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Abstract

The two-point function and the entanglement entropy can be seen as quan-
tities to describe properties of the quark-gluon plasma. For this an anisotropic
5-dimensional system is considered.

A homogeneous anisotropic but O (2) symmetric solution to the 5-dimen-
sional vacuum Einstein equations is equivalent to a homogeneous and isotropic
solution to the Einstein equations including a scalar field. The corresponding
5-dimensional Einstein-Hilbert action without scalar field can be dimensionally
reduced to a 2-dimensional dilaton gravity action with two scalar fields. The
same 2-dimensional dilaton gravity action arises from reducing isotropic Ein-
stein gravity with a minimally coupled massless scalar field. Therefore, the
2-dimensional dilaton gravity is equivalent to the 5-dimensional anisotropic
system with matter and the 5-dimensional isotropic system with a scalar field.

In this thesis the two-point function of operators of large conformal weight
and the holographic entanglement entropy for a spherical region in a 2-dimen-
sional dilaton gravity theory are calculated numerically using the Anti-de Sit-
ter/conformal field theory correspondence. The two-point function, which is
computed in the geodesic approximation, amounts to a geodesic’s length in the
gravity theory. Similarly the calculation of the entanglement entropy reduces
to finding geodesics in an auxiliary spacetime.

To obtain the geometry the Einstein equations need to be solved numeri-
cally. The Einstein equations of the 2-dimensional dilaton gravity theory are
mapped to the vacuum Einstein equations for an anisotropic geometry.

The numerical calculation of geodesics is performed using a Mathematica
package, which calculates the geodesics with a relaxation method. The results
for the entanglement entropy and two-point function vary strongly, depending
on the chosen boundary region.
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1 Introduction
Today, one of the primary objectives of physicists is to find a theory that merges all
branches of physics. Therefore many theories have been considered to explain how
the universe works and describe all physical phenomena with one language.

The quark-gluon plasma (QGP) is an exceptional matter form that can not be
obtained under normal conditions. Here the quarks and gluons are no longer confined
to hadrons above a charateristic energy scale. The QGP state can be achieved in
nuclear physics, where the characteristic energy scale is reached by collisions of heavy
(gold and lead) ions at nearly the speed of light (see section 2.2). Our enthusiasm in
this matter is based on the assumption, that in the early stages of the universe matter
existed at high energies, corresponding to the QGP. Numerical calculations in order
to simulate this matter are not possible in perturbative quantum chromodynamics
(QCD). Therefore in the interest of describing the QGP other methods are needed.

One promising approach is provided by the holographic principle, namely the
Anti-de Sitter/conformal field theory (AdS/CFT) correspondence described in 2.3.
This establishes a duality between gauge and gravity theories. Looking at the quan-
tum field theory (QFT), it is typical to examine how the correlation functions of
local operators behave. Other quantities, such as the energy density are also ob-
served. In this context we are interested in the two-point function (2PF) and the
entanglement entropy (EE).

The EE and the 2PF represent quantities, with which the QGP can be partially
described. As shown in chapter (4), the computation of the 2PF and the EE reduces
to solving the geodesic equations. In order to do this, the metric is needed, which we
obtain by solving the Einstein equations. Since there is no analytical solution for the
case that we are interested in, numerical algorithms in Octave [1] and Mathematica
[2] are used.

In this thesis we start with chapter 2 by introducing the framework that will be
used later on. This includes several topics: the entanglement entropy, the heavy ion
collisions (HIC) in the high energy physics, the AdS/CFT field theory correspon-
dence using holography, the N = 4 supersymmetric Yang-Mills theory describing
plasma, followed by the holographic calculation of the entanglement entropy and
the Einstein equations. Chapter 3 consideres the applied geometry, starting from
the 2-dimensional dilaton gravity, maps for the entanglement entropy and the two-
point function between anisotropic and isotropic AdS5, and the numerical solution
of the Einstein equations. The following chapter 4 goes into detail regarding the
connection of the 2PF and the EE with the geodesic. The numerical results of the
time evolution of these two observables are presented in chapter 5. At the end in
chapter 6 the conclusion and outlook are presented. In appendix A one can find the
transformation to the Eddington-Finkelstein coordinates, while in appendix B the
parametrising to a spherical region is mathematically described.





2 Background
In this thesis we calculate the entanglement entropy and the two-point function in
a 2-dimensional dilaton gravity with scalar matter. First we define these quantities
and bring motivation for why we are considering them, namely the heavy ion colli-
sions (HICs). Further the concepts of the AdS/CFT correspondence are discussed.

2.1 Entanglement entropy

One of the many motivations to study EE is condensed matter physics. The EE can
be used as an order parameter to study quantum phase transitions. In the following
the basic ideas and properties of the entanglement entropy are presented [3].

Definition of entanglement entropy

Entanglement entropy is a measure for the entanglement in a quantum system. Let
us consider such a system at zero temperature in the pure non-degenerate ground
state. The density matrix of the total system is given by

ρtot = |Ψ〉 〈Ψ| , (2.1)

and the von Neumann entropy is zero,

Stot = −tr (ρtot log (ρtot)) = 0. (2.2)

Next divide the system into two disjoint regions A and B as shown in Figure 1. The

A

B

Figure 1: The system being divided into two subsystems A and B.

total Hilbert space becomes a direct product Htot = HA ⊗HB, where HA and HB

are the Hilbert spaces for region A and B respectively. An observer with access only
to A can measure only the reduced density matrix

ρA = TrBρtot, (2.3)

where TrB denotes the trace only over the partial Hilbert space HB.
The entanglement entropy of the region A is defined as the von Neumann entropy

of the reduced density matrix

SA = −TrA [ρA log (ρA)] . (2.4)



2.2 Heavy ion collisions and quark-gluon plasma

Due to the expression (2.2) for the von Neumann entropy, in the case of time-
dependency the density matrices ρtot and ρA become also time dependent. This is
resolved by fixing a time t0 when the entanglement entropy is measured.

Entanglement entropy in conformal field theory

Computing entanglement entropy in quantum field theories is in general very com-
plicated. The basic method here is the replica method, which gives analytic results
in (1 + 1)-dimensional conformal field theory (CFT) [4].

On the CFT side, the EE for 2-dimensional CFT is analytically computed via
[5, 4]

SA =
c

6
A log

(
ξ

a

)
, (2.5)

where c is the central charge of the CFT, A is the number of the boundary points of
A, ξ is the correlation length and a is the ultra violet (UV) cutoff. In two dimensions
A = 2, which gives

SA =
c

3
log

(
ξ

a

)
. (2.6)

2.2 Heavy ion collisions and quark-gluon plasma

The system in which we want to calculate the EE are the heavy ion collisions (HIC),
which are part of high energy physics. Particle accelerators have been extended
to work up to temperatures of hundreds MeV and high energy densities. In these
collisions gold nuclei with 197 nucleons (79 protons and 118 neutrons) at Relativistic
Heavy Ion Collider (RHIC) and lead nuclei with 208 nucleons (82 protons and 126
neutrons) at the Large Hadron Collider (LHC) are used, providing large volumes
of matter at a high energy density. The nuclei collide with velocities near the
speed of light, which gives the total center of mass energy in such collision to be
approximately 40 TeV at the RHIC and 600 TeV at the LHC. The tracks of the
charged particles produced with lead ions performed at the LHC are shown in Figure
2. The multiplicities at LHC are around 5 times higher than at RHIC (due to larger
energy densities [7, 8]) 1. The particle multiplicities in collisions of gold and lead at
different energies are shown in Figure 3.

