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Chapter 1

Introduction

Wave propagation, wave scattering and all manifestations of fundamental wave
behavior, such as interference or diffraction, have been fascinating physicists for a
long time already [1, 2]. Whereas in the early years of wave physics much effort has
been devoted to understanding the fundamental nature of waves, the goal nowadays
is to manipulate and control waves so that they fulfill a certain function, such as
imaging, detection and efficient transmission across disordered materials [3]. Most
of the progress in the optical domain that has recently been made is due to the
availability of spatial light modulators and spectral phase filters which can be used,
e.g., to achieve a temporal and/or spatial focus behind a medium by shaping the
incident wave front [4–9]. In addition to this notion, the idea of controlling the
medium itself has been explored [10–17]. This second approach has a long history
if we think, for example, of optical instruments such as lenses..

This thesis covers novel aspects of these two contrasting approaches that both
aim to control waves in certain geometries, leading to previously unknown and
counterintuitive wave phenomena. Whereas in the first part of this thesis wave
scattering is controlled by delicately designing the refractive index of a scattering
medium, in the second part we consider the scattering system as fixed and show
how we can control the wave inside a geometry by shaping the wave front of the in-
cident wave. The derivations in this thesis have been conducted for electromagnetic
waves, however, all observations are also valid for matter waves, since the underlying
wave equations, the stationary Schrödinger equation and the Helmholtz equation,
are equivalent for unbounded scattering states. Therefore, the words “refractive
index” and “potential” can be used as synonyms since they are just connected by
an algebraic equation.

Our intuition tells us that waves traveling through a heterogenous material un-
dergo multiple scattering processes leading to a highly fluctuating intensity profile.
Controlling the wave effects that lead to this complex spatial profile of the wave
is in high demand in many different disciplines of science and technology. In this
context, the first part of this thesis covers fringe-free scattering states that can be
obtained by adding a well-tailored gain/loss distribution to a non-uniform com-
plex medium. In a recent work [18], a new class of non-uniform potentials with
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well-balanced gain/loss regions was introduced that enables waves to have a fringe-
free intensity pattern. These so-called constant-intensity (CI) waves were studied
in the paraxial approximation in waveguide systems, in which the potential varies
in transverse direction, but stays constant in longitudinal direction. In our work
[19], the concept of constant-intensity waves was extended to scattering systems, in
which the potential (or refractive index) varies in propagation direction, such that
the paraxial approximation cannot be applied anymore. Starting from this point,
this thesis provides a detailed characterization of these counterintuitive waves in
order to gain a deeper understanding of this phenomenon. The connection to PT -
symmetry [20, 21] and unidirectional invisibility [22] is discussed, as well as possible
experimental realizations.

Having shown that a proper design of the refractive index can lead to new wave
effects, the second part of this thesis follows the opposing approach. The theoretical
description of an experimental realization of so-called particle-like scattering states
[23] in microwave cavities is one example of where wave front shaping can be useful.
These beam-like scattering states have a number of fascinating properties like a
broadband frequency stability, a highly collimated wave function also inside the
considered scattering system and a deterministic value of transmission. Low-power
and/or secure communication are just two of many possible applications of particle-
like states. A quantitative description of all the imperfections that an experiment
normally comes along with, such as absorption or noise, is included in our theoretical
analysis. These particle-like states can be found among scattering states that have a
well-defined delay time. Inspired by the method used to find time-delay eigenstates
[23], we subsequently show that particle-like states are just one example of a more
general concept that can be used in wave front shaping experiments to find states
with specific properties. In a next step, we use this concept in order to focus an
incoming wave onto an obstacle inside the scattering geometry, or just the opposite,
to create a scattering state that occupies the entire scattering region except for
the area around a chosen obstacle. Moreover, an algorithm leading to a possible
experimental realization of a Coherent Perfect Absorber (CPA) [24–26], which is
the time-reversed counterpart of a laser, is discussed in the last part of this thesis.

All three of the aforementioned wave front shaping projects, i.e., particle-like
states, avoiding and focusing states as well as the CPA were conducted in col-
laboration with Ulrich Kuhl’s group at the University of Nice, who has a strong
expertise in microwave experiments. Whereas the first two projects have already
led to promising preliminary measurement results, the CPA experiment is still in
progress.



Chapter 2

Constant-Intensity Waves

2.1 Refractive Index Distribution
A wave traveling through a non-uniform medium generally results in a highly com-
plex variation of it’s spatial profile due to scattering, diffraction and interference.
Controlling or suppressing these effects is one of the main tasks of wave physics,
such as for cloaking devices [27], the research in adaptive optics [28] and in wave
front shaping through complex media [3]. New and unconventional wave phenom-
ena have been explored in non-Hermitian systems, i.e., systems with gain and loss,
which serve as sources and sinks for waves [29, 30]. Inspired by this recent progress
in non-Hermitian physics, a new class of non-uniform potentials with well-balanced
gain/loss regions was introduced that enables waves to have a fringe-free intensity
pattern [18]. These constant-intensity waves (CI waves) were introduced as solu-
tions of the paraxial wave equation, where the potential varies only in transverse
direction. The paraxial approximation ignores any backscattering from the poten-
tial and the phase of the incident wave has to be modulated through wave front
shaping in order to get the desired constant-intensity wave. Contrary to this ap-
proach, we now examine constant-intensity waves in the full scattering problem that
is governed by the Helmholtz equation and thus does not rely on any approximation
(apart from smoothness of the potential). Furthermore, no wave front shaping of
the incoming wave is necessary.

Our starting point is a scattering geometry composed of a one-dimensional (1D)
slab located between −L and L with a varying dielectric function ✏(x),

✏(x) = n2(x) = [nr(x) + jni(x)]
2, (2.1)

where j represents the imaginary unit, nr(x) denotes the real part and ni(x) the
imaginary part of the complex refractive index n(x). A negative value for ni(x)
corresponds to gain (amplification) and a positive value for ni(x) to loss (absorp-
tion) of the wave. When a wave is incident on a spatially varying refractive index
n(x), forward and backward propagating waves lead to a complex interference pat-
tern. We now introduce a new class of complex refractive indices n(x) that lead to
a fringe-free intensity pattern for incident plane waves with a specific wavelength,
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provided that nr(x) and ni(x) fulfill a certain relation. Our calculations are based
on the Helmholtz equation in 1D,

[4+ n2(x)k2
0]ψ(x) = 0, (2.2)

where 4 = d2

dx2 is the Laplacian in 1D, k0 the wavenumber in vacuum and ψ(x) the
linearly polarized component of the electric field. We now demand that the wave
has a constant intensity inside the modulated potential region, therefore our ansatz
is a wave with constant amplitude and a position-dependent phase

ψ(x) = e
jk0

R x
x0

W (x0) dx0
, (2.3)

where W (x) is a real auxiliary function and x0 = −L denotes the beginning of the
potential region. Inserting ansatz (2.3) into the Helmholtz equation (2.2), provides
us with the corresponding refractive index distribution

n2(x) = W 2(x)− j

k0

dW (x)

dx
. (2.4)

Using perfect transmission boundary conditions at x = ±L,
dψ

dx

����
L

= jkψ(L),
dψ

dx

����
−L

= jkψ(−L) (2.5)

leads to the following boundary conditions for the auxiliary function W (x):

W (−L) = W (L) = 1. (2.6)

The solution in entire space, i.e., including free space in front of and behind the
potential region reads as follows,

ψ(x) =

��
exp[jk0 (x+ L)], x < −L ,

exp[jk0
R x

−L
W (x0)dx0], −L ≤ x ≤ L ,

exp[jk0 (x− L)], x > L,

(2.7)

where one can easily see that the wave has constant intensity, I(x) = |ψ(x)|2 = 1,
in the asymptotic regions (where ✏(x) = 1) as well as inside the scattering region
where the dielectric constant varies. Hence, we show that one can identify the
appropriate refractive index distribution n(x) according to Eq. (2.4) such as the
wave inside and outside of the potential region has constant intensity for incident
plane waves with wavenumber k0.

Furthermore, using Eq. (2.1) and Eq. (2.4), we derive analytical relations between
W (x) and the real and imaginary part of the refractive index n(x):

nr(x) =
W (x)√

2

(
1 +

�
1 +

W 02(x)
W 4(x)k2

0

� 1
2

) 1
2

,

ni(x) = − 1

2k0

W 0(x)
nr(x)

,

(2.8)
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with W 0(x) = dW (x)
dx

. From these equations we can see that we get ni(x) = 0 only
for the case that W (x) = const, which is the trivial case of a plane wave traveling
in a uniform material. Thus, non-trivial constant-intensity waves of the form (2.3)
can only exist in non-Hermitian systems featuring gain and loss. Also note that
W (x) has to be larger than 1 to ensure that nr(x) ≥ 1 as can be seen from Eq. (2.8).

We want to emphasize that we are able to obtain a CI refractive index not only
by starting with a given generating function W (x) from which nr(x) and ni(x) can
be derived, but also from a given real part of the refractive index nr(x) from which
the corresponding gain/loss part ni(x) can be found by an easy iterative scheme
(not shown).

In order to elucidate the above ideas, we consider in the following a disordered
system, which leads to Anderson localization of the incident wave. For a real and
disordered systems larger than the localization length, it is very unlikely to get close
to unit transmittance which occurs only at well-isolated resonant wavenumbers.
Using the concept of CI waves we can turn this behavior upside down - in the sense
that we can get perfect transmission at any predetermined wavenumber k0. In this
simulation, a disordered CI refractive index distribution is considered with a tunable
imaginary component ✏(x) = [nr(x)+jαni(x)]

2. For α = 0 the system is Hermitian
and incident waves get localized with a localization length ξ = −2L hln[T (L)]i−1,
where T = |t|2 is the transmittance of the wave and the brackets indicate an
averaging process over many refractive index configurations. Fig. 2.1(b) shows
the localization length ξ, whereas (a) and (c) show the real and imaginary part
of the refractive index, respectively. In Fig. 2.1(e) we can see the intensity of
scattering states for different values of the gain/loss strength α. Starting from the
Hermitian case (α = 0), where the wave is localized, we end up with a CI wave
featuring perfect transmission when the full gain/loss strength (α = 1) is reached.
If, however, we add the gain-only distribution (negative part in Fig. 2.1(c)) to the
Hermitian system, we also end up with a localized wave, as shown in Fig. 2.1(d),
which indicates that the interplay of gain and loss is crucial for the emergence of
constant-intensity waves.

Having derived the basic equations describing CI waves and having shown that
CI waves can even exist in disordered systems, we can now gain a better under-
standing of this phenomenon. In the next section we would like to find out what
happens to incident plane waves with detuned wavenumbers k 6= k0. Is the emer-
gence of constant intensity a phenomenon that appears abruptly at k0 or is there a
smooth transition? In other words, is there a sharp or a rather broad peak in the
transmission spectrum |t(k)| at k0?
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Figure 2.1: (a) Disordered Hermitian refractive index distribution nr(x) (gray) that leads
to an exponential suppression of the transmittance T with a localization
length ξ calculated in (b). (c) The corresponding imaginary part of the
refractive index ni(x) following from the CI design principle for the real
index distribution in (a), where gain is depicted in red an loss in green (we
use these colors for all following figures). (d),(e) Scattering wave functions
for the disordered potential region as a function of the gain strength, for the
gain-only and gain/loss refractive index, respectively, for an incident plane
wave with wavenumber k0 = 2π/0.1 = 62.8. The CI wave can be clearly
seen for the full gain/loss strength in (e). These and all following simulations
of this chapter were performed by using the transfer-matrix method [31].
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2.2 Resonance Width

A constant intensity interference pattern goes hand in hand with perfect transmis-
sion of the incident wave, whereas full transmission can also be achieved without
a constant intensity pattern as we all know from a Fabry-Pérot interferometer. In
this latter example, interference of multiply reflected rays between two highly re-
flecting mirrors (high Q-factor) leads to peaks in the transmission spectrum when
the resonance condition

L =
mλ

2n
(2.9)

is fulfilled, where λ is the vacuum wavelength of the incident wave, m an integer
and L the length of the resonator with constant refractive index n. If the inci-
dent wavelength is changed just slightly, the phase relation between the back and
forth propagating waves changes which leads to a significantly different interference
pattern, thus leading to sharp transmission peaks. Even in Anderson localized sys-
tems, perfect transmission can be observed for certain wavelengths, but also here
the resonance width is small. In the following, we want to investigate the resonance
width of CI systems using a Fabry-Pérot-like system.

A resonance in the transmission spectrum |t(k)| can be associated with a pole in
the extended complex k-plane, where the width of the resonance is determined by
the distance between the pole and the real k-axis. These poles can be calculated
by using the effective Hamiltonian approach explained in [32]. In the aforemen-
tioned example of a Fabry-Pérot interferometer, an incident plane wave with a
wavelength not fulfilling the resonance condition leads to a transmission ampli-
tude less than 1 - perfect transmission with constant intensity can, however, be
restored by adding the corresponding constant-intensity gain/loss distribution to
the Fabry-Pérot system. The transition from the Hermitian system with low trans-
mission to the constant-intensity system with perfect transmission is investigated
by looking at the movement of the poles in the complex k-plane when gradually
increasing the gain/loss strength. In the following simulations, we approximate the
Fabry-Pérot interferometer by the real part of a CI refractive index distribution
nr(x) that is derived from a generating function W (x) with the shape of a super
Gaussian, as can be seen in Fig. 2.2(a). Fig. 2.2(c) shows the absolute value of
the transmission amplitude as a function of the incident wavenumber k, whereas in
Fig. 2.2(e) we can see the transmission amplitude in the extended complex k-plane.
As expected, we see sharp resonance peaks resulting from the poles in the complex
k-plane. Adding the corresponding constant-intensity gain/loss distribution, see
Fig. 2.2(b), the poles move to new positions, which are such that the transmis-
sion becomes |t| = 1 at the chosen wavenumber k0, as can be seen in Fig. 2.2(d)
and Fig. 2.2(f). Contrary to the Hermitian system, the resonance at k0 is not a
sharp peak any longer but rather a broad plateau, indicating that the emergence of
constant-intensity waves is a phenomenon with an inherent frequency robustness.
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Due to the fact that the transmission is close to 1 in a large window compared to
the width of the transmission peaks in the Hermitian system, we can conclude that
the constant intensity interference pattern does not come from the interference of
multiple reflected rays. This assumption is supported by the following considera-
tion: In the center of the potential region, i.e., between the two rising edges of the
refractive index, the generating function W (x) can be assumed to be constant which
results in nr(x) = const = nr and ni(x) = 0, according to Eq. (2.8). The constant-
intensity solution in this region is thus given by ψ(x) = ejk0

R
W (x0)dx0

= ejk0nrx,
which is just a plane wave propagating to the right-hand side, i.e., there is no back
reflected wave at all. Due to a missing back reflected wave, there is no interfer-
ence, thus changing the incident wavelength does not change the intensity pattern
significantly (like in a Hermitian Fabry-Pérot interferometer), which explains the
stability of this phenomenon. In other words, the robustness of constant-intensity
waves originates in the fact that each subpart of the entire scattering region already
gives rise to constant-intensity rather than only all of them together.

