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Kurzfassung

Funktionale und relationale Klone, das heißt Mengen von Funktionen oder Relationen,
die unter einer Form von Komposition abgeschlossen sind, sind ein wichtiges Werkzeug
zur Untersuchung von Eigenschaften von Algebren. Ein Verständnis von Klonen und den
Beziehungen zwischen ihnen ist beispielsweise hilfreich für das Beweisen komplexitäts-
theoretischer Resultate für das Constraint-Satisfaction-Problem.

Eine spezielle Form von Klonen sind sogenannte primitiv-positive Klone, von denen es
über jedem Wertebereich nur eine endliche Anzahl gibt. Diese Klone sind theoretisch
berechenbar, in der Realität ist der Suchraum allerdings in den meisten Fällen zu groß.

Das Ziel dieser Diplomarbeit ist es zu untersuchen, in welchem Ausmaß Parallelisierung
die Grenzen dessen, was als praktisch berechenbar gilt, erweitern kann.

Wir werden daher unterschiedliche Ansätze zur Berechnung von primitiv-positiven Klo-
nen entwickeln und sie gegeneinander evaluieren. Bei den untersuchten Ansätzen handelt
es sich um Parallelismus auf der Anweisungsebene, klassische Nebenläufigkeit und Grafik-
kartenprogrammierung.

Resultat der Diplomarbeit wird, neben der Auswertung der verschiedenen Ansätze,
außerdem ein Programm sein, das für Experimente im Bereich der Klontheorie genutzt
werden kann.

xi





Abstract

Functional and relational clones, that is sets of functions or relations closed under some
form of composition, are an important tool for investigating properties of algebras.
Understanding clones and the relation between them can for example help us to prove
complexity-theoretic results for Constraint Satisfaction Problems.

A special form of clones are so-called primitive positive clones, of which there are only
finitely many over each domain. These clones are computable in principle, but in reality
the search space too huge in most cases. The aim of this thesis is to investigate to
what extent parallelization can push the boundaries of what is thought to be practically
computable.

We will therefore develop different parallel approaches to calculate primitive positive clones
– using instruction level parallelism, classical multithreading and GPU programming –
and evaluate them against each other.

Result of this thesis will be, in addition to the evaluation of the different approaches, a
program which can be used for experiments in the context of clone theory.
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CHAPTER 1
Introduction

Motivation Functional and relational clones, that is sets of functions or relations
which are closed under some form of composition, are an important tool for investigating
properties of algebras.

Knowing the clones over a certain domain and the relation between them can make
it easier to prove certain properties. Two accessible articles demonstrating this are
[BCRV03] and [BCRV04].

In [BCRV03] a succinct proof of [Lew79] is presented: every set of Boolean connectives
which is able to represent x ∧ ¬y makes the corresponding SAT problem NP-complete;
all other sets of connectives can only produce SAT instances which are polynomial time
solvable.

In [BCRV04] Schaefer’s important classification of subclasses of the SAT problem [Sch78]
is tackled by using clones. Furthermore a correspondence between functional and relational
clones is established which allows us to limit our investigation to functional clones.

In [JCG97] necessary and sufficient conditions for the generalization of SAT, the Con-
straint Satisfaction Problem (CSP), are given by examining clones. Similar results have
been presented in [Zad07].

A special form of clones are so-called primitive positive clones, a concept introduced
by [Kuz79] (for a modern and accessible presentation of these results see [Her08]).
Kuznetsov’s investigation, which considered parametric clones over a two-element domain,
was extended by Danil’chenko to three-element domains in her dissertation and related
articles [Dan77, Dan79].

Primitive positive clones are those clones which can be defined as the centralizer of a
function set. The centralizer of a function set consists of all functions which commute
with all functions of this set.

1



1. Introduction

Problem Statement The commutation property is very demanding from a computa-
tional point of view. Given two functions of arity m and n over a domain with d elements,
we have to check dmn matrices of variables to prove commutation in the worst case. Each
of these matrices again needs m + n + 2 function evaluations.

Already for functions of arity 4 over a 4-element domain, naive implementations can take
several hours for such a check. The way commutation is computed, however, lends itself
to parallelization. We will therefore implement a program which facilitates parallelization
in order to check functions for commutation as fast as possible.

Aim of the Work Using different parallelization techniques we want to evaluate how
far the borders of what is thought to be practically computable can be extended . Since
the techniques we are using differ in many points, we want to learn about and document
the benefits an disadvantages of each approach.

Furthermore, we will publish the code under the following URL so that researchers may
make use of our program.

https://github.com/markusscherer/commutation-test

Methodology Following the model proposed in [RJ10], we will optimize our perfor-
mance by structuring our computation in a layered way: on the CPU-level we will use
SIMD instructions to speed up our commutation test, on a higher level we will use differ-
ent multithreading technologies.

To facilitate experimentation, we will implement the SIMD-based code with so called
policies. In the end, this will allow us to analyze which optimization influenced the
performance in which way and to which degree. We will also use two different compilers
and evaluate the binaries produced by them against each other.

In addition to an implementation on conventional hardware, we will take the huge
potential of specialized hardware into account which is promised by articles such as
[ND10] by implementing our commutation test also on graphics processing units (GPUs).

After implementing the different approaches, we will evaluate them against each other
and draw our conclusions.

Structure of the Work In the first part of Chapter 2 we will introduce basic concepts
of clone theory. The second part surveys some results which allow us to prune our search
space. In Chapter 3 we will describe our central design pattern, policy-based-design,
which allows us to experiment with different optimizations. Chapter 4 is divided in three
parts: in each we will present on of our different approaches in detail, together with
an introduction to the used concepts. Each such presentation is directly followed by a
discussion of the performance. In Chapter 5 we draw our conclusions, discuss problems
for the future and present some of the pitfalls we encountered, so that future researchers
who are faced with similar problems do not have to repeat our mistakes.

2

https://github.com/markusscherer/commutation-test


CHAPTER 2
Mathematical Background

2.1 Basic Definitions

We refer to a set {0, . . . , k − 1} as Ak. The set of all functions over Ak is called Pk. A
function f ∈ Pk, f : An 7→ A, is said to have arity n, in symbols ar (f) = n. Given a
function f with ar (f) = n and a tuple ~x ∈ An we may write f (~x) instead of f (x1, . . . , xn).
When talking about the arguments of a function, we will sometimes call xi more significant
than xi+1 and x1 the most respectively xn the least significant argument. A subset
R ⊆ An is called an n-ary1 relation over A.

Definition 2.1.1 (Projection). A function πn
i , An 7→ A, for which πn

i (x1, . . . , xn) = xi

holds, is called projection. The set of all projections is denoted by Pr. We note in passing,
that the identity function id (x) = x is just a special case of a projection.

Definition 2.1.2 (Composition). Given a function f , with ar (f) = p, and p functions
gi with ar (gi) = q, the function h (x1, . . . , xq) = f (g1 (x1, . . . , xq) , . . . , gp (x1, . . . , xq)) is
called the composition of f and gi, in symbols h = f ◦ gi.

Definition 2.1.3 (Clone). A set of functions Σ is called a clone, if it contains all
projections and is closed under composition. Given an arbitrary set of functions Σ′, 〈Σ′〉
denotes the smallest clone containing Σ′. A subset Σ′′ ⊆ 〈Σ′〉 is called a base of 〈Σ′〉 if
〈Σ′′〉 = 〈Σ′〉 and for each proper subset Σ′′′ ⊂ Σ′′ we have 〈Σ′′′〉 6= 〈Σ〉.

Definition 2.1.4 (Expressibility). Given a function f and set of functions Σ, we say f
is (explicitly) expressibly by Σ, in symbols f ≤e Σ, if f ∈ 〈Σ〉. Given two sets of functions
Σ1 and Σ2, we say Σ1 is expressible by Σ2, in symbols Σ1 ≤e Σ2, if ∀f ∈ Σ1 : f ≤e Σ2.

1For n = 1, 2, 3 we say unary, binary and ternary. Furthermore, we overload the ar (·) for relations.
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2. Mathematical Background

Definition 2.1.5 (Fictitious Argument). We say a function f contains fictitious argu-
ments if there is a function g with p = ar (g) < ar (f) = q and p not necessarily distinct
q-ary functions hi ∈ Pr such that f = g (h1, . . . , hp).

Definition 2.1.6 (Preservation, Invariants, Polymorphisms). Let f be a function with
ar (f) = p and R ⊆ Aq a relation. We say f preserves R (or f is a polymorphism of R) if
for every selection of p not necessarily distinct tuples xi ∈ R we have(

f
(
(x1)1 , . . . , (xp)1

)
, . . . , f

(
(x1)q , . . . , (xp)q

))
∈ R

Alternatively we say R is an invariant of f . The set of all functions that preserve a given
relation R is denoted as Pol (R). In a similar fashion, we denote the set of all invariant
of a given function f as Inv (f).

