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Abstract

Dark matter self-interactions are frequently put forward in the explanation of small
structure problems in the universe. They could have important implications on the
formation and evolution of structures, from dwarf galaxies to large galaxy clusters.
In this thesis, the effects of bremsstrahlung in self-interacting dark matter collisions
on structure formation are analyzed. For that purpose, four different dark matter
models are studied perturbatively in a non-relativistic and non-degenerate limit. Cross
sections and energy loss rates are calculated analytically for all models for vanishing
masses of the mediator and emitted particle and numerically for finite masses. To
analyze the effect of radiative cooling on structure formation, the cooling time of a gas
of dark matter particles t..o, based on perturbative calculations, is compared to the
elastic scattering time scale ¢, the Hubble time ¢, and the gravitational timescale tgyay-
Results show that for a fiducial dark matter density p, = 1 GeV/cm? the condition
teool < to can be fulfilled for particle-particle scattering if m, /o < 100 MeV and

~

for particle-antiparticle scattering if m,/a < 100 GeV and that therefore radiative
cooling has an influence on the formation of structures. Considering the observational
constraint or/m, < 1 cm?/g at cluster scales of v, ~ 1072, it was found that tq <
teol < to can be fulfilled if m, /a®? > 10 GeV with dark matter densities o p, > 106

GeV /em? for yy-scattering and « p, = 10* GeV/cm?® for xx-scattering.






Deutsche Kurzfassung

Selbst-Wechselwirkungen von Dunkler Materie werden haufig zur Erklarung der Kle-
instrukturprobleme im Universum verwendet. Sie konnten wichtige Auswirkungen auf
die Entstehung und Entwicklung von Strukturen haben, von Zwerggalaxien bis grofen
Galaxienhaufen. In dieser Arbeit werden die Auswirkungen von Bremsstrahlung in
Kollisionen von selbst-wechselwirkender Dunkler Materie auf die Strukturbildung im
Universum analysiert. Zu diesem Zweck werden vier verschiedene Dunkle Materie Mo-
delle storungstheoretisch im nicht-relativistischen und nicht-entarteten Regime unter-
sucht. Wirkungsquerschnitte und Energieverlustraten werden analytisch fiir alle Mo-
delle berechnet. Fiir verschwindende Masse des Austausch- und emittierten Teilchens
werden analytische Losungen angegeben, wiahrend fiir endliche Massen auf numerische
Losungsverfahren zuriickgegriffen wird. Um die Wirkung der Strahlungskiihlung ei-
nes Dunkle-Materie-Gases auf die Strukturbildung zu analysieren, wird die Abkiihlzeit
teool basierend auf storungstheoretischen Berechnungen mit der Zeitskala elastischer
Streuungen t.;, der Hubble-Zeit ¢y und der gravitativen Zeitskala ., verglichen. Es
zeigt sich, dass fiir eine Referenzdichte von Dunkler Materie p, = 1 GeV/cm?® die
Forderung t.o < to fiir Teilchen-Teilchen Streuung durch m,/a < 100 MeV und
fir Teilchen-Antiteilchen Streuung durch m,/a < 100 GeV erfiillt werden kann und
Strahlungskiihlung in diesen Féllen daher einen Einfluss auf die Strukturbildung im
Universum hat. Unter Beriicksichtigung von astronomischen Beobachtungen, die auf
Grofenskalen von Galaxienhaufen mit v, ~ 1072 den elastischen Streuquerschnitt auf
or/m, < 1 cm?/g beschinken, zeigt sich, dass tg < teol < to erfiillt werden kann,
wenn m, /a®/? > 10 GeV mit Dunkle-Materie-Dichten von a p, > 10° GeV/cm? fiir
xx-Streuung und « p, 2 10? GeV /em? fiir xx-Streuung.






Acknowledgements

I would first like to thank my research advisor Josef Pradler for giving me the oppor-
tunity to write my diploma thesis in his group and proposing this interesting topic.
His office door was always open for me whenever I had questions or ran into problems,
which lead to many interesting discussions. I have learned a lot in the past year, not
only about particle physics but also about the world of research in general and I am
very grateful for having been able to conduct my diploma thesis at the Institute of
High Energy Physics. I also want to thank Prof. Anton Rebhan from the Institute of
Theoretical Physics for the official supervision of my thesis.

I would like to thank Johannes Brandstetter for drawing my attention to the dark
matter theory group in the first place and for the many visits to my office telling me
about his everyday shenanigans. I would like to thank him, Thomas Madlener and
Philipp Moser for inspiring discussions about physics and physics-related topics at our
monthly “journal club” and I want to thank all my other fellow students, who have
become great friends to me, for the most pleasant and fun times.

I also want to express my gratitude to Kathrin Bednar for her support and encourage-
ment throughout the past years and for making my life happier. I know that it is not
always easy to listen to my everyday physics problems, but I appreciate her listening
anyway. Finally, I want to thank my parents for making it possible for me to study
physics and for always supporting me and I want to thank my brother and all my

friends for making the past years in Vienna an unforgettable time.

vii






Contents

[3 Dissipation in Self-Interacting Dark Matter Models|

[3.1 S5-Matrix, Cross Section and Energy Loss Rate] . . . . . . ... ... ..

[3.2  Fermion Scatteringl . . .

[3.2.2  Gauge Interaction|
[3.3  Scalar Boson Scattering]
[3.3.1 (Gauge Interaction|

[4  Effects of Dissipation on Structure Formation|

5 Conclusions and Outlook]

[A Appendix|

[A.1 Massive U(1) Gauge Field . . . .. ... ... ... ... .. .. ...,

[A.2 Feynman Rules and Amplitudes| . . . . . . ... .. ... ... ... ..

[A.3 Calculation of [M|* for xx = XX@| - - - -« o o

[A.4 Phase Space Integration|

[References|

X

N Ot w W

14
16

21
22
25
27
33
36
38
41
46

51

65

69
69
71
76
82

85






List of Figures

[2.2 Power spectrum of the CMB measured by Planck . . . . ... ... ..

[2.3  Density evolution during structure formation in the universe, . . . . . . 9
[2.4  Halo mass range during the evolution of the universe| . . . . . . . . .. 13
[2.5 Cusp vs. core problem: rotation curve of F568-3| . . . . . . ... .. .. 16
[3.1 Tree level diagrams for fermion scattering/. . . . . . . . . ... .. ... 26
[3.2  Scalar potential with and without vacuum expectation valuel . . . . . . 28
[3.3  Effects of finite scalar mass on xx = xx¢ . . . . . .. .. ... .. 31
[3.4  Effects of finite vector boson mass on xyx — xxV| . . . . . . ... ... 34
[3.5 Comparison of energy loss rate of yx — yxV and yxy — xxV| ... .. 36
[3.6  Additional tree level diagrams for scalar boson scattering| . . . . . . . . 37
[3.7  Comparison of energy loss rates for termionic and scalar CDM| . . . . . 40
[3.8  Energy loss rate for trilinear couplingl . . . . . ... ... ... 43
[4.1 1., In the p, T-plane for a gauge coupling.| . . . . . . . . .. ... ... 56
(4.2 t., in the p, T-plane for a gauge coupling.| . . . . . . . .. .. ... .. o7
4.3 t.o in the M, z-plane for a gauge coupling.|. . . . . ... ... ... .. 60
4.4 t., in the M, z-plane for a gauge coupling.|. . . . . . .. ... ... .. 61

X1






List of Tables

[3.1 Summary of energy loss rates| . . . . . ... ... L. 45
.1 Bounds on m,/a for particle-particle scattering| . . . . .. .. ... .. 54
4.2 Bounds on m, /a for particle-antiparticle scattering| . . . . . . .. . .. 55
[4.3  Emnergy loss rate suppression factors| . . . . . . . . ... ... ... ... 58

xiil






Nomenclature

BSM Beyond the Standard Model

CMB Cosmic Microwave Background
CDM  Cold Dark Matter

DM Dark Matter

ACDM Cosmological Standard Model

QED Quantum Electrodynamics

SIDM  Self-Interacting Dark Matter

SM Standard Model of particle physics
WIMP  Weakly Interacting Massive Particle

Units

In this thesis natural units & = ¢ = kg = 1 are used and the electron volt (eV) is
chosen to be the unit for mass and energy. The gravitational constant in natural units
is G = 6.709 x 1073 GeV 2 and the Hubble constant Hy = 1.58 x 1073¢ GeV. To

convert results from natural units to SI units, the following relations are used:

Distance: leV™!= 120\/ =197%x 10" m
Time: leV! =4 =658 x 1070 s
Mass: 1eV =1 =178 x107 kg

Temperature: 1eV =12 =116 x 10* K
B

XV






Introduction

For many centuries, scientists have been studying the motion of astrophysical objects,
trying to deduce physical laws of gravitation from their trajectories and, in turn, pre-
dicting future positions of planets, solar systems, or even whole galaxies to verify said
laws. In the course of this interplay of theory and observation, yet too often discrepan-
cies arose which could only be explained by either theory or observation being wrong.
In other words, either the theory of gravitation was incomplete and hence needed to
be modified, or the influence of unseen objects was causing the conflict which could
be resolved by finding these objects. Both approaches have proven right in different
situations in the pastF_-]. In 1846 for example, Neptune was discovered and found re-
sponsible for the anomalous motion of Uranus. A few years later, Mercury’s perihelion
precession was discovered, which lead to the prediction of a new planet, Vulcan, which
was never found. In this case, a modification of gravitational theory, i.e. Einstein’s
theory of general relativity formulated in 1915, was able to resolve the problem and

fully explain Mercury’s motion.

In the course of the 20" century, various observations were made that could not be
explained by our gravitational laws governing the visible matter in the universe. First
indications of anomalies arose with rather imprecise measurements by Oort of orbital
velocities of stars in the Milky Way in 1932 which were supported by Zwicky [2, 3|
in the following years who studied the motion of galaxies in clusters. Several decades
later, more stringent evidence was found by measuring rotation curves of galaxies [4,
5| and weak gravitational lensing of the Bullet cluster [6]. All this data could not be
explained with the current knowledge about the matter distribution in these structures

using the laws of gravitation. Like earlier in history, part of the scientific community

Las nicely presented in Ref. [1]
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tried to explain the observations by altering gravitational theory, known as “Modified
Gravity” [7], others by introducing new particles, known as “Dark Matter” [1]. Each
theory bares some difficulties and the “truth” could be a combination of both. In
this thesis a non-modified theory of gravitation will be assumed. Several generic dark
matter models will be analyzed in order to find out how properties of dark matter can

influence structure formation in the universe.

The thesis is structured as follows: Chapter [2] will give an introduction to dark mat-
ter and its distribution in the universe. Assuming that dark matter only interacts
gravitationally, N-body simulations of the evolution of our universe have been a huge
success in explaining structure formation at large scales but have problems when it
comes to reproducing the observed dark matter density distribution at small scales.
The discrepancies between simulation and observation can be divided into three cat-
egories known as the three big problems of dark matter structure evolution in the
universe [8]. These problems, however, may be resolved assuming dark matter is not
only influenced by gravitation, but also has a self-interaction [9]. In Chap. 3| several
models of self-interacting dark matter will be introduced. The role of bremsstrahlung
in such self-interactions will be analyzed and cross sections and energy loss rates will
be calculated for different scenarios. In Chap. [, the cooling time of a gas of particles
due to dissipation will be compared with the time scale of a collisionless gravitational
collapse, with the Hubble time and with the average time between two elastic collisions
in order to estimate whether the energy loss due to bremsstrahlung is a relevant factor

for structure formation in the universe. The conclusions will be presented in Chap.



Dark Matter

Dark Matter (DM) is a substance that to our current knowledge makes up 26% [10]
of the energy content of our universe. It is assumed to be made up of particles, like
ordinary matter, but has to behave very differently, feebly or not at all interacting with
light or any other forces in the standard model of particle physics (SM). If it interacts
with ordinary matter, the interaction is very weak, which is why DM has never been
observed in laboratory experiments. To this date, the only direct evidence for dark

matter in the universe is of gravitational kind.

2.1 Evidence for Dark Matter

The historically first evidence for DM stems from observations of rotational velocities
of matter around its center of gravity. Starting with Oort and Zwicky, who measured
velocities of stars in the Milky Way (MW) and velocity dispersions of galaxies in
clusters respectively, the most frequently cited evidence for DM nowadays is probably
the observation of rotation curves of galaxies [5|. Following Newtonian dynamics, for an
approximately circular movement of matter around the center of a galaxy, its velocity

v as a function of the distance from the center r is given by

o(r) =/ G]\fm, (2.1)

M(r) =4r /OT p(r')rdr’! (2.2)

where M (r) is the mass within the orbit, p(r) is the matter density profile and G
the gravitational constant. Beyond the optical disK| of baryonic matter, which is

1Structures of baryonic matter tend to form disks in order to minimize the energy while conserving
angular momentum. This is only possible due to energy dissipation and therefore dark matter, which

3
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150 — —
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Figure 2.1: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are the
contributions of gas, disk and dark matter, respectively [1|.

typically ~ 10 — 50 kpc in size, M is constant and v(r) o r~'/? (compare dashed
line in Fig. . However, observations show that the velocity flattens out at large
distances (data points in Fig. 2.1)). This implies the existence of a hald?| with M (r) o r
and p(r) o< r=2 (dash-dotted line in Fig. 2.1). Explicitly, this means that in order to
explain the rotation curves of visible particles in galaxies, we have to add a halo of
invisible particles whose density profile falls with the square of the distance from the
center of the galaxy. Invisible in this context means, that the particles do not interact
via the electromagnetic force and therefore do not absorb or emit light, a property

coining the name dark matter.

At the scale of galaxies and galaxy clusters, the evidence for dark matter has become
even more compelling through gravitational lensing measurements (e.g. of the Bullet
cluster |6]) and by studying the profile of X-—ray emission that traces the distribution of
hot emitting gas in rich clusters [11|. From these measurements at galactic scales, one
can deduce local abundances of DM in galactic structures. However, for determining
the average density of dark matter in the universe, a more extensive (i.e. cosmological)

model as well as observational data from large parts of the universe are needed.

in many models is dissipationless, does not show this behaviour.
2A halo is an approximately spherical distribution of matter, which is one of the simplest structures
to be formed due to gravitational attraction (for details, see Sec. [2.2).
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2.2 Cosmological Model (ACDM)

In order to understand the role of dark matter in our universe, it is essential to under-
stand its evolution and the formation of structures therein. Using general relativity,
the expansion of the universe from the big bang up to the present time can be described

by the Friedmann equations (see, e.g., Ref. [12] or [13])

O
w05 = bl + 3000, (2.3b)

These two equations describe the universe as a continuous fluid with p being its energy
density and p its pressure. They explain the evolution of a homogeneous (i.e. the same
at every point) and isotropic (i.e. the same in every direction) universe, where a(t) is the
scale factor of the universe which increases as the universe expands, a(t)/a(t) = H(t)
is the Hubble rate which is the rate at which the universe doubles its linear size, K its
curvature which to our current knowledge is very close to zero and A is the cosmological
constant. The cosmological constant is usually absorbed into p and p by redefining them
(p = p—A/87G and p — p + A/87G) yielding the redefined Friedmann equations

assuming zero curvature

HA(t) = —=p(0), (2.4a)
Z(—g = —? [p(t) + 3p(t)]. (2.4b)

The first Friedmann equation tells us, that the rate at which the universe expands
is governed by its energy density p(t) = pr(t)+pa(t)+pa where R stands for radiation,
M for (dark and ordinary) matter and A for dark energy. The energy densities all scale
differently with time. So, pgr(t) o a(t)™, par(t) oc a(t)™3 and p, is constant during the
evolution of the universe. From we can define the critical energy density

_ 3HA(t)

pelt) = (2.5)

in order to get a normalized energy density parameter

Ot) = = Qa(t) + Qu(t) + Qu(t) = 1 (2.6)
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Figure 2.2: Anisotropy of the CMB power spectrum measured by Planck [10|, with the
multipole expansion parameter [ on the z-axis and the coefficient of the decomposition into
spherical harmonics D; = (I 4+ 1)C; /27 on the y-axis. The coefficient Ciéy0pmm: = (0},,01m7)
with Oy, = [ dQYy, (R)[T(R)/ (T) — 1]. The average CMB temperature (T) = 2.7255K and
the anisotropies arise at the mK-level. They arise from the interaction between baryonic
matter and radiation before the decoupling of the photons. Anisotropies in the baryonic
matter density (i.e. baryon acoustic oscillations) in the early universe lead to anisotropies in
T(n) an thus in the photon spectrum. Since dark matter does not interact with photons but
alters the gravitational potential, the DM density indirectly affects the CMB power spectrum.
By fitting the parameters of the ACDM-model (red line) onto the CMB spectrum (blue data
points) one can deduce the the relic DM and baryonic densities to great precision.

whereas the last equality only holds for K = 0. The parameters in are inferred
to great accuracy by analyzing the cosmic microwave background (CMB). The CMB
is the background radiation of photons that have been able to stream freely since
the universe has cooled down so much that electrons and protons could recombine to
form neutral atoms. This happened around 380,000 years after the Big Bang. These
photons have been redshifted in the following 13 billion years and are now measurable
as microwaves. The spectrum of these photons is almost an ideal black body spectrum,
but the small deviations can be used to deduce the abundance of the different kinds of
matter and energy in the universe (see Fig. [2.2]), which we know today to a precision

of a few percent |10]:

0%, = 0.04924 4 0.00031 (2.7a)
0%, = 0.2623 £ 0.0022 (2.7b)
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Q8 = 0%, +Q%,, = 0.3089 + 0.0062 (2.7¢)
QY = 5.46(19) x 1077 (2.7d)
Q% = 0.6911 + 0.0062 (2.7e)

where the superscript 0 denotes that these values refer to the current abundances at
t = tog. At this point, it is convenient to introduce the convention of measuring time in
terms of the redshift

_ Alto) = A() _ alto)
N0 a(®)

—1 (2.8)

of photons with wavelength A\ at a given time t. By this convention the redshift at the
time when the CMB was emitted is zopp &~ 1100. The first galaxies were formed at
z = 10. It is worth to notice that the redshift parameter tells us how much smaller the

universe was at that time, i.e.,

1
= ~-— forz>1 (2.9)
z

which tells us that at the emission of the CMB the universe was about 1/1100 of its

current size in linear dimension.