Through the above we show that constant-intensity systems are stable, in the
sense that a shift Δk of the incident wavenumber, i.e., k = k0 + Δk, may still
lead to a transmission close to unity, even when the same system without the
constant-intensity gain/loss distribution shows a significant change in the trans-
mission. One has to mention that gain/loss materials are dispersive, i.e., the
amplifying/absorbing effect depends on the incident wavelength, whereas in our
calculations we assumed that gain/loss is frequency independent, which is a valid
assumption for a narrow frequency window.

Our results demonstrate that the constant-intensity solution inside the potential
region shown in Fig. 2.2(b) is given by a plane wave propagating to the right-hand
side. The counter propagating wave which exists in the Hermitian system is com-
pletely suppressed by adding the constant-intensity gain/loss part. In quantum
mechanics, systems without back reflections, like the CI system at hand, are of-
ten described in the WKB-approximation. In the next section we show that this
approximation is exact for all constant-intensity systems.
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(a) System with the Hermitian part of the
CI refractive index distribution that is de-
rived from a super Gaussian shaped generating
function W (x) = 20ex

100

to simulate a Fabry-
Pérot interferometer.

loss 

gain 

(b) System with the full CI refractive in-
dex distribution that is derived from a super
Gaussian shaped generating function W (x) =

20ex
100

.

(c) Absolute value of the transmission as a
function of the incident wavenumber k for the
system shown in (a). Just like a Fabry-Pérot
interferometer, the resonances appear when
the resonance condition (2.9) is fulfilled.

(d) Absolute value of the transmission as a
function of the incident wavenumber k for
the system shown in (b). Not only at k0 =
2π/0.5 = 12.57 we have perfect transmission,
but also in the vicinity of k0 the transmission
is close to 1.

(e) Absolute value of the transmission (see
color bar) in the complex k-plane for the sys-
tem shown in (a). The resonances in (c)
come from the singularities (bright spots) in
the complex plane. (c) is a cut of this graphic
at kimag = 0.

(f) Absolute value of the transmission (see
color bar) in the complex k-plane for the sys-
tem shown in (b). The singularities arrange
themselves in such a way that the transmis-
sion becomes 1 at k0. (d) is a cut of this
graphic at kimag = 0.

Figure 2.2



14 2.3 WKB-Approximation

2.3 WKB-Approximation

In semiclassical mechanics, WKB-theory provides a good approximation for the
wave function in systems where the potential V (x) varies slowly compared to the
de-Broglie-wavelength of the quantum particle. Inspired by the solution of a par-
ticle traveling in a constant potential V (x) = V0, ψ(x) = Ae±

j
~p0x, the first or-

der WKB-approximation yields ψ(x) = Ae±
j
~
R
p(x0)dx0 , with A being a constant,

p(x) =
p

2m(E − V0) the position-dependent momentum and E the energy of the
particle. Higher order correction terms can be gained by expanding the WKB-
ansatz in powers of ~. Using the mathematical equivalence of the stationary
Schrödinger equation and the Helmholtz equation for scattering states, we now
show that the WKB-approximation is exact for constant-intensity waves.

Making an ansatz for the wave function ψ(x) = ejS(x), where S(x) is a complex
function, and inserting it into the Helmholtz equation (2.2), yields

jS 00(x)− S 02(x) + k2
0n

2(x) = 0. (2.10)

Eq. (2.10) is equivalent to the Helmholtz equation, since no approximation has been
made so far. We expand the function S(x) in powers of a small parameter δ,

S(x) =
1

δ

∞X
n=0

δnSn(x), (2.11)

where in quantum mechanics δ would be replaced by ~. For a better readability,
we skip the arguments of all variables with an obvious x-dependence. Inserting the
WKB-ansatz (2.11) into Eq. (2.10), we get

j
1

δ
(S 00

0 + δS 00
1 + δ2S 00

2 + δ3S 00
3 + . . . )

− 1

δ2
(S 0

0 + δS 0
1 + δ2S 0

2 + δ3S 0
3 + . . . )2 + k2

0n
2 = 0.

(2.12)

In a next step, we have to find out the asymptotic scaling of δ in terms of k0. To
leading order, Eq. (2.12) can be approximated by j 1

δ
(S 00

0 )− 1
δ2
(S 0

0)
2− 2

δ
S 0
0S

0
1+k2

0n
2 =

0, where in the limit of δ → 0, the dominant balance is given by

1

δ2
(S 0

0)
2 = k2

0n
2. (2.13)

Thus, δ and k0 are indirectly proportional to each other and we can set 1
k0

= δ.
Considering the first four terms of the expansion and collecting terms with the same
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power of k0, we end up with

k2
0 =

1

δ2
: n2 − (S 0

0)
2 = 0 (2.14)

k1
0 =

1

δ1
: jS 00

0 − 2S 0
0S

0
1 = 0 (2.15)

k0
0 =

1

δ0
: jS 00

1 − 2S 0
0S

0
2 − (S 0

1)
2 = 0 (2.16)

k−1
0 =

1

δ−1
: jS 00

2 − 2S 0
0S

0
3 − 2S 0

1S
0
2 = 0. (2.17)

From Eq. (2.15)-(2.17) we can see that if S 0
m = 0, it follows that S 0

n>m = 0 if S 0
0 6= 0.

So, if we demand that the first order approximation should be exact, we have to
make sure that S 0

1 = 0. By assuming that the imaginary part of n2 is proportional
to 1

k0
, it will move from Eq. (2.14) to Eq. (2.15), giving us the possibility to cancel

the term jS 00
0 in Eq. (2.15) by choosing Im(n2) = − j

k0
S 00
0 . As a result, Eq. (2.15)

becomes 2S 0
0S

0
1 = 0, which is only fulfilled if S 0

1 = 0, since S 0
0 6= 0. For a constant-

intensity wave, S(x) has to be real, so that Eq. (2.14) determines the real part
of n2, i.e., Re(n2) = (S 0

0)
2. We end up with n2 = (S 0

0)
2 − j

k0
S 00
0 , which gives the

constant-intensity refractive index (2.4) if we set S 0
0 = W . Since S 0

n>0 = 0 means
that Sn>0 = const, one can choose them to be zero.

In this way we show that constant-intensity refractive indices are the direct con-
sequence of demanding that a WKB-approximation is exact in non-Hermitian sys-
tems. The result is quite surprising, since the WKB-approximation for Hermitian
systems is only valid when the refractive index varies slowly compared to the wave-
length. The WKB-approximation for constant-intensity waves, however, is valid
even when the real part of the refractive index is highly oscillatory, provided of
course that the corresponding gain/loss distribution is added. In the same way
as the WKB-approximation is exact in Hermitian systems with constant refrac-
tive index n(x) = n0, we show that exact WKB-approximations can exist in non-
Hermitian systems if the refractive index supports constant-intensity waves.

Looking carefully at the construction of constant-intensity refractive indices (2.4)
which involves the square and the derivative of the function W (x), one can assume
that constant-intensity waves are related to supersymmetric quantum mechanics
(SUSY QM), since these two elements (square and derivative of a function) are
essential in the construction of so-called partner potentials. In the next section we
present the connection between these two topics.

2.4 Connection to Supersymmetry
Supersymmetric quantum mechanics involves pairs of Hamiltonians, so-called part-
ner Hamiltonians, with corresponding partner potentials. These partner Hamil-
tonians share the same set of eigenvalues, except the ground state, and are both
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connected by a so-called superpotential. If, however, both partner potentials have
the same ground state energy, then SUSY is said to be broken [33]. Originally de-
veloped in the context of quantum field theory, some aspects of SUSY have already
been transferred to optics, where SUSY can establish close relationships between
seemingly different dielectric structures [34, 35].

In the following chapter we, show that in the framework of SUSY quantum me-
chanics, CI systems can be described by Hamiltonians that can be derived from
a specific class of superpotentials. We start with the Helmholtz equation and use
SUSY formalism to find its solution as a function of the superpotential. By demand-
ing constant intensity of the solution, we find constraints for the superpotential.

For the following derivation, quantities that are related to the original constant-
intensity refractive index are labeled with a subscript (1), whereas the corresponding
supersymmetric quantities (partner potential and partner Hamiltonian) are labelled
with (2). For a better readability, we skip the arguments of all variables with an
obvious x-dependence.

Rewriting the Helmholtz equation✓
d2

dx2
+ k2

0n
2
(1)

◆
ψ(1) = 0 (2.18)

as a Schrödinger equation✓
−1

2

d2

dx2
+ V(1)

◆
ψ(1) = H(1)ψ(1) = E(1)ψ(1), (2.19)

with

H(1) = −1

2

d2

dx2
+ V(1), (2.20)

V(1) =
�
1− n2

(1)

� k2
0

2
, (2.21)

and eigenenergy E(1) =
k20
2
, one can factorize H(1) − E(1) = BA, in analogy to

Eq. (3)-(4) in Ref. [33] , with

A =
1√
2

d

dx
+ Ω(x), (2.22)

B = − 1√
2

d

dx
+ Ω(x), (2.23)

where Ω(x) is the (complex) superpotential. The potential V(1) can be expressed in
terms of the superpotential as follows

V(1) = Ω2 − 1√
2
Ω0 +

k2
0

2
. (2.24)
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For Hermitian systems, i.e., real potentials (or refractive indices) it would follow
that Ω ∈ R and B = A†. Defining a partner Hamiltonian as H(2) −E(1) = AB, one
ends up with the partner potential

V(2) = Ω2 +
1√
2
Ω0 +

k2
0

2
. (2.25)

From
(H(1) − E(1))ψ(1) = BAψ(1) = 0 (2.26)

follows that A annihilates ψ(1), i.e.,

Aψ(1) =

✓
1√
2

d

dx
+ Ω

◆
ψ(1) = 0, (2.27)

which can be used to calculate ψ(1),

ψ(1) = e−
√
2
R
Ω(x0)dx0

. (2.28)

A scattering state with a constant intensity can be obtained by choosing Ω purely
imaginary. Taking Ω = j k0√

2
W with W ∈ R, we end up with the well-known CI

solution
ψ(1) = e−jk0

R
W (x0)dx0

, (2.29)

with potential

V(1) = −k2
0

2
W 2 − j

k0
2
W 0 +

k2
0

2
=

�
1− n2

(1)

� k2
0

2
, (2.30)

from which the refractive index n(1) can be calculated,

n(1) =

r
W 2 +

j

k0
W 0. (2.31)

The partner potential V(2) reads as follows,

V(2) = −k2
0

2
W 2 + j

k0
2
W 0 +

k2
0

2
=

�
1− n2

(2)

� k2
0

2
, (2.32)

with corresponding refractive index

n(2) =

r
W 2 − j

k0
W 0, (2.33)

and corresponding CI solution

ψ(2) = ejk0
R
W (x0)dx0

, (2.34)
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which is equivalent to the presented results in section 2.1. Solution (2.34) represents
a wave traveling from the left-hand side to the right-hand side of the system with
refractive index (2.33), whereas Eq. (2.29) represents a wave traveling from the
right to the left with complex conjugate refractive index. These two situations can
be interpreted as the time-reversed processes of each other, since the time-reversal
operator T performs a complex conjugation j → −j, i.e., it turns gain into loss
(and loss into gain) and changes the side of injection.

In summary, we show in this section that constant-intensity waves can alterna-
tively be derived from SUSY QM by demanding that the superpotential has to be
purely imaginary. This superpotential is related to the generating function W (x)
just by a multiplicative factor and leads to two partner potentials (refractive indices)
supporting constant-intensity waves for either side of injection. These interesting
observations and their possible consequences will be the subject of further investiga-
tions. Apparently, symmetries play an important role in constant-intensity systems,
therefore we investigate the connection to PT -symmetry in the next section.

2.5 Connection to PT -Symmetry
We all know from quantum mechanics that the Hamiltonian has to be a Hermitian
operator to ensure that its eigenvalues are real. However, Bender et al. pointed out
that there is a whole class of non-Hermitian but “PT -symmetric” Hamiltonians
that possesses real spectra as well [20, 21]. The PT -operator is a combination
of the parity-operator P , flipping the spatial coordinate x → −x, and the time-
reversal operator T that performs a complex conjugation j → −j, i.e., turns gain
into loss (and loss into gain) and changes the side of injection. A Hamiltonian H is
called PT -symmetric if the commutator [PT , H] = 0 and furthermore a complex
refractive index n(x) = nr(x) + jni(x) is called PT -symmetric if the condition
PT n(x) = n∗(−x) = n(x) is satisfied, i.e., if the real part of the refractive index
is an even function, nr(x) = nr(−x), and the imaginary part an odd function,
ni(x) = −ni(−x), of the spatial coordinate x. In the following, we investigate the
connection between PT -symmetry and CI waves.

Given an arbitrary generating function W (x) fulfilling the boundary conditions,
one can calculate the corresponding CI refractive index

n(x) =

r
W 2(x)− j

k0
W 0(x). (2.35)

One can start from the given generating function W (x) and find another generating
function PW (x) = W (−x), that also leads to a CI wave with refractive index

ñ(x) =

r
W 2(−x)− j

k0
W 0(−x). (2.36)
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One can show that the refractive index ñ(x) can also be obtained by applying the
PT -operator on the constant-intensity refractive index n(x). Hence, starting from
an arbitrary constant-intensity refractive index n(x), one can easily find another
constant-intensity refractive index ñ(x) by

ñ(x) = PT n(x). (2.37)

Both refractive indices, ñ(x) and n(x), lead to a constant-intensity wave for the
same side of injection. If W (x) is an even function, i.e., if n(x) is PT -symmetric,
n(x) and ñ(x) coincide. The fact that ñ(x) and n(x) both lead to constant-intensity
waves brings up the question if constant-intensity systems have a strong connection
to PT -symmetry, which is discussed in the following.

Since the integral of W (x) is the same as the integral of W (−x) over the entire
scattering region, both refractive indices, n(x) and ñ(x), lead to the same transmis-
sion amplitudes t = ejk0

R L
−L W (x0)dx0

= t̃ = ejk0
R L
−L W (−x0)dx0

. Thus, n(x) and ñ(x) are
indistinguishable in the transmission amplitude. Whereas this result is trivial for
PT -symmetric systems, where n(x) and ñ(x) coincide, this connection is surprising
for non-PT -symmetric systems and stems from the constant-intensity nature of the
underlying refractive index.