Definition 2.1.7 (Graph of a function). Given a q-ary f function we can construct a
q + 1-ary relation f•, the graph of f , as follows:

f• = {(x1, . . . , xq, f (~x)) | ~x ∈ Aq}

We overload the ·•-symbol for sets of functions Σ ⊆ Pk as follows:

Σ• = {f• | f ∈ Σ}

Definition 2.1.8 (Commutation). Two functions f , g over a domain Ak with ar (f) = p
and ar (g) = q commute, in symbols f ⊥ g, if we have

f (g (x11, . . . , xq1) , . . . , g (x1p, . . . , xqp)) = g (f (x11, . . . , x1p) , . . . , f (xq1, . . . , xqp))

for all xij ∈ Ak (with 1 ≤ i ≤ q, 1 ≤ j ≤ p).

By interpreting the values xij as q × p-matrix m (see Figure 2.1), we can rephrase the
definition of the commutation property a bit. By applying f to each row, we get a new
q-tuple ~y. Likewise, we can apply g column-wise to obtain a new p-tuple ~z. If we have
for all matrices m ∈ Aq×p and all tuples ~y, ~z obtained as described above f (~z) = g (~y),
we have f ⊥ g.

We overload the ⊥-symbol for sets of functions: f ⊥ Σ ⇐⇒ ∀g ∈ Σ: f ⊥ g.

It is easy to see, that f ⊥ g ⇐⇒ g ⊥ f ⇐⇒ f ∈ Pol (g•) ⇐⇒ f• ∈ Inv (g).

Definition 2.1.9 (Centralizer). Given a set of functions Σ ⊆ Pk, we refer to the set
{f ∈ Pk | ∀g ∈ Σ: f ⊥ g} as centralizer of Σ, in symbols Σ∗. For any single function
f ∈ Pk we refer to {f}∗ as centralizer of f , in symbols f∗.

Following equalities hold for any set of functions Σ ⊆ Pk:

Σ∗ = {f ∈ Pk | ∀g ∈ Σ: f ⊥ g} =
⋂

g∈Σ
g∗

4



2.2. Exploring Clones

g g g
_ _ _

f ( x11 · · · x1p ) = y1
...

...
...

f ( xq1 · · · xqp ) = yq

^ ^ ^

= = =

f ( z1 · · · zp ) = (∗)

Figure 2.1: Illustration of the commutation property as computation on matrices.

Definition 2.1.10 (Parametric Expressibility). In [Kuz79] Kuznetsov introduces the
notion of parametric expressibility. Given a set of functions Σ, we say an n-ary function
f is parametrically expressible (or shorter p-expressible) by Σ, in symbols f ≤p Σ, if f• is
expressible by an equation of the following form

~x ∈ f• ⇐⇒ ∃y1, . . . , yk :
∧̀
i

(Ai = Bi) for all ~x ∈ An+1

where k, ` ∈ N and Ai, Bi are well-formed terms using only variables from ~x and ~y and
functions from Σ. We call formulae of these form primitive positive.

We note that, given a p-ary function f , p q-ary functions gi and their composition
h = f (g1 (x1, . . . , xq) , . . . , gp (x1, . . . , xq)) we have h ≤p {f, g1, . . . , gp}, since

~x ∈ f• ⇐⇒ ∃y1, . . . , yp :
p∧
i

(gi (x1, . . . , xq) = yi)

∧ f (y1, . . . , yp) = xq+1 for all ~x ∈ An+1.

For each function f and each set of functions Σ we therefore have: f ≤e Σ =⇒ f ≤p Σ.

A set of functions that is closed under parametric expressibility is called primitive positive
clone2. For every primitive positive clone C there is a set of functions Σ with Σ∗∗ = C,
we therefore call C generated by Σ [Kuz79].

2.2 Exploring Clones
From [BW87] we know that for any finite k there are only finitely many primitive positive
clones over Pk. Kuznetsov is reported to have shown that for P2 there are 25 primitive

2Other names for these construct are parametric clone or, due to the property mentioned next,
centralizer clone.

5



2. Mathematical Background

positive clones (his result has been reproven in [Her08]). For P3 Danil’chenko proved
in her dissertation [Dan79] that there are 2986 primitive positive clones which can be
obtained by intersecting primitive positive clones generated by a set of 197 base functions.

Furthermore, it is claimed in [BW87] that for each primitive positive clone over Ak there
is a finite base containing only functions of arity at most kk. It is, however, conjectured
in the same paper that for k ≥ 3 functions of arity k could suffice to express all primitive
positive clones over Ak.

Given our knowledge of the primitive positive clones over P2 and P3, the aim of this
thesis is to provide a fast program to check commutation of functions in P4. To limit the
scope and allow us to apply some optimizations, we will only consider functions of arity
4 or less.

The results above show us that it is possible in principle to generate all centralizers for
functions up to a certain arity and thereby generating all primitive positive clones. In
reality the search space is unfortunately too huge, as, assuming the conjecture from above
holds, we have to check kkk functions with each other. For k = 4 these are 21023 checks3

– an enormous number. Without any significant breakthroughs in theory this number
will stay prohibitively large. Nevertheless we will now provide some ways to prune our
search space.

Kuznetsov [Kuz79] provided a useful criterion which links parametric expressibility and
centralizers4:

Theorem 1 (Kuznetsov Criterion). Given any function f ∈ Pk and any set of functions
Σ ⊆ Pk we have f ≤e Σ ⇐⇒ f∗ ⊇ Σ∗.

We illustrate this theorem with some examples:

Example 1. For each set of functions Σ ⊆ Pk we have id∗ ⊇ Σ∗. On the one side it is
easy to see that a commutation test between id and any function p-ary function has to
succeed, since obviously f (id (x1) , . . . , id (xp)) = id (f (x1, . . . , xp)) holds for any xi.

On the other hand id• is trivially definable as primitive positive formula using no function
symbols at all.

Since id commutes with any function, we don’t have to check it.

Example 2. For each function f that contains fictitious arguments and can be reduced
to a function g of lower arity we have f ≤p g and g ≤p f , which means that f∗ = g∗.

Adding fictitious arguments and setting fictitious arguments equal to other arguments is
possible in primitive positive formulae. When interpreting the commutation property as

3Since commutation is commutative we only have to consider f ⊥ g or g ⊥ f , thereby saving half of
the checks.

4 A modern proof is given in [Beh14], which is available at request.
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2.2. Exploring Clones

checking matrices, it becomes immediately clear that any function commuting with f
also commutes with g and vice versa.

This means that we do not have to check any function with fictitious arguments, as long
as we have a “reduced” function (like here g) in our function set.

We note in passing, combining our two examples that, since projections are in principle
just instances of the identity function with fictitious arguments, we do not have to check
any projections, since they commute with any function.

Example 3. Given a p-ary function f and a permutation σ of the set {1, . . . , p}. For
any function g, for which g (x1, . . . , xp) = f

(
xσ(1), . . . , xσ(p)

)
holds, we have f ≤p g and

g ≤p f , which means f∗ = g∗.

Permuting the variables is possible with primitive positive formulae and, again by
interpreting the commutation check as computation on matrices, it is obvious that any
function that commutes with f also commutes with g.

We therefore only have to consider one function f in our function set that represents all
functions that can be built from f by permuting the input arguments.

Example 4. The trick presented this example does not allow us to prune the search
space upfront, but to check commutation in a smart order to avoid certain checks. By
the Kuznetsov criterion we know that f ≤p Σ ⇐⇒ f∗ ⊇ Σ∗. If we now know f ≤p Σ
and find a function h with h ⊥ Σ, we automatically know that h ⊥ f .

Unfortunately, in general we do not know which functions are p-expressible by which set
(otherwise we would not have to examine clones at all). We can, however, starting with
a certain base of functions, generate functions and remember which functions were used
in the creation these functions.

Given a function set Σ, let Cn
Σ denote the set functions that can be formed from functions

in Σ with than n or less compositions, e.g.

C2
{f} = {f (x, y) , f (f (x, y) , z) , f (x, f (y, z)) , f (f (w, x) , f (y, z))}

where ar (f) = 2.

Since we have Ci
Σ ≤p

(
Ci+1

Σ \ Ci
Σ

)
, we can, given a base set Σ, check the functions in

the order implied by i (i.e. checking the functions contained in Ci
Σ before the functions

contained in
(
Ci+1

Σ \ Ci
Σ

)
). We note, however, that since in general we can only lose

expressive power by function composition,
(
Ci+1

Σ \ Ci
Σ

)
may very well be empty or at

least so small that the generation is not worthwhile after a certain point. This is only
an exemplary way of generating functions from a base set. Depending on the way we
generate them, we may combine this approach with other pruning techniques.

Given that we already know the base functions of P2 and P3, we can apply some of this
knowledge to deal with functions over P4.