Since the energy densities pgr, pyr and py scale differently in time, their importance in
the universe also changes in time. In the universe’s early ages, it was hot and dense
and dominated by radiation until at a redshift of z ~ 3600 (when the universe was
about 47,000 years old) pr = pas and so the universe entered its matter dominated era
which ruled most of its history in time and where structures could form. It was only
in the universe’s recent history at a redshift of z ~ 1 (about 4 billion years ago) that
the universe entered the phase where it is governed by the cosmological constant which

accelerates its expansion.

2.3 Structure Formation

The Friedmann equations describe the universe on large scales on which the universe is
homogeneous and isotropic and the energy densities can be described by rather simple
analytical equations. On smaller scales, however, we know that the universe today is

not at all homogeneous and isotropic. The reason for that is the evolution of small
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initial over- and under-densities

(2.10)

during the expansion of the universe, with p(t) being its mean matter density. The
density fluctuations 0(Z, t) are assumed to be random at each point in space at a given
time. While a general random field 6(%, ) would be very complicated, the initial density
field in the Universe is found to be well approximated by a homogeneous and isotropic

Gaussian random field |14, p. 204]. The probability for a field configuration ¢ is

1 52
P,(0)dd = ———=e 202dd 2.11
O)d0 = T (211)

with o2 = (§%), which is completely determined by its power spectrum.

During the evolution of the universe, the expansion of matter in over-dense regions
(which for simplicity we assume spherically symmetric) lags behind. The evolution of
the radius r(t) of material at initial radius r; in a flat universe without cosmological
constant (see Ref. |13 p. 733ff] or |14} p. 215ff]) is governed by Newton’s laws,

d*r GM

_— = (2.12)

dt? r2
We are only interested in perturbations that will collapse. Assuming that the material
inside our region of interest has too little energy to escape, we can write the solution

to (2.12) parametrically as
r=A(l—cosf) t = B(f —sinb) (2.13)

with B = \/A3/(GM). The average density inside the sphere is p; = [1+3(¢)]p(t), with
the average density of the Friedmann-Robertson-Walker Model of a matter dominated
universe p(t) = (6mGt*)~! far outside the sphere. Here, the over-density ¢ is only a
function of time, because the sphere is assumed to be homogeneous. The small initial

perturbations grow with time

—1 (2.14)

slowing the expansion in over-dense regions until their expansion stops at (0 = 7) =
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n/h?Q, (cm™?)]

1000 800 600 400 200 0

Figure 2.3: Density evolution during structure formation in the universe [15|. Overdense
regions expand slower than the average expansion of the universe until they reach a point at
Oturn = 4.5 where the expansion stops and the region collapses due to gravitational attraction.
The region then virialises and finally settles at a virial plateau value of dyiy &~ 180. The
dashed line is the mean matter density of the universe p(¢) and the solid lines are the local
overdensities of different sizes.

2A with an over-density at turnaround of
Sturn = 0(0 = 7) = (3m/4)> — 1 ~ 4.55 (2.15)

at a turnaround time ty,,, = 7B |14, p. 215ff]. After the over-dense region has de-
coupled from the expansion of the universe, the system collapses due to internal grav-
itational attraction and, in this model, would contract to a single point at t = 2¢;,m.
In fact, however, even a collisionless system would not contract to a single point but
relax into equilibrium at t., = 2y, with an over-density of ., = 1872 ~ 178 |15]
and thereby decouple from the expansion of the universe. This process is depicted in
Fig. 2.3

Assuming a collisionless collapse, the relaxation is governed by two processes — phase
mixing and violent relaxation |13, p. 379ff]. Phase mixing describes the process in
which particles oscillate around the minimum of the gravitational potential, whereas

particles with high energies oscillate slowest because they travel the longest distance
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while particles with low energies oscillate faster. This implies that an initially compact
group of phase space points gets smeared out and after several oscillations the phase
space density is approaching uniformity, while remaining confined to the area between
the curves of minimum and maximum energy. While phase mixing changes the phase
space density of the gas on a macroscopic level, it does not change the energy of a
microscopic particle because the gravitational potential the particles are moving in is
constant. In reality, however, the gravitational potential changes with time since the
particles, which are the sources of the potential are constantly moving. Therefore,
the energy of a given particle is not conserved anymore. Particles can gain or lose
energy (even without collisions) leading them to relax homogeneously in a spherical
volume. This volume is called a “halo” and is the equilibrium state for a gravitationally

interacting collisionless gas cloud.

The combination of phase mixing and violent relaxation is called virialization since the
relaxed halo satisfies the virial theorem (Ey,) = —1/2 (E,o). The potential energy of

a spherical system is given by
Epot = —47TG/ drrp(r)M(r) (2.16)
0

which, for a homogeneous sphere with M (r) = 4wpr®/3, is

1672 " 16 3GM?

Eoop = — Gp? | dr' (M) = ——=71?Gp*rd = —= . 2.17

o = =G [ () = G = 2 (217)

At the turnaround point the kinetic energy is zero, therefore the total energy of this

sphere is

3GM?

E=— 2.18

5 Tturn < )

where 7., is the radius at maximum expansion. Since a collisionless system cannot
dissipate its energy during the collapse, the gravitational potential energy has to be
converted into kinetic energy of the particles involved in the collapse during relaxation.

The final object, therefore, has a potential energy of

3GM?

5 Tvir

Epoy = — (2.19)
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and, applying the virial theorem, a kinetic energy

3 GM?

Ein:_ .
k 10 Tvir

(2.20)

From the virial theorem we can also deduce that ry;, = 74 /2. With the average kinetic
energy of a classical gas with a Maxwell-Boltzmann velocity distribution (Ey,) = 377/2,
we find that

3., _ 3GMm, m?

“Tor = = DX i 2.21
2 10 7y 2 (2:21)

where M is the mass of the whole system, m, the mass of one particle and ry;,, vyi, are

the virial radius and velocity respectively.

Including collisions without dissipation, yields a qualitatively similar result. However, if
the gas can radiate energy it will form a “disk”, because it will occupy the state of lowest
energy while conserving angular momentum. For a distribution of angular momentum
along an axis, the lowest energy state of the system is a flat disk perpendicular to that
axis [13, p. 456].

An important property of a spherical matter distribution is its circular velocity

Veire(r) = 4/ G]\f(r) (2.22)

which can be obtained by setting the centripetal force equal to the gravitational force

of a particle with negligible mass in a circular orbit and which for r = 5ry,/3 is
equal to the virial velocity. Since the circular velocity of baryonic matter is often
easily accessible to observation and due to its relation to an object’s mass, the circular
velocity of galactic structures is often used as a synonym for their mass. Very small
dwarf galaxies have a typical circular velocity of v ~ 10 km/s, larger galaxies have
Veire ~ 100 km/s and clusters of galaxies can have circular velocities of veje ~ 1000
km /s.

One can see in Fig. that the density of a halo after virialization depends on the
time when it was formed. Since the density of a self-gravitating object is related to its
total mass, one can already guess that structures with similar mass will form at similar
times. Press and Schechter developed a formalism using Gaussian random fields to

relate the number density of collapsed objects with a certain mass M to the time when
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they are formed |14} p. 327ff]. They start with a smoothed density field
5s(%, R) = / d*2'So (2 YW (T + 7', R) (2.23)

where W(Z 4 2, R) is a window function of radius R corresponding to the mass M =
AmpR3/3. Expanding (2.14), we get 0(t) = 3/20 6%+ O(0*) and for the initial condition
§; < 1 we can neglect higher orders and write §; = 3/2062. Similarly, yields
A =2r;/6; = 3r;/(104;). Thus, we find for the collapse time ¢4

t.
tvir = Qtturn = 27'('\/ A3/(GM) ~ 21953—2/2 (224)

yielding, as a requirement for a collapse to commence, that the initial over-density is

at least

£\ 23
e(tiyt) ~ 1.69 ( - > (2.25)

vir

which we call the critical over-density. The Press-Schechter formalism assumes that

the probability that 0 > ¢, is given by integrating the Gaussian distribution of fields

1 87
P(ds > 0.) = —/ e 20°(M) ). (2.26)
2o (M) Js.
where
1 & O
2Z\/[:(52:—/ P(KYW?(k, R)k*dk 2.27
o (M) = (d5) N (k)W=(k, R) (2.27)

is the mass variance of the density field, with P(k) its power spectrum and W(lg, R)
the Fourier transform of the window function. According to , the probability
that 0 > 0. is given by the mass fraction F' of collapsed objects with mass greater than
M. The problem with is that the probability is not normalized to 1 for M — 0
which would mean that only a fraction of the universe is part of collapsed objects of

any mass. Press and Schechter solved this problem by introducing a factor 2, i.e.,
F(> M) =2P(> 6.). (2.28)

This results in a number density of collapsed objects with masses in the range [M, M +
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Figure 2.4: Halo mass range as a function of the redshift presented in Ref. |16]. The gray
area was obtained by simulations based on a flat, ACDM cosmology, fitting on the numerical
results a Press-Schechter-like mass function of the kind . One can see that small
structures are more likely to have formed in the early stages of the universe while larger
structures are more likely to have formed in the universe’s later history.

dM] given by the Press-Schechter mass function

P OF(> M)
n(M, )dM = = dM (2.29a)

p OP(>0.)| do ’

=2l dM 2.29h
M~ 90 ldM (2.29b)
2 p o _e|dno

=V ieet | qmarl ™M (2.29¢)
0 dlnv

- %fPS(”)‘dlnM’dM (2:294)

where in the last step we have defined the variable v = 6./c(M) and the multiplicity
function fps = /2/mvexp (—v?/2). The Press-Schechter mass function shows how
structures form in a hierarchical model. In Fig. one can see the range of halo
masses M forming at a given redshift z [16]. In this model, only small structures can
form in the early universe while large structures have formed only recently. We will

use this figure in Chap. [4] to guide the eye in the presentation of our results.
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2.4 Dark Matter Density Distribution in the Universe

As we have seen in the previous section, during the structure evolution of the universe
small over- and under-densities are amplified, entering a non-linear regime which cannot
be calculated analytically. Therefore, numerical N-body simulations [17] are used to

predict the evolution of structures in the universe.

Since dark matter has to be gravitationally interacting and since its abundance in
the universe is about five times larger than the abundance of ordinary matter, it is
intuitive that dark matter plays an essential role in structure evolution. Simulations
of the evolution of the universe containing CDM, starting from a homogeneous and
isotropic universe and using simple Newtonian mechanics provide a very good fit to
observations on large scales (3> 1 Mpc). However, on galactic and sub-galactic scales
(< few Mpc), simulations based on ACDM lead to differences compared to observations
[9]. The differences between ACDM N-body simulation and observation on small scales
are known as the three big unsolved problems of structure formation in the universe.
They all involve the density distribution of dark matter halos, which are embedded in
structures of ordinary matter and are observed via gravitational effects on the latter.
The unsolved problems came to be known as the “missing satellite problem”; the “too
big to fail problem” and the “cusp vs. core problem” and shall be briefly explained in

the following.

Missing Satellite

The missing satellite problem [18, |19, 20| refers to the difference in the number of
predicted CDM sub-halos obtained by N-body simulations compared to the number of
satellite galaxies (i.e. small galaxies orbiting larger ones due to gravitational attraction)
observed in our local group of galaxies. As CDM halos are expected to be hosted by
structures of ordinary matter, these numbers should coincide. Simulations, however,
predict ~ 5 times more satellite galaxies than observed with a circular velocity v ~
10 — 20 km/s.

A possible solution to explain this discrepancy is that said galaxies are small and faint
and therefore have, up to now, evaded detection. This means that in building larger
and better telescopes it should be possible to find the missing galaxies. Other theories,
e.g. baryon feedback [21], assume processes that suppress gas accretion (i.e. structure
formation in the standard model sector) in these dark matter halos, keeping them free

from ordinary matter and therefore impossible to discover via telescopes.
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Too Big to Fail

In contrast to the missing satellite problem, the too big to fail problem [22, 23| states
that the galaxies are too faint to be detected by pointing out that some of the galaxies
predicted by N-body simulations are so massive, that it is very unlikely that they do
not host any visible stars. Observations show that the Milky Way has a few satellite
galaxies, as does Andromeda which is the second major galaxy in our local group. But
comparing the masses of these galaxies and the sub-halos from N-body simulations,
leads to a discrepancy, i.e., the mass of the sub-halos from simulation exceeds the mass

of the observed satellite galaxies by a factor four to five.

Since simulations assume CDM which is only gravitationally interacting, it is possible
that these sub-halos are governed by interactions in the dark sector which are not
taken into account by N-body simulations. We will come back to this scenario in the

discussion of the cusp vs. core problem.

Cusp vs. Core

The cusp vs. core problem [8, 24] addresses the fact that observations seem to indicate
an approximately constant dark matter density profile p(r) = const in the inner parts
of galaxies (core), while simulations indicate a steep power-law-like (cuspy) behavior

p(r) oc r=® with o > 0.

From ({2.1)) one can see that a halo with constant p leads to a rotation curve with a
linear increase in r whereas a cuspy halo with p(r) oc 7~! leads to a rotation curve

172 Combining measurements of rotation curves to obtain the overall

increasing with r
matter density p(r) = ppm(r) + psa(r) of galactic structures with absolute brightness
measurements to obtain the luminous (or ordinary) matter content pgps(r), one can
extract the DM density profile for the observed structure. In Fig. one can see the
measurement of the rotation curve for the galaxy F568-3 which fits a core-like density

distribution and is in disagreement with a cuspy behavior.

To summarize, the cusp vs. core problem refers to the fact that ACDM simulations
predict a larger amount of dark matter in the center of galaxies than observed in ex-
periments. One intuitive solution to this problem would be to introduce an interaction
between the CDM particles, that allows for a heat transfer from the outer regions to
the center and therefore can reproduce a more core-like behavior |9, 25, [26]. In order
for this mechanism to resolve the conflict, Spergel and Steinhardt 9] assume for their

CDM self interaction a “large scattering cross-section but negligible annihilation or dis-
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Figure 2.5: The measured rotation curve of F568-3 (points) compared to model fits assuming
a cored dark matter halo (blue solid curve) or a cuspy dark matter halo (red dashed curve).
The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve,
which is included in both model fits. One can see that for small r a cored dark matter density
profile yields a better fit to the data. [8]

sipation”. In the following chapters we will focus on various models of self interacting
dark matter (SIDM) and explore how bremsstrahlung contributes to energy dissipation

in these models.