Another connection to PT -symmetry can be found by looking at the eigenvalues
λ1,2 of the scattering matrix S of CI systems. Since time-reversal symmetry is not
broken, it follows that tr = tl = t = ejk0

R L
−L W (x0)dx0

. Calculating the determinant of
the scattering matrix

det(S) = det

✓
rl t
t rr

◆
= det

�
0 ejk0

R L
−L W (x0)dx0

ejk0
R L
−L W (x0)dx0

rr

!
= −e2jk0

R L
−L W (x0)dx0

,

(2.38)
and using the relation λ1λ2 = det(S), one can show that the absolute value of the
eigenvalues are related to each other by |λ1| = 1

|λ2| , which is valid in the so-called
broken and unbroken phase of any PT -symmetric system [36]. If we calculate the
eigenvalues λ̃1,2 of the scatting matrix S̃, which is defined as

S̃ =

✓
t rr
rl t

◆
=

�
ejk0

R L
−L W (x0)dx0

rr

0 ejk0
R L
−L W (x0)dx0

!
, (2.39)

we end up with λ̃1,2 = ejk0
R L
−L W (x0)dx0

, i.e., the eigenvalues are degenerate. Here
we want to mention that the definition of the scattering matrix as in Eq. (2.39) is
not conventional, however, it shows some interesting features. One can show that
also the eigenvectors ~ν1,2 of S̃ are the same, so that eigenvalues and eigenstates
have coalesced. According to the definition of the scattering matrix in Eq. (2.39),
constant-intensity waves thus occur at so-called exceptional points of S̃. Further-
more, the eigenvalues follow the relation |λ̃1,2| = 1

|λ̃1,2| which is valid in the so-called
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unbroken phase of PT -symmetric systems and imposes that the eigenvalues are
unimodular. The connection between CI waves and exceptional points is still being
investigated and may lead to new insights into non-Hermitian physics.

These similarities between CI systems and PT -symmetric systems can come from
the fact that in CI systems the average gain/loss is zero in terms of the dielectric
function ✏(x), since

R L

−L
Im[✏(x)]dx =

R L

−L
dW (x)
dx

= W (L) − W (−L) = 0. Due to
the fact that the intensity of the wave is constant in the whole scattering region,
the wave is equally distributed in gain regions as in loss regions and so the net
amplification/attenuation is zero. In terms of the refractive index, however, the
evaluation of the integral

R L

−L
ni(x)dx depends on the symmetry of W (x).

Due to the fact that the phase of constant-intensity waves is given as the integral
over a function W (x), one can create a scattering state with a predetermined phase
profile by fixing W (x). This fact can be used to hide the information about the
scattering region by delicately choosing W (x), as presented in the next section.

2.6 Unidirectional Invisibility
Another interesting feature of CI waves is the connection to the well-known phe-
nomenon of “unidirectional invisibility” which was predicted in 2011 by Zin Lin et
al. [22] and has already been verified experimentally [37, 38]. The complex trans-
mission amplitude of a unidirectionally invisible material is indistinguishable from
the transmission amplitude of a uniform material and furthermore, the reflection
from one end is diminished. Both conditions are necessary to evade detectability.

The first potential that was proposed for the realization of this interesting effect
was a periodic refractive index distribution [22],

n(x) = n0 + n1 cos(2βx) + jn2 sin(2βx), (2.40)

which was stated to be unidirectionally invisible when the wavenumber of the in-
cident wave is equal to the modulation frequency of the refractive index, k = β
(Bragg point), and when n1 = n2. The simulations were performed with the pa-
rameters n0 = 1 and n1 = n2 = 10−3. Since sine and cosine can be negative, the
refractive index in Eq. (2.40) can be smaller than 1, which is unphysical. Since,
however, n1 and n2 are very small, the authors neglected this issue (the authors
did not comment about that in the paper).

In this section we investigate the invisibility of CI refractive indices and show that
the unidirectionally invisible refractive index that was used in Ref. [22], Eq. (2.40),
is just one example of this subclass. The specific form of constant-intensity waves,
ψ(x) = ejk0

R
W (x0)dx0 , gives us the possibility to construct a non-constant refractive

index n(x) featuring gain and loss that enables a wave to traverse the scattering
region as if there were no index variations, i.e., like propagating in a uniform ma-
terial. This concept of invisibility works for arbitrary generating functions of the
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form
W (x) = n0 + f(x), (2.41)

where f(x) is a function satisfying
R L

−L
f(x0)dx0 = 0 and n0 ≥ 1 is an “offset” which

ensures that nr(x) ≥ 1, since f(x) can be negative. To avoid reflections at the
beginning and at the end of the potential region, the free space before and after
the potential region has to have a constant refractive index n0, thus the boundary
conditions for W (x) change to W (−L) = W (L) = n0. The term “unidirectional”
comes from the fact that if we inject a wave from the opposite site, there is no
constant-intensity wave and in this way hiding the index variations would not work.
However, if we complex conjugate n(x), i.e., turn gain into loss and vice versa, one
can get a constant-intensity wave for injection from the opposite site, as discussed
in section 2.4. The transmission amplitude of a wave traveling through a constant-
intensity refractive index of length 2L with generating function (2.41) takes the
form

t = ejk0
R L
−L W (x0)dx0

= e2jk0n0Lejk0
R L
−L f(x0)dx0

= e2jk0n0L. (2.42)

Since the transmission amplitude of a wave traveling through a uniform material
with n(x) = n0 is the same as (2.42), one cannot distinguish between these two
systems by looking at the phase of the transmission amplitude at only one frequency.
However, if we change the frequency and look at the frequency dependence of the
transmission phase (see time-delay), systems with a non-uniform refractive index
will generally lead to a different frequency dependence than uniform materials, thus
giving us the opportunity to detect them. Since constant-intensity waves stay to a
great extent constant in a rather broad frequency range around k0 (the wavenumber
that was used to construct n(x)), as shown in section 2.2, one can assume that
the wave behaves like ψ(x) = ejk

R
W (x0)dx0 around k0. Calculating the time-delay

τ = −jt−1 dt
dω

of the CI wave gives

τ =
| R L

−L
W (x) dx|
c

=
2n0L

c
, (2.43)

for CI systems with generating functions (2.41). Thus, we show that also the fre-
quency dependence in a certain range around k0 is the same as for the propagation
through a uniform material (namely constant) and therefore CI refractive indices
with generating functions (2.41) can be considered unidirectionally invisible. Here
we want to emphasize that constant-intensity waves are not unidirectionally in-
visible in general, since the integral over the generating function W (x) does not
necessarily yield the phase of a wave traveling through a uniform material.

We want to show now, that the previously introduced and periodic refractive
index shown in Eq. (2.40) can be derived from a CI refractive index with generating
function

W (x) = n0 + n1 cos(2βx) (2.44)
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in the limit of small variations of the refractive index (n1, n2 ⌧ 1). The corre-
sponding CI refractive index yields

n(x) =

s
W 2(x)− j

k0

dW (x)

dx

= n0

s
1 +

n2
1

n2
0

cos2(2βx) +
2n1

n0

cos(2βx) + j
2βn1

k0n2
0

sin(2βx).

(2.45)

Neglecting the term proportional to n2
1 ∝ 10−6 in Eq. (2.45) and assuming k0 = β,

we end up with n(x) = n0

p
1 + 2n1/n0 cos(2βx) + 2jn1/n2

0 sin(2βx). Since n1 is
small compared to n0, one can expand the square root

√
1 + x = 1+ x

2
+ ... for small

x = 2n1

n0
[cos(2βx) + j sin(2βx)] and keep only the first two terms of the expansion.

We end up with
n(x) = n0 + n1 cos(2βx) + j

n1

n0

sin(2βx), (2.46)

which is identical to Eq. (2.40) if n0 = 1 and n1 = n2. In the limit of small vari-
ations, (2.40) is indeed a constant-intensity refractive index. Thus, unidirectional
invisibility does not stem from the PT -symmetry of the structure, but from the
constant-intensity form of the wave function.

In order to prove our predictions also numerically, we perform the same simula-
tions that were reported in Ref. [22] with (2.40) but now with the constant-intensity
refractive index (2.45). In Fig. 2.3(a) we can see the transmittance T = |t|2, the
reflectance to the left Rl = |rl|2 and the reflectance to the right Rr = |rr|2 as a func-
tion of the detuning δ = β − k for a system with refractive index (2.45) compared
with the same quantities in the corresponding Hermitian system, i.e., without gain
and loss. In the non-Hermitian system, the transmittance T is close to unity over
the entire interval, whereas in the Hermitian system the transmittance T drops
significantly at δ = 0 because of Bragg reflection. Additionally, the reflectance to
the left Rl stays close to zero in the non-Hermitian system and increases at the
Bragg point in the Hermitian system. In the non-Hermitian system, the phase of
the transmission amplitude φt and its derivative, the time-delay τ = dφt

dk
(we set the

speed of light c ≡ 1), behave as if the system was uniform, whereas those quantities
show huge variations in the Hermitian system, as can be seen in Fig. 2.3(b) and
2.3(c). The behavior of the observed quantities leads us to the conclusion that
the system is invisible. Fig. 2.3(d) shows that both refractive indices, (2.45) and
(2.40) lead to the same scattering amplitudes in the above mentioned approach
for small index variations, thus proving our prediction that the unidirectionally
invisible refractive index of Ref. [22] is in fact a constant-intensity refractive index.

One important feature has to be pointed out in the following: Unlike the refrac-
tive index in Eq. (2.45), general invisible CI refractive indices do not have to be
periodic, which is demonstrated with an example. As mentioned above, the gener-
ating function for unidirectionally invisible refractive indices has to be of the form
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(a) Transmittance T = |t|2 and reflectance Rr,l =
|rr,l|2 (to the left and right) of a scattering system
with CI refractive index (2.45) as a function of the
detuning δ = β− k for the Hermitian case (α = 0)
and the non-Hermitian case (α = 1). In the non-
Hermitian system, the transmittance is exactly 1
and the reflectance to the left is exactly 0 at the
Bragg point β = k = k0, which corresponds to
the constant-intensity point. Rr is enhanced at the
Bragg point. T and Rl stay almost constant in
the entire interval. In the Hermitian system, the
transmittance decreases significantly at the Bragg
point β = k = k0.
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(b) Phase of the transmission amplitude φt minus
phase that the wave would accumulate in a uni-
form material φ0 = 2Lk0n0 for the Hermitian and
non-Hermitian case as a function of δ. For the
non-Hermitian case, this value is zero in the entire
interval, which is essential to call a system invisible.
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(c) Time-delay τ = d(φt−φ0)
dk as a function of the

detuning δ. Compared to the Hermitian system,
the non-Hermitian system is invisible.
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(d) Scattering amplitudes of the system with
constant-intensity (CI) refractive index (2.45) com-
pared to the system with unidirectionally invisible
(UI) refractive index (2.40). As predicted, the sys-
tems are indistinguishable.

Figure 2.3: Parameters of the CI refractive index in Eq. (2.45): n0 = 1, n1 = 10−3;
β = k0 = 100; System length 2L = L1 + L2 with L1 = 6.25π of index
variations and L2 = π of free propagation. Parameters of the unidirection-
ally invisibility refractive index (2.40): n1 = n2. All the other values are the
same as for the CI refractive index. The relative width of the scan interval
of this calculation is Δk/k0 = 2/100 = 0.02.



24 2.6 Unidirectional Invisibility

(2.41). For f(x) we took n (n is an even number) randomly distributed identical
non-overlapping Gaussian functions, where half of them have a positive sign and the
other half has a negative sign in order to assure that the integral of f(x) gives zero.
The resulting refractive index is shown in Fig. 2.4(a), whereas the corresponding
scattering amplitudes, the phase of the transmission amplitude φt and the time-
delay τ are shown in Fig. 2.4(b)-(d) as a function of the detuning δ = k0 − k. The
transmission phase as well as the time-delay show strong variations as a function
of the detuning in the Hermitian system compared to the non-Hermitian system,
indicating that the non-Hermitian (constant-intensity) system can be considered
invisible.

In this section we show that constant-intensity systems can be unidirectionally
invisible by choosing the generating function of the form (2.41) and thus intro-
ducing a whole new class of invisible refractive indices. Not only the transmission
phase, but also the phase derivative (time-delay) within a certain frequency range
is indistinguishable from the corresponding quantities of a wave traveling through
a uniform system. The connection to an already known unidirectionally invisible
refractive index (2.40), which is stated as PT -symmetric and periodic, is drawn.
However, we show in the next subsection that there are some subtleties that have
to be considered when using invisible PT -symmetric refractive indices.

2.6.1 PT -Symmetry and Unidirectional Invisibility

Unidirectional invisibility is claimed to be a consequence of the PT -symmetric na-
ture of the refractive index distribution (2.40) of Ref. [22], however, in the previous
section we show that unidirectional invisibility can also be realized in non-PT -
symmetric systems. Now we want to go a step further and show that the refractive
index (2.40), that is claimed to be PT -symmetric and unidirectionally invisible,
cannot possess both properties simultaneously.

As already mentioned before, a complex refractive index n(x) = nr(x) + jni(x)
is called PT -symmetric if the condition n∗(−x) = n(x) is satisfied, i.e., if the real
part of the refractive index is an even function, nr(x) = nr(−x), and the imaginary
part an odd function, ni(x) = −ni(−x), of the spatial coordinate x. Looking at
the equations connecting nr(x) and ni(x) of the constant-intensity refractive index
with the generating function W (x) in Eq. (2.8), one can see that the parity of
nr(x) is determined by the parity of W (x), e.g., if W (x) is an even function, nr(x)
is an even function as well (if W (x) is an odd function, nr(x) is not necessarily
an odd function). As we show in the last chapter, one condition for an invisible
CI refractive index is that W (x) = n0 + f(x) with

R L

−L
f(x0)dx0 = 0. For periodic

generating functions, this is only possible if f(x) is an odd function with respect
to the center of the potential region, from which follows that nr(x) is not an even
function and in this way n(x) is not PT -symmetric. We illustrate this issue by
showing a specific system: Fig. 2.5 shows two fractions of a periodic constant-



Chapter 2 Constant-Intensity Waves 25

nr   

loss 
gain 

(a) Constant-intensity refractive index that fea-
tures unidirectional invisibility. The refractive index
was constructed with a generating function of the
form (2.41), where f(x) consists of identical non-
overlapping Gaussian functions, where half of them
have a positive sign and the other half has a nega-
tive sign. One has to add an “offset” n0 = 1.6 so
that nr(x) ≥ 1. The intensity of the wave func-
tion with wavenumber k = k0 is shown in blue
(constant-intensity point).
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(b) Transmittance T = |t|2 and reflectance Rr,l =
|rr,l|2 (to the left and right) of a scattering system
with the constant-intensity refractive index shown
in (a) as a function of the detuning δ = k0 − k for
the Hermitian case (α = 0) and the non-Hermitian
case (α = 1). In the non-Hermitian system, the
transmittance is exactly 1 at k0 = k and the re-
flectance to the left is exactly 0, which corresponds
to the constant-intensity point. T and Rl stay al-
most constant in the entire interval contrary to the
Hermitian case.
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(c) Phase of transmission amplitude φt minus
phase that the wave would accumulate in a uni-
form material φ0 = 2Lk0n0 for the Hermitian and
non-Hermitian case as a function of the detuning δ.
The value is almost zero in the entire interval for
the non-Hermitian case, which is essential to call a
system invisible.
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(d) Time-delay τ = d(φt−φ0)
dk as a function of the

detuning δ. Compared to the Hermitian system,
the non-Hermitian system is invisible.

