The coefficients 𝑐𝑐𝑐𝑓 and 𝑐𝑠𝑠𝑐𝑓 are correction factors. The consistency correction fac-
tor 𝑐𝑐𝑐𝑓 is chosen such that 𝐶𝑀𝐶𝐷 is consistent at the multivariate normal model,
however this factor is only reliable for subset size ℎ close to 𝑛. Otherwise this factor
produces overestimation. The small sample correction factor 𝑐𝑠𝑠𝑐𝑓 is chosen such that
the estimate is unbiased at samples with small number of observation. Further infor-
mation on the correction factors may be found in Rocke [1996], Croux and Haesbroeck
[1999], Pison et al. [2002]. Parameter ℎ is used to regulate the breakdown point of
the MCD estimator. For ℎ equal to the sample size 𝑛, the MCD estimate reduces to
the classical estimate for location and scale, which inherit a breakdown point of 0%.
For ℎ equal to ⌊(𝑛+𝑝+1)/2⌋, the maximum possible breakdown point of 50% can be
achieved. Often the amount of contamination in data sets is not very high, therefore
ℎ = 0.75𝑛 is used in practice to get a sufficient breakdown point and as well as still
good statistical properties.

In general the MCD estimate is not very efficient, especially if ℎ is chosen in order
to achieve the maximum breakdown point. A way to overcome the low efficiency of
the MCD estimator is by introducing an adaptation of the estimate including sample
weights. The weights 𝑤𝑖, 𝑖 = 1, . . . , 𝑛, are introduced in such a way that

𝑤𝑖 =

{︂
1 if (𝑥𝑖 − 𝑇𝑀𝐶𝐷)′𝐶−1

𝑀𝐶𝐷(𝑥𝑖 − 𝑇𝑀𝐶𝐷) ≤ 𝜒2
𝑝,0.975

0 otherwise ,

where 𝑇𝑀𝐶𝐷 and 𝐶𝑀𝐶𝐷 are the original MCD estimates for location and scale. The
reweighted MCD estimates 𝑇𝑀𝐶𝐷𝑟 and 𝐶𝑀𝐶𝐷𝑟 are given by

𝑇𝑀𝐶𝐷𝑟 =
1

𝑣

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 ,

𝐶𝑀𝐶𝐷𝑟 = 𝑐𝑟,𝑐𝑐𝑓𝑐𝑟,𝑠𝑠𝑐𝑓
1

𝑣 − 1

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥𝑖𝑗 − 𝑇𝑀𝐶𝐷𝑟)(𝑥𝑖𝑗 − 𝑇𝑀𝐶𝐷𝑟)
′,

where 𝑣 equals the sum of all weights 𝑣 =
∑︀𝑛

𝑖=1𝑤𝑖. As with the original MCD
estimate, the factors 𝑐𝑟,𝑐𝑐𝑓 and 𝑐𝑟,𝑠𝑠𝑐𝑓 are correction factors to achieve consistency
and unbiasedness for small samples. The reweighted and the initial MCD estimator
feature identical breakdown point, but the efficiency of the former is higher. The
big advantage of the MCD estimate and the reason for its popularity among robust
estimators is the fast algorithm for its computation.

2.5.2 sign-method

As a second method to detect multivariate outliers we consider the sign-method
as proposed by Filzmoser et al. [2008]. This procedure utilizes a robust principal
component analyis (PCA) implementation by Locantore et al. [1999].

Let us first recapitulate the basic concept of PCA (e.g as described in Hastie et al.
[2001]). Let 𝑋 be the centered 𝑛 × 𝑝 dimensional data matrix. The singular value

12

decomposition (SVD) of 𝑋 is then defined as

𝑋 = 𝑈𝐷𝑉 ′, (2.15)

where 𝑈 and 𝑉 are 𝑛×𝑝 and 𝑝×𝑝 dimensional orthogonal matrices, with the columns
of 𝑈 spanning the column space of 𝑋 and the columns of 𝑉 spanning the row space.
𝐷 is a 𝑝×𝑝 dimensional diagonal matrix, with diagonal entries 𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑝 ≥ 0
called the singular values of 𝑋. If one or more values 𝑑𝑗 = 0, 𝑋 is singular.

The SVD of the centered matrix 𝑋 is another way of expressing the principal
components of the variables in 𝑋. The sample covariance matrix is given by 𝐶 =
𝑋 ′𝑋/𝑛, and from Formula (2.15) we have

𝑋 ′𝑋 = 𝑉 𝐷2𝑉 ′, (2.16)

which is the eigen decomposition of 𝑋 ′𝑋 (and of 𝐶, up to a factor 𝑛). The eigen
vectors (columns of 𝑉) are also called the principal components directions of 𝑋.
The first principal component direction 𝑣1 has the property, that 𝑧1 = 𝑋𝑣1 has the
largest sample variance amongst all normalized linear combinations of the columns
of 𝑋. One can easily see that this sample variance is

Var[𝑧1] = Var[𝑋𝑣1] =
𝑑21
𝑛
.

The derived variable 𝑧1 is called the first principal component of 𝑋. Subsequent
principal components 𝑧𝑗 have maximum variance 𝑑2𝑗/𝑛, subject to being orthogonal
to the earlier ones. Conversely the last principal component has minimum variance.
Hence the small singular values 𝑑𝑗 correspond to directions in the column space of 𝑋
having small variance.

Continuing, Filzmoser et al. [2008] propose the following algorithm for the sign-
method:

Step 1: Robustly sphere the data by subtracting the median and dividing by the
median absolute deviation (MAD), the latter being defined for a sample {𝑥1, . . . , 𝑥𝑛} ⊂
R as

MAD(𝑥1, . . . , 𝑥𝑛) = 1.4826 · med𝑗|𝑥𝑗 − med𝑖𝑥𝑖|, (2.17)

in each dimension. Project the data onto the unit sphere by standardizing each
data point by its norm, 𝑥*𝑖𝑗 =

𝑥𝑖𝑗

‖𝑥𝑖‖ .

Step 2: Due to Step 1, the effect of outlying observations is greatly minimized and
simply computing the classical covariance matrix yields a robust covariance
matrix 𝐶. It follows that performing standard PCA on 𝐶 yields a robust prin-
cipal components decomposition. Therefore we calculate the sample covariance
matrix of the sphered data followed by the (classical) principal components
𝑧𝑗 ∈ R𝑛, 𝑗 = 1, . . . , 𝑝.

Step 3: Determine and retain only those 𝑝* components that contribute to at least

13

99% of the variance. Robustly sphere the data in this modified PC space
according to

𝑧*𝑖𝑗 =
𝑧𝑖𝑗 − med𝑖𝑧𝑖𝑗

MAD𝑖𝑧𝑖𝑗
, 𝑗 = 1, . . . , 𝑝*.

Step 4: Calculate robust distances from these data according to

𝑅𝐷𝑖 =

⎯⎸⎸⎷ 𝑝*∑︁
𝑗=1

𝑧*2𝑖𝑗 , 𝑖 = 1, . . . , 𝑛,

which is computationally fast in PC space.

Step 5: Transform these distances according to

𝑑𝑖 = 𝑅𝐷𝑖 ·

√︁
𝜒2
𝑝*,0.5

med𝑖(𝑅𝐷𝑖)

to better approximate a 𝜒2
𝑝* distribution and classify as outliers all points with

transformed robust distance greater than the 𝜒2
𝑝* 0.975 quantile.

2.6 Regression methods for outlier detection
Summarizing the previous sections we have become acquainted with two fundamental
methods to detect outliers in multivariate data, being standardized residuals in a
regression setting and robust distances. In regression diagnostics these two concepts
are often combined to distinguish between four different types of data points:

– regular observations : Observations that fit the regression line well in both di-
mension (𝑦- & 𝑋-dimension).

– vertical outliers : Observations that have outlying values for the corresponding
error term (the 𝑦-dimension) but are not outlying in the design space (the 𝑋-
dimension).

– good leverage points : Observations that are outlying in the design space, but
are located close to the regression line.

– bad leverage points : Observations located far away from the regression line.

In general, good leverage points yield an advantage due to them lying within the
direction of the regression hyperplane. Thus they contribute to an even more pre-
cise estimation of the regression parameters. However bad leverage points may have
strong influence on parameter estimation, because they might even tilt the regression
hyperplane.

14

0 5 10 15 20 25 30 35

0
5

10
15

Regression Diagnostic Plot

Robust distance computed by MCD

S
ta

nd
ar

di
ze

d
LT

S
 r

es
id

ua
l

1
826

7
103954

11
13

12 14

−
2.

5
2.

5

Figure 2-1: Regression diagnostic plot of the Hawkins-Bradu-Krass data set.

As stated in Formula (2.8) outliers in regression are identified by large standardized
residuals (outside of the bounds ±2.5). Leverage points are outliers in the 𝑋-space
and therefore have large robust distances. The regression diagnostic plot compares
standardized robust residuals and robust distances. To illustrate this we consider an
artificial data set generated by Hawkins et al. [1984]. The data set consists of 75
observations in four dimensions (one response and three explanatory variables). It
provides a good example of the masking effect. The first 14 observations are outliers,
created in two groups: 1–10 and 11–14. Only observations 12, 13 and 14 appear
as outliers when using classical methods, but can be easily unmasked using robust
distances. Figure 2-1 shows the regression diagnostic plot resulting from plotting
the robust standardized residuals resulting from an LTS-regression versus the robust
distances obtained from using robust MCD estimates. Regular observations as well
as good leverage points can be found within the ±2.5 bound of the standardized
residuals. As described in Section 2.5.1 the robust distance of an observation deter-
mines whether it is a good or bad leverage point (based on

√︁
𝜒2
𝑞;0.975). The diagnostic

plot shows that the outlying observations 11-14 are actually good leverage points and
thus help to stabilize the regression hyperplane. Observations 1-10 are successfully
identified as outliers.

We try to utilize this method of outlier identification in Chapter 3 for detecting
deviating cells within the data set. However the compositional structure of the data
and the thus needed transformations before the actual analysis require proficient
adaptation of this concept.

15

Chapter 3

Cellwise outlier detection in
compositional data

As outlined in the introductory chapter of this thesis we are interested in detecting
cellwise and rowwise outliers on the simplex, the original sample space induced by
compositional data. For this purpose we use

– the isometric log-ratio transformation introduced in Section 2.1 and

– the pairwise log-ratio matrix introduced in Section 3.3

to analyze the ratios between the parts of an observation and detect deviating behav-
ior. When using log-ratios one has to take into account that zeros might naturally
occur in the data set. We discussed this issue in Section 2.2 and utilize

– robust imputation methods as depicted in Appendix A and

– splitting the data set into subsets according to its zero patterns

to deal with this issue. Combining these methods we propose four different approaches
for detecting outliers within the data:

– imputation approach (see Section 3.1)

– subset approach (see Section 3.2)

– pairwise log-ratio approach (see Section 3.3)

– detect deviating cells (algorithm proposed in Rousseeuw and Van den Bossche
[2016]) on pairwise log-ratios (see Section 3.4)

As stated in Section 2.6 we combine the concepts of

– robust regression and

– robust distance calculation

16

to analyze our data. One could argue that after dealing with structural zeros and
representing the variables in the new coordinates, we could simply use robust distances
to detect deviating observations within the ratios. However robust regression allows
us to detect outliers in a regression setting, analyzing standardized residuals instead
of distances. Combining the information provided by the residuals with the one
obtained from the robust distances even allows for cellwise outlier detection. More
importantly the regression approach enables an easy integration of external, non-
compositional variables (e.g. demographic information), possibly gaining valuable
information.

3.1 Imputation approach
The main idea of the algorithm is to firstly deal with missing values and structural
zeros by imputing them using robust imputation methods (such as described in Ap-
pendix A and Templ et al. [2015]). The major advantage of these imputation methods
is due to the fact, that observations containing zero parts are imputed in a way such
that no outliers are produced. We can therefore use the full information without
worrying about zeros or additional outliers. Due to the compositional structure of
the data the compositional variables (excluding additional grouping- and regression-
variables) are expressed into the new coordinates using an isometric log-ratio trans-
formation (see Equation (2.6)). Afterwards robust, cellwise regression, taking the
transformed as well as grouping- and additional variables into account, can be used
to calculate standardized residuals. Although cellwise regression is applied on the
data set, the resulting standardized residuals as in Formula (2.8) are not suitable for
a cellwise outlier detection yet. Looking at the formula for the residuals in a standard
regression

𝑟𝑖(𝛽) = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖1 + · · · + 𝛽𝑞𝑥𝑖𝑞),

large absolute residuals can either derive from outlying values in the response vari-
able 𝑦𝑖 or from the regressors 𝑥𝑖𝑗, 𝑗 = 1, . . . , 𝑞. Naturally this fact applies to the
standardized (robust) residuals as well, making it ambiguous to tell if the detected
outlier indeed stems from the cell 𝑦𝑖 only. Therefore, for each regression, also robust
Mahalanobis distances within the space of the regressor variables are computed. If
the robust distance of the regressors of this particular observation is in line with the
majority of the data, the large residual may only stem from 𝑦𝑖 alone. By combining
the results of residuals and distances one may detect cellwise outlier in the original,
untransformed sample space. However, due to the nature of the isometric log-ratio
transformation, where the new coordinates always inherit parts of the original vari-
ables, this proves to be quite difficult.

3.1.1 Detailed description of the algorithm

Let (𝑋,𝑌) be our initial 𝑛×(𝑝+𝐷) dimensional data set, where 𝑋 = (𝑥1, . . . ,𝑥𝑝) de-
notes the compositional variables, 𝑌 = (𝑦1, . . . ,𝑦𝐷) the non-compositional variables

17

of the set.

Step 1: imputation. In case of compositional data, structural zeros are regarded
as missing information. In order to work with imputation methods (e.g. as
presented in Appendix A), all zeros in the compositional data 𝑋 are set to
missing beforehand. Afterwards 𝑋 is imputed using robust imputation methods
resulting in 𝑋 𝑖𝑚𝑝.

Step 2: iteration over columns. In order to detect univariate outliers within
the observations of 𝑋, which lead to outlying ratios, the algorithm sequentially
applies transformations and outlier detection on sorted data sets. Therefore we
iterate over the columns 𝑥𝑗 for all 𝑗 ∈ {1, . . . , 𝑝}, calculating:

2.1: sorting. Sort 𝑋 𝑖𝑚𝑝 so that 𝑥𝑗 is the first column of 𝑋 𝑖𝑚𝑝.

2.2: representation in coordinates. Apply the isometric log-ratio transfor-
mation from Equation (2.6) on the sorted 𝑋 𝑖𝑚𝑝 to obtain 𝑍 = (𝑧1, . . . ,𝑧𝑝−1).

2.3: robust regression. Apply robust regression

𝑧1 = (𝑍(−1),𝑌)𝛽(𝑗) + 𝜀(𝑗),

where 𝑍(−1) depicts the obtained data set 𝑍 excluding the first column,
and 𝛽(𝑗), 𝜀(𝑗) the regression coefficients and residuals of this particular
regression.

2.4: calculate standardized residuals. Calculate standardized residuals as
in Equation (2.8)

𝑟(𝑗) =
𝜀(𝑗)

�̂�(𝜀(𝑗))
,

where �̂� denotes the estimated standard deviation of the residuals.

2.5: calculate robust distances in the space of the regressor variables.
Calculate robust squared Mahalanobis distances for each observation/row
(𝑧𝑖·,𝑦𝑖·), 𝑖 = 1, . . . , 𝑛 of the regressor matrix (𝑍(−1),𝑌) using Formula
(2.12)

𝑑
(𝑗)
𝑖 = ((𝑧𝑖·,𝑦𝑖·) − 𝑇 (𝑗))′(𝐶(𝑗))−1((𝑧𝑖·,𝑦𝑖·) − 𝑇 (𝑗)),

where 𝑇 (𝑗) is a robust measure of location of these particular regressor
variables (𝑍(−1),𝑌) and 𝐶(𝑗) is a robust estimate of the covariance ma-
trix. In our case the MCD estimates for location and scale as described in
Section 2.5.1 are used.

Iteration over all columns 𝑥𝑗, 𝑗 = 1, . . . , 𝑝 of 𝑋 𝑖𝑚𝑝 results in standardized
residuals 𝑟(𝑗) ∈ R𝑛 for each column of 𝑋 𝑖𝑚𝑝. Furthermore, we obtain robust
distances 𝑑(𝑗) ∈ R𝑛 of the regressor variables of the 𝑗-th regression. One has to

18

note, that the residuals as well as the distances are based on the corresponding
ratios of 𝑋.

Step 3: outlier detection. Flag each cell of 𝑋 as outlier according to

𝑓
(𝑗)
𝑖 := 1(|𝑟(𝑗)𝑖 | > 𝑐),

for all observations 𝑖 ∈ {1, . . . , 𝑛} and compositional variables 𝑗 ∈ {1, . . . , 𝑝}.
Often 𝑐 = 2.5 is chosen. Note that due to the definition of the isometric log-ratio
transformation in Formula (2.6), the first coordinate 𝑧1 is not only influenced
by 𝑥𝑗 (in the 𝑗-th run of Step 2), but is also influenced by all other variables
𝑥𝑘, 𝑘 ∈ {1, . . . , 𝑝}, 𝑘 ̸= 𝑗. Therefore large absolute standardized residuals in
𝑟(𝑗) and hence an outlier flag in 𝑓 (𝑗) may be the result of outlying values in
𝑥𝑘, 𝑘 ̸= 𝑗.

As a consequence we also have to consider the robust distances 𝑑(𝑗) of the regres-
sor variables of the 𝑗-th regression. Here we use robust mahalanobis distances
as described in Section 2.5.1. These distances are only influenced by (𝑍(−1),𝑌),
which do not stem from 𝑥𝑗 at all. In general, as stated in Section 2.5.1, distances
of observations are considered outlying if

𝑔
(𝑗)
𝑖 := 1(𝑑

(𝑗)
𝑖 > 𝜒2

𝑝−2+𝐷;0.975)

for all observations 𝑖 ∈ {1, . . . , 𝑛} and compositional variables 𝑗 ∈ {1, . . . , 𝑝}.

Step 4: interpretation. The following points are to consider when interpreting
the above results:

4.1: cellwise outlier. Following our findings, a cellwise outlier in 𝑋 is a cell
𝑥𝑖𝑗, whose outlier flag 𝑓 (𝑗)

𝑖 = 1 and whose distance flag 𝑔(𝑗)𝑖 = 0. This con-
stellation indicates, that in the 𝑗-th run of Step 2, 𝑥𝑖𝑗 solely contributed to
a deviating ratio 𝑧𝑖1, resulting in a large absolute standardized residual 𝑟(𝑗)𝑖

in the 𝑗-th regression. This residual is not influenced by any other devi-
ating 𝑥𝑖𝑗, due to the robust Mahalanobis distances 𝑑(𝑗)𝑖 not indicating any
outlyingnes in the regressor space, which is solely comprised of variables
independent of 𝑥𝑗.

4.2: multivariate/rowwise outlier Step 4.1 immediately gives the definition
of a multivariate outlier for this algorithm. If outlier flags 𝑓 (𝑗)

𝑖 indicate large
absolute standardized residuals for observation 𝑖, and the corresponding
robust distances 𝑔(𝑗)𝑖 also show deviating results in the regressor space,
several 𝑥𝑖𝑗 are responsible for a deviating behaviour of the ratios of this
particular observation. In this case outlier flags may be summed up

𝑝∑︁
𝑗=1

𝑓
(𝑗)
𝑖 for the 𝑖-th observation,

19

indicating how often this observation was identified as an outlier. Based
on this sum the whole row could be flagged as an outlier. We also flag
the whole observation as an outlier, if for each regression 𝑗 = 1, . . . , 𝑝 the
robust distance flag 𝑔

(𝑗)
𝑖 indicates a multivariate outlier in the regressor

space, regardless of the residual flag. This predominantly indicates a mul-
tivariate outlier within this observation. Therefore we flag observation 𝑖
as a multivariate outlier if

𝑝∑︁
𝑗=1

𝑔
(𝑗)
𝑖 = 𝑝. (3.1)

3.1.2 Advantages and limitations of the algorithm

Recapitulating the above, with this approach zeros are imputed first. Imputation is
done in a way, that no additional outliers are generated when filling missing informa-
tion. The big advantage of the imputation approach is to work with 𝑛 observations,
while in the subset approach (see Section 3.2) the zero-patterns are taken into account,
naturally working on smaller subsets of the data set then. The algorithm further gains
advantage over the pairwise approaches (see Sections 3.3 & 3.4) by using additional
variables for the regression, possibly providing additional information concerning the
ratios. With this approach, cellwise outlier detection proves to be quite difficult. Due
to the nature of the isometric log-ratio transformation, observations represented in
the new coordinates are almost always influenced by possible multivariate outliers in
the original sample space. This makes it quite difficult to deduce which cell/cells of
the observation in the untransformed space leads/lead to outlying ratios. However as
described in Step 4.1, proficient interpretation of the regression- and robust distance
results may track down an individual cellwise outlier in the original sample space,
leading to deviating ratios. Concluding, it is important to note (as described in Step
4.2) that due to the multiple regressions resulting in multiple outlier flags per obser-
vations, the algorithm gives a good indication of observations whose ratios deviate
from the main bulk of the data.