2.5 Particle Dark Matter

Even though today we know to tremendous precision how much DM is contained in our
universe and how it behaves in the context of gravity, we know almost nothing about
its particle character. The mass of dark matter particles as well as their self-interaction

and their interaction with ordinary matter is strongly model dependent.

Assuming that there is an interaction between dark and ordinary matter, which is the

key prerequisite for being able to detect dark matter, we can classify different dark

DM«+SM
int

matter scenarios by their interaction rate I' = n {04 v) with ordinary mattelﬂ

(see, e.g., Ref. [12, p. 115ff]). In the relativistic regime (T > mpy;), the number density

n o< T? and TPM<SM il] vary as some power of T', while in the non-relativistic regime

(T < mpym), n o< (mT)?? exp(—m/T) such that TPM<SM decreases exponentially. In

int

the early universe when 7' > mpy;, dark matter and ordinary matter are in thermal

3The interaction rate is a function of the equilibrium number density n, and the velocity averaged
annihilation cross section into standard model particles (o4 v).
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equilibrium if

rMesM > H(T) (2.30)
where in the context of this discussion the Hubble rate is a function of the average
temperature of the universdﬂ We denote this case as the “normal” dark matter scenario
where in the early universe the number of dark matter particles is equal to the number

of standard model particles

Npm
N

Y

~1 (2.31)

which at that point all behave relativistically. At the time during the evolution of the
universe when T" < mpy, the dark matter number density decreases because dark mat-
ter cannot be thermally produced anymore. All dark matter particles would annihilate
into standard model particles as long as TPM<SM > [(T'). Tt follows from the model,

however, that at some point TPM“SM < [7(T) which means that the universe expands
faster than it takes two dark matter particles to “find” each other and annihilate, which

stabilizes the dark matter density. This process is called thermal freeze out.

A class of dark matter candidates which fall into this category is called Weakly Inter-
acting Massive Particles (WIMPs) [1]. In order for the thermal freeze out to produce
the right relic density the WIMP mass cannot be too small, i.e. m = GeV. Particles
fulfilling the above criteria are, e.g., the lightest supersymmetric particle such as the
neutralinolﬂ or the lightest Kaluza-Klein particle of theories with extra dimensions. The
interaction in this dark matter scenario is constrained to be in the order of the weak
scale. However, it can be mediated by new scalar or vector bosons or dark matter

might couple to ordinary matter via a Higgs portal.

In the second dark matter scenario that we want to discuss,

PMeSM < [(T) (2.32)

nt

for T' > mpy which means that dark and ordinary matter are not in thermal equilib-

rium in the early universe. Assuming that all dark matter particles are produced from

4The Hubble rate follows from the first Friedmann equation 3H?(T) = g.(T)72T*/(30m%,), where
g«(T') are the relativistic degrees of freedom and mp; is the Planck mass (see Ref. [12]).

5The neutralino is a linear combination of the neutral superpartners of the SM gauge bosons and
the Higgs bosons, i.e. the higgsino, bino and neutral winos.
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standard model particles, this implies that

Npwm
N

Y

< 1. (2.33)

Dark matter candidates in this category are often called Super Weakly Interacting
Massive Particles (or Super-WIMPs) because their interaction with ordinary matter
is very weak. They might even only interact gravitationally. Particles referred to as

Super-WIMPs are, e.g., Supersymmetry’s gravitino or a sterile neutrino.

In addition to the above two scenarios, azions also represent a viable dark matter
candidate [27]. They are postulated by the Peccei-Quinn theory to solve the strong
CP-problem in quantum chromodynamics, but to the present day, many dark matter
theories have been proposed involving “axion-like” particles in the sense that they are
pseudo-scalar bosons which derivatively couple to ordinary matter. They have to be
very light (< 1072 eV) and are expected to be extremely weakly interacting with
ordinary matter which implies that they were not in thermal equilibrium in the early
universe. For the axion to be a viable dark matter candidate, the axion field has to

start out with a non zero initial field value ¢ # 0 and

Npwm
N,

> 1 (2.34)

in the early universe. The field, at first, slowly rolls down the potential because the
Hubble rate acts as a friction term in the equations of motion of the axion field, but
at some some point the friction term becomes negligible and the field starts oscillating

around the minimum of the potential, giving a contribution to the matter density p,.

All the above dark matter candidates are motivated by theories beyond the Standard
Model (BSM), like Supersymmetry, models with extra dimensions, the Peccei-Quinn
symmetry in the strong CP problem or extensions of the neutrino sector. However,
many more dark matter models have been postulated that might or might not be
embedded in a larger framework, meaning that dark matter may well be composed of
only one kind of particle (boson or fermion) that interacts with the standard model
via any kind of new interaction. Since dark matter has not been detected, the only
constraints coming from experiments are upper bounds on the interaction strength.
We will use this freedom in the next chapter to construct generic models of bosonic
and fermionic dark matter to investigate bremsstrahlung in the dark sector, i.e., we

will not be interested in the interaction of dark matter with the Standard Model sector
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but only in self-interactions in the dark sector.
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Dissipation in Self-Interacting
Dark Matter Models

The only direct evidence for dark matter, as described in Chap. [2], is of gravitational
nature. Various experiments have tried to find direct or indirect evidence for dark
matter in detectors by assuming that it interacts weakly with ordinary matter. Mea-
surements of this kind have not found any significant hints for dark matter but have
produced constraints on the mass and cross section for interactions of dark matter
particles with standard model particles. However, since we can only detect dark mat-
ter via ordinary matter, these constraints do not give any restrictions for dark matter
self-interactions. Therefore, interactions in the dark sector are only weakly constrained
by observations, e.g. of the Bullet cluster, and allow for the assumption of a strong
self-interaction 9] and possibly for a resolution of the discrepancies between simulation
and observation. In order to do so, one needs a large elastic scattering cross sectionE] of
Oet/my ~ 1 cm?/g and low dissipation my; >> myv?, which can be reached with non-
relativistic dark matter and a relatively light mediatoi since the elastic cross section
goes parametrically as o o< a’m? /mj, (where m, is the dark matter and my; the me-
diator mass). A dark matter self-interaction, however, does not only imply scattering
of dark matter particles but may also lead to the emission of the (gauge) boson that
mediates the interaction (i.e. bremsstrahlung) if my; < mxvi. This dissipative process

may counteract the formation of a core-like density profile.

In the following, we will introduce various models of dark matter. We discuss the

Tn fact, instead of the full elastic cross section one uses the transport or viscosity cross section,
which regularizes the divergences for vanishing mediator mass (see Sec. .

20f course, mys > mxvi still has to hold. In order for the elastic cross section to scale with m];f
even the stronger requirement mys > m, v, has to hold.

21
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scattering process of fermionic and scalar CDM x with a mass m, ~ GeV and a typical
velocity v, < 1 corresponding to a temperature 7' ~ mxvi < MeV. The interaction
between the CDM particles is mediated by a light scalar ¢ or vector boson V' with a
mass which is smaller than the center of mass (CM) energy of the system m < mxvi
for the particle being able to be emitted as bremsstrahlung in the scattering event.
We assume the dark matter gas to be dilute or non-degenerate, in order to treat the
thermodynamics of the gas semi-classically with a Maxwell-Boltzmann distribution.
Furthermore, we assume the coupling strength between the CDM particle and the

mediator to be small, g < 1, in order to treat the scattering process perturbatively.

3.1 S-Matrix, Cross Section and Energy Loss Rate

In scattering theory, a very important but rather abstract quantity is the S-matrix [see
28, ch.5-6], which relates the ingoing momentum eigenstates to the outgoing ones and
therefore encodes all interesting information about how often given initial states |i)

produce given final states |f)

Spi = (fI51i) - (3.1)

In a free theory without interactions, the S-matrix is 1 because the momentum eigen-

states |i) and |f) are the eigenstates of the free theory. We can therefore write
S =1+4i2m)*%W (Sp; — Zp;) M (3.2)

with the second term describing the deviation from the free theory, where p; and py are
the initial and final states’ 4-momenta. The squared matrix element which is of great
importance in quantum field theory and whose calculation for different dark matter

models will be an essential part of this chapter, is given by

M= (M) P (3:3)

spins

For all following calculations, we define | M|* as summed over initial and final spins.
The squared matrix element itself is not experimentally accessible but can be used to

calculate physically measurable quantities. The scattering cross section is calculated
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from |M|? by integrating over the Lorentz invariant phase space of the final states

[1 Gohap en)'s (Sn -, (3.4

final states j

yielding for the process of interest in this thesis, i.e. a two body collision with brems-

strahlung (2 — 3 process)

(27T Sf / d p] / dgq 2
7= (2E1)(2E,)|v) — 5] H (27)32E; | (2m)32w g |M| (Pl + P2 —p3 — ps — Q).

(3.5)

Here, the 4-dimensional delta function assures energy and momentum conservation,
indices 1 and 2 correspond to the incident particles, indices 3 and 4 to the final states
and w and ¢ are the energy and momentum of the emitted particle. S is a symmetry
factor for identical particles in the final state, where Sy = l for identical particles
and Sy = 1 otherwise and g, accounts for the number of spin states in the initial
state which is 2 for fermions and 1 for scalar bosons. The factor gx in therefore
accounts for an average over the initial spins since we want to calculate the non-
polarized cross section. Note that the factor |0 — ¥ is not Lorentz invariant under
boosts in a direction other than the collision axis. Therefore, the expression is only

valid for collinear collisions. For an arbitrary frame of reference, the Lorentz invariant

quantity is \/(pip2)? — m2m3/(E1Ey) = /(U1 — )% — (0} X U2)2.

The physical quantity of interest in our calculation is the energy loss rate (i.e. the
energy per unit time that is lost by the system due to bremsstrahlung). The energy

loss rate is given by the phase space integral

3

&p; d 254
§(27) /H o) fQE ﬁﬁﬂ/ﬁw!/\/ﬂ 0 (p1+ps — ps — pa— q)
(3.6)

where S = S; Sy is a symmetry factor for identical particles in the initial and final state,
f(E;) are the distribution functions for the dark matter particles in the initial state.
The Pauli blocking factors [1 — f(E f)} for fermion scattering and enhancing factors
[1 + f (Ef)] for boson scattering, which account for the blocking of filled fermionic
states and for enhancing filled bosonic states for the final particles, as well as a factor

[1+ f(w)] for stimulated emission are omitted since we assume that the dark matter
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gas is non-degenerate, the occupation number of the emitted particle is small and that
it streams freely after emission.

The energy loss rate is connected to the cross section (3.5)) in the following way

Sigi

(27)°

where gi accounts for the spin degeneracy in the initial states. In the non-relativistic

€ = /d3p1d3p2 f(El)f(EQ) |171 - 172' dw w @ (37)

limit, in substituting the integration variables in the phase space integration by dimen-

sionless variables, as demonstrated in App. , one can rewrite (3.6)), (3.5) and (3.7)
to get

SnQ T7/2

0 U 1
=X~ | due™ | dvJulu—=z)2® [ dz|M 2
€ 27g>2< 77/29m5/2 \/0 ue /0 z U(U ZL’) z /1 z | (U,QT,y,Z)l

(3.8)

451 2T3/2 oo 00

:L/ duue‘”/ dxxd—a
0 0

al/2ml/2 dr

whereas u = p?/m, T is connected to the center of mass energy, = w/T to the emitted
particle’s energy, z = cosfy; to the angle between initial and final state momenta and

y = m3,/m, T to the mediator mass which remains a free parameter in the integration.
(For details, see App. [A.4)).

We will use the energy loss rate to calculate the cooling timescale |29]

~3n, T
cool — .
€

which is the time it takes a gas cloud with particle density n,, temperature 7" and
energy loss rate per collision ¢ to cool due to dissipation. The influence of cooling
on the gas cloud depends on the ratio of t.,, at the virial temperature T, to the

gravitational collapse timescale

3T

t rav - =~
& 8m,n, G

which is the time it takes a gas cloud to contract due to the gravitational attraction
and the Hubble time

to=Hy"
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which is roughly the age of the universe. If t.,, > to the energy loss due to dissipation
can only have negligible influence on structure formation in the universe since it takes
longer than the age of the universe for a gas cloud to cool. If £y > teoo1 > tgray cOOling
can have a significant role in structure formation, 7.e. it can speed up the collapse of a
gas cloud and lead to the formation of disks (see, e.g., [30]). In case that tcool < tgrav
we are entering an extreme regime where all kinetic energy is quickly radiated away
and the collapse is dominated by dissipation. We will discuss the effects of dissipation

due to bremsstrahlung and do a detailed analysis of different dark matter scenarios in

Chap. [4

3.2 Fermion Scattering

When calculating the scattering of two dark matter fermions, at tree level there are
three different channels that contribute to the scattering process (see Fig. . We
label these channels as the direct or t-channel (a, b, ...), the exchange or u-channel
where the two final states are exchanged (a’, b’, ...) and the annihilation or s-channel
where two particles annihilate and are created again (a”, b”, ...). In case of a scattering
process of two identical particles, the direct and exchange diagrams contribute to the
process and in case of a process involving a particle and its anti-particle, the direct
and annihilation diagrams contribute. However, if the particles are Majorana fermions
(which means that the particle is its own charge conjugate state), all the channels

contribute to the scattering process.

If we want to calculate a scattering process with the emission of a boson (i.e. brems-
strahlung), the boson can be emitted at any of the four external fermion legs in the
Feynman diagram (as can be seen in Fig. |3.1)) which yields a total number of 12 dia-

grams considering all three channelsﬂ The corresponding Feynman amplitudes can be

3The most general model of DM scattering could contain a trilinear self-coupling term of the scalar
mediator, i.e. Ay¢> (A, being a dimensionful coupling constant), which would lead to the possibility
of emitting bremsstrahlung from the mediator, as depicted in the following diagram

b1 . D3

P2 L P4

which contributes in all three channels. However, we neglect these diagrams because the trilinear
coupling constant Ay has to be small in order for (¢) = 0, rendering the contribution of these diagrams
to the squared matrix element negligible (see Fig. and the corresponding discussion in the next
section).



26 CHAPTER 3. DISSIPATION IN SIDM MODELS

'y I's Iy
h T — D3 Y4 T P4 Y4
1 o :
~k v a Al od
' ' B
D2 L P4 b2 . - b3 D2
Iy Iy I's
(a) ()
b1 0 p3 b1 0 — D4 b1
1 1 ‘.i'
ko o4 Al d
1 ‘.’( 1
b2 L - P4 b2 L Y& b2
(b) (b7)
D1 — D3 P — ! -4 D3
< < T
0~k q L
b2 : P4 b2 : Ps3 Y2
(c) (c) (c”)
41 T Ps3 1 T y2 Dps3
: : r
9.~k q.+1 ---
< A d
P2 — 2 b2 — b3 - q Da

() (d) (d”)

Figure 3.1: 12 tree level diagrams contributing to bremsstrahlung processes in DM scatter-
ing. The fermion momentum flows from left to right. For Majorana Fermions, the fermion
number flow is arbitrary while for Dirac fermions, the fermion number flows from left to right
(particles) or from right to left (anti-particles). The arrows on the boson lines represent the
boson momentum flow.
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found in App. [A.2] The scattering process can be described in terms of the squared

matrix element as the square of a coherent sum of the Feynman amplitudes

XX = xx¢: IMP=|A+B+C+D+A+B+C +DJ
XX = xxo: MP=|A+B+C+D+ A" +B" +C"+ D"
X = XWo: MP=|A+B+C+D+ A +B +C+D + A +B +C"+ D"

where y is a Dirac particle, ¥ is a Dirac anti-particle and Y is a Majorana particld}
This yields a total number 64 squared amplitudes (144 for Majorana fermions) that
have to be evaluated for the calculation of the squared matrix element. In order to
make the calculation tractable, we use a power counting scheme described in App.
on the basis of the emission of scalar, which will be used in all following calculations.
Since in our calculation we are only interested in unpolarized quantities, we define |M|?

as summed over initial and final spins.

3.2.1 Yukawa Interaction

The Lagrangian for a Dirac fermion y and a real scalar boson ¢ is given by

L = ixdx — myxx (free fermion) (3.9a)
+ % [(@Lgb)Q — miqﬁQ] (free scalar) (3.9b)
- %Aqﬁ(bg - %)\¢¢4 (scalar potential) (3.9¢)
— JodXX (interaction) (3.9d)

where y is the spinor describing the DM fermion, ¢ the real scalar field describing the
mediator and the emitted particle and g4 is the real valued coupling between fermions
and mediator, which we assume to be small to justify restricting our calculations to

the tree level (as higher order corrections imply higher powers of g,).