Figure 2.4: Parameters: k0 = 10; System length 2L = L1 + L2 with L1 = 3π of
index variations and L2 = π of free propagation. Please note that the
relative width of the scan interval in this system (Δk/k0 = 2/10 = 0.2) is
significantly larger than in the system shown in Fig. 2.3 (Δk/k0 = 0.02)
which explains the deviations from perfect invisibility at the ends of the
interval.
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intensity refractive index derived from the same generating function (2.44), where
the first system, Fig. 2.5(a), has the length of half a cosine curve, whereas the
second system, Fig. 2.5(b), consists of a full cycle. As a result, one of the systems
is PT -symmetric but not invisible and the other one is not PT -symmetric but
invisible, since only for one system the integral over f(x) vanishes. Due to the fact
that the unidirectionally invisible refractive index (2.40) of Ref. [22] can be derived
from the CI refractive index with generating function (2.44) in the limit of small
index variations (n1, n2 ⌧ 1), as shown in the previous section, all the statements
concerning the CI refractive index do also apply to (2.40). Hence, the system can be
either invisible or PT -symmetric, but not both as stated in the reference. Probably
the reason why this fact was overlooked so far is that the system in Ref. [22] is large
compared to the wavelength and compared to the modulation frequency of the
refractive index, such that one additional half-cycle of the refractive index (which
decides if the system is PT -symmetric or not) has almost no effect. But if we go
to much smaller systems like in Fig. 2.5, the difference becomes, indeed, crucial.

In this subsection we show that for periodic generating functions, PT -symmetry
and invisibility cannot be fulfilled simultaneously, however, when going beyond
periodic potentials invisible PT -symmetric systems can be realized.

In the next section we show that we can generalize the concept of constant-
intensity refractive indices to a much larger class of reflectionless refractive indices
by allowing complex-valued generating functions W (x) and show, that constant-
intensity waves can be seen as a special case of these reflectionless refractive indices.
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(a) Constant-intensity refractive index with gener-
ating function W (x) = n0 + n1 cos(2βx), where
the length of the scattering region is half a cosine
curve (β = 0.5). Obviously, this system is PT -
symmetric but not invisible, since the integral of
W (x) over half of a cosine cycle is not zero. Nu-
merical results: φt − φ0 = −1.675, where φt is the
phase of the transmission amplitude and φ0 is the
phase of a wave traveling through a system without
index modulations, φ0 = 2k0n0L.
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(b) Constant-intensity refractive index with gener-
ating function W (x) = n0 + n1 cos(2βx), where
the length of the scattering region is one full cosine
curve (β = 1).This system is not PT -symmetric
but invisible, since the integral of W (x) over one
cosine cycle is zero. Numerical results: φt − φ0 =
1.514 × 10−7, where φt is the phase of the trans-
mission amplitude and φ0 is the phase of a wave
traveling through the system without index modu-
lations, φ0 = 2k0n0L.

Figure 2.5: Two constant-intensity refractive indices with the same periodic generating
function W (x) = n0 + n1 cos(2βx) with n0 = 1.5 and n1 = 0.4. Both
systems have the smallest possible periodicity for showing the crucial dif-
ference. The physics would not change if we add multiples of full cosine
cycles to the systems. Gain/loss is multiplied by a factor of 50 for a better
visibility. In both system one can see the intensity of the wave function
(blue) for an incident plane wave with k0 = 100.



28 2.7 Wave Design

2.7 Wave Design
Since W (x) determines the local phase of the scattering state, one can use the
concept of constant-intensity waves to create a refractive index that leads to a wave
function with a desired phase profile. Now we want to go a step further and try
to additionally manipulate the amplitude of the wave as a function of the position.
The goal of this chapter is to show how one can create a complex refractive index
such that the amplitude and the phase of the scattering state can be manipulated
arbitrarily for each value of the spatial coordinate x.

The derivation of the CI solution with corresponding refractive index in section
2.1 can be done in the same way with a complex generating function W (x) =
Wr(x) + jWi(x), leading to the solution ψ(x) = ejk0

R
Wr(x0)dx0

e−k0
R
Wi(x

0)dx0 , where
the first part can be seen as the phase and the second part as the amplitude of the
wave. Using the relations

Wi(x) = − 1

k0

d

dx
ln[g(x)], (2.47)

Wr(x) = n0 +
1

k0

d

dx
h(x), (2.48)

one can rewrite the wave function as

ψ(x) = g(x)ejh(x)ejk0n0x, (2.49)

where g(x) and f(x) are real functions representing the amplitude and the addi-
tional phase profile (in addition to the phase that the wave would accumulate in
a uniform material with refractive index n0, φ0(x) = k0n0x), respectively. In all
previous calculations we implicitly assume n0 = 1. The refractive index supporting
the scattering state (2.49) can be calculated straightforwardly using

n2(x) = [Wr(x) + jWi(x)]
2 − j

k0

d

dx
[Wr(x) + jWi(x)] . (2.50)

In order to fulfill the boundary conditions W (−L) = W (L) = n0, h(x) and g(x)
have to be constant at the beginning and at the end of the scattering region. While
choosing g(x) and h(x), one has to consider that nr(x) has to be larger than 1,
since for some combinations of g(x) and h(x) this is not the case. In Fig. 2.6 we
can see a wave propagating through a system with a refractive index derived from
given functions g(x) and h(x). The numerically calculated scattering wave function
indeed shows the predicted phase profile h(x) and intensity profile g2(x).

To sum up, one can design a refractive index n(x) such that the wave inside
has a well-defined amplitude profile g(x) and phase profile h(x) for one specific
wavenumber k0. One can use this procedure to create a scattering state that has
a well-defined intensity profile, since the intensity is just given by |ψ(x)|2 = g2(x).
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Figure 2.6: Using the idea of complex generating functions W (x), one can calculate a
refractive index, such that the wave function inside the medium has a pre-
defined amplitude and phase profile, ψ(x) = g(x)ejh(x)ejk0n0x. The given
function g(x) and f(x) are used to calculate the required refractive index
(2.50). Here, g(x) is the sum of two Gaussian functions with different am-
plitudes and positions, and h(x) has the form of a hyperbolic tangent. The
numerically calculated intensity, |ψ(x)|2 (blue line), and additional phase,
φ(x) − φ0(x) (black), agree with the analytic functions h(x) (green) and
|g(x)|2 (red). φ0(x) is the phase that the wave would accumulate in a uni-
form material with refractive index n0, i.e., φ0(x) = k0n0x. Gain and loss
are multiplied by a factor of 5 for a better visibility. The incident wave has
a wavenumber of k0 = 2π/0.1.
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Constant-intensity waves can then be seen as the special case where g(x) = 1. It
is important to mention that these scattering states are reflectionless, so that we
found a whole new class of reflectionless refractive indices. After giving a detailed
and extensive theoretical description of constant-intensity waves in the last sections,
we present possible experimental realizations considering experimental limitations
in the last part of this chapter.

2.8 Possible Experimental Realizations

Designing a material with a varying Hermitian refractive index is already a challeng-
ing task but in combination with a varying gain and loss distribution, the challenge
becomes very demanding. Especially with the realization of amplifying regions, we
are facing a great experimental difficulty that can be alleviated when using some
tricks to create an effective constant-intensity refractive index by using only loss.

In order to calculate a refractive index distribution featuring only loss, we make
use of the concept of complex generating functions W (x) = Wr(x) + jWi(x), as
introduced in the previous section. Assuming that Wi(x) = const = κ, we get
ψ(x) = ejk0

R
Wr(x0)dx0

e−k0κx, i.e., an exponentially decaying wave function where
the factor k0κ determines the strength of the decay. Calculating the corresponding
refractive index

n2(x) = [Wr(x) + jκ]2 − j

k0

d

dx
[Wr(x) + jκ] , (2.51)

one can now choose κ and Wr(x), such that the imaginary part of n(x) is al-
ways larger than 0, i.e., always lossy. In Fig. 2.7(a) we plot a (normal) constant-
intensity refractive index with the corresponding constant-intensity wave, whereas
in Fig. 2.7(b) we show an exponentially decaying wave function in a completely
lossy medium with refractive index (2.51). The small reflections at the begin-
ning of the potential region come from the fact that the boundary conditions
W (−L) = W (L) = 1 are not fulfilled, since the imaginary part of W (x) is not
zero at the beginning and at the end of the potential region. Since the imaginary
part ni(x) is small compared to the real part nr(x), the error is negligible and only
leads to small reflections. This idea of shifting the imaginary part of the refractive
index such that everything becomes lossy is a possible candidate for an experimental
implementation and still proves the concept of constant-intensity waves.

The second idea in the direction of a realizable system involves only loss as well,
but contrary to the first concept, shows a true constant-intensity wave. We make use
of the fact that a constant-intensity wave is a wave propagating into one direction
without having back reflections at any part of the medium. Thus, we can truncate
the system at any point and still get a constant-intensity wave, provided one con-
tinues the system with a constant generating function that has the same value as
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at the point of truncation. Starting from the single-hump constant-intensity refrac-
tive index in Fig. 2.7(c), one can set the generating function W (x) constant from
the beginning of the potential region to its center. A constant generating function
results in a vanishing imaginary part, so that we can eliminate the gain part, as
can be seen in Fig. 2.7(d). The boundary conditions W (−L) = W (L) = 1 have to
be generalized to W (−L) = n0(−L) and W (L) = n0(L), where n0(−L) and n0(L)
is the (real) refractive index of the uniform material in front of and behind the
potential region, respectively. Using this simple trick allows us to realize a CI wave
in a loss-only material.

After presenting two methods for the implementation of constant-intensity waves
with only lossy regions, we now also discuss the implementation of gain regions.
Amplifying materials are used in lasers, where the gain medium is pumped to pro-
duce a population inversion. In order to achieve position-dependent amplification,
which is necessary for constant-intensity refractive indices, one can optically pump
a gain medium non-uniformly with the help of spatial light modulators (SLM).
In combination with position depended loss regions, an implementation of full CI
refractive indices is thus possible in principle.

To summarize, in this last section we show that an experimental realization
of constant-intensity waves is within reach of current technology. The relation to
unidirectional invisibility, supersymmetry and PT -symmetry are just some of many
striking features of these new types of waves suggesting that there is still a lot to
discover. Having shown that a Hermitian refractive index in combination with a
tailored gain/loss distribution can lead to this striking phenomenon, the second
part of this thesis follows quite the opposite approach. Instead of controlling the
medium itself, e.g., through a spatially modulated pumping, we now focus instead
on controlling the incident wave front to achieve a desired intensity distribution
of the wave inside the scattering region. This can be done with the knowledge of
asymptotic quantities alone, e.g., the scattering matrix S which is already accessible
in experiments.
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(a) Constant-intensity refractive index derived
from a generating function with the shape of
a parabolic function modulated with a cosine.
For better visibility, gain and loss are multi-
plied by a factor of 10.
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loss  

(b) Modified constant-intensity refractive in-
dex according to Eq. (2.51) with Wi = κ =
0.01. Due to the complex generating function
W (x) = Wr(x)+ jWi(x), we get uniform ab-
sorption, i.e., ψ(x) = ejk0

R
Wr(x

0)dx0
e−k0κx.

The reflections at the interfaces between po-
tential region and free space come from the
fact that the boundary conditions are not ful-
filled, since the imaginary part of W is not zero
at −L and L. Also here, loss is multiplied by
a factor of 10.
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(c) Constant-intensity refractive index derived
from a generating function with the shape of
a Gaussian. For better visibility, gain and loss
are multiplied by a factor of 10.
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loss  

(d) Since constant-intensity systems can be
truncated at any point and still lead to a wave
with constant-intensity, we can set the first
half of the generating function W (x) to a con-
stant value, and thus eliminating the gain part.
Also here, loss was multiplied by a factor of 10.

Figure 2.7



Chapter 3

Wave Front Shaping

In the same way as the initial conditions of a classical particle, i.e., the particle’s
position and momentum at time t0, determine its trajectory for all times t > t0,
providing the initial shape of an incident wave front can be used to describe the
wave’s future behavior due to the deterministic nature of wave scattering. How-
ever, interference effects may generally lead to highly complex intensity patterns.
The concept of modulating the incident wave front in order to generate a specific
behavior is better known as “wave front shaping” and has become a broad and
fruitful field in modern wave physics during the last few years. The experimental
accessibility of the scattering matrix in optics due to the availability of spatial light
modulators (SLM), which are tunable pixel arrays that allow to create arbitrarily
complex light fields, is one of the principal reasons for this progress. Wave front
shaping can be used, e.g., to focus light, temporally as well as spatially, and to
image and transmit light through media (see Ref. [39] and Refs. therein). In this
chapter, we study and physically motivate all steps that are necessary in order to
end up with the information on how to shape the incident wave front to create a
specific desired scattering state. We discuss three concrete systems in which wave
front shaping can be applied and perform all the preliminary calculations that are
necessary to show that our procedure can be implemented experimentally. To be
more specific, we show how to create scattering states that show beam-like behav-
ior, focus on or avoid a chosen scatterer inside a scattering medium and turn a
dissipative system into a coherent perfect absorber. In collaboration with Ulrich
Kuhl’s group at the University of Nice, we have been working on an experimental
realization of these three systems in microwave cavities and are already able to
show some first promising experimental results of two of those systems. Encour-
aged by these results, possible further applications are discussed at the end of each
section. We start with a short introduction to the scattering formalism including
the scattering matrix, which is used as a tool to construct these new scattering
states.
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Figure 3.1: Our scattering systems can be decomposed into a scattering region (gray)
and asymptotic regions (incoming and outgoing leads). Both leads are
assumed to be clean, i.e., have a refractive index of n = 1 and are semi
infinite. Incoming and outgoing lead have the same width W and the first
two lead modes χ1 and χ2 are depicted in red. We use hard-wall boundary
conditions at the borders of all our geometries.

3.1 Scattering Formalism
Generic scattering systems can be divided into the scattering region, where the ac-
tual scattering process takes place, and the asymptotic regions, where the wave can
be decomposed into well-defined scattering channels. The systems we are interested
in can be decomposed into an incoming lead, the scattering region and an outgoing
lead. Incoming as well as outgoing lead are the asymptotic regions and are usually
clean, i.e., they feature a refractive index of n = 1. The scattering region itself
can be arbitrarily complex and can lead to strong scattering of the incoming wave.
For the scattering geometries used later on, incoming and outgoing lead have the
same width W and hard-wall boundary conditions are used at the borders of the
geometry as we can see in Fig. 3.1.