7



2. Mathematical Background

Definition 2.2.1 (Extension). Given a function f ∈ Pk. We call a function g the
extension of f to Pk+1 if

g (x1, . . . , xp) =
{

f (x1, . . . , xp) if xi < k for all xi

k else

Theorem 2. Given two function f, g and their extensions f ′, g′ we always have

f ⊥ g ⇐⇒ g′ ⊥ f ′.

Proof: Let f, g ∈ Pk, ar (f) = p and ar (g) = q. Assume f ⊥ g, then we only have to
check matrices containing k to prove f ′ ⊥ g′. As soon as one element in thematrix equals
k the result row as well as the result column contain k. Therefore the result of applying
f ′ and g′ to the results will both equal k.

Assume f ′ ⊥ g′, then there exists no matrix witnessing the non-commutation of f ′ and
g′, and therefore, since Aq×p

k ⊂ Aq×p
k+1, no matrix witnessing the non-commutation of g

and f .

This knowledge does not help us much with reducing the number of commutation
checks, since there are only few functions over P3 compared to P4 for any given arity.
Nevertheless, the lemma proved above comes in handy in other situations: we can check
if our implementation works for functions over P4 by encoding functions from P3 as
extensions to P4 and then recalculating already known results.

Another way to group our function into classes, similar to the classes generated by
permutations of the input parameters in Example 3, are so called dualities – permutations
of the input domain. We denote the set of all permutations of Ak as Sk.

Definition 2.2.2 (Dualities). Given a function f ∈ Pk and a permutation σ ∈ Sk, we
call g the σ-dual of f if

g (x1, . . . , xp) = σ−1 (f (σ (x1) , . . . , σ (xp))) .

We denote the σ-dual for a function f as fσ.

Theorem 3. For any two functions f, g ∈ Pk and any permutation σ ∈ Sk we have

f ⊥ g ⇐⇒ fσ ⊥ gσ.

8



2.2. Exploring Clones

Proof. Let f, g ∈ Pk, ar (f) = p, ar (g) = q and σ ∈ Sk. Then

fσ ⊥ gσ

⇐⇒
fσ (gσ (x11, . . . , xq1) , . . . , gσ (x1p, . . . , xqp)) =
gσ (fσ (x11, . . . , x1p) , . . . , fσ (xq1, . . . , xqp))

⇐⇒ σ−1
(
f
(
σ
(
σ−1 (g (σ (x11) , . . . , σ (xq1)))

)
, . . . , σ

(
σ−1 (g (σ (x1p) , . . . , σ (xqp)))

)))
=

σ−1
(
g
(
σ
(
σ−1 (f (σ (x11) , . . . , σ (x1p)))

)
, . . . , σ

(
σ−1 (f (σ (xq1) , . . . , σ (xqp)))

)))
⇐⇒ f (g (σ (x11) , . . . , σ (xq1))) , . . . , g (σ (x1p) , . . . , σ (xqp)) =

g (f (σ (x11) , . . . , σ (x1p))) , . . . , f (σ (xq1) , . . . , σ (xqp))
and f ⊥ g

⇐⇒
f (g (x11, . . . , xq1)) , . . . , g (x1p, . . . , xqp) =
g (f (x11, . . . , x1p)) , . . . , f (xq1, . . . , xqp)

for all xij ∈ Ak (with 1 ≤ i ≤ q, 1 ≤ j ≤ p).

Since σ is a permutation and both formulae have to hold for all xij , they have to hold
for the same values. Thus they are equivalent.

Corollary 1. For any two functions f, g ∈ Pk and any permutations σ, ρ ∈ Sk we have

f ⊥ gσ ⇐⇒ fσ−1 ⊥ g

or more generally
f ⊥ gσ ⇐⇒ fρ ⊥ (gσ)ρ .

From Corollary 1 we derive the following strategy: Let f, g ∈ Pk, Σf = {fσ | σ ∈ Sk}
and Σg = {gσ | σ ∈ Sk}. W.l.o.g. assume that m = |Σf | ≥ |Σg| = n. Then we check for
commutation between f and all functions in Σg, and generate all other commutation
results by applying all permutations in Sk to the obtained check result. Thus we reduce
the number of commutation checks from m · n to n.
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CHAPTER 3
Architecture

We implemented all our approaches in C++. This has several reasons:

• All low-level interfaces that we used are accessible via C or C++.

• As a compiled language it has an inherent performance bonus.

• There are several mature compilers available.

• It provides us with many compile-time abstractions which do not introduce any
run time overhead.

To allow us to experiment with different aspects of our implementation, we implemented
our program using policy-based-design.

3.1 Policy-based design
One of the central patterns used in our prototype is policy-based design. Policy-based
design is a pattern that allows us to move certain behavioral aspects of a class (the so-
called host class) to other classes (the so-called policies). The pattern was first popularized
by Alexandrescu (for an in-depth description refer to [Ale01]) and is closely tied to the
C++-scene, although theoretically applicable in different programming languages. It is
similar to the strategy pattern [VHJG95], with the difference that the choice of behavior
happens at compile time (and not, as with the strategy pattern, at run time).

To illustrate the pattern let us consider a toy problem. The problem at hand is outputting
a greeting to the world. One behavioral aspect we could consider is the language in
which this greeting is given. Our host class, the greeter, therefore has to have a policy
slot for a language policy – this is realized via a template parameter. The greeter and
two exemplary language policies are given in Figure 3.1.
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3. Architecture

#include <iostream>
#include <string>

using namespace std;

struct english_language_policy {
static string get_greeting() {
return "Hello, world!";

}
};

struct russian_language_policy {
static string get_greeting() {
return "Привет, мир!";

}
};

template<class LanguagePolicy> struct greeter {
static void greet() {
cout << LanguagePolicy::get_greeting() << endl;

}
};

int main() {
greeter<english_language_policy>::greet();
greeter<russian_language_policy>::greet();

}

Figure 3.1: Simple example for policy based design.

An orthogonal aspect to the language is the output stream to which the greeting is
outputted. If the need arises to consider different output streams, we could extend our
existing greeter with a second policy slot as shown in Figure 3.2.

Further aspects could be considered (e.g. output formats, such as LATEX, HTML etc.) or
existing aspects could be extended (by introducing more languages or allowing different
output mechanisms). The crucial point is that, while there are exponentially1 many ways
to instantiate host class, the implementation effort of the host class is roughly linear,
given an orthogonal factorization of the behavioral aspects. Since the different policies
do not directly interact with each other, their implementation effort may be considered
as “constant”.

1in the number of policy slots
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3.1. Policy-based design

#include <iostream>
#include <string>

using namespace std;

/* implementation of the language policies omitted */

struct stdout_output_policy {
static void output(string s) {

cout << s << endl;
}

};

struct stderr_output_policy {
static void output(string s) {

cerr << s << endl;
}

};

template<class LanguagePolicy, class OutputPolicy> struct greeter {
static void greet() {

OutputPolicy::output(LanguagePolicy::get_greeting());
}

};

int main() {
greeter<english_language_policy, stdout_output_policy>::greet();
greeter<russian_language_policy, stderr_output_policy>::greet();

}

Figure 3.2: Extended example for policy based design.

Since all information about the specific instantiation of policy slots is already known
at compile time, policy-based design belongs to the family of compile time abstractions.
This allows the compiler to apply more optimizations than with patterns that facilitate
run time abstractions – mostly inlining of policy methods which reduces call overhead
and may lead to further optimization possibilities.

For our prototype the advantages of policy-based design lie in several related points:

• Since we are interested in the run time of different implementations for certain
aspects, we can focus on the implementation of a certain aspect while temporarily
disregarding others.

13



3. Architecture

• We can easily study the interaction of different policies (which is especially interest-
ing when comparing the output of different compilers, for results see section 4.1.6).

• For the final implementation we can just take the policy combination which proved
to be the most efficient or are especially suited for a certain use case.

Policy-based design has of course also disadvantages:

• Since it relies on templates, the error messages produced (even by modern compilers)
are notoriously difficult to understand.

• The interactions of policies (on type level as well as in their behavior) may be
subtle and require rigorous and extensive testing.

• Since every instantiation of a policy requires the compiler to generate code, the
compilation process may become uncomfortably slow even for a modest code base
– in the worst case the compiler may even crash.

• In some cases providing a generic interface within the host classes obscures the rela-
tion of data in a way that confuses the compiler and prevents certain optimizations.
We therefore had to implement some host classes multiple times in order to gain
optimal performance which of course undoes some of the benefits of policy based
design (see subsection 5.1.3).

The different behavioral aspects we consider are matrix generation (see subsection 4.1.2),
function application (see subsections 4.1.1, 4.1.3 and 4.1.4) and handling of the results
(see subsection 4.1.5).

The different synchronization strategies in subsection 4.2.1 are also implemented as
policies.
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CHAPTER 4
Applying Parallelism

In [Fly72] Flynn defines a well-known two-dimensional taxonomy of computer systems.
The two dimensions are the data-dimension and the instruction-dimension which both
may assume the values multiple and single. In this way we get four different categories:

• Single Instruction, Single Data (SISD): This is the conventional computation
pattern. In every step one particular instruction is applied to one particular datum.