The scalar potential is a polynomial of degree 4, consisting of the ¢2, ¢* and ¢* terms.
Imposing that the potential be bounded from below, implies that A > 0. Assuming
that ¢ is a physical field and thus mi > (0, yields a potential with two minima at most,
one at ¢ = 0 and the other depending on the couplings (see Fig. . Since we do not

want ¢ to gain a non-zero vacuum expectation value, we have to impose Ay < %W\/X

41f not stated otherwise x will denote a fermion with spin 1/2 in this section. In order to emphasise
this fact, we will use the subscript F' for fermion at points where it might be unclear.
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Figure 3.2: Potential of ¢ for several values of the couplings Ay, Ay and mass my showing
how ¢ can gain a vacuum expectation value.

in order for the potential to have only one minimum. Since we assume mg ~ m,v?

in order for ¢ to be produced as bremsstrahlung, A,/m, < 107° and we can neglect

diagrams containing A4 compared to the ones only containing gy.

Particle-Particle Scattering xyrxr — XrXFr®

For particle-particle scattering we have to consider diagrams (a)-(d) and (a’)-(d’) in
Fig.[3.1] Assuming that the fermions are non-relativistic, i.e., v < 1, we find that the

squared matrix element summed over initial and final spins is

256

6
9o 72,5t
e LR

M]* =

2 2
My my, A A 3 my 1my,
L+ = 25 4 3(k- )2<1+——¢+——¢)]

1 1 1

q + q _
(kP2 +mg)2 (P +mg)? (k]2 +mE) (]2 +m3)

where we differentiate between the mediator mass my and the emitted particle’s mass
mg, which, in principle, could be two different particles. Furthermore, we have applied
a power counting scheme in the collision velocity for v, < 1 where we assume that the
mass of the emitted particle is small, i.e. my < mxvi in order for it to be produced
in the collision. Equation is the result to leading order in v, which reduces the
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full expression for [M|? to a tractable form.

2
X

containing my but (for now) still keep the mediator mass m, in the denominator,

Assuming that the mass of the emitted particle my < m,v;, we neglect the terms

yielding

256

M2 =208 ey (i iy
(M7 === =S Ik L +3(k - 1)
. . . (3.11)

= + — - — _
(ER+m2)2  (I2+m2)2 (k2 +m2)(|I]2 +m3)

The detailed calculation with explanation of all approximations can be found in App.
In terms of the dimensionless variables defined in App. one can rewrite the matrix

element as

1024 ¢ 22 + u(u — 2) + uz(z — 9
IM|* = 5 %:{: u(u 522 uz(w —u) <2u—$—|—y—22\/u(u—a§)>

(3.12)

+ <2u —r4+y+ QzM) T ((2u —x+y)? —42u(u— :1:)) _1]

where the first second and third term in (3.11)) corresponds to the first second and
third term in (3.12)).

We can use the squared matrix element to calculate the cross section in terms of the

dimensionless variables defined in App. [A.3] yielding

1ogS [ 1
77 36m2n /0 de [ St 2,9) + Sy, 2, ) | (3.13)
with
472 5 7
S = )iy 3.14
! (4uy+(w—y>2 2) u (3.14a)
g 116u2+x2+5y2+20uy—16u$—10xy1 2u—x+y+2\/m
og — = n
leg = g, 2u—x+y 2u —x 4y — 2y/u(u+ )

(3.14b)

where we have split up do/dx into a term proportional to /1 — x/u, which gives a
measure of the amount of energy passed on to the scalar, and a logarithmic term, where

the argument of the logarithm is a ratio of the minimum over the maximum momentum
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transfer between the fermions for a given center of mass energy. The factor 1/x in
leads to a IR divergence of the cross section for a massless scalar in analogy to the IR
divergence due to photon bremsstrahlung in quantum electrodynamics (QED). For the
emission of a massive scalar, however, the lower boundary of the integration in (3.13])

is finite, i.e. my /T, which regularizes the cross section.

For the calculation of the energy loss rate, the integration over the emitted particle’s
dimensionless energy x, is weighted by a factor x, regularizing the integral even for

mg = 0. The energy loss rate can be written in terms of S5, and Sj,, as

L ggri T /Ood ‘“/ud (S, 2,) + Siog (1,2, )| (3.15)
= == uue x | Ss(u, z, og(u, T, y) |- :
18 7T7/2m§</2 0 0 a y log y
For a massless mediator, my — 0 (y — 0) and (3.15)) becomes analytic yielding a
simple expression for the energy loss rate
6,2
. _ 188 972 ggny -

XFXF — XFXF® € 572
216 72

(3.16)

For a finite mass of the mediator and/or emitted particle, the energy loss rate cannot
be calculated analytically anymore. The effects of finite masses can be seen in Fig. [3.3
The energy loss rate rapidly drops to zero when the mass of the emitted particle reaches
the average kinetic energy in collisions m,, (vi) = 3T because the particle can only be
produced on-shell if the energy for its mass m,; can be drawn from the kinetic energy
of the system. For increasing mediator mass, the energy loss rate drops as m;4 which
only shows its effect when my 2 |k| ~ m,v,. Since the mediator particle is off-shell,
it can still be exchanged even if its mass exceeds the kinetic energy of the system and

therefore the suppression of the energy loss rate occurs for higher my.

Particle-Antiparticle Scattering xpXr — XrXr®

For particle-antiparticle scattering we have to consider diagrams (a)-(d) and (a”)-(d”)
in Fig. [3.1] We find that the annihilation diagrams only give contributions in higher
orders of velocity and the squared matrix element is dominated by the direct channel,

which yields the same result as the direct channel for particle-particle scattering

A

1+ 3(k-1)?
2

256 95
(k]2 + m2)?

M === =[P (3.17)
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Figure 3.3: ¢/¢é for T = 1,10,100 MeV (from top to bottom) for a finite mass of the
mediator and emitted particle on the energy loss rate for m, = 1 GeV, where ¢y corresponds
to the energy loss rate for my = mgy = 0. It shows, that the energy loss rate drops faster with
increasing mass of the emitted particle than it does with increasing mass of the mediator.
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where we have already neglected the mass my of the emitted particle in analogy to
(3.11)). The full form containing my can be extracted from (3.10)). For the cross section

and energy loss rate, we get

1

|
773 miﬂg/o dz — [Ssq(u,:v,y) + Szog(u,:v,y)] (3.18)

9 Sn2T3/2 oo
é - _-%X—/ du u eiu |:Ssq(u7 x? y) + Slog(uv 'TJ y)i| (319>
0

9 W?/Qmi/Q

with

21 x
- 1) )1-Z 2
Ssa <4uy + (x —y)? ) u (3:20a)

1 2u—x+y+2y/ulut
Sty = - (u— 4y | My ulut D)) (3.20b)
du 2u—x +y— 2 /u(u+ x)
For a massless mediator, y — 0 and we get for the energy loss rate
i} i} .28 gom;
XFXF = XFXFO €= X T2 (3.21)

27 7/2 3

Majorana Particle Scattering \pxXr — XrpXro@

For Majorana particle scattering we have to consider all diagrams in Fig. 3.1} For a

Majorana field ¥ with the property ¥'7° = Y7C we get the Lagrangian

) 1
L= %~TC$)~( — §mX>ZTC)Z (free fermion) (3.22a)
1
+3 (0,0)* — m*¢* + (9,p)° — m2g02} (free scalar) (3.22Db)
1 1
- §g¢¢>ZTC)~< — égwcp)ZTCf(. (interaction) (3.22¢)

Calculating the Feynman rules for the interaction term of this Lagrangian following
[31] (as demonstrated in App. one realizes that the factors 1/2 in front of the
interaction terms are canceled by a factor 2 arising from an increased number of possible
Wick contractions in comparison to Dirac fields, yielding in our case the same Feynman
amplitudes for Dirac and Majorana fermions. Since the terms involving annihilation
diagrams are suppressed by a factor k?/r?> = O(v?), the leading order contribution

of Majorana particle scattering (i.e. x = x) yields the same result as Dirac particle-
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particle scattering.

3.2.2 Gauge Interaction

The Lagrangian for fermionic DM y with a real vector boson V* is given by the gauge

coupling D,, = 9, — igv'V,,, yielding

L = ixPx — myxx (free fermion) (3.23a)
1 1

- ZVWVW + ém%ﬂﬂ (free vector) (3.23b)

+ gv VX7 x. (interaction) (3.23¢)

Note that the vector boson is assumed to be massive, as can be seen in the mass term
containing my and my in (3.23b)). The vector boson gains its mass via the Stueck-
elberg mechanism, which is explained in App. [A.T], but since the Stueckelberg field is
decoupled from the other fields, we do not include it in the Lagrangian. Contrary to
the Stueckelberg mechanism, a gauged Higgs mechanism would give additional contri-

butions to the scattering matrix.

Particle-Particle Scattering xyrpxr — xrXxrV

For particle-particle scattering with the gauge interaction (3.23c) we find that the
squared matrix element is one half of the squared matrix element for the Yukawa

coupling (3.11)), assuming same masses and coupling strengths, i.e.

mys

128 ¢% ~ . =
M2 =T 5202 | 1 +
w2

9

m2, ~A val 1m2/
2— + 3(k ) (1 +— 4 -—~
* w? +3k-1) ( +2 w +2 w2)
(3.24)

1 1 1

= + — _ _
(R +m3)r (R +md)2 ([F2 +md) (2 + mi)

where again we distinguish between the mediator mass my and the emitted particle’s
mass my. We can use the squared matrix element to calculate the cross section and
energy loss rate in terms of dimensionless variables to get, in analogy to the emission
of a scalar boson, where we again neglect the terms containing the emitted particle’s

mass but keep the mediator mass in the propagator

Logv [, 1
°T min /0 o |Suqlt, 7, 9) + g1, ,9) (3.25)
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Figure 3.4: Effects of a finite vector boson mass on the energy loss rate for m, =1 GeV,
where ég corresponds to the energy loss rate for my = 0.

1 gon2T3/? /00 - /u
= ——2—— duvwe™ | dx [SS (u, z,y) + Siog(u, x,y)] (3.26)
36 7T7/2m§</2 0 0 4 g
with
42 5 T
Ssq = — = 1—— 3.27
! (4uy+(w-yV 2) u (8.272)
g 1 16u? + 2% + 5y* + 20uy — 16ux — 10:1:y1 2u—x +y+ 2/ u(u+ x)
og — = n .
9 Bu 2u—x+y 2u—x+y—2v/u(u+ )
(3.27b)
For a massless mediator, y — 0 and (3.26)) simplifies to
. 188 — 912 gpnd
XFXF — XFXFV : €= — 3/2 (3.28)

432 g7/2m)?

The effects of a finite vector boson mass my > 0 on the energy loss rate can be seen
in Fig. 3.4 where we show that the energy loss rate is exponentially suppressed if the

vector boson mass is larger than the average kinetic energy my 2 37.
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Particle-Antiparticle Scattering yrxr — xrXrV

For particle-antiparticle scattering, to leading order in the fermion velocity v,, the

squared matrix element is

512 % - [k12[2(k - )2 1m2,
|IM? :—g—|k|2—’ U F(k-1) v (3.29)
3wt (k]2 + md)2 2 w?

which is of lower order in v, than . The reason for this is a non-vanishing dipole
moment of the system, since the fermion and anti-fermion are oppositely charged under
the underlying U(1) gauge group. The opposite charges of fermion and anti-fermion
result in an attractive force between the particles, whereas two fermions carry the
same charge resulting in a repulsive force. For the Yukawa coupling, the dark matter
fermions are not charged under any gauge group, opening the possibility for them
to be of Majorana kind. Therefore, the squared matrix elements for particle-particle
scattering and for particle-antiparticle scattering are of the same order in

Uy -

For the cross section and energy loss rate we get

1 ogy [ 1
= 2 7my /0 dz o [Ssq(u,x, Y) + Siog(u, x, y)} (3.30)
. 19‘6/712 T2 oo 7u u 1
¢ = §—7T7/2);ni/2 /0 duue /0 dx Q[Ssq(u, z,Y) + Siog(u, z,y) (3.31)

with

29/ x
S, = — Ji=2 3.32
I duy + (z — y)? u (3-322)

2u — 24/ =
Sy = L |22ty 2vulu— )| (3.32b)
2u | 2u—2+y—2y/u(u—x)

For a massless mediator, the contribution of Sy, to the energy loss rate can be neglected
and the contribution of Sj,, becomes analytic, yielding a simple expression for the
energy loss rate

6,2
.2 gvny /2

XFXF = XFXFV : €= 572 (3.33)
3 7T7/2mx/

Because of the non-vanishing dipole moment, the energy loss rate is much larger for

particle-antiparticle scattering than for particle-particle scattering, as can be seen in
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Figure 3.5: Effects of a finite vector boson mass on the energy loss rate for yxy — xxV in
comparison to xX¥ — xXV. The fermion mass is taken to be m, =1 GeV.

Fig. for two different vector boson masses. The two cases also have a different
temperature dependence (i.e. ¢ oc T%2 for xx and ¢ oc T'/? for yy). This would lead
to a crossing of the two lines in Fig. 3.5 for high temperatures, but in this region our

non-relativistic approximation breaks down.

3.3 Scalar Boson Scattering

For the scattering process of two dark matter scalar bosons, we have to consider the
diagrams in Fig. in addition to the diagrams in Fig.[3.1 This yields a larger amount
of Feynman amplitudes which have to be evaluated, but the calculation of each of the
amplitudes is much easier for scalar boson scattering. Since in the following we are
considering bosons only, we include couplings where the mediator and the emitted
particle meet in a vertex (e) and (f), a quartic coupling of the CDM scalars (g) and
trilinear couplings between the heavy scalar bosons (h) and (i). Again, we label the
t-channel with latin letters, the u-channel with primed letters and the s-channel with
double primed ones. Diagrams (g) is representative for four diagrams with particle
emission from any external leg and diagrams (h) and (i) are representative for all

channels and the emission from any of the four external legs with the heavy scalar x
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Figure 3.6: Additional tree level diagrams contributing to bremsstrahlung processes in scalar
CDM scattering. Diagram (g) is representative for the four x* diagrams (where like for
all other diagrams, the particle can be emitted from any of the four external legs). We
neglect (g) since it is suppressed by a factor k?/ mi = O(v?) compared to the leading order.
Diagrams (h) and (i) represent the 3 channels of the the two diagrams (18 diagrams in total)
containing vertices that include an odd number of xg which we forbid by imposing a global
U(1) symmetry resulting in the conservation of the number of xg at each vertex. Diagrams

(h) and (i), in case they are not forbidden, are also suppressed by a factor of k2/m

2 =0

(v2).

The momentum flow is chosen from left to right (or from bottom to top for vertical lines).
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as mediatorﬂ yielding 28 additional diagrams (see Fig. [3.6). For the x? interaction
diagrams (g), there is only one channel. We neglect the diagrams (g)-(i) because they
are suppressed by a factor k*/m? = O(v?) compared to the diagrams (a)-(f), which
yields a total number of 18 diagrams considering all three channels. The corresponding

Feynman amplitudes can be found in App.

3.3.1 Gauge Interaction

We first treat the case of a vector boson, because here we have to deal with a gauge
coupling which resembles the cases we have treated in the previous sections. We get
the full Lagrangian for scalar CDM with a real vector boson V# from £ = —;iVMVV”” +
(D)1 (D#x) =V (x) with V,, = 9,V,,—9,V,, and the gauge coupling D, = 8, —igy'V,:

L= (9001(9"x) = m*x'x (free scalar) (3.34a)
1 1
- ZVNVVMV + §m‘2/V2 (free vector)  (3.34b)

+gox'xV? + igyV*| (3MXT) x —x' (9, )] - le)\ (XTx)Q (interaction)  (3.34c)

where the interaction part of £ can be read off the last line. The first two terms in
come from the gauge coupling and the last term from the scalar potential. We
assume that gy < 1 and 0 < A < 1. The scalar field x has to be complex because the
gauge coupling is associated with a local U(1) symmetry x — €**®)y, which can only
be fulfilled if y is complex. In other words, the gauge interaction implies a positive
and a negative charge and we need two degrees of freedom to represent both charges.
The U(1) symmetry also implies that the charge is conserved at each vertex, forbidding
diagrams of the type (h) and (i) in Fig. 3.6

Particle-Particle Scattering ysxs — xsxsV

For particle-particle scattering we consider diagrams (a)-(d) and (a’)-(d’) in Fig. |3.1
as well as (e)-(f) and (e’)-(f”). We neglect diagrams of the type (g) in Fig. |3.6| because

they are suppressed by a factor m?,/ mi compared to the other diagrams and find for

SBeware that in this section x will denote a scalar field. We will use the subscript S for scalar at
points where it might be unclear in order to emphasise this fact.



