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Abstract

Two methods for calculating the 2-point function of the holo-
graphic dual CFT to Chern-Simons gravity on an 3-dimensional Lorentzian
flat space background are presented with partial success. A promising
procedure to calculate the full set of 2-point functions is suggested.
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1 Introduction

1.1 The Holographic Principle

In 1974, Stephen Hawking predicted the existence of the now so called Hawk-
ing radiation of black holes by considering effects of quantum field theory
in the presence of a black hole event horizon. As the vacuum expectation
value for spontaneous creation and annihilation of particle-antiparticle pairs
is nonzero, Hawking concluded that these events must also take place near
the surface of black holes, which ultimately leads to a black body radiation
thereof. This enables us to assign a concrete entropy to a black hole by the
Bekenstein-Hawking formula

S =
A

4G
(1)

with G being Newton’s gravitational constant.
Surprisingly, the entropy of a black hole is linearly depending on the sur-

face area A, and not, as one may expect, the volume. As one can always
trigger the creation of a black hole by subsequently adding mass to the sys-
tem of consideration, the Bekenstein-Hawking formula gives an upper bound
for the entropy of a system in a given spacetime region, or else the second
law of thermodynamics would be violated. From this observation we can
conclude that the degrees of freedom of a theory of quantum gravity can not
be proportional to the volume of a spacetime region, like for classical fields
and their quantum field counterpart with a short range cut off, but have to
be proportional to the surface [1]. This leads ultimately to the formulation
of the holographic principle: It must be possible to store the information
of given system in a spacetime region on the surface of this spacetime re-
gion, just like the 3 dimensional image of a hologram can be stored on a 2
dimensional holographic medium [2].

Concrete realizations of the holographic principle are known as
gauge/gravity dualities, which state that there is is a one-to-one correspon-
dence between the theory of gravity and a gauge theory on the boundary
of the manifold of the gravity theory. The first correspondence of this kind
has been found in 1998 by Maldacena in his seminal work [3], in which he
related a string theory in anti-de Sitter space (spacetime of negative constant
curvature) to a supersymmetric Yang-Mills theory with conformal symmetry,
known widely in short as AdS/CFT (Anti-de Sitter/Conformal Field Theory)
correspondence.
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Recently, more and more such gauge/gravity duals have been found, for
example for conformal Chern-Simons gravity on an AdS background in 3D [4]
or Einstein gravity in 3D flat space [5], both dual to a specific 2D CFT. These
findings motivate the idea that holographic principle could be a fundamental
principle that holds true in general and paves the way to a theory of quantum
gravity.
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1.2 Chern-Simons Gravity in 3D

Before getting started, I would like to address some questions that may occur
at this point: What is, and why study conformal Chern-Simons gravity?
Why study gauge/gravity duality in 2+1 dimensions? How does the relation
between this gravity theory and its dual CFT look like?

First of all, let us define the action functional SCSG of conformal Chern-
Simons gravity in 3D in vacuum:

SCSG[g] =
k

4π

∫
M

dx3CS[Γ] (2)

CS[Γ] = ελµν Γσλρ

(
∂µΓρνσ +

2

3
Γρµτ Γτνσ

)
(3)

Γρνσ =
1

2
gρα (∂νgσα + ∂σgνα − ∂αgνσ) (4)

where k is a coupling constant, CS[Γ] the gravitational Chern-Simons term,
ελµν the Levi-Civita symbol, Γρνσ the Christoffel symbol and gµν the met-
ric (gµν the inverse metric). In this thesis we will choose following metric
signature:

sign(g) = (−,+,+). (5)

Although CS[Γ] is defined in terms of the Christoffel symbol (which is not a
tensor and therefore inherently frame dependent), the Chern-Simons term is
a purely topological term which exist only for manifolds of dimension 4n-1
(n εN). This means that the action SCSG is actually depending only on
the topological properties of the spacetime manifold, which makes conformal
Chern-Simons gravity a topological theory. We can derive the equation of
motion (EOM) of conformal Chern-Simons gravity by varying the action with
respect to the inverse metric and setting it to zero

δSCSG[g] =
k

2π

∫
M

dx3
√
−g Cµν δgµν = 0 (6)
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where

Cµν = Cνµ =
1

2

(
ε κλ
µ ∇κRλν + ε κλ

ν ∇κRλµ

)
= ε κλ

µ ∇κ

(
Rλν −

1

4
gλν R

)
(7)

is the Cotton tensor, and
ε κλ
µ = gµρ ε

ρκλ (8)

ερκλ =
1√
−g

ερκλ (9)

the covariant tensor related to the Levi-Civita symbol,

g = det[gµν ] (10)

the determinant of the metric gµν ,

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + Γρµτ Γτνσ − Γρντ Γτµσ (11)

is the Riemann curvature tensor,

Rσν = Rρ
σρν (12)

is the Ricci tensor, and
R = gσνRσν (13)

the Ricci scalar or scalar curvature. The covariant derivative ∇κ of a tensor
of type(r,s) T µ1...µrν1...νs is defined as usual

∇κ T
µ1...µr

ν1...νs
= ∂κ T

µ1...µr
ν1...νs

+ Γµ1λκT
λ...µr

ν1...νs
+ ...+ ΓµrλκT

µ1...λ
ν1...νs

− Γλν1κT
µ1...µr

λ...νs
− ...− ΓλνsκT

µ1...µr
ν1...λ

(14)

The vacuum solutions to the EOM

Cµν = 0 (15)

are conformally flat spacetime metrics which locally can be written in the
form

gµν(x
κ) = e2φ(xκ) ηµν (16)

with ηµν being the Minkowski metric and φ(xκ) a smooth scalar function on
the manifold.
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If we take a closer look at the EOM, we can see that we have an additional
gauge freedom, as the EOM stay unchanged under the transformation

gµν(x
κ)→ g̃µν(x

κ) = e2ω(xκ) gµν(x
κ). (17)

As we can always choose
ω(xκ) = −φ(xκ) (18)

we can restrict without loss of generality gµν locally to the Minkowski metric,
but not necessarily globally.

Now that we have some idea about what conformal Chern-Simons gravity
is, we can start answering the questions from the beginning of this section.
First of all, the most obvious reason for studying conformal Chern-Simons
gravity in 3D is that there is just no Chern-Simons term in 3+1 spacetime
dimension. But this does not mean that our efforts here are futile, since
in 11 dimensions, as required by M-theory, there is a well defined Chern-
Simons term. Further more, we can see gravity theories in reduced spacetime
dimensions as toy models, as the reduction of dimensions drastically simplifies
calculations. This helps us to gain a deep understanding of the mechanisms
of these theories, which can often be generalized to higher dimensions.

