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Abstract

This thesis aims at modelling and analysing the implications of potential relapse in a
dynamic drug model. More precisely, an optimal control model incorporating the two
states “drug users” and “teetotallers” is formulated. The main feature of the model is
the fact that individuals quitting drug use do not simply leave the system but rather
end up in the precarious state of a teetotaller with a certain risk of relapse. Relapsing
teetotallers constitute a second inflow of drug users in addition to ordinary initiation.
However, teetotallers are also assumed to have a dissuasive effect on initiation. Con-
sequently, the number of teetotallers has both a positive and a negative effect on the
overall drug problem. Moreover, the dynamical system is influenced by the controls
“prevention” and “treatment”. Especially the use of treatment in consideration of high
relapse rates is of substantial interest.
After an introductory exploration of the underlying uncontrolled dynamics, Pontryagin’s
Maximum Principle is applied in order to solve the optimal control model. As a conse-
quence of the model’s complexity, the optimal solution and stable paths are calculated
numerically using the Matlab-toolbox OCMat. Furthermore, a sensitivity analysis,
describing the impact of variations of model parameters on the long-run solution, is
conducted.
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Chapter 1

Introduction

Even though there are numerous works dealing with the mathematical modelling and
the optimization of drug dynamics, there seem to be few models incorporating directly
the occurrence of relapse. Nonetheless, relapse is a very prominent feature of addic-
tion: According to the National Institute on Drug Abuse (NIDA), the relapse rate of
drug users ranges from 40% to 60% (see [13]). However, for certain drugs like Alcohol,
Heroin, or Crack Cocaine, relapse rates can be much higher (see [5]). But what is the
reason for that? The main cause is that addiction is not simply a bad habit which can
be aborted at will, but rather a disease. The NIDA describes addiction as follows:

“Many people do not understand why or how other people become addicted to drugs.
It is often mistakenly assumed that drug abusers lack moral principles or willpower and
that they could stop using drugs simply by choosing to change their behavior. In reality,
drug addiction is a complex disease, and quitting takes more than good intentions or a
strong will. In fact, because drugs change the brain in ways that foster compulsive drug
abuse, quitting is difficult, even for those who are ready to do so.”[14]

Even when a drug user receives professional treatment, a successful cure is not guar-
anteed. Nevertheless, according to the NIDA the frequent occurrence of relapse does not
suggest uselessness of treatment measures:

“The chronic nature of the disease means that relapsing to drug abuse at some point
is not only possible, but likely. Relapse rates (i.e., how often symptoms recur) for people
with addiction and other substance use disorders are similar to relapse rates for other
well-understood chronic medical illnesses such as diabetes, hypertension, and asthma,
which also have both physiological and behavioral components. Treatment of chronic
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diseases involves changing deeply imbedded behaviors, and relapse does not mean treat-
ment has failed. For a person recovering from addiction, lapsing back to drug use
indicates that treatment needs to be reinstated or adjusted or that another treatment
should be tried.”[13]

However, in a world with limited resources and especially scarcity of money, the ques-
tion arises if treatment measures make sense economically in case of high relapse rates.
In other words, what is more expensive: more drug users or more treatment expendi-
tures in the light of potential relapse. From a moral point of view, it can be argued that
money should not play a role and addicts should be treated in the best possible way in
order to give them the highest chance of recovery. As mentioned above, addiction can
be seen as a disease, hence society typically pays the corresponding costs (at least in
Central Europe). On the other hand, it can also be deemed immoral to impose costs on
society for the treatment of addicts when chances of cure are small and the addiction
is considered to be more or less the fault of the addicts themselves. After all, one does
not get addicted to substances without consuming them, and one may assume that this
consumption is based on a free will.

Fortunately, this thesis is not concerned with moral considerations, which cannot be
answered satisfactorily anyway. Instead, it focuses solely on the financial aspects of drug
use and the measures against it. The central question that will be discussed is the fol-
lowing: What level of treatment is reasonable when relapse is frequent, given the costs
of therapy and the costs arising from drug use? In order to answer that question, an
optimal control problem, based on a proposal by Fouad El Ouardighi, will be formulated
and examined.

The thesis is organised as follows: In Chapter 2 the model formulation will be intro-
duced and motivated. Moreover, a baseline parametrisation will be chosen. In Chapter
3 the state equations without governmental intervention will be analysed. This serves
the purpose of getting a general understanding of the underlying dynamics. A special
case with simplifying parameters will be considered where stability properties can be de-
rived analytically. For the general case, phase portraits give a good idea of the analytic
properties. Moreover, the obtained results also give an understanding of the dynamics
with fixed controls rather than only explaining a zero-control policy. In Chapter 4 the
optimal solution of the control problem will be calculated and illustrated. In Chapter 5
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an extensive sensitivity analysis will be conducted, illustrating the impacts of the model
parameters on the long-run solution. Finally, a conclusion will be given in Chapter 6.
The source codes used for the numerical calculations can be found in Appendix A.
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Chapter 2

Setting up the Model

An optimal control problem primarily consists of two components. First, an objective
function that should be minimised or maximised and second, system dynamics which
influence the objective function and in return are influenced by the controls as described
in [6]. I start building the model with the latter.

2.1. The Dynamical System

The course of the drug epidemic is described by two differential equations, which model
the behaviour of the two states: the number of drug users A(t) and the number of
teetotallers T (t) at time t. The evolution of the states is governed primarily by three
terms:

• initiation,

• desistance, and

• relapse.

In terms of initiation, it is assumed that the number of current drug users is crucial
for further initiation, since most initiates are tempted into using drugs by other users,
as stated in [8]. Consequently, more users promoting drug use imply heavier initiation
at the beginning of an epidemic. However, according to [12] this changes when drug use
becomes rampant and its negative effects come forward. In that situation initiation shall
become a decreasing function of the number of users. Apparently a logistic function with
a carrying capacity a serves this purpose well. For the sake of more modelling flexibility
I insert the exponent ω. Additionally, former drug users (similar to heavy users in [1])
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constitute a dissuasive force as they clearly reveal the hardships of overcoming an addic-
tion. Instead of simply dividing by the number of teetotallers, I choose a more general
approach by multiplying with T (t)γ with a negative exponent γ. Thus, the role of the
dissuasive influence of teetotallers can be examined more deeply later on.

Desistance is described by the outflow of a constant fraction δ of drug users.

Relapse, finally, depends positively on both consumers and teetotallers. Drug con-
sumers, just like in initiation, have a persuasive power over teetotallers. However, this
persuasion is not affected by an epidemic outbreak of addiction ravaging society since
teetotallers have entirely different reasons for taking drugs again than completely new
consumers. Putting all parts together, the following equation is obtained for the devel-
opment of the number of drug users:

Ȧ(t) = αA(t)ωT (t)γ (a− A(t))− δA(t) + βA(t)b1T (t)b2 ,

where α and β are positive proportionality constants and b1 and b2 are the positive
exponents in the Cobb-Douglas-type function constituting the core of the relapse term.

Drug users who quit consumption become teetotallers. Therefore, the outflow of A is
the inflow of T . The number of relapsing teetotallers has already been discussed above.
Last but not least, it is reasonable to assume that teetotallers do not stay at risk of
relapsing for the rest of their lives. So there is an additional outflow at a rate ρ:

Ṫ (t) = δA(t)− βA(t)b1T (t)b2 − ρT (t).

That would be the dynamics of A and T in a world without governmental intervention.
The two controls considered in this thesis are prevention p(t) and treatment w(t). More
precisely, p(t) is the amount of money spent for prevention measures, whereas w(t)

describes the effectiveness of treatment. Following [1], prevention reduces initiation by a
certain percentage which is dependent on the money p(t) put into prevention methods.
This process is described by the function

Ψ(p(t)) = h+ (1− h)e−mp(t).

For example, Ψ(x) = 0.90 implies that, at an effort of x, initiation will be reduced by
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10%. In other words, initiation is brought down to a level of 90% of its uncontrolled
value. Moreover, the effectiveness of prevention spending is assumed to be bounded by
h:

lim
p→∞

Ψ(p) = h.

This means that even with infinite resources, initiation can only be lowered by (1−h)×
100%.

For treatment it is assumed that w(t) = y implies an additional outflow of consumers
at the rate y. However, it is assumed that the total outflow rate of drug users w(t) + δ

is bounded from above by 1: This assumption stems from the fact that the government
cannot reach every user directly after the initiation of drug consumption. Most drugs do
not show their destructive properties instantaneously, so a new user will not seek help
at once. Given an outflow rate of y, the average time spent in the corresponding state
is 1/y. Consequently, allowing too high outflow rates would lead to unrealistically short
resting times. The resulting constraint for treatment is therefore w(t) ≤ 1 − δ. Hence,
the state dynamics including the two controls are given by

Ȧ(t) = αA(t)ωT (t)γ (a− A(t)) Ψ(p(t))− (δ + w(t))A(t) + βA(t)b1T (t)b2 ,

Ṫ (t) = (δ + w(t))A(t)− βA(t)b1T (t)b2 − ρT (t).

Obviously the numbers of drug users and teetotallers should not be negative. However,
a non-negativity condition is not needed as the dynamics of A and T imply that, once
positive, A and T cannot become negative. If the carrying capacity a is exceeded (A(t) >

a), initiation becomes negative and turns from being an inflow to being an outflow. In
that case, spending money on prevention would, contrary to common sense, result in
a lower outflow of consumption. So the optimal control has to be no prevention at all
if A(t) > a. In reality, this feature of prevention lowering the decrease of A does not
make a lot of sense on the one hand. On the other hand, why should a policy maker
invest scarce money into prevention, when there is no positive initiation at all? This is
similar to the results in [1] where prevention is zero when there are many heavy users
and therefore have a strong dissuasive influence on initiation. Therefore, one could say
that this behaviour (not investing money when there is no positive initiation at all) is a
reasonable property of the model.
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2.2. The Objective Function

The decision maker’s objective is the minimisation of social costs caused by the use
of drugs. Firstly, costs arise from the drug consumption itself which is assumed to be
proportional to the number of drug users. Secondly, the decision maker has to set the
controls to intervene and steer the course of the drug epidemic, which also causes costs.
The parameter c denotes the average annual costs per user. The costs of prevention
measures are simply the control itself, p(t). For the second control, treatment efficiency
w(t), a convex cost function is assumed:

C(w) = f0w +
f1w

2

2
.