CHAPTER 3. DISSIPATION IN SIDM MODELS 39

the squared matrix element

32¢% - =
M =2 2

/ 2/ -~ o 3 / 1 2/
L (1450 )|
w w 2

w 2 w?

(3.35)
1 1 2
1|2 22 + 712 22 + L2 2 \(1712 2
(k2 +mi)? (P +my)? (B2 +mi) (1 +mi)
yielding for the cross section and energy loss rate for my, — 0
1 g% /ud [ Suglat2.) + St (0, 2.)] (3.36)
o=— x —|Ssq(u, , 0g (U, T, .
18m273 J, xl™ 4 tog Y

. LgymiTe”

——/ du u e“/ dx [Ssq(u,x,y) —|—Slog(u,x,y)] (3.37)
0 0

9 777/2mf</2

with

1 42 x

S =5 ( —1)y1-2 3.38
T A\ duy + (v — y)? u (3-382)
1 (8u2+5x2+y2—|—4uy—8ux—2xy)1 2u—x+y—|—2\/u(u—x)]

Slog = 5 n
9 Ry 2u—x+y [2u—x+y—2\/u(u—x)

(3.38b)

For a massless mediator, the energy loss rate is

L 9m =20 guny 4
XsXs = XsxsV : €= =75
216 77/2m?/

(3.39)

The temperature dependence for the emission of a vector boson is ¢ < T%/2 for both
scalar and fermionic CDM. However, the effects of a finite vector boson mass on the
energy loss rate are larger for fermionic CDM than for scalar CDM as can be seen in
Fig. The difference is solely due to the interference terms, i.e. the last term in
and , which is larger and carries a positive sign for scalar CDM as opposed

to a negative sign for fermionic CDM.
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Figure 3.7: Comparison of energy loss rates for fermionic and scalar CDM scattering for
my, = 1 GeV, where R = €/é). The effects of a finite vector boson mass are larger for
XFXF — xFxrV than for xsxs = xsxsV.

Particle-Antiparticle Scattering ngg — XSXTS'V
For particle-antiparticle scattering the squared matrix element is

128 g5 — . |k[2|I[2(k - )2 1m2,
|IM? :—9—Z|k|2—’ U (k1) <1+-m—g) (3.40)
3w (&[> + m7,)? 2w

yielding for the cross section and energy loss rate the same expression as for ypxyr —
XFXFV
L ogf /ud 1[5( )+ Siog(,2,)] (3.41)
= —— x —|Ss(u, z, oq (U, T, .
127mz2, ), xl % y tog y
1gemr
€= -

3 7T7/2mi/2

29/ x
S. = — J1-Z 3.43
T duy 4 (v - y)? u (3.430)

/ du u e“/ dx E [Ssq(u, z,Y) + Siog(u, x, y)] (3.42)
0 0 Y

with

2u — 24/ —
Sy = L |22ty 2vulu—2) | (3.43b)
2u | 2u—2+y—2y/u(u—x)
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For a massless mediator, the contribution of Sy, to the energy loss rate can be neglected

and the contribution of Sj,, becomes analytic, yielding for the energy loss rate

2 9

T Ty .
XsXg = XsXgV RERT (3.44)
3.3.2 Scalar Interaction
The Lagrangian £ for scalar dark matter y with a scalar ¢ reads as follows
1
L = (9,x)"(0"x) + 5((‘9/@)2 (kinetic terms) (3.45a)
L 5o 1 g 1 4 -
— §m¢gb — §A¢gb — I)\qbqb (¢ potential) (3.45D)
1 2 :
— mix*x — 1)\ (XTX) (x potential) (3.45¢)
1
— ig(%XT)@Q — AX¢XTX¢ (interaction) (3.45d)

where we impose a global U(1) symmetry for x in order to forbid terms of the kind
N qbXTX(X +xT) or AXXTX(X + xT). This Lagrangian differs from all previous ones in
the second term, which is a trilinear coupling term between the scalar CDM y and
the light scalar ¢. A,, is a coupling of dimension 1. In order to maintain the power
counting scheme introduced in App. [A.3] we will have to assign kinematic constraints
to Ayg.

Particle-Particle Scattering ysxs — xsXxs®

For particle-particle scattering we have to consider diagrams (a)-(f) and (a’)-(f") in

Fig. The full result for the squared matrix element to second order in v, is

EPR2|1AS, 4g°A%, o . A2, 4 gPAY
|M|2:‘ |H - X¢__g X¢<k_l>2+4g X¢(k_l)2+_g x¢ W
w2 9m?< 3 mi mi 3 mi My

(3.46)
1

X = + — + — =
(k> +m3)* (1P +m3)* (kP +md)(|I[* + m3)

The first three terms in the first line of (3.46|) are the leading order in in v,, while
the last term is the full next-to-leading-order result according to our power counting
scheme, but, depending on the magnitude of A,4, the last term might not be negligible

compared to the first three terms. Imposing that the last term should be smaller than
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any of the first three terms, we get
A vm3w
Yoo e VX (3.47)
M Gex LKl

O(UX) O(v;2)

i.e., Ays/m, is of approximately the same order as g,. If A,4/gsm, reaches the lower
bound of , the last term in becomes comparable to the first term. However,
in this case the third term is much larger than all the other terms, which therefore can
be collectively neglected. If A,,/gsm, reaches the upper bound of , the last
term in becomes comparable to the third term. In that case, the first term is
much larger than all the other terms (as can be seen in Fig. [3.8). Thus, the O(v})-
term never gives a dominant contribution to the squared matrix element and quantities
deduced from it and can always be neglected. The only constraint, we have to impose

is A,s/m, < 1 for perturbation theory to work.

In order to perform the integral in the cross section and energy loss rate using the
dimensionless variables defined in App. [A.3] we have to split up the remaining three

terms to obtain

1oAY, o1
o1 x¢$ / d$—[—y(4u—2x+y) Ssq(u, x,y)+
0

T 2304min? x (3.48a)
+ (4u2 + 222 + o* — dux + duy — ny) Slog (U, T, y)]
L 95 ("
09 = @W/o dx [— Ssq(u, x,y) — Slog(u,x,y)} (3.48b)
1 g;lsA2¢ u
8= e | e [Satu9) + Sugloe.0)] (3.48¢)

with ¢ = 01 + 09 + 03 and

1 T
= - - .4
S duy + (7 —y)? ! u (3-49a)

S, _ 1 1 ) 2u—x +y+2y/u(u— x) (3.49D)
Y du2u—z+y | 2u—z+y—2yulu—x)
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Figure 3.8: Energy loss rate as a function of the trilinear coupling constant A, for m, =1
ﬁ

GeV, g5 = 0.1 and T = 1 MeV. At the point where the O(v?) term in (3.46) becomes
comparable to the Ai » term, both terms are negligible to the Ai » term (and vice versa).

The energy loss rate for a massless mediator (y — 0) is

5 AS, 3n2—2093A%, 3w — 20934 n?
XSXSs = XsXSO : ¢ = <§EZ X0 _ ﬂ576 Js x4 ﬂ192 Js ;¢> 2X5m 3/2
my My my ) aPmy
(3.50)

and for the asymptotic cases

A 3m2 — 20 gy A2 0’

A S NI e T (3.51a)

g¢mx 192 71-7/2mx

A 5 A6 nQ

e S E = X0 x_3/2 (3.51b)

G 864 7T2m /2
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Particle-Antiparticle Scattering ngg — ngg¢

For particle-antiparticle scattering the squared matrix element is dominated by the

t-channel, yielding

—»2—»2 A6 A 4A2 R R
=PI )(1 LA ey 49 B ;«s(k.l)z). (552

(|k;|2 9 mS -3 my m2

The energy loss rate is

1 AS 1 g3Ay, 1 gpAs n?
XX = XsXbo éz(— e LR X¢) T2 (3.53)

108 m$ 36 mi 12 m? 7T7/2m§’</2

and for the asymptotic cases of A,, we get

A n
Ao <1: . g—wg/’;T?’/? (3.54a)
GgTx 12 77/2my
6 .2
ﬂ > 1 € = LM 3/2 (3.54b)
9oy 108 77/2 772

Real Scalar Scattering Ysxs — XsXs®

If we consider the CDM particle to be described by a real scalar field ys = xs = Xs=
we also have to consider the annihilation diagrams in Fig. [3.1]and [3.6] The Lagrangian

for a real scalar field is

1 1
L= 5(8;0()2 + 5((9;@)2 (kinetic terms) (3.55a)
1 1 1 .
— §migb2 — —'A¢gb3 — —)\¢¢4 (¢ potential) (3.55D)
L 5.0 1 .
— 5 T g AXX - 4‘)\)( (x potential) (3.55¢)
1 1
— Zg¢x2¢2 — —AX¢X ) (interaction) (3.55d)

where we now have to consider the cubic term in since there is no U(1)-
symmetry for y. However, imposing that (x) = 0 we find in analogy to Fig.
that A, has to be small and therefore can be neglected. In accordance with the case
of a Majorana fermion field, the Lagrangian for a real scalar field has gained several
prefactors in comparison to the Lagrangian for a complex scalar field. These prefactors

are canceled by the increased number of possible Wick contractions. Since the terms
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involving annihilation diagrams are suppressed by at least a factor k?/r? ~ v? the
leading order contribution of real scalar scattering yields the same result as complex

scalar particle-particle scattering.

3.4 Elastic Scattering Cross Section

In this section we want to compute the elastic scattering cross sections for all the CDM
models discussed in this chapter. To leading order in v,, the squared matrix element

for elastic CDM scattering for a scalar as well as a vector mediator is

Mal* = gmi( 1|2 : 2z e 1 RTRRrTHT: 1 2 ) (3.56)
(12 +m3)? (2 +m3)? (k2 +m3) (|12 +m3,)

where the sign of the last term is positive for bosons and negative for fermions and
for particle-antiparticle scattering only the first term (i.e. t-channel) contributes. For
scalar CDM with the dimensionful coupling, we have to make the replacement g —

A/2m,,. The total cross section for fermion particle-particle scattering is given by

1 ¢*m?2 ! 512+ m2,)° + 3|t cos? 6
Ocl = 9 d(cos0) (\p ] M) [Pl -
26 ™ o [(‘ﬁrel’Q + m?w)2 — |Pret|* cos? 9}
(3.57)
94 1 m vrel 1 hl (1 + m Urel) m /Urel
1677 mMUEel mi Eel+mM mivf}el m?w mi 1?e1 +2mM 7
and for scalar bosons
1 ¢*m? ! 3(|Praa? - m2,)% & |Prat]* cos?
Ool = ey d(cos0) (2 1)+ 1Pl -
04 7T4 -t ((’ﬁ"rel‘2 + m2 )2 - ‘ﬁrel|4 C052 6)
M (3.58)

4
g 1 m vrel + 1 1 1+ m Urel m Urel
T 167 | m2 02, m2od, +m2, | m2ok, m? m2v2, + 2m2
M “rel X Urel M X “rel M X Urel M

where prel = 2p; = my Ve = 2m, Uy, is the relative momentum of the colliding particles,

mys is the mediator mass and cos@ = (p; - pr)/|pi||Ps| is the scattering angle. For
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particle-antiparticle scattering, the cross section for fermions and scalar bosons is

1
ael——g m / cos@

7

32 |prel|2 +m3; — |Pre|? coOs 9) (3.50)
1 g mivl?el

~ 167 m3, v m2v vi +mi,

As known from Bhabha and Mgller scattering in QED, the differential cross section
has a singularity along the beam axis of the colliding particles for a vanishing mediator
mass. Explicitly, the differential cross section for particle-antiparticle scattering

do 1 1 1

- X

—
d (1 —cosf)? (1—cos??+sin®%)?  sin*2

(3.60)

diverges for § = 0 (i.e. forward scattering), while the differential cross section for

particle-particle scattering

do 1 1
dQ (1 —cos20)2  sin*é

(3.61)

has a singularity for # = 0 and # = 7 because one cannot distinguish between forward
and backward scattering of identical particles. The singularities in the differential
cross section lead to a 1/m3, divergence of the cross section for a vanishing mediator
mass in all cases. For forward scattering, the DM trajectories are unchanged, meaning
that the diverging cross section in forward (and backward) direction does not influence
the DM distribution. For this purpose, one introduces the transport cross section
or for particle-antiparticle scattering which regularizes the forward scattering and the
viscosity cross section oy for particle-particle scattering of identical particles which

regularizes the forward and backward scattering, i.e.,

do
= Q(1 — .62
or /d ( COSG)dQ (3.62a)
do
oy = /dQ(l — COS g)dQ' (3.62Db)

The transport/viscosity cross sections corresponding to (3.57)), (3.58)) and (3.59)) are
given by

mz\z

1 4 m2v2 vE, + 5mi, + O—5%
oy = J [2111 (1 + rel) e 5] (3.63)

2,4 2 2 2
St M3 U my MV + 2mM
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XSXs __ i g4 mivfel X rel + 3mM + 3 X rel _
oy = T [2In| 1+ -, 2 31, (3.64)
87 M3 vy My MV + 2m3,
1 4 [ m Ul?e m Ure
o = o I (14 20 ) - (3.65)
87T mxvrel mM mx rel + mM

The transport /viscosity cross sections only diverge logarithmically with vanishing me-
diator mass. Equation is in agreement with the Eqn. 6 in Ref. [32] where in the
Born approximation only the t-channel was considered while and also in-
clude interference terms with the u-channel. For m); < m,v, the transport/viscosity

cross section for all cases goes parametrically as

4

(3.66)

ory X ——.
’ 29,4
mxvx

Soft Bremsstrahlung

In the case of soft bremsstrahlung (i.e. w < mxvi), it is possible to write the squared
matrix element for fermion scattering as a product of the elastic squared matrix element

and a term describing the emission of a particle
IMI* = [Miact|* = [Ma|*|FI? (3.67)

For the emission of a soft scalar, the fermion propagator plus external boson line is

given by [compare 33| p.432]

i prg+m u(p) (3.68)

5 S U
p+q)* —m?

where in the last step we have used that p u(p) = m u(p). For the factor |F|* we get
for both cases xpxr — xrXr¢ and XpXr — XFXFQ

FP =gt s |
=g (ps-q)  (pa-q) (pi-q9) (p2-q) (3.69)
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which yields for particle-particle scattering
256 g% -, - 1 1 1
|Mfact|2 :_g_2|k|2’l|2< + B )
w (

9 B2 +m2)2 (I +m2)2 (k2 +m2)(|I]> + m2)
(3.70)

and the same expression without the last two terms for particle-antiparticle scattering.
Comparing (3.70) to (3.11)) and (3.17)) one can see that | M |? lacks a term [1+3(k-1)2],

i.€.,

IMP? = [ Moy |2 [1 +3(k- Zﬂ (3.71)

This discrepancy can be explained by the fact, that the power counting scheme intro-
duced in App. only assumes small CDM velocities v, < 1 but does not make any
assumptions (except of kinematical kind) about the energy w of the emitted particle.
Assuming that w < mxvi renders the second term in negligible since

(i%-i):@( “ ) (3.72)

2
mxvx

For the emission of a soft vector boson, the fermion propagator plus external boson
line is given by

pHdg+m
(p+q)?* —m?

p+m

o up) BT

g (v-€)ulp) =g (v-€)ulp) =g

where in addition to p u(p) = m u(p) we have now used the property of the y-matrices
that (v -p)(y-€*) =2(p-€) — (v-€)(y-p). We get for particle-particle scattering
XFXF = XFXFV

|f|2=92<5p3.6> + (Pa-€)  (pi-e) (pz-€)>
pS'Q) : . .

(3.74)

2 g% -
= SEIRPIT (1 + 3¢

ouls
o~
~—
[\o}
SN——"
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and for particle-antiparticle scattering xpxr — XrXrV

|]_—|2:g2<(p3' )

Ps-a) a-@) (-q)  (p2-9)
8 ¢°

3 miw

(3.75)

[k (ke - )

yielding the same results for the squared matrix element as (3.24) and (3.29). It is
noteworthy, that (3.74) and (3.75) are gauge invariant, as expected, since a gauge
transformation € — € + ¢ only yields trivial factors of 1 which cancel in the sum, as

can easily be checked.