3.2 Subset approach
Contrary to the imputation approach discussed in the previous section, the subset ap-
proach handles missing values by dividing the data set into unique subsets (patterns)
according to the zero-pattern occurring in each row. Therefore imputation is not
needed and the process of representing the variables in the new coordinates using the
isometric log-ratio transformation and then performing a cellwise regression can be
executed on each subset. Using the methods described in the imputation approach,
robust standardized residuals and robust distances are calculated for each subset of
the data set and results may again be combined to try to detect cellwise outliers
in the original, untransformed sample space. Due to the subset approach directly
resembling the imputation approach, this again poses to be a difficult task.

20

3.2.1 Detailed description of the algorithm

Let (𝑋,𝑌) again be our initial 𝑛 × (𝑝 + 𝐷) dimensional data set, where 𝑋 =
(𝑥1, . . . ,𝑥𝑝) denotes the compositional variables, 𝑌 = (𝑦1, . . . ,𝑦𝐷) the non-compositional
variables of the set.

Step 1: split into subsets according to zero pattern. We split the data set
(𝑋,𝑌) into unique subsets (𝑋𝑘,𝑌 𝑘), 𝑘 = 1, . . . , 𝑙 with 𝑛𝑘 observations and
(𝑝+𝐷) columns, where

∑︀𝑙
𝑘=1 𝑛𝑘 = 𝑛, according to the 𝑙 zero patterns in 𝑋.

Step 2: iteration over subsets. Basically we now apply Steps 2-4 of the algo-
rithm described in Section 3.1.1 on the subsets (𝑋𝑘,𝑌 𝑘) instead of the whole,
imputed data frame. Therefore we iterate over the subsets for all 𝑘 ∈ {1, . . . , 𝑙},
calculating:

2.1 delete zero columns. Delete all 𝑝𝑘 zero columns in 𝑋𝑘 resulting in a
data set ̃︁𝑋𝑘 with 𝑝𝑘 := 𝑝− 𝑝𝑘 columns.

2.2 validate subset. Subsets now have to be re-evaluated concerning their
sample size. For meaningful regression the subset (̃︁𝑋𝑘,𝑌 𝑘) must contain
more than 2 · (𝑝𝑘 + 𝐷) + 1 observations. If this is not the case for the
present subset, Step 2.3 is skipped entirely and possible outliers in this
subset can not be detected. Outlier- and distance-flags 𝑓 (𝑗)

𝑖 , 𝑔
(𝑗)
𝑖 are set to

0 for all rows in the subset.
2.3 iteration over columns of subset. We now iterate over the columns

�̃�𝑗 of subset ̃︁𝑋𝑘 for all 𝑗 ∈ {1, . . . , 𝑝𝑘} and perform the exact same Steps
2.1-2.5 of the imputation algorithm (see Section 3.1.1), whereas in this case
we use

– ̃︁𝑋𝑘 instead of 𝑋 𝑖𝑚𝑝 and
– 𝑌 𝑘 instead of 𝑌 .

Iteration over all columns �̃�𝑘, 𝑗 = 1, . . . , 𝑝𝑘 of ̃︁𝑋𝑘 results in standardized resid-
uals 𝑟(𝑗) ∈ R𝑛𝑘 for each column of ̃︁𝑋𝑘 or for each non-zero column of 𝑋𝑘

respectively. Furthermore, we obtain robust distances (here we use the sign-
method introduced in Section 2.5.2 for calculation) 𝑑(𝑗) ∈ R𝑛𝑘 of the regressor
variables of the 𝑗-th regression.

Step 3: combining results. After iterating over the unique subsets (𝑋𝑘,𝑌 𝑘) of
(𝑋,𝑌) we obtained standardized residuals 𝑟(𝑗)𝑖 , (𝑖, 𝑗) ∈ {(𝑖, 𝑗) | 𝑖 = 1, . . . , 𝑛 ∧ 𝑗 =
1, . . . , 𝑝 ∧ 𝑥𝑖𝑗 ̸= 0} for every non-zero cell of 𝑋, as well as the corresponding
robust distances 𝑑(𝑗)𝑖 .

Step 4: outlier detection. Outlier detection proceeds as in Step 3 of the imputa-
tion algorithm and results in outlier- and distance-flags 𝑓 (𝑗)

𝑖 , 𝑔
(𝑗)
𝑖 for all observa-

tions 𝑖 = {1, . . . , 𝑛} and compositional variables 𝑗 = {1, . . . 𝑝} where 𝑥𝑖𝑗 ̸= 0.

Step 5: interpretation. The above results can basically be interpreted as in Step
4 of the imputation approach.

21

5.1: cellwise outlier. A cellwise outlier in 𝑋 is a cell 𝑥𝑖𝑗, whose outlier flag
𝑓
(𝑗)
𝑖 = 1 and whose distance flag 𝑔(𝑗)𝑖 = 0. This constellation indicates, that

in the 𝑗-th run of Step 2, 𝑥𝑖𝑗 solely contributed to a deviating ratio 𝑧𝑖1,
resulting in a large absolute standardized residual 𝑟(𝑗)𝑖 in the 𝑗-th regression.
This residual is not influenced by any other deviating 𝑥𝑖𝑗, due to the robust
Mahalanobis distances 𝑑(𝑗)𝑖 not indicating any outlyingness in the regressor
space, which is solely comprised of variables independent of 𝑥𝑗.

5.2: multivariate/rowwise outlier Step 5.1 again immediately gives the def-
inition of a multivariate outlier for this algorithm. If outlier flags 𝑓 (𝑗)

𝑖 indi-
cate large absolute standardized residuals for observation 𝑖, and the corre-
sponding robust distances 𝑔(𝑗)𝑖 also show deviating results in the regressor
space, several 𝑥𝑖𝑗 are responsible for a deviating behaviour of the ratios of
this particular observation. In this case outlier flags may be summed up

𝑝∑︁
𝑗=1

𝑓
(𝑗)
𝑖 for the 𝑖-th observation,

indicating how often this observation was identified as an outlier. Based
on this sum the whole row could be flagged as an outlier. Resembling
the interpretation from the imputation approach, if for an observation 𝑖
each calculation of robust distances leads to a positive outlier flag 𝑔

(𝑗)
𝑖 ,

we conclude that this as an indication for the presence of a multivariate
outlier. This is the case if

𝑝∑︁
𝑗=1

𝑔
(𝑗)
𝑖 = 𝑝𝑘 for the 𝑖-th observation belonging to subset �̃�𝑘. (3.2)

In theory, outlier detection is feasible for all observations when using the subset
approach. However, as stated in Step 2.2 of the algorithm, some subsets may
turn out to be too small for regression- and distance analysis, making outlier
detection within these observations impossible.

3.2.2 Advantages and limitations of the algorithm

Instead of imputing zeros, this approach divides the underlying data set into subsets
(patterns) according to the zero-pattern occurring in each row. The big advantage of
the subset approach is that one does not have to be concerned about any imputations,
as done in the previous approach. However subsets may turn out to be too small for
our regression- and distance-based outlier detection methods and potential observa-
tions deviating from the main bulk of the data, can thus not be detected within those
subsets. Furthermore our regression- and distance estimators are naturally working
on smaller data sets, making them not as potent as if they were estimated on the full
data set. However, as in the imputation approach regression analysis also takes ad-
ditional variables into account, thus possibly providing additional information which

22

pairwise approaches are missing out on. Because the subset approach basically per-
forms the imputation approach on smaller data sets, cellwise outlier detection still
proves to be quite difficult. The problems of the isometric log-ratio transformation
being influenced by multivariate outliers and interpreting the results in a way to trace
back cellwise outliers in the original sample space still remain. However also the subset
approach can be of good use, when flagging whole observations as outliers. Multiple
outlier flags per observation again may be summed up per observation, indicating
how often this particular row was identified as an outlier.

3.3 Pairwise log-ratio approach
The algorithms presented so far have difficulties to detect cellwise outliers. These
difficulties are related to representing the compositional variables of our data sets in
the new coordinates using the isometric log-ratio transformation. Thus we present
an algorithm that tries to detect cellwise outliers, which lead to deviating ratios by
observing pairwise log-ratios between the variables.

In this as well as in the following Section 3.4 we are therefore making extensive use
of the pairwise log-ratio matrix 𝑍 between the variables of a matrix 𝑋 = (𝑥1, . . . ,𝑥𝑝),
defined as

𝑍 =

(︂
log

𝑥1

𝑥2

, · · · , log
𝑥1

𝑥𝑝

, log
𝑥2

𝑥3

, · · · , log
𝑥2

𝑥𝑝

, · · · , log
𝑥𝑝−1

𝑥𝑝

)︂
. (3.3)

Note that the matrix does not include ratios containing (in the regression context)
duplicate (log 𝑥𝑖

𝑥𝑗
= − log

𝑥𝑗

𝑥𝑖
) or unnecessary (log 𝑥𝑖

𝑥𝑗
, 𝑖 = 𝑗) information.

The main idea of the algorithm stems from the presumption, that large differences
between the parts of an observation lead to deviating ratios. To illustrate this, let
us consider a toy data set (see Table 3-1) consisting entirely of ones, with a single
observation having two contaminated cells. If we were now to compute the pairwise

row.num x1 x2 x3 x4
1 1 1 1 1
2 1 1 1 1
...

...
...

...
...

9 1 1 1 1
10 1 1 5 5

Table 3-1: Toy data set with cellwise contamination in observation 10.

log-ratios between the parts of each observation, observations 1-9 would all have ratios
0 between their variables 𝑥1, . . . , 𝑥4. Calculating the log-ratios between the variables
of observation 10 however would lead to deviating log-ratios e.g. for variables 𝑥1 and
𝑥4, log(𝑥10,1/𝑥10,4) ≈ 1.61. The example shows that flagging cells 𝑥10,4 and 𝑥10,5 of
observation 10 would indicate cellwise outliers in the original sample space, which

23

lead to deviating ratios. With this in mind we will speak of “good" variables (𝑥1, 𝑥2)
and “bad” variables (𝑥3, 𝑥4) on an observation basis and presume that bad variables
lead to deviating ratios when compared to good variables.

Taking this into account, the algorithm tries to distinguish between good and bad
variables for each observation. To do this we impute compositional variables to deal
with structural zeros and missing information. Then column-wise univariate outlier
detection is performed on the data set. On an observation level we detect “bad” vari-
ables, if the variable was detected as a univariate outlier within the column. We treat
all other variables of an observation as “good” variables. We then compare the pair-
wise log-ratios between bad and good variables against all ratios between the good
variables. If the ratio containing a bad variable deviates (based on regression and
robust distances), we conclude that the bad variable is responsible for the deviating
ratio. Regression and distance methods are performed on subsets containing obser-
vations, which feature the same univariate outlier pattern, and results are combined
to detect cellwise, bivariate and multivariate outliers within observations.

3.3.1 Detailed description of the algorithm

Let 𝑋 = (𝑥1, . . . ,𝑥𝑝) be the 𝑛×𝑝 dimensional compositional data set. The algorithm
uses the initial univariate outlier detection as described in Rousseeuw and Van den
Bossche [2016].

Step 1: imputation. We deal with structural zeros within the compositional data
by setting them to missing beforehand. Afterwards 𝑋 is imputed using robust
imputation methods resulting in 𝑋 𝑖𝑚𝑝.

Step 2: compute intial ratios. In this section’s introductory example the univari-
ate outlier detection and the following split between “good” and “bad” variables
was based on the absolute amounts of the particular cells. To account for the
compositional structure of the data, also these intial steps should have ratios in
mind. We therefore calculate 𝑋 𝑖𝑛𝑖𝑡 as

𝑥𝑗 =
𝑥𝑗∑︀
𝑖 ̸=𝑗 𝑥𝑖

for each column 𝑗 = 1, . . . , 𝑝.

Step 3: standardization. For each column 𝑥𝑗, 𝑗 = 1, . . . , 𝑝 of 𝑋 𝑖𝑛𝑖𝑡 we estimate

𝑚𝑗 = 𝑟𝑜𝑏𝐿𝑜𝑐(𝑥𝑗) and 𝑠𝑗 = 𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒(𝑥𝑗 −𝑚𝑗),

where robLoc is a robust estimator of location and robScale is a robust estimator
of scale, which assumes its argument has already been centered (we consider the
robust estimators of location (2.10) and scale (2.11) as described in Section 2.4.
We then standardize 𝑋 𝑖𝑚𝑝 to 𝑍 by

𝑧𝑗 =
𝑥𝑗 −𝑚𝑗

𝑠𝑗
.

24

Step 4: apply univariate outlier detection to all variables. After the column-
wise standardization in Step 2 we compute a new matrix 𝑈 with entries

𝑢𝑖𝑗 = 1

(︁
|𝑧𝑖𝑗| >

√︁
𝜒2
1,𝑝

)︁
.

The probability 𝑝 is often chosen as 99% so that under ideal circumstances
only 1% of the entries get flagged. We obtained a 0-1-matrix 𝑈 , indicating
column-wise univariate outlier.

Step 5: detect unique outlier patterns. The rows of matrix 𝑈 give information
about the univariate outliers occuring in each observation of 𝑋. We now split 𝑈
into unique subsets 𝑈 𝑘, 𝑘 = 1, . . . , 𝑙 with 𝑛𝑘 observations and 𝑝 columns, where∑︀𝑙

𝑘=1 𝑛𝑘 = 𝑛, according to the 𝑙 outlier patterns in 𝑈 . Each observation of 𝑋
is now uniquely assigned to a subset 𝑈 𝑘. Let 𝐼𝑘 be the index set of observations
belonging to group 𝑈 𝑘, with #𝐼𝑘 = 𝑛𝑘.

Step 6: iteration over subsets. For every unique outlier pattern 𝑈 𝑘, 𝑘 = 1, . . . , 𝑙
we calculate:

6.1: distinguish between “good” and “bad” variables. Our presumption
in this algorithm is in general, with a few exceptions discussed within this
section of the thesis, that univariate outliers within an observation are
predominantly responsible for outlying ratios. We therefore distinguish
between “good” and “bad” variables/columns within the subset 𝑈 𝑘 (due
to all rows of 𝑈 𝑘 showing the same 0-1-/outlier pattern, it is sufficient to
consider only the first row of 𝑈 𝑘 in the following definitions):

𝐽𝑔𝑜𝑜𝑑 := {𝑗 | 𝑢1𝑗 = 0}
𝐽𝑏𝑎𝑑 := {𝑗 | 𝑢1𝑗 = 1}

Let 𝑝𝑔𝑜𝑜𝑑 := #𝐽𝑔𝑜𝑜𝑑 and 𝑝𝑏𝑎𝑑 := #𝐽𝑏𝑎𝑑. It follows that 𝑝𝑔𝑜𝑜𝑑 + 𝑝𝑏𝑎𝑑 = 𝑝 and
we have divided the subset into two “types” of variables.

6.2: ratio analysis. In order to get a good understanding of the ratios between
variables and their interconnection we now apply a number of procedures
on the pairwise log-ratios of the variables of 𝑋 𝑖𝑚𝑝.

6.2.1: regression analysis - bad/good ratios. First we calculate the
pairwise log-ratio matrix 𝑍

(𝑘)
𝑔𝑜𝑜𝑑 as in Formula (3.3) between all good

variables 𝑥𝑗, 𝑗 ∈ 𝐽𝑔𝑜𝑜𝑑 and call it the matrix of “good ratios”. We then
test if the ratios between good and bad variables deviate from the
good ratios. This is done by regressing all pairs of log-ratios between
good and bad variables on 𝑍

(𝑘)
𝑔𝑜𝑜𝑑.

log
𝑥𝑗

𝑥𝑙

= 𝑍
(𝑘)
𝑔𝑜𝑜𝑑𝛽

(𝑘)
(𝑗,𝑙);1 + 𝜀

(𝑘)
(𝑗,𝑙);1 ∀(𝑗, 𝑙) ∈ 𝐽𝑏𝑎𝑑 × 𝐽𝑔𝑜𝑜𝑑

25

We calculate the standardized residuals as in Equation (2.8) for each
regression model

𝑟
(𝑘)
(𝑗,𝑙);1 =

𝜀
(𝑘)
(𝑗,𝑙);1

�̂�(𝜀
(𝑘)
(𝑗,𝑙);1)

, (3.4)

where �̂� denotes the estimated standard deviation of the residuals.
6.2.2: regression analysis - bad/bad ratios. Furthermore we test,

if the ratios between all bad variables deviate from the good ratios.
Again only ratios containing new and meaningfull information are
tested:

log
𝑥𝑗

𝑥𝑙

= 𝑍
(𝑘)
𝑔𝑜𝑜𝑑𝛽

(𝑘)
(𝑗,𝑙);2 + 𝜀

(𝑘)
(𝑗,𝑙);2 ∀𝑗 ∈ 𝐽𝑏𝑎𝑑∀𝑙 ∈ 𝐽𝑏𝑎𝑑∖{1, . . . , 𝑗} (3.5)

We again calculate standardized residuals as in Equation (2.8) for each
regression model

𝑟
(𝑘)
(𝑗,𝑙);2 =

𝜀
(𝑘)
(𝑗,𝑙);2

�̂�(𝜀
(𝑘)
(𝑗,𝑙);2)

,

where �̂� denotes the estimated standard deviation of the residuals.
6.2.3: robust distances within the space of good ratios. We also

calculate robust distances 𝑑(𝑘)1,𝑖 for each observation within the space of
good ratios 𝑍

(𝑘)
𝑔𝑜𝑜𝑑 using the sign-method (see Section 2.5.2).

6.2.4: robust distances within the space of bad ratios. Preceding
Step 6.2.2 we also take a look at the robust distances of the “bad
ratios”. We therefore calculate the pairwise log-ratio matrix 𝑍

(𝑘)
𝑏𝑎𝑑 as

in Formula (3.3) between all bad variables 𝑥𝑗, 𝑗 ∈ 𝐽𝑏𝑎𝑑. Utilizing the
sign-method of Section 2.5.2 we obtain robust distances 𝑑(𝑘)2,𝑖 for each
observation in 𝑍

(𝑘)
𝑏𝑎𝑑.

It is very important to note, that (aside from degenerated settings, such
as 𝑝𝑔𝑜𝑜𝑑 = 1 ∧ 𝑝𝑏𝑎𝑑 = 1) there can occur certain subsets/outlier patterns
𝑈 𝑘, where not all steps of the ratio analyis in Step 6.2 are computeable:

– 𝑝𝑔𝑜𝑜𝑑 = 0 or 𝑝𝑔𝑜𝑜𝑑 = 1: If there is only one or even no good variable
available, there are no pairwise log-ratios at hand to form 𝑍

(𝑘)
𝑔𝑜𝑜𝑑. The

regressions in Steps 6.2.1 & 6.2.2, as well as the robust distance cal-
culation within the good ratios in Step 6.2.3, can not be conducted.
Only the bad ratios obtained in Step 6.2.4 may be checked for outliers.

– 𝑝𝑏𝑎𝑑 = 0 ⇒ 𝑝𝑔𝑜𝑜𝑑 = 𝑝𝑘: If there are only good variables present in
the current subset, regression analysis between bad/good (Step 6.2.1)
and bad/bad (Step 6.2.2) variables is not applicable. Also due to the
absence of bad ratios, Step 6.2.4 can not be performed. In this case

26

we only calculate robust distances between good ratios.
– 𝑝𝑏𝑎𝑑 = 1: This case is similar to the previous one. However if only

one variable gets flagged as an univariate outlier, we can test its ra-
tios against all good variables in Step 6.2.1. Step 6.2.3 is of course
applicable, Steps 6.2.2 & 6.2.4 may still not be performed.

6.3: outlier detection. Regarding the calculation of the outlier and distance
flags we have to take into account, that the basis of our ratio analysis in
Step 6.2 was the division of the variables into “good” and “bad” variables
within the subset/outlier pattern 𝑈 𝑘. Therefore calculation and interpre-
tation of outlier- and distance flags is only feasible for observations 𝐼𝑘 (see
Step 5) belonging to this particular subset/univariate outlier pattern.