The objective is to minimise the stream of the discounted overall costs:

min
p(·),w(·)

∫ ∞
0

e−rt
(
cA(t) + p(t) + f0w(t) +

f1w(t)2

2

)
dt

An infinite time horizon and a positive discount rate r are chosen. The discounting
formalises the human nature of not caring so much about future costs.

2.3. The Optimal Control Problem

Summing up, the following model was derived:

min
p(·),w(·)

∫ ∞
0

e−rt
(
cA(t) + p(t) + f0w(t) +

f1w(t)2

2

)
dt
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subject to

Ȧ(t) = αA(t)ωT (t)γ (a− A(t)) Ψ(p(t))− (δ + w(t))A(t) + βA(t)b1T (t)b2

Ṫ (t) = (δ + w(t))A(t)− βA(t)b1T (t)b2 − ρT (t)

A(0) = A0 ≥ 0

T (0) = T0 ≥ 0

p(t) ≥ 0

1− δ ≥ w(t) ≥ 0

a, r > 0

c, f0, f1, α, ω, b1, b2, δ, β, ρ,m, h ≥ 0

γ ≤ 0

with Ψ(p(t)) = h+ (1− h)e−mp(t).

2.4. Parametrisation

The baseline parameter values used in this thesis are listed in Table 2.1. r, a, α are
taken from [4]. ω and γ are chosen so that initiation is similar to [4] so that the choice
of α makes sense. Parameters m and h are taken from [1]. In [3] it is assumed that
heavy and light users quit at a rate of 0.062 and 0.163, respectively. I assume the
approximate average of 0.11 for the quitting-parameter δ. Regarding relapse, according
to [11] 40% − 60% of teetotallers that received treatment relapse, so I assume β = 0.5.
Furthermore, b2 = 1, b1 = 0.05, and ρ = 0.10 are assumed.
[10] calculated the economic cost of heroin addiction which is, subtracting treatment

costs, approximately US$ 21 010 millions in 1996 with 600 000 heroin addicts. This
means that the cost of one addict is approximately US$ 35 000. However, consumption
of heroin is known to be particularly devastating to the body compared to other drugs,
so I choose a value of c = 10000. This value is more in line with for example [2].
Lastly, the cost function of treatment has to be estimated. For example in [15] and

[1] the outflow of treatment is modelled as −c
(

u
A+ε

)z, where u is the amount of money
invested in treatment measures and A is the number of drug users. Using this thesis’
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Figure 2.1.: Regression of cost function

notation of w as the additional outflow because of treatment, this means

w = c

(
u

A+ ε

)z
⇔ u = (A+ ε)

(w
c

) 1
z
.

However, we want u = f0w + f1w2

2
. Using a least squares regression for different values

of A, as illustrated in Figure 2.1, and taking the mean of the respective parameters,
estimates of f0 and f1 are obtained, where the corresponding values of c, ε, z are taken
from [15].
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Table 2.1.: Baseline parameter values
Parameter Value Description

a 16 250 000 carrying capacity
r 0.04 annual discount rate (time preference rate)
c 10 000 social cost of drug consumption
f0 3.618569× 108 coefficient in treatment cost function
f1 4.778180× 109 coefficient in treatment cost function
α 1.581272× 10−8 initiation rate proportionality constant
ω 1 constant measuring the persuasive influence of

drug users on initiation
γ -0.05 constant measuring the dissuasive influence of tee-

totallers on initiation
b1 0.05 constant measuring the persuasive influence of

drug users on relapse
b2 1 constant measuring the persuasive influence of tee-

totallers on relapse
δ 0.11 rate at which users quit
β 0.5 proportionality constant of relapse
ρ 0.10 rate at which teetotallers quit their precarious sta-

tus
m 2.37× 10−9 constant measuring efficiency of prevention spend-

ing
h 0.84 minimum percentage of baseline to which initia-

tion can be cut by prevention
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Chapter 3

The Uncontrolled System

I start the analysis of the dynamical system of drug consumers and teetotallers by
assuming that there is no intervention of any social planner. This means p(t) = w(t) =

0, ∀t. Setting p equal to zero results in Ψ(p(t)) = 1. Hence, the system rewrites:

Ȧ(t) = αA(t)ωT (t)γ (a− A(t))− δA(t) + βA(t)b1T (t)b2

Ṫ (t) = δA(t)− βA(t)b1T (t)b2 − ρT (t)

A(0) = A0 ≥ 0

T (0) = T0 ≥ 0

The calculation of steady states as well as further analyses of the system are non-trivial
due to the rather complex functional forms. First I will explain a simplified version of
the model with convenient parameters. Afterwards I will discuss the general case.

3.1. The Simple Case b1 = 0, b2 = 1, γ = 0, ω = 1

By setting b1 = 0, b2 = 1, γ = 0, ω = 1 the following system is obtained:

Ȧ(t) = αA(t) (a− A(t))− δA(t) + βT (t) (3.1)

Ṫ (t) = δA(t)− βT (t)− ρT (t) (3.2)

A(0) = A0 ≥ 0 (3.3)

T (0) = T0 ≥ 0 (3.4)

γ = 0 implies that teetotallers have no negative influence on initiation. Similarly, b1 = 0

means that drug users have no influence on the relapse of teetotallers. This could be
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interpreted as a retreat from social interaction by teetotallers. In order not to relapse,
the teetotallers avoid allurement by current consumers. Therefore, they are to some ex-
tent isolated and consequently have no effect on initiation as mentioned before. Finally,
b2 = 1 means linear dependence of relapse on the number of teetotallers, while ω = 1

implies that initiation is described by a logistic growth function.

3.1.1. Steady States

Setting Ȧ(t) = Ṫ (t) = 0 leads to the following system, which has to be solved in order
to get the steady states of the dynamical system:

αA (a− A)− δA+ βT = 0 (3.5)

δA− βT − ρT = 0 (3.6)

Obviously, (A∗1, T
∗
1 ) = (0, 0) is one steady state. The second steady state can also be

retrieved. From (3.6) we get

T =
δ

ρ+ β
A. (3.7)

By plugging (3.7) into (3.5) and assuming that A 6= 0, the steady state value of A can
be calculated as follows:

0 = αA(a− A)− δA+
βδ

ρ+ β
A

⇔ A = a− δ

α
+

βδ

α(ρ+ β)

⇔ A = a− δρ

α(ρ+ β)

Therefore, the second steady state of the system (3.1) - (3.4) is given by

(A∗2, T
∗
2 ) =

(
a− δρ

α(ρ+ β)
,

(
a− δρ

α(ρ+ β)

)
δ

ρ+ β

)
.

We notice that the steady state value of A is smaller than the carrying capacity a, due
to the fact that all parameters are positive. If drug users only very rarely stop taking
drugs (small δ), the steady state will be close to a. On the other hand, if relapse or
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initiation are not very likely (small β or α, respectively), the steady state will be farther
away from a. The influence of ρ can be seen by calculating

∂

∂ρ

(
δρ

α(ρ+ β)

)
=

δβ

α(ρ+ β)2
> 0.

This shows that a larger ρ implies a smaller steady state, which also makes sense intu-
itively: The more people leave there status as a teetotaller without relapsing, the less
people start taking drugs again.

Naturally, we are only interested in positive values of A and T . To ensure a positive
value of A∗2 and thereof a positive value of T ∗2 the following assumption is sufficient:

a >
δρ

α(ρ+ β)
(3.8)

Given the parametrisation of Table 2.1 this condition is easily fulfilled.

3.1.2. Stability

I use the principle of linearised stability to identify conditions under which the steady
state (A∗2, T

∗
2 ) is asymptotically stable. The Jacobian matrix of the right-hand side of

the system (3.1) - (3.2) is given by

J(A, T ) =

(
−2αA+ αa− δ β

δ −β − ρ

)
.

Inserting (A, T ) = (A∗2, T
∗
2 ) we obtain

J(A∗2, T
∗
2 ) =

(
2δρ

(ρ+β)
− αa− δ β

δ −β − ρ

)
.

The principle of linearised stability implies that if the real parts of all eigenvalues of
J(A∗2, T

∗
2 ) are negative, (A∗2, T

∗
2 ) is an asymptotically stable steady state. The eigenvalues
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are determined by the roots of the characteristic polynomial of J(A∗2, T
∗
2 ):∣∣∣∣∣ 2δρ

(ρ+β)
− αa− δ −X β

δ −β − ρ−X

∣∣∣∣∣ =

=

(
2δρ

(ρ+ β)
− αa− δ −X

)
(−β − ρ−X)− βδ =

= X2 +X

[
ρ+ β + δ + αa− 2δρ

(ρ+ β)

]
︸ ︷︷ ︸

=:p

+

[
(ρ+ β)

(
αa− 2δρ

(ρ+ β)

)
+ δρ

]
︸ ︷︷ ︸

=:q

!
= 0

The eigenvalues are the solutions of the last equation. The solution is given by

X1,2 = −p
2
±
√(p

2

)2
− q

If −p/2 ≥ 0, the real part of −p
2

+
√(

p
2

)2 − q is definitely non-negative since the square
root is non-negative. If q ≤ 0, the square root is real and larger than or equal to |−p/2|,
which again implies a non-negative solution. Consequently, Re(X1) and Re(X2) are both
smaller than zero if and only if −p/2 < 0 and q > 0. The constraint −p/2 < 0 yields
the following:

−p
2

=
δρ

(ρ+ β)
− ρ+ β + δ + αa

2
< 0

⇔ . . .