Since we investigate stationary scattering systems, the starting point for our
calculation is the two-dimensional (2D), time-independent Helmholtz equation

[4+ n2(~r)k2]ψ(~r) = 0, (3.1)

where k = 2π
λ

=
p
k2
x + k2

y is the vacuum wavenumber, λ the wavelength, 4 =
d2

dx2+
d2

dy2
the Laplacian in 2D, n(~r) the index of refraction, ψ(~r) the linearly polarized

perpendicular component of the electric field, and ~r = (x, y)T the position vector.
Since incoming and outgoing lead are both clean, the right-propagating solutions
of the Helmholtz equation take the following form,

ψn(x, y) =
1p
kx,n

χn(y)e
jkx,nx, (3.2)
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where

χn(y) =

r
2

W
sin(ky,ny), (3.3)

is the transverse part of the electric field and the corresponding left-propagating
solutions are given by ψ∗

n(x, y). The prefactor in Eq. (3.2), 1/
p
kx,n, ensures that

every mode carries the same flux. The solutions (3.2) are called modes and are
characterized by an integer n, the wavenumber in transverse direction

ky,n =
nπ

W
, (3.4)

and the wavenumber in longitudinal direction

kx,n =
q

k2 − k2
y,n. (3.5)

For k ≥ ky,n, kx,n is real and the mode can propagate in x-direction, whereas if
k < ky,n, kx,n = jκx,n is purely imaginary and the mode decays exponentially, i.e.,
is an evanescent mode. Modes with kx,n ∈ R can carry electromagnetic flux and are
referred to as open modes, whereas evanescent modes are not flux-carrying. The
number of open modes in either lead N = Nin = Nout is determined by

N = bWk

π
c = b2νW

c
c, (3.6)

where ν is the frequency, c the speed of light and b...c the floor function. The
transverse profiles (3.3) of the lead modes form a complete and orthonormal basis
so that they can be used to decompose an arbitrary incoming wave into these
basis functions. The incoming wave can then be written as a coefficient vector
~φ = (~φl, ~φr)

T , where ~φl contains the respective coefficients corresponding to the
incoming wave coming from the left-hand side and, analogous, ~φr the incoming
wave coming from the right-hand side. The corresponding outgoing wave can be
written as ~µ = (~µl, ~µr)

T and is connected to the incoming wave ~φ through the
scattering matrix, ~µ = S~φ. Since for most of the presented systems we consider
injection only from the left-hand lead, we refer to it as the incoming lead, while
the right-hand lead is labeled as the outgoing one. Whereas the right-propagating
parts ~φl and ~µr refer to the right-propagating lead modes ψn, the left-propagating
parts ~φr and ~µl refer to the left-propagating lead modes, ψ∗

n. The scattering matrix
S for our two-port system has the block structure

S =

✓
rl tr
tl rr

◆
, (3.7)

where rl, tl are the reflection and transmission matrices containing the scattering
amplitudes for injection from the left side and rr, tr consist of the corresponding
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amplitudes for injection from the right side. If we mention the transmission matrix
t and the reflection matrix r, we usually refer to tl and rl, respectively, since for
most of the systems we only consider injection from the left-hand lead. The matrix
element tmn, for example, is the complex amplitude for the transmission from the
n-th incoming mode into the m-th outgoing mode. In Hermitian systems, i.e.,
systems without gain and loss, the scattering matrix S is unitary, S−1 = S†, and is
therefore flux-conserving. If time reversal symmetry is not broken, which is the case
in all our investigated systems, one can easily show that the following symmetry
relations are valid: rl = rTl , rr = rTr , tl = tTr .

In the following sections, we use the information stored in the scattering ma-
trix S to shape the wave front of the incoming wave such that the wave shows a
desired behavior inside the scattering region although the scattering matrix con-
sists exclusively of information available outside of the scattering region, i.e., in
the asymptotic regions. Our computer code which simulates the scattering systems
automatically calculates the scattering matrix S for a given incident wavelength by
using the modular recursive Green’s function method introduced in Ref. [40]. In
the next section we recall an operator, the Wigner-Smith time-delay operator, of
which the eigenvectors contain the information on how to shape the incident wave
front to get beam-like scattering states. After that, we introduce a new operator
class that combines an elegant theoretical concept with experimental practicability.

3.2 Wigner-Smith Time-Delay Operator Qω

As numerically shown by Rotter et al. [23], wave front shaping can be used to
create so-called particle-like states which are scattering states that feature beam-
like behavior. If a wave enters a cavity, it may generally get reflected multiple times
so that the wave function will be distributed throughout the cavity. The wave
function of particle-like states, however, stays highly collimated along its path, or
to be more precise, the wave function occupies a bundle of classical trajectories that
have similar lengths. These particle-like states can be found among the eigenvectors
of the Wigner-Smith time-delay operator,

Qω = −jS†dS
dω

=

✓
Q11 Q12

Q21 Q22

◆
, (3.8)

that was proposed by Smith [41] after the seminal work of Eisenbud, Bohm [42]
and Wigner [43], where S is the scattering matrix and ω the frequency. In practice,
the derivative in Eq. (3.8) is usually approximated by a finite difference quotient
dS
dω
|ω=ω0 ≈ S(ω0+Δω)−S(ω0)

Δω
, where Δω is sufficiently small. Calculating the expecta-
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tion value of Qω for an input vector ~φ yields [44],

τQ =

Nin+NoutX
i=1

|(S~φ)i|2dϕi

dω
, (3.9)

where Nin + Nout is the total number of flux-carrying channels (for systems with
both sides of injection) and ϕi the phase of (S~φ)i = |(S~φ)i|ejϕi . The operator (3.8)
is based on the idea that the frequency derivative of the scattering phase ϕi can
be interpreted as the time it takes the wave to traverse the scattering region. The
expectation value (3.9) can thus be seen as a weighted sum of the delay times of
every scattering channel, where the weighting coefficients are the corresponding
absolute values of the scattering amplitudes. Eigenvectors of this Wigner-Smith
time-delay operator thus have a well-defined delay time, just like a particle traveling
through a system. Since Qω is a Hermitian operator, its eigenvalues are real-valued
and thus can be interpreted as the correct physical delay times. Particle-like states
are those eigenvectors of Qω that are simultaneously eigenvectors of the sub block
Q11 = −j(r† dr

dω
+ t† dt

dω
) and additionally lie in the nullspace of Q21 [23].

With respect to an experimental realization of such particle-like states, the
Wigner-Smith time-delay operator suffers from a major drawback. The construc-
tion of Q11 involves the transmission matrix t as well as the reflection matrix r,
where the latter one is often hard to measure in experiments, therefore, we propose
an alternative operator involving only the transmission matrix t,

qω = −jt−1 dt

dω
. (3.10)

Contrary to the Wigner-Smith time-delay operator Qω, the operator qω is generally
not Hermitian and thus has complex eigenvalues. In the event that the transmission
matrix is unitary, t−1 = t†, however, qω coincides with the Hermitian sub-block Q11

of the Wigner-Smith matrix, Q11 = qω. In the following, we motivate the specific
shape of (3.10) and generalize this operator to a new operator class that yields
scattering states that are invariant to first order against the change of an arbitrary
parameter [45], and show that qω is just one example of this class.

3.3 Phase Derivative Operator qa

In the fiber community, eigenstates of the operator qω are known as so-called princi-
pal modes and are invariant to first order under a variation of the frequency [46, 47].
In the following, we show an alternative derivation of this operator (but still follows
the spirit of the derivation in Ref. [47]) and generalize this concept to systems with
an arbitrary parameter dependence, which in the case of qω is the frequency ω.
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Suppose we have an incoming wave injected from the left-hand lead characterized
by a coefficient vector ~φl, we can calculate the output vector to the right (trans-
mitted part), ~µr = t~φl. Assuming that the transmission matrix t depends on an
arbitrary continuous parameter a, e.g., the incoming frequency ω, the position of
an arbitrary scatterer ~r that is located inside the scattering region or the strength
of an external magnetic field | ~B| (in the context of charged matter waves), one can
approximate the output vector ~µr in the vicinity of a specific value of a = a0 by a
Taylor series,

~µr(a0 +Δa) = ~µr(a0) + Δa
d~µr

da

����
a0

+ . . . (3.11)

= t(a0)~φl +Δa
dt(a)

da

����
a0

~φl + . . . , (3.12)

where Δa is a small change of the parameter a and we assumed that the input
vector ~φl does not depend on a. We demand that the first oder term is parallel to
the zeroth order term, i.e., they should only differ by a multiplicative (complex)
constant z,

t(a0)~φl = zΔa
dt(a)

da

����
a0

~φl. (3.13)

Multiplying both sides of Eq. (3.13) with (jt)−1, one can rewrite it as an eigenvalue
equation,

1

jzΔa
~φl = −jt−1(a0)

dt(a)

da

����
a0

~φl = τa~φl = qa~φl, (3.14)

where ~φl can now be seen as the eigenvector of the operator

qa := −jt−1 dt

da
(3.15)

with the eigenvalue τa := (jzΔa)−1.
Just as the eigenvalues of the Wigner-Smith operator are proportional to the

frequency derivative of the scattering phase, we now try to find a mathematical
expression for the eigenvalues of qa, τa, in order to ascribe to them a physical
interpretation. Going back to Eq. (3.13) with z = (jτaΔa)−1,

τat~φl = −j
dt(a)

da
~φl, (3.16)

τa~µr = −j
d~µr

da
, (3.17)

we can decompose the output state according to

~µr = µ̂r|~µr|ejφµ , (3.18)
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where µ̂r is the unit vector pointing in the direction of ~µr, ϕµ is a global phase
and |~µr| the global amplitude of ~µr. We see in the end that the actual value of
the global phase does not matter, since it can be chosen arbitrarily, however, its
derivative will be of interest. Inserting Eq. (3.18) into (3.17), yields

τaµ̂r|~µr|ejϕµ = −j

✓
|~µr|ejϕµ

dµ̂r

da
+ µ̂re

jϕµ
d|~µr|
da

+ jµ̂r|~µr|ejϕµ
dϕµ

da

◆
,

τa = −j
1

|~µr|
✓
d|~µr|
da

+ j|~µr|dϕµ

da

◆
= −j

1

|~µr|
d|~µr|
da

+
dϕµ

da

= −j
dln(|~µr|)

da
+

dϕµ

da
, (3.19)

where we used dµ̂r

da
= 0, since we started our derivation calling for output states

that are independent of a (up to a global phase and amplitude). The first term of
the eigenvalue τa on the right-hand side of Eq. (3.19) describes the change of the
transmission of the eigenstate as a function of a, whereas the second term is the
derivative of the global scattering phase with respect to a.

As mentioned above in the derivation of Eqs. (3.19) and (3.15), we assume the
scattering matrix t to be invertible. If t is not quadratic or singular due to channels
with transmission close to zero, however, an ordinary inversion cannot be done. For
that reason, an effective inversion, introduced by Philipp Ambichl and shown in our
work [48], that involves a projection of the transmission matrix onto transmitting
channels is presented in the following. We start with a singular value decomposition
of the transmission matrix,

t = UΣV †, (3.20)

where U consists of the eigenvectors of tt† stored in its columns and V consists of
the eigenvectors of t†t, respectively. For a m× n-dimensional transmission matrix,
the matrices U and V are quadratic m×m and n×n matrices, respectively, whereas
Σ is an m × n-dimensional rectangular matrix which contains the singular values
σi, i.e., the square roots of the (common) eigenvalues of both t†t and tt†, on its
diagonal. The relative phases of U and V can be chosen such that Σ contains only
real quantities. If t is singular or non-quadratic, at least one singular value is zero.
In order to get rid of those states that belong to σ = 0, we keep only those n✏

columns of U and V that belong to singular values larger than a specific value ✏
and group them to new matrices u and v which then have the dimensions m × n✏

and n× n✏, respectively. Since numerically the singular values of low transmitting
channels will never be exactly zero, ✏ has to be chosen finite, but small. In a next
step we project the full transmission matrix t onto the kept transmitting channels
according to

t̃ = u†tv, (3.21)

so that we end up with a quadratic n✏×n✏-dimensional matrix. Inverting t̃, which is
now possible, and projecting back onto the original vector space gives the effective
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inversion which we are looking for,

t−1
✏ := v(u†tv)−1u†. (3.22)

If there are no singular values smaller than a chosen value of ✏, t−1
✏ coincides with

the ordinary inversion t−1. In a next step, using the projection operators uu† and
vv†, we can project the derivative in (3.15) of the transmission matrix onto the
flux-carrying channels

dt✏
da

= uu† dt
da

vv†, (3.23)

so that we end up with the final expression for the operator qa that involves only
states featuring a transmission larger than ✏,

qa = −jv(u†tv)−1u†uu† dt
da

vv† = −jv(u†tv)−1u† dt
da

vv†. (3.24)

In Eq. (3.24) we made use of the fact, that u†u = n✏×n✏ , but please note that
generally uu† 6= m×m.

With expression (3.24) we develop a method to calculate eigenstates of the op-
erator qa in Eq. (3.15) for systems with a singular or non-quadratic transmission
matrix. Since the parameter a can be chosen arbitrarily, we introduce a whole new
operator class that leads to scattering states that are invariant against changes of
a to first order. The time-delay operator qω, which we mention in the previous
section, is just one example of this class for the case that the continuous param-
eter is the frequency, a = ω. The eigenvalues of qω are given by Eq. (3.19) and
thus include the frequency derivative of the global scattering phase which resemble
the expectation value of the Wigner-Smith time-delay operator in (3.9) containing
the frequency derivatives of the individual scattering channels. Instead of using
the Wigner-Smith time-delay operator, we show in the next section that qω can be
used to find particle-like states as well but brings a major benefit in terms of an
experimental realizability.

3.4 Particle-Like States as Eigenstates of qω
Particle-like scattering states can be found among the eigenstates of the sub-block
of the Wigner-Smith time-delay operator (3.8), Q11, however, the knowledge of
the transmission matrix t and the reflection matrix r is necessary. The operator
introduced in the previous section, qω, suggests that particle-like states can be con-
structed solely from the knowledge of the transmission matrix t, since its eigenvalues
are proportional to the frequency derivative of the scattering phase (i.e., the delay
time), similar to the concepts involved in the construction of the Wigner-Smith
time-delay operator. In what follows, we study the new operator qω right for a
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Figure 3.2: (a) Scattering geometry in which particle-like states should be observed.
The left upper lead is the incoming lead whereas the right lower lead the
outgoing one. The region between the dashed lines represents the scattering
region. (b) Eigenstate of the Wigner-Smith time-delay operator Qω and (c)
the corresponding eigenstate of the operator qω, where all singular values
larger than ✏ = 0.1 were kept for the projection in (3.24). In (b), both,
the reflection matrix r and the transmission matrix t were used, whereas
(c) involves only the transmission matrix t. Both operators lead to the
desired particle-like scattering state, however, the operator qω requires less
information. The incoming wavelength was chosen such that 16 modes are
open in the leads.

specific system shown in Fig. 3.2(a); Fig. 3.2(b) shows a particle-like eigenstate of
the Wigner-Smith time-delay operator, whereas Fig. 3.2(c) shows the correspond-
ing eigenstate of qω. We can see that the operator qω, which only involves the
transmission matrix t, indeed leads to almost the same result with respect to this
particle-like state as the Wigner-Smith time-delay operator does, although it re-
quires less information. This encouraging observation brings us one step closer to
an experimental realization of such beam-like scattering states.