There is another good reason for studying gauge/gravity duality in 3D:
the symmetries of conformal field theories in 2D strongly restrict the dynam-
ics of the CFTs as the algebra of infinitesimal conformal transformations
in 2D is infinite dimensional [6]. For example, conformal symmetry of a
CFT on an euclidean plane fixes the vacuum expectation value (vev) for the
energy-momentum tensor to be zero

〈0|T (z) |0〉 = 0 (19)

and the vev for the two point function to be

〈0|T (z)T (0) |0〉 =
c

2 z4
(20)

with the constant c being the central charge of the symmetry algebra (see
section 4.1).
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This finally brings us to the last question: in which way is conformal
Chern-Simons gravity connected to its dual CFT? Or in other words, what
is the dictionary that translates between calculations made on the “gravity
side” and on the corresponding “CFT side”? The proposed and in the past
successfully applied answer for the vev for the 1- and 2-point functions of the
stress tensor Tµν of the CFT dual to a gravity theory governed by the action
Γ[g] is

δΓ[g]

δgµν(xκ)
∝ 〈0|Tµν(xκ) |0〉 (21)

δ2Γ[g]

δgµν(xκ) δgρσ(yκ)
∝ 〈0|Tµν(xκ)Tρσ(yκ) |0〉 . (22)

The Symbol Γ[g] refers to the bulk action S[g] supplemented additionally
with suitable boundary terms. Only the boundary terms give nonzero contri-
bution to the vev of the 1- and 2-point functions if we impose that the metric
(variation of the metric) obey the equation of motion (obey the linearized
equation of motion).

In the next two chapters we will try to calculate with two different meth-
ods the vev of the two-point function (22) on the gravity side.
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2 First Attempt: The Elegant Trick

In this section we will try to calculate the 2-point function for conformal
Chern-Simons gravity in flat space by reducing the calculation to already
known results for Einstein gravity in euclidean flat space [5]. This procedure
has been inspired by the successful application of this elegant trick for Chern-
Simons gravity in AdS space [4].

2.1 The Second Variation of the Bulk Action

We want to calculate the second variation of the bulk action SCSG[g]

δ2SCSG[g] =
k

2π

∫
M

dx3
(√
−g Cµν δ2gµν + δ

√
−g Cµν δgµν +

√
−g δCµν δgµν

)
.

(23)
The first two terms vanish on-shell (EOM Cµν = 0 are fulfilled)

δ2SCSG[g]
∣∣
EOM

=
k

2π

∫
M

dx3
√
−g δCµν δgµν . (24)

For the bulk term δ2SCSG[g] to vanish, the variations of the metric δgµν have
to fulfill the linearized equations of motion (LEOM)

δCµν = 0. (25)

Let us take a look on the variation of the Cotton tensor

δCµν = δ

(
ε κλ
µ ∇κ

(
Rλν −

1

4
gλν R

))
(26)

We are interested in Chern-Simons gravity on a flat space background

Rρ
σµν = 0, Rσν = 0, R = 0 (27)

which implies the vanishing commutator of covariant derivatives when acting
on tensors

[∇µ,∇ν ] = 0. (28)

The variation of the Cotton tensor on a flat space (FS) background reads

δCµν |FS = ε κλ
µ ∇κ

(
δRλν −

1

4
gλν δR

)
. (29)
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We can now define a differential operator

D λ
µ = ε κλ

µ ∇κ (30)

and rewrite (24) on-shell in FS

δ2SCSG[g]
∣∣
EOM,FS

=
k

2π

∫
M

dx3
√
−gD λ

µ

(
δRλν −

1

4
gλν δR

)
δgµν . (31)
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2.2 Chern-Simons VS. Einstein-Hilbert Action

Let us now take a look on the first variation of the Einstein-Hilbert action
functional SEH [g]

δSEH [g] =
1

8πG

∫
M

dx3
√
−g
(
Rµν −

1

2
gµν R

)
δgµν (32)

and the second variation on-shell in FS gives us

δ2SEH [g]
∣∣
EOM,FS

=
1

8πG

∫
M

dx3
√
−g
(
δRµν −

1

2
gµν δR

)
δgµν . (33)

As we demand that the metric variations obey the LEOM, δRµν is restricted
to

δRµν = 0, (34)

which implies in FS

δR|FS = δ (gρσ Rρσ) = gρσ δRρσ = 0. (35)

Practically, this limits the variation of the metric to mappings of flat space to
flat spaces. With this restriction we can now compare the second variations
of SCSG[g] and SEH [g] to each other

δ2SCSG[g]
∣∣
EOM,FS

=
k

2π

∫
M

dx3
√
−gD λ

µ δRλν δg
µν (36)

δ2SEH [g]
∣∣
EOM,FS

=
1

8πG

∫
M

dx3
√
−g δRµν δg

µν . (37)

The variation of the Riemann tensor can be written as

δRρ
σµν = ∇µ δΓ

ρ
σν −∇ν δΓ

ρ
σµ (38)

hence
δRµν = ∇ρ δΓ

ρ
µν −∇ν δΓ

ρ
µρ (39)

and the variation of the Christoffel symbol1 as

δΓρλσ =
1

2
gρκ (∇λ δgσκ +∇σ δgλκ −∇κ δgλσ) . (40)

1Note that the variation of the Christoffel is a tensor, as it can be seen as the infinites-
imal difference between two different Christoffel symbols, which transforms as a tensor.

10



Inserting (40) into (39) gives

δRµν =
1

2
(∇ρ∇µ δgρν +∇ρ∇ν δgµρ −∇ρ∇ρ δgµν −∇µ∇ν g

ρσ δgρσ) (41)

which can be reformulated as

δRµν =
1

2

(
∇ρ∇µ δ

σ
ν +∇σ∇ν δ

ρ
µ −∇2 δρµ δ

σ
ν −∇µ∇ν g

ρσ
)
δgρσ (42)

We define another differential operator

R ρσ
µν =

1

2

(
∇ρ∇µ δ

σ
ν +∇σ∇ν δ

ρ
µ −∇2 δρµ δ

σ
ν −∇µ∇ν g

ρσ
)

(43)

which enables us to put (36) and (37) into the form

δ2SCSG[g]
∣∣
EOM,FS

=
k

2π

∫
M

dx3
√
−g (DR δg)µν δg

µν (44)

δ2SEH [g]
∣∣
EOM,FS

=
1

8πG

∫
M

dx3
√
−g (R δg)µν δg

µν . (45)
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2.3 Formulation of the Trick

We can finally express following statement: If the two differential operators
D and R commute

[D,R]
?