⇔ δ(ρ− β) < (ρ+ β)(αa+ ρ+ β)

⇔ δ

< (αa+ ρ+ β) (ρ+β)
(ρ−β) if ρ− β > 0

> (αa+ ρ+ β) (ρ+β)
(ρ−β) if ρ− β < 0

In the second case, the right-hand side is negative because of ρ − β < 0, whereas δ is
positive. Therefore, the inequality is fulfilled without any assumptions. In the first case,
it has to be assumed that

δ < (αa+ ρ+ β)
(ρ+ β)

(ρ− β)
(3.9)

in order to satisfy −p/2 < 0.
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Looking at the condition q > 0:

q = (ρ+ β)

(
αa− 2δρ

(ρ+ β)

)
+ δρ > 0

⇔ ραa+ βαa− δρ > 0

⇔ δ < αa
ρ+ β

ρ
(3.10)

For ρ− β > 0 it holds that

αa
ρ+ β

ρ
< αa

ρ+ β

ρ− β
< (αa+ ρ+ β)

(ρ+ β)

(ρ− β)
,

which means that (3.10) renders (3.9) redundant. Therefore, the single assumption
(3.10) is sufficient to make (A∗2, T

∗
2 ) an asymptotically stable equilibrium. Furthermore,

(3.10) is equivalent to the condition (3.8) for a positive steady state. Consequently, all
assumptions of this section boil down to

a >
δρ

α(ρ+ β)
, (3.11)

which is, as already mentioned, not very restrictive but is yet enough to make (A∗2, T
∗
2 )

a positive and therefore feasible asymptotically stable equilibrium.

For the second steady state at (0, 0) the eigenvalues of the corresponding Jacobian are
calculated as follows:∣∣∣∣∣ αa− δ −X β

δ −β − ρ−X

∣∣∣∣∣ =

= (αa− δ −X) (−β − ρ−X)− βδ =

= X2 +X [ρ+ β + δ − αa]︸ ︷︷ ︸
=:p

+ [δρ− αa(β + ρ)]︸ ︷︷ ︸
=:q

= 0

Like before, the properties of q are reviewed:

q = δρ− αa(β + ρ)
(3.11)
< δρ− α δρ

α(β + ρ)
(β + ρ) = 0

Given condition (3.11), we may hence conclude that q < 0, the square root
√
p2/4− q
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is real and positive, and we have that
√
p2/4− q > |−p/2|. Therefore, at least one

eigenvalue of J(0, 0) has a positive real part and according to the principle of linearised
stability, this implies that the steady state (0, 0) is unstable.

3.1.3. Phase Portrait

To deepen the understanding of the system (3.1) - (3.4), taking a look at the phase
portrait is always recommendable. In the simple case considered here, the isoclines can
be calculated explicitly:

Ȧ = 0⇔ T =
1

β

(
αA2 + (δ − αa)A

)
(3.12)

Ṫ = 0⇔ T =
δ

β + ρ
A (3.13)

(3.13) is a linear function in A. (3.12) is a U-shaped quadratic function. Both functions
share a root at A = 0. The second root of (3.12) is a− δ

α
, which is positive if

a >
δ

α
>

δρ

α(ρ+ β)
,

which also implies (3.11).
Analogously we obtain

Ȧ > 0⇔ T >
1

β

(
αA2 + (δ − αa)A

)
Ṫ > 0⇔ T <

δ

β + ρ
A.

Figure 3.1 illustrates the case a > δ/α. There are two steady states where the isoclines
intersect. Both are feasible under assumption (3.11), and A∗2 is smaller than a. The
arrows indicate the behaviour of the dynamical system (3.1)-(3.4) in the corresponding
areas. For example, in the top left part above the two isoclines where there are many
teetotallers but rather few users, the number of users increases whereas the number of
teetotallers decreases. The other arrows may be interpreted analogously. Obviously,
everything points in the direction of the positive steady state indicating its asymptotic
stability. Figure 3.1 also shows that the number of drug users can temporarily grow so
much that it exceeds the carrying capacity a. This happens when there is a sufficiently
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Ȧ = 0
Ṫ = 0

Figure 3.1.: The uncontrolled system and its two isoclines. The arrows show the direc-
tions of the vector field in the corresponding areas. The carrying capacity
a is indicated by the dashed line.
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high amount of drug users and teetotallers alike. Because of a high value of A, initiation
is already low due to the factor (a − A) in the initiation term. Nevertheless, there is a
high inflow of new consumers because of a high amount of relapsing teetotallers. But as
the number of teetotallers decreases, the number of consumers starts to decrease again
as soon as the relapsing teetotallers are outnumbered by the people leaving addiction
behind as a result of the breach of the carrying capacity.

Figures 3.2 - 3.5 show detailed phase portraits as well as some generic trajectories
calculated with Matlab. The circles mark initial values, and the boxes mark the end
values after several time steps.
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Figure 3.2.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.11, β = 0.5, ρ = 0.1 and some trajectories.

The asymptotic stability is apparent. No matter what feasible initial value is chosen,
the trajectories clearly converge to the steady state (A∗2, T

∗
2 ). For different sets of pa-

rameters, the trajectories look quite similar. The overall look of the phase portrait is
primarily determined by the slope of the Ṫ = 0 - isocline. The main differences can
be seen in the location of the steady state and how far the carrying capacity a can be
overshot. The relapse parameter β plays a vital role in this overshooting. A higher level
of natural desistance (δ) significantly increases T in its steady state whereas A is not
influenced as heavily. A reduction in initiation (α) reduces A comparably more than T .
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Figure 3.3.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.11, β = 0.8, ρ = 0.1 and some trajectories.
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Figure 3.4.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.20, β = 0.5, ρ = 0.1 and some trajectories.
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Figure 3.5.: Plot of the phase portrait with parameters a = 16250000, α = 0.8×10−8, δ =
0.11, β = 0.5, ρ = 0.1 and some trajectories.

3.2. The General Case

In the general case the parameters b1, b2, ω ≥ 0 and γ ≤ 0 are considered without
specifications as well, so we consider the dynamics in the most general case:

Ȧ(t) = αA(t)ωT (t)γ (a− A(t))− δA(t) + βA(t)b1T (t)b2

Ṫ (t) = δA(t)− βA(t)b1T (t)b2 − ρT (t)

A(0) = A0 ≥ 0

T (0) = T0 ≥ 0

In contrast to the simple case considered in section 3.1, the teetotallers’ negative
influence on initiation as well as their positive influence on relapse is featured in the
model. The positive influence of drug users on initiation and relapse can be tuned by
the corresponding exponents as well.
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3.2.1. Steady States

The steady states are given by the solutions of

αAωT γ (a− A)− δA+ βAb1T b2 = 0 (3.14)

δA− βAb1T b2 − ρT = 0. (3.15)

T = 0 cannot be part of a solution because in that case T γ is not defined due to the
assumption that γ ≤ 0. Therefore, (0, 0) is no solution any more. Inserting (3.15) into

(3.14) yields T =
[
α
ρ
Aω(a− A)

] 1
1−γ , and putting that expression back in (3.15) yields

δA− βAb1
[
α

ρ
Aω(a− A)

] b2
1−γ

− ρ
[
α

ρ
Aω(a− A)

] 1
1−γ

︸ ︷︷ ︸
=:g(A)

= 0.

It holds that g(0) = 0 and g(a) = δa > 0. Furthermore, g is continuous and real in
(0, a). Consequently, g′(0) < 0 would be a sufficient condition for the existence of a
solution A∗ > 0 with A∗ < a and g(A∗) = 0.

g′(0) = lim
h→0

g(0 + h)− g(0)

h
= lim

h→0

g(h)

h
=

= lim
h→0

δ − βh
(b1−1)(1−γ)+ωb2

1−γ

[
α

ρ
(a− h)

] b2
1−γ

− ρh
ω+γ−1
1−γ

[
α

ρ
(a− h)

] 1
1−γ

Depending on the signs of the exponents of h, g′(0) is either δ or −∞. For −∞, at least
one of the exponents needs to be negative.

g′(0) < 0⇔ ((b1 − 1)(1− γ) + ωb2 < 0 ∨ ω + γ − 1 < 0) (3.16)

Under this condition the existence of a positive steady state A∗ is sure. The baseline
parameters of Table 2.1 fulfil (3.16). However, if the condition does not hold, this does
not mean that there is no positive solution. Indeed, Figures 3.6 - 3.8 show that further
scenarios are possible.1

1For Figures 3.6 - 3.8, the parameters were chosen in order to demonstrate the different cases. They
are very different from the baseline parametrisation. However, for values similar to the baseline
parametrisation, the graph of g looks similar to Figure 3.6.
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Figure 3.6.: Plot of g(A) with parameters a = 7, α = 0.1, δ = 0.2, β = 0.7, ρ = 0.2, ω =
0.5, γ = −0.4, b1 = 0.3, b2 = 0.9. (3.16) is satisfied. One root at A ≈ 6.33.

0 a

0

A

 

 

g(A)

Figure 3.7.: Plot of g(A) with parameters a = 7, α = 0.1, δ = 0.9, β = 0.2, ρ = 0.1, ω =
1.5, γ = −0.4, b1 = 0.3, b2 = 0.9. (3.16) is not satisfied. Two roots at
A1 ≈ 0.44 and A2 ≈ 3.42.
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Figure 3.8.: Plot of g(A) with parameters a = 7, α = 0.01, δ = 0.9, β = 0.2, ρ = 0.8, ω =
1.5, γ = −0.4, b1 = 0.3, b2 = 0.9. (3.16) is not satisfied. No roots.

Furthermore, a steady state value of A cannot exceed a: by putting (3.15) into (3.14)
it is obtained that

αAωT γ(a− A)− ρT = 0.

This however, cannot be true if A > a, because in that case the left side is negative and
not equal to zero.

3.2.2. Phase Portraits

As the steady states in general cannot be written in an explicit form, the principle of
linearised stability cannot be applied like in the simple case before. In order to get
an understanding of the system’s behaviour nonetheless, we investigate a few phase
portraits. Figures 3.9 - 3.12 show phase portraits with different sets of parameters and
several trajectories.