The matter formed at this high temperature is explained with quarks and gluons,
which are not confined into hadrons. The so called quark-gluon plasma (QGP)
represents the deconfined state of strongly interacting matter, where quarks and
gluons move freely within a larger volume instead of a nucleonic one [10]. Heavy
ion collisions are an approach to study the QGP. Since the temperature of the
QGP extends beyond 1012K (nearly the temperature of the universe after the Big
Bang2) [9] the HICs provide a way to investigate the state of matter that existed

1At the LHC around 26000 particles can be generated [9].
2The Big Bang represents a cosmological model, explaining the early stages of the universe.

This theory states that the universe began with a small singularity, and then started inflating over
the next 16.8 billion years.
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2 BACKGROUND

Figure 2: Tracks of charged particles from HICs registered by the ALICE detector at
the LHC with lead nuclei. The tracks from few charged particles (low multiplicity,
left) compared to the tracks of thousand of particles (high multiplicity, right) [6].

Figure 3: Charged particle multiplicity distributions for central collision [8]. Much
higher energies are used at LHC for the lead collisions compared with the gold
collisions at RHIC.

5



2.3 AdS/CFT correspondence

millionths of a second after the Big Bang. Initially QGP is highly out of equilibrium
and thermalizes very fast to a hydrodynamic state (see Figure 4). It is important to
consider that the QGP can be described with hydrodynamics at a specific time span.
Research at RHIC and hydrodynamical calculations pressume that the plasma’s
thermalization time is small τtherm . 1fm/c, which is roughly 3 × 10−24 s [11] (for
more information see [10]).

Since the QGP is initially highly anisotropic, we consider an anisotropic system
to study the thermalization process of the QGP. In this work a simple model is used
in order to find observables that characterize the equilibration of the QGP.

Figure 4: Illustration of the matter progression in relativistic heavy ion collisions.
[12] .

It turns out that the QGP in these experiments is stongly coupled. For a large
coupling constant, computations in a certain temperature span are not applicable in
perturbative quantum chromodynamics (QCD). Computations can be done within
lattice QCD, where the lattice-regularized calculations at non-zero temperature are
performed with the imaginary time formalism. We are interested in the dynamics
and the early state after the collision before the thermalisation of the QGP, where
the lattice QCD approach/method fails. Furthermore the fermion sign problem
prevents the usage of the Monte Carlo lattice simulations [8].

Due to these difficulties, different approaches have been introduced. The AdS/CFT
correspondence turned out to be a useful additional tool in the QCD thermodynamic
research.

2.3 AdS/CFT correspondence

The holographic principle provides a connection between a theory of quantum grav-
ity defined in a d-dimensional spacetime and a quantum field theory without gravity

6



2 BACKGROUND

in one dimension lower, introduced by ’t Hooft and Susskind [13, 14]. It states that
all of the information enclosed in some region of space is represented as a hologram
3 on the boundary of that region. This means that the information contained in
both theories is equivalent.

The boundary of the Anti-de Sitter (AdS) space conformally corresponds to
Minkowski’s space. In that sense (the hologram) the quantum field theory (QFT)
lies on the AdS boundary. A specific realization of the holographic principle is the
AdS/CFT correspondence, stating the equivalence of N = 4 supersymmetric Yang-
Mills (SYM) theory with gauge group SU (Nc) in 4 dimensions and Type II B string
theory on AdS5⊗S5 [15]. Having in mind the holographic principle, the information
in AdSd space is embedded in the CFTd−1. With this we can do calculations on one
side and then translate them to the other side.

Due to this fact, the AdS/CFT correspondence is an interesting tool to study
strongly coupled QFT using classical gravity on AdS. The limit which makes this
possible is the limit of large Nc and large ’t Hooft coupling λ = Nc g

2, where g is
the coupling constant in the gauge theory. In this limit the string theory reduces to
classical supergravity. This is a huge simplification, since the problem of solving a
strongly coupled QFT can be replaced by the much easier task of solving classical
general relativity.

In many fields the duality gives the opportunity to tackle problems that are not
accessible by perturbation theory on the field theory side. For example the AdS/CFT
correspondence is used in quantum gravity, particularly the black hole information
paradox [16], and the field condensed matter physics of strongly correlated systems
[17], where at quantum critical points the systems can be described with CFTs.
The focus of this work are the applications of the AdS/CFT correspondence to high
energy physics.

2.4 N = 4 SYM plasma as toymodel for QGP in HIC

The N = 4 SYM plasma can be considered as a model for the QGP, due to the fact
that both theories are similiar at HIC energies.

Above a critical energy density εc ∼ 1 GeV/fm3 or critical temperature Tc ∼
200MeV QCD is deconfined [10], while in N = 4 SYM there is no confinement.
N = 4 SYM is a scale invariant theory, while scale invariance in QCD is broken by
the running coupling constant. Above Tc although, this effect gets negligible and
QCD is almost scale invariant too. The similarities in the confinement and scale
invariance above Tc between these two theories motivate the assertion that QCD
and N = 4 SYM are comparable at non-zero temperatures (for detailed material
refer to [8]).

We are interested in the early evolution (far from equilibirum) of the plasma
state. There the shear viscosity over entropy density of the QGP is very small. This
makes it an almost perfect fluid. Considering the AdS/CFT correspondence in the
limits explained above, the shear viscosity is found to be η/s = 1/4π [18].

3The hologram displays a three dimensional object represented in a two dimensional surface.
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2.5 Holographic calculation of entanglement entropy

2.5 Holographic calculation of entanglement entropy

As discussed in 2.1 EE is hard to calculate in d ≥ 3 using QFT-methods. Since we
are interested in a 4-dimensional CFT, we approach this calculation holographically,
where the AdS/CFT correspondence provides a simpler method that works also in
higher dimensions. According to the Ryu-Takayanagi proposal [5, 19, 3], within
AdS/CFT the holographic entanglement entropy (HEE) of a spatial region A in the
field theory can be computed from the area A of a surface in AdSd spacetime

SA =
A (ΣA)

4Gd
N

, (2.7)

where ΣA is a minimal surface which is attached to the boundary of the region A
and GN denotes the Newton constant in d dimensions. Figure 5 shows the minimal

d-dim CFT

d+1 dim GR

t=const

cutoff

z

x1,x2...,
xparallel

B

A

Figure 5: The extremal surface for the EE in the holographic calculation.

surface ΣA with the same boundary as the subsystem A (see Figure 1) in the field
theory, which is located on the AdS boundary. This has been proven by Lewkowycz
and Maldacena [20]. The Ryu-Takayanagi formula (2.7) has been extended to time
dependent systems [19], where the notion of a minimal surface is replaced by the
one of an extremal surface. For more information regarding a mathematical proof
for this case see [21].