• Single Instruction, Multiple Data (SIMD): Here one instruction is uniformly applied
to multiple data. Most current processors support SIMD to a certain degree (see for
example [Int07]). An example for SIMD would be a componentwise vector addition:
a single instruction (addition) is performed on multiple data (the components).

• Multiple Instruction, Single Data (MISD): This mainly theoretical [FR96] category
describes multiple functional units which independently operate on a single datum,
forwarding their results from one unit to the next.

• Multiple Instruction, Multiple Data (MIMD): Here several processors perform
heterogeneous operations on multiple, possibly heterogeneous data. This is the
most conventional form of parallel computation and is widely supported by current
processors.

As we have seen, modern processors support different modes of parallelism. As suggested
in [RJ10], we will facilitate them in a hierarchical manner. On the lowest level we will
try to get the best possible speedup by implementing our primitive operation (function
application on matrices) with SIMD instructions, on higher levels we will distribute the
workload over different processors.
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4. Applying Parallelism

4.1 The SIMD-Implementation

Our prototype will use the Intel © Streaming SIMD Extension (SSE). We chose this
technology because it is readily available on in many processors and it provides an easy-
to-use interface to C++ [Int07].

We will present the implementation for functions over A4, since it only differs from the
A3-implementation in details. We will not consider functions over A2 explicitly. This has
two reasons: on the one hand, the functions over A2 are already completely classified
(not only do we know all primitive positive clones, but also all clones in general [Her08]),
on the other hand, checking all functions (of arity ≤ 3) is only a matter of seconds, even
when encoding them as functions over A3 or A4.

4.1.1 Evaluating Arity 2 Functions

The biggest data type that SSE provides are 128-bit registers. These registers can be
interpreted as fields over integers and floating point numbers of different sizes (e.g. integers
with 8, 16, 32 or 64 bits). We will always mention what our current interpretation is
and refer to the values over the field a as a0, . . . , an. a0 will always hold the value that is
stored in the least significant bits and when listing the contents of a register the values
will be shown left to right from most to least significant.

Unfortunately we cannot use the dense packing which is assumed in Figures 4.3 and 4.2,
due to the fact that the smallest usable datatype in SSE are 8-bit (and not 2-bit) integers.
By storing each possible result value in such a 8-bit field, we can store functions up to
arity 2 in one register.

For the evaluation, we can use the intrinsic _mm_shuffle_epi8. This function takes
two 128-bit registers a and b: the first one is interpreted as field of 16 8-bit integers,
the second one contains 16 8-bit integers, whose respective 4 least significant bits serve
as index values. The result is a field c for which holds ci = abi

1 (see Figure 4.1 for an
illustration).

The way in which _mm_shuffle_epi8 works already implies a sensible memory layout
for functions and matrices: an arity 2 function f(x, y) is stored in the same order as
in the function table, starting with f(0, 0) in the least significant byte and ending with
f(3, 3) in the most significant (see Figure 4.4).

The layout for matrices (of height at most 2) is also clear: we will use the 4 least
significant bits in a 8-bit value b. The bits b0 and b1 of will encode the less significant
argument (here y) while b2 and b3 will encode the more significant one (here x). This
way we can put 16 function evaluations in one instruction – this corresponds to 4 2 × 4-
or 8 2 × 2-matrices.

1Strictly speaking ci =
{

abi if bi < 127
0 else

but in our application we will always have bi < 16.
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4.1. The SIMD-Implementation

a = a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b = 14 15 12 12 12 8 7 6 10 9 4 2 3 4 0 1

c = a14 a15 a12 a12 a12 a8 a7 a6 a10 a9 a4 a2 a3 a4 a0 a1

128 64 0

Figure 4.1: Illustration of _mm_shuffle_epi8.

a
size [bit] d

2 3 4

1 2 6 8
2 4 18 32
3 8 54 128
4 16 162 512

Figure 4.2: Minimal storage sizes for functions with arity a over d-sized domains. Values
given by dlog2 (d)e · da.

n
size [bit] m

1 2 3 4

1 1 2 3 4
2 2 4 6 8
3 3 6 18 12
4 4 8 12 16

(a) domain size 2

n
size [bit] m

1 2 3 4

1 2 4 6 8
2 4 8 12 16
3 6 12 18 24
4 8 16 24 32

(b) domain size 3 and 4

Figure 4.3: Minimal storage sizes for m × n-matrices over d-sized domains. Values given
by dlog2 (d)e · mn.

f = f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

128 64 0

Figure 4.4: Illustration of the memory layout of an arity 2 function. fxy is shorthand for
f(x, y).
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4. Applying Parallelism

A = 0 0 a7 a6 0 0 a5 a4 0 0 a3 a2 0 0 a1 a0 =
(

a7 a5 a3 a1
a6 a4 a2 a0

)

B = 0 0 b7 b6 0 0 b5 b4 0 0 b3 b2 0 0 b1 b0 =
(

b7 b5 b3 b1
b6 b4 b2 b0

)

C = 0 0 c7 c6 0 0 c5 c4 0 0 c3 c2 0 0 c1 c0 =
(

c7 c5 c3 c1
c6 c4 c2 c0

)

D = 0 0 d7 d6 0 0 d5 d4 0 0 d3 d2 0 0 d1 d0 =
(

d7 d5 d3 d1
d6 d4 d2 d0

)

128 96

96 64

64 32

32 0

Figure 4.5: Illustration of the memory layout of 4 2×4-matrices. The function is assumed
to be applied vertically.

“Blowing Up” a Function

While the layout described above is – to our knowledge – the most efficient representation
from a run time perspective, we would like to come closer the storage sizes described in
Figure 4.2 when we are not busy evaluating a function (i.e. when it lies in mass storage
or in RAM, waiting for evaluation).

We therefore bring our densely packed functions only in the 128-bit format when we are
checking them for commutation. We call this step “blowing a function up”. The process
of blowing up a 32-bit densely packed arity 2 function is illustrated in Figure 4.6.

4.1.2 Generating All Matrices

As described in section 2.1 we have to consider all m × n-matrices when checking
f(x1, . . . , xm) and g(x1, . . . , xn) for commutation. How can we implement this generation
now and what do we have to consider?

First of all we note that if we want to keep function evaluation as simple as described
in subsection 4.1.1, we have to generate not only a matrix M in each step, but also its
transpose M>.

For that reason we have two policy slots for matrix generation in our implementation: one
for generating the regular matrices and one for generating the corresponding transposes.

In general we considered two different methods to generate our matrices; incremental
generation and the generation from an integer (similar to the “blow up” from above).
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4.1. The SIMD-Implementation

f = f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

r = f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

r = 0 0 0 f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03

0 0 f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02

0 f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01

f33 f32 f31 f30 f23 f22 f21 f20 f13 f12 f11 f10 f03 f02 f01 f00

r = 0 0 0 f33 0 0 0 f32 0 0 0 f31 0 0 0 f30

0 0 0 f23 0 0 0 f22 0 0 0 f21 0 0 0 f20

0 0 0 f13 0 0 0 f12 0 0 0 f11 0 0 0 f10

0 0 0 f03 0 0 0 f02 0 0 0 f01 0 0 0 f00

032

128 96

96 64

64 32

32 0

� 6

� 4

� 2

� 0

copy

shift

“transpose” on
byte-level and zero
out irrelevant bits

Figure 4.6: Illustration of the “blow up” process for arity 2 functions. Separate shifting
of 32-bit values only becomes available in AVX, but can be emulated without much
additional effort in SSE4.1 in this special case. The transposition in the last step is
implemented via _mm_shuffle_epi8.
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m = 0 0 a7 a6 0 0 a5 a4 0 0 a3 a2 0 0 a1 a0 0 0 d3 d2 0 0 d1 d0

j1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

j16 = 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 1 0 −1 0 0

j256 = 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

j65536 = 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 96 016

128 96 016

128 96 016

128 96 016

128 96 016

Figure 4.7: Incremental generation for 2 × 4-matrices. If the counter is divisible by i, ji

is added to m. Since 4 matrices are generated at each step, the counter is increased by 4
in each step (see Figure 4.5 for exact layout).

Incremental Matrix Generation

In this approach we have some registers dedicated to hold our current matrices. In every
step we increment the 8-bit values in these registers according to a certain pattern. A
counter variable helps us handling overflows (that is values greater 16) while some
“overflows” (interpreting the values as 2-bit integers) happen naturally and to our
advantage.

In most cases2 we generate 4 matrices in one step.

This means that if the initial set of matrices is initialized with different values (e.g. a0 = 0,
b0 = 1, c0 = 2 and d0 = 3 in Figure 4.5), the remaining operation are homogeneous (i.e.
exactly the same operations are applied to each of the 4 32-bit values representing one
matrix).

“Blow Up” Matrix Generation

Here we interpret the counter as densely packed matrix similar to the densely packed
functions in subsection 4.1.1.