Measuring the transmission matrix t and shaping the wave front of the incoming
wave with multiple separate antennas is experimentally already possible in the
microwave regime. In a collaboration with the group of Ulrich Kuhl from the
University of Nice, we designed a concrete experimental set-up in which particle-
like states can be realized. All effects of imperfections, that an experiment typically
comes along with, are investigated and quantified in the following subsection.

3.4.1 Particle-Like States in a Specific System

The major achievement presented in this subsection is to design a scattering geom-
etry that takes into consideration all experimental limitations, such as the number
of antennas, the size of the experimentation table or the maximum frequency while
still allowing for particle-like states. The first obstacle in realizing particle-like
states has already been overcome by finding an operator that can be constructed
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with the transmission matrix t exclusively, since reflections are hard to measure
in many experimental setups, including our microwave setups at hand. The main
limitation in our experiment, however, is the size of the experimentation table and
the number of available antennas. The more modes or antennas can be controlled
independently in phase and amplitude, the better and clearer the particle-like states
will be. The number of available antennas, which is restricted to 16, is therefore a
critical factor for the design of the experiment.

Please note that the concept of finding particle-like states is basis independent,
i.e., it does not matter if the transmission matrix t is measured and transformed to
the basis of waveguide modes or if the measured antenna-antenna signals are used
directly, which facilitates the experiment.

To state the experimental limitations more precisely, the region of which the
wave function can be measured is limited to an area of 104× 52 cm, as indicated in
Fig. 3.3. To avoid an undesired influence of evanescent modes, the antenna array
has to be placed with a distance of 1.5 times the lead width W away from the
entry to the scattering region, and about the same distance away from the other
end, where absorbers are placed to reduce reflections. The effective size of the
whole system including both leads is therefore much larger than just the size of
the scattering region alone. The minimum size of the lead width is restricted by
two parameters: On the one hand, the mounting system of the antennas requires a
minimum distance of 0.7 cm between each antenna, which leads to a minimum lead
width of approximately 12 cm for a number of 16 antennas. On the other hand,
the most efficient control of the wave is ensured if the number of antennas is equal
to the number of flux-carrying modes, since for this case all degrees of freedom can
be controlled. The number of open modes N is determined by the input frequency
ν, according to Eq. (3.6). Since the maximum frequency in the experiment is
νmax = 18 GHz, the minimum lead width has to be around 14 cm to ensure that
16 modes are open. A non-trivial geometry we found that even features chaotic
classical dynamics and additionally considers all the limitations but still allows for
particle-like states is shown in Fig. 3.3, where the left top lead is the incoming
lead, and the right lower lead is the outgoing one, respectively. In Fig. 3.4(a) we
can see a simulation where the first mode is injected into the system and strongly
scattered, whereas in Fig. 3.4(b)-(d) we can see three eigenstates of qω which are
clearly particle-like. The first state propagates directly from the incoming to the
outgoing lead, whereas the second one bounces off the quarter circle and the third
one bounces off the upper boundary. In the following subsection, we refer to the
particle-like states in Fig. 3.4(b)-(d) as states number 1 to 3.

If we keep n✏ singular values in the calculation of qω in (3.24), we get n✏ trans-
mitting qω-eigenstates. Since the choice of ✏, which determines how many singular
values are kept for the calculation, is arbitrary, we calculate all possible eigenstates
of qω for all possible numbers of kept singular values which gives a total number
of 16 + 15 + 14 + ... + 1 = 136 eigenstates. Measuring the wave function of all
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Figure 3.3: The scattering geometry that is used for the particle-like states experiment
drawn on the experimentation table of size 104 × 52 cm (red rectangle).
The lead width W = 14 cm and the frequency ν = 17.5 GHz results in a
total number of 16 open modes, which is equal to the number of antennas
in the incoming channel. The distance of 1.5W between the antenna array
and the main cavity prevents evanescent coupling to the system. Absorbing
material at both ends of the system is used to suppress reflections. A
movable antenna in the output lead is used in order to detect the output
signal. The middle part of the scattering region between both leads can
alternatively be used as an input lead. As can be seen, the whole scattering
geometry is much larger than the actual scattering region within the black
dashed lines.



44 3.4 Particle-Like States as Eigenstates of qω

(a) (b)

(c) (d)

Figure 3.4: Numerical results: (a) Shows shows how the first transversal mode is in-
jected and strongly scattered inside the system described in Fig. 3.3, whereas
(b), (c) and (d) show three particle-like states which are eigenstates of the
operator qω. For the calculation of qω, the smallest three singular values are
neglected in (3.24).
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those eigenstates to find particle-like states among them is practically impossible.
Therefore, the question we are interested in answering is the following: is it possible
to identify particle-like states among the eigenstates of qω, without knowing their
respective wave functions inside the scattering region? Despite the wave function,
a scattering state is characterized by its eigenvalue τω and the transmittance. The
real part of the eigenvalues τω of qω is given by Eq. (3.19),

Re(τω) =
dϕµ

dω
, (3.25)

which corresponds to the time it takes the wave to traverse the system, as discussed
before. Since particle-like states are highly collimated, one can estimate their delay
times by the length of the corresponding classical trajectories dividing it by the
speed of light. qω-eigenstates with Re(τω) close to this estimated value are likely to
be particle-like. Furthermore, the imaginary part of τω, which is given by Eq. (3.19),

Im(τω) = −dln(|~µr|)
dω

, (3.26)

indicates how the transmitted intensity changes as a function of ω. Due to the
classical character of particle-like states resulting in maximum transmission, the
output intensity |~µr|2 is almost independent of the frequency ω, so that the deriva-
tive with respect to ω is small. All three indicators, i.e., a high transmission, a
small imaginary part of τω and a real part of τω that can be estimated from the cor-
responding classical trajectory path, can be used to distinguish particle-like states
from all the other eigenstates of qω without the time-consuming measurement of all
wave functions.

We also numerically investigated the influence of absorption and noise with a
noise amplitude of 10% of the signal, and found that those imperfections do not
affect the stability of particle-like states significantly (not shown).

In this subsection we design a realizable set-up to observe particle-like states
in the experiment under the given constraints of size, frequency, and number of
controllable channels. All preliminary simulations prove that the set-up at hand is
suitable for this kind of experiment. In the next subsection we present first results
from the experiment conducted at the University of Nice.

3.4.2 Experimental Results

Ulrich Kuhl’s group, who are real experts in microwave experiments, put much work
and effort into realizing the set-up discussed in the previous subsection. The now
presented results are preliminary and may differ from what will be published in a
journal, however, we can already see a clear tendency towards particle-like behavior
of some scattering states. To jump right to the results, Fig. 3.5(a) shows the direct
particle-like state and Fig. 3.5(b) and Fig. 3.5(c) the states that bounce off the
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boundary, respectively, which correspond to the states predicted in the simulations
shown in Fig. 3.4(b), Fig. 3.4(c) and Fig. 3.4(d). The experimental results are in
good agreement with our simulations thereby corroborating our theory.

After this encouraging proof of principle, we present possible applications of these
beam-like scattering states in the next subsection.

3.4.3 Possible Applications of Particle-Like States

The highly focused wave function and the frequency stability of particle-like states
indicate that a pulse propagating along one “trajectory” of a particle-like state
can be possible, providing the opportunity to send information from one point to
another one with minimal loss of the signal to the environment. A pulse ψ(x, y, t)
can be constructed from a coherent superposition of scattering wave functions with
the same (particle-like) input vector ~c = (c1, c2, ...cN)

T (N is the number of open
modes) but at different frequencies by the Fourier transform,

ψ(x, y, t) =
1√
2π

Z
ω

A(ω)ψ(x, y, ω)e−jω(k)tdω, (3.27)

with ω(k) = kc and ψ(x, y, ω) being the scattering wave function at frequency ω.
A(ω) is the weighting function defining the spectral shape of the pulse which we
assume to have the form of a Gaussian,

A(ω) = Ce−
(ω−ω0)2

2σ2 , (3.28)

where ω0 is the center frequency at which the input vector ~c is calculated, σ is the
width of the Gaussian, and C a normalization factor. In practice, the integral in
ω-space will turn into a sum,

ψ(x, y, t) = C̃
NωX
ω=1

Aωψω(x, y)e
−jω(k)t, (3.29)

where Nω is the number of superimposed wave functions at different frequencies
ω weighted by the coefficients Aω and C̃ is a normalization factor. In Fig. 3.6 we
show pulses propagating along the trajectories of the already shown particle-like
states 1 and 2 (see Fig. 3.4(b) and 3.4(c)) at three different time steps. The figures
show that the pulses stay confined along the whole scattering region, proving the
frequency stability of particle-like states.

In the course of secure information exchange, one wants to clarify if a possi-
ble eavesdropper has intruded into the system. Suppose information should be
sent along the path of particle-like state number 1, but an eavesdropper is located
somewhere along this path. Measuring the transmission matrix t of the new system,
i.e., with perturbator, and calculating qω-eigenstates would not yield particle-like
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(a)

(b)

(c)

Figure 3.5: First experimental realization of the particle-like states predicted in
Fig. 3.4(b)-(d). The set-up and the parameters are discussed in the pre-
vious subsection, whereas the distance between the antenna array (drawn
in purple) and the actual scattering region as well as the rectangular re-
gion below the incoming lead have different dimensions. The absorbers are
indicated by the grey shaded areas. The figures show the intensity of the
wave function whereas an interpolation between the measurement points
was done to smooth out the plot. Although these experimental results are
only preliminary, they show already the predicted beam-like behavior. In
(a), the five highest singular values are kept for the projection in Eq. (3.24),
whereas in (b) and (c) we keep the seven highest singular values.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: (a)-(c), (d)-(f) Two pulses propagating on the particle-like states shown in
Fig. 3.4(b) and Fig. 3.4(c), respectively. Numerically, we calculate the input
vector for the particle-like states on a center-frequency ω0 = 16.5πc

W
, where

c is the speed of light and W the lead width, and inject the same input
state at 20 frequency points in the interval ω ∈ [16.2πc

W
, 16.8πc

W
]. Then we

superimpose the wave functions coherently according to Eq. (3.29). Due to
reasons of practicability, we set the speed of light c ≡ 1 here.
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(a) (b)

Figure 3.7: (a) If an eavesdropper (green) is introduced into the system somewhere
along the path of particle-like state number 2, the operator qω would not
yield this particle-like state anymore, however, particle-like state number 1
can be found since this state is not affected by the obstacle. (b) Particle-
like state number 2 which can be used for information exchange, if the
eavesdropper blocks the path of particle-like state number 1.

state number 1 anymore. However, information could be sent along path number 2,
which avoids the eavesdropper. In combination with a continuous measurement of
the transmission matrix t, an eavesdrop-secure communication can be guaranteed
by sending information along a particle-like state that passes by the eavesdropper,
as can be seen in Fig. 3.7. One big advantage of this method is that the position of
the eavesdropper does not have to be known by the transmitter, since particle-like
states that are affected by the current position of the eavesdropper would not be
“found” by the algorithm. However, particle-like states that are not affected by
the eavesdropper can be identified by their eigenvalues as discussed in the previous
subsection and will be used to send information.

In this subsection we discuss possible applications of particle-like states and nu-
merically prove their applicability in the set-up which we design in the previous
subsection. Particle-like states are found numerically among the eigenstates of the
operator qω, which have a well-defined delay time. Please note that the phase
derivative operator qa in Eq. (3.15) is derived in order to produce output states
that are stable against the change of an arbitrary parameter a. For the particle-like
states investigated so far, this parameter is the frequency ω, however, in the next
section we show that we get very promising scattering states if this parameter a is
the displacement δ of a scatterer (located in the scattering region) from its center
position along a chosen direction ~eδ, i.e., qa = qδ.
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3.5 Avoiding and Focusing on a Target using
Eigenstates of qδ

As derived in section 3.3, eigenstates of the operator qa are stable to first order
against the change of an arbitrary parameter a. Assuming that we have a waveguide
system with one single scatterer inside the scattering region as shown in Fig. 3.8(a),
we now choose this parameter a to be the displacement δ of a scatterer from its
center position ~r0 along a certain direction ~eδ = (ex, ey)

T (represented by a unit
vector, i.e., |~eδ| = 1), instead of the frequency ω of the incident wave, as we did in
the previous section to get particle-like states. Using these parameters, the position
of the scatterer ~rs can be written as a function of the displacement, ~rs = ~r0 + δ~eδ.
Conducting an experiment, the operator

qδ = −jt−1 dt

dδ
(3.30)

can be calculated by a finite but small shift Δδ of the scatterer around the center
position ~r0 along direction ~eδ accompanied by the measurement of the transmission
matrix t(δ) for every position of the scatterer. In a first step, we calculate eigen-
states of qδ for a change of the position of the scatterer in longitudinal direction (see
Fig. 3.8(a)) of the waveguide, i.e., ~eδ = (1, 0)T , and for reasons of simplicity we call
this operator qx. Among the eigenstates of qx, we find a state that has a non-zero
wave function in the whole scattering region except in the vicinity of the scatterer,
where the wave function is negligible small, as can be seen in Fig. 3.8(b). Also the
opposite effect can be observed: one eigenstate of qx focuses on the scatterer and
thus gets reflected entirely, see Fig. 3.8(c). In order to understand this behavior, we
go one step back and first try to understand the working mechanism of the operator

Qδ = −jS†dS
dδ

, (3.31)

which is the corresponding generalization of the Wigner-Smith time-delay operator
(3.8). In what follows, we derive a mathematical expression for the eigenvalues of
this new operator Qδ and try to give it a physical interpretation, in analogy to the
relation of the Wigner-Smith operator to the delay time.