From the AdC/CFT correspondence it follows that specific 2-dimensional CFTs
are equivalent with gravitational theories on AdS3 of radius L . The results for the
EE using (2.7) agrees with (2.6). The central charge of the CFT is linked with the
radius of AdS by

c =
3L

2G3
N

. (2.8)

It is interesting to note the similarity between equation (2.7) and the Bekenstein-
Hawking entropy for black holes SBH = ABH

4GN
, where ABH denotes the area of the

black holes event horizon. There are many arguments for looking at this connection.
An interesting question is if the SBH can be understood as the EE [22].

For more and details see [3, 5].
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2 BACKGROUND

2.6 Einstein equations

The Einstein equations are given by

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2.9)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar, gµν is the metric, Λ
is the cosmological constant, G is the Newton constant, c is the speed of light and
Tµν is the stress-energy tensor. Defining the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (2.10)

the Einstein equations gain the following form

Gµν + Λgµν =
8πG

c4
Tµν , (2.11)

or written in geometrized units (G = c = 1)

Gµν + Λgµν = 8πTµν . (2.12)

AdS spacetime is the unique maximally symmetric solution of the Einstein equations
in vacuum with constant negative curvature. Since we are interested in asymptoti-
cally AdS spacetime we use the line element in the Poincaré patch given by

(
ds2
)

=
L2

r2
dr2 +

r2

L2
ηµνdx

µdxν , (2.13)

where L is the AdS radius and ηµν is the (d− 1)-dimensional Minkowski metric. For
the d -dimensional AdS spacetime the number of independent Riemann components
(Cd), the Ricci scalar (Rd) and the cosmological constant (Λd) are given by

Cd =
d2 (d2 − 1)

12
, (2.14)

Rd = −
d (d− 1)

L2
, (2.15)

Λd = −
(d− 1) (d− 2)

2L2
. (2.16)

Anisotropic asymptotically AdS5 spacetime

Since we are interested in describing far from equilibrium plasmas, our focus is at
the dynamics of the simplest homogeneous, anisotropic case, as proposed in [23, 24,
25, 9]. We are looking at the anisotropic line element given by

(ds)2 = gabdx
a ⊗ dxb +X

2/3 (xα) gij (xα) dxi ⊗ dxj

= gabdx
a ⊗ dxb +X

2/3 (xα)
[
e−2B(xα)

(
dx‖
)2

+ eB(xα)
(
dx1
)2

+ eB(xα)
(
dx2
)2
]
,

(2.17)

9



2.6 Einstein equations

where X (xα) and B (xα) are real functions. The metric in (2.17)

gij =

 e−2B 0 0
0 eB 0
0 0 eB

 , (2.18)

has unity determinant det [gij] = 1. The function B encodes the anisotropy between
x
‖ and x⊥.
Using the expressions introduced in equations (2.14)-(2.16) above, we obtain the

Einstein equations in vacuum (Tµν = 0) for the AdS5 with L = 1 (which provides
R = 20 and Λ = −6)

Ruv + 4guv = 0. (2.19)
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3 Geometry
In this chapter we discuss the geometry that is used in the calculation of the entan-
glement entropy in an anisotropic system. First the 2d dilaton gravity is presented.

3.1 2-dimensional dilaton gravity

The 2-dimensional dilaton gravity is described by the following action [26]

S =

ˆ
d2x
√
−g [φR + V (φ)] , (3.1)

where φ is the dilaton field, R is the Ricci scalar in two dimensions and V represents
a dilatonic potential.

Our motivation for considering the 2d dilaton gravity is that the 5-dimensional
EH action (from the anisotropic line element (2.17)) can be scaled down to a 2-
dimensional EH action (3.2) via a dimensional reduction [27]

S ∝
ˆ
d2x
√
−g

(
RX −

2

3

(∇X)2

X
+

3

2
(∇B)2X − 2ΛX

)
. (3.2)

Furthermore, since the number of Riemann components in d dimensions is
d2(d2−1)

12
,

for d = 2 this results only in the Ricci scalar. Therefore this is the lowest possible
dimension with curvature. Also using spherical symmetry in Einstein gravity with
d ≥ 4 one can obtain generalised dilaton theories.

It is easily shown that the same 2d dilaton gravity action (3.2) arises from di-
mensional reduction of the EH action minimally coupled to a massless Klein-Gordon
field, as shown in the following.

The action of the system is defined as

S = SEH + SKG, (3.3)

where the EH bulk action and the Klein-Gordon action are given by

SEH ∝
ˆ
d5x
√
−g(5)

(
RM − 2Λ

)
, (3.4)

SKG ∝
ˆ
d5x
√
|g(5)|gµν (∂µB) (∂νB) . (3.5)

(3.6)

Using the line-element (2.17) with B = 0 the Ricci scalar is

RM = R−
2

3

(∇X)2

X2
− 6
�X

X
. (3.7)

Setting all the results in the isotropic EH action and integrating over the 3 compact
dimensions of the torus yields up to a boundary term

S ∝
ˆ
d2x
√
−g

(
RX −

2

3

(∇X)2

X
+

3

2
(∇B)2X − 2ΛX

)
, (3.8)



3.2 The map from anisotropic AdS5 to isotropic AdS5

where (∇B)2 arises from the Klein-Gordon action.
As mentioned, the action above is equivalent to (3.2).

3.2 The map from anisotropic AdS5 to isotropic AdS5

As shown previosly one can map the results of an anisotropic AdS5 to isotropic 2d
dilaton gravity system. We are considering the following line element in the isotropic
case

(ds̃)2 = gabdx̃
a ⊗ dx̃b +X

2/3 (x̃α) dx̃i ⊗ dx̃j, (3.9)

and for the anisotropic case the line element given in (2.17). We can rewrite these line
elements in the Eddington-Finkelstein coordinates (see Appendix A) using r = 1

z
,

which yields

(ds̃)2 = −Adt̃2 −
2dz̃dt̃

z̃2
+ Σ2d~̃x2, (3.10)

(ds)2 = −Adt2 −
2dzdt

z2
+ Σ2

[
e−2B(z,t)

(
dx‖
)2

+ eB(z,t)
(
dx1
)2

+ eB(z,t)
(
dx2
)2
]
.

(3.11)
At the boundary, z → 0, the maps are trivial

(ds̃)2
∣∣
z̃→0

=
1

z̃2

(
−dt̃2 + d~̃x2

)
, (3.12)

(ds)2
∣∣
z→0

=
1

z2

(
−dt2 + d~x2

)
. (3.13)

Now considering finite value of z → ε near the boundary, we obtain non-trivial maps

e−B(z=ε,t)dx‖ = dx̃‖, (3.14)
e
B(z=ε,t)/2dx1 = dx̃1, (3.15)
e
B(z=ε,t)/2dx2 = dx̃2. (3.16)

From the maps above one can obtain the coordinates in the anisotropic case

dx‖ = eB(z=ε,t)dx̃‖, (3.17)
dx1 = e

−B(z=ε,t)/2dx̃1, (3.18)
dx2 = e

−B(z=ε,t)/2dx̃2. (3.19)

3.3 Numerical approach to the Einstein equations

Solving the Einstein equations is a difficult task, since they form a set of non-linear
partial differential equations. There are three leading methods that are used [28, 29]:

• the 3+1 formalism;

• the conformal formalism;

• the characteristic formalism.

