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Abstract

Multi-Context Systems (MCS ) are systems of distributed knowledge bases which interact via so
called bridge rules. The MCSs we are interested in are nonmonotonic and therefore bridge rules
can cause inconsistencies in the MCS while the knowledge bases for themselves are consistent.
We will develop an algorithm which identifies those inconsistencies and proposes bridge rule
modifications to the user which will make the system consistent. This algorithm will be effective
with respect to requesting only as much information from the distributed knowledge bases as
necessary. Therefore, for a user only interested in a part of the system, it is not necessary to
know the whole system. We will show that this algorithm is sound and complete and present
data demonstrating the performance of a reference implementation. To increase the performance
of the algorithm we also propose further optimizations like edge and subset pruning and show
the effectiveness of those modifications on the reference implementation.
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Kurzfassung

Multi-Context Systeme (MCS ) beinhalten verteilte Wissensbasen welche untereinander Infor-
mationen mittels sogenannter Bridge Rules austauschen. Die Multi-Context Systeme in welchen
wir interessiert sind, sind nicht monoton, was dazu führt, dass die Bridge Rules für Inkonsisten-
zen verantwortlich sein können, während die Wissensbasen für sich konsistent sind. Wir wer-
den einen Algorithmus entwickeln, welcher diese Inkonsistenzen identifiziert und dem Nutzer
vorschlägt, wie die Bridge Rules zu modifizieren sind um das System wieder konsistent zu ma-
chen. Dieser Algorithmus ist in der Hinsicht effizient, dass nur so viele Informationen wie nötig
aus dem verteilten System abgefragt werden. Das macht es überflüssig, das gesamte System
zu kennen. Wir werden zeigen, dass der Algorithmus korrekt und vollständig ist, sowie Da-
ten präsentieren, welche die Performance einer Referenzimplementierung unterstreichen. Um
die Performance weiter zu steigern, werden wir Optimierungen, wie Edge und Subset Pruning,
vorgeschlagen und demonstrieren die Effizienz dieser Optimierungen an der Referenzimplemen-
tation.
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CHAPTER 1
Introduction

In an increasingly connected world with a consequential specialization of companies and insti-
tutions, increased technological possibilities, and a growing amount of knowledge it is more and
more necessary to interconnect all involved entities in such a way that they can communicate
and exchange knowledge and information efficiently and as much automated as possible. Since
there is already a lot of progress with respect to communication between people and the auto-
mated exchange of information between computers, the next step is to automate and enable the
computer based exchange of knowledge between independent, heterogeneous entities.

Examples are systems for maritime situational awareness for the coast of the Netherlands
where around 2000 ships are daily active, from normally (legally) behaving ships to smugglers,
illegal fishing ships, and ships dumping garbage. Bringing together the information about on-
going actions and plans of the protagonists (either cooperating or not) and processing it, e.g.,
for the coast guard, is the challenge of such a system [26]. Another example is health and life
sciences where huge amounts of data has to be handled. As an example Erdem et al. [17] and
Barilaro et al. [5] show in their papers how to answer complex queries about the interdependen-
cies between drugs and genes over distributed knowledge bases of drug-drug interaction chains,
cliques of genes based on gene-gene relations, and similarities/diversities of genes/drugs.

In this thesis we use Multi-Context Systems to interconnect distributed knowledge bases,
such as described above, and solve specific problems which arise due to the combination of
these independent knowledge bases.

1.1 Problem Description

A Multi-Context System (MCS ) is a formalism that allows to combine different types of mono-
tonic and nonmonotonic knowledge sources and describes the information exchange between
them [10]. Therefore we have contexts which represent a knowledge base in a specific knowl-
edge representation formalism, e.g., a relational database, a logic program or an answer set
program. The knowledge held at a context may depend on the beliefs of other contexts. This
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information flow is modeled via so called bridge rules, where bridge rules support negation as
failure and are therefore nonmonotonic.

Now contexts, considered individually, may have one or more models. If another context
now requests information from other contexts, which for themselves have valid models, the
combination of the models from different contexts can lead to contradicting knowledge. Let’s
take the example from the biomedical field described above: We request information about the
effectiveness of a specific drug on patients with specific genes A and B from two knowledge
bases from different scientific institutes. One says the effectiveness of the drug is high since
the patient has a gene A and the second backups this information. Now one of the institutes
publishes a new study which says that if the patient has also gene B then the effect of the drug
vanishes. So now we have contradicting information and the system won’t state that the drug has
no effect on this patient but instead only state nothing without any explanation about the cause.

The task of finding such explanations is not trivial since such a system is distributed and may
not scale well on large instances. The context which is requesting the information is not aware
of all the information on all contexts and therefore has to send requests to the other contexts to
draw its conclusions. In addition for a specific system it is possible that there is not only one
explanation but there are a lot of different and complementary explanations which could all be
of interest for the user or system which requests them to make a comprehensive decision about
fixing them. Those circumstances makes also network bandwidth and size of the exchanged
data structures an important aspect to consider especially due to the combinatorial growth of
explanations with an increased number of contexts.

1.2 State-of-the art

The work on formalization of contextual information goes back to the papers of McCarthy [27]
and Giunchiglia [19]. Giunchiglia states that most cognitive processes are contextual but reason-
ing is usually performed on a small subset of the global knowledge base and therefore introduces
a theory of reasoning with contexts which encapsulate such subsets. These formalisms and many
of the successional ones, e.g., the propositional logic of context by McCarthy [28], are based on
classical, monotonic reasoning. With the papers of Roelofsen and Serafini [32] and Brewka
et al. [11] default negation was introduced and allowed therefore the modeling of absence of
information on contexts. But in contrast to former papers those two approaches only allowed
homogeneous contexts in the sense that all contexts have the same inference methods. Brewka
and Eiter [10] finally defined a formalism which allows default negation and heterogeneous
contexts. This formalism is also the basis of this thesis.

Furthermore Dao-Tran et al. [14] have done some work to define partial views on MCSs .
Therefore not all the contexts have to be consistent anymore but only this part which is of interest
(and relevant) for the requested information. An algorithm to calculate queries based on such
views in a distributed environment is described there as well. This algorithm runs on every
context and calculates partial results, which are communicated to instances at other contexts.

The following papers approach the problem of inconsistencies in an MCS . They describe
ways to fix inconsistencies not automatically but show possible ways to solve them and let the
final decision of how to fix it to the user. This is mainly due to the fact that the inconsistency
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itself contains valuable information about the system and the knowledge in it. This knowledge
is not easily recognizable by the machine so if the inconsistencies would be fixed by automatic
systems this knowledge would be lost. Two ways to explain inconsistencies in MCS have been
developed by Eiter et al. [16]. One is to identify those bridge rules which, if removed or applied
unconditionally1, would result in an MCS with at least one consistent state. Such a set of bridge
rules is called diagnosis. The second way defines two sets of bridge rules E1 and E2, E1 is a
set of bridge rules which are relevant for the inconsistency of the MCS . I.e., if the bridge rules
of the MCS are replaced with the ones from E1 the MCS is inconsistent and adding any other
bridge rules of the original MCS will not make it consistent. Furthermore E2 is a set of bridge
rules that, if at least on of them is applied unconditionally to the MCS , can make the MCS ,
replaced with the bridge rules E1, consistent. This notion has been called explanation. Both
notions, diagnosis and explanation are defined over the whole MCS and do not support a partial
view.

Finally there has been some work on optimizing MCS calculations: In [4] ways to opti-
mize the distributed algorithm as described in [14] has been presented. An analysis of the MCS
topology and a resulting smaller representation of the context dependencies is one part of the
optimization; another is the characterization of minimal interfaces for the information flow be-
tween the contexts to minimize the amount of data send through the network.

1.3 Goals

Our goal is to have a system which provides the requesting user with explanations about in-
consistencies in those parts of the MCS where the user is interested in. Therefore the system
considers only a minimal subset of contexts of the whole MCS which are necessary to provide
those explanations to the user. To accomplish this we first have to define a formalism which al-
lows to express such explanations for the whole MCS or parts of it and then define an algorithm
which calculates them.

The system must also handle the distributed nature of an MCS which implies that costs w.r.t
time when sending requests and w.r.t. to bandwidth when sending data over the network are an
issue. Such a distributed system also has to tackle the challenge of a combinatorial growth of
the number of explanations with an increased number of contexts.

We want to give the user as much control as possible over how to handle or fix the inconsis-
tency of (parts of) an MCS . This means the system has to find all inconsistencies and assist the
user by giving him as much information as possible about the found solutions to overcome the
inconsistencies.

The system must find suitable explanations for the users which are interested in fixing the
inconsistent state of their system but also pass theoretical (soundness and completeness) as well
as empirical (prototype implementation) tests.

1A bridge rule adds information to the context depending on the knowledge of other contexts. If applied uncon-
ditionally, the information is added without considering the knowledge from those other contexts.
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1.4 Research Methods and Tests

This work can be divided in a theoretical and a practical part. In the theoretical part we will pro-
vide all the definitions necessary to define an algorithm which will calculate the explanations as
stated in the previous sections. Based on these definitions and the algorithm we will implement
a prototype and run tests with it.

The definitions will be stated in formal mathematical notations. Consistent notation with
previous work in this field will be ensured. The properties which can be derived from these
notations will be stated as propositions and lemmas and they will be justified by formal proofs.
We will start by restating the definitions from previous work and extend them until they have the
properties we expect and we will again validate this by formal proofs.

The subsequent algorithm will be defined in pseudocode using previously defined data struc-
tures and definitions, and we will provide explanations about each parts of the algorithm. Then
we will prove that for each possible MCS of arbitrary size this algorithm returns all theoreti-
cally possible explanations and the corresponding models and that all results of the algorithm
are according to our former definitions.

An actual implementation of the algorithm, based on the theoretical definitions of the data
structures and the description of the algorithm in pseudocode will be written in C++ as a proof of
concept. This implementation will then be used to carry out empirical experiments on randomly
generated problem instances within some defined constraints. These constraints ensure that the
results are comparable to test results from previous works like [14]. The implementation will
be used to validate the proposed hypothesis on appropriate problem instances, demonstrate the
effects of the optimizations and judge their relevance, and to observe the performance of the al-
gorithm respectively its implementation by measuring its runtime on a state-of-the-art machine.

1.5 Contribution and Results

The following results have been accomplished in this thesis:

• We defined a structure which is based on the idea of partial equilibria from [14] and allows
us to express diagnoses which cover only those parts of an MCS which are of interest and
additionally those on which they are depending on. Such diagnoses will show us how to
modify an MCS such that it has at least one resulting partial equilibria.

• An algorithm, based on the idea of calculating partial equilibria described in [14], with
the following properties has been developed:

– It is distributed which means it runs on every context and communicates with other
contexts.

– Every instance can request information (partial diagnosis) from other contexts, do
the inference calculations for the local context, combine the results, and send them
to requesting contexts.

– The algorithm can handle MCS topographies which lead to circular requests.
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– The view on the overall MCS is no more a global one but always depending on the
context from which we call the algorithm. This reflects the fact that the contexts of
the MCS are distributed and a user is often interested only in knowledge relevant for
the queried context.

• We were able to show that the algorithm is correct and complete in the sense that it will
calculate all partial diagnoses and the supporting partial equilibria w.r.t. to a context and
all results calculated by the algorithm are partial diagnoses and the corresponding partial
equilibria under those partial diagnoses.

• We accomplished to build a prototype implementation and were able to perform tests on
selected problem instances. This gave us an impression on how problem instances of
different sizes and structures are performing on state-of-the-art machines. We could also
compare our prototype with other implementations in this field which cover a subset of
the functionality of ours. The main result of our experimental studies showed that the
proposed optimizations had an measurable effect on the tested problem instances.

1.6 Thesis Organization

The thesis will be organized as follows: In Chapter 2 we will give an overview of the existing
definitions in the field of Multi-Context Systems which are of interest for our work. Based on
this in Chapter 3 we will introduce the formal definitions, lemmas, and theorems which are
necessary for the algorithm. The algorithm itself will then be introduced in a formal way in
Chapter 4 while the implementation of this algorithm is described in Chapter 5. Then a report
about the experimental evaluation will be given in Chapter 6 which is followed by the concluding
part in Chapter 7.
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CHAPTER 2
Preliminaries

In this chapter we give formal definitions of those concepts the work in this thesis is based on.
These are the concept of a Multi-Context System including the definition of an equilibrium [10],
the extension of equilibria and its corresponding definitions with a partial view [14], and the
concept of diagnoses [16].

2.1 Multi-Context Systems

Multi-Context Systems can deal with different monotonic and nonmonotonic knowledge rep-
resentation formalisms like propositional logic, answer set programs or description logic. The
following notation abstracts from those formalisms:

A logic is, viewed abstractly, a tuple L = (KBL,BSL,ACCL), where

• KBL is a set of well-formed knowledge bases, each being a set (of formulas),

• BSL is a set of possible belief sets, each being a set (of formulas), and

• ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief sets.

Definition 2.1.1 (Multi-Context System)
A Multi-Context System (MCS ) M =(C1, . . . , Cn) consists of contexts Ci = (Li, kbi, bri),
1≤ i≤n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a knowledge base, and bri
is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm) (2.1.1)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck , 1 ≤ k ≤ m, and kb∪ {s} ∈ KBi

for each kb ∈ KBi.

Let r be such a bridge rule of form (2.1.1) then s is denoted as head(r) and (c1 : p1), . . . , (cj :
pj), not (cj+1 : pj+1), . . . ,not (cm : pm) as body(r).
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With such bridge rules, information s can be added to a context, depending on the knowledge in
other contexts.

In an MCS contexts depend on the beliefs of other contexts through bridge rules; therefore
we define a state which indicates the beliefs of every context as a defined state of the Multi-
Context System. Such a state is called belief state.

Definition 2.1.2 (Belief State)
Let M = (C1, . . . , Cn) be an MCS. A belief state is a sequence S = (S1, . . . , Sn) such that
each Si, with 1 ≤ i ≤ n, is an element of BSi.

A bridge rule adds information to a context if it is applicable in the MCS . The applicability
depends on the belief sets of other contexts and therefore on the belief state of the MCS .

Definition 2.1.3 (Bridge Rule Applicability)
Let S be a belief state and r a bridge rule of form (2.1.1). Then r is applicable in S, if pi ∈ Sci ,
for 1 ≤ i ≤ j, and pk 6∈ Sck , for j + 1 ≤ k ≤ m. Let app(R,S) denote the set of all bridge
rules r ∈ R that are applicable in S, and head(r) the part s of any r of form (2.1.1).

If every belief set of a belief state is accepted in its context under consideration of the bridge
rules, a belief state is called equilibria and is an accepted state of the whole Multi-Context
System.

Definition 2.1.4 (Equilibrium)
A belief state S = (S1, . . . , Sn) of a multi-context system M is an equilibrium iff for all 1 ≤
i ≤ n, Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).

To illustrate an MCS and the above defined concepts, a simple example with two contexts,
each based on Answer Set Programming [18] as knowledge representation formalism, will be
given.

Example 2.1.1
First we define an MCS with context C1 and a knowledge base kb1 = {a ← b} and a bridge
rule br1 = {b← (2 : d)} and context C2 with kb2 = {c ∨ d} and no bridge rules. From this the
following belief sets follow: BS1 = {∅, {a}, {b}, {a, b}} and BS2 = {∅, {c}, {d}, {c, d}}.

From these belief sets we can construct sixteen different belief states: (∅, ∅), ({a}, ∅), . . . ,
({a, b}, {d}), ({a, b}, {c, d}). To find those belief sets which are equilibria we first have a look
at C2 because no head of a bridge rule is from C2 and therefore it is easy to find ACC2(kb2) =
{{c}, {d}}. This means we can reduce our sets of possible equilibria to Sc = {(· · · , {c})}
and Sd = {(· · · , {d})}. In the first case it’s easy to continue since app(br1, Sc) = ∅ therefore
ACC1(kb1) = ∅ and the only equilibria which is left is (∅, {c}). In the second case {head(r) |
r ∈ app(br1, Sd)} = {b} and therefore we have to check ACC1(kb1∪{b}) which is {a, b} and
therefore the only resulting equilibrium is ({a, b}, {d}).

2
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2.2 Partial Equilibria

To introduce the concept of partial equilibria and later partial diagnoses, the import closure is
an important notion. Every context has a set of bridge rules whose bodies contain elements from
other contexts. For a specific context and its bridge rules the contexts of those elements is the
import neighborhood of the context. The import closure of a specific context is the recursive
union of its import neighborhood and the import neighborhoods of every context in the import
closure. In other words the import closure indicates the part of the MCS on which a context
depends.

The import closure with respect to a single context has already been defined by Dao-Tran
et al. [14].

Definition 2.2.1 (Import Closure)
Let M = (C1, . . . , Cn) be an MCS. The import neighborhood of a context Ck is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}.

Moreover, the import closure IC (k) of a context Ck is the smallest set S such that

• k ∈ S and

• for all i ∈ S, In(i) ⊆ S.

According to Dao-Tran et al. [14] an equal definition is: IC (k) = {k} ∪
⋃

j≥0 IC j(k)), where
IC 0(k) = In(k), and IC j+1(k) =

⋃
i∈IC j(k) In(i).

A partial belief state is a belief state where some belief sets are left undefined, this indicates
that information about those contexts is not available.

Definition 2.2.2 (Partial Belief State)
Let M = (C1, . . . , Cn) be an MCS, and ε a new symbol, where ε /∈

⋃n
i=1BSi. A partial belief

state of M is a sequence S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n.

A partial equilibrium is then defined with respect to a specific context, let’s say Ck. It is
a partial belief state with defined belief sets for every context in the import closure of Ck and
those belief sets are accepted on their contexts based on the knowledge base of the context and
the applicable bridge rules.

The definition of partial equilibria w.r.t. a single context is from Dao-Tran et al. [14]; for the
purpose of this thesis the definition will later be extended to a set of contexts.

Definition 2.2.3 (Partial Equilibrium)
Let M = (C1, . . . , Cn) be an MCS and S = (S1, . . . , Sn) a partial belief state of M as defined
above. Then S is also a partial equilibrium of M w.r.t. a context Ck ∈ {C1, . . . , Cn} iff for all
1 ≤ i ≤ n:

• i ∈ IC (k) implies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and

• Si = ε otherwise.
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C2 C3C1

←a 	∅  c

a←(2:b) b←(3:c) 

Figure 2.2.1: Example MCS to demonstrate partial equilibria

We next give an example to demonstrate import closures, partial belief states and partial
equilibria.

Example 2.2.1
As pictured in Figure 2.2.1 we have a context C1 with kb1 = {← a} and br1 = {a← (2 : b)},
a context C2 with kb2 = ∅ and br2 = {b ← (3 : c)} and a context C3 with kb3 = {c} and no
bridge rules.

The import closure of C3 is {3} since there is no bridge rule in the MCS which effects C3.
The import closure of C2 is {2, 3} since the knowledge base of C2 depends on C3 due to the
bridge rule of br2 and the import closure of C1 is {1, 2, 3} since the knowledge base if C1 is
effected by C2 and therefore also by C3.

Now we can construct partial belief states which cover the above mentioned import closures.
Viz. (ε, ε, {c}) and (ε, ε, ∅) for the import closure of C3, e.g., (ε, ∅, {c}) or (ε, {b}, {c}) for C2

and ({a}, {b}, {c}) for C1. Note that the belief sets do not have to be accepted on the context
nor is the applicability of the bridge rules of relevance. Furthermore we can construct partial
belief states which are not connected to any import closure like ({a}, ε, ε).

To demonstrate the partial equilibria we can construct one w.r.t. C2. The import closure of
C2 is {2, 3} so the partial equilibria EC2 are of the form (ε, S2, S3). In this example there is
only one partial equilibrium viz. (ε, {b}, {c}). Note that there is no equilibrium for the whole
MCS since there is no belief set in C1 which is accepted, but this is not relevant for the partial
view on the MCS .

2

Partial equilibria can be built by combining partial equilibria from different parts of an MCS .
An operation called join has been defined, again by Dao-Tran et al. [14], to accomplish this.

Definition 2.2.4 (Join of Partial Equilibria)
Let E′ = (E′1, . . . , E

′
n) and E′′ = (E′′1 , . . . , E

′′
n) be partial equilibria, then the result of a join

E′ ./ E′′ is E = (E1, . . . , En), where

• Ei = E′i = E′′i , if E′i = E′′i ,

• Ei = E′i, if E′i 6= ε ∧ E′′i = ε,

• Ei = E′′i , if E′′i 6= ε ∧ E′i = ε
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for all 1 ≤ i ≤ n.

Note that E′ ./ E′′ is void iffE′i 6= ε, E′′i 6= ε and E′i 6= E′′i for some 1 ≤ i ≤ n.

The next example illustrates a join operation between two partial equilibria.

C2C3C1

←a1 	∅ a3 v b3

a1←(3:a3)

b1←(3:b3)

a2←(3:a3)

b2←(3:b3)

Figure 2.2.2: Example to demonstrate a join between two partial equilibria

Example 2.2.2
We have a context C1 with kb1 = {← a1} and br1 = {a1 ← (3 : a3), b1 ← (3 : b3)}, a
context C2 with kb2 = ∅ and br2 = {a2 ← (3 : a3), b2 ← (3 : b3)} and a context C3 with
kb3 = {a3∨b3} and no bridge rules. Moreover we have one partial equilibrium w.r.t. C1,EC1 =
({b1}, ε, {b3}) and two w.r.t. C2, E′C2

= (ε, {a2}, {a3}) and E′′C2
= (ε, {b2}, {b3}). A join be-

tween EC1 and E′C2
returns no result since the belief sets in C3 are different ({b3} 6= {a3}). The

join between EC1 and E′′C2
results in the the partial equilibrium E{C1,C2} = ({b1}, {b2}, {b3})

which is the only one w.r.t. {C1, C2}1. This example shows also that the resulting partial equi-
librium is a total equilibrium since it covers the whole MCS .

2

2.3 Total Diagnoses

Diagnoses have already been defined by Eiter et al. [16]: “As well-known, in nonmonotonic
reasoning, adding knowledge can both cause and prevent inconsistency; the same is true for
removing knowledge. For our consistency-based explanation of inconsistency, we therefore
consider pairs of sets of bridge rules, s.t. if we deactivate the rules in the first set, and add
the rules in the second set in unconditional form, the MCS becomes consistent (i.e., admits an
equilibrium).”

To clearly differentiate between diagnoses of the whole system and partial diagnoses, which
we will define later, in the following we call the diagnoses of the whole MCS total diagnoses.

Notation. Let M be an MCS and R a set of bridge rules compatible with M . Then M [R] is
an MCS derived from M by replacing all bridge rules with the bridge rules R. E.g., M [∅] is
the MCS M without any bridge rules. Furthermore the following notations are used: M �⊥

1A formal definition of equilibria w.r.t. to a set of contexts will be given in Chapter 3
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denotes that M has no equilibrium and is therefore inconsistent and M 2⊥ denotes that M has
at least one equilibrium.

Definition 2.3.1 (Total Diagnosis)
Given an MCS M = (C1, . . . , Cn), a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM , s.t.
M [brM \D1 ∪ heads(D2) 2⊥

Example 2.3.1
To demonstrate total diagnoses we recall the example from Figure 2.2.1 where we have a context
C1 with kb1 = {← a} and br1 = {a ← (2 : b)}, a context C2 with kb2 = ∅ and br2 = {b ←
(3 : c)} and a context C3 with kb3 = {c} and no bridge rules. To reference the two bridge rules
later we denote the bridge rule from br1 as r1 and the bridge rule from kb2 as r2.