6.3.1: outlier detection - bad/good ratios. We flag the ratio between
the bad variable 𝑗 and good variable 𝑙, (𝑗, 𝑙) ∈ 𝐽𝑏𝑎𝑑 × 𝐽𝑔𝑜𝑜𝑑 of subset
𝑋𝑘 as an outlier according to

𝑓
(𝑘)
(𝑗,𝑙);1;𝑖 := 1(|𝑟(𝑘)(𝑗,𝑙);1;𝑖| > 2.5),

for all observations 𝑖 ∈ 𝐼𝑘 in 𝑋𝑘.
6.3.2: outlier detection - bad/bad ratios. We flag the ratio between

the bad variable 𝑗 and bad variable 𝑙, 𝑗 ∈ 𝐽𝑏𝑎𝑑, 𝑙 ∈ 𝐽𝑏𝑎𝑑∖{1, . . . , 𝑗} of
subset 𝑋𝑘 as an outlier according to

𝑓
(𝑘)
(𝑗,𝑙);2;𝑖 := 1(|𝑟(𝑘)(𝑗,𝑙);2;𝑖| > 2.5),

for all observations 𝑖 ∈ 𝐼𝑘 in 𝑋𝑘.
6.3.3: outlier detection - robust distances of good ratios. As stated

in Section 2.5.1, we consider distances of observations in 𝑍
(𝑘)
𝑔𝑜𝑜𝑑 as out-

lying if

𝑔
(𝑘)
1;𝑖 := 1(𝑑

(𝑘)
1;𝑖 > 𝜒2

𝑝*;0.975)

for all observations 𝑖 ∈ 𝐼𝑘. We use 𝑝* = ((𝑝𝑔𝑜𝑜𝑑 − 1) · 𝑝𝑔𝑜𝑜𝑑)/2 degrees
of freedom due to 𝑝𝑔𝑜𝑜𝑑 “good” variables yield

∑︀𝑝𝑔𝑜𝑜𝑑−1
𝑖=1 𝑖 = ((𝑝𝑔𝑜𝑜𝑑 −

1) · 𝑝𝑔𝑜𝑜𝑑)/2 viable pairwise log-ratios in matrix 𝑍
(𝑘)
𝑔𝑜𝑜𝑑.

6.3.4: outlier detection - robust distances of bad ratios. As in Step
6.3.3, we consider distances of observations in 𝑍

(𝑘)
𝑏𝑎𝑑 as outlying if

𝑔
(𝑘)
2;𝑖 := 1(𝑑

(𝑘)
2;𝑖 > 𝜒2

𝑝*;0.975)

for all observations 𝑖 ∈ 𝐼𝑘. We use 𝑝* = ((𝑝𝑏𝑎𝑑 − 1) · 𝑝𝑏𝑎𝑑)/2 degrees
of freedom due to 𝑝𝑔𝑜𝑜𝑑 “good” variables yield

∑︀𝑝𝑏𝑎𝑑−1
𝑖=1 𝑖 = ((𝑝𝑏𝑎𝑑 − 1) ·

𝑝𝑏𝑎𝑑)/2 viable pairwise log-ratios in matrix 𝑍
(𝑘)
𝑏𝑎𝑑.

The special cases of subsets/outlier patterns, as described at the end of
Step 6.2, and their impact on the ratio analysis of course carries over to

27

the outlier detection step. Uncalculated standardized residuals and robust
distances clearly can not be analyzed within this step.

6.4: interpretation. We now interpret the results of the ratio analyis and
outlier detection obtained in Step 6.2 & 6.3 for subset 𝑋𝑘. Note that as
of now, all calculations and analyses were conducted on the pairwise log-
ratios between the variables. In this step we try to combine the results of
robust residuals and distances in order to make statements about which
variable 𝑥𝑗 leads to deviating ratios within the observations 𝑖 ∈ 𝐼𝑘.

6.4.1: cellwise outlier. A cellwise outlier in 𝑋 is a cell 𝑥𝑖𝑗 (whereas we
only consider the applicable observations 𝑖 ∈ 𝐼𝑘), whose ratio deviates
from the good ratios of the data set. This is indicated by

𝑓
(𝑘)
(𝑗,𝑙);1;𝑖 = 1 and 𝑔(𝑘)1;𝑖 = 0, 𝑖 ∈ 𝐼𝑘, (𝑗, 𝑙) ∈ 𝐽𝑏𝑎𝑑 × 𝐽𝑔𝑜𝑜𝑑.

If the robust distances 𝑔(𝑘)1;𝑖 between the good ratios in the above for-
mula is 0, a large absolute standardized residual 𝑟(𝑘)1;𝑖 (obtained from
the regression model (3.4)) is solely influenced by variable 𝑥𝑗, i.e. cell
𝑥𝑖𝑗 in observation 𝑖 ∈ 𝐼𝑘.

6.4.2: bivariate outlier. Following the intuition of Step 6.4.1, we also
investigate the results of the regression models (3.5), where the bad
ratios are considered. If the residual- and outlier flags indicate

𝑓
(𝑘)
(𝑗,𝑙);2;𝑖 = 1 and 𝑔(𝑘)2;𝑖 = 0, 𝑖 ∈ 𝐼𝑘, 𝑗 ∈ 𝐽𝑏𝑎𝑑, 𝑙 ∈ 𝐽𝑏𝑎𝑑∖{1, . . . , 𝑗}.

the large absolute standardized residual 𝑟(𝑘)(𝑗,𝑙);2;𝑖 (obtained from the
regression model (3.5)) may only stem from the cells 𝑥𝑖𝑗 or 𝑥𝑖𝑙. We
can not deduce, which one of those two leads to a deviating ratio, but
we can acknowledge the bivariate nature of the deviating ratio.

6.4.3: multivariate outlier. Finally, we also check the computed robust
distances. If for an observation 𝑖 ∈ 𝐼𝑘

𝑔
(𝑘)
1;𝑖 = 1,

then the good ratios for this particular observation deviate from the
main bulk of the good ratios of the other observations. We conclude
that the cells 𝑥𝑖𝑗, 𝑗 ∈ 𝐽𝑔𝑜𝑜𝑑 of this observation are responsible for de-
viating ratios. Thus cells 𝑥𝑖𝑗, 𝑗 ∈ 𝐽𝑏𝑎𝑑 cause deviating ratios, if

𝑔
(𝑘)
2;𝑖 = 1

for an observation 𝑖 ∈ 𝐼𝑘.

Recapitulating, on completion of major Step 6, the algorithm has analyzed
every outlier pattern/subset 𝑋𝑘. Due to the observations of 𝑋 being uniquely

28

assigned to a subset, every row of 𝑋 has now been analyzed on cellwise, bivariate
and multivariate outliers.

3.3.2 Advantages and limitations of the algorithm

For the detection of cellwise outliers the major disadvantage of the two algorithms
presented so far was the usage of the isometric log-ratio transformation used for
expressing the ratios between variables. Due to the transformation always including
other variables, the new coordinates are heavily influenced in the presence of outliers.
Therefore detecting the cellwise source of deviating ratios has proven to be quite
difficult so far. This approach focuses on investigating the pairwise log-ratios between
good and bad variables. Due to the intelligent use and combination of regression
analysis and robust distance calculation, this approach is able to detect univariate,
bivariate and multivariate outliers in the original sample space. It even uses all
observations to estimate the regression hyperplane as well as the center and covariance
structure of the data cloud, making those estimates quite potent. However one major
point of criticism comes with the initial separation into good and bad variables. This
segmentation is based on a univariate outlier detection on the standardized absolute
values of the variables. In the sense of compositional data, one can think of examples
were deviating absolute values are not necessarily responsible for deviating ratios.

3.4 Detect deviating cells on pairwise log-ratios
Following our previous approach, we continue to utilize the pairwise log-ratio ma-
trix as in Formula (3.3) and search for deviating ratios resulting from outlying cells.
Rousseeuw and Van den Bossche [2016] propose a method (detectDeviatingCells) to
detect cellwise outliers in the data and take the correlations between the variables
into account. It furthermore has no restriction on the number of contaminated rows
and can deal with high dimension, which is an important property to have, due to
the possibly large number of pairwise log-ratio combinations.

The main idea of the algorithm is to first impute the intial data set and compute
the pairwise log-ratio matrix between the variables. We now apply the detectDeviat-
ingCells method on the newly obtained data set. The method starts by standardizing
the obtained matrix and flagging the cells that stand out in their column. Next, each
data cell is estimated based on the unflagged cells in the same row whose column is
correlated with the column in question. Finally, a cell for which the observed value
differs much from its estimated value is considered anomalous. The output of the
procedure is now used to make statements about the outlyingness of each cell in the
initial data set by combining the results of each ratio a particular variable is involved
in.

3.4.1 Detailed description of the algorithm

Let 𝑋 = (𝑥1, . . . ,𝑥𝑝) be the 𝑛× 𝑝 dimensional compositional data set.

29

Step 1: imputation. We deal with structural zeros within the compositional data
by setting them to missing beforehand. Afterwards 𝑋 is imputed using robust
imputation methods resulting in 𝑋 𝑖𝑚𝑝.

Step 2: compute pairwise log-ratio matrix. Compute the 𝑛 × ((𝑝 − 1) · 𝑝)/2
dimensional pairwise log-ratio matrix 𝑌 as in Formula (3.3) between all columns
of 𝑋 𝑖𝑚𝑝. We then continue with the approach outlined in Rousseeuw and Van
den Bossche [2016] to detect deviating cells within the pairwise log-ratio matrix.
The algorithm proceeds as follows.

Step 3: standardization. For each column 𝑦𝑗, 𝑗 = 1, . . . , 𝑝 of 𝑌 we estimate

𝑚𝑗 = 𝑟𝑜𝑏𝐿𝑜𝑐𝑖(𝑦𝑖𝑗) and 𝑠𝑗 = 𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒𝑖(𝑦𝑖𝑗 −𝑚𝑗), (3.6)

where robLoc is a robust estimator of location (as defined in Equation (2.10))
and robScale is a robust estimator of scale (as defined in Equation (2.11)), which
assumes its argument has already been centered. We then standardize 𝑌 to 𝑍
by

𝑧𝑖𝑗 =
𝑦𝑖𝑗 −𝑚𝑗

𝑠𝑗
. (3.7)

Step 3: apply univariate outlier detection to all variables. After the column-
wise standardization in (3.7) we define a new matrix 𝑈 with entries 𝑢𝑖𝑗 = 𝑧𝑖𝑗
except when

|𝑧𝑖𝑗| > 𝑐 (3.8)

in which case we set 𝑢𝑖𝑗 to missing. Note that (3.8) only uses variable 𝑗 itself,
so it is purely column-wise. The cutoff value 𝑐 is taken as

𝑐 =
√︁
𝜒2
1,𝑝, (3.9)

where 𝜒2
𝑖,𝑝 is the 𝑝-th quantile of the chi-squared distribution with 1 degree of

freedom, where the probability 𝑝 is often chosen as 99% so that under ideal
circumstances only 1% of the entries get flagged.

Step 4: bivariate relations. For any two variable ℎ ̸= 𝑗 we compute their correla-
tion as

𝑐𝑜𝑟𝑗ℎ = 𝑟𝑜𝑏𝐶𝑜𝑟𝑟𝑖(𝑢𝑖𝑗, 𝑢𝑖ℎ), (3.10)

where robCorr is a robust correlation measure given in Appendix B Equation
(1). From here onward we will only use the relation between variables 𝑗 and ℎ
when

𝑐𝑜𝑟𝑟𝑗ℎ ≥ 𝑐𝑜𝑟𝑟𝑙𝑖𝑚 (3.11)

30

in which 𝑐𝑜𝑟𝑟𝑙𝑖𝑚 is set to 0.5 by default. Variables 𝑗 that satisfy (3.11) for some
ℎ ̸= 𝑗 will be called connected. The others are called standalone variables. For
the paris (𝑗, ℎ) satisfying (3.11) we also compute

𝑏𝑗ℎ = 𝑟𝑜𝑏𝑆𝑙𝑜𝑝𝑒𝑖(𝑢𝑖𝑗|𝑢𝑖ℎ),

where 𝑟𝑜𝑏𝑆𝑙𝑜𝑝𝑒 computes the slope of a robust regression line without intercept
that predicts variable 𝑗 from variable ℎ (see Appendix B).

Step 5: estimated values. Next we compute estimated values 𝑧𝑖𝑗 for all cells. For
each variable 𝑗 we consider the set 𝐻𝑗 consisting of all variables ℎ satisfying
(3.11), including 𝑗 itself. For all 𝑖 = 1, . . . , 𝑛 we then set

𝑧𝑖𝑗 = 𝐺({𝑏𝑗ℎ𝑢𝑖ℎ | ℎ ∈ 𝐻𝑗}), (3.12)

where 𝐺 is a combination rule applied to these numbers, which omits the NA
values and is zero when no values remain. Our current preference for 𝐺 is a
weighted mean with weights 𝑤𝑗ℎ = |𝑐𝑜𝑟𝑗ℎ| but other choices are possible, such
as a weighted median.

Step 6: deshrinkage. Note that a prediction such as in Equation (3.12) tends to
shrink the scale of the entries, which is undesirable. We could try to shrink less
in the individual terms 𝑏𝑗ℎ𝑢𝑖ℎ but this would not suffice because these terms
can have different signs for different ℎ. Therefore, we propose to deal with
the shrinkage after applying the combination rule in Equation (3.12). For this
purpose we replace 𝑧𝑖𝑗 by

𝑧𝑖𝑗 · 𝑟𝑜𝑏𝑆𝑙𝑜𝑝𝑒𝑖′(𝑧𝑖′𝑗|𝑧𝑖′𝑗)

for all 𝑖 and 𝑗.

Step 7: flagging cellwise outliers in the pairwise log-ratio matrix. In Steps
5 and 6 we have computed estimated values 𝑧𝑖𝑗 for all cells. Next we compute
the standardized cell residuals

𝑟𝑖𝑗 =
𝑧𝑖𝑗 − 𝑧𝑖𝑗

𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒𝑖′(𝑧𝑖′𝑗 − 𝑧𝑖′𝑗)
.

In each column 𝑗 we then flag all cells with

𝑓𝑖𝑗 = 1(|𝑟𝑖𝑗| > 𝑐) (3.13)

as anomalous.

Step 8: flagging rowwise outliers in the pairwise log-ratio matrix. In order
to decide whether to flag row 𝑖 we could just count the number of cells whose
|𝑟𝑖𝑗| exceeds a cutoff value 𝑎, but this would miss rows with many fairly large
|𝑟𝑖𝑗| < 𝑎. The other extreme would be to compare 𝑎𝑣𝑒𝑗(𝑟2𝑖𝑗) to a cutoff, but

31

then a row with one very outlying cell would be flagged as outlying, which
would defeat the purpose. We choose an approach in between. Under the null
hypothesis of multivariate gaussian data without any outliers, the distribution
of the 𝑟𝑖𝑗 is close to standard gaussian, so the cdf of 𝑟2𝑖𝑗 is approximately the
cdf 𝐹 of 𝜒2

1. This leads us to the criterion

𝑇𝑖 = 𝑎𝑣𝑒𝑝𝑗=1𝐹 (𝑟2𝑖𝑗) −
1

2

which lies between -0.5 and 0.5 . We then standardize the 𝑇𝑖 as in Formula
(3.7) and flag the rows 𝑖 for which the standardized 𝑇𝑖 exceed the cutoff value
𝑐 of Formula (3.11).

The algorithm in Rousseeuw and Van den Bossche [2016] still proceeds, however
after this Step we achieved to flag cell- and rowwise outlier in our initial matrix
of pairwise log-ratios 𝑌 .

Step 9: deduce cellwise outliers in the initial data set 𝑋. For each column 𝑝 in
𝑋 we now check the corresponding detected anomalous data cells in the pairwise
log-ratio matrix 𝑌 detected by the algorithm. Let 𝐽𝑝𝑎𝑖𝑟

𝑗 be the set of column
indices of the pairwise log-ratios in 𝑌 including variable 𝑥𝑗, #𝐽𝑝𝑎𝑖𝑟

𝑗 = 𝑝 − 1.
We then can summarize the cellwise flags obtained for these ratios∑︁

𝑗′∈𝐽𝑝𝑎𝑖𝑟
𝑗

𝑓𝑖𝑗′ for each observation 𝑖.

We further conclude, that if for example more than 50% of the ratios correspond-
ing to variable 𝑥𝑗 are flagged as outliers for observation 𝑖, cell 𝑥𝑖𝑗 is responsible
for the deviating behavior of the ratios within this observation. Applying this
rule for all variables 𝑥𝑗 we obtain cellwise flags 𝑔𝑖𝑗 for each data point 𝑥𝑖𝑗.

Step 10: deduce rowwise outliers in the initial data set 𝑋. In Step 8 we al-
ready received rowwise flags 𝑇𝑖 for outlying rows 𝑖 in the log-ratio matrix 𝑌 .
We conclude that outlying rows in the ratios of 𝑌 stem from the corresponding
outlying row in 𝑋. Therefore we take the obtained flags 𝑇𝑖 one-to-one to flag
rows in 𝑋. Furthermore as in previous approaches outlier flags 𝑔𝑖𝑗 obtained in
Step 9 may be summed up

𝑝∑︁
𝑖=1

𝑔𝑖𝑗 for the 𝑖-th observation,

indicating how often this observation was identified as an outlier. Based on this
sum the whole row may be flagged as an outlier.

32

3.4.2 Advantages and limitations of the algorithm

In this approach we once more focus on the pairwise log-ratio matrix between the
compositional variables. Here the major advantage lies in the usage of the detect-
DeviatingCells algorithm, which detects anomalous data cells within the log-ratios.
Here this algorithm starts with a univariate outlier detection as well, although this
time the initial step is executed on the ratios, which is in the interest of compositional
data analysis. The crucial point when using this algorithm is however again the in-
terpretation of the results produced by detectDeviatingCells. Anomalous data cells
are now flagged on the matrix of the pairwise log-ratios. In order to find cells, which
lead to those deviating ratios, we have to consider all pairwise log-ratios within the
observation containing the corresponding cell. One has to find a good rule of thumb
concerning how many pairwise log-ratios have to deviate in order to flag the cell in
the original matrix as an outlier.

33

Chapter 4

Application to household expenditure
data

After the thorough discussion of our algorithms, we now apply them on actual data
and review the results. We consider a data set of household expenditures from the
year 2008 of Albania (see Hron et al. [2015]) provided by the World Bank1. The data
were obtained through a survey, where participants were asked about their household
consumption over a given period of time in various spending categories. These cat-
egories range from different kinds of food-products over general living expenditures
like gas, electricity or water to expenses for education, health and others. The type
and number of categories vary from survey to survey but have in common, that the
combined categories reflect the whole consumption of a household for this particular
time frame. The Albanian household survey consists of 3600 households, including
14785 individuals. We are going to analyze the seven major parts, namely household
consumption on

– food and non-alcoholic beverages (food),

– alcoholic beverages, tobacco and narcotics (alcohol),

– clothing and footwear (clothing),

– housing, water, electricity, gas and other fuels (housing),

– communication (commun.),

– education (education) and

– miscellaneous goods and services (misc.).

The amount of zeros in the data varies between close to 0% up to nearly 10% per
variable. Out of the total number of households, 2903 observations do not include any
zeros, 260 observations have zeros in variable alcohol only, 250 observations contain
zeros only in variable clothing. For a full overview of the data set’s zero structure see
Figure 4-1. The figure indicates the amount of zeros per variable on the left, whereas

1http://datatopics.worldbank.org/consumption/

34

N
um

be
r

of
 Z

er
os

0
50

10
0

15
0

20
0

25
0

30
0

fo
od

al
co

ho
l

cl
ot

hi
ng

ho
us

in
g

co
m

m
un

.

ed
uc

at
io

n

m
is

c

C
om

bi
na

tio
ns

fo
od

al
co

ho
l

cl
ot

hi
ng

ho
us

in
g

co
m

m
un

.

ed
uc

at
io

n

m
is

c

2903
260
250
55
41
36
11
8
7
6
3
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-1: Amount of zeros per variable (left) and zero patterns (right) for the
Albanian consumption data.

35

the right figure depicts the amount of zeros per zero pattern. In addition to household
expenditure variables, the data set provides additional explanatory variables, which
can be used in the regression analysis of the imputation and subset approach. Table
4-1 gives further insight into those variables.

Name Label Notes
hhsize Household size Number of household members (based

on country-specific definition of a
household). Does not include paying
boarders, domestic servants, and visi-
tors.

adeq_fao Adults equivalent (FAO scale) Number of adult equivalent in the
household, computed based on the
standard FAO scale. The variable is
calculated for each household by sum-
ming up the following adult equiv-
alent factor given to each member
according to his/her age and sex:

Male Female
<1 yr 0.27 0.27
1-3 yrs 0.45 0.45
4-6 yrs 0.61 0.61
7-9 yrs 0.73 0.73
10-12 yrs 0.86 0.78
13-15 yrs 0.96 0.83
16-19 yrs 1.02 0.77
20 and above 1.00 0.73

m_00_15 Nb of males, 0 to 15 years Number of male household members
aged 0 to 15 years. Undefined age are
counted in “16 to 59”

m_16_59 Nb of males, 16 to 59 years Number of male household members
aged 16 to 59 years. Undefined age are
counted in “16 to 59”

m_60p Nb of males, 60 years and over Number of male household members
aged 60 years and over. Undefined age
are counted in “16 to 59”

f_00_15 Nb of females, 0 to 15 years Number of female household members
aged 0 to 15 years. Undefined age are
counted in “16 to 59”

f_16_59 Nb of females, 16 to 59 years Number of female household members
aged 16 to 59 years. Undefined age are
counted in “16 to 59”

36

f_60p Nb of females, 60 years and over Number of female household members
aged 60 years and over. Undefined age
are counted in “16 to 59”

hhagey Age of household head Age (in years) of the head of house-
hold. Each household, for the purposes
of this data set, has one and only one
head. The head of the household is the
member declared as such by the respon-
dent(s). In cases where more than one
head is identified, the older one is con-
sidered as head.