12



3 GEOMETRY

The first two approaches split the spacetime into spacelike hypersurfaces[30] (in our
case the 5-dimensional spacetime by 4-dimensional hypersurfaces). While in the 3+1
method the hypersurfaces reach spatial infinity and are restrained on an enclosed
region, in the conformal method they are hyperboloidal reaching future null infinity.
In the characteristic formulation lightlike hypersurfaces are used for the slicing. This
decouples the Einstein equations into a nested set of ordinary differential equations
(ODEs). Therefore it is more appropriate to study the development on the boundary
of AdS/CFT using this method.

Einstein equations in the characteristic formulation

We use the original Eddington-Finkelstein coordinates with r instead of z yielding
the line element

(ds)2 = −Adt2 + 2drdt+ Σ2
[
e−2B(r,t)

(
dx‖
)2

+ eB(r,t)
(
dx1
)2

+ eB(r,t)
(
dx2
)2
]
.

(3.20)
In the equation above now r represents the holographic coordinate (r → ∞ cor-
responds to the boundary), t is the advanced time, x‖, x1 and x2 are the spatial
coordinates of the boundary and A, S and B are fields depending only on t and
r. The Einstein equations in the characteristic formulation are now given by the
simple form [23, 24, 25, 31, 32, 9]

0 = Σ
(

Σ̇
)′

+ 2Σ′Σ̇− 2Σ2, (3.21)

0 = Σ
(
Ḃ
)′

+
3

2

(
Σ′Ḃ +B′Σ̇

)
, (3.22)

0 = A′′ + 3B′Σ̇−
12Σ′Σ̇

Σ2
+ 4, (3.23)

0 = Σ̈ +
1

2

(
Ḃ2Σ− A′Σ̇

)
, (3.24)

0 = Σ′′ +
1

2
B′

2

Σ, (3.25)

where the following notation for the derivatives along the ingoing and outgoing radial
null geodesics for arbitrary functions f (r, t) was used

f ′ = ∂rf, (3.26)

ḟ = ∂tf +
1

2
A∂rf. (3.27)

For solving the initial-value problem equations (3.21)-(3.25) are used. The benefit
is that only linear ODEs in dependence of r at each time step need to be solved.
The order of solving them is as follows: using B as initial condition, from equation
(3.25) Σ can be found on the first time slice; now Σ̇ can be obtained from (3.21);
the next step is computing Ḃ from (3.22); afterwards by integrating (3.23) A is
obtained; lastly using (3.27) one calculates ∂tB. From here on using Runge-Kutta
algorithm one continues to the next time step.
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3.3 Numerical approach to the Einstein equations

Near-boundary expansion

Considering the asymptotically AdS5 at r → ∞, the metric functions can be ex-
panded in a series

A (r, t) =
4∑
i=0

ai (t) r
−i+2 +O

(
r−3
)
, (3.28)

B (r, t) =
4∑
i=0

bi (t) r
−i +O

(
r−5
)
, (3.29)

Σ (r, t) =
4∑
i=0

σi (t) r
−i+1 +O

(
r−4
)
. (3.30)

Inserting these expansions in equations (3.21)-(3.25) and using the derivatives (3.26)
and (3.27) we obtain [9]

A (r, t) = (r + ξ (t))2 − 2∂tξ (t) +
a4

r2
−

2a4ξ

r3
+O

(
r−4
)
, (3.31)

B (r, t) =
b4 (t)

r4
+
∂tb4 (t)− 4b4 (t) ξ (t)

r5
+O

(
r−6
)
, (3.32)

Σ (r, t) = r + ξ (t)−
b2

4

7r7
+O

(
r−8
)
. (3.33)

In the expressions above, at the first order of r the coefficient σ1 (t) remains unknown
and we used the gauge freedom by setting σ1 (t) = ξ (t), where ξ (t) is an arbitrary
function. We can see that two coefficients, a4 and b4 (t), are undetermined and that
a4 is independent of t. This is due to the fact that the expansion was done up to the
fourth order. Calculating higher orders in the expansion shows that the fifth order
confines a4 to be constant.

It is clear that the metric functions diverge near the boundary expansion. A
neat way to regularize them with new functions is as follows

Areg (z, t) =
A (z, t)− ξ (t)2 + 2∂tξ (t)

z2
− 1− 2ξ (t) z, (3.34)

Breg (z, t) =
B (z, t)

z4
, (3.35)

Σreg (z, t) =
Σ (z, t)− ξ (t)

z4
− z3, (3.36)

Ḃreg (z, t) =
Ḃ (z, t)

z3
(3.37)

Σ̇reg (z, t) =
Σ̇ (z, t)

z2
−
ξ (t)2

2z2
−
ξ (t)

z3
−

1

2z4
, (3.38)

where we have reverted the substitution r = 1
z
.

Holographic stress-energy tensor

A precise expression for the stress-energy tensor, within the holographic renormal-
ization correlated with the solutions of the Einstein equations for AdS, is presented

14



3 GEOMETRY

in [33]. This is achieved by rewriting the solutions in the Fefferman-Graham coor-
dinates (FG) [34]

(ds)2 = gµν =
l2

r2

(
dr2 + gij (x, r) dxidxj

)
. (3.39)

The stress-energy tensor reads ([33], see also [1, 9])

〈T µν〉 =
N2
c

2π2
diag

[
E ,P‖ (t) ,P1 (t) ,P2 (t)

]
, (3.40)

where E represents the energy density and P‖ (t) and P1,2 (t) are the longitudinal
and transveral pressure densities. The coefficients a4 and b4 (t) in the expansion
above are related to the components of the stress energy tensor by the following
relations

E = −
3

4
a4, P‖ (t) = −

1

4
a4 − 2b4 (t) , P1 (t) = P2 (t) = −

1

4
a4 + b4 (t) . (3.41)

Since a4 is independent and b4 (t) is dependent from t, one identifies the energy
density to be constant and the pressure densities to be dependent of t. In Figure
6 the components of the stress-energy tensor given by (3.41) on the CFT side are
shown. As one can see, while the energy density is constant, the transversal and
longitudinal pressure thermalize after a few oscillations.

Figure 6: Energy density, transversal and longitudinal pressure.
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4 The two point function and entanglement entropy
for a spherical region

Our intention in this chapter is to present the computation of the 2PF for operators
of large conformal weight and the HEE. Due to the non-local character of these
observables, they provide a way to gain insight into the thermalization process of a
system going beyond local observables, like the energy momentum tensor (EMT).
Calculating the EE (which is relatively simple to compute in the holographic setup),
in the boundary of CFT amounts to calculating an extremal surface in the bulk.