First we consider an unspecified scattering system, where the whole scattering
region is shifted in an arbitrary direction ~eδ. Since the shift of the system should
be small, one can approximate the derivative in Eq. (3.31) by

dS(δ)

dδ
≈ S(~r0 +Δδ~eδ)− S(~r0)

Δδ
. (3.32)

The scattering matrix evaluated at the shifted position S(~r0 + Δδ~eδ) is related
to the scattering matrix at position ~r0, S(~r0), by the unitary translation operator
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Figure 3.8: (a) Waveguide with one single circular metallic scatterer (green) of which the
position is changed in longitudinal direction in order to calculate eigenstates
of qx. (b) Eigenstate of qx that avoids the scatterer, whereas (c) shows
an eigenstate with strong focus on the scatterer. The qx-eigenvalues were
calculated according to Eq. (3.24), where all singular values in the projection
of the transmission matrix were used for the calculation. The incoming
wavelength allows for a total number of 20 open modes.

T̂ = e−j~k~eδΔδ,

S(~r0 +Δδ~eδ) = T̂ S(~r0)T̂
−1 = e−j~k~eδΔδS(~r0)e

j~k~eδΔδ = e−jk̂eΔδS(~r0)e
jk̂eΔδ, (3.33)

with ~k = −j ~∇ = (k̂x, k̂y)
T and the short notation k̂e := ~k~eδ = exk̂x + eyk̂y. For

systems with the same number of open modes in both leads, k̂x and k̂y take the
block form

k̂x =

✓
k̂l
x 0

0 k̂r
x

◆
(3.34)

and

k̂y =

�
k̂l
y 0

0 k̂r
y

!
, (3.35)

where k̂l
x and k̂l

y are operators acting on the waves in the left-hand lead, i.e., on ~φl

and ~µl, and k̂r
x and k̂r

y acting on ~φr and ~µr. The matrix elements of the operator
k̂l
y = k̂r

y, for example, take the explicit form

(k̂l
y)mn = −j hχm| d

dy
|χni = −j

Z W

0

χm(
d

dy
χn)dy, (3.36)

where χn are the transverse mode profiles (3.3).
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Making again use of the fact that the shift δ is small, one can linearize the
exponential term, ejk̂eΔδ ≈ 1 + jk̂eΔδ. Using these expressions, we end up with

Qδ = −jS†dS(δ)
dδ

(3.37)

= −jS† (1− jk̂eΔδ)S(δ)(1 + jk̂eΔδ)− S(δ)

Δδ
(3.38)

= k̂e − S†k̂eS, (3.39)

where we use the unitarity S†S = and neglect the term proportional to Δδ2. The
expectation value hQδi for an arbitrary input state ~φ yields

hφ|Qδ|φi = ~φ†Qδ
~φ = ~φ†k̂e~φ− ~φ†S†k̂eS~φ = ~φ†k̂e~φ− ~µ†k̂e~µ = hk̂eiφ − hk̂eiµ, (3.40)

which is the difference between the expectation value of k̂e of the input state ~φ
and the output state ~µ = S~φ. Since the coefficient vectors ~φ and ~µ contain the
respective flux amplitudes, calculating the expectation value of the operator k̂e for,
e.g., an input vector ~φ, φ†k̂eφ, yields the expectation value for the flux amplitudes
rather than the expectation value of the wave amplitudes. However, for reasons of
simplicity, we refer to the expectation value hk̂ei as the momentum of ~φ parallel
to ~eδ, while keeping in mind that this quantity is not exactly equal to the physical
momentum. Eq. (3.40) thus provides us with the information of the momentum
difference parallel to ~eδ between the input and the output state, which is equivalent
to the momentum transferred to the system (up to a minus sign).

Now we can go back to our original system with the single scatterer in Fig. 3.8:
Shifting a single scatterer in longitudinal direction (x-direction), which in this case
is equivalent to shifting the entire scattering region, the expectation value of an ar-
bitrary scattering state ~φ would correspond to the momentum change in x-direction
of this state that is caused by the scatterer. Just as the eigenstates of the Wigner-
Smith operator have well-defined delay times, eigenstates of Qδ have a well-defined
momentum transfer. Eigenstates of Qδ that have an eigenvalue close to zero, i.e.,
have no change of the momentum in x-direction, are thus states that avoid the
scatterer. On the other hand, eigenstates with a large eigenvalue experience a large
change of the momentum, and are thus strongly scattered at the obstacle. Hence,
by looking at the eigenvalues of Qδ, we can predict if a state avoids or focuses on
the scatterer. Now that we are able to describe the behavior of the new operator
Qδ, we can also explain the eigenstates of qx in Fig. 3.8(b) and 3.8(c), since the
eigenvalues of Qδ and the real part of the eigenvalues of qδ are both proportional
to the derivative of the scattering phase. The first eigenstate in Fig. 3.8(b) corre-
sponds to an eigenvalue with a small real part and, therefore, avoids the scatterer,
whereas the other eigenstate with large real part of the eigenvalue gets strongly
scattered.
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Until now, we have only discussed the case where the scatterer is shifted in
longitudinal direction, which is equivalent to fixing the position of the scatterer
and shifting the whole scattering region in x-direction. Shifting the scatterer in
transverse direction, however, cannot be seen as shifting the whole scattering region
in y-direction by simultaneously fixing the position of the scatterer. The assumption
that the scattering matrix of the system with the scatterer at the shifted position,
S(~r0 +Δδ~eδ), is related to the scattering matrix of the system where the scatterer
is at its center position, S(~r0), by a translation operator T̂ is thus not valid and the
eigenvalues of (3.31) cannot be interpreted as the momentum difference between
input and output state anymore. However, we show in the following paragraph that
(at least) for the investigated system there is a correlation between the eigenvalues
of the operator and the momentum difference of input and output state also for the
case where the scatterer is shifted in y-direction, although this is not yet completely
understood. Therefore, we assume in the following that in both cases (transverse
and longitudinal shifting of the scatterer) the eigenvalues yield the momentum
difference in a chosen direction between input and output state.

Contrary to the eigenvalues of the Wigner-Smith time-delay operator, eigenvalues
of Qδ and qδ can also be negative, since the momentum is a signed quantity. We
now show how we can make use of this fact in order to characterize the scattering
states in more detail. Assume again, that there is only one single scatterer inside
the system. The real part of the eigenvalue of qδ is proportional to the momentum
difference (parallel to a chosen direction) between input and output state. Due
to momentum-conservation, the same momentum (but opposite sign) had to be
transferred to the scatterer (apart from scattering at the boundary, which is subject
of current investigations). The sign of the eigenvalue is therefore directly related to
the direction from which the wave focuses on the scatterer, just as a particle hits a
target from a certain direction. We illustrate this issue by showing two systems: In
Fig. 3.9(a) we can see a waveguide system with one quadratic scatterer located in the
middle. In this system, the operator qδ will be calculated by changing the position
of the scatterer in longitudinal direction x (i.e., qδ = qx), whereas in the system
shown in Fig. 3.9(b), the scatterer is shifted in transverse direction y (i.e., qδ = qy).
Figs. 3.9(c) and 3.9(d) show the qx- and qy-eigenstate with the smallest eigenvalue
of either system shown in 3.9(a) and 3.9(b), respectively, where we can clearly see
that the wave functions of both states pass by the scatterer. Now comes the crucial
difference: In Fig. 3.9(e) and Fig. 3.9(g) we can see two qx-eigenstates with the
highest real parts of the eigenvalues τx. Both eigenvalues have the same sign and
are of the same order of magnitude, since they correspond to scattering states that
are mirror-symmetric to each other. Fig. 3.9(f) and Fig. 3.9(h) show two eigenstates
of qy with the highest real parts of the eigenvalues τy which are mirror-symmetric
to each other as well, but the eigenvalues have opposite signs. This stems from the
fact that the operator qy measures the momentum difference in y-direction, which
is obviously different for those states. The momentum-difference in x-direction,
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however, is almost the same, which explains the same sign of the eigenvalues of
the eigenstates of qx. The connection between the sign and the eigenvalues is valid
for all eigenstates of qy and not only for the ones shown here. Thus, one can
predict the side from which the wave impinges onto the obstacle relative to the
direction in which the scatterer is shifted, however, if there are more scatterers
in the system, this connection between the eigenvalues and the wave function is
not valid anymore due to multiple scattering. In the next subsection we discuss
an experimental realization of such avoiding and focusing states in a microwave
set-up and show first experimental results from the experiment conducted at the
University of Nice.

3.5.1 Avoiding and Focusing on a Target in the Experiment

In order to show that the focusing and avoiding mechanism works also in a strongly
scattering environment, additional cylindrical scatterers are placed inside the scat-
tering region around the main scatterer that should be avoided and focused on, re-
spectively, as can be seen in Fig. 3.10(a). The main scatterer is a metallic cylinder
which is located in the middle of the scattering region and the randomly distributed
smaller scatterers are teflon cylinders with a refractive index of n = 1.44. The lead
width W = 10 cm and 10 antennas working at a frequency of ν = 15.5 GHz support
a total number of 10 flux-carrying modes.

The task is now to choose the relevant eigenstates (those that avoid or focus on
the main scatterer) among the 10 + 9 + 8 + ...+ 1 = 55 eigenstates that we get for
every possible singular value decomposition in the calculation of qδ in Eq. (3.24)
without looking at the wave function of the scattering state. The question of
identifying the relevant eigenstates on the basis of quantities that are available in
the asymptotic regions is of fundamental importance, since for real applications,
the scattering region is not always accessible (e.g. in human tissue). A state that
avoids the scatterer is characterized by a small real part of the eigenvalue τδ. Among
those states there are also states that get reflected at the smaller scatterers at the
front facet of the scattering region and thus feature a small transmission. If we
want to sort out those states, we can demand, besides a small real part of τδ, also
a high transmittance Tφ of the state ~φl, which is given by Tφ = |t~φl|2, where t
is the measured transmission matrix. The imaginary part of τδ tells us how the
total output intensity changes as a function of the position of the scatterer. Since
the output intensity of avoiding states should not be affected by a small change of
the position, the imaginary part of τδ should be small for those states. Using the
criterion

κ =
|τδ|
|Tφ| (3.41)

in order to sort all 55 possible eigenstates, we can find the “best” avoiding scat-
tering states among the eigenstates with the smallest value κ. On the other hand,
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(a) Waveguide with one quadratic scatterer that is
shifted in longitudinal direction in order to calculate
the operator qr=x.
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(b) Waveguide with one quadratic scatterer that is
shifted in transverse direction in order to calculate
the operator qr=y.

(c) qx-eigenstate with the smallest real part of the
eigenvalue, Re(τx) = 2.059× 10−12

(d) qy-eigenstate with the smallest real part of the
eigenvalue, Re(τy) = 4.022× 10−14

(e) qx-eigenstate with large positive real part of the
eigenvalue, Re(τx) = 0.07961

(f) qy-eigenstate with large real part of the eigen-
value, Re(τy) = 0.7153

(g) qx-eigenstate with large real part of the eigen-
value, Re(τx) = 0.1072

(h) qy-eigenstate with large negative real part of
the eigenvalue, Re(τy) = −0.8039

Figure 3.9: The left column shows the waveguide system with qx-eigenstates, in which
the scatterer (green) is shifted in longitudinal direction (x), whereas the right
column shows the same results for transverse (y) shifting of the scatterer.
The sign of the real part of the eigenvalues of qy determines whether the
state hits the obstacle from the top or from the bottom, since qy measures
the momentum difference in y direction. Since all qx-eigenstates hit the
obstacle from the left-hand side, all eigenvalues have the same (positive)
sign. The qx,y-eigenstates were calculated according to Eq. (3.24), where
the four smallest singular values were neglected. The chosen value of the
incoming wavelength results in a total number of 20 propagating modes.
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eigenstates that focus onto the main scatterer have a large real part of τδ and a
large imaginary part of τδ, since the output intensity of the focusing states could
change significantly when the position of the scatterer is changed. The “best” fo-
cusing states can thus be found among the eigenstates that have a large eigenvalue
|τδ|. Including the transmittance Tφ of the eigenstates into the selection process for
focusing states, like in criterion (3.41), is not practical since states that get reflected
at the smaller background scatterer feature a small transmittance as well without
being scattered at the main scatterer.

In collaboration with the University of Nice we calculated all 55 qδ-eigenstates
for a shift of the main scatterer in transverse direction, qδ = qy, and sorted them by
the criterion (3.41) and the eigenvalue |τδ|, respectively, in a real microwave set-up.
In Fig. 3.10(b)-3.10(g) we can see three qy-eigenstates with the smallest κ-value and
three eigenstates with the largest eigenvalue |τδ|, respectively. Whereas the states
with the smallest κ-value show a low intensity in the vicinity of the main scatterer,
the states with the highest eigenvalue show a strong focus, which is in very good
agreement with our theory.

At this point we want to emphasize that these results open up a new and promis-
ing way of wave front shaping experiments. Focusing on a target inside a scattering
medium has already been realized experimentally [49–52], however, our approach
derives from novel solid, theoretical grounds. A completely new approach is the
omission of a target inside a scattering medium. Both strategies can lead to new
and useful applications ranging from medical radiotherapy (destroying a tumor
through wave focusing or the omission of healthy organs) to wireless communica-
tion (where the focus should be maintained on a mobile receiver). We think that
this first successful experiment, which proves our theory, is just the beginning of a
new direction in the domain of wave front control.
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(a) Sketch of the experimental set-up: waveguide with a width of W = 10 cm. The metallic main
scatterer (light green, diameter d = 17.65 mm) is shifted in transverse direction in order to calculate
qy-eigenstates. The smaller background scatterer (dark green) are made of teflon (n = 1.44) and have
a diameter of d = 5.1 mm. 10 antennas working at a frequency of ν = 15.5 GHz allow for a total
number of 10 flux-carrying modes. The positions of the background scatterers is different in the real
experiment. The red dotted lines indicate the region which is shown in the plots below.

(b) n✏ = 8, κ = 0.00499 (c) n✏ = 9, |τδ| = 0.713

(d) n✏ = 5, κ = 0.0063 (e) n✏ = 10, |τδ| = 0.934

(f) n✏ = 3, κ = 0.00631 (g) n✏ = 10, |τδ| = 1

Figure 3.10: The left column shows three experimentally measured qy-eigenstates that
have the smallest κ-value (normalized by the highest value) as defined in
Eq. (3.41) with (left) and without main scatterer (right) inside the system.
The wave function shows a significant drop around the scatterer and thus
changes barely when the scatterer is taken out. The eigenstates with the
highest eigenvalues |τδ| (normalized by the highest value) are shown in the
right column and clearly focus onto the metallic scatterer, thus changing
significantly when the scatterer is removed. n✏ is the number of singular
values that will be used for the projection in Eq. (3.24). The intensity
plots show only the region around the main scatterer indicated by the red
dotted lines in (a). The main scatterer is shifted by Δδ ≈ 4.4 mm in order
to approximate the derivative in qy by a finite difference quotient.
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3.6 Coherent Perfect Absorber (CPA)

One important milestone in modern physics was the invention of the laser. In its
most simple form, a laser consists of an amplifying medium that is placed inside
a resonator and, under specific conditions, starts to emit coherent monochromatic
radiation. Going now to arbitrary scattering systems, one can calculate poles and
zeros of its scattering matrix S in the extended complex k-plane. Whereas in
Hermitian systems zeros are located in the upper half of the complex k-plane (where
Im(k) > 0), poles are located in the lower k-plane (Im(k) < 0). Adding gain to
the system moves the poles up towards the real k-axis where the system turns into
a laser when a pole crosses the real k-axis. The opposite is also possible: adding
loss to a system moves down the zeros until one reaches the real k-axis. Injecting
an eigenvector of the S-matrix with eigenvalue equal to zero into this scattering
system leads to a vanishing outgoing wave, i.e., perfect absorption of the incoming
wave. This phenomenon is the time-reversed process of a laser and referred to as
a coherent perfect absorber (CPA) [24]. Considering a two-dimensional waveguide
system, where a wave can be injected from both sides, a physical interpretation of a
CPA can be given as follows: The reflected part of the wave injected from the left-
hand lead destructively interferes with the transmitted part of the wave injected
from the right-hand lead and vice versa. The intensity is therefore ”trapped” inside
the scattering region due to interference, where the lossy medium will absorb the
wave completely. The term ”coherent” comes from the fact that the relative phase
between the right-hand and left-hand injected wave has to be tuned in order to end
up with the required interference pattern.