Table 4-1: Additional explanatory variables provided by the data set, which can be
used in the regression analysis of the imputation and subset approach.

The approaches presented in Chapter 3 are now applied on the consumption data
and the additional variables. Here an MM-estimator (see Section 2.3.2) for regression
analysis and the k-Nearest Neighbor Imputation (see Appendix A) to impute missing
values are used. For the following discussion we use the notation

– imputation for the imputation approach,

– subset for the subset approach,

– pairlog for the pairwise log-ratio approach,

– pairlogr for our modified algorithm from Rousseeuw and Van den Bossche [2016]
to detect deviating cells applied on the pairwise log-ratios.

Table 4-2 summarizes the basic results of the approaches. As expected the imputation

Number of cellwise outliers detected by approach and variable:
food alcohol clothing housing commun. education misc sum

imputation 65 84 55 119 95 113 90 621
subset 63 87 53 118 104 127 96 648
pairlog 39 19 15 64 43 18 55 253
pairlogr 58 59 36 100 75 48 75 451

Number of rowwise outliers detected by approach:
imputation subset pairlog pairlogr

301 82 160 28

Table 4-2: Summary of cellwise and rowwise outliers detected by approach and vari-
able.

and subset approach show similar results when it comes to the total amount of cellwise

37

food alcohol clothing housing commun. education misc

0

50

100

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

im
pu
ta
tio
n

su
bs
et

pa
irl
og

pa
irl
og
r

method

co
un
t

method
imputation

subset

pairlog

pairlogr

Figure 4-2: Number of cellwise outliers detected by variable and approach

outliers detected. Only the pairlog approach seems to detect significantly less than
the other approaches. Concerning the distribution between variables, Figure 4-2 also
shows that especially variables housing, communication and education seem to be
responsible for deviating ratios within observations. The imputation approach also
tends to detect the most rowwise outliers, although the subset approach does not
mimic this behavior this time. Closer inspection showed that this discrepancy is due
to the different robust distance calculations used in both approaches. These lead to
different rowwise results when applying the sum rules in Step 4.2 (3.1) and Step 5.2
(3.2) of the imputation and subset approach respectively. As stated in Step 8 of the
pairlogr approach, the authors of the detectDeviatingCells algorithm seem to be very
cautious when marking rowwise outliers. This may explain the relatively low amount
of detected outlying observations.

Following this initial investigation we now want to compare the results on a cellwise
level. To do this Figure 4-3 provides a cell map of the expenditure data set. The
cell map shows a plot of every data cell. Cells are visualized by color-coded squares
indicating

n regular cells,

n cellwise outliers

n bivariate cellwise outliers (only detected by the pairlog approach, see Step 6.4.2)

n rowwise outliers,

� missing values.

38

Due to the data set containing 3600 observations we focus on a subset that contains
all cell- and rowwise scenarios that may be detected by our algorithms. On a positive
note the algorithms seem to detect mostly the same outliers, wheres the results from
similar algorithms appear to agree even more. The cell map however also provides
room for interpreting the advantages and disadvantages of the different algorithms.
To give an example, in observation 1727 the pairlog approach detects a bivariate
outlier in variables commun. and misc.. The pairlogr approach, which is also based
on the pairwise log-ratio matrix between the variables, supports this proposition. The
other two approaches also detect a cellwise outlier for observation 1727 and variable
misc.. However a cellwise outlier in commun. remains undetected by both imputation
and subset approach. This is probably due to the isometric log-ratio transformation
used in these approaches; the cellwise outlier in misc. possibly masks the outlier in
variable commun.. Furthermore it is very interesting, that the imputation approach
detects a cellwise outlier in observation 1668 whereas the subset approach marks the
whole observation as an outlier. Here we can recognize the presence of a missing value.
Recapitulating that the imputation and subset approach treat missing information in
a different way, one can imagine that the subset approach comes to a different result
when analyzing this particular zero pattern.

We can further analyze the consumption data by looking at the sorted data set.
Figure 4-4 shows the results of each of the four approaches, although each plot is
sorted by a different variable in ascending or descending order. Due to the lack of
space only the top or bottom 100 observations are shown. The imputation approach
in Figure 4-4 shows the top 100 observations ordered by variable food in descending
order. Combining the cellwise information with the actual data values we can ob-
serve that outlying cells in variable food often come along with high, outlying values
in variables clothing, housing, misc.. Therefore these observations probably represent
the affluent part of society, which may also explain the deviating compositional struc-
ture of the observations. The subset approach shows variable alcohol in descending
order. With Albania being a Muslim-majority country [Department, 2014] we have
an overall narrow value range in variable alcohol. Thus it does make sense that higher
expenditures within this category lead to deviating ratios within the affected obser-
vations. This behavior seems to get detected by algorithm quite well. Especially
observations with high or low values in variables housing and education, see the pair-
log and pairlogr approach in Figure 4-4, best imply the gap between rich and poor
in Albania. Cellwise outlier flags back up the thesis, that these observations differ
from the majority of the data. Investigating the underlying data, outstanding values
in housing and/or education in general go with high expenditures in food, clothing
and communication, whereas outliers on the lower end of the scale (note that in the
pairlogr plot the data set is orderd by variable education ascending) show the exact
opposite.

39

17
50

17
48

17
46

17
44

17
42

17
40

17
38

17
36

17
34

17
32

17
30

17
28

17
26

17
24

17
22

17
20

17
18

17
16

17
14

17
12

17
10

17
08

17
06

17
04

17
02

17
00

16
98

16
96

16
94

16
92

16
90

16
88

16
86

16
84

16
82

16
80

16
78

16
76

16
74

16
72

16
70

16
68

16
66

16
64

16
62

16
60

16
58

16
56

16
54

16
52

16
50

food alcohol clothing housing commun. education misc

im
pu

ta
tio

n
ap

p.

17
50

17
48

17
46

17
44

17
42

17
40

17
38

17
36

17
34

17
32

17
30

17
28

17
26

17
24

17
22

17
20

17
18

17
16

17
14

17
12

17
10

17
08

17
06

17
04

17
02

17
00

16
98

16
96

16
94

16
92

16
90

16
88

16
86

16
84

16
82

16
80

16
78

16
76

16
74

16
72

16
70

16
68

16
66

16
64

16
62

16
60

16
58

16
56

16
54

16
52

16
50

food alcohol clothing housing commun. education misc

su
bs

et
 a

pp
.

17
50

17
48

17
46

17
44

17
42

17
40

17
38

17
36

17
34

17
32

17
30

17
28

17
26

17
24

17
22

17
20

17
18

17
16

17
14

17
12

17
10

17
08

17
06

17
04

17
02

17
00

16
98

16
96

16
94

16
92

16
90

16
88

16
86

16
84

16
82

16
80

16
78

16
76

16
74

16
72

16
70

16
68

16
66

16
64

16
62

16
60

16
58

16
56

16
54

16
52

16
50

food alcohol clothing housing commun. education misc

pa
irl

og
 a

pp
.

17
50

17
48

17
46

17
44

17
42

17
40

17
38

17
36

17
34

17
32

17
30

17
28

17
26

17
24

17
22

17
20

17
18

17
16

17
14

17
12

17
10

17
08

17
06

17
04

17
02

17
00

16
98

16
96

16
94

16
92

16
90

16
88

16
86

16
84

16
82

16
80

16
78

16
76

16
74

16
72

16
70

16
68

16
66

16
64

16
62

16
60

16
58

16
56

16
54

16
52

16
50

food alcohol clothing housing commun. education misc

pa
irl

og
r a

pp
.

F
ig

ur
e

4-
3:

P
ar

ti
al

ce
ll

m
ap

fo
r

ob
se

rv
at

io
ns

16
50

-1
75

0
of

th
e

A
lb

an
ia

n
co

ns
um

pt
io

n
da

ta
.

40

food
alcohol

clothing
housing

commun.
education

misc

Top 100 observations sorted by variable 'food' descending

im
p

u
ta

ti
o

n
 a

p
p

.

food
alcohol

clothing
housing

commun.
education

misc

Top 100 observations sorted by variable 'alcohol' descendingsu
b

se
t

ap
p

.

food
alcohol

clothing
housing

commun.
education

misc

Top 100 observations sorted by variable 'housing' descendingp
ai

rl
o

g
 a

p
p

.

food
alcohol

clothing
housing

commun.
education

misc

Bottom 100 observations sorted by variable 'education' ascendingp
ai

rl
o

g
r

ap
p

.

F
ig

ur
e

4-
4:

P
ar

ti
al

ce
ll

m
ap

fo
r

so
rt

ed
ob

se
rv

at
io

ns
of

th
e

A
lb

an
ia

n
co

ns
um

pt
io

n
da

ta
.

D
at

a
is

al
w

ay
s

di
sp

la
ye

d
to

p
do

w
n,

m
ea

ni
ng

th
e

m
in

im
um

or
m

ax
im

um
of

th
e

va
ri

ab
le

in
qu

es
ti

on
is

al
w

ay
s

fe
at

ur
ed

w
it

hi
n

th
e

ve
ry

to
p

ob
se

rv
at

io
n.

41

Chapter 5

Simulation study

We now want to illustrate the behavior of the presented approaches in the presence
of outliers and missing values. The algorithms are evaluated on generated synthetic
data sets based on the real household expenditure data set. The rowwise outlier
information obtained in Chapter 4, as well as randomly adding cellwise outliers, are
used to achieve appropriate contaminated compositional data sets.

5.1 Simulation of data
Let 𝑋𝑜𝑟𝑖𝑔 = (𝑥𝑜𝑟𝑖𝑔

1 , . . . ,𝑥𝑜𝑟𝑖𝑔
𝑝) be the compositional and 𝑌 𝑜𝑟𝑖𝑔 = (𝑦𝑜𝑟𝑖𝑔

1 , . . . ,𝑦𝑜𝑟𝑖𝑔
𝐷) the

non-compositional variables of the household expenditure data (𝑋𝑜𝑟𝑖𝑔,𝑌 𝑜𝑟𝑖𝑔) from
Chapter 4. Synthetic data are then generated as follows:

Step 1: imputation. Impute 𝑋𝑜𝑟𝑖𝑔 to obtain 𝑋 𝑖𝑚𝑝.

Step 2: modeling additional variables. Estimate an additional variable 𝑦𝑜𝑟𝑖𝑔
𝑖

using a generalized linear poisson-model 𝑦𝑜𝑟𝑖𝑔
𝑖 ∼ 𝑋 𝑖𝑚𝑝 for all 𝑖 = 1, . . . , 𝐷. In

particular, the simulation studies below use the additional variables

– hhsize,

– m_00_15,

– m_16_59,

– m_60p,

– f_00_15,

– f_16_59 and

– f_60p,

because they best follow a poisson distribution.

Step 3: parameter estimation. Represent the compositional data 𝑋𝑜𝑟𝑖𝑔 in the
new coordinates using the isometric log-ratio transformation 𝑍𝑜𝑟𝑖𝑔 = 𝑖𝑙𝑟(𝑋 𝑖𝑚𝑝).
The rowwise outlier information on the original data set obtained in Chapter

42

4 is then used to extract outlying observations 𝑍𝑜𝑟𝑖𝑔_𝑜𝑢𝑡. We now estimate the
covariance structure of this set and choose the following additional parameters:

𝜇0 = (1, 1, 1, 1, 1, 1)′

Σ0 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1, 1, 1)

𝜇1 = (−6, 6,−6, 6,−6, 6)′

Σ1 = 𝑐𝑜𝑣(𝑍𝑜𝑟𝑖𝑔_𝑜𝑢𝑡)

This results in the parameters (𝜇0,Σ0) and (𝜇1,Σ1) for the location and co-
variance of the regular and outlying observations in the new coordinates. 𝜇1 is
used to further differentiate “bad” data points.

Step 4: data generation and contamination. When it comes to data generation
and contamination we consider the contamination rate 𝜀. Based on 𝜀 we gener-
ate equal amounts of

– rowwise outlier,

– univariate cellwise outlier and

– bivariate cellwise outlier,

each of these with a contamination rate of 𝜀/3, ensuring that 𝜀 amount of the
data is contaminated.

4.1: rowwise contamination. Therefore we first draw a synthetic data set
from the distribution

𝑍𝑠𝑦𝑛𝑡ℎ ∼ ℱ ,

where ℱ = (1 − 𝜀/3)ℱ0 + (𝜀/3)ℱ1. We choose ℱ0 ∼ 𝒩 (𝜇0,Σ0) and
ℱ1 ∼ 𝒩 (𝜇1,Σ1).

4.2: cellwise contamination. Concerning contaminating individual or pairs
of cells we first back-transform the obtained data set 𝑍𝑠𝑦𝑛𝑡ℎ using the
inverse log-ratio transformation as in Formula (2.7)

𝑋𝑠𝑦𝑛𝑡ℎ = 𝑖𝑛𝑣𝑖𝑙𝑟(𝑍𝑠𝑦𝑛𝑡ℎ).

We then contaminate 𝜀/3 of the uncontaminated rows in 𝑋𝑠𝑦𝑛𝑡ℎ with a
single cellwise outlier by adding 𝑎 to a cell. Moreover we contaminate 𝜀/3
uncontaminated rows with a double cellwise outlier by adding 𝑎, 𝑏 to two
particular cells.

Step 5: estimating additional variables. Corresponding additional variables 𝑌 𝑠𝑦𝑛𝑡ℎ

can be produced by using the regression models obtained in Step 2. This is done
by predicting the response variable 𝑦𝑠𝑦𝑛𝑡ℎ

𝑖 with the new data set 𝑋𝑠𝑦𝑛𝑡ℎ.

43

Step 6: adding zeros. Concluding zeros are inserted into the obtained set 𝑋𝑠𝑦𝑛𝑡ℎ.
In order to receive a meaningful zero structure for the subset approach, zeros
are spread in only two variables with a zero rate of 𝜆 per variable.

The whole procedure generates synthetic data sets (𝑋𝑠𝑦𝑛𝑡ℎ,𝑌 𝑠𝑦𝑛𝑡ℎ), which copy the
compositional behavior of the original expenditure data as well as providing feasible
additional variables.

5.2 Simulation setup
Based on this set-up, two experiments are performed. In the first case the fraction
of outliers 𝜀 is fixed at 0.1 and the zero rate 𝜆 is varied from 0.0 to 0.3 by 0.025.
Alternatively, in the second case the zero rate 𝜆 is fixed at 0.1 and the fraction of
outliers 𝜀 is varied from 0.0 to 0.3 by 0.025. For each configuration 𝑚 = 50 data
sets of dimension 𝑛 = 500, 𝑝 = 7, 𝐷 = 7 are generated and for each of them the
outliers are identified using all four approaches. To evaluate the results we consider
the following four error measures:

– FN.row – Average outlier error rate (rowwise): the average percentage of row-
wise outliers that were not identified – false negatives or masked outliers.

– FN.cell – Average outlier error rate (cellwise): the average percentage of cellwise
outliers that were not identified – false negatives or masked outliers.

– FP.row – Average non-outlier error rate (rowwise): the average percentage of
non-rowwise outliers that were classified as outliers – false positives or swamped
non-outliers.

– FP.cell – Average non-outlier error rate (rowwise): the average percentage of
non-rowwise outliers that were classified as outliers – false positives or swamped
non-outliers.

5.3 Simulation results
The results of the simulation are presented in Figure 5-1 and Figure 5-2. Recapitulat-
ing we have introduced two ways of dealing with missing values and structural zeros.
The first one imputes missing information, the second one divides the data set into
subsets according to the zero patterns. Robust imputation is used by the imputation,
pairlog and pairlogr approach, whereas the division into zero patterns is used by the
subset approach.

5.3.1 Results for varying the fraction of missing values

For a fixed outlier rate of 0.1 and an increasing fraction of missing values, Figure
5-1 shows that the subset approach sometimes fails to detect outliers resulting in an

44

0.0

2.5

5.0

7.5

0.0 0.1 0.2 0.3
Fraction of missing values

FN
: r

ow
w

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

0

20

40

60

0.0 0.1 0.2 0.3
Fraction of missing values

FN
: c

el
lw

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

1

2

3

0.0 0.1 0.2 0.3
Fraction of missing values

FP
: r

ow
w

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Fraction of missing values

FP
: c

el
lw

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

Figure 5-1: Average outlier error rate (left) and average non-outlier error rate (right)
for fixed fraction of 10% outliers and varying percentage of zeros.

increased FN-rate for rowwise outliers. As stated in Section 3.2.2 the subset approach
comes with the downside, that some subsets turn out to be too small for the regression-
and distance based methods used in the algorithm. Therefore outliers within those
subsets may not be detected, possibly resulting in the spikes within the FN-rate for
certain simulation runs. All other approaches are able to work on the full, imputed
data sets and hence seem to detect rowwise outliers quite well. The FP-rate for row-
wise outliers shows that especially the imputation and subset approach detect too
many outliers. Both of these approaches use an isometric log-ratio transformation to
analyze the ratios between the parts of an observation. As discussed in Section 3.1.2
and 3.2.2, due to the nature of the isometric log-ratio transformation, observations
represented in the new coordinates are almost always influenced by possible multi-
variate outliers in the original sample space. Since our experimental setup includes
single and double cellwise contamination, this contamination may spread within the
new coordinates after transformation and thus leading the imputation and subset ap-
proach to a rowwise outlier identification and overall higher FP-rates. This particular
behavior also manifests in the results for cellwise outlier in Figure 5-1. The isometric
log-ratio transformation makes it really hard to detect cellwise contamination, leading
to high amounts of undetected outliers in the imputation and subset approach. The
pairlog approach excels in this contamination setup resulting in very low FN-rates and
quite good FP-rates. The pairlogr approach holds the middle ground, even resulting
in slightly better cellwise FP-rates compared to the pairlog approach.

45

0

1

2

3

0.0 0.1 0.2 0.3
Fraction of outliers

FN
: r

ow
w

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

0

20

40

60

0.0 0.1 0.2 0.3
Fraction of outliers

FN
: c

el
lw

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

0

2

4

6

0.0 0.1 0.2 0.3
Fraction of outliers

FP
: r

ow
w

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3
Fraction of outliers

FP
: c

el
lw

is
e

ou
tli

er
 e

rrr
or

 ra
te

 in
 %

method
imputation
subset
pairlog
pairlogr

Figure 5-2: Average outlier error rate (left) and average non-outlier error rate (right)
for fixed fraction of 10% zeros and varying fraction of rowwise (top)/cellwise (bottom)
outliers.

5.3.2 Results for varying the fraction of outliers

Figure 5-2 shows the behavior of the algorithms for a fixed fraction of missing values
of 0.1 and an increasing outlier rate. When it comes to rowwise outlier detection all
algorithms seem to produce quite good results over the course of the simulation run,
all of them having a FP-rate below 2% for an outlier rate between 0 and 0.2 and
slightly increasing towards the end. Concerning the FP-rate we observe that espe-
cially the imputation method performs significantly worse than the other approaches
for increasing outlier rates, even when compared to the subset approach. This may be
due to the imputation approach being the only approach using robust squared maha-
lanobis distances instead of the sign-method, possibly resulting in different distance
flags and thus different results. As discussed above an overall higher FP-rate is to
be expected when using the imputation and subset approach due to the usage of an
isometric log-ratio transformation. In general the pairlog and pairlogr approach seem
to produce quite stable results, even for an increasing amount of rowwise outliers.
Concerning cellwise outliers Figure 5-2 confirms the issues that seem to come along
with the usage of an isometric log-ratio transformation. Throughout the whole sim-
ulation study the imputation and subset approach fails to detect a major amount of
cellwise outliers with an FN-rate between 50% and 60%. Overall the pairlog approach
produces very good results with an FN-rate of under 5% and an FP-rate of under 1%
even for large fractions of outliers. Again the pairlogr holds the middle ground when

46

it comes to cellwise outlier detection, even producing slightly better than the pairlog
approach in terms of FP-rate.