After blowing up the counter to a matrix, it is copied four times in the 32-bit fields of the
register holding the matrices and least significant components are modified (e.g. a0 + 0,
b0 + 1, c0 + 2 and d0 + 3 in Figure 4.5) to gain 4 different matrices.

2In fact the one case in which we considered generating 8 matrices at a time is when checking arity
1 and arity 2 functions with each other, since other pairings would have needed rather complex result
handling policies (see subsection 4.1.5).
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4.1. The SIMD-Implementation

4.1.3 Evaluating Arity 3 Functions

An arity 3 function fills, densely packed, exactly one 128-bit register. Unfortunately, as
we have already seen, this is not suitable for evaluation, therefore we have to handle
arities greater than 2 in a more complex manner.

In addition to our existing matrix (from now on “the lower matrix”) we will generate a
second “higher” one which contains the new most significant argument. The memory
layout will be the same used for the lower matrix although the evaluation differs in
certain points.

When evaluating an arity 3 function, we will perform 4 uniform steps. Each of these steps
is parameterized by a number from 0 to 3 and handles the case that the most significant
argument takes this value.

Given the parameter value s and the densely packed function in a 128-bit register r
(interpreted as 4 32-bit integers), the evaluation proceeds as follows:

1. broadcast rs to all fields of r

2. blow up the function as described in subsection 4.1.1

3. evaluate this blown up function with the lower matrix

4. select all indices in the higher matrix which are equal to s

5. at theses indices write the values obtained in step 3 to the final result

We call this the “partial evaluation procedure”.

4.1.4 Evaluating Arity 4 Functions

In principle, the evaluation of arity 4 functions is similar to evaluation of arity 3 function
with some minor differences. First of all, a densely packed arity 4 function needs 512 bits
of storage. We therefore have to use four 128-bit registers r0, . . . , r3, where rp contains
the rows of the function table, where the most significant argument equals p.

We then have to call the same procedure as in subsection 4.1.3, while the parameter
s takes values from 0 to 15. For 0 ≤ s ≤ 3 we have to call the procedure with the
function register r0, for 4 ≤ s ≤ 7 with r1 and so on. Furthermore, in step 1 of the
partial evaluations procedure, we may only consider the two least significant bits of s
(encoding the second most significant argument).

A “Selective” Evaluation Strategy

Interpreting the counter as densely packed matrix, we can obtain information of the
matrix by examining it. With this approach the partial evaluation procedure is not
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4. Applying Parallelism

c = x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

32 16 0

Figure 4.8: Interpreting the loop counter c as densely packed 32-bit matrix. If, for
example, none of the highlighted values equals 0, the partial evaluation procedure does
not have to be called for 0 ≤ s ≤ 3.

necessarily called for each possible parameter but only if the examination of the counter
indicates that a corresponding value is in the matrix. Furthermore, the examination
happens in two phases: first the most significant argument is checked, then, if necessary,
the second most significant.

This approach introduces a fair amount of non-linearity to the control flow of our, until
now, rather linear program which can be bad for performance. We therefore implemented
two different variants: one as described above and one where only the most significant
argument is considered. The results in section 4.1.6 turned out to be interesting.

4.1.5 Handling the Results

After evaluating the functions f and g according to the current matrix and its transpose,
we have two registers, rf and rg containing at most 16 values from 0 to 3.

These can be handled in different ways. The most primitive way is just building two new
matrices mf and mg from rf and rg and evaluating f according to mg and g according
to mf . If the new results are not equal, f and g do not commute. If the results are equal,
we check the next matrix.

Accumulating the Results

If f and g turn out not to commute soon, the simple method from above is perfectly fine.
In the worst case – that is from a run time perspective f ⊥ g – it is wasteful, because
depending on the packing of the matrices, only 4 (respectively 8) functions are evaluated
in each step, instead of the maximally possible 16.

If we accumulate the matrices mf and mg in a designated register, we only have to
evaluate the functions every fourth (respectively second) step, which helps to reduce the
run time in the worst case.

A “Selective” Result Handling Strategy

Consider the way our matrices (and their transposes) are generated and evaluated:
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4.1. The SIMD-Implementation

f(x15 x13 x11 x9) = y3
f(x14 x12 x10 x8) = y2
f(x7 x5 x3 x1) = y1
f(x6 x4 x2 x0) = y0

g(x15 x14 x7 x6) = z3
g(x13 x12 x5 x4) = z2
g(x11 x10 x3 x2) = z1
g(x9 x8 x1 x0) = z0

When generating all matrices in standard order (i.e. increasing x0 and then increasing
xi by one if xi−1 would reach 4 while setting xi−1 to 0), we can make the following
observation: y0 and z0 may change every step, z1 changes at most every 16th, z2 at most
every 256th step and so on.

This allows, in combination with accumulating result handling and selective evaluation,
two optimizations. First consider that yi and zi are the components of the new matrices
used in the final step of the commutation test. Since the constituents of the new upper
matrix change seldom compared to those of the lower matrix (at most every 65536 steps
for mf and every 256 step mg) we can save some performance by only calculating them
when needed.

Secondly, since the upper matrix always consists of the slow changing values y2, y3, z2
and z3 we can further optimize the selective evaluation: according to the value of y3
and z3 we remember which of the four registers holding our function will be used for
evaluation. Then only exactly one call to the partial evaluation procedure has to be
performed, according to the value of y2, respectively z2.

4.1.6 Performance

All benchmarks in the following section were performed on a customary notebook with a
Intel® Core™ i5-5300U CPU. The code was compiled with g++ 5.3.0 and clang++ 3.7.1
respectively using the highest available optimization level.

As mentioned before, the choice of the benchmark can drastically influence the perfor-
mance of the tested programs: in most cases non-commutation can be decided after
considering only a few matrices – most of our optimizations on the other hand aim to
reduce the computational work in the long run, i.e. when checking commuting functions.

We therefore will consider different benchmarks and start with the most difficult case
at first, commuting arity 4 functions over A4. What we see immediately in Figure 4.9
is that the choice of the compiler is a huge factor for our performance: clang already
produces fast code without optimizations, while it actually produces worse code than gcc
when all optimizations are applied. What is interesting is the fair balance between the
amount of executed code and the non-linearity in the control flow one has to consider:
the selective evaluation which takes only the most significant parameter into account
(denoted by selectivems in the figures) seems to hit a sweet spot for gcc but performs
badly when compiled with clang.
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Figure 4.9: Run time of benchmark consisting of all 4 constant functions over A4, grouped
by evaluation and result handling policy.

The selective evaluation that takes all contents of the upper matrix into account (denoted
by selectiveall in the figures) produces much slower results for gcc and slightly faster
results for clang.

The result handling strategies work as expected (with one exception: brute force evaluation
with selective result handling, compiled with clang).

Let us now consider a set of 10,000 randomly generated non-commuting arity 4 functions
over A4. As we can see in figure 4.10, accumulating (and to a lesser degree also selective)
result handling affects the run time negatively – the overhead needed to accumulate
matrices is wasted on functions which can be decided to be non-commuting using few
matrices, which is the case for most randomly generated functions. What is interesting
is that the differences between gcc and clang have become less pronounced for this
benchmark.

Since matrix generation does not seem to influence the performance significantly, we only
implemented the blowup policy for arity 4 functions over A4. Therefore, the following
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Figure 4.10: Run time of benchmark consisting of 10,000 randomly generated non-
commuting functions over A4.

benchmarks will only contain results for incremental matrix generation.

As we have seen now, the properties of the examined functions greatly influence the run
time behavior of our programs. What is now the optimal strategy for real world function
sets? One rather small but, in a sense, complete benchmark which we can easily test is
the set {f ∈ P3 | ar (f) ≤ 2} which has only 331 + 332 = 19710 elements.

Because of the small arities of the functions under consideration, we cannot apply
the advanced selective evaluation and result handling policies, but a new chance for
optimization appears: dense matrix packing, i.e. generating 8 instead of 4 matrices per
iteration. As we can see in figure 4.11, the overall effect of dense matrix packing is
positive but modest. For commuting functions, however, the expected factor 2 speed
up occurs. Another interesting observation is that even when considering only positive
instances, accumulating the results has no positive effect for matrices of this size.

4.2 Parallelization on a Higher Level
Having done our best to optimize our implementation on one processor, we now move up
one level and try to distribute our workload efficiently among processors. We will first
implement the parallelization with the well-established OpenMP-Framework and then
try to improve on this results with a custom implementation based on pthreads.

As the single commutation test is rather fast in most cases, we will focus on distributing
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Figure 4.11: Run time of benchmark consisting of all functions of arity 2 or lower over A3
(encoded as functions over A4). Please note the different scales for positive (commuting)
and negative (non-commuting) instances. Since the separation of commuting and non-
commuting instances introduced considerable overhead, we also give the run time of the
non instrumented binary in the first two columns of each cluster. These columns use the
left scale.

the commutation tests among processors instead of further parallelizing the single
commutation test.