= 0 (46)

and the action of D on the non-normalizable metric variations2 δg
NN(i)
EHµν of

flat space Einstein gravity [5] generates linear combinations thereof

(
D δgNN(i)

EH

)
µν

?
=

2∑
j=1

aij δg
NN(j)
EHµν (47)

with aij being constants, then, and only then, we can reduce the vev of the
2-point functions of Chern-Simons gravity to a linear combination with the
constants bklij of the vev of the 2-point functions of Einstein gravity

〈0|T(i) T(j) |0〉CSG
?∝

2∑
m,n=1

bklij 〈0|T(k) T(l) |0〉EH . (48)

2The non-normalizable metric variations satisfy the LEOM as the usual normalizable
metric variations, but give non-trivial contributions to the boundary terms of the action
variations.
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2.4 Check-Up on the Trick

Let us first test if (46) is true for flat space

(DR δg)µν = D λ
µ R

ρσ
λν δgρσ

= ε κλ
µ ∇κ

1

2

(
∇ρ∇λ δ

σ
ν +∇σ∇ν δ

ρ
λ −∇

2 δρλ δ
σ
ν −∇λ∇ν g

ρσ
)
δgρσ

= ε λκ
µ ∇κ

1

2

(
∇σ∇ν δgλσ −∇2 δgλν

)
(49)

(RD δg)µν = R ρσ
µν D λ

ρ δgλσ

=
1

2

(
∇ρ∇µ δ

σ
ν +∇σ∇ν δ

ρ
µ −∇2 δρµ δ

σ
ν −∇µ∇ν g

ρσ
)
ε κλ
ρ ∇κ δgλσ

=
1

2

(
ε κλ
ρ ∇κ∇ρ∇µδgλν + ε κλ

µ ∇κ∇σ∇νδgλσ

−ε κλ
µ ∇κ∇2δgλν − εσκλ∇κ∇µ∇νδgλσ

)
=

1

2

(
ε κλ
µ ∇κ∇σ∇νδgλσ − ε κλ

µ ∇κ∇2δgλν
)

= ε λκ
µ ∇κ

1

2

(
∇σ∇ν δgλσ −∇2 δgλν

)
(50)

and we find that the commutator really vanishes in flat space

[D,R] = 0. (51)

This is good news as the first condition (46) to reduce the Chern-Simons
2-point functions to the ones of Einstein gravity is fulfilled. But here comes
the bad news: As can be shown by a lengthy but simple calculation, the
application of D on non-normalizable metric variations found in [5] for flat
space Einstein gravity does not create linear combinations of these, so(

D δgNN(i)
EH

)
µν
6=

2∑
j=1

aij δg
NN(j)
EHµν . (52)

This leads us to the conclusion, that the elegant trick used successfully in
[4] for conformal Chern-Simons gravity in AdS space can not be used for
conformal Chern-Simons in flat space and we have to begin from scratch, as
we will do in the next section.
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3 Second Attempt: Brute Force

We will start in this section from scratch and calculate the second variation
of the full action δ2ΓCSG[g] of conformal Chern-Simons gravity and take the
boundary terms carefully into account.

3.1 First Variation

Defining the full action of conformal Chern-Simons gravity

ΓCSG[g] =
k

4π

∫
M

dx3 CS[Γ] =
k

4π

∫
M

dx3 ελµν Γσλρ

(
∂µΓρνσ +

2

3
Γρµτ Γτνσ

)

=
k

4π

∫
M

dx3 ελµν
(

Γσλρ ∂µΓρνσ +
2

3
Γσλρ Γρµτ Γτνσ

)
,

(53)

the first variation reads

δΓCSG[g] =
k

4π

∫
M

dx3ελµν
(
δ
(
Γσλρ ∂µΓρνσ

)
+

2

3
δ
(
Γσλρ Γρµτ Γτνσ

))
. (54)

In the following calculations we will rely heavily on the symmetries of the
expressions in use (see appendix A). The first term of (54) can be rewritten
as

ελµνδ
(
Γσλρ ∂µΓρνσ

)
= ελµν

(
δΓσλρ ∂µΓρνσ + Γσλρ ∂µδΓ

ρ
νσ

)
= ελµν

(
δΓσλρ ∂µΓρνσ + ∂µ

(
Γσλρ δΓ

ρ
νσ

)
− ∂µΓσλρ δΓ

ρ
νσ

)
= ελµν

(
δΓσλρ ∂µΓρνσ + ∂µ

(
Γσλρ δΓ

ρ
νσ

)
+ ∂µΓσνρ δΓ

ρ
λσ

)
= ελµν

(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ 2 δΓσλρ ∂µΓρνσ

)
(55)

and the second term of (54) reads

ελµνδ
(
Γσλρ Γρµτ Γτνσ

)
= ελµν

(
δΓσλρ Γρµτ Γτνσ + Γσλρ δΓ

ρ
µτ Γτνσ

+Γσλρ Γρµτ δΓ
τ
νσ

)
= ελµν

(
δΓσλρ Γρµτ Γτνσ + Γσνρ δΓ

ρ
λτ Γτµσ

+Γσµρ Γρντ δΓ
τ
λσ

)
= ελµν 3 δΓσλρ Γρµτ Γτνσ.

(56)
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By insertion into (54) we get

δΓCSG[g] =

=
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ 2 δΓσλρ ∂µΓρνσ + 2 δΓσλρ Γρµτ Γτνσ

)
=

k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ δΓσλρ 2

(
∂µΓρνσ + Γρµτ Γτνσ

))
=

k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ δΓσλρ

(
∂µΓρνσ + Γρµτ Γτνσ + ∂µΓρνσ + Γρµτ Γτνσ

))
=

k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ δΓσλρ

(
∂µΓρνσ + Γρµτ Γτνσ − ∂νΓρµσ − Γρντ Γτµσ

))
=

k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+ δΓσλρR

ρ
σµν

)
.

(57)

Let us examine the second term in (57)

δΓσλρR
ρ
σµν =

1

2
gσκ (∇λ δgρκ +∇ρ δgλκ −∇κ δgλρ)R

ρ
σµν

=
1

2

(
∇λ

(
Rρκ

µν δgρκ
)

+∇ρ

(
Rρκ

µν δgλκ
)
−∇κ

(
Rρκ

µν δgρ
)

−∇λR
ρκ
µν δgρκ −∇ρR

ρκ
µν δgλκ +∇κR

ρκ
µν δgρ

)
=

1

2

(
2∇ρ

(
Rρκ

µν δgλκ
)
− 2∇ρR

ρκ
µν δgλκ

)
= ∇ρ

(
Rρκ

µν δgλκ
)
−∇ρR

ρκ
µν δgλκ.

(58)

Cycling this back into (57) we find

δΓCSG[g] =

=
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+∇ρ

(
Rρκ

µν δgλκ
)
−∇ρR

ρκ
µν δgλκ

)
. (59)
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The last term in (59) can be written as

ελµν ∇ρR
ρκ
µν δgλκ = ελµν

(
∇µR

κ
ν −∇ν R

κ
µ

)
δgλκ

=
(
ελµν ∇µR

κ
ν + ελνµ∇ν R

κ
µ

)
δgλκ

= 2
√
−g Cλκ δgλκ = −2

√
−g Cλκ δgλκ

(60)

We can put the first variation of the action into its final form

δΓCSG[g] =

=
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+∇ρ

(
Rρκ

µν δgλκ
))
− 2
√
−g Cλκ δgλκ

= δSCSG[g] +
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δΓ

ρ
νσ

)
+∇ρ

(
Rρκ

µν δgλκ
))
.