The most striking feature is that all trajectories clearly converge to an asymptotically
stable steady state. Moreover, the general structure of the phase portrait is practically
the same as before in the simple case. Due to the negative feedback imposed by tee-
totallers on initiation, steady state values of A are comparably lower throughout all
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Figure 3.9.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.11, β = 0.5, ρ = 0.1, ω = 1, γ = −0.05, b1 = 0.05, b2 = 1 and
some trajectories (baseline parameters).
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Figure 3.10.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.2, β = 0.2, ρ = 0.1, ω = 1, γ = −0.05, b1 = 0.05, b2 = 1 and
some trajectories.
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Figure 3.11.: Plot of the phase portrait with parameters a = 16250000, α = 0.9 ×
10−8, δ = 0.11, β = 0.5, ρ = 0.1, ω = 1, γ = −0.1, b1 = 0.05, b2 = 1 and
some trajectories.
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Figure 3.12.: Plot of the phase portrait with parameters a = 16250000, α = 1.58 ×
10−8, δ = 0.11, β = 0.5, ρ = 0.1, ω = 0.95, γ = −0.1, b1 = 0.05, b2 = 1 and
some trajectories.
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figures. The exponents in initiation are vital to the model: Comparing Figures 3.9 and
3.12, where ω and γ were both decreased by 0.05, the positions of the steady states
differ significantly. For sufficiently high starting values of A and T , overshooting of the
carrying capacity a is possible.

Last but not least it is remarkable that the trajectories in all the figures do not
take a monotonous way towards the steady state. Instead, at first, the number of
teetotallers changes rapidly whereas the number of drug users only changes a bit. Then
the trajectories bend sharply and the adjustment of A takes over whereas T is not
changing a lot any more. Furthermore, looking at the two starting points on the left-
hand side of the figures, one can see that their trajectories follow the same track near the
steady state.2 As long as the initial values are sufficiently similar, the two trajectories
only differ remarkably at the beginning. Once their rapid “teetotaller-adjustment” is
done, they move on more or less the same path towards the steady state.

It is worth highlighting that the results of this chapter can also be applied to the
system with constant controls. A constant level of prevention can be simulated by
lowering α, while the effects of a constant level of treatment efficiency can be produced
by an increase of δ. Therefore, the effects of constant controls can also be seen partly in
Figures 3.9 - 3.12.

2Due to the uniqueness of solutions of initial value problems, trajectories cannot intersect, so the
trajectories do not really follow the same track. Yet they are so close to each other that they cannot
be distinguished visually.

26



Chapter 4

The Optimal Control Model

In this chapter the optimal solution of the control problem will be calculated. This calcu-
lation will be conducted partly analytically and partly numerically using the Matlab-
toolbox OCMat.

4.1. The Necessary Optimality Conditions

In order to solve and analyse the optimal control problem, Pontryagin’s Maximum Prin-
ciple is applied (see for example [6]). First of all, I restate the system dynamics as they
will be needed in the following pages, where the time argument t will be partly omitted
for the sake of better understanding:

Ȧ = αAωT γ (a− A) Ψ(p)− (δ + w)A+ βAb1T b2 (4.1)

Ṫ = (δ + w)A− βAb1T b2 − ρT (4.2)

The current value Hamiltonian H is then given by 1

H (A, T, p, w, λ1, λ2) =− cA− p− f0w −
f1w

2

2

+ λ1
[
αAωT γ(a− A)Ψ(p)− (δ + w)A+ βAb1T b2

]
+ λ2

[
(δ + w)A− βAb1T b2 − ρT

]
.

1Note that the optimal control problem has been reformulated as a maximisation problem by multi-
plying the objective function by −1. Therefore, the costate variables λ1, λ2 are going to be negative
in economically meaningful cases. However, when I write about the shadow price interpretation of
these variables, I will treat them as positive because it would be odd to talk about negative prices.
A high shadow price means a high absolute value of λi, and λ1 < λ2 means that state 1 has a higher
shadow price than state 2.

27



According to the maximum principle, the optimal control maximises the Hamiltonian.
As there are three control constraints, the Lagrangian L has to be considered in order
to solve this static maximisation problem. Note that the inequality constraints have to
be transformed to the form g(u) ≥ 0.

L (A, T, p, w, λ1, λ2, µ1, µ2, µ3) = H (A, T, p, w, λ1, λ2) + µ1p+ µ2w + µ3 (1− δ − w)

The necessary optimality conditions for a maximum of H are:

Lp = 0 (4.3)

Lw = 0 (4.4)

µi ≥ 0, i = 1, 2, 3 (4.5)

µ1p = 0 (4.6)

µ2w = 0 (4.7)

µ3 (1− δ − w) = 0 (4.8)

Note also that H is concave with respect to both controls p and w. The concavity with
respect to w is obvious because of the negative quadratic term in the objective function.
Moreover, Ψ(p) is convex, but the whole term is concave since λ1 is negative.
Differentiating the Lagrangian, the conditions (4.3) - (4.4) yield

Lp = −1 + λ1αA
ωT γ(a− A)Ψ′(p) + µ1 = 0 (4.9)

Lw = −f0 − f1w − λ1A+ λ2A+ µ2 − µ3 = 0. (4.10)

The adjoint equations defined by the maximum principle as λ̇ = rλ − Lx, with x =

(A, T ) read as:

λ̇1 = rλ1 + c− λ1
[
αT γΨ(p)Aω−1(ω(a− A)− A)− (δ + w) + βb1A

b1−1T b2
]

(4.11)

− λ2
[
δ + w − βb1Ab1−1T b2

]
λ̇2 = rλ2 − λ1

[
αAωγT γ−1(a− A)Ψ(p) + βb2A

b1T b2−1
]

(4.12)

− λ2
[
−βb2Ab1T b2−1 − ρ

]
The adjoint equations (4.11) - (4.12) and the conditions (4.3) - (4.8) constitute the

necessary conditions for the solution of the optimal control problem. Given the three
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control constraints and the fact that w cannot be equal to 0 and 1 − δ at the same
time, there are six different arcs which have to be distinguished: one interior and five
boundary arcs.

Interior Arc
In the interior of the admissible region no constraint is active. Therefore, the comple-
mentary slackness conditions yield µ1 = µ2 = µ3 = 0. Some simple transformations
from (4.9) and (4.10) then reveal the following optimal controls:

p =
1

m
ln (−m(1− h)λ1αA

ωT γ(a− A))

w =
−f0 + A (λ2 − λ1)

f1

Obviously, the optimal choice of p primarily depends on initiation. When there are lots
of teetotallers, p will be low because γ is negative. When the maximum effectiveness
of prevention, given by (1 − h) rises, p rises as well. The reactions of p to changes in
m or A depend on the combination of the other values and can be positive or negative.
The only factor in the formula for p that does not come directly from initiation is λ1.
The formula shows that λ1 indeed has to be negative. Otherwise the argument of the
logarithm would be negative and hence the logarithm would not exist. For a smaller
value of λ1 (thus for a larger absolute value and thereof shadow price) p grows. The
interpretation is straightforward: When an additional drug user costs a lot of money,
the social planner is willing to invest more into prevention measures. Contrary, when
an additional drug user costs less money, the decision maker will not put as much effort
into prevention as it is cheaper to accept more drug users in the system.

The formula for the treatment control w is simpler. Both cost parameters f0 and f1
naturally have an adverse effect on w. The effect of A is clearly positive now. If λ2 is not
sufficiently larger than λ1, w becomes negative and therefore infeasible. For example,
if λ1 = λ2, w would be negative and had to be set to 0. This absolutely makes sense:
When the shadow prices are the same, we do not care whether we get an additional drug
user or an additional teetotaller as they cost the same. In such a situation there is no
incentive to start treatment in order to transform drug users into teetotallers. However,
the formula shows that, depending on the values of A and f0, the difference in the shadow
prices has to be high enough for treatment to be used at all.

Putting these formulas for p and w into the adjoint equations (4.11) - (4.12) and into
the system dynamics (4.1) - (4.2) yields the canonical system which I will not describe
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here in detail due to its very lengthy form.

Boundary Arc 1: no prevention / p = 0

When p equals zero, µ1 becomes free while the other Lagrange multipliers remain zero.
Some transformations yield

µ1 = 1 + λ1αA
ωT γ(a− A)m(1− h).

Due to the nonnegativity condition for µ1, the following inequality has to be satisfied
(assuming A < a):

λ1 ≥ −
1

αAωT γ(a− A)m(1− h)

This means that when the shadow price is too high (when λ1 is too small), the choice
of p = 0 cannot be optimal. The optimal choice for w is the same as in the case of the
Interior Arc.

Boundary Arc 2: no prevention, no treatment / p = w = 0

When both controls are zero, µ3 = 0 has to be fulfilled. For the other Lagrange multi-
pliers we get:

µ1 = 1 + λ1αA
ωT γ(a− A)m(1− h)

µ2 = f0 + A (λ1 − λ2)

µ1 is the same as in Boundary Arc 1 and so is the condition for λ1. The nonnegativity
condition for µ2 yields

λ1 − λ2 ≥ −
f0
A

This condition means that λ1 should not be too small compared to λ2: If the shadow
price of drug users is too high compared to the shadow price of teetotallers, it is not
optimal to choose w = 0. Setting w > 0 will turn more drug users into teetotallers,
which is only beneficial when a drug user costs sufficiently more than a teetotaller. This
sufficient difference is given by f0/A.

Boundary Arc 3: no prevention, maximum treatment / p = 0, w = 1− δ
When treatment is used to the maximum extent (w = 1 − δ) and p equals zero, the
complementary slackness condition yields µ2 = 0. From conditions (4.9) - (4.10) the
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following equations for µ1 and µ3 can be derived:

µ1 = 1 + λ1αA
ωT γ(a− A)m(1− h)

µ3 = −f0 − f1(1− δ) + A (λ2 − λ1)

µ1 is the same as before and so is the condition for λ1. The nonnegativity condition for
µ3 yields

λ1 − λ2 ≤ −
f0 + f1(1− δ)

A
.

The interpretation is almost the exact opposite from the interpretation in Boundary Arc
2 : In order to choose maximum treatment efficiency, the shadow price of drug users has
to be sufficiently higher than the shadow price of teetotallers. Otherwise, in terms of
costs, it would not be beneficial to transform so many drug users into teetotallers by
means of treatment.

Boundary Arc 4: no treatment / w = 0

p can be calculated as in the case of the Interior Arc and µ2 is the same as in Boundary
Arc 2.

Boundary Arc 5: maximum treatment / w = 1− δ
p can be calculated as in the case of the Interior Arc and µ3 is the same as in Boundary
Arc 3.