47

Chapter 6

Summary and Conclusio

The analysis of compositional data is based on working in coordinates (using e.g. the
isometric log-ratio transformation) or analysing pairwise log-ratios. Zeros in the parts
thus cause severe difficulties for the analysis. Log-ratio transformations represent the
compositional information into new coordinates. Outliers within these coordinates
may be detected, however it remains unclear which particular parts of the compo-
sition led to the deviating ratios in question. Therefore this thesis presented four
exploratory tools for identifying cellwise outliers in compositional data with struc-
tural zeros. The imputation approach deals with structural zeros by imputing them
using robust imputation methods. Imputation is done in a way, that no additional
outliers are generated when filling missing information. We can therefore use the full
information without worrying about zeros or additional outliers. The compositional
variables are expressed into new coordinates using an isometric log-ratio transforma-
tion. Afterwards a combination of robust regression and robust distance calculation
is applied on the data set to detect row- and cell-wise outliers. The regression ap-
proach also enables an easy integration of external, non-compositional variables (e.g.
demographic information), possibly gaining valuable information.

The subset approach follows this proposal, however missing values are handled by
dividing the data set into unique subsets (patterns) according to the zero-pattern oc-
curring in each row. Therefore imputation is not needed and the process of represent-
ing the variables in the new coordinates using an isometric log-ratio transformation
and then performing cellwise regression and distance calculation can be executed on
each subset. One disadvantage of this approach is that subsets may turn out to be too
small for our outlier detection methods. Potential observations within those subsets,
that deviate from the main bulk of the data, can not be detected. Furthermore due to
both methods using the isometric log-ratio transformation, cellwise outlier detection
proves to be very difficult. Due to the nature of the transformation, observations rep-
resented in the new coordinates are almost always influenced by possible multivariate
outliers in the original sample space. This makes it quite difficult to deduce, which
cell/cells of the observation in the untransformed space leads/lead to outlying ratios.

These difficulties led us to the pairlog and pairlogr algorithms, which focus on
investigating the pairwise log-ratios between the variables. Both approaches work
on the imputed data set. The pairlog method introduces the concept of “good” and

48

“bad” variables and then uses clever combination of regression analysis and robust
distance calculation to detect row- and cell-wise outliers in the original sample space.
The major point of criticism with this approach however comes with the initial sep-
aration into good and bad variables. This segmentation is based on an univariate
outlier detection on the standardized absolute values of the variables. In the sense of
compositional data, one can think of examples where deviating absolute values are
not necessarily responsible for deviating ratios.

Again, utilizing the concept of pairwise log-ratios between variables, the pairlogr
approach applies the detectDeviatingCells method proposed by Rousseeuw and Van
den Bossche [2016] on the pairwise log-ratio matrix to detect cellwise outliers in
the data. This method takes the correlation between the variables into account,
has no restriction on the number of contaminated rows, and can deal with high
dimensions. This property is of significant importance, due to the possibility of large
numbers of pairwise log-ratio combinations. Although this algorithm also starts with
an univariate outlier detection, this time the initial step is executed on the ratios,
which is in the interest of compositional data analysis. The crucial point is however
the interpretation of the results produced by detectDeviatingCells. Anomalous data
cells are flagged on the matrix of pairwise log-ratios. In order to find cells, which
lead to those deviating ratios, we have to consider all pairwise log-ratios within the
observation, which contain the corresponding cell. A crucial issue is to find a good
rule of thumb concerning how many pairwise log-ratios have to deviate in order to
flag the cell in the original matrix as an outlier.

All mentioned methods were applied on the household expenditure data from Al-
bania. Representing the obtained row- and cell-wise information in a cell map and
combining it with the actual data values gives valuable insight into the compositional
structure of outlying observations. Not only can we deduce which household’s expen-
ditures deviate from the rest, the cellwise information even indicates which particular
variables are responsible for this outlying behavior. Sorting the data set by spe-
cific variables gives even more insight into the compositional structure and outlying
properties of an observation.

Finally, we conducted a simulation study based on the Albanian household ex-
penditure data set to assess the accuracy of our proposed methods. Generally, the
algorithms working on the pairwise log-ratio matrix deliver the best results for cell-
and row-wise outlier detection, given the underlying simulation design. Algorithms
based on an isometric log-ratio transformation struggle to detect cellwise outliers
within the original data and often seem to interpret them as rowwise outliers.

49

Appendix

A Robust imputation methods
In many of our presented algorithms, firstly missing parts of the data are imputed.
Among others, the following two robust imputation methods for compositional data
are available for use and are briefly described here. The detailed description can be
found in Hron et al. [2008].

𝑘-Nearest Neighbor Imputation

𝑘-nearest neighbor imputation usually uses the Euclidean distance measure. Since
compositional data are represented only in the simplex sample space, a different
distance measure has to be used, like the Aitchison distance, being defined for two
compositions 𝑥 = (𝑥1, . . . , 𝑥𝐷) and 𝑦 = (𝑦1, . . . , 𝑦𝐷) as

𝑑𝑎(𝑥,𝑦) =

⎯⎸⎸⎷ 1

𝐷

𝐷−1∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

(︂
ln
𝑥𝑖
𝑥𝑗

− ln
𝑦𝑖
𝑦𝑗

)︂2

.

Thus, the Aitchison distance considers the property that compositional data include
their information only in the ratios between the parts.

Once the 𝑘-nearest neighbors to an observation with missing parts have been iden-
tified, their information is used to estimate the missings. For reasons of robustness,
the estimation is based on using medians rather than means. If the compositional
data do not sum up to a constant, which is the case in the investigated data, it is
important to use an adjustment according the sum of all parts prior to imputation.
For details, see [Hron et al., 2008].

Iterative Model-Based Imputation

Another approach initializes the missing values with the proposed 𝑘-nearest neighbor
approach. Accordingly the data are transformed to the 𝐷− 1 dimensional real space
using the ilr transformation. Let 𝑑𝑒 denote the Euclidean distance. The ilr trans-
formation holds the so-called isometric property (see Egozcue and Pawlowsky-Glahn
[2005]),

𝑑𝑎(𝑥,𝑦) = 𝑑𝑒(𝑖𝑙𝑟(𝑥), 𝑖𝑙𝑟(𝑦)).

50

Consequently, one can use standard statistical methods like multiple linear regression,
that work correctly in the Euclidean space. In this case the ilr-transformation as in
Formula (2.6) is used again. Here, the compositional part 𝑥1 includes the highest
amount of missings, 𝑥2 the next highest, and so on. Thus, when performing a regres-
sion of 𝑧1 on 𝑧2, . . . ,𝑧𝐷−1, only 𝑧1 will be influenced by the initialized missings in
𝑥1, but not the remaining ilr variables.

The idea of the procedure is thus to iteratively improve the estimation of the
missing values. After the regression of 𝑧1 on 𝑧2, . . . ,𝑧𝐷−1, the results are back-
transformed to the simplex, and the cells that were originally missing are updated.
Next we consider the variable which originally has the second highest amount of
missings, and the same regression procedure is applied in the ilr space. After each
variable containing missings has been processed, one can start the whole procedure
again until the estimated missings stabilize. The detailed description of this algorithm
can be found in Hron et al. [2008]. The authors propose to use robust regression, e.g.
LTS regression, especially if outliers might be present in the data.

51

B Addtional robust estimates used in the detectDe-
viatingCells algorithm

The majority of the algorithm described in Section 3.4 is based on the detectDeviat-
ingCells algorithm proposed by Rousseeuw and Van den Bossche [2016]. Within the
algorithm they use additional bivariate methods, i.e. methods that operate on two
data columns, call them 𝑗 and ℎ.

They propose a robust correlation estimate by starting from the initial estimate

𝑢𝑗ℎ =
((𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒𝑖(𝑧𝑖𝑗 + 𝑧𝑖ℎ))2 − (𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒𝑖(𝑧𝑖𝑗 − 𝑧𝑖ℎ))2

4
(1)

(see Gnanadesikan and Kettenring [1972]) which is capped to lie between -1 and 1
(this assumes that the columns of matrix 𝑍 were already normalized and centered at
0). This 𝑢𝑗ℎ implies a ellipse around (0,0) with the same coverage probability 𝑝 as in
(3.9). Then robCorr is defined as the plain product-moment correlation of the data
points (𝑧𝑖𝑗, 𝑧𝑖ℎ) inside the ellipse.

For the slope we again assume the columns were already centered, but they need
not be normalized. The authors propose the initial slope estimate

𝑏𝑗ℎ = med𝑛
𝑖=1

(︂
𝑧𝑖𝑗
𝑧𝑖ℎ

)︂
,

where fractions with zero denominator are first excluded. For every 𝑖 the raw residual
can be computed using

𝑟𝑖𝑗ℎ = 𝑧𝑖𝑗 − 𝑏𝑗ℎ𝑧𝑖ℎ.

Finally the plain least squares regression line without intercept is computed on the
points for which |𝑟𝑖𝑗ℎ| ≤ 𝑐 · 𝑟𝑜𝑏𝑆𝑐𝑎𝑙𝑒𝑖(𝑟𝑖𝑗ℎ) where 𝑐 is the constant Equation (3.9).
robSlope is then defined as the slope of that line.

52

C R functions
Function detectOutCell

1 #’ Detect row- and cell-wise outliers in compositional data with structural
2 #’ zeros
3 #’
4 #’ @description This function uses robust regression and distance methods to
5 #’ detect row- and cell-wise outliers in the data. The analysis of the
6 #’ compositional data is based on working in coordinates (using an isometric
7 #’ log-ratio transformation) or analysing pairwise log-ratios. To deal with
8 #’ structural zeros, data is either imputed using robust imputation methods or
9 #’ the data set is divided into unique subsets (patterns) according to the

10 #’ zero-pattern occuring in each row.
11 #’
12 #’ @param x a data.frame or matrix
13 #’ @param add.vars \code{colnames} of additional (grouping-)variables in
14 #’ \code{x}, which should not be treated as compositional data. These variables
15 #’ will not be ilr-transformed or be part of pairwise log-ratio calculations,
16 #’ but will be consulted in the regression analysis of the \code{"imputation"}
17 #’ and \code{"subset"} approach.
18 #’ @param method method for detecting outliers. Available methods are:
19 #’ \itemize{
20 #’ \item \code{"imputation"}
21 #’ \item \code{"subset"}
22 #’ \item \code{"pairlog"}
23 #’ \item \code{"pairlogr"}
24 #’ }
25 #’ @param imp imputation method. Supported methods are:
26 #’ \itemize{
27 #’ \item \code{"kNNA"}
28 #’ \item \code{"kNN"} from package \code{VIM}
29 #’ \item \code{"irmi"}
30 #’ \item \code{"fry"}
31 #’ }
32 #’ @param reg.m method used for regression analysis. Supported methods are:
33 #’ \itemize{
34 #’ \item \code{"ltsReg"} from package \code{robustbase}
35 #’ \item \code{"lmrob"} from package \code{robustbase}
36 #’ \item \code{"rlm"} from package \code{MASS}
37 #’ }
38 #’ @param suppressOutput suppress additional output provided by the algorithms
39 #’
40 #’ @return An object of class \sQuote{detectOutCell} containing:
41 #’ \tabular{ll}{
42 #’ \code{x} \tab the original data.frame \cr
43 #’ \code{method} \tab method used for detecting outliers \cr
44 #’ \code{reg.method} \tab the regression method specified in the function
45 #’ call and used for the regression analysis \cr
46 #’ \code{reg.vars} \tab variables containing the compositional data \cr
47 #’ \code{add.vars} \tab additional (grouping-)variables used in the
48 #’ regression analysis \cr
49 #’ \code{imputation.approach} \tab a list, containing the results of the

53

50 #’ imputation approach, if this approach was specified in parameter
51 #’ \code{method} \cr
52 #’ \code{subset.approach} \tab a list, containing the results of the subset
53 #’ approach, if this approach was specified in parameter \code{method} \cr
54 #’ \code{pairlog.approach} \tab a list, containing the results of the pairlog
55 #’ approach, if this approach was specified in parameter \code{method} \cr
56 #’ \code{pairlogr.approach} \tab a list, containing the results of the
57 #’ pairlogr approach, if this approach was specified in parameter
58 #’ \code{method} \cr
59 #’ }
60 #’
61 #’ @details For details on the implemented algorithms see Beisteiner & Templ
62 #’ (2016).
63 #’
64 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
65 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
66 #’ Unpublished master’s thesis, Vienna University of Technology
67 #’
68 #’ @author Lukas Beisteiner, Matthias Templ
69 #’ @note License: GPL-2
70 #’
71 #’ @examples
72 #’ data(expenditures)
73 #’ x <- cbind(expenditures, group = rep(c(1, 2)))
74 #’ y <- detectOutCell(x, add.vars = c("group"))
75 detectOutCell <- function(x, add.vars = NULL, method = c("imputation", "subset",
76 "pairlog", "pairlogr"),
77 imp = NULL, reg.m = "lmrob", suppressOutput = FALSE){
78

79 wnq <- function(string, qwrite = 1){ # auxiliary function
80 # writes a line without quotes
81 if(qwrite == 1) write(noquote(string), file = "", ncolumns = 100)
82 }
83

84 x <- as.data.frame(x)
85 row.names(x) <- seq(1, nrow(x))
86

87 l.method1 <- NULL
88 l.method2 <- NULL
89 l.method3 <- NULL
90 l.method4 <- NULL
91

92 # check structure of data set beforehand
93 # get columns suitable for computing Mahalanobis distances
94 if (!all(add.vars %in% colnames(x))){
95 stop("Additional variables not part of provided data.")
96 }
97

98

99 method.check <- sapply(method, function(x){
100 if (x %in% c("imputation", "Imputation", "Imp", "imp")){
101 return("imputation")
102 } else if (x %in% c("subset", "Subset", "sub", "Sub")){
103 return("subset")

54

104 } else if (x %in% c("pairLog", "pairlog", "pairl", "pairL")){
105 return("pairlog")
106 } else if (x %in% c("pairLogR", "pairlogr", "pairLogr", "pairlogR",
107 "pairlr", "pairLR")){
108 return("pairlogr")
109 } else {
110 stop("Wrong method for parameter method specified")
111 }
112 } , USE.NAMES = FALSE)
113

114 method <- method.check
115

116 if (imp %in% c("knn", "KNN", "kNN") || is.null(imp)){
117 imp <- "kNN"
118 } else if (imp %in% c("impKNNa","knna","KNNa","kNNa")){
119 imp <- "KNNa"
120 } else if (imp %in% c("IRMI","irmi","Irmi")){
121 imp <- "irmi"
122 } else if (impute %in% c("fry", "Fry", "FRY")){
123 imp <- "fry"
124 } else {
125 stop("Wrong method for imputation specified")
126 }
127

128 if (reg.m %in% c("ltsReg", "ltsreg")){
129 reg.m <- "ltsReg"
130 } else if (reg.m %in% c("lmrob", "lmRob")) {
131 reg.m <- "lmrob"
132 } else if (reg.m %in% c("rlm", "Rlm")) {
133 reg.m <- "rlm"
134 } else {
135 stop("Wrong method for regression specified")
136 }
137

138 p <- ncol(x)
139 ind.excl <- which(colnames(x) %in% c(add.vars))
140 if (length(ind.excl) == 0){
141 ind <- (1:p)
142 ind.excl <- NULL
143 } else {
144 ind <- (1:p)[-ind.excl]
145 }
146

147 reg.vars <- colnames(x)[ind]
148

149 colMHD <- checkDataFrame(x, reg.vars, suppressOutput = suppressOutput)
150 y <- x[, ind]
151

152 if (any(is.na(y)) & any(y == 0, na.rm = TRUE)){
153 warning("The data includes NA’s and zeros. \n
154 Impute the missing values first, otherwise they are treated as
155 zeros")
156 }
157

55

158 # set 0 to NA
159 y[y == 0] <- NA
160

161 # get rows that will be imputed
162 y.imp <- apply(is.na(y), 1, any)
163

164 if (any(method %in% c("imputation", "pairlog", "pairlogr"))){
165 # 1) Impute
166 if (imp == "KNNa"){
167 yi <- impKNNa(y)$xImp
168 } else if (imp == "kNN"){
169 yi <- kNN(y, imp_var = FALSE)
170 } else if (imp == "fry"){
171 yi <- rmzero(y, minval=0.01, delta=0.01)
172 } else if (imp == "irmi"){
173 yi <- impCoda(y, init="geometricmean")$xImp
174 } else {
175 stop("Wrong method for imputation specified")
176 }
177 }
178

179 if ("imputation" %in% method){
180 if (suppressOutput == FALSE){
181 wnq(paste0("+---",
182 "------------------+"))
183 wnq(paste0("| Performing imputation approach ",
184 " |"))
185 wnq(paste0("+---",
186 "------------------+\n"))
187 }
188 # 2) Imputation approach
189 # check if all reg.vars are valid for MHD computation (this should always
190 # be true, otherwise even ilr-transformation would not make sense)
191 if(all(colMHD[ind])){
192 # vector, indicating which variables are valid for MHD computation
193 # FALSE, rep(.,.) ... compositional variables are always used, except for
194 # the first one (we are only computing MHDs in the X-
195 # space, z_1 = y-space)
196 ind.mhd <- c(FALSE, rep(TRUE, length(ind)-2), colMHD[ind.excl])
197 cols.new.ilr <- c(paste0("z_", seq(1:(length(ind)-1))))
198 names(ind.mhd) <- c(cols.new.ilr, add.vars)
199

200 # number of valid variables
201 sum.mhd <- sum(ind.mhd)
202 } else {
203 stop(paste("The provided compositional variables used for regression ",
204 " are not applicable.", sep = ""))
205 }
206

207 for (i in ind){
208 ind.new <- c(i, ind[-i])
209 z_ilr <- as.data.frame(cbind(isomLR(yi[, ind.new]), x[, add.vars]))
210 colnames(z_ilr) <- c(cols.new.ilr, add.vars)
211

56

212 if (reg.m == "ltsReg"){
213 tmp.1 <- ltsReg(z_1 ~ ., data = z_ilr)
214 r.ilr <- tmp.1$residuals / tmp.1$scale
215 out.ilr <- as.integer(abs(r.ilr) > 2.5)
216

217 # compute robust MHD
218 tmp.2 <- covMcd(z_ilr[, ind.mhd])
219 mhd <- mahalanobis(z_ilr[, ind.mhd], tmp.2$center, tmp.2$cov)
220 out.ilr.x <- as.integer(mhd > qchisq(0.975, sum.mhd))
221 } else if (reg.m == "lmrob") {
222 ## ilr-regression
223 tmp.1 <- lmrob(z_1 ~ ., data = z_ilr)
224 r.ilr <- tmp.1$residuals / tmp.1$scale
225 out.ilr <- as.integer(abs(r.ilr) > 2.5)
226

227 # compute robust MHD
228 tmp.2 <- covMcd(z_ilr[, ind.mhd])
229 mhd <- mahalanobis(z_ilr[, ind.mhd], tmp.2$center, tmp.2$cov)
230 out.ilr.x <- as.integer(mhd > qchisq(0.975, sum.mhd))
231 } else if (reg.m == "rlm"){
232 tmp.1 <- rlm(z_1 ~ ., data = z_ilr)
233 r.ilr <- tmp.1$residuals / tmp.1$s
234 out.ilr <- as.integer(abs(r.ilr) > 2.5)
235

236 # compute robust MHD
237 tmp.2 <- covMcd(z_ilr[, ind.mhd])
238 mhd <- mahalanobis(z_ilr[, ind.mhd], tmp.2$center, tmp.2$cov)
239 out.ilr.x <- as.integer(mhd > qchisq(0.975, sum.mhd))
240 }
241

242 l.method1[[i]] <- list(trafo.colorder = ind.new, out.ilr = out.ilr,
243 out.ilr.x = out.ilr.x)
244 }
245

246 mat.out.ilr <- matrix(unlist((lapply(l.method1, function(x) x$out.ilr))),
247 nrow = nrow(x))
248 mat.out.ilr <- as.data.frame(mat.out.ilr)
249 colnames(mat.out.ilr) <- paste0(reg.vars, "_out.ilr")
250 mat.out.ilr.x <- matrix(unlist((lapply(l.method1,
251 function(x) x$out.ilr.x))),
252 nrow = nrow(x))
253 mat.out.ilr.x <- as.data.frame(mat.out.ilr.x)
254 colnames(mat.out.ilr.x) <- paste0(reg.vars, "_out.ilr.x")
255

256 mat.cell <- matrix(0, ncol = ncol(mat.out.ilr), nrow = nrow(mat.out.ilr))
257 out.mult <- which(rowSums(mat.out.ilr) >= floor(ncol(mat.out.ilr)/2))
258 out.mult <- c(out.mult,
259 which(rowSums(mat.out.ilr.x) == ncol(mat.out.ilr.x)))
260 out.mult <- unique(out.mult)
261 out.cell <- which(mat.out.ilr == 1 & mat.out.ilr.x == 0)
262 mat.cell[out.mult,] <- 3
263 mat.cell[out.cell] <- 1
264 mat.cell[is.na(y)] <- 4
265