(61)
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3.2 Second Variation and Boundary Terms

Finally we can calculate the full second variation on-shell for flat space

δ2ΓCSG[g]
∣∣
EOM,FS

=

=
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δ

2Γρνσ
)

+∇ρ

(
δRρκ

µν δgλκ
))
− 2
√
−g δCλκ δgλκ

= δ2SCSG[g]
∣∣
EOM,FS

+
k

4π

∫
M

dx3ελµν
(
∂µ
(
Γσλρ δ

2Γρνσ
)

+∇ρ

(
δRρκ

µν δgλκ
))

(62)

and find two distinct boundary terms. The first one

k

4π

∫
M

dx3ελµν ∂µ
(
Γσλρ δ

2Γρνσ
)

(63)

is a non-covariant term which is inherently frame dependent. We want this
term to vanish as we want physics to be frame independent. The second
term is covariant

k

4π

∫
M

dx3
√
−g∇ρ

(
ελµν δRρκ

µν δgλκ
)

=
k

4π

∮
∂M

dx2√σγ nρ
(
ελµν δRρκ

µν δgλκ
)

(64)
and should give us the desired contribution to the 2-point functions, whereas

gµν = σ nµ nν + γµν (65)

nµ is the unit normal vector to, and γµν the metric on the boundary surface
∂M , and

σ = nµ nµ = ±1. (66)
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3.3 Non-Normalizable Metric Variations

Up to his point, we have successfully calculated the full second variation of
flat space Chern-Simons gravity and identified the boundary term which we
expect to give us the desired contribution to the 2-point functions for the
dual CFT. Our next step is to find a set of Lorentzian metric variations that
satisfy the LEOM (δ2SCSG[g] = 0), let the non-covariant term (63) vanish
and result into a non-trivial contribution of (64). We will use in this section
a promising set of metric variations from [7]. First of all we will choose
Eddington-Finkelstein gauge in which we will perform our calculation. In
this gauge the flat space background metric in the coordinates (u, r, φ) reads

gµν =

−1 −1 0
−1 0 0
0 0 r2

 (67)

dxµ =

dudr
dφ

 (68)

ds2 = gµν dx
µ dxν = −du2 − 2 du dr + r2 dφ (69)

Next we consider following set of metrics

g̃µν(µL(u, φ), µM(u, φ), r) dxµ dxν =(
r2µ2

L + 2r (µ′L (1 + µM)− µL µ′M)−
(
1 + µM)2 − 2 (1 + µM)µ′′M + µ′ 2M

))
du2

− (1 + µM) 2 du dr

+
(
r2 µL − r µ′M

)
2 du dφ

+ r2 dφ2

(70)

which have the form of

g̃µν =

g̃uu g̃ur g̃uφ
g̃ur 0 0
g̃uφ 0 g̃φφ

 (71)

and

µ′L,M = ∂φµL,M

µ̇L,M = ∂uµL,M .
(72)
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In [7] the functions µL(u, φ) and µM(u, φ) are chemical potentials that
act as sources for our gravity theory. For our purpose µL and µM are con-
sidered as free functions of the variables u and φ, which shall generate non-
normalizable metric variations. We can expand the metrics g̃ in orders of µL
and µM

g̃µν = gµν + hµν (µL, µM) +O
(
µ2
L, µ

2
M , µL µM

)
(73)

hµν =

2 (r µ′L − µ′′M − µM) −µM r2 µL − r µ′M
−µM 0 0

r2 µL − r µ′M 0 0

 . (74)

We choose the metric variations to be

δgµν = hµν (75)

and require that they satisfy the LEOM (25). As the LEOM include co-
variant derivatives of the metric variations up to third order, which lead to
a fast amount of components to calculate, the computation of the LEOM
has been done in Mathematica. The used Mathematica script is appended in
appendix B. We find following non-vanishing components from this compu-
tation which we want to be zero

− 1

r2
(µ′M + 2µ′′′M + µ′′′′′M + r (−µ′′L − µ′′′′L + µ̇′M + µ̇′′′M)) = 0

− 1

r2
(µ′M + µ′′′M) = 0

1

r
(−r (µ′L + µ′′′L ) + 2 (µ′′M + µ′′′′M )) = 0

−2 (µ′M + µ′′′M) = 0

(76)

which constrain the free functions to

µL − µ′′L = 0

µM − µ′′M = 0.
(77)

Furthermore, if we want the non-covariant term (63) to vanish, the free
functions have to fulfill

3µL µ
′
L + µL µ̇M = 0

µ′L µ
′
M + µ′M µ̇M + µM µ̇′M − µL µM = 0.

(78)
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3.4 Resulting Boundary Term Contribution

Now something interesting happens: even if we loose the constraints on µL
and µM and ignore (78), the covariant boundary term (64) vanishes!

0 =
k

4π

∮
∂M

dx2√σγ nρ
(
ελµν δRρκ

µν δgλκ
)∣∣∣∣∣∣
EOM,FS,LEOM

(79)

What has happened? Did we do something wrong? Did we fail? To answer
this questions we will take a closer look on the dual CFT in the next section.
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4 Conclusion and Outlook

This section is dedicated to understand the outcome of our calculations in
section 3. We will analyze in more detail the CFT dual to Chern-Simons
gravity to achieve this. In the second subsection we will present a promising
proposal for further investigations.

4.1 Examining the Dual CFT

Let us first have a look on the properties of a general CFT. As already
mentioned, CFTs in 2D are highly restricted by their conformal symmetries.
The symmetry algebra of a CFT in 2 dimensions consists of two copies of
an infinite dimensional Virasoro algebra, which is a central extensions of the
the Witt algebra, with the generators Ln and L̄n

[Ln, Lm] = (n−m)Ln+m +
cL
12

(
n3 − n

)
δn+m, 0[

L̄n, L̄m
]

= (n−m) L̄n+m +
cL̄
12

(
n3 − n

)
δn+m, 0[

Ln, L̄m
]

= 0

(80)

The constants cL and cL̄ are called central charges and play an important role,
as the spectrum of specific operators, like the stress tensor, can be related to
the values of the central charges [6].

Now, coming from the gravity side, it can be shown that the asymp-
totic symmetry group for asymptotically flat spacetimes, generated by all
(non-trivial) diffeomorphisms preserving the asymptotic flat space boundary
conditions, is the Bondi-Metzner-Sachs (BMS) group. In 3 dimensions, the
associated symmetry algebra is the centrally extend BMS algebra, generated
by Virasoro generators Ln and supertranslations Mn, and reads

[Mn, Mm] = 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(
n3 − n

)
δn+m, 0

[Ln, Lm] = (n−m)Ln+m +
cL
12

(
n3 − n

)
δn+m, 0.