As we have already seen there is no equilibrium in this MCS because there is no accepted
belief set for context C1. It is also easy to see that if we remove one (or both) of the bridge rules
we can find an equilibrium. So the total diagnoses (r1, ∅) and (r2, ∅) lead both to the equilibrium
(∅, ∅, {c}). In this case we don’t need the part of the diagnoses where the head of a bridge rule
is applied unconditionally but if we construct such a diagnosis only ({r1}, {r2}) leads to an
equilibrium. If we would apply r1 unconditionally C1 can not be satisfied and in case we add
r2 unconditionally r1 has to be removed otherwise r1 would add a to C1s knowledge base and
therefore make it impossible to find an applicable belief set.

2
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CHAPTER 3
A Partial View on Diagnosis

In this chapter we combine the idea of a partial view on a Multi-Context System, introduced
in Dao-Tran et al. [14], and the concept of diagnoses. We denote the resulting concept of this
approach partial diagnosis which is the core idea on which the work in this thesis is based
on. For a properly functioning algorithm, handling partial diagnoses, some auxiliary concepts
strongly related to partial diagnoses are necessary and they also are stated in this chapter. These
are witnesses which prove the correctness of partial diagnoses and candidates which are potential
partial belief states based on not yet proved assumptions. Moreover this chapter shows also
properties of partial diagnoses w.r.t. generalization and modularity and how and whether partial
diagnoses of the same MCS can be combined.

3.1 Preparations

In order to properly define the following concepts of partial diagnoses, witnesses and candidates
we have to slightly modify the definitions from the preliminaries.

First we extend the definition of a import closure such that it also covers the import closure
of not only a single context but of a set of contexts.

Definition 3.1.1 (Import Closure)
LetM = (C1, . . . , Cn) be an MCS. The import neighborhood of a set of contexts C ⊆ {C1, . . . , Cn}
from M is

IC (C) =
⋃

Ck∈C IC (Ck)

where the import neighborhood of Ck is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}
and the import closure IC (Ck) is the smallest set S such that

• k ∈ S and

• for all i ∈ S, In(i) ⊆ S.
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C2C1

C3

C5

C4

IC(C2)

IC(C4)

Figure 3.1.1: MCS with two import closures

Example 3.1.1
In Figure 3.1.1 we see an MCS and the import closure IC (C2) = {2, 3} and IC (C4) =
{4, 3, 5}. In this case the import closure of the set of contexts {C2, C4}, IC ({C2, C4}), is
{2, 3, 4, 5} which is the union of the import closure IC (C2) and IC (C4).

2

The following propositions about the import closure concept are needed in later lemmas
respectively their proofs: The import closure of the union of two sets of contexts is the same as
the union of the import closures of each set.

Proposition 3.1.1
LetM = (C1, . . . , Cn) be an MCS and C′, C′′ ⊆ {C1, . . . , Cn} two subsets of the contexts from
M . Then

IC (C′ ∪ C′′) = IC (C′) ∪ IC (C′′).

Proof
By Definition 3.1.1 IC (C′∪C′′) =

⋃
Cj∈(C′∪C′′) IC (Cj). Then

⋃
Cj∈(C′∪C′′) IC (Cj) can be split

into
⋃

Cj∈C′ IC (Cj) ∪
⋃

Cj∈C′′ IC (Cj) which is IC (C′) ∪ IC (C′′).
2

If a set of contexts is a subset of another set of contexts then the import closures of both sets
have the same subset relation.

Proposition 3.1.2
Let M = (C1, . . . , Cn) be an MCS and C, C′ ⊆ {C1, . . . , Cn} two subsets of the contexts from
M . Then

C′ ⊆ C implies IC (C′) ⊆ IC (C).

Proof
If C′ ⊆ C then for C′′ = C \ C′ it holds that C = C′ ∪ C′′.
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Since IC (C′) =
⋃

C∈C′ IC (C) we can obtain from Proposition 3.1.2 that IC (C) = IC (C′ ∪
C′′) = IC (C′) ∪ IC (C′′) =

⋃
C∈C′ IC (C) ∪

⋃
C∈C′′ IC (C).

Because of
⋃

C∈C′ IC (C) ⊆
⋃

C∈C′ IC (C)∪
⋃

C∈C′′ IC (C) we can further obtain IC (C′) ⊆
IC (C).

2

Example 3.1.2
Proposition 3.1.1 and 3.1.2 can easily be demonstrated with the MCS from Figure 3.1.1. It is
easy to see that the first proposition holds for IC (C2)∪ IC (C4) = IC ({C2}∪ {C4}) as well as
the second proposition holds for {C4} ⊆ {C2, C4} and therefore IC ({C4}) ⊆ IC ({C2, C4}).

2

The applicability of a bridge rule depends on the part of the MCS which is defined by the
import neighborhood of the bridge rules context. Given a bridge rule from context C which is
applicable w.r.t. a belief state S. If another belief state S′ has equal belief sets in the contexts of
the import neighborhood of C, then the bridge rule is also applicable w.r.t. S′.

Proposition 3.1.3
Let S′ = (S′1, . . . , S

′
n) and S′′ = (S′′1 , . . . , S

′′
n) be two belief states of an MCS M and Ci a

context of M . If for all k ∈ In(i), S′k = S′′k then r ∈ app(bri, S
′) iff r ∈ app(bri, S

′′) holds.

Proof
Recall that by Definition 2.1.3 a bridge rule of form (2.1.1) is applicable in S′ if pl ∈ S′cl , for
1 ≤ l ≤ j and pk 6∈ S′ck , for j+1 ≤ k ≤ m. Further recall Definition 3.1.1, In(i) = {cn | (cn :
pn) ∈ B(r), r ∈ br i}.

Since In(i) represents exactly those contexts with indexes cl and ck from Definition 2.1.3
and S′m = S′′m for all m ∈ In(i), it holds that r ∈ app(br i, S

′) =⇒ r ∈ app(br i, S
′′). The

proof works the same way for the other direction and therefore it holds that r ∈ app(bri, S
′)

iff r ∈ app(bri, S
′′)

2

Example 3.1.3
Let’s again show this proposition on the MCS from Figure 3.1.1. Given C4 has a bridge rule
r1 which has elements from C3 and C5 in its body and is applicable on the belief state S =
(ε, ε, S3, S4, S5). Then r1 is also applicable in any belief state where the belief sets of the
contexts C3, C4 and C5 are the same, e.g., S′ = (ε, S′2, S3, S4, S5), because the applicability of
r1 only depends on the contexts of the import closure of C4 which are C3, C4 and C5.

2

Since we now have extended the definition of a import closure to a set of contexts we can
extend the definition of the partial equilibrium accordingly:

Definition 3.1.2 (Partial Equilibrium)
Let M = (C1, . . . , Cn) be an MCS and S = (S1, . . . , Sn) a partial belief state of M as defined
in 2.2.2. Then S is a partial equilibrium of M w.r.t. a set of contexts C iff for all 1 ≤ i ≤ n:

• i ∈ IC (C) implies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and

• Si = ε otherwise.

15



Notation. A partial equilibrium E with respect to a set of contexts C is also written as EC .
Furthermore the following notations are used: M �⊥ denotes that M has no equilibrium and is
therefore inconsistent and M 2⊥ denotes that M has at least one equilibrium. To distinguish
equilibria according to Definition 2.1.4 from partial equilibria we call the former total equilibria.

Example 3.1.4
Let’s recall the MCS from Figure 3.1.1 where a possible partial equilibria could have been EC2

if all the belief sets of the contexts from IC (C2) are accepted and those from all other contexts
are set to ε or EC4 if all the belief sets of the contexts from IC (C4) are accepted and again
those from all other contexts are ε. Now, with the new definition of partial equilibria we can also
express a partial equilibrium of form E{C2,C4} = (ε, S2, S3, S4, S5) where all belief sets from
the import closure IC ({C2, C4}) = {C2, C3, C4, C5} are accepted and the belief set of context
C1 is ε.

If we have a partial equilibrium EC , select a subset C′ ⊆ {Ci | i ∈ IC (C)} from the import
closure of C and set all belief sets from EC to ε if they are not in the import closure of C ′, then
the resulting belief state is again a partial equilibrium E′C′ w.r.t. C′.

Proposition 3.1.4
LetM = (C1, . . . , Cn) be an MCS , EC a partial equilibrium inM , and C′ ⊆ {Ci | i ∈ IC (C)}.
Then E′C′ = (E′1, . . . , E

′
n), where E′i = Ei if i ∈ IC (C′) and E′i = ε otherwise, is also a partial

equilibrium in M .

Proof
The proposition itself states thatE′i = ε if i /∈ IC (C′) so it is left to show thatE′i ∈ ACCi(kbi∪
{head(r) | r ∈ app(br i, E

′)}) if i ∈ IC (C′).
C′ is a subset of {Ci | i ∈ IC (C)} and therefore we infer from Proposition 3.1.2 that

IC (C′) ⊆ IC ({Ci | i ∈ IC (C)}) = IC (C).1 Since E is a partial equilibrium w.r.t. C we show
that Ei ∈ ACCi(kbi ∪{head(r) | r ∈ app(br i, E)}) =⇒ E′i ∈ ACCi(kbi ∪{head(r) | r ∈
app(br i, E

′)}) for i ∈ IC (C′).
BecauseEi = E′i if i ∈ IC (C′) we can reduce it to r ∈ app(br i, E) =⇒ r ∈ app(br i, E

′).
Since Ei = E′i for all i ∈ IC (C′) and

⋃
j∈C′ In(j) ⊆ IC (C′), Proposition 3.1.3 states that

r ∈ app(br i, E) =⇒ r ∈ app(br i, E
′) holds and therefore E ′C′ is a partial equilibrium w.r.t.

C′.
2

Example 3.1.5
Let’s say we have a partial equilibrium E{C2,C4} = (ε, S2, S3, S4, S5) in the MCS from Fig-
ure 3.1.1. Since {C4} ⊆ IC ({C4, C2}), according to Proposition 3.1.4,E{C4} = (ε, ε, S3, S4, S5)
is as well a partial equilibrium in this MCS because all belief sets which are in IC ({C4}) =
{3, 4, 5} are the same as in E{C2,C4} and all other belief sets are ε.

1IC ({Ci | i ∈ IC (C)}) is trivially IC (C).
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The next proposition states that a partial equilibrium EC in an MCS M is also a partial
equilibrium in a modified MCS M ′ if the contexts defined by the import closure of C are the
same.
Proposition 3.1.5
LetM = (C1, . . . , Cn) be an MCS and EC a partial equilibrium inM . LetM ′ = (C ′1, . . . , C

′
o)

be another MCS with C ′i = Ci for all i ∈ IC (C). Then the partial equilibrium EC is also a
partial equilibrium in the MCS M ′.

Proof
A partial belief state EC is a partial equilibrium ifEi ∈ ACCi(kbi∪{head(r) | r ∈ app(br i, E)})
for all i ∈ IC (C).

Since all contexts C ′i in M ′ are the same as in M if i ∈ IC (C), it’s left to show that the
result of app(br i, E) is not depending on contexts C ′i for i /∈ IC (C).

Recall that a bridge rule of the form s← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm :
pm) is applicable in E if pl ∈ Ecl , for 1 ≤ l ≤ j, and pk 6∈ Eck , for j+1 ≤ k ≤ m. Since In(i)
represents exactly those contexts on which the applicability of a bridge rule from Ci depends on
and it holds for i ∈ IC (C) that In(i) ⊆ IC (C), app(br i, E) does not depend on contexts Ck

with k /∈ IC (C). Therefore EC is also a partial equilibrium in M ′.
2

Example 3.1.6
We use the MCS from the previous examples illustrated in Figure 3.1.1 to show this proposition
and call it M . Let’s assume we have a partial belief state (ε, S2, S3, S4, S5) which is a partial
equilibrium E{C2,C4} in M . Now we take M and modify C1 (the knowledge base and/or the
bridge rules) and/or add new contexts (without changing the indexes from the already existing
contexts) and call this new MCS M ′. Since we didn’t change the contexts C2, C3, C4 and C5

which are the import closure IC ({C2, C4}) in M , IC ({C2, C4}) is still the same in M ′ and
therefore also the partial belief state (ε, S2, S3, S4, S5) still a partial equilibria in M ′. If we
would add a context to M , e.g., C6, then (ε, S2, S3, S4, S5, ε) would still be a partial equilibria
in M ′.

2

The definition of a join between the adapted partial equilibria remains the same as between
the original partial equilibria:

Definition 3.1.3 (Join of Partial Equilibria)
Let E ′C′ = (E′1, . . . , E

′
n) and E ′′C′′ = (E′′1 , . . . , E

′′
n) be partial equilibria, then the result of a join

E′ ./ E′′ is E = (E1, . . . , En), where

• Ei = E′i = E′′i , if E′i = E′′i ,

• Ei = E′i, if E′i 6= ε ∧ E′′i = ε,

• Ei = E′′i , if E′′i 6= ε ∧ E′i = ε

for all 1 ≤ i ≤ n.
Note that E′ ./ E′′ is void iffE′i 6= ε, E′′i 6= ε and E′i 6= E′′i for some 1 ≤ i ≤ n.
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The result of a join between two partial equilibria is, if it exists, again a partial equilibrium.
Later the Multi-Context Systems, respectively the bridge rules, will be altered by diagnoses
and it will be necessary to join partial equilibria under different diagnoses. This necessitates
additional assumptions about the structure of the MCSs involved in a join operation. Roughly
speaking the assumptions state that those contexts where the partial equilibria of a join operation
are defined must be equal in both MCSs . All other contexts do not influence the join and can
therefore be different.

Lemma 3.1.6
Let E ′C′ be a partial equilibrium in the MCS M ′ = (C ′1, . . . , C

′
n) and E ′′C′′ be a partial equilib-

rium inM ′′ = (C ′′1 , . . . , C
′′
n). Further lets assume that C′ ⊆ {C ′1, . . . , C ′n}, C′′ ⊆ {C ′′1 , . . . , C ′′n}

and M = (C1, . . . , Cn) an MCS such that Ci = C ′i if i ∈ IC (C′) and Ci = C ′′i if i ∈ IC (C′′)2.
Then the join E ′C′ ./ E ′′C′′ , if not void, returns EC′∪C′′ where E is a partial equilibrium in M with
respect to the contexts C′ ∪ C′′.

Note that EC′∪C′′ is a partial equilibrium in M ′ respectively M ′′ if M ′ =M ′′.

Proof
Using Proposition 3.1.5 we know that E′ and E′′ are also partial equilibria in M .
EC′∪C′′ = (E1, . . . , En) is a partial equilibrium in M if it fulfills the following two statements:

a) i ∈ IC (C′ ∪ C′′) =⇒ Ei ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, E)}) and

b) i /∈ IC (C′ ∪ C′′) =⇒ Ei = ε

for all 1 ≤ i ≤ n.

Statement a):
Proposition 3.1.1 states that IC (C′∪C′′) = IC (C′)∪IC (C′′) and therefore if i ∈ IC (C′∪C′′)

it is either true that i ∈ IC (C′) or i ∈ IC (C′′).
For every i ∈ IC (C′) it holds that E′i 6= ε and therefore Ei = E′i. We also know that

for every i ∈ IC (C′), E′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, E
′)}). According to

Proposition 3.1.3 app(br i, E
′) depends only on contexts Ci | i ∈ IC (C′) and because for those

contexts Ei = E′i it also holds that Ei ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, E)}).
For every i ∈ IC (C′′) it holds that E′′i 6= ε and therefore Ei = E′′i . We also know that

for every i ∈ IC (C′′), E′′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, E
′′)}). According to

Proposition 3.1.3 app(br i, E
′′) depends only on contexts Ci | i ∈ IC (C′′) and because for those

contexts Ei = E′′i it also holds that Ei ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, E)}).

Statement b):
If i /∈ IC (C′ ∪ C′′) then i /∈ IC (C′) and i /∈ IC (C′′) and therefore E′i = E′′i = ε. Because

Ei is either E′i or E′′i in every case Ei = ε.
2

2This implies that if i ∈ IC (C′) and i ∈ IC (C′′) then C′i = C′′i . Otherwise no such M exists. This is
consistent with the definition of the join between partial diagnoses, if C′i 6= C′′i then the partial diagnosis applied to
M ′ is different in context i from the one applied to M ′′ and therefore no result of the join between those two partial
diagnoses exists which would produce M .
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C'2C'1

C'3

C'5

C'4

IC(C'2)

(a) MCS M ′

C''2C''1

C''3

C''5

C''4

IC(C''4)

(b) MCS M ′′

Figure 3.1.2: Two MCSs with partial equilibria to join

Example 3.1.7
Let’s say we have an MCS M where we apply some modifications which result in a new MCS
M ′ (Figure 3.1.2a) and with some other modifications applied inM ′′ (Figure 3.1.2b). We further
assume that we now have a partial equilibrium E′C2

in M ′ and a partial equilibrium E′′C4
in M ′′.

Lemma 3.1.6 now states that the join between E′ and E′′ is, if not void, a partial equilibrium in
any MCS which has the same contexts as in the import closure of C ′2 and the import closure of
C ′′4 . Note that this is only possible if C ′3 = C ′′3 and that it does not matter how the contexts C ′1,
C ′4 and C ′5 in M ′ and C ′′1 and C ′′2 in M ′′ do look like. The new partial equilibrium is defined in
the new MCS ’s corresponding contexts of IC (C ′2) and IC (C ′′4 ).

2

Before defining partial diagnoses we will state a modified syntax for total diagnoses which
emphasizes the contexts where the bridge rules of the diagnosis belongs to. The semantic re-
mains the same.

Definition 3.1.4 (Total Diagnosis)
Given an MCS M = (C1, . . . , Cn), DG = (DG1, . . . , DGn) is a total diagnosis of M
iffDGi = {(Di, Ai), Di, Ai ⊆ bri}, s.t. M [brM \ (D1∪ . . .∪Dn)∪heads(A1∪ . . .∪An)] 2⊥

The notation DG = (D,A) is an abbreviation for DG = (D1 ∪ . . . ∪Dn, A1 ∪ . . . ∪An).

3.2 Partial Diagnoses

We have already seen definitions of belief states and equilibria which are only defined over parts
of the MCS . Now we also introduce such a definition for (total) diagnoses and call them partial
diagnoses.

The definition of partial diagnoses is based on total diagnoses combined with the idea of a
partial view on the Multi-Context System as done with partial equilibria. Like a partial equilib-
rium, a partial diagnosis is always defined with respect to a set of contexts. To be more specific,
it is always defined for the contexts of the import closure of a specific set of contexts. To be a
consistent partial diagnosis, there has to be at least one partial equilibrium with respect to the
same set of contexts if the partial diagnosis is applied to the MCS .
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Definition 3.2.1 (Partial Diagnosis)
Let M = (C1, . . . , Cn) be an MCS, let be ε a new symbol with ε /∈ {(Di, Ai)|Di, Ai ⊆ bri)},
and let C be a set of contexts C ⊆ {C1, . . . , Cn}. The n-tuple (DG1, . . . ,DG i, . . . ,DGn), for
short DGC , is a partial diagnosis of M w.r.t. the set of contexts C iff :

• DG i ∈ {(Di, Ai)|Di, Ai ⊆ br i)} if i ∈ IC (C) and DG i = ε otherwise, for 1 ≤ i ≤ n,
and

• there is a partial equilibrium EC in M [brM \
⋃

j∈IC (C)Dj ∪ heads(
⋃

j∈IC (C)Aj)].

Notation. M [DG ] is used in the following as a short notation for M [brM \
⋃

j∈IC (C)Dj ∪
heads(

⋃
j∈IC (C)Aj)]. Furthermore remove(DG i) denotes those bridge rules which are re-

moved from context Ci in M [DG ] compared to M and ucond(DG i) those bridge rules which
are applied unconditionally. Formally, for a diagnosis DG = (DG1, . . . ,DG i, . . . ,DGn) and
DGi = (Di, Ai), remove(DG i) = Di and ucond(DG i) = Ai.

C2C1

a1

b1 (2:a2) 

a1 (2:a2) 

b2

C3

a3

b2 (3:a3) 

a2 (3:a3) 

Figure 3.2.1: Example to demonstrate partial diagnoses and witnesses

Example 3.2.1
We have a context C1 with kb1 = {← a1} and br1 = {a1 ← (2 : a2), b1 ← (2 : a2)}, a
context C2 with kb2 = {← b2} and br2 = {a2 ← (3 : a3), b2 ← (3 : a3)}, and a context C3

with kb3 = {a3} and no bridge rules. Context C3 has a partial equilibrium (ε, ε, {a3}) but then
both bridge rules from C2 are applicable, thus kb2 extended with a2 and b2 and therefore we
have no partial equilibrium w.r.t. C2 because of b2. If we apply a partial diagnosis (ε, ({b2 ←
(3 : a3)}, ∅), (∅, ∅)) to the given MCS only bridge rule a2 ← (3 : a3) is left at context C2 and
applicable and moreover now a partial equilibrium EC2 = (ε, {b2}, {a3}) exists. Note that for
the partial diagnosis we constructed it does not matter that the bridge rules from C1 are making
the whole MCS inconsistent again because we are only interested in the part of the MCS which
is covered by the import closure of C2.

3.3 Witnesses

A witness is a partial equilibrium which proves a partial diagnosis to be valid. This means, if a
partial diagnosis is applied to a Multi-Context System a witness is a partial equilibrium in the
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resulting MCS defined over the same set of contexts as the partial diagnosis. For every partial
diagnosis there exists a set of witnesses which is not empty.

Definition 3.3.1 (Witness)
Let M = (C1, . . . , Cn) be an MCS, let DGC be a partial diagnosis w.r.t. the set of contexts C,
and let W be a partial belief state. Then W is a witness of DGC iff W is a partial equilibrium
w.r.t. C in M [DGC ].

Notation. We will use wit(DGC) to express the set of all witnesses of a partial diagnosis DGC .
Note that wit((ε, . . . , ε)) is the empty partial belief state (ε, . . . , ε).

The following example illustrates partial diagnoses and their witnesses.

Example 3.3.1
Let’s recall Example 3.2.1 where we showed that after applying the partial diagnosis (ε, ({b2 ←
(3 : a3)}, ∅), (∅, ∅)) the MCS had a partial equilibrium EC2 = (ε, {b2}, {a3}). Here EC2

proves that the partial diagnosis is valid and therefore, according to Definition 3.3.1, we call
it a witness for the above mentioned partial diagnosis. In this case there is only one witness
for this partial diagnoses but we can also construct a MCS where we have many witnesses.
E.g., let’s add c2 ∨ d2 to kb2, then we would have two witnesses, viz., (ε, {b2, c2}, {a3}) and
(ε, {b2, d2}, {a3}).

2

3.4 Candidates

Partial diagnoses are an important intermediate result in every step of the distributed algorithm.
In case the MCS has no cycles3 every call to another instance returns a set of partial diagnoses
with its corresponding witnesses. But in case of a cycle the context answering the request will not
return complete partial diagnoses and witnesses w.r.t. to its context, instead it guesses possible
local belief sets without checking the applicability of the bridge rules. Those “partial diagnoses”
and “witnesses” with undefined contexts in the import closure are called candidates which are
send back in order to prevent an infinite calling loop. They will be completed when the results
are send back to a context where the guesses can be validated. From this point on the candidates
are again valid partial diagnoses with corresponding witnesses which are well defined in all
contexts of their import closure.

Those partial diagnoses, which are based on guesses and therefore only proper partial di-
agnoses if the underlying guesses turn out to be true, are called partial diagnosis candidates to
distinguish them from proper ones. Note that partial diagnosis candidates, applied to an MCS ,
does not necessarily have a partial equilibrium and that a partial diagnosis candidate is not de-
fined in every context of the given import closure.