57

266 mat.cell <- as.data.frame(mat.cell)
267 colnames(mat.cell) <- reg.vars
268

269 l.method1$mat.out.ilr <- mat.out.ilr
270 l.method1$mat.out.ilr.x <- mat.out.ilr.x
271 l.method1$mat.cell <- mat.cell
272 }
273

274 if ("subset" %in% method){
275 if (suppressOutput == FALSE){
276 wnq(paste0("+---",
277 "------------------+"))
278 wnq(paste0("| Performing subset approach ",
279 " |"))
280 wnq(paste0("+---",
281 "------------------+\n"))
282 }
283 # 4) subset-approach without imputation
284 w <- is.na(y)
285 w <- apply(w, 2, as.integer)
286 s <- apply(w, 1, paste, collapse = "")
287 ys <- cbind(y, x[, add.vars])
288 colnames(ys) <- c(colnames(y), add.vars)
289 ys <- split(ys, s)
290 names(ys) <- gsub("0", "x", names(ys))
291 names(ys) <- gsub("1", "0", names(ys))
292

293 # if one group is too small report an error
294 check <- as.numeric(unlist(lapply(ys, nrow)))
295 w <- which(check < 2*(ncol(x)-1) + 2)
296 if(length(w) > 0 && suppressOutput == FALSE){
297 m <- missPatterns(y)$tabcombPlus
298 cat("\n The following subsets:\n")
299 print(m[w,]*1)
300 cat("\n are too small for evaluation in each subcomposition!")
301 cat("\n Subsets must be larger than 2*ncol(x) + 1.")
302 cat("Therefore possible outliers in these subsets can not be detected!")
303 }
304

305 # exclude NA columns
306 ys <- lapply(ys, function(x){
307 x <- x[, !is.na(x[1,]), drop = FALSE]
308 x
309 })
310

311 j <- 1
312 num.reg <- 0
313

314 mat.out.ilr <- matrix(NA, ncol = ncol(y), nrow = nrow(y))
315 mat.out.ilr.x <- matrix(NA, ncol = ncol(y), nrow = nrow(y))
316

317 for (yj in ys){
318 # check if yj is big enough, w...groups, which are too small
319 # if big enough, proceed normally

58

320 if (!(j %in% w)){
321 p <- ncol(yj)
322 ind.excl <- which(colnames(yj) %in% c(add.vars))
323

324 if (length(ind.excl) == 0){
325 ind <- (1:p)
326 ind.excl <- NULL
327 ind.orig <- which(colnames(x) %in% colnames(yj))
328 } else {
329 ind <- (1:p)[-ind.excl]
330 ind.orig <- which(colnames(x) %in% colnames(yj)[-ind.excl])
331 }
332

333 if (suppressOutput == FALSE){
334 wnq(paste("\n Checking variables for RD-calculation of subset ",
335 names(ys)[j], ".\n", sep = ""))
336 }
337 colMHD <- checkDataFrame(yj, colnames(yj)[ind],
338 suppressOutput = suppressOutput)
339 # check if all reg.vars are valid for MHD computation (this should
340 # always be true, otherwise even ilr-transformation would not make
341 # sense)
342 if(all(colMHD[ind])){
343 # vector, indicating which variables are valid for MHD computation
344 # FALSE, rep(.,.) ... compositional variables are always used, except
345 # for the first one (we are only computing MHDs in
346 # the X-space, z_1 = y-space)
347 ind.mhd <- c(FALSE, rep(TRUE, length(ind)-2), colMHD[ind.excl])
348 cols.new.ilr <- c(paste0("z_", seq(1:(length(ind)-1))))
349 names(ind.mhd) <- c(cols.new.ilr, add.vars)
350

351 # number of valid variables
352 sum.mhd <- sum(ind.mhd)
353 } else {
354 stop(paste("The provided compositional variables used for ",
355 " regression are not applicable.", sep = ""))
356 }
357

358 num.reg <- num.reg + length(ind)
359

360 row.num <- as.integer(rownames(yj))
361 out.ilr <- rep(NA, nrow(y))
362 out.ilr.x <- rep(NA, nrow(y))
363

364 l.tmp <- list()
365 for (i in ind){
366 ind.new <- c(i, ind[-i])
367 z_ilr <- as.data.frame(cbind(isomLR(yj[, ind.new]), yj[, ind.excl]))
368 colnames(z_ilr) <- c(cols.new.ilr, add.vars)
369

370 if (reg.m == "ltsReg"){
371 tmp.1 <- ltsReg(z_1 ~ ., data = z_ilr)
372 r.ilr <- tmp.1$residuals / tmp.1$scale
373 out.ilr[row.num] <- as.integer(abs(r.ilr) > 2.5)

59

374

375 # compute robust distances
376 tmp.2 <- sign2(z_ilr[, ind.mhd])
377 out.ilr.x[row.num] <- (1-tmp.2$wfinal01)
378

379 } else if (reg.m == "lmrob") {
380 tmp.1 <- lmrob(z_1 ~ ., data = z_ilr)
381 r.ilr <- tmp.1$residuals / tmp.1$scale
382 out.ilr[row.num] <- as.integer(abs(r.ilr) > 2.5)
383

384 # compute robust distances
385 tmp.2 <- sign2(z_ilr[, ind.mhd])
386 out.ilr.x[row.num] <- (1-tmp.2$wfinal01)
387

388 } else if (reg.m == "rlm"){
389 tmp.1 <- rlm(z_1 ~ ., data = z_ilr)
390 r.ilr <- tmp.1$residuals / tmp.1$s
391 out.ilr[row.num] <- as.integer(abs(r.ilr) > 2.5)
392

393 # compute robust MHD
394 tmp.2 <- sign2(z_ilr[, ind.mhd])
395 out.ilr.x[row.num] <- (1-tmp.2$wfinal01)
396 }
397

398 mat.out.ilr[row.num, ind.orig[i]] <- out.ilr[row.num]
399 mat.out.ilr.x[row.num, ind.orig[i]] <- out.ilr.x[row.num]
400

401 l.tmp[[i]] <- list(orig.cols = ind.orig, trafo.colorder = ind.new,
402 out.ilr = out.ilr, out.ilr.x = out.ilr.x)
403 }
404 # if group too small, outliers can not be detected
405 # therefore insert 0 in vector and NULL in trafo.colorder,
406 # due to no regression takes place
407 } else {
408 ind.excl <- which(colnames(yj) %in% c(add.vars))
409

410 if (length(ind.excl) == 0){
411 ind.orig <- which(colnames(x) %in% colnames(yj))
412 } else {
413 ind.orig <- which(colnames(x) %in% colnames(yj)[-ind.excl])
414 }
415

416 num.reg <- num.reg + 1
417

418 row.num <- as.integer(rownames(yj))
419 out.ilr <- rep(NA, nrow(y))
420 out.ilr.x <- rep(NA, nrow(y))
421 out.ilr[row.num] <- 0
422 out.ilr.x[row.num] <- 0
423

424 mat.out.ilr[row.num, ind.orig] <- 0
425 mat.out.ilr.x[row.num, ind.orig] <- 0
426

427 l.tmp <- list()

60

428 l.tmp <- list(orig.cols = ind.orig, trafo.colorder = NULL,
429 out.ilr = out.ilr, out.ilr.x = out.ilr.x)
430 }
431 l.method2[[names(ys)[j]]] <- l.tmp
432 j <- j + 1
433 }
434

435 mat.out.ilr <- as.data.frame(mat.out.ilr)
436 colnames(mat.out.ilr) <- paste0(reg.vars, "_out.ilr")
437 mat.out.ilr.x <- as.data.frame(mat.out.ilr.x)
438 colnames(mat.out.ilr.x) <- paste0(reg.vars, "_out.ilr.x")
439

440 mat.cell <- matrix(0, ncol = ncol(mat.out.ilr), nrow = nrow(mat.out.ilr))
441 out.mult <- which(rowSums(mat.out.ilr, na.rm = TRUE) >=
442 floor(ncol(mat.out.ilr)/2))
443 out.mult <- c(out.mult,
444 which(rowSums(mat.out.ilr.x, na.rm = TRUE) ==
445 (ncol(mat.out.ilr.x) - rowSums(is.na(y)))))
446 out.mult <- unique(out.mult)
447 out.cell <- which(mat.out.ilr == 1 & mat.out.ilr.x == 0)
448 mat.cell[out.mult,] <- 3
449 mat.cell[out.cell] <- 1
450 mat.cell[is.na(y)] <- 4
451

452 mat.cell <- as.data.frame(mat.cell)
453 colnames(mat.cell) <- reg.vars
454

455 l.method2$mat.out.ilr <- mat.out.ilr
456 l.method2$mat.out.ilr.x <- mat.out.ilr.x
457 l.method2$mat.cell <- mat.cell
458 }
459

460 if ("pairlog" %in% method){
461 if (suppressOutput == FALSE){
462 wnq(paste0("+---",
463 "------------------+"))
464 wnq(paste0("| Performing pairwise log-ratio approach ",
465 " |"))
466 wnq(paste0("+---",
467 "------------------+\n"))
468 }
469 tmp <- detectDeviatingLogs(yi, suppressOutput = suppressOutput)
470 mat.cell <- tmp$mat.cell
471 mat.cell[is.na(y)] <- 4
472

473 mat.cell <- as.data.frame(mat.cell)
474 colnames(mat.cell) <- reg.vars
475

476 l.method3$u <- tmp$u
477 l.method3$mat.pair <- tmp$mat.pair
478 l.method3$rd.pair <- tmp$rd.pair
479 l.method3$mat.cell <- mat.cell
480 }
481

61

482 if ("pairlogr" %in% method){
483 if (suppressOutput == FALSE){
484 wnq(paste0("+---",
485 "------------------+"))
486 wnq(paste0("| Performing pairwise log-ratio Rousseeuw approach ",
487 " |"))
488 wnq(paste0("+---",
489 "------------------+\n"))
490 }
491 tmp <- detectDeviatingLogsRou(yi, suppressOutput = suppressOutput)
492 mat.cell <- tmp$mat.cell
493 mat.cell[is.na(y)] <- 4
494

495 mat.cell <- as.data.frame(mat.cell)
496 colnames(mat.cell) <- reg.vars
497

498 l.method4$x.log.cell <- tmp$x.log.cell
499 l.method4$mat.cell <- mat.cell
500 }
501

502 rlist <- list(x = x, method = method, reg.method = reg.m, reg.vars = reg.vars,
503 add.vars = add.vars)
504 rlist[["imputation.approach"]] <- l.method1
505 rlist[["subset.approach"]] <- l.method2
506 rlist[["pairlog.approach"]] <- l.method3
507 rlist[["pairlogr.approach"]] <- l.method4
508 class(rlist) <- "detectOutCell"
509 return(rlist)
510 }

Function detectDeviatingLogs

1 #’ Pairwise log-ratio approach (workhorse detectOutCell)
2 #’
3 #’ @description Workhorse function for the \code{"pairlog"} approach in
4 #’ \code{detectOutCell}, detecting row- and cellwise outliers using the
5 #’ pairwise log-ratio matrix between the compositional variables.
6 #’
7 #’ @param x a \code{matrix}
8 #’ @param suppressOutput suppress additional output provided by the algorithm
9 #’

10 #’ @return A list containing:
11 #’ \tabular{ll}{
12 #’ \code{u} \tab a 0/1-matrix, resulting from the initial univariate outlier
13 #’ detection of function \code{detectUnivOut}. 1 = univariate outlier,
14 #’ 0 = regular data cell \cr
15 #’ \code{mat.pair} \tab results of the regression analysis between good and
16 #’ bad variables/ratios \cr
17 #’ \code{rd.pair} \tab results of the distance analysis between good and bad
18 #’ variables/ratios \cr
19 #’ \code{mat.cell} \tab row- and cellwise outlier information \cr
20 #’ }

62

21 #’
22 #’
23 #’ @details Entries in \code{mat.cell} represent:
24 #’ \itemize{
25 #’ \item 0 - regular cells
26 #’ \item 1 - cellwise outliers
27 #’ \item 2 - bivariate cellwise outliers
28 #’ \item 3 - rowwise outliers
29 #’ \item 4 - missing values
30 #’ }
31 #’ For details on the algorithm see Beisteiner & Templ (2016).
32 #’
33 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
34 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
35 #’ Unpublished master’s thesis, Vienna University of Technology
36 #’
37 #’ @author Lukas Beisteiner, Matthias Templ
38 #’ @note License: GPL-2
39 #’ @seealso \code{\link{detectOutCell}}
40 detectDeviatingLogs <- function(x, suppressOutput = FALSE){
41

42 wnq <- function(string, qwrite = 1){ # auxiliary function
43 # writes a line without quotes
44 if(qwrite == 1) write(noquote(string), file = "", ncolumns = 100)
45 }
46

47 x <- as.data.frame(x)
48

49 x.cell <- matrix(0, nrow = nrow(x), ncol = ncol(x))
50 mat.pair.sum <- NULL
51 rd.pair.sum <- NULL
52

53 u <- detectUnivOut(x)
54 s <- apply(u, 1, paste, collapse = "")
55 xs <- split(x, s)
56

57 cols <- 1:ncol(x)
58 group.names <- names(xs)
59

60 for (i in 1:length(xs)){
61 if (suppressOutput == FALSE){
62 wnq(paste("Processing group ", group.names[i], " (", i, "/", length(xs),
63 ")", sep =""))
64 }
65 s
66 y <- xs[[i]]
67 cols.bad <- which(strsplit(group.names[i], "")[[1]] == "1")
68 l.bad <- length(cols.bad)
69

70 if (l.bad == 0){
71 cols.good <- cols
72 cols.bad <- NULL
73 } else {
74 cols.good <- cols[-cols.bad]

63

75 }
76

77 ind.obs <- as.integer(rownames(y))
78

79 l.good <- length(cols.good)
80 l.ind <- length(ind.obs)
81

82 tmp <- pairwLogRatios(x, cols.good, cols.bad)
83 Z <- tmp$Z
84

85 # A) compute regression models
86 mat.pair <- data.frame()
87 if (l.good > 1){
88 for (model in tmp$reg.models){
89 tmp.1 <- lmrob(formula(model), data = Z)
90 r <- tmp.1$residuals / tmp.1$scale
91 out <- as.integer(abs(r) > 2.5)
92

93 # compute robust MHD
94 tmp.2 <- sign2(Z[, tmp$x.vars, drop = FALSE])
95 mat.pair <- rbind(mat.pair,
96 matrix(c(ind.obs, out[ind.obs],
97 1-tmp.2$wfinal01[ind.obs]),
98 ncol = 3))
99 }

100 }
101

102 rd.pair <- data.frame()
103 n.rat <- c()
104

105 # B) compute RDs
106 # -- between good ratios
107 if (l.good > 1){
108 tmp.2 <- sign2(Z[, tmp$rd.good, drop = FALSE])
109 rd.pair <- rbind(rd.pair, matrix(c(ind.obs, 1-tmp.2$wfinal01[ind.obs]),
110 ncol = 2))
111 n.rat <- c(n.rat, "g")
112 }
113

114 # -- between bad ratios
115 if (l.bad > 1){
116 tmp.2 <- sign2(Z[, tmp$rd.bad, drop = FALSE])
117 rd.pair <- rbind(rd.pair, matrix(c(ind.obs, 1-tmp.2$wfinal01[ind.obs]),
118 ncol = 2))
119 n.rat <- c(n.rat, "b")
120 }
121

122 rd.pair <- cbind(rep(n.rat, each = l.ind), rd.pair)
123 colnames(rd.pair) <- c("rat", "row_num", "rd")
124

125 # c) interpret results
126 for (j in n.rat){
127 for (k in ind.obs){
128 mat.sub <- subset(rd.pair, (rat == j) & (row_num == k))

64

129 if (mat.sub[, "rd"] == 1){
130 if (j == "g"){
131 x.cell[k, cols.good] <- 3
132 } else if (j == "b"){
133 x.cell[k, cols.bad] <- 3
134 }
135 }
136 }
137 }
138

139 if (l.bad > 0 & l.good > 1){
140 x_var <- c(rep(cols.bad, each = (l.ind * l.good)))
141 if (l.bad > 1){
142 x_var <- c(x_var, rep(0, (l.ind * (l.bad-1)*l.bad/2)))
143 }
144

145 mat.pair <- cbind(x_var, mat.pair)
146 colnames(mat.pair) <- c("x_var", "row_num", "res", "rd")
147

148 for (j in cols.bad){
149 for (k in ind.obs){
150 mat.sub <- subset(mat.pair, (x_var == j) & (row_num == k))
151 if (all(mat.sub[, "res"] == 1) &&
152 all(mat.sub[, "rd"] == 0)){
153 x.cell[k, j] <- 1
154 }
155 }
156 }
157

158 if (l.bad > 1){
159 for (k in ind.obs){
160 mat.sub <- subset(mat.pair, (x_var == 0) & (row_num == k))
161 j <- which(mat.sub[,"res"] == 1 & mat.sub[,"rd"] == 0)
162 y.names <- tail(tmp$y.vars, n = (l.bad-1)*l.bad/2)[j]
163 y.names <- substring(y.names, 6)
164 y.names <- c(as.integer(unlist(strsplit(y.names, "_x"))))
165 y.names <- unique(y.names)
166 x.cell[k, y.names] <- 2
167 }
168 }
169 }
170

171 mat.pair.sum <- rbind(mat.pair.sum, mat.pair)
172 rd.pair.sum <- rbind(rd.pair.sum, rd.pair)
173 }
174

175 return(list(u = u, mat.pair = mat.pair.sum, rd.pair = rd.pair.sum,
176 mat.cell = x.cell))
177 }

65

Function detectDeviatingLogsRou

1 #’ Detect deviating cells on pairwise log-ratios (workhorse detectOutCell)
2 #’
3 #’ @description Workhorse function for the \code{"pairlogr"} approach in
4 #’ \code{detectOutCell}, detecting row- and cellwise outliers using the
5 #’ \emph{detectDeviatingCells} method proposed by Rousseeuw & Van den Bossche
6 #’ (2016).
7 #’
8 #’ @param x a \code{matrix}
9 #’ @param suppressOutput suppress additional output provided by the algorithm

10 #’
11 #’ @return A list containing:
12 #’ \tabular{ll}{
13 #’ \code{mat.cell} \tab row- and cellwise outlier information \cr
14 #’ \code{x.log.cell} \tab row- and cellwise outlier information of the
15 #’ pairwise log-ratio matrix
16 #’ }
17 #’
18 #’
19 #’ @details Entries in \code{mat.cell} represent:
20 #’ \itemize{
21 #’ \item 0 - regular cells
22 #’ \item 1 - cellwise outliers
23 #’ \item 2 - bivariate cellwise outliers
24 #’ \item 3 - rowwise outliers
25 #’ \item 4 - missing values
26 #’ }
27 #’ For details on the algorithm see Beisteiner & Templ (2016) and Rousseeuw &
28 #’ Van den Bossche (2016).
29 #’
30 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
31 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
32 #’ Unpublished master’s thesis, Vienna University of Technology
33 #’ @references Rousseeuw, P.J. and Van den Bossche, W. (2016). \emph{Detecting
34 #’ anomalous data cells.} ArXiv e-prints
35 #’
36 #’ @author Lukas Beisteiner, Matthias Templ
37 #’ @note License: GPL-2
38 #’ @seealso \code{\link{detectOutCell}}
39 detectDeviatingLogsRou <- function(x, suppressOutput = FALSE){
40

41 x <- as.data.frame(x)
42

43 ## Rousseeuw
44 px <- ncol(x)
45 nx <- nrow(x)
46

47 tmp <- pairwLogRatios(x, 1:px, NULL)
48 ddc <- DetectDeviatingCells(tmp$X, suppressOutput = suppressOutput)
49

50 p <- ncol(tmp$X)
51 n <- nrow(tmp$X)
52

66

53 if (length(ddc$colInAnalysis) == p && length(ddc$rowInAnalysis) == n){
54 x.log.cell <- matrix(0, ncol = p, nrow = n)
55 x.log.cell[ddc$indcells] <- 1
56

57 mat.cell <- matrix(0, ncol = px, nrow = nx)
58 # rowwise outlier in pair-wise log-ratio matrix are rowwise outlier in x
59 mat.cell[ddc$indrows,] <- 3
60

61 # calculate log-ratio groups
62 l.group <- list()
63 for (i in 1:(px-1)){
64 if (i == 1){
65 l.begin <- 1
66 l.end <- px - 1
67 l.group[[i]] <- c(l.begin:l.end)
68 } else {
69 l.begin <- sum(px-c(1:(i-1)))+1
70 l.end <- sum(px-c(1:i))
71 l.group[[i]] <- c(l.begin:l.end)
72 }
73 }
74

75 for (i in 1:px){
76 ind.group <- sapply(1:i, function(j){
77 if (j == i){
78 if (j != px){
79 ind.group <- l.group[[j]]
80 }
81 } else {
82 ind.group <- l.group[[j]][i-j]
83 }
84 })
85