Calculating the EE as well as the 2PF reduces to finding geodesics, as shown in
the following.

4.1 Two-point functions

It has been shown [35, 36], that the equal time of the 2PF for an operator O of large
conformal weight ∆ can be expressed through a path integral〈

O (t, ~x)O
(
t, ~x′
)〉

=

ˆ
DPe−i∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L. (4.1)

Here the path integral is computed over all possible paths that connect the two points
(t, ~x) and

(
t, ~x′
)
, and L (P) denotes the length of the path. In the equation above

the geodesic approximation does not take into account the perturbative corrections,
where the integral over all paths is replaced by the sum of all geodesics. The second
approximation is valid in the limit of large conformal weight of the operator and can
be explained considering that at leading order only the geodesic with the smallest
value of Lg contributes.

A problem that occures is the divergence of the length of the geodesic due to the
asymptotically AdS boundary. We choose to regularize by introducing a cutoff in
the radial direction and substracting the initial length of the geodesic’s denoted by
L0 〈

O (t, ~x)O
(
t, ~x′
)〉

ren
= e−Lren , (4.2)

where

Lren =
L− L0

∆
. (4.3)

In this way the geodesics end at a finite value near the infinite boundary.
Since we are using an anisotropic metric, in the calculation of the geodesics one

can consider the endpoints to be separated in the longitudinal direction or in the
transverse direction. In this thesis the longitudinal direction is chosen. Computing
the geodesics requires that the geometry of the system is calculated at every point
by solving the Einstein equations. By doing this the calculation is restricted to a
certain coordinate range. It is worth noting here, that there exists only a definite
number of geodesics that actually satisfy the initial conditions of the choosen region.



4.2 Holographic entanglement entropy for a spherical region from geodesics

Finding (the length of) the geodesics is done by solving the geodesic equation of
the corresponding line element of the 3d subspace, in this case the line element

(ds)2 = −Adt2 −
2

z2
dzdt+ Σ2

(
dx‖
)2
. (4.4)

4.2 Holographic entanglement entropy for a spherical region
from geodesics

We are considering the entanglement entropy on a spherical region. Our motivation
for this are the symmetries that can be exploited in order to simplify the problem.

Let us consider the spherical region shown in Figure 7. Furthermore we are

d-dim CFT

d+1 dim GR

t=const

cutoff

z

x1,x2...,
xparallel

B

A

Figure 7: Spherical boundary region with minimal surface.

considering the boundary problem at the slice t = const.
As discussed in 2.1, the EE can be generalized to time dependent systems [19]

with the equivalent boundary A by extremizing the surface functional

A =

ˆ
d3σ

√√√√det

(
∂xµ

dσa
∂xν

dσb
gµν

)
. (4.5)

Applying the spherical symmetries in the spatial dimensions (since we examine
a spherical region), we arrive to calculating the extremal area functional by finding
the geodesics. This is shown by parametrising the line element of a spherical region
(see Appendix B).

Now we introduce an auxiliary spacetime. The line element can be written as

(ds)2 = ηabdx
a ⊗ dxb + Φ2

‖
(
dx‖
)2

+ Φ2
1

(
dx1
)2

+ Φ2
2

(
dx2
)2 (4.6)

= hαβdx
α ⊗ dxβ + Φ2

1

(
dx1
)2

+ Φ2
2

(
dx2
)2
, (4.7)
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4 THE TWO POINT FUNCTION AND ENTANGLEMENT
ENTROPY FOR A SPHERICAL REGION

where hαβ is the induced metric in dependency of
(
z, t, x‖

)
. The surface functional

with the induced metric is now

A =

ˆ ˆ ˆ
dx1dx2dσ

√
Φ2

1Φ2
2 hαβ

∂xα

dσ

∂xβ

dσ
. (4.8)

The observed region has finite size, and from the first two integrals above we obtain
only a constant (volume) factor, by which we divide in order to acquire normalized
results. With this the calculation is abbreviated from 5− d to 3− d. Inserting the
expressions for Φ1 = Φ2 = Σ we obtain the auxiliary spacetime line element

(ds)2 = hαβdx
αdxβ

= Σ4

(
−Adt2 −

2

z2
dzdt+ Σ2

(
dx‖
)2

)
. (4.9)

4.3 Calculating the geodesic

Since the computation of the extremal surfaces reduces to calculating the curves
of extremal lenght (see above), the geodesic equation is parametrised by an affine
parameter and it needs to be solved

ẍµ + Γµνλẋ
ν ẋλ = 0, (4.10)

where the dot above refers to the derivative with respect to the affine parameter.
It is beneficial to use a non-affine parameter for the numerical comptutation, τ (σ),
which transforms equation (4.10) to

ẍµ + Γµνλẋ
ν ẋλ = −Jxµ. (4.11)

Here the dot denotes the derivative with respect to the non-affine parameter and J
is the Jacobian emerging from the change of parametrization.

In order to solve the partial differential equations numerically a relaxation scheme
is used. This method for solving differential equations with boundary constraints is
suitable for our interest, since we are looking at asympotically AdS spacetime. It is
an iterative process, which needs an ansatz that is improved to a certain point until
we are satisfied with the order of uncertainty.
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5 Numerical results
In the interest of obtaining numerical results for the 2PF and the EE, we gain the
geometry from an Octave code (as done in [1]) and then calculate the observables
with a Mathematica package introduced in [2] using a relaxation method.

Considering an isotropic case we set the scalar field B = 0 in (2.17) while calcu-
lating the geodesics. With these results the 2PF and the EE of a spherical region
are calculated. We mapped these results to a spherical region in an anisotropic
system as described in subsection 3.2. It is important to notice here, that while
the calculated geodesics represent extremal surfaces in the isotropic case, after the
maping they are no longer extremal surfaces in the anisotropic case.

Different simulations are done in dependence of the spatial separation l0 of the
considered points at the boundary, where for the EE the values are smaller compared
to the ones for the 2PF. The time evolution is choosen to be t ∈ [0, 2]. Here t and l0
are arbitrary units for length and time, and the unit for the holographic coordinate
is measured in units of the AdS radius.

The time evolution is performed with iteration, where the result from the previ-
ous step is taken as ansatz for the next time step.

Since the scalar B-field that generates the anisotropy is used in the following
sections, it is displayed in Figure (8).

Figure 8: B -field.

For more information regarding the details for the numerical calculation see [1, 2].



5.1 Time evolution of the two-point function

5.1 Time evolution of the two-point function

We start with the numerical results for the two-point function. They are shown in
Figure 9 for different separations, where the initial value was substracted in order
to gain more suitable results, as explained in subsection (4.1). As we can see the
correlations start at an initial time and then thermalize to a constant value after
a certain time. The difference between the final values after the thermalization is
larger for larger separations.

Figure 9: Time evolution of the two-point function for different separations.

Figure 10: Time evolution of the geodesics for the two-point function (green) in the
isotropic case with the ansatz (blue) and the apparent horizont (brown surface).