For scalar boson scattering, this factorization is not possible due to the diagrams (e)
and (f) in Fig. because these diagrams do not contain an internal fermion line. The
factorization can be explained in terms of Feynman diagrams as cutting the diagram

in two pieces at the fermion propagator, i.e.,

b1 ———— D3 D1 ; D3 D3+ qe———D3
1 ‘4. : .“
A g x X

P2 : Pa P2 : P g

where for the factorization it is essential that ps + ¢ &~ p3. This internal propagator
is not present in the diagrams of scalar boson scattering, where the bremsstrahlung is

emitted directly at the vertex, i.e.,

D1 D3

~k T d

D2 Da

and therefore these diagrams don’t allow for a factorization of the cross section.



Effects of Dissipation on
Structure Formation

In order to estimate the relevance of the energy loss due to bremsstrahlung during
structure formation, in this chapter we will compare the typical time scale of the
cooling process due to dissipation t.,, to the time scale of the gravitational collapse
terav Of @ cloud of particles, as well as to the Hubble time ¢, and the time between two

elastic scattering events t;.

As mentioned in Chap. 2] matter over-densities in the early universe get amplified.
Over-dense patches in the universe expand slower than the Hubble rate because of their

internal gravitational attraction and eventually stop expanding and, for the general
solution of the spherical collapse model (2.12)), i.e.,

r = A(1— cosb) t = B(0 —sinf)

with B = \/A3/GM, start collapsing at a turnaround time tyy, = 7B = w4/ A3/GM.
Following |13, p.733ff] and |14, p.215ff], we approximate the time it takes for a halo to

virialize as tgay = 2tgum. Assuming a spherically symmetric density distribution, we
get a turnaround radius 7., = 24 and with M = 47rr3p/ 3 estimate a gravitational

collapse time of

3

_— 4.1
8m,n, G (4.1)

tgrav =

If the gravitational time scale is larger than the cooling time due to dissipation [13|

ol
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p.764]

3n, T’
€

cool —

(4.2)

which is the ratio of the thermal energy content and the energy loss rate, we concede
that the energy loss due to bremsstrahlung has major effects on the gravitational
collapse of gas clouds in the universe. However, if ¢4y < tcool < to, %.€. the cooling time
is smaller than the age of the universe, cooling can still have an impact on structure
formation. We want to analyze the parameter space where structure formation is
influenced by dissipation due to bremsstrahlung. For that reason we define two regions

of interest, 7.e.

3n, T
tcool < tO = X < Ho_l (43)
€
and the more extreme region
3n, T 3
tcoo < t rav X - - 44
! & € 8myn, G (44)

For € in (4.2)) we substitute the energy loss rates calculated in Chap. . Keeping in mind
that dark matter self-interactions were introduced to solve the cusp vs. core problem
via heat transfer due to elastic dark matter scattering, we define an elastic scattering

timescale
el = (nxO-TUvir)_1 (45)

where the transportﬂ cross section oy is evaluated at vy;,. The small structure problems

can be solved if
ta < to = (nxaTvVir)_l < HO_I (46)

Using t we can try to find a region where elastic scattering could solve the small
structure problems, but dissipative effects are dominant preventing the solution, i.e.,

teool < ta < tg. As it turns out, this condition is not reachable with a coupling o < 1

!The reader should be aware that in this chapter, for the sake of simplicity, the regularized cross
section will be refered to as transport cross section op, when in fact we distinguish between the
transport cross section (3.62a)) used for particle-antiparticle scattering and the viscosity cross section

(13.62b|) used for particle-particle scattering.
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. . . . . . . . 3 2 3 . 3 2
in the non-relativistic limit because with é,, ~ a’nivy;, /m and é5 ~ a’nvy;/m and

or ~ a?/(myvy)?, we find that the cooling time is larger than the elastic scattering

time by a factor

: ~ 4.7a

XX ta ol (4.7a)
2fcool 1

Y ~ ) 4.7b

XX ol (4.7b)

However, for tq < teoor < to, cooling can still have an influence on structure formation,
counteracting the effects of elastic scattering, with heat being transferred to the center
of the halo by elastic collisions at first, but on larger timescales t.., < to dissipating

the gained thermal energy via bremsstrahlung. Since in all models t.. is a few orders
of magnitude larger than t, we find that (4.6]) is always fulfilled in the regions (4.3))

and .

In the following we discuss fermionic dark matter with a gauge interaction. However,
the only input for the cooling time that “knows” about particle character and inter-
actions is the energy loss rate é. Looking at Tab. one realizes that most of the
energy loss rates have a temperature dependence of ¢ o< T%/? with same dependence on
the particle mass, coupling and particle density and basically only differ in prefactors
which in our heuristic treatment we can neglect. The gauged models yield a different
temperature dependence ¢ o< T/? for particle-antiparticle scattering. We will there-
fore analyze xypxr — XpXxrV representative for all models that yield é oc 7%/2 and
XrXr — xpxrV for € oc T2,

Particle-particle scattering

The energy loss rate for the emission of a massless vector boson as calculated in Chap.
is

. 188 —9x% gym; s

€ = 432 7T7/2m§</2

Demanding teoo < to, we get

43277/2 1\ 2
Tor 2 (3wﬂ9ﬁ2> Hm3 gy n? (4.8a)

0.1\° My T/ GeV/em®\?
coomy () () (S
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tcool ,S tO tcool S tgrav
DWARF GALAXIES my /o S T0MeV | m, /o S 10 MeV
GALAXY CLUSTERS | my/a S 300 MeV | m, /a < 50 MeV

Table 4.1: Bounds on m, /a for particle-particle scattering for the two conditions tcoo1 S to
and teool S terav. Dwarf galaxies have a virial velocity vy =~ 10 km/s and galaxy clusters

~

have vyi; & 1000 km/s.

0.1\° m ? /GeV /em®
o> - X
ez () () (S

with o = g% /4x for particle-particle scattering and, which tells us that for a particle
with 10 MeV and a coupling o = 0.1 the condition (4.3)) can be fulfilled in the non-
relativistic limit for a typical dark matter density p, ~ 1 GeV/ cm®. As one can see
in , the coupling o and the dark matter mass m, appear with the same power.
Therefore, we can go to higher masses by increasing the coupling by the same factor,
yielding the same viral velocity. Increasing the coupling strength to o = 0.3 we can still
fulfill for 100 MeV particles on cluster scales with v, ~ 1000 km/s. Due to the
linear relation between the dark matter mass and the coupling strength, we combine
the two into m, /o in Tab. showing the values for which teo0 S o and teoor S tgrav-

For teool S tarav, We get

43273 \? T
Tvir Z 24(@) Gmf’( ng nxl (493)
0.1\° m " /GeV/em®
~ 3 k — X 4.9b
3V (O‘) <1OM€V) ( Px ), (4.95)
0.1\° m [/ GeV /em® 12

vir > 10° k - X ) 4.9
e 29 10 kn ' <a> (10MeV> < o ) (4.9¢)

This means that in order to fulfill (4.4)) for smaller structures we need stronger coupling
or smaller masses compared to (4.3). The results are presented for m, = 10 MeV and
a = 0.1 in a contour plot in the p, T-plane in Fig. [4.1]

As one can see in the upper plot in Fig. , for a fixed a = 0.1 and DM mass m,, < 10
MeV cooling is relevant for structures of galactic scales or larger (vy;, = 10 km/s). In

order for cooling to influence smaller structures with v, ~ 10 km/s, one would have

to go to smaller DM masses m, <5 MeV or stronger couplings o 2 0.2.
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Zfcool ,S tO tcool 5 Zfgrav
DWARF GALAXIES | m,/a <200 GeV | m,/a < 30 GeV
GALAXY CLUSTERS | my/a S 30 GeV | m, /a <6 GeV

Table 4.2: Bounds on m, /« for particle-antiparticle scattering for the two conditions t¢o01 S
to and teool S terav. Dwarf galaxies have a virial velocity vyir = 10 km/s and galaxy clusters
have vyi; & 1000 km/s.

Particle-antiparticle scattering

The energy loss rate for the emission of a massless vector boson for particle-antiparticle

scattering as calculated in Chap. [3]is

2 9V g
o 3/2 :
37r7/2mx/

Again demanding teoo1 S to, yields

Tvir 5 WH(;Q m;S 9‘1/2 ni (4103)
6 5 2
~ 1 MeV (00‘—1) ((;j\/) <G fa 3) : (4.10b)
: X eV /cm
3 3
veir S 2 x 10" km /s <ﬁ> (Gev) ( Px 3) (4.10¢)
0.1 My GeV /cm

meaning that is fulfilled for all non-relativistic particles. It is worth mentioning
that, due to the different temperature dependence of particle-antiparticle scattering
(i.e. ¢ oc T3/% for xx and é o< T%/2 for for x¥, as shown in Chap. , the conditions
and also show different properties for xx and for yy, .e. in the condition
yields a lower bound for T; and vy; while in it yields upper bounds. This
means that for yy-scattering the cooling due to bremsstrahlung is more relevant for
larger structures with higher virial velocities and for yy-scattering it is more relevant
for smaller structures. This can also be seen in Fig. [1.1] comparing the shaded regions

of the top and bottom plot.

For teool S tarav, We get

ir < i
~ 16276

6 5
~ 0.1 keV (ﬁ) (Gev) ( Px 3), (4.11D)
0.1) \Umy ) \GeV/em

T, G 'm g’ ny (4.11a)
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my =10 MeV, o = 0.1
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Figure 4.1: Comparison of cooling time t.,o With gravitational time tgay and Hubble time g
for fermionic dark matter with a massless vector boson. The solid lines denotes the contours
where teool = tgrav and teool = to respectively, while the dotted lines are teool/tgrav = 10*+!
and teoo1/to = 10! in order to give an impression of the magnitudes. In the dark grey
region tgray < to < teool, in the light grey region tgray < feool < to and in the white region
teool < tgrav < to. The dashed-dotted lines represent the typical virial velocities of dwarf
galaxies, larger galaxies and galaxy clusters. Top: xrpxr — xXrpxrV for m, = 10 MeV and
a = 0.1. Bottom: xpXr — XrXrV for my =1 GeV and o = 0.1.
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Figure 4.2: Comparison of cooling time ?.,, with gravitational time tgyay and Hubble time

to for fermionic dark matter with a massive vector boson. The solid lines denotes the contours
where tcool = tgrav and teool = to respectively for my = 1 eV, while the dashed lines denote the

contours for my = 0 from Fig. and the dotted lines denote the contours for my = 100 eV.

For my = 1€V, in the dark grey region tgray < to < teool, in the light grey region tgray < teool <
to and in the white region tcoo1 < fgrav < to. The dashed-dotted lines represent the typical
virial velocities of dwarf galaxies, larger galaxies and galaxy clusters. Top: xpxr — XFXFV

for my = 10 MeV, a = 0.1. Bottom: xrXr — xXrXrV for my, =1 GeV, a = 0.1.
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30 /my | (T;my) | | 3T/my | x(T;my)
0.01 |~10"% 1 ~ 1072
0.1 ~ 1071 100 |~0.5
0.3 ~ 1076 102 |~ 0.9
0.6 |~1073 100 | ~1

Table 4.3: Suppression factors of the energy loss rate as a function of the temperature and
mediator mass for fermionic dark matter with a gauge coupling.

3 3 1/2
var < 150 km /s (i) (Gev> ( Px 3> (4.11c)
0.1 My GeV /cm

for particle-antiparticle scattering. In Tab. e show the values of m, /a for which

teool S to and teool S taray for particle-antiparticle scattering.

For a finite mass of the vector boson my > 0, the energy loss rate gets suppressed by

a factor (T, my) < 1 compared to the massless case, i.e.,
ET,my) =x(T,my) é(T,my =0) (4.12)

as can be seen, e.g., in Fig. |3.4, This leads to the lower bounds for T, in (4.8b))

and (4.9b)) being increased and the upper bounds for Ty, in (4.10b) and (4.11b)) being

decreased by the square of the suppression factor, leading to the implicit equations

TXX(my) = 2 2 (TX (mv), my) T (my = 0), (4.13)

vir vir vir

XX (my) = 2° (Tjﬁf(mv), my ) TXX(my = 0). (4.14)
In order to make a quick comparison possible, we present a few values of z(7,my) in
Tab.[£.3] One can see, as described in more detail in Chap. [3] that for high temperatures
x is almost independent of my. However, when the kinetic energy of the system
mxvf< = 3T,;, drops below my, x decreases exponentially. We present in Fig. how
the contours in the p, T-plane change with increasing mediator mass. As expected, the
contours teoo1 = to and teool = tgray for my > 0 deviate visibly from the contours for
my = 0 when the temperature sinks below the mass of the emitted particle. While for
high temperatures the contours are given by a power law 7" pi, for low temperatures
the contours flatten out as T exp(T'/my ) pf(. This yields stringent lower bounds on

the temperature (37" 2 my ) in order for cooling to influence structure formation.

It is important to analyze the parameter space where our approximations hold. It is
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constrained for high temperatures (i.e. from above in Fig. by the border of the
non-relativistic limit
3T

my

1 (4.15)

and for low temperatures and high densities by the border of the non-degenerate limit

where the inter-particle distance 7y, ~ (47p,/3m, )~/ becomes comparable to the

—1/2

de-Broglie wavelength A ~ (3m,T") of the particles

243
1672

pimy T ~ 1 (4.16)

whereas these limits depend on the DM mass m, which in Fig. is taken to be 10
MeV for xx and 1 GeV for xy. For increasing m, the region of validity gets broader
and for decreasing m,, it gets narrower. However, in the region depicted in the figures
in this chapter, our approximation of a non-degenerate, non-relativistic gas of particles

is well justified.

It is possible to do the same analysis as the above in terms of the mass of the halo M
and the redshift z at which it was formed instead of the virial temperature and density,
using the fact from Sec. [2.2] that the density of a halo after virialization is

Py = Py 4 ppt = 187 pyy = 187, (1 + 2) = 187°Qf, p2(1 + 2)° (4.17)

where p? & 0.47 x 107 GeV /cm? is the current critical density of our universe defined
in (2.5, 29, ~ 0.3 the normalized matter density and the factor (1 + 2)* stems from
the fact that the matter density scales with a=3. Approximating p}I ~ p;ir allows us
to calculate contours in the z, M-plane. Using and (4.17) and assuming for the
halo a homogeneous sphere 3, = 3M/(4mp¥’") we get

vir X

2473 1/3
Toir = < oF MQQ%/)S) Gmy (1 + ). (4.18)

This yields for particle-particle scattering for the condition .o < to

05\°/ m O/ 10 \2V?
M >4x10*M - X 4.19
~E © (a) (10Me\/) (1+z) (4.19)




60 CHAPTER 4. EFFECTS OF DISSIPATION ON STRUCTURE FORMATION
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102 10! 10°
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Figure 4.3: Comparison of cooling time t.,, with gravitational time tgy,y and Hubble time
to for fermionic dark matter with a massless vector boson. The solid lines denotes the contour
where teool = tgrav and teool = to respectively, while the dotted lines are teool/tgrav = 10*+!
and teoo1/to = 10%! lines in order to give an impression of the magnitudes. In the dark grey
region tgray < to < teool, in the light grey region tgray < feool < to and in the white region
teool < tgrav < to. The dashed-dotted lines enclose the halo mass range based on Press-
Schechter theory in ACDM, which is also depicted in Fig. [16]. Top: xpxF — xXFpxFV for
m, = 10 MeV and o = 0.5. Bottom: xpXr — xrXrV for m, =10 GeV and a = 0.5.
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Figure 4.4: Comparison of cooling time t.,, With gravitational time ¢4, and Hubble time ¢g
for fermionic dark matter with a massless vector boson. The solid lines denotes the contours
where tcool = tgrav and teool = to respectively for my = 1 eV, while the dashed lines denote
the contours for my = 0 from Fig. [f.I]and the dotted lines denote the contours for my = 100
eV. For my = 1 €V, in the dark grey region tgray < to < tcool, in the light grey region
tarav < teool < to and in the white region tcoo1 < tgrav < to. The dashed-dotted lines enclose the
halo mass range based on Press-Schechter theory in ACDM, which is also depicted in Fig. 2:4]
. Top: xpxr — xrxrV for m, = 10 MeV and o = 0.5. Bottom: xrpXr — xrXrV for
m, = 10 GeV and o = 0.5.
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and for teool < tgrav

05\ 7/ m 27 10 \°
M > 8 x 10" M e X . 4.20
Shie © (a) <1OMeV> <1+z) (420)

For particle-antiparticle scattering, we get for t.oo < to

9 9 15/2
1 1
M<2x108M, (-2 0GVA (1t (4.21)
0.5 my 10

and for teool S terav

9 9 3

1 1

M<5x10M, (-2 0 GeV ) (4.22)
0.5 My 10

Again, xx and xx show a different analytical structure due to the analytical structure
of the energy loss rate. The results for a massless vector boson are presented in a
contour plot in the z, M-plane in Fig. , together with the the halo mass range [16]
(which has been presented in Fig. . One can see in Fig. that for particle-particle
scattering and the given parameters m, = 10 MeV and o = 0.5, almost all relevant
masses within the halo mass range (depicted by the dashed-dotted line) are within the
region fgrav < teool < to. The contours of the time scales as well as the halo mass
function all go from small masses at large redshift to large masses at small redshift.
Only for a narrow region of large halo masses within the halo mass range the condition
teool < taray is fulfilled. For particle-antiparticle scattering and the parameters m, = 10
GeV and o = 0.5, the teo < to and teool < tgray contours are perpendicular to the
contours of the halo mass function in the z, M-plane, meaning that radiative cooling

becomes more important for smaller structures that were formed at larger redshift.