To sum up, which arc is chosen in order to maximise the Hamiltonian H depends to
a great extent on the costate variables λ1 and λ2. Considering prevention, only λ1 plays
a role, whereas λ2 does not matter. As long as the shadow price is low enough (in other
words as long as λ1 is large enough), there will be no investment into prevention as it costs
more than it helps. In terms of treatment, the difference between the shadow prices has
to be considered. As long as they are close together (closer than f0/A), no treatment is
deployed. When they are further away from each other than (f0+f1(1−δ))/A, treatment
measures are at full capacity. It is of course not surprising that these threshold values
for the usage or non-usage of treatment depend on the treatment cost parameters f0 and
f1.
It is also worth highlighting that in all cases in which w > 0 the condition λ2 > λ1

must hold. Otherwise, in the interior arc w would be negative and therefore infeasible,
and in the case w = 1 − δ the nonnegativity condition of µ3 would be violated. In
other words, the shadow price of drug users is usually higher than the shadow price
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of teetotallers, which was to be expected since drug users cause direct costs whereas
teetotallers only cause costs in case of a relapse.

4.2. The Optimal Paths

The canonical system given by the adjoint equations (4.11) - (4.12) and the state equa-
tions (4.1) - (4.2) is the next point of focus:

Ȧ = αAωT γ (a− A) Ψ(p)− (δ + w)A+ βAb1T b2

Ṫ = (δ + w)A− βAb1T b2 − ρT

λ̇1 = rλ1 + c− λ1
[
αT γΨ(p)Aω−1(ω(a− A)− A)− (δ + w) + βb1A

b1−1T b2
]

− λ2
[
δ + w − βb1Ab1−1T b2

]
λ̇2 = rλ2 − λ1

[
αAωγT γ−1(a− A)Ψ(p) + βb2A

b1T b2−1
]

− λ2
[
−βb1Ab1T b2−1 − ρ

]
Theoretically the task is now to insert the Hamiltonian-maximising values of p and w and
to solve the differential equation system with the initial value (A(0), T (0)) = (A0, T0)

while considering all different arcs. However, given the complexity of this system (which
is even additionally enhanced by the terms for p and w), a further purely analytical
examination does not seem very promising. Hence, to carry out the following calculations
I use the already mentioned Matlab-toolbox OCMat, which was created for that very
purpose. Details concerning the use and application of this toolbox in order to solve
optimal control problems are given in the Appendix.

4.2.1. The Optimal Path in the Base Case

The first step is the calculation of equilibria of the canonical system. This means that
the system of equations Ȧ = Ṫ = λ̇1 = λ̇2 = 0 has to be solved, which can only be done
numerically in this case. Using the baseline parameters given in Table 2.1 the following
equilibrium is obtained: 

A∗

T ∗

λ∗1

λ∗2

 =


2.8043

2.4376

−0.1144

−0.1004

× 106
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In fact, there were several equilibra found, but after checking all of them for admissibility,
only the one stated above remained. The criteria for admissibility are the following: The
canonical system at the equilibrium has to be zero or at least very close to zero. This
might seem redundant as the utilized Matlab-function ought to look for exactly such
points, but due to numerical errors it is possible that points which are not steady states
at all are returned. Moreover, the states have to be positive and all variables have to be
real. Lastly, the controls and the corresponding Lagrange multipliers have to lie in the
feasible region. For the vector stated above, all these criteria were met:

(
p∗

w∗

)
=

(
1.0621× 109

0.89

)
,

µ
∗
1

µ∗2

µ∗3

 =

 0

0

3.4446× 1010


Consequently, the steady state is indeed admissible. The values of A and T are quite
low compared to the steady state of the uncontrolled system with p = w = 0 under
baseline parametrisation, which can be seen in Figure 3.9 in Chapter 3. In Figure 3.9,
the number of drug users was close to the carrying capacity of a = 16250000. Now,
the number of drug users is significantly lower at around three millions. In return, the
number of teetotallers is about twice as much compared to the uncontrolled case. The
reason for this hefty reduction in drug consumption is of course to be seen in the applied
controls: Treatment is used to the maximum extent which means an expenditure of
around 2.2 billion dollars. Prevention expenditure is around 1.1 billion dollars, which
means Ψ(p∗) = 0.85 is very close to the efficiency limit of h = 0.84. So it is safe to say
that both available controls are deployed pretty massively. Apparently, the social cost
of uncontrolled drug use is so high that huge control costs are preferred. Or, to see it
from a different angle, the controls are so cheap that it is better to use them as much as
possible rather than accept wide spread drug use. However, it also has to be highlighted
that the controls, especially treatment, are simply very powerful by design. Giving the
social planner the possibility to treat every single drug user no matter how many there
are, was a critical point in the model formulation.

The costate variables λ1, λ2, and the Lagrange multiplier µ3 fulfil the conditions stated
in the discussion of Boundary Arc 3. λ1 is sufficiently smaller than λ2, which means that
drug users have a higher shadow price than teetotallers in the steady state. In fact, the
difference is so high that it makes sense to apply treatment as much as possible.

Next, the stability of the steady state is to be considered. The eigenvalues of the
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Figure 4.1.: Plot of some optimal trajectories. The steady state is indicated by the
square. The initial values are indicated by the circles.

corresponding Jacobian are 
−2.0260

2.0660

−0.0107

0.0507

 .

Therefore, the equilibrium is a saddle point. The calculation of the stable paths leading
into the equilibrium is carried out by OCMat by continuing the solutions of boundary
value problems. The initial solution for the continuation process is trivially given by the
steady state itself.

The results of several continuation processes are presented in Figure 4.1. The exem-
plary initial values (A0, T0) are (1, 1)×106, (12, 2)×106, (5, 2)×106 and (2, 5)×106. The
trajectories qualitatively look very similar to those in the uncontrolled case presented in
Chapter 3. There is one diagonal to which the trajectories move more or less directly.
Once on this diagonal, the trajectories take a sharp bend and move directly towards the
steady state. One can only reach the equilibrium from the top right and the bottom left.
This means that A and T have to rise or fall together in order to reach the steady state.
If one state is increasing and the other is decreasing one can be sure that the trajectory
will experience a sharp bend at some point in the future.
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Figure 4.2.: Plot of the optimal state path for the initial value (A0, T0) = (12, 2)× 106.
A is red. T is blue.

Figure 4.2 depicts the optimal path of the two states with initial value (12, 2) × 106.
The left panel shows a longer time period, whereas the right panel focuses on the first
few time steps. Obviously, both states experience a rapid change at first: The number of
users falls from 12 to under 8 millions, and the number of teetotallers more than triples
from 2 to over 6 millions. Once they are closer to each other, the difference between the
two states remains about constant. Comparing the graphs with Figure 4.1 reveals that
the first phase of extremely fast change stops when the trajectory reaches the diagonal
at approximately (8, 6) × 106 and turns in the direction of the steady state. For the
other initial values, the situation revealed to be the same: At first there is a very fast
movement towards the diagonal. Once the diagonal is reached, the system converges to
the equilibrium comparatively slowly.

The optimal controls along the trajectories with initial values (1, 1)×106 and (12, 2)×
106 are shown in Figures 4.3 and 4.4, respectively. We see that in both cases w = 0.89

for the whole time. So even when the system starts with very low numbers of A and
T and treatment is used to a maximum extent, initiation is so strong that both values
rise. In the case of a high initial value it is more understandable that w is maximal, as
A has to decrease a lot in order to reach the equilibrium. As A decreases, drug users
are transformed into teetotallers, whose numbers consequently grow. Because of the low
value of T in that high initial point, prevention expenditures are high at first and then
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Figure 4.3.: Plot of the optimal control path for the initial value (A0, T0) = (1, 1)× 106.

decrease as the growing number of teetotallers have a stronger dissuasive influence on
initiation. For the low starting point, p behaves the opposite way and grows towards its
steady state value. A has to grow anyway in that case, so it is not ideal to hinder that
growth by spending too much on prevention at first.

The most striking feature in my opinion is that treatment is used as much as possible
not only in the steady state but also in every trajectory at all times. Even when the
drug problem starts at smaller values, this does not change.

4.2.2. The Optimal Path with Higher Treatment Costs

It seems to be interesting to see, how the optimal control paths change when it is not
optimal to use treatment so much. This can be achieved, for example, by increasing the
costs of treatment. More precisely, I set f1 = 6×1010 while leaving the other parameters
the same. An increase in f1 implies a decrease in w in the case of an interior solution. In
the case of w = 1−δ, like in Boundary Arc 3, an increase in f1 means that the difference
in shadow prices must be even larger to make this arc optimal. Like before, the first
thing to do is to calculate the steady states of the canonical system. It turns out that
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Figure 4.4.: Plot of the optimal control path for the initial value (A0, T0) = (12, 2)×106.

there is again only one admissible steady state which is given by
A∗

T ∗

λ∗1

λ∗2

 =


3.7479

2.9913

−0.1100

−0.0968

× 106.

The values of A and T are naturally higher than before, but considering the fact that f1
was multiplied more than tenfold, the increase is not that severe. The number of drug
users grew by approximately one million. The number of teetotallers grew by about half
a million. The costate variable stayed roughly the same. The corresponding eigenvalues
are 

2.6309

−2.5909

0.0644

−0.0244

 .
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Figure 4.5.: Plot of some optimal trajectories with f1 = 6 × 1010. The steady state is
indicated by the square. The initial values are indicated by the circles.

Hence, the steady state is again a saddle point. The control values and Lagrange mul-
tipliers in the equilibrium are given by

(
p∗

w∗

)
=

(
1.1332× 109

0.8204

)
,

µ
∗
1

µ∗2

µ∗3

 =

0

0

0

 .

The long-run solution is to be found in the interior of the admissible region. While w∗

is lower than before, p∗ is higher. What does that mean for the optimal stable paths?
Figure 4.5 depicts the trajectories for the same initial values as in the baseline case.

The phase portrait looks qualitatively more or less the same as before in the base case.
The only big difference can be seen in the location of the equilibrium. However, there
is a major difference when it comes to the applied controls, as the two paths coming
from the right side switch arcs at some point. The dashed sections of the lines indicate
Boundary Arc 5 (p > 0, w = 1− δ) whereas the continuous parts indicate the Interior
Arc. The interpretation is straightforward: As long as there are many drug users, a
maximum amount of treatment is delivered to decrease A as fast as possible. Once near
the equilibrium, less treatment is more cost efficient, as the high treatment effort costs
more than a few drug users. The optimal control paths can be seen in more detail in
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Figure 4.6.: Plot of the optimal control path for the initial value (A0, T0) = (1, 1)× 106.