Whereas in conventional laser systems a resonator plays an essential part, so-
called random lasers are based on a different working mechanism: a disordered gain
medium leads to multiple scattering of light which increases the path length inside
the gain medium and thus enhances amplification [53]. The time-reversed process of
a conventional laser (“anti-laser”) has already been realized experimentally [25, 26],
however, the time reversed process of a random laser (“anti-random laser”) has
defied an experimental realization so far.

In the next subsection we discuss all the steps that are necessary in order to prove
that a two-dimensional waveguide system with randomly distributed scatterers in-
side the scattering region is at a CPA point (and in this way acts as an “anti-random
laser”) with strong focus on an experimental realization with microwaves.

3.6.1 Possible Experimental Realization of a CPA

Contrary to the systems we used before, a CPA requires injection from both sides
of the scattering region, i.e., antennas on the right-hand side and antennas on the
left-hand side will inject radiation into the system, as can be seen in Fig. 3.11.
The absorbing material will be represented by a passive antenna in the middle
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of the scattering region that leads to an outcoupling of intensity and, therefore,
introduces loss. The CPA point is achieved when the entire incoming radiation is
coupled into this antenna inside the scattering region. Since a certain degree of
outcoupling and absorption due to other mechanisms is always present in a real
system, the energy coupled to the absorber antenna will be less than the energy
injected into the system, which makes it hard to prove that the system has reached
the CPA point. Therefore, claiming that the system has reached the CPA point
following an argument based on energy conservation is difficult. In the following,
we present a method that enables us to measure the full scattering matrix S, i.e.,
the transmission matrices tl and tr as well as the reflection matrices rl and rr, with
the aim of finding the CPA point by calculating zeros of the scattering matrix S.
This condition is sufficient to prove that the injected intensity is maximally coupled
to the absorbing antenna, which thus acts as a perfect absorber.

As already mentioned in the previous sections, measuring the reflection matrices
(rl and rr) is hard to do in experiments, however, additional measurements of the
wave on either side of the scattering region, enables a full measurement of the
scattering matrix S. Fig. 3.11 shows the complete set-up of the CPA experiment,
where antenna arrays A1 and A2 are those antennas that will inject radiation into
the system, whereas the two double antenna arrays P1 and P2 will only be used as
a probe to measure the wave function, so that we refer to them as probe antennas.
In practice, P1 and P2 do not have to be independent fixed antennas but can
rather be positions where a movable antenna can be placed, however, for reasons
of simplicity, we assume that we have separate antennas. A1 and A2 are separated
by a distance L, whereas the distance between A1 and P1, as well as between A2
and P2 is L0. The absorbing antenna, which is used instead of a lossy material, is
labeled as Aa and furthermore, cylindrical scatterers are placed inside the scattering
region to increase multiple scattering, which is an essential part of an “anti-random
laser”.

Absorption inside the waveguide leads to complex propagation constants, βn =
kx,n + iγn for right-propagating waves and β∗

n for left-propagating waves, where
γn > 0 is the absorption coefficient and kx,n is the wavenumber in longitudinal
direction of the n-th mode. An arbitrary signal σm measured at the m-th antenna
of P1 at transverse position ym can be written as

σm(L0) = σ(x = L0, y = ym) =
NX

n=1

[ane
jβnL0 + bne

−jβ∗
nL0 ]χn(ym)

=
NX

n=1

[ane
jkx,nL0e−γnL0 + bne

−jkx,nL0e−γnL0 ]χn(ym)

(3.42)
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Figure 3.11: Sketch of the set-up for the CPA experiment. Antenna array A1 and A2
will inject an eigenstate that corresponds to a zero of the scattering matrix
S. This state gets fully absorbed at the absorbing antenna Aa in the
middle of the scattering region. Probe antennas P1 and P2 are used to
calculate the reflection matrices rr and rl. Randomly distributed scatterers
(green) are placed inside the scattering region to increase scattering within
the system. Absorbers are placed at the ends of the scattering geometry
to avoid reflections at the open end of the waveguide. The incoming
wavelength is chosen in such a way, that four modes are open at either
side of the waveguide outside the scattering region.

and

σm(L0 +ΔL) =
NX

n=1

[ane
jβn(L0+ΔL) + bne

−jβ∗
n(L0+ΔL)]χn(ym)

=
NX

n=1

[ane
jkx,n(L0+ΔL)e−γn(L0+ΔL)

+ bne
−jkx,n(L0+ΔL)e−γn(L0+ΔL)]χn(ym),

(3.43)

where N is the number of open modes, χn(y) is the transverse lead-mode profile of
the n-th mode as given in Eq. (3.3) and an and bn are arbitrary complex coefficients.
The signals σm(L−L0) and σm(L− (L0 +ΔL)) for the probe antennas P2 can be
written in analogy to the above equations, but with different complex coefficients
cn and dn. In a first step, we determine the complex propagation constants βn with
an empty measurement set-up, i.e., without absorbing antenna Aa and without
scatterers. Although the system is empty, the absorbers at the end of the system
will cause small reflections, but no mode mixing. Injecting the n-th mode from
the left lead, we can measure the signals σl

n(x, ym) = σl
n,m(x) at the m-th probe

antenna of P1

σl
n,m(L0) = ejβnL0χn(ym) + r̃lnne

−jβ∗
nL0χn(ym),

σl
n,m(L0 +ΔL) = ejβn(L0+ΔL)χn(ym) + r̃lnne

−jβ∗
n(L0+ΔL)χn(ym),

(3.44)
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where r̃lnn is the n-th diagonal element of the (diagonal) reflection matrix r̃l of the
empty system. For N flux-carrying channels, we have to determine N complex
propagation constants βn and N complex reflection matrix elements r̃nn, i.e., 2N
complex quantities, which requires 2N linearly independent complex equations.
These equations can be obtained from the measurement of the signals (3.44) at
one transverse position ym but at two longitudinal positions L0 and L0 + ΔL for
each mode. The measurement of the signals at every transverse position ym and
the measurement of the signals at antenna array P2 for injection from the right-
hand side are redundant, however, those additional measurements can be used for
a more precise determination of the propagation constants βn. The calculated
propagation constants βn can be verified by measuring the transmission matrices tr
and tl between the antenna arrays A1 and A2 which take the easy form tl = t∗r =
diag(ejβnL) in an empty system. Now that we have determined the propagation
constants βn, we can measure the reflection matrices r̃r and r̃l of the scattering
system with absorbing antenna Aa and the scatterers put in place in a second
step. Analogous to Eq. (3.44), we can measure the signals at antenna array P1 for
injection of the n-th mode

σl
n,m(L0) = ejβnL0χn(ym) +

NX
i=1

r̃lnie
−jβ∗

i L0χn(ym). (3.45)

Contrary to the empty system, the reflection matrix r̃l now has N×N non-zero ele-
ments, which requires the measurement of the signals at all N transverse positions,
(ym,m = 1, ...N) for each of the N injected modes to get N2 equations. Eq. (3.45)
can be written in matrix form as

Σ = B+ · C + rl ·B− · C, (3.46)

with (Σ)nm = σl
n,m(L0), (B±)nl = e±jβnL0δnl and (C)lm = χl(ym), where δnl denotes

the Kronecker-delta. Solving for the reflection matrix r̃l, we end up with

r̃l = (Σ−B+ · C) · (B− · C)−1. (3.47)

The reflection matrix r̃r can be calculated in analogy to Eq. (3.46) by measuring
the signals at P2 for injection from the right-hand antenna array A2. Due to time-
reversal symmetry, r̃l = r̃Tl and r̃r = r̃Tr , there are less than N2 independent entries
of r̃l and r̃r providing a possibility to verify the results. Since we use the signal
at the probe antennas P1 and P2 for our calculations, we actually determine the
reflection matrices for the reduced system between the antenna arrays P1 and P2
rather than the reflection matrices of the full system between A1 and A2. The full
reflection matrices rl and rr can then be calculated according to

rl = tAP · r̃l · tAP (3.48)
rr = t0AP · r̃r · t0AP , (3.49)
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where tAP = (t0AP )
∗ = diag(ejβnL0) are the transmission matrices between A1 and

P1 as well as A2 and P2, which can be measured in the empty set-up in a previous
step. In a last step, we have to measure the transmission matrices tl and tr between
A1 and A2 so that we have the information of the full scattering matrix in the usual
form

S =

✓
rl tr
tl rr

◆
. (3.50)

This procedure will be performed for each frequency ν in an interval Δν by simul-
taneously calculating the 2N eigenvalues λn(ν) of S(ν). If one eigenvalue becomes
zero at a certain frequency νCPA, the corresponding eigenvector ~φ = (~φl, ~φr)

T con-
tains the information on how to adjust the relative phases and amplitudes of the
antennas in A1, ~φl, and A2, ~φr, in order to achieve perfect absorption of the inci-
dent wave. At this point, the injected wave is maximally coupled to antenna Aa.
Using an antenna as the dissipative element of the CPA brings one big advantage:
We can verify that the injected wave is maximally absorbed by the antenna Aa by
calculating the transmission matrix from antennas A1 and A2 to the absorber an-
tenna Aa. This 1× 2N -dimensional transmission matrix t can be used to calculate
eigenvectors of the 2N × 2N -dimensional matrix t†t. The eigenvector of t†t with
the highest eigenvalue, i.e., with the highest transmittance to the antenna Aa, has
to coincide with the eigenvector ~φ of the previously calculated scattering matrix S
with eigenvalue zero.

To summarize, in this section we develop an algorithm that can be used to find a
CPA point in a dissipative and disordered two-port waveguide system - a so-called
“anti-random laser” - by considering experimental constraints. The corresponding
experiment at the University of Nice with N = 4 antennas in each of the two
antenna array (and N = 4 flux-carrying modes) is currently in preparation. The
encouraging results of the microwave experiments mentioned before let us expect
that also this experiment will yield a positive outcome.
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Conclusion

In this thesis we present two opposing approaches for controlling the propagation
of waves in specific geometries. The first approach deals with the control of waves
by manipulating the scattering medium itself. We show that a proper design of
a material’s refractive index can lead to constant-intensity waves [19]. One of the
main results of this thesis is the explanation of the working mechanism of these
waves in systems, in which the refractive index varies in propagation direction. We
show that constant-intensity waves are the non-Hermitian analogue to plane waves
in Hermitian systems without any back reflections in the entire system.

Constant-intensity waves have a number of interesting properties. Due to the
special form of CI refractive indices, the connection to supersymmetric quantum
mechanics is investigated. We show, that constant-intensity waves can alterna-
tively be derived in the framework of supersymmetric quantum mechanics by de-
manding that the superpotential has to be purely imaginary. Also, a relation to
PT -symmetry is shown. Most strikingly, however, is the fact that some constant-
intensity refractive indices can be unidirectionally invisible. The unidirectionally
invisible refractive index in the well-established work [22] is just one example of
a whole class of unidirectionally invisible CI refractive indices introduced in this
thesis.

By generalizing the concept of constant-intensity waves, we find that not only
the phase, but also the amplitude (as a function of the spatial coordinate) of the
scattering state can be predetermined by correctly tailoring the complex refractive
index, leading to a new class of reflectionless refractive index distributions. These
refractive indices can be calculated analytically from the desired form (amplitude
and phase) of the scattering wave function.

After these theoretical considerations, we also discuss two possible experimental
realizations of constant-intensity waves without the difficulty of implementing gain
regions. Whereas one possible experiment would show a true constant-intensity
wave, the second one leads to a uniformly decaying wave function, but still shows
the concept of constant-intensity waves.

In the second part of this thesis we show that we can achieve certain aspects of
wave control by changing the incident wave front rather than the medium itself.
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Inspired by the Wigner-Smith time-delay operator Qω, we introduce a whole new
operator class that can be constructed from the transmission matrix t exclusively
and has the useful feature of producing scattering states that are stable against
the change of an arbitrary parameter. One example of this class, qω, can be used
to find scattering states with a beam-like behavior. We analyze all aspects of an
experimental realization of such particle-like states in a microwave cavity and also
show first promising results from our collaborators from the University of Nice.

Whereas particle-like states are scattering states that are stable against the
change of the incident frequency, new wave effects can be observed if this parameter
is chosen to be the position of a scatterer located inside a scattering region. Some of
the eigenstates of the corresponding operator qδ either focus onto or omit the scat-
terer (whose position is changed) in the sense that the wave function is negligibly
small around the scatterer. Focusing on a target that is located inside the medium
has already been achieved experimentally, however, the presented algorithm is easy
to implement and is based on an elegant theoretical concept. The same algorithm
can lead to scattering states that avoid a specific scatterer that can even be located
in a strongly scattering medium, e.g., randomly distributed background scatterers,
which is a completely new approach in wave front shaping. This fascinating feature
can lead to useful applications, e.g., in the medical domain. An experiment con-
ducted at the University of Nice demonstrated clearly these new scattering states,
thereby confirming our theoretical predictions.

Injecting waves in a disordered two-port waveguide system with a dissipative
element can lead to perfect absorption of the incident wave. An experimental
realization of such a coherent perfect absorber (CPA) is discussed in the last section.
Experimental results are unfortunately not yet available, however, we are expecting
a successful outcome since our numerical simulations are in good agreement with
the experimental data so far.

All promising numerical as well as experimental results presented in this thesis
show in which way wave control can be used to create novel and counterintuitive
scattering states. Whereas the wave front shaping predictions are confirmed or are
already in a preparatory experimental state, there is no experimental realization of
constant-intensity waves yet. A future goal of our work will thus be to make specific
predictions for the realization of these exotic wave states in currently available
experimental setups.
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