4.2.1 OpenMP

OpenMP [Ope13] is a collection of compiler directives and library functions for C, C++
and Fortran. It provides an easy-to-use interface for shared-memory parallel programming,
but relies, due to its nature as language extension, on compiler support.

The simplest form of parallelization is demonstrated in figure 4.12. Let us assume we
want to check the contents of vec1 for commutation with the contents of vec2. A1, A2
and D are global constants that describe the arities of the checked functions and the
domain size respectively. We also assume that if A1 equals A2, vec1 equals vec2, which
allows the optimization in the initialization of j.

The code now is the same as the single threaded version with the exception of two
compiler directives. The first one directs the compiler to parallelize the first loop. All
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#pragma omp parallel for schedule(runtime)
for (uint64_t i = 0; i < vec1.size(); ++i) {

for (uint64_t j = A1 != A2 ? 0 : i; j < vec2.size(); ++j) {
if (solver<D, A1, A2>::commutes(vec1[i], vec2[j])) {

#pragma omp critical
{

matches.add(i, j, A1, A2);
}

}
}

}

return matches;

Figure 4.12: Simple parallelization with OpenMP.

variables declared in a parallel block (i and j in this case) become private to a thread. To
avoid race conditions and other errors when we access shared variables (such as matches
in this case), we have to be careful. One way to handle concurrent access to shared
variables, such as in the innermost block in figure 4.12, are so-called critical sections.

Only one thread at a time can execute the commands in a critical section, which means that
if there are too many of these sections, we loose the advantages of multithreading [SL08].
In our case the critical section is rarely entered, but nevertheless we examine two
approaches two avoid it completely.

Using Separate Variables

Consider the code in figure 4.13. The two new OpenMP library functions
omp_get_max_threads and omp_get_thread_num have the expected semantics: the first
one returns the maximal number of threads that can be created when entering a parallel
section, the second returns an identifier from 0 to the omp_get_max_threads()− 1. Fur-
thermore we assume join_matches to be a function that constructs a new instance of
matches_type which contains all matches from the two input parameters.

We then avoid using a critical section the following way: for each potential thread we
create an instance of matches_type which we access using the unique thread number.
At the end of the parallel execution we accumulate the results manually.

Using a User-Defined Reduction

Starting with version 4.0, OpenMP allows us to define our own reductions (where earlier
versions only offered a fixed set of mathematical operations on basic types). A reduction
is an operation which accumulates all values of a thread private variable to a single
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const size_t max_threads = omp_get_max_threads();
std::vector<matches_type> thread_matches(max_threads);

#pragma omp parallel for schedule(runtime)
for (uint64_t i = 0; i < vec1.size(); ++i) {

for (uint64_t j = A1 != A2 ? 0 : i; j < vec2.size(); ++j) {
if (solver<D, A1, A2>::commutes(vec1[i], vec2[j])) {

thread_matches[omp_get_thread_num()].add(i, j, A1, A2);
}

}
}

return std::accumulate(thread_matches.begin(), thread_matches.end(),
matches_type(), join_matches);

Figure 4.13: Using separate variables to avoid critical sections.

#pragma omp declare reduction(match_join : matches_type :\
omp_out = join_matches(omp_out, omp_in))
matches_type matches;
#pragma omp parallel for schedule(runtime)\
reduction(match_join : matches)
for (uint64_t i = 0; i < vec1.size(); ++i) {

for (uint64_t j = A1 != A2 ? 0 : i; j < vec2.size(); ++j) {
if (solver<D, A1, A2>::commutes(vec1[i], vec2[j])) {

matches.add(i, j, A1, A2);
}

}
}

Figure 4.14: Using user-defined reductions to avoid critical sections.

variable at the end of a parallel block (using a reduction on a variable automatically
makes it thread private). In principle, we are doing the same thing as in the previous
subsection, only with language support. For a demonstration refer to figure 4.14.

The declare reduction compiler directive consists of three mandatory parts3:

1. an identifier which is used in reduction-clauses

2. the type on which the reduction operates
3The fourth would allow specifying an initial value for the reduction.
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3. an expression with which the reduction is calculated. Here we can make use of
the variables omp_in and omp_out which hold the two values to be reduce. It is
assumed that after applying the expression omp_out holds the reduced value.

Of the compilers we used only GCC supports user-defined reductions so far.

Other Optimizations

In addition to these approaches, we can try some other ways of tuning our implementation.
First of all we can try different schedules. The schedule directive (which is applied to
loops) can takes two arguments: the kind and the chunk size. The standard defines three
schedule strategies and two additional possible values for the kind parameter:

• static: Here chunk size iterations are grouped together and assigned to the threads
in a static, round robin fashion. Let c = chunk size and m be the maximal number
of threads, then the assignment of iterations works in the following way: the first
thread in thread group is assigned the first c iterations, the second one the second
c iterations and so on. If e.g. the first thread is finished with its assigned iterations,
it starts with working on the next c iterations starting with m · c. This strategy
has the lowest overhead and works best if all iterations take more or less the same
amount of time.

• dynamic: Here every thread is assigned chunk size iterations. If it is finished it
takes another chunk size iterations from an internal work queue. This strategy has
more overhead than the static strategy but should, in theory, be more suited for
tasks where the run times of iterations vary much.

• guided: This strategy is similar to the dynamic strategy, but the size of a group of
iterations assigned to thread is proportional to the number of remaining iterations
to perform. This happens to even out run time differences between the iterations.
The chunk size parameter is used to determine the minimum number of assigned
iterations.

• auto: Here the implementation chooses a strategy.

• runtime: When this value is specified, we can set the strategy via environment
variables or functions in the OpenMP library. We used this parameter value in our
implementation and set the strategy via command line switches.

Checking a pair of functions for commutation can, depending on the result of the check,
take a different amount of time – for higher arities and domain sizes, the run time of
the check may take any time from some nanoseconds to tens of seconds. If now, for
example, vec1[i] contains a function that commutes with many other functions (e.g. a
constant function), the execution of the thread handling vec1[i] may take much longer
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#pragma omp parallel for collapse(2)
for (uint64_t i = 0; i < vec1.size(); ++i) {

for (uint64_t j = 0; j < vec2.size(); ++j) {
if (A1 == A2 && j < i) {

continue;
}
if (solver<D, A1, A2>::commutes(vec1[i], vec2[j])) {

#pragma omp critical
{

matches.add(i, j);
}

}
}

}

return matches;

Figure 4.15: Illustration of the collapse directive (applied to the code in figure 4.12).

than the execution of other threads – it may even run longer than all other threads
combined, which leads to a suboptimal utilization of the processor. Therefore, it may be
beneficial to “collapse” our nested for loop to one loop (such that every pair i and j may
be examined in its own thread). To do this, we can use the collapse directive.

Unfortunately, to be able to apply a parallel for directive to a loop, it must be in
“canonical form” (see [Ope13], section 2.6). Our inner loop (to which the parallel for
directive is applied, because of the collapse directive), however, is not in canonical form.
The problem is the initialization of j, which is not loop invariant. We can try to mitigate
this by skipping the iterations which do not interest us. For an illustration of the code
using collapse refer to figure 4.15. Another possibility would be replacing the nested loop
with a non-nested one and calculating the two indices from the loop counter.

4.2.2 Using C++ Threads

Starting with C++11, C++ specifies a multi threaded computation model and a fitting
API for harnessing the power of concurrency. On Linux, which was our target operating
system, the implementation of this API is based on pthreads [Gro13].

Our implementation has (beside the number of threads of course) only one parameter,
the chunk size. Every thread maintains its own matches and the only time the need for
synchronization arises is, when a thread requests a new chunk of iterations.

Thus, our implementation emulates the separate strategy with a dynamic scheduler.
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4.2.3 Performance

For benchmarking multi threading on a higher level, we have variety of parameters we
may consider: different scheduling and synchronization strategies, thread counts and
chunk sizes may influence our performance as much as a different inputs. The discussed
benchmark here consisted of a set of 500,000 randomly generated arity 2 functions over
A4 which contained commuting functions. The hardware used was a 80-core shared
memory node based on the Intel® Xeon® E7-885 processor, that provided 160 virtual
threads.

To isolate trends in the such a big amount of data is of course difficult, especially if one
tries to make general statements. Nevertheless we shall try to at least gather identify at
least some interesting details.

First of all it shall be noted that the choice of the synchronization strategy – that is
whether we are using critical sections, separate variables or custom reductions – is largely
irrelevant for our application: when the other parameters were appropriately set, the
differences between run times were within tenths of seconds.

As for different schedulers: the guided scheduler seemed to be a bad match for our
application. Not considering the outliers mentioned below, it consistently performed
worse than the dynamic or static schedulers.

When parallelizing only the outer of our two loops, the chunk size does not seem to have
big influence on the performance, as the execution of the inner loop takes a long time
(when compared to a single commutation check). The scheduling is thus already with
chunk size 1 “coarse grained” enough not to cause a significant overhead.