In Figure 10 the geodesics after the time evolution (green curves) are shown
together with the ansatz (blue curve) and the apparent horizont. The radial position
of the apparent horizon is represented by the brown surface. After the mapping
of the parallel and transversal coordinates to the anisotropic case we obtain the
geodesics shown in Figure 11 and 12. The green curves are the geodesics before
the mapping and the red curves display the geodesics after the mapping in the
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5 NUMERICAL RESULTS

anisotropic case. One can see that after the mapping each geodesic at a earlier
time has bigger deformation than before. These deformations differ for the parallel
and transverse direction. Although these geodesics are not the extremal surfaces in
the anisotropic case, this shows a good way to establish a connection between the
anisotropic and isotropic case. The main motivation of this is the easier computation.

Figure 11: Geodesics after mapping the parallel coordinate for the anisotropic case
(red curves) compared with the ones in the isotropic case calculated for the two-point
function.

Figure 12: Geodesics after mapping the transversal coordinate for the anisotropic
case (red curves) compared with the ones in the isotropic case calculated for the
two-point function.
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5.2 Time evolution of the entanglement entropy

5.2 Time evolution of the entanglement entropy

In this section we observe the numerical results for the EE. Similar as for the 2PF,
first the EE in dependence of different separations is shown in Figure 13. For the EE
smaller values for the separation are used with wider range compared to the 2PF.
Similar to the 2PF, the EE entropy thermalizes after a certain time to a constant
value, which is below the initial one. For larger separations the final values are even
lower. Also the difference between the thermal values grows with the separation.
The main difference compared to the 2PF is that the EE at early times grows before
it falls to the final value.

Figure 13: Time evolution of the entanglement entropy for different separations.

The time evolution of the geodesics for the EE (green curves) in the isotropic
case differs from the one for the two-point function, as one can see in Figure 14.
Again the ansatz is shown in blue, the apparent horizon is the brown surface and
the energy density is shown in the contour plot.

Figure 14: Time evolution of the geodesics for the entanglement entropy in the
isotropic case with the ansatz, the apparent horizont and the energy density.
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5 NUMERICAL RESULTS

After performing the mapping to the anistropic case we obtain the geodesics
shown in Figure 15 and 16. It is clear that the geodesics for the EE in the anisotropic
case are more deformed as for the 2PF.

Figure 15: Geodesics after mapping the parallel coordinate for the anisotropic case
(red curves) compared with the ones in the isotropic case calculated for the entan-
glement entropy.

Figure 16: Geodesics after mapping and transversal coordinate for the anisotropic
case (red curves) compared with the ones in the isotropic case calculated for the
entanglement entropy.
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6 Conclusion and outlook

6.1 Conclusion

In this work the holographic principle was used in order to calculate the two-point
function for operators of large conformal weight and the entanglement entropy. We
used a special case of this principle, namely the Anti de-Sitter/conformal field theory
correspondence. The motivation for this is the fact, that this duality provides the
opportunity to look at problems, that were not accessible otherwise.

The main application regards heavy ion collisions in high energy physics. In such
collisions a new state of matter is formed, the quark-gluon plasma. N = 4 supersym-
metric Yang-Mills theory was considered as a model for describing the quark-gluon
plasma, due to the similarities of this theory with quantum chromodynamics, that
arise at high energies.

The calculation of the two-point function reduces to the computation of geodesics
and the entanglement entropy to extremal co-dimension 2-surfaces. The main topic
of this thesis was to calculate these observables in an isotropic system and then
translate them into an anisotropic one. The interest for doing this is presented
in [27]. It is shown that a specific anisotropic action is equivalent to an isotropic
one plus a scalar field. These two actions are equivalent to a certain 2-dimensional
dilaton gravity model with a massless non-minimally coupled scalar field. In an
isotropic spacetime, considering simple regions like spheres, the extremal surfaces
essentially reduce to the geodesics length times a constant volume factor.

First the Einstein equations were solved in the characteristic formulation using an
Octave code, which implements the near-boundary expansion. Thereby the needed
metric is calculated. The numerical computation of the observables was done in
a Mathematica package, providing the time evolution of the quantities we want to
examine.

The two-point function was calculated for different separations. The correlations
were computed at the same initial time, but after the performed time evolution they
thermalized to distinct constant values. These differed even more for larger separa-
tions. Next the geodesics were mapped to the anisotropic case for the transversal
and parallel direction in order to see the differences from the isotropic case. At
earlier times the geodesics in the anisotropic case have bigger deviations from the
geodesics in the isotropic case. However, after the time-evolution they coincide.

The same numerical process was performed for the entanglement entropy. Al-
though the entanglement entropy also thermalizes to constant values, the results
differ from the ones obtained for the two-point function. Here smaller values in a
larger range were taken into account, and for larger separation lengths the thermal
values differ more. One essential distinction from the two-point function is that the
entanglement entropy at the beginning of the time evolution first starts to grow and
then thermalizes to a constant value below the initial one. Also after the mapping
to the anisotropic case the geodesics in the transversal and parallel direction are
more deformed.

The numerical calculations for these observables were done by considering a
spherical boundary region. For different boundary regions, particularly for infinite
stripe regions, the results have been shown in [1]. From here one can conclude that



6.2 Outlook

the chosen boundaries have a great effect on the end results.
The initial conditions have played a large role in the computations. Since the

observables vary very little in dependence of the separations, many calculations were
done in order to obtain a better view of the development during the time evolution
of the two-point function and the entanglement entropy.

6.2 Outlook

A number of challenges and questions still remains open. We have considered a
compact region. Due to the fact that finding the extremal surfaces in an anisotropic
system for this case is a demanding task, we were encouraged by the dimensional
reduction to calculate geodesics in an isotropic system and then map them to the
anisotropic system. Although this looked like a promising concept, the extremal sur-
faces computed in the isotropic case are no longer extremal surfaces in the anisotropic
one. It is a challenging task to find the exact mapping. Still there are other ways
to compute these surfaces. One tool is the Surface Evolver [37], where the area of
a surface is minimized. But even here the question is, if the calculated minimal
surface is the real minimal surface of the chosen region. Furthermore, in the Mathe-
matica package that was used, the two-point function was calculated in the geodesic
approximation. This can be improved by computing the exact two-point function,
where a scalar field is added in the gravitational theory. Another interesting point
that lies ahead is to look at compact regions in other geometries.
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A Eddington-Finkelstein coordinates
We perform now a coordinate transformation in the Eddington-Finkelstein coordi-
nates in order to obtain a metric of the following form

0 f3 (t, z) 0 0 0
f1 (t, z) f2 (t, z) 0 0 0

0 0 Σ2 (t, z) 0 0
0 0 0 Σ2 (t, z) 0
0 0 0 0 Σ2 (t, z)

 . (A.1)

Our line element is

(ds)2 = gttdt
2 + gzzdz

2 +X
2/3
[(
dx‖
)2

+
(
dx1
)2

+
(
dx2
)2
]

= −gttdt2 + gzzdz
2 + Σ2d~x2,

where in the second line was used gtt → −gtt, since the metric is (−1, 1, 1, 1, 1) and
Σ2 = X2/3. The transformation to the generalized Eddington-Finkelstein coordinates
is

v = t+

ˆ √
gzz

gtt
z, (A.2)

from where it follows

dv = dt+

√
gzz

gtt
dz. (A.3)

Setting this in the line element we obtain

(ds)2 = −gtt

dv −
√
gzz

gtt
dz

+ gzzdz
2 +X

2/3
[(
dx‖
)2

+
(
dx1
)2

+
(
dx2
)2
]

= −gttdv2 + 2
√
gttgzzdvdz + Σ2d~x2. (A.4)

The metric is now given by

g̃uv =


−gtt

√
gttgzz 0 0 0√

gttgzz 0 0 0 0
0 0 Σ2 0 0
0 0 0 Σ2 0
0 0 0 0 Σ2

 . (A.5)

From here one can choose different notations for the entries in the metric above.