In Fig. 4.4 we present how the contours in the z, M-plane change with increasing
mediator mass. For particle-particle scattering the region of interest is pushed to
higher masses within the halo mass range for a very light mediator my, = 1 eV while
for a heavier mediator my = 100 eV the region of interest does not lie within the halo
mass range anymore (see Fig , top). In the latter case, one would have to increase
the coupling in order for cooling to influence any of the structures within the halo
mass range. For particle-antiparticle scattering, cooling is dominant for small masses
if my = 0, yielding tcool < tgray for all structures below ~ 10" My, (see Fig , bottom)
which would have drastic consequences for small structures. However, this region gets

pushed to higher masses and larger redshift and thereby almost entirely out of the halo
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mass range for my = 1 eV and even further out for my = 100 eV (see Fig[1.4] bottom).

Having shown that the condition tg < teoo1 < fo Or even tg < teool < tgray Can be
met with reasonable parameters, we now want to analyze in more detail the parameter

space that fulfills the observational constraint

— <1lcm 4.23

S /8 (4.23)
from gravitational lensing measurements of the Bullet cluster [32]. Using (4.7)), yields
for the condition .o < to

my HO

2k+1
or owvi;r

Py > (4.24)
with k& = 1 for particle-antiparticle and k£ = 2 for particle-particle scattering. With
(4.23) and a typical virial velocity v ~ 1072 at cluster scales we get a lower bound for
the density

106 1072\ °

XX:  py 2 — GeV/em? ( ) , (4.25a)
(6] Uy
102 1072\ °

XX PR L GeV /cm? ( ! ) (4.25b)
[0 UX

and, putting (3.66|) into (4.23)), a lower bound for the DM mass

102\ */?
my > 10a*?* GeV ( o ) : (4.26)
Equations and show that the conditions ¢, < tg and t.,, < to cannot be
met simultaneously for the fiducial DM density p, ~ 1 GeV/cm?® which is approximately
the DM density in our local group. However, if the DM density increases by a few
orders of magnitude and the DM mass is in the GeV range or higher, which are still
reasonable numbers, it is possible to fulfill 5 < t.o < to entering a regime where
the small structure problems are solved by elastic scattering while bremsstrahlung is

prevalent enough for dissipative cooling to influence structure formation.

It is important to mention that the results obtained in this thesis are based on tree
level calculations (i.e. the Born approximation) requiring, for a heavy mediator, that
am,/my < 1 [32|. For a light mediator, this becomes a condition for the coupling
and the DM velocity a/v, < 1 [33, p. 323]. The second condition is relevant for
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bremsstrahlung where the mediator has to be light in order for it to be produced
in non-relativistic collisions. In the parameter space analyzed in this chapter, the
Born condition is not always fulfilled which would lead to non-perturbative effects.
However, the non-perturbative effects for the elastic scattering cross section can, to a
good approximation, be factorized into a Sommerfeld enhancement factor times the tree
level results [32]. If this also holds true for the energy loss rate in inelastic scattering
and the energy loss rate gets enhanced by approximately the same factor as the elastic
scattering cross section, the regions of interest for p, in (4.25) and m, in (4.26) stay

intact.



Conclusions and Outlook

In this thesis, the effects of bremsstrahlung in dark matter collisions on structure for-
mation in the universe were analyzed. For this purpose, four different generic models of
self-interacting dark matter were assumed, including fermionic and scalar dark matter

with the self-interaction being mediated by either scalar or vector bosons.

Following these simple models, the energy radiated away in form of bremsstrahlung
(i.e. the energy loss rate é) was calculated perturbatively in a non-relativistic and non-
degenerate limit. Systems with a vanishing dipole moment show a different temperature
dependence of the energy loss rate than systems with a non-vanishing dipole moment.
It was found that ¢ Tvliéz for particle-antiparticle scattering in the gauged models
(i.e., for the processes xpxr — XrXrV and szg — XSXTSV) and € Tv?’f in all other
models that were analyzed for vanishing masses of the mediator m,, and the emitted
particle m.. While for vanishing masses the energy loss rates were solved analytically,
for finite masses numerical methods were used to solve the phase space integrals. It

was found that the energy loss rate is independent of m,, and m, for Ty;, > m,, and
2

Tiir > m.. When the kinetic energy of the system m, vy, = 317w = m,, = m., the
energy loss rate is suppressed by approximately a factor 0.01 and drops exponentially
for lower temperatures. This can be explained by the fact that the mass of the emitted
particle has to be “drawn” from the kinetic energy of the system and therefore its

production becomes more unlikely when the temperature decreases.

The energy loss rates obtained in the perturbative calculations were used to calculate
the cooling time t..o1, i.€., the time it takes a gas with a given thermal energy content to
cool down trough radiative dissipation. The cooling time was compared to the Hubble
time t, (é.e. approximately the age of the universe), the gravitational time scale tyyay

(i.e. the time it takes a spherical over-density to contract and virialize) and the elastic
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scattering time t (i.e. the average time between two elastic scattering events). It was
found that teoor/te o a~2 and therefore a coupling o < 1 always leads to tc, being
larger than t.. Considering that t4., < %o, cooling due to dissipation can have an
effect on structure formation if t.,0 < o and even greater effects if tcoo1 < gray. Both
conditions can be met for certain ratios of the dark matter mass m, and the coupling
constant of the self-interaction « for a fiducial dark matter density of 1 GeV/cm?®. For
these regions of interest, the condition ¢, < t, is always fulfilled which is a prerequisite
for SIDM solving the small structure problems. The scenario of fermionic dark matter
with the emission of a massless vector boson was treated as a representative case.

For particle-particle scattering, the condition te.q < to can be met for m,/a < 70
MeV in small structures like dwarf galaxies with a virial velocity of a few dozen km /s
and for up to m,/a < 300 MeV for large galaxy clusters with virial velocities of 1000
km/s. This means that for particles with a mass in the MeV range, the self-interaction
has to be very strong in order for radiative cooling to influence structure formation in
the universe, while for lighter particles weaker interactions are possible. For particle-
antiparticle scattering, the condition t..o < to yields looser bounds on m, /a, i.e. in
< 200 GeV while large galaxy

~

dwarf galaxies the condition can be met by m, /a
clusters require m, /o S 30 GeV. Both processes, xx — xxV and xx — xxV, yield
upper bounds on the dark matter mass, but for fixed mass and coupling the yy-process
is more relevant for larger structures while the yy-process is more relevant for smaller
structures. Since the energy loss rate is suppressed by the mediator and the emitted
particle’s mass, the parameter space where radiative cooling can influence structure

formation gets bounded from below by the condition 37 = mxvi Z my.

Considering the observational constraint or/m, < 1 cm?/g at cluster scales of vy, ~
1072, it was found that tq < teeol < to can only be fulfilled if m, /a®? > 10 GeV with
dark matter densities a p, = 10® GeV/em? for yy-scattering and a p, = 10% GeV /cm?
for xx-scattering.

The results presented in this thesis are all based on perturbative calculations. However,
especially for non-relativistic collisions and light mediators non-perturbative effects
gain significance [32]. These lead to a “Sommerfeld enhancement” of the cross section,
which would also lead to an enhancement in the energy loss rate. This enhancement
could possibly reduce t..o by orders of magnitude and thereby loosen the bounds on the
parameter space where radiative cooling is a significant factor for structure formation
in the universe. For elastic scattering, to a good approximation, the non-perturbative

effects can be factorized into a Sommerfeld enhancement factor times the tree level



CHAPTER 5. CONCLUSIONS AND OUTLOOK 67

results. If this also holds true for inelastic scattering, the results obtained in this thesis
are an important basis for further investigations. Finally, the presented toy-models of
dark matter should be studied in the broader context of cosmological and experimental

viability.
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Appendix

A.1 Massive U(1) Gauge Field

In this appendix, we comment on the mass of U(1) gauge fields. The most general
Lagrangian for interacting fermions y, gauged under a massless U(1) vector boson is
given by

%lVWV’“’
1
4

Lopp = X(i) —my)x — (A1)

= ix@x — myxx — =V V" + gv Vxr' x
with the field strength tensor V,, = 0,V, — 9,V and the covariant derivative D, =

Oy —igvV,. This Lagrangian is invariant under the gauge transformations

VH S VE=VHF 4 i(9“/\, (A.2a)
gv

X =X =e My (A.2b)

where A = A(x) is the gauge parameter. If we want to add a mass term to Lggp, we

realize that the theory is not gauge invariant anymore because

2

1 2
m2V? = —m2 V2 = m2V? 4 29 ADPA + VYR, A, (A.3)
2gy, gv

1 1
) 2 2V

Gauge invariance can be restored by the Stueckelberg trick [34], as sketched in the

following. The starting point is to add a mass term to the Lagrangian of a massless
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vector boson _};V;WVW- This yields the Proca Lagrangian of a massive vector boson,

1

1
ViV + —m3 V2. (A.4)

Lp= >

The equations of motion following from this Lagrangian are
VM +mi VY = 0. (A.5)
After differentiation with respect to z¥ we realize that the Lorentz condition
o, V¥ =0, (A.6)

restricting the gauge invariance, is manifestly satisfied in the Proca Lagrangian. The re-
striction can be lifted by adding to the Lagrangian a Lagrange multiplier [— %(@LV“)Q]

with £ = 1 to subtract the gauge condition. This leaves us with the Lagrangian
1 wy v 1 2172

where the Lorentz condition does not follow from the equations of motions. However,
this has the consequence that the Hamiltonian is not positive definite anymore [34] and
the Lagrangian is still not gauge invariant. Stueckelberg showed in 1938 that one gets
a gauge invariant Lagrangian with positive definite Hamiltonian by introducing a new

scalar field B, known as the Stueckelberg field, with the Lagrangian

1 1

The full Stueckelberg Lagrangian

1
L= Lr = 50,V + Ly

1 1 1 1 (A.9)
= =50V 0"V + 5m%/v2 + 5(8MB)2 — 5m%/B2
fulfills a new gauge invariance
1
VI VI =VHF4+ —0FA (A.10a)
gv
1
B — B'= B+ —myA (A.10b)

agv
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which becomes apparent if we rewrite (A.9) to get

L= ViV gt (Vi = oo0,8) (v~ -0°B) (A11)
o) ar )

Interestingly, the Stueckelberg field B is decoupled from the vector boson V*#| i.e. there
are no terms in (|A.9) through which B and V* interact, meaning that we do not have

to consider the Stueckelberg field in our calculations.

The Stueckelberg mechanism can be seen as a limit of the Abelian Higgs mechanism
(see, e.g. [35] or |28]) where the vacuum expectation value of the Higgs field is taken
to infinity while the gauge coupling is taken to zero. In the Abelian Higgs mechanism

we introduce a complex scalar field ¢ with Lagrangian
1
Lo = (0,9)1(0"0) — u?6'¢ — 7 M(0'9)’ (A-12)

which couples to the vector boson via a gauge coupling D,¢ = 9,0 — igV,¢. After
symmetry breaking and expanding around the minimum of the potential, we get the

Higgs Lagrangian

1 1 1 1
Lhiges = 59°0°V? + 5(8Mh)2 — M°h* + g*oVPh + 5g2v2h2 — Mvh® — ZA}# (A.13)

2
TV TV NV
gauge field massive scalar h — V¥ interaction Higgs self-interaction

J/ N J/ N J/

with v being the vacuum expectation value of ¢ and h the real Higgs field. If we
now take the limit v — oo and g — 0 while keeping gv = V2 v = my we get the
Stueckelberg Lagrangian with the Stueckelberg field h.

A.2 Feynman Rules and Amplitudes

In the following, the Feynman rules for the models presented in Chap. |3| shall be
presented. The kinetic and mass terms of the Lagrangian for fermions y, scalar bosons

¢ and vector bosons V'

Lr=x(id—m)x (A.14a)
1
Lg== uqb@“d)— m¢¢2 (A.14b)
1
Ly = ——V‘“’VW + —m3 V2 (A.l4c)

4 2
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lead to the following Feynman rules where the arrows on fermion lines denote the

direction of the fermion flow while the arrows on boson lines show the direction of the

momentum. Unless an arrow on a boson line states otherwise, the momentum is chosen

to flow from left to right:

External fermion legs:

Fermion propagator:

External scalar boson legs:

Scalar boson propagator:

External vector boson legs:

Vector boson propagator:

NN\ = ]

p
————e=u(p)
p _
o =1u(p)
p
— e =1(p)
p _
0—<;:U(p)
p p+m?
o ——————>—— @ —1
2 —m?
p —p+m?
o — <@ =1
2 — m?
p
o =1
p _ 7
e---—r---o 02— m?
D
AN = el (p)

p —g"+(1-¢)

p2_m2

(A.15a)
(A.15b)
(A.15c¢)

(A.15d)

(A.16a)

(A.16b)

(A.17)

(A.18)

(A.19a)

(A.19b)

(A.20)
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In Chap. 3, we introduce various models of DM self interaction, which contain the

following vertices:

Yukawa interaction (fermion/scalar):

Lint = gngX g—»—— =19 <A21)

Gauge interaction (fermion/vector):

Lint = gV, X7"'X J = igy" (A.22)
¢ and ¢ interaction (scalar/scalar):
Lim = A(6'0) =i (A.23a)
A P2 \\x )yz/ .
Eint = Z((b gb) \)\ =\ (A23b)
Gauge interaction (scalar/vector):
Lint = igvu[ (au¢T) o — ¢T (au¢)] Nfrq\/\/x = —ig(p + p')“ (A.24a)

Lint = (8 $)V2 Jr‘)v;j —2ig%"  (A.24)

For Majorana fermions, deducing Feynman rules is a bit more subtle than for Dirac
fermions, since the fermion flow is not fixed, i.e. one cannot distinguish between particle
and antiparticle. In order to construct Feynman rules in a tractable fashion, we follow
the conventions of Ref. [31] who introduce a fermion flow (i.e. an orientation of a
fermion line) in contrast to the fermion number flow of Dirac fermions, which is a
new conserved quantity, which in this context means the orientation of a fermion line
cannot change at a vertex and denote the orientation by an arrow next to the fermion
line. The Feynman rules depend on the orientation with respect to the momentum

flow but the differences cancel when computing the whole Feynman amplitude since
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the orientation is a random choice which physical quantities should not depend on. We
also use the fermion flow method to determine the relative sign of interfering Feynman

graphs.

External fermion legs for Majorana fermions:

T e =u(p) (A.25a)
- " —u(p) (A.25b)
T e=u(p) (A.25¢)
- —%(p) (A.25d)
Majorana fermion propagator:
+ 2
- e=i ]i o (A.262)
p>—m
— 4+ m?2
T o (A.26b)
pe—m

Yukawa interaction (Majorana fermion/scalar):

1
Ling = §g¢>~(2 >» >» = <A27)

Since we do not have diagrams with both Dirac and Majorana fermions, both orienta-

tions lead to the same amplitudes in our calculations.