86 ind.group <- unlist(ind.group)
87 out.cell <- rowSums(x.log.cell[, ind.group]) >= floor(px/2)
88 mat.cell[out.cell, i] <- 1
89

90 #out.mult <- which(rowSums(mat.cell) == ncol(mat.cell))
91 out.mult <- which(rowSums(mat.cell) >= floor(px/2))
92 mat.cell[out.mult,] <- 3
93 mat.cell <- data.frame(mat.cell)
94 x.log.cell <- data.frame(x.log.cell)
95 colnames(mat.cell) <- colnames(x)
96 colnames(x.log.cell) <- colnames(tmp$X)
97 }
98 } else {
99 stop("Only ", length(ddc$colInAnalysis), "/", p, " columns and ",

100 length(ddc$rowInAnalysis), "/", n, " rows of the pairwise log-ratio ",
101 "matrix were analyzed by the algorithm. Results can not be ",
102 "interpreted.")
103 }
104

105 return(list(mat.cell = mat.cell, x.log.cell = x.log.cell))
106 }

67

Function print.detectOutCell

1 #’ Print method for objects of class detectOutCell
2 #’
3 #’ The \code{print}-method summarises the results of function
4 #’ \code{detectOutCell} by approach and variable.
5 #’
6 #’ @details The function prints a well-aranged list of the number of cell- and
7 #’ rowwise outliers detect by each approach and variable.
8 #’
9 #’ @param x an object of class \sQuote{detectOutCell}

10 #’ @method print detectOutCell
11 #’ @author Lukas Beisteiner, Matthias Templ
12 #’ @note License: GPL-2
13 #’ @seealso \code{\link{detectOutCell}}
14 #’
15 #’ @examples
16 #’ data(expenditures)
17 #’ x <- cbind(expenditures, group = rep(c(1, 2)))
18 #’ y <- detectOutCell(x, add.vars = c("group"))
19 #’ print(y)
20 print.detectOutCell <- function(x){
21 cat("Number of cellwise outliers detected by approach and variable:\n\n")
22

23 m.cell <- matrix(nrow = 0, ncol = length(x$reg.vars) + 1)
24 v.row <- c()
25

26 for (m in x$method){
27 app <- paste0(m, ".approach")
28 mat.cell <- x[[app]]$mat.cell
29 res.row <- which(rowSums(mat.cell == 3) > 1)
30 res.cell <- colSums(mat.cell == 1 | mat.cell == 2)
31 res.cell <- c(res.cell, sum(res.cell))
32

33 m.cell <- rbind(m.cell, res.cell)
34 v.row <- c(v.row, length(res.row))
35 }
36 rownames(m.cell) <- x$method
37 colnames(m.cell) <- c(x$reg.vars, "sum")
38

39 names(v.row) <- x$method
40

41 print(m.cell)
42 cat("\n")
43 cat("Number of rowwise outliers detected by approach:\n\n")
44 print(v.row)
45 cat("\n")
46 }

68

Function plot.detectOutCell

1 #’ Plot cell map for objects of class detectOutCell
2 #’
3 #’ @description Plot a color coded cell- or block-map of the results of function
4 #’ \code{detectOutCell}
5 #’
6 #’ @param x an object of class \code{detectOutCell}
7 #’ @param blocksize if 1 (default) plot results for each cell of the matrix, if
8 #’ > 1 group neighboring cells in blocks by dimension \code{blockdim}
9 #’ @param blockdim if \code{"row"} always group \code{blocksize} rows together,

10 #’ if \code{"both"} group the \code{blocksize} neighboring cells by row and
11 #’ column together
12 #’ @param rownums only plot the specified row numbers, default \code{NULL} plots
13 #’ all rows
14 #’ @param orderby order data set by variable, either the column name or the
15 #’ index of the variable within the input data set may be specified; if
16 #’ \code{NULL} (default) no ordering is done
17 #’ @param decreasing if \code{orderby} is specified, order the variable
18 #’ ascending (\code{FALSE}) or descending (\code{TRUE})
19 #’ @param labelsx labels for the x-axis, if \code{NULL} use \code{rownames}
20 #’ @param labelsy labels for the y-axis, if \code{NULL} use \code{colnames}
21 #’ @param xtitle title for the x-axis
22 #’ @param ytitle title for the y-axis
23 #’ @param anglex angle of the labels on the x-axis
24 #’ @param sizexy size of title for x-axis and y-axis
25 #’ @param hjustXlabels adjust x-labels: 0 = left, 0.5 = centered, 1 = right
26 #’ @param hjustYlabels adjust y-labels
27 #’ @param base_size adjust base size of x- and y-axis labels
28 #’
29 #’ @details Cells are visualized by color-coded squares according to the entries
30 #’ in the result matrix:
31 #’ \itemize{
32 #’ \item yellow (value 0) - regular cells
33 #’ \item red (value 1) - cellwise outliers
34 #’ \item blue (value 2) - bivariate cellwise outliers
35 #’ \item black (value 3) - rowwise outliers
36 #’ \item white (value 4) - missing values
37 #’ }
38 #’
39 #’ @method plot detectOutCell
40 #’
41 #’ @author Lukas Beisteiner, Matthias Templ
42 #’ @note License: GPL-2
43 #’ @seealso \code{\link{detectOutCell}}
44 #’
45 #’ @examples
46 #’ data(expenditures)
47 #’ x <- cbind(expenditures, group = rep(c(1, 2)))
48 #’ y <- detectOutCell(x, add.vars = c("group"))
49 #’ plot(y)
50 #’
51 #’ plot(y, blocksize = 2)
52 #’

69

53 #’ plot(y, blocksize = 2, blockdim = "both")
54 plot.detectOutCell <- function(x, blocksize = 1, blockdim = "row",
55 rownums = NULL, orderby = NULL,
56 decreasing = FALSE, labelsx = NULL,
57 labelsy = NULL, xtitle = "", ytitle = "",
58 anglex = 90, sizexy = 1.8, hjustXlabels = 1,
59 hjustYlabels = 1, base_size = 5){
60

61 if (blocksize < 1){
62 stop("Invalid blocksize")
63 }
64

65 if (!(blockdim %in% c("row", "both")) && blocksize > 1){
66 warning(paste0(’Can not reduce cell map to dimension "’, blockdim, ’"!’,
67 ’ Using default dimension "row" instead.’))
68 blockdim <- "row"
69 }
70

71 if (is.null(rownums)){
72 rownums <- 1:nrow(x$x)
73 }
74

75 if (!is.null(orderby)){
76 if ((is.numeric(orderby) &&
77 between(orderby, 0, ncol(x$x[, x$reg.vars]) + 1, incbounds = FALSE)) |
78 orderby %in% x$reg.vars){
79 tmp.order <- order(x$x[, orderby], decreasing = decreasing,
80 na.last = decreasing)
81

82 if (is.null(labelsy)){
83 labelsy <- rownames(x$x)[tmp.order]
84 labesly <- labelsy[rownums]
85 }
86 }
87 }
88

89 if (is.null(labelsx)){
90 labelsx <- colnames(x$x[, x$reg.vars])
91 }
92

93 if (is.null(labelsy)){
94 labelsy <- rownames(x$x)[rownums]
95 }
96

97 methods <- paste0(x$method, ".approach")
98 gplot <- list()
99

100 for (m in x$method){
101 if (blocksize == 1){
102 app <- paste0(m, ".approach")
103 strTitle <- paste0(m, " app.")
104 mat.cell <- x[[app]]$mat.cell
105

106 if (!is.null(orderby)){

70

107 mat.cell <- mat.cell[tmp.order,]
108 }
109

110 gplot[[m]] <- plotCellMap(mat.cell[rownums,], labelsx = labelsx,
111 labelsy = labelsy, strTitle = strTitle,
112 anglex = anglex, xtitle = xtitle,
113 ytitle = ytitle, sizexy = sizexy,
114 hjustXlabels = hjustXlabels,
115 hjustYlabels = hjustYlabels,
116 base_size = base_size)
117

118 } else {
119 app <- paste0(m, ".approach")
120 strTitle <- paste0(m, " app.")
121 mat.cell <- x[[app]]$mat.cell
122

123 if (!is.null(orderby)){
124 mat.cell <- mat.cell[tmp.order,]
125 }
126

127 gplot[[m]] <- plotBlockMap(mat.cell[rownums,],
128 labelsx = labelsx, labelsy = labelsy,
129 strTitle = strTitle, blocksize = blocksize,
130 blockdim = blockdim, anglex = anglex,
131 xtitle = xtitle, ytitle = ytitle,
132 sizexy = sizexy, autolabel = TRUE,
133 base_size = base_size)
134 }
135 }
136 multiplot(plotlist = gplot, cols = length(gplot))
137 }

Function plotCellMap

1 #’ Plot cell map (workhorse plot.detectOutCell)
2 #’
3 #’ @description Workhorse function for \code{plot.detectOutCell}, plotting a
4 #’ color coded cell map
5 #’
6 #’ @param x a \code{matrix}
7 #’ @param labelsx labels for the x-axis, if \code{NULL} use \code{rownames}
8 #’ @param labelsy labels for the y-axis, if \code{NULL} use \code{colnames}
9 #’ @param strTitle title of the cellMap

10 #’ @param anglex angle of the labels on the x-axis
11 #’ @param xtitle title for the x-axis
12 #’ @param ytitle title for the y-axis
13 #’ @param sizexy size of title for x-axis and y-axis
14 #’ @param hjustXlabels adjust x-labels: 0 = left, 0.5 = centered, 1 = right
15 #’ @param hjustYlabels adjust y-labels
16 #’ @param base_size adjust base size of x- and y-axis labels
17 #’
18 #’ @return ggp An object of class \sQuote{ggplot} containing the plotted cell

71

19 #’ map
20 #’
21 #’ @details Cells are visualized by color-coded squares according to the entries
22 #’ in the result matrix:
23 #’ \itemize{
24 #’ \item yellow (value 0) - regular cells
25 #’ \item red (value 1) - cellwise outliers
26 #’ \item blue (value 2) - bivariate cellwise outliers
27 #’ \item black (value 3) - rowwise outliers
28 #’ \item white (value 4) - missing values
29 #’ }
30 #’ This method is an adapted version of the plot method proposed by Rousseeuw &
31 #’ Van den Bossche (2016).
32 #’
33 #’ @references Rousseeuw, P.J. and Van den Bossche, W. (2016). \emph{Detecting
34 #’ anomalous data cells.} ArXiv e-prints
35 #’
36 #’ @author Lukas Beisteiner, Matthias Templ
37 #’ @seealso \code{\link{plot.detectOutCell}}
38 #’ @note License: GPL-2
39 plotCellMap <- function(x, labelsx, labelsy, strTitle, anglex = 90,
40 xtitle = "", ytitle = "", sizexy = 1.8,
41 hjustXlabels = 1, hjustYlabels = 1, base_size = 10){
42

43 labelsy <- rev(labelsy) # will be plotted from bottom to top
44 n <- nrow(x)
45 p <- ncol(x)
46

47 # Melt data matrices for cellMap
48 Xdf <- data.frame(cbind(seq(1, n, 1), x))
49 colnames(Xdf) <- c("row_num", colnames(x))
50 rownames(Xdf) <- NULL
51 Xdf$row_num <- with(Xdf, reorder(row_num, seq(n, 1, -1)))
52 mX <- melt(Xdf, id.var = "row_num", value.name = "CatNr")
53

54 Ddf <- data.frame(cbind(seq(1, n, 1), x))
55 colnames(Ddf) <- c("row_num", colnames(x))
56 rownames(Ddf) <- NULL
57 Ddf$row_num = with(Ddf, reorder(row_num, seq(n, 1, -1)))
58 mD <- melt(Ddf, id.var = "row_num")
59

60 # Combine melted data
61 mX$data <- mD$value
62 mX$rescaleoffset <- 100 * mX$CatNr
63 gradientends <- rep(c(0, 100, 200, 300, 400), each = 2)
64

65 colorends <- c("khaki1", "khaki1", "red", "red", "blue", "blue",
66 "black", "black", "white", "white")
67

68 ggp = ggplot(data = mX, aes(variable, row_num)) +
69 geom_tile(aes(fill = rescale(rescaleoffset, from = c(0, 400))),
70 colour = "white") +
71 scale_fill_gradientn(colours = colorends,
72 values = rescale(gradientends),

72

73 rescaler = function(x, ...) x, oob = identity) +
74 ggtitle(strTitle) +
75 coord_fixed() +
76 theme_classic(base_size = base_size*1) +
77 labs(x = xtitle, y = ytitle) +
78 scale_x_discrete(expand = c(0, 0), labels = labelsx) +
79 scale_y_discrete(expand = c(0, 0), labels = labelsy) +
80 theme(legend.position = "none", axis.ticks = element_blank(),
81 plot.title = element_text(size = base_size*2, vjust = 1,
82 face = "bold"),
83 # hjust = 1 right-adjusts the labels on the x-axis:
84 axis.text.x = element_text(size = base_size*1.8, angle = anglex,
85 hjust = hjustXlabels, vjust = 0.5,
86 colour = "black"),
87 axis.text.y = element_text(size = base_size*1.8, angle = 0,
88 hjust = hjustYlabels, colour = "black"),
89 axis.title.x = element_text(colour = "black", size = base_size*sizexy,
90 vjust = 1),
91 axis.title.y = element_text(colour = "black", size = base_size*sizexy,
92 vjust = 0))
93

94 return(ggp)
95 }

Function plotBlockMap

1 #’ Plot block map (workhorse plot.detectOutCell)
2 #’
3 #’ @description Workhorse function for \code{plot.detectOutCell}, plotting a
4 #’ color coded cell map arranged by blocks
5 #’
6 #’ @param x.cell a \code{matrix}
7 #’ @param labelsx labels for the x-axis, if \code{NULL} use \code{rownames}
8 #’ @param labelsy labels for the y-axis, if \code{NULL} use \code{colnames}
9 #’ @param strTitle title of the blockMap

10 #’ @param blocksize if 1 plot results for each cell of the matrix, if > 1 group
11 #’ neighboring cells in blocks by dimension \code{blockdim}
12 #’ @param blockdim if \code{"row"} always group \code{blocksize} rows together,
13 #’ if \code{"both"} group the \code{blocksize} neighboring cells by row and
14 #’ column together
15 #’ @param anglex angle of the labels on the x-axis
16 #’ @param xtitle title for the x-axis
17 #’ @param ytitle title for the y-axis
18 #’ @param sizexy size of title for x-axis and y-axis
19 #’ @param autolabel automatic labeling of combined rows and columns
20 #’ @param base_size adjust base size of x- and y-axis labels
21 #’
22 #’ @return ggp An object of class \sQuote{ggplot} containing the plotted block
23 #’ map
24 #’
25 #’ @details Cells are visualized by color-coded squares according to the entries
26 #’ in the result matrix:

73

27 #’ \itemize{
28 #’ \item yellow (value 0) - regular cells
29 #’ \item red (value 1) - cellwise outliers
30 #’ \item blue (value 2) - bivariate cellwise outliers
31 #’ \item black (value 3) - rowwise outliers
32 #’ \item white (value 4) - missing values
33 #’ }
34 #’ Blocked cells are represented by a combined shade of neighboring colors.
35 #’ This method is an adapted version of the plot method proposed by Rousseeuw &
36 #’ Van den Bossche (2016).
37 #’
38 #’ @references Rousseeuw, P.J. and Van den Bossche, W. (2016). \emph{Detecting
39 #’ anomalous data cells.} ArXiv e-prints
40 #’
41 #’ @author Lukas Beisteiner, Matthias Templ
42 #’ @note License: GPL-2
43 #’ @seealso \code{\link{plot.detectOutCell}}
44 plotBlockMap <- function(x.cell, labelsx, labelsy, strTitle, blocksize = 1,
45 blockdim = "row", anglex = 90, xtitle = "",
46 ytitle = "", sizexy = 1.1, autolabel = TRUE,
47 base_size = 10) {
48

49 funcSqueeze <- function(Xin, n, d, blocksize, blockdim) {
50 # function for use in cellMapByBlock()
51 Xblock <- matrix(0, nrow = n ,ncol = d)
52 Xblockgrad <- matrix(0, nrow = n, ncol = d)
53

54 for (i in 1:n){
55 for (j in 1:d){
56

57 if (blockdim == "both"){
58 Xsel <- Xin[(1+((i-1)*blocksize)):(i*blocksize),
59 (1+((j-1)*blocksize)):(j*blocksize)]
60 } else if (blockdim == "row") {
61 Xsel <- Xin[(1+((i-1)*blocksize)):(i*blocksize), j]
62 }
63

64 seltable <- tabulate(unlist(Xsel), nbin = 3)
65 if (blockdim == "both"){
66 cnt0 <- (blocksize * blocksize) - sum(seltable)
67 } else if (blockdim == "row") {
68 cnt0 <- blocksize - sum(seltable)
69 }
70

71 if (sum(seltable) > 0){
72 indmax <- which(seltable == max(seltable))[1]
73 cntmax <- seltable[indmax]
74 gradmax <- cntmax / (blocksize*blocksize)
75 } else {
76 indmax <- 0
77 gradmax <- 1
78 }
79

80 Xblock[i,j] <- indmax

74

81 Xblockgrad[i,j] <- gradmax
82 }
83 }
84 return(list(X = Xblock, Xgrad = Xblockgrad))
85 }
86

87 n <- nrow(x.cell)
88 d <- ncol(x.cell)
89

90 n <- floor(n/blocksize)
91 if (blockdim == "both"){
92 d <- floor(d/blocksize)
93 }
94

95 # if autolabel = F, labels{x,y} will be used for the blocks.
96 if (autolabel == TRUE){ # automatically combine labels for blocks
97 if (blockdim == "both"){
98 labx <- labelsx
99 labelsx <- rep(0, d)

100

101 for (ind in 1:d){
102 labelsx[ind] <- paste(labx[(1+((ind-1)*blocksize))], "-" ,
103 labx[(ind*blocksize)], sep = "")
104 }
105 }
106

107 laby <- labelsy
108 labelsy <- rep(0, n)
109 for (ind in 1:n){
110 labelsy[ind] <- paste(laby[(1+((ind-1)*blocksize))], "-" ,
111 laby[(ind*blocksize)])
112 }
113 }
114 labelsy <- rev(labelsy) # will be plotted from bottom to top
115

116 result <- funcSqueeze(x.cell, n, d, blocksize, blockdim)
117 x.cell <- result$X
118 Xgrad <- result$Xgrad
119

120 # Melt data matrices for cellMap
121 Xdf <- data.frame(cbind(seq(1, n, 1), x.cell))
122 colnames(Xdf) <- c("row_num", seq(1, d, 1))
123 rownames(Xdf) <- NULL
124 Xdf$row_num <- with(Xdf, reorder(row_num, seq(n, 1, -1)))
125 mX <- melt(Xdf, id.var = "row_num", value.name = "CatNr")
126

127 Xgraddf <- data.frame(cbind(seq(1, n, 1), Xgrad))
128 colnames(Xgraddf) <- c("row_num", seq(1, d, 1))
129 rownames(Xgraddf) <- NULL
130 Xgraddf$row_num <- with(Xgraddf, reorder(row_num, seq(n, 1, -1)))
131 mXgrad <- melt(Xgraddf, id.var = "row_num", value.name = "grad")
132

133 # Combine melted data
134 mX$grad <- mXgrad$grad

75

135 mX$rescaleoffset <- mXgrad$grad + 10*mX$CatNr
136 scalerange <- c(0, 1)
137 gradientends <- scalerange + rep(c(0, 10, 20, 30), each = 2)
138

139 colorends <- c("khaki1", "khaki1", "khaki1", "red", "khaki1", "blue",
140 "khaki1", "black")
141

142 ggp = ggplot(data = mX, aes(variable, row_num)) +
143 geom_tile(aes(fill = rescale(rescaleoffset,
144 from = range(c(0, 1) + rep(c(0, 10, 20, 30),
145 each = 2)))),
146 colour = "white") +
147 scale_fill_gradientn(colours = colorends, values = rescale(gradientends),
148 rescaler = function(x, ...) x, oob = identity) +
149 ggtitle(strTitle) +
150 coord_fixed() +
151 theme_classic(base_size = base_size*1) +
152 labs(x = xtitle, y = ytitle) +
153 scale_x_discrete(expand = c(0, 0), labels = labelsx) +
154 scale_y_discrete(expand = c(0, 0), labels = labelsy) +
155 theme(legend.position = "none", axis.ticks = element_blank(),
156 plot.title = element_text(size = base_size*2, vjust = 1,
157 face = "bold"),
158 axis.text.x = element_text(size = base_size*1.8, angle = anglex,
159 hjust = 1, vjust = 0.5, colour = "black"),
160 axis.text.y = element_text(size = base_size*1.8, angle = 0,
161 hjust = 1, colour = "black"),
162 axis.title.x = element_text(colour = "black", size = base_size*sizexy,
163 vjust = 1),
164 axis.title.y = element_text(colour = "black", size = base_size*sizexy,
165 vjust = 0))
166 return(ggp)
167 }