Definition 3.4.1 (Partial Diagnosis Candidate)
Let M = (C1, . . . , Cn) be an MCS, ε /∈ {(Di, Ai)|Di, Ai ⊆ bri)}, C ⊆ {C1, . . . , Cn} and D ⊆
{C1, . . . , Cn} two sets of contexts with C∪D = ∅. Then the n-tuple (DG1, . . . ,DG i, . . . ,DGn)

3Contexts can request information from other contexts via bridge rules. If such a request chain leads to a context
which is already in the chain it is called cycle.
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or for short DGC,D, is a partial diagnosis candidate of M w.r.t. to the set of contexts C and the
set of guessed contexts D iff :

a) DG i ∈ {(Di, Ai)|Di, Ai ⊆ br i} iffCi ∈ C,

b) DG i = ε iffCi /∈ C and

c) M [DGC,D] has at least one witness candidate WC,D.

Since a partial diagnosis candidate does not have a partial equilibrium as a witness, the
function wit(DGC,D) of a partial diagnosis candidate DGC,D returns a set of partial belief states
called witness candidates. These belief states are defined in all contexts of C and D. The belief
states in the contexts of C are checked for acceptance under the corresponding partial diagnosis
candidate and the belief states from the import neighborhood. The contexts from D are the
guessed belief states and therefore are not checked for acceptance.

Definition 3.4.2 (Witness Candidate)
Let M = (C1, . . . , Cn) be an MCS and C ⊆ {C1, . . . , Cn} as well as D ⊆ {C1, . . . , Cn} two
sets of contexts with C ∪ D = ∅. Then a partial belief state S = (S1, . . . , Sn) is a witness
candidate in M w.r.t. C and D, denoted as WC,D iff :

• Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}) if Ci ∈ C,

• Si ∈ BSi if Ci ∈ D and

• Si = ε otherwise.

wit(DGC,D) denotes all witness candidates of DGC,D. Note that a witness WC is a witness
candidate WC′,D with C′ = IC (C) and D = ∅.

In Example 3.4.1 we show a partial diagnosis candidate with its corresponding witness can-
didates.

C2C1

←a1

r2: a1←(2:c2) 

r1: a1←(2:b2) 

b1 v c1 

r4: c2←(1:c1) 

r3: b2←(1:b1) 

	∅

Figure 3.4.1: Example to show a partial diagnosis and witness candidate
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Example 3.4.1
We have a context C1 with kb1 = {b1 ∨ c1,← a1} and br1 = {r1, r2} with r1 : a1 ← (2 :
b2), r2 : a1 ← (2 : c2) and a context C2 with kb2 = ∅ and br2 = {r3, r4} with r3 : b2 ←
(1 : b1), r4 : c2 ← (1 : c1). This MCS has no equilibrium therefore a diagnosis is necessary
to make this system consistent. Since the contexts of this MCS build a cycle a partial diagnosis
candidate can be shown. ((ε, ε), (ε, ε)) is a partial diagnosis candidate DG∅,{C1} with, e.g., the
witness candidatesW ′∅,{C1} = ({c1}, ε) andW ′′∅,{C1} = ({b1}, ε)) where the belief sets {c1} and
{b1} are guesses. Now we can extend DG∅,{C1} to DG{C2},{C1} = ((ε, ε), ({r4}, ∅)) and the
witness candidates W ′∅,{C1} and W ′′∅,{C1} to W ′{C2},{C1} = ({c1}, ∅) respectively W ′′{C2},{C1} =

({b1}, {b2}). Finally, we extend the partial diagnosis candidate DG{C2},{C1} to a partial diag-
nosis DG{C1} = ((∅, ∅), ({r4}, ∅)) with the witness W ′{C1} = ({c1}, ∅) because ({c1}, ∅) is a
partial equilibrium under DG{C1}. W

′′
{C2},{C1} will be dropped because the guess {b1} is not

applicable under DG{C1}.
2

3.5 Generalization and Modularity

Now we state some properties of the relation between total and partial equilibria. It is assumed
that partial equilibria are a generalization of total equilibria. The next lemma points this out and
shows which partial equilibria are also total equilibria. This lemma is needed later to show the
generalization and modularization properties of partial diagnoses.

Lemma 3.5.1
As a trivial consequence of the definition of total equilibria (Definition 2.1.4) it follows that
a total equilibria E in an MCS M = (C1, . . . , Cn) is always a partial equilibria EC with
IC (C) = {1, . . . , n}. And a partial equilibria EC in M = (C1, . . . , Cn) is a total equilibria
iff IC (C) = {1, . . . , n}.

Generalization. The definition of partial diagnoses is a generalization of total diagnoses, e.g.,
the set of all partial diagnoses is a superset of all total diagnoses. Moreover it will be shown that,
as a result of Lemma 3.5.2 and Lemma 3.5.3, partial diagnoses are a conservative extension of
total diagnoses.

Lemma 3.5.2
In an MCS M = (C1, . . . , Cn) total diagnoses as defined in Definition 2.3.1, are also partial
diagnoses.

The next lemma identifies those partial diagnoses that are also total diagnoses. It states that
the subset of total diagnoses from the whole set of partial diagnoses are those partial diagnoses
which are defined in all contexts (i.e., 6= ε).

Lemma 3.5.3
In an MCS M = (C1, . . . , Cn) a partial diagnoses DGC = (DG1, . . . , DGn) is a total diag-
nosis iff IC (C) = {1, . . . , n}.
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If a theory T1 is extended to a theory T2 and every theorem from T1 is also a theorem of T2,
moreover every theorem from T2 is already a theorem of T1, it is called a conservative extension.
Lemma 3.5.2 shows us that all total diagnoses are too partial diagnoses and Lemma 3.5.3 that
all partial diagnoses without an ε are syntactically and semantically the same as total diagnoses.
Therefore partial diagnoses are a conservative extension of total diagnoses. Results on total
diagnoses remain valid and the algorithm and methods for partial diagnoses described in this
thesis can also be applied on total diagnoses and will produce the same results as those methods
solely based on total diagnoses.

Modularity. Results of the previous lemmas are now used to show the relationship between
partial and total diagnoses regarding modularity. As we have already seen an MCS can be split
up into partial MCSs . Such a partial MCS contains a subset of all contexts where the import
closure of the subset is the subset itself. The relation between such partial MCS is either they
are distinct, i.e., they have no contexts in common, or they have a common part which itself is
again a partial MCS . Let’s say we have two MCS M1 and M2 with a common part M12, then
M12 is a subset of M1 and M2 and according to Proposition 3.1.2 the import closure of M12 is
also a subset of the import closure of M1 and M2. The other way around M1 and M2 are both
extensions of M12. Remind that for each of those partial MCS partial diagnoses and witnesses
can be defined. Therefore a total diagnosis (which is also partial diagnosis) is iteratively built up
by partial diagnoses.

The following lemma states formally the subset relation between partial diagnoses. In Sec-
tion 3.6 operators will be introduces which are based on the modular design of partial diagnoses.

Lemma 3.5.4 states that every partial diagnosisDG is an extension of those partial diagnoses
which are defined over a subset of the import closure of DG. In other words, for every subset of
the import closure of a partial diagnosis there is at least one partial diagnosis w.r.t. to this subset.

Lemma 3.5.4
Let DGC = (DG1, . . . ,DGn) be a partial diagnosis of M = (C1, . . . , Cn). Then for every
C′ ⊆ C, DG ′C′ = (DG ′1, . . . ,DG ′n) where DG ′i = DG i for all i ∈ IC (C′) and DG ′i = ε
otherwise, is a partial diagnosis of M .

Proof
Let DGC = (DG1, . . . ,DGn) be a partial diagnosis in the MCS M = (C1, . . . , Cn) and C′ ⊆ C.

Construct a partial diagnosis DG ′C′ = (DG ′1, . . . ,DG ′n) by copying DGC and setting every
DG ′i = ε for all i /∈ IC (C′). Now we have to show that DG ′C′ is indeed a partial diagnosis w.r.t.
C′.

It is trivial that DG ′C′ is defined (e.g., DG ′i 6= ε) for all i ∈ IC (C′) since IC (C′) ⊆ IC (C)
(Proposition 3.1.2).

It remains to show thatM [DG ′] has a partial equilibrium w.r.t. C′. Take a partial equilibrium
EC = (E1, . . . , En) from M [DG ]. From Proposition 3.1.4 it follows that there is also a partial
equilibrium E ′C′ in M [DG ].

Since for all i ∈ IC (C′), DG i = DG ′i and therefore Ci the same in M [DG ] and M [DG ′]
for i ∈ IC (C′), Proposition 3.1.5 shows us that the partial equilibrium E ′C′ from M [DG ] is also
a partial equilibrium in M [DG ′] and therefore DG ′C′ a partial diagnosis in M [DG ′].
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2

If the import closure of the subset C′ is equivalent with the import closure of C, then DGC =
DG ′C′ . Recall that a total diagnosis is also a partial diagnosis. So for every total diagnosis
we have a set of partial diagnoses which represents parts of the total diagnosis. With the join
operator, defined below, these parts can be merged together and the result is again a part of the
same total diagnosis or the total diagnosis itself.

Ctx 2 Ctx 3

Ctx 1 Ctx 4

Ctx 5

C' C''

Figure 3.5.1: Example of partial MCSs

Example 3.5.1
We have a context C1 which requests information from C2 and C3 (i.e., has bridge rules whose
bodies refer to those contexts) and a context C4 which requests information from context C3 and
C5. Contexts C2, C3 and C5 have an import closure which contains only the contexts itself. C1

has an import closure C′ = {1, 2, 3} and C4 has an import closure C′′ = {3, 4, 5}. So if there is
a total diagnosis we have for all those import closures listed before at least one partial diagnosis
which is part of the total diagnosis. Those parts can be combined by the join operation. E.g., the
union of C′ and C′′ is the whole MCS and therefore the join of the partial diagnoses DGC′ and
DGC′′ a total diagnosis.

2

3.6 Combining Partial Diagnoses

In this section we define operators which combine partial diagnoses and partial diagnosis candi-
dates. Every partial diagnosis (candidate) is defined over a subset of contexts from an MCS. If
two partial diagnoses (candidates) DG′, defined in C′, and DG′′, defined in C′′, are equal in the
contexts of the intersection C′ ∩ C′′ then they can be joined together. Otherwise a join between
DG′ and DG′′ returns an empty result. If the result is not empty it is again a partial diagnosis
(candidate) defined in the contexts of the union of C′ and C′′ containing both partial diagnoses
(candidates) DG′ and DG′′.
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Definition 3.6.1 (Join of Partial Diagnoses and Partial Diagnosis Candidates)
Let DG′ = (DG′1, . . . , DG

′
n) and DG′′ = (DG′′1, . . . , DG

′′
n) be partial diagnoses or partial

diagnosis candidates of an MCS M = (C1, . . . , Cn). The result of a join DG′ ./ DG′′ is
DG = (DG1, . . . , DGn), where

• DGi = DG′i = DG′′i , if DG′i = DG′′i ,

• DGi = DG′i, if DG′i 6= ε ∧DG′′i = ε,

• DGi = DG′′i , if DG′′i 6= ε ∧DG′i = ε

for all 1 ≤ i ≤ n.
Note that DG′ ./ DG′′ is void iffDG′i 6= ε, DG′′i 6= ε and DG′i 6= DG′′i for some 1 ≤ i ≤ n.

Join of Witnesses and Witness Candidates. Witnesses and witness candidates are partial
belief states like partial equilibria and therefore a join between two witnesses respective witness
candidates is already defined in Definition 3.1.3.

Join Semantics. The following two lemmas state that the results of a join between two partial
diagnosis candidates DG′C′,D′ and DG′′C′′,D′′ and their witness candidates W ′C′,D′ and W ′′C′′,D′′
is again a partial diagnosis candidate DGC,D and a corresponding witness candidate WC,D if
both results exist. Those relations hold also for partial diagnoses instead of partial diagnosis
candidates and their witnesses instead of witness candidates.

Lemma 3.6.1
Let M = (C1, . . . , Cn) be an MCS , DG′C′,D′ = (DG′1, . . . , DG

′
n) a partial diagnosis candi-

date inM with the witness candidateW ′C′,D′ = (W ′1, . . . ,W
′
n) andDG′′C′′,D′′ = (DG′′1, . . . , DG

′′
n)

a partial diagnosis candidate in M with the witness candidate W ′′C′′,D′′ = (W ′′1 , . . . ,W
′′
n ). Then

DGC,D = DG′C′,D′ ./ DG
′′
C′′,D′′ is a partial diagnosis candidate with the witness candidate

WC,D =W ′C′,D′ ./ W
′′
C′′,D′′ with C = C′ ∪ C′′ and D = D′ ∪ D′′ if DGC,D and WC,D exist.

Proof
According to Definition 3.6.1 the result of a join between two partial diagnosis candidates is
defined in those contexts where at least one of the partial diagnosis candidates is defined. DG′

is defined in all contexts of C′ with DG′i ∈ {(Di, Ai)|Di, Ai ⊆ br i} iffCi ∈ C′ and DG′i = ε
otherwise and DG′′ is defined in all contexts of C′′ with DG′′i ∈ {(Di, Ai)|Di, Ai ⊆ br i}
iffCi ∈ C′′ and DG′′i = ε otherwise. Therefore DG is defined in all contexts of C′ ∪ C′′ with
DGi ∈ {(Di, Ai)|Di, Ai ⊆ br i} iffCi ∈ (C′ ∪ C′′) and DGi = ε iffCi /∈ (C′ ∪ C′′). Now we
show that if WC,D exists as a result of a join between W ′C′,D′ and W ′′C′′,D′′ then WC,D is a witness
candidate of DG and therefore DG a partial diagnosis candidate.

Since W ′ and W ′′ are belief states it is clear that W is a belief state too. Recalling Defi-
nition 3.4.2, Wi ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪ heads(Ai),W )}) if Ci ∈ C,
Wi ∈ BSi if Ci ∈ D and Wi = ε otherwise. Since C = C′ ∪ C′′ either W ′i ∈ ACCi(kbi ∪
{head(r) | r ∈ app(br i \ D′i ∪ heads(A′i),W

′)}), W ′′i ∈ ACCi(kbi ∪ {head(r) | r ∈
app(br i \ D′′i ∪ heads(A′′i ),W

′′)}) or both of them are. Since DGi = DG′i respectively
DGi = DG′′i for Ci ∈ C we can substitute to W ′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \
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Di ∪ heads(Ai),W
′)}) respectively W ′′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪

heads(Ai),W
′′)}). app(br i\Di∪heads(Ai),W

′) is only defined ifW ′k 6= ε for all k ∈ In(Ci).
If this is the case also Wk 6= ε and moreover Wk = W ′k for all k ∈ IC (Ci) and due to
Proposition 3.1.3, W ′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪ heads(Ai),W)}) re-
spectively W ′′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪ heads(Ai),W)}). Therefore
Wi ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \Di ∪ heads(Ai),W )}) for all i ∈ (C′ ∪ C′′).

Now it is left to show that WC,D has guessed belief sets for all Ci ∈ D. Ci is inD if Ci ∈ D′
or Ci ∈ D′′. If Ci ∈ D′ then W ′i ∈ BSi and therefore also Wi ∈ BSi. The same holds for
Ci ∈ D′′.

It is clear thatWi = ε iffW ′i = ε andW ′′i = ε. This is the case for allCi /∈ (C′∪D′∪C′′∪D′′)
which is Ci /∈ (C ∪ D). Therefore is WC,D a witness candidate of DGC,D.

2

Lemma 3.6.2
Let M = (C1, . . . , Cn) be an MCS , DG′C′ = (DG′1, . . . , DG

′
n) a partial diagnosis in M with

the witness W ′C′ = (W ′1, . . . ,W
′
n) and DG′′C′′ = (DG′′1, . . . , DG

′′
n) a partial diagnosis in M

with the witness W ′′C′′ = (W ′′1 , . . . ,W
′′
n ). If DGC = DG′C′ ./ DG

′′
C′′ and WC = W ′C′ ./ W

′′
C′′

exist DGC is a partial diagnosis with the witness WC and C = C′ ∪ C′′.

Proof
According to Definition 3.6.1 the result of a join between two partial diagnoses is defined in
those contexts where at least one of the partial diagnoses is defined. DG′ is defined in IC (C′)
and DG′′ in IC (C′′). Therefore DG is defined in IC (C′) ∪ IC (C′′). Using Proposition 3.1.1,
IC (C′) ∪ IC (C′′) = IC (C′ ∪ C′′).

It is left to show that WC = W ′C′ ./ W ′′C′′ is a witness for DG. Since W ′ and W ′′ are
belief states it is clear that W is a belief state too. Recalling Definition 3.1.2 and 3.3.1, Wi ∈
ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪ heads(Ai),W )}) if i ∈ IC (C) and Wi = ε
otherwise.

i ∈ IC (C′ ∪ C′′) if i ∈ IC (C′) or i ∈ IC (C′′). If i ∈ IC (C′) then W ′i ∈ ACCi(kbi ∪
{head(r) | r ∈ app(br i \ D′i ∪ heads(A′i),W

′)}). Since DGi = DG′i, because DG′i 6= ε
if i ∈ IC (C′), we can substitute to W ′i ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i \ Di ∪
heads(Ai),W

′)}). app(br i \ Di ∪ heads(Ai),W
′) is due to Proposition 3.1.3 the same as

app(br i \Di ∪ heads(Ai),W) if Wk = W ′k for all k ∈ In(i). Since i ∈ IC (C′) and In(i) ⊆
IC (Ci) for all k ∈ In(i), W ′k 6= ε and therefore, since W ′ ./ W ′′ exists, Wk = W ′k for all k ∈
In(i). Therefore we haveW ′i ∈ ACCi(kbi∪{head(r) | r ∈ app(br i \Di∪heads(Ai),W )}).
The proof for i ∈ IC (C′′) works the same way.

i /∈ IC (C′ ∪ C′′) if i /∈ IC (C′) and i /∈ IC (C′′). Therefore W ′i = ε, W ′′i = ε and therefore
Wi = ε. So WC is a witness candidate of DGC .

2

Example 3.6.1
Let’s take the MCS from Figure 3.6.1 and assume that the context C1 wants to know the
partial diagnosis candidates and its witnesses from C2 and from C3 so it can join those re-
sults and then extend them with its own context. As we will see later in the algorithm to
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Figure 3.6.1: Join example of partial diagnosis candidates and witness candidates

solve the cycle (the request chain from C1 to C2/C3, C4 and again to C1) the belief set in
C1 will be guessed and therefore C2 and C3 will return candidates to C1. From C2 we get,
amongst others, the partial diagnosis candidate DG′{C2,C4},{C1} = (ε, (∅, ∅), ε, ({r1}, ∅)) with
one witness candidate being W ′{C2,C4},{C1} = ({a1}, {a2}, ε, {a4}) and from C3 the partial di-
agnosis candidate DG′′{C3,C4},{C1} = (ε, ε, (∅, ∅), ({r1}, ∅)) with one witness candidate being
W ′′{C3,C4},{C1} = ({a1}, ε, ∅, {a4}).

We can now join the two partial diagnosis candidates because they are the same in those con-
texts where both are defined so the result isDG{C2,C3,C4},{C1} = (ε, (∅, ∅), (∅, ∅), ({r1}, ∅)). In
this example we can also join the two witness candidates, because the guess in C1 and the
belief set in C4 is the same on both witness candidates, and get therefore a witness candi-
date for the diagnosis candidate joined together before. So W ′{C2,C4},{C1} ./ W

′′
{C3,C4},{C1} =

W{C2,C3,C4},{C1} = ({a1}, {a2}, ∅, {a4}). Note that there are many more witness candidates
for DG′ and DG′′ which can not be joined, because, e.g., the guess on context C1 is the same
but the belief set of C4 is different and therefore only the valid witness candidates remain.

2

Every partial diagnosis has a set of witnesses. Now we define a join between two of those
witness sets. Such a join is, like a cross product, a join between each witness of one set with
each witness of the other set and results in a set of containing all the witness join results.

Definition 3.6.2
Let DG ′C′ and DG ′′C′′ be two partial diagnoses. FurtherW ′ = wit(DG ′C′) andW ′′ = wit(DG ′′C′′)
be two sets containing the witnesses of DG ′C′ and DG ′C′ respectively. Then the joinW ′ ./ W ′′
is defined as the set {W ′

C′ ./ W ′′
C′′ |W ′

C′ ∈ W ′,W ′′
C′′ ∈ W ′′}.

If two sets of witnesses of partial diagnoses DG′ and DG′′ respectively are joined together
the resulting set contains all witnesses of the partial diagnosis resulting from a join betweenDG′

and DG′′.
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Lemma 3.6.3
Let DG ′C′ and DG ′′C′′ be two partial diagnoses,W ′ = wit(DG ′C′) as well asW ′′ = wit(DG ′′C′′)
two sets with all existing witnesses of DG ′C′ respectively DG ′′C′′ and DGC′∪C′′ = DG ′C′ ./ DG ′′C′′ .
Then the joinW ′ ./W ′′ returns all existing witnesses of the partial diagnosis DGC′∪C′′ .

Proof
From Lemma 3.6.2 we know that all witnesses W ∈ W ′ ./ W ′′ are witnesses of the partial
diagnosis DGC′∪C′′ . So it is left to show that this set of witnesses is complete, e.g., it contains
all existing witnesses of DGC′∪C′′ .

Let’s say WC′∪C′′ = (W1, . . . ,Wn) is an arbitrary witness from wit(DGC′∪C′′). Based
on this witness we can construct two partial belief states W ′

C′ = (W ′1, . . . ,W
′
n) and W ′′

C′′ =
(W ′′1 , . . . ,W

′′
n ) and show (a) that those partial belief states are witnesses of the partial diagnoses

DG ′C′ respectively DG ′′C′′ and (b) a join between W ′
C′ and W ′′

C′′ results in WC′∪C′′ .
WC′∪C′′ is defined over the contexts of the import closure IC (C′ ∪ C′′). Proposition 3.1.1

tells us that IC (C′ ∪ C′′) = IC (C′) ∪ IC (C′′). So we construct W ′
C′ by setting W ′i = Wi if

i ∈ IC (C′) and W ′′
C′′ by setting W ′′i =Wi if i ∈ IC (C′′). All other W ′i and W ′′i are set to ε.

Recalling Definition 3.1.3, it is trivial that a join between W ′
C′ and W ′′

C′′ results in the witness
WC′∪C′′ .

WC′∪C′′ is a partial equilibrium and according to Proposition 3.1.4 we know that W ′
C′ and

W ′′
C′′ are also partial equilibria in M [DGC′∪C′′ ]. Since DGi = DG′i for i ∈ IC (C′) and DGi =

DG′′i for i ∈ IC (C′′) along with Proposition 3.1.5 W ′
C′ and W ′′

C′′ are also partial equilibria in
M [DG ′C′ ] and M [DG ′′C′′ ] respectively and moreover witnesses of DG ′C′ and DG ′′C′′ respectively.

2

Example 3.6.2
Let’s recall Example 3.6.1 where the partial diagnosis candidate DG′{C2,C4},{C1} has the wit-
ness candidates ({a1}, {a2}, ε, {a4}) and ({a1}, ∅, ε, {b4}) and the partial diagnosis candidate
DG′′{C3,C4},{C1} has the witness candidates ({a1}, ε, ∅, {a4}) and ({a1}, ε, {b3}, {b4}).