Figures 4.6 and 4.7, which show the optimal controls for the lowest and highest initial
values, respectively.

In the case of the low starting value, both p and w rise in a concave fashion towards
their long-run value. So, when at first there are few users, there is not so much treatment
in order to let the numbers grow to their steady state value. In the case of the high
initial value, it is the other way round. w starts off at the maximum of 0.89 and stays
there for a while. After that, w falls, forming a convex graph. Interestingly, prevention
increases as time goes by. The only difference to the path of the low initial value is the
fact that p already starts at a higher level.
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Figure 4.7.: Plot of the optimal control path for the initial value (A0, T0) = (12, 2)×106.
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Chapter 5

Sensitivity Analysis

In this chapter I will show how the problem’s long-term solution depends on the system’s
parameters. For this purpose, one single parameter will be varied while the others remain
constant at their baseline values (see Table 2.1). For each set of parameters, the optimal
steady state and the corresponding controls are then calculated. One can conduct this
analysis in Matlab either by using a loop or by deploying the MatCont-toolbox (see
[7]), which is a toolbox generally used for differential equations but not for optimal
control problems in the first place. The corresponding commands are listed in the
Appendix.

5.1. Social Cost c

The social cost of drug consumption per user, represented by the parameter c, is central
to the model and ultimately the model’s raison d’être. Without costs arising from
drug consumption there is actually nothing to think about, as the solution is then
simply w ≡ p ≡ 0 (at least as long as the policy maker is interested exclusively in
cost reduction rather than harm reduction). A phase portrait of this situation was
illustrated in Figure 3.9. With different costs stemming from consumption, the bigger
picture changes substantially. Figure 5.1 illustrates the role that social cost c is playing.
The figures are split in two, so that one can better see the behaviour for small values of
c. The dashed vertical lines mark those values, where a control constraint changes from
active to inactive or vice versa.

As already mentioned, for c = 0 both controls are equal to 0, and hence there are
tremendous amounts of drug users and also quite a few teetotallers. This remains un-
changed until c ≈ 34, which is the location of the first dashed line. Here the policy
maker starts deploying treatment. The higher c becomes, the more treatment is used.
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Figure 5.1.: The left panel shows c on the entire considered interval, while the right panel
shows only comparably small values of c. The dashed lines at 34, 639, and
889 mark values where a control constraint becomes active or inactive. A
and λ1 are red. T and λ2 are blue.
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Prevention is still not considered. The number of drug users decreases significantly with
growing costs due to the use of treatment measures. The number of teetotallers on the
other hand increases simply because there are more people quitting drug consumption.
However, at some point their quantity starts to decrease again when the inflow of quit-
ting consumers becomes weaker. At c ≈ 639 the next dashed line symbolizes the start
of prevention measures. Treatment is still increasing but not maximal yet. Finally, at
c ≈ 889 treatment is used to the maximum extent and cannot be increased any further.
From that point on, the number of drug users is not decreasing as rapidly as before any
more, since the only possibility the policy maker has is to further increase spendings on
prevention. However, this increase in prevention spendings is slowing down, which can
be seen in the concave form of the curve. This is also not surprising, given the modelling
of prevention with a maximum efficiency given by 1−h. Spending more and more money
on prevention is becoming less and less effective.

Looking at the costates λ1, λ2, one can see that they are decreasing all the time with
no visible qualitative change at the dashed lines. The figure illustrates the obvious: the
higher the social cost, the higher the impact of one additional consumer or teetotaller.
Additionally, it can be seen that λ1 < λ2,∀c, which means that one additional drug user
costs more than one additional teetotaller.

To put it in a nutshell, variations of c are only relevant for a rather small value of c.
Considering the base value c = 10000, variations of several thousand dollars upwards
or downwards are pretty much irrelevant in terms of the long-term optimal policy and
location of the equilibrium. Treatment will be given to anyone, as it is cheaper to treat
all users than to accept a higher equilibrium than necessary.

5.2. Cost of Treatment Coefficient f1

The analysis of c revealed once more that treatment is assumed to be too cheap not
to be used to the full extent. But what happens, if treatment measures become more
expensive? This question was already partly answered in Section 4.2.2, where I set
f1 = 6× 1010. Here, the analysis is extended to a much larger variety of possible values
for f1.
Figure 5.2 reveals that at f1 ≈ 4.3 × 1010 the treatment control constraint becomes

inactive. Beneath that point, no matter what the cost, both controls remain constant
with treatment at its maximum level. Since both controls remain unchanged, the same
holds true for the states and the costates. Once the threshold illustrated by the dashed
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line is surpassed, treatment is so expensive that it is not optimal to use it to the full
extent any more. Simultaneously, more money is put into prevention leading again to
a concave graph. The number of drug users and teetotallers both rise with A showing
the steeper incline. Obviously the higher prevention efforts cannot compensate for the
reduction in treatment. The costates λ1, λ2 rise. λ1 is always lower than λ2 and their
difference remains fairly equal.

5.3. Discount Rate r

The discount rate r determines how much the policy maker values future costs and future
cost reductions. A large discount rate means that the future is not valued very highly,
whereas a small r reflects a policy maker’s far-sightedness. Given the importance of
the discount rate in any infinite horizon optimal control problem, the results presented
in Figure 5.3 are unspectacular. It can be seen that the discount rate r has not too
much impact on the long-run solution. Treatment is always used to the full extent and
only prevention payments are decreased with growing r. Consequently, the numbers
of drug users and teetotallers rise as there are simply more people in the drug system
since initiation is higher due to less prevention. However, the number of drug users
never exceeds 5 millions, which is still far below the carrying capacity of 16.25 millions.
The only dramatic changes are to be seen in the panel illustrating the costate variables.
Initially they rise very sharply to remain almost constant starting at r ≈ 0.2. The
interpretation is simple and intuitive: the less I care about the future, the less I care
about additional drug users or teetotallers in the long-term equilibrium. However, it is
still interesting that the increase in shadow prices slows down significantly. At r ≈ 1.09

prevention payments stop. Both controls remain unchanged from that point on, which
means that the state variables stay constant as well while the costate variables continue
to grow very slowly. Nevertheless, treatment plays a significant role. No matter how
little we care about the future, treatment is still worth the extra spending.

5.4. Relapse Coefficient β

The occurrence of relapse is one of the central aspects of the model presented in this
thesis. Important questions are: How do relapse and treatment coincide? Does treat-
ment make sense when most teetotallers lapse back into drug use anyway? The answer
given in Figure 5.4 is surprising: The higher the relapse rate, the higher the treatment
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Figure 5.2.: The dashed line at 4.3 × 1010 marks the point where w starts to decrease.
A and λ1 are red. T and λ2 are blue.
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Figure 5.3.: The dashed line at r ≈ 1.09 marks the point where prevention payments
stop. A and λ1 are red. T and λ2 are blue.
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efforts. The policy maker is not willing to accept high numbers of users, and even with
high rates of relapse this can be achieved with treatment. Even in the case of β = 1 we
have maximal use of treatment. The number of drug users rises of course with growing
β, but A is always much lower than in the uncontrolled case. If β = 0, we have λ2 > 0,
which means the shadow price of teetotallers is positive and additional teetotallers are
desirable. This is because they have an adverse affect on initiation, but without relapse
they cannot lead to more costs. The states A and T are extremely low until the point
where w cannot grow any more. From that point on, even though prevention is increased
massively, A and T rise significantly with growing β. Prevention, however, does not rise
forever and stagnates once β is above 0.5.

Since relapse is vital to the model, I want to take a look at the equilibrium when
treatment costs are higher. Figure 5.5 illustrates the behaviour of the equilibrium with
f1 = 12 × 1010. Now the situation looks different. Treatment w never reaches its
maximum use of 0.89. At first, w increases with β, but at β ≈ 0.53 it starts to decrease.
So, if treatment is expensive and relapse is probable, it is not optimal to treat everyone.
Moreover, in such a case with high treatment costs, prevention is already used at a much
lower level of β. Nonetheless, at higher levels of β, p is comparable to before. This once
more shows that prevention cannot be used as a substitute for treatment, as it is by far
less effective. The values of A and T are comparably higher of course.
Figures 5.6 - 5.8 describe the phase portraits for f1 = 12 × 1010 and three different

values of β, namely 0.5, 0.7, and 0.9. As already mentioned, for growing β, the number
of drug users in the steady state rises. However, the diagonal followed by the different
paths on their way there becomes less steep. This means that the ratio of teetotallers
to drug users in the steady state becomes smaller, which fully makes sense.

5.5. Teetotaller Oblivion Rate ρ

The parameter ρ determines how fast teetotallers leave their precarious state and go
back to a normal life without the risk of relapsing. A smaller ρ implies a longer period
in which former drug users stay at risk of relapsing. The longer a former drug user is
at risk, the higher the probability of relapse. Figure 5.9 reveals the strong influence
ρ has on the long-run solution. For small values of ρ, the number of drug users and
teetotallers is extremely high and near the system’s carrying capacity. However, these
numbers plunge dramatically when ρ is increased and for ρ ≈ 0.12, A is already below one
million. Treatment efforts, measured by w, are at their maximum level until ρ ≈ 0.14.
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Figure 5.4.: At the first dashed line at β ≈ 0.30, prevention starts. At the second line
at β ≈ 0.36, treatment gets maximal. A and λ1 are red. T and λ2 are blue.

48



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
x 10

7

beta

A
, 
T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

5

beta

λ
1
, 

λ
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
x 10

9

beta

p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

beta

w

Figure 5.5.: Steady state values for f1 = 12 × 1010. The dashed line at β ≈ 0.03 marks
the point where prevention starts. A and λ1 are red. T and λ2 are blue.
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Figure 5.6.: Some optimal trajectories with f1 = 12× 1010 and β = 0.5.
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Figure 5.7.: Some optimal trajectories with f1 = 12× 1010 and β = 0.7.
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Figure 5.8.: Some optimal trajectories with f1 = 12× 1010 and β = 0.9.