(81)

In [8] it was shown that for 3D flat space Chern-Simons gravity the central
charges cL and cM take the values

cL = 24 k, cM = 0. (82)
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This means that the non-trivial part of (81) reduces to one copy of the
Virasoro algebra, which leads to the conlusion that the holographic dual
CFT to 3D Chern-Simons gravity is the chiral half of a standard 2D CFT.

During the final phase in the development of this thesis there has been
found a surprisingly elegant and, in comparison to our brute force calculation,
easy method [9] to calculate any n-point function of the stress tensor of our
dual CFT with a recursive a formula from the (n-1)-point functions.

The 2-point functions for the components of the stress tensor3 L and M
are found to be

〈0|M (u, φ) M (0, 0) |0〉 = 0

〈0|M (u, φ) L (0, 0) |0〉 = 0

〈0|L (u, φ) L (0, 0) |0〉 =
cL

2 sin4 φ
2

.
(83)

3The components of the stress tensor are called L and M because they can be mode
expanded in terms of the generators Ln and Mn.
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4.2 Proposal for Onward Procedure

If we compare now our findings in (79) to (83) we see that we got like 2
3

of it right. But why we do not get the last non-vanishing vev with our
calculations? We can find an insightful clue in [4]. In order to obtain a
well-defined Dirichlet boundary value problem for 3D Chern-Simons gravity
in AdS space one has to add to the bulk action an additional boundary term

k

2π

∮
∂M

dx2√σγ K+
µν K

−µν (84)

K±µν =
(
δλµ ± ε λµ

)
Kλν (85)

Kµν = γ λ
µ ∇λ nν (86)

where Kµν is the extrinsic curvature of ∂M and εµν the 2-dimensional Levi-
Civita symbol. This additional boundary term does not change the EOM
but gives rise to an additional non-vanishing 2-point function.

We propose here for future investigations in metric formulation of the
2-point functions of the CFT dual to Chern-Simons gravity in 3D flat space
to redefine the action as

ΓCSG[g] =

=
k

4π

∫
M

dx3ελµν Γσλρ

(
∂µΓρνσ +

2

3
Γρµτ Γτνσ

)
+ 2

∮
∂M

dx2√σγ K+
µν K

−µν


(87)

and to take this additional boundary term into account for the calculations
of the vev for the stress tensor of the CFT.
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4.3 Final Conclusion

In this thesis, two different approaches to calculate the 2-point functions of
the stress tensor of the holographic dual 2D CFT to 3D conformal Chern-
Simons gravity have been presented.

With our first method we tried to reduce the calculations to known results
for euclidean flat space Einstein gravity. Although we successfully showed
that the differential operators D andR commute for FS, it turned out that D
applied on the non-normalizable metric variations of euclidean flat space Ein-
stein gravity does not generate linear combinations thereof, which ultimately
lead to the conclusion that this method is not applicable in this case.

In our second approach we started from scratch and calculated analyti-
cally the second variation of the action. We could identify a covariant bound-
ary term and expected that this term would give us the desired contribution
to the 2-point functions. However, for non-normalizable metric variations
which obey the LEOM this boundary term vanishes.

In the final section of this thesis we examined the holographic dual CFT
and compared our results to the findings in [9], in which an elegant mathe-
matical trick has been presented to calculate any n-point function from the
(n-1)-point functions. It turns out that two out of three 2-point functions ac-
tually vanish, in accordance with our results. Inspired by the outcome in [4]
for Chern-Simons gravity in AdS space, we proposed to supplement the action
of 3D conformal Chern-Simons gravity in FS with an additional boundary
term (87). This additional boundary term does not change the EOM and we
expect that this term should give us the desired last non-vanishing 2-point
function. Although the verification of our outlined proposal remains for now
an open issue, it gives us a clear pathway for future investigations.
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A Useful Identities

gµν = gνµ (88)

Γρµν = Γρνµ (89)

gκρR
ρ
σµν = Rκσµν = −Rσκµν = −Rκσνµ = Rµνκσ (90)

Rρ
σµν +Rρ

νσµ +Rρ
µνσ = 0 (91)

Rµν = Rνµ (92)

ελµν = ενλµ = εµνλ = −ελνµ = −ενµλ. (93)

The variations of these object inherit their symmetries. Note that from

δ
(
gµλ gλν

)
= δ (δµν ) = 0 (94)

follows
δgµν = − gµρ gνσ δgρσ. (95)
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B Mathematica Script
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(* Defining the list of variables. *)

var = {u, r, phi};

(* Defining the background metric and
its inverse in Eddington-Finkelstein gauge.*)

g[u_, r_, phi_] = {{-1, -1, 0}, {-1, 0, 0}, {0, 0, r^2}};
g[u, r, phi] // MatrixForm
gInv[u_, r_, phi_] = FullSimplify[Inverse[g[u, r, phi]]];
gInv[u, r, phi] // MatrixForm

-1 -1 0
-1 0 0
0 0 r2

0 -1 0
-1 1 0

0 0 1

r2

(* Defining the variation of the metric in
terms of the free functions muL and muM. *)

h[u_, r_, phi_] = FullSimplify[
{{2 (r D[muL[u, phi], phi] - D[D[muM[u, phi], phi], phi] -

muM[u, phi]), -muM[u, phi],
r^2 muL[u, phi] - r D[muM[u, phi], phi]}, {-muM[u, phi], 0, 0},

{r^2 muL[u, phi] - r D[muM[u, phi], phi], 0, 0}}]

-2 muM[u, phi] - r muL(0,1)[u, phi] + muM(0,2)[u, phi],

-muM[u, phi], r r muL[u, phi] - muM(0,1)[u, phi],

{-muM[u, phi], 0, 0}, r r muL[u, phi] - muM(0,1)[u, phi], 0, 0
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(* Defining the Christoffel symbol. *)

gamma[u_, r_, phi_] = FullSimplify[
Table[Table[Table[1 / 2 Sum[gInv[u, r, phi][[i, l]]

(D[g[u, r, phi][[k, l]], var[[j]]] + D[g[u, r, phi][[j,
l]], var[[k]]] - D[g[u, r, phi][[k, j]], var[[l]]]),

{l, 1, 3}], {k, 1, 3}], {j, 1, 3}], {i, 1, 3}]];
gamma[u, r, phi] // MatrixForm

0
0
0

0
0
0

0
0
r

0
0
0

0
0
0

0
0
-r

0
0
0

0
0
1

r

0
1

r

0

(* Computing the first covariant
dervative of the metric variation. *)

dh[u_, r_, phi_] = FullSimplify[
Table[Table[Table[D[h[u, r, phi][[j, k]], var[[i]]] -

Sum[gamma[u, r, phi][[l, i, j]] h[u, r, phi][[l, k]] +

gamma[u, r, phi][[l, i, k]] h[u, r, phi][[l, j]],
{l, 1, 3}], {k, 1, 3}], {j, 1, 3}], {i, 1, 3}]]