Now to get the witness candidates for the joined partial diagnosis candidateDG{C2,C3,C4},{C1}
we just have to join the two sets of witness candidates which results in the two witness candidates
({a1}, {a2}, ∅, {a4}) and ({a1}, ∅, {b3}, {a4}) which are indeed the only witness candidates for
the mentioned partial diagnosis candidate.

2
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CHAPTER 4
Algorithm

4.1 Overview

The algorithm, developed in this thesis, is referred to as “Distributed Multi-Context Systems
Diagnoses Finder” or DMCS-DF for short.

Multi-Context Systems targeted by the algorithm are realized as a network between nodes.
These nodes are hosts for one or more contexts with their knowledge bases and bridge rules.
Note that every context is only aware of those bridge rules which add information to his context,
viz. which heads refer to the context. Every node in such a network runs an instance of the
algorithm for each context. Instances gather information from other contexts on the same node
and on other nodes by sending a request over the network to the addressed context. Since it does
not matter if the context is on the same or another node the concept of nodes will be omitted in
the definition of the algorithm and the implementation.

Every instance is capable of processing the hosted knowledge base in their individual knowl-
edge representation formalism. Therefore every instance must only be specialized for the local
context and receives the information from other contexts in a normalized form, defined by the
MCS concept and therefore does not need to know or deal with the specific knowledge repre-
sentation formalisms of other contexts.

The purpose of this algorithm is to find partial diagnoses and their witnesses with respect to
one specific context. Therefore it is intended that a user sends a request to the context the user
is interested in. The algorithm then determines which contexts are necessary for the calculation
and requests the needed information from them. Those requests are performed in a depth first
search manner.

A problem arising from this method is that the algorithm can get stuck in a cycle of requests
between contexts depending on each other. Therefore every instance needs information about
the preceding calling contexts and has to check this calling history for such a cycle. If a cycle
is detected no more requests are send and instead of requesting needed information from further
contexts and calculating the local belief sets, possible local belief sets are guessed and returned
to the calling instance. Based on these guesses further calculations are done and those results
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send back in the calling chain until the instance is reached on which the guesses have been
created. Then the guesses are validated and false guesses are discarded. Finally the first called
instance returns all possible partial diagnoses and in addition all corresponding witnesses to the
user.

4.2 Details and Pseudocode

Main Procedure. The main procedure is the entry point if a request is send to a context. The
procedure returns a set of pairs where the first element of the pair is a partial diagnosis candidate
and the second a partial belief state. This procedure is called for every context in the import
closure of the context which the user is interested in. The returned results of the procedure are
proper partial diagnoses (not candidates) if the context is not part of a cycle or it is the first
context in a cycle which is called. In all other cases the results are partial diagnosis candidates
which will be validated if the results have returned to the first called context in the cycle. All
results are complete, meaning that they contain all existing partial diagnoses (candidates) and
all of its witnesses.

For the calculations in this part of the algorithm it does not matter if the results returned from
the import neighborhood are proper partial diagnoses or partial diagnosis candidates. The join
operations are similar on partial diagnoses and partial diagnosis candidates as well as on partial
witnesses and witness candidates. The main procedure treats every candidate like a proper partial
diagnosis (or witness). The validation of the candidates is done in the guessDiagnosesAndSolve
procedure.

The procedure checks first if this context has already been called earlier and is therefore the
last context of a cyclic calling chain (Line 2). A list of already called contexts is added by the
calling instance to the request so it suffices to check if this list contains the local context. In
case a cycle is detected the calling chain is interrupted, i.e., no contexts of the import neigh-
borhood will be called and instead the local belief sets guessed. This is done by the procedure
guessBeliefSets. Those guesses are not further processed and send back to the caller.

If no cycle is detected, from every context of the import neighborhood a complete set of
partial diagnoses (candidates) w.r.t. those contexts and the corresponding partial belief states
are requested (Line 8). Those requests are send iteratively and not in parallel for the following
reason: the local context needs the partial results from all contexts in his import neighborhood.
If the import closure of one of these contexts contains another context from the import neigh-
borhood a call to this context is redundant and therefore skipped.

C2 C3C1 C4

Figure 4.2.1: Example of skipped requests
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Example 4.2.1
Let’s take the MCS from Figure 4.2.1 where C1 is a context with {2, 3, 4} being its import
neighborhood and the import closure of C2 being {3, 4}. If C1 requests the results from C2,
partial results defined in the contexts C2, C3 and C4 are returned. They are already complete
and it is not necessary for C1 to request results from C3 and C4 although they are in the import
neighborhood of C1.

2

Algorithm 4.2.1: DMCS-DF(hist) at Ct = (Lt, kbt, br t)

Input: hist : visited contexts.
Output: S = {(DG ′{Ct},W

′
{Ct}), (DG ′′{Ct},W

′′
{Ct}), . . . }: set of pairs with the first

element a partial diagnosis candidate w.r.t. Ct and the second a corresponding
witness candidate.

1 S := ∅;
2 if t ∈ hist then
3 S = guessBeliefSets(Ct)
4 else
5 T := {((ε, . . . , ε), (ε, . . . , ε))};
6 foreach i ∈ In(t) do
7 if for some (DG ,W ) ∈ T , Wi = ε then
8 T ′ := Ci.DMCS-DF(hist ∪ {t});
9 T :=

⋃
(DG′,W ′)∈T ,(DG′′,W ′′)∈T ′ (DG ′ ./ DG ′′,W ′ ./ W ′′);

10 end
11 end
12 foreach (DG ,W ) ∈ T do
13 S := S ∪ guessDiagnosesAndSolve(Ct, (DG ,W ));
14 end
15 end
16 return S;

The results of these requests, the partial diagnoses (candidates), and their witnesses (can-
didates) are then joined together (Line 9). The resulting partial diagnoses are at least defined
in the import neighborhood of the local context. Based on this, the procedure guessBeliefSets
calculates for every result so far the partial diagnoses and their witnesses with respect to the
local context (Line 13). Those results are then sent back to the calling instance.

Guessing Local Belief Sets. This part of the algorithm takes place when a cycle is detected.
Therefore no information can be requested from the contexts of the import neighborhood oth-
erwise the algorithm would get stuck in an infinite loop. Instead all possible local belief sets
will be guessed (Line 2) and returned. Note that this instance makes no guess about the local
partial diagnoses since this has already been done by the instance (running at this context) which
handles the first request coming to this context.
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The guessed belief sets are returned as witness candidates for a partial diagnosis candidate
which is ε in all the contexts of the MCS (Line 3). This partial diagnosis candidate will then be
extended by the instances from the calling chain.

Example 4.2.2
Given an MCS with three contexts C1, C2 and C3 and let’s assume a request is sent from C1 to
C2, then to C3 and from there again to C1. C1 gets the request and asserts that C1 is already
in the request chain and therefore makes a guess about the local belief set and returns it with an
undefined partial diagnosis. E.g., if the belief sets are all combinations of the elements a and
b the request to C1 would return ((ε, ε, ε), (∅, ε, ε)), ((ε, ε, ε), ({a}, ε, ε)), ((ε, ε, ε), ({b}, ε, ε)),
and ((ε, ε, ε), ({a, b}, ε, ε)).

2

Algorithm 4.2.2: guessBeliefSets(Ct)

Input: Ct = (Lt, kbt, brt): context whose partial belief sets are to be guessed.
Output: T = {((ε, . . . , ε),W ′), ((ε, . . . , ε),W ′′), . . . }: set of pairs with the first element

a partial diagnosis candidate and the second a witness candidate.
1 T = ∅;
2 foreach Bt ∈ BSt do
3 T = T ∪ {((ε, . . . , ε), (ε, . . . , Bt, . . . , ε))};
4 end
5 return T ;

Guessing and Solving Partial Diagnoses. This procedure extends the given partial diagnosis
candidates with the part corresponding to the local context and further calculates the local belief
sets based on the extended partial diagnosis candidates. Moreover it checks if those calculated
belief sets equal to existing guessed belief sets.

All possible local partial diagnoses are guessed by taking the cross product over the power
set of the local bridge rules (Line 2). This yields all possible combinations of the bridge rules
from the local context which are to be removed or applied unconditionally. Then the given
partial diagnosis candidate is combined with each guess. Based on the newly created partial
diagnosis candidates the local belief sets are calculated (Line 4). Now it has to be distinguished
between the case that the given witness candidate is defined at the local context (Lines 8-10) or it
is not defined there (Line 6). The first case means that this defined belief set is a guess and if the
guess is also in the calculated belief sets the guess is validated. Therefore the partial diagnosis
candidate with this witness candidate is returned. If the guess is not part of the calculated belief
sets, the partial diagnosis candidate is dropped. In the second case the given witness candidate
is combined with all calculated local belief sets and they are returned with the newly created
partial diagnosis candidate.
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Example 4.2.3
Let’s take the MCS from Example 4.2.2 and assume thatC1 has a knowledge base kb1 = {a∨b},
a bridge rule r1 and, for the sake of simplicity, that ACC1(kb1 ∪ {head(r) | r ∈ app(br1 \
D1 ∪ heads(A1),W )}) under all witness candidates and under all partial diagnosis candidates
returns {a, b}.

Then all witness candidates which contain {a, b} or ∅ as a belief set for C1 are dropped
and all the other ones with {a} and {b} are kept because they are accepted locally. This is the
point where the guesses are checked. All those belief states which are now left are witnesses
of the partial diagnoses which have been returned to C1 combined with the four possible local
diagnoses (∅, ∅), ({r1}, ∅), (∅, {r1}) and ({r1}, {r1}). Note that this is only true under our
assumption that all those partial diagnoses lead to the same set of accepted local belief sets.

2

Algorithm 4.2.3: guessDiagnosesAndSolve(Ct, T = (DG ,W ))

Input: Ct = (Lt, kbt, brt): context whose partial diagnoses will be guessed and whose
belief sets will be calculated; T : a partial diagnosis candidate DG with a
corresponding witness candidate W .

Output: S = {(DG ′{Ck},W
′
{Ct}), (DG ′′{Ck},W

′′
{Ct}), . . . }: set of pairs with the first

element a partial diagnosis candidate w.r.t. Ct and the second a corresponding
witness candidate.

1 S = ∅;
2 Gt = {(Dt, At) | Dt, At ⊆ brt};
3 foreach Gt ∈ Gt do
4 Bt = ACCt(kbt ∪ {head(r) | r ∈ app(brt \Dt ∪ heads(At),W )});
5 if Wt = ε then
6 S = S ∪ {(DG1, . . . , Gt, . . . ,DGn), (W1, . . . ,W

′
t , . . . ,Wn) |W ′t ∈ Bt};

7 else
8 if Wt ∈ Bt then
9 S = S ∪ {((DG1, . . . , Gt, . . . ,DGn),W )};

10 end
11 end
12 end
13 return S;

4.3 Soundness and Completeness

To show the soundness and completeness of the algorithm we first have to introduce the concepts
of a limited import closure and a guessing edge. Each request to a context in an MCS has as a
parameter a history which is a set of already visited contexts. So depending on this history, as a
result of such an request partial diagnosis candidates and witness candidates are returned which
are well defined in some contexts and are guesses in some other contexts. They are only defined
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in those contexts which are not in the history and can be reached by further request without
passing a context from the history. We call a set of those contexts limited import closure. All
contexts which are in the import neighborhood of a context of the limited import closure and
are also in the history return guesses to prevent an infinite request cycle. This set of contexts is
called guessing edge.

In the following definitions, we generalize the history with an arbitrary set of contexts C.
The limited import closure is defined iteratively beginning with the import neighborhood of the
context itself without the contexts from C. Then on each step we extend the limited import
closure with the import neighborhood of all contexts which are already in the limited import
closure again without the contexts from C. Since an MCS is always finite and in no step contexts
are removed from the limited import closure it will converge at some point.

Definition 4.3.1 (Limited Import Closure)
Let M = (C1, . . . , Cn) be an MCS , Ct a context in M and C ⊆ {1, . . . , n}. Then a C-limited
import closure LIC (Ct, C) is defined as LIC (Ct, C) = LIC∞(Ct, C) with:

• LIC 0(Ct, C) = {t} \ C and

• LIC j+1(Ct, C) = LIC j(Ct, C) ∪
⋃

i∈LIC j(Ct,C) (In(i) \ C) for j ≥ 0.

Note that

• t ∈ C implies LIC (Ct, C) = ∅ and

• C = ∅ implies LIC (Ct, C) = IC (Ct).

For a context to be in the guessing edge it must be in C and the context must be in the import
neighborhood of a context from the limited import closure. An exception is a request from a
context to itself. In this case the limited import closure is empty because such a request returns
just a guess and nothing else. Therefore if the context itself is in C it is also in the guessing edge.

Definition 4.3.2 (Guessing Edge)
Let M = (C1, . . . , Cn) be an MCS and let LIC (Ct, C) be a C-limited import closure w.r.t. M .
Then the Guessing Edge of LIC (Ct, C) denoted GE (Ct, C) is a set S with i ∈ GE (Ct, C) iff :

a) i ∈ C and

b) i ∈ {t} ∪
⋃

s∈LIC (Ct,C) In(s).

Example 4.3.1
Let’s take the example from Figure 4.3.1 and assume that a request from C1 has been sent to C2

which triggers a further request to C3 with a history set {1, 2}. Now C3 will answer this request
with information about its import closure, which is {3, 4, 2, 5}. But since C2 is already in the
history the request will only return a guess from C2 and nothing from C5. This is expressed
by the {1, 2}-limited import closure of C3 being LIC (C3, {1, 2}) = {4} and its guessing edge
being GE (C3, {1, 2}) = {2}.

2
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Figure 4.3.1: Example of a limited import closure and a guessing edge

Lemma 4.3.1
Let M = (C1, . . . , Cn) be an MCS , Ct a context in M and C ⊆ {1, . . . , n} with t /∈ C. Then
the following equation holds:

LIC (Ct, C) = {t} ∪
⋃

i∈In(t)

LIC (Ci, C ∪ {t}). (4.3.1)

Proof
According to Definition 4.3.1, (4.3.1) is equal to

LIC∞(Ct, C) = {t} ∪
⋃

i∈In(t)

LIC∞(Ci, C ∪ {t}).

We now show by induction that (4.3.1) is true for each step in the iterative calculation of the
limited import closures. More precisely it is equal if the calculation of the limited import closure
on the left side of the equation is one step ahead of the calculation of the limited import closure
on the right side. Therefore we show:

LIC x(Ct, C) = {t} ∪
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t}). (4.3.2)

Induction Base. For x = 1 we have1

LIC 1(Ct, C) = {t} ∪
⋃

i∈In(t)

LIC 0(Ci, C ∪ {t}) (4.3.3)

which, due to Definition 4.3.1, is equivalent to

LIC 0(Ct, C) ∪
⋃

i∈LIC 0(Ct,C)

(In(i) \ C) = {t} ∪
⋃

i∈In(t)

LIC 0(Ci, C ∪ {t}). (4.3.4)

1Since LIC−1(Ci, C∪{t}) is not defined also (4.3.2) is not defined for x = 0. Therefore our base case is x = 1.
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Since t /∈ C we know that LIC 0(Ct, C) = {t} \ C = {t}. Moreover LIC 0(Ci, C ∪ {t}) =
{i} \ (C ∪ {t}) and therefore (4.3.4) is

{t} ∪
⋃
i∈{t}

(In(i) \ C) = {t} ∪
⋃

i∈In(t)

({i} \ (C ∪ {t}))

and further
{t} ∪ (In(t) \ C) = {t} ∪ (In(t) \ (C ∪ {t})).

Since the set on the right side is always containing t we do not have to subtract t in each step of
the union. Therefore we can reduce it to:

{t} ∪ (In(t) \ C) = {t} ∪ (In(t) \ C). (4.3.5)

Induction Step. We now show that under the assumption that (4.3.2) holds, it also holds that

LIC x+1(Ct, C)︸ ︷︷ ︸
L

= {t} ∪
⋃

i∈In(t)

LIC x(Ci, C ∪ {t})︸ ︷︷ ︸
R

.

Now we replace LIC x+1(Ct, C) using Definition 4.3.1 and obtain

L = LIC x(Ct, C) ∪
⋃

i∈LICx(Ct,C)

(In(i) \ C)

As already seen in the induction base (In(t)\C) ⊆ LIC 1(Ct, C) and LIC 1(Ct, C) ⊆ LIC x(Ct, C)
so it does not make any difference if t ∈ LIC x(Ct, C) or not and we further obtain

L = LIC x(Ct, C)︸ ︷︷ ︸
L′

∪
⋃

i∈(LICx(Ct,C)\{t})

(In(i) \ C)

︸ ︷︷ ︸
L′′

. (4.3.6)

For the right side R we can replace LIC x(Ci, C ∪ {t}) using Definition 4.3.1 and obtain

R = {t} ∪
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t}) ∪
⋃

k∈LICx−1(Ci,C∪{t})

(In(k) \ (C ∪ {t}))

.
Since the union of sets is associative and commutative we obtain

R = {t} ∪
⋃

i∈In(t)

(
LIC x−1(Ci, C ∪ {t})

)
︸ ︷︷ ︸

R′

∪

⋃
i∈In(t)

 ⋃
k∈LICx−1(Ci,C∪{t})

(In(k) \ (C ∪ {t}))


︸ ︷︷ ︸

R′′

.
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Since (4.3.2) holds we know that L′ = R′. Now it is left to show that L′′ = R′′. In R′′ we use
the index i only to define the index set of the second union and it is not used in the sets itself.
Therefore we can combine both unions to the following:

R′′ =
⋃

k∈
⋃

i∈In(t) LIC
x−1(Ci,C∪{t})

(In(k) \ (C ∪ {t}))

︸ ︷︷ ︸
R′′′

.

Since t ∈ R we do not need to remove t in every element of the union and we can write

R′′ =
⋃

k∈
⋃

i∈In(t) LIC
x−1(Ci,C∪{t})

(In(k) \ C)

︸ ︷︷ ︸
R′′′

. (4.3.7)

Now we can match L′′ in (4.3.6), with R′′ in (4.3.7) and it is left to show that the index set of
the unions coincide, i.e., that

LIC x(Ct, C) \ {t} =
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t}).

Using (4.3.2) we can replace

({t} ∪
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t})) \ {t} =
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t})

which can be further reduced to⋃
i∈In(t)

LIC x−1(Ci, C ∪ {t}) =
⋃

i∈In(t)

LIC x−1(Ci, C ∪ {t}).

which trivially holds.

Induction Conclusion. Since the MCSs we are working with are finite a limited import clo-
sure in such a MCS has to be finite as well. Moreover on each step of building a limited import
closure contexts are only added but never removed. Therefore for each LIC x there is a unique
and least fixpoint for x→∞ and we can say that

LIC∞(Ct, C) = {t} ∪
⋃

i∈In(t)

LIC∞(Ci, C ∪ {t})

which is
LIC (Ct, C) = {t} ∪

⋃
i∈In(t)

LIC (Ci, C ∪ {t}).

2
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Lemma 4.3.2
Let M = (C1, . . . , Cn) be an MCS , Ct a context in M , and C ⊆ {1, . . . , n} with t /∈ C. Then
for each i ∈ In(t) we have

|LIC (Ci, C ∪ {t})| < |LIC (Ct, C)| . (4.3.8)

Proof
Since t /∈ C we can use Lemma 4.3.1 to obtain from (4.3.8)

|LIC (Ci, C ∪ {t})︸ ︷︷ ︸
L

| < |{t} ∪
⋃

j∈In(t)

LIC (Cj , C ∪ {t})︸ ︷︷ ︸
R′︸ ︷︷ ︸

R

|.

Recalling the definition of limited import closures (Definition 4.3.1) it is easy to see that t /∈
LIC (Cj , C ∪ {t}) and therefore t /∈ R′. Then it holds that |R′| < |R|. Since i ∈ In(t) by
definition and therefore i also an element of the index set of R′ we know that L ⊆ R′ and
therefore |L| ≤ |R′|. So we can obtain |L| ≤ |R′| < |R|.

2

Lemma 4.3.3
Let M = (C1, . . . , Cn) be an MCS , Ct a context in M and C ⊆ {1, . . . , n} with t /∈ C. Then

GE (Ct, C) \ {t} =

 ⋃
i∈In(t)

GE (Ci, C ∪ {t})

 \ {t}.
Proof
We have to prove that

GE (Ct, C) \ {t}︸ ︷︷ ︸
L

=

 ⋃
i∈In(t)

GE (Ci, C ∪ {t})

 \ {t}
︸ ︷︷ ︸

R

. (4.3.9)

For an element to be in one of the sets L or R from (4.3.9) all of the following three properties
have to be true:

properties for x ∈ L properties for x ∈ R
a) x ∈ C x ∈ (C ∪ {t})
b) x ∈ {t} ∪

⋃
s∈LIC (Ct,C) In(s) x ∈

⋃
i∈In(t)

(
{i} ∪

⋃
s∈LIC (Ci,C∪{t}) In(s)

)
c) x 6= t x 6= t

Properties a) and b) are derived from Definition 4.3.2. Now we show that for x ∈ {1, · · · , n}
properties a), b), and c) on the left side simultaneously hold iff they simultaneously hold on the
right side.
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Due to property c) it is clear that C ∪ {t} = C and therefore property a) is the same for L
and R.

Now it is left to show that

{t} ∪
⋃

s∈LIC (Ct,C)

In(s) =
⋃

i∈In(t)

{i} ∪ ⋃
s∈LIC (Ci,C∪{t})

In(s)

.
Now we can rearrange the equation on the right side. Since x 6= t we can remove t from the left
side, and since t /∈ C we can use Lemma 4.3.1 to obtain⋃

s∈({t}∪
⋃

i∈In(t) LIC (Ci,C∪{t}))

In(s) = In(t) ∪
⋃

s∈
⋃

i∈In(t) LIC (Ci,C∪{t})

In(s).

We can further rearrange the left side and obtain

In(t) ∪
⋃

s∈
⋃

i∈In(t) LIC (Ci,C∪{t})

In(s) = In(t) ∪
⋃

s∈
⋃

i∈In(t) LIC (Ci,C∪{t})

In(s).

which trivially holds.
2

Now we show the soundness and the completeness of the algorithm. Therefore we state
helper lemmas which are generalizations of the theorems for the soundness and completeness.
The lemmas state that the results returned by each request in an MCS w.r.t. a history (a set of
already visited contexts) are partial diagnosis candidates and its witness candidates and that the
request returns all possible partial diagnosis candidates and its witness candidates. The theorem
is then a special case where the partial diagnosis candidates are partial diagnosis and the witness
candidates are witnesses.

For the following paragraphs a notation to define the index set of a set of contexts is intro-
duced for easier reading: idx (C) = {i | Ci ∈ C}.

Soundness.
Lemma 4.3.4
Let M = (C1, . . . , Cn) be an MCS , hist ⊆ {1, . . . , n}, and Ct.DMCS-DF(hist) a request
in M . Then each request Ct.DMCS-DF(hist) returns a set of pairs (DGC,D,WC,D) such
that DGC,D is partial diagnosis candidate and WC,D a witness candidate w.r.t. DGC,D with
idx (C) = LIC (Ct, hist) and idx (D) = GE (Ct, hist).