When we are however using the collapse directive as described above, the behavior
drastically changes. When using a too small chunk size, e.g. 1, the synchronization
overhead for the dynamic scheduler becomes so large, that in our benchmarks regularly
crashed. In the runs that did not crash, we could observe a huge performance penalty. A
similar effect, although not as pronounced, can be observed with the static scheduler.
The performance when using the guided scheduler is, for our application, not influenced
by the choice of the chunk size. For an illustration, refer to figure 4.16.

We conclude this section with a presentation of the benefit gained through parallelization.
First we note that the pthread-based approach ran slightly, but consistently, faster than
the non-collapsed OpenMP-based approach which in turn ran slightly, but consistently,
faster than a collapsed version with an appropriate chunk size as we see in figure 4.17.
Furthermore, we see that our problem scales well over multiple processors and that, as a
CPU bound task, using virtual threads does not yield a big performance gain.

4.3 The GPU-Implementation
In graphics contexts often the need arises to apply a certain operation homogeneously and
in parallel to huge amounts of input data. To transform or move, for example, a three
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Figure 4.16: Run time of a benchmark relative to the chunk size. The three recognizable
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dimensional model on screen, each of the vertices describing its surface has to be modified
(usually via a matrix multiplication). Another example are so-called “fragment shaders”
which apply some visual effect on already rendered images, pixel by pixel. Additionally
when used in real-time applications, such as video games, these computations have to be
performed at an acceptable rate.

To cope with these demands, starting in the late nineties, special coprocessors – GPUs
(graphics processing units) – were developed. These coprocessors evolved from modest
chips that offered a rather inflexible fixed-function pipeline to the flexible and powerful
parallel computing systems we have nowadays. For a historical overview consider [ND10].

To make the computational power of GPUs available for more general applications
(GPGPU, general purpose computing on graphics processing units), different interfaces
such as OpenCL [Gro] and NVIDIA’s CUDA [Cor] have been introduced.

To keep our program vendor neutral, we first considered an implementation in OpenCL,
but since the performance of our prototype was rather disappointing on our available
hardware (NVIDIA K20x), we changed our application to use CUDA. The following
exposure therefore uses CUDA-specific concepts and terms which, in our experience, can
be easily applied in OpenCL contexts.

As with the more complex optimizations in section 4.1 we only consider our “worst case”:
arity 4 functions over A4.

4.3.1 A CUDA Primer

CUDA is a minimal extension to the C++ programming language, coupled with a library
of functions and a runtime environment.

The extension consists of the possibility to specify and call so-called kernels. A kernel
is a procedure which is executed in parallel on the GPU. The data on which a kernel
operates must be transferred to the GPU memory upfront via special functions in the
CUDA library.

CUDA allows us to organize computation in a two-level hierarchy. On the higher level
we have the grid of blocks. These blocks, which get assigned a unique identifier, cannot
communicate with each other and may therefore be executed in parallel and independently
from each other. Within these blocks, we have threads which get assigned an identifier
which is unique within a block. Threads can share memory which is private to a block
and have a simple form of synchronization [NBGS08].

When calling a kernel, the programmer may specify the number of blocks within a grid
and the number of threads within each block; the latter is also called “block dimension”.
For convenience, the grid may have up to three dimensions, which leads to a three-
dimensional block identifier, but this feature is not used in our implementation.
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4.3.2 Checking Functions

As before, we represent our functions by storing them into function tables. This time,
instead of densely packed in SSE registers, we store them into byte arrays in the GPU
memory. CUDA offers different memory regions which are optimized for different use
cases, e.g. memory for textures which usually get accessed in certain patterns, which in
turn may be exploited for cache locality.

We chose the so-called “constant memory”, which promises fast access in exchange for
the ability to write in the memory from a kernel, but in our benchmarks the different
memory regions did not influence the performance critically.

Before calling the kernel, we have to decide how many of the 416 matrices we want to
check at once. If we generate n matrices at once, we have to allocate a size n result
array a, which will contain ai = 1 if the ith matrix of this run is a witness for the non-
commutation of the two checked functions, and ai = 0 otherwise.

This way, we need to call the kernel d416

n e times. The offset mentioned further below
equals d416

n e · k in the kth run.

Within the kernel, the commutation test consists of these parts:

1. generate a matrix from block and thread identifier and offset

2. generate array indices for each row/column

3. look up function values in arrays

4. generate new array indices from results

5. look up new results from theses indices

6. if results are equal write 0 in output array, if the results are unequal write 1 in the
output array

Since the code is very short, it is presented in its entirety in figure 4.18.

In its simplicity this code, which is more or less the first version taken from the OpenCL
prototype, does not offer many possibilities to optimize. One ostensible way to improve
performance would be to simplify the matrix layout from


x15 x13 x11 x9
x14 x12 x10 x8
x7 x5 x3 x1
x6 x4 x2 x0

 to


x15 x11 x7 x3
x14 x10 x6 x2
x13 x9 x5 x1
x12 x8 x4 x0

 .

This would reduce the generation of the first array indices to one shift and one bitwise
and, and would not change the number of operations in the second one.
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Interestingly, the code with the simpler layout reproducibly has worse performance on
our hardware than the initial code.

Other approaches which tried to reduce the number of array index calculations by using
shared memory also led to a worse performance than the already presented approach.

4.3.3 Reducing the Result Array

After checking the functions in the previous subsection, we have to check if the array
contains an element different from zero. Since bitwise or, which we will use to check for
non-zero elements, is an associative operation, we may organize our search as a balanced
binary tree that gets evaluated layer for layer in parallel. See figure 4.19 for an illustration
of the principle.

Parallel Reduction is a subtle topic, as is demonstrated in [H+07]. The performance
depends on hardware details as well on seemingly unimportant aspects of the implementa-
tion. Thankfully, newer installations of CUDA already ship with the thrust library which
provides efficient implementations of parallel algorithm primitives such as reduction.

Since we are only interested in the two possible results zero or non-zero, we can save
some execution time by interpreting the input array not as bytes when reducing, but as
32-bit values. This optimization speeds up the reduction step by more than factor three.

4.3.4 Performance

The main degrees of freedom we checked for were number of threads per block and number
of matrices generated per call to the kernel. Especially the second parameter is a subtle
point: since small group sizes could lead to an earlier identification of non-commuting
function pairings the choice of the benchmark is important.

Our used benchmark consisted of all constant functions over A4. This means that there
were 4 positive commutation tests and 6 which could be decided to be negative after the
first call to the kernel.

Another thing to consider is the fact that kernel calls in CUDA are performed asyn-
chronously from the perspective of the CPU. Only when, for example, memory is trans-
ferred between host and device memory or synchronization is explicitly requested by the
cudaDeviceSynchronize function, the CPU and GPU are synchronized. We therefore
have to pay attention when we benchmark single kernels.

Let us first consider the reduction operation. Since we rely on the thrust library, which
chooses the number of threads, the only degree of freedom is the group size. Here the
experiments are consistent with our expectations of logarithmic run time behavior: as
seen in figure 4.20 doubling the group size roughly halves the total run time (in a certain
interval).
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const uint64_t f1l = cpow(D,A1);
const uint64_t f2l = cpow(D,A2);

//function that is applied vertically
__constant__ char df1[f1l];
//function that is applied horizontally
__constant__ char df2[f2l];

__global__ void apply_function(char* C, unsigned int offset){
const unsigned int result_position = blockIdx.x*blockDim.x +

threadIdx.x;
const unsigned int mat = result_position + offset;

unsigned int r0 = ((mat >> 12) & 0xF0) | (mat & 0x0F);
unsigned int r1 = ((mat >> 16) & 0xF0) | ((mat >> 4) & 0x0F);
unsigned int r2 = ((mat >> 20) & 0xF0) | ((mat >> 8) & 0x0F);
unsigned int r3 = ((mat >> 24) & 0xF0) | ((mat >> 12) & 0x0F);

r0 = df1[r0];
r1 = df1[r1];
r2 = df1[r2];
r3 = df1[r3];

unsigned int ra = r0 | (r1 << 2) | (r2 << 4) | (r3 << 6);
ra = df2[ra];

r0 = ((mat >> 6) & 0xC0) | ((mat >> 4) & 0x30) |
((mat >> 2) & 0x0C) | (mat & 0x03);

r1 = ((mat >> 8) & 0xC0) | ((mat >> 6) & 0x30) |
((mat >> 4) & 0x0C) | ((mat >> 2) & 0x03);

r2 = ((mat >> 22) & 0xC0) | ((mat >> 20) & 0x30) |
((mat >> 18) & 0x0C) | ((mat >> 16) & 0x03);

r3 = ((mat >> 24) & 0xC0) | ((mat >> 22) & 0x30) |
((mat >> 20) & 0x0C) | ((mat >> 18) & 0x03);

r0 = df2[r0];
r1 = df2[r1];
r2 = df2[r2];
r3 = df2[r3];

unsigned int rb = r0 | (r1 << 2) | (r2 << 4) | (r3 << 6);
rb = df1[rb];

C[result_position]= (ra != rb);
}

Figure 4.18: CUDA kernel which is used to apply functions on the GPU.
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Figure 4.19: Illustration of the parallel reduction algorithm. The operations in each step
may be executed in parallel. This tree structure accesses the memory in an efficient way
but requires commutativity in addition to associativity.
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Figure 4.21: Run time of the apply step relative to the number of threads for different
group sizes. Increasing the group size stops yielding a benefit after a certain point.