-2 muM(1,0)[u, phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

-muM(1,0)[u, phi], r r muL(1,0)[u, phi] - muM(1,1)[u, phi],

-muM(1,0)[u, phi], 0, 0,

r r muL(1,0)[u, phi] - muM(1,1)[u, phi], 0, 0,

2 muL(0,1)[u, phi], 0, r muL[u, phi],

{0, 0, 0}, {r muL[u, phi], 0, 0},

-2 muM(0,1)[u, phi] - r muL(0,2)[u, phi] + muM(0,3)[u, phi],

-r muL[u, phi],

r muM[u, phi] - r muL(0,1)[u, phi] + muM(0,2)[u, phi],

{-r muL[u, phi], 0, r muM[u, phi]},

r muM[u, phi] - r muL(0,1)[u, phi] + muM(0,2)[u, phi],

r muM[u, phi], 2 r2 -r muL[u, phi] + muM(0,1)[u, phi]

2    MA_Thesis.nb
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(* Computing the second covariant dervative of the
metric variation. *)ddh[u, r, phi] = FullSimplify[
Table[Table[Table[Table[D[dh[u, r, phi][[i, j, k]], var[[m]]] -

Sum[gamma[u, r, phi][[l, m, i]] dh[u, r, phi][[l, j, k]] +

gamma[u, r, phi][[l, m, j]] dh[u, r, phi][[i, l, k]] +

gamma[u, r, phi][[l, m, k]] dh[u, r, phi][[i, l, j]],
{l, 1, 3}], {k, 1, 3}], {j, 1, 3}], {i, 1, 3}], {m, 1, 3}]]

-2 muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-muM(2,0)[u, phi], r r muL(2,0)[u, phi] - muM(2,1)[u, phi],

-muM(2,0)[u, phi], 0, 0,

r r muL(2,0)[u, phi] - muM(2,1)[u, phi], 0, 0,

2 muL(1,1)[u, phi], 0, r muL(1,0)[u, phi],

{0, 0, 0}, r muL(1,0)[u, phi], 0, 0,

-2 muM(1,1)[u, phi] - r muL(1,2)[u, phi] + muM(1,3)[u, phi],

-r muL(1,0)[u, phi],

r muM(1,0)[u, phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

-r muL(1,0)[u, phi], 0, r muM(1,0)[u, phi],

r muM(1,0)[u, phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

r muM(1,0)[u, phi],

2 r2 -r muL(1,0)[u, phi] + muM(1,1)[u, phi],

2 muL(1,1)[u, phi], 0, r muL(1,0)[u, phi], {0, 0, 0},

r muL(1,0)[u, phi], 0, 0, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},


2 (muM(0,1)[u, phi] + muM(0,3)[u, phi])

r
,

0, -muM[u, phi] - muM(0,2)[u, phi],

{0, 0, -muM[u, phi]}, -muM[u, phi] - muM(0,2)[u, phi],

-muM[u, phi], -2 r muM(0,1)[u, phi],

-2 muM(1,1)[u, phi] - r muL(1,2)[u, phi] + muM(1,3)[u, phi],

-r muL(1,0)[u, phi],

r muM(1,0)[u, phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

-r muL(1,0)[u, phi], 0, r muM(1,0)[u, phi],

r muM(1,0)[u, phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

r muM(1,0)[u, phi], 2 r2 -r muL(1,0)[u, phi] + muM(1,1)[u, phi],


2 (muM(0,1)[u, phi] + muM(0,3)[u, phi])

r
, 0,

-muM[u, phi] - muM(0,2)[u, phi],

{0, 0, -muM[u, phi]}, -muM[u, phi] - muM(0,2)[u, phi],
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

-muM[u, phi], -2 r muM(0,1)[u, phi],

-2 muM(0,2)[u, phi] + muM(0,4)[u, phi] +

2 r muL(0,1)[u, phi] + muL(0,3)[u, phi] + muM(1,0)[u, phi] -

r muL(1,1)[u, phi] + muM(1,2)[u, phi],

-muM[u, phi] - muM(0,2)[u, phi] + r muM(1,0)[u, phi],

r 3 muM(0,1)[u, phi] + 3 muM(0,3)[u, phi] + r -3 muL(0,2)[u, phi] -

r muL(1,0)[u, phi] + muM(1,1)[u, phi],

-muM[u, phi] - muM(0,2)[u, phi] + r muM(1,0)[u, phi],

-2 muM[u, phi], r 3 r muL[u, phi] - muM(0,1)[u, phi],

r 3 muM(0,1)[u, phi] + 3 muM(0,3)[u, phi] +

r -3 muL(0,2)[u, phi] - r muL(1,0)[u, phi] + muM(1,1)[u, phi],

r 3 r muL[u, phi] - muM(0,1)[u, phi], 0

(* Computing the third covariant
dervative of the metric variation. *)

dddh[u, r, phi] = FullSimplify[
Table[D[ddh[u, r, phi], var[[c]]] - Table[

Table[Table[Table[Sum[gamma[u, r, phi][[k, c, b]] ddh[u, r,
phi][[k, a, i, j]] + gamma[u, r, phi][[k, c, a]]

ddh[u, r, phi][[b, k, i, j]] + gamma[u, r, phi][[
k, c, i]] ddh[u, r, phi][[b, a, k, j]] +

gamma[u, r, phi][[k, c, j]] ddh[u, r, phi][[b, a, i, k]],
{k, 3}], {j, 3}], {i, 3}], {a, 3}], {b, 3}], {c, 3}]]

-2 muM(3,0)[u, phi] - r muL(3,1)[u, phi] + muM(3,2)[u, phi],

-muM(3,0)[u, phi], r r muL(3,0)[u, phi] - muM(3,1)[u, phi],

-muM(3,0)[u, phi], 0, 0,

r r muL(3,0)[u, phi] - muM(3,1)[u, phi], 0, 0,

2 muL(2,1)[u, phi], 0, r muL(2,0)[u, phi],

{0, 0, 0}, r muL(2,0)[u, phi], 0, 0,

-2 muM(2,1)[u, phi] - r muL(2,2)[u, phi] + muM(2,3)[u, phi],

-r muL(2,0)[u, phi],

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-r muL(2,0)[u, phi], 0, r muM(2,0)[u, phi],

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

r muM(2,0)[u, phi],

2 r2 -r muL(2,0)[u, phi] + muM(2,1)[u, phi],

2 muL(2,1)[u, phi], 0, r muL(2,0)[u, phi], {0, 0, 0},

r muL(2,0)[u, phi], 0, 0, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
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
1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi], 0,

-muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],

-2 muM(2,1)[u, phi] - r muL(2,2)[u, phi] + muM(2,3)[u, phi],

-r muL(2,0)[u, phi],

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-r muL(2,0)[u, phi], 0, r muM(2,0)[u, phi],