Function pairwLogRatios

1 #’ Construct pairwise log-ratio matrix (workhorse detectDeviatingLogs and
2 #’ detectDeviatingLogsRou)
3 #’
4 #’ @description Workhorse function used in \code{detectDeviatingLogs} and
5 #’ \code{detectDeviatingLogsRou}, generating the pairwise log-ratio matrix
6 #’ between variables. Also generates the regression variables and models
7 #’ between two specified groups of variables.
8 #’
9 #’ @param x a \code{matrix}

10 #’ @param cols.good column indices of first group of variables
11 #’ @param cols.bad column indices of second group of variables
12 #’
13 #’ @return A list containing:
14 #’ \tabular{ll}{
15 #’ \code{cols.good} \tab column indices of first group of variables \cr
16 #’ \code{cols.bad} \tab column indices of second group of variables \cr

76

17 #’ \code{y.vars} \tab names of dependent variables \cr
18 #’ \code{x.vars} \tab names of indipendent variables\cr
19 #’ \code{Y} \tab response matrix \cr
20 #’ \code{X} \tab regressor matrix \cr
21 #’ \code{Z} \tab combined matrix \code{(Y, X)}\cr
22 #’ \code{reg.models} \tab \code{formula}s for regression models\cr
23 #’ \code{rd.good} \tab names of first group of variables for distance
24 #’ calculation \cr
25 #’ \code{rd.bad} \tab names of second group of variables for distance
26 #’ calculation \cr
27 #’ }
28 #’
29 #’ @details For details on the usage of the pairwise log-ratios see
30 #’ Beisteiner & Templ (2016).
31 #’
32 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
33 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
34 #’ Unpublished master’s thesis, Vienna University of Technology
35 #’
36 #’ @author Lukas Beisteiner, Matthias Templ
37 #’ @note License: GPL-2
38 #’ @seealso \code{\link{detectDeviatingLogs}}
39 #’ \code{\link{detectDeviatingLogsRou}}
40 pairwLogRatios <- function(x, cols.good, cols.bad){
41 l.good <- length(cols.good)
42 l.bad <- length(cols.bad)
43

44 mat.x <- data.frame(row.names = 1:nrow(x))
45 mat.y <- data.frame(row.names = 1:nrow(x))
46 names.mat.x <- c()
47 names.mat.y <- c()
48 reg.models <- NULL
49

50 ind <- 1:(l.good-1)
51 if (l.good > 1){
52 for (i in ind){
53 cols.new <- cols.good[-(1:i)]
54 mat.x <- cbind(mat.x, log(x[, cols.good[i]]/x[, cols.new]))
55 names.mat.x <- c(names.mat.x, paste0("log_x", cols.good[i], "_x",
56 cols.new))
57 }
58

59 if (l.bad >= 1){
60 ind <- 1:l.bad
61 for (i in ind){
62 mat.y <- cbind(mat.y, log(x[, cols.bad[i]]/x[, cols.good]))
63 names.mat.y <- c(names.mat.y, paste0("log_x", cols.bad[i], "_x",
64 cols.good))
65 }
66 }
67 }
68

69 if (l.bad > 1){
70 ind <- 1:(l.bad-1)

77

71

72 for (i in ind){
73 cols.new <- cols.bad[-(1:i)]
74 mat.y <- cbind(mat.y, log(x[, cols.bad[i]]/x[, cols.new]))
75 names.mat.y <- c(names.mat.y, paste0("log_x", cols.bad[i], "_x",
76 cols.new))
77 }
78 }
79

80 colnames(mat.x) <- names.mat.x
81 colnames(mat.y) <- names.mat.y
82

83 # 1) bad/good vs. good/good ratios
84 # 2) bad/bad vs. good/good ratios
85 if (l.good > 1){
86 reg.x <- paste0(" ~ ", paste0(names.mat.x, collapse = " + "))
87 reg.models <- lapply(names.mat.y, function(x){
88 paste0(x, reg.x, sep = "")
89 })
90 }
91

92 # 3) robust distances between all good ratios
93 rd.good <- names.mat.x
94 rd.bad <- NULL
95

96 # 4) robust distances between all bad ratios
97 if (l.bad > 1){
98 ind <- 1:(l.bad-1)
99

100 for (i in ind){
101 cols.new <- cols.bad[-(1:i)]
102 rd.bad<- c(rd.bad, paste0("log_x", cols.bad[i], "_x", cols.new))
103 }
104 }
105

106 return(list(cols.good = cols.good, cols.bad = cols.bad,
107 y.vars = names.mat.y, x.vars = names.mat.x, Y = mat.y,
108 X = mat.x, Z = cbind(mat.y, mat.x), reg.models = reg.models,
109 rd.good = rd.good, rd.bad = rd.bad))
110 }

Function detectUnivOut

1 #’ Detect univariate outliers (workhorse detectDeviatingLogs)
2 #’
3 #’ @description Workhorse function used in \code{detectDeviatingLogs},
4 #’ performing the initial univariate outlier detection step.
5 #’
6 #’ @param x a \code{matrix}
7 #’
8 #’ @return u a 0/1-matrix, indicating 1 = univariate outliers, 0 = regular cells
9 #’

78

10 #’ @details This method is an adapted version of the univarate outlier detection
11 #’ method proposed by Rousseeuw & Van den Bossche (2016).
12 #’
13 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
14 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
15 #’ Unpublished master’s thesis, Vienna University of Technology
16 #’ @references Rousseeuw, P.J. and Van den Bossche, W. (2016). \emph{Detecting
17 #’ anomalous data cells.} ArXiv e-prints
18 #’
19 #’ @author Lukas Beisteiner, Matthias Templ
20 #’ @note License: GPL-2
21 #’ @seealso \code{\link{detectDeviatingLogs}}
22 detectUnivOut <- function(x){
23

24 # Univariate estimators of location and scale
25 loc1StepM <- function(x, c1 = 3, precScale = 1e-12){
26 # Computes the first step of an algorithm for
27 # a location M-estimator using the biweight.
28 # Note that c1 is expressed in unnormalized MAD units.
29 # In the usual units it is thus c1/qnorm(3/4).
30 medx <- median(x)
31 ax <- abs(x - medx)
32 denom <- c1 * median(ax)
33 mu <- if(denom > precScale) {
34 ax <- ax/denom
35 w <- 1 - ax * ax
36 w <- ((abs(w) + w)/2)^2
37 sum(x * w)/sum(w)
38 }
39 else{
40 medx
41 }
42

43 return(mu)
44 }
45

46 scale1StepM <- function(x, c2 = 2.5, delta = 0.844472, precScale = 1e-12){
47 # Computes the first step of an algorithm for
48 # a scale M-estimator using the Huber rho.
49 # Assumes that the univariate data in x has already
50 # been centered, e.g. by subtracting loc1StepM.
51 # Note that c2 is expressed in unnormalized MAD units.
52 # In the usual units it is thus c2/qnorm(3/4).
53 # If you change c2 you must also change delta.
54 n <- length(x)
55 sigma0 <- median(abs(x))
56 if(c2*sigma0 < precScale){
57 return(sigma0)
58 } else {
59 x <- x/sigma0
60 rho <- x^2
61 rho[rho > c2^2] <- c2^2
62 return(sigma0 * sqrt(sum(rho)/(n*delta)))
63 }

79

64 }
65

66 detectUniv <- function(x, cut.val){
67 # Detects outliers and sets them to NA.
68 # Assumes that the data have already been standardized.
69 x.out <- rep(0, length(x))
70 x.out[(abs(x) > cut.val)] <- 1
71 return(x.out)
72 }
73

74 # compute ratios
75 x <- sapply(1:ncol(x), function(i){
76 x[, i] <- x[, i]/rowSums(x[,-i])
77 })
78

79 # Robust standardization
80 locX <- apply(x, 2, loc1StepM)
81 z <- sweep(x, 2, locX)
82 scaleX <- apply(z, 2, scale1StepM)
83 z <- sweep(z, 2, scaleX, "/")
84

85 cut.val <- sqrt(qchisq(0.99,1))
86

87 u <- apply(z, 2, detectUniv, cut.val = cut.val)
88 return(u)
89 }

Function checkDataFrame

1 #’ Check data frame before MD calculation (workhorse detectOutCell)
2 #’
3 #’ @description Workhorse function used in \code{detectOutCell}, checking
4 #’ whether variables are suitable for MD calculation (\code{factor} variables
5 #’ or variables that are too discrete are identified and ruled out)
6 #’
7 #’ @param x a \code{matrix}
8 #’ @param reg.vars variables containing the compositional data
9 #’ @param numDiscrete a column that takes on \code{numDiscrete} or fewer values

10 #’ will be considered discrete and not used in the analysis.
11 #’ @param precScale only consider columns whose scale is > \code{precScale}.
12 #’ Here scale is measured by the median absolute deviation.
13 #’ @param suppressOutput suppress additional output provided by the algorithms
14 #’
15 #’ @return colMHD \code{TRUE}/\code{FALSE} vector, indicating which variables
16 #’ are suitable for MD calculation
17 #’
18 #’ @details This method is an adapted version of the method proposed by
19 #’ Rousseeuw & Van den Bossche (2016).
20 #’
21 #’ @references Beisteiner, L. and Templ, M. (2016). \emph{Exploratory Tools for
22 #’ Cellwise Outlier Detection in Compositional Data with Structural Zeros}.
23 #’ Unpublished master’s thesis, Vienna University of Technology

80

24 #’ @references Rousseeuw, P.J. and Van den Bossche, W. (2016). \emph{Detecting
25 #’ anomalous data cells.} ArXiv e-prints
26 #’
27 #’ @author Lukas Beisteiner, Matthias Templ
28 #’ @note License: GPL-2
29 #’ @seealso \code{\link{detectOutCell}}
30 checkDataFrame <- function(x, reg.vars, numDiscrete = 3, precScale = 1e-12,
31 suppressOutput = FALSE){
32

33 wnq <- function(string, qwrite = 1){
34 # auxiliary function
35 # writes a line without quotes
36 if(qwrite == 1) write(noquote(string), file = "", ncolumns = 100)
37 }
38

39 pnq <- function(string, qwrite = 1){
40 # auxiliary function
41 # prints a line without quotes
42 if(qwrite == 1) print(noquote(string))
43 }
44

45 # +--+
46 # | 0) Initial checks |
47 # +--+
48 if(!all(x[, reg.vars] >= 0, na.rm = TRUE)){
49 stop("Compositional variables of x must be greater or equal to zero!")
50 }
51

52 if (is.null(dim(x))){
53 stop("x must be a data.frame, data.table or matrix")
54 }
55

56 # +--+
57 # | 1) Deselect non-numeric variables |
58 # +--+
59 colNumeric <- sapply(x, is.numeric)
60 sumNumeric <- sum(colNumeric)
61

62 colNotNumeric <- colNumeric == FALSE
63 sumNotNumeric <- sum(colNotNumeric)
64

65 if(sumNotNumeric > 0) {
66 if (suppressOutput == FALSE){
67 wnq(" ")
68 wnq(paste("The input data contained ", sumNotNumeric,
69 " non-numeric columns (variables).", sep=""))
70 wnq("Their column names are:")
71 wnq("")
72 pnq(colnames(x)[colNotNumeric])
73 wnq(" ")
74 }
75 if(sumNumeric > 1) {
76 if (suppressOutput == FALSE){
77 wnq(paste("These columns will be ignored for calculating the robust ",

81

78 "Mahalanobis distances.", sep = ""))
79 wnq(paste("We continue the calculation with the remaining ",
80 sumNumeric, " numeric columns:", sep=""))
81 }
82 x <- x[, colNumeric, drop = FALSE]
83 } else {
84 if(sumNumeric == 0) stop(" No columns remain, stopping procedure.")
85 if(sumNumeric == 1) stop("Only 1 column remains, stopping procedure.")
86 }
87 wnq(" ")
88 pnq(names(which(colNumeric)))
89 }
90

91 colMHD <- colNumeric
92

93 # +--+
94 # | 2) Deselect discrete variables, loosely defined as variables that take |
95 # | on numDiscrete or fewer values, such as binary variables |
96 # +--+
97 valueCount <- apply(x, 2, function(xj){
98 sum(!is.na(unique(xj)))
99 })

100

101 colNotDiscrete <- (valueCount > numDiscrete)
102 sumNotDiscrete <- sum(colNotDiscrete)
103 colDiscrete <- colNotDiscrete == F
104 sumDiscrete <- sum(colDiscrete)
105

106 if(sumDiscrete > 0) {
107 if (suppressOutput == FALSE){
108 wnq(" ")
109 wnq(paste("The data contained ", sumDiscrete," discrete columns with ",
110 sumDiscrete," or fewer values.",sep=""))
111 wnq("Their column names are:")
112 wnq(" ")
113 pnq(colnames(x)[colDiscrete])
114 wnq(" ")
115 }
116 if(sumNotDiscrete > 1) {
117 if (suppressOutput == FALSE){
118 wnq(paste("These columns will be ignored for calculating the robust ",
119 "Mahalanobis distances.", sep = ""))
120 wnq(paste("We continue with the remaining ", sumNotDiscrete, " columns:"
121 , sep = ""))
122 }
123 x <- x[, colNotDiscrete, drop = FALSE]
124 } else {
125 if(sumNotDiscrete == 0) stop("No columns remain, stopping procedure.")
126 if(sumNotDiscrete == 1) stop("Only 1 column remains, stopping procedure.")
127 }
128

129 colMHD[colMHD == TRUE] <- colNotDiscrete
130 wnq(" ")
131 pnq(names(which(colMHD)))

82

132 }
133

134 # +--+
135 # | 3) Deselect columns for which the median absolute deviation is zero. |
136 # | This is equivalent to saying that 50% or more of its values are |
137 # | equal. |
138 # +--+
139 colScale <- apply(x, 2, mad, na.rm = TRUE)
140 colGood <- colScale > precScale
141 sumGood <- sum(colGood)
142 colBad <- colGood == FALSE
143 sumBad <- sum(colBad)
144

145 if(sumBad > 0) {
146 if (suppressOutput == FALSE){
147 wnq(" ")
148 wnq(paste("The data contained ", sumBad," columns with zero or tiny median",
149 " absolute deviation.",sep=""))
150 wnq("Their column names are:")
151 wnq(" ")
152 pnq(colnames(x)[colBad])
153 wnq(" ")
154 }
155 if(sumGood > 1) {
156 if (suppressOutput == FALSE){
157 wnq(paste("These columns will be ignored for calculating the robust ",
158 "Mahalanobis distances.", sep = ""))
159 wnq(paste("We continue with the remaining ", sumGood, " columns:",
160 sep = ""))
161 }
162 x <- x[, colGood, drop = FALSE]
163 } else {
164 if(sumGood == 0) stop("No columns remain, stopping procedure.")
165 if(sumGood == 1) stop("Only 1 column remains, stopping procedure.")
166 }
167

168 colMHD[colMHD == TRUE] <- colGood
169 if (suppressOutput == FALSE){
170 wnq(" ")
171 pnq(names(which(colMHD)))
172 }
173 }
174

175 return(colMHD = colMHD)
176 }

83

Bibliography

J. Aitchison. The Statistical Analysis of Compositional Data Monographs on Statistics
and Applied Probability. Chapman & Hall Ltd., London (UK), 1986.

J. Bacon-Shone. A. Buccianti, G. Mateu-Figueras and V. Pawlowsky-Glahn (eds):
Compositional Data Analysis in the Geosciences: From Theory to Practice, vol-
ume 22. Springer-Verlag, 2008.

J.A. Cortes. On the Harker Variation Diagrams; A Comment on "The Statistical
Analysis of Compositional Data. Where Are We and Where Should We Be Head-
ing?" by Aitchison and Egozcue (2005). Mathematical Geosciences, 41(7):817–828,
2009.

C. Croux and G. Haesbroeck. Influence function and efficiency of the minimum
covariance determinant scatter matrix estimator. Journal of Multivariate Analysis,
71(2):161 – 190, 1999.

U.S. State Department. Albania 2014 International Religious Freedom Report. Bureau
of Democracy Human Rights and Labor, United States Department of State., 2014.

D.L. Donoho and P.J. Huber. The Notion of Breakdown Point. A Festschrift for
Erich Lehmann, edited by P. Bickel, K. Doksum, and J.L. Hodges Jr. Wadsworth,
1983.

J.J. Egozcue and V. Pawlowsky-Glahn. Groups of Parts and Their Balances in Com-
positional Data Analysis. Mathematical Geology, 37(7):795–828, 2005.

J.J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barcelo-Vidal. Iso-
metric Logratio Transformations for Compositional Data Analysis. Mathematical
Geology, 35(3):279–300, 2003.

P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions.
Comput. Stat. Data Anal., 52(3):1694–1711, January 2008. ISSN 0167-9473.

R. Gnanadesikan and J.R. Kettenring. Robust estimates, residuals, and outlier de-
tection with multiresponse data. Biometrics, 28(1):81–124, 1972.

F.R. Hampel. A General Qualitative Definition of Robustness. Ann. Math. Statist.,
42(6):1887–1896, 12 1971.

84

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

D.M. Hawkins, Dan Bradu, and G.V. Kass. Location of several outliers in multiple-
regression data using elemental sets. Technometrics, 26(3):197–208, 8 1984.

K. Hron, M. Templ, and P. Filzmoser. Imputation of Compositional Data Using Ro-
bust Methods. Research report sm-2008-4, Department of Statistics and Probability
Theory, Vienna University of Technology, 2008.

K. Hron, M. Templ, and P. Filzmoser. Exploratory Tools for Outlier Detection in
Compositional Data with Structural Zeros. 2015. Submitted for publication.

R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall series in statistics. Prentice Hall, 1998.

M. Koller and W.A. Stahel. Sharpening Wald-Type Inference in Robust Regression
for Small Samples. Computational Statistics and Data Analysis, 55(8):2504 – 2515,
2011.

N. Locantore, J.S. Marron, D.G. Simpson, N. Tripoli, J.T. Zhang, K.L. Cohen,
G. Boente, R. Fraiman, B. Brumback, C. Croux, J. Fan, A. Kneip, J.I. Marden,
D. Peña, J. Prieto, J.O. Ramsay, M.J. Valderrama, and A.M. Aguilera. Robust
principal component analysis for functional data. Test, 8(1):1–73, 1999.

R.A. Maronna, D.R. Martin, and V.J. Yohai. Robust Statistics: Theory and Methods.
Wiley Series in Probability and Statistics. Wiley, 2006.

G. Pison, S. Van Aelst, and G. Willems. Small sample corrections for lts and mcd.
Metrika, 55(1):111–123, 2002.

D.M. Rocke. Robustness properties of s-estimators of multivariate location and shape
in high dimension. Ann. Statist., 24(3):1327–1345, 06 1996.

P.J. Rousseeuw. Least Median of Squares Regression. Journal of The American
Statistical Association, 79:871–880, 1984.

P.J. Rousseeuw. Multivariate estimation with high breakdown point. Mathematical
statistics and applications, 8:283–297, 1985.

P.J. Rousseeuw and W. Van den Bossche. Detecting anomalous data cells. ArXiv
e-prints, January 2016.

C. Stewart and C. Field. Managing the essential zeros in quantitative fatty acid sig-
nature analysis. Journal of Agricultural, Biological, and Environmental Statistics,
16(1):45–69, 2010.

M. Templ, P. Filzmoser, and K. Hron. Imputation Methods in robCompositions, 2015.
R package version 1.9.1.

85

V.J. Yohai. High Breakdown-Point and High Efficiency Robust Estimates for Regres-
sion. Ann. Statist., 15(2):642–656, 06 1987.

86

	Introduction
	Basic notations and definitions
	Representation in coordinates
	Zeros and coordinate representation
	Robust regression estimators
	LTS-estimator
	MM-estimates

	Outlier detection for univariate data
	Outlier detection for multivariate data
	Robust multivariate distances
	sign-method

	Regression methods for outlier detection

	Cellwise outlier detection in compositional data
	Imputation approach
	Detailed description of the algorithm
	Advantages and limitations of the algorithm

	Subset approach
	Detailed description of the algorithm
	Advantages and limitations of the algorithm

	Pairwise log-ratio approach
	Detailed description of the algorithm
	Advantages and limitations of the algorithm

	Detect deviating cells on pairwise log-ratios
	Detailed description of the algorithm
	Advantages and limitations of the algorithm

	Application to household expenditure data
	Simulation study
	Simulation of data
	Simulation setup
	Simulation results
	Results for varying the fraction of missing values
	Results for varying the fraction of outliers

	Summary and Conclusio
	Appendix
	Robust imputation methods
	Addtional robust estimates used in the detectDeviatingCells algorithm
	R functions