Proof
The following proof is done by induction over the size of the limited import closure of the
requests. So in the induction base we proof that the lemma holds in an arbitrary MCS for all
requests whose limited import closures are of size 0. In the induction step then we assume that
the lemma holds in an arbitrary MCS for a request with a limited import closure of size x and
we show then that the lemma holds also in an arbitrary MCS for a request with a limited import
closure of size x+ 1.
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Induction Base. We show that Lemma 4.3.4 holds for all requests Ct.DMCS-DF(hist) with
|LIC (Ct, hist)| = 0.
|LIC (Ct, hist)| = 0 implies that LIC (Ct, hist) = ∅. According to Definition 4.3.1 t /∈ hist

implies t ∈ LIC (Ct, hist). Therefore LIC (Ct, hist) = ∅ implies t ∈ hist . According to
Definition 4.3.2 it is clear that property b) holds only for the element t because LIC (Ct, hist) =
∅. Since t ∈ hist which means t also fulfills property a) it is clear that GE (Ct, hist) = {t}.

Now we have to show that each result returned byCt.DMCS-DF(hist) is a pair (DGC,D,WC,D)
with C = ∅ and D = {Ct}.

Since t ∈ hist the if condition in Algorithm 4.2.1 Line 2 is true and therefore Algorithm 4.2.2
is called withCt as argument. The result of this call is a set of pairs ((ε, . . . , ε), (ε, . . . , Bt, . . . , ε))
with Bt ∈ BSt. According to Definition 3.4.1 and 3.4.2 it is easy to see that the first tuple is
a partial diagnosis candidate and the second tuple a witness candidate of it with C = ∅ and
D = {Ct}.

Induction Step. Assuming that Lemma 4.3.4 holds for requests Ct′ .DMCS-DF(hist ′) with∣∣LIC (Ct′ , hist ′)
∣∣ ≤ x and x ≥ 0 we now show that the Lemma holds also for requests with

|LIC (Ct, hist)| = x+ 1.
Let M = (C1, . . . , Cn) be an MCS , hist ⊆ {1, . . . , n}, Ct.DMCS-DF(hist) a request in

M and |LIC (Ct, hist)| = x + 1. Then Algorithm 4.2.1 is called at context Ct with hist as
argument. Since x ≥ 0 it follows that |LIC (Ct, hist)| > 0. Due to Definition 4.3.1 t ∈ hist
implies that LIC (Ct, hist) = ∅. Therefore |LIC (Ct, hist)| > 0 implies that t /∈ hist . Therefore
the if condition in Line 2 evaluates to false.

The loop in Line 6 is called for each context of the import neighborhood of Ct. Since Line 7
is a performance optimization and has no effect on the results2 it will be assumed that the if
condition is always true in this proof. In Line 8 a request Ci.DMCS-DF(hist ∪{t}) is sent to all
contexts for each i ∈ In(t). Due to Lemma 4.3.2 we know that the limited import closure of each
request send in Line 8, LIC (Ci, hist ∪{t}), has less elements than LIC (Ct, hist) which means
that |LIC (Ci, hist ∪ {t})| ≤ x. Therefore, according to Lemma 4.3.4, we can assume that
the returned results T ′ are partial diagnoses candidates DGC,D and their witnesses candidates
WC,D with idx (C) = LIC (Ci, hist ∪ {t}) and idx (D) = GE (Ci, hist ∪ {t}) for the respective
i ∈ In(t).

All those requests are joined together in Line 9. Regardless of the order of requests re-
spectively joins Lemma 3.6.1 states that the result, stored in T , is a set of partial diagnosis
candidates with their witness candidates where idx (C) =

⋃
i∈In(t) LIC (Ci, hist ∪ {t}) and

idx (D) =
⋃

i∈In(t) GE (Ci, hist ∪ {t}).
In Line 13 for all those tuples Algorithm 4.2.3 is called. Lets say the algorithm is called

with the partial diagnosis candidate DGC,D and the witness candidate WC,D. We know that
idx (C) =

⋃
i∈In(t) LIC (Ci, hist ∪ {t}) and idx (D) =

⋃
i∈In(t) GE (Ci, hist ∪ {t}) for all par-

tial diagnosis candidates and witness candidates. In each iteration of the foreach loop in Line 3,

2It’s the following idea: If Wi is already defined in some witness candidate then there must have been a request
to Ci through other contexts. The results of this request have already been joined with the existing partial diagnosis
candidates and witness candidates and therefore another request to Ci will neither remove nor extend the existing
results and can therefore be skipped.
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Gt = (Dt, At) s.t. Dt, Ak ⊆ brt and Line 4 stores in Bt all belief sets accepted by context Ct in
M [Gt] under the belief state WC,D.

Now we distinguish between Wt = ε and Wt 6= ε.

• If Wt = ε the algorithm proceeds in Line 6. There a new tuple DG′C′,D′ is created by
extending the partial diagnosis candidate DGC,D with (Dt, At) where Dt, At ⊆ brt
from context Ct. Recalling Definition 3.4.1, DGt = (Dt, At) implies that Ct ∈ C′
and since C′ ∩ D′ = ∅ also that Ct /∈ D′. So if DG′C′,D′ has a witness candidate in
M [DG′], DG′C′,D′ is a partial diagnosis candidate with idx (C′) = {t} ∪ idx (C) = {t} ∪⋃

i∈In(t) LIC (Ci, hist ∪ {t}) and idx (D′) = idx (D)\{t} =
⋃

i∈In(t) GE (Ci, hist ∪ {t})\
{t}.
In this line a witness candidate W ′C′,D′ is also created by extending WC,D with W ′t ∈
ACCt(kbt ∪ {head(r) | r ∈ app(brt \ Dt ∪ heads(At)),W )}). Since W is a witness
candidate for DG, if we recall Definition 3.4.2, it is clear that W ′C′,D′ is a witness can-
didate for DG′C′,D′ in M [DG′] with idx (C′) = {t} ∪

⋃
i∈In(t) LIC (Ci, hist ∪ {t}) and

idx (D′) =
⋃

i∈In(t) GE (Ci, hist ∪ {t}).

• If Wt 6= ε the algorithm proceeds in Line 8. There the partial diagnosis candidate DGC,D
is extended with (Dt, At) where Dt, At ⊆ brt at context Ct to a tuple DG′. If W is
still accepted in M [DG′] then, after recalling Definition 3.4.1, DG′ is clearly a partial
diagnosis candidate DG′C′,D′ with idx (C′) = {t} ∪

⋃
i∈In(t) LIC (Ci, hist ∪ {t}) and

idx (D′) =
⋃

i∈In(t) GE (Ci, hist ∪ {t}) with the witness candidate W . Since DG and
DG′ differ only at context Ct and Wt ∈ ACCk(kbt ∪ {head(r) | r ∈ app(brt \
Dt ∪ heads(At)),W )}), after recalling Definition 3.4.2, it is clear that W is a wit-
ness candidate WC′,D′ for DG′ with idx (C′) = {t} ∪

⋃
i∈In(t) LIC (Ci, hist ∪ {t}) and

idx (D′) =
⋃

i∈In(t) GE (Ci, hist ∪ {t}).

In both cases we can use Lemma 4.3.1 to write idx (C′) = LIC (Ct, hist) and Lemma 4.3.3
to write idx (D′) = GE (Ct, hist) which matches with the specification from Lemma 4.3.4.
Therefore the result holds for all sizes of a requests limited import closure and therefore for all

requests.
2

Theorem 4.3.5
Let M = (C1, . . . , Cn) be an MCS and Ct a context in M . Then each result returned by a
request Ct.DMCS-DF(∅) is a pair (DGCt ,WCt) with DGCt a partial diagnosis w.r.t. Ct and
WCt a witness of DGCt .

Proof
We know from Lemma 4.3.4 that a request Ct.DMCS-DF(∅) returns pairs (DGC,D,WC,D)
where DGC,D is a partial diagnosis candidate and WC,D a witness candidate with idx (C) =
LIC (Ct, hist) and idx (D) = GE (Ct, hist). Recalling Definitions 4.3.1 and 4.3.2 of a limited
import closure and a guessing edge it is clear that hist = ∅ implies LIC (Ct, hist) = IC (Ct)
and GE (Ct, hist) = ∅. Under the condition that idx (C) = IC (Ct) and idx (D) = ∅ for DGC,D
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and WC,D the definitions of partial diagnosis candidates and partial diagnoses (Definition 3.4.1
and 3.2.1) and the definitions of witness candidates and witnesses (Definition 3.4.2 and 3.3.1)
are the same. Therefore a partial diagnosis candidate DGC,D is a partial diagnosis DGCt and a
witness candidate WC,D is a witness WCt .

2

Completeness.

Lemma 4.3.6
Let M = (C1, . . . , Cn) be an MCS , hist ⊆ {1, . . . , n}, and Ct.DMCS-DF(hist) a request
in M . If DGC,D is a partial diagnosis candidate and WC,D the corresponding witness can-
didate with idx (C) = LIC (Ct, hist) and idx (D) = GE (Ct, hist) then (DGC,D,WC,D) ∈
Ct.DMCS-DF(hist).

Note that each partial diagnoses DGCt with its witness WCt is also a partial diagnosis candidate
DGC,D with its witness candidate WC,D with idx (C) = IC (Ct) and idx (D) = ∅.

Proof
Like in the proof for the previous lemma this proof is done by induction over the size of the
limited import closure of the requests. So in the induction base we proof that the lemma holds in
an arbitrary MCS for all requests whose limited import closures are of size 0. In the induction
step then we assume that the lemma holds in an arbitrary MCS for a request with a limited
import closure of size x and we show then that the lemma holds also in an arbitrary MCS for a
request with a limited import closure of size x+ 1.

Induction Base. We show that Lemma 4.3.6 holds for all requests Ct.DMCS-DF(hist) with
|LIC (Ct, hist)| = 0.
|LIC (Ct, hist)| = 0 implies that LIC (Ct, hist) = ∅. According to Definition 4.3.1 t /∈ hist

implies t ∈ LIC (Ct, hist). Therefore LIC (Ct, hist) = ∅ implies t ∈ hist . According to
Definition 4.3.2 it is clear that property b) holds only for the element t because LIC (Ct, hist) =
∅. Since t ∈ hist which means t also fulfills property a) it is clear that GE (Ct, hist) = {t}.

After recalling Definition 3.4.1 it is clear that for LIC (Ct, hist) = ∅ there is only one
partial diagnosis candidate (ε, · · · , ε). Moreover after recalling Definition 3.4.2 and the fact that
GE (Ct, hist) = {t} it is clear that all witness candidates are of form (ε, · · · ,Wt, · · · , ε) with
Wt ∈ BSt.

Now we have to show that the mentioned partial diagnosis candidates and the witness candi-
dates from above are returned by a callCt.DMCS-DF(hist) with idx (C) = ∅ and idx (D) = {t}.

Since t ∈ hist the if condition in Algorithm 4.2.1 Line 2 is true and therefore Algorithm 4.2.2
is called withCt as argument. The result of this call is a set of pairs ((ε, . . . , ε), (ε, . . . , Bt, . . . , ε))
with Bt ∈ BSt which is exactly all partial diagnosis candidates and all witness candidates for
LIC (Ct, hist) = ∅.
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Induction Step. Assuming that Lemma 4.3.6 holds for requests Ct′ .DMCS-DF(hist ′) with∣∣LIC (Ct′ , hist ′)
∣∣ ≤ x and x ≥ 0 we now show that the Lemma holds also for requests with

|LIC (Ct, hist)| = x+ 1.
Let M = (C1, . . . , Cn) be an MCS , hist ⊆ {1, . . . , n}, Ct.DMCS-DF(hist) a request in

M and |LIC (Ct, hist)| = x + 1. Then Algorithm 4.2.1 is called at context Ct with hist as
argument. Since x ≥ 0 it follows that |LIC (Ct, hist)| > 0. Due to Definition 4.3.1 t ∈ hist
implies that LIC (Ct, hist) = ∅. Therefore |LIC (Ct, hist)| > 0 implies that t /∈ hist . Therefore
the if condition in Line 2 evaluates to false.

Lets assume there is a partial diagnosis candidate DGC,D and its witness candidate WC,D
with idx (C) = LIC (Ct, hist) and idx (D) = GE (Ct, hist). We denote DG−tC,D as DGC,D with
an arbitrary element at Ct and W−tC,D as WC,D with an arbitrary element at Ct. We will show
for an arbitrary i ∈ In(t), which therefore shows for each i, that there is a partial diagnosis
candidates DG′C′,D′ and a witness candidate W ′C′,D′ with idx (C′) = LIC (Ci, hist ∪ {t}) and
idx (D′) = GE (Ci, hist ∪ {t}) which, if joined together, result in DG−tC,D and W−tC,D. To ac-
complish this we set each DG′j with j ∈ LIC (Ci, hist ∪ {t}) to DGj and all other to ε. From
Lemma 4.3.1 we know that the limited import closure LIC (Ci, hist ∪{t}) for each neighboring
context Ci is a subset of LIC (Ct, hist) and therefore DG′ a partial diagnosis candidate accord-
ing to Definition 3.4.1 if there is a witness candidate in M [DG′]. Now we show that there is
such a witness candidate W ′C′,D′ by constructing one. Therefore we are setting W ′j =Wj for all
j ∈ LIC (Ci, hist ∪ {t}) and j ∈ GE (Ci, hist ∪ {t}). We now show that WC,D is defined in
LIC (Ci, hist ∪ {t}) and GE (Ci, hist ∪ {t}). From Lemma 4.3.1 we know that the limited im-
port closure LIC (Ci, hist ∪{t}) is a subset of LIC (Ct, hist). We know from Lemma 4.3.3 that
GE (Ci, hist∪{t})\{t} ⊆ GE (Ct, hist)\{t} and we know that t ∈ LIC (Ct, hist) and therefore
that WC,D is defined in LIC (Ci, hist ∪ {t}) and GE (Ci, hist ∪ {t}). Therefore W ′ is defined
in all contexts of its limited import closure and its guessing edge. If a belief set W ′j from W ′ is
accepted depends on the belief sets of the contexts from In(j). For all j ∈ LIC (Ci, hist ∪ {t}
we know that In(j) ⊆ (LIC (Ci, hist ∪ {t}) ∪GE (Ci, hist ∪ {t})) because of Definition 4.3.1
and 4.3.2. Since all belief sets in LIC (Ci, hist ∪ {t}) ∪ GE (Ci, hist ∪ {t}) are the same in
W and W ′ and all the belief sets in W are accepted by definition also the belief sets in W ′ are
accepted and therefore W ′ is a witness candidate for DG′.

According to Lemma 4.3.2 we know that |LIC (Ci, hist ∪ {t})| < |LIC (Ct, hist)| for each
i and therefore we know that each request in the loop in Line 6 returns the constructed partial
diagnosis candidate and its witness candidate from above. Since Line 7 is a performance opti-
mization and has no effect on the results3 it will be assumed that the if condition is always true
in this proof. All those requests are joined together in Line 9 and it is clear that one result of
the accumulated joins is DG−t and W−t. In Line 13 Algorithm 4.2.3 is called with DG−t and
W−t. In each iteration of the foreach loop in Line 3, Gt = (Dt, At) s.t. Dt, Ak ⊆ brt and
Line 4 stores in Bt all belief sets accepted by context Ct in M [Gt] under the belief state WC,D.

Now we distinguish between Wt = ε and Wt 6= ε.

3It’s the following idea: If Wi is already defined in some witness candidate then there must have been a request
to Ci through other contexts. The results of this request have already been joined with the existing partial diagnosis
candidates and witness candidates and therefore another request to Ci will neither remove nor extend the existing
results and can therefore be skipped.
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• If Wt = ε the Algorithm proceeds in Line 6. There the partial diagnosis candidate is
extended with (Dt, At) where Dt, At ⊆ brt from context Ct obviously resulting in DG.
In this line the witness candidate is also extended with W ′t ∈ ACCt(kbt ∪ {head(r) |
r ∈ app(brt \Dt ∪ heads(At)),W )}) which means there must be some case where W−t

is extended to the witness candidate W .

• If Wt 6= ε the Algorithm proceeds in Line 8. There the partial diagnosis candidate is
extended with (Dt, At) where Dt, At ⊆ brt at context Ct which again results in one
case to DG and obviously we have already W and since Wt must be in Bt this result is
returned.

Therefore the result holds for all sizes of a requests limited import closure and therefore for all
requests.

2

Theorem 4.3.7
Let M = (C1, . . . , Cn) be an MCS and Ct a context in M . Then if (DGCt ,WCt) is a par-
tial diagnosis and a corresponding witness w.r.t. Ct, the request Ct.DMCS-DF(∅) returns
(DGCt , ECt).

Proof
Recalling the definitions of partial diagnosis candidates and partial diagnoses (Definition 3.4.1
and 3.2.1) and the definitions of witness candidates and witnesses (Definition 3.4.2 and 3.3.1) it
is clear that a partial diagnosis with its witness DGCt and WCt are a partial diagnosis candidate
and its witness candidate DGC,D and WC,D with idx (C) = IC (Ct) and idx (D) = ∅. From the
Definitions 4.3.1 and 4.3.2 of the limited import closure and the guessing edge we also know
that the request Ct.DMCS-DF(∅) has LIC (Ct, hist) = IC (Ct) and GE (Ct, hist) = ∅. So
from Lemma 4.3.6 we know that all partial diagnosis candidates and witness candidates DGC,D
and WC,D with idx (C) = LIC (Ct, hist) = IC (Ct) and idx (D) = GE (Ct, hist) = ∅ are
returned by the request Ct.DMCS-DF(∅). Since we have shown before that all partial diagnoses
and its witnesses DGCt and WCt are a subset of those partial diagnosis candidates and witness
candidates we have shown that Theorem 4.3.7 holds.

2
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CHAPTER 5
Implementation

The implementation of the described algorithm is based on the DMCS system [3], developed
at the Vienna University of Technology. To distinguish them the DMCS system is referred to
as DMCS and the implementation of the diagnoses finder as DMCS-DF (DMCS Diagnoses
Finder). The DMCS system is designed to calculate equilibria of a distributed Multi-Context
System. To accomplish this the calculation itself is split up and done at distributed agents which
are realized as daemons. Every such daemon is responsible for a context and an additional
client queries those daemons initially to get the equilibria. The system is capable of calculating
partial and full equilibria in an MCS . The implementation presented here extends this system
with the capability to calculate partial and full diagnoses. Therefore parts of the DMCS system
are reused, such as the network implementation, the belief set calculation, and the file parsing
architecture.

In the following we explain the existing system, especially those systems reused by our
implementation. Then we describe the extension in-depth.

5.1 The DMCS System

The DMCS program is a modular software which supports different modes to evaluate MCS
semantics. The following explanations are based on the default mode of the program. The
extensions described in this theses are all based on this mode and therefore the description will
be limited to this one.

An extension of the DMCS program to optimize the calculation is called DMCS-OPT [4].
Ideas of this extension are used to optimize the DMCS-DF implementation. An introduction
of the DMCS-OPT system and explanation why it can not be used as a basis of the DMCS-DF
system can be found in Section 5.4.1.
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5.1.1 Program Architecture

The basic system consists of two programs: One is the dmcsd daemon, which runs as an dis-
tinct instance for every context in the system. This daemon reads the knowledge base and the
bridge rules for its context from the corresponding files. Moreover it reads information about
its context neighbors and communication details to correspond with those neighbors, which are
also provided by the input files. Then the daemon waits for a request to deliver partial diagnoses
w.r.t. his context. If it is necessary to request more information from other contexts to complete
the calculations the daemon requests this information from the corresponding contexts. There
another instance of the daemon is waiting and then calculates the requested information. When
the daemon has completed his calculations it returns the results back to the requesting daemon.

dmcsc dmcsd dmcsd

dmcsd

dmcsdQuery

Figure 5.1.1: Basic System Architecture

The functions of a dmcsd daemon are described in the following: When a daemon is started
it parses the input files, creates the loop formulas based on all possible input variables combi-
nations and waits for a request from the network. If such an request arrives the loop formulas
are solved by the SAT solver. Now the partial belief states from the neighbors are requested if
the requesting context is not a leaf context and if no cycle has been detected. The results of the
requests are iteratively joined with the local results from the SAT solver and then finally send
back to the invoker.

5.1.2 Input Files

There are three different types of files which describe the MCS and provide additional infor-
mation about the system which are necessary for the system to function properly. There is the
topology file which contains information about the topology of the MCS and network informa-
tions such that separate parts of the system can communicate among each other. Each context
gets the same topology file. The knowledge base file contains the knowledge base for each
context and the bridge rule file lists the bridge rule for each context. Each context has its own
knowledge base and bridge rule file. In the following those files will be described in more detail:

Topology File. The topology file contains a list of contexts including the following informa-
tion: the network address of every context, a list of atoms for each context, including the atom
identifiers, and a list of context dependencies, i.e, those context which are referred to in the
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Figure 5.1.2: Basic System Functions

bridge rules. The information is arranged in a graph like style written in the DOT Language1

syntax. Each node of the graph represents a context with the following properties:

• hostname: DNS name or IP address of the context,

• port: port where the corresponding daemon is listening,

• sigma: list of 4-tuples each describing an atom of the context or an atom from a contexts
bridge rule body.

The tuples describing the atoms contain four values: The first, named sym, is the string
representation of the atom. The second, named ctxId is the ID of the context the atom belongs
to. The third, named localId, is an ID which is unique among all atoms in the realm where
the atom is used and the fourth, named origId, an ID unique among all atoms of the same
context. The difference between the localId and the origId is that an atom has always
the same origId but the localId can be different depending on which context the atom is
used. I.e., each daemon assigns its own localIds for atoms from other contexts. The denoted
localId in the tuple from the topology file is only valid in the context where the tuple is
defined.

Example 5.1.1
We have a contextC1 with an atom (a1 1 1 1)meaning sym is a1 and the ctxId, localId
and origId are 1. Moreover we have a context C2 with (a2 2 1 1) and a bridge rule at C1

with a2 in its body. If the daemon running at C1 refers to atom a2 it can not use the origId
since this would interfere with the origId of a1 (both are 1). Therefore, e.g., the daemon gives
a2 a localId of 2 and is now able to distinguish between a1 and a2 by their localId.

2

1http://graphviz.org/content/dot-language (Last checked on November 11, 2015)
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It is important that the nodes are ordered by their context ID. This means the first node represents
the context with ID 1, the second the context with ID 2 and so on.

Example 5.1.2
The following is a section of the topology file covering the graph part:

digraph G {
0 [hostname="10.0.0.10", port="5000", \

sigma="(a1 1 1 1),(b1 1 2 2),(c1 1 3 3),(d1 1 4 4)"];
1 [hostname="10.0.0.10", port="5001", \

sigma="(a2 2 1 1),(b2 2 2 2),(c2 2 3 3),(d2 2 4 4)"];
2 [hostname="10.0.0.11", port="5000", \

sigma="(a3 3 1 1),(b3 3 2 2),(c3 3 3 3),(d3 3 4 4)"];
3 [hostname="10.0.0.12", port="5000", \

sigma="(a4 4 1 1),(b4 4 2 2),(c4 4 3 3),(d4 4 4 4)"];

The MCS described in this example consists of four contexts. Context 1 and 2 are hosted on a
machine with the IP address 10.0.0.10 and are distinguished by the port on which the daemons
are listening (5000 and 5001). Context 3 and 4 are on a machine with the IP address 10.0.0.11
and 10.0.0.12 respectively and both are listening on port 5000. The alphabet of context 1 consists
of the atoms a1, b1, c1 and d1. localId and origId are consecutively numbered from 1 to
4 on all contexts.

2

Knowledge Base File. The knowledge bases for the contexts are defined in a separate file for
each context. Each line represents one rule and is written with the following syntax:

a [v b] :- c, d, not e, not f.

The head of the rule is mandatory and can not be omitted. Therefore constraints of form “:-
{body}.” are not possible. Instead the substitution “kill :- not kill, {body}.”
with a newly introduced atom, in this case kill, is recommended.