Afterwards w decreases monotonously. Prevention p shows an inverted U-shape and is
not used at all for ρ > 0.19.
To sum up, the parameter ρ has a huge impact especially on the values of A and T .

Of course ρ may vary a lot among different types of drugs and the results here clearly
show how important it is to carefully consider these different idiosyncrasies in relapse.

5.6. Relapse Parameter b1

b1 measures the persuasive effect of drug users on relapse. More drug users mean a
higher probability of relapse. b1 measures how much higher that is. Figure 5.10 shows
that for small b1, the number of drug users and teetotallers are negligible. However, for
a larger b1, A quickly comes close to the carrying capacity a = 16, 250, 000. T initially
rises but becomes very small again for big values of b1 because most teetotallers relapse
since the persuasive effect of the large number of users is so strong. Treatment is used to
the maximum extent for the most part. It only declines again at b1 ≈ 0.247, where most
teetotallers relapse and make treatment nearly pointless. Prevention efforts p behave
very similarly. What is interesting to observe in Figure 5.10 is the fact that both costates
first fall and then rise again. In short, when looking for a reasonable choice for b1, the
options are very limited and one has to be very thoughtful, because the system is quite
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Figure 5.9.: The first dashed line at ρ ≈ 0.14 marks the point until where treatment is
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sensitive with respect to changes in b1.

5.7. Relapse Parameter b2

Similarly to b1, b2 also measures persuasive influence, but in this case influence of tee-
totallers on themselves. The more teetotallers there are, the more will relapse, and the
higher b2, the larger this effect. Figure 5.11 shows that for small values of b2, relapse
is so low that the number of drug users and teetotallers are negligible. For b2 ≈ 0, the
shadow price of teetotallers is even positive which means that an additional teetotaller
has a positive effect on overall cost because her/his negative effect on initiation is bigger
than her/his positive effect on relapse. Prevention is not used and treatment stays at
a very low level until b2 comes close to 1. At b2 ≈ 0.977, w becomes maximal, cannot
be raised any more, and therefore A and T start skyrocketing. Prevention payments
start at b2 ≈ 0.959, rise quickly and decrease again. For b2 ≈ 1.230, relapse becomes
so frequent, that maximal treatment efforts are not optimal any more. Also prevention
payments stop at b2 ≈ 1.248. A is now close to its carrying capacity, and T is close to 0

as teetotallers more or less instantly relapse. To put it in a nutshell, Figure 5.11 shows
that there is only a very small region around the baseline value of b2 = 1 (see Table 2.1)
where the choice of b2 actually seems to make sense. If b2 is too low, the drug problem
does not really exist any more. If it is too high, the drug epidemic is so bad that it does
not even make sense to control it.

5.8. Initiation Parameter ω

ω describes the persuasive influence of drug users on initiation and is therefore technically
similar to b2. Figure 5.12 shows that ω influences the system indeed in a very similar
way as b2 does (cf. Figure 5.11). For small values of ω, the drug problem is negligible
and there are no controls applied. At ω ≈ 0.712, treatment starts and at ω ≈ 0.961, also
prevention payments start. Shortly after that, w reaches its upper bound and cannot
increase any further. At that point A and T significantly climb together. When ω > 1

initiation is heavily influenced by existing users and therefore more and more people
start taking drugs. For even higher levels of influence, prevention and treatment are
not even used any longer, since initiation is so strong that trying to control the drug
epidemic is just a waste of money. Therefore, A comes close to the carrying capacity,
whereas T goes back to a very low level. Obviously, for the choice of ω there is only a
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Figure 5.10.: The dashed lines at 0.007, 0.024, 0.247, 0.251 mark the parameter values
where control constraints become active or inactive. A and λ1 are red. T
and λ2 are blue.
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small reasonable region around ω = 1. In all other cases, the drug problem does not
exist or is so invincible that it is not controlled at all.

5.9. Initiation Parameter γ

Last but not least, the negative parameter γ measures the dissuasive influence of teeto-
tallers on initiation. The smaller γ is, the more teetotallers hinder initiation. In Figure
5.13 one can see that for γ ≤ −0.074, A and T are close to zero as there is almost no
initiation. However, this is only possible due to growing levels of treatment. Once w
is maximal, A and T rise quickly. But even with γ = 0, the drug epidemic is fairly far
from its maximal possible spread given by the carrying capacity a.
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Figure 5.12.: The dashed lines at 0.712, 0.961, 0.977, 1.215, 1.221, 1.360 mark the
parameter values where control constraints become active or inactive. A
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Figure 5.13.: The dashed lines at −0.433,−0.086,−0.074 mark the parameter values
where control constraints become active or inactive. A and λ1 are red. T
and λ2 are blue.
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Chapter 6

Summary and Conclusions

One important objective of this thesis was to answer the question whether or not treat-
ment of drug users is financially reasonable when relapse is considered. In order to
throw some light on this issue, a new dynamic drug model was developed. The model
consisted partly of some already well examined dynamics from past works on that field
but also introduced some new aspects. The most decisive extension was definitely the
incorporation of the state of teetotallers whose relapse induces an additional inflow into
drug consumption. The baseline parameters were taken from existing works for the most
part.

The first step in the analysis was the exploration of the uncontrolled system dynamics.
In a simplified model with convenient parameter choices, steady states could be derived
analytically. Moreover, a condition for the asymptotic stability of the feasible positive
steady state was deduced. For the general case, a condition for the existence of steady
states was obtained. Phase portraits gave good impressions and understanding of the
system’s behaviour and the stability of its steady state. It is also worth highlighting that
the uncontrolled dynamics coincide qualitatively with the dynamics with fixed controls.
This means that this section also shows what the implications of a constant policy would
be.

The next step was the derivation of the optimal solution. For that purpose, Pontrya-
gin’s Maximum Principle was applied. The so-obtained canonical system was analysed
using the Matlab-toolbox OCMat. One single saddle point equilibrium was found
and the stable paths were calculated. The results allow one main conclusion: Given
the baseline parametrisation, treatment is deployed as much as possible. Consequently,
the equilibrium is rather low compared to the uncontrolled case. This means that even
though some treated former drug users lapse back into drug use, the positive effects of
treatment still outweigh their costs. Naturally, when the costs of treatment are increased,
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the treatment efforts decline but still remain on a relatively high level.
The sensitivity analysis revealed the parameters’ impact on the long-run solution.

The consequences of varying levels of the relapse parameter β was of primary interest.
Surprisingly, it turned out that with growing β the use of treatment increased as well.
However, this monotonous relation changed, when the treatment cost was increased.
In that case the control-variable w describing treatment exhibited an inverted U-shape
for varying β: for a low relapse rate not so much treatment is deployed. When β

grows, w grows as well, but when β becomes too large, treatment efforts decline again.
Furthermore, it was shown that some parameters like b1, b2, and ω only have a small
range in which the model yields reasonable results. Therefore, these values should be
considered particularly carefully, e.g., when estimating them with an econometric model.

To sum up, the answer to the question whether treatment is reasonable in a scenario
with high relapse rates is not a simple yes or no. It depends on the cost structure of
treatment and the social costs of drug consumption on the one hand and the relapse rate
on the other hand. When costs of treatment are sufficiently high and the relapse rates
are high too, treatment efforts decline. However, for reasonable parameter combinations,
treatment was never zero. By and large it has to be concluded, that offering treatment
to at least some drug users is beneficial in any case.
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Appendix A

The Matlab-Toolbox OCMat

The OCMat toolbox provides functions for analysing optimal control problems. It can
be accessed and downloaded for free via the Internet.1 A manual for the toolbox can
also be found there (see [9]).

A.1. Initialization

Before one can start the analysis of an optimal control problem with OCMat, the model
has to be initialized. For that purpose, an initialization file, in which the optimisation
problem is defined, has to be created. The initialization file is a plain ASCII file with
the extension .ocm. The initialization file looks like that:

Type

standardmodel

Description

drugmodel for thesis

Modelname

drugmodel

Variable

state::A,T

control::p,w

1http://orcos.tuwien.ac.at/research/ocmat_software/, last accessed March 11, 2016.
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Statedynamics

ode::DA=alpha*A^omega*T^gam*(a-A)*(h+(1-h)*exp(-m*p))-...

(delta+w)*A+beta*A^b1*T^b2

ode::DT=(delta+w)*A-beta*A^b1*T^b2-rho*T

Objective

int::-c*A-p-f0*w-f1*w^2/2

Controlconstraint % identifier has to contain an alphabetic character

CC1::ineq::p>=plow

CC2::ineq::w<=1-delta

CC3::ineq::w>=wlow

ArcDefinition

0::[]

1::CC1

2::CC2

3::CC3

4::CC1,CC2

5::CC1,CC3

Parameter

r::0.04

alpha::1.581272e-8

h::0.84

m::2.37e-9

omega::1

gam::-0.05

a::16250000

delta::0.11

beta::0.5

b1::0.05

b2::1

c::10000

f0::3.618569e+8
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f1::4.778180e+9

plow::0

wlow::0

rho::0.1

The definition of the variables, state equations, objective function, and parameters is
pretty self-explanatory. Every control constraint has to be named individually. These
names are then used in the definition of the different arcs. The arcs are numbered, and
for each arc, the active constraint has to be defined. Note that CC2 and CC3 cannot be
active at the same time. The number assigned to each arc is the so-called arc identifier.
In the next step, the initialization file is processed and the model files are created and
stored in the correct folder.

ocStruct=processinitfile(’drugmodel’);

modelfiles=makefile4ocmat(ocStruct);

moveocmatfiles(ocStruct,modelfiles);

m=stdocmodel(’drugmodel’);

save(m)

In the object m all important information is stored. For example, hamiltonian(m) re-
turns the Hamiltonian; control(m) returns the controls that maximise the Hamiltonian
(interior solution).