Feynman Amplitudes for Fermion Scattering

Following the Feynman rules stated above, the Feynman amplitudes corresponding to

the t-channel diagrams in Fig. are for particle-particle scattering

A= (+1) b(q) u(ps) I's ulp2) A(k) a(ps) I's Sp(ps +q) It u(p) (A.28a)
B = (+1) b(q) u(ps) ' u(p1) A(k) @(ps) I's Sr(pa+q) T2 u(p2) (A.28Db)
C=(+1) blg) u(ps) T2 u(p2) A(k) ulps) I'n Sr(pr — q) I's u(p1) (A.28¢)
D = (+1) b(q) ulps) I'1 u(p1) A(k) u(ps) Iy SF(pz —q) I's u(p2) (A.28d)
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and p3 <> py4 for the u-channel. Additionally, the exchange amplitudes obtain a relative

sign due to the permutation of spinors relative to the chosen ordering (1,3,2,4).

For particle-antiparticle scattering, the t-channel diagrams are

A= (=1) blq) v(p2) I'2 v(ps) A(k) ulps) I's Sp(ps + q) T'1 u(pr) (A.29a)
B = (=1) b(q) u(ps) I't u(p1) A(k) v(p2) I's Sp(—ps —q) I's v(p4) (A.29D)
C = (1) bg) v(p2) I'y v(ps) A(k) @lps) I't Sp(pr — q) s u(p1) (A.29¢)
D= (-1) b(g) ulps) I't u(pr) A(k) v(p2) I's Sp(—p2+q) I'2 v(pa) (A.29d)

and p; <> —p4 plus a relative sign for the s-channel.

For Majorana particles, we have to consider all above channels plus the interference

terms between s and u-channel. Following the Feynman rules in [31], we get for the

s-channel
A" = (+1) b(q) 9(p1) T1v(pa) A(l) a(ps) s Sk(ps + q) T2 u(ps) (A.30a)
B' = (+1) b(q) u(ps) To u(p2) A(l) 0(p1) T1 Sr(—=ps—q) Ts v(pa) (A.30b)
C' = (4+1) b(q) u(ps) Ty u(p2) A(l) v(p1) T's Sp(—p1 +q) Ty v(pa) (A.30c)
D' = (+1) b(q) v(p1) T1v(ps) A1) a(ps) Tz Sk(p2 — q) Tz u(ps) (A.30d)

and py <> —p4 plus a relative sign for the u-channel.

In (A.28a) to I'; and I'y are the vertices connecting the fermions to the medi-
ator, I'3 the vertex connecting the fermions to the emitted particle, b(q) is the emitted
particle’s asymptotic state, which is either bseqiar (k) = 1 OF byector (k) = € (k) depend-
ing on the model, u(p) and v(p) are the asymptotic states of the fermions, A(p) is the

mediator’s propagator and Sg(p) the fermion propagator.

Feynman Amplitudes for Scalar Boson Scattering

For scalar boson scattering, the amplitudes A-D can be adopted, but the spinors have
to be replaced by the asymptotic states of scalar bosons u(p) — 1 and v(p) — 1 and the
fermion propagator has to be replaced by a scalar propagator Sr(p+q) — A(p+q) and
the amplitudes do not gain a relative sign. The vertices have to be adapted following

the corresponding Feynman rules. In addition to the amplitudes A-D we get two more
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amplitudes £ and F corresponding to the new diagrams in Fig. [3.6]
E (q) Ty A(k) Ty (A.31a)
F = 1 A(k) Ty (A.31Db)

where I'y is the vertex containing the mediator and the emitted boson. It is now trivial
to deduce from the Feynman rules the missing amplitudes of the diagrams (g) to (i),

but since we neglect these diagrams we do not write down the amplitudes explicitly.

A.3 Calculation of |[M|? for xx — xx¢

In this section, the full calculation of |[M|? for a scalar mediator and the emission of a

scalar

Lint = godXX (A.32)

shall be demonstrated. Using the Feynman rules in App. the Feynman diagram
A yields
1 Py T d A my

A= ﬂ<p4) 9¢ u<p2) kQ——mi ﬂ(p:;) 9¢ (p3 + q)g _ mi e u(pl)

, 1 1 i ]
T Y9972 _ m2 (ps + q)* —m?2 u(pa)u(p2) w(ps) (P + ¢ + my)ulp)

(A.33)

where p; and p, are the momenta of the incoming particles, ps and p, the outgoing
ones, k is the momentum transfer, ¢ is the momentum of the emitted particle, my is
the mediator’s mass, m, is the fermion mass and g4 is the coupling strength which we
assume to be < 1 for perturbation theory to work. For the computation of A*, one

needs to make use of the following relations

Thus follows

1 1
* 3
A _g¢k2_

(oo @7~z PP g mulps) wpa)ulpa) (ABY)
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and without the prefactors, the squared matrix element (with spinor indices in latin

letters) reads

|A[* o< tia(pa)Laptin(p2) e(ps) Lea(p, + ¢ + my) Lactie(p1)

(A.35)
X ap(p1)dg(P, + 4 + ma) Lgnun(ps) i(p2)1iju;(pa)

where we have added the the gamma identity matrices 1 at the vertices in order to
emphasize that, generally, gamma matrices can enter the expression at these places.
Keeping track of the spinor indices, we can now restructure (A.35)) and using

> up)u(p) = p+m (A.36a)

spins

> ulp)olp) =p—m (A.36b)

spins

yields the following expression:

Z |A]* o Z (Pa)Ua(Pa) Lapus(pa) Ui(p2)Ls

spins spins

X uh(pB)QC(pS)lcd(pg +q+ M) Laette (p1) ﬂf(pl)lfg(p;; +q+ My ) Lgn

(A.37a)

- (]”4 * mx>ja Lao (pQ * mX)bi Ly

R A O R O R AL
(A.37b)

=l (e (3o

(&

-

M (A.37¢)
il (o) (1 gm) (5 om) (100 m)|

N

-

b
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To evaluate the Dirac traces in (A.37c) one can use the properties of the gamma

matrices

tr[l] =4 (A.38a)
tr[y*] =0 (A.38b)
tr[y"9"] = 4¢™ (A.38¢)
tr[y#v"v°] =0 (A.38d)
tr[y vy "] = 4 (9" 97" — g" 9" + g""g"7) (A.38e)
and thus
(a) = tr {wpﬁf VP + MYl + P+ ms (A.39a)
— 4(gurkps +m?) (A.39b)
= 4(p2 P4+ mi) (A.39¢)

() =t O+ 0 (3 4 1) (08 +10) (2005 420 )| (4.390)

= 4<2 (P1-q) (D3 - @) +2m% (p1 - q) +4m3 (ps - q) +myg” + 2p5 (p1 - q) (390
.0Jde

— ¢ (p1 - p3) +3m3 (p1 - ps) + 3mips + p5 (p1 - ps) + mi)

In the next step, we want to use kinematic conditions to reduce the expression to a
minimal set of momenta k, [, r and ¢q. The connection to the Mandelstam variables is

k? =t, 1> = u, r? = 5. Using that the momentum is conserved at each vertex, we get

q=p1+p2—P3— D4 (A.40a)
k=np, —
b2 (A.40D)
=p3—p1t4q
| =y —
b= (A.40c)
=D2—P3— (¢
r=p +
b (A.40d)

=p3s+Dps+4q
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Using (A.40a) to ((A.40d)), we can express all possible scalar products in terms of the

minimal set of momenta.

K+ 1
pi-p2=m; — 5 — k-l (A.41a)
2, 2
P1-p3 = i—k —2|—q +k-q (A.41b)
l2
P1-ps= mi ) (A.4lc)
2, 2
pg-pazmi—l ;q —1l-q (A.41d)
/{52
P2 Ps= mi Y (A.4le)
2 72, 2
p3-p4:mi—w+(/€—1)-q+k-l (A41f)
e
pl-q:§—k-q—k~l (A.4lg)
42
prrg=5tlq-k-l (A.41h)
2
pa'q:—%—k‘l (A.41i)
¢
p4-q:§+(l—k)~q—k;-l (A.41j)
2
k-plz—%—k-l (A.41k)
k.2
kepr=— (A.411)
k.2
k-pg,:?—k‘-q—k‘-l (A.41m)
k2
k-ps= ) (A.41n)
2
l-pr= —% (A.410)
l2
l-p2=§+k-l (A.41p)
l2
l-pg,:—g—l-q—i—k}-l (A.41q)
l2
l-pa=+ (A.4lr)

2
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Only a few of them are needed for the calculation of |.AJ?, but for the full calculation
of [M|?, all of them will be needed.

In order to make the calculation tractable, further calculations will be done in the
non-relativistic limit, meaning that we assume the velocity of the fermions v < 1.

Following this assumption, we incorporate the following power counting scheme

~ —|k[? ~ O (mv?) (A.42a)
2~ |l ~ O (miv?) (A.42b)
r? = dm? + [k + |12+ 2(k - 1) ~ O (m?) (A.42¢)
kolm—(k- 1) ~ O (m22?) (A.42d)
kora (k-1 ~ 0 (mf< %) (A.42e)
Lorm—(k- 1) ~ O (m2v?) (A.42f)
kg~ —(k-q) ~ O (m20?) (A.42¢)
l-gr—(- ) ~ O (m20®) (A.42h)
req~2myw — (7 q) ~ O (m2v?) (A.42i)
and in order for the emitted particle to be produced on-shell
¢ =mj < 4miv4 (A.43)

Applying the replacements and the on-shell conditions p; = ps = p3 = ps = m? on

16g6 1
> AP = ¢2 5 — 2(p2-p4+mi><2(p1-q)(p3-q)
spin m¢) ((p3 + q) - mX) A
44
+2mf<(P1'Q) +dmy, (ps - q) +miq® +2p3 (01 ) — ¢° (p1 - ps) (A44)
+ 3mi (p1-ps) + 3mxp3 +p5 (p1-p3) +m )
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and expanding the expression for small v yields

492 4 217,12 It 7
3 lAP (16mx+8mx|k| +16[k]|1](k - )
spin |k’2 ) ~ v -
o(1) O(v?) (A.45)
+ [F o ARPIIG 1) + 16 |RPPGE -0 +0(v%))
O(v4)

where w is the emitted particle’s energy. All terms in (A.45)) except the last one will

cancel identically with other diagrams in the t-channel.

For the calculation of the other diagonal elements in the t-channel |B|?, |C|*> and
|D|?, one can use exactly the same procedure as for |A|?>. The interference terms
(AB* + BA*), (AC*+CA*) ..., however, contain scalar products involving the 3-
momentum of the emitted particle ¢. Since, in future calculations, we will not be

interested in the direction of ¢, we can do an angular average right away

(@) = {(-0)) = (@) =0 (A462)
(i) = {@-0*) = (- 0?) =3 (A.46D)
(E-ai-0) = (A6c)

Ba)G-a) = % (A46d)

(-0 ) = % (A.46e)

Following the same procedure for all other amplitudes of the ¢ and u-channel, we get

for the direct and exchange terms

K212 (1 + 3(k - 1)
> |A+B+C+DP = 2365“’ ( ) (A.A47)
spin + )
K212 (1 + 3(k - 1)
Z|A/+B/+C/+D/‘2 2365;2 _( ) (A.48)
(112 +m )

spin

The interference terms are more difficult to evaluate, because they involve longer Dirac

traces and therefore yield much longer expressions, but thoroughly following the above
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steps, we get

7121712 .. 7\2
Z(»A*—l-B*+C*+D*)<A/+B’+C'+D/)—i—h.c.:—@ﬁ il <1+3fk l)>

spin

The terms involving annihilation diagrams are suppressed by at least a factor k% /r? ~
v? in the scalar propagator and therefore only contribute to higher order corrections in

V.

A.4 Phase Space Integration

In order to calculate the cross section o, one has to evaluate the phase space integral

Sy(2m)* d®ps d®py d3q 2 5
° (2E1)(2E) |0 — v / 2m)32E;5 (2m)32E, / (27)32w MP 6P p1 +p2 = ps —p1— )
(A.50)

whereas |M|? (summed over initial and final spins) is generally a function of all 4-
momenta py, ps, p3, p4 and ¢ minus the degrees of freedom that can be eliminated
due to kinematical constraints. In the non-relativistic limit and for the emission of
a light particle, one can replace d3p;/2E; ~ d3p;/2m, E; ~ m + p?/2m for i € [1,4]
in the energy J-function and one can neglect the emitted particle’s momentum in the
momentum 0 function. This allows us to trivially integrate over one of the 3-momenta

to get

1 S 11 512 4 |pa|? — [P5]? — |l
- ; /d3p3d3w Limp s (|p1|+|p2| Pl — 7

|1 — | M 21075 2m,,

(A.51)

with py = p1 + p2 — p3. The factor g, accounts for the number of spin states in the
initial states. Furthermore, one can simplify the integration by introducing center-of-

mass (CM) momenta such that

17l
S
I
oL
|
=0

AR
I I
ae/avl]
+ +
=
=L
I
oL
|
=
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Replacing the external momenta with the CM momenta 15, p; and py yields for the

cross section in the CM frame

1 Sf / 3 g 11 2 ‘@’2_‘@‘2
o=——2F [Py dPqg— M5By,
2P| m3 21075 w g2 My

1 S —;2_ = 12
! /dedpfpfc dw w \M|25<—‘p’ - 7] —w)

a |2pi] mi28749>2< X

(A.52)

where in the second line we have used that the angular integration for the emitted
particle only gives a trivial factor 47 because we have already done an angular average
in the calculation of the squared matrix element. In addition, we assumed that the

emitted particle has a very small mass, such that |¢] ~ w.

In the next step, we want to calculate the energy loss rate

. Sig? I do
= / Ppdpy f(E)(Ey) |51 — ) / dow L (A.53)
with
do w Sy / 2 o o 19i* = 1Py
— = dQedprps IM|* 0| —————— —w A.54
dw  |2p;| m328mig2 rdps vy M My ( )
Again, we rewrite in terms of CM momenta and with the Jacobian ‘%((;;”jz)) = 8 we get
8Sigy 27| do
= —=X [ @Pdp; f(E1)f(E —Z/d — A.55
e~ oy [ apatn pE) ) S [ (A5

In the non-degenerate limit we can use a Maxwell-Boltzmann distribution for the

fermions/bosons

Ny 2 \3/2 _ p2
=) e (A.56)

such that the number density n, = g,/(27)* [ d®p f(p). The factor g, accounts for the
number of possible spin configurations in the initial states. Introducing the dimension-

less quantities

u; = Pi (A.57a)
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= A.57b
K m,T' (A.57b)
= % (A.57c)
2
m
¢
= A.57d
Y m, T (A.57d)
5, B
z2 = ——= = cos b (A.57e)
1731175 !
we can rewrite
d’py = dQydpypy (A.58a)
ddy = 2mdz (A.58b)
m.T 3/2
dpsp; = (I Xz) Viugdug (A.58¢)
d*q = dQydqq’ (A.58d)
dQYq = 4 (A.58e)
dqq* = Tx*dw (A.58f)
to get
85y [ s 2] do
= Pd’p; f(Ey)f(Ey) == = '
é (2%)6/61 d’pi f(E1)f(E2) - /dwwdw (A.59a)
T n2< - ) /d3pe mlz‘T/ du; u; 6’”/ dv v =~ (A.59b)
2m° * mXT 0 0 dx
(mmT)3/2
4Sz 2T3/2 o0 s
- Ll/ du; u; 6_ui/ dx x d_a (A.59¢)
m2my? Jo 0 dx
ML [T Tirat [ asMP s
= g fy Ao [ g [ et [ M Sty
(A.59d)

whereas S = 5; - S is a symmetry factor for identical particles in the initial and final
state. Executing the u-integration in (A.59d)) yields

S?’L2 T7/2

[e’e} u 1
¢ = ’5—52/ du e“/ dz \/u(u — z) xQ/ dz [M(u,z,y,2)]*  (A.60)
2793 772m3/? Jo 0 -1
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The squared matrix element |M|?  as we calculated it in App. will usually be a
function of |k|2, |I]> and (k-1), which we can rewrite in terms of dimensionless variables

in the following way

712
JQT = it g = 2 /ity (A.61a)
=2u—z— QZM
772
n’zllT = uictug + 22ty (A.61D)
=2u—z+ ZZm
P
m T T (A.61c)
=T

with v = u; = uy + 2.
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