Bridge Rule File. The bridge rules for the contexts are defined in a separate bridge rule file
for each context. Each line represents a bridge rule. A bridge rule is of form:

{head} :- {body}. |
{head}.

where

{head} = h1 [v h2 [v h3 ... ]]

and

{body} = (c1:b1) [, (c2:b2)] [, (c3:b3)] [...]
[, not (c4:b4)] [, not (c5:b5)] [...]
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hx are atoms of the bridge rules context. bx are atoms of the context cx where cx is the index
of the context.

Example 5.1.3
The following is a bridge rule file at a context with two bridge rules. a1 and c1 are atoms of the
context, a3 and c3 of a context C3, and a2 of a context C2.

c1 :- (3:a3), not (2:a2).
a1 :- (3:c3), not (2:a2).

2

5.1.3 System Usage

DMCS Daemons (dmcsd).

./dmcsd --context=1 --port=5001 \
--kb=example_c1.dlv --br=example_c1.br --topology=example.top

The --context argument tells the daemon his own context ID, the --port argument the
network interface port the daemon listens for incoming requests, the --kb and --br arguments
provide the path to the contexts knowledge base and bridge rule file, and the --topology
argument the path to the global topology file.

DMCS Caller (dmcsc).

./dmcsc --hostname=localhost --port=5001 \
--system-size=2 --manager=example.top \
--query-variables="15 45"

The --hostname and --port argument tells the program the network address of the dmcsd
daemon where the user is interested in and the request for equilibria is sent. --system-size
is the number of contexts in the MCS and --manager is the path to the topology file of the
MCS . Finally the --query-variables argument defines the atoms which are requested
from the contexts. The argument must contain an integer number for each context in the system.
The first number defines the atoms for the first context, the second number for the second context
an so on. The number itself is a decimal representation of a bitmap where the (n+1)th bit stands
for the nth atom in the context (according to the encoding of belief sets, see 5.1.4). In the
example above this means: 15 ≡ 1111, therefore the atoms with id 1, 2 and 3 are requested in
context 1, further 45 ≡ 101101, which means atoms 2, 3 and 5 are requested from context 2.

5.1.4 Data Types

In this section we give a short introduction to the encoding and representation of basic data
structures of an MCS in the DMCS system. The most important ones, and also the ones we will
extend later, are belief states and bridge rules.
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Belief States. A belief state is a tuple consisting of a belief set for each context in the MCS .
Every belief state is implemented as a vector of belief sets and the index of the vector corre-
sponds to the ID of the belief set’s context. The belief set itself is represented as an integer
data type interpreted as a bitmap. The first bit is set if the belief set is defined and not set if the
belief set is ε. The subsequent bits represent the atoms of the context and are set if the atom is
contained in the belief set and otherwise not set. E.g., the second bit represents the atom with
the origId 0, the third bit the one with the origId 1, and so on. DMCS stores the belief sets
as 64 bit integer values which restricts each belief set to 63 atoms or beliefs.

BridgeRule

+head: list<integer>

+positiveBody: list<integer>

+negativeBody: list<integer>

Figure 5.1.3: Simplified BridgeRule Diagram

Bridge Rules. A bridge rule consists of three lists, one containing the head atoms and two
listing the positive resp. negative body atoms. The head atoms are encoded as integers
which represent the origId of the atom in the context. The body atoms are represented by
a pair of integers, one identifying the context by the context ID and one representing
the localId of the atom2. Note that the localId can be different for the same atom in
different contexts. But this does not pose a problem since bridge rules are only used at the local
context for the belief set calculations and only a string representation is communicated through
the network.

5.1.5 Algorithm and Belief Set Calculation

The main program logic of the DMCS system is outlined in Algorithm 5.1.1.
Algorithm 5.1.1 shows the code sequence which is executed if a request arrives. Before the

request arrives, when the daemon has been started, the contexts knowledge base and its bridge
rules have been converted into a SAT theory. Then, when the request arrives, the SAT theory is
solved w.r.t. a projection of the atoms given by the caller (see Dao-Tran et al. [14] for details).
This projection restricts the results to those atoms which are of interest for the caller. The result
is a list of belief states which are defined at the local context and over the atoms of the contexts
import interface. If the local context has been requested before (its ID is in the hist variable) or
it has no neighbors then nothing else is done and the results are send back to the invoker. In case
the context has not been requested before and there are neighbors, the neighbors are requested
and the results are joined with the already calculated belief states. These results are then send
back to the invoker.

2See Paragraph “Topology File” in Section 5.1.2 for an explanation of the different IDs.
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Algorithm 5.1.1: Program Logic of DMCS at Ck = (Lk, kbk, brk)

Input: list<integer> history, BeliefState projection
Output: list<BeliefState> bsList

1 bsList = calculateLocalBeliefSets;
2 bsList = projectBS(bsList, projection);
3 if contextID /∈ hist then

// no cycle detected

4 foreach neighbor ∈ neighborList do
5 nResult = request(neighbor);
6 bsList = combine(bsList, neighbor.bsList);
7 end
8 end
9 return (bsList);

5.2 Problem Instance Generator

The problem instance generator is a tool for creating random MCSs constrained by some param-
eters. The main parameters are the number of contexts, the topology, the number of atoms per
context, the number of interface atoms per context, and the number of bridge rules per context.
Interface atoms are those atoms of a context which are used in the bodies of bridge rules. More-
over the generator creates shell scripts to start all parts of the DMCS or DMCS-DF (introduced
in 5.3) systems. This feature is very convenient for automated testing.

The generator has been developed with the DMCS system and been extended in line with
this thesis to make it usable for the DMCS-DF system.

5.2.1 Adaptations

Inconsistent Instances. Since the DMCS-DF systems main purpose is to find diagnoses for
inconsistent MCSs , in order to create more instances which are inconsistent, a command line
option has been added which affects the probability of consistent or inconsistent instances. The
option changes the probability of adding positive body atoms in the knowledge base rules. Ex-
periments have shown that a higher probability of adding positive body atoms correlates with
more inconsistent instances.

Shell Scripts. As already mentioned the generator produces shell scripts for automated pro-
gram starts. The generator has been extended with a command line option mode to control the
output of the tool. Now you can tell the tool to generate only the MCS files (knowledge bases
and bridge rules for each context), the start script for the DMCS system, the start script for the
DMCS-DF system, or a start script for the DMCS-DF system which uses the optimized MCS
files (see Section 5.4.1 for the mentioned optimization).
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Tool Support. The RunLim3 tool can limit time and memory consumption of Linux programs.
Moreover it produces log files about the resources consumed by the program. Those features are
very convenient for testing purposes. On the one hand to give an upper limit for time and memory
consumption such that unexpected long running instances do not hold back the whole automated
experiment and on the other hand to determine the memory consumption of the programs.

The time usage of the programs/daemons and parts of the system are measured with build
in features. To compare the DMCS-DF with the DMCS system a tool to measure the overall
runtime of a program is needed. For this purpose the Linux command time4 has been used.

The tool support has been implemented by integrating the RunLim tool into the produced
shell scripts which are responsible for starting the DMCS resp. DMCS-DF system with the
generated problem instances. A call to those shell scripts produces logging output with time and
memory consumption.

5.2.2 Usage of the Problem Instance Generator

The generator can be used with

./dmcsGen --<option>=<value>

with the following command line options:

• --contexts=<integer>: number of contexts in the MCS . Depending on the topol-
ogy not all numbers are possible.

• --atoms=<integer>: number of atoms per context.

• --interface=<integer>: number of atoms (as a subset of all atoms) per context
used in bodies of bridge rules.

• --bridge_rules=<integer>: number of bridge rules per context.

• --topology=<integer>: topology type with: 0 = random, 1 = diamond, 2 = dia-
mond arbitrary, 3 = diamond zigzag, 4 = pure ring, 5 = ring edge, 6 = binary tree, 7 =
house, and 8 = multiple ring topology (see Section 6.1 for details to the topologies used in
this thesis).

• --prefix=<string>: prefix used for the MCS file names.

• --dmcspath=<file path>: path to the dmcsc and dmcsd binaries.

• --positiveBodyP=<integer>: probability for a positive atom in the body of each
knowledge base rule. An integer value i means (i ∗ 10)%. E.g. 5 = 50%.

• --sleep=<float>: This value is the time in seconds the shell script waits to start the
dmcsc program after the dmcsd daemons have been started.

3http://fmv.jku.at/runlim/ (Last checked on November 11, 2015)
4https://www.gnu.org/software/time/ (Last checked on November 11, 2015)
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• --use_run=<file path>: file path to the RunLim executable. If this option is
empty no RunLim will be used.

• --run_time=<integer>: time used by the program in seconds after that the RunLim
tool will end the DMCS(-DF) system.

• --run_realtime=<integer>: real time in seconds after that the RunLim tool will
end the DMCS(-DF) system.

• --run_space=<integer>: the program will be terminated by the RunLim tool if it
uses more memory than stated here in MB.

• --mode=default|mcs|dfStart|dfOptStart|dmcsStart: In defaultmode
the generator produces the files defining the MCS and a script to start the DMCS system
requesting this MCS . The mcs mode produces only the files for the MCS , which are
the knowledge base, bridge rule, and topology files. The dfStart mode creates a shell
script to start the DMCS-DF system using the standard (non optimized) topology file. The
dfOptStart mode creates a shell script to start the DMCS-DF system using the opti-
mized (see Section 5.4.1) topology file. The dmcsStart mode creates a shell script to
start the DMCS system using the standard topology file.

• --logPrefix=<string>: file name prefix for the log files produced by the DMCS/DMCS-
DF system and the performance measurement tools.

• --shPrefix=<string>: file name prefix for the shell start scripts.

• --timeTool=<boolean>: if set to true the start scripts use the Linux time command
to measure the total time usage.

5.3 DMCS Diagnoses Finder (DMCS-DF)

The DMCS-DF system is based on the DMCS system revision 22565. It has been extended in
following ways:

• New data structures representing the newly introduced diagnosis (candidate) and witness
(candidate) concepts have been defined,

• the algorithms from Section 4.2 have been implemented in order to calculate diagnoses
and witnesses,

• in order to inspect the calculated results and evaluate the program, detailed result output
is provided, debugging options to inspect the algorithm have been implemented, and the
program gathers statistical data about the calculations.

5http://sourceforge.net/p/dmcs/code/2256/tree/dmcs/ (Last checked on November 11,
2015)
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5.3.1 Data Structures

The DMCS system defined already data structures for belief sets, belief states, and bridge rules.
The newly introduced data structures are diagnoses and the corresponding witnesses whereupon
diagnoses are completely new and witnesses are nothing else than belief states connected to a
diagnosis. Therefore a container class which connects diagnoses and belief states has also been
introduced.

DiagnosisWithWitness

+diagnosis: vector<ContextDiagnosis>

+witness: BeliefState

ContextDiagnosis

+removed: list<integer>

+uncond: list<integer>

+defined: boolean

Figure 5.3.1: Class Diagram of DiagnosisWithWitness and its Components

Diagnoses. As seen in Figure 5.3.1, a diagnosis is stored in a class which has two vectors one
holding the diagnosis and one the witness. Each item of those two vectors represent a context
ordered by contextID. I.e. the first item refers to context 1, the second to context 2, and so
on.

The witness vectors is of type BeliefState as already described in Section 5.1.4. The items
of the diagnosis vector are classes of type ContextDiagnosis which has two lists each
containing bridge rule IDs. One list contains the IDs of the bridge rules which are removed
by this diagnosis and on this context and the other list holds the IDs of the bridge rules which
are applied unconditionally by this diagnosis and on this context. The bridge rule ID has been
introduced by this extension and is explained later in this section. The ContextDiagnosis
class also has a property named defined which is true if the diagnosis is ε with respect to this
context.

Bridge Rules. Bridge rules have already been defined in the DMCS system (see Section 5.1.4).
A bridge rules is an object, which stores its atoms via the localID which is only unique
within a specific context. In the DMCS system bridge rules are only used at one context and
therefore the localID suffices. The DMCS-DF system on the other hand needs to send in-
formation about bridge rules through the MCS which makes it necessary to add a new iden-
tification symbol for bridge rules which is unique in the whole MCS . For this purpose the
BridgeRuleInformation class (see Figure 5.3.2) has been introduced.

The contextID is the ID of the context where the bridge rule belongs to. bridgeRuleID
is a hash value6 of the string representation of the bridge rule and therefore unique among the
context. The pair contextID-bridgeRuleID is unique among the MCS . The bridgeRuleString
is the string representation of the bridge rule. This is necessary because the string representa-
tion of the atoms used in the bridge rules are only available at the context where the atoms

6The calculation of hash values is done with the boost library found at http://www.boost.org/doc/
libs/1_46_1/doc/html/hash.html (Last checked on November 11, 2015).
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BridgeRuleInfo

+contextID: integer

+bridgeRuleID: integer

+bridgeRuleString: integer

+bridgeRuleShortString: integer

Figure 5.3.2: Class Diagram of BridgeRuleInfo

belong to. Therefore the string representation is send along with the results such that a human
readable output can be generated. The output also includes a list of bridge rules of the part of
the MCS which has been processed and an abbreviation of each rule. Those abbreviations are
used in the representation of the diagnoses and are of the form r<ctxID>_<consecutive
number> (e.g. r1_4). The consecutive number is a sequential number unique for each con-
text. In the BridgeRuleInfo class the abbreviation of the bridge rules is stored in the
bridgeRuleShortString attribute.

Network Messages. We have two types of network messages, one which is send when an
invocation is done, and one when the result is send back (see Figure 5.3.3).

DiagnosesMessage

+history: list<integer>

DiagnosesReturnMessage

+history: list<integer>

+dwList: list<DiagnosesWithWitness>

+brInfoList: list<BridgeRuleInfo>

+stats: list<DiagnosesDMCSDStats>

Figure 5.3.3: Class Diagram of the Message Classes

If a request for diagnoses is send to a context the DiagnosesMessage is send to the
corresponding daemon. The only information which is included with such a request is the history
of already requested contexts. This history is a property of the DiagnosesMessage class
implemented as a list of integer values where the integer values are the context IDs. Since
the calculation of the partial diagnoses and the witnesses does not depend on information from
contexts prior in the calling chain7 (see Section 4.2) no more information needs to be transmitted
to calculate the requested diagnosis candidates.

For returning the resulting diagnosis candidates as an answer to the DiagnosesMessage
the DiagnosesReturnMessage class is used. The most important thing to send back is the
list of partial diagnoses and witnesses which is stored in the dwList member of the class. To
display the bridge rules in a proper format information about them must also be send back (see
Section 5.3.1) which is done with the brInfoList member. In certain cases two invocations

7If the context is part of a cycle, the calculation indeed depends on information of previous contexts, but then
they will be invoked again.
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from one context can bring back bridge rule information about the same context. E.g. a context
A and a context B is invoked and both of these contexts invoke context C so both return messages
contain information about context C. To ease the handling of such redundant information every
return message contains a list with contexts, which have been invoked. This is the member
history in the return message class. Finally every context gathers performance information
about its calculations. Those informations are also send back with the return message to enable
an aggregated display of the performance information as dmcsc output. Those information are
stored in the stats member and are required for empirical evaluation in Section 6. There you
find also details about the DiagnosesDMCSDStats class.

5.3.2 Program Logic

Overview. The main program logic is shown in Algorithm 5.3.1.
A major difference between the theoretical approach (Algorithm 4.2.1) and the actual imple-

mentation is the calculation of local belief sets. The theoretical approach is: get all the results
from the neighboring contexts, take each of this results, extend it to all possible local diagnoses,
and then calculate the local belief sets based on these extended results.

In contrast to that, the actual implementation calculates the local belief sets independently
from the results of the neighboring contexts: As in the theoretical approach first all results
from the neighboring contexts are requested and joined together. Then for each possible local
diagnosis the local belief sets are calculated. The resulting local belief sets are based on guesses
about the interface atoms and not on the actual results from the neighbors. Now the results from
the neighbors and the local belief sets are joined together and the results are the requested partial
diagnosis candidates with its witness candidates.

The benefit of the implemented approach is that it reduces the upper limit of the number of
local solve operations. In the theoretical approach the number of local solve operations is one
calculation for each partial diagnosis candidate from the joined result of the neighbors times
the number of local diagnoses. With the implemented approach the number of calculations is
the number of possible local diagnoses which is in every case less or equal then in the theoret-
ical approach. On the other hand the theoretical approach reduces the complexity of the local
solve calculation because the results from the neighboring contexts determine the state of the
interface atoms and therefore the local belief states do not have to be calculated for all possible
combinations of the interface atoms.

So the performance of these approaches depend on the actual problem instances. A deeper
investigation on the relation between the calculation method and the problem instances is subject
of future work. It may be efficient to design a hybrid solution which is also subject of future
work.

The implementation of the DMCS system is designed to calculate the local belief sets based
on guesses about the interface atoms. Since the extension DMCS-DF is based on the DMCS
system, this approach has been chosen for the DMCS-DF system.

The actual implementation of the program logic has been done by defining a new subclass
inherited from the BaseDMCS class.
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Algorithm 5.3.1: Program Logic of DMCS-DF at Ck = (Lk, kbk, brk)

Input: list<integer> history
Output: DiagnosesReturnMessage returnMessage

1 DiagnosisWithWitnessList dwList;
2 dwList.add((ε, . . . , ε), (ε, . . . , ε));
3 if contextID ∈ hist then

// cycle detected

4 foreach bs ∈ BSk do
5 dwList.add((ε, . . . , ε), bs);
6 end
7 else

// no cycle detected

8 foreach neighbor ∈ neighborList do
9 foreach dw ∈ dwList do

10 if dw.witnesscontextID = ε then
11 nResult = request(neighbor);
12 dwList = combine(dwList, neighbor.dwList);
13 end
14 end
15 end
16 foreach diagnosis ∈ {(Dk, Ak) | Dk, Ak ⊆ brk} do
17 localBSList = localSolve(diagnosis);
18 foreach beliefset ∈ localBSList do
19 localDwList.add(diagnosis, beliefset);
20 end
21 end
22 dwList = combine(localDwList, dwList);

23 dwList = calculateSubsetMinimalOverSameWitness(dwList);
24 end
25 return (dwList, stats, history, BridgeRuleInfo, mask);

Belief State Combination Masks. In the DMCS system the data structures for belief sets
can only be tagged as “undefined” as a whole. The belief set is implemented as a bitmap and
therefore each atom has only two states, which is true or false. Optimizations (see Section 5.4.1)
make it necessary to define single atoms as undefined. Therefore in the DMCS-DF system a
second bitmap of the same size as the belief set has been introduced to resolve this issue. This
bitmap is called the belief state combination mask. Each bit of the mask corresponds with the
atom at the same position in the belief set. A bit set to 1 means the atom is defined, a 0 means
the atom is undefined. Like a belief state, a mask consists of a bitmap for each context.

Now the function of the belief state combination mask within the algorithm will be ex-
plained: In case the algorithm detects a cycle all possible belief sets of this context are guessed
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including all atoms. In this case we create a mask which states all atoms at this context as defined
and all atoms at other contexts as undefined.

In case no cycle is detected, according to the algorithm, the results from the neighboring
contexts are requested. All those results come with a corresponding mask. Those results are
combined together with a join operation. A join is defined like in Definition 3.1.3. Since atoms
are now also declared as defined or undefined the atoms of the result of a join are: Lets say a′ is
an atom from the first operand, a′′ the corresponding atom from the second operand, and a the
corresponding atom from the result. Then

• a = a′, if a′ = a′′,

• a = a′, if a′ is defined and a′′ is undefined,

• a = a′, if a′′ is defined and a′ is undefined, and

• the join is void, if a′ and a′′ are defined and a′ 6= a′′.

This holds for all atoms in the belief state.
This is implemented in the following way: Let s′ and s′′ be the belief sets which are the

operands of the join, s the resulting belief set, and m the belief state combination mask.
if (s’ & m) == (s” & m) then
s = s’ | s”

end if
Since it is required that the atoms are only compared if both atoms are defined, the mask m

is derived from the masks of the operands by a boolean “and” operation. If one or both atoms are
not definedm is 0 and the if condition always true. Since the undefined atom is 0 the assignment
of s results in the defined atom due to the boolean “or” operation. The mask for the result of the
join is then derived from the masks of the operands by a boolean “or” operation because now, if
the result exists, every atom is defined where at least one atom was defined in the operands.

Bridge Rule Guessing. To construct a list of all possible bridge rule guesses, first a list of all
subsets of the bridge rules from the context is made. Then the list of guessed bridge rules is made
by combining those subsets as pairs. The first item of those pairs is the list of bridge rules which
are removed and the second item the list of bridge rules which are applied unconditionally.

1: for all subset1 ∈ bridgeRuleSuperSets do
2: for all subset2 ∈ bridgeRuleSuperSets do
3: if subset1 ∩ subset2 = ∅ then
4: guessList.add(subset1, subset2)
5: end if
6: end for
7: end for

If a diagnosis is applied to an MCS first the bridge rules are removed and then the heads of
the bridge rules added. Therefore a diagnosis which has a bridge rule in the remove part and
the same bridge rule in the unconditional part has the same effect as a diagnosis which is the
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same except the before mentioned bridge rule is only in the unconditional part. These redundant
diagnoses are removed in line 3.

Minimality Check. In the definition of diagnoses by Eiter et al. [16] they also defined point-
wise subset-minimal diagnoses which are an interesting notion of diagnoses. They represent a
subset of diagnoses where those diagnoses are excluded which modify the same bridge rules as
other diagnoses and additional ones. So the intention is to only get those bridge rules modifying
a minimal set of bridge rules. The definition is:

Definition 5.3.1
Given two diagnoses DG1 = (D1, A1) and DG2 = (D2, A2), the diagnosis DG1 is subset-
minimal in relation to DG2 iffD1 ⊆ D2 and A1 ⊆ A2.

Example 5.3.1
E.g., let’s say we have the diagnoses ({r1, r2}, ∅) and ({r1}, ∅) then the second one is the subset
minimal one but if we have two diagnoses ({r1, r2}, ∅) and ({r1}, {r3}) then none of them is
subset minimal.

2

The DMCS-DF system provides the functionality to calculate subset-minimal diagnoses.
This is basically done by a pairwise comparison between every diagnoses in the candidate list.
The comparison itself is a subset-minimal check on both sets of the diagnoses, namely D (the
set with the removed bridge rules) and A (the set with bridge rules applied unconditionally). A
diagnosis is subset-minimal if it is subset-minimal in D and A. The check between two sets of
diagnosis is done on the set itself by going through one set, let’s name it set A, and count the
number of same bridge rules in the other set, let’s name it set B. If the result is less than the
number of bridge rules in A, this set can not be a subset-minimal diagnosis. On the other hand if
the result is less than the number of bridge rules in set B, this set can also not be a subset-minimal
diagnosis. After this check in both sets, A and B, it can be determined if one of the diagnosis is
a subset of another one. This is the case if it has not turned out that the diagnosis is not subset-
minimal but the other diagnoses is indeed not subset-minimal. If the second diagnoses had not
turned out to be not subset-minimal both diagnoses are the same and therefore none of them is
subset-minimal.

The calculation of a subset-minimal diagnoses is independent of the witnesses of the di-
agnoses and therefore the witnesses are not considered in the calculation of subset-minimal
diagnoses.

If it is desired to get the subset-minimal diagnoses of the Multi-Context System this check
is done in the querying client program when all diagnoses have been calculated.