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

r muM(2,0)[u, phi],

2 r2 -r muL(2,0)[u, phi] + muM(2,1)[u, phi],


1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi], 0,

-muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],

-2 muM(1,2)[u, phi] + muM(1,4)[u, phi] +

2 r muL(1,1)[u, phi] + muL(1,3)[u, phi] + muM(2,0)[u, phi] -

r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

-2 muM(1,0)[u, phi], r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi], 0,

2 muL(2,1)[u, phi], 0, r muL(2,0)[u, phi],

{0, 0, 0}, r muL(2,0)[u, phi], 0, 0,

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},


1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi],

0, -muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],
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{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},

-
1

r2
4 muM(0,1)[u, phi] + muM(0,3)[u, phi],

0,
1

r
2 muM[u, phi] + muM(0,2)[u, phi],

0, 0,
2 muM[u, phi]

r
, 

1

r
2 muM[u, phi] + muM(0,2)[u, phi],

2 muM[u, phi]

r
, 4 muM(0,1)[u, phi],


1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi], 0,

-muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],

-
1

r2
4 muM(0,1)[u, phi] + muM(0,3)[u, phi], 0,

1

r

2 muM[u, phi] + muM(0,2)[u, phi],

0, 0,
2 muM[u, phi]

r
, 

1

r
2 muM[u, phi] + muM(0,2)[u, phi],

2 muM[u, phi]

r
, 4 muM(0,1)[u, phi], -

1

r
2

-2 muM(0,2)[u, phi] + muM(0,4)[u, phi] + r muL(0,1)[u, phi] +

muL(0,3)[u, phi] + muM(1,0)[u, phi] + muM(1,2)[u, phi],

1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] -

6 muM(0,3)[u, phi] - r muM(1,1)[u, phi],


1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

4 muM[u, phi]

r
, -3 r muL[u, phi] + 2 muM(0,1)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] - 6 muM(0,3)[u, phi] -

r muM(1,1)[u, phi], -3 r muL[u, phi] + 2 muM(0,1)[u, phi], 0,

-2 muM(2,1)[u, phi] - r muL(2,2)[u, phi] + muM(2,3)[u, phi],

-r muL(2,0)[u, phi],

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-r muL(2,0)[u, phi], 0, r muM(2,0)[u, phi],
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 

r muM(2,0)[u, phi] - r muL(2,1)[u, phi] + muM(2,2)[u, phi],

r muM(2,0)[u, phi],

2 r2 -r muL(2,0)[u, phi] + muM(2,1)[u, phi],


1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi], 0,

-muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],

-2 muM(1,2)[u, phi] + muM(1,4)[u, phi] +

2 r muL(1,1)[u, phi] + muL(1,3)[u, phi] + muM(2,0)[u, phi] -

r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

-2 muM(1,0)[u, phi], r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi], 0,


1

r
2 muM(1,1)[u, phi] + muM(1,3)[u, phi], 0,

-muM(1,0)[u, phi] - muM(1,2)[u, phi],

0, 0, -muM(1,0)[u, phi], -muM(1,0)[u, phi] - muM(1,2)[u, phi],

-muM(1,0)[u, phi], -2 r muM(1,1)[u, phi],

-
1

r2
4 muM(0,1)[u, phi] + muM(0,3)[u, phi], 0,

1

r

2 muM[u, phi] + muM(0,2)[u, phi],

0, 0,
2 muM[u, phi]

r
, 

1

r
2 muM[u, phi] + muM(0,2)[u, phi],

2 muM[u, phi]

r
, 4 muM(0,1)[u, phi], -

1

r
2

-2 muM(0,2)[u, phi] + muM(0,4)[u, phi] + r muL(0,1)[u, phi] +

muL(0,3)[u, phi] + muM(1,0)[u, phi] + muM(1,2)[u, phi],

1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] -

6 muM(0,3)[u, phi] - r muM(1,1)[u, phi],
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
1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

4 muM[u, phi]

r
, -3 r muL[u, phi] + 2 muM(0,1)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] - 6 muM(0,3)[u, phi] -

r muM(1,1)[u, phi], -3 r muL[u, phi] + 2 muM(0,1)[u, phi], 0,

-2 muM(1,2)[u, phi] + muM(1,4)[u, phi] +

2 r muL(1,1)[u, phi] + muL(1,3)[u, phi] + muM(2,0)[u, phi] -

r muL(2,1)[u, phi] + muM(2,2)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

-muM(1,0)[u, phi] - muM(1,2)[u, phi] + r muM(2,0)[u, phi],

-2 muM(1,0)[u, phi], r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi],

r 3 muM(1,1)[u, phi] + 3 muM(1,3)[u, phi] + r -3 muL(1,2)[u, phi] -

r muL(2,0)[u, phi] + muM(2,1)[u, phi],

r 3 r muL(1,0)[u, phi] - muM(1,1)[u, phi], 0, -
1

r
2

-2 muM(0,2)[u, phi] + muM(0,4)[u, phi] + r muL(0,1)[u, phi] +

muL(0,3)[u, phi] + muM(1,0)[u, phi] + muM(1,2)[u, phi],

1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] -

6 muM(0,3)[u, phi] - r muM(1,1)[u, phi],


1

r
2 muM[u, phi] + muM(0,2)[u, phi] - muM(1,0)[u, phi],

4 muM[u, phi]

r
, -3 r muL[u, phi] + 2 muM(0,1)[u, phi],

-6 muM(0,1)[u, phi] + 3 r muL(0,2)[u, phi] - 6 muM(0,3)[u, phi] -

r muM(1,1)[u, phi], -3 r muL[u, phi] + 2 muM(0,1)[u, phi], 0,

2 2 muM(0,1)[u, phi] + muM(0,3)[u, phi] - muM(0,5)[u, phi] +

r muL(0,2)[u, phi] + muL(0,4)[u, phi] + 3 muM(1,1)[u, phi] -

r muL(1,2)[u, phi] + muM(1,3)[u, phi],

-4 muM(0,1)[u, phi] - 4 muM(0,3)[u, phi] +

3 r muL(0,2)[u, phi] + r muL(1,0)[u, phi],

r -3 muM[u, phi] + 2 muM(0,2)[u, phi] + 5 muM(0,4)[u, phi] +

r -2 muL(0,1)[u, phi] - 5 muL(0,3)[u, phi] - 3 muM(1,0)[u,

phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],
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

-4 muM(0,1)[u, phi] - 4 muM(0,3)[u, phi] +

3 r muL(0,2)[u, phi] + r muL(1,0)[u, phi], -6 r muL[u, phi],

3 r -muM[u, phi] + r muL(0,1)[u, phi] - muM(1,0)[u, phi],

r -3 muM[u, phi] + 2 muM(0,2)[u, phi] + 5 muM(0,4)[u, phi] +

r -2 muL(0,1)[u, phi] - 5 muL(0,3)[u, phi] - 3 muM(1,0)[u,

phi] - r muL(1,1)[u, phi] + muM(1,2)[u, phi],

3 r -muM[u, phi] + r muL(0,1)[u, phi] - muM(1,0)[u, phi],

6 r2 -2 muM(0,1)[u, phi] - muM(0,3)[u, phi] +

r muL[u, phi] + muL(0,2)[u, phi] +

r muL(1,0)[u, phi] - muM(1,1)[u, phi]