B Parametrising the spherical region
Here the parametrization using the symmetries of an isotropic system is explicitly
shown. Additionally we use two approaches to calculate the Christoffel symbols in
order to see if they match, thereby confirming the validity of the parametrization:



on the one hand from the action and on the other one from their definition in terms
of the metric function.

Writing the isotropic line element (3.9)

(ds)2 = gabdx
a ⊗ dxb +X

2/3
[(
dx‖
)2

+
(
dx1
)2

+
(
dx2
)2
]

= gttdt
2 + gzzdz

2 +X
2/3
[(
dx‖
)2

+
(
dx1
)2

+
(
dx2
)2
]
, (B.1)

in spherical coordinates one yields

(ds)2 = gttdt
2 + gzzdz

2 +X
2/3
[
dρ2 + ρ2dθ2 + ρ2 sin2 (θ) dϕ2

]
. (B.2)

The line element can be rewritten as

(ds)2 = gttdt
2 + gzzdz

2 +X
2/3ρ2

[
dρ2

ρ2
+ dθ2 + sin2 (θ) dϕ2

]
= gttdt

2 + gzzdz
2 + Ω2

[
dR2 + dθ2 + sin2 (θ) dϕ2

]
, (B.3)

where Ω2 = X2/3ρ2 and dR2 = dρ2/ρ2, and it follows R = ln (ρ). As it can be seen
from the equation above the metric transforms to

guv =


gtt 0 0 0 0
0 gzz 0 0 0
0 0 Ω2 0 0
0 0 0 Ω2 0
0 0 0 0 Ω2 sin2 (ϕ)

 . (B.4)

By parametrization with the parameter τ

hijdσ
i ⊗ dσj = f 2 (τ)

(
dτ 2 + dθ̃2 + sin2

(
θ̃
)
dϕ̃2
)
, (B.5)

the induced metric hij is given by

hij =

 f 2 (τ) 0 0
0 f 2 (τ) 0

0 0 f 2 (τ) sin2
(
θ̃
)
 . (B.6)

Due to the rotation symmetry R = R (τ), z = z (τ), while θ and ϕ do not depend
on τ . Starting from the definition of the induced metric

hij =
∂xu

∂σi
∂xv

∂σj
guv, (B.7)

the element hττ can be calculated

hττ =
∂xu

∂τ

∂xv

∂τ
guv =

∂t

∂τ

∂t

∂τ
gtt+

∂z

∂τ

∂z

∂τ
gzz+

∂R

∂τ

∂R

∂τ
Ω2 = ṫ2gtt+ ż

2gzz+Ṙ2Ω2. (B.8)

From equation (B.6) it follows

f (τ) =

√
ṫ2gtt + ż2gzz + Ṙ2Ω2. (B.9)
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B PARAMETRISING THE SPHERICAL REGION

Setting the substitution done above yields

f (τ) =

√√√√ṫ2gtt + ż2gzz +

(
∂

∂τ
ln (ρ)

)
X2/3ρ2 =

√
ṫ2gtt + ż2gzz +X2/3ρ̇2. (B.10)

Now starting with the Nambu-Goto action

SNG ∝
ˆ
dnσ
√
− |h|, (B.11)

where h is the induced metric, we obtain

SNG ∝
ˆ
d3σ

√
f 6 (τ) sin2

(
θ̃
)

=

ˆ
dτdθ̃dϕ̃f 3 (τ) sin

(
θ̃
)

= 4π

ˆ
dτf 3 (τ) .

(B.12)
The integral above calculates the lenght of a curve.

In order to show that this is indeed the length of the geodesic, we calculate the
corresponding Christoffel symbols using two different approaches:

• Setting the result for f (τ) in the Nambu-Goto action we obtain

SNG ∝ 4π

ˆ
dτ
(
ṫ2gtt + ż2gzz +X

2/3ρ̇2
)3/2

. (B.13)

Performing the variation of the Nambu-Goto action and setting it zero yields

δSNG ∝
3

2
4π

ˆ
dτf (τ)

[
2ṫδṫgtt + ṫ2

∂gtt

∂t
δt+ 2żδżgzz + ż2

∂gzz

∂z
δz+

ρ̇2
2

3
X−

1/3

(
∂X

∂t
δt+

∂X

∂z
δz

)
+ 2ρ̇δρ̇X

2/3

]
(B.14)

!
= 0. (B.15)

Now the Euler-Lagrange equations

∂L

∂qi
−

∂

∂τ

∂L

∂q̇i
= 0, (B.16)

for each coordinate can be calculated

−∂τ
(
2f ṫgtt

)
+ f ṫ2

∂gtt

∂t
+ fρ̇2

2

3
X−

1/3
∂X

∂t
= 0, (B.17)

−∂τ (2f żgzz) + f ż2
∂gzz

∂z
+ fρ̇2

2

3
X−

1/3
∂X

∂z
= 0, (B.18)

−∂τ
(
2fρ̇X

2/3
)

= 0. (B.19)

The first equatian can be rewritten as

− 2ḟ ṫgtt − 2f ẗgtt − 2f ṫġtt + f ṫ2
∂gtt

∂t
+ fρ̇2

2

3
X−

1/3
∂X

∂t
= 0. (B.20)
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Now the equation for t becomes

ḟ

f
ṫ+ ẗ+

ġtt

gtt
ṫ−

1

2

∂gtt

∂t

1

gtt
ṫ−

1

3
X−

1/3
∂X

∂t

1

gtt
ρ̇2 = 0, (B.21)

or rewritten as

ẗ−
1

2

∂gtt

∂t

1

gtt
ṫ2 −

1

3

∂X

∂t

1

gtt
X−

1/3ρ̇2 = −

(
ḟ

f
+
ġtt

gtt

)
ṫ.