A.2. Equilibria and Stable Paths

The equilibria of the canonical system are calculated by the function calcep(m). How-
ever, in this case the canonical system cannot be solved explicitly. Therefore, this call
produces an error. To tell the function that it shall use a numerical search algorithm
rather than trying to solve the equation analytically, an initial value has to be provided:

ocEP=calcep(m,[5e6; 5e6; -1e3; -1e3]);

b=isadmissible(ocEP,m);

ocEP(~b)=[];

In the second and third line, the inadmissible solutions are identified and discarded. It
is possible that no admissible solution is found. In that case, the initial values should be
altered a bit. Moreover, when an admissible solution is finally found, this does not mean
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that no other admissible steady state exists. Therefore, one should systematically vary
the initial values in order to scan the entire admissible region. In the case of this thesis’
model, there is strong evidence suggesting that there indeed exists only one steady state:
After a very thorough search, no second equilibrium could be identified, and even for
starting values very far from the steady state the search algorithm converged to that
seemingly unique steady state. Basic information about the equilibrium is accessed by
typing ocEP{1}, which returns

ans =

ocmatclass: dynprimitive

modelname: drugmodel

Equilibrium:

1.0e+06 *

2.8043

2.4376

-0.1144

-0.1004

Eigenvalues:

-2.0260

2.0660

-0.0107

0.0507

Arcidentifier:

2

Arcidentifier 2 means that the second control constraint is active with w = 1 − δ. The
controls and Lagrange multipliers are accessed via control(m,ocEP{1}) and
lagrangemultiplier(m,ocEP{1}), respectively.

To calculate the saddle-path from the initial value (1, 1)×106 to the equilibrium stored
in ocEP{1}, the following commands are called:
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opt=setocoptions(’OCCONTARG’,’MaxStepWidth’,1e5,’InitStepWidth’,1e0,...

’MaxContinuationSteps’,inf,’CheckAdmissibility’,’on’,’SBVPOC’,...

’BCJacobian’,0,’MeshAdaptAbsTol’,1e-3,’MeshAdaptRelTol’,1e-4,...

’NMax’,10000,’GENERAL’,’AdmissibleTolerance’,1e-3);

epidx=1;

eigval=real(eig(ocEP{epidx}));

eigval(eigval>-1e-5)=[];

T=10/min(abs(eigval));

sol=initocmat_AE_EP(m,ocEP{epidx},1:2,[1e6;1e6],opt,’TruncationTime’,T);

c=bvpcont(’extremal2ep’,sol,[],opt);

store(m,’extremal2ep’);

The first block of commands sets out some options conveniently. Afterwards, the contin-
uation process is initialized by sol. The third argument tells the function, which param-
eters are to be continued. In our case these are the first two, which represent A and T .
The fourth argument defines the initial value to which the solution shall be continued in
the end. The continuation itself is then conducted by bvpcont and saved in the object m.
The result of the continuation can be accessed by calling m.Result.Continuation{1}.
This procedure is now repeated for other initial values. It is important to remember

to always store the results, as the calculations can take quite some time, so it would be
very impractical to do the same calculations all over again. Once all desired calculations
are accomplished, they can be illustrated graphically. There are several options how to
achieve this. I used the following functions to generate for example Figures 4.1 and 4.3,
which show some optimal state and control trajectories.

%PHASE PORTRAIT

plotcont(m,’state’,1,’state’,2,’index’,[1 2 3 4],’color’,’b’)

hold on

plot(ocEP{1}.y(1),ocEP{1}.y(2),’Linestyle’,’none’,...

’Marker’,’s’,’Markersize’,6)

xlabel(’A’)

ylabel(’T’)

xlim([0 13000000])

ylim([0 7000000])

plot(1000000,1000000,’bo’)
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plot(12000000,2000000,’bo’)

plot(2000000,5000000,’bo’)

plot(5000000,2000000,’bo’)

hold off

%CONTROLS

subplot(2,1,1)

plot(m.Result.Continuation{1}.ExtremalSolution,1,1,’xdata’,’time’,...

’ydata’,’control’,’ocmodel’,m,’color’,’b’)

ylabel(’p’)

xlabel(’time’)

subplot(2,1,2)

plot(m.Result.Continuation{1}.ExtremalSolution,1,2,’xdata’,’time’,...

’ydata’,’control’,’ocmodel’,m,’color’,’b’)

ylabel(’w’)

xlabel(’time’)

The indices provided to plotcont in the first line are the indices of the desired solu-
tions stored in m.Result.Continuation.

Unfortunately, performing the continuation process does not always go as smooth as
above. Problems arise when the arc, the solution is currently on, changes. This change
of arcs has to be done manually. That occurred for example in the case with f1 = 6×1010

for the initial value (12, 2)×106: After changing the parameter value of f1 and calculating
the equilibrium, the continuation process is started exactly like before. However, the
function bvpcont is interrupted when the stepsize is getting too small. When no new
admissible solution can be found, the step size is decreased. Once the stepsize is under a
certain threshold, it can be assumed that no admissible solution on the same arc exists.
This means that the arc has to be changed. Then a new continuation is started that
tries to reach the initial value from the point where the last iteration stopped. These
two paths are combined to one path:

m=stdocmodel(’drugmodel’);

m=changeparametervalue(m,’f1’,6e10);

ocEP=calcep(m,[5e6;5e6;-1e3;-1e3]);b=isadmissible(ocEP,m);

ocEP(~b)=[];
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opt=setocoptions(’OCCONTARG’,’MaxStepWidth’,1e5,’InitStepWidth’,1e0,...

’MaxContinuationSteps’,inf,’CheckAdmissibility’,’on’,’SBVPOC’,...

’BCJacobian’,0,’MeshAdaptAbsTol’,1e-3,’MeshAdaptRelTol’,1e-4,...

’NMax’,10000,’GENERAL’,’AdmissibleTolerance’,1e-3);

epidx=1;

eigval=real(eig(ocEP{epidx}));

eigval(eigval>-1e-5)=[];

T=10/min(abs(eigval));

%calculate path, part 1

sol=initocmat_AE_EP(m,ocEP{epidx},1:2,[12e6;2e6],opt,’TruncationTime’,T);

c=bvpcont(’extremal2ep’,sol,[],opt);

store(m,’extremal2ep’);

%part 2

ocEx=extremalsolution(m);n=length(ocEx);

opt0=setocoptions(’GENERAL’,’AdmissibleTolerance’,0);

[b infoS newarcpos violarcarg]=testadmissibility(ocEx{n},m,opt0);

ocAsymN=redefinearc(ocEx{n},newarcpos,2);

sol=initocmat_AE_AE(m,ocAsymN,1:2,[12e6;2e6]);

opt=setocoptions(’OCCONTARG’,’MaxStepWidth’,1e5,’InitStepWidth’,1e2,...

’MaxContinuationSteps’,inf,’CheckAdmissibility’,’off’,’SBVPOC’,...

’BCJacobian’,0,’MeshAdaptAbsTol’,1e-6,’MeshAdaptRelTol’,1e-7,...

’NMax’,10000,’GENERAL’,’AdmissibleTolerance’,1e3,’NEWTON’,...

’MaxNewtonIters’,15,’MaxProbes’,10);

c=bvpcont(’extremal2ep’,sol,[],opt);

store(m,’extremal2ep’)

Note that in the second part of the path calculation, the tolerances are lower to tackle nu-
meric instability. In redefinearc(ocEx{n},newarcpos,2) the last argument provides
the new arcidentifier. This has to be chosen manually. By looking at infoS.constraintvalue
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one can see which Lagrange multiplier became negative and therefore draw conclusions
which new arc should be chosen. Alternatively, one can simply do it by trial and error.

For plotting the corresponding phase portrait (Figure 4.5), a slightly different approach
than before is chosen in order to illustrate the different arcs by dashed and normal lines:

ocEx=extremalsolution(m,[1 3 5 6]);

arcid=[];

for ii=1:length(ocEx)

arcid=[arcid arcargument(ocEx{ii})];

end

h=plotcont(m,’state’,1,’state’,2,’index’,[1 3 5 6]);

for ii=1:length(h)

if arcid(ii)==0

set(h(ii),’Color’,’b’,’LineStyle’,’-’,’LineWidth’,1)

elseif arcid(ii)==2

set(h(ii),’Color’,’b’,’LineStyle’,’--’,’LineWidth’,1)

end

end

hold on

plot(ocEP{1}.y(1),ocEP{1}.y(2),’Linestyle’,’none’,...

’Marker’,’s’,’Markersize’,6)

xlabel(’A’)

ylabel(’T’)

xlim([0 13000000])

ylim([0 7000000])

plot(1000000,1000000,’bo’)

plot(12000000,2000000,’bo’)

plot(2000000,5000000,’bo’)

plot(5000000,2000000,’bo’)

hold off

The indices in the first line are chosen that way, because the second and third solutions
consist of two different arcs. Consequently, the solutions with indices 2 and 4 consist only
of the first half of the respective path. The whole path is stored in 3 and 5, respectively.
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Apart from the indices, the plot command is the same as before. The difference is that
afterwards the linestyle is defined for the two different arcids.

A.3. Sensitivity

For generating the plots of Chapter 5, one could use the toolbox MatCont. However,
this toolbox does not provide any admissibility checks, which makes its usage a bit more
complicated. Therefore, I simply used a loop and OCMat to iteratively calculate new
admissible equilibria for new parameters. In every step, the important information is
stored in a matrix containing the values of the parameter, states, costates, and controls
in the equilibrium. The following code shows the process for the parameter β:

interval = linspace(0,1,500);

RES_beta=zeros(7,length(interval));

RES_beta(5,:)=interval;

m2=changeparametervalue(m,’beta’,interval(1));

ocEP2=calcep(m2,[2e+5; 4e+6; -2e+5; -2e+4]);b=isadmissible(ocEP2,m2);

ocEP2(~b)=[];

RES_beta(1:4,1)=ocEP2{1}.y;

RES_beta(6:7,1)=control(m2,ocEP2{1});

for i=2:length(interval)

m2=changeparametervalue(m,’beta’,interval(i));

ocEP2=calcep(m2,RES_beta(1:4,i-1));b=isadmissible(ocEP2,m2);

ocEP2(~b)=[];

RES_beta(1:4,i)=ocEP2{1}.y;

RES_beta(6:7,i)=control(m2,ocEP2{1});

end

The last steady state is used as an initial solution for the numeric search for the next
steady state. Sometimes calcep fails to find an admissible solution. In that case one
has to choose a better starting value manually or reduce the step-width in the parameter
grid. Once the process is complete, the obtained results can easily be plotted by using
plot.
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