5.3.3 Input Files

The DMCS-DF system uses the same syntax for its input files as the DMCS system (see Sec-
tion 5.1.2). But the topology file needs to contain additional information for the DMCS-DF
system to work properly.
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The topology file of the DMCS system contains only the nodes of the topology graph (see
Section 5.1.2) and gets the neighbor list directly from the bridge rule file. To determine the
neighbor list without modifying the bridge rule file the DMCS-DF system reads the neighbor list
from the topology file. This is needed later for optimizations. Therefore we add an additional
part with the edges of the topology graph. They are defined in the following way: x->y;. x is
the ID of the context which requests information from the context with the ID y.

Example 5.3.2
0->1;
1->2;
2->3;
3->0;
This example shows a ring topology (see Section 6.1) with four contexts.

2

5.3.4 System Usage

Like DMCS, the DMCS-DF system is split into daemon programs (dmcsd) for each context
which do the processing of the diagnoses and the witnesses and a querying client program (dm-
csc) which sends a request to the daemons.

DMCS-DF Daemons (dmcsd). The dmcsd program must be called for each context with the
following options:

• --context=<integer>: the context ID of the context the daemon is assigned.

• --port=<integer>: the port number where the daemon is listening for incoming
requests.

• --kb=<file path>: filename of the knowledge base file of the context.

• --br=<file path>: filename of the bridge rule file of the context.

• --topology=<file path>: filename of the topology file of the MCS .

• --print_timing=<boolean>: prints time statistics of the assigned context and
those contexts from whom results have been requested to the standard output (see Sec-
tion 5.3 [Performance Measurement]).

• --outputlevel={<none|low|medium|high}: see Section 5.3 [Output] for de-
tails. Default value is low.

• --debuglevel=<string>: see Section 5.3 [Debugging] for details.

Example 5.3.3
./dmcsd --context=1 --kb=./mcs/context_1.lp \

--br=./mcs/context_1.br --topology=./mcs/mcs.top \
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--outputlevel=none

This example starts a daemon for the context with ID 1, the knowledge base is stored in a file
with the path ./mcs/context_1.lp and the bridge rules in a file with the path ./mcs/
context_1.br. The topology file is ./mcs/mcs.top and there is no output printed to the
standard output by this daemon.

2

DMCS-DF Querying Client Program (dmcsc). With the dmcsc program a request to the
MCS for partial diagnoses and its witnesses is started. It is configured by the following com-
mand line options:

• --host=<string>: IP address or DNS name of the host where the dmcsd daemon is
running which the dmcsc program will request.

• --port=<integer>: port number where the dmcsd daemon is running which will be
requested.

• --manager=<file path>: filename of the topology file of the MCS .

• --diagnoses=<boolean>: this option must be set to true to start the DMCS-DF
mode.

• --print_timing=<boolean>: prints time statistics of the assigned context and
those contexts from whom results have been requested to the standard output (see Sec-
tion 5.3 [Performance Measurement]).

• --outputlevel={none|low|medium|high}: see Section 5.3 [Output] for de-
tails). Default value is low.

• --debuglevel=<string>: see Section 5.3 [Debugging] for details. Default is no
debugging.

Example 5.3.4
./dmcsc --host=10.0.0.10 --port=5000 --manager=mcs.top \

--diagnoses=true --print\_timing=true \
--outputlevel=high

This example starts the dmcsc program which sends a request for the partial diagnoses and its
witnesses to the dmcsd daemon with the IP address 10.0.0.10 and port 5000. It reads the topology
file ./mcs/mcs.top to get the string representations of the atoms from the contexts. The
output printed to the standard output has the highest level of detail and contains time statistics
for all involved dmcsd daemons.

2
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5.3.5 Output

Diagnoses and witnesses are printed in the following format:

<bridgeRuleShortString>: <bridgeRuleString>
<bridgeRuleShortString>: <bridgeRuleString>
...

<diagnosis>:<witness>
<diagnosis>:<witness>
...

First a list of bridge rules is printed which contains the whole bridge rule string and an abbrevi-
ation which is used in the diagnoses listed below.

A diagnosis has the following format:

({<bridgeRuleShortString>, <bridgeRuleShortString>, ...}, \
{<bridgeRuleShortString>, <bridgeRuleShortString>, ...})

The first set of abbreviations of bridge rules are those bridge rules which are removed from the
MCS and the second set are those who are applied unconditionally.

The witnesses have the following format:

([-]{<atom>, <atom>, ...}, [-]{<atom>, <atom>, ...}, ...)

Each set represents a contexts belief set, ordered by the context ID. The - in front of the sets is
printed if the belief set is ε. A belief set is printed as a list with those atoms which are true in
this belief set.

Example 5.3.5
r5_1: (5:c5) :- (1:e1), not (1:d1).
r5_2: (5:e5) :- not (1:a1).
r4_1: (4:f4) :- not (5:d5).
r4_2: (4:e4) :- not (5:c5), not (5:e5).

({}, {r4_2, r5_2, r5_1}):({a1}, -{}, -{}, {a4, c4}, {c5, e5, f5})
({r4_1, r4_2}, {r5_2, r5_1}):({a1}, -{}, -{}, {b4, e4}, {f5})
({}, {}):({a1, d1}, -{}, -{}, {a4, c4, e4, f4}, {b5, f5})
({r4_1, r4_2}, {}):({d1, e1}, -{}, -{}, {b4, e4}, {b5, f5})

This is a fragment of a partial result of an MCS with five contexts. First four bridge rules are
listed from context 4 (r4_1 and r4_2) and 5 (r5_1 and r5_2). Then four partial diagnoses
with their witnesses are listed. The witnesses are defined in the contexts 1, 4, and 5. The first
diagnosis applies the bridge rules r4_2, r5_2, and r5_1 unconditionally. The third row is
an empty diagnosis and the fourth removes the bridge rules r4_1 and r4_2.

2
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The detail level of the output can be configured by the --outputlevel command line
option on both, the dmcsd and the dmcsc program. It supports the four levels none, low,
medium, and high.

dmcsd. If the the output level is none no output is printed at all. The output level low prints
basic information about the state of processing but no results. The output level medium prints
the same information as the low level and in addition the calculated results which are send back.
The output level high prints the same as the medium level and the results of the calculation
before they are reduced to the subset-minimal diagnoses with respect to the same witness (see
Section 5.4.2).

dmcsc. If the the output level is none no output at all is printed. With output level set to
low the network address of the requested context, the history, the list of bridge rules, and the
subset-minimal results are printed to the standard output. With the output level set to medium
or high additional results received from the requested context (before the subset-minimal ones
are calculated) are printed.

5.3.6 Built-In Performance Measurement

The DMCS-DF system has been build with some time measurement classes to measure and
compare the wall-clock time consumption of different parts of the program. Functions to get
accurate clock values are used from the Boost library8.

The parts of the program which are measured are the bridge rule guessing, the local solving,
the local belief set guessing, the neighbor combination, the calculation of the subset-minimal
diagnoses, the serializing, and the local combination. The local solving includes the calculation
of the loop formulas based on the knowledge base and a set of bridge rules and the solving of
the loop formulas by the clasp solver. The local belief set guessing is the part of the algorithm,
where a cycle is detected and all possible belief sets of the context are guessed. The neighbor
combination is the part where results from neighboring contexts are received and joined with
the already received and joined results from other neighbors. The calculation of subset-minimal
diagnoses includes the the calculation of the subset-minimal diagnoses at the dmcsc program in
the end as well as the calculation of the subset-minimal diagnose with the same witness on each
context. Serializing is the process of converting the objects to a serialized data stream which
can then be send through the network. Serialization has to be done when data is send to another
context and when data is received from other contexts. Local combination is the join of the
results from the local solving and the results received form the neighboring contexts.

The time statistics of each context are send back to the invoking instance. Therefore the
dmcsc program can print a list of time statistics of each context involved in the calculation
process. Moreover it can sum up the the measured times for each context and get therefore
statistics about the mentioned parts of the calculation process over the whole system.

8http://www.boost.org/doc/libs/1_45_0/doc/html/date_time/posix_time.html
(Last checked on November 11, 2015)
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Example 5.3.6

Overall Sum (0):
Total: 46.851

BridgeRule Guessing: 0.716
Local Solve: 0.715
Rest: 0.001

Combination of Neighbor Results: 0.827
Local BeliefSet Guessing: 0.000
Calculation of Subset-Minimal DG: 2.256
Serializing: 28.350
Local Combination: 11.682
Rest: 3.018

Context 5 (105):
Total: 0.051

BridgeRule Guessing: 0.047
Local Solve: 0.046
Rest: 0.000

Combination of Neighbor Results: 0.000
Local BeliefSet Guessing: 0.000
Calculation of Subset-Minimal DG: 0.000
Serializing: 0.002
Local Combination: 0.001
Rest: 0.000

...

dmcsc (0):
Total: 17.638

BridgeRule Guessing: 0.000
Local Solve: 0.000
Rest: 0.000

Combination of Neighbor Results: 0.000
Local BeliefSet Guessing: 0.000
Calculation of Subset-Minimal DG: 2.256
Serializing: 13.135
Local Combination: 0.000
Rest: 2.246

|T: 46.851 |LS: 0.715 |LC: 11.682 |NC: 0.827 \
|SM: 2.256 |SE: 28.350 |RC: 488592 |SC: 14|
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Each block begins with an identifier which tells us the instance the statistic is about. This can
be Overall Sum for the whole system, Context i for the dmcsd daemon on the context with ID i,
and dmcsc for the dmcsc program. The number in brackets are the number of results which are
send back by this instance. Then each row lists a part of the program which has been measured.
The time is given in seconds. If a line is indented it means that this time interval is a subset of
the interval given by the next row above which is less intended. E.g., here:

BridgeRule Guessing: 0.716
Local Solve: 0.715
Rest: 0.001

0.716 is the sum of 0.715 and 0.001.
The last line is a short form of the Overall Sum block for easier automated processing. The

columns are: total time, local solve time, local combination time, neighbor combination time,
subset-minimal calculation time, serialization time, the number of results returned by the first
requested context, and the number of subset-minimal results.

5.3.7 Debugging

The DMCS-DF system can print fine-grained information about the calculation process for de-
bugging purposes. This output is written to the standard error stream. The level of information
can be controlled by the --debuglevel=<string> command line option. The various op-
tions are:

• network: prints information about network communication processes.

• dmcsc: prints status information from the dmcsc program.

• calculatePartialDiagnoses: gives information about the state of processing in
the calculation process on the dmcsd daemons and prints intermediate results.

• createBRGuessAndBSList: prints information about the process of guessing local
diagnoses and the results of each local solve process.

• diagnosesCombination: gives detailed information about operands, masks, calcu-
lation process, and the result when diagnoses are joined together.

• createMask: prints information about which masks are created from which belief
states.

• diagnosisPrint: prints information about all processes involved into converting data
from the program into printable strings.

• DMCSdInit: prints information about initialization procedures at each context.
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• minimality: prints status information about the calculation of subset-minimal diag-
noses.

• beliefStateCombination: gives detailed information about operands, masks, cal-
culation process and the result when belief states are joined together.

• parserAndLSolver: prints information about the parsing process of the input files
and the communication with the clasp SAT solver.

With the option debugAll the above listed options can be enabled all at once.
In addition to those debugging options which print debug information there are options

which interfere with the calculation process and some of them produce incorrect results but give
the opportunity to investigate different aspects of the program. They can for example be used
to limit the number of results per context and therefore efficiently debug program functionality
which is independent of the correctness of the result.

• dontCalculateSubsetMinimalDG: no subset-minimal diagnoses with the same
witnesses are calculated at each context. The result of the calculations are still correct
with this option enabled. This makes it possible to compare the system with and without
the SP optimization (see Section 5.4.2).

• resetReceivedResult: drops the received results from the neighboring contexts.

• setResultCount=<int>: instead of sending the regular results back one result is
taken and duplicated x times where x is the number given by this option. Therefore x
results are send back.

5.4 Optimizations

First we describe already defined optimizations from Bairakdar et al. [4] for the DMCS system.
We then show which parts of this optimization can be used for the DMCS-DF system and call
this optimization OPT. Then an optimization called subset pruning (SP) is introduced.

5.4.1 Edge Pruning (OPT)

There has been some work done in order to speed up the DMCS algorithm by Bairakdar et al.
[4]. They describe two types of optimizations: refined recursive import and pruning.

The first optimization is focused on reducing the information transmitted between contexts.
A context c is a cut vertex in the graph representation of the MCS topology iffG is a weakly
connected graph and G \ c a disconnected graph. The resulting belief states w.r.t. c send back
to the parent context can then be reduced to the belief set of c and all other belief sets can
be discarded without compromising further calculations in the parent context. In this work it
is intended to find diagnoses and its witnesses of the MCS . The diagnoses and witnesses are
defined in the whole import closure of the requested context. Therefore this optimization is not
applicable for DMCS-DF and will not be considered.
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The second optimization is based on a reduction of the topology to avoid unnecessary calls
to the neighboring contexts as explained in the following example:

C2 C3

C1

Figure 5.4.1: Edge pruning optimization

Example 5.4.1
We have an MCS with three contexts C1, C2, and C3. Context C1 requests information from
context C2 and C3, and context C2 from C3. If we calculate partial diagnoses for C1, this
context needs partial diagnoses from C2 and C3. If the results from C2 are requested, C2 itself
first requests the partial diagnoses fromC3, combines them with the local results, and sends them
back to C1. Then C1 does not need to request the partial diagnoses directly from C3 since all
possible partial diagnoses are already in the returned results from C2. So the call from C1 to C3

can be skipped which reduces the amount of data send between contexts and all the processing
a request initiates on a context.

2

A limited version of this optimization is already integrated in the DMCS-DF implemen-
tation. The DMCS-DF algorithm makes a check before every request to a context if partial
diagnoses from this context are already present in the returned results from other neighbors. But
a context daemon has not enough information about the topology of the MCS to determine an
optimized order of neighbor calls. The algorithm only benefits from an optimized order if such
an optimized order of calls has been chosen by chance. Therefore an optimized plan of neighbor
calls is stored in the topology file available to all contexts. The DMCS and DMCS-DF utilize
the optimization by reading the neighbor list from this topology file. The optimization itself is a
transitive reduction [22] of the topology graph.

Another part of the optimization strategy is to break cycles. Since every context guesses
the atoms from its bridge rule bodies before calculating the local belief sets the request to the
cycle context (the one where the cycle is detected) can be omitted. This also applies to the
diagnoses which are not guessed when the cycle context is requested for the first time. The
detection of cycles in the MCS requires information about the topology of the MCS and is
therefore implemented in the query plan specified in the topology file. The cycle breaking itself
is done by making an ear decomposition of the topology graph which results in a single cycle
and additional paths beginning and ending at the cycle. This cycle and the last edge of every
path is removed to get a cycle free topology.
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The DMCS-DF system has been adapted to integrate the described optimizations above.
Suppose we are at a context which has a neighboring context which marks the end of a cycle.
In the non-optimized case a request to this context is send and the context returns fully defined
belief sets from the context itself. In the optimized case no request is send and the interface
atoms from this context are guessed. So in the optimized case we get only belief sets which are
defined at those atoms which are interface atoms. This information, which atoms are defined
and which are not, has to be stored and send with the belief sets such that further join operations
operate correctly (see Section 5.3 for Belief State Combination Masks).

5.4.2 Subset Pruning (SP)

Earlier in this work (Definition 5.3.1) the concept of pointwise subset-minimal diagnoses has
been introduced. They can be calculated by a comparing each (partial) diagnoses with each
other. Subset-minimal diagnoses are always a subset of all diagnoses and therefore reduce the
number of results. An obvious question to ask here is, whether we can we calculate subset-
minimal diagnoses already at each context. This would reduce combination costs and network
traffic. But as shown in the example below there are cases where a partial diagnosis is not
subset-minimal at some context, but is part of a subset-minimal result later in the calculation
process.

C3C2C1

k←not k, a1 	∅  a3

r1: a1←(2:a2) r2: a2←(3:a3)

Figure 5.4.2: Example to demonstrate subset pruning

Example 5.4.2
We have three contexts C1, C2, and C3. C3 has the fact a3 in its knowledge base and no bridge
rules. C2 has an empty knowledge base and the bridge rule r2 : a2 ← (3 : a3) and C1 the bridge
rule r1 : a1 ← (2 : a2) and rule k ← not k, a1 in its knowledge base. For the empty diagnoses
(ε, (∅, ∅), (∅, ∅)) w.r.t. C2 there is only one witness (ε, {a2}, {a3}). Assume we calculate the
subset-minimal diagnoses of the results at C2 and send back only those results. Since an empty
diagnosis is always the only subset-minimal diagnosis this diagnosis with the mentioned witness
is send back toC1. With this partial result the only diagnosis w.r.t. C1 is (({r1}, ∅), (∅, ∅), (∅, ∅))
with its witness (∅, {a2}, {a3}). But this is not the only subset-minimal diagnosis w.r.t. C1. E.g.,
((∅, ∅), ({r2}, ∅), (∅, ∅)) with its witness (∅, ∅, {a3}) is also a subset-minimal diagnoses. This
shows that it does not suffice to communicate subset-minimal results between contexts.

2
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Subset-minimal diagnoses w.r.t. a partial belief state. We have seen that subset-minimal
partial diagnoses, as an intermediate result, do not suffice to calculate all the partial diagnoses
from a larger import closure. This is because a context has no information how other contexts
depend on his belief sets. But other contexts do not depend directly on the partial diagnoses
of the contexts in their import closure. Therefore all partial diagnoses with the same witness,
which are the basis of further calculations, result in the same partial diagnoses and witnesses at
the parent contexts. Because of this we can calculate the subset-minimal diagnoses for all partial
diagnoses with the same witness at each context. This will reduce the number of results send
back by every called context and therefore reduce the amount of data send between contexts and
the number of joins at the contexts.

We have therefore found a way to calculate specific subset-minimal diagnoses which in-
creases the efficiency of the DMCS-DF system and still produces correct results. Moreover we
have seen that a straight forward approach to calculate subset-minimal diagnoses in order to
increase the performance of the algorithm is impossible.
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CHAPTER 6
Experimental Evaluation

We now have defined an algorithm and optimizations of it, we have shown that the algorithm
is sound and complete, and we have an implementation of the algorithm. What is left to show
is that the implementation of the algorithm and its optimizations are feasible when they run on
state-of-the-art hardware. This means that we want to check whether the optimizations make
a difference and result in noticeable faster and less memory consuming runs and to study how
the effectiveness is determined by properties of the problem instances. Finally we will compare
the capability of our implementation to calculate equilibria in consistent MCSs and compare
it with the DMCS system, which was solely designed to calculate equilibria and was the basis
for our implementation. During this comparison experiments we take a deeper look into our
implementation and examine the performance of the different subsystems of the algorithm in
order to explain differences to the DMCS system and to identify a starting point for further
optimizations.

In summary we will check the following hypotheses:

• The edge pruning optimization will reduce the runtime and memory consumption on prob-
lem instances with one or more cycles.

• The subset pruning optimization will dramatically reduce the runtime and memory con-
sumption on all problem instances and the effect will increase on larger instances.

• Due to different implementations of the joining process in the DMCS and our system,
we assume that both systems have a different performance characteristics w.r.t. problem
instance topologies, more specific different neighborhood relations, and a different scaling
behavior with increasing belief set sizes.

First we introduce the categorization of problem instances which are tested by the experi-
ments. Next the effects of the optimizations described in Section 5.4 are presented. First the
DMCS-DF system without optimizations is compared to the DMCS-DF system with the OPT
optimization enabled and then this configuration to the system with both optimizations enabled.
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Finally the DMCS-DF system is tested against the DMCS system in finding equilibria in con-
sistent MCS . We conclude with a brief summary about the results of the experiments which is
a noticeable performance gain due to the optimizations, especially on instances with cycles, and
that our implementation is able to compete with the DMCS system in calculating equilibria.

The problem instance files as well as the log output files can be found under
http://www.kr.tuwien.ac.at/research/systems/dmcs/dmcs-df/

6.1 Definition of Problem Instances

Problem instances for empirical experiments are categorized by 5 parameters which are de-
scribed in the following.

The first parameter is the topology of the contexts, more specific, the topology of the graph
representation of the Multi-Context System. Table 6.1.1 lists the topologies and their abbrevia-
tions.

D Diamond
Z Zigzag
H House
R Ring

Table 6.1.1: Abbreviations of Topologies

Diamond Topology. A diamond is based on 3 ∗ n + 1 contexts as shown in figure 6.1.1a. If
there is more than one diamond, the first context of the second diamond and the fourth context
of the first diamond are the same and so on. Diamond topologies contain no cycles.

Zigzag Topology. The zigzag topology is the same as the diamond topology with additional
information flow from context 3 to context 2 in all its diamonds. Compared to the diamond
topology, a zigzag has more neighbor relations for one context of each diamond but also no
cycles.

House Topology. An example of a house topology can be seen in Figure 6.1.1b with two
houses. Larger MCSs are composed in the same way which means that the roof is always
connected at the bottom of the preceding house. A house MCS has at least one cycle.

Ring Topology. In a ring topology every context is connected in a row. E.g., in a ring topology
with four contexts, context 1 requests information from context 2, context 2 from context 3,
context 3 from 4, and context 4 from context 1. Such an MCS has always exactly one cycle
which is the whole MCS itself and each context has exactly two neighbors: one requesting
information one it requests information from.
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Ctx 3 Ctx 2

Ctx 4

Ctx 1

(a) Diamond Topology

Ctx 2 Ctx 3

Ctx 1

Ctx 5 Ctx 4

Ctx 6 Ctx 7

Ctx 9 Ctx 8

(b) House Topology

Figure 6.1.1: Topologies

The other four parameters are the number of contexts in the MCS , the number of atoms per
context, how many of them are used in bridge rule bodies, and at the number of bridge rules per
context.

An example configuration is D-4-4-3-3 which means that the MCS has a diamond topology
with 4 contexts, 4 atoms per context where 3 of them are used in bridge rule bodies, and 3 bridge
rules per context.

6.2 Optimizations

In this section the results of the empirical experiments will be shown. They compare the per-
formance on state of the art consumer hardware and tell us what the effect of the implemented
optimizations in the DMCS-DF system are. The tests have been performed on a single linux
machine hosting the daemons for all contexts of the tested MCSs . The machine has a dual
core 2.53 GHz processor and 4 GB of physical RAM. An Ubuntu 11.041 installation serves as
operating system.

6.2.1 Edge Pruning (OPT)

We compare the DMCS-DF system without optimizations (edge pruning and subset pruning) to
the system with edge pruning enabled (DMCS-DF-OPT) to see the benefits of this optimization
in terms of time and memory consumption.

1http://www.ubuntu.com (Last checked on November 11, 2015)
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The effect of this optimization depends very much on the problem instance topology. There-
fore tests with the topologies diamond, house, ring, and zigzag have been performed. For each
problem configuration (a specific topology, number of contexts, atoms, interface atoms, and
bridge rules) ten instances have been created and tested. Since the purpose of the DMCS-DF
system is to find diagnoses in inconsistent MCSs , inconsistent instances have been created.

The results are presented with graphs which show the median, the minimum, and the max-
imum values over those ten instances. The runtime and the memory consumption have been
evaluated. Runtime is the time from the start of the querying client program till the printing of
the returned results. Memory consumption is the sum of the maximum allocated memory from
each daemon and the client program.

First Figure 6.2.1 shows the runtime of the system in seconds to give an overview of the
system runtime. Since the problem instances are very heterogeneous it is easier to read the
results on graphs showing relative values. Therefore Figure 6.2.2 shows the runtime of the
DMCS-DF-OPT system in percent of the DMCS-DF runtime. The memory consumption is
shown in Figure 6.2.3 as absolute values in MB and also a graph with the memory consumption
of the DMCS-DF-OPT system as percentage of the DMCS-DF system in Figure 6.2.4.