Here ġtt is given by

ġtt =
∂gtt

∂t

∂t

∂τ
+
∂gtt

∂z

∂z

∂τ
+
∂gtt

∂ρ

∂ρ

∂τ

=
∂gtt

∂t
ṫ+

∂gtt

∂z
ż +

∂gtt

∂ρ
ρ̇. (B.22)

Setting this result we obtain

ẗ−
1

2

∂gtt

∂t

1

gtt
ṫ2 −

1

3

∂X

∂t

1

gtt
X−

1/3ρ̇2 +
1

gtt

(
∂gtt

∂t
ṫ+

∂gtt

∂z
ż +

∂gtt

∂ρ
ρ̇

)
ṫ = −

ḟ

f
ṫ.

(B.23)
Rearranging the terms results with

ẗ+
1

2

∂gtt

∂t

1

gtt
ṫ2 −

1

3

∂X

∂t

1

gtt
X−

1/3ρ̇2 +
1

gtt

∂gtt

∂z
ṫż +

1

gtt

∂gtt

∂ρ
ṫρ̇ = −

ḟ

f
ṫ. (B.24)

Analog for the z coordinate we gain

z̈+
1

2

∂gzz

∂z

1

gzz
ż2−

1

3

∂X

∂z

1

gzz
X−

1/3ρ̇2 +
1

gzz

∂gzz

∂t
żṫ+

1

gzz

∂gzz

∂ρ
żρ̇ = −

ḟ

f
ż. (B.25)

Finally the equation for the ρ coordinate is computed

ḟ ρ̇X
2/3 + fρ̈X

2/3 +
2

3
fρ̇X−

1/3

(
∂X

∂t
ṫ+

∂X

∂z
ż

)
= 0, (B.26)

which can be rewritten as

ρ̈+
2

3

1

X

(
∂X

∂t
ṫ+

∂X

∂z
ż

)
ρ̇ = −

ḟ

f
ρ̇. (B.27)

From the geodesic equation

ẍµ + Γµνλẋ
ν ẋλ = 0, (B.28)

some of the Christoffel symbols can be identified straightaway from equations
(B.24) and (B.25)

Γttt =
1

2

∂gtt

∂t

1

gtt
, Γtρρ = −

1

3

∂X

∂t

1

gtt
X−

1/3, (B.29)

Γzzz =
1

2

∂gzz

∂z

1

gzz
, Γzρρ = −

1

3

∂X

∂z

1

gzz
X−

1/3. (B.30)
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For the two last Christoffel symbols from equations (B.24) and (B.25) the
symmetry Γijk = Γikj must be considered. This gives

Γttz + Γtzt =
1

gtt

∂gtt

∂z
, Γttρ + Γtρt =

1

gtt

∂gtt

∂ρ
, (B.31)

which results with

Γttz = Γtzt =
1

2

1

gtt

∂gtt

∂z
, Γttρ = Γtρt =

1

2

1

gtt

∂gtt

∂ρ
. (B.32)

The same is for the z coordinate

Γzzt = Γztz =
1

2

1

gzz

∂gzz

∂t
, Γzzρ = Γzρz =

1

2

1

gzz

∂gzz

∂ρ
. (B.33)

From equation (B.27) the following Christoffel symbols can be obtained (again
having in mind the symmetry of the Christoffel symbols)

Γρρt = Γρtρ =
1

2

2

3

1

X

∂X

∂t
=

1

3

1

X

∂X

∂t
, Γρρz = Γρzρ =

1

2

2

3

1

X

∂X

∂z
=

1

3

1

X

∂X

∂z
.

(B.34)
The last equation can also be written as

Γρρt =
1

3

∂

∂z
ln (X) , Γρρz =

1

3

∂

∂z
ln (X) . (B.35)

• Now we start with the second approach. On the other hand it holds

h = (ẋµẋν) gµν . (B.36)

The Christoffel symbols here are defined via the metric function

Γijk =
1

2
gim

(
∂gmj

∂xk
+
∂gmk

∂xj
−
∂gjk

∂xm

)
. (B.37)

From here it follows

Γttt =
1

2
gtm

(
∂gmt

∂t
+
∂gmt

∂t
−
∂gtt

∂xm

)
. (B.38)

Due to the fact that only gtt, gzz, gρρ 6= 0 the equation above reduces to

Γttt =
1

2
gtt

(
∂gtt

∂t
+
∂gtt

∂t
−
∂gtt

∂t

)

=
1

2
gtt
∂gtt

∂t
. (B.39)
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With gtt = 1
gtt

the result is confirmed. The next Christoffel symbol is

Γtρρ =
1

2
gtm

(
∂gmρ

∂ρ
+
∂gmρ

∂ρ
−
∂gρρ

∂xm

)

=
1

2
gtt

(
∂gtρ

∂ρ
+
∂gtρ

∂ρ
−
∂gρρ

∂t

)

= −
1

2
gtt
∂gρρ

∂t
. (B.40)

From the line element is clear that gρρ = X2/3, which gives

Γtρρ = −
1

2
gtt

∂

∂t
X

2/3 = −
1

3
gttX−

1/3
∂X

∂t
= −

1

3

1

gtt
X−

1/3
∂X

∂t
. (B.41)

The result we obtained using the variation of the action Γtρρ = −
1

3

∂X

∂t

1

gtt
X−1/3

agrees with this result. Now let us calculate Γttz

Γttz =
1

2
gtm

(
∂gmt

∂z
+
∂gmz

∂t
−
∂gtz

∂xm

)

=
1

2
gtt

(
∂gtt

∂z
+
∂gtz

∂t
−
∂gtz

∂t

)

=
1

2
gtt
∂gtt

∂z

=
1

2

1

gtt

∂gtt

∂z
. (B.42)

Finally we compute

Γttρ =
1

2
gtm

(
∂gmt

∂ρ
+
∂gmρ

∂t
−
∂gtρ

∂xm

)

=
1

2
gtt

(
∂gtt

∂ρ
+
∂gtρ

∂t
−
∂gtρ

∂t

)

=
1

2
gtt
∂gtt

∂ρ

=
1

2

1

gtt

∂gtt

∂ρ
. (B.43)

The Christoffel symbols for the z coordinate also agree with the ones calculated
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from the variation. Lastly for the ρ coordinate

Γρρt =
1

2
gρm

(
∂gmρ

∂t
+
∂gmt

∂ρ
−
∂gρt

∂xm

)

=
1

2
gρρ

(
∂gρρ

∂t
+
∂gρt

∂ρ
−
∂gρt

∂ρ

)

=
1

2
gρρ

∂gρρ

∂t

=
1

2
X−

2/3
∂X2/3

∂t

=
1

2
X−

2/3
2

3
X−

1/3
∂X

∂t

=
1

3

1

x

∂X

∂t
, (B.44)

and

Γρρz =
1

2
gρm

(
∂gmρ

∂z
+
∂gmz

∂ρ
−
∂gρz

∂xm

)

=
1

2
gρρ

(
∂gρρ

∂z
+
∂gρz

∂ρ
−
∂gρz

∂ρ

)

=
1

2
gρρ

∂gρρ

∂z

=
1

2
X−

2/3
∂X2/3

∂z

=
1

2
X−

2/3
2

3
X−

1/3
∂X

∂z

=
1

3

1

x

∂X

∂z
. (B.45)

The Christoffel symbols from the two approaches match.
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