(* Defining the LEOM. *)

leom[u_, r_, phi_] = FullSimplify[
1 / 4 Table[Table[Sum[Sum[Sum[LeviCivitaTensor[3][[a, i, j]]

Sum[Sum[gInv[u, r, phi][[b, c]]
(g[u, r, phi][[m, a]] (dddh[u, r, phi][[n, b, i, j,

c]] - dddh[u, r, phi][[c, b, i, j, n]]) + g[u, r,
phi][[n, a]] (dddh[u, r, phi][[m, b, i, j, c]] -

dddh[u, r, phi][[c, b, i, j, m]])), {c, 3}],
{b, 3}], {j, 3}], {i, 3}], {a, 3}], {n, 3}], {m, 3}]]

-
1

r2
muM(0,1)[u, phi] + 2 muM(0,3)[u, phi] +

muM(0,5)[u, phi] + r -muL(0,2)[u, phi] -

muL(0,4)[u, phi] + muM(1,1)[u, phi] + muM(1,3)[u, phi],

-
1

r2
muM(0,1)[u, phi] + muM(0,3)[u, phi],

1

r
-r muL(0,1)[u, phi] + muL(0,3)[u, phi] +

2 muM(0,2)[u, phi] + muM(0,4)[u, phi],

-
1

r2
muM(0,1)[u, phi] + muM(0,3)[u, phi], 0, 0,


1

r
-r muL(0,1)[u, phi] + muL(0,3)[u, phi] +

2 muM(0,2)[u, phi] + muM(0,4)[u, phi],

0, -2 muM(0,1)[u, phi] + muM(0,3)[u, phi]
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(* Defining the list of rules so that the LEOM vanish. *)

Lleom = muM(0,2)
[u, phi] → -muM[u, phi],

muM(0,3)
[u, phi] → -muM(0,1)

[u, phi],

muM(0,4)
[u, phi] → muM[u, phi], muM(0,5)

[u, phi] →

muM(0,1)
[u, phi], muM(1,3)

[u, phi] → -muM(1,1)
[u, phi],

muL(0,2)
[u, phi] → -muL[u, phi], muL(0,3)

[u, phi] →

-muL(0,1)
[u, phi], muL(0,4)

[u, phi] → muL[u, phi] ;

(* Test if the LEOM really vanish for
the previously defined list of rules. *)

leom[u, r, phi] /. Lleom // MatrixForm

0 0 0
0 0 0
0 0 0
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(* Defining the covariant boundary term without
contraction with the unit normal vector n. *)

btWOn[u_, r_, phi_] =

FullSimplify[Table[Table[Table[Sum[Sum[Sum[Sum[
LeviCivitaTensor[3][[a, i, j]] gInv[u, r, phi][[b, c]]
(g[u, r, phi][[a, m]] (ddh[u, r, phi][[b, j, n, c]] +

ddh[u, r, phi][[b, n, j, c]] - ddh[u, r, phi][[
b, c, j, n]] - ddh[u, r, phi][[j, n, b, c]]) +

g[u, r, phi][[a, n]] (ddh[u, r, phi][[b, j, m, c]] +

ddh[u, r, phi][[b, m, j, c]] - ddh[u, r, phi][[
b, c, j, m]] - ddh[u, r, phi][[j, m, b, c]])),

{j, 3}], {c, 3}], {b, 3}], {a, 3}],
{n, 3}], {m, 3}], {i, 3}]]

-
1

r
4 muM(0,1)[u, phi] + muM(0,3)[u, phi], 0, 0, {0, 0, 0},

{0, 0, 0}, 
1

r
4 muM(0,1)[u, phi] + muM(0,3)[u, phi],

1

r
2 muM(0,1)[u, phi] + muM(0,3)[u, phi], -2 muM(0,2)[u, phi] -

r muL(0,1)[u, phi] + muL(0,3)[u, phi] + muM(0,4)[u, phi],


1

r
2 muM(0,1)[u, phi] + muM(0,3)[u, phi], 0, 0,

-2 muM(0,2)[u, phi] -

r muL(0,1)[u, phi] + muL(0,3)[u, phi] + muM(0,4)[u, phi],

0, 4 r muM(0,1)[u, phi] + muM(0,3)[u, phi],

-
1

r2
4 muM(0,2)[u, phi] - r muL(0,1)[u, phi] + muL(0,3)[u, phi] +

muM(0,4)[u, phi], 0,
1

r

2 muM(0,1)[u, phi] + muM(0,3)[u, phi], {0, 0, 0},


1

r
2 muM(0,1)[u, phi] + muM(0,3)[u, phi], 0, 0
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(* Calculating the boundary term
while the LEOM being satisfied. *)

btWOn[u, r, phi] /. Lleom // MatrixForm

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

(* Defining the non-covariant boundary term without
contraction with the partial derivatives. *)

noncovWOd[u_, r_, phi_] = FullSimplify[
Table[Sum[Sum[LeviCivitaTensor[3][[i, j, k]]

Sum[Sum[gamma[u, r, phi][[m, j, n]]
Sum[Sum[Sum[gInv[u, r, phi][[n, p]] gInv[u, r, phi][[

q, a]] h[u, r, phi][[p, q]], {q, 3}], {p, 3}]
(dh[u, r, phi][[k, m, a]] + dh[u, r, phi][[m, k, a]] -

dh[u, r, phi][[a, m, k]]), {a, 3}],
{n, 3}], {m, 3}], {k, 3}], {j, 3}], {i, 3}]]


1

r
2 muM[u, phi] -r muL[u, phi] + muM(0,1)[u, phi],

1

r
2 muM[u, phi] muM(0,1)[u, phi] -

r muL(0,2)[u, phi] + muM(0,3)[u, phi] - r muM(0,1)[u, phi]

muL(0,1)[u, phi] + muM(1,0)[u, phi] + r muL[u, phi]

-r muL(0,1)[u, phi] + 2 muM(0,2)[u, phi] + r muM(1,0)[u, phi],

1

r
2 muL[u, phi] -r muL[u, phi] + muM(0,1)[u, phi]
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(* Calculating the contraction of the previously defined term
with the partial derivatives which gives the full non-

covariant boundary term. *)

noncovWd[u_, r_, phi_] =

Sum[D[noncovWOd[u, r, phi][[i]], var[[i]]], {i, 3}] /. Lleom //

FullSimplify

1

r
2 -muL[u, phi] muM[u, phi] + 3 r muL(0,1)[u, phi] +

muM(0,1)[u, phi] muL(0,1)[u, phi] + muM(1,0)[u, phi] +

muM[u, phi] -r muL(1,0)[u, phi] + muM(1,1)[u, phi]

MA_Thesis.nb    13
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