Diamond Topology We can see that on instances with a diamond topology the optimization
has no effect. This is clear since no cycles can be broken and the transitive reduction of the
topology graph remains the same.
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Figure 6.2.1: Runtime of DMCS-DF-OPT and DMCS-DF in Seconds (Minimum, Median, Max-
imum)
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Figure 6.2.2: Runtime of DMCS-DF-OPT in Relation to DMCS-DF in % (Minimum, Median,
Maximum)

Zigzag Topology Zigzag topologies have, like diamond topologies, no cycles and therefore
no optimization effect by cycle breaking. But in contrary to the diamond topology a zigzag can
be optimized with the a transitive reduction as shown in Figure 6.2.5a (dotted requests can be
skipped).

Therefore the transitive reduction could have an effect on the runtime and the memory con-
sumption of zigzag topologies. However, transitive reduction works by defining a special order
of requests, and as this order is by coincidence the same as without OPT for the Zigzag in-
stances, no effect can be observed. Therefore the DMCS-DF system without the graph pruning
optimization acts the same way as with the edge pruning optimization. This is why there is no
observable gain in time usage and memory consumption in Figure 6.2.2 and 6.2.4.

We conclude with the observation that this optimal behavior can only be guaranteed by the
OPT algorithm.

Ring Topology Ring topologies are cycles and can therefore be optimized by breaking the
cycle. This is reflected in the figures with respect to total time and memory consumption. Both
are around or less than 20% of the values without the optimization. The effectiveness of the
optimization is increasing with more (interface-) atoms per context. This can be seen if the
results from R-5-6-3-3 and R-5-6-3-4 instances are compared with the R-5-7-4-3 and R-5-7-4-4
instances. The latter are going down to 10% in memory consumption and less than 10% in total
time usage.
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Figure 6.2.3: Memory Consumption of DMCS-DF-OPT and DMCS-DF System in MB (Min,
Median, Max)

House Topology A house topology is optimized by (a) skipping the request from Context 1 to
Context 3 and (b) breaking the cycle (Figure 6.2.5b).

A more close examination of the optimization (a) shows that the removal of the request from
Context 1 has no effect. This is because in case without optimization, no matter which context is
requested first from Context 1, the returned result is defined in all contexts of the cycle, namely
contexts 2, 3, 4, and 5. Therefore the second request from Context 1 is dropped as well in the
non optimized case.

The optimization (b) is effective on the contexts of the cycle. The optimization therefore
reduces the resource consumption on all but one contexts of a house topology.

Figure 6.2.2 and 6.2.4 shows that the effectiveness of the OPT algorithm is not as high as on
a ring topology. This is due to the mentioned reasons above and the fact that the optimization is,
in contradiction to the house topology, effective on all contexts of a ring topology. Nevertheless,
the median runtime is below 60% and the median memory consumption below 70% on all four
tested house configurations.

6.2.2 Subset Pruning (SP)

Subset pruning is the reduction of a set of partial diagnoses which have the same witness to those
partial diagnoses which are subset-minimal within this set (see Section 5.4.2). This can be done
on the results of each context. So this optimization reduces the number of results which are send
back and therefore reducing:
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Figure 6.2.4: Memory Consumption of DMCS-DF-OPT System in Relation to DMCS-DF in %
(Min, Median, Max)
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Figure 6.2.5: Graph Optimizations

• the resources used to send the results over the network,

• the number of joins between the results from different neighbors,

• the number of joins between the received results from the neighbors and the local solu-
tions, and

• the effort of calculating the subset-minimal diagnoses at each context.
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The only part of the calculation which is not influenced by this optimization is the solving of the
local belief sets. The reason is that they are calculated based on all combinations of input atoms
before they are joined with the results from the neighboring contexts (see Section 5.3.2).

To show the effect of the SP optimization, in this section the DMCS-DF system with the
OPT and SP optimizations enabled (DMCS-DF-OPT-SP) is compared to the DMCS-DF system
with only OPT enabled (DMCS-DF-OPT). The tests have been performed on different problem
configurations and for each configuration ten instances have been tested. Only inconsistent
instances have been created such that the results consist of non empty diagnoses. The problem
instances have been chosen such that the system performs in a representative range regarding
runtime and memory consumption. The graphs illustrating the results of this section show the
minimum, maximum, and medium values of all ten instances of each problem configuration.
The analyzed values are the number of results send back to the querying client program, the
runtime of the whole system (from the start of the querying client program to the printing of the
results), and summed memory consumption of all context daemons and the client program.

To give an impression on how much the SP optimization can reduce the number of intermedi-
ate results, Figure 6.2.6 shows the number of diagnosis/witness pairs which are send back to the
querying client program. This is the last stage of processing before the overall subset-minimal
results are calculated in the querying program. This is done independently of the SP optimiza-
tion and therefore the number of results equal in the system with and without the optimization
after this step.
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Figure 6.2.6: # of Results Returned to Querying Program with DMCS-DF-OPT vs. DMCS-DF-
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Figure 6.2.7: Runtime of DMCS-DF-OPT and DMCS-DF-OPT-SP in Seconds (Min, Median,
Max)

On 95% of all 80 tested instances (10 per configuration) the number of returned diagno-
sis/witness pairs with SP optimization enabled is below 1% of the number of results without SP.
On the other 5% of the instances the number of results drops below 2.5%.

Table 6.2.1 shows the effect of the SP optimization on the runtime of the system. This is
the time between sending the query and just before printing the results. The first three columns
show the runtime of the DMCD-DF-OPT-SP system in relation to the DMCS-DF-OPT system.
The values are the minimum, median, and maximum value over all ten tested instances per
configuration. The next two columns show the runtime in seconds of the DMCS-DF-OPT and
the DMCS-DF-OPT-SP system. Both are the median over all ten instances of each configuration.
Over all tested instances the SP optimization reduces the runtime between 90% and 99.66%
concluding that the optimization performs well on all tested topologies.
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Figure 6.2.8: Memory Consumption of DMCS-DF-OPT and DMCS-DF-OPT-SP in MB (Min,
Median, Max)

SP in Relation to non-SP Absolute Runtime
Problem Configuration Min Median Max Median non-SP Median SP

D-7-7-4-3 0.34% 0.64% 3.59% 103.47s 0.53s
D-7-7-4-4 0.50% 1.51% 2.48% 39.45s 0.58s
H-5-7-4-3 1.72% 2.78% 3.77% 19.05s 0.55s
H-5-7-4-4 1.66% 2.55% 4.80% 21.94s 0.49s
R-5-7-4-3 1.42% 2.61% 4.66% 26.21s 0.66s
R-5-7-4-4 1.23% 3.13% 7.55% 15.23s 0.57s
Z-7-7-4-3 1.16% 2.26% 3.25% 20.92s 0.43s
Z-7-7-4-4 1.31% 2.06% 2.63% 22.70s 0.45s

Table 6.2.1: Reduction using Subset Pruning (DMCS-DF-OPT vs. DMCS-DF-OPT-SP System)

The median of the runtime of both tested systems for each configuration is also shown in
Figure 6.2.7 to give a visual impression of the runtime reduction in seconds. Note the logarithmic
scale of the graph.

The SP optimization not only reduces the runtime of the system but also the memory con-
sumption. Figure 6.2.8 shows the sum of the memory usage of each context and the querying
program. As with the runtime the SP optimization reduces the memory consumption of the
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system significantly. The memory consumption of all tested instances, including the one with a
memory usage up to 3GB, can be reduced to about 50MB and below.
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Figure 6.2.9: Upscaling Comparison of DMCS-DF-OPT in Relation to DMCS-DF-OPT-SP
Runtime on Ring Topologies in % (Min, Median, Max)

Upscaling in Form of Larger Systems. The SP optimization is the more efficient the more
contexts a system has. Assuming that the contexts in an MCS have a fixed number of bridge
rules, the number of possible diagnoses increase with the number of contexts. This is because
diagnoses are, speaking in simple terms, a subset of the power set of all bridge rules and a power
set has trivially more elements if the set itself is larger. So a subset-minimal diagnosis is subset-
minimal out of a larger set of diagnoses leading to the fact that the SP optimization drops more
diagnoses. The conclusion from this assertion is that the SP optimization is the more efficient
the more contexts are in the MCS .

Figure 6.2.9 shows the runtime of the DMCS-DF-OPT-SP system in percentiles of the run-
time of the DMCS-DF-OPT system. Since ring topology configurations can have an arbitrary
number of contexts two such configurations have been chosen for the experiment. They have
both the same parameters except the number of contexts which differs by one context. The fig-
ure shows the minimum, median, and maximum value of ten instances which are tested for each
configuration. The runtime of the 8 context configuration can be reduced by the SP optimization
to 2.10% (median) of the runtime without optimization and the runtime of the 9 context config-
uration down to 0.75% (median). This indicates that the SP optimization is significantly more
effective on configurations with more contexts.

83



6.3 Comparison DMCS vs. DMCS-DF-OPT-SP

0.1

1

10

100

1000

Z
-10-3-3-3

Z
-10-4-3-3

Z
-10-5-3-3

Z
-10-6-3-3

R
un

im
e

/s
ec

Problem Configurations (10 Instances)

DMCS
DMCS-DF-OPT

DMCS-DF-OPT-SP

Figure 6.3.1: Runtime of DMCS and DMCS-DF-OPT-SP for Zigzag Configurations (Min, Me-
dian, Max)

Now we show the performance of the DMCS-DF system in finding equilibria for consistent
MCSs , e.g., without diagnoses. The results are compared to the DMCS system running in
default mode.

The DMCS system has been enhanced with an optimization described by Bairakdar et al.
[4]. But as a consequence of the optimization the results are not comparable with the DMCS-DF
system. The optimization, named refined recursive import, cuts information from intermediate
results which are not necessary for local calculations at the initially requested context. This re-
duces the amount of information transmitted between the contexts. Therefore the results are not
covering the whole import closure of the requested context, in contrast to the DMCS-DF system
which returns results defined in all contexts of the import closure. Therefore we compare the
DMCS-DF system with the DCMS system in default mode which returns fully defined equilibria
like the DMCS-DF system.

Due to our implementation of the mentioned optimizations for the DMCS-DF system we
sometimes outperform the DMCS system even though we calculate additional information. To
get a clearer picture on the performance differences between the two systems, it would be better
to compare the DMCS-DF system to the DMCS system with a version of OPT which returns
equilibria defined in the whole import closure. Such an extension of the DMCS system is left
for future work.
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Since both tested systems have a different order of joining results from neighbors and joining
them with local results, they have a different scaling behavior. Therefore experiments with
zigzag problem configurations differing in the number of atoms per context are done. Then
an explanation for a deeper understanding of this difference is given including a listing of the
resource usage of distinct parts of the DMCS-DF algorithm. The performance of the DMCS-DF
system is then emphasized by experiments with house topologies. From the given explanation
about the different performance of the systems we can conclude that ring topologies are better
solved by the DMCS system due to not existing neighbor combinations. We verify this in an
additional experiment.

We now compare the DMCS and the DMCS-DF-OPT-SP system on four zigzag configura-
tions. All configurations have the same number of contexts, interface atoms, and bridge rules.
They only differ in the number of atoms per context. Figure 6.3.1 shows the minimum, median,
and maximum value of the runtime in seconds. It can be seen that both systems scale quite
differently with a different number of atoms per context. On the DMCS system the runtime
increases with more atoms per context, whereas the runtime of the DMCS-DF-OPT-SP system
has no obvious relation to the number of atoms per context. The additional data row from the
DMCS-DF-OPT system, e.g., without the SP optimization, shows that the SP optimization has
a positive effect on the runtime but does not explain the different scaling behavior between the
DMCS and the DMCS-DF-OPT-SP system.

Relative Runtime / %
Task Minimum Median Maximum
Local Solve 1.53% 4.75% 49.62%
Joining of Neighbor Results 0.64% 1.70% 3.29%
Calculation of Subset-Minimal DG 7.02% 14.88% 20.09%
Serializing 21.05% 37.27% 57.08%
Joining of Local Results 16.84% 33.74% 46.94%
Rest 2.89% 4.62% 7.17%

Table 6.3.1: Runtime Proportion of Subtasks of the DMCS-DF-OPT-SP System With ZigZag
Problem Instances in Relation to the Total Runtime (Minimum, Medium, Maximum).

Next we show which tasks of the DMCS-DF-OPT-SP system are mainly responsible for the
system runtime. Then we compare the implementation of these tasks with the implementation
of the DMCS system and look for explanations of the different scaling behavior.

Table 6.3.1 shows that the local solve part is about 5% of the total runtime (with spikes to
50%). Therefore a higher number of local solve operations with the DMCS-DF system due to
diagnosis guesses has generally a minor effect on the total runtime. The calculation of subset-
minimal diagnoses is only necessary with the DMCS-DF system and can therefore not be re-
sponsible for longer runtimes of the DMCS system. The number of results sent between the
contexts is only reduced by the SP optimization. Since the better scaling performance of the
DCMS-DF system with more atoms per context is also visible without the SP optimization, the
serialization can also be excluded from the list of possible responsible tasks. So the combination
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operations are left as a task with a high proportion of the total time. A major difference between
the DCMS and the DMCS-DF systems is the order in which results are joined. The DMCS sys-
tem first calculates the local belief sets and then requests the neighbors and immediately joins
the received results with the local belief sets. In contrast the DMCS-DF system first joins the
results received from the neighbors and then joins them with the local belief sets. A higher num-
ber of atoms per context increases the probability of a higher number of local belief sets. Since
local belief sets are earlier involved in the combination process of the DMCS system a higher
number of atoms has a higher impact on the processing time with the DMCS system.

The difference in implementation of the DMCS and the DMCS-DF system has not only
an effect on the runtime but also on the memory consumption of the systems. Figure 6.3.2
shows the minimum, median, and maximum sum of the daemons and client program memory
consumption. The graph shows that the memory consumption of the DMCS-DF-OPT-SP is
higher than the one from the DMCS system. However, DMCS-DF-OPT-SP scales better with
larger contexts.
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Figure 6.3.2: Memory Consumption of the DMCS and DMCS-DF-OPT-SP system in MB with
Zigzag Instances (Minimum, Median, Maximum)

To show that the DMCS-DF-OPT-SP system has also good performance on other topologies,
ten house topology instances have been tested. Figure 6.3.3 shows that the DMCS-DF-OPT-SP
system has a better time performance on all instances. The graph shows also that the time gain
is quite different on different instances but cause less than 1% of DMCS-DF-OPT-SP runtime
compared to the DMCS system.

Before we concluded that the good performance of the DMCS-DF-OPT-SP system com-
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Figure 6.3.3: Runtime of DMCS and DMCS-DF-OPT-SP with Individual House Instances

pared to the DMCS system must be due to the order of join operations. This difference is only
of relevance if there are multiple neighboring contexts whose results are joined together. Oth-
erwise there are no join operations between the results of the neighbors and thus the DMCS
and DMCS-DF system have the same order of joins. Therefore the DMCS system must have a
better performance on ring topologies because on such topologies every context has exactly one
neighboring context. Figure 6.3.4 shows the results of tests with ring topologies. Three config-
urations with a different number of contexts have been tested w.r.t. the runtime of the DMCS
and the DMCS-DF system. The results confirm that the DMCS system performs better on ring
topologies.

Summary. The experiments have shown that the DMCS-DF-OPT-SP system calculates partial
equilibria in consistent MCS with good performance and has a better runtime compared to
the DMCS reference program on some zigzag and house topology configurations. Whereas
the DMCS system runtime and memory consumption increases with the number of atoms the
DMCS-DF-OPT-SP system has no such correlation. Further investigations of the performance of
the sub systems of the DMCS-DF-OPT-SP system let us conclude that this scaling behavior has
its cause in the different order of joining operations on both systems. This also explains why the
DMCS-DF-OPT-SP system performs better in comparisons with zigzag and house topologies
which have multiple neighbor relations.

Due to different optimizations implemented in both systems it can not be said that the
DMCS-DF-OPT-SP system has a better performance in general. The DMCS system has a better

87



0.1

1

10

100

1000

R
-8-7-3-3

R
-9-7-3-3

R
-10-7-3-3

R
un

tim
e

/s
ec

Problem Instances

DMCS
DMCS-DF-OPT-SP

Figure 6.3.4: Runtime of DMCS and DMCS-DF-OPT-SP Ring Configurations (Minimum, Me-
dian, Maximum)

runtime, e.g., with ring topologies. Implementing a variety of OPT that still returns full equilib-
ria in DMCS would allow for a better comparison of methods. We conjecture that in this case
DMCS would be consistently more efficient as it simply performs a subset of the operations of
DMCS-DF-OPT-SP.

6.4 Summary

We can conclude that both optimizations have the effects which we expected. Which is for the
edge pruning optimization that there is no observable effect on diamond and zigzag topographies
which have no cycles but up to a 90% reduction in computing time and memory consumption
for ring topologies and still up to 30% reduction on house topologies. The difference can be
explained by the fact that all contexts of a ring topology are part of a cycle (compared to the
house topology where only a part of the contexts are in a cycle) and therefore the optimization
can effect the whole MCS .

For the subset pruning we could show that the number of results which are returned can be
pushed below 1% of the number without the optimization on over 95% of all tested instances and
over all tested topologies. Therefore also the runtime and the memory consumption was reduced
drastically over all topologies. We can further conclude that the effect of this optimization
increases with larger instances.

The comparison between the DMCS and our system showed us that the DMCS system re-
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duces its performance with larger contexts while our system can keep its performance due to the
late involvement of the local belief set in the joining process. This finding could be backed up
by showing that the joining of the requested results uses much more time than the local solve op-
eration in our system. Generally we can conclude that our system can compete with the DMCS
system in solving equilibria and has a slightly better performance on some house and zigzag
topologies.

89





CHAPTER 7
Conclusion

We have approached the problem of inconsistencies in Multi-Context Systems with the notion
of diagnoses as used by Eiter et al. [16] and modified them such that they can be computed
in a distributed manner. Dao-Tran et al. [14] have done this already for equilibria and as well
developed an algorithm calculating them. Inspired by this we introduced partial diagnosis which
are diagnosis solving the inconsistencies of a defined part of the MCS . If a user is interested in a
specific context the according partial diagnoses of this context span by definition over this part of
the MCS which is necessary to fix all inconsistencies such that the user gets a consistent result
for the context she is interested in. The algorithm we defined is distributed over the contexts and
we reduced the information each instance requests from other instances such that the network
utilization remains low and it is not necessary for each instance to reveal all local information.

We have shown that the developed algorithm is able to find all partial diagnoses and that all
results which are returned are partial diagnosis. In addition to the partial diagnoses the algorithm
returns also all partial equilibria resulting from the applied partial diagnoses.

With an actual implementation of the algorithm in C++ we were able to perform benchmarks
on specific problem instances. The implementation was designed to return performance data
and we build in useful debugging options such that it is possible to compare different problem
instance classes and different algorithm optimizations.

Two optimizations have been included in the implementation. Edge Pruning which is re-
ducing unnecessary request to contexts where all necessary information about this context has
already been returned by another context. With this optimization the runtime and memory con-
sumption on some specific problem instance classes has been reduced by 60%. The second
optimization is subset pruning which has the effect of only returning subset-minimal diagnoses.
On over 95% of all tested instances with this optimization the number of results has been re-
duced by 99% which goes also hand in hand with an significant reduction of memory usage and
computation time.

Finally we can conclude that the implementation can also compete with the DMCS system
which only calculates partial equilibria meaning that it has a better scaling characteristics on
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some problem instances. We therefore belief that this algorithm is a good basis for further
developments in approaching inconsistencies in Multi-Context System.

7.1 Related Work

We will give a short overview of approaches to find and solve inconsistencies in a wide range
of systems. Therefore not all approaches are easy to compare but nonetheless due to the general
structure of the problem it may help to find new solutions by modifying and combining existing
approaches.

The problem of inconsistencies in distributed, non-monotonic knowledge bases is not new
and has, e.g., been approached by Bikakis and Antoniou who described MCSs with defeasi-
ble rules [7], [8] and handle the problem of inconsistencies with a preference ordering. This
means that each context has an individual ordered list of its information sources such that any
inconsistency arising in any context can be solved locally.

Binas and McIlraith proposed a method for resolving inconsistencies in peer-to-peer systems
using a preference relation on peers [9] which could express trust between peers and therefore
support or weaken a consistent solution.

An approach called model-based diagnosis was introduced by Reiter [31] and also discussed
w.r.t. nonmonotonic systems by Preist et al. [30]. Here a logical model for correct and faulty
behavior of system components is introduced and used in combination with observations of a
real system to detect the problem.

In order to restore consistency some approaches have been developed which are combining
beliefs. One is belief revision [1] [29] where existing knowledge bases are updated with new
beliefs and therefore may remove others and another is belief merging [23] where inconsistent
beliefs are tried to overcome by combining them from different knowledge bases with the help
of expressive mappings.

In other areas like information integration [25] similar approaches are studied. E.g., in the
described Informix system different sources are materialized in one schema and by modifying
this materialized information instead of the sources inconsistencies are resolved. This is some-
how similar to our approach although their mapping formalisms are more expressive.

Another area which has to deal with inconsistencies is ontology mapping [13] where the
challenge is to connect identical concepts, roles, or individuals from different, heterogeneous
ontologies. This can also result in inconsistencies over all mapped ontologies and is normally
avoided by leaving out the responsible mappings.

A different approach to deal with inconsistencies is depicted by Calvanese et al. and their
peer-to-peer data integration [12]. Here queries can ignore parts of the system or belief which
are only held by a minority of peers in the system. But in contrary to our systems the structure
of their systems is changing dynamically by added or removed peers.

Other approaches for automatically solving inconsistencies can as well be found in data
integration [20], consistent query answering in data bases [6], [15] and description logics [24]
or by the use of abduction [21].
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7.2 Future Work

First we want to point out possible improvements of the algorithm which would probably result
in better performance:

If two different guesses result in the same belief set it may suffice to only use one guess
for further calculations and store the second one attached to it and construct it at the end from
the results of the first guess. This should be valid because the calculations on a specific context
are only based on the belief sets of the neighboring contexts and not on the partial diagnoses or
candidates of those contexts.

There are probably a lot of cases where the user is only interested in subset minimal diag-
noses. In such cases it might be worth to investigate an iterative approach where first only the
subset minimal diagnoses at all stages of the request chain are calculated without considering
that this may lead later on to no result and if no witness results in a partial equilibrium a new re-
quest is send where all contexts provide the next larger set of diagnoses w.r.t. subset minimality.
Such an approach will probably reduce the total amount of calculation time but as a downside
increase network traffic.

As already pointed out in Section 5.3 the theoretical approach requests the partial diagnoses
from the import neighborhood and calculates the local belief sets based on them whereas the
actual implementation first guesses the atoms from the neighborhood and then joins this in-
formation with the results received from the requests. Both approaches have advantages and
disadvantages and therefore it would be interesting to develop an algorithm combining both
approaches and make use of the advantages of both of them.

There should also be some room for improvement by using more compact data structures.
A lot of diagnosis/witness pairs have the same witnesses (of course depending on the problem
instances) but are still calculated redundantly for each further context. A more intense use of
pointers could help here to reduce the amount of unnecessary calculations.

We can also think about improvements or extensions to the whole theoretical system which
would make it more general and therefore suitable for broader use cases. To give the user more
information about the diagnoses and to help her to judge which diagnosis would be better to
apply we can think about determining the influence of a diagnosis. This could be the number
of contexts which are affected or some other measurements which keep track of the changes
resulting from a diagnosis.
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