Let us then consider the function application step. Here the algorithm has in principle
linear performance run time, however, as we see in figures 4.21 and 4.22 increasing the
thread count and group size has nevertheless a beneficial effect.

Increasing the number of threads stops yielding a benefit at 64 threads and increasing
the group size over a certain limit of about 226 has (in our bench mark) even a negative
effect.
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Figure 4.22: Run time of the apply step relative to the group size.
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CHAPTER 5
Conclusions

After reducing the run time of one positive commutation check from 220 minutes with
our, admittedly inefficiently implemented1, first prototype to around 30 seconds with the
fastest SIMD-based executable we see our expectation that the commutation property is
highly parallelizable confirmed.

The GPU-based approach provided an even better performance of around one second,
although the results are of course not directly comparable. We deem the possibility of
parallelizing this problem with the help of graphics hardware especially interesting, as the
performance of GPUs right now seems to grow faster than that of ordinary processors.

At the same time we acknowledge that for domains larger than A3, a “brute force”
calculation of all centralizers can never succeed.

We, however, do hope that our tool will help researchers to test their ideas with relative
ease, so that new results in clone theory can be discovered.

5.1 Lessons learned

While implementing the different approaches we, of course, made several mistakes. These
mistakes, in our opinion, also deserve to be documented.

5.1.1 Correctness Always Reigns Supreme

It seems trivial, but a program that does the wrong thing fast is not as useful as a
program that does the right thing slowly. But what we want to address here is a slightly
more subtle point: often programmers think, that the “minor inaccuracies” introduced

1A subsequent prototype which was still naive but had no glaring inefficiencies still took around 60
minutes.
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by programming mistakes will not influence the performance of a program much if the
overall structure of the implemented algorithm does not change by fixing the bug. Given
the abilities of modern compilers, this, however, is not true for many bugs. If a bug,
for instance, alters the data flow in a way that allows some “incorrect” optimizations to
happen, benchmarking an incorrect program is an exercise in futility.

The most trivial instance, which is not a bug per se, is not outputting the result of a
computation during development when one tries to get an intuition about the performance
of different parts of the program. Oftentimes, the compiler may identify a computation
whose result is discarded as side-effect free and does not generate code for it at all – likely
the fastest possible variant but not what we want.

Another example were a similar phenomenon could be observed was the selective eval-
uation from subsection 4.1.4: Before thorough testing the functions which decided if
a evaluation step was necessary was incorrect and deemed many necessary evaluations
unnecessary. This led to faster run times as less code was executed, but of course did not
provide correct outputs.

We conclude this subsection with an example from the CUDA-based approach. Due to
a missing compiler flag, the kernel for evaluating the function was not executed when
using groups of matrices over a certain size, leaving the result array filled with zeroes –
as initialized. Since we were testing only with commuting functions at that time, the
error went unnoticed which led to some wasted hours of benchmarking and “optimizing”
a kernel which did not get executed. There are several ways which can mitigate problems
of this kind: this specific problem would not have occurred if we had not initialized our
result with the expected value. In general only thorough testing can give reasonable
confidence in the correct execution behavior of a program in the real world – even more
so as the program itself was correct in this case.

5.1.2 Try to Eliminate Noise When Benchmarking

Another time sink when benchmarking the CUDA-based approach was that CUDA, then
unbeknownst to us, needs a complex initialization procedure which gets called lazily on
the first call to a function from the CUDA-API. When working only with small problem
instances the run time cost of the initialization easily dwarves the run time of the actual
computation. Additionally, the time that initialization takes varies between executions,
which makes it impossible to recognize small changes in the performance. The solution
to this problem is to initialize CUDA explicitly and then measuring the execution time
from that moment on. Since CUDA provides no dedicated initialization function, the
idiomatic way to do this is a call to cudaFree(0).

When we are instrumenting our code manually, we may introduce significant noise to
the performance. One example for this is shown in figure 4.11. It is therefore important
that we always consider the run time of the non-instrumented versions too when we draw
our conclusions. It shall be noted explicitly that instrumentation also may change the
run time behavior of non-instrumented parts of the code. The, to us, most surprising
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for (uint64_t i = 0; i < vec1.size(); ++i) {
for (uint64_t j = A1 != A2 ? 0 : i; j < vec2.size(); ++j) {

std::string id1 = to_string(i) + "/" + to_string(A1);
std::string id2 = to_string(j) + "/" + to_string(A2);

if (solver<D, A1, A2>::commutes(vec1[i], vec2[j])) {
matches[id1].insert(id2);
matches[id2].insert(id1);

}
}

}

Figure 5.1: Example of needlessly slow code.

instance of this phenomenon was that measuring the time a single function call on the
call site changed the run time of the function call.

5.1.3 Subtle Changes May Have a Huge Impact on the Run Time

The following example would also fit in the preceding subsection, but at the same time
it demonstrates the limits that compilers face in certain situations. Consider the code
in figure 5.1. While testing with large, commuting functions, the code in question did
not show any obvious weaknesses. When we, however, went to big amounts of small,
non-commuting functions the construction of the string ids, which only would have been
needed in the commuting case, took much more time than the commutation test itself.
The solution was, of course, to move the declaration of the strings into the if block – an
optimization we deemed within the possibilities of modern compilers.

As discussed in subsection 4.1.3, when we need two 128-bit registers for our matrices when
evaluating functions of arity ≥ 3. A natural way to handle this case would have been
implementing an abstract matrix type that holds two registers in case of arity 3 and 4
functions and only one register for smaller arities. Unfortunately, this layer of indirection
obviously confused the compiler and the produced code turned out to be significantly
slower. We solved this problem by implementing different classes depending on the arities
of the functions. This lead to code duplication, with all the negative consequences on
maintainability, but on the other hand conserved the good run time behavior.

5.2 Prospects
After spending a considerable time implementing the different approaches what are our
insights and what potential improvements do we deem possible?

The SIMD-based approach took by far the most time to implement, but has the advantage
that it runs on many computers and is easily distributable on clusters. Furthermore, at
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the time of writing many newer processors already supported 256-bit2 registers and more
advanced instruction sets, which may cut the execution time in the worst case in half.
On the other hand, for bigger domains or functions of bigger arities the SIMD-based
approach may not be suited.

This has several reasons. First of all A4 has many nice properties: we can use overflows
that “naturally” happen for matrix generation, a call to _mm_shuffle_epi8 can express
the evaluation of two parameters, the encoded 2-bit integers are always neatly aligned in
our registers and we can use fast bit operations, like shifts, instead of slow operations,
like divisions, in many cases. All of these properties are, for example, missing for A5.
Furthermore, the SIMD-based approach already takes tens of seconds in the worst case
(that is, when probing all 416 matrices). Even if the evaluation of arity 5 functions would
be as fast as the evaluation of arity 4 functions3, we would still have to check 425, that
is 512 times more, matrices in the worst case. For larger domains, like already A5, the
SIMD-based approach would take years on a single CPU to check only two functions
(with arities ≥ 5).

A possibility to manage this complexity would be parallelizing the commutation test
itself over multiple CPUs.

The CUDA-based approach can remedy some of these problems: first of all it is com-
paratively simple and therefore easier to extend. Secondly, it is faster in absolute terms,
although the sheer number of matrices for bigger domains of course is also a problem for
this approach.

Another, yet unexplored, possibility would be the distribution of the workload over
several computers in a cluster via OpenMPI [Ope12]. Unfortunately, we could not try
this, since the CPUs in our available OpenMPI cluster did support some crucial SSE
instructions.

If one were now to attempt computing the commutation property of functions (with arity
4) on a grand scale, this is how we would recommend to proceed:

• Use existing theoretical knowledge to prune as many functions upfront from the
set of functions to test.

• Use the SIMD-based approach to proof non-commutation for many functions, by
considering only the first n matrices (with e.g. n = 1024). This should already
suffice for most functions to show non-commutation.

• Use the CUDA-based approach to check the remaining functions, which are now
more likely to commute.

This thesis just considered the parallelizability of the commutation property by using
a “brute force” approach which did not try to reduce the number of checked matrices.

2The AVX-512 architecture even provides 512-bit registers.
3which it likely would not be
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5.2. Prospects

How to separate primitive positive clones from each other by constructing functions in
an intelligent way is discussed in Artem Revenko’s dissertation [Rev15]. To which extent
the two approaches are compatible remains an open question.
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